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Preface to third edition

Analysis of variance and regression has for many years been the mainstay of
statistical modelling. These techniques usually have as a basic assumption
that the residual or error terms are independently and identically distributed.
Mixed models are an important approach to modelling, which allows us to relax
the independence assumption and take into account more complicated data
structures in a flexible way. Sometimes, this interdependence of observations
is modelled directly in a mixed model. For example, if a number of repeated
measurements are made on a patient, then mixed models allow us to specify
a pattern for the correlation between these measurements. In other contexts,
such as the cross-over clinical trial, specifying that patient effects are normally
distributed, rather than fixed as in the classical approach, induces observations
on the same patient to be correlated.

There are many benefits to be gained from using mixed models. In some
situations, the benefit will be an increase in the precision of our estimates. In
others, we will be able to make wider inferences. We will sometimes be able to use
a more appropriate model that will give us greater insight into what underpins
the structure of the data. However, it is only the availability of software in versatile
packages such as SAS® that has made these techniques widely accessible. It is
now important that suitable information on their use becomes available so that
they may be applied confidently on a routine basis.

Our intention in this book is to put all types of mixed models into a general
framework and to consider the practical implications of their use. We aim to
do this at a level that can be understood by applied statisticians and numerate
scientists. Greatest emphasis is placed on skills required for the application of
mixed models and interpretation of the results. An in-depth understanding of
the mathematical theory underlying mixed models is not essential to gain these,
but an awareness of the practical consequences of fitting different types of mixed
models is necessary. While many publications are available on various aspects of
mixed models, these generally relate to specific types of model and often differ in
their use of terminology. Such publications are not always readily comprehensible

xiii
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xiv Preface to third edition

to the applied statisticians who will be the most frequent users of the methods. An
objective of this book is to help overcome this deficit.

Examples given will primarily relate to the medical field. However, the general
concepts of mixed models apply equally to many other areas of application, for
example, social sciences, agriculture, veterinary science and official statistics. (In
the social sciences, mixed models are often referred to as ‘multi-level’ models.) Data
are becoming easier to collect, with the consequence that datasets are now often
large and complex. We believe that mixed models provide useful tools for modelling
the complex structures that occur in such data.

The third edition of this book retains the structure of the first two, but there
are further changes to reflect the continued evolution of SAS. This edition fully
incorporates features of SAS up to version 9.3. Compared to what was available
at the time of the previous edition, enhancements to SAS include improved
graphical facilities. Importantly, there is also a new procedure, PROC MCMC,
which facilitates Bayesian analysis. This has led to extensive changes in our
coverage of Bayesian methods. SAS 9.3 and later versions now provide output
both in text format from the output window and, additionally, as an HTML file in
the results viewer. There have been accompanying minor changes in the details of
outputs and graphs, such as labelling. Our approach to reporting SAS outputs in
this edition has been to change our presentation from earlier editions only when
we wish to highlight features that have changed substantially and, importantly,
to facilitate the reader’s use of mixed models, whatever their version of SAS.

During the drafting of this edition, SAS 9.4 became available. It is not fully
incorporated into this book because its new features are focused more on the
SAS high performance procedures than on improvements to the SAS/STAT
procedures. These high performance procedures ‘provide predictive modelling
tools that have been specially developed to take advantage of parallel processing
in both multithread single-machine mode and distributed multi-machine mode’.
Typically, the high performance procedures such as PROC HPLMIXED have a
greatly reduced range of options compared to PROC MIXED and, consequently,
are peripheral to the aims of this book. We do, however, consider some of the
small modifications to improve procedures such as GLIMMIX and MCMC that are
available in SAS/STAT® 12.1 and later versions.

Chapter 1 provides an introduction to the capabilities of mixed models,
defines general concepts and gives their basic statistical properties. Chapter 2
defines models and fitting methods for normally distributed data. Chapter 3
first introduces generalised linear models that can be used for the analysis of
data that are binomial or Poisson or from any other member of the exponential
family of distributions. These methods are then extended to incorporate mixed
models concepts under the heading of generalised linear mixed models. The
fourth chapter examines how mixed models can be applied when the variable
to be analysed is categorical. The main emphasis in these chapters, and indeed
in the whole book, is on classical statistical approaches to inference, based on
significance tests and confidence intervals. However, the Bayesian approach is
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also introduced in Chapter 2, since it has several potential advantages and its use
is becoming more widespread. Although the overall emphasis of the book is on
the application of mixed models techniques, these chapters can also be used as a
reference guide to the underlying theory of mixed models.

Chapters 5–7 consider the practical implications of using mixed models for
particular designs. Each design illustrates a different feature of mixed models.

Multi-centre trials and meta-analyses are considered in Chapter 5. These are
examples of hierarchical data structures, and the use of a mixed model allows for
any additional variation in treatment effects occurring between centres (or trials)
and hence makes results more generalisable. The methods shown can be applied
equally to any type of hierarchical data.

In Chapter 6, the uses of covariance pattern models and random coefficients
models are described using the repeated measures design. These approaches take
into account the correlated nature of the repeated observations and give more
appropriate treatment effect estimates and standard errors. The material in this
chapter will apply equally to any situation where repeated observations are made
on the same units.

Chapter 7 considers cross-over designs where each patient may receive several
treatments. In this design, more accurate treatment estimates are often achieved
by fitting patient effects as random. This improvement in efficiency can occur for
any dataset where a fixed effect is ‘crossed’ with a random effect.

In Chapter 8, a variety of other designs and data structures is considered. These
either incorporate several of the design aspects covered in Chapters 5–7 or have
structures that have arisen in a more unplanned manner. They help to illustrate
the broad scope of application of mixed models. This chapter includes two new
sections. We have added a section on the analysis of bilateral data, a common
structure in some areas of medical research, but one that we had not previously
addressed. There is also a substantial new section on incomplete block designs.

Chapter 9 gives information on software available for fitting mixed models.
Most of the analyses in the book are carried out using PROC MIXED in SAS,
supplemented by PROC GENMOD, PROC GLIMMIX, and PROC MCMC. This
chapter introduces the basic syntax for these procedures. This information
should be sufficient for fitting most of the analyses described, but the full SAS
documentation should be referenced for those who wish to use more complex
features. The SAS code used for most of the examples is supplied within the text.
In addition, the example datasets and SAS code may be obtained electronically
from www.wiley.com/go/brown/applied_mixed.

This book has been written to provide the reader with a thorough understand-
ing of the concepts of mixed models, and we trust it will serve well for this purpose.
However, readers wishing to take a shortcut to the fitting of normal mixed models
should read Chapter 1 for an introduction, Section 2.4 for practical details, and
the chapter relevant to their design. To fit non-normal or categorical mixed
models, Section 3.3 or Section 4.4 should be read in addition to Section 2.4. In
an attempt to make this book easier to use, we have presented at the beginning of

http://www.wiley.com/go/brown/applied_mixed
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the text a summary of the notation we have used, while at the end, we list some
key definitions in a glossary.

Our writing of this book has been aided in many ways. The first edition evolved
from a constantly changing set of course notes that accompanied a 3-day course
on the subject, run regularly over the previous 6 years. The second edition was
helped by many individuals who were kind enough to comment on the first
edition, including the identification of some errors that had slipped in, and by
further participants at our courses who have contributed to discussions and
have thereby helped to shape our views. This process has continued with the
third edition. We are also grateful to many other colleagues who have read and
commented on various sections of the manuscript and especially to our colleagues
who have allowed us to use their data. We hope that readers will find the resulting
book a useful reference in an interesting and expanding area of statistics.

Helen Brown
Robin Prescott

Edinburgh



Brown778258 flast.tex V3 - 11/14/2014 10:24 A.M. Page xvii

Mixed models notation

The notation below is provided for quick reference. Models are defined more fully
in Sections 2.1, 3.1 and 4.1.

Normal mixed model

y = X𝛂 + Z𝛃 + e,

𝛃 ∼ N(0,G),

var(e) = R,

var(y) = V = ZGZ′ + R.

Generalised linear mixed model

y = 𝛍 + e,

g(𝛍) = X𝛂 + Z𝛃,

𝛃 ∼ N(0,G),

var(e) = R,

var(y) = V = var(𝛍) + R,

≈ BZGZ′B + R (a first-order approximation),

where
y= dependent variable,
e= residual error,
X= design matrix for fixed effects,
Z= design matrix for random effects,
𝛂= fixed effects parameters,
𝛃= random effects parameters,
R= residual variance matrix,
G=matrix of covariance parameters,
V= var(y) variance matrix,

xvii
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xviii Mixed models notation

𝛍= expected values,
g= link function,

B= diagonal matrix of variance terms (e.g. B=
diag{𝜇i(1 − 𝜇i)} for binary data).

Ordered categorical mixed model

y = 𝛍 + e,

logit(𝛍[c]) = X𝛂 + Z𝛃,

𝛃 ∼ N(0,G),

var(y) is defined as in the GLMM,

where
𝛍= (𝜇11, 𝜇12, 𝜇13, 𝜇21, 𝜇22, 𝜇23, … , 𝜇n1, 𝜇n2, 𝜇n3)′,
𝜇ij = probability observation i is in category j,
𝛍[c] = (𝜇[c]

11, 𝜇
[c]
12, 𝜇

[c]
13, 𝜇

[c]
21, 𝜇

[c]
22, 𝜇

[c]
23, … , 𝜇

[c]
n1, 𝜇

[c]
n2, 𝜇

[c]
n3)

′
,

𝜇
[c]
ij = probability (yi ≤ j) =

∑j

k=1
𝜇ik.



Brown778258 flast.tex V3 - 11/14/2014 10:24 A.M. Page xix

About the Companion
Website

This book is accompanied by a companion website:

www.wiley.com/go/brown/applied_mixed

This website includes SAS codes and datasets for most of the examples. In the
future, updates and further materials may be added.

xix
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1

Introduction

At the start of each chapter, we will ‘set the scene’ by outlining its content. In
this introductory chapter, we start Section 1.1 by describing some situations
where a mixed models analysis will be particularly helpful. In Section 1.2, we
describe a simplified example and use it to illustrate the idea of a statistical model.
We then introduce and compare fixed effects and random effects models. In the
next section, we consider a more complex ‘real-life’ multi-centre trial and look
at some of the variety of models that could be fitted (Section 1.3). This example
will be used for several illustrative examples throughout the book. In Section 1.4,
the use of mixed models to analyse a series of observations (repeated measures)
is considered. Section 1.5 broadens the discussion on mixed models and looks
at mixed models with a historical perspective of their use. In Section 1.6, we
introduce some technical concepts: containment, balance and error strata.

We will assume in our presentation that the reader is already familiar with some
of the basic statistical concepts as found in elementary statistical textbooks.

1.1 The use of mixed models

In the course of this book, we will encounter many situations in which a mixed
models approach has advantages over the conventional type of analysis, which
would be accessible via introductory texts on statistical analysis. Some of them
are introduced in outline in this chapter and will be dealt in detail later on.

Example 1: Utilisation of incomplete information in a cross-over trial Cross-over
trials are often utilised to assess treatment efficacy in chronic conditions, such as
asthma. In such conditions, an individual patient can be tested for response to
a succession of two or more treatments, giving the benefit of a ‘within-patient’
comparison. In the most commonly used cross-over design, just two treatments

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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2 Introduction

are compared. If, for generality, we call these treatments A and B, then patients
will be assessed either on their response to treatment A, followed by their response
to treatment B, or vice versa. If all patients complete the trial, and both treatments
are assessed, then the analysis is fairly straightforward. However, commonly,
patients drop out during the trial and may have a valid observation from only
the first treatment period. These incomplete observations cannot be utilised in
a conventional analysis. In contrast, the use of a mixed model will allow all of
the observations to be analysed, resulting in more accurate comparisons of the
efficacy of treatment. This benefit, of more efficient use of the data, applies to all
types of cross-over trial where there are missing data.

Example 2: Cross-over trials with fewer treatment periods than treatments In cross-
over trials, for logistical reasons, it may be impractical to ask a patient to evaluate
more than two treatments (e.g. if the treatment has to be given for several weeks).
Nevertheless, there may be the need to evaluate three or more treatments. Special
types of cross-over design can be used in this situation, but a simple analysis will
be very inefficient. Mixed models provide a straightforward method of analysis,
which fully uses the data, resulting again in more precise estimates of the effect of
the treatments.

Example 3: A surgical audit A surgical audit is to be carried out to investigate how
different hospitals compare in their rates of postoperative complications following
a particular operation. As some hospitals carry out the operation commonly,
while other hospitals perform the operation rarely, the accuracy with which the
complication rates are estimated will vary considerably from hospital to hospital.
Consequently, if the hospitals are ordered according to their complication rates,
some may appear to be outliers compared with other hospitals, purely due to
chance variation. When mixed models are used to analyse data of this type,
the estimates of the complication rates are adjusted to allow for the number of
operations, and rates based on small numbers become less extreme.

Example 4: Analysis of a multi-centre trial Many clinical trials are organised on
a multi-centre basis, usually because there is an inadequate number of suitable
patients in any single centre. The analysis of multi-centre trials often ignores
the centres from which the data were obtained, making the implicit assumption
that all centres are identical to one another. This assumption may sometimes
be dangerously misleading. For example, a multi-centre trial comparing two
surgical treatments for a condition could be expected to show major differences
between centres. There could be two types of differences. First, the centres may
differ in the overall success, averaged over the two surgical treatments. More
importantly, there may be substantial differences in the relative benefit of the two
treatments across different centres. Surgeons who have had more experience
with one operation (A) may produce better outcomes with A, while surgeons
with more experience with the alternative operation (B) may obtain better results



Brown778258 c01.tex V3 - 11/14/2014 10:03 A.M. Page 3

Introductory example 3

with B. Mixed models can provide an insightful analysis of such a trial by allowing
for the extent to which treatment effects differ from centre to centre. Even when
the difference between treatments can be assumed to be identical in all centres,
a mixed model can improve the precision of the treatment estimates by taking
appropriate account of the centres in the analysis.

Example 5: Repeated measurements over time In a clinical trial, the response to
treatment is often assessed as a series of observations over time. For example, in a
trial to assess the effect of a drug in reducing blood pressure, measurements might
be taken at two, four, six and eight weeks after starting treatment. The analysis will
usually be complicated by a number of patients failing to appear for some assess-
ments or withdrawing from the study before it is complete. This complication can
cause considerable difficulty in a conventional analysis. A mixed models analysis
of such a study does not require complete data from all subjects. This results in
more appropriate estimates of the effect of treatment and their standard errors
(SEs). The mixed model also gives great flexibility in analysis, in that it can allow
for a wide variety of ways in which the successive observations are correlated with
one another.

1.2 Introductory example

We consider a very simple cross-over trial using artificial data. In this trial, each
patient receives each of treatments A and B for a fixed period. At the end of each
treatment period, a measurement is taken to assess the response to that treatment.
In the analysis of such a trial, we commonly refer to treatments being crossed with
patients, meaning that the categories of ‘treatments’ occur in combination with
those of ‘patients’. For the purpose of this illustration, we will suppose that the
response to each treatment is unaffected by whether it is received in the first or
second period. The table shows the results from the six patients in this trial.

Treatment

Patient A B
Difference

A − B Patient mean

1 20 12 8 16.0
2 26 24 2 25.0
3 16 17 −1 16.5
4 29 21 8 25.0
5 22 21 1 21.5
6 24 17 7 20.5
Mean 22.83 18.67 4.17 20.75
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1.2.1 Simple model to assess the effects of treatment (Model A)

We introduce in this section a very simple example of a statistical model using this
data. A model can be thought of as an attempt to describe quantitatively the effect
of a number of factors on each observation. Any model we describe is likely to
be a gross oversimplification of reality. In developing models, we are seeking ones
which are as simple as possible but which contain enough truth to ask questions
of interest. In this first simple model, we will deliberately be oversimplistic in order
to introduce our notation. We just describe the effect of the two treatments. The
model may be expressed as

yij = 𝜇 + tj + eij,

where
j= A or B,

yij = observation for treatment j on the ith patient,
𝜇= overall mean,
tj = effect of treatment j,

eij = error for treatment j on the ith patient.

The constant 𝜇 represents the overall mean of the observations. 𝜇+ tA
corresponds to the mean in the treatment group A, while 𝜇+ tB corresponds
to the mean in the treatment group B. The constants 𝜇, tA and tB can thus be
estimated from the data. In our example, we can estimate the value of 𝜇 to
be 20.75, the overall mean value. From the mean value in the first treatment
group, we can estimate 𝜇+ tA as 22.83, and hence our estimate of tA is
22.83−20.75=2.08. Similarly, from the mean of the second treatment group,
we estimate tB as −2.08. The term tj can therefore be thought of as a measure of
the relative effect that treatment j has had on our outcome variable.

The error term, eij, or residual is what remains for each patient in each period
when𝜇+ tj is deducted from their observed measurement. This represents random
variation about the mean value for each treatment. As such, the residuals can
be regarded as the result of drawing random samples from a distribution. We will
assume that the distribution is Gaussian or normal, with standard deviation 𝜎,
and that the samples drawn from the distribution are independent of each other.
The mean of the distribution can be taken as zero, since any other value would
simply cause a corresponding change in the value of 𝜇. Thus, we will write this as

eij ∼ N(0, 𝜎2),

where 𝜎
2 is the variance of the residuals. In practice, checks should be made to

determine whether this assumption of normally distributed residuals is reason-
able. Suitable checking methods will be considered in Section 2.4.6. As individual
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observations are modelled as the sum of 𝜇+ tj, which are both constants, and the
residual term, it follows that the variance of individual observations equals the
residual variance:

var(yij) = 𝜎
2
.

The covariance of any two separate observations yij and yi′j′ can be written as

cov(yij, yi′ j′ ) = cov(𝜇 + ti + eij, 𝜇 + ti′ + ei′ j′ )

= cov(eij, ei′j′ ) (since other terms are constants).

Since all the residuals are assumed independent (i.e. uncorrelated), it follows that

cov(yij, yi′j′ ) = 0.

The residual variance, 𝜎2, can be estimated using a standard technique known as
analysis of variance (ANOVA). The essence of the method is that the total variation
in the data is decomposed into components that are associated with possible
causes of this variation, for example, that one treatment may be associated with
higher observations, with the other being associated with lower observations. For
this first model, using this technique, we obtain the following ANOVA table:

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
square F p

Treatments 1 52.08 52.08 2.68 0.13
Residual 10 194.17 19.42

Note: F= value for the F test (ratio of mean square for treatments to
mean square for residual).

p= significance level corresponding to the F test.

The residual mean square of 19.42 is our estimate of the residual variance, 𝜎2,
for this model. The key question often arising from this type of study is as follows:
‘do the treatment effects differ significantly from each other?’ This can be assessed
by the F test, which assesses the null hypothesis of no mean difference between
the treatments (the larger the treatment difference, the larger the treatment
mean square and the higher the value of F). The p value of 0.13 is greater than
the conventionally used cutoff point for statistical significance of 0.05. Therefore,
we cannot conclude that the treatment effects are significantly different. The
difference between the treatment effects and the SE of this difference provides a
measure of the size of the treatment difference and the accuracy with which it is
estimated:

difference = tA − tB = 2.08 + 2.08 = 4.16.
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The SE of the difference is given by the formula

SE(tA − tB) =
√

𝜎2(1∕nA + 1∕nB)

=
√
(2 × 𝜎2∕6) =

√
6.47 = 2.54.

Note that a t test can also be constructed from this difference and SE, giving
t=4.16/2.54=1.63. This is the square root of our F statistic of 2.68 and gives
an identical t test p value of 0.13.

1.2.2 A model taking patient effects into account (Model B)

Model A as discussed previously did not utilise the fact that pairs of observations
were taken on the same patients. It is possible, and indeed likely, that some patients
will tend to have systematically higher measurements than others, and we may
be able to improve the model by making allowance for this. This can be done by
additionally including patient effects into the model:

yij = 𝜇 + pi + tj + eij,

where pi are constants representing the ith patient effect.
The ANOVA table arising from this model is as follows:

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
square F p

Patients 5 154.75 30.95 3.93 0.08
Treatments 1 52.08 52.08 6.61 0.05
Residual 5 39.42 7.88

The estimate of the residual variance, 𝜎2, is now 7.88. It is lower than in Model
A because it represents the ‘within-patient’ variation, as we have taken account
of patient effects. The F test p value of 0.05 indicates that the treatment effects
are now significantly different. The difference between the treatment effects is the
same as in Model A, 4.16, but its SE is now as follows:

SE(tA − tB) =
√
(2 × 𝜎2∕6) =

√
2.63 = 1.62.

(Note that the SE of the treatment difference could alternatively have been
obtained directly from the differences in patient observations.)

Model B is perhaps the ‘obvious’ one to think of for this dataset. However, even
in this simple case, by comparison with Model A we can see that the statistical
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modeller has some flexibility in his/her choice of model. In most situations, there is
no single ‘correct’ model, and, in fact, models are rarely completely adequate. The
job of the statistical modeller is to choose that model which most closely achieves
the objectives of the study.

1.2.3 Random effects model (Model C)

In the Models A and B, the only assumption we made about variation was that the
residuals were normally distributed. We did not assume that patient or treatment
effects arose from a distribution. They were assumed to take constant values.
These models can be described as fixed effects models, and all effects fitted within
them are fixed effects.

An alternative approach available to us is to assume that some of the terms
in the model, instead of taking constant values, are realisations of values from
a probability distribution. If we assumed that patient effects also arose from
independent samples from a normal distribution, then the model could be
expressed as

yij = 𝜇 + pi + tj + eij,

eij ∼ N(0, 𝜎2)

pi ∼ N(0, 𝜎2
p ).

The pi are now referred to as random effects. Such models, which contain a mixture
of fixed and random effects, provide an example of a mixed model. In this book, we
will meet several different types of mixed model, and we describe in Section 1.5 the
common feature that distinguishes them from fixed effects models. To distinguish
the class of models we have just met from those we will meet later, we will refer to
this type of model as a random effects model.

Each random effect in the model gives rise to a variance component. This is a
model parameter that quantifies random variation due to that effect only. In
this model, the patient variance component is 𝜎

2
p . We can describe variation at

this level (between patients) as occurring within the patient error stratum (see
Section 1.6 for a full description of the error stratum). This random variation
occurs in addition to the residual variation (the residual variance can also be
defined as a variance component.)

Defining the model in this way causes some differences in its statistical properties
compared with the fixed effects model met earlier.

The variance of individual observations in a random effects model is the sum of
all the variance components. Thus,

var(yij) = 𝜎
2
p + 𝜎

2
.
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This contrasts with the fixed effects models where we had

var(yij) = 𝜎
2
.

The effect on the covariance of pairs of observations in the random effects model
is interesting and perhaps surprising. Since yij =𝜇+ pi + tj + eij, we can write

cov(yij, yi′ j′ ) = cov(𝜇 + pi + tj + eij, 𝜇 + pi′ + tj′ + ei′j′ )

= cov(pi + eij, pi′ + ei′j′ ).

When observations from different patients are being considered (i.e. i≠ i′),
because of the independence of the observations, cov(yij, yi′j′ ) = 0. However,
when two samples from the same patient are considered (i.e. i= i′), then

cov(yij, yi′j′ ) = cov(pi + eij, pi + eij′ )

= cov(pi, pi) = 𝜎
2
p .

Thus, observations on the same patient are correlated and have covariance equal
to the patient variance component, while observations on different patients are
uncorrelated. This contrasts with the fixed effects models where the covariance of
any pair of observations is zero.

The ANOVA table for the random effects model is identical to that for the fixed
effects model. However, we can now use it to calculate the patient variance
component using results from the statistical theory that underpins the ANOVA
method. The theory shows the expected values for each of the mean square
terms in the ANOVA table, in terms of 𝜎2, 𝜎2

p and the treatment effects. These
are tabulated in the following table. We can now equate the expected value for
the mean squares expressed in terms of the variance components to the observed
values of the mean squares to obtain estimates of 𝜎2 and 𝜎

2
p .

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
square E(MS)

Patients 5 154.75 30.95 2𝜎2
p + 𝜎

2

Treatments 1 52.08 52.08 𝜎
2 + 6Σt2

i

Residual 5 39.42 7.88 𝜎
2

Note: E(MS)= expected mean square.

Thus, from the residual line in the ANOVA table, 𝜎2 = 7.88. In addition, by sub-
tracting the third line of the table from the first we have:

2𝜎2
p = (30.95 − 7.88), and 𝜎

2
p = 11.54.

(We are introducing the notation 𝜎
2
p to denote that this is an estimate of the

unknown 𝜎
2
p , and 𝜎

2 is an estimate of 𝜎2.)
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In this example, we obtain identical treatment effect results to those for the
fixed effects model (Model B). This occurs because we are, in effect, only using
within-patient information to estimate the treatment effect (since all information
on treatment occurs in the within-patient residual error stratum). Again, we
obtain the treatment difference as −4.16 with a SE of 1.62. Thus, in this case,
it makes no difference at all to our conclusions about treatments whether we fit
patient effects as fixed or random. However, had any of the values in the dataset
been missing, this would not have been the case. We now consider this situation.

Dataset with missing values

We will now consider analysing the dataset with two of the observations set to
missing.

Treatment

Patient A B
Difference

A − B Patient mean

1 20 12 8 16.0
2 26 24 2 25.0
3 16 17 −1 16.5
4 29 21 8 25.0
5 22 – – 22.0
6 – 17 – 17.0
Mean 4.25

As shown previously, there are two ways we can analyse the data. We can base
our analysis on a model where the patient effects are regarded as fixed (Model B)
or can regard patient effects as random (Model C).

The fixed effects model For this analysis, we apply ANOVA in the standard
way, and the result of that analysis is summarised as follows:

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
square F p

Patients 5 167.90 33.58 3.32 0.18
Treatments 1 36.13 36.13 3.57 0.16
Residual 3 30.38 10.12

In the fitting of Model B, it is interesting to look at the contribution that the data
from patient 5 are making to the analysis. The value of 22 gives us information
that will allow us to estimate the level in that patient, but it tells us nothing at all
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about the difference between the two treatments, nor does it even tell us anything
about the effect of treatment A, which was received, because all the information
in the observed value of 22 is used up in estimating the patient effect. The same
comment applies to the data from patient 6.

Thus, in this fixed effects model, the estimate of the mean treatment difference,
t̂FE, will be calculated only from the treatment differences for patients 1–4 who
have complete data:

t̂FE = 4.25.

The variance of t̂FE can be calculated from the residual variance, 𝜎2 = 10.12, as

var(̂tFE) = 𝜎
2(1∕np + 1∕np) = 10.12 × (1∕4 + 1∕4) = 5.06,

where np is the number of observations with data on treatments A and B. The SE

of the treatment difference is
√

5.06 = 2.25.

The random effects model When patient effects are fitted as random, the
variance components cannot be derived in a straightforward way from an ANOVA
table since the data are unbalanced. They are found computationally (usingPROC
MIXED, a SAS procedure, which is described in more detail in Chapter 9) as

𝜎
2
p = 12.63,

𝜎
2 = 8.90.

The treatment difference is estimated from the model to be 4.32, with a SE of 2.01.
Thus, the SE is smaller than that of 2.25 obtained in the fixed effects model. This
is not only due to a fortuitously lower estimate of 𝜎2, but also due to the fact that
the random effects model utilises information on treatment from both the patient
error stratum (between patients) and the residual stratum (within patients). As
noted previously, the SE of the estimates is less than that in the fixed effects model,
which only uses information from within patients. The use of this extra informa-
tion compared with the fixed effects model can be referred to as the recovery of
between-patient information.

In practice, we would recommend that random effects models are always fitted
computationally using a procedure such as PROC MIXED. However, in our
simple example given in this chapter, it may be of help to the understanding of the
concept of recovery of information if we illustrate how the treatment estimates
can be obtained manually.

Manual calculation In this example, the estimate of the treatment difference
for the random effects model may be obtained by combining estimates from the
between-patient and within-patient (residual) error strata. It is calculated by
a weighted average of the two estimates, with the inverses of the variances of
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the estimates used as weights. The within-patient estimate, t̂W, is obtained as in
the fixed effects model from patients 1–4 as 4.25. However, its variance is now
calculated from the new estimate of 𝜎2 as

var(̂tW) = 𝜎
2(1∕np + 1∕np) = 8.90 × (1∕4 + 1∕4) = 4.45.

The between-patient estimate, t̂B, is simply the difference between the single values
for patients 5 and 6

t̂B = 22 − 17 = 5

and has variance as

var(̂tB) = (𝜎2 + 𝜎
2
p ) × (1∕1 + 1∕1) = (8.90 + 12.63) × 2 = 43.06.

The combined random effects model estimate, t̂RE, is obtained as a weighted
average of t̂W and t̂B:

t̂RE = K × (̂tW∕var(̂tW) + t̂B∕var(̂tB)),

where
K = 1∕(1∕var(̂tW) + 1∕var(̂tB)).

For our data,
K = 1∕(1∕4.45 + 1∕43.06) = 4.03,

giving

t̂RE = 4.03 × (4.25∕4.45 + 5∕43.06) = 4.03 × 1.07 = 4.32.

To calculate var(̂tRE ), we use the property var(nx)= n2var(x), so that

var(̂tRE) = K2 × [var(̂tW)∕(var(̂tW))2 + var(̂tB)∕(var(̂tB))2],

giving

var(̂tRE) = K2 × (1∕var(̂tW) + 1∕var(̂tB))

= K.

Thus, for our data:
var(̂tRE) = 4.03,

and
SE(̂tRE) = 2.01.

These results are identical to those obtained initially using PROC MIXED.
However, it is not usually quite so simple to combine estimates manually from
different error strata. A general formula for calculating fixed effects estimates for
all types of mixed model will be given in Section 2.2.2.
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The point that we hope has been made clear by the example is the way in which
the random effects model has used the information from patients 5 and 6, which
would have been lost in a fixed effects analysis.

1.2.4 Estimation (or prediction) of random effects

In the previous model, the patient terms were regarded as random effects. That is,
they were defined as realisations of samples from a normal distribution, with mean
equal to zero and with variance 𝜎2

p . Thus, their expected values are zero. We know,
however, that patients may differ from one another, and the idea that all have the
same expected value is counterintuitive. We resolve this paradox by attempting to
determine for each individual patient a prediction of the location within the normal
distribution from which that patient’s observations have arisen. This prediction
will be affected by that for all other patients and will differ from the corresponding
estimate in the fixed effects model. The predictions will be less widely spread than
the fixed effects estimates, and because of this, they are described as shrunken. The
extent of this shrinkage depends on the relative sizes of the patient and residual
variance components. In the extreme case where the estimate of the patient
variance component is zero, all patients will have equal predictions. Shrinkage will
also be relatively greater when there are fewer observations per patient. It occurs
for both balanced and unbalanced data, and the relevant formula is given in
Section 2.2.3. Although, on technical grounds, it is more accurate to refer to pre-
dictions of random effects categories (e.g. of individual patients), in this book, we will
use the more colloquial form of expression and refer to estimates of patient effects.

In our example, using the complete trial data, the random effects estimates can
be obtained computationally usingPROC MIXED. They are listed as follows along
with the fixed effects patient means.

Patient number 1 2 3 4 5 6

Fixed patients 16.0 25.0 16.5 25.0 21.5 20.5
Random patients 17.2 23.9 17.6 23.9 21.3 20.6

We observe that the mean estimates are indeed ‘shrunken’ towards the grand
mean of 20.8. Shrinkage has occurred because patients are treated as a sample
from the overall patient population.

1.3 A multi-centre hypertension trial

We now introduce a more complex ‘real-life’ clinical trial. Measurements from this
trial will be used to provide data for several examples in future chapters. Although
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it is by no means the only example we will be presenting, by the repeated use of
this trial, we hope that the reader will identify more readily with the analyses.

The trial was a randomised, double blind comparison of three treatments for
hypertension and has been reported by Hall et al. (1991). One treatment was a
new drug (A), and the other two (B and C) were standard drugs for controlling
hypertension (A=Carvedilol, B=Nifedipine, C=Atenolol). Twenty-nine centres
participated in the trial, and patients were randomised in the order of entry. Two
pre-treatment and four post-treatment visits were made as follows:

• Visit 1 (week 0): measurements were made to determine whether patients
met the eligibility criteria for the trial. Patients who did so received a placebo
treatment for 1 week, after which they returned for a second visit.

• Visit 2 (week 1): measurements were repeated, and patients who still satisfied
the eligibility criteria were entered into the study and randomised to receive
one of the three treatments.

• Visits 3–6 (weeks 3, 5, 7 and 9): measurements were repeated at four
post-treatment visits, which occurred at 2-weekly intervals.

• Three hundred and eleven patients were assessed for entry into the study. Of
these, 288 patients were suitable and were randomised to receive one of the
three treatments. Thirty patients dropped out of the study prior to Visit 6.

• Measurements on cardiac function, laboratory values and adverse events were
recorded at each visit. Diastolic blood pressure (DBP) was the primary end-
point, and we will consider its analysis in this section.

• The frequencies of patients attending at least one post-treatment visit at each
of the 29 centres are shown in Table 1.1.

1.3.1 Modelling the data

The main purpose of this trial was to assess the effect of the three treatments on
the primary endpoint, DBP recorded at the final visit. As in the previous example,
we can do this by forming a statistical model. We will now describe several possible
models. A simple model (Model A) to assess just the effects of treatment could be
expressed as

DBPi = 𝜇 + tk + ei,

where
DBPi = diastolic blood pressure at final visit for patient i,

𝜇= intercept,
tk = kth treatment effect (where patient i has received treatment k),
ei = error term (residual) for the ith patient.

Before the model is fitted, we should be certain that we have the most relevant
dataset for our objectives. In this trial, 30 patients dropped out of the study before
their final visit. If treatments have influenced whether patients dropped out,
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Table 1.1 Number of patients included in
analyses of final visits by treatment and centre.

Treatment

Centre A B C Total

1 13 14 12 39
2 3 4 3 10
3 3 3 2 8
4 4 4 4 12
5 4 5 2 11
6 2 1 2 5
7 6 6 6 18
8 2 2 2 6
9 0 0 1 1

11 4 4 4 12
12 4 3 4 11
13 1 1 2 4
14 8 8 8 24
15 4 4 3 11
18 2 2 2 6
23 1 0 2 3
24 0 0 1 1
25 3 2 2 7
26 3 4 3 10
27 0 1 1 2
29 1 0 2 3
30 1 2 2 5
31 12 12 12 36
32 2 1 1 4
35 2 1 1 4
36 9 6 8 23
37 3 1 2 6
40 1 1 0 2
41 2 1 1 4
Total 100 91 94 288

Note: Several additional centres were numbered but
did not eventually participate in the study.

omitting these patients from the analysis could give rise to biased estimates of
treatment effects. We therefore adopt a ‘last value carried forward’ approach and
substitute the last recorded value for the final visit values in these patients (the
issue of how to deal with missing data will be considered again in Section 2.4.7.)
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1.3.2 Including a baseline covariate (Model B)

Model A was a very simple model for assessing the effect of treatment on DBP.
It is usually reasonable to assume that there may be some relationship between
pre-treatment and post-treatment values on individual patients. Patients with rel-
atively high DBP before treatment are likely to have higher values after treatment
and likewise for patients with relatively low DBPs. We can utilise this information
in the model by fitting the baseline (pre-treatment) DBP as an additional effect in
Model A:

DBPi = 𝜇 + b ⋅ pre + tk + ei,

where
b= baseline covariate effect,

pre= baseline (pre-treatment) DBP.

In this case, we will take the values recorded at visit 2 as the baseline values. We
could, of course, have considered using either the visit 1 value or the average of
the visit 1 and visit 2 values, instead. The visit 2 value was chosen because it mea-
sured the DBP immediately prior to randomisation, after 1 week, during which all
patients received the same placebo medication. The baseline DBP is measured on a
quantitative scale (unlike treatments). Such quantitative variables are commonly
described as covariate effects, and an analysis based on the above model is often
referred to as analysis of covariance. The term b is a constant that has to be estimated
from our data. There is an implicit assumption in our model that the relationship
between the final DBP and the baseline value is linear; Additionally, that within
each treatment group, an increase of 1 unit in the baseline DBP is associated with
an average increase of b units in the final DBP. Figure 1.1 shows the results from
fitting this model to the data (only a sample of data points is shown, for clarity).

This demonstrates that performing an analysis of covariance is equivalent
to fitting separate parallel lines for each treatment to the relationship between
post-treatment DBP and baseline DBP. The separation between the lines repre-
sents the magnitude of the treatment effects. The analysis will be considered in
much greater detail in Section 2.5, but we note for now that two of the treatments
appear to be similar to one another, while the lowest post-treatment blood
pressures occur with treatment C.

The use of a baseline covariate will usually improve the precision of the esti-
mates of the treatment effects. It will also compensate for any differences between
the mean levels of the covariate in the treatment groups prior to treatment being
received. Of course, our assumption that there is a linear relationship between
pre-treatment and post-treatment values may not be true. If this were the case,
fitting a baseline covariate could lead to less precise results. However, in practice,
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Figure 1.1 Plot to illustrate the analysis of covariance. Treatment: --------------------A;
--------- B; – – – – – C.

the assumption is very frequently justified in medicine, and it has become almost
standard to take baseline values into account in the model if they are available.

An alternative way of using baseline values (which we do not recommend)
is to analyse the differences between pre-treatment and post-treatment values.
However, this generally leads to less accurate results than the ‘covariate’
approach, particularly when the relationship between pre-treatment and
post-treatment values is weak.

1.3.3 Modelling centre effects (Model C)

So far, the model has taken no account of the fact that the data are recorded
at different centres. It is possible that values in some centres may tend to be
higher than those in other centres. Such differences could be due, for example,
to differences in the techniques of personnel across centres. It is also possible
that some centres/clinics may recruit patients with differing degrees of severity
of hypertension (within the bounds of the study entry criteria) who could, on
average, have higher or lower values of DBP. We can allow for these possibilities
by adding centre effects to Model B:

DBPi = 𝜇 + b ⋅ pre + tk + cj + ei,
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where
cj = the jth centre effect.

Thus, part of the residual term in Model B may now be explained by the centre
effects, cj. If there are differences between the centres, this model will have a
smaller residual variance than Model B (i.e. a smaller 𝜎

2). This in turn allows
treatment effects to be calculated with greater accuracy.

1.3.4 Including centre-by-treatment interaction effects (Model D)

In Model C, we took account of the fact that there may be an underlying difference
in DBP between the centres. We did so in such a way that the effect of a patient
being in a particular centre would be additive to the effect of treatment. Another
possibility is that the response of patients to treatments may vary between the
centres. That is, the effects of centre and treatment are non-additive or that there
is an interaction. For example, in any multi-centre trial, if some centres tended to
have more severely ill patients, it is plausible that the reaction of these patients
to the treatments would differ from that of patients at other centres who are less
severely ill. We can take this possibility into account in the model by allowing
the treatment effects to vary between the centres. This is achieved by adding
a centre⋅treatment interaction to Model C. It causes a separate set of treatment
effects to be fitted for each centre.

DBPi = 𝜇 + b ⋅ pre + tk + cj + (ct)jk + ei,

where
(ct)jk = the kth treatment effect at the jth centre.

Throughout this book, we will refer to such interactions using the notation
‘centre⋅treatment’. When Model D is fitted, the first question of interest is whether
the centre⋅treatment effect is statistically significant. If the interaction term is
significant, then we have evidence that the treatment effect differs between the
centres. It will then be inadvisable to report the overall treatment effect across the
centres. Results will need to be reported for each centre. If the interaction is not
significant, centre⋅treatment may be removed from the model and the results from
Model C reported. Further discussion on centre⋅treatment interactions appears
in Chapter 5.

As we will see in more detail in Section 2.5, the centre⋅treatment effect
is non-significant for our data (p=0.19), and the results of Model C can be
presented. Centre effects are statistically significant in Model C (p=0.004), and
so this model will be preferred to Model B.

From our data, b is estimated to be 0.22, with a SE of 0.11. Thus, if the baseline
DBPs of two patients receiving the same treatment differ by 10 mm Hg, we can
expect that their final DBPs will differ by only 2.2 mm Hg (0.22×10), as illustrated
in Figure 1.1. The relationship is therefore weak, and hence we can anticipate
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that the analysis of covariance approach will be preferable to a simple analysis
of change in DBP. In fact, the statistical significance of the treatment differences is
p=0.054 using the analysis of covariance compared with p=0.072 for the anal-
ysis of change.

1.3.5 Modelling centre and centre⋅treatment effects as random
(Model E)

Models A–D can all be described as fixed effects models, and only the residual
term is assumed to have a distribution. Alternatively, we could assume that the
centre and centre⋅treatment effects also arose from a distribution. We again write
the model as:

DBPi = 𝜇 + b + tk + cj + (ct)jk + ei,

but now we assume that the residual, centre and centre⋅treatment effects are all
realisations of separate distributions, all with zero means:

ei ∼ N(0, 𝜎2),

cj ∼ N(0, 𝜎2
c ),

(ct)jk ∼ N(0, 𝜎2
ct).

Hence, cj and (ct)jk are now random effects, and b and tk are fixed effects. This
random effects model can be described as hierarchical since treatment effects are
contained within the random centre⋅treatment effects. The concept of containment
will be picked up again in Section 1.6.

Since we have assumed that centre⋅treatment effects have a distribution, that
is that differences between treatments vary randomly across the centres, we can
relate our results to the population of potential centres. This is in contrast to Model
D, where treatment effects are assumed to be specific to the centres observed.

There are no hard and fast rules about whether effects should be modelled as
fixed or random (or indeed whether some effects should be fitted at all). In this
case, various approaches are acceptable, but they offer us different interpretations
of the results. These various approaches will be discussed in much greater detail
in Section 2.5, but for now, we pick up on just one point: the precision with
which treatment effects are estimated. We have seen previously that fitting
centre and centre⋅treatment effects as random enables our inferences to apply
to a ‘population’ of centres. There is a price to be paid, however. The SEs of the
treatment estimates will be inflated because we allow the treatment effects to
vary randomly across centres. Thus, the mean difference in final DBP between
treatments A and C is estimated as 2.93 mm Hg, with a SE of 1.41 mm Hg. In
contrast, using Model C, the corresponding estimate is 2.99 mm Hg, with a
smaller SE of 1.23 mm Hg. Arguments in favour of the random effects model are
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the wider scope of the inferences and perhaps a more appropriate modelling of
the data. In some circumstances, however, it is adequate to establish treatment
differences in a specific set of centres. Statisticians in the pharmaceutical industry,
for example, may prefer to avoid the penalty of less precise treatment estimates,
with a corresponding reduction in power (the probability of obtaining statistically
significant treatment differences when treatments do differ in their effect) and
will often use a fixed effects model. This discussion point will be taken up again in
Chapter 5.

1.4 Repeated measures data

There were four post-treatment visits in the multi-centre hypertension trial intro-
duced in the previous section. However, so far in this chapter, we have chosen
only to model measurements made at the final visit, which were of primary
interest. An alternative strategy would be to include measurements from all four
post-treatment visits in the model. Since measurements are made repeatedly on
the same patients, we can describe these types of data as repeated measures data.
For illustrative purposes, we now assume that the centre has no effect at all on
the results and consider which models are appropriate for analysing repeated
measures data. The mean levels for the three treatments at all time points are
shown in Figure 1.2.

1.4.1 Covariance pattern models

Again, our primary objective is to assess the effect of the treatments on DBP, and we
might again consider models which fit treatment and baseline DBP as in Model B
in Section 1.3. The models will, of necessity, be more complicated, as we now have
four observations per patient. In addition, it is possible that there is an underlying
change in DBP over the four post-randomisation visits, and we can allow for this in
the model by including a time effect, which we will denote by m. It is also possible
that treatment effects may differ across time points, and to allow for this, we can
also include a treatment-by-time interaction, (tm). Thus, the jth observation on
patient i can be modelled as:

DBPij = 𝜇 + b ⋅ pre + tk + mj + (tm)jk + eij,

where
mj = time effect at the jth post-treatment visit,

(tm)jk = the kth treatment effect at the jth post-treatment visit,
eij = residual term for the ith patient at the jth post-treatment visit.

So far, in developing this model, we have taken no account of the fact that
post-treatment measurements taken on the same patient may not be independent
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Figure 1.2 Plot of mean DBP by treatment group and visit. Treatment: --------------------A;
----------- B; – – – – – C.

of one another. A straightforward way to do this would be to assume that there is
a constant correlation for all pairs of measurements on the same patient. Then,
we could write the correlation between the residuals as

corr(eij, eij′ ) = 𝜌, j ≠ j′.

Alternatively, it is possible that the correlation between pairs of measurements
decays as they become more widely separated in time. We could then write

corr(eij, eij′ ) = 𝜌
|j′−j|

, j ≠ j′.

In the extreme, we can set a separate correlation for each pair of visits and may
write

corr(eij, eij′ ) = 𝜌j,j′ , j ≠ j′.

A covariance pattern model can be used to fit any of these covariance (or correlation)
patterns. This type of model forms another class of mixed models. Fitting
covariance patterns leads to a more appropriate analysis than occurs when the
fact that the repeated observations are correlated is ignored. The covariance
parameter estimates may also uncover additional information about the data.
They are considered in more detail in Section 6.2, and the analysis of this example
is presented in Section 6.3.
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1.4.2 Random coefficients models

In the previous section, the pattern of covariance between the repeated
observations was modelled. An alternative approach to modelling repeated
measures data would be to devise a model that explained arithmetically the
relationship between DBP and time. A very simple way to do this would be to
include a quantitative time effect (e.g. in measured weeks) as a covariate in the
model.

DBPij = 𝜇 + b ⋅ pre + tk + m ⋅ timeij + eij,

where
timeij = time of observation j for patient i (weeks),

m= constant representing the change in DBP for unit time (week).

Thus, we obtain a time slope with gradient m, which defines a linear relationship
between DBP and time. It is also possible (and indeed likely) that the relationship
between DBP and time would vary between patients. To allow for this, we could
model a separate regression of DBP on time for each patient. To do this, we fit
patient effects to provide the intercept terms for each patient and a patient⋅time
interaction to provide the slopes for each patient.

DBPij = 𝜇 + b ⋅ pre + tk + pi + m ⋅ timeij + (pm)i ⋅ timeij + eij,

where
(pm)i = difference in slope for the ith patient from the average slope,

pi = difference from average in the intercept term for the ith patient.

It would seem reasonable to regard the values of patient effects and their slopes
against time as arising from a distribution. Thus, patient and patient⋅time effects
can both be fitted as random effects. However, the statistical properties of a
model where some of the random effects involve covariate terms (time in this
example) differ from ordinary random effects models (where the random effects
do not involve any covariates). For this reason, we distinguish these models from
ordinary random effects models and refer to them as random coefficients models.
They form a third class of mixed models.

The statistical properties of random coefficients models are similar in many
respects to random effects models. The residuals again are assumed to be
independent and to have a normal distribution, with zero mean:

var(eij) = 𝜎
2
.

The main statistical difference from ordinary random effects models arises from
the fact that when we fit a straight line, the estimates of the slope and the intercept
are not independent. Thus, the patient effects (intercepts) and patient⋅time
effects (slopes) are correlated within each patient. We therefore need to extend
the approach met earlier, where separate normal distributions were used for
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each random effect. We do this by use of the bivariate normal distribution. As
well as terms for the means of both effects (which, as usual, are zero) and the
variance components 𝜎2

p and 𝜎
2
pm for patients and patient⋅time, this incorporates

a covariance parameter 𝜎p,pm. We denote the bivariate normal distribution as
(

pi
pmi

)
∼ N(𝟎,G),

where

G =
(

𝜎
2
p 𝜎p,pm

𝜎p,pm 𝜎
2
pm

)
.

Thus, repeated measures data can be modelled using two alternative types of
mixed model. Either the pattern of covariance between the repeated observations
is modelled using a covariance pattern model or the relationship with time can be
modelled using a random coefficients model. The latter approach is usually more
appropriate if the repeated measurements do not occur at fixed intervals or when
the relationship with time is of particular interest.

1.5 More about mixed models

In Sections 1.2–1.4, we used examples to introduce various concepts and types of
mixed models. In this section, we pull together some of the ideas introduced earlier
and define them more concisely. We also discuss some general points about mixed
models. Finally, we present a perspective of mixed models, giving an outline of the
history of their development.

1.5.1 What is a mixed model?

We have already met a number of models that have been described as mixed
models, but it may not be clear what unites them. The key distinguishing feature
of mixed models compared with fixed effects models is that they are able to
model data in which the observations are not independent. To express this more
positively, we say that mixed models are able to model the covariance structure of
the data.

A simple type of mixed model is the random effects model, which was introduced
in Sections 1.2 and 1.3. Here, certain effects in the model are assumed to have
arisen from a distribution and thus give rise to another source of random variation
in addition to the residual variation. These effects are referred to as random effects.
For example, when patient effects were fitted in the trial introduced in Section
1.2, random variation occurred both between patients and as residual variation.
Any number of random effects can be specified in a model; for example, in a
multi-centre trial (as in Section 1.3), both centre and centre⋅treatment effects can
be fitted as random, giving rise to two additional sources of variation.
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In random coefficients models, a covariate effect is allowed to vary randomly. For
example, in the repeated measures hypertension data considered in Section 1.4,
interest might centre on the rate of change of DBP measured over the four treat-
ment visits in the three arms of the trial. The random coefficients model allows this
rate of change (or slope) to vary randomly between patients. This is achieved tech-
nically by fitting patients and the patient⋅slope interaction as random, and these
effects are referred to as random coefficients.

The covariance pattern model, introduced in Section 1.4, is a third type of mixed
model that directly models a pattern of correlations between observations. For
example, in repeated measures trials, interest is focused on several observations
of the response variable made over a period, and we can allow for the correlations
(or, equivalently, covariances) between these observations. Suitable mixed models
lead to more appropriate estimates of fixed effects and can investigate the nature
of these covariances.

Random effects models, random coefficients models and covariance pattern
models form three categories of mixed models. Mixed models can also be defined
with combinations of random effects, random coefficient effects and covariance
patterns. The choice will depend on the application and the objectives of
the analysis.

1.5.2 Why use mixed models?

To stimulate further interest, we now mention some potential advantages that can
be gained by using a mixed model. In some situations, a mixed model may simply
be the most plausible model for a given data structure. For example, it is clearly
desirable to take account of correlations between measurements in repeated
measures data. In other circumstances, the choice is less obvious between a fixed
effects model and a mixed model. Factors influencing the decision will depend
partly on the structure of the data. For example, in a multi-centre trial (as in
Section 1.3), the decision depends mainly on the interpretation to be put on the
results. When centre and centre⋅treatment effects are fitted as fixed, inference can
only formally be applied to the centres observed, but if they are fitted as random,
inference can be applied with more confidence to a wider population of centres.

Some potential advantages that can be gained by using a mixed model are
as follows:

• Fitting covariance pattern models leads to more appropriate fixed effects estimates
and SEs. This type of model is of particular use for analysing repeated measures
data. An important advantage is that the presence of missing data does not
pose the major problems for analysis that can occur with a traditional analysis.
The covariance parameter estimates may also uncover additional information
about the data.

• Results from a mixed model may be more appropriate to the required inference when
the data structure is hierarchical. For example, by fitting centre⋅treatment effects
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as random in a multi-centre trial analysis (as in Section 1.3), treatment effects
are allowed to vary randomly across centres, and the treatment SE increases
to allow for this. Inference can then be applied to the full population of centres.
However, if centre and centre⋅treatment effects were fitted as fixed, treatment
effects would be specific to the centres observed, and inference should only be
applied to these centres.

• In a cross-over trial, estimates of treatment effects can become more accurate in
datasets where there are missing data (as in Section 1.2). The degree of benefit
from using a mixed model in this situation will depend on the amount of miss-
ing data. If the original trial design was balanced and only occasional values
were missing, there would be little to be gained. However, if several values
were missing, treatment estimates could become notably more accurate.

• In a random effects model, estimates of random effects are ‘shrunken’ compared with
their fixed effects counterparts. That is, their mean values are closer to the overall
mean than if they were fitted as fixed. This helps to avoid the potential problem
of extreme parameter estimates occurring due to chance when the estimates
are based on small numbers. For example, in Section 1.1, we introduced an
example on surgical audit. If failure rates from a particular type of operation
were measured at several hospitals, a model fitting hospitals as fixed would
produce unreliable failure rates for hospitals performing a small number of
operations. Sometimes, these would appear as outliers compared with other
hospitals, purely due to chance variation. A model fitting hospitals as ran-
dom would estimate failure rates that were shrunken towards the overall fail-
ure rate. The shrinkage is greatest for hospitals performing fewer operations
because less is known about them, and so misleading outliers are avoided.

• Different variances can be fitted in a mixed model for each treatment group. Such
different variances for the treatment groups often arise in clinical trials
comparing active treatments with a placebo, but they are rarely accounted
for in fixed effects analyses.

• Problems caused by missing data when fitting fixed effects models do not arise in
mixed models, provided that missing data can be assumed missing at random.
This applies particularly in repeated measures trials, as noted previously, and
in cross-over trials.

Although we have listed several advantages to mixed models, there is a poten-
tial disadvantage. This is that more distributional assumptions are made, and
approximations are used to estimate certain model parameters. Consequently, the
conclusions are dependent on more assumptions being valid, and there will be
some circumstances where parameter estimates are biased. These difficulties are
addressed in Section 2.4.

1.5.3 Communicating results

Statistical methods have been defined as those which elucidate data affected by
a multiplicity of causes. A problem with methods of increasing complexity can be
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difficulty in communicating the results of the analysis to the practitioner. There is
the danger of obfuscating rather than elucidating. Estimation methods for mixed
models are more complex than those used for fixed effects models, and results can
therefore be more difficult to justify to non-statistical colleagues. It is not usually
realistic to describe the exact methodology. However, a satisfactory explanation
can often be given by emphasising the key point that mixed models take account
of the covariance structure or interdependence of the data, whereas more
conventional fixed effects methods assume that all observations are independent.
Mixed models may therefore provide results that are more appropriate to the
study design. A (hypothetical) statistical methods section in a medical journal
might read:

The trial was analysed using a mixed model (see Brown and Prescott, 2015) with centres
and the centre⋅treatment interaction fitted as random, so that possible differences in the size
of the treatment effect across centres could be assessed.

1.5.4 Mixed models in medicine

Frequently, there are advantages to be gained from using mixed models in medical
applications. Data in medical studies are often clustered; for example, data may
be recorded at several centres, hospitals or general practices. This design can be
described as hierarchical, and wider inferences can be made by fitting the cluster-
ing effect as random. Repeated measures designs are also often used in medicine,
and it is not uncommon for some of the observations to be missing. There are
then advantages to be gained from using a mixed models analysis, which makes
allowance for the missing data. Another consideration is that it is ethically desir-
able to use as few patients as possible, and therefore any improvements in the
accuracy of treatment estimates gained by using a mixed model are particularly
important. Although several examples of using mixed models in medicine have
appeared in the literature for some time (e.g. Brown and Kempton, 1994), their
use is still in the process of becoming routine.

1.5.5 Mixed models in perspective

It is interesting to see the application of mixed models in its historical context. In
doing so, we will have to use occasional technical terms that have not yet been
introduced in this book. They will, however, be met later on, and readers for whom
some of the terms are unfamiliar may wish to return to this section after reading
subsequent chapters.

The idea of attributing random variation to different sources by fitting random
effects is not new. Fisher (1925), in his book Statistical Methods for Research Work-
ers, outlined the basic method for estimating variance components by equating
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the mean squares from an ANOVA table to their expected values (as described in
Section 1.2). However, this method was only appropriate for balanced data. Yates
(1940) and Henderson (1953) showed how Fisher’s technique could be extended
to unbalanced data, but their method did not always lead to unique variance
components estimates. Hartley and Rao (1967) showed that unique estimates
could be obtained using the method of maximum likelihood (see Section 2.2.1
for details on maximum likelihood). However, the estimates of the variance
components are generally biased downwards because the method assumes that
the fixed effects are known, rather than being estimated from the data. This
problem of bias was overcome by Patterson and Thompson (1971) who proposed
a method known as residual maximum likelihood (REML) (see Section 2.2.1),
which automatically adjusted for the degrees of freedom corresponding to
estimated fixed effects, as does ANOVA for balanced data. Many of the methods
we describe in this book will be based on the REML method. Likelihood-based
methods have only been adopted slowly because they are computationally
intensive, and this has limited their use until recently.

In the past 30 years, there have been developments in parallel, in the theory
and practice of using the different types of mixed model that we described earlier.
Random coefficients problems have sometimes in the past been handled in two
stages: first, by estimating time slopes for each patient and then by performing an
analysis of the time slopes (e.g. Rowell and Walters, 1976). An early theoretical
article describing the fitting of a random coefficients model in a single stage, as we
will do in this book, is by Laird and Ware (1982). We consider random coefficients
models again in Section 6.5.

Covariance pattern models have developed largely from time series models.
Jennrich and Schluchter (1986) described the use of different covariance pattern
models for analysing repeated measures data and gave some indication of how to
choose between them. These models are considered more in detail in Section 6.2.

Random effects models have been frequently applied in agriculture. They have
been used extensively in animal breeding to estimate heritabilities and predict
genetic gain from breeding programmes (Meyer, 1986; Thompson, 1977). They
have also been used for analysing crop variety trials. For example, Talbot (1984)
used random effects models to estimate variance components for variety trailing
systems carried out across several centres and years for different crops and was
thus able to compare their general precision and effectiveness. The adoption of
these models in medicine has been much slower, and a review of applications
in clinical trials was given by Brown and Kempton (1994). Since then, there
has been an increasing acceptability of these methods, not only by medical
statisticians, but also by the regulatory authorities. The Food and Drug Admin-
istration (FDA) website contains, for example, recommended code using SAS
to fit mixed models to multi-period cross-over trials to establish bioequivalence
(www.fda.gov). Analyses of such designs are considered in Section 8.15, and
other cross-over designs are considered in Chapter 7.

http://www.fda.gov
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More recently, mixed models have become popular in the social sciences.
However, they are usually described as multi-level or hierarchical models, and
the terminology used for defining the models differs from that used in this book.
This reflects parallel developments in different areas of application. However, the
basic concept of allowing the data to have a covariance structure is the same.
Two books published in this area are Multilevel Statistical Models, Fourth Edition
by Goldstein (2010) and Random Coefficients Models by Longford (1993).

Perhaps, the biggest change in the use of mixed models in recent years has
been the increasing use of Bayesian methods. Historically, the dual problems of
computational power and available software have been a factor in restricting
the use of the Bayesian approach to analysis. While this approach is based
on a different philosophy, it will often lead to superficially similar results to a
conventional random effects model when used with uninformative priors. The
increasing availability of good software to implement the Bayesian approach and,
in particular, the implementation in SAS of PROC MCMC will undoubtedly lead
to its wider use in future. There has also been a shift in terminology to make the
methods more acceptable to statisticians who may distrust Bayesian methods
by referring to them as simulation methods. Indeed, with flat priors, you are
obtaining a simulation of the full likelihood. The Bayesian approach to modelling
is considered in Section 2.3.

The expansion of interest in mixed models is illustrated by its wider coverage
in undergraduate and postgraduate courses in statistics and the accompanying
increase in books on the topic. These include Linear Mixed Models for Longitudinal
Data by Verbeke and Molenberghs (2000), Generalized, Linear, and Mixed Models
by McCulloch et al. (2008), Linear Mixed Models: A Practical Guide Using Statistical
Software by West et al. (2006), and Mixed Models: Theory and Applications with R by
Demidenko (2013).

1.6 Some useful definitions

We conclude this introductory chapter with some definitions. The terms we are
introducing in this chapter will recur frequently within subsequent chapters,
and the understanding of these definitions and their relevance should increase
as their applications are seen in greater detail. The terms we will introduce are
containment, balance and error strata. In the analyses we will be presenting,
we usually wish to concentrate on estimates of treatment effects. With the help
of the definitions we are introducing, we will be able to distinguish between
situations where the treatment estimates are identical whether fixed effects
models or mixed models are fitted. We will also be able to identify the situations
where the treatment estimates will coincide with the simple average calculated
from all observations involving that treatment. The first term we need to define is
containment.
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1.6.1 Containment

Containment occurs in two situations. First, consider the repeated measures data
encountered in Section 1.4. In that hypertension trial, DBP was recorded at four
visits after treatment had been started. In the analysis of that study, the residual
variance will reflect variation within patients at individual visits. However, in
this trial, the patients receive the same treatment throughout, and so all the
observations on a patient will reflect the effect of that one treatment on the
patient. It can therefore perhaps be appreciated intuitively that it is the variation
in response between patients, which is appropriate for assessing the accuracy of
the estimates of treatment effects rather than the residual or ‘within-patient’
variation. We can see this more dramatically with a totally artificial set of data
which might have arisen from this trial.

Post-treatment
visits

Patient Treatment 1 2 3 4

1 A 80 80 80 80
2 B 85 85 85 85
3 B 85 85 85 85
4 A 91 91 91 91

In this situation, there is no within-patient variation, and the residual variance is
zero. Thus, if the residual variance were used in the determination of the precision
of treatment estimates, we would conclude that these data showed convincingly
that treatment B produced lower DBPs than treatment A. Common sense tells
us that this conclusion is ridiculous with these data and that between-patient
variation must form the basis for any comparison.

Here, we say that treatment effects are contained within-patient effects.
The second situation where we can meet containment can also be illustrated

with data from the hypertension trial, this time concentrating on the multi-centre
aspect of the design. In Section 1.3, we actually met containment for the first
time when dealing with Model E, and both centre effects and centre⋅treatment
effects were fitted as random. We say in this context that the treatment effects are
contained within centre⋅treatment effects. In fact, there is no requirement for the
centre⋅treatment effects to be random for the definition of containment to hold.
Thus, similarly, in Model D, where the centre⋅treatment effects were regarded
as fixed, we can still refer to the treatment effects as being contained within
centre⋅treatment effects. It applies in general to any data with a hierarchical



Brown778258 c01.tex V3 - 11/14/2014 10:03 A.M. Page 29

Some useful definitions 29

structure in which the fixed effects (treatment) appears in interaction terms with
other effects.

1.6.2 Balance

In many statistical textbooks that discuss the concept of balance, it is never
defined but, rather, left to the intuitive feel of the reader to determine whether
an experimental design is balanced. Some authors (e.g. Searle et al., 1992) have
defined balance as occurring when there are equal numbers of observations per
cell. Cells are formed by all possible combinations of the levels of all the effects
in the model, otherwise known as the crossing between all effects fitted in the
model. For example, if we fit centre effects and treatment effects in the analysis of a
multi-centre trial, and we suppose that there are four centres and two treatments,
then each of the eight combinations of centre and treatment requires the same
number of patients to achieve balance.

When there is balance according to this definition, the estimate of a fixed effects
mean will equal the mean of all the observations at that fixed effects level. To
make this clearer, if we call one of the treatments A, then the estimate of the mean
response to treatment A will simply be the average of all of the observations for all
patients who received treatment A. In general, this will not happen when there
is imbalance. Consider the dataset illustrated in the following section. If all of the
observations are present, then the estimated means for treatments A and B are
85.0 and 95.0, respectively, corresponding to their means.

Centre
Treatment

A
Treatment

B

1 90 100
80 90

2 90 100
80 (90)

If the figure in brackets is missing, however, so that there is no longer balance,
then the mean treatment estimates will be 85.0 and 97.0 compared with their
means of 85.0 and 96.7.

Although the condition of equal numbers in all cells is sufficient for the fixed
effects mean estimates to equal their ‘raw’ means, it is not a necessary condition.
In the multi-centre trial, for example, as long as we do not fit centre⋅treatment
effects, it does not matter if the numbers differ across centres, provided the
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treatments are allocated evenly within the centres. The following dataset
produces treatment mean estimates that equal their raw means.

Centre
Treatment

A
Treatment

B

1 90 100
80

2 85 95
85 90
80
80

Another anomaly is the cross-over trial, which is always unbalanced by the
Searle et al. definition if period effects are fitted, as well as patient and treatment
effects. This leads to empty cells because we cannot have both treatments given in
the same period to any patient. Nevertheless, in a simple two-period, cross-over
trial, if every patient receives every treatment, equal numbers of patients receive
each sequence of treatments, and no covariates are fitted, the treatment mean
estimates will equal their raw means.

We suggest, therefore, an alternative definition of balance, whereby the fixed
effects means will equal their raw means whenever data are balanced but not (in
general) when they are unbalanced. Balance occurs for a fixed effect when both of
the following conditions are met:

• Within each category of the fixed effect (e.g. treatment), observations occur in
equal proportions among categories of every other effect, which is fitted at the
same containment level (see the previous section).

• If the fixed effect (e.g. treatment) is contained within a random effect (e.g.
centre⋅treatment), then an equal number of observations are required in each
category of the containing effect.

Balance across random effects

It is of importance in this book to identify the situations in which the fixed effects
means (usually treatments) will differ depending on whether a fixed effects model
or a mixed model is used. When balance, as defined previously, is achieved, then
the fixed effects mean estimates will equal the raw means, whether a fixed effects
model or a mixed model has been applied. There are other situations when the
fixed effects mean estimates will not equal their raw means, but the same estimates
will be obtained whether the fixed effects approach or mixed models approach is
followed. This occurs when both of the following conditions apply, and we have a
situation that we define as balance across random effects:
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• Within each category of the specific effect (e.g. treatment), observations are
allocated in equal proportions among categories of every random effect (e.g.
patient), which is fitted at the same containment level.

• If the effect (e.g. treatment) is contained within a random effect (e.g.
centre⋅treatment), then an equal number of observations are required in each
category of the containing effect.

An example of the subtle distinction between these two definitions is provided by
the cross-over trial example. If there were an equal number of patients on the AB
and BA sequence of treatments, with no missing values, then our definition of
balance would be satisfied, as described earlier. If there were no missing values,
but the numbers differed between the AB and BA sequences, then there would
be balance over random effects. This is true because the only random effect is
patients and within each category of the containing effect (i.e. within individual
patients), each treatment occurs once, and hence the definition is satisfied. Thus,
the treatment estimates will be identical whether the patient effect is fitted as fixed
or random, but these estimates will (in general) differ from the raw means.

This definition has been applied in the context of one particular type of mixed
model; namely, the random effects model. In random coefficients models, the
random coefficient blocking effect (usually patients) can be substituted for
‘random effect’ in the definition. In covariance pattern models, the blocking effect
within which the covariance pattern is defined (again usually patients) can be
substituted for ‘random effect’.

Assessing balance

It can sometimes be difficult to gain an immediate feel for when balance is
achieved from these definitions. The three following common situations are
easily classified:

• If any observations are missing, then imbalance across random effects occurs
(except for simple parallel group situations).

• If a continuous effect is fitted, then imbalance will occur (unless identical
means for the effect happen to occur within each fixed effects category).
However, balance across the random effects may still be achieved.

• If an equal number of observations occur in every cell and no continuous
covariate is fitted, then all fixed effects will be balanced.

1.6.3 Error strata

In the random effects model, an error stratum or error level is defined by each
random effect and by the residual. For example, if patients are fitted as random
in a cross-over trial, there are error strata corresponding to the patients and to
the residual. The containment stratum for a particular fixed effect is defined by the
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A

1

A B A B A B

2 3

(a)

(b)

etc.

etc.

Residual stratum

B A B

1 2 3

A B

Centre stratum (higher level
stratum)

Centre.treatment stratum
(containment stratum for
treatment effects)

Patient stratum (higher
level stratum)

Residual stratum
(containment stratum for
treatment effects)

Figure 1.3 (a) Error strata for a multi-centre trial analysis fitting centre and
centre⋅treatment effects as random; (b) error strata for a cross-over trial analysis fitting
patient effects as random. A= treatment A; B= treatment B.

residual stratum, unless the effect is contained within a random effect in a random
effects model or a blocking effect (see Section 6.2) in a random coefficients or
covariance pattern model, in which case it is that of the containing effect. For
example, in a repeated measures study, treatments are contained within patients,
and thus the patient error stratum forms the containment stratum for treatments.
Usually, an effect has only one containment stratum, and examples in this book
will be restricted to this more usual situation. However, situations could be
conceived where this is not the case. For example, if clinics and GPs were recorded
in a trial and GP⋅treatment and clinic⋅treatment effects were fitted as random,
then both of these effects would form containing strata for the treatment effect.

Higher level strata are defined by any random effects that are contained within
the containment stratum. For example, in a multi-centre trial in which centre
and centre⋅treatment effects are fitted as random, the centre⋅treatment stratum
forms the containment stratum for treatment effects, and the centre stratum forms
a higher level stratum (see Figure 1.3(a)). In a cross-over trial, the containment
stratum for treatment effects is the residual stratum, and the patient stratum is a
higher level stratum (see Figure 1.3(b)). Whenever higher level strata are present
and data are not balanced across random effects, a fixed effect will be estimated
using information from these strata, as well as from the containment stratum (i.e.
information is recovered from the higher level strata).

Thus, in a cross-over trial with missing values, information is recovered from the
patient level, as we saw in Section 1.2. The same occurs with missing values in a
repeated measures trial where a covariance pattern is fitted. In random coefficients
models, information is recovered from the patient level except in highly unusual
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circumstances of equal numbers of observations at the same set of time points for
all patients.

In random coefficients and covariance pattern models, error strata are not
defined quite as easily because correlations occur between the random coefficients
or residuals. However, random coefficients and blocking effects have a similar role
to error strata, although their properties are not quite the same.
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Normal mixed models

In this chapter, we discuss in more detail the mixed model with normally dis-
tributed errors. We will refer to this as the ‘normal mixed model’. Of course, this
does not imply that values of the response variables follow normal distributions
because they are, in fact, mixtures of effects with different means. In practice,
though, if a variable appears to have a normal distribution, the assumption of
normal residuals and random effects is often reasonable.

In the examples introduced in Sections 1.1–1.4, we defined several mixed
models using a notation chosen to suit each situation. In Section 2.1, we define
the mixed model using a general matrix notation, which can be used for all types
of mixed model. Matrix notation may at first be unfamiliar to some readers, and
it is outwith the scope of this book to teach matrix algebra. A good introductory
guide is Matrices for Statistics, Second Edition by Healy (2000). Once grasped,
though, matrix notation can make the overall theory underlying mixed models
easier to comprehend. Mixed models methods based on classical statistical tech-
niques are described in Section 2.2, and in Section 2.3, the Bayesian approach
to fitting mixed models will be introduced. These two sections can be omitted
by readers who do not desire a detailed understanding of the more theoretical
aspects of mixed models. In Section 2.4, some practical issues related to the
use and interpretation of mixed models are considered, and a worked example
illustrating several of the points made in Section 2.4 is described in Section 2.5.
For those who wish a more in-depth understanding of the theory underlying
mixed models, the textbook Mixed Models: Theory and Applications with R, Second
Edition by Demidenko (2013) is recommended.

2.1 Model definition

In this section, the mixed model is defined using a general matrix notation that pro-
vides a compact means to specify all types of mixed model. We start by defining the
fixed effects model, and then extend this notation to encompass the mixed model.

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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2.1.1 The fixed effects model

All fixed effects models can be specified in the general form

yi = 𝜇 + 𝛼1xi1 + 𝛼2xi2 + · · · + 𝛼pxip + ei,

var(ei) = 𝜎
2
.

For example, in Section 1.2, Model B was presented as

yij = 𝜇 + pi + tj + eij.

This model used a subscript i to denote results from the ith patient and a subscript
j to denote results on the jth treatment, in the context of a cross-over trial. In the
general model notation, however, every observation is denoted separately with a
single subscript. Thus, y1 and y2 could represent the observations from patient 1,
y3 and y4 the observations from patient 2, and so on. The 𝛼 terms in the general
model will correspond to p1, p2, p3, p4, p5 and p6 and to t1 and t2 and are con-
stants giving the size of the patient and treatment effects. The terms xi1, xi2, … ,
xi8 are used in this example to indicate the patient and treatment to which the
observation yi belongs, and in this case will take the values one or zero. If y1 is the
observation from patient 1 who receives treatment 1, x11 then will equal one (cor-
responding to 𝛼1, which represents the first patient effect), x12 –x16 will equal zero
(as this observation is not from patients 2 to 6), x17 will equal one (corresponding
to 𝛼7, representing the first treatment effect) and x18 will equal zero. A further
example to follow shortly should clarify this notation further.

The above model fits p+1 fixed effects parameters,𝛼1 –𝛼p, and an intercept term,
𝜇. If there are n observations, then these may be written as

y1 = 𝜇 + 𝛼1x11 + 𝛼2x12 + · · · + 𝛼px1p + e1,

y2 = 𝜇 + 𝛼1x21 + 𝛼2x22 + · · · + 𝛼px2p + e2,

⋮

yn = 𝜇 + 𝛼1xn1 + 𝛼2xn2 + · · · + 𝛼pxnp + en;

var(e1) = 𝜎
2
,

⋮

var(en) = 𝜎
2
.

These can be expressed more concisely in matrix notation as

y = X𝜶 + e,

V = var(y) = 𝜎
2I,
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where
y= (y1, y2, y3, … , yn)′ = observed values,
𝜶 = (𝜇, 𝛼1, 𝛼2, … , 𝛼p)′ = fixed effects parameters,
e= (e1, e2, e3, … , en)′ = residuals,
𝜎

2 = residual variance,
I = n× n identity matrix.

The parameters in 𝜶 may encompass several variables. In the above example,
they covered patient effects and treatment effects. Both of these are qualitative or
categorical variables, and we will refer to such effects as categorical effects. They
are also sometimes referred to as factor effects. More generally, categorical effects
are those where observations will belong to one of several classes. There may also
be several covariate effects (such as age or baseline measurement) contained in
𝜶. These relate to variables that are measured on a quantitative scale. Several
parameters may be required to model a categorical effect, but just one parameter
is needed to model a covariate effect.

X is known as the design matrix and has the dimension n × p (i.e. n rows and p
columns). It specifies values of fixed effects corresponding to each parameter for
each observation. For categorical effects, the values of zero and one are used to
denote the absence and presence of effect categories, and for covariate effects, the
variable values themselves are used in X.

We will exemplify the notation with the following data, which are the first
nine observations in a multi-centre trial of two treatments to lower blood
pressure.

Centre Treatment
Pre-treatment
systolic BP

Post-treatment
systolic BP

1 A 178 176
1 A 168 194
1 B 196 156
1 B 170 150
2 A 165 150
2 B 190 160
3 A 175 150
3 A 180 160
3 B 175 160

The observation vector y is formed from the values of the post-treatment systolic
blood pressure:

y = (176,194,156,150,150,160,150,160,160)′.
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If pre-treatment blood pressure and treatment were fitted in the analysis model
as fixed effects (ignoring centres for the moment), then the design matrix would be

𝜇 𝛼1 𝛼2 𝛼3

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 178 1 0
1 168 1 0
1 196 0 1
1 170 0 1
1 165 1 0
1 190 0 1
1 175 1 0
1 180 1 0
1 175 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,

where the columns of the design matrix correspond to the parameters

𝜇 = intercept,

𝛼1 = pre-treatment blood pressure parameter,

𝛼2, 𝛼3 = parameters for treatments A and B.

We note in this case that the design matrix, X, is overparameterised. This means
that there are linear dependencies between the columns, for example, we know
that 𝛼3 will be zero if 𝛼2 = 1 and one if 𝛼2 = 0. X could alternatively be specified
omitting the 𝛼3 column to correspond with the number of parameters actually
modelled. However, the overparameterised form is used here since it is used for
specifying contrasts bySAS procedures such asPROC MIXED (this procedure will
be used to analyse most of the examples in this book).

V is a matrix containing the variances and covariances of the observations. In
the usual fixed effects model, variances for all observations are equal, and no obser-
vations are correlated. Thus, V is simply 𝜎

2I.

2.1.2 The mixed model

The mixed model extends the fixed effects model by including random effects,
random coefficients and/or covariance terms in the residual variance matrix. In
this section, the general notation will be given, and in the following three sections,
the specific forms of the covariance matrices for each type of mixed model will be
specified.

Extending our fixed effects model to incorporate random effects (or coefficients),
the mixed model may be specified as

yi = 𝜇 + 𝛼1xi1 + 𝛼2xi2 + · · · + 𝛼pxip

+𝛽1zi1 + 𝛽2zi2 + · · · + 𝛽qziq + ei
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for a model fitting p fixed effects parameters and q random effects (or coefficients)
parameters. It will be recalled from Chapter 1 that random effects are assumed
to follow a distribution, whereas fixed effects are regarded as fixed constants. The
model can be expressed in matrix notation as

y = X𝛂 + Z𝛃 + e,

where y, X, 𝛂 and e are as defined in the fixed effects model, and

𝛃 = (𝛽1, 𝛽2, … , 𝛽q)′ = random effect∕coefficient parameters.

Z is a second design matrix with dimension n× q giving the values of random
effects corresponding to each observation. It is specified in exactly the same way as
X was for the fixed effects, except that an intercept term is not included. If centres
were fitted as random in the multi-centre example given previously, the 𝛃 vector
would then consist of three parameters, 𝛽1, 𝛽2 and 𝛽3, corresponding to the three
centres, and the Z matrix would be

𝛽1 𝛽2 𝛽3

Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

Alternatively, if both the centre and the centre⋅treatment effects were fitted as
random, then the vector of random effects parameters, 𝛃, would consist of the
three centre parameters, plus six centre⋅treatment interaction parameters 𝛽4, 𝛽5,
𝛽6, 𝛽7, 𝛽8 and 𝛽9. The Z matrix would then be

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9

Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.



Brown778258 c02.tex V3 - 11/14/2014 10:13 A.M. Page 39

Model definition 39

Again, note that this matrix is overparameterised due to linear dependencies
between the columns. It could alternatively have been written using four columns:
3−1=2 for the centre effects and (3−1)× (2−1)=2 for the centre⋅treatment
effects.

Covariance matrix, V

We saw in the fixed effects model that all observations have equal variances,
and the observations are uncorrelated. This leads to the V matrix being diag-
onal. When random effects are fitted, we saw in Section 1.2 that this results
in correlated observations. In the context of the cross-over trial, we saw that
observations on the same patient were correlated (with covariance equal to the
patient variance component), while those on different patients were uncorrelated.
We now generalise this result, using the matrix notation.

The covariance of y, var(y)=V, can be written as

V = var(X𝛂 + Z𝛃 + e).

Since we assume that the random effects and the residuals are uncorrelated,

V = var(X𝛂) + var(Z𝛃) + var(e).

Since 𝛂 describes the fixed effects parameters, var(X𝛂)=0. Also, Z is a matrix of
constants. Therefore,

V = Zvar(𝛃)Z′ + var(e).

We will let G denote var(𝛃), and since the random effects are assumed to follow
normal distributions, we may write 𝛃∼N(0, G). Similarly, we write var(e)=R, the
residual covariance matrix, and e∼N(0, R). Hence,

V = ZGZ′ + R.

In the following three sections, we will define the structure of the G and R
matrices in random effects models, random coefficients models and covariance
pattern models.

2.1.3 The random effects model covariance structure

The G matrix

The dimension of G is q× q, where q is equal to the total number of random effects
parameters.

In random effects models, G is always diagonal (i.e. random effects are assumed
uncorrelated). If just centre effects were fitted as random in the simple multi-centre
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example with three centres, then G would have the form

G =
⎛
⎜
⎜
⎜⎝

𝜎
2
c 0 0

0 𝜎
2
c 0

0 0 𝜎
2
c

⎞
⎟
⎟
⎟⎠

,

where 𝜎
2
c is the centre variance component. If both centre and centre⋅treatment

effects were fitted as random, then G would have the form

G =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
c 0 0 0 0 0 0 0 0

0 𝜎
2
c 0 0 0 0 0 0 0

0 0 𝜎
2
c 0 0 0 0 0 0

0 0 0 𝜎
2
ct 0 0 0 0 0

0 0 0 0 𝜎
2
ct 0 0 0 0

0 0 0 0 0 𝜎
2
ct 0 0 0

0 0 0 0 0 0 𝜎
2
ct 0 0

0 0 0 0 0 0 0 𝜎
2
ct 0

0 0 0 0 0 0 0 0 𝜎
2
ct

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,

where 𝜎2
ct is the centre⋅treatment variance component.

The R matrix

The residuals are uncorrelated in random effects models and R= 𝜎
2I:

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2 0 0 0 0 0 0 0 0

0 𝜎
2 0 0 0 0 0 0 0

0 0 𝜎
2 0 0 0 0 0 0

0 0 0 𝜎
2 0 0 0 0 0

0 0 0 0 𝜎
2 0 0 0 0

0 0 0 0 0 𝜎
2 0 0 0

0 0 0 0 0 0 𝜎
2 0 0

0 0 0 0 0 0 0 𝜎
2 0

0 0 0 0 0 0 0 0 𝜎
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

The V matrix

We showed earlier that the variance matrix, V, has the form V=ZGZ′ +R.
ZGZ′ specifies the covariance due to the random effects. If just centre effects are
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fitted as random, then we obtain

ZGZ′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
c 𝜎

2
c 𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜎

2
c 𝜎

2
c 0 0 0 0 0

0 0 0 0 𝜎
2
c 𝜎

2
c 0 0 0

0 0 0 0 𝜎
2
c 𝜎

2
c 0 0 0

0 0 0 0 0 0 𝜎
2
c 𝜎

2
c 𝜎

2
c

0 0 0 0 0 0 𝜎
2
c 𝜎

2
c 𝜎

2
c

0 0 0 0 0 0 𝜎
2
c 𝜎

2
c 𝜎

2
c

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

This matrix could be obtained by the laborious process of matrix multiplication
but it always has the same form. It has a block diagonal form with the size of blocks
corresponding to the number of observations at each random effects category. The
total variance matrix, V=ZGZ′ +R, is then

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
c + 𝜎

2
𝜎

2
c 𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c 𝜎

2
c + 𝜎

2
𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜎

2
c + 𝜎

2
𝜎

2
c 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜎

2
c 𝜎

2
c + 𝜎

2 0 0 0 0 0
0 0 0 0 𝜎

2
c + 𝜎

2
𝜎

2
c 0 0 0

0 0 0 0 𝜎
2
c 𝜎

2
c + 𝜎

2 0 0 0
0 0 0 0 0 0 𝜎

2
c + 𝜎

2
𝜎

2
c 𝜎

2
c

0 0 0 0 0 0 𝜎
2
c 𝜎

2
c + 𝜎

2
𝜎

2
c

0 0 0 0 0 0 𝜎
2
c 𝜎

2
c 𝜎

2
c + 𝜎

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

This also has a block diagonal form with the covariances for observations at the
same centre equal to the random effects variance component, 𝜎2

c , and variance
terms on the diagonal equal to the sum of the centre and residual variance
components, 𝜎2

c + 𝜎
2. (We note that this corresponds to the results from the

cross-over trial example introduced in Section 1.2, where the random effect was
patient rather than centre.) If both centre and centre⋅treatment effects had been
fitted as random, then

ZGZ′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
c + 𝜎

2
ct 𝜎

2
c + 𝜎

2
ct 𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c + 𝜎

2
ct 𝜎

2
c + 𝜎

2
ct 𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜎

2
c + 𝜎

2
ct 𝜎

2
c + 𝜎

2
ct 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜎

2
c + 𝜎

2
ct 𝜎

2
c + 𝜎

2
ct 0 0 0 0 0

0 0 0 0 𝜎
2
c + 𝜎

2
ct 𝜎

2
c 0 0 0

0 0 0 0 𝜎
2
c 𝜎

2
c + 𝜎

2
ct 0 0 0

0 0 0 0 0 0 𝜎
2
c + 𝜎

2
ct 𝜎

2
c + 𝜎

2
ct 𝜎

2
c

0 0 0 0 0 0 𝜎
2
c + 𝜎

2
ct 𝜎

2
c + 𝜎

2
ct 𝜎

2
c

0 0 0 0 0 0 𝜎
2
c 𝜎

2
c 𝜎

2
c + 𝜎

2
ct

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
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and

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜃 𝜎
2
c + 𝜎

2
ct 𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c + 𝜎

2
ct 𝜃 𝜎

2
c 𝜎

2
c 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜃 𝜎

2
c + 𝜎

2
ct 0 0 0 0 0

𝜎
2
c 𝜎

2
c 𝜎

2
c + 𝜎

2
ct 𝜃 0 0 0 0 0

0 0 0 0 𝜃 𝜎
2
c 0 0 0

0 0 0 0 𝜎
2
c 𝜃 0 0 0

0 0 0 0 0 0 𝜃 𝜎
2
c + 𝜎

2
ct 𝜎

2
c

0 0 0 0 0 0 𝜎
2
c + 𝜎

2
ct 𝜃 𝜎

2
c

0 0 0 0 0 0 𝜎
2
c 𝜎

2
c 𝜃

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,

where 𝜃 = 𝜎
2
c + 𝜎

2
ct + 𝜎

2. Thus, V again has a block diagonal form with a slightly
more complicated structure. The centre⋅treatment variance component is added
to the covariance terms for observations at the same centre and with the same
treatment.

2.1.4 The random coefficients model covariance structure

The statistical properties of random coefficients models were described in the
repeated measures example introduced in Section 1.4. We will define their covari-
ance structure in terms of the general matrix notation we have just introduced
for mixed models. Random coefficients models will be discussed in more detail in
Section 6.5.

The following data will be used to illustrate the covariance structure. They rep-
resent measurement times for the first three patients in a repeated measures trial
of two treatments.

Patient Treatment Time (days)

1 A t11

1 A t12

1 A t13

1 A t14

2 B t21

2 B t22

3 A t31

3 A t32

3 A t33

If patient and patient⋅time effects were fitted as random coefficients, then there
would be six random coefficients. We will change notation from Chapter 1 for ease
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of reading to define these as 𝛽p, 1, 𝛽pt, 1, 𝛽p, 2, 𝛽pt, 2, 𝛽p, 3 and 𝛽pt, 3, allowing an
intercept (patient) and slope (patient⋅time) to be calculated for each of the three
patients. The Z matrix would then be

𝛽p,1 𝛽pt,1 𝛽p,2 𝛽pt,2 𝛽p,3 𝛽pt,3

Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 t11 0 0 0 0
1 t12 0 0 0 0
1 t13 0 0 0 0
1 t14 0 0 0 0
0 0 1 t21 0 0
0 0 1 t22 0 0
0 0 0 0 1 t31
0 0 0 0 1 t32
0 0 0 0 1 t33

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

The R matrix

As in random effects models, the residuals are uncorrelated, and the residual
covariance matrix is

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2 0 0 0 0 0 0 0 0

0 𝜎
2 0 0 0 0 0 0 0

0 0 𝜎
2 0 0 0 0 0 0

0 0 0 𝜎
2 0 0 0 0 0

0 0 0 0 𝜎
2 0 0 0 0

0 0 0 0 0 𝜎
2 0 0 0

0 0 0 0 0 0 𝜎
2 0 0

0 0 0 0 0 0 0 𝜎
2 0

0 0 0 0 0 0 0 0 𝜎
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

The G matrix

In a random coefficients model, the patient effects (intercepts) are correlated with
the random patient⋅time effects (slopes). Correlation occurs only for coefficients on
the same patient (i.e. between 𝛽p,i and 𝛽pt,i), and coefficients on different patients
are uncorrelated. Thus, the G matrix would be

G =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
p 𝜎p,pt 0 0 0 0

𝜎p,pt 𝜎
2
pt 0 0 0 0

0 0 𝜎
2
p 𝜎p,pt 0 0

0 0 𝜎p,pt 𝜎
2
pt 0 0

0 0 0 0 𝜎
2
p 𝜎p,pt

0 0 0 0 𝜎p,pt 𝜎
2
pt

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,
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where 𝜎2
p and 𝜎

2
pt are the patient and patient⋅time variance components, and 𝜎p,pt

is the covariance between the random coefficients. Note that G has dimension
6×6 because the model includes six random coefficients.

The V matrix

Again, V is obtained as V=ZGZ′ +R, where ZGZ′ specifies the covariance due to
the random coefficients and for our data has the form

ZGZ′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

v1,11 v1,12 v1,13 v1,14 0 0 0 0 0
v1,12 v1,22 v1,23 v1,24 0 0 0 0 0
v1,13 v1,23 v1,33 v1,34 0 0 0 0 0
v1,14 v1,24 v1,34 v1,44 0 0 0 0 0

0 0 0 0 v2,11 v2,12 0 0 0
0 0 0 0 v2,12 v2,22 0 0 0
0 0 0 0 0 0 v3,11 v3,12 v3,13
0 0 0 0 0 0 v3,12 v3,22 v3,23
0 0 0 0 0 0 v3,13 v3,23 v3,33

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,

where vi,jk = 𝜎
2
p + (tij + tik)𝜎p, pt + tijtik𝜎

2
pt.

Thus, ZGZ′ has a block diagonal form, with the size of blocks corresponding to
the number of observations on each patient. It is added to the diagonal R= 𝜎

2I
to form the total covariance matrix, V=ZGZ′ +R, which will also have a block
diagonal form. It may appear that covariances will increase with time and that a
different origin for time would lead to different results. However, V is invariant to
time origin and, although the covariance parameters alter, we still obtain the same
overall results (see further discussion in Section 6.5 and examples in Section 6.6).

Note that the covariance structure in random coefficients models is induced by
the random coefficients. This differs from covariance pattern models shown in
the following sections where covariance parameters in the R (or occasionally G)
matrix are chosen to reflect a particular pattern in the data.

2.1.5 The covariance pattern model covariance structure

In the repeated measures example in Section 1.4, the idea of modelling the covari-
ances between observations was introduced. In this section, we show how covari-
ance patterns fit into the general mixed models definition using matrix notation.
In covariance pattern models, the covariance structure of the data is not defined by
specifying random effects or coefficients but by specifying a pattern for the covari-
ance terms directly in the R (or, occasionally, G) matrix. Observations within a
chosen blocking variable (e.g. patients) are allowed to be correlated, and a pattern
for their covariances is specified. This pattern is usually chosen to depend on a



Brown778258 c02.tex V3 - 11/14/2014 10:13 A.M. Page 45

Model definition 45

variable such as time or the visit number. R will have a block diagonal form and
can be written as

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

R1 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 . . .

𝟎 R2 𝟎 𝟎 𝟎 𝟎 𝟎 . . .

𝟎 𝟎 R3 𝟎 𝟎 𝟎 𝟎 . . .

𝟎 𝟎 𝟎 R4 𝟎 𝟎 𝟎 . . .

𝟎 𝟎 𝟎 𝟎 R5 𝟎 𝟎 . . .

𝟎 𝟎 𝟎 𝟎 𝟎 R6 𝟎 . . .

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 R7 . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

The submatrices, Ri, are covariance blocks corresponding to the ith blocking effect
(the ith patient, say). They have dimension equal to the number of repeated mea-
surements on each patient. The 0 represent matrix blocks of zeros, giving zero
covariances for observations on different patients. We now give two examples of R
matrices using a small hypothetical dataset. We assume that the first three patients
in a repeated measures trial attended at the following visits:

Patient Visit

1 1
1 2
1 3
2 1
2 2
2 3
2 4
3 1
3 2

Then, using patients as the blocking effect, an R matrix where a separate correla-
tion is allowed for each pair of visits (this can be described as a ‘general’ covariance
pattern) is given by

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
1 𝜃12 𝜃13 0 0 0 0 0 0

𝜃12 𝜎
2
2 𝜃23 0 0 0 0 0 0

𝜃13 𝜃23 𝜎
2
3 0 0 0 0 0 0

0 0 0 𝜎
2
1 𝜃12 𝜃13 𝜃14 0 0

0 0 0 𝜃12 𝜎
2
2 𝜃23 𝜃24 0 0

0 0 0 𝜃13 𝜃23 𝜎
2
3 𝜃34 0 0

0 0 0 𝜃14 𝜃24 𝜃34 𝜎
2
4 0 0

0 0 0 0 0 0 0 𝜎
2
1 𝜃12

0 0 0 0 0 0 0 𝜃12 𝜎
2
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.
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Alternatively, a simpler pattern assuming a constant correlation between each
visit pair (known as the ‘compound symmetry’ pattern) is given by

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2

𝜌𝜎
2

𝜌𝜎
2 0 0 0 0 0 0

𝜌𝜎
2

𝜎
2

𝜌𝜎
2 0 0 0 0 0 0

𝜌𝜎
2

𝜌𝜎
2

𝜎
2 0 0 0 0 0 0

0 0 0 𝜎
2

𝜌𝜎
2

𝜌𝜎
2

𝜌𝜎
2 0 0

0 0 0 𝜌𝜎
2

𝜎
2

𝜌𝜎
2

𝜌𝜎
2 0 0

0 0 0 𝜌𝜎
2

𝜌𝜎
2

𝜎
2

𝜌𝜎
2 0 0

0 0 0 𝜌𝜎
2

𝜌𝜎
2

𝜌𝜎
2

𝜎
2 0 0

0 0 0 0 0 0 0 𝜎
2

𝜌𝜎
2

0 0 0 0 0 0 0 𝜌𝜎
2

𝜎
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,

where 𝜌= the correlation between observations on the same patient.
Commonly, in the analysis of repeated measures data, no random effects are

fitted, in which case, the variance matrix V=R. Otherwise, R is added to ZGZ′

to form the full variance matrix for the data, V. Other ways to define covariance
patterns in the Ri matrix blocks will be considered in Section 6.2.

Covariance patterns in the G matrix

It is also possible, although less usual, to fit a covariance pattern in the G matrix
so that the random effects are correlated within a blocking effect. For example,
consider a repeated measures trial in which each patient is assessed at a number
of visits and where several measurements are made at each visit. One may wish to
model the correlation between visits, within patients, as well as modelling the cor-
relation between observations at the same visit. To achieve this, it is necessary to
specify covariance patterns in the G matrix as well as for the R matrix. We will
return to this type of covariance structure in the example given in Section 8.1
(Model 3).

2.2 Model fitting methods

In this section, the numerical methods for fitting mixed models will be described.
This material is not essential to those who only wish to apply mixed models with-
out gaining a theoretical understanding, and we will assume some knowledge
of likelihood in our presentation. We showed in Chapter 1 that in some simple
circumstances the random effects model could be fitted by using an ANOVA table.
However, in general, a more sophisticated method is required to fit the mixed
model. In Section 2.2.1, the likelihood function for the mixed model is specified,
and different methods for maximising it are introduced. The different approaches
to maximising the likelihood lead to different estimates for the model parameters
and their standard errors. The model fitting process has three distinctive com-
ponents: estimating fixed effects (i.e. 𝛂), estimating random effects (i.e. 𝛃), and
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estimating variance parameters (i.e. variance components or covariance terms).
In Sections 2.2.2–2.2.4, we will see how the various fitting methods apply to
each of these components, respectively.

2.2.1 The likelihood function and approaches to its maximisation

The mixed model can be fitted by maximising the likelihood function for values of
the data. The likelihood function, L, measures the likelihood of the model parame-
ters given the data and is defined using the density function of the observations. In
models where the observations are assumed independent (e.g. fixed effects mod-
els), the likelihood function is simply the product of the density functions for each
observation. However, observations in a mixed model are not independent, and
the likelihood function therefore needs to be based on a multivariate density func-
tion for the observations. The likelihood for the variance parameters and the fixed
effects can be defined using the multivariate normal distribution for y (the term
‘variance parameters’ here encompasses all parameters in the G and R matrices,
that is, variance components and the covariance parameters). As random effects
have expected values of zero and therefore do not affect the mean, this distribution
has a mean vector X𝛼 and a covariance matrix V. The likelihood function based
on the multivariate normal density function is then

L =
exp

[
− 1

2
(Y − X𝛂)′V−1(Y − X𝛂)

]

(2𝜋)(1∕2)n|V |1∕2
.

In practice, the log likelihood function is usually used in place of the likelihood
function, since it is simpler to work with, and its maximum value coincides with
that of the likelihood. The log likelihood is given by

log(L) = K − 1
2

[
log |V | + (Y − X𝛂)′V−1(Y − X𝛂)

]
,

where
K =−1

2
n log(2𝜋) = (a constant that can be ignored in the maximization

process),
n=number of observations.

The values of the model parameters that maximise the log likelihood can then
be determined. We now introduce briefly several approaches to fitting the mixed
model, which are all based (directly or indirectly) on maximising the likelihood
function. As we will see, the methods are not all equivalent and can lead to
different estimates of the model parameters. Following this introduction to the
methods, we then look in more detail at separate aspects of the fitting process:
estimation of fixed effects, estimation of random effects and estimation of variance
parameters.
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Maximum likelihood (ML)

This method is based on the concept of maximising the log likelihood with respect
to the variance parameters while treating the fixed effects,𝛂, as constants. Having
obtained the variance parameter estimates, the fixed effects estimates are then
obtained by treating the variance parameters as fixed and finding the values
of 𝛂 that maximise the log likelihood. This method has the effect of producing
variance parameter estimates that are biased downwards to some degree. This
can be illustrated with a very simple example. Suppose we have a simple random
sample, x1, x2, … , xn, and wish to estimate the mean and variance. If 𝜇 is the
sample mean, then the maximum likelihood (ML) variance estimator would
be

∑
i(xi − 𝜇)2∕n rather than the unbiased estimator

∑
i(xi − 𝜇)2∕(n − 1). The

bias is the greatest when a small number of degrees of freedom (DF) are used for
estimating the variance parameters.

Residual maximum likelihood (REML)

Residual maximum likelihood (REML) (sometimes referred to as restricted maxi-
mum likelihood) was first suggested by Patterson and Thompson (1971). In this
approach, the parameter𝜶 is eliminated from the log likelihood so that it is defined
only in terms of the variance parameters. We outline the method in the following
section.

First, we obtain a likelihood function based on the residual terms, y − X�̂�.
This contrasts with the likelihood initially defined, which is based directly on
the observations, y. You will notice that these residuals differ from the ordinary
residuals, e = y − X�̂� − Z𝛃, in that Z𝛃 is not deducted. Some authors (including
those of REML) also refer to the y − X�̂� as residuals. This is not unreasonable,
since they can be considered as error terms that include all sources of random
variation (residual and random effects). In this section, we will refer to y − X�̂� as
the full residuals in order to differentiate them from the ordinary residuals. The
full residuals, y − X�̂�, are, in fact, a linear combination of the y as we will see
in Section 2.2.2 where we show how to produce the estimates, �̂�. It can also be
shown that y − X�̂� and �̂� are independent (see Diggle et al., 1994, Section 4.5),
and therefore the joint likelihood for 𝛂 and the variance parameters, 𝛄, can be
expressed as a product of the likelihoods based on y − X�̂� and �̂�:

L(𝛄,𝛂; y) = L(𝛄; y − X�̂�)L(𝛂; �̂�, 𝛄).

Thus, the likelihood for 𝛄 based on y − X�̂� is given by

L(𝛄; y − X�̂�) = L(𝛄,𝛂; y)∕L(𝛂; �̂�, 𝛄).

Now, from the above equations,

L(𝛄,𝛂; y) ∝ |V |−1∕2 exp
(
−1

2
(y − X𝛂)′V−1(y − X𝛂)

)
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and �̂� has a multivariate normal distribution, with mean and variance given by
the ML estimates, which will be obtained in Section 2.2.2. Hence,

L(𝛂; �̂�, 𝛄) ∝ |X′V−1X |−1∕2 exp
(1

2

(
�̂� − 𝛂

)′
XV−1X(�̂� − 𝛂)

)
.

Taking the ratio of these two likelihoods, we obtain the REML as

L(𝛄; y − X�̂�) ∝ |X′V−1X |−1∕2|V |−1∕2 exp
(
−1

2

(
y − X�̂�

)′
V−1(y − X�̂�)

)
,

and the REML log likelihood as

log(L(𝛄; y − X�̂�)) = K − 1
2
[log |V | − log |X′V−1X |−1 + (y − X�̂�)′V−1(y − X�̂�)].

Although �̂� still appears, it does so as a function of the variance parameters (�̂�
is derived in Section 2.2.2 as �̂� = (X′V−1X)−1X′V−1y). The parameter 𝛂 does
not appear. Note that the difference between the REML log likelihood and the
ordinary log likelihood is caused by the extra term log | X′V−1X |−1, which is the
log of the determinant of var(�̂�). The REML is equivalent to having integrated 𝛂
out of the likelihood for 𝛂 and 𝛄, and for this reason, REML is sometimes referred
to as a ‘marginal’ method. Because the REML takes account of the fact that 𝛂 is
a parameter and not a constant, the resulting variance parameter estimates are
unbiased. As with ML, 𝛂 is then estimated by treating the variance parameters as
fixed and finding the values of 𝛂 that maximise the REML log likelihood.

Iterative generalised least squares (IGLS)

This method can be used iteratively to fit a mixed model, and the results will
be the same as those obtained using ML. This approach obtains estimates of
the fixed effects parameters, 𝛂, by minimising the product of the full residuals
weighted by the inverse of the variance matrix, V−1. The residual product is given
by (y−X𝛂) ′V−1(y−X𝛂).

The variance parameters are obtained by setting the matrix of products of the
full residuals (y−X𝛂) equal to the variance matrix, V, specified in terms of the
variance parameters. This gives

(y − X�̂�)(y − X�̂�)′ = V

and leads to a set of n× n simultaneous equations (one for each element in
the n× n matrices) that can be solved iteratively for the variance parameters
(n=number of observations). The equations do not take account of the fact that
𝛂 will be estimated and is not known. Therefore, the resulting variance parameter
estimates are biased downwards and are the same as the ML estimates.

An adaption to iterative generalised least squares (IGLS) that leads to the
unbiased REML variance parameter estimates is restricted iterative generalised least
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squares (RIGLS). It is described by Goldstein (1989) who notes that because �̂� is
estimated and not known,

E(y − X�̂�)′(y − X�̂�) = V − var(X�̂�) = V − X(X′V−1X)−1X′
,

which leads to an alternative set of n× n equations to solve for the variance
parameters

(y − X�̂�)′(y − X�̂�) = V − X(X′V−1X)−1X′
.

Since the observed full residuals, y − X�̂�, depend on the fixed effects parame-
ter estimates, iteration is required between the fixed effects and the variance
parameter estimates to obtain either the IGLS or RIGLS solution. Further detail
on this method can be found in Goldstein (2010).

Variance parameter bias

We have stated that estimates of variance parameters are biased in ML (and IGLS)
and unbiased in REML (and RIGLS). We believe that lack of bias is an important
property, and therefore REML will be used to analyse most of the examples in this
book. Fixed effects estimates are unlikely to differ greatly between ML and REML
analyses, but their standard errors will always be biased downwards if the vari-
ance parameters are biased (because they are calculated as weighted sums of the
variance parameters). This will be most noticeable when the DF used to estimate
the variance parameters are small. Fixed effects estimates are also subject to addi-
tional sources of bias as explained in the following section.

2.2.2 Estimation of fixed effects

Maximum likelihood and REML

The fixed effects solution can be obtained by maximising the likelihood by differen-
tiating the log likelihood with respect to 𝛂 and setting the resulting expression to
zero. This leads to a solution that is expressed in terms of the variance parameters:

X′V−1(y − X𝛂) = 𝟎.

Rearrangement gives
�̂� = (X′V−1X)−1X′V−1 y,

and the variance of �̂� is obtained as

var(�̂�) = (X′V−1X)−1X′V−1 var(y)V−1X(X′V−1X)−1

= (X′V−1X)−1X′V−1VV−1X(X′V−1X)−1

= (X′V−1X)−1
.
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This formula is based on the assumption that V is known. Because V is, in fact,
estimated, it can be shown that there will be some downward bias in var(�̂�).
However, this is usually very small, and approximate corrections for the bias
can be made (see Section 2.4.3). Note that this occurs even when the variance
component estimates are themselves unbiased. In Section 2.3, we will see that the
Bayesian approach avoids having to make this assumption so that the problem of
bias does not arise.

Iterative generalised least squares

The same ML solution for 𝛂 can alternatively be obtained using generalised least
squares. With this approach, the product of the full residuals, weighted by the
inverse of the variances, (y−X𝛂)′V−1(y−X𝛂), is minimised by differentiation
with respect to 𝛂:

𝛿(y − X𝛂)′V−1(y − X𝛂)
𝛿𝛂

= −2X′V−1(Y − X𝛂).

By setting this expression to zero, we find that the residual product is minimised
when X′V−1y=X′V−1X𝛂, giving the solution for 𝛂 as

�̂� = (X′V−1X)−1X′V−1 y,

again with variance
var(�̂�) = (X′V−1 X)−1

.

This solution is sometimes referred to as the generalised least squares solution.
In unweighted least squares, where V= 𝜎

2I, the solution will be �̂� =
(X′X)−1X′y, with variance (X′X)−1

𝜎
2. This is the solution obtained from fit-

ting fixed effects models using ordinary least squares (OLS); for example, by using
PROC GLM in SAS. The difference in the mixed models estimate is due to the
use of the inverse variance matrix, V−1, in the formula for �̂�. When the data are
unbalanced, it is this difference that causes information on the fixed effects to be
combined from different error strata.

2.2.3 Estimation (or prediction) of random effects and
coefficients

In general, random effects and coefficients are defined to have normal distributions
with zero means, and the specific values they take must be thought of as realisa-
tions of a sample from a distribution. Thus, their expected values are, by definition,
zero. Nonetheless, as we saw earlier, in Section 1.2 in the context of patient effects
in a cross-over trial, it is possible to obtain predictions of them. We will now outline
how these predictions are obtained.
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Maximum likelihood and REML

To predict the random effects, 𝛃 (for simplicity, we use the term random effects to
refer to either random effects or coefficients), we define a likelihood function in
terms of 𝛂, 𝛃 and 𝛄 (𝛄 is the vector of variance parameters). This can be written as
the product of the likelihoods for: the fixed parameters and variance parameters
in the R matrix (𝛂 and 𝛄R) given the data with 𝛃, for the moment, treated as fixed
(y|𝛃); and that of the variance parameters in the G matrix (𝛄G) given the random
effects 𝛃:

L(𝛂, 𝛃, 𝛄 ; y) = L(𝛂, 𝛄R; y |𝛃)L(𝛄G ; 𝛃),

where
𝛄R = variance parameters in the R matrix,
𝛄G = variance parameters in the G matrix.

Using multivariate normal distributions for y|𝛃 and 𝛃, we have

L(𝛂, 𝛃, 𝛄; y) ∝ |R |−1∕2 exp
(
−1

2
(y − X𝛂 − Z𝛃)′R−1(y − X𝛂 − Z𝛃)

)

× |G |−1∕2 exp
(
−1

2
𝛃′G−1 𝛃

)
,

giving the corresponding log likelihood as

log(L) = −1
2
[log |R | + (y − X𝛂 − Z𝛃)′R−1(y − X𝛂 − Z𝛃)

+ log |G | + 𝛃′G−1𝛃] + K.

The ML solution for 𝛃 can be obtained by differentiating this log likelihood with
respect to 𝛃 and setting the resulting expression to zero:

𝛿 log(L)∕𝛿𝛃 = Z′R−1(y − X𝛂 − Z𝛃) − G−1𝛃

= −(Z′R−1Z + G−1)𝛃 + Z′R−1(y − X𝛂).

Setting to zero gives

𝛃(Z′R−1Z + G−1) = Z′R−1(y − X𝛂),

𝛃 = (Z′R−1Z + G−1)−1Z′R−1(y − X𝛂). (A)

As discussed in Chapter 1, estimates are ‘shrunken’ compared with what they
would have been if fitted as fixed. Note that since the estimates are centred about
zero, the intercept estimate would need to be added in order to obtain mean
random effects estimates. In random effects models, the R matrix is diagonal,
R= 𝜎

2I, and we can alternatively write

𝛃 = (Z′Z + G−1∕𝜎2)−1Z′(y − X𝛂).

Compared with the OLS solution for a fixed effects model, �̂� = (X′X)−1X′y, we
notice the additional term, G−1 / 𝜎2, in the denominator. It is this term that causes
the estimates to be shrunken towards zero.
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Also, an alternative, more compact, form for 𝛃 can be obtained from the solution
given earlier (A) using matrix manipulation and recalling that V=ZGZ′ + R:

𝛃 = GZ′V−1(y − X𝛂).

The variance of 𝛃 can be obtained as

var(𝛃) = GZ′V−1ZG − GZ′V−1X(X′V−1X)−1X′V−1ZG.

As with var(�̂�), this formula is based on the assumption that V is known. Because
V is, in fact, estimated, there will be some downward bias in var(𝛃), although this
is usually small (see Section 2.4.3). Again, the Bayesian approach (Section 2.3)
avoids having to make this assumption, and the problem of bias does not arise.

Iterative generalised least squares

We note that 𝛃 is not obtained directly from the usual least squares equations used
by IGLS. However, once estimates for the variance parameters are obtained using
IGLS, the above formulae can then be applied to obtain 𝛃.

2.2.4 Estimation of variance parameters

In this section, we consider the numerical procedures used to apply ML and
least squares based methods for estimating variance parameters. These are
usually embedded in the statistical packages used to perform the analysis, and so
knowledge of their details is not necessary for application. We present them in
this section for completeness.

Maximum likelihood and REML

Both of these methods work by obtaining variance parameter estimates that max-
imise a likelihood function. A solution cannot be specified by a single equation as
it was for the fixed and random effects because the derivatives of the log likelihood
with respect to the variance parameters are non-linear. An iterative process such
as the widely applied Newton–Raphson algorithm is therefore required. This works
by repeatedly solving a quadratic approximation to the log likelihood function.
We will now illustrate this algorithm by first showing how a quadratic function
is solved in terms of its first and second derivatives, and then showing how this
solution is used to define the iterative Newton–Raphson method for maximising a
likelihood function.

Solving a quadratic To express the solution of a quadratic function of 𝛉 in
terms of its first and second derivatives, we first write the function in matrix nota-
tion in the general quadratic form as

f (𝛉) = a + b′𝛉 + 1
2
𝛉′C𝛉.
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Note that the first derivative of f(𝛉) will be a vector, and the second derivative will be
a square matrix. For example, if 𝛉= (𝜃1, 𝜃2, 𝜃3), then the first derivative of f(𝛉) is a
vector of length 3, and the second derivative of the log likelihood is a 3×3 matrix.
The first derivative is given by

f ′(𝛉) = b + C𝛉,

and the second derivative by
f ′′(𝛉) = C.

The solution for 𝛉, which maximises f(𝛉), �̂� , is obtained by setting the first deriva-
tive to zero:

f ′(𝛉) = b + C𝛉 = 𝟎,

to give
�̂� = −C−1b.

By adding and deducting an arbitrary value, 𝛉i say, this solution to the quadratic
function can then be expressed as

�̂� = 𝛉i − C−1(b + C𝛉i),

and can be rewritten in terms of 𝛉i and the first and second derivatives of f(𝛉) eval-
uated at 𝛉i:

�̂� = 𝛉i − f ′′−1(𝛉i)f ′(𝛉i)

We now show that this mathematical trick is the key to the use of the
Newton–Raphson algorithm.

Newton–Raphson iteration We are seeking the value 𝛉 to maximise the
likelihood function f(𝛉). If we start with an initial approximate solution 𝛉1,
we make the assumption that the function will be approximately quadratic to
obtain an improved approximation 𝛉2, using the formula obtained previously.
The process is then repeated using 𝛉2 as the approximate solution, to obtain
an improved approximation 𝛉3. Although the function will not, in general, be
quadratic, in the region of the ML solution, the quadratic approximation is usually
quite good, and the Newton–Raphson iterative procedure will usually converge
appropriately. Convergence is obtained when parameter values change very little
between successive iterations. The iterative process can be defined by

𝛉i+1 = 𝛉i − f ′′−1(𝛉i) × f ′(𝛉i),

where f ′(𝛉i) and f ′(𝛉i) are the actual (unapproximated) derivatives of f(𝛉) evaluated
at 𝛉i. The matrix of second derivatives, f ′′(𝛉), is often referred to as the Hessian
matrix. In mixed models, f(𝛉) is taken to be the log likelihood expressed in terms of
the variance parameters, 𝛉.

The need to evaluate the derivatives at each iteration can make the Newton–
Raphson algorithm computationally intensive. Computation can be made easier
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by using a matrix known as the information matrix in place of f ′′(𝛉i) in the iterative
process. The information matrix is the expected value of the Hessian matrix, and it
is easier to compute than the Hessian matrix because some of the correlation terms
are zero. When it is used, the process can be referred to as the method of scoring
or Fisher scoring. This method has been shown to be more robust to poor start-
ing values than the Newton–Raphson algorithm. WithinSAS,PROC MIXEDuses
Fisher scoring for the first iteration and then Newton–Raphson for the remaining
iterations, as the default fitting method.

Covariances of variance parameters An indication of the precision of the
variance parameters can be obtained from an estimate of their variance and their
degree of correlation from the covariances. However, this estimate is based on
standard asymptotic (large sample) theory. The asymptotic covariances of the
variance parameters are given by the negative of the expected values of second
partial derivatives of the log likelihood (see, e.g. Searle et al., 1992, Section 3.7):

̂var (𝜃i) = −E{𝛿2 log(L)∕𝛿𝜃i𝛿𝜃i},

̂cov(𝜃i, 𝜃j) = −E{𝛿2 log(L)∕𝛿𝜃i𝛿𝜃j}.

Since the resulting covariances are based on asymptotic theory and are related to
the estimated variance parameter values themselves, they should be interpreted
cautiously. Also, remember that the distribution of variance parameters is not
usually symmetrical.

In SAS, asymptotic standard errors can be obtained by specifying the COVTEST
option in the PROC MIXED statement, while the use of the ASYCOV option
will produce the asymptotic variance matrix of the covariance parameter
estimates. The CL option will produce confidence limits for the covariance
parameter estimates based on a chi-squared distribution by using the ratio of
the covariance parameter estimate to its standard error. Thus, the warning for
cautious interpretation should be applied to any of these options.

Iterative generalised least squares

This method estimates the variance parameters by setting the full residual
products equal to the variance matrix, V, specified in terms of the variance
parameters and solving the resulting equations. This leads to a set of n × n
simultaneous equations that can be solved iteratively for the variance parameters
(n= number of observations). In ordinary IGLS that gives variance parameters
that are biased downwards, the equations are as follows:

V = (y − X𝛂)(y − X𝛂)′.

To illustrate the structure of the equations more clearly, we will show their
form for a small hypothetical dataset. We assume that the first two patients in a
repeated measures trial attended at the following visits:
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Patient Visit

1 1
1 2
1 3
2 1
2 2

The equations in a model using a separate covariance term for each pair of visits
(i.e. with a ‘general’ covariance structure) are given by

⎛
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
1 𝜃12 𝜃13 0 0

𝜃12 𝜎
2
2 𝜃23 0 0

𝜃13 𝜃23 𝜎
2
3 0 0

0 0 0 𝜎
2
1 𝜃12

0 0 0 𝜃12 𝜎
2
2

⎞
⎟
⎟
⎟
⎟
⎟⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

(
y1 − 𝜇1

)
(y1 − 𝜇1) (y1 − 𝜇1) (y1 − 𝜇1) (y1 − 𝜇1)

×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)
(y2 − 𝜇2) (y2 − 𝜇2) (y2 − 𝜇2) (y2 − 𝜇2) (y2 − 𝜇2)
×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)
(y3 − 𝜇3) (y3 − 𝜇3) (y3 − 𝜇3) (y3 − 𝜇3) (y3 − 𝜇3)
×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)
(y4 − 𝜇4) (y4 − 𝜇4) (y4 − 𝜇4) (y4 − 𝜇4) (y4 − 𝜇4)
×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)
(y5 − 𝜇5) (y5 − 𝜇5) (y5 − 𝜇5) (y5 − 𝜇5) (y5 − 𝜇5)
×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

In this simple example, equating corresponding terms from the left-hand side and
right-hand side of this equation gives

𝜃13 = (y1 − 𝜇1)(y3 − 𝜇3),

𝜃23 = (y2 − 𝜇2)(y3 − 𝜇3).

There are two equations for 𝜃12, and we may obtain an estimate from their
average:

𝜃12 = [(y1 − 𝜇1)(y2 − 𝜇2) + (y5 − 𝜇5)(y4 − 𝜇4)]∕2.

Thus, in this artificially simple dataset, the covariance terms are calculated over
the average of the observed covariances for just one or two subjects. In a genuine
dataset, the covariances will be estimated from the average of the observed
covariances from many more subjects. The variance terms can be estimated in a
similar way.
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The approach extends to other covariance patterns. Suppose that with the same
artificial dataset we wish to fit a simpler correlation pattern, with a constant
covariance between each visit pair (i.e. compound symmetry pattern), then

⎛
⎜
⎜
⎜
⎜⎝

𝜎
2

𝜃 𝜃 0 0
𝜃 𝜎

2
𝜃 0 0

𝜃 𝜃 𝜎
2 0 0

0 0 0 𝜎
2

𝜃

0 0 0 𝜃 𝜎
2

⎞
⎟
⎟
⎟
⎟⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

(
y1 − 𝜇1

)
(y1 − 𝜇1) (y1 − 𝜇1) (y1 − 𝜇1) (y1 − 𝜇1)

×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)
(y2 − 𝜇2) (y2 − 𝜇2) (y2 − 𝜇2) (y2 − 𝜇2) (y2 − 𝜇2)
×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)
(y3 − 𝜇3) (y3 − 𝜇3) (y3 − 𝜇3) (y3 − 𝜇3) (y3 − 𝜇3)
×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)
(y4 − 𝜇4) (y4 − 𝜇4) (y4 − 𝜇4) (y4 − 𝜇4) (y4 − 𝜇4)
×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)
(y5 − 𝜇5) (y5 − 𝜇5) (y5 − 𝜇5) (y5 − 𝜇5) (y5 − 𝜇5)
×(y1 − 𝜇1) ×(y2 − 𝜇2) ×(y3 − 𝜇3) ×(y4 − 𝜇4) ×(y5 − 𝜇5)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

The solution is then given by averaging the observed covariances over all pairs of
time points so that

𝜃 = [(y1 − 𝜇1)(y2 − 𝜇2) + (y4 − 𝜇4)(𝜇5 − 𝜇5)

+ (y1 − 𝜇1)(y3 − 𝜇3) + (y2 − 𝜇2)(𝜇3 − 𝜇3)]∕4,

and

𝜎
2 =

5∑

i=1

(yi − 𝜇i)2∕5.

In random effects and coefficients models, each linear equation may involve more
than one parameter. Simple averaging will then not be sufficient to obtain the
parameter estimates, and standard methods for solving sets of linear equations
can be applied.

For RIGLS that gives unbiased variance parameters (as in REML), the equations
are as follows:

(y − X�̂�)′(y − X�̂�) = V − X(X′V−1X)−1X′
.

Further details on IGLS can be found in Goldstein (2003).

2.3 The Bayesian approach

A Bayesian approach to fitting a mixed model provides an interesting alternative to
the classical methods we have already described, which are based on maximising
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the likelihood function. Some statisticians have difficulties in accepting the philos-
ophy of the Bayesian approach and will not be willing to use such an analysis. We
feel that such an attitude is misguided, and a Bayesian approach to mixed models is
introduced because it has several potential advantages over maximum likelihood
methods. It must be recognised, though, that the application of Bayesian methods
in medicine is relatively uncommon and may be unfamiliar to many of the poten-
tial ‘consumers’ of the analysis. There may therefore be a greater communication
problem in reporting such analyses.

Bayesian methods have also been hampered in the past by the fact that they can
require very large amounts of computer power and time. However, this has now
become less of a restriction, and their use has become much more widespread. In
the context of mixed models, Bayesian methods have been developed most fully
for use with random effects models, and we therefore concentrate primarily on
these models. As some of the ideas underlying Bayesian modelling are quite differ-
ent from those underlying classical statistical approaches, we will first spend some
time giving a brief introduction to Bayesian concepts. An example of a Bayesian
analysis will be given in Section 2.5.

2.3.1 Introduction

In a Bayesian analysis, the distribution of the model parameters is obtained and
then used to obtain parameter estimates (e.g. of the mean treatment effects). This
contrasts with the fitting methods we have considered so far, which are based on
finding values of parameters that optimise the likelihood function. The distribution
of the model parameters is obtained by combining the likelihood function with a
prior distribution for the parameters to obtain what is called the posterior distri-
bution. The prior distribution can be either informative (based on prior knowl-
edge of the parameter) or non-informative (containing no prior information on
the parameter). While there can be good reason to use informative priors, par-
ticularly when they use only basic knowledge of the context of the problem (e.g.
range for human temperature is 30–45∘C or a variance parameter is positive),
the results obtained will then not be wholly dependent on the data and lead to an
altered interpretation. A Bayesian analysis using informative priors might there-
fore be considered a distinct subset of Bayesian methods. In this section, we will
only consider the use of non-informative priors.

Bayesian methods are often considered to be quite different from Maximum like-
lihood methods (e.g. ML and REML). However, when a non-informative prior is
used in a Bayesian analysis, the posterior density has a similar shape to the likeli-
hood function. In fact, when a flat prior is used, the posterior has an identical shape
to the likelihood. Thus, the main difference between a Bayesian analysis (with
non-informative priors) and a ML approach is that the posterior density (which
can be similar to the likelihood function) is fully evaluated, whereas in ML, only
the parameter values that maximise the likelihood are obtained.



Brown778258 c02.tex V3 - 11/14/2014 10:13 A.M. Page 59

The Bayesian approach 59

The advantage of fully evaluating the posterior density is that exact posterior
standard deviations and probability intervals can be obtained from the posterior
distributions for each model parameter. These statistics are analogous to the stan-
dard errors and confidence intervals derived using ML. We will also show how
posterior distributions can be used to yield exact ‘Bayesian’ p-values, which are
analogous to p-values resulting from classical significance tests (see Section 2.3.3).
We believe that the potential to obtain such exact statistics is a major advantage of
using a Bayesian approach over ML where parameter standard errors, confidence
intervals and p-values are computed using formulae that assume that the variance
parameters are known (see Sections 2.2.2 and 2.4.3).

A potential disadvantage with using a Bayesian approach is that the techniques
used to obtain the posterior density usually rely on simulation, and it can be
difficult to define exactly when a simulated distribution for the parameters
has converged to the true distribution. In contrast, it is usually much easier to
conclude that a likelihood function has been maximised. The problems associated
with defining convergence when simulation techniques are used are currently
the subject of research interest.

We now describe Bayesian terminology in more detail. This will provide a back-
ground to the choices that need to be made when setting up models. However,
some users may only require a more basic understanding and may wish to omit
the details of how the posterior distribution is simulated. For a more in-depth
introduction, the text Bayesian Inference in Statistical Analysis by Box and Tiao
(1973) or Bayesian Methods for Data Analysis by Carlin and Louis (2008) is
recommended. In addition, the text In All Likelihood by Pawitan (2001) provides a
helpful background and comparison between Bayesian analysis, likelihood-based
analysis and the frequentist approach, and Bayesian Approaches to Clinical Trials
and Health-Care Evaluation by Spiegelhalter et al. (2004) illustrates the use of
Bayesian methods specifically in clinical trials.

2.3.2 Determining the posterior density

In a Bayesian model, it is assumed that parameters have a prior distribution,
which reflects knowledge (or lack of it) about the parameters before the analysis
commences, and that this distribution can be modified to take account of observed
data to form a posterior distribution and that the posterior distribution can be
used to make inferences about the model parameters. The posterior density
function for the model parameters is proportional to the product of the likelihood
function and the prior density of all the model parameters, p(𝛉):

p(𝛉; y) = p(𝛉)L(𝛉; y)∕K,

where
K =

∫
p(𝛉)L(𝛉; y)d𝛉.
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The denominator integral is necessary to ensure that the posterior integrates
to one. The likelihood function can be based on any distribution, and hence
Bayesian methods can be applied to data with either normal or non-normal dis-
tributions. We note that by using a flat prior, p(𝛉)∝ c (c= constant), the posterior
density becomes

p(𝛉; y) = L(𝛉; y)∕K,

which is the standardized likelihood function. A Bayesian analysis is then equivalent
to evaluating the likelihood function over its full parameter space. However, as
we will see later, somewhat surprisingly, a flat prior cannot always be regarded as
non-informative.

A mixed model will usually contain several parameters. For example, consider a
two-way, cross-over trial model fitting treatments and periods as fixed and patients
as random. We let

𝜇= intercept,
t= treatment difference,
p= period difference,

s1, s2, … , sn−1 = subject effects (n subjects),
𝜎

2 = residual variance component,
𝜎

2
s = subject variance component.

(Note that the redundant parameters for the second treatment and period, and the
final subject, are omitted in this parameterisation.)

We assume that estimation of the subject effects is not of interest. Taking the
Bayesian approach, a prior distribution, p(𝜇, t, p, 𝜎2

, 𝜎
2
s ) say, is first specified for

the model parameters. The posterior distribution of 𝜇, t, p, 𝜎2 and 𝜎
2
p is then

obtained using the product of the prior distribution and the likelihood function:

p(𝜇, t, p, 𝜎2
, 𝜎

2
s ; y) = p(𝜇, t, p, 𝜎2

, 𝜎
2
s ) × L(𝜇, t, p, 𝜎2

, 𝜎
2
s ; y)∕K,

where K is the standardising constant used to ensure that the distribution inte-
grates to one.

K =
∫ ∫ ∫ ∫ ∫

p(𝜇, t, p, 𝜎2
, 𝜎

2
s ) × L(𝜇, t, p, 𝜎2

, 𝜎
2
s ; y)𝛿𝜇 𝛿t 𝛿p 𝛿𝜎

2
𝛿𝜎

2
s .

The posterior distribution can then be used to estimate each of the model param-
eters. More detail on how this is done is given in the next section.

2.3.3 Parameter estimation, probability intervals and p-values

The full posterior distribution p(𝜇, t, p, 𝜎2
, 𝜎

2
s ; y) is not often useful in itself for

making inferences about individual parameters. To make inferences about one
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parameter, t say, the posterior is usually integrated over all the other parameters
(𝜇, p, 𝜎2 and 𝜎

2
s ) to form a marginal posterior distribution for t:

pt(t; y) =
∫ ∫ ∫ ∫

p(𝜇, t, p, 𝜎2
, 𝜎

2
s ; y)d𝜇 dp d𝜎2d𝜎2

s .

This distribution can then be used to calculate estimators for the treatment
parameter. With this approach, we note that the problem of biased fixed and
random effects standard errors will not occur as it does in ML (see Section 2.4.3).
This is because variances can be obtained from exact parameter distributions,
rather than by using formulae that assume that the variance components
are known.

Parameter estimation

There are no strict rules about which estimator should be used for a given
parameter. For location parameters (i.e. fixed and random effects), the posterior
distribution can often be conveniently summarised by the posterior mean and its
variance. The square root of var(t) gives the standard deviation of t. Although this
is analogous to the standard error of t given by ML, Bayesian statisticians usually
prefer to quote standard deviations of parameters rather than standard errors
of means.

The mean value is not usually the most appropriate estimate for a variance
component because the marginal distribution is not symmetrical. The median or
mode are better choices when judged by the ‘average closeness to the true value’
measured, say, by the mean squared error. Another estimator sometimes used
is the posterior mean of the square root of the variance component. However,
our own preference is to use the median. Box and Tiao (1973, Appendix A5.6)
discuss the choice of variance component estimators in more detail. However, in
many applications, the variance component estimate is not of particular interest
and may not even need to be obtained.

Probability intervals

Exact probability intervals for model parameters can be calculated directly from
their marginal posterior distributions. These may either be computed such that the
two tails of the distribution have equal density ‘equal tail interval’. For example, for
a 95% probability interval, each tail would have a density of 0.025. An alternative
approach is to obtain the interval such that:

• The probability density of points within the interval is higher than all points
outside it.

• The total probability for the region is equal to a specified 1− 𝛼 (e.g. 𝛼=0.05 for
a 95% probability interval), referred to as a ‘highest posterior density (HPD)’
interval. It is usually more difficult to obtain than the equal tail interval.
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Statisticians have well documented differences of opinion about how to draw
two-tailed inferences from asymmetrical distributions, but our preference is for
the equal tail area approach. This ensures that a two-tailed test at say the 5%
level of significance is equivalent to two one-tailed tests at the 2.5% level. This
has the advantage of conforming to the symmetry principle that we should be
equally surprised by differences from the Null hypothesis in either direction. It also
adheres to Regulatory guidance that states ‘the approach of setting type I errors
for one-sided tests at half the conventional type I error used in two-tailed tests is
preferable in regulatory settings. This provides consistency with the two-sided
confidence intervals that are generally appropriate for estimating the possible size
of the difference between two treatments’ (Section 5.5 in Statistical Principles for
Clinical Trials, ICH Harmonised Tripartite Guideline E9, 1998).

Probability intervals are analogous to the confidence intervals calculated by
maximum likelihood methods. However, unlike confidence intervals, they are
calculated directly from the posterior distribution and do not rely on estimates of
parameter standard errors.

p-values

The concept of the significance test as it appears in ‘classical’ statistics does not fall
within the Bayesian philosophy. In classical statistics, a hypothesis is tested by con-
structing an appropriate test statistic and obtaining the distribution of this statistic
under a null hypothesis (e.g. the treatment difference is zero). Acceptance of the
null hypothesis is then obtained from the position of the test statistic within this
‘null’ distribution. Specifically, we calculate the probability under the null hypoth-
esis of obtaining values of the test statistic that are as, or more, extreme than the
observed value. Probabilities below 0.05 are often seen as sufficient evidence to
reject a null hypothesis. The closest equivalent using Bayesian methods is achieved
through the use of probability intervals. The value of 𝛼 for the probability inter-
val that has zero on the boundary can be used to provide a ‘Bayesian’ p-value to
examine the plausibility that a parameter is zero. This is equivalent to a two-sided
‘classical’ p-value. However, it has the advantage of being exact, and there are no
potential inaccuracies in obtaining a test statistic (based on standard error esti-
mates) or the DF for its distribution.

2.3.4 Specifying non-informative prior distributions

We have given little indication so far of the distributional form that non-
informative priors should take. The requirement is that a non-informative prior
for a parameter should have minimal influence on the results obtained for that
parameter. The theoretical background of how to set non-informative priors is
not easily accessible to those without a background in Bayesian statistics; so we
will outline the methods that can be used in the following section. Prior to that,
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though (excusing the pun), we will take the pragmatic approach and simply
describe some distributions that have been suggested to provide non-informative
priors for mixed models.

For the fixed effects (𝜇, t and p in the cross-over model), there are (at least) two
suitable non-informative priors:

• uniform distribution (−∞, ∞), p(𝜃)∝ c, that is a flat prior,
• normal (0, K), where K is a very large number.

We note that as K tends to ∞, the normal distribution tends to the uniform
(−∞, ∞) distribution. For the practitioner, there is the question of how big a
number is very large? This depends on the scale on which observations are being
recorded. Recording distances in millimetres gives larger numbers than recording
in kilometres. The choice of K should be so that its square root is at least an order
of magnitude larger than any of the observations.

For the variance components (𝜎2 and 𝜎
2
s in the cross-over model), any of the

following distributions may provide suitable non-informative priors:

• uniform (−∞, ∞), p(𝜃)∝ c,
• reciprocal distribution, p(𝜃)∝ c/𝜃 (c = constant),
• inverse gamma distribution (K, K), where K is a very small number.

In this book, we will not describe the inverse gamma distribution, other than to
note that it is a two-parameter distribution and that as the parameters tend to
zero, the distribution tends to the reciprocal distribution. The practical guidance
to the choice of K is again that it should be at least an order of magnitude smaller
than the observations.

In practice, it often makes little difference to the results obtained from the pos-
terior distribution, whichever of these priors is chosen. An exception is when the
true value of a variance component is close to zero. Under these circumstances,
the posterior distribution arising from the uniform prior will differ depending on
whether the variance component is constrained to be positive. We note, though,
that many statisticians would be unlikely to choose the uniform prior for variance
components because it is known that variance components cannot be negative.
However, it is this prior that leads to a posterior density that is exactly proportional
to the likelihood.

We now introduce in more detail a general approach to the setting of
non-informative priors. This section will be of greatest interest to those readers
who wish to extend their knowledge of the Bayesian approach.

Setting a non-informative prior

At first sight, it might appear that simply using a flat distribution, p(𝜃)∝ c, would
provide a non-informative prior for a parameter, 𝜃. However, this is not always the
case. To obtain a non-informative prior for 𝜃, it is first necessary to find a trans-
formation of 𝜃, h(𝜃) say, for which the likelihood has the same shape when plotted
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Figure 2.1 Likelihood vs. mean. Mean: ______ 0; -------- 2; – – –4. (L is proportional to
likelihood).

against it regardless of any changes to the data. Since the shape of the likelihood
distribution is then unaffected by the value of h(𝜃), a flat density for h(𝜃), p(h(𝜃))∝ c
will give a non-informative prior for h(𝜃). From this, a non-informative prior dis-
tribution of 𝜃 can be obtained as (see Box and Tiao, 1973, Section 1.3).

p(𝜃) = p(h(𝜃)) |dh(𝜃)∕d𝜃|
∝ c |dh(𝜃)∕d(𝜃) |.

Consider a sample from the normal distribution, N(𝜇, 𝜎2). If L(𝜇; 𝜎, y) is plotted
against 𝜇, the same shape always arises regardless of the data; only the location is
dependent on the data (see Figure 2.1). Thus, in this case, h is the identity function,
h(𝜇) = 𝜇, and we obtain p(𝜇)∝ c|dh(𝜇)/d𝜇| = c, a flat prior.

However, when L(𝜎;𝜇, y) is plotted against 𝜎, we find that its shape varies with
the data (see Figure 2.2). Thus, h is not now the identity function, and we need to
consider alternative functions. It turns out that plotting L(𝜎;𝜇, y) against log(𝜎)
gives likelihoods that have the same shape regardless of the data values (see
Figure 2.3). Thus, h(𝜎) = log(𝜎), and we obtain p(𝜎)∝ c|d log(𝜎)/d𝜎| = c/𝜎.

In general, it is not necessary to go to the trouble of plotting the likelihood against
various transformations of a parameter to find the function h. h can instead be
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Figure 2.2 Likelihood vs. sigma. Variance: ______ 1; -------- 5; – – –10. (L is proportional
to likelihood).

Figure 2.3 Likelihood vs. log (sigma). Variance: ______ 1; ------- 5; – – –10. (L is propor-
tional to likelihood).
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obtained by writing the likelihood for 𝜃 in the form g(h(𝜃) − t(y)). For example, the
likelihood for 𝜇 for the normal sample can be written as

L(𝜇; 𝜎, y) ∝ (1∕𝜎n) exp(−n(𝜇 − y)2∕2𝜎2).

This gives g(z) = exp(−z2/2𝜎2), h(𝜇) = 𝜇 and t(y) = −y.
The likelihood for 𝜎 is obtained by rearranging the likelihood function as

L(𝜎; 𝜇, y) ∝ exp{−n[log(𝜎) − log(s)] − n∕2 exp[−2(log(𝜎) − log(s))]}

to give g(z) = exp
[
−nz − 1

2
exp (−2z)

]
, h(𝜎) = log(𝜎)and t(y) = log(s).

We have assumed here that 𝜇 and 𝜎 are uncorrelated, although this is not in
fact the case for the normal distribution. When there are several model parame-
ters, prior specification is often simplified by assuming independence. Thus, in the
cross-over model introduced in Section 2.3.2, we could write

p(𝜇, t, p, 𝜎2
, 𝜎

2
s ) = p

𝜇
(𝜇) × pt(t) × pp(p) × p

𝜎2 (𝜎2) × p
𝜎

2
s
(𝜎2

s ).

Alternatively, a joint prior that takes account of the correlations between parame-
ters can be obtained using a method proposed by Jeffreys (Jeffreys, 1961). Jeffreys’
method is also helpful in situations where the likelihood cannot be arranged
in the required form, g(h(𝜎)− t(y)). It is the default prior used for the variance
components when the PRIOR statement in PROC MIXED is used to carry out a
Bayesian analysis. Details of Jeffreys’ method and further discussion on setting
non-informative priors can be found in Box and Tiao (1973, Section 1.3), Tanner
(1996), Section 2.2.1) or Carlin and Louis (2008).

Properties for prior distributions

We now define some of the properties that are considered when setting priors and
discuss their relevance in mixed models.

Proper priors Ideally, the prior distribution should integrate to one, and it
is then described as a proper prior. A flat prior, p(𝜃)∝ c, is not proper because
the integral ∫ ∞

−∞ p(𝜃)d𝜃 does not exist no matter how small c is. Likewise, the
non-informative prior suggested for variance components, p(𝜎)∝ c/𝜎, is also
improper. However, the normal distributions with zero mean and very large
variances suggested for fixed and random effects and the inverse gamma dis-
tributions with very small parameters for variance components are integrable
and hence can be described as ‘proper’. It is for this reason that these priors are
sometimes preferred. However, as we noted earlier, when the spreads of these
distributions are taken to their extremes, we obtain N(0,∞) = uniform(−∞,∞)
and IG(0, 0) = reciprocal distribution (p(𝜃)∝ c/𝜃), which are improper priors.

In practice, it is not always important for a prior to be proper. Provided the inte-
gral of the likelihood over all the model parameters is finite, there is not a problem.
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In mixed models applications, the integral will often be finite even when improper
priors are used. However, one situation where this may not be the case, which we
will meet later, is when there are uniform fixed or random effects categories in gen-
eralised linear mixed models (these will be defined in Section 3.3.2).

Conjugacy When a prior distribution is conjugate, it leads to a posterior
distribution that is of the same type as the prior. For example, a particular
distribution called the beta distribution could be chosen as the prior for a binomial
parameter, and this would lead to a posterior distribution that is also a beta
distribution. The beta distribution is then described as conjugate to the binomial
distribution. Likewise, conjugate prior distributions can be obtained for all other
distributions from the exponential family.

When a model uses more than one parameter, a joint conjugate distribution
should ideally be used. However, in practice, independence is often assumed
between the parameters, and the joint prior is taken as the product of the con-
jugate priors for each parameter (obtained assuming the other parameters are
fixed). For example, in setting a joint prior density for the normal distribution
parameterised by 𝜇 and 𝜎

2, the product of a normal prior density (conjugate
for 𝜇) and an inverse gamma prior density (conjugate for 𝜎

2) could be taken if
independence between 𝜇 and 𝜎

2 was assumed.
We have already noted previously that distributions parameterised to have very

large (but not infinite) spreads are often used to create proper non-informative
priors. These distributions in fact are chosen as the conjugate distributions for
each parameter. Hence, using normal prior distributions for fixed and random
effects parameters is expected to lead to normal posterior distributions for the
parameters. Likewise, inverse gamma prior distributions for variance components
are expected to lead to inverse gamma posterior distributions. However, this
is based on assuming independence of the parameters in setting the priors.
In practice, the model parameters are not independent, and so these posterior
distributions will not be obtained exactly.

2.3.5 Evaluating the posterior distribution

Evaluation of the posterior distribution and using it to obtain marginal posterior
distributions for individual parameters rely heavily on integration. However, in
most situations, algebraic integration is not possible, and a numerical method of
integration is required.

The most popular methods of evaluating the posterior now rely on simulation
as a means of performing the integration. Such methods can be described as
Monte Carlo methods, and with increased availability of computer power over
recent years, they have become much more feasible. Random samples from the
joint distribution of all the model parameters are obtained. Each sample provides
a set of values of the model parameters, (e.g. 𝜇, t, p, 𝜎2 and 𝜎

2
s in our cross-over

example). If we are interested in the marginal distribution of t, say, then we simply
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ignore the other parameter values and consider only the randomly sampled values
for t. If we take a sufficiently large number of samples from the joint posterior
distribution, then we will be able to characterise the marginal distribution of t,
to whatever level of detail we wish. Of course, as well as estimating the marginal
distributions (usually our main purpose), we can use the full set of values of our
model parameters to evaluate the full posterior distribution.

It is not usually possible to define a process for sampling directly from the
posterior density posterior distribution, and various sampling approaches have
been devised to overcome this difficulty. Some approaches are iterative so that
samples are taken from the posterior distribution conditioned on the previous
set of sampled values. Iterative approaches are often referred to as Markov
chain Monte Carlo (MCMC) methods, the description ‘Markov chain’ being used
because parameter values are sampled from a distribution depending only on
parameter values sampled at the preceding iteration. Often, a simpler ‘proposal
distribution’ is sampled in place of the true posterior distribution, and samples are
accepted with probability proportional to the ratio of the true posterior density
and the proposal density. We will now outline an MCMC algorithm known as the
Metropolis algorithm, which is used by PROC MCMC.

The Metropolis Algorithm

Often, it is not easy to define a process for sampling directly from the true posterior
density, p(𝛉; y) (𝛉 = the vector of model parameters). One way to get around this
difficulty is to define an alternative density for the model parameters, g(𝛉) (the
proposal density), that is easier to sample. (This is often the multivariate normal
or multivariate t-distribution). Parameters are sampled from the proposal density
but only some are accepted. In practice, the method works by:

• Generate arbitrary initial values 𝛉0.
• Take a sample, 𝛉new, from the proposal distribution, g(𝛉0).
• Accept𝛉new as𝛉1 only if a uniform variate, u, sampled from Uniform(0,1) is less

than min{p(𝛉new; y)/p(𝛉0; y), 1}. (Thus, the new value for 𝛉 is always accepted
if it has a higher posterior density than the old value of 𝛉, and the probability
of acceptance becomes smaller as the ratio of the densities becomes smaller).

• Continue sampling, 𝛉new, from the proposal distribution, g(𝛉i), and accept it
as 𝛉i+1 only if a uniform variate, u, sampled from Uniform(0,1) is less than
min{p(𝛉new; y)/p(𝛉i; y), 1}.

A large number of samples are taken, and their frequencies are expected to pro-
vide the full conditional distribution of the parameters. However, in practice, the
procedure is not usually quite this simple. Although it is known that the simulated
posterior will eventually converge to the true posterior as more and more samples
are taken, it should be examined to obtain reassurance that it has converged based
on the sample taken. This may be considered in two ways. Firstly by examining
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plots of the simulated values, for example, a plot of their values across the iterations
(often called a ‘trace plot’) and secondly by carrying out tests of convergence. More
information on some of the diagnostic statistics and tests available, on interpret-
ing diagnostic plots, and on appropriate action when convergence has not been
obtained, will be given in Section 2.4.8, and the example in Section 2.5 will provide
an illustration. However, we note that often there is not 100% certainty that the
posterior distribution has been adequately sampled and has converged.

Using the simulated posterior to estimate parameters

The simulated samples provide the joint distribution for the model parameters. As
we described earlier, the marginal distribution for any parameter is obtained by
simply using the sampled values for that parameter. The sampled values can be
used directly to estimate the mean, standard deviation, probability intervals and,
if required, Bayesian p-values for selected parameters or their differences.

2.4 Practical application and interpretation

So far in this chapter, we have considered how to specify and fit mixed models.
In this section, we look in some depth at points relating to the practical use of
mixed models and their interpretation: negative variance components estimates
(2.4.1); variance parameter accuracy (2.4.2); bias in fixed effects standard errors
(2.4.3); significance testing (2.4.4); confidence intervals (2.4.5); model checking
(2.4.6); and handling missing data (2.4.7). Readers may find that the material
presented becomes most helpful once they have gained some experience of apply-
ing mixed models and have a need for considering particular aspects more closely.
The worked example in Section 2.5 will illustrate many of the points made, and
readers may find it helpful to read this section in conjunction with the example.
Additional practical points relating specifically to covariance pattern and random
coefficients models will be made in Sections 6.2 and 6.5.

2.4.1 Negative variance components

Variance components, by their definition, are non-negative. Nevertheless, the
methods for estimating variance components will sometimes produce negative
values that are not permissible. Such an estimate will usually be an underesti-
mate of a variance component whose true value is small or zero. The chances
of obtaining a negative variance component estimate when the true variance
component is positive are increased when:

• The ratio of the true variance component to the residual is small.
• The number of random effects categories is small (e.g. a small number of cen-

tres in a multi-centre trial with centre effects fitted as random).
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• The number of observations per random effects category is small (e.g. a
two-period, cross-over trial with patients fitted as random).

It is not usually straightforward to calculate the probability with which a negative
variance component will occur. However, it is possible when balance is achieved
across the random effects (see Section 1.6), and there are an equal number of
observations per random effects category. The probability of obtaining a negative
variance component estimate is then obtained by reference to the F distribution:

P(negative variance component) = P(FDF1,DF2 > 1 + n𝛾),

where
n= observations per category,
𝛾 = true variance component/residual variance,

DF1= residual DF,
DF2= effect DF.

The graphs in Figure 2.4 show how the probability of obtaining a negative
variance component is affected by 𝛾 , the number of random effects categories, and
the number of observations per category. When there are only a few observations
per category (e.g. there are only two observations per patient in two-way,
cross-over trials), there is a reasonable chance that a negative variance component
may occur as an underestimate of a true positive variance component. However,
the variance components can be constrained to be non-negative, which would
lead to the patient variance component estimate becoming zero. This, in turn, will
modify the residual variance estimate, relative to the unconstrained situation,
in that the negative patient variance component will be absorbed, resulting in a
lower residual variance. The residual variance from the unconstrained random
effects model will be the same as fitting a fixed effects model.

How to handle a negative variance component

If a variance component is negative, the usual action would be either to remove the
corresponding random effect from the model or to fix the variance component at
zero (PROC MIXED sets negative variance components to zero by default). Either
of these models will lead to the same parameter estimates for the fixed and random
effects; however, the DF for significance tests will differ between the models. In
some situations, the option of setting a negative variance component to zero, but
retaining its DF, may be preferable. This would seem appropriate when an aspect
of the study design is modelled by the random effect. For example, cross-over trials
are designed to allow for patient effects, and so the DF corresponding to patients
might be retained even if the patient variance component is fixed at zero. Similarly,
if a multi-centre trial analysis produced a negative centre variance component,
but a positive centre⋅treatment variance component, the centre effect DF might
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Figure 2.4 Probability of obtaining a negative variance component. (a) Observation-
sper category = 2; (b) observations per category = 5; (c) observations per category = 25.
Gamma: 0.01; 0.05; 0.10; 0.25; 0.50; 1.00.
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be retained. However, if the random effect does not form part of the study design,
then there is more reason to justify removing it from the model, hence excluding
its DF.

We noted in the previous section that setting a negative variance component
estimate to zero will lead to a different residual variance estimate to an equivalent
fixed effects model. This is because a fixed effects model effectively allows negative
variance components to occur (they are indicated whenever F is less than one).
We will consider now the effect that this has on a cross-over trial with complete
data. When the patient variance component estimate is positive, identical treat-
ment effect estimates and standard errors will be obtained regardless of whether
patients are fitted as random or fixed. However, when the patient variance
component estimate is negative and set to zero in the random effects model, the
residual variance will be smaller than that obtained in the fixed effects model.
This, in turn, will lead to smaller treatment standard errors. We believe that the
residual estimate from the random effects model is therefore preferable, since
the intention of fitting patients is only to improve the precision of the treatment
estimate, that is, we assume negative correlation within patients is implausible.

Modelling negative correlation

Usually, a negative variance component is an underestimate of a small or zero
variance component. However, occasionally, it can indicate negative correlation
between observations within the same random effects category. This is an unlikely
scenario in most clinical trials; for example, it would be hard to imagine a situation
where observations taken on the same patient could be more variable than those
taken on different patients. However, in the following veterinary example, neg-
ative correlation is more feasible. Imagine an animal feeding experiment where
animals are grouped in cages. In this case, it is possible that the greediest ani-
mals in a cage eat more than other animals, from a finite food supply, causing
animal weight to become more variable within cages than between cages. In a
model fitting cage effects as random, this would lead to a negative variance com-
ponent for cage effects, indicating negative correlation between animal weights in
the same cage.

To model this negative correlation, the model can be redefined as a covariance
pattern model. In this model, the random effects (e.g. cages) are omitted, but corre-
lation within the random effects is modelled by including covariance parameters
in the residual variance matrix, R. Thus, negative as well as positive correlation
is allowed within the random effects (cages). We illustrate this model redefinition
using the multi-centre data used to describe the mixed model in Section 2.1. Recall
that a random effects model was specified with centre effects fitted as random and
that the variance matrix, V, was given by

V = ZGZ′ + R
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When the model is redefined as a covariance pattern model, centre effects are
excluded from the model, but covariance is allowed in the R matrix between
observations at the same centre. A constant covariance can be obtained by using
a compound symmetry covariance pattern, which expresses the V matrix as
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,

where 𝜌 = the correlation between patients at the same centre.
Thus, V has an identical form to the random effects model except that it is param-

eterised differently. A negative covariance of observations at the same centre, 𝜌𝜎2,
is now permissible.

The Bayesian approach

When the Bayesian approach is used, negative variance components estimates are
usually avoided by choosing a prior distribution for the variance components that
is restricted to have positive values only. However, we have found that this can
sometimes cause peaks in the posterior distribution for the variance components
close to zero. Therefore, use of an estimator such as the median or expected value
for variance parameters will be preferable to using the mode.

2.4.2 Accuracy of variance parameters

It is important that variance parameters are estimated with a reasonable accuracy
because of their effect on the calculation of fixed effects and their standard errors.
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The accuracy of the variance parameters is dependent on the number of DF used to
estimate them. Although there are no hard and fast rules, it would seem inadvis-
able to fit an effect as random if less than about five DF were available for estimation
(e.g. a multi-centre trial with five or less centres).

When an insufficient number of DF are available to estimate a variance
parameter accurately, an alternative to resorting to a fixed effects model would
be to utilise variance parameter estimates from a similar previous study. An
approach that is specifically allowed for in PROC MIXED is to fix the variance
parameters in the new analysis at their previous values. The fixed effects,
�̂� = (X′V−1X)−1X′V−1y, are then calculated using a fixed V matrix. However,
this has the weakness of not utilising information on the variance parameters
contained in the current study. A more natural approach, using both the previous
variance parameter estimates and information in the current study, would be
to use an informative prior for the variance parameters in a Bayesian analysis.
This can be achieved by using the previous posterior distribution of the variance
parameters as the prior distribution in the current analysis.

2.4.3 Bias in fixed and random effects standard errors

Fixed and random effects standard errors are calculated using a formula that is
based on a known V (e.g. var(�̂�) = (XV−1X)−1 for fixed effects). When data are
balanced, the standard errors will not be biased. However, because V is, in fact,
estimated, it is known that in most situations we meet in clinical trials, there will
be some downward bias in the standard errors. Bias will occur when the data are
not balanced across random effects, and effects are estimated using information
from several error strata. In most situations, the bias will be small. It is most likely
to be relevant when

• the variance parameters are imprecise;
• the ratio of the variance parameters to the residual variance is small; and
• there is a large degree of imbalance in the data.

However, there is not a simple way to determine how much bias there will be in a
given analysis. Results from simulation studies for particular circumstances have
been reported in the literature (e.g. Yates, 1940; Kempthorne, 1952; McLean
and Sanders, 1988; Nabugoomu and Allen, 1994; Kenward and Roger, 1997).
Although information from these studies is not yet comprehensive enough to
allow any firm rules to be defined, they indicate that the bias may be 5% or more
if the number of random effects categories relating to a variance parameter is less
than about 10, and the ratio of the variance parameter to the residual variance
is less than one. In these situations, a mixed model may not always be advisable
unless an adjustment to the standard error is made.

Various adjustments for the bias have been suggested (e.g. Kacker and
Harville, 1984; Kenward and Roger, 1997; Kenward and Roger, 2009).
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Kenward and Roger’s (1997) adjustment is available in PROC MIXED, but
it occurs, surprisingly, as a DF option within the MODEL statement. Use of
DDFM=KENWARDROGER (or DDFM=KR) inflates the estimated variance–
covariance matrix of the fixed and random effects as described in their article,
following which Satterthwaite-type DF are then computed based on these
variances (see Section 2.4.4). Since the last edition a modified adjustment,
DDFM=KR(LINEAR), has become available in PROC MIXED. This is preferable
for certain types of covariance pattern. More detail will be given in Section 6.2.4.

For models fitting covariance patterns in the R matrix (e.g. repeated measures
models), an alternative ‘robust’ variance estimator using the observed correla-
tions between residuals known as the ‘empirical’ variance estimator (Liang and
Zeger, 1986) has been suggested. It is calculated by

var(�̂�) = (X′V−1X)−1X′V−1cov(y)V−1X(X′V−1X)−1
,

where cov(y) can be taken as (y − X�̂�)(y − X�̂�)′. This estimator takes into
account the observed covariance in the data, and it is claimed that this may help
alleviate some of the small sample bias. It does, however, cause the fixed effects
variances to reflect observed covariances in the data rather than those specified by
the covariance pattern modelled, and there is evidence against its use with small
samples (see Long and Ervin, 2000). We discuss this further in Section 6.2.4. The
empirical variance is calculated in SAS by using the EMPIRICAL option in the
PROC MIXED statement.

Note that when the Bayesian approach is used (Section 2.3), exact standard
deviations are obtained directly from the posterior distributions for each
parameter and the problem of bias does not arise.

2.4.4 Significance testing

Testing fixed effects, random effects and random coefficients

Significance tests for fixed effects, random effects and random coefficients can be
carried out using tests based on F or t distributions, as we will show. A test can be
defined using a contrast; for example, C = L′�̂� = 𝟎 for fixed effects or C = L′𝛃= 𝟎
for random effects/coefficients. For simple contrasts, L will just have one column.
For example, in a trial comparing three treatments A, B and C, a pairwise compar-
ison of treatments A and B is given by

L′�̂� = (0 1 − 1 0)�̂� = 𝛼A − 𝛼B.

The first term corresponds to the intercept effect and the other three to the treat-
ment effects (we assume treatments are the only fixed effects fitted). Alternatively,
in multiple contrasts (e.g. to test overall equality of treatments), L will have several
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columns. For example, equality of the three treatments might be tested using the
multiple contrast

L′�̂� =
(

0 1 −1 0
0 1 0 −1

)
�̂� =

(
𝛼A − 𝛼B
𝛼A − 𝛼C

)
.

The F test statistic for testing the null hypothesis that the contrast is zero is calcu-
lated from a statistic known as the Wald statistic, which is given by

W = (L′�̂�)′(var(L�̂�))−1(L′�̂�)

= (L′�̂�)′(L′var(�̂�)L)−1(L′�̂�)

for fixed effects. Thus, the Wald statistic can be thought of as the square of
the contrast divided by its variance. For random effects and coefficients, 𝛃 and
var(𝛃) are used in place of �̂� and var(�̂�) in these formulae. Note that if the
Kenward–Roger adjustment is not used for var(�̂�), then var(�̂�) = (XV−1X)−1 and
W can be written as

W = (L′�̂�)′(L′(X′V−1X)−1L)−1(L′�̂�).

Asymptotically, W follows a chi-squared distribution with DF equal to the DF of
L (number of linearly independent rows of L). If L has a single row, then the signif-
icance test can also be presented as z, the contrast divided by its standard error, in
which case z has a normal distribution. However, these distributions are derived
on the assumption that there is no variation in the denominator term, var(L′�̂�).
They are equivalent to F or t tests with an infinite denominator DF. Thus, they
will only be accurate if the DF of all error strata from which the effect is estimated
are high (e.g. in an unbalanced cross-over trial, a high patient and residual DF
are required).

A better option is to use the Wald F statistic, which is calculated by

FDF1,DF2 = W∕DF1,

where DF1 is the contrast DF (number of linearly independent rows of L), and
DF2 is the denominator DF corresponding to the DF of the contrast variance,
L′var(�̂�)L. This statistic takes account of the fact that L′var(�̂�)L is estimated and
not known. The Wald t statistic for tests of single contrasts is given by

tDF2 = (F1,DF2)1∕2 = W1∕2
.

Wald F and t tests are produced by default in PROC MIXED.

The denominator DF for F tests This corresponds to those of the variance of the
contrast, L′var(�̂�)L, and should reflect all the error strata from which the fixed
effects have been estimated. When a fixed effect is balanced across random effects
(see Section 1.6), it is estimated from only one error stratum, and the DF are
simply those of this error stratum. However, when fixed effects are estimated from
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two or more error strata, it is less straightforward to calculate the appropriate DF,
and usually an approximation is used. A well-known approximation is given by
Satterthwaite (1946):

DF = 2(L′var(�̂�)L)2∕var(L′var(�̂�)L).

It is equal to twice the variance of the contrast divided by the variance of the
variance of the contrast. A further approximation is usually required to calculate
var(L′var(�̂�)L). Giesbrecht and Burns (1985) show how Satterthwaite’s approx-
imation can be calculated to test single contrasts. SAS uses a generalisation of
this technique to calculate Satterthwaite’s approximation for single or multiple
contrasts (obtained by using the option DDFM=SATTERTH in PROC MIXED).
Alternatively, the inflated variance matrix suggested by Kenward and Roger
(1997) (see Section 2.4.3) can be used in the Satterthwaite approximation
by using option DDFM=KR in PROC MIXED. If software is not available for
calculating the correct denominator DF, a conservative strategy would be to
use an F test taking the lowest DF of the error strata used for estimating the
contrast as the denominator DF. These DF are usually less than Satterthwaite’s
approximation to the true DF. For example, if in an unbalanced cross-over trial
the patient DF were five and the residual DF were 10, then treatment effects could
be tested using F tests with a denominator DF of five.

The text by Kenward and Roger (1997) or Elston (1998) is recommended read-
ing for those who wish for more detailed knowledge on this subject.

Testing variance parameters

The significance of a variance parameter can be tested by using a likelihood
ratio test to compare the likelihoods of models including (L1 ) and excluding
(L2) the parameter. It is a standard result that if, under the null hypothesis, the
additional terms in the model have no effect, the differences in the log likelihoods
are distributed as 1∕2𝜒2

1 . Hence,

2[log(L1) − log(L2)] ∼ 𝜒
2
1 .

The notation ∼ 𝜒
2
1 is used to show that the likelihood ratio test statistic has a

chi-squared distribution with one degree of freedom (DF). In general, 𝜒2
n denotes

a chi-squared distribution with n DF.
More discussion of methods for testing variance parameters can be found in

the text Linear Mixed Models for Longitudinal Data by Verbeke and Molenberghs
(2000). The authors suggest that because variance parameters are truncated to
be positive, a 50:50 mixture of 𝜒2

0 and 𝜒
2
1 distributions is more appropriate for

the test than the 𝜒
2
1 distribution stated previously. The 𝜒

2
0 distribution is not a

distribution in the usual sense and is described by Verbeke and Molenberghs as ‘the
distribution which gives probability mass 1 to the value 0’. It is used to represent
the part of the distribution under the null hypothesis that would be appropriate
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for truncated negative variance components. The mixture distribution results in
a p-value given by

p = 1
2

p(𝜒2
0 ) +

1
2

p(𝜒2
1 ) =

1
2

p(𝜒2
1 )

and has the effect of halving the p-value obtained by the standard likelihood ratio
test, hence making the test more liberal. However, often, the decision to include
random effects and their corresponding variance component in the model will
be decided by the underlying structure of the data and the expected sources of
random variability rather than on the results of a significance test.

In covariance pattern models, there is often a choice of covariance structures
available, and interest usually lies with testing whether a particular covariance
pattern causes a significant improvement over another pattern, rather than with
testing a single variance parameter. Likelihood ratio tests can again be applied
when the models are ‘nested’. Further detail will be given in Section 6.2.4. In
random coefficients models, the inclusion of a random coefficient (e.g. random
slopes for patients) will lead to more than one additional covariance parameter
because there is a correlation between the random effects and slopes, which will
increase the DF used for the chi-squared tests. Further detail will be given in
Section 6.6.2.

The Bayesian approach

When a Bayesian approach is used, exact ‘Bayesian’ p-values can be obtained for
all model parameters (fixed effects, random effects and variance parameters) from
the posterior distribution, and there are no potential inaccuracies in obtaining a
test statistic or the DF for its distribution. A p-value to test the null hypothesis that
a parameter is zero is obtained as the probability of being outside the probability
interval, which has zero on the boundary (see Section 2.3.3). This corresponds to
a two-sided, ‘classical’ p-value. However, note that such tests are not available for
variance components if a prior distribution with a positive range has been used
(e.g. the reciprocal or inverse gamma distribution).

2.4.5 Confidence intervals

The reporting of confidence intervals relating to the fixed effects of interest is, of
course, of great importance. The usual classical approach can be applied, but it is
important to ensure that appropriate DF are used (see Section 2.4.4):

Lower 95 % confidence limit=mean effect− tDF,0. 975 × SE,
Upper 95 % confidence limit=mean effect+ tDF,0. 975 × SE.

Alternatively, probability intervals can be obtained from a Bayesian analysis (see
Section 2.3.3).
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2.4.6 Checking model assumptions

In this section, model checking methods are considered for the random effects
model where it is assumed that the residuals, y − X�̂� − Z𝛃 , and also the random
effects, 𝛃, are normally distributed about zero and are uncorrelated. In random
coefficients models and covariance pattern models, the residuals and random coef-
ficients are correlated, and model checking methods addressing this feature will be
considered in Sections 6.2 and 6.5. We now consider the normality assumption
separately for the residuals and random effects.

Residuals

The normality of the residuals may be checked using residual and normal plots
in the same way as for fixed effects models. A plot of the residuals against their
corresponding predicted values can be used to

• provide a rough check of normality of residuals,
• check whether the residual variance is constant across observations,
• look for outliers.

The predicted values corresponding to the residuals are taken as X�̂� + Z𝛃. We
choose the predicted values rather than the expected values, X�̂�, because one of
the features we wish to check against in the plot is whether the size of the residual
is associated with the magnitude of the underlying value, which should, of course,
reflect both fixed and random effects.

The assumption of normality can be checked more carefully using normal
probability plots (i.e. plotting the ordered residuals against their values expected
from the standard normal distribution given their ranks, see Snedecor and
Cochran, 1989, Section 4.13). If the data are normally distributed, then the
residuals will roughly form a straight line on the normal plot. If the plotted
data deviate markedly from a straight line, then it is likely that the data are not
normally distributed. For example, a bow shape indicates a skewed distribution,
and a sigmoid shape indicates a symmetrical but non-normal distribution.

Homogeneity of the residuals can be further assessed by comparing the
variances of each set of residuals between fixed effects categories (e.g. between
treatments).

An illustration of the use of residual plots is given in the worked example in
Section 2.5.

If a general lack of normality is indicated in the residuals, a transformation of the
data can be considered. Alternatively, if a residual plot indicates outlying values,
then checks should first be made to determine any possible reasons for them being
extreme. Plots of standardised residuals (e.g. studentised or Pearson residuals) can
help to assess whether the observation is a genuine outlier or is outlying by chance.
These residuals take account of the fact that the observed residuals have differing
variances given by the diagonals of (XV−1X)−1. When a value is clearly wrong (e.g.
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recording error, punching error, machine error), it should be corrected if possible
or else removed from the analysis. An outlier will not necessarily have as much
effect on the parameter estimate; so, if there is no clear reason for removing it,
its influence should be assessed. This can be carried out by calculating influence
statistics (e.g. Cook’s D statistic). PROC MIXED (Version 9) contains options for
producing influence statistics. By reanalysing the data with the outlier removed,
we can determine whether parameter estimates alter noticeably. If the estimates
are similar, then the outliers can be retained. If they differ, then it would seem
sensible to remove them, provided there is a convincing external reason for doing
so (e.g. measurement suspected to be inaccurate because a blood sample was clot-
ted; centre did not follow protocol). If there is no apparent reason for the outlier,
then two alternative analyses and sets of conclusions may need to be presented. We
also note that another alternative would be to construct a robust method to reduce
the influence of the outlier; however, we will not be considering these methods.
Huber and Ronchetti (2009) give an introduction to robust methods.

Random effects

Checking the normality of the random effects is less straightforward than for
the residuals. It has been suggested that fixed effects and variance components
estimates are unlikely to be sensitive to non-normality of the random effects
(Verbeke and Molenberghs, 2000, Section 7.8); therefore, for most of the
examples we consider it will not be important to check the normality of random
effects. However, when random effect predictions (e.g. estimates of the treatment
effect at individual centres in a multicentre trial) are of interest, it is important
to be aware that they are, in some situations, sensitive to any misspecification of
their distribution. For example, Verbeke (1995) and Verbeke and Lesaffre (1996)
examine a situation in which the underlying random effects distribution is a
mixture of normal distributions, and the variance component is small compared
to the residual variance. They found that plots of the random effects predictions
did not show up non-normality, despite their underlying distribution being clearly
non-normal. In previous editions of this text, we proposed checking the normality
of the random effects using plots of their predicted values, 𝛃, against their
predicted means, along with corresponding normal plots, with predicted means
obtained as the means of the expected values, X�̂�, within each random effect
category (e.g. calculate the means of X�̂�, within each centre). These plots are
still helpful for identifying outliers (e.g. an outlying centre, see example in Section
2.5), which may affect particularly the standard errors of fixed effects but will
not always show up an underlying non-normality. The influence of any outliers
detected may be assessed by analysing data with the relevant random effect
group removed. When there is interest in the random effects themselves, however,
their predictions should be interpreted cautiously, as they are more sensitive to
deviations from normality, and plots of random effect predictions will not give full
assurance of normality. Recently, Verbeke and Molenberghs (2013) have proposed
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an alternative graphical method to check the normality of random effects and, we
understand, are currently developing a diagnostic test. These checks will provide
a more robust means to check normality but may not be straightforward to
implement until introduced into readily available software such asPROC MIXED.
Verbeke and Molenberghs (2013) also provide an overview of other research,
considering the implications of non-normality of the random effects.

2.4.7 Missing data

Mixed models are much more flexible than fixed effects models in the treatment
of missing values. For example, in a two-period, cross-over trial, information on
subjects with one value missing is completely lost when a fixed effects analysis is
used. In contrast, mixed models are capable of handling the imbalance caused by
missing observations, provided that they are missing at random. This is often a
reasonable assumption to make. If a subject withdraws from a cross-over trial after
receiving one treatment, then we may have no idea of how the subject would have
responded to the other treatments, and to handle these non-observed periods as if
they were missing at random seems eminently sensible. It is helpful at this stage to
classify missing data into one of three widely used categories.

Missing completely at random

As the name suggests, observations are missing completely at random if the prob-
ability of an observation being missing is the same for all potential data points,
and the probability of ‘missingness’ is unaffected by whether other observations
are missing. In practice, datasets where data are missing completely at random
will be uncommon. It is most recognisable if the ‘missingness’ is due to causes
that are unpredictable and can be viewed in a broad sense as accidental. The loss
by accidental spillage of a blood sample prior to its analysis would be seen as an
observation missing completely at random. Similarly, patient non-attendance
at a follow-up visit because of a family bereavement could readily be regarded
as a cause for an observation to be missing completely at random. Most missing
value situations are, however, less clear cut than these two examples. Tests of
randomness have been suggested by Diggle (1989) and Ridout (1991), and
different mechanisms for missing data are described by Little and Rubin (2002).
If the application of mixed models required that any missing data were missing
completely at random, their applicability would be severely curtailed. Fortunately,
such a strict definition is not necessary, and the more relaxed requirement that
observations be missing at random is sufficient.

Missing at random

The requirement for an observation to be missing at random is that its expected
value should be unaffected by whether the observation is missing. One of the
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most common reasons for missing values is patient non-compliance. If a patient
decides that continued participation in a trial is just too much effort or the patient
dislikes the clinical procedures and that decision is unrelated to any change in
the outcome variables for the study, then the missing values will be missing at
random. This example is uncontroversial, but a more contentious example occurs
if the patient withdraws from the trial because of a perceived adverse reaction to
treatment. If the adverse reaction is unrelated to the outcome variables, then the
missing data with respect to these efficacy variables can be regarded as missing
at random. In taking this approach, we are, in effect, attempting to estimate
the effects of treatment on our outcome variables if adverse events do not occur.
Of course, we do not ignore this important effect of treatment, and analysis of
adverse events will form an important part in the evaluation of any clinical trial.
By employing this philosophy in analysis, we are seeking to separate the effect
of the treatments on the efficacy outcomes of interest from the assessment of
the treatments’ tolerability. It is probably the most usual way of dealing with
patient withdrawal, but it will not always be the method of choice. For example, a
pragmatic approach to a holistic evaluation of treatment would be to regard drug
intolerability as a failure of treatment and predefine an appropriate value of the
response variable for substitution when such a ‘failure’ occurs.

A decision as to whether missing values can be legitimately regarded as missing
at random is rarely obvious. The advantages to the analysis if this assumption can
be made are substantial, however, and so in practice, this assumption is usually
made unless there are strong grounds for concluding that the missing values are
not missing at random.

Missing not at random

It will sometimes be clear that the censoring mechanism is not acting at random.
If a patient withdraws from the trial because of clinical deterioration, then to
assume that subsequent observations were missing at random would be totally
inappropriate. Under such circumstances, a variety of methods are employed
in an attempt to reduce the bias due to poor responders having missing values.
None of the methods is universally applicable, but the most widely applied is
the ‘last-value-carried-forward’ approach. In this method, the last observed
value of the response variable is substituted for every subsequent missing
observation. If the anticipated pattern of response to the intervention is of
improving measurements, then this may be an effective way to minimise bias, but
in some circumstances, unthinking application of ‘last-value-carried-forward’
can worsen the bias from withdrawal of poor responders. This would be the case
in trials of treatments for chronic bronchitis where the aim is to prevent further
deterioration in lung function. The pattern of unchanging observations arising
from ‘last-value-carried-forward’ would artificially generate a ‘good’ outcome
from a patient who has withdrawn due to a poor response – not the type of
imputation one would hope for.
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Handling missing data is, however, a substantial topic in its own right, and we
will not consider it further in this book. The text Missing Data in Clinical Studies by
Molenberghs and Kenward (2007) is recommended for readers wishing to gain
more knowledge in this area.

It is important to be aware that mixed models do not overcome the problems
caused by missing independent variables, for example, when a fixed or random
effects category is unknown or a baseline value missing. As with a fixed effects
model, when this occurs the observation will be automatically deleted from the
analysis unless a value is imputed to denote the missing effect.

2.4.8 Determining whether the simulated posterior distribution
has converged

When a Bayesian analysis is carried out, the simulated posterior should be
examined to obtain reassurance that it has converged, that is, formed a stationary
distribution. Several approaches are available for assessing convergence.

Various plots of the simulated values for each parameter may reveal problems
with convergence. A plot of the sampled parameter values against the iteration
number (often called a ‘trace plot’) shows how quickly the simulation process
has settled to a range of values and whether the values stay in this range. If the
simulated values take a while to settle to a range of values, it would be advisable
to omit the first set of samples. The omitted samples are then often described as
‘burn-in’ samples.

An ‘autocorrelation’ plot shows the correlation of simulated values depending
on how widely they are separated. If widely separated values are correlated, it
is an indication that a larger sample size is needed. However, sometimes, the
increase will cause the sample to become unmanageably large. In this situation,
it is often satisfactory to use only every 1 in N of the samples to construct the
posterior distribution. This process is known as ‘thinning’. However, we note that
it is not essential to use thinning when the sample size is increased as long as the
sample is manageable.

A histogram of the simulated values is helpful to indicate the shape of the
simulated posterior. If this is not smooth, it is often a sign that more samples are
required.

Summary statistics such as the correlation of parameter samples by time lag, and
the estimated time lag for parameter samples to become uncorrelated, will indicate
if correlation is high between the sampled parameter values and again suggest
a larger sample size. It can be helpful too to estimate the ‘effective sample size’
after taking into account the amount of autocorrelation. It is possible to determine
the proportion of the posterior variability that is due to the simulation – a small
proportion is a good indication that convergence has been achieved.

Another approach to assessing convergence is by using statistical tests.
These look for particular symptoms that may indicate that the iterations have
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not converged to a stationary process, which will provide the true parameter
distributions. Some of the tests available are:

• Geweke test – Compares mean estimates from early and late samples using a
Z test.

• Gelman–Rubin – Compares results of several sets of simulations to see if they
all converge to the same distribution.

• Heidelberger–Welch – Tests whether the simulated posterior has become
stationary.

• Rafferty–Lewis – Evaluates the accuracy of the percentiles.

Checking convergence has some similarities to model assumption checking in that
a degree of judgement is needed. It is rarely possible to be 100% certain that either
convergence is achieved or model assumptions are met.

Use of these methods will be illustrated with the aid of the example in Section 2.5.

2.5 Example

In Section 1.2, we introduced a multi-centre trial of treatments for hypertension.
In this trial, a new hypertensive drug (A) was compared with two standard drugs
(B and C). In this section, we will consider analyses of the trial in greater detail and
cover some of the practical points made in the previous section. TheSAS code used
for each model will be given at the end of the section. We will follow this pattern of
supplying SAS code following each example throughout the book.

2.5.1 Analysis models

The main response variable in the trial (DBP at the final visit) will be analysed.
The last post-treatment visit attended is used for patients who do not complete
the trial, forming an ‘intention-to-treat’ analysis. Analyses were carried out using
the models listed in below. Initial DBP (baseline) was included as a covariate in all
models to reduce between-patient variation.

Model Fixed effects Random effects Method

1 Baseline, treatment, centre – OLSa

2 Baseline, treatment Centre REML
3 Baseline, treatment Centre, treatment⋅centre REML
4 Baseline, treatment Centre Bayes
5 Baseline, treatment Centre, treatment⋅centre Bayes

aOLS= ordinary least squares. This is the fixed effects method used by PROC GLM
(see Section 2.2.2).
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Fixed effects models (Model 1)

The data were analysed first using the more conventional fixed effects approach.
Initially, a full model including baseline, treatment, centre and centre⋅treatment
effects was fitted to test whether centre⋅treatment effects were significant. They
were found to be non-significant (p=0.19) and were therefore omitted from
the model to give Model 1. This is the usual action taken when a fixed effects
approach is used, since inclusion of fixed centre⋅treatment effects will cause the
overall treatment estimate to be an unweighted average of the individual centre
estimates. However, note that in this instance, it would not have been possible in
any case to estimate overall treatment effects when centre⋅treatment effects were
included because all the treatments were not received at every centre.

When centre⋅treatment effects are included in a fixed effects analysis, this causes
a separate treatment effect, specific to each centre included in the trial, to be fitted.
The inferences strictly apply only to those centres that were included in the trial.
If the model that omits the centre⋅treatment effect is used, the inferences again
should still strictly apply only to the centres used. However, extrapolation of the
inferences regarding the effect of treatment to other centres seems more reason-
able when an assumption has been made that the treatment effect does not depend
on the centre in which it has been applied.

Random effects models fitted using REML (Models 2 and 3)

In Model 2, centre effects are fitted as random and baseline and treatment effects
as fixed, using REML. With this model, treatment effects are estimated using
information from the residual error stratum and, additionally, from the centre
error stratum, since balance does not occur across random effects (centres).
By comparing the results with those from Model 1, it is possible to determine
whether any additional information has been recovered on treatments from the
centre error stratum. Note that only under the strong assumption that there is
no centre⋅treatment interaction will inferences apply to the population of centres
from which those in the trial can be considered a sample.

In Model 3, both centre and centre⋅treatment effects are fitted as random,
and baseline and treatment effects as fixed, using REML. Unlike the fixed effects
approach, centre⋅treatment effects are retained in the model, provided their
variance component is positive. The logic here is that use of the model implies
a belief that treatment effects may differ between centres, and we wish this to
be included in our estimates, even if the interaction is non-significant. Since
centre⋅treatment effects are taken as random in this model, treatment effects are
assumed to vary randomly between the centres, and results can be related with
some confidence to the wider population of centres.

Bayesian models (Models 4 and 5)

Models 4 and 5 are the same as Models 2 and 3, except that they are fitted using
the Bayesian approach. They were fitted by taking 100,000 samples of the model
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parameters using the Metropolis algorithm in PROC MCMC and a thinning factor
of 5 (i.e. only one in five samples) to construct the posterior (see Section 2.3.5).
Frequencies of the sampled values were used directly to obtain the marginal
distribution for each parameter. Fixed effects estimates were obtained by simply
calculating the means and standard deviations of the sampled parameter values.
Treatment parameters were obtained directly for A−C and B−C. Samples for the
treatment difference A−B were obtained by calculating the differences between
the A−C and B−C samples.

The variance components are of less direct interest in this example. However,
they can be estimated by taking statistics such as the mode, median or mean of
the sampled parameters (see Section 2.3.3). Here we obtain an idea of their size
by taking the medians of their posterior distributions. These estimates will not
be exactly the same as the REML estimates because the posterior density is not
exactly proportional to the likelihood function (since a flat prior is not used) and
also because the REML estimates correspond to modes rather than to medians. A
measure of the spread of the variance components can be obtained by calculating
probability intervals for the sampled values (see Section 2.3.3).

2.5.2 Results

The results obtained from each model are shown in Table 2.1. The variance
components for centres and treatment centres are much smaller than the residual
in all models. This indicates that most of the variation in the data is due to
differences between patients and not to differences between centres. The Bayesian
probability intervals for the variance components illustrate the skewness of their
distributions. These probability intervals also highlight the inadequacy of the
confidence intervals produced by the REML analyses, which have very different
ranges for the centre and centre⋅treatment variance components.

The treatment standard errors are slightly smaller in Model 2 than in Model 1,
indicating that only a small amount of information on treatments has been
recovered from the centre error stratum. This is mainly because there was only
a small degree of imbalance in the allocation of treatments within centres. We
note, however, that the treatment comparisons involving B have been modified
appreciably. When the treatment⋅centre interaction is included as a random effect
(Models 3 and 5), the treatment effects differ from Models 1, 2 and 4 because the
correlation between patients on the same treatments and at the same centres
is taken into account, causing a different weighting of the observations. The
treatment standard errors are increased in Models 3 and 5, reflecting the positive
centre⋅treatment variance component. The amount of this increase is related to
the size of this variance component and to the number of centres used. Although
the centre⋅treatment variance component is small compared with the residual,
its influence on the standard error is noticeable because it is related inversely to
the number of centres, and not to the number of observations. (The relationship
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Table 2.1 Estimates of variance components and fixed effects.

Model Fixed effects Random effects Method

1 Baseline, treatment, centre – OLS
2 Baseline, treatment Centre REML
3 Baseline, treatment Centre, treatment⋅centre REML
4 Baseline, treatment Centre Bayes
5 Baseline, treatment Centre, treatment⋅centre Bayes

Treatment effects (SEs)

Model Baseline A−B A−C B−C

1 0.22 (0.11) 1.20 (1.24) 2.99 (1.23) 1.79 (1.27)
2 0.22 (0.11) 1.03 (1.22) 2.98 (1.21) 1.95 (1.24)
3 0.28 (0.11) 1.29 (1.43) 2.93 (1.41) 1.64 (1.45)
4a 0.28 (0.11) 1.03 (1.23) 3.00 (1.22) 1.97 (1.23)
5a 0.26 (0.11) 1.18 (1.40) 2.93 (1.37) 1.75 (1.42)

Variance components (95% confidence or probability intervals)

Model Centre Treatment⋅centre Residual

1 – – 71.9 (60.9−86.2)
2 7.82 (3.52–29.74) – 70.9 (60.2 − 84.7)
3 6.46 (2.41–46.05) 4.10 (0.88–1515.83) 68.4 (57.2 − 83.2)
4b 7.41 (1.11–16.95) – 71.4 (60.1 − 84.6)
5b 5.40 (0.00–15.05) 1.80 (0.00–15.73) 69.7 (57.6 − 83.0)

aStrictly speaking, the SEs in these Bayesian models are parameter standard deviations.
bMedians are given with 95% HPD probability intervals.

between the treatment effect standard errors and the variance components in a
multi-centre analysis is defined more precisely in Section 5.2.)

The fixed effects and standard errors from Model 2 fitted using REML are similar
to those from Model 4 using a Bayesian analysis. However, there is a noticeable
difference in the estimates of A−B and B−C between Models 3 (REML) and 5
(Bayesian analysis) where random centre⋅treatment effects have been included,
although the corresponding standard errors are similar. The differences in the
effect estimates are likely to be due to an unusual shape for the posterior density,
causing the mean parameter value from the Bayesian analysis (Model 5) to differ
from the value maximising the likelihood as provided by the REML analysis (Model
3). It is unclear which estimates are preferable, and more research is needed to
study situations where parameters estimates differ between the approaches and
to recommend the preferred estimate.

The similarity between the fixed effects standard errors from the REML and
Bayesian analyses is reassuring, given there are inherent differences in the
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‘standard errors’ obtained in the Bayesian analysis. They are based directly on
the simulated distribution of 𝛂, which takes into account the distribution of
the variance parameters. As such, they are related directly to the probability
intervals. In contrast, the REML analysis calculates standard errors using the
Kenward–Roger approximation (Kenward and Roger, 1997), which helps to
alleviate bias. Confidence intervals are then obtained using multiples of the
standard errors, based on the t distribution with appropriate DF (calculated using
the Kenward–Roger approximation). Thus, if confidence intervals and probability
intervals are in agreement, we should only anticipate similar ‘standard errors’
from the two approaches when the DF with the REML approach are relatively
large. When the DF are small, the standard error from the REML analysis will
be less than the corresponding parameter standard deviation in the Bayesian
analysis. This point is considered further in the following section.

2.5.3 Discussion of points from Section 2.4

Each of the practical points covered in Section 2.4 is discussed in the following
sections in relation to the example.

Negative variance component estimates (2.4.1)

Negative variance component estimates were not obtained by any model in this
example.

Variance parameter accuracy (2.4.2)

Since 29 centres were used in this study, we would not expect to be concerned that
insufficient DF were available for estimating the variance components. The wide
confidence intervals obtained for Models 2 and 3 partly reflect the inadequacy of
the methods for determining these limits. However, it is surprising that there are
also wide probability intervals in the Bayesian analyses (Models 4 and 5).

Bias in fixed effects standard errors (2.4.3)

Since 29 centres were used, we would expect the weightings (derived from the vari-
ance components) used to estimate the fixed effects and their standard errors also
to be fairly accurate. An indication of the amount of standard error bias present
in the two mixed models analyses considered in Section 2.5.2 can be obtained by
comparing the model-based standard error (with no bias correction) to the stan-
dard error corrected by the Kenward–Roger adjustment (1997). In Model 2, the
standard errors are almost identical, and the bias is negligible. This is likely to be
because most of the information on treatments is estimated from the residual error
stratum. However, in Model 3, the adjusted standard errors are about 3% higher
than the model-based values. More bias has occurred in this model because treat-
ment effects are estimated mainly from the centre⋅treatment error stratum.
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Method

Model 2:
centre random

(model based, KR)

Model 3: centre,
centre⋅treat random

(model based, KR)

A−B 1.221, 1.221 1.391, 1.430
A−C 1.211, 1.211 1.373, 1.411
B−C 1.239, 1.240 1.405, 1.445

Significance testing (2.4.4)

We demonstrate the use of significance tests for Models 3 and 5, showing their
calculation from both likelihood-based and Bayesian results. In Model 3, the
significance of treatment differences can be assessed with Wald F tests using the
Kenward–Roger adjustment for the fixed effects variances and their correspond-
ing denominator DF. An F2,25 value of 2.16 was obtained for the composite test of
treatment equality which is non-significant (p = 0.14). Test statistics for pairwise
treatment comparisons gave

A − B t23.8 = 0.90, p = 0.38,

A − C t25.6 = 2.07, p = 0.048,

B − C t25.7 = 1.14, p = 0.27.

Thus DBP was shown to be significantly lower on treatment C than on treatment
A. The denominator DF differ slightly for each comparison owing to the differences
in the distribution of the treatments across centres.

In Model 5, exact p-values are obtained by calculating the proportion of sampled
parameters with a value of less than (or greater than) zero and then doubling the
smaller of these values to obtain a two-sided p-value. The p-values obtained in this
way are as follows:

A − B p = 0.39

A − C p = 0.03

B − C p = 0.22

These differ a little from the REML p-values but lead to the same conclusions.

Confidence intervals (2.4.5)

The 95% confidence intervals for the differences between treatments using Model
3 are calculated by SAS using t distributions with Satterthwaite’s DF. These are
compared in the following table to the 95% probability intervals obtained using
the equal tails method from Model 5 where a Bayesian analysis was used.
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Model 3 Model 5

A – B (−1.59, 4.15) (−1.51, 4.02)
A – C ( 0.10, 5.75) ( 0.23, 5.61)
B – C (−1.25, 4.53) (−1.11, 4.47)

The width of the intervals is slightly smaller for the Bayesian model. This may
be due partly to the smaller centre⋅treatment variance component estimated for
this model. The differences in location of the estimates (discussed in main results)
between the models is also reflected in the intervals.

Model checking (2.4.6)

Checks of model assumptions are carried out for Model 3 as an illustration
of the techniques that can be used. We present plots of residuals and random
effects against their predicted values, as well as normal plots. In addition, the
homogeneity of the variance components is checked by calculating the variances
of the residuals and centre⋅treatment effects by treatment.

Residuals Residual and normal plots are shown in Figure 2.5(a). These
indicate no general lack of normality but one possible outlier with a residual of 40
(patient 314, visit 5). In practice, some statisticians would be happy to accept this
degree of variation in the residuals. To illustrate the magnitude of the effect that
an outlier can have, we have examined the effect of removing this observation.
The graphs shown in Figure 2.5(b) indicate the difference in effect estimates
that would result from removing each observation or by manually removing the
outlier and reanalysing the dataset. When the outlying patient was removed from
the analysis, the parameter estimates changed noticeably from their original
estimates:

Variance components

Model Centre Treatment⋅centre Residual

With outlier 6.86 4.10 68.4
Without outlier 6.97 1.51 63.3

Treatment effects (SEs)

Model A−B A−C B−C

With outlier 1.29 (1.43) 2.93 (1.41) 1.64 (1.45)
Without outlier 0.74 (1.27) 2.49 (1.26) 1.76 (1.29)
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On closer examination, it was likely, but not certain, that the DBP value (of
140) was due to a recording mistake. This is an extremely high reading, which
is inherently unlikely, but the patient’s baseline DBP was 113 mm Hg, and he
had dropped out of the trial at visit 5 due to an ‘insufficient effect’. Under these
circumstances, we might wish to report results from analyses both including
and excluding the outlier. The large changes in parameter estimates caused by
the exclusion of one patient in a reasonably large trial illustrate the potential
importance of at least basic checks of model assumptions.

Conditional residuals for dbp
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Figure 2.5 (a) Residual and normal plots.
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Fixed effects deletion estimates for dbp

Covariance parameter deletion estimates for dbp
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Figure 2.5 (b) Effect of removing each observation on model parameters.
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Centre effects Predicted values are obtained for each centre by taking the
means of the predicted observations, X�̂�, for that centre. The plots (Figure 2.6(a))
indicate one possible outlying centre (centre 31). The influence of removing each
centre is shown in Figure 2.6(b). However, note that the x axis in these plots does
not relate directly to the centre numbers, and the corresponding SAS output
listing the influence of each centre needs to be consulted. When the analysis was
repeated with centre 31 removed, the following results were obtained:

Variance components (SEs)

Model Centre Treatment⋅centre Residual

With centre 31 6.46 4.10 68.4
Without centre 31 0.81 5.37 73.1

Treatment effects (SEs)

Model A−B A−C B−C

With centre 31 1.29 (1.43) 2.93 (1.41) 1.64 (1.45)
Without centre 31 1.33 (1.58) 3.03 (1.56) 1.70 (1.60)

The variance component estimates have changed fairly noticeably from their
previous values. However, the exclusion of this centre did not greatly change
the treatment estimates, although their standard errors are increased. Thus, the
centre could be retained in the analysis with reasonable confidence. However,
possible reasons for the centre being outlying should be investigated, at least to
check that the protocol was followed correctly.
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Figure 2.6 (a) Plots of centre effects.
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Fixed effects deletion estimates for dbp

Covariance parameter deletion estimates for dbp
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Figure 2.6 (b) Effect of removing centres on model parameters.
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Figure 2.7 Plots of centre⋅treatment effects.

Centre⋅treatment effects The plots (Figure 2.7) of centre⋅treatment effects do
not indicate any noticeably outlying values.

Homogeneity of treatment variances The standard deviations of the resid-
uals and the centre⋅treatment effects were similar between the treatment groups,
indicating no strong evidence of non-homogeneity of variance.

Treatment Residual
Centre⋅treatment

effects

A 9.15 0.85
B 6.53 0.70
C 7.86 0.67

Missing data (2.4.7)

Nearly all missing data in the study were caused by dropouts (usually following
adverse effects of treatment). The number of patients dropping out following
randomisation was A, 17; B, 12; and C, 3. The larger numbers for the first two
treatments indicate that the dropout rate has been influenced by treatment.
Missing values are therefore not missing completely at random. They may be
considered as missing at random, however, and in Section 6.3, we present an
analysis treating the observations from all visits as repeated measures data. In
the present analysis, based on measurements at the final visit, we have used the
‘last-value-carried-forward’ method to minimise any bias.
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Determining whether the simulated posterior distribution has
converged (2.4.8)

Some of the approaches suggested in 2.4.8 will be used to assess the convergence of
the parameters in Model 4. This model was initially fitted using 100,000 samples
and a thinning factor of 5 (i.e. only one in five samples was used to construct the
posterior).

Three types of diagnostic plots are readily available when using PROC MCMC.
The first plot in each set is a ‘trace plot’, which plots simulated values of the param-
eter against the iteration number. Visual examination of this plot helps to deter-
mine if:

• The sampling process is reliable from the start or if it takes a number of itera-
tions to settle down and sample in the right region. If it is not, then the samples
taken before the process settles down should be discounted. These are often
referred to as ‘burn-in’ samples.

• The samples are autocorrelated, that is, adjacent samples are correlated.
• Whether convergence is failing to occur, even after many samples.

The second ‘autocorrelation’ plot shows the correlation between samples depend-
ing on their separation. When there is autocorrelation, then more samples
should be taken to ensure the full parameter range is adequately covered. The
concurrent use of ‘thinning’ where only 1 in every ‘n’ samples is used to form
the posterior has gained popularity, as it provides a more manageable number of
samples to form the marginal parameter distributions. An n-fold increase in the
sample size is often used with corresponding thinning level of n; so the eventual
sample size is unchanged. However, we note that it is not essential to thin the
sample. Greater increases in the sample size should be used when there is more
autocorrelation.

The last plot is a histogram illustrating the marginal posterior distribution for
the parameter.

The trace plots for the two treatment effect parameters (Figure 2.8) indicate
the sampling appears to have settled very quickly for the fixed treatment effects,
and it is not necessary to discount early samples. Had this not been the case,
inclusion of an NBI=m option in the PROC MCMC statement will cause the first m
samples to be omitted when obtaining the parameter estimates and summaries.
The sampling has stayed in the same region (about −2 to 6) across all iterations,
giving no indication that convergence may have failed. The trace plots are
dense and do not indicate autocorrelation, and this is further illustrated in the
autocorrelation plots. There is a slight kink in the posterior densities; however,
the distributions are relatively smooth, and the tails appear adequately sampled.

Plots for the treatment difference A−B would need to be constructed and plotted
manually from the sampled data. However, if plots for A−C and B−C are satisfac-
tory, then it is very likely that plots of A−B will be too, since the A−B samples are
based on the differences in A−C and B−C samples. So it is likely to be sufficient
to examine convergence for A−C and B−C only.
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Figure 2.8 Diagnostic plots for two of the treatment effects, A − C (alpha2) and B − C
(alpha3).
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Figure 2.9 Diagnostic plots for the residual (v1) and centre variance component (v2)
parameters.
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All plots for the residual look acceptable (Figure 2.9). However, the centre
variance component plots show a higher degree of autocorrelation, which only
becomes negligible when samples are separated by about 20. We will try to
alleviate problems that this may cause by using a sample of double the size and
increasing the thinning factor so that only 1 observation in every 10 is used, to
see if this affects the results.

Analysis with a thinning factor of 10

There are small changes to the treatment effect mean differences of the order of
about 0.5–1% (Table 2.2). Surprisingly, there is little difference to the centre vari-
ance component estimates for which there was most evidence of autocorrelation.
Since there have been changes to the treatment effects, it would seem preferable
to use the results based on the larger sample size and higher thinning level of 10.

For those working in the pharmaceutical industry, it may be necessary to specify
how decisions will be made about thinning and burn-in in advance in the study
protocol.

Table 2.2 Comparing results from Model 4 with larger sample size and higher thinning
factor.

Treatment effects (SE)

Sample size Thinning factor A−C B−C
100,000 5 3.00 (1.22) 1.97 (1.23)
200,000 10 2.98 (1.22) 1.96 (1.25)

Variance components (95% probability intervals)
Sample size Thinning factor Centre Residual
100,000 5 7.41 (1.11 − 16.95) 71.4 (60.1 − 84.6)
200,000 10 7.42 (0.90 − 17.22) 71.4 (60.6 − 85.5)

Further assessments of convergence using summary statistics
and diagnostic tests

Some of the summary statistics and tests for assessing convergence that are readily
available in SAS are now considered. The following table shows the ‘Monte Carlo
Standard Errors’ (MCSE), the SDs of the parameters (from original output) and
their ratio (MCSE/SD). The small ratios indicate that only a fraction of the poste-
rior variability is due to the simulation, indicating that an adequate sample size is
likely to have been achieved.
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Monte Carlo Standard Errors
Standard

Parameter MCSE Deviation MCSE/SD

alpha0 0.1162 11.2354 0.0103
alpha1 0.00111 0.1083 0.0103
alpha2 0.0119 1.2173 0.00981
alpha3 0.0121 1.2453 0.00975
v1 0.0490 6.3472 0.00771
v2 0.0701 4.5493 0.0154

This table shows the autocorrelations among posterior samples. They are fairly
small after 10 lags, and a thinning factor of 10 therefore seems appropriate.

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

alpha0 0.3278 0.0131 -0.0159 0.0011
alpha1 0.3268 0.0104 -0.0165 0.0027
alpha2 0.3216 -0.0056 0.0138 0.0022
alpha3 0.3118 0.0074 0.0086 0.0078
v1 0.0297 0.0011 -0.0079 -0.0012
v2 0.4637 0.1437 0.0319 -0.0045

This table shows results of the Geweke test comparing mean estimates obtained
from early and late samples. No parameter failed the test.

Geweke Diagnostics

Parameter z Pr> |z|

alpha0 -0.3730 0.7091
alpha1 0.2331 0.8157
alpha2 1.0436 0.2967
alpha3 0.8770 0.3805
v1 -1.1986 0.2307
v2 0.5445 0.5861

The following table reports the effective sample sizes for each parameter after
taking into account the autocorrelation for each parameter, that is, the sample
size expected if the samples were totally independent. The effective sample size
is the lowest for centre variance component, which was found to have the high-
est degree of autocorrelation. However, the estimated 4200 independent samples
are still likely to be sufficient. It is difficult to set general rules for how to use the
statistics in this table. However, if the effective sample size was very small, it would
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be sensible to increase the number of samples further. The ‘time’ column estimates
amount of separation between samples required for them to become uncorrelated,
and the ‘efficiency’ column is the ratio of the effective sample size to the total sam-
ple size after thinning (20,000 in this case).

Effective Sample Sizes

Autocorrelation
Parameter ESS Time Efficiency

alpha0 9349.7 2.1391 0.4675
alpha1 9481.4 2.1094 0.4741
alpha2 10387.4 1.9254 0.5194
alpha3 10527.1 1.8999 0.5264
v1 16806.7 1.1900 0.8403
v2 4212.5 4.7478 0.2106

SAS code and output

There now follows a description of the SAS code and the outputs, which were pro-
duced in the analysis of the previous example. This is a pattern that will be followed
throughout the rest of the book. Some readers may be relative novices at using
SAS and may find some of the aspects of the code or output confusing. Anyone in
this position is referred forward to Sections 9.2 and 9.4 where the PROC MIXED
and PROC MCMC procedures are introduced. The SAS code and datasets may be
obtained electronically from web page www.wiley.com/go/brown/applied_mixed.

The variable names used for the program are as follows:

centre = centre number,
treat = treatment (A,B,C),
patient = patient number,
dbp = diastolic blood pressure at last attended visit,
dbp1 = baseline diastolic blood pressure.

SAS code only is given for Models 1 and 2 because their outputs have a similar
form to that from Model 3. The full code and output are given for Model 3 to illus-
trate the use of PROC MIXED in fitting a mixed model using REML and also to
show how model checking can be undertaken. The full code and output are given
for Model 4 to demonstrate the use of SAS for performing a Bayesian analysis. The
output for Model 5 is not given because it is very similar to that for Model 4.

Model 1

PROC MIXED CL; CLASS centre treat;
MODEL dbp = dbp1 treat centre;
LSMEANS treat/ DIFF PDIFF CL;

http://www.wiley.com/go/brown/applied_mixed
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Model 2

PROC MIXED CL; CLASS centre treat;

MODEL dbp = dbp1 treat/ DDFM=KR;

RANDOM centre;

LSMEANS treat/ DIFF PDIFF CL;

Model 3

PROC MIXED CL; CLASS centre treat;

MODEL dbp = dbp1 treat/ DDFM=KR;

RANDOM centre centre*treat;

LSMEANS treat/ DIFF PDIFF CL;

Model Information

Data Set WORK.A

Dependent Variable dbp

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Kenward-Roger

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class Levels Values

centre 29 1 2 3 4 5 6 7 8 9 11 12 13 14 15 18 23 24
25 26 27 29 30 31 32 35 36 37 40 41

treat 3 A B C

Dimensions

Covariance Parameters 3

Columns in X 5

Columns in Z 108

Subjects 1

Max Obs Per Subject 288

Number of Observations

Number of Observations Read 288

Number of Observations Used 288

Number of Observations Not Used 0
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Iteration History

Iteration Evaluations -2ResLogLike Criterion

0 1 2072.30225900

1 3 2055.64188178 0.00000322

2 1 2055.63936685 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

centre 6.4628 0.05 2.4064 46.0513

centre*treat 4.0962 0.05 0.8793 1515.23

Residual 68.3677 0.05 57.1917 83.1916

Fit Statistics

-2 Res Log Likelihood 2055.6

AIC (smaller is better) 2061.6

AICC (smaller is better) 2061.7

BIC (smaller is better) 2065.7

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

dbp1 1 284 6.16 0.0137

treat 2 25 2.16 0.1364

Least Squares Means

Standard

Effect treat Estimate Error DF tValue Pr> |t| Alpha Lower Upper

treat A 92.3491 1.1233 52 82.21 <.0001 0.05 90.0951 94.6032

treat B 91.0632 1.1695 51.4 77.86 <.0001 0.05 88.7157 93.4107

treat C 89.4217 1.1326 58.7 78.96 <.0001 0.05 87.1552 91.6882

Differences of Least Squares Means

Standard

Effect treat _treat Estimate Error DF tValue Pr>|t| Alpha Lower Upper

treat A B 1.2859 1.4300 23.8 0.90 0.3775 0.05 -1.6665 4.2384

treat A C 2.9274 1.4109 25.6 2.07 0.0482 0.05 0.02511 5.8297

treat B C 1.6415 1.4453 25.7 1.14 0.2666 0.05 -1.3314 4.6144



Brown778258 c02.tex V3 - 11/14/2014 10:13 A.M. Page 104

104 Normal mixed models

Model 3 with model checking

The following code can be used in any version of SAS to obtain the residual
and normal plots. Following this, alternative code using ODS GRAPHICS code
available in SAS Version 9 will be given. Note that only the plots of centre
and centre⋅treatment effects resulting from this code are shown in the text
(Figures 2.6(a) and 2.7). Figures 2.5 and 2.6(b) result from the ODS GRAPHICS
code given in a later section.

PROC MIXED; CLASS centre treat;
MODEL dbp = dbp1 treat/ DDFM=KR OUTP=pred OUTPM=predm;
RANDOM centre centre*treat/ SOLUTION;
LSMEANS treat/ DIFF PDIFF CL;
ODS LISTING EXCLUDE SOLUTIONR;
ODS OUTPUT SOLUTIONR=solut; RUN;

DATA solut; SET solut;
centrex=centre*1; * obtain numeric centre variable;
DROP centre;

DATA c_est(KEEP=centre c_est) ct_est(KEEP=centre treat
ct_est);

SET solut;
centre=centrex;
IF effect=’centre’ THEN DO;
c_est=estimate;
OUTPUT c_est;

END;
ELSE DO;
ct_est=estimate;
OUTPUT ct_est;

END;
PROC SORT DATA=ct_est; BY centre treat;

PROC SORT DATA=predm; BY centre treat;

DATA c_est; MERGE predm c_est; BY centre;
PROC MEANS NOPRINT; BY centre; ID c_est;
VAR pred; OUTPUT OUT=c_est MEAN=c pred N=freq;

DATA ct_est; MERGE predm ct_est; BY centre treat;
PROC MEANS NOPRINT; BY centre treat; ID ct_est;
VAR pred; OUTPUT OUT=ct_est MEAN=ct pred N=freq;

SYMBOL1 V=CIRCLE;

PROC GPLOT DATA=pred; PLOT resid*pred;
TITLE ’RESIDUALS AGAINST THEIR PREDICTED VALUES’;
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PROC RANK DATA=pred OUT=norm NORMAL=TUKEY; VAR resid;
RANKS s_est;

PROC GPLOT DATA=norm; PLOT resid*s est;
TITLE ’RESIDUALS - NORMAL PLOT’;

PROC GPLOT DATA=c_est; PLOT c_est*c pred;
TITLE ’CENTRE EFFECTS AGAINST THEIR PREDICTED VALUES’;
PROC RANK OUT=norm NORMAL=TUKEY DATA=c_est; VAR c_est;

RANKS s est;
PROC GPLOT DATA=norm; PLOT c_est*s est;
TITLE ’CENTRE EFFECTS - NORMAL PLOT’;

PROC GPLOT DATA=ct_est; PLOT ct_est*ct pred;
TITLE ’CENTRE.TREAT EFFECTS AGAINST THEIR PREDICTED VALUES’;
PROC RANK OUT=norm NORMAL=TUKEY DATA=ct_est; VAR ct_est;

RANKS s est;
PROC GPLOT DATA=norm; PLOT ct_est*s est;
TITLE ’CENTRE.TREAT EFFECTS - NORMAL PLOT’;

* CHECK HETEROGENEITY OF RESIDUAL AND CENTRE*TREAT VARIANCE
BY TREATMENT;

PROC SORT DATA=pred; BY treat;
PROC MEANS DATA=pred; VAR resid; BY treat;
TITLE ’PROC MEANS TO CHECK RESIDUAL VARIANCE IS HOMOGE-
NEOUS ACROSS TREATMENTS’;

PROC SORT DATA=ct_est; BY treat;
PROC MEANS DATA=ct_est; VAR ct_est; BY treat;
TITLE ’PROC MEANS TO CHECK CENTRE.TREAT EFFECT VARIANCE IS
HOMOGENEOUS ACROSS TREATMENTS’;

This code may not at first sight be straightforward to understand. The steps used
may be summarised as follows:

• Fit Model 3.
• Output the residuals and predicted values given by X�̂� + Z𝛃 to dataset pred

using the OUTP option; output the predicted values given by X�̂� to dataset
predm using the OUTPM option; output the random effects estimates to
dataset solut using the SOLUTION option in the RANDOM statement and an
ODS OUTPUT statement. Note that theODS LISTING EXCLUDE statement
causes the random effects to be excluded from the mainPROC MIXED output.

• Create datasets c_est and ct_est containing random effects estimates for
the centre and centre⋅treatment effects, respectively.

• Merge datasets c_est and ct_est with the predicted values and calculate
the mean predicted value within each random effects category.

• Print and plot the residuals and the centre and centre⋅treatment
effect_estimates.
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• Calculate the standard deviations of the residuals and centre⋅treatment effects
within each treatment group.

The output from PROC MIXED is identical to that given in Chapter 4, and the
residual plots produced by this code were given earlier in this section.

SAS diagnostic graphics using the Results Viewer in Version 9.3

Using the default options in SAS Version 9.3, the following code can be used as a
quick and simple way to obtain a range of diagnostic plots. Either influence plots,
including those shown in Figure 2.5(b), or residual plots, including Figure 2.5(a),
can be obtained depending on the options chosen in the MODEL statement.

PROC MIXED PLOTS=ALL CL; CLASS centre treat;
MODEL dbp=dbp1 treat / DDFM=KR INFLUENCE(ITER=5);
RANDOM centre centre*treat;

Replacing INFLUENCE(ITER=5) by RESIDUAL in the MODEL statement will
produce a variety of residual plots, instead of influence plots. It is not possible
to produce residual and normal plots for the centre or centre⋅treatment effects
without using the extensive code described earlier. Influence plots can be produced
for these effects, however, by replacing the MODEL statement with the following:

MODEL dbp=dbp1 treat / DDFM=KR INFLUENCE (EFFECT=centre ITER=5);

Part of the output this produces appears as Figure 2.6(b), and similar code can
be used to generate influence plots for centre⋅treatment.

Model 4

PROC MCMC OUTPOST=post4 NMC=100000 THIN=5 SEED=7893;
ODS SELECT PARAMETERS REPARAMETERS POSTSUMMARIES

POSTINTERVALS;
PARMS alpha0 alpha1 alpha2 alpha3 v1 v2;
PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);
RANDOM b_centre ∼ NORMAL(0, VAR=v2) SUBJECT=centre;
mu = alpha0 + alpha1*dbp1 + alpha2*treata + alpha3*treatb

+ b_centre;
MODEL dbp ∼ NORMAL(mu, VAR = v1);
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Parameters

Sampling Initial
Block Parameter Method Value Prior Distribution

1 v1 Conjugate 0.00990 igamma(0.01, scale= 0.01)
2 v2 Conjugate 0.00990 igamma(0.01, scale= 0.01)
3 alpha0 N-Metropolis 0 normal(0, var= 10000)

alpha1 0 normal(0, var= 10000)
alpha2 0 normal(0, var= 10000)
alpha3 0 normal(0, var= 10000)

This table is a reminder of the prior distributions specified in the code and gives
the initial sample values. In this case, these were not specified within the PARMS
statement, and it would appear modes of the prior distributions have been used.

Random Effects Parameters

Parameter Subject Levels Prior Distribution

b_centre centre 29 normal(0, var= v2)

This table reminds us that a normal distribution with zero mean and variance
equal to the centre variance component (v2) has been assumed for centre effects.

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha0 20000 59.7667 11.1272 52.2638 59.8739 67.2426
alpha1 20000 0.2869 0.1073 0.2148 0.2864 0.3602
alpha2 20000 3.0034 1.2197 2.1748 3.0109 3.8387
alpha3 20000 1.9731 1.2302 1.1229 1.9689 2.7984
v1 20000 71.7779 6.3109 67.3362 71.3917 75.8079
v2 20000 8.2553 4.5165 5.0898 7.4128 10.4457

This table summarises the location of the model parameters. alpha0-alpha3
denote parameters for the fixed effects – intercept, baseline DBP, treatment A
and treatment B. In this case, the mean estimates for the fixed effects parameters
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are very close to the medians (50% percentile), indicating that their distribution
is symmetrical. The standard deviations of the parameters are analogous to
standard errors of the mean. v1 and v2 are the variance components for the
residual and centre effects. Usually, the mean is not the best summary of location
for variance components, as their distributions are usually skewed. The medians
values (50% percentiles) are preferable.

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha0 0.050 37.5928 81.5463 38.8495 82.6188
alpha1 0.050 0.0781 0.5019 0.0879 0.5079
alpha2 0.050 0.6256 5.3571 0.6571 5.3703
alpha3 0.050 -0.4242 4.3941 -0.4535 4.3582
v1 0.050 60.5610 85.2193 60.1364 84.6258
v2 0.050 2.0651 19.3398 1.1116 16.9583

This table provides probability intervals for the parameters, which are
analogous to confidence intervals. The HPD interval is obtained such that within
which all points have a higher probability density than all points outside it (see
Section 2.3.3). The equal tail interval ensures that each tail is of equal size.
Compared to the HPD interval, this interval will be shifted towards the smallest
tail of the HPD. It is not clear which interval is preferable, although the equal-tail
interval is easier to calculate and may be more acceptable to Regulatory bodies.
There can be noticeable differences between the intervals; so it would seem
important for those working in an experimental setting to specify which interval
will be used in advance.

Only results for treatment differences A−C (alpha2) and B−C (alpha3) are
given by PROC MCMC. There is no ESTIMATE statement available as in PROC
MIXED to provide results for the treatment difference A−B. This may be obtained
from the differences between the A−C and B−C samples.

Obtaining an estimate of A−B, probability intervals and p-values

To obtain an estimate of A−B, it is necessary to summarise the simulated val-
ues in the posterior distribution as the model is parameterised in terms of A−C
and B−C, and PROC MCMC only summarises these samples. The following code
obtains samples for the treatment difference A−B, based on the differences in
the sampled values of A−C and B−C, which were output to dataset ‘post4’ from
Model 4. An alternative approach would have been to relabel the treatments so
that A−B was explicitly modelled and reanalysed the data.

p-values are not directly available in the procedure output, and it is necessary
to obtain them from probability intervals that have zero on the boundaries.
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p-values of the three treatment comparisons are then obtained by calculating
the probabilities that the parameters take a value below or above zero. To be
comparable to a classical ‘two-sided’ test, the p-value is calculated as twice the
proportion of samples falling in the smallest tail with zero on the boundary
(equivalent to the value of 𝛼 for an equal-tail interval with zero on the boundary).

DATA p1; SET post4;
dbp1=alpha1;
a_c=alpha2;
b_c=alpha3;
a_b=alpha2-alpha3; * obtain samples of A-B;
IF dp1<0 THEN DBP0=1; ELSE dbp0=0;
IF a_b<0 THEN a_b0=1; ELSE a_b0=0;
IF a_c<0 THEN a_c0=1; ELSE a_c0=0;
IF b_c<0 THEN b_c0=1; ELSE b_c0=0;

PROC MEANS NOPRINT DATA=p1; VAR a_b dbp0 a_b0 a_c0 b_c0;
OUTPUT OUT=p2 SUM=dum dbp0_n a_b0_n a_c0_n b_c0_n

N=samples mean=a_b_mean std=a_b_std;

DATA p3; SET p2;
* macro to calculate p-values for fixed effects parameters;
%MACRO p_calc(var);
&var.0_p=&var.0_n/samples;
IF &var.0<0.5 THEN &var._p=&var.0_p*2;

ELSE &var._p=(1-&var.0_p)*2;
%MEND;

%p_calc(dbp); %p_calc(a_b); %p_calc(a_c); %p_calc(b_c);

PROC UNIVARIATE DATA=p1;
VAR a_b a_c b_c; OUTPUT OUT=ci PCTLPTS=2.5 97.5

PCTLPRE=a_b a_c b_c PCTLNAME=lower upper;

PROC PRINT NOOBS DATA=p3; VAR a_b_mean a_b_std;
TITLE ‘Mean and SE for A-B’;

PROC PRINT NOOBS DATA=p3; VAR a_b_p a_c_p b_c_p;
TITLE ‘p-values for pairwise treatment comparisons’;

PROC PRINT NOOBS DATA=ci;
TITLE ‘Equal tail 95% CIs’;

Mean and SE for A - B

a_b_mean a_b_std
1.03027 1.22645



Brown778258 c02.tex V3 - 11/14/2014 10:13 A.M. Page 110

110 Normal mixed models

p-values for pairwise treatment comparisons

a_b_p a_c_p b_c_p

0.3928 0.0139 0.109

Equal tail 95% CIs

a_blower a_bupper a_clower a_cupper b_clower b_cupper

-1.36294 3.45211 0.62563 5.35712 -0.42416 4.39410

This output shows the mean for A−B and its standard deviation and p-values
corresponding to each of the treatment differences. Only the difference between
treatments A and C is significant at the 5% level. Note the equal tail confidence
intervals for A−C and B−C are the same as those already given in the default
SAS output. We now also have the confidence interval for A−B.

Determining whether the simulated posterior distribution has
converged

Adding an ODS graphics statement to SAS MCMC code will cause three diagnostic
plots to appear for each model parameter that can be used to help check conver-
gence: a trace plot, a plot of the correlation between samples by their distance apart
in the chain, and a plot of the marginal density. The code is given for Model 4.

ODS GRAPHICS ON;
PROC MCMC OUTPOST=post4 NMC=100000 THIN=5 SEED=7893;
PARMS alpha0 0 alpha1 0 alpha2 0 alpha3 0 v1 1 v2 1;
PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);
RANDOM b_centre ∼ NORMAL(0, VAR=v2) SUBJECT=centre;
mu = alpha0 + alpha1*dbp1 + alpha2*treata + alpha3*treatb

+ b_centre;
MODEL dbp ∼ NORMAL(mu, VAR = v1);
ODS GRAPHICS OFF;

An ODS SELECT statement has not been used in this code, and parame-
ter summaries are produced. Surprisingly, once an ODS SELECT statement
is included (as in the original SAS code), the default model diagnostics will
not appear unless specifically requested by the TADPANEL option within the
ODS statement. Thus, if both parameter summaries and model diagnostics are
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required, then the TADPANEL option should be added to the ODS statement to
ensure the three diagnostic plots appear.

ODS SELECT PARAMETERS REPARAMETERS POSTSUMMARIES
POSTINTERVALS TADPANEL;

Output

The plots created for the fixed effects and variance components are shown earlier
in the main example text, along with the summary statistics and the Gewerke test.

Changing the sample size thinning factor

This may be easily achieved by altering the value used forNMCoption to change the
sample size and theTHIN option to change the thinning factor. The following code
requests a sample size of 200,000 and a thinning factor of 10, causing only one in
10 of the values sampled to be used to form the posterior distribution. Hence, the
posterior is formed from 20,000 samples.

PROC MCMC OUTPOST=post4 NMC=200000 THIN=10 SEED=7893;

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha0 20000 59.7624 11.2354 52.1993 59.8480 67.3192
alpha1 20000 0.2870 0.1083 0.2136 0.2864 0.3609
alpha2 20000 2.9799 1.2173 2.1669 2.9779 3.7976
alpha3 20000 1.9620 1.2453 1.1073 1.9551 2.8069
v1 20000 71.8359 6.3472 67.3414 71.4243 75.8141
v2 20000 8.2548 4.5493 5.0690 7.4218 10.4203

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha0 0.050 37.6091 81.9172 36.5540 80.5030
alpha1 0.050 0.0765 0.5006 0.0874 0.5095
alpha2 0.050 0.5938 5.3785 0.5539 5.3198
alpha3 0.050 -0.4722 4.3940 -0.4854 4.3726
v1 0.050 60.6394 85.4908 59.8878 84.5619
v2 0.050 2.0057 19.4847 0.8987 17.2243
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Model 5

PROC MCMC OUTPOST=post5 NMC=100000 THIN=5 SEED=7893;
ODS SELECT PARAMETERS REPARAMETERS POSTSUMMARIES

POSTINTERVALS;
PARMS alpha0 alpha1 alpha2 alpha3 v1 v2 v3;
PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);
RANDOM b_centre ∼ NORMAL(0, VAR=v2) SUBJECT=centre;
RANDOM b_ct ∼ NORMAL(0, VAR=v3) SUBJECT=centre_treat;
mu = alpha0 + alpha1*dbp1 + alpha2*treata + alpha3*treatb

+ b_centre + b_ct;
MODEL dbp ∼ NORMAL(mu, VAR = v1);
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Generalised linear mixed
models

Up until now, we have considered models with normally distributed errors.
However, there are many situations where data are not of this type, for example,
where the presence/absence of an adverse event is recorded and the normality
assumption cannot be made. A class of models known as generalised linear
models (GLMs) is available for fitting fixed effects models to such non-normal
data. These models can be further extended to fit mixed models and are then
referred to as generalised linear mixed models (GLMMs). Random effects, random
coefficients or covariance patterns can be included in a GLMM in much the
same way as in normal mixed models, and again either balanced or unbalanced
data can be analysed. Although GLMMs can be used to analyse data from any
distribution from the exponential family, binary data and Poisson data are most
frequently encountered, and for this reason, this book will primarily concentrate
on the use of GLMMs for these data types.

In introducing these topics, we will, of necessity, be less than comprehensive.
In their excellent book Generalised Linear Models, McCullagh and Nelder (1989)
take 500 pages to cover the subject and start by an assumption of ‘a knowledge
of matrix theory, including generalised inverses, together with basic ideas of
probability theory, including orders of magnitude in probability’. At one end
of the readership spectrum, therefore, those with no experience of GLMs may
wish to skip all but the introductory paragraphs of each section because some
sections inevitably draw on the assumption of prior knowledge. This will enable
such readers to identify where such methods might prove useful. In case the
reader with little background knowledge of GLMs identifies a need to apply GLMs
and GLMMs and is horrified at the prospect of having to master textbooks on
the subject, we would emphasise that fitting such models can often be achieved
without an encyclopaedic knowledge of the topic. The final section of this chapter
and sections of subsequent chapters will illustrate the application of these models
and present the SAS code needed to implement them.

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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We will start by describing the GLM in Section 3.1 and then show how it is
extended to the GLMM in Section 3.2. GLMMs are more complex than normal
mixed models, and there is therefore more potential for problems such as biased
estimates and a failure to converge. These are considered in Section 3.3, which
also gives some practical information on fitting GLMMs. A worked example is given
in Section 3.4.

3.1 Generalised linear models

3.1.1 Introduction

GLMs can be used to fit fixed effects models to certain types of non-normal data:
those with a distribution from the exponential family. Consider the following
example. We wish to conduct a clinical trial to investigate the effect of a new treat-
ment for epilepsy. A suitable variable for assessing efficacy is the number of seizures
that occur during a predetermined period. Thus, the response variable is a count.
Such variables are often found to follow a Poisson distribution. This is a member of
the exponential family, and GLMs or GLMMs can be considered, depending on the
details of how the trial is designed. Such an example is considered in Section 6.4.
As a second example, consider the analysis of a particular adverse event in a
clinical trial. In some situations, a simple contingency-table-based analysis will
be sufficient. If, however, there are baseline effects or if the trial design is more
complicated, a GLM may be preferred. In the multi-centre trial, which we are
regularly revisiting in this book, the occurrence of cold feet was such an adverse
event and could be reported at any of the follow-up visits. As a binary outcome,
this is also from the exponential family, and in Section 3.4, we will show how
GLMMs can be applied to these data.

As with the models we have met for normally distributed data, the models use
a linear combination of variables to ‘predict’ the response. In the case of normally
distributed data, the fixed effects model is y=X𝛂+ e. That is, the response is deter-
mined by the linear component, X𝛂, which gives the expected response, which we
will denote by 𝛍 and by a randomly determined error term. In a somewhat convo-
luted way, we could write the model as

y = 𝛍 + e,

𝛍 = X𝛂.

The GLM can easily be specified from this artificial-looking model by allowing 𝛍
and X𝛂 to be related by a ‘link function’, g, so that

g(𝛍) = X𝛂.
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Thus, normal models are a special case of GLMs in which the link function is the
identity function. In general, the link function is not the identity function but takes
a form suitable for the distribution of the data.

An alternative, less mathematical way of familiarisation with the concept of the
GLM is to think of the link function as a method of mapping the response data
from their scale of observation to the real scale (−∞, +∞). For example, binomial
probabilities have a range 0–1, and the logit link function, log(𝜇/(1−𝜇)), will
translate this range to the real scale. This is necessary because fitting a linear
model directly to the binomial parameter could lead to estimates of probabilities
that were negative or greater than one. Use of the link function allows the
model parameters to be included in the model linearly, just as in the models
we have described for normal data. This often gives the GLM an advantage over
contingency table methods, which are sometimes used to analyse binary data (e.g.
chi-squared tests) because these methods cannot incorporate several fixed effects
simultaneously.

In this chapter, we will give only a brief introduction to GLMs. However, more
detail can be found in McCullagh and Nelder (1989). Before defining the GLM,
basic details of the binomial and Poisson distributions will be given for those
who are not completely familiar with these distributions, and the general form
for distributions from the exponential family will be specified. This general
distributional form will be needed for setting a particular form of link function
known as the ‘canonical’ link.

3.1.2 Distributions

We now define the Bernoulli, binomial and Poisson distributions. These can all
be described as ‘one-parameter’ distributions, that is using a single parameter
completely describes the distribution.

The Bernoulli distribution

This distribution is used to model binary data where observations have one of two
possible outcomes, which can be thought of as ‘success’ or ‘failure’. If one is used
to denote success and zero failure, the density function is

f (y) = 𝜇
y(1 − 𝜇)(1−y)

, y = 0,1.

Thus, 𝜇 corresponds to the probability of success, and the mean and variance are
given by

mean(y) = 𝜇,

var(y) = 𝜇(1 − 𝜇).
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The binomial distribution

This distribution is also suitable for binary data. However, observations are now
recorded as the number of successes out of a number of ‘tries’. The parameter
of interest is the proportion of successes. If z and n are the observed numbers
of successes and tries, respectively, then the proportion y= z/n has a density
function

f (y, n) = n!(𝜇)ny(1 − 𝜇)n−ny

(ny)!(n − ny)!

and
mean(y) = 𝜇,

var(y) = 𝜇(1 − 𝜇)∕n.

Note that when n=1, the Bernoulli density function is obtained. Thus, the
Bernoulli distribution is a special case of the binomial distribution.

The Poisson distribution

This distribution can be used to model ‘count’ data. The number of episodes of
dizziness over a fixed period and the number of abnormal heart beats on an ECG
tape of a prescribed length are examples of count data. Its density function is
given as

f (y) = 𝜇
ye−𝜇∕y!, y = 0,1,2, …

and
mean(y) = 𝜇,

var(y) = 𝜇.

The Poisson distribution with offset

Sometimes, the underlying scale for count data varies with each observation.
For example, observations may be made over varying periods (e.g. number of
epileptic seizures measured over different numbers of days for each patient).
Alternatively, the underlying scale may relate to some other factor such as the
size of a geographical region over which counts of subjects with a specific disease
are taken. To take account of such a varying scale, the scale for each observation
needs to be utilised in forming the distribution density. The scale variable is often
referred to as the offset. The parameter of interest is then the number of counts per
unit scale of the offset variable. If we denote the offset variable by t (even though
it is not always time) and the observed number of counts by z, the distribution of
y= z/t has a density function

f (y, t) = (𝜇t)yte−𝜇t∕(yt)!
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and
mean(y) = 𝜇,

var(y) = 𝜇∕t.

Note that when t=1, the density function for the Poisson distribution without an
offset variable as shown previously is obtained, confirming it as a special case of
this distribution.

3.1.3 The general form for exponential distributions

To show how the GLM can be used for data with any exponential family distribu-
tion, we first need to define a general form in which all exponential family density
functions can be expressed. This can be written as

f (y; 𝜃, 𝜙) = exp{[y𝜃 − b(𝜃)]∕a(𝜙) + c(y, 𝜙)},

where
𝜃 = a location parameter (not necessarily the mean),
𝜙= a dispersion parameter (only appears in distributions that have two

parameters such as the normal distribution).

The form of the functions a, b and c will be different for each distribution. Distribu-
tions that are not from the exponential family cannot be expressed in this way.

The one-parameter distributions considered in this book can be defined solely in
terms of the location parameter, 𝜃, and the general form then simplifies to

f (y; 𝜃) = exp{[y𝜃 − b(𝜃)]∕a + c(y)},

where a is now a constant. Expressions for a, b(𝜃) and c(y) are listed in the following
table for the Bernoulli, binomial and Poisson distributions:

Distribution a b(𝜽) c(y)

Bernoulli 1 log(1+ exp(𝜃)) 1
Binomial 1/n log(1+ exp(𝜃)) log[n !/((ny) ! (n− ny) !)]
Poisson 1 exp(𝜃) − log(y !)
Poisson with offset 1/t exp(𝜃) yt log(yt)− log(yt !)

where n and t are the denominator and offset terms, respectively. Details of exactly
how these expressions are obtained from their density functions will be given later
in Section 3.1.6.
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It can be shown that the mean and variance of a distribution can then be written
in terms of the functions a and b as

mean(y) = 𝜇 = b′(𝜃),

var(y) = ab′′(𝜃).

Hence, 𝜃 = b′−1(𝜇), and we can alternatively write the variance in terms of 𝜇 as

var(y) = ab′′(b′−1(𝜇)).

Using these expressions, the means and variances for the distributions can then
be written in terms of 𝜃 or 𝜇 as follows:

Distribution Mean 𝝁=b′(𝜽)
Variance in terms
of 𝜽, ab′′(𝜽)

Variance in terms
of 𝝁

Bernoulli (1+ exp(−𝜃))−1 exp(𝜃)/(1+ exp(𝜃))2
𝜇(1−𝜇)

Binomial (1+ exp(−𝜃))−1 exp(𝜃)/(1+ exp(𝜃))2/n 𝜇(1−𝜇)/n
Poisson exp(𝜃) exp(𝜃) 𝜇

Poisson with offset exp(𝜃) exp(𝜃)/t 𝜇/t

3.1.4 The GLM definition

In Section 3.1.1, we defined the GLM using the matrix notation used for normal
models by

y = 𝛍 + e

and related 𝛍 to a linear sum of the fixed effects, X𝛂 (the linear component), by a
‘link function’, g, so that

g(𝛍) = X𝛂.

To relate the GLM directly to the general exponential density function introduced
in the previous section, we label the linear component 𝛉 so that 𝛉=X𝛂. We will
next consider how link functions can be constructed.

Canonical link functions

A type of link function known as the canonical link function is given by

g = b′−1
,

where b is obtained from the general form for the density function for exponen-
tial distributions given previously. For the distributions we have considered, the
canonical link functions are given by
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Distribution g(𝝁)=b′−1(𝝁) Name

Bernoulli log(𝜇/(1−𝜇)) Logit
Binomial log(𝜇/(1−𝜇)) Logit
Poisson log(𝜇) Log
Poisson with offset log(𝜇) Log

In most situations, use of the canonical link function will lead to a satisfactory
analysis model. However, we should also mention that there is not a strict require-
ment for canonical link functions to be used in the GLM, and non-canonical link
functions are also available. These are not derived from the density function but
still map the data from their original scale onto the real scale. For example, a link
function known as the probit function, g(𝜇)=Φ−1(𝜇) (where Φ is the cumulative
normal density function), is sometimes used for binary data recorded in toxicology
experiments, since values of 𝜇 corresponding to specific probabilities can easily
be obtained using the normal density function. Despite not being canonical, this
link function does still map the original range of the data (0 to 1) to −∞ to ∞
as required for the GLM. In this book, we will not be considering non-canonical
link functions. However, further information can be found in McCullagh and
Nelder (1989).

We earlier specified a general formula for the variance in the GLM as
var(y)= ab′′(𝛉). Using the relationship g= b′−1, for canonical link functions,
we can now equivalently write the variance in terms of 𝜇 and the function g as

var(y) = ag′−1(𝜇).

The variance matrix, V

The variance matrix for the GLM may be written as

var(y) = var(e) = V.

Since the GLM is a fixed effects model, the observations are assumed to be uncor-
related, and the variance matrix, V, is therefore diagonal. The diagonal terms of
this matrix are equal to the variances of each observation given the underlying
distribution. So, for example, in an analysis of six Bernoulli observations, where
𝛍= (𝜇1, 𝜇2, … , 𝜇6)′, V can be written as

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜇1

(
1 − 𝜇1

)
0 0 0 0 0

0 𝜇2(1 − 𝜇2) 0 0 0 0
0 0 𝜇3(1 − 𝜇3) 0 0 0
0 0 0 𝜇4(1 − 𝜇4) 0 0
0 0 0 0 𝜇5(1 − 𝜇5) 0
0 0 0 0 0 𝜇6(1 − 𝜇6)

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

.
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Note that unlike the fixed effects model for normal data, the variances are different
for each observation.

In the previous subsection, we showed that the variance could be written in the
general form

var(y) = ab′′(𝛉) = ag′−1(𝛍).

We can use a and b′′(𝛉) to express V in matrix form as a product of two diagonal
matrices:

V = AB,

where
A= diag{ai},
B= diag{b′′(𝜃i)}= diag{g′−1(𝜇i)}.

For the binomial distribution, A is a diagonal matrix of inverses of the denomi-
nator terms (number of ‘tries’). For example, for a dataset with six observations,
A would be

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

1∕n1 0 0 0 0 0
0 1∕n2 0 0 0 0
0 0 1∕n3 0 0 0
0 0 0 1∕n4 0 0
0 0 0 0 1∕n5 0
0 0 0 0 0 1∕n6

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

For a Poisson distribution with offset, the ni are replaced by the offset variable
values, ti.

B is a diagonal matrix of variance terms. For the Bernoulli and binomial distri-
butions, it is

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜇1

(
1 − 𝜇1

)
0 0 0 0 0

0 𝜇2(1 − 𝜇2) 0 0 0 0
0 0 𝜇3(1 − 𝜇3) 0 0 0
0 0 0 𝜇4(1 − 𝜇4) 0 0
0 0 0 0 𝜇5(1 − 𝜇5) 0
0 0 0 0 0 𝜇6(1 − 𝜇6)

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

Note that for the Bernoulli and Poisson distributions, ai =1 and thus A= I (the
identity matrix) and V=B.

The dispersion parameter

Variance in the model can be increased (or decreased) from the observation vari-
ances specified by the underlying distribution (i.e. aib

′′(𝜃i)), by multiplying the
variance matrix by a dispersion parameter, 𝜙:

V = 𝜙AB.
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An alternative dispersion parameter is suggested by Williams (1982) for binary
data. In this case, 𝜙i is calculated using a formula that varies depending on the
denominator of each observation and so adjusts for their differing variances:

V = diag{𝜙i}AB.

It is referred to as the ‘Williams modification’. Before GLMMs were developed, dis-
persion parameters were frequently used as a limited facility to model variance at
the residual level in one-parameter distributions. We will consider the implications
of using a dispersion parameter further in Section 3.3.7.

3.1.5 Fitting the GLM

For readers who wish to understand the ‘mechanics’ of how the GLM is fitted, we
now look at the numerical procedures involved.

The GLM is fitted by maximising the log likelihood function. Using the general
form for a one-parameter exponential distribution given in Section 3.1.3:

f (y; 𝛉) = exp{[y𝛉 − b(𝛉)]∕a + c(y)}.

The log likelihood for a set of observations can be written as

log(L) =
∑

i

(yi𝜃i − b(𝜃i))∕ai + K,

or, in matrix/vector notation, as

log(L) = y′A−1 𝛉 − b(𝛉)1∕2′
A−1b(𝛉)1∕2 + K, (A)

where
𝛉= (𝜃1, 𝜃2,…, 𝜃n)′,

b(𝛉)= (b(𝜃1), b(𝜃2),…, b(𝜃n))′,
K = constant.

In fixed effects models for normal data, we saw that a solution for 𝛂 was easily
obtained by differentiating the log likelihood with respect to 𝛂 and setting the
resulting expression to zero (Section 2.2.2). However, in GLMs, the differentiated
log likelihood, d log(L)/d𝛂, is non-linear in 𝛂, and an expression giving a direct
solution for 𝛂 cannot be formed. To obtain d log(L)/d𝛂, we differentiate log(L) (A)
after substituting 𝛉=X𝛂:

d log(L)∕d𝛂 = d(y′A−1X𝛂)∕d𝛂 − d(b(X𝛂)1∕2′
A−1b(X𝛂)1∕2)∕d𝛂

= X′A−1y − X′A−1b′(X𝛂)

= X′A−1(y − b′(X𝛂)).
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Setting this differential to zero leads to equations that can, in principle, be solved
for 𝛂. However, because they are non-linear in 𝛂, one of the approaches below is
usually used instead to obtain estimates of 𝛂.

The likelihood function can be maximised directly for 𝛂 using an iterative proce-
dure such as Newton–Raphson (see Section 2.2.4). The variance of the resulting
�̂� can be calculated at the final iteration by (from McCullagh and Nelder, 1989,
Chapter 9)

var(�̂�) = (BX′V−1XB)−1
,

where
B = diag{g′−1(𝛍)} = diag{b′′(𝛉)}.

We see that B is a diagonal matrix containing the variances of the individual
observations.

Alternatively, the likelihood can be maximised using an iterative weighted
least squares method. This approach (defined by McCullagh and Nelder, 1989,
Section 2.5) can be based on analysing the following pseudo variable, z, which
can be thought of as a linearised observation vector:

z = g(𝛍) + (y − 𝛍)g′(𝛍)

= g(𝛍) + (y − 𝛍)B−1
.

z can, in fact, be defined as a first-order Taylor series expansion for g(y) about 𝛍.
Recalling that g(𝛍)=X𝛂, we see that z has variance

Vz = var(X𝛂) + B−1var(y − 𝛍)B−1

= 𝟎 + B−1ABB−1

= AB−1
.

A normal model can then be expressed in terms of the linearised pseudo variable, z:

z = X𝛂 + e.

z is then analysed iteratively using weighted least squares (see Section 2.2.1).
Weights are taken as the inverse of the variance matrix Vz. Iteration is required
because z and Vz are dependent on 𝜶. The raw data, y, can be taken as initial
values for z. Alternatively, g(y) can be used for the initial values, although an
adjustment may be necessary to prevent infinite values. The identity matrix can
be used initially for Vz. The initial fixed effects solution is calculated using these
values of z and Vz as

�̂� = (X′V−1
z X)−1X′V−1

z z,

as in Section 2.2.2. This forms the first iteration. �̂� is then used to calculate new
values for z and Vz. From these new values, �̂� is recalculated to form the second
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iteration. The process is continued until �̂� converges. The asymptotic variance of
�̂� can be calculated at the final iteration by

var(�̂�) = (X′V−1
z X)−1

.

The GLM can be fitted using PROC GENMOD or using PROC GLIMMIX without
the inclusion of random effects terms (see Section 9.3).

3.1.6 Expressing individual distributions in the general
exponential form

In Section 3.1.3, we introduced the idea of expressing distributions in a general
form for exponential distributions:

f (y; 𝜃, 𝜙) = exp{[y𝜃 − b(𝜃)]∕a(𝜙) + c(y, 𝜙)}.

Forms for a, b and c were given for the Bernoulli, binomial and Poisson distribu-
tions. We now show how these forms are obtained from the distribution densities.

The Bernoulli distribution

The density function
f (y) = 𝜇

y(1 − 𝜇)(1−y)

is, by logging and then exponentiating the right-hand side of this equation, rear-
ranged in the general exponential form as

f (y) = exp[y log(𝜇∕(1 − 𝜇)) + log(1 − 𝜇)].

Thus, 𝜃 = log(𝜇/(1−𝜇)), and we obtain the logit as the canonical link func-
tion. The mean, 𝜇, can then be expressed as the inverse of the logit function,
𝜇= exp(𝜃)/(1+ exp(𝜃))= (1+ exp(−𝜃))−1. Writing the distribution in terms of 𝜃,
we obtain

f (y) = exp{y𝜃 + log[1 − exp(𝜃)∕(1 + exp(𝜃))]}

= exp{y𝜃 − log[1 + exp(𝜃)]}.

Therefore, b(𝜃)= log(1+ exp(𝜃)), a=1 and c(y)=1.

The binomial distribution

The density function

f (y, n) = n!(𝜇)ny(1 − 𝜇)n−ny

(ny)!(n − ny)!
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is rearranged in the general exponential form using the same trick as was used for
the Bernoulli distribution, as

f (y, n) = exp{[y log(𝜇∕(1 − 𝜇)) + n log(1 − 𝜇)]n + log[n!∕((ny)!(n − ny)!)]}.

This again gives 𝜃 = log(𝜇/(1−𝜇)) and the logit as the canonical link function.
Therefore, 𝜇 can again be expressed as exp(𝜃)/(1+ exp(𝜃))= (1+ exp(−𝜃))−1, and
we can write

f (y, n) = exp{[y𝜃 + log{1 − exp(𝜃)∕(1 + exp(𝜃))}]n + log[n!∕((ny)!(n − ny)!)]}

= exp{[y𝜃 − log(1 + exp(𝜃))]n + log[n!∕((ny)!(n − ny)!)]}.

Therefore, b(𝜃)= log(1+ exp(𝜃)), a=1/n, and c(y)= log[n !/((ny) ! (n− ny) !)].

The Poisson distribution

The density function
f (y) = 𝜇

ye−𝜇∕y!

is rearranged in the general exponential form as

f (y) = exp[y log(𝜇) − 𝜇 − log(y!)].

Therefore, 𝜃 = log(𝜇)= g(𝜇), and we obtain the log as the canonical link function.
Substituting for 𝜇= exp(𝜃) gives

f (y) = exp[y𝜃 − exp(𝜃) − log(y!)].

Thus, b(𝜃)= exp(𝜃), a=1 and c(y)=− log(y !).

The Poisson distribution with offset

The density function
f (y, t) = (𝜇t)yte−𝜇t∕(yt)!

is rearranged in the general exponential form as

f (y, t) = exp{[y log(𝜇) − 𝜇]t + yt log(t) − log((yt)!)}.

Thus, 𝜃 = log(𝜇) and again the log is the canonical link function. Substituting
𝜇= exp(𝜃), we may write

f (y) = exp{[y𝜃 − exp(𝜃)]t + yt log(t) − log(yt!)},

giving b(𝜃)= exp(𝜃), a=1/t and c(y)= yt log(yt)− log(yt !).
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The normal distribution

The normal distribution has both a location and a dispersion parameter. Although
it is well known that a GLM is not necessary for analysing normal data, it is helpful
to see this by showing that the canonical link function for the normal distribution
is the identity function. The density function is

f (y) = exp(−(y − 𝜇)2∕2𝜎2)∕
√
(2𝜋𝜎2),

which can be rearranged as

f (y) = exp
[(

y𝜇 − 𝜇
2∕2

)
∕𝜎2 − y2∕2𝜎2 − 1

2
log(2𝜋𝜎2)

]
.

This is now in the general exponential form for two-parameter distributions.
Thus, the canonical link is the identity function 𝜃 = g(𝜇)=𝜇, and 𝜙= 𝜎

2, a(𝜙)=𝜙,
b(𝜃)= 𝜃

2/2 and c(y, 𝜙)=− [y2/𝜙+ log(2𝜋𝜙)]/2.

3.1.7 Conditional logistic regression

This model does not, strictly speaking, form a GLM, but it is mentioned because it
can be very useful for modelling binary data in datasets where there are only a few
observations in each category of a fixed effect (e.g. there are only two observations
per patient in a two-period, cross-over trial). We shall see later in Section 3.3.2
that fitting problems can arise in GLMs with fixed effects containing only a few
observations per category. Using a conditional logistic regression analysis is one
way in which these problems can be avoided. It works by omitting the ‘problem’
effect (e.g. patients in a cross-over trial) as a fixed effect in the model but instead
the likelihood is ‘conditioned’ on this effect. Other effects are fitted as fixed just as
in ordinary GLMs, and results can be interpreted as if the ‘problem’ effect had been
fitted as fixed. A more complete description of the method can be found in Clayton
and Hills (1993, Chapter 29) and Collett (1991, Section 7.7.1). The model can be
fitted using PROC LOGISTICwith the ‘problem’ effect defined within a STRATA
statement. An example of its use will be given in Section 8.5.4.

3.2 Generalised linear mixed models

GLMMs are based on extending the fixed effects GLM to include random effects,
random coefficients and covariance patterns. In Section 3.2.1, we will specify
a general form for the GLMM that encompasses all types of mixed model.
In Section 3.2.2, we define the likelihood function for random effects and
random coefficients GLMMs and introduce a similar function known as the
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quasi-likelihood, which is required for fitting covariance pattern models. Follow-
ing this, in Section 3.2.3, fitting methods for GLMMs will be outlined. These last
two sections can be omitted by readers who do not desire a detailed understanding
of the more theoretical aspects of fitting GLMMs.

3.2.1 The GLMM definition

The GLMM can be defined by
y = 𝛍 + e.

As in the GLM, 𝛍 is the vector of expected means of the observations and is linked
to the model parameters by a link function, g:

g(𝛍) = X𝛂 + Z𝛃.

X and Z are the fixed and random effects design matrices, and 𝛂 and 𝛃 are the
vectors of fixed and random effects parameters as in the normal mixed model. The
random effects, 𝛃, can again be assumed to follow a normal distribution:

𝛃 ∼ N(𝟎,G)

and G is defined just as in Section 2.2. The variance matrix can be written as

var(y) = V = var(𝛍) + R,

where R is the residual variance matrix, var(e). However, V is not as easily specified
as it was for normal data where V=ZGZ′ +R. This is because𝛍 is not now a linear
function of 𝛃. A first-order approximation used by some fitting methods is

V ≈ BZGZ′B + R,

where B is a diagonal matrix of variances determined by the underlying
distribution as described in Section 3.1 (e.g. B= diag{𝜇i(1−𝜇i)} for binary data).
In random effects and random coefficients models, the residual matrix, R, is
diagonal, since the residuals are assumed uncorrelated. The diagonal variance
terms are equal to the expected variances given the underlying distribution, and
thus R=AB as in the GLMs. For random effects and random coefficients models,
V can then be written as

V ≈ BZGZ′B + AB.

In covariance pattern models, correlated residuals are allowed, and R can be
expressed as a product of a correlation matrix defined on the linear scale, P,
and AB:

R = A1∕2B1∕2PB1∕2A1∕2
.

The reason for defining P on a linear scale is because it can then be parameterised
to have a covariance pattern in the same way as normal data. We will be looking
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more closely at how to define covariance patterns in Section 6.2. The approxima-
tion to V then becomes

V ≈ BZGZ′B + A1∕2B1∕2PB1∕2A1∕2
.

This formula can be considered a general form for V, since by taking P= I for
random effects and random coefficients models, we obtain V≈BZGZ′B+AB as
shown previously.

The dispersion parameter

As in the GLMs, variance at the residual level can be increased (or decreased) by
using a dispersion parameter. The residual variance is multiplied by the dispersion
parameter, 𝜙, so that

R = 𝜙A1∕2B1∕2PB1∕2A1∕2
.

If the observed residual variance were exactly equal to that predicted
(A1/2B1/2PB1/2A1/2), then the dispersion parameter would equal one. How-
ever, often, this is not the case. The value of the dispersion parameter is influenced
by several factors, and these will be considered in more detail in Section 3.3.7.

3.2.2 The likelihood and quasi-likelihood functions

As in normal mixed models, a popular way of fitting the GLMM is based on
maximising the likelihood function for the model parameters. However, a diffi-
culty with this is that true likelihood functions can only be defined for random
effects and random coefficients models. A true likelihood function is not available
for covariance pattern models, since a general multivariate distributional form
does not exist for non-normal data (for normal data the multivariate normal
distribution was used). However, we will show how it is possible to get around
this difficulty by defining an alternative function known as the quasi-likelihood
function, which has very similar properties to the likelihood function. In this
section, we will specify the likelihood function for random effects and random
coefficients models, define a quasi-likelihood function for covariance pattern
models and then give a general form of the quasi-likelihood function that is
appropriate for all types of mixed model.

The likelihood function for random effects and random coefficients
models

For these models, we can obtain a true likelihood function from the product of the
likelihoods based on y|𝛃 and 𝛃 (by y|𝛃 we mean y conditional on 𝛃 so that 𝛃 is
treated as constant when defining the variance of y|𝛃). A true likelihood function
is possible because the distributions of y|𝛃 and 𝛃 are known, and hence likelihood
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functions can be formed from them. The likelihood for the fixed effects, 𝛂, and the
variance parameters in the G matrix, 𝛄G, can be written as

L(𝛂, 𝛄G; y) = L(𝛂; y |𝛃)L(𝛄G;𝛃). (B)

Now, 𝛃 is assumed to have a multivariate normal distribution, 𝛃∼N(0, G), so sub-
stituting the multivariate normal density for L(𝛄G; 𝛃) we have

L(𝛂, 𝛄G; y) ∝ L(𝛂; y |𝛃) |G |−1∕2exp(−1∕2𝛃 ′G−1𝛃).

The y|𝛃 are independent because we have assumed uncorrelated residuals (R is
diagonal), and therefore L(𝛂; y|𝛃) is simply defined using the assumed distribution
of y|𝛃 (e.g. binomial, Poisson). This can be expressed using the same form obtained
in Section 3.1.6 for the GLMs:

L(𝛼, y|𝛃) = exp[y′A−1𝛉 − b(𝛉)1∕2′
A−1b(𝛉)1∕2 + K]

∝ exp[y′A−1𝛉 − b(𝛉)1∕2′
A−1b(𝛉)1∕2],

where
𝛉=X𝛂+Z𝛃,
A= diag{ai}, where ai are constant terms (see Section 3.1.4),

b(𝛉)= (b(𝜃1), b(𝜃2), … , b(𝜃n))′, where b is the function used in the general
distributional form (see Section 3.1.3),

K= constant.

The overall likelihood for 𝛂 and 𝛄G can then be expressed as

L(𝛂, 𝛄G; y) ∝ exp[y′A−1𝛉 − b(𝛉)1∕2′
A−1b(𝛉)1∕2]|G|−1∕2 exp(−1∕2𝛃 ′G−1𝛃),

and the log likelihood as

log{L(𝛂, 𝛄G; y)} = y′A−1𝛉 − b(𝛉)1∕2′
A−1b(𝛉)1∕2 −1∕2log|G |

−1∕2𝛃′G−1𝛃 + K. (C)

The quasi-likelihood function for covariance pattern models

In these models, the observations are correlated, and the model is parameterised
by the fixed effects, 𝛂, and the variance parameters used in the R matrix, 𝛄R.
However, since a general multivariate distributional form is not available for
non-normal data, we cannot define a true likelihood function. This difficulty is
overcome by instead specifying a quasi-likelihood function, QL(𝛂, 𝛄R; y), which
has similar properties to a true likelihood. It is defined so that the differential of its
log with respect to 𝛂 has the same form as that of a true log likelihood with respect
to 𝛂. The differential of the true log likelihood for random effects models (C) with
respect to 𝛂 can be shown to be

𝛿 log{L(𝛂, 𝛄G; y)}∕𝛿𝛂 = X′A−1(y − 𝛍)

(it is obtained in a similar way to dlog(L)/d𝛂 in Section 3.1.6).
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Now since R=AB, this can be equivalently written by substituting A−1 =BR−1

as
𝛿 log{L(𝛂; y |𝛃)}∕𝛿𝛂 = X′BR−1(y − 𝛍),

where R is the residual covariance matrix. This form can then be used to define
the differentiated log quasi-likelihood function for covariance pattern models, so
we may write

𝛿 log{QL(𝛂, 𝛄R; y)}∕𝛿𝛂 = X′BR−1(y − 𝛍).

We note that some authors define the quasi-likelihood function as the log of the
quasi-likelihood specified here. However, it would seem to make more sense to
define it as we have so that it corresponds to the likelihood function.

A general quasi-likelihood function for all GLMMs

It is helpful to define a quasi-likelihood form that is appropriate for all types
of GLMMs, which may contain random effects, coefficients and covariance
patterns. This is obtained by replacing L(𝛂; y|𝛃) in (B) by QL(𝛂, 𝛄R; y|𝛃). Doing
this, we obtain

QL(𝛂, 𝛄; y) = QL(𝛂, 𝛄R; y |𝛃)L(𝛄G;𝛃),
and

log{QL(𝛂, 𝛄; y)} = log{QL(𝛂, 𝛄R; y |𝛃)} −1∕2 log |G | −1∕2𝛃′G−1𝛃 + K, (D)

where
𝛄 = (𝛄G, 𝛄R).

This function will correspond to a true likelihood function whenever the resid-
uals are uncorrelated (i.e. no 𝛄R parameters are included). From now on, the
term ‘quasi-likelihood’ will be used to infer either a true likelihood (for models
with uncorrelated residuals) or a quasi-likelihood (for models with correlated
residuals).

3.2.3 Fitting the GLMM

The quasi-likelihood is less straightforward to maximise than the likelihood
function defined for normal mixed models. This is mainly because it is not now
a linear function of 𝛂, and a solution for 𝛂 cannot be expressed directly in
terms of the variance parameters. Several methods are available for maximising
the quasi-likelihood. We are unable to recommend a single ‘best’ approach for
fitting all types of GLMM; however, we will introduce two methods that are used
within SAS procedures to maximise the quasi-likelihood: generalised estimat-
ing equations (GEEs) and pseudo-likelihood. We also describe how a Bayesian
approach can be used. For those who wish for a greater understanding of the
area, Breslow and Clayton (1993) give an in-depth coverage of approaches to
fitting GLMMs.
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Generalised estimating equations (GEEs)

This method was first suggested by Liang and Zeger (1986) and was initially
developed for analysing covariance pattern models. This method is based
on alternating between solutions for the fixed effects and for the variance
parameters. The iterative procedure can be defined as follows:

1. A solution for the fixed effects is obtained while holding the variance parame-
ters constant.

2. A solution for the variance parameters is obtained while holding the fixed
effects constant.

3. The variance parameters are fixed at the values obtained in step 2, and a second
solution for the fixed effects is obtained.

4. Steps 2 and 3 are repeated until the parameter estimates converge.

We now describe how solutions for the fixed effects and variance parameters are
obtained at each step.

The fixed effects solution (steps 1 and 3) The solution for the fixed effects
can be obtained by differentiating the log quasi-likelihood with respect to 𝛂 and
setting the resulting expression to zero. Differentiating the log quasi-likelihood
given by (D) previously and setting to zero gives

X′BR−1(y − 𝛍) = 0.

This expression gives rise to n equations which are often referred to as score
equations or GEEs. A solution for 𝛂 cannot be obtained by rearranging this
expression, as was the case in normal mixed models, because the equations are
non-linear in 𝛂 (recall that 𝛍= g−1(X𝛂)), and for this reason, the solution needs
to be found iteratively. There are various methods available for obtaining the
solution. Often, a linearised pseudo variable of the form that will be described for
the pseudo-likelihood is used. However, we will not go into more detail on these
methods in this book.

The variance parameters solution (step 2) Having obtained estimates of the
fixed effects, the variance parameters are estimated in a similar way to that used
for iterative generalised least squares (see Section 2.2). The matrix of products of
the full residuals (y−X𝛂) is set equal to the variance matrix, V, specified in terms
of the variance parameters. This gives

V = (y − 𝛍)(y − 𝛍)′,

which leads to a set of n× n simultaneous equations (one for each element in
the n× n matrices) that can be solved for the variance parameters (n=number
of observations). The equations will have a similar form to those used in
Section 2.2.4.

The equations do not take account of the fact that 𝛂 will be estimated and not
known. However, as in normal mixed models, it is possible to adapt them to provide
the unbiased REML estimators (see Section 2.2.1).
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GEEs are used to fit covariance pattern models when the REPEATED statement
is used in PROC GENMOD.

Pseudo-likelihood

This method can be used to fit both random effects models and covariance pattern
models. It was proposed by Wolfinger and O’Connell (1993) and is one of the
algorithms available within PROC GLIMMIX (see Section 9.3). Pseudo-likelihood
maximises the quasi-likelihood by iteratively analysing a linearised pseudo
variable (i.e. a transformation of y onto the linear scale) using weighted normal
mixed models. The method is referred to as ‘pseudo-likelihood’ because the
likelihood function maximised at each iteration is that of the pseudo variable and
not that of the original data. The ‘pseudo variable’ introduced in Section 3.1.5
based on a first-order Taylor series expansion is again used:

z = g(𝛍) + (y − 𝛍)B−1

= X𝛂 + Z𝛃 + (y − 𝛍))B−1
.

z has variance

Vz = var(X𝛂 + Z𝛃) + B−1var(y − 𝛍)B−1

= ZGZ′ + B−1RB−1
.

By rewriting the residual matrix R as a product of a correlation matrix on the
linear scale, P, and AB–1, Vz can be re-expressed as

Vz = ZGZ′ + A1∕2B−1∕2PB−1∕2A1∕2
.

In random effects and random coefficients models, the residuals are uncorrelated
and P = I, so Vz then simplifies to

Vz = ZGZ′ + AB−1
.

Conditioning the z on 𝛃 allows ZGZ′ to be omitted from the variance matrix
formula. z|𝛃 has the following multivariate normal distribution:

z|𝛃 ∼ N(X𝛂 + Z𝛃,A1∕2B−1∕2PB−1∕2A1∕2).

z can now be analysed as a weighted normal mixed model with residual matrix
P (defined on the linear scale) and diagonal weight matrix A–1B (inverse product
of pre- and post-multipliers of P, A1/2B−1/2B−1/2A1/2). Because z and B are
dependent on the estimates of 𝛂 and 𝛃, the normal mixed model needs to be fitted
iteratively. Any of the methods described in Chapter 2 can be used to do this.
However, again, variance parameters will be biased downwards to some extent if
maximum likelihood (ML) or IGLS are used, but this problem is not expected with
REML and RIGLS. We will now define the iterative procedure more explicitly.
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The iterative procedure The raw data, y, can be taken as initial values for z,
and the identity matrix, I, can be used for the initial weight matrix. Alternatively,
g(y) can be taken as initial values for z, with an adjustment if necessary to prevent
infinite values. A weighted normal mixed model is then fitted using a method
such as REML. This completes the first iteration and provides initial estimates
for �̂� and 𝛃. New values of z and B are calculated using �̂� and 𝛃 and from these
a second weight matrix, A–1B. A second weighted mixed model is then fitted,
and the process is continued until the parameter estimates converge (i.e. until
parameter values change very little between successive iterations). This method
is computationally costly because normal mixed models, themselves requiring
iterations, are fitted iteratively.

Fixed and random effects variance Once the model has converged, the fixed
and random effects and their variances can be calculated using the formula spec-
ified for normal mixed models in Sections 2.2.3 and 2.2.4:

�̂� = (X′V−1
z X)−1X′V−1

z z,

var(�̂�) = (X′V−1
z X)−1

,

and, for random effects

𝛃 = GZ′V−1
z (z − X𝛂),

var(𝛃) = GZ′V−1
z ZG − GZ′V−1

z X(X′V−1
z X)−1X′V−1

z ZG.

Just as in normal mixed models, because Vz is estimated and not known, there
can be a small amount of downward bias in var(�̂�) and var(𝛃) (see Sections 2.4.3
and 3.3.6).

The results obtained from GEEs and pseudo-likelihood are expected to be similar;
however, there are often slight differences due to the different computational
approaches.

Bayesian methods

Bayesian methods can be used to fit GLMMs in as much the same way as normal
mixed models. Again, they have been developed most fully for fitting random
effects and random coefficients models where the true likelihood function is
available. The posterior distribution of the parameters can be determined in the
same way as defined in Section 2.3.2 except that a non-normal distribution is
assumed for the data. The resulting posterior density surface can then be used
to provide estimates, standard deviations and probability intervals for the model
parameters. As in normal mixed models, some of the bias problems are overcome
when a Bayesian approach is used, although we will see later that the potential
problems associated with random effects shrinkage are not avoided. A GLMM
may be fitted in SAS using a Bayesian approach using PROC MCMC.
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3.3 Practical application and interpretation

In this section, some points relating to the practical application and interpretation
of GLMs and GLMMs will be covered. Experience with these models is still limited,
and therefore some of the issues are still far from resolved.

3.3.1 Specifying binary data

Binary data can be specified either as a series of zeros and ones (Bernoulli
form) or as frequencies of ‘success’ out of a number of ‘tries’ (binomial form).
If data are recorded in Bernoulli form (as is often the case in clinical trials),
then it is usually most convenient to analyse them as such. This also has the
advantage that other measurements made at the observation level (e.g. baseline
effects) can be included in the model as covariates. If there are no baseline
effects, then data can alternatively be aggregated to give frequencies (e.g. at the
centre⋅treatment level) and analysed in binomial form. In this situation where
data are in binomial form, we would suggest that the dispersion parameter is
fixed at one, and a random effect is fitted at the observation level (e.g. an effect
for each centre⋅treatment frequency). This approach might be appropriate for an
analysis of centre⋅treatment frequencies of an adverse event from a multi-centre
trial. Fitting centre⋅treatment effects as random with the dispersion parameter
fixed at one will allow variation at the observation level to be modelled by the
centre⋅treatment variance component. The meta-analysis example in Section 5.7
shows how binomial trial⋅treatment frequencies can be analysed in this way.

Analysing binomial frequencies is less intensive computationally than using
Bernoulli data. However, results will differ to some extent between the two
analyses because variance at the residual level is modelled separately from that
at the random effects level in a Bernoulli model. The difference will be more
noticeable in datasets where there are uniform random effects categories. In
this situation, we would prefer an analysis of the data in Bernoulli form because
the dispersion parameter can then help overcome any biases caused by random
effects shrinkage.

3.3.2 Uniform effects categories

We define a fixed or random effects category as ‘uniform’ if an infinite value is
obtained when the link function is applied to the mean of observations in the cat-
egory. It occurs when all observations within the category are zero in binary and
Poisson data or when all observations are ni/ni in binary data. For example, centre
effects are fitted in some of the analysis models we will use in Section 3.4 to analyse
an adverse event ‘cold feet’ in a multi-centre trial. In some centres, no subjects were
recorded as having cold feet, and this caused these centre effects to be uniform.
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For uniform fixed effects, a corresponding effect estimate on the linear scale
cannot then be estimated and will to tend towards plus or minus infinity. For
example, if in a simple between-patient trial the frequency of success for one of
the treatments is 100%, then a model using a logit link function would attempt
to estimate the treatment mean as log(1.00/0.00).

However, sensible estimates of uniform random effects (and their corresponding
variance components) can still be obtained, provided not all categories within a
particular random effect are uniform (although in some circumstances the esti-
mates of the variance components may be biased, see Section 3.3.5). This is pos-
sible because the random effects estimates are shrunken, and thus information
from all observations, not just those for the particular effect, is used in forming
the estimates. However, when all categories of a random effect are uniform, the
model will not converge. In other situations, whether convergence is achieved is
less predictable and depends on the number of uniform categories, the number of
fixed effects fitted and on how the fixed effects relate to random effects.

Uniform categories are most likely when the probability of success is very small
or large in binary data or when the event rate is very small in Poisson data. They
are also likely when there are small numbers of observations within some of the
fixed effects categories.

Uniform fixed effects categories are easily identified in the results by estimates
and standard errors that are extremely large. When this occurs, the results given
for other effects are in fact equivalent to a reanalysis of the data, with observations
corresponding to the uniform category removed, and thus they can still be used.
If it is important to test the overall significance of a set of fixed effects containing a
uniform category (e.g. treatments), this can be done by comparing the likelihoods
(or quasi-likelihoods) between models that include and exclude the effects using a
likelihood ratio test (see Section 2.4.4).

Alternatively, when a fixed effects model is being fitted to binary data, an
exact logistic regression where all possible combinations of data values are
considered can be used. This can be carried out using the EXACT statement in
PROC LOGISTIC.

Uniform random effects categories are often indicated by a low dispersion param-
eter or a lack of convergence.

3.3.3 Negative variance components

Negative estimates of variance components can occur just as in the normal mixed
model, and the points made in Section 2.4.1 apply. An additional influence in the
GLMM making a negative variance component estimate more likely is the possible
bias due to the effects of random effects shrinkage (see section 3.3.1). When a
Bayesian method is used, usually, a non-informative prior distribution will be
set for variance components, and therefore it is not possible for the posterior
distribution of the variance components to include negative values.
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3.3.4 Presentation of fixed and random effects estimates

In this section, we look at how results for fixed and random effects estimates can
be presented and interpreted.

The logit link function

The logit link function, log(𝜇/(1−𝜇)), is the canonical link function for Bernoulli
and binomial distributions (see Section 3.1.4). Fixed effects GLMs using this link
function are often referred to as logistic regression analyses. Results for both GLMs
and GLMMs are obtained on the logit scale and can be expressed in terms of odds
ratios (ORs) when exponentiated. To see this, we consider a simple, single-centre,
parallel group trial to compare two treatments, with a binary outcome. The model
could be written as

log(𝜇∕(1 − 𝜇)) = a + bx,

where x is an indicator variable denoting treatment (say, one if the treatment is A
and zero if the treatment is B).

Thus, using pA and pB to denote the probabilities of success,

log(pA∕(1 − pA)) = a + b,

log(pB∕(1 − pB)) = a,
and, by subtraction,

log(pA∕(1 − pA)) − log(pB∕(1 − pB)) = b.

Hence,

log
(pA∕(1 − pA))
(pB∕(1 − pB))

= b,

and, on exponentiating,
pA∕(1 − pA)
pB∕(1 − pB)

= eb
.

The numerator of this expression gives us the odds of success on treatment A
(i.e. the probability of success divided by the probability of failure). Similarly,
the denominator is the odds of success on treatment B, leading to eb being the
estimate of the OR.

Note that software packages vary in their parameterisations of the fixed effects,
and therefore care is needed to ensure the direction of effects is interpreted
correctly. Calculation of ORs will be illustrated in the analysis of cold feet in the
hypertension trial in Section 3.4.

The log link function

The log function is the canonical link function for Poisson distributions. Models
using this link function can be described as log-linear models. Results are obtained
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on the log scale, which, as for logistic regression, is not easy to interpret directly. In
a similar way, though, exponentiating the coefficients allows them to be expressed
this time in terms of relative rates (RRs). The RR is simply the ratio of two event
rates; for example, the rate on treatment A divided by the rate on treatment B can
be used to compare the two treatments:

RR = Rate of event on treatment A
Rate of event on treatment B

.

The calculation of an RR will be illustrated in the analysis of epileptic seizure
frequencies in Section 6.4.

If the log link function is used to analyse data that are binary, the rates then
become risks (or probabilities), and RRs are then sometimes instead referred to as
relative risks.

3.3.5 Accuracy of variance parameters and potential bias

It is important that variance parameters are estimated with a reasonable accuracy
because of their effect on the calculation of fixed effects and their standard errors.
As in normal mixed models, the accuracy of variance parameters is dependent on
the number of DF used to estimate them. Although there are no hard and fast rules,
it would seem inadvisable to fit an effect as random if less than about five DF were
available (e.g. a multi-centre trial with five or less centres).

An additional cause of bias in GLMMs is due to the shrinkage of random
effects estimates, particularly when there are uniform random categories. The
random effects GLMM assumes that y|𝛃 has a distribution where the variance
(in one-parameter distributions) is defined as a function of the expected means
(e.g. 𝛍 (1 − 𝛍) and 𝛍 for binomial and Poisson data, respectively). However, this
relationship between the mean and variance does not hold exactly because
random effects estimates are shrunken compared with their raw means.

For binary data, this causes the predicted residual variance, AB, to be greater
than that observed (i.e. var(y − g–1(X𝛂 + Z𝛃))) whenever shrinkage occurs
towards 0.5 and less than that observed otherwise. This can be seen for binomial
data by considering observations within a particular random effect category. If
their raw mean is 𝜇 and their shrunken mean is 𝜇s, their observed variance can
be shown to be var(y) = Σi(yi − 𝜇s)2∕n = 𝜇

2
s − 2𝜇𝜇s + 𝜇. This is greater than the

predicted variance, 𝜇s(1 – 𝜇s), whenever 𝜇s is in the range (𝜇, 0.5) for 𝜇 <0.5
or (0.5, 𝜇) for 𝜇 >0.5. For uniform categories, shrinkage is always towards 0.5,
and the predicted variance is therefore always greater than that observed. In
datasets with several uniform random effect categories, this discrepancy can
cause appreciable bias in the variance component estimates, particularly when
methods using a linear approximation are used, such as pseudo-likelihood.
Bayesian methods do not use approximations of the linear part of the model,
and their results are expected to be less prone to bias in the presence of uniform
random categories. When no random effect categories are uniform, the variance
parameter bias is likely to be small.
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For Poisson data, it can be shown that var(y) = 𝜇
2
s − 2𝜇𝜇s + 𝜇

2 + 𝜇, where 𝜇

is the raw mean. This is greater than the predicted variance, 𝜇s, except when 𝜇s
is in the range (𝜇, 𝜇 + 1). For uniform categories (where 𝜇 = 0), the shrunken
estimate may or may not be in the range (0, 1), and so the predicted variance can
be either less than or greater than that predicted. For this reason, the problem of
biased variance components is less likely in analyses of Poisson data.

3.3.6 Bias in fixed and random effects standard errors

Standard errors of fixed and random effects are calculated from variance param-
eters, and therefore any bias in these parameters will also cause bias in the fixed
effects standard errors. In addition, a downward bias can occur for the same
reasons given for normal mixed models whenever an effect is estimated using
information from several error strata (see Chapter 2). However, this second source
of bias is usually small and can be adjusted for using the Kenward–Roger option
available in theGLIMMIX procedure. InSAS/STAT 12.1 and later versions, there
is an alternative option (DDFM=KR2) that obtains Kenward and Roger’s improved
adjustment (Kenward and Roger, 2009) and further reduces the bias in certain
types of covariance pattern model. Among the examples considered in this text,
this new option would provide a different standard error to the DDFM=KR option
for the first-order autoregressive structure and the heterogeneous structures
((vi)–(viii)) described in Section 6.2.1.

The ‘empirical’ variance estimator has been suggested as a more robust estima-
tor of the fixed effects variance for covariance pattern models. This estimator takes
into account the observed covariance in the data and may help alleviate some of
the bias in variance parameter estimates and any misspecification of the covari-
ance pattern. However, it is not appropriate if there are any subjects with only one
observation. There are two ways the empirical variance can be calculated. If the
analysis is based on a linearised approximation (e.g. pseudo-likelihood), it can be
based directly on the linearised data and their variance matrix at the last iteration.
For example, in pseudo-likelihood the approximation z= g(𝛍)+ (y−𝛍)B−1 is used
and the empirical estimator of var(�̂�) can be calculated as

var(�̂�) = (X′V−1
z X)−1(X′V−1

z cov(z)V−1
z X)(X′V−1

z X)−1
.

Alternatively, it can be based on the raw data and its variance matrix by substitut-
ing a ‘linked’ design matrix, BX, for the X matrix in the formula given in Chapter 2
(i.e. the usual design matrix X is pre-multiplied by the diagonal matrix of expected
observation variances, B) to give

var(�̂�) = (X′BV−1 BX)−1X′BV−1 cov(y)V−1BX(X′BV−1BX)−1
.

However, the empirical variance is known to be biased (seeSAS PROC GLIMMIX
documentation) and studies of normal data have found it to be less reliable than
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the model-based variance, particularly in small datasets. It is possible that careful
modelling of the covariance pattern will provide more reliable estimates of fixed
effects variances than the empirical estimator. Alternatively a variety of bias
adjustments to the empirical estimator are available in PROC GLIMMIX, but we
have had no experience in their application.

The different influences on biases both in variance components and effect
standard errors are summarised in Table 3.1, and suggested actions are made
for the different situations. When a random effects model appears unsuitable, an
alternative may be to reparametrise the model in terms of a covariance pattern
model. For example, instead of fitting patient effects as random in a crossover
trial, a covariance pattern model allowing correlations between the repeated
observations on the same patients could instead be fitted.

Table 3.1 Influences on variance component and fixed effects standard error biases.

Problem Influences Comments and suggestions
Variance

component
bias and
inaccuracy

Too few random
effects

If less than about five categories, inadvisable
to fit effect as random

Uniform random
effect categories

If too many (perhaps greater than about
30%) categories are uniform, it may be
inadvisable to fit effect as random

Influence could be assessed by fitting a
dispersion parameter (see Section 3.3.7)
and assessing if it is very different from one

Uniform categories most likely in situations
with few observations per category (e.g.
two-way crossover with two observations
per patient)

Approximations used
in likelihood-based
fitting method

Likely to accentuate any bias due to too few
random effects and uniform random effect
categories

This influence can be eliminated by using a
Bayesian approach

If enough random effect categories and few
uniform categories, a likelihood-based
approach may also be satisfactory

Downward bias
in fixed
effects SEs

Formula assuming
variance
components known

Overcome using Bayesian approach or
Kenward–Roger adjustment

More bias when: fewer random effects, fewer
observations per random effect, more
imbalance (as in normal mixed models)

Variance component
bias

As indicated above
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3.3.7 The dispersion parameter

The dispersion parameter allows the residual variances to increase or decrease
from their predicted values; the residual variance matrix is taken to be R = 𝜙AB
in GLMs and R=𝜙A1/2B1/2PA1/2B1/2 in GLMMs.

The GLM

In the GLM, it is only advisable to fit a dispersion parameter when binomial or
Poisson frequencies are being modeled. It will then model any over- or under-
dispersion and will have a role similar to a variance component at the residual
level. Observed residual variation may be greater or less than that predicted by the
underlying distribution of the data (i.e. R=AB), and the dispersion parameter will
take account of this to some extent. For example, if trial⋅treatment frequencies
from a meta-analysis were in binomial form and trial and treatment effects
were fitted, the dispersion parameter would reflect the trial⋅treatment variation.
A value greater than one indicates more variation than expected by chance.
This is equivalent to obtaining a positive trial⋅treatment variance component
and can be referred to as ‘over-dispersion’. Conversely, when the dispersion
parameter is less than one, it is equivalent to obtaining a negative trial⋅treatment
variance component estimate that can be referred to as ‘under-dispersion’. In
this situation, a decision needs to be made as to whether this lower than expected
variance is genuine. If the lower variance does not seem plausible, then the
dispersion parameter should be omitted from the model. This is equivalent to
fixing a negative variance component at zero.

When data are in Bernoulli form, the observed variation is usually almost exactly
equal to the predicted variances given by the diagonal terms in AB, and the disper-
sion parameter will be close to one. If, however, there are uniform effect categories,
its value will be less than one, but in that situation, a GLM is not advisable. Thus,
there is no reason to include the parameter when data are in Bernoulli form.

The GLMM

In the GLMM, the dispersion parameter can be influenced by both over- or
under-dispersion of the data and by the effects of random effects shrinkage.
Random effects shrinkage can cause the predicted residual variance to be greater
than that observed (particularly when uniform random effect categories are
present in binary data), and this is likely to cause a smaller value of the dispersion
parameter. Thus, interpretation of the dispersion parameter in the GLMM can be
difficult, since it is not always clear which factors have affected it.

When binomial data (i.e. observations expressed as frequencies over denomi-
nators) with no uniform random effect categories are analysed, the dispersion
value can be interpreted largely in terms of over- or under-dispersion. However,
it is usually preferable to analyse binomial data by fitting a random effect at the
observation level (i.e. with each observation taken as a separate category) rather
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than fitting a dispersion parameter. This more adequately allows for differences
in the sizes of the denominators and the influence in determining variance at the
observation level.

In binomial datasets where there are uniform random effect categories, it is more
difficult to differentiate between the influences of random effects shrinkage and of
over- or under-dispersion (for this reason, we would usually recommend that such
datasets are analysed in Bernoulli form.) However, a dispersion parameter of less
than one is most likely to be due to random effects shrinkage, whereas a dispersion
parameter greater than one is likely to indicate over-dispersion, since random
effects shrinkage is expected to cause the dispersion parameter to decrease.

In Bernoulli data, values of the dispersion parameter that are noticeably differ-
ent to one are likely to indicate the model is not fitting well and that estimates of
the variance components are likely to be biased. This is most likely to occur when
there are uniform random categories. If the value is considerably less than one,
then a simulation approach could be tried in place of a likelihood-based method.
However, when there is a high proportion of uniform categories, it may be more
appropriate to respecify the model, either not fitting the offending random effect or
in terms of a covariance pattern model with correlated observations rather than
random effects.

In Poisson datasets, the dispersion value can usually be interpreted largely in
terms of over- or under-dispersion. This is because uniform random categories do
not usually affect its value greatly.

Should a dispersion parameter be fitted? We believe that it is usually
helpful to include a dispersion parameter unless a random effect is being fitted to
Bernoulli data at the residual level. Its role will be either to model genuine over- or
under-dispersion in binomial or Poisson data or to help overcome discrepancies
between the observed and predicted residual variation caused by random effects
shrinkage. It can also be a useful diagnostic aid to help determine when the
GLMM may be misspecified or inappropriate.

Covariance pattern models

The dispersion parameter in covariance pattern models fitting no random effects
has the same role as in GLMs and the points made previously for GLMs apply.

3.3.8 Significance testing

GLMs

Fixed effects can be tested using chi-squared tests. These are based on asymptotic
theory; that is, as sample sizes become larger, the distribution of fixed effects
estimates conform more closely to normal distributions, the standard deviations
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of which are increasingly well estimated by fixed effects standard errors. If a
dispersion parameter has been fitted, it may be more appropriate to use instead
Wald F tests to take account of the fact that a residual variance parameter is
estimated. The Wald F statistic is calculated as described in Section 2.4.4. How-
ever, note that the F test still relies on the asymptotic normality of the fixed effects
just as the chi-squared test does. Theory to underpin the analysis of datasets with
small sample sizes is, however, remarkably sparse.

GLMMs

We first consider significance tests when a likelihood-based approach is used.

Fixed and random effects These effects can be tested using Wald F and t
tests calculated on the linear scale as described in Section 2.4.4. These tests
are preferable to chi-squared tests, as they take into account the uncertainty in
the variance parameters (including the dispersion parameter). However, both
the chi-squared and F tests rely on the asymptotic normality of the fixed effects
estimates. The Satterthwaite DF can be calculated for the F (and t) tests in just
the same way as for normal mixed models. However, there is a situation where
these DF would not be appropriate, although it is a situation that we have already
recommended should be avoided. If neither a dispersion parameter, nor a variance
component is modelled at the residual level, a conservative estimate could be
taken as the lowest DF of the error strata used for estimating the fixed effect.
If a Bayesian method is used, then tests can be performed by calculating exact
‘Bayesian’ p-values from the marginal posterior distribution for each effect (see
Section 2.3.3).

Variance parameters A variance parameter can be tested by comparing
likelihoods (or quasi-likelihoods) between models fitting and not fitting the
parameter using a likelihood ratio test as described in Section 2.4.4. The theoret-
ical basis for this approach has only been proved for true likelihoods, although
we believe that quasi-likelihood-based tests will still give good approximations. In
SAS, PROC GLIMMIX outputs pseudo-likelihoods and the COVTEST statement
provide statistical inferences about the variance parameters for a limited range
of situations (see the on-line SAS help for further details). Note that Bayesian
models are usually set up to sample only positive variance components, and in
that situation, variance components cannot be tested for significance.

3.3.9 Confidence intervals

When a likelihood-based approach such as pseudo-likelihood is used, confidence
intervals for an effect may be obtained using the mean and standard error
estimates given on the linear (linked) scale. These confidence intervals can
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often be converted to a more interpretable scale, usually by exponentiation. For
example, ORs can be obtained when the logit link function is used, as well as
relative risks for the log link function.

Percentage points from the t distribution with the DF calculated as described
in Section 2.4.4 can be used to take into account the fact that the variance
and dispersion parameters are estimated. If the software used does not provide
t statistics, the normal distribution value of 1.96 can be substituted to provide a
more approximate (and unduly narrow) confidence interval.

Lower 95% confidence limit = mean effect − tDF,0.975 × SE,

Upper 95% confidence limit = mean effect + tDF,0.975 × SE.

If a Bayesian approach is used, exact probability intervals may be obtained
from the marginal posterior distribution for each effect (see Section 2.3). This is
demonstrated in Sections 2.5 and 3.4.

3.3.10 Model checking

In the GLMM, it is assumed that the random effects are normally distributed and
uncorrelated. As for normal mixed models (see Section 2.4.6), fixed effects and
variance component estimates are not usually sensitive to a misspecification of the
random effects distribution. However, random effect predictions may be affected
when their distribution is misspecified and, if of interest, should be interpreted
cautiously. Plots of the random effects are helpful for identifying any outlying
effect categories but may not always detect a lack of normality.

The residuals y − �̂� do not need to be checked for Bernoulli data. However, if the
data are binomial (i.e. expressed as frequencies with denominators) or Poisson,
then residual plots can be used to identify outlying observations. It should be
borne in mind that normal plots will not necessarily produce straight lines.
The residuals, y − �̂�, do not have equal variances, and therefore they should
first be linearised by dividing by their predicted standard errors, A1/2B1/2 (e.g.
(𝜇i(1−𝜇i))1/2 for binary data) to give the ‘Pearson’ residuals. Note that when
data are analysed using a linearised pseudo variable (as in pseudo-likelihood), the
‘pseudo’ residuals will already be on a linear scale and can be checked directly.

3.3.11 Determining whether the simulated posterior distribution
has converged

When a Bayesian analysis is carried out, the simulated posterior should be
examined to obtain reassurance that it has converged, that is formed a stationary
distribution. The approaches described for normal data in Section 2.4.8 may
be used.
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3.4 Example

3.4.1 Introduction and models fitted

The multi-centre trial of treatments for lowering blood pressure introduced in
Section 1.3 is used again in this section. An adverse event, ‘cold feet’, is analysed
as a binary variable, and observations at the final or last attended visit are used.
Cold feet was, in fact, recorded on a scale of 1–5: 1=none, 2= occasionally,
3= on most days, 4=most of the time and 5= all of the time. A binary ‘cold feet’
variable was created by taking categories 1 and 2 as negative and categories 3–5
as positive. The frequencies of cold feet by treatment and centre are shown in
Table 3.2. In this trial, ‘cold feet’ was recorded at baseline so, in order to include
a baseline covariate in the model (and so reduce between-patient variation), we
will analyse the data in Bernoulli form.

Table 3.2 indicates that there are several zero frequencies of cold feet, and these
will lead to uniform centre and centre⋅treatment categories. This in turn may
cause variance component bias (see Section 3.3.5), and it is not clear whether a
random effects model will be satisfactory. In this section, we will fit a variety of
models (see Table 3.3) and discuss their strengths and weaknesses. In practice,
only Model 1 is likely to be considered as a fixed effects model, since the large
number of uniform categories will cause problems in estimating satisfactory treat-
ment effects in Models 2 and 3 (as discussed in Section 3.4.2). In Model 4, centre
effects are fitted as random, and in Model 5, both centre and centre⋅treatment
effects are fitted as random. Model 5 takes into account the random variation
in the treatment effect between centres, and results can be related with more
confidence to the ‘population’ of potential centres. Models 4 and 5 are both fitted
using pseudo-likelihood.

Models 6 and 7 are the same as Models 4 and 5, except that they are fitted using
a Bayesian model with non-informative priors to obtain a joint (posterior) distri-
bution of the model parameters. The Bayesian models are set up in a similar way to
the normal example described in Section 2.5, except that Bernoulli distributions
are now assumed for the observations. Again, normal distributions with zero
means and very large variances (of 10,000) were used as non-informative priors
for the fixed effects (baseline and treatment), and inverse gamma distributions
with very small parameters (of 0.01) were used as non-informative prior distri-
butions for the centre and centre⋅treatment variance components. Note that this
prior specification for the variance components ensures that negative variance
component samples cannot be obtained. Five hundred thousand samples were
taken using MCMC (see Section 2.3.5) and a thinning factor of 10 to provide the
posterior distribution of the model parameters. The values sampled were then
used directly to obtain parameters estimates, standard deviations, probability
intervals and ‘Bayesian’ p - values in exactly the same way as described for the
example given in Section 2.5.
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Table 3.2 Frequencies of cold feet by treatment and centre.

Treatment

Centre A B C Total

1 3/13 5/14 1/12 9/39
2 2/3 0/4 0/3 2/10
3 0/3 0/3 0/2 0/8
4 1/4 1/4 0/4 2/12
5 1/4 3/5 0/2 4/11
6 0/2 1/1 1/2 2/5
7 0/6 1/6 0/6 1/18
8 1/2 0/1 1/2 2/5
9 – – 0/1 0/1

11 0/4 1/4 0/4 1/12
12 0/3 1/3 0/4 1/10
13 1/1 0/1 0/2 1/4
14 0/8 2/8 1/8 3/24
15 1/4 0/4 0/3 1/11
18 0/2 0/2 0/2 0/6
23 1/1 – 0/2 1/3
24 – – 0/1 0/1
25 0/3 0/2 0/2 0/7
26 0/3 1/4 0/3 1/10
27 – 1/1 0/1 1/2
29 1/1 – 0/1 1/2
30 0/1 0/2 0/2 0/5
31 0/12 0/12 0/12 0/36
32 1/2 0/1 0/1 1/4
35 0/2 0/1 – 0/3
36 0/9 5/6 0/8 5/23
37 0/2 0/1 1/2 1/5
40 0/1 1/1 – 1/2
41 0/2 0/1 0/1 0/4
Total 13/98 23/92 5/93 41/283

3.4.2 Results

Estimates of the variance components and fixed effects for each model are shown
in Table 3.4.

Fixed effects models (1–3)

Several uniform effects categories occur in Models 2 and 3. These categories
are easily identified in the results by estimates and standard errors that are
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Table 3.3 Models used to analyse ‘cold feet’ in a multi-centre trial.

Model Fixed effects Random effects Method

1 Baseline, treatment – GLM
2 Baseline, treatment, centre – GLM
3 Baseline, treatment, centre⋅treatment – GLM
4 Baseline, treatment Centre P-La

5 Baseline, treatment Centre, centre⋅treatment P-La

6 Baseline, treatment Centre Bayes
7 Baseline, treatment Centre, centre⋅treatment Bayes

aP - L= pseudo - likelihood.

Table 3.4 Estimates of variance components and fixed effects (on the logit scale).

Variance components

Model Centre Treatment⋅centre Dispersion parameter −2log(L)

1 – – 1.00a (1.01) 178.17
2 – – 1.00a (0.79) 147.78
3 – – 1.00a (0.53) 100.05
4 0.09 – 0.94 –
5 0.00 1.88 0.54 –
6 0.08b – 1.00a –
7 0.09b 0.53b 1.00a –

Treatment effects (SEs)

Model Baseline A − B A − C B − C

1 2.97 (0.49) −0.77 (0.44) 0.94 (0.60) 1.70 (0.57)
2 2.67 (0.55) −0.98 (0.49) 1.05 (0.65) 2.03 (0.63)
3 3.09 (0.80) – – –
4 2.91 (0.48) −0.77 (0.43) 0.93 (0.58) 1.70 (0.56)
5 3.06 (0.46) −0.59 (0.57) 1.18 (0.66) 1.78 (0.66)
6 3.06 (0.52) −0.81 (0.47) 1.01 (0.63) 1.82 (0.60)
7 3.27 (0.61) −0.78 (0.57) 1.18 (0.74) 1.96 (0.72)

aDispersion parameter is fixed at one (value in brackets is its estimate).
bEstimates are median values from the marginal posterior distributions.

extremely large. The fixed effects estimates resulting from Model 2 are listed in
Table 3.5. The uniform centre categories can be identified as centres 3, 9, 18,
24, 25, 30, 31 and 35. (Note that estimates for these centres become very large
when the intercept term of −26.6 is added, while estimates for other centres are
then more reasonable.) These are the centres where no patients had cold feet.
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Table 3.5 Fixed effects estimates resulting from Model 2.

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr>ChiSq

Intercept 1 −26.5793 2.1509 −30.7950 −22.3635 152.70 <.0001
cf1 1 2.6711 0.5548 1.5838 3.7584 23.18 <.0001
treat A 1 1.0470 0.6477 −0.2224 2.3164 2.61 0.1060
treat B 1 2.0302 0.6294 0.7967 3.2637 10.41 0.0013
treat C 0 0.0000 0.0000 0.0000 0.0000 .00 .0001
centre 1 1 23.4900 2.1070 19.3604 27.6197 124.29 <.0001
centre 2 1 23.2142 2.2258 18.8516 27.5768 108.77 <.0001
centre 3 1 −0.1467 110060.4 −215715 215714.3 0.00 1.0000
centre 4 1 23.2940 2.2582 18.8680 27.7201 106.40 <.0001
centre 5 1 24.1606 2.1989 19.8508 28.4704 120.72 <.0001
centre 6 1 25.3009 2.2938 20.8051 29.7966 121.66 <.0001
centre 7 1 21.8392 2.3609 17.2120 26.4665 85.57 <.0001
centre 8 1 24.7352 2.2914 20.2442 29.2262 116.53 <.0001
centre 9 1 1.2139 322114.2 −631331 631333.5 0.00 1.0000
centre 11 1 22.6362 2.3220 18.0852 27.1872 95.04 <.0001
centre 12 1 22.1269 2.4024 17.4183 26.8355 84.83 <.0001
centre 13 1 24.5423 2.4163 19.8066 29.2781 103.17 <.0001
centre 14 1 23.1055 2.1751 18.8423 27.3687 112.84 <.0001
centre 15 1 22.9148 2.3279 18.3521 27.4775 96.89 <.0001
centre 18 1 −0.0486 126467.5 −247872 247871.8 0.00 1.0000
centre 23 1 24.3186 2.7168 18.9938 29.6434 80.12 <.0001
centre 24 1 1.2139 322114.2 −631331 631333.5 0.00 1.0000
centre 25 1 −0.0211 117643.3 −230577 230576.5 0.00 1.0000
centre 26 1 22.9963 2.3328 18.4242 27.5685 97.18 <.0001
centre 27 1 25.5642 2.6333 20.4029 30.7254 94.24 <.0001
centre 29 1 24.7202 2.9282 18.9811 30.4594 71.27 <.0001
centre 30 1 −0.0857 137672.4 −269833 269832.9 0.00 1.0000
centre 31 1 −0.0486 51630.15 −101193 101193.2 0.00 1.0000
centre 32 1 23.3668 2.4567 18.5518 28.1817 90.47 <.0001
centre 35 1 −0.2451 183098.8 −358867 358866.7 0.00 1.0000
centre 36 1 23.2206 2.1447 19.0170 27.4241 117.22 <.0001
centre 37 1 23.5944 2.3797 18.9302 28.2585 98.30 <.0001
centre 40 0 23.7051 0.0000 23.7051 23.7051 .30 .0001
centre 41 0 0.0000 0.0000 0.0000 0.0000 .30 .0001

Centre 40 has no DF. This has occurred because centre 41 (the usual reference
category) is uniform, and so centre 40 is used for reference. Standard errors for
the other centre effects are based on comparisons with centre 40. However, their
estimates in this output are still based on comparisons to centre 41. Thus, SAS
does not produce useful centre estimates and standard errors when the reference
category is uniform. Usually, centre estimates will not be of interest. However, if
required, they can be obtained by renumbering the centres so that the last one is
non-uniform. Although we are clearly getting estimates and standard errors that
are unstable, the likelihood still converges, since the uniform categories have little
effect on it.
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Although Models 2 and 3 are not recommended for estimating treatment
effects, they can still be used to test the overall significance of the fixed centre
and centre⋅treatment effects by using likelihood ratio tests. For example, to
test centre effects in Model 2, we calculate twice the difference in the log
likelihoods between Models 1 and 2, 178.17 − 147.78 = 30.39 ∼ 𝜒

2
28. This

indicates that centre effects are non-significant. To test centre⋅treatment effects,
twice the difference in the log likelihoods between Models 2 and 3 is taken,
147.78 − 100.05 = 47.73 ∼ 𝜒

2
47. This is also non-significant. However, it should

be borne in mind that these tests have low power for detecting small centre or
centre⋅treatment effects.

A preferable approach to fitting Model 2 may be to use an exact conditional
logistic regression stratified by centre. This would avoid the loss of information on
uniform centres. Or alternatively, the smaller centres could be combined for the
purposes of analysis as ‘other centres’. However, the results from Models 2 and 3
indicate that centre effects are not important, and therefore Model 1 is likely to be
the most satisfactory fixed effects model.

Note that we can also examine whether the treatment effects are consistent in
those with and without cold feet at baseline. Adding a baseline by treatment inter-
action to the models showed no statistically significant effect in any of the models
presented.

Random effects models fitted using pseudo-likelihood (4 and 5)

In Model 4, there is a small positive centre variance component, indicating that
some recovery of treatment information from between the centres has occurred.
However, it is not possible to assess the extent of this, since there is no satisfactory
equivalent fixed effects model (Model 2 has uniform centre effects). The treatment
effect standard errors are very similar to those obtained in Model 1, indicating
that little appears to have been gained by fitting centre effects as random in this
example.

In Model 5, the centre⋅treatment variance component is positive, indicating
that the treatment effects vary randomly between centres. This is reflected in
their standard errors that are increased over those for Model 4 to allow for the
additional variation occurring between centres. Since treatment effects are
assumed to vary randomly between the centres, results can be related with more
confidence to the population of centres. The centre variance component is zero,
and so there is no overall variability in the incidence of cold feet between centres.

Bayesian models (6 and 7)

The variance component estimates in Models 6 and 7, fitted using Bayesian
methods, are on the whole smaller than those obtained by pseudo-likelihood
(Models 4 and 5). However, they are taken as medians of their posterior
distributions and are also based on using a prior that is constrained to be
positive (pseudo-likelihood is equivalent to using flat priors). For these reasons,
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they cannot be compared directly. The treatment standard errors in Model
7 are noticeably increased over those in Model 6, despite the fact that the
centre⋅treatment variance component median is small. It is difficult to decide
whether the pseudo-likelihood or Bayesian models are preferable for this example.
On the whole, however, the results are very similar.

3.4.3 Discussion of points from Section 3.3

We will now discuss the points from Section 3.3 that have not already been
covered.

Negative variance components (Section 3.3.3)

A negative variance component estimate would have been obtained for centre
effects in Model 5 had it not been constrained at zero. This would almost certainly
have been an underestimate of a zero or small positive variance component.
Identical fixed effects estimates and standard errors would have been obtained if
the data had been reanalysed with centre effects omitted; however, the denom-
inator DF used for F tests will be smaller when centre effects are retained. The
problem does not arise in Models 6 and 7, since negative variance component
samples cannot be obtained when an inverse gamma distribution is assumed for
their prior.

Accuracy of variance parameters and random effects shrinkage
(Section 3.3.5)

In this trial, there were uniform centre categories, and this may lead to some bias
in the variance parameter estimates. However, fitting a dispersion parameter will,
to some extent, help to alleviate any bias.

Bias in fixed and random effects standard errors (Section 3.3.6)

In this example (Models 4 and 5), there is a possibility that some bias in variance
components (and hence fixed effects standard errors) has occurred, although
to some extent, this may have been overcome by fitting a dispersion parameter.
In addition, some downward bias may occur because information is combined
across several error strata. However, since there are 29 centres, any bias
occurring for this reason is likely to be small and has been corrected for by using
the Kenward–Roger adjustment in PROC GLIMMIX.

The dispersion parameter (Section 3.3.7)

The dispersion parameter was fixed at one in Models 1–3. However, its estimated
value is also given in brackets in Table 3.4. In Model 1, it is very close to one, and
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fixing it at one has made very little difference to the fixed effects standard errors.
In Models 2 and 3, the dispersion parameter is well below one. This is largely due
to the influence of the uniform categories, and thus the dispersion parameter
estimate can be considered as another indicator of their presence.

The dispersion parameters in Model 4 and 5 are both notably below one due
to the presence of uniform centre effect categories. These parameters help to
overcome the discrepancy in the mean/variance relationship caused by the
random effects estimates being shrunken compared with their raw means. If
dispersion parameters were omitted, it is likely that a downward bias in the centre
and centre⋅treatment variance components would have occurred. However, it
is difficult to tell how adequately the dispersion parameter has overcome this
potential problem. Our own view is that the results are likely to be satisfactory.
We can draw some comfort from the fact that the results from Model 4 are similar
to those from Model 1, which does not suffer from the problems associated with
uniform effects categories.

Significance testing (Section 3.3.8)

Significance tests are illustrated for Model 5. Tests of treatment effects were carried
out using Wald F tests with Satterthwaite’s approximation to the denominator DF
(by using the DDFM=KR option). An F2,67 value of 3.68 was obtained for the com-
posite test of treatment equality. This gave a significant p-value of 0.03. Wald t tests
were used to perform pairwise treatment comparisons:

A − B t55 = −1.04, p = 0.30,

A − C t82 = 1.99, p = 0.08,

B − C t75 = 2.71, p = 0.008.

Thus, cold feet are significantly less likely on treatment C than on treatment B.
Treatment A is intermediate in its effect. The t statistic for baseline cold feet was
6.57 with 272 DF. This was highly significant (p<0.0001), indicating that fitting
baseline has greatly increased the sensitivity of the analysis.

Confidence intervals (Section 3.3.9)

The 95% confidence intervals for treatment effects were calculated from the mean
treatment differences and standard errors. The confidence interval on a linear
scale for A−B is

95% CI = −0.595 ± t55,0.975 × 0.571, t55,0.975 = 2.01

so we obtain

95% CI = −0.595 ± 2.01 × 0.571 = (−1.738,0.549).
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A comparison of treatments A and B in terms of an OR is obtained by exponenti-
ating the effect estimate:

OR =
P(cold feet on A)∕(1 − P(cold feet on A))
P(cold feet on B)∕(1 − P(cold feet on B))

= exp(−0.595) = 0.55.

Confidence intervals for the OR are calculated by exponentiating the confidence
intervals calculated on the linear scale:

exp(−1.738,0.549) = (0.18,1.72).

Confidence intervals were calculated in the same way for the other treatment
effects:

Effect Linear scale Odds ratio

A−B −0.595 (−1.732, 0.543) 0.55 (0.18, 1.73)
A−C 1.183 (−0.135, 2.501) 3.26 (0.87, 12.19)
B−C 1.777 (−0.472, 3.082) 5.91 (1.60, 21.82)

In PROC GLIMMIX, the LSMEANS statement with the OR option or, alterna-
tively, the OR option in the PROC GLIMMIX statement can be used to obtain the
ORs and their 95% confidence intervals directly. The use of the ILINK option in
theLSMEANS statement will also give the estimated binomial probabilities for each
treatment. By default, these will be evaluated at the overall average baseline value
for cold feet, which, as a non-integer value is meaningless. Additional use of theAT
option allows this to be estimated for those with and without cold feet at baseline
(see SAS code at the end of this section).

Checking model assumptions (Section 3.3.10)

Plots of the centre⋅treatment effects against their predicted values and normal
plots are used to check Model 5 (Figure 3.1). Note that the centre effects do not
need to be checked, since the centre variance component estimate was zero. As
the data are in Bernoulli form, plots of the residuals are not useful for identify-
ing outliers. The centre⋅treatment effect plots show no strong evidence of outlying
treatment effects at a centre. Although the normal plot indicates some deviation
from normality, this is unlikely to influence the estimates of fixed effects and their
standard errors (see Section 2.4.6).
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Figure 3.1 Plots of centre⋅treatment effects. (a) Centre⋅treatment effects against their
predicted values. (b) Centre⋅treatment effects normal plot. A=1 obs., B=2 obs., etc.
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Determining whether the simulated posterior distribution has
converged (3.3.11)

The following three tables are produced by PROC MCMC and provide statistics
to help assess whether the model has converged. The Gewerke test shows a
significant result for the baseline cold feet parameter and the centre⋅treatment
variance component. This would warrant a further analysis, either with a large
sample size or by comparing results from models using different seeds for the
random sampling process.

Monte Carlo Standard Errors

Standard
Parameter MCSE Deviation MCSE/SD

alpha0 0.0202 0.6899 0.0293
alpha1 0.0122 0.6075 0.0201
alpha2 0.00887 0.7422 0.0120
alpha3 0.00773 0.7181 0.0108
v2 0.00716 0.3220 0.0222
v3 0.0517 0.9129 0.0567

Geweke Diagnostics
Parameter z Pr > |z|

alpha0 -2.5359 0.0112
alpha1 3.4395 0.0006
alpha2 1.4716 0.1411
alpha3 1.7568 0.0789
v2 -0.2956 0.7675
v3 3.1427 0.0017

Effective Sample Sizes

Autocorrelation
Parameter ESS Time Efficiency

alpha0 1168.7 42.7829 0.0234
alpha1 2479.7 20.1637 0.0496
alpha2 6999.5 7.1434 0.1400
alpha3 8636.3 5.7895 0.1727
v2 2020.5 24.7460 0.0404
v3 311.4 160.6 0.0062

Diagnostic plots (Figure 3.2) are shown only for the centre⋅treatment variance
component (v3) for which there was more doubt over convergence. Plots for
the other parameters were satisfactory. The first two plots show a high degree of
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Figure 3.2 Diagnostic plots for the centre⋅treatment variance component (v3)
parameter.

autocorrelation between the samples for v3 and confirm that fitting a model with
more samples would be advisable.

As the diagnostic statistics and graphs indicated the posterior distribution for the
centre⋅treatment variance component may not have converged, some alternative
models with more samples and different thinning levels will be considered. Firstly,
a model was fitted with more samples (5,000,000) and with the thinning factor
kept at 10 (Model 7b). To help consider whether the thinning level is important,
we also consider the same model with thinning factors of 100 (Model 7c) and 5
(Models 7d) and no thinning (Model 7e). Lastly, to assess whether a sample size
increase is required, a model with 500,000 samples and no thinning is considered
(Model 7f).

The following tables compare the estimates and diagnostic statistics between
the alternative models for the first treatment effect, A − C (Table 3.6) and for the
centre⋅treatment variance component that gave particular cause for concern in
Model 7a (Table 3.7). SAS reported space problems when fitting Model 7e, indi-
cating that this size of sample could not be stored for this model.

Estimates of the treatment difference, A − C, are almost identical between the
models, indicating that any of the models were likely to be adequate for estimating
treatment effects and their standard errors. The diagnostic statistics do not give
any cause for concern. It is interesting that the diagnostic statistics, in general,
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Table 3.6 Comparison of estimates and diagnostic statistics for treatment difference
A − C.

Model
Thinning
level

Sample
size

A − C,
mean (SE)

% Variation
due to
sampling
(MCSE/SD)

Geweke
test
p-value

Effective
sample
size

7a 10 500,000 1.18 (0.74) 0.012 0.14 6999
7b 10 5,000,000 1.18 (0.74) 0.005 0.95 41278
7c 100 5,000,000 1.17 (0.74) 0.006 0.86 32957
7d 5 5,000,000 1.18 (0.74) 0.005 0.89 44403
7f 1 500,000 1.18 (0.74) 0.011 0.09 8772

Table 3.7 Comparison of estimates and diagnostic statistics for the centre⋅treatment
variance component.

Model
Thinning
level

Sample
size

Centre⋅treatment
variance
component,
median

% Variation
due to
sampling
(MCSE/SD)

Geweke
test
p-value

Effective
sample
size

7a 10 500,000 0.53 0.057 0.002 311
7b 10 5,000,000 0.49 0.019 0.97 2892
7c 100 5,000,000 0.49 0.020 0.98 2429
7d 5 5,000,000 0.49 0.016 0.96 3895
7f 1 500,000 0.53 0.031 0.002 1034

improve when no thinning is used. Thus, for this fixed effect, thinning has not
provided any advantage except to provide a more manageable sample size.

The centre⋅treatment variance component estimate (Table 3.7) is identical
between Model 7b and 7d but differs for Models 7a and 7f where only 500,000
samples were taken. Also, the Gewerke test is significant for these models.
Thus 500,000 samples has not been sufficient to adequately obtain the
posterior distribution to provide the centre⋅treatment variance component
estimate. However, it is interesting that the inadequate sampling of this variance
component did not prevent adequate estimates of treatment effects being obtained
from Models 7a and 7f. Thus, if the main interest is in obtaining estimates of
treatment effects, it would appear sufficient to check only diagnostics statistics and
plots for these effects. The usual skewed distribution of the variance components
makes the diagnostic statistics and plots a little less easy to assess, since they are
better suited to checking normally distributed parameters.
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SAS code and output

Variables
centre= centre
treat = treatment
cf = post-treatment cold feet (1= yes, 0=no),
cf1 = pre-treatment cold feet (1= yes, 0=no),
one =1, all observations.

SAS code is provided for Models 1–5. However, detailed output is only given for
Models 1 and 5, which should be sufficient to illustrate the use of PROC GENMOD
and PROC GLIMMIX.

Model 1

PROC GENMOD; CLASS centre treat;
MODEL cf/one=cf1 treat/ DIST=B COVB TYPE3 WALD;
ESTIMATE ’A-B’ treat 1 -1 0/ E ALPHA=0.05 EXP;
ESTIMATE ’A-C’ treat 1 0 -1/ E ALPHA=0.05 EXP;
ESTIMATE ’B-C’ treat 0 1 -1/ E ALPHA=0.05 EXP;

Model Information

Data Set WORK.B

Distribution Binomial

Link Function Logit

Response Variable (Events) cf

Response Variable (Trials) one

Number of Observations Read 283

Number of Observations Used 283

Number of Events 41

Number of Trials 283

Class Level Information

Class Levels Values

centre 29 1 2 3 4 5 6 7 8 9 11 12 13 14 15 18 23 24 25

26 27 29 30 31 32 35 36 37 40 41

treat 3 A B C
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Parameter Information

Parameter Effect treat

Prm1 Intercept

Prm2 cf1

Prm3 treat A

Prm4 treat B

Prm5 treat C

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 279 178.1744 0.6386

Scaled Deviance 279 178.1744 0.6386

Pearson Chi-Square 279 282.4176 1.0122

Scaled Pearson X2 279 282.4176 1.0122

Log Likelihood −89.0872

Algorithm converged.

The deviance and Pearson chi-square are measures of model fit and have
similar roles to the residual sum of squares in normal data models. The Pearson
chi-square is the sum of squared Pearson residuals and the deviance is calculated
as 2 log(Ly/Lm). Ly is the ML achievable if all available DF were used (usually this
is obtained when ui = yi) and Lm is the likelihood for the model fitted.

Estimated Covariance Matrix

Prm1 Prm2 Prm3 Prm4

Prm1 0.26581 −0.06973 −0.24923 −0.25407
Prm2 −0.06973 0.23598 0.01363 0.03002

Prm3 −0.24923 0.01363 0.35992 0.24694

Prm4 −0.25407 0.03002 0.24694 0.32686

The COVB option has caused the covariance matrix for the fixed effects
(intercept, cf1, treat A and treat B) to be printed.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 −3.3532 0.5156 −4.3637 −2.3427 42.30 <.0001

cf1 1 2.9697 0.4858 2.0176 3.9218 37.37 <.0001

treat A 1 0.9361 0.5999 −0.2397 2.1120 2.43 0.1187

treat B 1 1.7043 0.5717 0.5837 2.8248 8.89 0.0029

treat C 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Wald Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

cf1 1 37.37 <.0001

treat 2 9.60 0.0082

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

A-B −0.7681 0.4392 0.05 −1.6290 0.0927 3.06 0.0803

Exp (A-B) 0.4639 0.2037 0.05 0.1961 1.0971

A-C 0.9361 0.5999 0.05 −0.2397 2.1120 2.43 0.1187

Exp (A-C) 2.5501 1.5299 0.05 0.7868 8.2645

B-C 1.7043 0.5717 0.05 0.5837 2.8248 8.89 0.0029

Exp (B-C) 5.4973 3.1429 0.05 1.7927 16.8576

Asymptotic chi-squared tests are performed for each fixed effects parameter.
These tests should be interpreted cautiously in small datasets.

Model 2

PROC GENMOD; CLASS centre treat;
MODEL cf/one=cf1 treat centre/ DIST=B;
ESTIMATE ’A-B’ treat 1 -1 0/ E ALPHA=0.05 EXP;
ESTIMATE ’A-C’ treat 1 0 -1/ E ALPHA=0.05 EXP;
ESTIMATE ’B-C’ treat 0 1 -1/ E ALPHA=0.05 EXP;

Although the denominator term ‘one’ is not needed in the MODEL statement, its
inclusion causes SAS to use 0 rather than 1 as the reference category. The early
parts of the output have a similar form to that given for Model 1. The following
output indicates how uniform fixed effects categories can be identified.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 251 147.7812 0.5888

Scaled Deviance 251 147.7812 0.5888

Pearson Chi-Square 251 199.3547 0.7942

Scaled Pearson X2 251 199.3547 0.7942

Log Likelihood −73.8906

WARNING: Negative of Hessian not positive definite.

A warning of a non-positive Hessian matrix often occurs when there are uni-
form fixed effects categories, even though the model has fitted successfully for data
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corresponding to the other (non-uniform) categories. This causes the ESTIMATE
statements to fail, even though the treatment effects are in fact estimable.

Model 3

PROC GENMOD; CLASS centre treat;
MODEL cf/one=cf1 treat centre centre*treat/ DIST=B;
ESTIMATE ’A-B’ treat 1 -1 0/ E ALPHA=0.05 EXP;
ESTIMATE ’A-C’ treat 1 0 -1/ E ALPHA=0.05 EXP;
ESTIMATE ’B-C’ treat 0 1 -1/ E ALPHA=0.05 EXP;

Output for Model 3 has a similar form to Model 2, except that the treatment
effects are non-estimable, as each treatment is not received at every centre.

Model 4

PROC GLIMMIX OR; CLASS centre treat;
MODEL cf=cf1 treat/ DIST=B DDFM=KR;
RANDOM _RESIDUAL_;
RANDOM centre;
LSMEANS treat/ DIFF PDIFF CL;

Note that a denominator term is not now included, and 0 is appropriately
used as the reference category for comparing fixed effects. This contrasts with
PROC GENMOD where the highest category is taken as the reference category
when the denominator term is omitted. However, note that if DIST=BINARY
had been used in place of DIST=B (or equivalently DIST=BINOMIAL) in PROC
GLIMMIX, SAS would then have taken the highest category, 1, to be the reference
category.

Model 5

PROC GLIMMIX OR; CLASS centre treat;
MODEL cf=cf1 treat/ DIST=B DDFM=KR;
RANDOM _RESIDUAL_;
RANDOM centre centre*treat;
LSMEANS treat/ DIFF PDIFF CL;
LSMEANS treat/ AT cf1=0 ILINK PLOTS=MEANPLOT(ILINK)CL;
LSMEANS treat/ AT cf1=1 ILINK PLOTS=MEANPLOT(ILINK)CL;

Note that these final two LSMEANS statements produce estimated binomial
probabilities for each treatment group in those with and without cold feet at
baseline.
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The GLIMMIX Procedure

Model Information

Data Set WORK.B

Response Variable cf

Response Distribution Binomial

Link Function Logit

Variance Function Default

Variance Matrix Not blocked

Estimation Technique Residual PL

Degrees of Freedom Method Kenward-Roger

Fixed Effects SE Adjustment Kenward-Roger

Class Level Information

Class Levels Values

centre 29 1 2 3 4 5 6 7 8 9 11 12 13 14 15 18 23 24 25 26 27 29
30 31 32 35 36 37 40 41

treat 3 A B C

Number of Observations Read 288

Number of Observations Used 283

Dimensions

G-side Cov. Parameters 2

R-side Cov. Parameters 1

Columns in X 5

Columns in Z 108

Subjects (Blocks in V) 1

Max Obs per Subject 283

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 2

Lower Boundaries 2

Upper Boundaries 0

Fixed Effects Profiled

Residual Variance Profiled

Starting From Data
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Iteration History

Iteration Restarts Subiterations Objective Change Max

Function Gradient

0 0 7 1286.313291 0.89690379 2.097988

1 0 5 1398.3080594 0.49367227 0.737813

2 0 5 1457.1805377 0.23227199 0.400017

3 0 5 1478.5781437 0.10235922 0.314668

4 0 3 1485.5322867 0.04087928 0.288165

5 0 2 1488.0039207 0.01553835 0.278724

6 0 2 1488.9096469 0.00580600 0.275252

7 0 1 1489.2434824 0.00215911 0.273976

8 0 1 1489.3669865 0.00079938 0.273499

9 0 1 1489.4126248 0.00029606 0.273323

10 0 1 1489.4295153 0.00010966 0.273258

11 0 1 1489.4357697 0.00004062 0.273234

12 0 1 1489.4380862 0.00001504 0.273225

13 0 1 1489.4389441 0.00001099 0.273239

14 0 0 1489.439571 0.00000000 0.273224

Convergence criterion (PCONV=1.11022E-8) satisfied.

Estimated G matrix is not positive definite.

Fit Statistics

-2 Res Log Pseudo-Likelihood 1489.44

Generalized Chi-Square 151.80

Gener. Chi-Square / DF 0.54

Covariance Parameter Estimates

Cov Parm Estimate Standard Error

centre 0 .

centre*treat 1.8777 0.6834

Residual (VC) 0.5441 0.05113

Odds Ratio Estimates

treat cf1 _treat _cf1 Estimate DF 95% Confidence Limits

1.0947 0.0947 21.293 272.4 8.519 53.218

A 0.0947 C 0.0947 3.264 81.55 0.873 12.194

B 0.0947 C 0.0947 5.914 74.57 1.603 21.822

Effects of continuous variables are assessed as one unit offsets from the mean.
The AT sub-option modifies the reference value and the UNIT sub-option modifies
the offsets.
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Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr>F

cf1 1 272.4 43.20 <.0001

treat 2 67.41 3.68 0.0303

treat Least Squares Means

treat Estimate Standard DF t Value Pr > |t| Alpha Lower Upper

Error

A -2.1145 0.4117 63.25 -5.14 <.0001 0.05 -2.9371 -1.2918

B -1.5199 0.3967 49.21 -3.83 0.0004 0.05 -2.3171 -0.7227

C -3.2973 0.5241 100.1 -6.29 <.0001 0.05 -4.3370 -2.2576

Differences of treat Least Squares Means

treat _treat Estimate Standard DF t Value Pr > |t| Alpha

Error

A B -0.5946 0.5707 55.34 -1.04 0.3020 0.05

A C 1.1828 0.6626 81.55 1.79 0.0780 0.05

B C 1.7774 0.6553 74.57 2.71 0.0083 0.05

Differences of treat Least Squares Means

Odds Lower Upper

treat _treat Lower Upper Ratio Odds Ratio Odds Ratio

A B -1.7381 0.5489 0.552 0.176 1.731

A C -0.1354 2.5010 3.264 0.873 12.194

B C 0.4719 3.0829 5.914 1.603 21.822

The following section shows the consequence of the use of the AT options in the
LSMEANS statements.

treat Least Squares Means

treat cf1 Esti- Stan- DF t Value Pr > Alpha Lower Upper Mean Standard Lower Upper

mate dard |t| Error Mean Mean

Error Mean

A 1.00 0.6521 0.5637 127.5 1.16 0.2495 0.05 -0.4633 1.7675 0.6575 0.1269 0.3862 0.8542

B 1.00 1.2467 0.5654 114.6 2.20 0.0295 0.05 0.1267 2.3667 0.7767 0.09806 0.5316 0.9143

C 1.00 -0.5307 0.6233 132.6 -0.85 0.3961 0.05 -1.7637 0.7023 0.3704 0.1454 0.1463 0.6687

treat Least Squares Means

treat cf1 Esti- Stan- DF t Value Pr > Alpha Lower Upper Mean Standard Lower Upper

mate dard |t| Error Mean Mean

Error Mean

A 0.00 -2.4063 0.4177 66.2 -5.76 <.0001 0.05 -3.2403 -1.5723 0.08270 0.03169 0.03768 0.1719

B 0.00 -1.8117 0.4012 51.35 -4.52 <.0001 0.05 -2.6169 -1.0064 0.1404 0.04843 0.06806 0.2677

C 0.00 -3.5891 0.5323 104.5 -6.74 <.0001 0.05 -4.6445 -2.5337 0.02688 0.01392 0.009523 0.07353
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Model checking for Model 5

PROC GLIMMIX; CLASS centre treat;
MODEL cf/one=cf1 treat/ DIST=B DDFM=KR;
RANDOM _RESIDUAL_;
RANDOM centre centre*treat/ SOLUTION;
LSMEANS treat/ DIFF PDIFF OR CL;
OUTPUT OUT=pred pred=pred;
ODS OUTPUT SOLUTIONR=random;

DATA pred2; SET pred;
KEEP centre treat pred;
PROC SORT; BY centre treat;
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PROC MEANS NOPRINT; BY centre treat; VAR pred; OUTPUT
OUT=pred3 MEAN=re_pred N=freq;

DATA random2; SET random;
IF effect=’centre*treat’;
re=estimate;
KEEP centre treat re;

DATA check; MERGE pred3 random2; BY centre treat;
PROC PLOT; PLOT re*re_pred;
TITLE’ CENTRE.TREATMENT RANDOM EFFECTS AGAINST THEIR

PREDICTED VALUES’;
PROC RANK OUT=norm NORMAL=tukey; VAR re; RANKS rank;
PROC PLOT DATA=norm; PLOT re*rank;
TITLE ’CENTRE.TREATMENT RESIDUALS - NORMAL PLOT’;

The PROC GLIMMIX code fits Model 5 as before with an OUTPUT statement
added to output the predictions (based on X�̂�, i.e. omitted the random effects
element) to dataset ‘pred’ and aSOLUTIONoption in theRANDOM statement along
with an ODS statement to output the random effect estimates to dataset ‘random’.
The mean predictions are then calculated for each centre⋅treatment category, and
the centre⋅treatment random effects are plotted against their predicted means.
Normal plots of the random effects are also produced as a further check.

Plots are given in the main text. Note that the plotting options available with
PROC GLIMMIX do not allow these checks to be made directly. It offers a variety
of residual plots, which are not helpful with binary data, plots of LSMEANS, as
illustrated earlier and differences of LSMEANS.

Model 6

ODS GRAPHICS ON;
PROC MCMC OUTPOST=post6 NMC=100000 THIN=10 SEED=7899;
ODS SELECT PARAMETERS REPARAMETERS POSTSUMMARIES

POSTINTERVALS MCSE GEWEKE ESS TADPANEL;
PARMS alpha0 alpha1 alpha2 alpha3 v2;
PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);
RANDOM b_centre ∼ NORMAL(0, VAR = v2) SUBJECT=centre;
mu = alpha0 + alpha1*cf1 + alpha2*treata + alpha3*treatb

+ b_centre;
expected = LOGISTIC(mu);
MODEL CF ∼ BINARY(expected);
ODS GRAPHICS OFF;

The code is very similar to that used for Model 7, and the descriptions of each
statement that we will give for Model 7 can also be applied to Model 6.
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Model 7

ODS GRAPHICS ON;
PROC MCMC OUTPOST=post7 NMC=500000 THIN=10 SEED=7899;
ODS SELECT PARAMETERS REPARAMETERS POSTSUMMARIES

POSTINTERVALS MCSE GEWEKE ESS TADPANEL;
PARMS alpha0 alpha1 alpha2 alpha3 v2 v3;
PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);
RANDOM b_centre ∼ NORMAL(0, VAR = v2) SUBJECT=centre;
RANDOM b_ct ∼ NORMAL(0, VAR = v3) SUBJECT=centre_treat;
mu = alpha0 + alpha1*cf1 + alpha2*treata + alpha3*treatb

+ b_centre + b_ct;
expected = LOGISTIC(mu);
MODEL cf ∼ BINARY(expected);
ODS GRAPHICS OFF;

In this analysis, 500,000 samples were taken, and a thinning factor of 10 was
used. The model parameters are defined first using a PARMS statement. alpha0
represents the intercept, alpha1 the baseline value of cold feet, alpha2 and
alpha3 the two treatment parameters and v2 the centre variance component.

The firstPRIOR statement specifies ‘non-informative’ prior normal distributions
with zero means and very large variances of 10,000 for the fixed effect parameters
(alpha0–alpha3). The second PRIOR statement specifies ‘non-informative’
inverse gamma distributions with very small parameters for prior distribution of
the centre and centre⋅treatment variance components (v2 and v3).

The RANDOM statements specify a normal distribution for the random effects
(b_centre and b_ct) with zero mean and variance equal to the corresponding
variance components. The SUBJECT options state which level the random effect
will vary across.

The next three statements define the model. The first statement (starting ‘mu= ’)
specifies the linear part of the model and calculates it as ‘mu’. The second uses
the logistic link function to obtain the expected means (‘expected’) for the binary
distribution from the linear component of the model (‘mu’). The third specifies that
the data has a binary distribution with mean given by the variable ‘expected’.

The ODS SELECT statement requests the statistics to be output. Summaries
of the parameters are requested by the PARAMETERS, REPARAMETERS,
POSTSUMMARIES and POSTINTERVALS options, and diagnostic tests and
graphs are requested by the MCSE, GEWEKE, ESS and TADPANEL options. Use
of the ODS GRAPHICS statement along with the TADPANEL option will cause
diagnostic plots to be created.
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Output

Parameters

Sampling Initial
Block Parameter Method Value Prior Distribution

1 v2 Conjugate 0.00990 igamma(0.01, scale = 0.01)
2 v3 Conjugate 0.00990 igamma(0.01, scale = 0.01)
3 alpha0 N-Metropolis 0 normal(0, var = 10000)

alpha1 0 normal(0, var = 10000)
alpha2 0 normal(0, var = 10000)
alpha3 0 normal(0, var = 10000)

Random Effects Parameters

Parameter Subject Levels Prior Distribution

b_centre centre 29 normal(0, var = v2)
b_ct centre_ 78 normal(0, var = v3)

treat

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha0 50000 -3.8102 0.6899 -4.2253 -3.7456 -3.3261
alpha1 50000 3.2761 0.6075 2.8582 3.2455 3.6587
alpha2 50000 1.1796 0.7422 0.6733 1.1443 1.6477
alpha3 50000 1.9561 0.7181 1.4663 1.9130 2.3987
v2 50000 0.2072 0.3220 0.0316 0.0884 0.2464
v3 50000 0.8122 0.9129 0.1532 0.5272 1.1506

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha0 0.050 -5.3515 -2.6440 -5.2047 -2.5396
alpha1 0.050 2.1710 4.5591 2.1286 4.5122
alpha2 0.050 -0.1749 2.7473 -0.2255 2.6796
alpha3 0.050 0.6574 3.4904 0.5818 3.3928
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v2 0.050 0.00709 1.0889 0.00190 0.7971
v3 0.050 0.0156 3.2454 0.00277 2.5700

Output corresponding to the diagnostic statistics to assess convergence is shown
in the main text.

SAS code to obtain estimates of the treatment difference A − B, p-values
and odds ratios for all treatment comparisons, and equal-tailed
probability intervals

%MACRO mcmc_stats(dat); * macro to print MCMC statistics;
DATA p1; SET &dat;
a_c=alpha2;
b_c=alpha3;
a_b=alpha2-alpha3; * calculate samples for treatment

difference A-B;
* define indicator variables for whether the sampled

differences are greater than or less than zero;
IF a_b<0 THEN a_b0=1; ELSE a_b0=0;
IF a_c<0 THEN a_c0=1; ELSE a_c0=0;
IF b_c<0 THEN b_c0=1; ELSE b_c0=0;

PROC MEANS NOPRINT DATA=p1; VAR a_b a_c b_c a_b0 a_c0 b_c0;
OUTPUT OUT=p2 SUM=dum dum dum a_b0_n a_c0_n b_c0_n N=samples

mean=a_b_mean a_c_mean b_c_mean std=a_b_std;

DATA p3; SET p2;
%p_calc(a_b); %p_calc(a_c); %p_calc(b_c);
a_c_or=exp(a_c_mean); b_c_or=exp(b_c_mean);

a_b_or=exp(a_b_mean);

proc univariate data=p1;
var a_b a_c b_c; output out=ci pctlpts=2.5 97.5

pctlpre=a_b a_c b_c pctlname=lower upper;

PROC PRINT NOOBS DATA=p3; VAR a_b_mean a_b_std; title
’Mean and SE for A-B (linear scale)’;

PROC PRINT NOOBS DATA=p3; VAR a_b_p a_c_p b_c_p; title
’p-values for pairwise treatment comparisons’;

PROC PRINT NOOBS DATA=ci; title ’Equal tail 95%
CIs (linear scale)’;

PROC PRINT NOOBS DATA=p3; VAR a_b_or a_c_or b_c_or; title
’Odds ratios for treatment comparisons’;

data ci2; set ci;
%exp(a_blower); %exp(a_bupper); %exp(a_clower);
%exp(a_cupper); %exp(b_clower); %exp(b_cupper);
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PROC PRINT NOOBS DATA=ci2; title ’Equal tail 95%
CIs as odds ratios’;

RUN;
%MEND;

%MACRO p_calc(var); * macro to obtain p-values;
&var.0_p=&var.0_n/samples;
IF &var.0_p<0.5 THEN &var._p=&var.0_p*2; ELSE

&var._p=(1-&var.0_p)*2;
%MEND;

%MACRO exp(var);
&var=exp(&var);
%MEND;

%mcmc_stats(post7);

Mean and SE for A-B
a_b_mean a_b_std
-0.77650 0.56891

p-values for pairwise treatment comparisons
a_b_p a_c_p b_c_p

0.16208 0.0912 .00288

Equal tail 95% CIs
a_blower a_bupper a_clower a_cupper b_clower b_cupper
-1.91540 0.34591 -0.17490 2.74733 0.65740 3.49042

Odds ratios for treatment comparisons
a_b_or a_c_or b_c_or

0.46001 3.25317 7.07192

Equal tail 95% CIs as odds ratios
a_blower a_bupper a_clower a_cupper b_clower b_cupper
0.14728 1.41327 0.83954 15.6009 1.92978 32.7998

SAS code for models with different sample sizes and thinning factors

ThePROC MCMC statements used for each model are shown. The other statements
used to fit the model are unchanged from Model 7a.

Model 7b: PROC MCMC OUTPOST=post7b NMC=5000000 THIN=10 SEED=7899;
Model 7c: PROC MCMC OUTPOST=post7c NMC=5000000 THIN=100 SEED=7899;
Model 7d: PROC MCMC OUTPOST=post7d NMC=5000000 THIN=5 SEED=7899;
Model 7e: PROC MCMC OUTPOST=post7e NMC=5000000 THIN=1 SEED=7899;
Model 7f: PROC MCMC OUTPOST=post7f NMC=500000 THIN=1 SEED=7899;



Brown778258 c04.tex V2 - 11/14/2014 10:15 A.M. Page 168

4

Mixed models for categorical
data

Categorical data often occur in clinical trials. For example, adverse events may
be classified on an ordinal scale as mild, moderate or severe. In this chapter
we will primarily consider the analysis of measurements made on ordered
categorical scales; however, we also describe how unordered categorical data can
be analysed. A fixed effects method for analysing ordinal data known as ‘ordinal
logistic regression’ was first suggested by McCullagh (1980) and has been widely
applied. The mixed categorical model is far less well established. The model that
is defined is based on extending ordinal logistic regression to include random
effects and covariance patterns. As we suggested in Chapter 3 for GLMMs, some
readers with a less statistical background may wish to read only the introductory
paragraphs of each section which will enable them to identify where these
methods might prove useful. The final section of this chapter and sections of
subsequent chapters will illustrate the application of mixed categorical models.

Ordinal logistic regression will be described in Section 4.1. It is extended to
a mixed ordinal logistic regression model in Section 4.2. In Section 4.3 we
describe how the model can be adapted to analyse unordered categorical data. In
Section 4.4 some practical issues related to model fitting and interpretation are
considered, and a worked example is given in Section 4.5.

4.1 Ordinal logistic regression
(fixed effects model)

Ordinal logistic regression is a fixed effects method for analysing ordinal data.
It is often preferable to contingency table methods such as the Chi-squared ‘test
for trend’ because several fixed effects can be included in the model. The method
works by:

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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• Assuming observations have a multinomial distribution which can be
expressed:

p(yi) =
c∏

j=1

𝜇
zij
ij ,

where
i= observation number,
j= category number,
c=number of categories,

zij =1 if yi = j
=0 otherwise,

𝜇ij = p(yi = j).

• Taking the ordered nature of the data into account by defining a
model for the cumulative categorical probabilities. The cumulative
probabilities, 𝜇[c]

ij =
∑j

k=1
𝜇ik, correspond to the probability that observation

i is in a category less than or equal to j. They can be thought of as proba-
bilities arising from partitioning the categories in every possible place. For
example, if the response variable had categories labelled 1, 2, 3 and 4, three
partitions would be possible: 1/2–4, 1–2/3–4 and 1–3/4. The cumulative
probabilities are linked to the model parameters using the logit link function
(see Section 3.1.4):

log(𝜇[c]
ij ∕(1 − 𝜇

[c]
ij )) = Ij + xi𝜶, j = 1,2, … , c − 1,

where
Ij = intercept parameter for each partition j,

𝜇
[c]
ij = p(yi ≤ j) =

∑j
k=1

𝜇ik,

xi = ith row of fixed effects design matrix X,
𝜶 = vector of fixed effects parameters.

Note that there is a separate equation for each partition, j.

• Maximising the likelihood function for the model parameters (the Ij
and 𝜶) based on the multinomial distribution. Methods for maximising
the likelihood function coincide with those for the mixed ordinal logistic
regression model and are described in Section 4.2. They are based on using
the matrix notation below to represent the multinomial distribution.

Expressing the model in matrix notation

The ordinal logistic model can alternatively be expressed using matrix notation.
However, the multinomial distribution is not a member of the exponential family
and cannot be linked to the model parameters using a single link function. This
hurdle can be overcome by re-expressing the data in binary form. To do this we
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allow each observation to become a vector of c−1 correlated binary observations
(c=number of categories). For example, if there are four categories, then we
could let: y=1 become (1, 0, 0), y=2 become (0, 1, 0), y=3 become (0, 0, 1)
and y=4 become (0, 0, 0). Thus, the three terms correspond to the presence or
absence of the first three categories, while the presence of the fourth category is
implied by the absence of the first three. The vector, y, containing the n extended
observations can then be defined as

y = (y11, y12, y13, y21, y22, y23, … , yn1, yn2, yn3)′.

To illustrate this redefinition consider the following data constituting the first five
observations from a repeated measures trial in which y has range 1–4.

Patient Visit Treatment y

1 1 A 2
1 2 A 1
1 3 A 4
2 1 B 3
2 2 B 1

When y is expressed in its extended binary form it becomes

y = (0,1,0,1,0,0,0,0,0,0,0,1,1,0,0)′.

The ordinal logistic model can now be specified in a form of a GLMM using the
cumulative probabilities that result from partitioning the categories in each
possible place. The GLMM uses a covariance pattern to allow for the multinomial
correlations occurring between the binary observations. A cumulative probability,
𝜇
[c]
ij , is defined as the probability that observation i is in a category less than or

equal to j:

y = 𝛍 + e,

log(𝛍[c]∕(1 − 𝛍[c])) = X𝛂,

var(e) = R.

𝛍 is the vector of expected multinomial probabilities corresponding to the n
extended observations. If there are four categories then we may write

𝛍 = (𝜇11, 𝜇12,𝜇13, 𝜇21, 𝜇22, 𝜇23, … , 𝜇n1, 𝜇n2, 𝜇n3)′,

where
𝜇ij = probability observation i is in category j.
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𝛍[c] is a vector containing the cumulative probabilities obtained by partitioning the
four categories in the three possible places:

𝛍[c] = (𝜇[c]
11, 𝜇

[c]
12, 𝜇

[c]
13, 𝜇

[c]
21, 𝜇

[c]
22, 𝜇

[c]
23, … , 𝜇

[c]
n1, 𝜇

[c]
n2, 𝜇

[c]
n3)

′
,

where

𝜇
[c]
ij = probability(yi ≤ j) =

j∑

k=1

𝜇ik.

So we may equivalently write

𝛍[c] = (𝜇11, 𝜇11 + 𝜇12, 𝜇11 + 𝜇12 + 𝜇13, 𝜇21, 𝜇21 + 𝜇22,

𝜇21 + 𝜇22 + 𝜇23, … , 𝜇n1, 𝜇n1 + 𝜇n2, 𝜇n1 + 𝜇n2 + 𝜇n3)′.

𝛂 is again a vector containing the fixed effects. It has the same form as given in
Section 2.1 except c−1 intercept terms are included corresponding to each of the
c−1 partitions of the data. Thus, if a model fitting two treatments and three visits
as fixed were fitted to the earlier example data, we could write

𝛂 = (I1, I2, I3, TA, TB,V1,V2,V3)′.

X is again a design matrix for the fixed effects. However, it now has more rows than
previously to correspond to the extended number of observations. For our data X
would be

I1 I2 I3 TA TB V1 V2 V3

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 0 0 1 0 1 0 0
0 1 0 1 0 1 0 0
0 0 1 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 0 1 0 0 1 0
0 0 1 1 0 0 1 0
1 0 0 1 0 0 0 1
0 1 0 1 0 0 0 1
0 0 1 1 0 0 0 1
1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 0
0 0 1 0 1 1 0 0
1 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 0 1 0 1 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.
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Residual matrix

The residual variance matrix, R, needs to take into account the multinomial
correlations that occur within the binary vectors used for each observation. From
the multinomial distribution it is known that covariances for the observation
vectors, (yi1, yi2, … , yi,c−1)′, are

cov(yij, yik) = E(yij − 𝜇ij)(yik − 𝜇ik)

= 𝜇ij(1 − 𝜇ij), j = k,

= E(yijyik) − E(yij)E(yik) = −𝜇ij𝜇ik, j ≠ k.

(E(yijyik)=0 when j≠ k because either yij or yik has to be zero.)
Thus, within-observation covariance matrices, Ri, can be defined for each of the

n original observations. If c=4 we can write the covariance terms corresponding
to each pair of partitions for observation i as

Ri =
⎛
⎜
⎜⎝

𝜇i1

(
1 − 𝜇i1

)
−𝜇i1𝜇i2 −𝜇i1𝜇i3

−𝜇i1𝜇i2 𝜇i2(1 − 𝜇i2) −𝜇i2𝜇i3
−𝜇i1𝜇i3 −𝜇i2𝜇i3 𝜇i3(1 − 𝜇i3)

⎞
⎟
⎟⎠
.

The Ri matrices form blocks along the diagonal of the full residual matrix, R. For
example, in this fixed effects model R is

R =

⎛
⎜
⎜
⎜
⎜⎝

R1 𝟎 𝟎 𝟎 𝟎
𝟎 R2 𝟎 𝟎 𝟎
𝟎 𝟎 R3 𝟎 𝟎
𝟎 𝟎 𝟎 R4 𝟎
𝟎 𝟎 𝟎 𝟎 R5

⎞
⎟
⎟
⎟
⎟⎠

,

where

𝟎 =
⎛
⎜
⎜⎝

0 0 0
0 0 0
0 0 0

⎞
⎟
⎟⎠
.

As in the GLMM definition (Section 3.2), R can be arranged as a product
of a correlation matrix, P, and the matrix of expected Bernoulli variances,
B= diag{𝜇ij(1−𝜇ij)}:

R = B1∕2PB1∕2
.
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Note that the A matrix of constants used for the GLMM is now not required,
since the data are in Bernoulli form and A= I. For our example data P may be
written as

P =

⎛
⎜
⎜
⎜
⎜⎝

P11 𝟎 𝟎 𝟎 𝟎
𝟎 P22 𝟎 𝟎 𝟎
𝟎 𝟎 P33 𝟎 𝟎
𝟎 𝟎 𝟎 P44 𝟎
𝟎 𝟎 𝟎 𝟎 P55

⎞
⎟
⎟
⎟
⎟⎠

,

where

Pii = matrix blocks of ‘within-observation’ correlations

=
⎛
⎜
⎜⎝

1 −𝜇i1𝜇i2∕bi12 −𝜇i1𝜇i3∕bi13
−𝜇i1𝜇i2∕bi12 1 −𝜇i2𝜇i3∕bi23
−𝜇i1𝜇i3∕bi13 −𝜇i2𝜇i3∕bi23 1

⎞
⎟
⎟⎠
,

bikl = [𝜇ik(1 − 𝜇ik)𝜇il(1 − 𝜇il)]1∕2
.

4.2 Mixed ordinal logistic regression

The fixed effects ordinal logistic model can be easily extended to a mixed ordinal
logistic regression model by adding random effects terms and allowing covariance
patterns in the residual matrix.

In Section 4.2.1 the ordinal mixed model will be specified. The residual matrix
for mixed categorical models has a more complex form than for GLMMs and will be
defined in Section 4.2.2. As in GLMMs, there can be benefits in reparameterising
random effects models as covariance pattern models and this will be discussed in
Section 4.2.3. A quasi-likelihood function for the model is defined in Section 4.2.4,
and model fitting methods are discussed in Section 4.2.5.

4.2.1 Definition of the mixed ordinal logistic regression model

The ordinal mixed model can now be specified as

y = 𝛍 + e,

log(𝛍[c]∕(1 − 𝛍[c])) = X𝛂 + Z𝛃,

𝛃 ∼ N(𝟎,G),

var(e) = R.
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𝛃 is a vector containing the random effects. Thus, if a model fitting two treatments
and three visits as fixed and patients as random were fitted to the earlier example
data, we could write

𝛃 = (P1,P2)′.

Z is the design matrix for the random effects and has additional rows than
previously to correspond to the extended number of observations. For our data, Z
would be

P1 P2

Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

The G matrix

G is again a matrix of variance parameters corresponding to the random effects
and coefficients and has the same form as given in Section 2.1. In the model we
have considered, fitting one random effect (patient) G would have the form

G =
(
𝜎

2
p 0

0 𝜎
2
p

)
,

where
𝜎

2
p = patient variance component.

4.2.2 Residual variance matrix

The residual variance matrix, R, needs to take into account, first, the multinomial
correlations that occur within the binary vectors used for each observation (see
Section 4.1) and, second, any covariance patterns defined at the residual level.
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As in Section 4.1, we arrange R as B1/2PB1/2, a product of a correlation matrix,
P, and the matrix of expected Bernoulli variances, B.

In a covariance pattern model the correlation matrix, P, will include
off-diagonal blocks of correlation parameters. For example, if a general covari-
ance pattern was used to model our example data, then we would require a
separate block of correlations for each pair of time points and P would have
the form

P =

⎛
⎜
⎜
⎜
⎜⎝

P11 P12 P13 𝟎 𝟎
P12 P22 P23 𝟎 𝟎
P13 P23 P33 𝟎 𝟎
𝟎 𝟎 𝟎 P44 P12
𝟎 𝟎 𝟎 P12 P55

⎞
⎟
⎟
⎟
⎟⎠

.

Note that the diagonal matrix blocks will differ for each observation as indicated at
the end of Section 4.1. The Pmn are (c−1)× (c−1)=3×3 submatrices of param-
eters corresponding to the correlation between observations at visits m and n on
the same patient. They replace the single correlation values used in GLMMs, and
here we assume they take the form

Pmn =
⎛
⎜
⎜⎝

pmn,11 pmn,12 pmn,13
pmn,12 pmn,22 pmn,23
pmn,13 pmn,23 pmn,33

⎞
⎟
⎟⎠
,

with a separate correlation parameter used for each pair of partitions. Thus, six
parameters are used for each Pmn matrix here. This is the parameterisation used
by Lipsitz et al. (1994) who has written an accompanying SAS macro for fitting
the model in this form. However, because this model requires more covariance
parameters than GLMMs, particularly when the number of categories is high
(increased by a factor of c(c−1) / 2), more complex covariance patterns should be
used with caution.

Simpler parameterisation for covariance pattern models

Here, we suggest an alternative simpler parameterisation with just one param-
eter corresponding to each of the parameters in the original covariance
pattern (i.e. one for compound symmetry, three here for a general pattern).
The correlation matrix for our example using a general covariance pattern
would be

P =

⎛
⎜
⎜
⎜
⎜⎝

P11 𝜃12P12 𝜃13P13 𝟎 𝟎
𝜃12P12 P22 𝜃23P23 𝟎 𝟎
𝜃13P13 𝜃23P23 P33 𝟎 𝟎

𝟎 𝟎 𝟎 P44 𝜃12P12
𝟎 𝟎 𝟎 𝜃12P12 P55

⎞
⎟
⎟
⎟
⎟⎠

.
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The Pij submatrices have a similar form to that given earlier for the Pii except that
they now use the expected values corresponding to observations i and j:

Pij =
⎛
⎜
⎜⎝

1 −𝜇i1𝜇j2∕bij,12 −𝜇i1𝜇j3∕bij,13
−𝜇i1𝜇j2∕bij,12 1 −𝜇i2𝜇j3∕bij,23
−𝜇i1𝜇j3∕bij,13 −𝜇i2𝜇j3∕bij,23 1

⎞
⎟
⎟⎠
,

bij,kl = [𝜇ik(1 − 𝜇ik)𝜇jl(1 − 𝜇jl)]1∕2
.

The 𝜃mn define the covariance pattern and can be parameterised to fit most of
the covariance patterns described in Section 6.2. For example, for a compound
symmetry pattern, the 𝜃mn would all have the same value and we could write

P =

⎛
⎜
⎜
⎜
⎜⎝

P11 𝜃P12 𝜃P13 𝟎 𝟎
𝜃P12 P22 𝜃P23 𝟎 𝟎
𝜃P13 𝜃P23 P33 𝟎 𝟎
𝟎 𝟎 𝟎 P44 𝜃P12
𝟎 𝟎 𝟎 𝜃P12 P55

⎞
⎟
⎟
⎟
⎟⎠

.

We have not explored the use of this simpler parameterisation in our worked
examples as it is not easily fitted using SAS. However, it may be preferable
to the correlation matrix suggested by Lipsitz et al., since fewer parameters
are used.

Dispersion parameter

As in GLMMs, variance at the residual level can be increased (or decreased) by
using a dispersion parameter. The residual variance is multiplied by the dispersion
parameter, 𝜙, so that

R = 𝜙B1∕2PB1∕2
.

We suggest that it is usually beneficial to fit a dispersion parameter in random
effects models as in GLMMs; however, this is not possible in some software
packages.

4.2.3 Likelihood and quasi-likelihood functions

The model we have defined, based on binary observations, is now in the form of a
GLMM and a quasi-likelihood function can be defined in the same way as described
in Section 3.2.2. A general form for the log quasi-likelihood for a GLMM that may
contain random effects, coefficients and/or covariance patterns is again

log{QL(𝛂, 𝛄; y)} = log{QL(𝛂, 𝛄R; y |𝛃)} − 1∕2 log |G | − 1∕2𝛃′G−1𝛃 + K,
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where
𝛄 = (𝛄G, 𝛄R).

This function will correspond to a true log-likelihood function whenever the resid-
uals from the original observations are uncorrelated (i.e. no 𝛄R parameters are
included) since QL(𝛂, 𝛄R; y | 𝛃) will then follow a multinomial distribution.

4.2.4 Model fitting methods

Now that the model is in the form of a GLMM, it can be fitted using the approaches
suggested in Section 3.2.3. However, it is now necessary to accommodate the
multinomial within-observation covariances, and this adds a further degree of
complexity to the computation. Several published examples have used generalised
estimating equations to fit covariance pattern models (e.g. Lipsitz et al., 1994;
Liang et al., 1992; Kenward et al., 1994). Lipsitz et al. provide a SAS macro, and
for this reason we have used their approach to analyse some of the examples in
this book. The pseudo-likelihood approach can be used and random effects models
are available in the SAS procedure PROC GLIMMIX. However, the procedure
is not at present adapted to fit covariance pattern models. Both Hedeker and
Gibbons (1994) and Goldstein (2003) have also suggested approaches for fitting
random effects (and coefficients) models.

Alternatively, a Bayesian approach (see Sections 2.3 and 3.2.3) can be used
for analysing random effects and coefficients models. For this approach, it is not
formally necessary to redefine the observations in the extended binary form. A
method such as MCMC can be used to simulate the posterior distribution from
the categorical mixed model by assuming a multinomial distribution for the 𝜇ij
(i.e. the probabilities of yi being in each of the categories). Non-informative prior
distributions can again be used for all parameters: for example, normal distribu-
tions with very large variances for fixed effects and inverse gamma distributions
with very small parameters for variance components.

4.3 Mixed models for unordered categorical data

So far in this chapter we have only considered models for ordered categorical
data. Although less frequent, unordered categorical variables are sometimes
encountered in medicine. Blood group and colour are examples, since there is
no natural ordering of their categories. A mixed model for these types of data
can be defined in a very similar way to the ordinal mixed model. Again, the data
can be re-expressed in extended binary form so that they are in the form of a
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GLMM. The main difference from the ordinal mixed model is that the multinomial
probabilities, 𝛍, are now linked to the model parameters using ‘generalised logits’
rather than the logits of the cumulative probabilities used for ordinal data. The
generalised logits can be calculated as the logs of the ratios of the probabilities of
being in each category to that of being in the last category, that is by log(𝛍/𝛍L),
where 𝛍L is a vector containing the multinomial probabilities of each observation
being in the last category. The model can be specified by

y = 𝛍 + e,

log(𝛍∕𝛍L) = X𝛂 + Z𝛃,

𝛃 ∼ N(𝟎,G),

var(e) = R.

If there were four categories, we could write

𝛍4 = (𝜇14, 𝜇14, 𝜇14, 𝜇24, 𝜇24, 𝜇24, …)′,

and the vector of generalised logits as

log(𝛍∕𝛍4) = (𝜇11∕𝜇14, 𝜇12∕𝜇14, 𝜇13∕𝜇14, 𝜇21∕𝜇24, 𝜇22∕𝜇24, 𝜇23∕𝜇24, …)′.

The choice of the last category for the denominator is arbitrary. Any of the
categories can, in fact, be used and sometimes convergence will be more likely if
the largest category is chosen. 𝛂 and 𝛃 are again vectors containing the fixed and
random effects. However, a separate parameter is now needed for each category
(except the last) because the proportional odds assumption used for ordinal data
does not hold. We illustrate this model using the following hypothetical dataset,
which contains the first five observations from a repeated measures trial in which
y is an unordered categorical variable.

Patient Visit Treatment y

1 1 A 2
1 2 A 1
1 3 A 4
2 1 B 3
2 2 B 1

In a simple model ignoring the effect of visits and fitting treatments as fixed and
patients as random, we could write

𝛂 = (I1, I2, I3, TA,1, TA,2, TA,3, TB,1, TB,2, TB,3)′,

𝛃 = (P1,1,P1,2,P1,3,P2,1,P2,2,P2,3)′,
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where
Ij = intercept of the jth category,

Tk,j = effect for treatment k, category j,
Pi,j = effect for patient i, category j.

Each treatment and patient effect now has a separate parameter corresponding to
each category of the data (except the last). The X and Z design matrices also have
extra columns corresponding to the extra parameters and have the form

I1 I2 I3 TA,1 TA,2 TA,3 TB,1 TB,2 TB,3

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

P1,1 P1,2 P1,3 P2,1 P2,2 P2,3

Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
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4.3.1 The G matrix

G now contains blocks of variance parameters to allow for the fact that separate
effects are specified for each partition and that these effects are correlated within
each patient. A separate covariance parameter can be specified for each of the
parameters corresponding to each pair of partitions. For our example data we
may write

G =
(

Gp 𝟎
𝟎 Gp

)
,

where

Gp =
⎛
⎜
⎜
⎜⎝

𝜎
2
p,11 𝜃p,12 𝜃p,13

𝜃p,12 𝜎
2
p,22 𝜃p,23

𝜃p,13 𝜃p,23 𝜎
2
p,33

⎞
⎟
⎟
⎟⎠

,

𝜎
2
p,jj = patient variance component for category j,

𝜃p,jk = patient covariance parameter of the category pair j, k.

Alternatively, a model with a simpler parameterisation could be proposed. For
example, we could make the assumption that each category had the same
variance component and that the random effects for the different partitions were
uncorrelated within patients. We could then write

Gp = 𝜎
2
p

⎛
⎜
⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟⎠
,

where
𝜎

2
p = patient variance component.

4.3.2 The R matrix

This matrix has the same form as the ordinal mixed model (see Section 4.2.2).

4.3.3 Fitting the model

The model can be fitted using similar techniques to those described for ordinal
mixed models (Section 4.2.5). The method defined by Lipsitz et al. (1994) can also
be used with unordered categorical data, and their SASmacro contains an option
for specifying that the data are unordered.

4.4 Practical application and interpretation

In this section, some points relating to the practical application and interpretation
of categorical mixed models will be considered. However, we should point out that
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experience with these models is limited, and therefore some of the issues are still
far from resolved.

4.4.1 Expressing fixed and random effects results

The fixed and random effects estimates are given in terms of logits which become
more interpretable when exponentiated to give odds ratios (see Section 3.3.4). For
ordinal data, these can be interpreted strictly as the ratio of the odds of being in a
lower category, whichever partition of the category is chosen. However, usually it
is appropriate to interpret the odds ratios obtained as the ratio of the odds of being
in a lower category, averaged over all the possible partitions of the categories. Note
that some software may parameterise the model so that the ratio of the odds of
being in a higher category is obtained. Confidence intervals for the odds ratios can
be obtained by exponentiating confidence intervals calculated on the linear scale
in the same way as for GLMMs (see Section 3.3.9).

4.4.2 The proportional odds assumption

The fixed and random effects, 𝛂 and 𝛃, are assumed to be the same at each
partition in models for ordinal data. For example, if there are four categories, an
equal 𝛂 and 𝛃 are assumed whether a 1/2–4, 1–2/3–4 or 1–3/4 partition is
made. This means that the odds for effects are proportional across all partitions.
This assumption could be tested by fitting a separate set of fixed and random
effects at each partition, 𝛂j and 𝛃j, and testing the equality of the effects at
different partitions. When there is a significant difference between fixed effects
estimates for each partition (i.e. the proportional odds assumption does not
hold), it may be informative to analyse each partition separately using binary
GLMMs. However, often the ‘average’ 𝛂 and 𝛃 over all partitions will be of
greatest interpretational value even if the results differ significantly between
each partition.

4.4.3 Number of covariance parameters

The number of covariance parameters required by a covariance pattern model is
increased by a factor of (c−1)× (c−2)/2 over an equivalent GLMM (unless the
alternative simpler parameterisation is used, see Section 4.2.3). Thus, the model
can use a large number of covariance parameters and this can sometimes lead
to inaccurate estimates or convergence problems. Therefore, the more complex
patterns should be used only cautiously, particularly in small datasets or when
the number of categories is high. It may also be worth considering combining
any categories, which have small frequencies with neighbouring categories.
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Alternatively, if there are a large number of categories, say about five or more,
it might be worth trying a normal mixed model and checking the resulting
residuals. If the model assumptions are approximately satisfied, this type of model
would also have the advantage of being simpler to interpret.

4.4.4 Choosing a covariance pattern

As in GLMMs, approximate likelihood ratio tests based on quasi-likelihood values
could be used to compare models fitting different covariance parameters. However,
a quasi-likelihood value is not always produced by software procedures. For those
without access to software providing quasi-likelihoods, we suggest favouring the
most simple patterns (e.g. compound symmetry or first-order autoregressive) and
using more complex patterns only with larger datasets where there is a strong
suggestion that the covariance pattern deviates from a simpler pattern.

4.4.5 Interpreting covariance parameters

It is difficult to interpret the size of covariance parameters fitted in the R matrix,
since blocks containing (c − 1) × (c − 2)/2 parameters are estimated rather than
individual parameters. The diagonal terms representing correlation between
observations in the same categories are the most helpful. However, if the alter-
native simpler parameterisation is used (see Section 4.2.3), there is only one
parameter per block and the parameters can be interpreted in the same way as
those from ordinary repeated measures analyses (see Section 6.2).

4.4.6 Checking model assumptions

As in the GLMM, it is assumed that the random effects are normally distributed and
uncorrelated. This is difficult to assess but, as for normal data (see Section 2.4.6),
fixed effects and their standard errors are not expected to be sensitive to a lack of
normality in the random effects. Plots of random effects can be used to identify any
outlying effect categories.

4.4.7 The dispersion parameter

The same considerations apply as for Bernoulli data described in Section 3.3.7.
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4.4.8 Other points

Points covered in Section 3.3 relating to uniform fixed and random effects
categories (3.3.2), negative variance components (3.3.3), bias in fixed and
random effects standard errors (3.3.6), significance testing (3.3.8), confidence
intervals (3.3.9) and determining whether the simulated posterior distribution
has converged (3.3.11) also apply to categorical mixed models.

4.5 Example

In this example, we will consider the analysis of an adverse event, ‘cold feet’, which
was recorded at each visit in the hypertension study introduced in Section 1.3.
In Section 3.4, we considered ‘cold feet’ as a binary variable. Here we will analyse
it on its original ordinal scale of 1–5: 1=none, 2= occasionally, 3= on most
days, 4=most of the time, 5= all of the time. The frequencies of each category by
treatment and visit are shown in Table 4.1. Two sets of analyses will be used to
illustrate the use of both random effects and covariance pattern models. The first
will analyse the last values recorded for each patient and consider the data as a
multi-centre design. The second will consider all the post-treatment values and
analyse the data as a repeated measures design, ignoring the effects of centres.

Multi-centre analysis

Analyses were carried out using the following models.

Model Fixed effects Random effects Method

1 Baseline, treatment Maximum likelihood
2a Baseline, treatment Centre, treatment⋅centre Pseudo-likelihood
2b Baseline, treatment Centre, treatment⋅centre MCMC

Model 1 does not include fixed centre effects as this would lead to uniform
treatment effects as occurred in the binary analysis of cold feet. Therefore, this
model is not recommended for estimating treatment effects (see Section 3.4.2,
Model 2). Models 2a and 2b take into account the random variation in the
treatment effect between centres and results and can be related with more
confidence to the ‘population’ of potential centres. Baseline cold feet is also
measured on the same scale of 1–5 and is fitted as a categorical effect.
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Table 4.1 Frequencies of ‘cold feet’ severity by treatment and visit.

Category

Treatment Visit 1 2 3 4 5

A 3 83 4 6 0 4
4 72 5 6 3 3
5 70 3 5 2 3
6 63 5 3 3 2

B 3 69 9 5 2 6
4 65 7 10 3 3
5 54 10 8 6 8
6 55 5 8 4 7

C 3 79 2 7 1 1
4 85 1 4 0 1
5 82 3 3 2 1
6 78 4 3 1 1

Total 855 58 68 27 40

Results

Estimates of the variance components and treatment effects are shown in
Table 4.2. Note that the models are parameterised in terms of ratios of lower to
higher categories of cold feet. Thus, a positive difference relates to less frequent
cold feet on the first treatment than on the second. The centre and centre

Table 4.2 Estimates of variance components and fixed effects (on the logit scale).

Treatment effects (SE, p)

Model A − B A − C B − C

1 0.65 (0.36, p=0.07) −0.87 (0.47, p=0.06) −1.53 (0.45, p=0.0009)
2a 0.66 (0.37, p=0.07) −0.87 (0.47, p=0.07) −1.53 (0.45, p=0.0009)
2b 0.70 (0.40, p=0.09) −0.94 (0.51, p=0.06) −1.63 (0.49, p=0.006)

Variance components (SEs, centiles)

Model Centre Treatment⋅centre

1 – –
2a 0.064 0.000
2b 0.075 0.057
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treatment variance components in Models 2a and 2b are small compared with
those obtained in the binary analyses of cold feet. This is because the dispersion
parameter is fixed at one as there is not currently an option to fit a dispersion
parameter when modelling ordinal data in PROC GLIMMIX. Since there are
uniform centre and centre treatment effects, this is likely to have caused a down-
ward bias in the centre and centre treatment variance component as these models
will be unable to compensate for the effects of random effects shrinkage (see
Section 3.3.5). A downward bias in the centre⋅treatment variance component
will cause the treatment effect standard errors in Model 2a to be underestimated
to some extent. However, this is not expected to be a problem in Model 2b, which
is fitted using MCMC.

All of the models showed that cold feet were more frequent on treatment B than
on treatment C. The results are very similar between Models 1 and 2a. Although
Model 2a has estimated a small positive centre variance component, it leads to no
noticeable recovery of information on the treatment effects. However, the results
for Model 2b fitted using MCMC show more marked differences. This is likely to
be mainly due to the positive centre⋅treatment variance component which causes
differences in the treatment effect estimates and an increase in their standard
errors, reflecting the additional variation occurring across the centres. As the
MCMC approach does not use linear approximations in obtaining the parameter
estimates (as pseudo-likelihood does), we would suggest that these results are
preferable to those obtained using Model 2a.

Baseline cold feet effects were highly significant in each analysis, increasing the
efficiency of the models. However, the effects are not monotonic (see SAS output).
This happens because of a very low number in some categories at baseline – the
numbers in the five categories are 243, 13, 17, 2 and 8. It is the category with only
two patients that causes the loss of monotonicity. To avoid this, the data could have
been reanalysed with the last two categories combined. However, given the size of
the dataset, there are likely only to be small differences in the overall treatment
effect results. Alternatively, the baseline category could have been treated as a
quantitative covariate.

Odds ratios may be obtained by reversing the signs of the treatment differences
on the linear scale and taking their exponentials (Table 4.3). They can be inter-
preted as the ratio of the odds of having more frequent cold feet. For example, the
odds ratio corresponding to the difference A−B is based on the probability of more
cold feet on treatment A compared with treatment B. In this context, more cold
feet can be considered as category 5 (all the time) versus the other categories; as
categories 4 or 5 (most or all of the time) versus the rest; as categories 3, 4 or
5 (on most days or worse) versus the rest; or as categories 2–5 (occasionally or
worse) versus category 1 (none). Note that it is an inherent assumption of this
model that the same odds ratio applies to every partition between the categories
(see Section 4.4.2).
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Table 4.3 Odds ratios and 95%
confidence intervals from Model 2a.

Effect Odds ratio

A/B 0.52 (0.25, 1.06)
A/C 2.38 (0.94, 5.88)
B/C 4.55 (1.89, 11.11)

Repeated measures analysis

We will consider analysing the data using a variety of covariance patterns
(Model 1 – uncorrelated; Model 2 – compound symmetry; Model 3 – Toeplitz;
Model 4 – general) using the SAS macro written by Lipsitz et al. (1994). Each
model will fit baseline cold feet, treatment and visit effects as fixed effects.
Treatment by visit effects were found to be non-significant on initial analysis and
therefore have been excluded from each model. Model 4 using a general pattern
did not converge even when categories 4 and 5 were combined. This is likely to be
due to the large number of covariance parameters that needed to be estimated by
the Model (60).

We will first consider the correlation parameter estimates arising from the
models. These are rather more difficult to interpret than parameter estimates
from covariance patterns in normal mixed models or GLMMs, because there is
now a 4×4 matrix block of parameters representing the correlation between a
pair of visits. Recall from Section 4.2.2 that

R = B1∕2PB1∕2
.

In this example, the correlation matrix, P, has the block diagonal form

P =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

P11 P12 P13 P14 𝟎 𝟎 . .

P12 P22 P23 P24 𝟎 𝟎 . .

P13 P23 P33 P34 𝟎 𝟎 . .

P14 P24 P34 P44 𝟎 𝟎 . .

𝟎 𝟎 𝟎 𝟎 P55 P12 . .

𝟎 𝟎 𝟎 𝟎 P12 P66 . .

. . . . . . . .

. . . . . . . .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,

where the Pii are the multinomial ‘within-observation’ correlation matrices
and the Pmn give the correlations between observations on the same patient
between visits m and n. The Pmn matrices obtained from Models 1–3 are shown
in Table 4.4.

Statistical comparisons between the models using likelihood ratio tests were not
readily available because quasi-likelihood values were not produced by the SAS
macro. On informal examination, the positive diagonal terms in Pii matrix blocks
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Table 4.4 Pmn correlation submatrices.

Model

All visit pairs (i.e. all Pmn, m≠n)

1
Parti-
tion 1 2 3 4

1 0.00
2 0.00 0.00
3 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00

All visit pairs (i.e. all Pmn, m≠n)

Parti-
2 tion 1 2 3 4

1 0.38
2 0.01 0.27
3 −0.07 −0.02 0.09
4 −0.12 −0.06 0.10 0.12

Visit separation = 1 Visit separation = 2 Visit separation = 3
(i.e. P12, P23, P34) (i.e. P13, P24) (i.e. P14)

Parti-
3 tion 1 2 3 4 1 2 3 4 1 2 3 4

1 0.43 0.32 0.41
2 0.00 0.30 0.02 0.21 0.03 0.33
3 −0.10 −0.02 0.23 −0.10 −0.03 0.02 0.05 −0.03 −0.18
4 −0.20 −0.12 0.15 0.07 −0.06 −0.02 0.10 0.05 0.02 −0.03 −0.07 0.35

for Models 2 and 3 indicate that the repeated observations on the same patient are
correlated. Therefore, Model 1, which has zero correlations and assumes that the
observations are independent, should be rejected. The banded pattern (Model 3)
does not show marked differences between the correlations depending on visit
separation. Therefore, we might choose to base our conclusions on Model 2 with
a simpler covariance pattern.

Treatment effect estimates are shown with ‘model-based’ standard errors in
Table 4.5. In Model 1, which naively assumes that the repeated observations
are independent, the standard error estimates are noticeably smaller than for
Models 2 and 3.

The overall treatment effects in Model 2 were highly significant (p=0.0007).
Cold feet were significantly more likely on treatment B than on treatment A
(p=0.03), and on treatment B than on treatment C (p=0.0002). The coefficients
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Table 4.5 Treatment effect estimates.

Treatment effect (SE)

Model A − B A − C B − C

1 Uncorrelated 0.72 (0.20) −0.54 (0.25) −1.26 (0.23)
2 Compound symmetry 0.65 (0.29) −0.61 (0.35) −1.26 (0.33)
3 Toeplitz 0.65 (0.29) −0.57 (0.35) −1.21 (0.33)

Table 4.6 Odds ratios calculated
from Model 2.

Effect Odds ratio

A/B 0.52 (0.30, 0.92)
A/C 1.84 (0.93, 3.65)
B/C 3.52 (1.84, 6.73)

for the treatment effects are difficult to interpret directly, but, as before, by expo-
nentiation we can calculate odds ratios and 95% confidence intervals (Table 4.6).
Confidence intervals are calculated using the ‘model-based’ standard errors
and the z0.975 statistic. The exact DF for t statistics was not available from the
SAS macro. However, the patient DF of over 300 can be taken as a conservative
estimate and the t statistic is then well approximated by the z0.975 statistic.

SAS code and output

Multicentre analysis

Model 1

Variables
cf = post-treatment cold feet (1–5)
cf1 = pre-treatment cold feet (1–5)

PROC GLIMMIX; CLASS centre treat cf1;
MODEL cf=cf1 treat/ DIST=MULT DDFM=KR S;
ESTIMATE ‘A-B’ treat 1 -1 0/ CL OR;
ESTIMATE ‘A-C’ treat 1 0 -1/ CL OR;
ESTIMATE ‘B-C’ treat 0 1 -1/ CL OR;

(Note PROC GENMOD or PROC LOGISTIC could have equivalently been used
to fit this model, although the signs for mean effects may differ between the
procedures.)
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Only output relating to the fixed effects estimates is given:

Parameter Estimates

Standard
Effect cf treat cf1 Estimate Error DF t Value Pr > |t|

Intercept 1 -1.3254 0.8152 273 -1.63 0.1051
Intercept 2 -0.7739 0.8090 273 -0.96 0.3396
Intercept 3 0.07031 0.8003 273 0.09 0.9301
Intercept 4 0.6673 0.7995 273 0.83 0.4047
cf1 1 4.0832 0.7794 273 5.24 <.0001
cf1 2 3.1632 1.0050 273 3.15 0.0018
cf1 3 1.2127 0.8428 273 1.44 0.1513
cf1 4 2.9671 1.4723 273 2.02 0.0449
cf1 5 0 . . . .
treat A -0.8745 0.4709 273 -1.86 0.0644
treat B -1.5292 0.4536 273 -3.37 0.0009
treat C 0 . . . .

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

cf1 4 273 13.30 <.0001
treat 2 273 5.90 0.0031

Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

A-B 0.6547 0.3640 273 1.80 0.0732 0.05 -0.06190 1.3713
A-C 0.8745 0.4709 273 -1.86 0.0644 0.05 -1.8016 0.05252
B-C -1.5292 0.4536 273 -3.37 0.0009 0.05 -2.4222 -0.6363

Exponentiated Exponentiated Exponentiated
Label Estimate Lower Upper

A-B 1.9246 0.9400 3.9405
A-C 0.4171 0.1650 1.0539
B-C 0.2167 0.08873 0.5293
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Model 2a

PROC GLIMMIX; CLASS centre treat cf1;
MODEL cf=cf1 treat/ DIST=MULT DDFM=KR S;
RANDOM centre centre*treat;
ESTIMATE ‘A-B’ treat 1 -1 0/ CL OR;
ESTIMATE ‘A-C’ treat 1 0 -1/ CL OR;
ESTIMATE ‘B-C’ treat 0 1 -1/ CL OR;

Only the output relating to the variance components and fixed effects estimates
is shown:

Covariance Parameter Estimates

Standard
Cov Parm Estimate Error

centre 0.06431 0.1636
centre*treat 0 .

Solutions for Fixed Effects

Standard
Effect cf treat cf1 Estimate Error DF t Value Pr > |t|

Intercept 1 -1.2812 0.8326 273 -1.54 0.1250
Intercept 2 -0.7274 0.8272 273 -0.88 0.3800
Intercept 3 0.1197 0.8160 273 0.15 0.8835
Intercept 4 0.7211 0.8109 273 0.89 0.3747
cf1 1 4.0224 0.7776 273 5.17 <.0001
cf1 2 3.1525 0.9933 273 3.17 0.0017
cf1 3 1.1650 0.8459 273 1.38 0.1696
cf1 4 2.9810 1.5950 273 1.87 0.0627
cf1 5 0 . . . .
treat A -0.8689 0.4741 273 -1.83 0.0679
treat B -1.5273 0.4569 273 -3.34 0.0009
treat C 0 . . . .

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

cf1 4 273 12.48 <.0001
treat 2 273 5.85 0.0032
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Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

A-B 0.6584 0.3653 273 1.80 0.0726 0.05 -0.06075 1.3775
A-C -0.8689 0.4741 273 -1.83 0.0679 0.05 -1.8023 0.06452
B-C -1.5273 0.4569 273 -3.34 0.0009 0.05 -2.4268 -0.6278

Exponentiated Exponentiated Exponentiated
Label Estimate Lower Upper

A-B 1.9317 0.9411 3.9651
A-C 0.4194 0.1649 1.0666
B-C 0.2171 0.08832 0.5338

Model 2b

Variables
alpha01-alpha04 =4 intercepts
alpha11-alpha14 = parameters for four binary baseline cold feet variables
alpha2, alpha3 = parameters for treatment differences A − C and B − C
cf11-cf14 = values of four binary baseline cold feet variables

(recorded in dataset)
cfm1-cfm5 = values of five binary cold feet variables (recorded in

dataset)
treata, treatb = values of for treatment differences A − C and B − C
b_centre, b_ct = centre and centre⋅treatment parameters
v2, v3 = centre and centre⋅treatment variance component

parameters

ODS GRAPHICS ON;
PROC MCMC DATA=C OUTPOST=post NMC=200000 THIN=10 SEED=7899;
ODS SELECT PARAMETERS REPARAMETERS POSTSUMMARIES

POSTINTERVALS;
ARRAY cfm[5] cfm1 cfm2 cfm3 cfm4 cfm5;
PARMS alpha01 0 alpha02 0.1 alpha03 0.2 alpha04 0.3 alpha11 0

alpha12 0 alpha13 0 alpha14 0 alpha2 0 alpha3 0
v2 1 v3 1;

PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);
RANDOM b_centre ∼ NORMAL(0, VAR = v2) SUBJECT=centre;
RANDOM b_ct ∼ NORMAL(0, VAR = v3) SUBJECT=centre_treat;
mu1 = alpha01 + alpha11*cf11 + alpha12*cf12 + alpha13*cf13

+ alpha14*cf14 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;
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mu2 = alpha02 + alpha11*cf11 + alpha12*cf12 + alpha13*cf13
+ alpha14*cf14 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

mu3 = alpha03 + alpha11*cf11 + alpha12*cf12 + alpha13*cf13
+ alpha14*cf14 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

mu4 = alpha04 + alpha11*cf11 + alpha12*cf12 + alpha13*cf13
+ alpha14*cf14 + alpha2*treata + alpha3*treatb
+ b_centre + + b_ct;

p1 = LOGISTIC(mu1);
p2 = LOGISTIC(mu2)-LOGISTIC(mu1);
p3 = LOGISTIC(mu3)-LOGISTIC(mu2);
p4 = LOGISTIC(mu4)-LOGISTIC(mu3);
p5 = 1-LOGISTIC(mu4);
ARRAY p[5] p1 p2 p3 p4 p5;
MODEL cfm ∼ MULTINOM(p);
RUN;
ODS GRAPHICS OFF;

Some of the code has a similar form to that used to analyse cold feet as a binary
variable in Section 3.4. The main differences here are the need to define the
following:

• dummy binary variables for the (four) intercepts and for baseline cold feet,
• each of the five predicted probabilities needed to define the multinomial

distribution, p1-p5, based on differences in the predicted cumulative
probabilities (note the SAS LOGISTIC function is (1+ exp(−mu))−1),

• a multinomial distribution for cold feet.

Note this procedure requires that the starting values for the intercept
parameters, alpha01-alpha04, that are set in ascending order. If this is
not done, the initial values taken by SAS do not lead to valid probabilities for the
multinomial distribution and the simulation fails.

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha01 20000 -1.3968 0.9145 -1.9922 -1.3719 -0.7876
alpha02 20000 -0.8030 0.9077 -1.3995 -0.7781 -0.2004
alpha03 20000 0.1043 0.9001 -0.4896 0.1254 0.7111
alpha04 20000 0.7841 0.9013 0.1909 0.8027 1.3918
alpha11 20000 4.2863 0.8621 3.7004 4.2556 4.8365
alpha12 20000 3.5175 1.1067 2.7634 3.4794 4.2410
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alpha13 20000 1.2757 0.9227 0.6466 1.2511 1.8694
alpha14 20000 3.4559 1.7705 2.2722 3.3860 4.5678
alpha2 20000 -0.9373 0.5077 -1.2696 -0.9306 -0.5948
alpha3 20000 -1.6324 0.4917 -1.9484 -1.6189 -1.2998
v2 20000 0.1460 0.1937 0.0298 0.0753 0.1832
v3 20000 0.1195 0.1661 0.0228 0.0573 0.1463

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha01 0.050 -3.2644 0.3424 -3.2145 0.3790
alpha02 0.050 -2.6352 0.9326 -2.6066 0.9542
alpha03 0.050 -1.7079 1.8449 -1.6099 1.9266
alpha04 0.050 -1.0260 2.5218 -0.9903 2.5487
alpha11 0.050 2.6878 6.0725 2.6667 6.0444
alpha12 0.050 1.4188 5.7848 1.2882 5.6249
alpha13 0.050 -0.4474 3.1922 -0.5123 3.1119
alpha14 0.050 0.2110 7.1732 0.0615 6.9542
alpha2 0.050 -1.9497 0.0409 -1.9623 0.0235
alpha3 0.050 -2.6391 -0.7098 -2.6171 -0.6923
v2 0.050 0.00662 0.6837 0.00120 0.5232
v3 0.050 0.00546 0.5901 0.00151 0.4459

The above tables provide estimates and probability intervals for the four intercept
parameters (alpha01-alpha04), the four binary baseline cold feet parameters
(alpha11-alpha14), the treatment differences A − C and B − C (alpha2 and
alpha3), and the centre and centre treatment variance components (v2 andv3).
Because cold feet was coded from 1 (none) to 5 (all the time), the probability of
having less cold feet is being modelled. Therefore negative estimates for A − C and
B − C indicate that there is more severe cold feet on treatments A and B than on
treatment C.

The mean and SE for A − B, and odds ratios, p-values and 95% confidence
intervals for all treatment differences, may be obtained using similar code to that
used for the MCMC analyses in Sections 2.5 and 3.4. Similar code may also be
used to assess convergence.

Repeated measures analysis

Variables
cf = post - treatment cold feet (15),
cf1 = pre - treatment cold feet (15),
treat = treatment,
visit = visit.
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Model 1

PROC GENMOD; CLASS treat visit cf1;
MODEL cf=cf1 treat visit/ TYPE3 WALD DIST=MULT;
ESTIMATE ‘A-B’ treat 1 -1 0/ ALPHA=0.05 EXP;
ESTIMATE ‘A-C’ treat 1 0 -1/ ALPHA=0.05 EXP;
ESTIMATE ‘B-C’ treat 0 1 -1/ ALPHA=0.05 EXP;

Model Information
Data Set WORK.A
Distribution Multinomial
Link Function Cumulative Logit
Dependent Variable cf
Number of Observations Read 1047
Number of Observations Used 1047

Class Level Information
Class Levels Values
treat 3 A B C
visit 4 1 2 3 4
cf1 5 1 2 3 4 5

Response Profile
Ordered Total
Value cf Frequency
1 1 854
2 2 58
3 3 68
4 4 27
5 5 40

PROC GENMOD is modelling the probabilities of levels of cf havingLOWEROrdered
Values in the response profile table. One way to change this to model the probabil-
ities of HIGHEROrdered Values is to specify the DESCENDING option in the PROC
statement.

Parameter Information
Parameter Effect treat visit cf1
Prm1 cf1 1
Prm2 cf1 2
Prm3 cf1 3
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Prm4 cf1 4
Prm5 cf1 5
Prm6 treat A
Prm7 treat B
Prm8 treat C
Prm9 visit 1
Prm10 visit 2
Prm11 visit 3
Prm12 visit 4

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Log Likelihood -608.1612
Full Log Likelihood -608.1612
AIC (smaller is better) 1242.3224
AICC (smaller is better) 1242.6748
BIC (smaller is better) 1306.7203

Algorithm converged.

Analysis Of Parameter Estimates
Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr>ChiSq
Intercept1 1 -2.7439 0.5214 -3.7658 -1.7219 27.69 <.0001
Intercept2 1 -2.1331 0.5175 -3.1473 -1.1189 16.99 <.0001
Intercept3 1 -0.9766 0.5043 -1.9650 0.0118 3.75 0.0528
Intercept4 1 -0.1334 0.4910 -1.0957 0.8289 0.07 0.7859
cf1 1 1 5.3827 0.4758 4.4500 6.3153 127.96 <.0001
cf1 2 1 4.3937 0.5774 3.2620 5.5253 57.90 <.0001
cf1 3 1 2.4437 0.4974 1.4688 3.4186 24.14 <.0001
cf1 4 1 3.8132 0.8041 2.2371 5.3892 22.49 <.0001
cf1 5 0 0.0000 0.0000 0.0000 0.0000 .42 .4112
treat A 1 -0.5394 0.2509 -1.0311 -0.0476 4.62 0.0316
treat B 1 -1.2628 0.2328 -1.7191 -0.8065 29.42 <.0001
treat C 0 0.0000 0.0000 0.0000 0.0000 .42 .4112
visit 1 1 0.2255 0.2572 -0.2785 0.7296 0.77 0.3805
visit 2 1 0.2157 0.2589 -0.2918 0.7232 0.69 0.4049
visit 3 1 -0.1988 0.2472 -0.6834 0.2858 0.65 0.4214
visit 4 0 0.0000 0.0000 0.0000 0.0000 .42 .4112
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Wald Statistics For Type 3 Analysis
Chi-

Source DF Square Pr>ChiSq
cf1 4 215.75 <.0001
treat 2 32.27 <.0001
visit 3 4.08 0.2535

Contrast Estimate Results

Mean Mean L’Beta Standard
Label Estimate Confidence Limits Estimate Error Alpha
A-B 0.6734 0.5788 0.7556 0.7234 0.2069 0.05
Exp(A-B) 2.0614 0.4266 0.05
A-C 0.3683 0.2629 0.4881 -0.5394 0.2509 0.05
Exp(A-C) 0.5831 0.1463 0.05
B-C 0.2205 0.1520 0.3086 -1.2628 0.2328 0.05
Exp(B-C) 0.2829 0.0659 0.05

L’Beta
Label Confidence Limits Chi-Square Pr>ChiSq
A-B 0.3178 1.1290 12.22 0.0005
Exp(A-B) 1.3742 3.0924
A-C -1.0311 -0.0476 4.62 0.0316
Exp(A-C) 0.3566 0.9535
B-C -1.7191 -0.8065 29.42 <.0001
Exp(B-C) 0.1792 0.4464

The only part of this output which is useful for this example is found from the
column headed L’Beta Estimate onwards. These give the estimates and confidence
limits on the linear scale along with the corresponding exponentiated values that
give us the odds ratios. The first three columns of numbers are obtained by apply-
ing the inverse link to the L’Beta estimates and did not appear in earlier versions
of SAS.

Models 2 and 3 The SAS macro written by Lipsitz et al. (1994) was used to
perform these analyses (see Section 9.1). This macro and the SAS code used can
be obtained from web page www.wiley.com/go/brown/applied_mixed. However,
we note that the macro no longer appears run successfully for this example using
SAS/STAT 12.3.

http://www.wiley.com/go/brown/applied_mixed
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Multi-centre trials and
meta-analyses

In this chapter, we consider the analysis of data that are collected from several
centres or trials. Such datasets in which observations have a natural grouping
can be described as hierarchical. Use of a random effects model to analyse a hier-
archical dataset often leads to results that can be generalised more widely. Section
5.1 provides an introduction to multi-centre trials; the implications of fitting dif-
ferent models are considered in Section 5.2; a worked example is given in Section
5.3; some general points specific to hierarchical datasets are made in Section 5.4;
and sample size estimation methods are introduced in Section 5.5. Meta-analysis
is considered in Section 5.6 and an example follows in Section 5.7.

5.1 Introduction to multi-centre trials

5.1.1 What is a multi-centre trial?

A multi-centre trial is carried out at several centres because insufficient patients
are available for the study at any one centre, or with the deliberate intention of
assessing the effectiveness of treatments in several settings. Sometimes, there will
be extra variability in treatment effect estimates, which can be due to differences
between the centres (e.g. different investigators, types of patients, climates). This
extra variation can be taken into account in the analysis by including centre and
centre⋅treatment effects as random effects in the model. Such variation is likely to
be most noticeable in trials that do not compare drugs. For example, in a trial to
compare surgical procedures, there may be varying levels of experience available
at each centre with the different procedures. This will lead us to expect a positive
variance component for the centre⋅treatment effects.

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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5.1.2 Why use mixed models to analyse multi-centre data?

When centre and centre⋅treatment effects are fitted as random, allowance is made
for variability in the magnitude of the treatment effects between centres. However,
deciding whether centre and centre⋅treatment effects should be fixed or random
is often the subject of debate. In practice, the choice will depend on whether
treatment estimates are to relate only to the set of centres used in the study or,
more widely, to the circumstances and locations of which the trial centres can be
regarded as a sample. In the former case, local treatment estimates for the sampled
set of individual centres are obtained by fitting centre and centre⋅treatment effects
as fixed. To obtain global treatment estimates, centre and centre⋅treatment effects
should be fitted as random. When this is done, the standard error of treatment
differences is increased to reflect the heterogeneity of the treatment effects across
centres.

If the centre⋅treatment term is omitted, there is a choice of whether to fit
centre effects as fixed or random. Taking centre effects as random can increase
the accuracy of treatment estimates, since information from the centre error
stratum is used in addition to that from the residual stratum. Thus, it is nearly
always beneficial to fit centres as random, regardless of whether a local or global
interpretation is required. The amount of extra information will depend on the
degree of treatment imbalance within the centres and the relative sizes of the
variance components.

In the analysis of multi-centre trials, it is important to check whether results
from any particular centre are outlying. If this occurs, it may be an indication that
a centre has not followed the protocol correctly. In the fixed effects model, spurious
outlying estimates caused by random variation may occur, particularly in small
centres. In contrast, the shrunken estimates of centre and centre⋅treatment effects
obtained by the random effects model do not have this problem.

5.2 The implications of using different analysis models

In this section, we look more closely at the implications of fitting centre and
centre⋅treatment effects as fixed or random. We will consider four different
models, and in each of them treatment effects and baseline effects (if available)
are fitted as fixed.

5.2.1 Centre and centre⋅treatment effects fixed

Treatments effects

These are estimated with equal weight given to results from each centre regardless
of size. If centre sizes vary greatly, this can cause results to differ markedly from
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analyses not fitting centre⋅treatment effects as fixed. Another potential difficulty
with this method is that treatment effects cannot be estimated at all unless all
treatments are received at every centre. For example, if no patients received
treatment A at one centre, then all comparisons involving treatment A would be
non-estimable. In practice, we note, however, that this problem could be resolved
by the amalgamation of centres with a small number of patients.

Treatment standard errors

These are based on the residual (within-centre) variation. The variance (SE)2 of a
treatment difference is given by

var(ti − tj) = 𝜎
2(1∕ni + 1∕nj),

where𝜎2 is the residual variance and ni and nj are the number of patients receiving
treatments i and j. When an equal number of patients, r, receive each treatment
at each of c centres, we have ni = rc and the variance can be written as follows:

var(ti − tj) = 2𝜎2∕rc.

This variance will always be less than or equal to that for the model fitting
centre⋅treatment effects as random (see Section 5.2.3).

Outlying centres

These can be determined from the centre and centre⋅treatment effect means.
However, the estimates can be misleading for small centres, which could appear
outlying owing only to random variation.

Inference

This strictly applies only to those centres that were included in the trial.

5.2.2 Centre effects fixed, centre⋅treatment effects omitted

This fixed effects model is often used when the centre⋅treatment effects in the
previous model are non-significant. However, in practice, there is often a lack
of power to detect small centre⋅treatment effects, and hence variability in the
treatment effects across centres is often ignored.

Treatment estimates

These take account of differing centre sizes and are not estimated with equal
weight given to results from each centre as in the previous model.
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Treatment standard errors

These are based on the residual (within-centre) variation. The variances of
treatment differences are given by the formula used in the previous model.

Outlying centres

These can be determined from the centre means. However, again, these can be mis-
leading for small centres that could be apparently outlying owing only to random
variation.

Inference

This strictly applies only to those centres that were included in the trial. However,
extrapolation of the inferences regarding the effect of treatment to other centres
seems more reasonable when an assumption has been made that the treatment
effect does not depend on the centre in which it has been applied.

5.2.3 Centre and centre⋅treatment effects random

Unlike the commonly used fixed effects approach of dropping a non-significant
centre⋅treatment interaction, centre⋅treatment effects are retained in the random
effects model, provided the centre⋅treatment variance component, 𝜎2

ct, is positive.
Thus, variation in treatment effects across centres is allowed even though its
existence may not have been ‘proven’ by a significance test.

Treatment estimates

These take account of differing centre sizes. They are estimated using informa-
tion from the centre⋅treatment error stratum and also from the centre stratum if
treatment effects are not balanced across centres. They are estimable even if some
treatments are not received at every centre.

Treatment standard errors

Treatment standard errors are based on the centre⋅treatment variation. If an
equal number of patients receive each treatment at every centre, the variance of
treatment effect differences can be obtained as

var(ti − tj) = 2(𝜎2∕rc + 𝜎
2
ct∕c).

Thus, the variance is directly related to the size of the centre⋅treatment variance
component, 𝜎2

ct, and the number of centres sampled, c. It is always expected to be
greater than the fixed effects model variance, 2𝜎2/rc, provided 𝜎

2
ct is not allowed

to be negative.
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The variance is not as easily specified when centre sizes are unequal. However, if
the proportion of patients allocated to each treatment is the same across centres,
the variance is of the form

var(ti − tj) = varFE(ti − tj) + k𝜎2
ct,

where varFE(ti − tj) is the fixed effects model variance and k is a positive constant.
Thus, the variance is again always expected to be greater than or equal to that in
the fixed effects model.

In most situations, though, the proportions of patients receiving each treatment
will differ to some extent from centre to centre. When this is the case, a general
formula for the variance cannot be specified. The effect of the centre⋅treatment
variance component will, however, still cause an increase in the variance of the
treatment differences.

Outlying centres

These can be determined using the shrunken centre and centre⋅treatment
estimates. Shrinkage is greater for small centres, and therefore spurious outlying
estimates will not be obtained for small centres.

Inference

This relates to the ‘population’ of possible centres from which those in the trial can
be regarded as a random sample.

5.2.4 Centre effects random, centre⋅treatment effects omitted

This model is useful when local estimates are required, since smaller treatment
standard errors are often obtained compared with a fixed effects model by
recovering extra information from the centre error stratum.

Treatment estimates

These take account of differing centre sizes. Additional information on treatments
is recovered from the centre error stratum.

Treatment standard errors

These are based on the residual (within-centre) variation. When the proportion
of patients allocated to each treatment is the same across centres, the variances
of treatment differences are given by the formula used in the first fixed effects
model. When it is not, the variance is expected to be less, since extra information
is recovered on treatment effects from the centre error stratum.
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Outlying centres

These can be determined using the shrunken centre estimates. Shrinkage is
greater for small centres, and therefore spurious outlying estimates are not
obtained for small centres.

Inference

This relates to the only sampled centres. Only under the strong assumption that
there is no centre⋅treatment interaction, inferences can be applied to the popula-
tion of centres from which those in the trial can be considered as a sample.

5.3 Example: a multi-centre trial

We have already considered in some detail the analysis of a multi-centre trial
of treatments for hypertension in Sections 1.3 and 2.5. Here, we discuss the
interpretation of the results from these analyses in detail and consider estimates
of treatment effects by centre.

Results from fixed and random effects’ analyses of DBP are summarised in
Table 5.1. An initial fixed effects model including centre⋅treatment effects was
also fitted. However, overall treatment effects were not estimable in this model,
because all treatments were not received at every centre (see Table 1.1 in
Section 1.3). This model gave a non-significant p - value for centre⋅treatment

Table 5.1 Results from fixed and random effects analyses of diastolic blood pressure.

Model Fixed effects Random effects Method

1 Baseline, treatment, centre OLS
2 Baseline, treatment Centre REML
3 Baseline, treatment Centre, treatment⋅centre REML

Treatment effects (SEs)

Model Baseline A−B A−C B−C

1 0.22 (0.11) 1.20 (1.24) 2.99 (1.23) 1.79 (1.27)
2 0.22 (0.11) 1.03 (1.22) 2.98 (1.21) 1.95 (1.24)
3 0.28 (0.11) 1.29 (1.43) 2.93 (1.41) 1.64 (1.45)

Variance components

Model Centre Treatment⋅centre Residual

1 – – 71.9
2 7.82 – 70.9
3 6.46 4.10 68.4
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effects (p=0.19), and thus the usual ‘fixed effects’ approach would have been to
remove centre⋅treatment effects to give Model 1.

The centre⋅treatment variance component is positive in Model 3, and this leads
to an increase in the treatment standard errors over the fixed effects models (as
indicated by the variance formulae given in Section 5.2). However, note that the
baseline standard error is similar between the models. This is because baseline
effects are estimated at the residual error level and not at the centre⋅treatment
level. Results from Model 3 can be related to the potential population of centres.
Since there are 29 centres, there are no problems arising from an inadequate
number of DF for the variance components, and we can be confident in presenting
these results if global inference is required.

The centre variance component is positive in Models 2 and 3, and therefore some
information on treatments will be recovered from the centre error stratum. How-
ever, the standard errors in Model 2 are only slightly smaller than in Model 1, indi-
cating that only a small amount of information has been recovered. Also, some of
the improvement in the standard error may be due to the smaller residual variance
that has resulted from the use of this model.

Plots of the centre and centre⋅treatment effects from Model 3 were used in
Section 2.5 to assess the normality of the random effects and to check whether
any centres were outlying. In addition, we can now take differences between the
centre⋅treatment effects to calculate treatment effect estimates for each centre.
In Model 3, these will be shrunken towards the overall treatment mean. We
illustrate this by calculating the treatment difference A–C for just the first eight
centres in the study. Unshrunken fixed effects estimates are also calculated for
comparison using results from the initial model (fitting treatment, centre and
centre⋅treatment effects as fixed).

Treatment estimates (SE)

Centre Number of patients Fixed model Random model

1 39 3.81(3.34) 3.19 (2.94)
2 10 −5.67(6.80) 1.56 (3.40)
3 8 25.66(7.63) 6.05 (3.40)
4 12 −0.12(5.90) 2.42 (3.39)
5 11 14.12(7.21) 4.56 (3.40)
6 5 2.89(8.37) 3.03 (3.39)
7 18 7.38(4.82) 4.22 (3.31)
8 6 −4.68(8.33) 2.15 (3.39)

It can be seen that, in general, shrinkage is towards the overall treatment
difference of 2.92 (although this is not the case for all centres, because the
models make different adjustments for baseline effects). The relative shrinkage
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(i.e. (fixed estimate–random estimate)/(fixed estimate)) is usually greatest for the
smaller centres. The standard errors of the random effects estimates are smaller
than those of the fixed effects estimates because the random effects model utilises
information on the treatment effects in the full sample as well as information from
the centre of interest. By contrast, the fixed effects standard errors do not utilise
the full sample information and are larger because they are calculated using only
information from the centre of interest. This also causes the fixed effects standard
errors to vary greatly between the centres because they are directly related to the
centre sizes. It is difficult to determine whether any of the centres are outlying
using the fixed effects estimates because they need to be considered bearing in
mind centre size. For example, at centre 3 a very large treatment difference is given
by the fixed estimate, but the shrunken random estimate appears acceptable. We
note that the standard errors of the random effects estimates have increased by
around 20% from those reported in the first edition of this book, by use of the
Kenward–Roger option.

SAS code and output

Variables
centre = centre number,
treat = treatment (A, B, C),
patient=patient number,
dbp = diastolic blood pressure at last attended visit,
dbp1 = baseline diastolic blood pressure.

TheSAS code to produce the main results is given at the end of Section 2.5. Here,
we give the code for obtaining the shrunken and unshrunken treatment effects
at the first eight centres. PROC MIXED is used first to fit Model 3. ESTIMATE
statements are included to calculate the shrunken treatment differences at
the first eight centres. Next, a fixed effects model is fitted, which again uses
ESTIMATE statements to calculate (unshrunken) treatment differences. Two
datasets, ‘random’ and ‘fixed’, are then created to extract and label the random
and fixed effects estimates. The rest of the code listed is concerned with merging
and printing the two sets of estimates.

PROC MIXED; CLASS centre treat;
TITLE ‘RANDOM EFFECTS MODEL’;
MODEL dbp = dbp1 treat/DDFM = KENWARDROGER;
RANDOM centre centre*treat;
ESTIMATE ‘A-C,1’ treat 1 0 -1; centre*treat 1 0 -1;
ESTIMATE ‘A-C,2’ treat 1 0 -1| centre*treat 0 0 0 1 0 -1;
ESTIMATE ‘A-C,3’ treat 1 0 -1| centre*treat

0 0 0 0 0 0 1 0 -1;
ESTIMATE ‘A-C,4’ treat 1 0 -1| centre*treat

0 0 0 0 0 0 0 0 0 1 0 -1;
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ESTIMATE ‘A-C,5’ treat 1 0 -1| centre*treat
0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1;

ESTIMATE ‘A-C,6’ treat 1 0 -1| centre*treat
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1;

ESTIMATE ‘A-C,7’ treat 1 0 -1| centre*treat
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0-1;

ESTIMATE ‘A-C,8’ treat 1 0 -1| centre*treat
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1;

ODS OUTPUT ESTIMATES = random;

PROC MIXED; CLASS centre treat;
TITLE ‘FIXED EFFECTS MODEL’;
MODEL dbp = dbp1 treat centre centre*treat;
ESTIMATE ‘A-C,1’ treat 1 0 -1 centre*treat 1 0 -1;
ESTIMATE ‘A-C,2’ treat 1 0 -1 centre*treat 0 0 0 1 0 -1;
ESTIMATE ‘A-C,3’ treat 1 0 -1 centre*treat 0 0 0 0 0 0 1 0 -1;
ESTIMATE ‘A-C,4’ treat 1 0 -1 centre*treat

0 0 0 0 0 0 0 0 0 1 0 -1;
ESTIMATE ‘A-C,5’ treat 1 0 -1 centre*treat

0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1;
ESTIMATE ‘A-C,6’ treat 1 0 -1 centre*treat

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1;
ESTIMATE ‘A-C,7’ treat 1 0 -1 centre*treat

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1;
ESTIMATE ‘A-C,8’ treat 1 0 -1 centre*treat

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1;
ODS OUTPUT ESTIMATES = fixed;

DATA random; SET random;
centre=substr(label,5,2)*1;
est=estimate;
se=stderr;
KEEP centre est se;

DATA fixed; SET fixed;
centre=substr(label,5,2)*1;
estf=estimate;
sef=stderr;
KEEP centre estf sef;

* Summarise original dataset ‘a’ to obtain centre means;
PROC SORT DATA=a; BY centre;
PROC MEANS NOPRINT DATA=a; BY centre; VAR dbp; OUTPUT
OUT=freq N=freq;

DATA b; MERGE fixed random freq; BY centre;
IF centre<=8;
shrink=abs(estf-est);
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PROC PRINT SPLIT=‘*’ noobs; VAR centre freq estf sef est se;

LABEL centre=‘**CENTRE’

freq=‘PATIENTS*AT*CENTRE’

estf=‘FIXED*MODEL*ESTIMATE’

sef=‘FIXED*MODEL*SE’

est=‘RANDOM*MODEL*ESTIMATE’

se=‘RANDOM*MODEL*SE’

shrink=‘SHRINKAGE’;

FORMAT estf est se sef 8.2;

RANDOM EFFECTS MODEL

The Mixed Procedure

Model Information
Data Set WORK.A
Dependent Variable dbp
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville
Degrees of Freedom Method Kenward-Roger

Dimensions
Covariance Parameters 3
Columns in X 5
Columns in Z 108
Subjects 1
Max Obs Per Subject 288

Number of Observations
Number of Observations Read 288
Number of Observations Used 288
Number of Observations Not Used 0

Iteration History
Iteration Evaluations -2 Res Log Like Criterion
0 1 2072.30225900
1 3 2055.64188178 0.00000322
2 1 2055.63936685 0.00000000
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Convergence criteria met.

Covariance Parameter

Estimates
Cov Parm Estimate
centre 6.4628
centre*treat 4.0962
Residual 68.3677

Fit Statistics
-2 Res Log Likelihood 2055.6
AIC (smaller is better) 2061.6
AICC (smaller is better) 2061.7
BIC (smaller is better) 2065.7

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
dbp1 1 284 6.16 0.0137
treat 2 25 2.16 0.1364

Estimates
Standard

Label Estimate Error DF t Value Pr > |t|
A-C,1 3.1914 2.9446 6.68 1.08 0.3160
A-C,2 1.5596 3.4033 2.48 0.46 0.6838
A-C,3 6.0493 3.3976 2.31 1.78 0.1999
A-C,4 2.4208 3.3894 2.82 0.71 0.5297
A-C,5 4.5609 3.3985 2.43 1.34 0.2910
A-C,6 3.0296 3.3878 2.17 0.89 0.4591
A-C,7 4.2176 3.3132 3.55 1.27 0.2799
A-C,8 2.1511 3.3887 2.17 0.63 0.5859

FIXED EFFECTS MODEL

The Mixed Procedure

Model Information
Data Set WORK.B
Dependent Variable dbp
Covariance Structure Diagonal
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Residual
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Class Level Information
Class Levels Values
centre 29 1 2 3 4 5 6 7 8 9 11 12 13 14

15 18 23 24 25 26 27 29 30 31
32 35 36 37 40 41

treat 3 A B C

Dimensions
Covariance Parameters 1
Columns in X 113
Columns in Z 0
Subjects 1
Max Obs Per Subject 288

Number of Observations
Number of Observations Read 288
Number of Observations Used 288
Number of Observations Not Used 0

Covariance Parameter

Estimates
Cov Parm Estimate
Residual 69.2614

Fit Statistics
-2 Res Log Likelihood 1558.1
AIC (smaller is better) 1560.1
AICC (smaller is better) 1560.1
BIC (smaller is better) 1563.5

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
dbp1 1 208 0.99 0.3198
treat 2 208 1.24 0.2905
centre 28 208 1.98 0.0038
centre*treat 48 208 1.20 0.1884
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Estimates
Standard

Label Estimate Error DF t Value Pr > |t|
A-C,1 3.8081 3.3364 208 1.14 0.2550
A-C,2 -5.6720 6.8036 208 -0.83 0.4054
A-C,3 25.6559 7.6275 208 3.36 0.0009
A-C,4 -0.1189 5.8972 208 -0.02 0.9839
A-C,5 14.1230 7.2085 208 1.96 0.0514
A-C,6 2.8891 8.3700 208 0.35 0.7303
A-C,7 7.3811 4.8201 208 1.53 0.1272
A-C,8 -4.6825 8.3284 208 -0.56 0.5746

The table of shrunken and unshrunken treatment estimates is given within the
main text.

5.4 Practical application and interpretation

In this section we consider some general points relating specifically to analyses of
multi-centre data.

5.4.1 Plausibility of a centre⋅treatment interaction

One approach to analysing multi-centre trials of drug treatments works from the
premise that it is not plausible for a treatment effect to vary across centres. If it
does, it is deemed a fault with the study design. If a significant centre⋅treatment
interaction is not detected, then the design is assumed to be sound and global
inference is made from a model not allowing for any variation in treatment
effects between centres. However, a drug effect can sometimes vary owing to
differences in the centre populations even when they are defined within the
constraints of the protocol. For example, one drug may work better on severely
ill patients than another but less well on moderately ill patients. Thus, a centre
containing more severely ill patients could produce larger treatment effects than
centres containing a more even mixture of patients. For this reason, it is our belief
that centre⋅treatment effects are always plausible, and that if global inference is
required from a multi-centre trial, then the random effects model is likely to be
the most appropriate.

Interactions are often even more plausible in trials not involving drugs. For
example, in a trial of surgical techniques, one centre may have much more
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expertise with one technique than another. In this type of trial, a random effects
model should almost always be used in order to provide global inference.

5.4.2 Generalisation

Consideration of different interpretations of results from fixed effects and random
effects analyses brings the issue of generalisation to the fore. Results are often
generalised from the situation in which they were sampled to other situations.
However, strictly speaking, results should only be generalised when the study
sample has been taken at random from the whole population of interest. Since
centres are rarely sampled at random, even the global results from a multi-centre
trial cannot be formally generalised to the population of possible centres.

There are analogies, though, with a single-centre study. In such studies, patients
are not usually selected at random from the potential population of patients avail-
able at the centre. However, results are usually seen as some indication of those
expected in the future both in the same centre and elsewhere.

Thus, in practice, generalisation needs to be by degree and will always to some
extent involve subjective judgements, for example of how well the centres (or
patients) sampled represent their full potential populations. Multi-centre studies
would usually be considered more generalisable than single-centre studies even
though the centres are not randomly sampled, and even if a fixed effects model
is employed.

5.4.3 Number of centres

The accuracy with which variance components are estimated is dependent
on the number of centres used. If the centre⋅treatment variance component is
inaccurate, then this will have a direct effect on the accuracy of the treatment
standard errors (calculated as 2(𝜎2∕rc + 𝜎

2
ct∕c) when data are balanced). Thus,

if a study uses only a few centres (say less than about five), 𝜎2
ct and hence the

treatment effect standard error may not be accurate. In this situation a random
effects analysis may be inadvisable, although it could used to provide a rough
idea of the global treatment estimates. However, the main conclusions from the
study should be based on local results obtained from a fixed effects model, usually
omitting the centre⋅treatment interaction term.

5.4.4 Centre size

Sometimes, a trial contains several centres that stop participating in the trial after
recruiting only a few patients. Since little information is available for measuring
effects at such centres, a strategy that is often adopted is to combine such centres
into one centre in the analysis. This has most use when a fixed effects model is used,
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because the centre⋅treatment interaction can then be assessed more effectively.
However, in a mixed model, it usually makes little difference whether such centres
are combined together or fitted separately.

5.4.5 Negative variance components

If centre⋅treatment effects are retained but the centre variance component
estimate is negative, then centre effects could be either removed altogether
from the model or retained with their variance component constrained to zero.
Although the same effect estimates will be obtained using either approach, the DF
used by the significance tests will differ. The latter option of retaining the centre
effect DF is perhaps the most satisfactory because centre⋅treatment effects are
retained. If both centre and centre⋅treatment variance components are negative,
then they can be removed from the model and the data analysed as a simple
between-patient trial. Inference can still be made globally to the population of
centres, since there is no variation in the treatment effect across centres.

5.4.6 Balance

In models including treatment⋅centre effects balance will only be achieved in the
unlikely situation where there are an equal number of patients per treatment per
centre (this condition is also required to achieve balance across random effects).
Treatment mean estimates from either a fixed or random effects model will then
equal the raw treatment means. In the more usual situations where there are
unequal numbers of patients per treatment per centre, treatment means will differ
between fixed effects and random effects models.

In models omitting centre⋅treatment effects, balance across random effects is
achieved when treatments are allocated in equal proportions at each centre (even
if the overall centre sizes vary). Treatment estimates are then the same, regardless
of whether centre effects are taken as fixed or random. However, if treatments are
not allocated in equal proportions at each centre, treatment estimates will differ
between the models because information is combined from both the centre and
residual error strata in the random effects model.

5.5 Sample size estimation

When designing a multi-centre trial with the intention of estimating global
treatment effects, sample size estimates can be calculated in a way that takes
into account variation of treatment effects between centres. Here, we will obtain
sample sizes that can be used for trials, based on considering differences between
pairs of treatments.
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5.5.1 Normal data

In Section 5.2, the variance of the difference between a pair of treatments in a
balanced dataset was given as

var(ti − tj) = 2(𝜎2∕rc + 𝜎
2
ct∕c),

where
r=number of patients per treatment per centre (replicates),
c=number of centres,
ti = the ith treatment effect,
𝜎

2 = residual variance,
𝜎

2
ct = centre⋅treatment variance component.

Estimates for the number of centres (c) and number of patients per treatment per
centre (r) can be obtained from the usual sample size estimation equation:

Δ = (tDF,1−𝛼∕2 + tDF,𝛽) × SE(ti − tj),

where
𝛼 = significance,
𝛽 = power,
Δ= difference to be detected,
𝜏 =number of treatments,

DF= (c−1)× (𝜏 −1), the centre⋅treatment DF.

One difficulty is that estimates of both the patients and centre⋅treatment
variance components are required. Unless multi-centre data are available from
a previous study, it is likely that only an estimate of the between-patient residual
variance will be available. However, it may still be preferable to use the above
formulae with a guessed value for the treatment⋅centre variance component,
rather than assuming it as zero.

In this section, we consider the situation where an equal number of patients
will be used per treatment per centre. Some inflation to the calculated sample
sizes will be appropriate when there will be varying numbers per centre, but these
calculations will provide a reasonable first ‘ballpark’ estimate. r is taken to be the
average number of replicates, Σri/c. There are three ways in which a sample size
can be calculated:

1. Number of centres (c) specified This approach would be applicable if a
decision had been made to use a specific number of centres. After substitution
of the formula for SE(ti − tj) in the sample size estimation equation, with
some reorganisation we find that the number of patients per replicate (i.e. per
treatment per centre) required is given by

r =
2(tDF,1−𝛼∕2 + tDF,𝛽)2

𝜎
2

cΔ2 − 2(tDF,1−𝛼∕2 + tDF,𝛽)2𝜎2
ct

.
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Therefore, 𝜏 × r× c patients are required in total. If this formula gives a
negative value for r, then it is not possible to detect the specified difference with
the required power unless more centres are used. Either c should be increased
or, alternatively, the power could be decreased or Δ increased.

2. Number of patients per centre (𝛕× r) specified This approach might be
appropriate if the duration of the trial is limited and there is only time to recruit
a specified number of patients per centre. The number of centres required is
given by

c =
2(tDF,1−𝛼∕2 + tDF,𝛽)2(𝜎2 + r𝜎2

ct)
rΔ2

.

Obviously, DF= (c−1)× (𝜏 −1) will not be known in advance. z-values from
the normal distribution can be used instead of values from the t distribution to
obtain an initial estimate of c. A more accurate value can then be calculated by
using the DF obtained for this value of c in the above formula and re-estimating
c. This can be repeated until convergence is obtained, but changes are usually
minimal after the first iteration.

3. Neither number of centres nor average patients per centre specified In
this situation, an optimal sample size can only be calculated by specifying the
relative cost of sampling centres compared with sampling patients. The cost
of sampling centres will depend on the type of centre being used. For example,
the cost of a centre in an international study would be extremely expensive, but
centres would be much cheaper in a study using local practitioners. The cost
of sampling patients relates to the amount to be paid to the investigator per
patient plus the cost of monitoring, validating and processing each patient’s
data. If we denote the relative cost by g, then the total cost is proportional to
c× r× 𝜏 + c× g. This is minimised when

r =

√
g𝜎2

𝜏𝜎
2
ct

.

c is then obtained by substituting r into the formula given earlier:

c =
2(tDF,1−𝛼∕2 + tDF,𝛽)2(𝜎2 + r𝜎2

ct)
rΔ2

.

Sometimes, the values calculated might appear impracticable. For example,
if the relative cost, g, of sampling a centre were set to be not much higher
than that of sampling a patient (i.e. g close to one), then the number of centres
estimated would likely be very high. In this situation, g has clearly been set too
low and should be increased.

Example

We will calculate sample sizes for a new hypertension study to compare three
treatments. Assuming that DBP is again the primary endpoint, the variance



Brown778258 c05.tex V3 - 11/14/2014 10:15 A.M. Page 214

214 Multi-centre trials and meta-analyses

components obtained in Section 2.5 for centre⋅treatment effects (𝜎2
ct = 4.10)

and the residual (𝜎2 =68.4) can be used to estimate sample sizes. A difference of
5 mmHg is to be detected at the 5% significance level with 90% power.

1. Number of centres specified It has been decided that the new study will use
four centres. Therefore, the DF for the t distribution is (4−1)× (3−1)=6, and
we have

r =
(2 × (t6,0.975 + t6,0.90)2 × 68.4)

(4 × 52 − 2 × (t6,0.975 + t6,0.90)2 × 4.10)

= (2 × (2.45 + 1.44)2 × 68.4)
(4 × 52 − 2 × (2.45 + 1.44)2 × 4.10)

= −86.0.

Since r is negative, it is not possible to obtain the required power when
only four centres are used. If the number of centres is increased to six, then
DF= (6−1)× (3−1)=10 and

r =
(2 × (t10,0.975 + t10,0.90)2 × 68.4)

(6 × 52 − 2 × (t10,0.975 + t10,0.90)2 × 4.10)

= (2 × (2.23 + 1.37)2 × 68.4)
(6 × 52 − 2 × (2.23 + 1.37)2 × 4.10)

= 40.5.

Thus, 41×3=123 patients would be required in each of the six centres, and
the total number of patients is 123×6=738.

2. Number of patients per centre specified It has been decided that an average
of only 15 patients per centre will be used so that the study can be completed
quickly. Using r=5, we obtain an initial estimate of c using z statistics as

c = 2 × (1.96 + 1.28)2 × (68.4 + 5 × 4.10)∕(5 × 52) = 14.9.

With 15 centres, the t distribution DF for use in the original formula would
be (15−1)× (3−1)=28. On recalculating using t28 statistics c becomes 16.1,
which should be rounded up to 17. Therefore, 17 centres should be used with
five patients per treatment group (17×5×3=255 patients in total).

3. Neither number of centres n or average patients per centre specified
The study will use centres from different countries, and therefore the cost of
sampling centres compared with patients is high. If we set the relative cost of
sampling centres compared with sampling patients at g=100, then

r =
√
[100 × 68.4∕(3 × 4.10)] = 23.6.
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Rounding r to 24, we obtain an initial estimate of c:

c = 2 × (1.96 + 1.28)2 × (68.4 + 24 × 4.10)∕(24 × 52) = 5.8.

This value of c is rounded to six. As c is small, it should be recalculated more
accurately using DF= (6−1)× (3−1)=10 as

c = 2 × (t10,0.975 + t10,0.90)2 × (68.4 + 24 × 4.10)∕(24 × 52)

= 2 × (2.23 + 1.37)2 × (68.4 + 24 × 4.10)∕(24 × 52) = 7.21.

However, we can be more precise, because the necessity to have an integer
number of centres means that in moving from 7.21 centres to eight centres, our
value for r can be recalculated. In this instance, it is reduced appreciably from
23.6 to 16.6. We can therefore obtain our desired power from 17 patients per
treatment per centre using eight centres. We could also consider the alternative
of using seven centres and recalculating r. This gives r=23.6. We can therefore
compare the cost of seven centres with 24 patients per treatment per centre,
with the design with eight centres.

5.5.2 Binary data

Consideration of the sample size requirements in a mixed models situation
is far more complicated with non-normal distributions than for the normal
case. The relationships between variances on the natural scale and on the
transformed scale are complex and do not readily fit into the sample size
formulae we have met already. For thoroughly reliable power calculations it
is necessary to undertake simulation studies, and software has been devel-
oped to facilitate this. One such example is MLPowSim Software Package
(www.bristol.ac.uk/cmm/software/mlpowsim/mlpowsim-manual.pdf), (Browne,
Lahi and Parker, 2009).

Simpler, more approximate, methods may also be helpful though. A general
approach that has been advocated for determining sample size is to base the
calculations on the standard sample size formulae for the fixed effects model
and then to inflate this sample size by a so-called design effect (Snijders, 2005).
This can be used when a similar study has been conducted previously using a
mixed models analysis. If the standard errors of the treatment effect of interest
are denoted by SEM for the mixed model and SEF for a corresponding fixed
effects model, then the design effect is defined by (SEM/SEF)2. If N denotes the
sample size from standard formulae, then N× design effect is the approximate
required sample size for the mixed model. This approach has its limitations. We
have seen in the previous section that it is possible to have situations where the
centre⋅treatment interaction is so large that it is impossible to have the desired
power, whatever inflation is given to the overall sample size. Nevertheless, for
some situations, this approach may be helpful.

http://www.bristol.ac.uk/cmm/software/mlpowsim/mlpowsim-manual.pdf
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In general, we believe that it is more satisfactory to use the formulae provided for
normal data in Section 5.2.1 with input parameters on the logit scale, to obtain
an approximate sample size.

Example

We will again calculate sample sizes for a new hypertension study, but this time
we will compare two treatments. However, now we assume (unrealistically!) that
the incidence of the adverse event, cold feet, is the primary endpoint. A doubling in
the proportion of cold feet is to be detected from 0.1 to 0.2, and thus the required
difference in logits (log(odds(0.2))–log(odds(0.1))) is 0.81. The study should have
sufficient power to detect a difference at the 5% significance level with 80% power.

We will use the approximate result that the variance(log(odds(p)))=
1/Np+1/N(1− p) if we have a binomial sample of size N. In looking at the
distributional variance of individuals, N=1 and so, at an average proportion
of 0.15, the variance on the logit scale is 1/0.15+1/0.85=7.84. We will use
our results of an analysis of our earlier example, but this time without fitting a
dispersion parameter, which the sample size calculations do not incorporate. The
resultant centre⋅treatment variance component is 0.547.

We assume that there are no stipulations for the number of centres or patients
and seek to design the cheapest trial. If we set the relative cost of using a centre
compared to recruiting a patient at g=50, then

r =
√

50 × 7.84
2 × 0.547

= 18.9,

which we take as 19.
From this, we obtain the number of centres required as

c = 2 × 10.5 × (7.84 + 19 × 0.547)
19 × 0.812

= 30.7

Thus, 31 centres with 19 patients per treatment are required.
This may be unrealistic, but we should appreciate that these calculations are

based on the strong assumption about the value of the centre⋅treatment variance
component. It has great uncertainty attached to it, and we might wish to recalcu-
late on the assumption that it has been overestimated.

Alternatively, we could calculate sample size for a fixed number of centres. If we
assume 20 centres are to be used, the number of patients required per treatment
per centre is

r = 2 × 10.5 × 7.84

20 × 0.812 − 2 × 10.5 × 0.547
= 100.7

Thus, 20 centres with 101 patients per treatment are required. However, reducing
the number of centres below 18 leads to a negative value for r, and again we may
consider recalculating on the assumption that the centre⋅treatment variance
component has been overestimated.
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5.5.3 Categorical data

Sample size estimation is always difficult when the variable of interest is cate-
gorical. If there are more than about five categories, the formula for continuous
data is likely to provide a reasonable approximation. In other situations, the best
approach might be to partition the categories and use the formula for binary data.

Precision of sample size estimates

The use of sample size calculations gives very precise answers, but they are based
on assumed values for variance components that may be quite imprecise and spec-
ified differences that may be somewhat arbitrary. We do not therefore recommend
slavish adherence to the precise numbers obtained from the formulae. It is sensible
to undertake a kind of sensitivity analysis to see the extent to which the sample size
depends on the assumptions made, particularly for binary data. We believe that
the correct use of sample size calculations is to obtain reliable ballpark figures.

5.6 Meta-analysis

This type of analysis is increasingly used to combine results from several clinical
trials, which assess the same treatments in order to provide a more precise overall
estimate of the treatment effects. When the original data are available, an identical
hierarchical structure to the multi-centre trial arises with trials replacing centres.
The implications of fitting trial and trial⋅treatment effects as fixed or random are
then the same as in multi-centre analyses (see Section 5.2).

If treatment estimates are to relate only to the trials included, then local
treatment estimates are obtained by fitting trial and treatment⋅trial effects as
fixed (although in practice the trial⋅treatment interaction is usually removed
if non-significant). If they are to relate more widely to the circumstances and
locations sampled by the trials, global estimates can be obtained by fitting
trial and treatment⋅trial effects as random. When this is done, the standard
errors of treatment estimates are increased to reflect the heterogeneity across
trials. Trial⋅treatment variance components are often relatively larger than
centre⋅treatment variance components, because different protocols are used
by the different trials. Thus, there are often more noticeable increases in the
treatment standard errors in meta-analyses than in multi-centre trials.

As with multi-centre trials, taking trial effects as random has the theoretical
advantage of increasing the accuracy of treatment estimates. This is because
information from the trial error stratum is used in addition to that from the
residual stratum. Sometimes, there are factors that differ at the trial level, which
can help to explain differences in results between trials. For example, race or type
of clinic may affect the treatment effect size. These variables can be included as
covariates in a mixed model and may reduce the trial⋅treatment variability (and
hence lead to more precise treatment estimates).
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Outlying trials can be checked for, using the shrunken estimates of trial
and trial⋅treatment effects. Since shrinkage is greater when there are fewer
observations per trial, spurious outlying estimates caused by random variation
are less likely to occur. However, this would not be the case in a fixed effects model
where there is no shrinkage of the trial and trial⋅treatment estimates. Often, the
estimates of treatment effects from individual trials are themselves of interest. The
shrunken estimates that utilise information from all trials are more robust than
estimates from a fixed effects model, although it has to be recognised that there
may be difficulty in conveying the concept of shrunken estimates to a medical
researcher!

Meta-analysis tends to be carried out most frequently with binomial data and
most published work has related to this. Commonly, this is based on frequencies
for the main outcome variable(s) as individual data is commonly unavailable.
Although meta-analysis can be used with normal data, in practice individual
trials are often adequate to achieve the desired power while this is not always
the case with binary outcomes. Achieving adequate power is therefore less of a
motivation with normal data. However, in a pharmaceutical company, it may
still be advantageous to undertake a meta-analysis on normal data arising from
a series of trials in the same drug programme. Also, systematic reviews are
being conducted increasingly commonly for an expanding number of treatments
and outcome variables. Readers wishing to learn more about meta-analysis are
advised to consult Whitehead (2002) or visit the Cochrane Collaboration website
(www.cochrane.org).

There is one important conceptual difference between the way trial effects
are handled by most meta-analysts compared to the method described earlier.
In practice, meta-analysis often takes place in two stages. In the first stage,
treatment differences within trials are calculated. The second stage combines
these contrasts in either a fixed effects or a random effects analysis, dependent
on which is deemed appropriate. Thus, trial effects are implicitly treated as fixed
effects, and only the trial⋅treatment effect is potentially considered as random. In
contrast, as noted above, fitting both trial and trial⋅treatment effects as random
allows the recovery of between trial information, thus breaking the meta-analysis
principle of concurrent control. In practice, fitting the trial effect as fixed or
random usually makes little difference to the conclusions.

5.7 Example: meta-analysis

This example considers meta-analysis data that are taken from Thompson and
Pocock (1991). The data come from nine trials comparing a diuretic treatment
with a control treatment in relation to the incidence of pre-eclampsia. The
number of women with pre-eclampsia within each trial and treatment group is
shown in Table 5.2.

http://www.cochrane.org
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Table 5.2 Frequencies of pre-eclampsia/numbers randomised in trials included in
meta-analysis.

Trial Diuretic Control Odds ratio

Weseley 14/131 14/136 1.04
Flowers 21/385 17/134 0.40
Menzies 14/57 24/48 0.33
Fallis 6/38 18/40 0.23
Cuadros 12/1011 35/760 0.25
Landesman 138/1370 175/1336 0.74
Krans 15/506 20/524 0.77
Tervila 6/108 2/103 2.97
Campbell 65/153 40/102 1.14
Total 291/3759 345/3183 0.72

5.7.1 Analyses

The five analysis models shown in Table 5.3 are considered. Models 1 and 2 were
fitted using fixed effects models (GLMs). In these models, the data are analysed
in binomial form (i.e. using the trial⋅treatment frequencies). However, identical

Table 5.3 Variance component and treatment odds ratio estimates.

Model Method (data form) Fixed effects Random effects

1 GLM (binomial) Treatment, trial, trial⋅treatment –
2 GLM (binomial) Treatment, trial –
3 P-L (Bernoulli) Treatment Trial, trial⋅treatment
3(a) P-L (binomial) Treatment Trial, trial⋅treatment
3(b) MCMC (binomial) Treatment Trial, trial⋅treatment
4 P-L (Bernoulli) Treatment, trial Trial⋅treatment

Variance components

Model Trial Trial⋅treatment
Dispersion
parameter

Treatment odds
ratio (95% CI) p− value

1 1F 0.63 (0.47–0.84) 0.002
2 1F 0.66 (0.56–0.79) < 0.0001
3 1.42 0.16 0.98 0.60 (0.34–1.05) 0.07
3(a) 1.43 0.16 1F 0.60 (0.34–1.05) 0.07
3(b) 1.50 0.18 1F 0.60 (0.34–1.04) 0.07
4 0.16 0.99 0.60 (0.34–1.05) 0.07

Note: F = parameter is fixed.
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results would have been obtained had the data been analysed in Bernoulli form
(i.e. using one observation per patient). Model 3 is a random effects model, and
the data are analysed in Bernoulli form using a GLMM. Using this form allows the
‘shrunken’ treatment effects at each trial to be estimated using PROC GLIMMIX.
However, very similar results can be obtained by analysing the data as binomial
frequencies, since there are no baseline values and no categories are uniform. We
illustrate this by fitting Model 3(a) which is identical to Model 3, except that the
data are in binomial form and the dispersion parameter is fixed at one (allow-
ing variance at the residual level to be modelled by the trial⋅treatment variance
component). Model 3(b) is the same random effects model as Model 3(a) but is
fitted using MCMC (see Section 2.3.5). Model 4 has been added in this edition to
show the results from the standard meta-analysis approach.

Odds ratios and confidence intervals are calculated by exponentiating the
treatment difference estimates and their confidence intervals on the logit scales
(see Section 3.3.9). In recent versions of SAS, this can be done using relevant
options. The treatment effect is tested using asymptotic Wald Chi-squared tests in
Models 1 and 2, and an F test in Models 3 and 3(a) (see Section 3.3.8 for details
on GLM and GLMM significance testing). In Model 3(b), twice the probability of
the treatment difference being greater than zero is taken to provide a ‘Bayesian’
p - value (see Section 2.3.3).

In Models 3 and 3(a), the Kenward–Roger method has been used to adjust for
the fixed effects standard error bias. This has had the effect of both increasing the
standard error and modifying the DF for the F test as compared with the results
presented in the earlier editions of this book.

5.7.2 Results

The results are shown in Table 5.3. Results from Models 1 and 2 do not take
account of any additional variation in the treatment effect between trials
and, therefore, should be formally related only to the trials included. The
trial⋅treatment interaction was highly significant in Model 1 (p=0.0006), and
this would cast doubt on any formal extrapolation of the results from these
models. In Model 1, the overall treatment effect is calculated as an unweighted
average of the treatment effects at each trial (see Section 5.2). Such an estimate is
clearly inappropriate, since the trial sizes differ widely. This problem does not arise
in Model 2, where centre⋅treatment effects are omitted. Note that in the above
models, the 95% confidence intervals are based on exponentiating the treatment
estimate ±1.96× SE because of the asymptotic normality of the estimate.

Models 3, 3(a) and 3(b) take account of the extra variation in the treatment
effect between trials by fitting trial and trial⋅treatment effects as random. In these
models, we are assuming that the random effects are normally distributed and, as
the variance components are estimated, the confidence intervals are more appro-
priately estimated for Models 3 and 3(a) as treatment estimate ± t× SE. The DF
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for t are automatically taken to be those arising from the Kenward–Roger method
when this option is specified in theMODEL statement. Model 3(a) gives very similar
results to Model 3, indicating that it makes little difference here whether the data
are analysed in Bernoulli or binomial form. The trial variance component is fairly
large in all of the models, indicating that the overall incidence of pre-eclampsia
varies greatly between trials. Thus, it is likely that quite different inclusion criteria
were used for the trials or that pre-eclampsia was defined differently by the differ-
ent practitioners. The positive trial⋅treatment components indicate some variation
in the treatment effect across trials. This is reflected in the size of the treatment
confidence intervals, which are wider than those in Models 1 and 2. The results
from these analyses can be generalised with some confidence to the full population
of pre-eclampsia sufferers.

The Bayesian analysis (Model 3(b)) gives almost identical treatment ORs and
confidence intervals to the pseudo-likelihood analyses (Models 3 and 3(a)). The
differences in variance component estimates between Models 3, 3(a) and 3(b)
are not unexpected, since we have taken them to be the medians of the marginal
posterior distributions, whereas in Model 3 the estimates are the values that
maximise the pseudo-likelihood surface.

The use of fixed trial effects in Model 4 has not changed the estimates in Table 5.3
from those in Model 3(a) where the trial effect was random. Similarly, the corre-
sponding shrunken estimates and standard errors in Table 5.4 would change by
no more than one unit in the second decimal place (results not shown).

5.7.3 Treatment estimates in individual trials

Another advantage of using a random effects model is that shrunken estimates
of the treatment effect at each trial can be obtained. Because shrinkage is greater
when there are fewer observations per trial, any spurious outlying estimates

Table 5.4 Shrunken and unshrunken treatment effect estimates (standard errors) at
each trial.

Trial Shrunken (Model 3) Unshrunken (Model 1) Number of patients

Weseley −0.14(0.37) 0.04(0.40) 267
Flowers −0.82(0.33) −0.92(0.34) 519
Menzies −0.91(0.38) −1.12(0.42) 105
Fallis −1.04(0.45) −1.47(0.55) 78
Cuadros −1.16(0.30) −1.39(0.34) 1771
Landesman −0.31(0.12) −0.30(0.12) 2766
Krans −0.32(0.33) −0.26(0.35) 1030
Tervila 0.07(0.52) 1.09(0.83) 211
Campbell 0.03(0.25) 0.14(0.26) 255
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caused by random variation will not occur. The shrunken estimates also allow us
to check whether results from any particular trial are outlying. If they are, it may
be an indication that the trial was not suitable for inclusion in the meta-analysis.
The shrunken estimates obtained from Model 3 are given in Table 5.4 along with
the (unshrunken) GLM estimates obtained from Model 1 (on the logit scale).
These estimates are all shrunken towards the overall treatment estimate of −0.51
(exp(−0.51)=0.60). The standard errors are smaller for the shrunken estimates
because they utilise information from the whole sample, not just that from the
individual trials. Greatest shrinkage occurs for the smallest trials. For example,
the unshrunken estimate from Tervila appears extreme, but the shrunken
estimate is much more reasonable and would not cause us to suspect the quality
of the trial.

SAS code and output

Variables
treat= treatment,
trial= trial number,
eclam=number of women with pre-eclampsia,
n =number of women in treatment group at trial.

Model 1

DATA a; INPUT trial treat eclam n;
CARDS;

1 1 14 131
1 2 14 136
2 1 21 385
2 2 17 134
3 1 14 57
3 2 24 48
4 1 6 38
4 2 18 40
5 1 12 1011
5 2 35 760
6 1 138 1370
6 2 175 1336
7 1 15 506
7 2 20 524
8 1 6 108
8 2 2 103
9 1 65 153
9 2 40 102
;
PROC GENMOD; CLASS trial treat;
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MODEL eclam/n=treat trial treat*trial / DIST=B TYPE3 WALD;

ESTIMATE ‘overall’ treat 1 -1 / EXP;

The output is not shown but has a similar form to that of Model 2.

Model 2

PROC GENMOD; CLASS trial treat;

MODEL eclam/n=treat trial/DIST=B TYPE3 WALD;

ESTIMATE ‘overall’ treat 1 -1 / EXP;

Model Information
Data Set WORK.A
Distribution Binomial
Link Function Logit
Response Variable (Events) eclam
Response Variable (Trials) n
Number of Observations Read 18
Number of Observations Used 18
Number of Events 636
Number of Trials 6942

Class Level Information
Class Levels Values
trial 9 1 2 3 4 5 6 7 8 9
treat 2 1 2

Parameter Information
Parameter Effect trial treat
Prm1 Intercept
Prm2 treat 1
Prm3 treat 2
Prm4 trial 1
Prm5 trial 2
Prm6 trial 3
Prm7 trial 4
Prm8 trial 5
Prm9 trial 6
Prm10 trial 7
Prm11 trial 8
Prm12 trial 9
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Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8 29.3761 3.6720
Scaled Deviance 8 29.3761 3.6720
Pearson Chi-Square 8 28.7996 3.6000
Scaled Pearson X2 8 28.7996 3.6000
Log Likelihood -1877.3795

Algorithm converged.

The deviance and Pearson Chi-square are measures of model fit and have similar
roles to the residual sum of squares in normal data models.

Analysis Of Parameter Estimates
Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq
Intercept 1 -0.1137 0.1379 -0.3841 0.1566 0.68 0.4096
treat 1 1 -0.4104 0.0885 -0.5840 -0.2369 21.48 <.0001
treat 2 0 0.0000 0.0000 0.0000 0.0000 .67 .3267
trial 1 1 -1.8457 0.2380 -2.3122 -1.3792 60.14 <.0001
trial 2 1 -2.1344 0.2118 -2.5496 -1.7192 101.52 <.0001
trial 3 1 -0.2363 0.2409 -0.7084 0.2359 0.96 0.3267
trial 4 1 -0.5054 0.2779 -1.0500 0.0393 3.31 0.0690
trial 5 1 -3.2740 0.1958 -3.6577 -2.8903 279.67 <.0001
trial 6 1 -1.7287 0.1420 -2.0071 -1.4503 148.15 <.0001
trial 7 1 -3.0515 0.2150 -3.4730 -2.6300 201.36 <.0001
trial 8 1 -2.9293 0.3830 -3.6800 -2.1787 58.50 <.0001
trial 9 0 0.0000 0.0000 0.0000 0.0000 .67 .3267
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Wald Statistics For Type 3 Analysis
Chi-

Source DF Square Pr > ChiSq
treat 1 21.48 <.0001
trial 8 444.03 <.0001

Asymptotic Wald Chi-squared tests are performed for each fixed effects parameter.
These tests should be interpreted cautiously in small datasets.

Contrast Estimate Results
Standard Chi-

Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq
overall -0.4104 0.0885 0.05 -0.5840 -0.2369 21.48 <.0001
Exp(overall) 0.6634 0.0587 0.05 0.5577 0.7891
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The final line of the above output provides the estimate of the OR and accom-
panying 95% confidence limits, and is generated by the EXP option in the
ESTIMATE statement. In SAS Version 9.3, there have been some changes in
detail from the above output, which is from an earlier version, but the results
are identical.

Model 3

Variables
outcome=success of treatment (1/0),
trial = trial number,
treat = treatment group,
freq =number of women with this outcome.

PROC GLIMMIX;
CLASS trial treat;
NLOPTIONS MAXITER=50;
FREQ freq;
MODEL outcome=treat / DIST=B SOLUTION DDFM=KENWARDROGER;
RANDOM trial treat*trial;
RANDOM _RESIDUAL_;
LSMEANS treat / DIFF PDIFF OR CL;

This code analyses the data in Bernoulli form so that there is a 0/1 observation
corresponding to each patient in the trial. The FREQ statement is used here to
indicate the number of times each observation in our dataset is repeated – this
saves setting up a large dataset containing 6942 observations, many of which
would be the same. In this example, more iterations than the default were required
to obtain convergence. This was achieved with the NLOPTIONS statement

Fit Statistics
-2 Res Log Pseudo-Likelihood 39379.40
Generalized Chi-Square 6766.61
Gener. Chi-Square / DF 0.98

Covariance Parameter Estimates
Standard

Cov Parm Estimate Error
trial 1.4246 0.7754
trial*treat 0.1621 0.1258
Residual (VC) 0.9750 0.01657

Note that the residual covariance parameter corresponds to the dispersion
parameter.
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Solutions for Fixed Effects
Standard

Effect treat Estimate Error DF t Value Pr > |t|
Intercept −1.8137 0.4294 9.122 −4.22 0.0022
treat 1 −0.5105 0.2293 6.176 −2.23 0.0663
treat 2 0 . . . .

Type III Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
treat 1 6.176 4.96 0.0663

treat Least Squares Means
Standard

treat Estimate Error DF t Value Pr > |t| Alpha Lower Upper
1 -2.3242 0.4307 9.218 -5.40 0.0004 0.05 -3.2949 -1.3535
2 -1.8137 0.4294 9.122 -4.22 0.0022 0.05 -2.7832 -0.8442

treat Least Squares Means
Odds Lower Upper

treat Ratio Odds Ratio Odds Ratio
1 0.098 0.037 0.258
2 0.163 0.062 0.430

Differences of treat Least Squares Means
Standard

treat −treat Estimate Error DF t Value Pr > |t| Alpha
1 2 -0.5105 0.2293 6.176 -2.23 0.0663 0.05

Differences of treat Least Squares Means
Odds Lower Upper

treat −treat Lower Upper Ratio Odds Ratio Odds Ratio
1 2 -1.0677 0.04671 0.600 0.344 1.048

Model 3(a)

Variables
As in Models 1 and 2.



Brown778258 c05.tex V3 - 11/14/2014 10:15 A.M. Page 227

Example: meta-analysis 227

PROC GLIMMIX;
CLASS trial treat;
MODEL eclam/n=treat /DIST=B SOLUTION DDFM=KENWARDROGER;
RANDOM trial trial*treat;
LSMEANS treat / DIFF PDIFF OR CL;

Fit Statistics
-2 Res Log Pseudo-Likelihood 48.30
Generalized Chi-Square 17.00
Gener. Chi-Square / DF 1.06

Covariance Parameter Estimates
Standard

Cov Parm Estimate Error
trial 1.4250 0.7753
trial*treat 0.1593 0.1249

Solutions for Fixed Effects
Standard

Effect treat Estimate Error DF t Value Pr > |t|
Intercept -1.8133 0.4293 9.113 -4.22 0.0022
treat 1 -0.5105 0.2287 6.158 -2.23 0.0659
treat 2 0 . . . .

Type III Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
treat 1 6.158 4.98 0.0659

treat Least Squares Means
Standard

treat Estimate Error DF t Value Pr > |t| Alpha Lower Upper
1 -2.3238 0.4306 9.212 -5.40 0.0004 0.05 -3.2944 -1.3531
2 -1.8133 0.4293 9.113 -4.22 0.0022 0.05 -2.7827 -0.8440

Differences of treat Least Squares Means
Standard

treat −treat Estimate Error DF t Value Pr > |t| Alpha
1 2 -0.5105 0.2287 6.158 -2.23 0.0659 0.05
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Differences of treat Least Squares Means
Odds Lower Upper

treat −treat Lower Upper Ratio Odds Ratio Odds Ratio
1 2 -1.0666 0.04568 0.600 0.344 1.047

Model 3(b)

PROC MCMC OUTPOST=post3b NMC=2000000 THIN=10
SEED=7899;

PARMS alpha0 alpha1 v1 v2;
PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);
RANDOM b_trial ∼ NORMAL(0, VAR = v1) SUBJECT=trial;
RANDOM b_trial_treat ∼ NORMAL(0, VAR = v2) SUBJECT=trial_treat;
mu = alpha0 + alpha1*treat + b_trial + b_trial_treat;
expected = LOGISTIC(mu);
MODEL eclam ∼ BINOMIAL(n,expected);

* obtain treatment effect p-value;
DATA p1; SET post3b;
a_b=alpha1; * treat effect;
* define indicator variables for whether the sampled

differences are greater than or less than zero;
IF a_b<0 THEN a_b0=1; ELSE a_b0=0;

PROC MEANS NOPRINT DATA=p1; VAR a_b a_b0;
OUTPUT OUT=p2 SUM=dum a_b0_n N=samples mean=a_b_mean

std=a_b_std;

DATA p3; SET p2;
a_b0_p=a_b0_n/samples;
IF a_b0_p<0.5 THEN a_b_p=a_b0_p*2; ELSE a_b_p=(1-a_b0_p)*2;
PROC PRINT NOOBS DATA=p3; VAR a_b_p;
TITLE ‘p-values for treatment comparison’;

Posterior Summaries
Standard Percentiles

Parameter N Mean Deviation 25% 50% 75%
alpha0 200000 -1.8507 0.4951 -2.1585 -1.8504 -1.5376
alpha1 200000 -0.5073 0.2727 -0.6681 -0.5089 -0.3511
v1 200000 1.8564 1.4335 1.0142 1.4953 2.2530
v2 200000 0.2639 0.3036 0.0994 0.1765 0.3124
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Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha0 0.050 -2.8547 -0.8644 -2.8448 -0.8562
alpha1 0.050 -1.0424 0.0498 -1.0438 0.0481
v1 0.050 0.4092 5.4249 0.00347 4.3125
v2 0.050 0.0281 1.0709 0.00468 0.7733

p-value for treatment comparison

a_b_p

0.06617

Model 4

The code for Model 4 is very similar to Model 3(a), differing only in change from
the trial effect being fixed rather than random. The output is not shown.

PROC GLIMMIX DATA=a;
CLASS trial treat;
MODEL eclam/n=treat trial /DIST=B SOLUTION DDFM=KENWARDROGER;
RANDOM trial*treat;
LSMEANS treat / DIFF PDIFF OR CL;

Estimating treatment effect by trial from Models 1 and 3

Model 1

The following ESTIMATE statements are added to the earlier code for Model 1.

ESTIMATE ‘c1’ treat 1 -1 trial*treat 1 -1;
ESTIMATE ‘c2’ treat 1 -1 trial*treat 0 0 1 -1;
ESTIMATE ‘c3’ treat 1 -1 trial*treat 0 0 0 0 1 -1;
ESTIMATE ‘c4’ treat 1 -1 trial*treat 0 0 0 0 0 0 1 -1;
ESTIMATE ‘c5’ treat 1 -1 trial*treat 0 0 0 0 0 0 0 0 1 -1;
ESTIMATE ‘c6’ treat 1 -1 trial*treat 0 0 0 0 0 0 0 0 0 0 1 -1;
ESTIMATE ‘c7’ treat 1 -1 trial*treat 0 0 0 0 0 0 0 0 0 0 0 0

1 -1;
ESTIMATE ‘c8’ treat 1 -1 trial*treat 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 -1;
ESTIMATE ‘c9’ treat 1 -1 trial*treat 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 -1;

Alternatively, the same estimates could have been obtained using the following
SLICE statement instead of the multiple ESTIMATE statements.

SLICE trial*treat/ SLICEBY=trial DIFF;
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Model 3

The following ESTIMATE statements are added to the earlier code for Model
3. Note the different form of the ESTIMATE statements because in this model
trial*treat is a random effect, whereas in Model 1 it was a fixed effect.

ESTIMATE ‘overall’ treat 1 -1;
ESTIMATE ‘c1’ treat 1 -1 | trial*treat 1 -1;
ESTIMATE ‘c2’ treat 1 -1 | trial*treat 0 0 1 -1;
ESTIMATE ‘c3’ treat 1 -1 | trial*treat 0 0 0 0 1 -1;
ESTIMATE ‘c4’ treat 1 -1 | trial*treat 0 0 0 0 0 0 1 -1;
ESTIMATE ‘c5’ treat 1 -1 | trial*treat 0 0 0 0 0 0 0 0 1 -1;
ESTIMATE ‘c6’ treat 1 -1 | trial*treat 0 0 0 0 0 0 0 0 0 0

1 -1;
ESTIMATE ‘c7’ treat 1 -1 | trial*treat 0 0 0 0 0 0 0 0 0 0

0 0 1 -1;
ESTIMATE ‘c8’ treat 1 -1 | trial*treat 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 -1;
ESTIMATE ‘c9’ treat 1 -1 | trial*treat 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 -1;

The estimates produced by these analyses are given in Table 5.4.
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6

Repeated measures data

In this chapter, we consider mixed models approaches to analysing repeated
measures data. An introduction to repeated measures data and its analysis is
given in Section 6.1. In Section 6.2, covariance pattern models are described, and
two worked examples follow in Sections 6.3 and 6.4. Random coefficients models
are described in Section 6.5, which is followed by a worked example in Section
6.6. Methods for sample size estimation are introduced in Section 6.7. In this
chapter, we will just be considering simple designs where the repeated measures
are defined on a single time scale. Occasionally, designs have a more complex
pattern of repeated measurements; for example, repeated measurements may be
taken within each of several visits. This design will be considered in Section 8.1.

6.1 Introduction

Any dataset in which subjects are measured repeatedly over time can be described
as repeated measures data. Repeated measurements can be made either at
predetermined intervals (e.g. at fortnightly visits or at specified times following
a drug dose) or in an uncontrolled fashion so that there are variable intervals
between the repeated measurements. The type of analysis model chosen will
depend on whether the intervals are fixed and, if so, whether they are constant.

6.1.1 Reasons for repeated measurements

There are many reasons for collecting repeated measures data. Some examples are
as follows:

• To ensure that a treatment is effective over a specified period. Often, this will be
done using a carefully planned trial with fixed timings for visits.

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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• To monitor safety aspects of the treatment over a specified period (repeated
efficacy measurements are then incidental).

• To see how long a single dose of a drug takes to become effective by measuring
drug concentration or a physiological response at fixed intervals (often over
24 h). In this situation, repeated measurements are taken at a single visit.

• Repeated observations are sometimes inherent in the measurement itself; for
example, blood pressure monitors can take measurements as frequently as
every 10 s.

• To monitor particular groups of patients over time. Often, these are retro-
spective studies where repeated measurements have been recorded in an
unplanned fashion. For example, repeated observations on patients with a
particular disease may be available from a hospital clinic.

6.1.2 Analysis objectives

The objectives in analysing repeated measures data will differ depending on the
purpose of the study. Ideally, they should be clarified at the design stage. Some
examples of common objectives are as follows:

• To measure the average treatment effect over time.
• To assess treatment effects at each time point and to test whether treatment

interacts with time.
• To assess specific features of the treatment response profile, for example,

area under the curve (AUC), maximum or minimum value and time to the
maximum value.

• To identify any covariance patterns in the repeated measurements.
• To determine a suitable model to describe the relationship of a measurement

with time.

Before considering mixed models, we first review some fixed effects approaches
to analysing repeated measures data that are sometimes satisfactory.

6.1.3 Fixed effects approaches

It is important that any analysis of a parallel group study compares treatment
effects against a background of between-patient variation. This is because
treatment effects are contained within patient effects. Each of these fixed effects
approaches has the potential to compare treatments in this way.

Analysis of mean response over time

This method is satisfactory when the overall treatment effect is of interest, the
times are fixed and there are no missing data. However, it does not give any
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information on whether the treatment effect changes over time. When there are
missing data, the analysis is only likely to be satisfactory if the response variable
does not change with time.

Separate analyses at each time point

Separate analyses are carried out to compare treatments at each time point.
Treatment standard errors are then correctly estimated at the between-patient
level. One of many drawbacks to this approach is that repeated testing is taking
place and therefore a significant treatment effect is more likely to occur at some
time point by chance. In addition, the tests will be correlated. There may also be
problems of interpretation if a treatment effect is significant at some time points
but not at others. Another, admittedly less important, disadvantage is that the
treatment standard errors will be less accurate, since they are based only on the
observations at one time point, rather than using data from all time points. This
analysis strategy is often observed in medical journals, but it is a strategy that
should be discouraged.

Analyses of response features

Features summarising each patient’s response profile (e.g. AUC, minimum or
maximum value and time to maximum value) can be analysed. This approach
is satisfactory if these summary features are of particular interest and if there
is not a great deal of missing data. When there are missing data, it may not be
possible to obtain a satisfactory estimate of some features (e.g. an AUC estimate
would be biased if some of the observations were missing, although it is possible
that an approach such as interpolation would help overcome this; the maximum
value might be unrepresentative if observations around the true maximum were
missing). If summary features are used, then restraint should be exercised in their
selection to avoid problems of multiple testing.

Analysis of raw data fitting patient effects as fixed

In this model, patient, treatment, time and treatment⋅time effects can be fitted as
fixed effects. However, treatment standard errors should not be obtained from the
residual mean square, since this represents ‘within-patient’ variation. When there
are no missing data, standard errors based on between-patient variation can be
calculated manually using the patient sum of squares in the ANOVA table (note
that many packages such asSAS (PROC GLM) will, by default, calculate treatment
standard errors from the residual mean square). When there are no missing data,
this model will give identical results to an equivalent random effects model fitting
patients as random. It also has the advantage of being able to assess the treatment
effects over time. However, it is not appropriate when there are missing data unless
special adjustments are made.
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6.1.4 Mixed models approaches

Mixed models have the following advantages:

• A single model can be used to estimate overall treatment effects and to estimate
treatment effects at each time point. Treatment effects are correctly compared
against a background of between-patient variation. There is no need to
calculate mean values across all time points (to obtain the overall treatment
effects) or to analyse time points separately (to obtain treatment effects at
each time point). Standard errors for treatment effects at individual time
points are calculated using information from all time points and are therefore
more robust than standard errors calculated from separate time points.

• The presence of missing data causes no problems, provided they can be
assumed missing at random.

• The covariance pattern of the repeated measurements can be determined and
taken account of (e.g. the model can tell us whether the measurements across
all time points have a constant correlation or whether the pattern of correla-
tions is more complex and varies with time).

There are several ways a mixed model can be used to analyse repeated measures
data. The simplest approach is to use a random effects model with patient
effects fitted as random. This will allow for a constant correlation between
all observations on the same patient. However, often, the correlation between
observations on the same patient is not constant. For example, correlation may
decrease as visits become more widely separated in time. A covariance pattern
model can be used to allow for this or, alternatively, for a more complex pattern of
correlation. These models are considered in Section 6.2. When the relationship
of the response variable with time is of interest, a random coefficients model
is appropriate. Regression slopes or curves are fitted for each patient, and the
regression coefficients are allowed to vary randomly between the patients. These
models are considered in Section 6.5.

6.2 Covariance pattern models

The basic structure of covariance pattern models has been described in Section
2.1.5. In this section, we consider their use for analysing repeated measures data
in more detail and describe some more complex types of covariance pattern.

As described in Section 2.1.5, in covariance pattern models, the covariance
structure is defined directly by specifying a covariance pattern rather than by
using random effects. Observations within each category of a chosen blocking
effect (e.g. patients) are assumed to have a specific pattern of covariance, which
is defined across a time effect such as period or visit. For example, in a repeated
measures trial, a pattern across periods could be specified for covariances between
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observations occurring on the same patients. The covariance pattern is defined
within the residual matrix, R. This matrix is blocked by patients so that only
observations on the same patient are correlated. R can be written as

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

R𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 ⋅ ⋅ ⋅
𝟎 R𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 ⋅ ⋅ ⋅
𝟎 𝟎 R𝟑 𝟎 𝟎 𝟎 𝟎 ⋅ ⋅ ⋅
𝟎 𝟎 𝟎 R𝟒 𝟎 𝟎 𝟎 ⋅ ⋅ ⋅
𝟎 𝟎 𝟎 𝟎 R𝟓 𝟎 𝟎 ⋅ ⋅ ⋅
𝟎 𝟎 𝟎 𝟎 𝟎 R𝟔 𝟎 ⋅ ⋅ ⋅
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 R𝟕 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

The Ri are submatrices of covariances corresponding to each patient and have
dimension equal to the number of observations occurring on each patient. The 0’s
represent matrix blocks of zeros denoting zero correlation between observations
on different patients. We will now consider different ways to define covariance
patterns in the Ri matrix blocks.

6.2.1 Covariance patterns

A large selection of covariance patterns is available for use in mixed models. Most
of the patterns are dependent on measurements being taken at fixed times, and
some are also easier to justify when the observations are evenly spaced. There
are also patterns where covariances are based on the exact value of time (rather
than, say, visit number), and these are most useful in situations where the time
intervals are irregular. Some examples of covariance patterns will be given. Still
further possible types of covariance patterns can be found in the SAS PROC
MIXED documentation.

Simple covariance patterns

Some simple covariance patterns for the Ri matrices for a trial with four time
points are shown. In the general pattern (i), sometimes also referred to as
‘unstructured’, the variances of responses, 𝜎2

i , differ for each time period i, and
the covariances, 𝜃jk, differ between each pair of periods j and k. For the first-order
autoregressive model (ii), the variances are equal and the covariances decrease
exponentially depending on their separation | j− k |, so 𝜃jk = 𝜌

|j− k|
𝜎

2. This is
sometimes an appropriate model when periods are evenly spaced. It can then
be seen as a ‘natural’ model from a time series viewpoint. However, it may be
justified empirically in circumstances where the observations are not evenly
spaced. For example, in monitoring the acute effect of drugs, it is common to take
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measurements at short intervals soon after drug administration, when the level of
observations may be changing rapidly, with increasingly separated intervals later
on as observations change more slowly. Under such circumstances, adjoining
observations may well show similar covariances, despite unequal periods, with
exponentially decreasing covariances for increasingly separated observation
numbers.

For the compound symmetry covariance model (iii), all covariances are equal.
The Toeplitz model (iv) uses a separate covariance for each level of separation
between the time points. This model is also known as the general autoregressive
model.

(i) General

Ri =
⎛
⎜
⎜
⎜⎝

𝜎
2
1 𝜃12 𝜃13 𝜃14

𝜃12 𝜎
2
2 𝜃23 𝜃24

𝜃13 𝜃23 𝜎
2
3 𝜃34

𝜃14 𝜃24 𝜃34 𝜎
2
4

⎞
⎟
⎟
⎟⎠

.

(ii) First-order autoregressive

Ri = 𝜎
2

⎛
⎜
⎜
⎜⎝

1 𝜌 𝜌
2
𝜌

3

𝜌 1 𝜌 𝜌
2

𝜌
2

𝜌 1 𝜌

𝜌
3
𝜌

2
𝜌 1

⎞
⎟
⎟
⎟⎠

.

(iii) Compound symmetry

Ri =
⎛
⎜
⎜
⎜⎝

𝜎
2

𝜃 𝜃 𝜃

𝜃 𝜎
2

𝜃 𝜃

𝜃 𝜃 𝜎
2

𝜃

𝜃 𝜃 𝜃 𝜎
2

⎞
⎟
⎟
⎟⎠

.

(iv) Toeplitz

Ri =
⎛
⎜
⎜
⎜⎝

𝜎
2
𝜃1 𝜃2 𝜃3

𝜃1 𝜎
2
𝜃1 𝜃2

𝜃2 𝜃1 𝜎
2
𝜃1

𝜃3 𝜃2 𝜃1 𝜎
2

⎞
⎟
⎟
⎟⎠

.

Before software for fitting covariance patterns was readily available, repeated
measures analyses were often performed either using a random effects model or
by fitting a multivariate normal distribution to the repeated measurements. A
random effects model gives identical results to a compound symmetry pattern
model (iii) (provided the patient variance component is not negative). Equality of
the correlation terms in the compound symmetry structure was often assessed
using a test of sphericity (e.g. Greenhouse and Geisser, 1959). However, if a lack
of sphericity was found, there were limited alternative analyses available. If the
data were complete, then fitting a multivariate normal distribution would give
the same results as using a general pattern (i). This model could require a lot
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of covariance parameters. In addition, if there were missing data, then fitting
a multivariate normal distribution would not be satisfactory, as most packages
cause all information on patients with incomplete data to be lost. Covariance
pattern models overcome these limitations by providing a flexible choice of
covariance patterns, which can be fitted to either complete or incomplete data.

Different variances for each time point

Sometimes, variability in a measurement will differ between the time points. This
was allowed for in the general covariance pattern (i). Some additional patterns
allowing for differing variances are given in the following section. In pattern (v),
time points have different variances, but observations on the same patient are
uncorrelated. This should only be used if preliminary analyses with more param-
eterised patterns indicate a lack of correlation between the repeated observations.
Patterns (vi)–(viii) have similar forms to the autoregressive, compound symmetry
and Toeplitz patterns, except that different variances for each time point are now
used.

(v) Heterogeneous uncorrelated

Ri =
⎛
⎜
⎜
⎜⎝

𝜎
2
1 0 0 0

0 𝜎
2
2 0 0

0 0 𝜎
2
3 0

0 0 0 𝜎
2
4

⎞
⎟
⎟
⎟⎠

.

(vi) Heterogeneous compound symmetry

Ri =
⎛
⎜
⎜
⎜⎝

𝜎
2
1 𝜌𝜎1𝜎2 𝜌𝜎1𝜎3 𝜌𝜎1𝜎4

𝜌𝜎1𝜎2 𝜎
2
2 𝜌𝜎2𝜎3 𝜌𝜎2𝜎4

𝜌𝜎1𝜎3 𝜌𝜎2𝜎3 𝜎
2
3 𝜌𝜎3𝜎4

𝜌𝜎1𝜎4 𝜌𝜎2𝜎4 𝜌𝜎3𝜎4 𝜎
2
4

⎞
⎟
⎟
⎟⎠

.

(vii) Heterogeneous first-order autoregressive

Ri =
⎛
⎜
⎜
⎜⎝

𝜎
2
1 𝜌𝜎1𝜎2 𝜌

2
𝜎1𝜎3 𝜌

3
𝜎1𝜎4

𝜌𝜎1𝜎2 𝜎
2
2 𝜌𝜎2𝜎3 𝜌

2
𝜎2𝜎4

𝜌
2
𝜎1𝜎3 𝜌𝜎2𝜎3 𝜎

2
3 𝜌𝜎3𝜎4

𝜌
3
𝜎1𝜎4 𝜌

2
𝜎2𝜎4 𝜌𝜎3𝜎4 𝜎

2
4

⎞
⎟
⎟
⎟⎠

.

(viii) Heterogeneous Toeplitz

Ri =
⎛
⎜
⎜
⎜⎝

𝜎
2
1 𝜌1𝜎1𝜎2 𝜌2𝜎1𝜎3 𝜌3𝜎1𝜎4

𝜌1𝜎1𝜎2 𝜎
2
2 𝜌1𝜎2𝜎3 𝜌2𝜎2𝜎4

𝜌2𝜎1𝜎3 𝜌1𝜎2𝜎3 𝜎
2
3 𝜌1𝜎3𝜎4

𝜌3𝜎1𝜎4 𝜌2𝜎2𝜎4 𝜌1𝜎3𝜎4 𝜎
2
4

⎞
⎟
⎟
⎟⎠

.
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Separate covariance patterns for each treatment group

Sometimes, measurements on different treatments will have different variances
and covariances. For example, it may be the case that measurements are more
variable on an active treatment than on a placebo. This can be allowed for by using
separate sets of covariance parameters for each treatment group. For example, if
the first three patients in a trial received treatments A, B and A and were each
measured at three time points, then the R matrix for these patients with separate
compound symmetry structures for each treatment would be

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
A 𝜃A 𝜃A 0 0 0 0 0 0

𝜃A 𝜎
2
A 𝜃A 0 0 0 0 0 0

𝜃A 𝜃A 𝜎
2
A 0 0 0 0 0 0

0 0 0 𝜎
2
B 𝜃B 𝜃B 0 0 0

0 0 0 𝜃B 𝜎
2
B 𝜃B 0 0 0

0 0 0 𝜃B 𝜃B 𝜎
2
B 0 0 0

0 0 0 0 0 0 𝜎
2
A 𝜃A 𝜃A

0 0 0 0 0 0 𝜃A 𝜎
2
A 𝜃A

0 0 0 0 0 0 𝜃A 𝜃A 𝜎
2
A

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

Alternatively, if a general structure was used for each treatment group, then the R
matrix would be

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
A,1 𝜃A,12 𝜃A,13 0 0 0 0 0 0

𝜃A,12 𝜎
2
A,2 𝜃A,23 0 0 0 0 0 0

𝜃A,13 𝜃A,23 𝜎
2
A,3 0 0 0 0 0 0

0 0 0 𝜎
2
B,1 𝜃B,12 𝜃B,13 0 0 0

0 0 0 𝜃B,12 𝜎
2
B,2 𝜃B,23 0 0 0

0 0 0 𝜃B,13 𝜃B,23 𝜎
2
B,3 0 0 0

0 0 0 0 0 0 𝜎
2
A,1 𝜃A,12 𝜃A,13

0 0 0 0 0 0 𝜃A,12 𝜎
2
A,2 𝜃A,23

0 0 0 0 0 0 𝜃A,13 𝜃A,23 𝜎
2
A,3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

If most of the covariances were small or negative, then observations on the same
patient could be made uncorrelated, while different variances were still allowed for
each treatment:

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
A 0 0 0 0 0 0 0 0

0 𝜎
2
A 0 0 0 0 0 0 0

0 0 𝜎
2
A 0 0 0 0 0 0

0 0 0 𝜎
2
B 0 0 0 0 0

0 0 0 0 𝜎
2
B 0 0 0 0

0 0 0 0 0 𝜎
2
B 0 0 0

0 0 0 0 0 0 𝜎
2
A 0 0

0 0 0 0 0 0 0 𝜎
2
A 0

0 0 0 0 0 0 0 0 𝜎
2
A

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.
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Banded covariances

It will sometimes be apparent from the covariance parameter estimates that the
correlation between widely separated observations is negligible. In this situation,
it may be appropriate to ‘band’ the Ri matrices by setting correlations between
the observations that are widely separated in time to zero. For example, a general
covariance pattern with band size 3 would be

Ri =
⎛
⎜
⎜
⎜⎝

𝜎
2
1 𝜃12 𝜃13 0

𝜃12 𝜎
2
2 𝜃23 𝜃24

𝜃13 𝜃23 𝜎
2
3 𝜃34

0 𝜃24 𝜃34 𝜎
2
4

⎞
⎟
⎟
⎟⎠

.

Banding can be done for any covariance pattern and has the advantage of
reducing the number of covariance parameters that need to be fitted. It is
therefore of greatest use for trials with a large number of time points.

Covariance patterns defined using time as a continuous measure

A covariance pattern can be defined according to the exact separation of observa-
tions in time. This is the only type of pattern apart from compound symmetry that
is appropriate when time points do not occur at predetermined intervals. However,
it can also be useful for time points that are fixed but unevenly separated or when
there is some flexibility in the timing of fixed interval time points (e.g. an interval
of 12–16 days may be allowed for a nominal 2-week interval). There are many
ways to define covariances from the time interval. Two examples are:

rijk = 𝜎
2
𝜌

dijk (power),

rijk = 𝜎
2 exp(d2

ijk∕𝜌
2) (Gaussian),

where
rijk = covariance for observations j and k on patient i,
dijk = distance (usually time) between observations j and k on patient i.

Both these structures cause the covariance to decrease exponentially with the
time interval between pairs of observations on the same patient.

6.2.2 Choice of covariance pattern

There are many covariance patterns available, and choosing the most appropriate
one is not always easy. It is ideal to select the pattern that best fits the true
covariance of data. As well as providing appropriate standard errors for fixed
effects estimates, this can yield additional information about the action of
treatments or the phenomenon being studied. However, as more covariance
parameters are included in the pattern, the chances of overfitting increase
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(i.e. the covariance pattern matches the observed pattern but may not be the
true pattern). The likelihood (or quasi-likelihood) statistic is a basic measure
of model fit, but it will increase as more covariance parameters are added and
so therefore cannot be used directly for making comparisons. There are two
alternative approaches to making a model choice. One is to compare models based
on measures of fit that are adjusted for the number of covariance parameters.
Another is to use likelihood ratio tests to find whether additional parameters
cause a statistically significant improvement in the model. Our preference is for
the second approach, in which covariance parameters are only included if they
are proved to be necessary.

Measures of model fit

The likelihood statistic is expected to become larger as more parameters are
included in the model. The two statistics described are based on the likelihood
but make allowance for the number of covariance parameters fitted. They can be
used to make direct comparisons between models that fit the same fixed effects.
Akaike’s information criterion (AIC) (Akaike, 1974) is given by

AIC = log(L) − q,

where q is the number of covariance parameters. Schwarz’s information criterion
(SIC) (Schwarz, 1978) takes into account the number of fixed effects, p, the
number of observations, N and the number of covariance parameters, q. It is
given by

SIC = log(L) − (q log(N − p))∕2.

Models with larger values of AIC and SIC denote better fits. However, it is unclear
to us which criterion is preferable. Both the criteria are calculated within PROC
MIXED, although the figures given correspond to twice those shown here and with
the sign reversed.

We anticipate that these criteria will also be approximately satisfactory when
based on the quasi-likelihood statistics arising out of generalised linear mixed
models (GLMMs) and categorical mixed models.

Statistical comparisons between models

Models can be compared statistically using likelihood ratio tests, provided that
they fit the same fixed effects and their covariance parameters are nested. Nesting
of covariance parameters occurs when the covariance parameters in the simpler
model can be obtained by restricting some of the parameters in the more complex
model (e.g. a compound symmetry pattern is nested within a Toeplitz pattern, but
it is not nested within a first-order autoregressive pattern). The likelihood ratio test
statistic is given by

2(log(L1) − log(L2)) ∼ 𝜒
2
DF,

where DF= difference in number of covariance parameters fitted.
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If the covariance parameters in the models compared are not nested, statistical
comparison using a likelihood ratio test is not valid. In this situation, comparisons
of each model with a simpler model that is nested within both models could
be made and the model giving the most significant improvement selected.
Alternatively, Akaike’s or Schwarz’s criteria could be used.

Again, we anticipate that these tests will be approximately satisfactory when
based on the quasi-likelihood or pseudo-likelihood statistics arising out of GLMMs
and categorical mixed models but are unaware of formal justification for this.

Which covariance patterns to consider?

It is not usually practical to test a large number of covariance patterns in a single
application. A safe strategy would be to start with simple patterns such as the
compound symmetry or first-order autoregressive. A general pattern could then
be used to give some indication of whether any other more complex patterns are
likely to be appropriate. These more complex patterns can be tested and should
be accepted only if they lead to a significant improvement in the likelihood.
Particularly complex patterns are only likely to be significant in larger datasets
where more information on the true covariance pattern is available.

In many datasets, especially those with only a few repeated measurements,
estimates of overall treatment effects may differ little between models using
different covariance patterns. If identifying the covariance pattern is not of
intrinsic interest, a compound symmetry pattern may well prove adequate to
estimate treatment effects and standard errors. A rough check can be made of
this by comparing the results with those obtained using a general pattern. If the
differences are small, then the compound symmetry pattern can be used with
reasonable confidence.

6.2.3 Choice of fixed effects

Treatment, time, treatment⋅time and baseline effects (if recorded) can all be fitted
as fixed. Estimates of the overall treatment effect will differ depending on whether
treatment⋅time effects are included in the model. When they are, treatment
effects are calculated as the average of the treatment estimates obtained from
each time point. When they are omitted, a weighted average of estimates from
each time point is obtained. The weights are related to the variances of estimates
at each time point, which are in turn related to the number of observations at
each time point. The decision as to which estimate to use should rest with the
desired interpretation and whether the treatment⋅time effects are significant.
The unweighted estimate may be more appealing if there are missing data at
later time points, so that bias towards earlier time points is reduced. However, if a
treatment effect appears relatively constant over time, then the weighted estimate
has the advantage of being less influenced by potentially inaccurate estimates at
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time points with fewer observations. If treatment⋅time effects are significant, it
would be wise to present additional treatment estimates at each time point. Less
importance should then be attached to the overall treatment estimate.

The previous discussion has assumed that we are interested in comparing
treatments, though, of course, the applications can be much wider. In studies
where patients are grouped by a variable other than treatment (e.g. an
epidemiological study to compare patients with different disease types), the
comparator variable should simply be substituted for the treatment effects.

6.2.4 General points

Missing data

Missing data, in the form of gaps in the series of observations or caused by patient
dropout, may occur frequently in repeated measures data (see Section 2.4.7).
They are a less serious problem, however, when a mixed model is used, unless
there are very substantial between-treatment group differences with respect to
the pattern of dropout. The reason missing values are less problematical is that
observations at each time point influence estimates of treatment effects at every
other time point, owing to the specification of a covariance pattern. Thus, patients
whose observations are limited to early time points because of dropout will never-
theless be taken into account when estimates are made of treatment effects at later
time points. Clearly, such individuals will not influence these estimates as greatly
as individuals whose data are complete; so the pattern of missing data in different
treatment groups cannot be completely ignored. There will also be potential biases
if patients show patterns of rapid deterioration prior to dropout. In such cases,
their early observations may be ‘good’, leading to a corresponding ‘good’ influence
on the unobserved time points after dropout, when this is clearly inappropriate.
Ad hoc approaches to imputing missing values, or analyses including and
excluding dropouts, may then need to be employed. Alternatively, a method that
allows for non-random missing data in repeated measures analysis could be
considered (e.g. Diggle and Kenward, 1994). Thus, it is too simplistic to say that
missing values do not matter in the mixed models analysis of repeated measures
data, but the method is quite robust, even when the data may not be entirely
missing at random. The text Missing Data in Clinical Studies by Molenberghs and
Kenward (2007) is recommended for readers wishing to gain more knowledge of
this area.

Significance testing

Fixed effects can be tested using F tests as described in Section 2.4.4. Again,
Satterthwaite’s DF should be used wherever possible. Within SAS, the use of the
option DDFM=KENWARDROGER within the MODEL statement is recommended
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for reasons expanded upon in the following section. If suitable software is not
available for calculating an appropriate DF, we suggest that overall treatment
effects and effects at individual time points should be compared using the patient
DF. This is likely to produce a conservative test.

Fixed effects standard error bias

Downward bias of fixed effects standard errors will occur as described in Section
2.4.3 because the covariance parameters are estimated and not known. A ‘robust’
variance estimate for fixed effects, known as the ‘empirical’ variance estimator,
was mentioned for covariance pattern models in Section 2.4.3. This variance
takes into account the observed covariance in the data, which, it is claimed, may
help alleviate some of the small sample bias. Our own simulation studies have
revealed, however, that, for relatively small sample sizes, the use of the empirical
variance estimator leads to the wrong size of test – when the null hypothesis
is true, an excess of statistically significant differences are found. Paradoxically,
we have found that with larger sample sizes, the empirical variance estimator
performs much better than at smaller sample sizes.

An alternative approach to adjust for the downward bias of fixed effects
standard errors is to inflate the estimated variance–covariance matrix of the
fixed effects, var(�̂�), following the approach described by Kenward and Roger
(1997). This is implemented in SAS using the option DDFM=KENWARDROGER
(or DDFM=KR) within the MODEL statement. Since the last edition of this text
a modified adjustment, DDFM=KR(LINEAR), has become available in PROC
MIXED. This is expected to provide an improved approximation for certain types
of covariance pattern. In PROC GLIMMIX, a further improved adjustment,
detailed in Kenward and Roger’s (2009) publication, DDFM=KR2, is available
in addition to the DDFM=KR(LINEAR) option, but only in SAS/STAT 12.1
onwards and not in SAS 9.3. Amongst the examples considered in this text,
these new options provide a different standard error to the DDFM=KR option only
for the first-order autoregressive structure and for the heterogenous structures
((vi)–(viii)) described in Section 6.2.1.

In contrast to our findings on the empirical variance estimator, our simulation
studies showed that the Kenward–Roger method performed satisfactorily down
to very small sample sizes (five subjects per treatment group) and in the presence
of missing values. Our recommendation is that in most circumstances, and
particularly with small sample sizes, the Kenward–Roger method should be the
one of choice. There is still the problem, of course, of specifying an appropriate
covariance pattern. For large sample sizes, the methods of Section 6.2.2 can
be applied in the knowledge that there will be reasonable power for detecting
statistically significant improvements in model fit, with more complicated
covariance patterns. Alternatively, a pragmatic approach that would lead to
a simple, pre-specified analysis plan would be to choose a simple covariance
pattern, such as compound symmetry, but use the empirical variance estimator.
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This will ensure that the estimated standard errors of the fixed effects reflect
the observed covariance pattern of the data. Although we cannot recommend
this approach for small sample sizes, we feel it is a viable alternative with larger
studies. For smaller sample sizes, there are no ideal solutions. Our preference is to
choose a simple, plausible, covariance pattern for the situation (often compound
symmetry or Toeplitz) and use the Kenward–Roger method.

The empirical variance estimator and the Kenward–Roger method can be
used with both normal and non-normal distributions. Our simulation studies
have looked only at the normal distribution, and we cannot legitimately infer
the extent to which the findings will generalise to non-normal distributions.
The empirical variance is calculated in SAS by using the EMPIRICAL option in
the PROC MIXED statement. For non-normal data, it is calculated by default
when the REPEATED statement in PROC GENMOD is used. The introduction
of PROC GLIMMIX to SAS offers additional flexibility in the use of empirical
variance estimators, though we have no experience in their use and cannot
make recommendations. Within the PROC GLIMMIX statement, there are five
options of the form EMPIRICAL = <keyword>. The option EMPIRICAL
= CLASSICAL produces the usual empirical estimators, while the other four
choices are different bias-adjusted estimators.

Model checking

In covariance pattern models, it is assumed that the residuals have a multivariate
normal distribution with zero means and covariance matrix R. This can be allowed
for by dividing the residuals by the matrix representing the root of the variance
matrix, V, that is dividing by C such that C′C=V. Thus, these standardised resid-
uals are calculated by C−1(y − X�̂� − Z𝛃). The standardised residuals can be cal-
culated in PROC MIXED using the VCIRY option in the MODEL statement. These
residuals are then assumed to have a normal distribution, which can be checked
using the methods suggested in Chapter 2. If there is evidence of non-normality
or outliers, then the suggestions described in this section should be used.

6.3 Example: covariance pattern models
for normal data

The hypertension trial analysed in Sections 1.3 and 2.5 is now considered as
repeated measures data. DBP recorded at each of the fortnightly post-treatment
visits will be analysed, and the effect of centres will be ignored. The primary
objective is to obtain an overall estimate of the treatment difference. The number
of patients attending at each visit is summarised by treatment as shown in the
following table. Visits 3–6 are the four post-treatment visits, and visit 2 values
are used as the baseline covariate.
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Treatment

Visit A B C Total

1 106 101 104 311
2 106 100 102 308
3 100 96 94 290
4 95 91 94 280
5 87 88 93 268
6 83 84 91 258

6.3.1 Analysis models

Treatment, time, treatment⋅time and baseline effects are fitted as fixed effects in all
the models considered.

The patterns listed in the following table are fitted and compared statistically
using likelihood ratio tests. The covariance pattern used by Model 6 was suggested
by the results from Models 1–5.

Model Covariance pattern

1 Compound symmetry
2 First-order autoregressive
3 Toeplitz
4 General
5 Separate compound symmetry for each treatment group
6 Separate Toeplitz pattern for each treatment group

6.3.2 Selection of covariance pattern

The covariance patterns and measures of model fit resulting from each analysis
are shown in Table 6.1. Correlations between visits are positive in all models,
indicating that it is important to take account of the correlations between the
repeated measurements.

Models 1 and 2 are the simplest covariance patterns. Since they each use two
covariance parameters, we choose Model 1, which has the highest likelihood. It
seems unlikely that the correlation between periods decays exponentially as they
become more widely separated as modelled in Model 2.

Model 3 with a Toeplitz pattern indicates that the correlation between visits
may be less when they are not adjacent. The compound symmetry pattern is
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Table 6.1 Results from using different covariance patterns.

Model

Covariance parameters
(variances and
correlation matrix)

−2log(L)
(no. parameters)

Akaike’s information
criterion (AIC)

1

76 ⎛
⎜
⎜
⎜⎝

1
0.53 1
0.53 0.53 1
0.53 0.53 0.53 1

⎞
⎟
⎟
⎟⎠

7463.4(2) 7467.4

2

76 ⎛
⎜
⎜
⎜⎝

1
0.57 1

0.572 0.57 1
0.573 0.572 0.57 1

⎞
⎟
⎟
⎟⎠

7485.3 (2) 7489.3

3

76 ⎛
⎜
⎜
⎜⎝

1
0.57 1
0.48 0.57 1
0.46 0.48 0.57 1

⎞
⎟
⎟
⎟⎠

7450.6 (4) 7458.6

4

76
71
86
73

⎛
⎜
⎜
⎜⎝

1
0.52 1
0.48 0.61 1
0.46 0.50 0.61 1

⎞
⎟
⎟
⎟⎠

7442.3 (10) 7462.3

5

A85 ⎛
⎜
⎜
⎜⎝

1
0.54 1
0.54 0.54 1
0.54 0.54 0.54 1

⎞
⎟
⎟
⎟⎠

7447.5 (6) 7459.5

B68 ⎛
⎜
⎜
⎜⎝

1
0.39 1
0.39 0.39 1
0.39 0.39 0.39 1

⎞
⎟
⎟
⎟⎠

C76 ⎛
⎜
⎜
⎜⎝

1
0.63 1
0.63 0.63 1
0.63 0.63 0.63 1

⎞
⎟
⎟
⎟⎠

6

A85 ⎛
⎜
⎜
⎜⎝

1
0.58 1
0.48 0.58 1
0.50 0.48 0.58 1

⎞
⎟
⎟
⎟⎠

7424.0 (12) 7448.0

B68 ⎛
⎜
⎜
⎜⎝

1
0.42 1
0.33 0.42 1
0.42 0.33 0.42 1

⎞
⎟
⎟
⎟⎠

C76 ⎛
⎜
⎜
⎜⎝

1
0.69 1
0.61 0.69 1
0.46 0.61 0.69 1

⎞
⎟
⎟
⎟⎠
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nested within the Toeplitz pattern used by Model 1, and the models can therefore
be compared statistically using a likelihood ratio test. This test gave 𝜒

2
2 = 12.78,

indicating that the Toeplitz structure is a significant improvement (p=0.002).
Model 4 with a general pattern also indicates that the correlation between visits

is less when they are not adjacent. We determine whether the extra parameters
used lead to a significant improvement over Model 3. The likelihood ratio test gives
𝜒

2
6 = 8.25 (p = 0.22),which shows that the use of the extra six parameters in the

general pattern is not necessary.
Model 5 has separate compound symmetry patterns for each treatment and indi-

cates that covariances may differ between treatments. The likelihood ratio test
shows that this model is a significant improvement over Model 1,𝜒2

4 = 15.80 (p =
0.003).However, it cannot be compared statistically with Model 3 (Toeplitz), since
the two models are not nested.

On the basis of the fact that Model 5 indicates that separate covariances for each
treatment group may be necessary and that Model 3 suggests a Toeplitz pattern,
Model 6 incorporating both these features was tested. Models 3 and 5 are nested
within Model 6, and Model 6 shows significant improvements over both of them,
𝜒

2
8 = 26.59(p = 0.0008) and 𝜒

2
6 = 23.57(p = 0.0006).

Thus, we have statistically justified the use of a fairly complex covariance
pattern. This is likely to be partly because the trial is relatively large, and so the
covariance parameters are estimated with a reasonable accuracy. Model 6 has
given us statistical evidence that the treatment groups have different variances.
In addition, the Toeplitz structures indicate that correlations between repeated
measurements are the highest for treatment C and the lowest for treatment B.
These differences are likely to be, in some way, due to the different actions of
the treatments. In smaller trials, however, it is often not possible statistically to
justify any pattern more complex than the compound symmetry or first-order
autoregressive. This is not necessarily because a more complex pattern does not
exist but because there is insufficient information to determine it.

6.3.3 Assessing fixed effects

The overall treatment effect estimates obtained from Models 1 and 6 are
summarised in Table 6.2. The small differences arise from differences in the
distribution of missing values between treatments. Thus, in this dataset, selecting
the most appropriate covariance pattern has had little effect on the results.
However, this is not always the case. In situations where the variance differs
between the visits, standard errors can differ more markedly.

In the last row of Table 6.2, results obtained after omitting the treatment⋅time
effects are given. The treatment effects are then calculated as weighted averages
of the effects at each time point. This contrasts with the models fitting the
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Table 6.2 Comparing treatment effects between Models 1 and 6.

Model 1
(compound
symmetry)

Model 6 (separate
Toeplitz pattern
for each treatment)

Overall treatment effects A−B 1.22 (1.03) 1.25 (0.99)
A−C 3.01 (1.02) 3.04 (1.08)
B−C 1.79 (1.03) 1.79 (1.00)

Visit 3 treatment effects A−B 1.35 (1.26) 1.36 (1.26)
A−C 3.40 (1.25) 3.42 (1.29)
B−C 2.05 (1.28) 2.06 (1.24)

Visit 4 treatment effects A−B 0.56 (1.28) 0.56 (1.28)
A−C 1.86 (1.27) 1.89 (1.30)
B−C 1.30 (1.28) 1.34 (1.25)

Visit 5 treatment effects A−B 2.91 (1.30) 3.00 (1.31)
A−C 4.67 (1.29) 4.77 (1.32)
B−C 1.76 (1.29) 1.77 (1.26)

Visit 6 treatment effects A−B 0.05 (1.32) 0.09 (1.33)
A−C 2.09 (1.30) 2.10 (1.34)
B−C 2.04 (1.31) 2.01 (1.27)

Treatment⋅visit p-value 0.22 (1.31) 0.11 (1.31)
Overall treatment A−B 1.23 (1.02) 1.23 (1.02)

effects in model A−C 3.03 (1.03) 3.01 (1.02)
omitting treatment⋅visit effects B−C 1.80 (1.03) 1.78 (1.03)

treatment⋅time interaction, which causes treatment effects to be unweighted
averages of the effects at each time point. There is little difference between the
two sets of results because there is only a relatively small amount of missing
data. It is a matter of personal choice as to which approach is preferable. There
are noticeable differences in the treatment effect estimates between the visits.
However, there is an absence of any coherent pattern, and the treatment⋅time
interaction was not significant in any model.

6.3.4 Model checking

Residual plots of scaled residuals are used to detect any outliers or a general lack
of normality. The graphs of the scaled residuals in Figure 6.1 neither indicate
appreciable departure from normality, nor any definite outlying observations.
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Figure 6.1(a) Residual plots (using OUTP and PROC GPLOT).
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Figure 6.1(b) Residual plots and statistics (via RESIDUAL option, SAS Version 9).

SAS code and output

Variables
treat = treatment(A,B.C),
pat = patient number,
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dbp = diastolic blood pressure,
dbp1 = baseline diastolic blood pressure,
visit = visit number.

SAS code is shown for Model 6. Code for the other models is identical except that
different REPEATED statements are used and Model 2 (first order autoregressive)
uses the DDFM=KR(LINEAR) option to provide an improved adjustment to the
standard errors and significance test DFs (see Section 6.2.4). For the other models,
the use of the DDFM=KR(LINEAR) option led to identical standard errors and
significance test DFs to the DDFM=KR option. The REPEATED statements for
Models 1–5 are given after the Model 6 output.

PROC MIXED NOCLPRINT; CLASS pat treat visit;
MODEL dbp = dbp1 treat visit treat*visit/ DDFM=KR;
REPEATED visit/ SUBJECT=pat TYPE=TOEP GROUP=treat

R=1,3,4 RCORR=1,3,4;
LSMEANS treat/ DIFF PDIFF CL;

ESTIMATE ‘a-b,v3’ treat 1 −1 0 treat*visit 1 0 0 0 −1 0 0 0 0 0 0 0;
ESTIMATE ‘a-c,v3’ treat 1 0 −1 treat*visit 1 0 0 0 0 0 0 0 −1 0 0 0;
ESTIMATE ‘b-c,v3’ treat 0 1 −1 treat*visit 0 0 0 0 1 1 0 0 −1 0 0 0;
ESTIMATE ‘a-b,v4’ treat 1 −1 0 treat*visit 0 1 0 0 0 −1 0 0 0 0 0 0;
ESTIMATE ‘a-c,v4’ treat 1 0 −1 treat*visit 0 1 0 0 0 0 0 0 0 −1 0 0;
ESTIMATE ‘b-c,v4’ treat 0 1 −1 treat*visit 0 0 0 0 0 1 1 0 0 −1 0 0;
ESTIMATE ‘a-b,v5’ treat 1 −1 0 treat*visit 0 0 1 0 0 0 −1 0 0 0 0 0;
ESTIMATE ‘a-c,v5’ treat 1 0 −1 treat*visit 0 0 1 0 0 0 0 0 0 0 −1 0;
ESTIMATE ‘b-c,v5’ treat 0 1 −1 treat*visit 0 0 0 0 0 0 1 0 0 0 −1 0;
ESTIMATE ‘a-b,v6’ treat 1 −1 0 treat*visit 0 0 0 1 0 0 0 −1 0 0 0 0;
ESTIMATE ‘a-c,v6’ treat 1 0 −1 treat*visit 0 0 0 1 0 0 0 0 0 0 0 −1;
ESTIMATE ‘b-c,v6’ treat 0 1 −1 treat*visit 0 0 0 0 0 0 0 1 0 0 0 −1;

The NOCLPRINT option suppresses the lengthy printing of patient categories.
The use of the R and RCORR options displays the covariance parameters in a more
meaningful way as matrices. If no subject numbers are specified, matrices for
only the first patient will be printed. We have requested matrices for patients 1, 3
and 4 so that a covariance and correlation matrix is printed for a patient on each
treatment.

Iteration History
Iteration Evaluations -2 Res Log Like Criterion
0 1 7794.69107620
1 2 7424.25314231 0.00009243
2 1 7423.98385033 0.00000131
3 1 7423.98024667 0.00000000
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Convergence criteria met.

Estimated R Matrix for pat 1
Row Col1 Col2 Col3 Col4
1 76.1169 52.7624 46.4925 35.3745
2 52.7624 76.1169 52.7624 46.4925
3 46.4925 52.7624 76.1169 52.7624
4 35.3745 46.4925 52.7624 76.1169

Estimated R Correlation Matrix for pat 1
Row Col1 Col2 Col3 Col4
1 1.0000 0.6932 0.6108 0.4647
2 0.6932 1.0000 0.6932 0.6108
3 0.6108 0.6932 1.0000 0.6932
4 0.4647 0.6108 0.6932 1.0000

Estimated R Matrix for pat 3
Row Col1 Col2 Col3 Col4
1 68.2100 28.9323 22.4760 28.6921
2 28.9323 68.2100 28.9323 22.4760
3 22.4760 28.9323 68.2100 28.9323
4 28.6921 22.4760 28.9323 68.2100

Estimated R Correlation Matrix for pat 3
Row Col1 Col2 Col3 Col4
1 1.0000 0.4242 0.3295 0.4206
2 0.4242 1.0000 0.4242 0.3295
3 0.3295 0.4242 1.0000 0.4242
4 0.4206 0.3295 0.4242 1.0000

Estimated R Matrix for pat 4
Row Col1 Col2 Col3 Col4
1 84.9809 49.5186 41.0737 42.2137
2 49.5186 84.9809 49.5186 41.0737
3 41.0737 49.5186 84.9809 49.5186
4 42.2137 41.0737 49.5186 84.9809

Estimated R Correlation Matrix for pat 4
Row Col1 Col2 Col3 Col4
1 1.0000 0.5827 0.4833 0.4967
2 0.5827 1.0000 0.5827 0.4833
3 0.4833 0.5827 1.0000 0.5827
4 0.4967 0.4833 0.5827 1.0000
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Covariance Parameter Estimates
Cov Parm Subject Group Estimate
Variance pat treat A 84.9809
TOEP(2) pat treat A 49.5186
TOEP(3) pat treat A 41.0737
TOEP(4) pat treat A 42.2137
Variance pat treat B 68.2100
TOEP(2) pat treat B 28.9323
TOEP(3) pat treat B 22.4760
TOEP(4) pat treat B 28.6921
Variance pat treat C 76.1169
TOEP(2) pat treat C 52.7624
TOEP(3) pat treat C 46.4925
TOEP(4) pat treat C 35.3745

Fit Statistics
-2 Res Log Likelihood 7424.0
AIC (smaller is better) 7448.0
AICC (smaller is better) 7448.3
BIC (smaller is better) 7491.9

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
11 370.71 <.0001

Type III Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
dbp1 1 285 28.73 <.0001
treat 2 187 4.04 0.0192
visit 3 437 12.41 <.0001

treat*visit 6 356 1.73 0.1130

Estimates

Standard
Label Estimate Error DF t Value Pr> | t |
a-b,v3 1.3578 1.2598 426 1.08 0.2817
a-c,v3 3.4212 1.2866 367 2.66 0.0082
b-c,v3 2.0634 1.2426 390 1.66 0.0976
a-b,v4 0.5557 1.2789 439 0.43 0.6641
a-c,v4 1.8917 1.3002 377 1.45 0.1465
b-c,v4 1.3360 1.2481 393 1.07 0.2851
a-b,v5 3.0026 1.3081 456 2.30 0.0222
a-c,v5 4.7694 1.3221 390 3.61 0.0003
b-c,v5 1.7668 1.2592 400 1.40 0.1614
a-b,v6 0.08613 1.3316 470 0.06 0.9485
a-c,v6 2.0957 1.3397 399 1.56 0.1185
b-c,v6 2.0096 1.2745 410 1.58 0.1156
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Least Squares Means
Standard

Effect treat Estimate Error DF t Value Pr > |t| Alpha
treat A 92.7437 0.7595 96.2 122.11 <.0001 0.05
treat B 91.4931 0.6404 93.5 142.87 <.0001 0.05
treat C 89.6992 0.7631 93.3 117.55 <.0001 0.05

Least Squares Means
Effect treat Lower Upper
treat A 91.2361 94.2513
treat B 90.2215 92.7648
treat C 88.1840 91.2144

Differences of Least Squares Means
Standard

Effect treat −treat Estimate Error DF t Value Pr > |t| Alpha
treat A B 1.2506 0.9945 186 1.26 0.2102 0.05
treat A C 3.0445 1.0759 191 2.83 0.0052 0.05
treat B C 1.7939 0.9975 181 1.80 0.0738 0.05

Differences of Least Squares Means
Effect treat −treat Lower Upper
treat A B -0.7115 3.2126
treat A C 0.9223 5.1667
treat B C -0.1744 3.7623

REPEATED statements for Models 1–5

1. REPEATED visit/ SUBJECT=pat TYPE=CS R RCORR;
2. REPEATED visit/ SUBJECT=pat TYPE=AR(1) R RCORR;
3. REPEATED visit/ SUBJECT=pat TYPE=TOEP R RCORR;
4. REPEATED visit/ SUBJECT=pat TYPE=UN R RCORR;
5. REPEATED visit/ SUBJECT=pat TYPE=CS GROUP=treat R=1,3,4

RCORR=1,3,4;

Checking model assumptions in Model 6

The following code can be used to obtain the residual and normal plots shown
in Figure 6.1. These are based on the scaled residuals. When the VCIRY option
is used, SAS only scales the marginal residuals (produced by the OUTPM option).
However, in this case, these are the same as the conditional residuals produced by
the OUTP option since no random effects are fitted.
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PROC MIXED NOCLPRINT; CLASS treat visit pat;
MODEL dbp = dbp1 treat visit treat*visit/ DDFM=KR VCIRY

OUTPM=predm;
REPEATED visit/ SUBJECT=pat TYPE=TOEP GROUP=treat;
SYMBOL1 v=circle;
PROC GPLOT DATA=predm;
PLOT scaledresid*pred;
TITLE ’SCALED RESIDUALS AGAINST THEIR PREDICTED VALUES’;
PROC RANK DATA=predm OUT=norm NORMAL=TUKEY; VAR scaledresid;

RANKS s_est;
PROC GPLOT DATA=norm; PLOT scaledresid*s_est;
TITLE ’SCALED RESIDUALS - NORMAL PLOT’;

Alternatively, for SAS/GRAPH users, the following ODS code can be used to pro-
duce the residual plots shown in Figure 6.2. InSAS9.3, the labelling of the graphs
has changed slightly.

ODS HTML FILE="<output file.html>" GPATH="<graphs directory>";
ODS GRAPHICS ON;
PROC MIXED NOCLPRINT; CLASS treat visit pat;
MODEL dbp = dbp1 treat visit treat*visit/ RESIDUAL

DDFM=KR VCIRY;
REPEATED visit/ SUBJECT=pat TYPE=TOEP GROUP=treat;
RUN;
ODS GRAPHICS OFF;
ODS HTML CLOSE;

6.4 Example: covariance pattern models
for count data

This was a placebo-controlled trial of an anti-convulsant treatment for epilepsy
involving 59 patients. The data are taken from Thall and Vail (1990). The number
of epileptic seizures was counted over an 8-week period prior to treatment and then
over four 2-week periods following treatment. None of the patients dropped out of
the study. A histogram of the number of epileptic episodes is shown in Figure 6.2
by treatment group. These show that many patients have few seizures, while a
few have a large number. This distribution indicates that a Poisson error and a log
link function may be appropriate. However, it is possible that the small number of
very large frequencies will produce outlying residuals. Note that in this example
an offset variable (see Section 3.1.2) is not needed because the trial periods are
strictly 2 weeks long (it does not matter that the baseline period is longer – this is
taken into account by the baseline effect estimate).
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Figure 6.2 Histograms of the number of epilepsy episodes by treatment group.

6.4.1 Analysis models

Models with several different covariance patterns are fitted using pseudo-likelihood
(PL). Baseline, treatment, visit and treatment⋅visit are fitted as fixed in all the
models. Models 1–5 were fitted initially. The pattern for Model 6 was suggested
by the results from these models.

Model Covariance pattern

1 Compound symmetry
2 Separate compound symmetry for each treatment group
3 First-order autoregressive
4 Toeplitz
5 General
6 Separate general pattern for each treatment group

Results

Results from the six models are shown in Table 6.3. Correlations in all the models
are positive, indicating that observations on the same patient are correlated. We
assume that approximate likelihood ratio tests based on −2 log(PL) can be used
to compare different models. Models 1 and 3 have the same number of covariance
parameters, and therefore their PLs can be compared directly. Since Model 1
(compound symmetry) has the highest PL, it is therefore preferred to Model 3
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Table 6.3 Results from all models.

Model Covariance parameters

−2log(PLa)
(no. covariance
parameters)

Treatment
difference
(placebo−active) (SE)

1

⎛
⎜
⎜
⎜⎝

4.90
2.08 4.90
2.08 2.08 4.90
2.08 2.08 2.08 4.90

⎞
⎟
⎟
⎟⎠

603.95 (2) 0.106 (0.152)

2

P ⎛
⎜
⎜
⎜⎝

5.55
1.07 5.55
1.07 1.07 5.55
1.07 1.07 1.07 5.55

⎞
⎟
⎟
⎟⎠

591.11 (4) 0.106 (0.151)

A ⎛
⎜
⎜
⎜⎝

4.29
2.42 4.29
2.42 2.42 4.29
2.42 2.42 2.42 4.29

⎞
⎟
⎟
⎟⎠

3

4.78b ⎛
⎜
⎜
⎜⎝

1.00
0.43 1.00

0.432 0.43 1.00
0.433 0.432 0.43 1.00

⎞
⎟
⎟
⎟⎠

612.32 (2) 0.106 (0.137)

4

⎛
⎜
⎜
⎜⎝

4.90
2.22 4.90
1.81 2.22 4.90
2.18 1.81 2.22 4.90

⎞
⎟
⎟
⎟⎠

602.93 (4) 0.106 (0.152)

5

⎛
⎜
⎜
⎜⎝

4.98
2.27 4.15
2.09 2.82 7.82
1.47 1.52 2.23 2.44

⎞
⎟
⎟
⎟⎠

566.86 (10) 0.106 (0.150)

6

P ⎛
⎜
⎜
⎜⎝

4.53
2.68 3.63
1.49 2.27 10.61
0.05 0.58 1.69 1.92

⎞
⎟
⎟
⎟⎠

504.69 (20) 0.105 (0.151)

A ⎛
⎜
⎜
⎜⎝

5.62
1.81 4.02
2.97 3.26 5.52
3.05 2.28 2.93 2.85

⎞
⎟
⎟
⎟⎠

aPL= pseudo-likelihood value.
bHere the variance and correlation matrix are given.
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(autoregressive). Model 2 with separate compound symmetry patterns for each
treatment performs significantly better than Model 1 (𝜒2

2 = 12.84), and so does
Model 5 with a general pattern (𝜒2

6 = 37.09). However, Model 4 with a Toeplitz
pattern is no better than Model 1 (𝜒2

2 = 1.02) and can be rejected. On the basis
of the fact that Model 2 indicates that separate covariances for treatments may
be necessary and that Model 5 indicates a general covariance pattern, Model 6
combining these features is tested. This shows a significant improvement over
both Models 2 and 5 (𝜒2

18 = 86.42 and𝜒2
10 = 62.17, respectively) and is therefore

selected.
The baseline effect was highly significant in all models, and its inclusion has

increased the precision of the analyses. The treatment⋅time interaction was not
significant in any model (p>0.8 in all models), and so we can be reasonably con-
fident in reporting an overall treatment effect based on the average of all time
points. In this example, the overall treatment effect will not be affected by whether
the interaction term is removed because the data are complete. No evidence of a
significant treatment effect was apparent in any model. Relative rates and 95%
confidence intervals can be calculated from the mean treatment difference and SE.
In Model 6, the confidence interval for the treatment effect on the linear scale is

95% CI = 0.105 ± t57,0.975 × 0.151.

t57,0.975 =2.00, so we obtain

95% CI = 0.105 ± 2.00 × 0.151 = (−0.197,0.407).

A comparison of the treatments in terms of a relative rate is obtained by exponen-
tiating the effect estimate:

RR = Seizure rate on placebo
Seizure rate on active

= exp(0.105) = 1.11.

Confidence intervals for the relative rate are calculated by exponentiating
the confidence intervals calculated on the linear scale, exp(−0.197, 0.407)
= (0.82, 1.50).

Plots of the Pearson residuals against their fitted values are used to provide a
rough check of model assumptions and to look for outliers (Figure 6.3).

These plots indicate that the Poisson assumption is not appropriate. The model
has not adequately coped with observations with very large values. The influence
of these observations on the results was assessed by refitting Model 6 with the
largest residual removed (patient 25, visit 3). This model gives a treatment effect
estimate of 0.029 with a standard error of 0.140. This is noticeably different
from the treatment effect of 0.105 (0.151) estimated with the most outlying
observation included. The variances for the placebo at visit 3 are also now
much less, indicating that the previous estimate was highly influenced by the
outlier. Even with the outlier removed, the distribution of residuals remains
unsatisfactory. Therefore, we should conclude that the assumption of Poisson
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Pearson residuals
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Figure 6.3 Panel of Pearson residuals: scatterplot of residuals against their predicted val-
ues; a histogram with normal density; a Q-Q plot and a boxplot of the residuals.

error for these data is not appropriate and consider an alternative analysis
method. A transformation of the data is unlikely to overcome this problem since
there are a large number of zeros. In the absence of non-parametric mixed
models, one possibility is to categorise the number of epilepsy attacks and to use
a categorical mixed model. This will be illustrated in the following section.

6.4.2 Analysis using a categorical mixed model

The number of post-treatment epilepsy attacks was categorised into four groups.
The groupings are chosen so that each category is of a reasonable size.

Group Attacks

1 0 (10%)
2 1–3 (29%)
3 4–10 (39%)
4 11+ (22%)
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The baseline attack rate was not categorised and was again fitted as log(attacks).
Attempts were made to fit compound symmetry, Toeplitz and general covari-
ance patterns to the data using the SAS macro written by Lipsitz et al. (1994)
(see Section 9.3). However, convergence was achieved only for the compound
symmetry model. The treatment⋅time interaction was not significant, and this
effect was removed from the model.

Covariance parameter estimates

Correlations between each pair of partitions are given in the following table.
Recall from Section 4.2 that instead of a single correlation parameter to model
the compound symmetry pattern, there is now a matrix of rank (c−1)× (c−1),
giving a correlation parameter for each pair of partitions. The correlation values
for our compound symmetry model were:

Partition 1 2 3

1 0.67
2 0.03 0.17
3 0.00 0.16 0.28

Thus, there appears to be some correlation between observations on the same
patients.

Fixed effects estimates

The fixed effect estimates were as follows:

Effect Estimate Empirical SE Model-based SE

Intercept 1 −0.32 0.56 0.52
2 1.95 0.50 0.42
3 4.67 0.65 0.61
Baseline −0.078 0.01 0.01
Treatment −0.81 0.35 0.35
Visit 1 −0.34 0.31 0.26
Visit 2 −0.64 0.37 0.26
Visit 3 0.29 0.36 0.25

The three intercept terms (arising from the three possible partitions of the four
categories) and the visit terms are of little interest. The large size of the baseline
term relative to its standard error indicates that the model has benefited from its
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inclusion. The overall treatment effect is significant (p=0.02). This differs from
the GLMM analysis and appears to indicate that the analysis of the categorised
attack rate is more sensitive. This is likely to be because there are three extremely
large values (>60 attacks) in the active treatment group compared with only one
in the placebo group. In the GLMM analysis, these will have a large effect on the
variance of the treatment effects, whereas this does not occur in the categorical
analysis since they are grouped with other values above 10. Similarly, they will
have a reduced influence on the estimated magnitude of the treatment effect.

The coefficient for the treatment effect is difficult to interpret directly, but by
exponentiation, we can calculate an odds ratio in an analogous way to Section
3.3.4 where GLMMs were considered. In this case, exp(−0.81)=0.44, and this
is the estimate of the odds ratio for the probability of a ‘favourable’ outcome on
placebo compared with active treatment, whether ‘favourable’ is defined as 0
attacks, ≤3 attacks or ≤10 attacks. Note that the odds ratio from this model is
defined in terms of a ‘favourable’ outcome, whereas in the GLMM, it is in terms of
the rate of epilepsy attacks. Note also that it is an inherent assumption of this model
that the same odds ratio applies to every partition between the categories. The 95%
confidence intervals can be calculated as before from exp(−0.81± t57,0.975 ×
0.35)= exp(−0.81±2.00×0.35)= (0.22, 0.90). (Note that these use a t
distribution with the patient DF of 57 as used in the GLMM.)

SAS code and output

Variables
pat = patient,
time = time (1, 2, 3, 4),
treat = treatment (1=anti-convulsant drug, 0=placebo),
epis = number of epilepsy attacks,
lbase = log(baseline epilepsy attacks).

Model 6 did not converge in PROC GLIMMIX. However, convergence was
obtained using a previous GLIMMIX SAS macro, and this was used to provide
the results in Table 6.3.
SAS code is given below for Model 2. Code for the other models is identical except

that different RANDOM statements are used. These statements are printed after the
Model 2 output.

Model 2

PROC GLIMMIX PLOTS=ALL; CLASS pat time treat;
TITLE ‘Compound Symmetry separate variances’;
MODEL epis=lbase treat time treat*time/ DIST=P DDFM=KR;
RANDOM time / SUBJECT=pat TYPE=CS RESIDUAL VCORR=1,29
GROUP=treat;
ESTIMATE ‘treat’ treat 1 -1/ CL;
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Fit Statistics
-2 Res Log Pseudo-Likelihood 591.11
Generalized Chi-Square 227.00
Gener. Chi-Square / DF 1.00

Estimated V Correlation Matrix for pat 1
Row Col1 Col2 Col3 Col4
1 1.0000 0.3061 0.3061 0.3061
2 0.3061 1.0000 0.3061 0.3061
3 0.3061 0.3061 1.0000 0.3061
4 0.3061 0.3061 0.3061 1.0000

Estimated V Correlation Matrix for pat 29
Row Col1 Col2 Col3 Col4
1 1.0000 0.5641 0.5641 0.5641
2 0.5641 1.0000 0.5641 0.5641
3 0.5641 0.5641 1.0000 0.5641
4 0.5641 0.5641 0.5641 1.0000

Covariance Parameter Estimates
Standard

Cov Parm Subject Group Estimate Error
Variance pat treat 0 3.8508 0.6051
CS pat treat 0 1.6983 0.7757
Variance pat treat 1 1.8701 0.2788
CS pat treat 1 2.4198 0.7807

Type III Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
lbase 1 56.98 120.61 <.0001
treat 1 56.01 0.49 0.4867
time 3 147 1.19 0.3175
time*treat 3 147 0.24 0.8711

Estimates
Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper
treat 0.1060 0.1513 56.01 0.70 0.4867 0.05 -0.1972 0.4091

RANDOM statements for other models

1. RANDOM time/ SUBJECT=pat TYPE=CS RESIDUAL VCORR;
3. RANDOM time/ SUBJECT=pat TYPE=AR(1) RESIDUAL VCORR;
4. RANDOM time/ SUBJECT=pat TYPE=TOEP RESIDUAL VCORR;
5. RANDOM time/ SUBJECT=pat TYPE=UNR RESIDUAL VCORR;
6. RANDOM time/ SUBJECT=pat TYPE=UNR RESIDUAL

VCORR=1,29 GROUP=treat;
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Residual plots In version 9.3, the previous code, through the PLOTS=ALL
option will provide several types of residual plots, one of which appears in
Figure 6.3.

Note that the residuals will be correlated in this example, which is not ideal. In
PROC GLIMMIX, there is no equivalent to the VCIRY option in PROC MIXED,
and so direct examination of the residuals to identify potential outliers is the sim-
plest practical method.

Use of the V option Although the V option is perhaps the obvious one to choose
in order to produce the covariance parameters shown in Table 6.3, in Version 9.3,
it is not functioning correctly, at the time of writing.

Categorical analysis The SAS macro written by Lipsitz et al. (1994) was
used to fit these models (see Section 9.3). This macro and the code used can be
obtained from web page www.wiley.com/go/brown/applied_mixed. Note that
a similar model to the compound symmetry model could have been fitted with
PROC GLIMMIX through fitting a patient effect as random and specifying DIST
= MULTINOMIAL.

6.5 Random coefficients models

6.5.1 Introduction

A random coefficients model is an alternative approach to modelling repeated
measures data. The model is devised to describe arithmetically the relationship
of a measurement with time. The statistical properties of random coefficients
models have already been introduced in Sections 1.4.2 and 2.1.4. In this section,
we will consider in more depth the practical details of fitting these models and the
situations in which they are most appropriate.

The most common applications are those in which a linear relationship is
assumed between the outcome variable of interest and time. The main question
of interest is then likely to be whether the rate of change in this outcome variable
differs between the ‘treatment’ groups. Such an example was reported by Smyth
et al. (1997). They carried out a randomised controlled trial of glutathione
versus placebo in patients with ovarian cancer who were being treated with
cis-platinum. This drug has proven efficacy in the treatment of ovarian cancer
but has a number of adverse effects as well. Amongst these is a toxic effect on
the kidneys. This effect can be monitored by the creatinine levels in the patients’
blood. One of the hoped-for secondary effects of glutathione was to reduce the
rate of decline of renal (kidney) function. This was assessed using a random
coefficients model, but analysis showed no statistically significant difference
between the rates of decline in the two treatment arms. Such an analysis may
find widespread application in the analysis of ‘safety’ variables in clinical trials
because it is important to establish what effect new drugs may have on a range

http://www.wiley.com/go/brown/applied_mixed
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of biochemical and haematological variables. If these variables are measured
serially, analysis is likely to be more efficient if based on all observations, using a
method that will be sensitive to a pattern of rise or decline in the ‘safety’ variables.
A further example in which the rate of decline of CD4 counts is compared in two
groups of HIV-infected haemophiliacs will be presented in detail in Section 6.6.1.

In fitting linear random coefficients models, as described above, we will wish to
fit fixed effects to represent the average rate of change of our outcome variables
over time (i.e. a time effect) and assess the extent to which treatments differ in
the average rate of change by fitting a treatment⋅time interaction. We will also
require fixed effects to represent the average intercepts for each treatment (i.e. a
treatment effect). In addition to the fixed effects representing average slopes and
intercepts, the random coefficients model allows the slopes and intercepts to vary
randomly between patients and cause a separate regression line to be fitted for
each patient. This is achieved by fitting patient effects (to allow intercepts to vary)
and patient⋅time as random to allow slopes to vary. These effects are used in the
calculation of the standard errors of the time and treatment⋅time effects, which
are our main focus of interest. Our basic model is therefore

Fixed effects: time, treatment and treatment⋅time,
Random effects: patient and patient⋅time.

The effects included represent a minimum set of effects that will be considered in
the model. Other patient characteristics, such as age and sex and their interactions
with time, can readily be incorporated into the model, and we will see later that
polynomial relationships and the effect of baseline levels can also be incorporated.

When the repeated measures data are obtained at fixed points in time, there
will be a choice between the use of covariance pattern models and random
coefficients models. This choice may be influenced by how well the dependency
of the observations on time can be modelled and whether interest is centred on
the changing levels of the outcome variable over time or on its absolute levels.
In many instances, the random coefficients model will be the ‘natural’ choice, as
in the examples presented. If the times of observation are not standardised, or if
there are substantial discrepancies between the scheduled times and actual time
of observation, then random coefficients models are more likely to be the models
of choice.

Modelling non-linear relationships with time

The models considered so far assume a linear relationship with time. In many
applications, the linear model described is sufficient for assessing whether there is
a time trend or whether the trend is varying across treatment groups. However,
it is also possible to model non-linear relationships with time; for example, by
using polynomial or exponential functions. We will only consider models that can
be fitted in PROC MIXED using polynomial functions of time. PROC NLMIXED
can also be used to fit other types of non-linear functions but that is outwith the
coverage in this book.
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We suggest that a model based on polynomials of time is built up by adding
polynomials of increasingly higher order one at a time, both as fixed effects and
random coefficients. If a variance component for a random coefficient is negative,
the last random coefficient added to the model should be removed, and no further
random coefficients should be added. However, higher order polynomials can
still be considered as fixed effects if appropriate. This model building process is
illustrated in the worked example in Section 6.6.2 and readers may find it helpful
to refer to this example and the example in Section 6.6.1 before considering the
material in the remainder of this section.

6.5.2 General points

Negative variance components

The usual action when a negative variance component estimate is obtained for
a random coefficient would be to constrain the variance component to zero or to
refit the model with the random coefficient removed. In PROC MIXED, we have
found that non-convergence or a message stating that the G matrix is not positive
semi-definite are usually indications of a negative variance component. In some
cases, PROC MIXED will successfully constrain the variance component to be
close to zero and provide satisfactory results, but in others, the model will not
converge. In this second situation, it appears necessary to remove the random
coefficient from the model. This is similar, apart from the degrees of freedom,
to setting the variance component at zero. When there are non-linear terms
of increasing complexity in the model, a possible course of action would be to
remove the random coefficients one by one in decreasing order of complexity
until all variance components become positive. We should add a word of caution,
however. A negative variance component can sometimes occur if the model has
been misspecified. For example, a negative variance component for a linear slope
could occur when there is actually a non-linear relationship with time. As in
all modelling situations, we need to check that our assumptions are reasonable.
Sometimes, it will be worthwhile exploring the addition of other non-linear terms
before removing random coefficients with negative variance components. Very
occasionally, one may wish to permit a variance component to become negative.
For example, with non-linear terms in the model, the marginal variance over
time may be better modelled by allowing, say, the quadratic term to be negative.
In SAS, this can be achieved through the NOBOUND option in the PROC MIXED
or PROC GLIMMIX statements.

Use of baseline measurements

If there is a pre-treatment, baseline observation, then there are two distinct ways
in which it can be used. In one approach, it can be specified as a fixed effect, so
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that it is considered as a covariate in the analysis. However, it will often be more
natural to think of such an observation as the first repeated measurement at time
zero, with time measured from the start of treatment. Such an example occurs in
Section 6.6.1 when we analyse the change in CD4 counts over time.

Non-comparative datasets

Repeated measures data are not always collected to compare specific groups of
patients (e.g. treatment groups); data may be collected simply to monitor a group
of patients over time. In this situation, the linear model described in Section 6.5
would simplify to:

Fixed effects: time,
Random effects: patient and patient⋅time,

and interest would lie primarily with the time effect estimate. Its standard error
would reflect the variation in time slope occurring between patients.

Shrunken random coefficients estimates

Estimates of the random coefficients (i.e. intercept and time effects for each patient)
are not usually of interest. However, it is possible to estimate them, and they will be
shrunken towards the overall intercept and time effects. This avoids the potential
problem of unrealistic slope estimates that may occur when there are only a few
observations per patient.

Significance testing

The points relating to significance testing given in Section 2.4.4 also apply to
random coefficients models. Time and treatment⋅time effects can be tested using
F tests based on the Kenward–Roger method. If software is not available for
calculating Satterthwaite’s DF, then the patient DF can be used as a conservative
estimate of the denominator DF (since time and treatment⋅time effects are
contained within the random patient⋅time coefficients whose DF are equal to the
patient DF).

If required, the significance of the variance components arising from the
random coefficients can also be tested using likelihood ratio tests to compare
models including and not including the corresponding random coefficients.
However, the degrees of freedom used for the test now needs to take into account
the number of additional covariance parameters required to add the random
coefficient. For example, when a random slope is added, there are two additional
covariance parameters – a variance component for the slopes and a correlation
between the random slopes and intercepts. The conventional likelihood ratio
test would use 2 degrees of freedom. However, ideally, the test should take into
account that the variance component for the random slope is truncated at
zero. The p-value is then based on a 50:50 mixture distribution of chi-squared
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distributions with 1 and 2 degrees of freedom.

p = 1
2

P(𝜒2
1 ) +

1
2

P(𝜒2
2 ).

Similarly, a third random term in the model would lead to three additional
parameters being included in the model, and a p-value based on a 50:50 mixture
distribution of chi-squared distributions with 2 and 3 degrees of freedom would be
appropriate. More justification for the use of these mixture distributions is given
in Section 2.4.4 and in Verbeke and Molenberghs (2000, Section 6.3.4).

However, even if the variance component is non-significant, it is usually
desirable to retain the associated random coefficient in the model, provided its
variance component is positive.

Model checking

The residuals can be checked for normality by plotting them against their predicted
values and by using normal plots. In addition, plots of the residuals against time
will help check whether their variance is constant over time. The random coef-
ficients are assumed to have a multivariate normal distribution with zero mean
and covariance matrix G. This assumption is difficult to check formally. However,
estimates of the fixed effects and their standard errors are expected to be robust
to any non-normality in the random effects (see Section 2.6.4). Bivariate plots of
the random coefficients (e.g. patient residuals against patient⋅time residuals) can
be helpful for showing up any outlying random effect categories, and their influ-
ence may be assessed by removing them from the model. However, if predictions of
random effects are of interest, it should be borne in mind that these will be more
sensitive to any non-normality in their distribution.

6.5.3 Comparisons with fixed effects approaches

In this section, we consider two fixed effects approaches that have been used for
modelling linear relationships with time for repeated measures data and show how
they differ from the random coefficients model.

The first approach is an extremely statistically naive one, but one which appears
from time to time in the medical literature. Treatment, time and treatment⋅time
are fitted as fixed effects, and the effects of patient and patient⋅time are totally
ignored. Thus, all observations are treated as independent, and the standard
errors of intercept and slope⋅effects will be erroneously small because they take
no account of between-patient variability.

The second fixed effects approach is more robust. A two-stage model is used:
first, time slopes are calculated for each patient; then, an analysis is performed
on the slope estimates (e.g. Rowell and Walters, 1976). This has an advantage
over the first approach in that random variation in slope effects is allowed between
patients. However, a drawback is that slopes estimated for patients with only a few
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observations can be unrealistic, and the slopes from all patients are given equal
weight regardless of their accuracy. A suitably weighted analysis could, of course,
be considered, but it will usually be simpler and more efficient to apply a random
coefficients model.

When a random coefficients model is used, the problems encountered with
the fixed effects approaches do not occur. The standard errors of intercept and
slope effects take into account between-patient variability; shrunken random
coefficients estimates avoid the problem of unrealistic slope estimates that may
occur when there are only a few observations per patient, and slopes from
individual patients are appropriately weighted.

6.6 Examples of random coefficients models

In this section, we will present two examples. In the first of these, we will fit (after
a transformation) a linear model. This corresponds to the most common type of
random coefficients model that is likely to be encountered in practice. In the second
example, we examine the use of polynomial models. Only in this example do we
go through in detail the model checking procedures, which we recommend be
undertaken in all analyses.

6.6.1 A linear random coefficients model

One of the measures of disease severity in patients with HIV infections has been
the CD4 count. This was found to decline with the time since infection with HIV.
Many patients with haemophilia became HIV positive, often because of receiving
infected blood products, but it was reported that treatment of their haemophilia
with high-purity monoclonally immunopurified factor VIII concentrates could
slow or halt their rate of decline in CD4 count. In Britain, such patients were
treated for some years with high-purity factor VIII concentrate, but some centres
had been supplied with concentrate that was monoclonally immunopurified,
while others used concentrates that were ion-exchange purified. This permitted
a ‘natural experiment’ that was monitored prospectively from the time of a
patient’s transfer from intermediate-purity factor VIII concentrate to high-purity
concentrate, for a period of 3 years (Hay et al., 1998).

Various transformations of the CD4 count have been proposed in the literature.
In this case, in agreement with most authors, a square root transformation was
found to give approximately normal distributions and to produce linear rates
of change over time. CD4 counts were taken at entry to the study (i.e. at the
time of change to one of the forms of high-purity factor VIII concentrate) and at
approximately 6-monthly intervals thereafter for a period of 3 years. The exact
times when the samples were taken were used in the following analysis.



Brown778258 c06.tex V3 - 11/14/2014 10:16 A.M. Page 268

268 Repeated measures data

Of the 116 patients with severe haemophilia A who entered the study,
79 received the monoclonally immunopurified product, while 37 received
ion-exchange-purified factor VIII. By the end of the study, 25 patients had died,
15 in the monoclonal group and 10 in the ion-exchange group, and three patients
were lost to follow-up. One patient died before any post-treatment CD4 counts
were obtained, but the data from all other patients were used in the analysis.

The median CD4 counts at entry to the study were 0.30×109/1 in the
monoclonal group and 0.16×109/1 in the ion-exchange group. From a design
viewpoint, this difference was unhelpful but was a consequence of the absence
of randomisation. One of the centres using the ion-exchange product had
patients who had been infected earlier, with consequently lower CD4 counts. The
final CD4 counts had median values of 0.16 versus 0.08×109/1. The median
reductions were 0.08×109/1 in the monoclonal group and 0.03×109/1 in the
ion-exchange group.

In the analysis presented below using a random coefficients model, no covariates
are fitted. The terms fitted are therefore

Fixed effects: time, treatment and treatment⋅time,
Random coefficients: patient and patient⋅time.

The results of fitting the model are shown in Table 6.4. The principal interest will
be in the magnitude of the treatment⋅time interaction and its level of significance
because this indicates whether the two treatments differ in their effect on the rate
of decline of CD4 counts. The estimate is similar in magnitude to its standard error,
indicating an absence of statistical significance (p=0.25). The treatment estimate
is just over twice its standard error, and this is statistically significant at conven-
tional levels (p=0.03). This test is of little interest to us, however, as this simply
confirms that the CD4 counts in the monoclonal group are higher than those in
the ion-exchange group, as was noted in the CD4 levels prior to the commence-
ment of either form of high-purity factor VIII concentrate.

The terms in the G matrix are positive along the diagonal, but there is a negative
covariance term. The diagonal terms show that there is between-patient variation
in the slopes and intercepts, as we would expect. The negative covariance term is

Table 6.4 Results from analysis of change in CD4 counts.

Fixed effects (SE)
Covariance parameters

in G matrix Residual

Intercept 0.523 (0.026) 0.0073
(

0.0509 −0.0003
−0.0003 0.0027

)

Treatment −0.102 (0.047)
Time −0.050 (0.008)
Treatment⋅time 0.016 (0.014)
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not surprising because of the well-known negative correlation between estimates
of slopes and intercepts in regression analysis. However, it is perfectly possible in
random coefficients models for covariance terms to be positive on occasions.

In reporting a random coefficients analysis, it is helpful to give the point
estimates for average change in each treatment group, together with their
standard errors or confidence intervals. If the analysis is being undertaken using
SAS, these are not immediately available but can soon be obtained. The SAS
output, given in more detail at the end of this chapter, has the following section:

Solution for Fixed Effects
Standard

Effect treat Estimate Error DF t Value Pr > |t|
Intercept 0.5228 0.02633 112 19.86 <.0001
treat 1 -0.1025 0.04708 112 -2.18 0.0316
treat 2 0 . . .18 .2418
TIME -0.04962 0.007597 103 -6.53 <.0001
TIME*treat 1 0.01583 0.01356 107 1.17 0.2459
TIME*treat 2 0 . . .18 .2418

The line labelled TIME gives the mean rate of decline and standard error in the
‘reference’ category for treatment, which in this case is treatment group 2 (mon-
oclonal). Thus, the mean rate of decline is 0.050(CD4 count)1/2 per year with a
standard error of 0.008. To obtain the corresponding figures for the ion-exchange
group, the program needs to be rerun with the labelling of the groups reversed
to give

Solution for Fixed Effects
Standard

Effect treat Estimate Error DF t Value Pr > |t|
Intercept 0.4203 0.03903 113 10.77 <.0001
treat 1 0.1025 0.04708 112 2.18 0.0316
treat 2 0 . . .24 .2418
TIME -0.03379 0.01124 108 -3.01 0.0033
TIME*treat 1 -0.01583 0.01356 107 -1.17 0.2459
TIME*treat 2 0 . . .28 .2418

It will be seen that the interaction term remains unchanged, apart from its sign,
but the row for TIME now gives the rate of decline and standard error for the
ion-exchange group. This is 0.034(CD4 count)1/2 per year with a standard error
of 0.011.

Examinations of residuals are not shown, but they indicated that the model
produced an acceptable fit.
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6.6.2 A polynomial random coefficients model

In this example, antibody levels to a herpes virus were measured in 45 children
with one of two types of cancer: solid lump tumour (18) or leukaemia (27). The
measurements were taken during hospital visits for courses of chemotherapy
treatment. The duration of treatment ranged from 1 month to 3 years (median
12 months), and the intervals between treatments differed between the children.
The aim of the study was to establish whether virus antibody levels were affected
by chemotherapy treatment and whether this change was related to cancer type.
It is known that the herpes virus antibody is present in nearly all children (all
children in this study had it), and its average level decreases as children become
older. Virus antibody levels for individual patients are plotted on the next page.
These indicate that levels of the antibody fluctuate widely in some children (see
Figure 6.4). The relationship of antibody level with time can be assessed by using
a random coefficients model. This will help to determine whether chemotherapy
is having an adverse effect on virus levels.

Building a polynomial model

As the relationship of virus level with time may be non-linear, a model using poly-
nomials of time will be considered. However, note that in many applications, the
linear model described in Section 6.6.1 is deemed sufficient to assess whether there
is a time trend or whether the trend is varying across treatment groups.

The model is built up by adding polynomials of increasing order one by one into
the model, both as fixed effects and as random coefficients. Random coefficients
will be retained, provided their variance components are positive. However, fixed
effects polynomials are added until they are non-significant. The age distribu-
tion will change at different treatment durations depending on which patients
have observations present. To help overcome this variation, age at the start of
treatment is included in all models. The following linear model (Model 1) is fitted
initially.

Fixed effects: type (solid lump or leukaemia), age and time,
Random coefficients: patient (intercepts) and patient⋅time (slopes).

Results from this analysis are shown in Table 6.5. The variance components
corresponding to the two random coefficients are both positive. This indicates
that there is more variation between the regression lines for each patient than
expected by chance, that is patients vary in their rates of virus decay. Next,
quadratic time effects are added into the model (Model 2):

Fixed effects: type, age, time and time2,
Random coefficients: patient, patient⋅time and patient⋅time2.
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Figure 6.4 Examples of individual patient profiles. (a) Type=AL. (b) Type= ST.

The three variance components obtained from this model were all positive, indicat-
ing more variation between the quadratic curves for each patient than expected by
chance.

When cubic time effects were added as random coefficients, the model did not
converge (using PROC MIXED). Results provided at the last iteration indicated
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Table 6.5 Results from Models 1–3.

Model Fixed effects G matrix and residual

1 (linear) Intercept 3.65 (0.24)
Type −0.23 (0.25)
Age −0.046 (0.038)

(
0.44
0.013 0.0042

)

Time −0.032 (0.014) 0.56

⎛
⎜
⎜⎝

0.59
−0.043 0.025

0.0016 −0.0007 0.00002

⎞
⎟
⎟⎠

2 (quadratic) Intercept 3.70 (0.25)
Type −0.08 (0.26)
Age −0.051 (0.039)
Time −0.081 (0.031)
Time2 0.0025 (0.0011) 0.53

⎛
⎜
⎜⎝

0.60
−0.045 0.024

0.0017 −0.0007 0.00002

⎞
⎟
⎟⎠

3 (cubic) Intercept 3.74 (0.25)
Type −0.060 (0.26)
Age −0.049 (0.039)
Time −0.118 (0.036)
Time2 0.0065 (0.0026) 0.53
Time3 −0.000 11 (0.000 06)

that the patient⋅time3 variance component estimate was becoming negative.
Attempts to confirm this by using the NOBOUND option in the PROC MIXED
statement also failed to obtain convergence. Thus, only random coefficients up
to the quadratic term are considered. However, a fixed cubic effect can still be
included (Model 3):

Fixed effects: type, age, time, time2 and time3,
Random coefficients: patient (intercepts), patient⋅time and patient⋅time2.

The fixed cubic effect was almost significant (p=0.06) when reported in the
first edition of this book. The inclusion of the KENWARDROGER option to reduce
standard error bias has increased this to p=0.10. We would usually disregard
the cubic term on this basis, but for consistency with the first edition, it will be
retained.

Tests of interactions with type and age

Interactions were tested between time effects (time, time2 and time3) and cancer
type and found to be non-significant. Therefore, we can be reasonably confident
in assuming that changes in the virus antibody level are similar for the two types
of cancer.
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The age effect was not significant in any model. However, since it is known that
average antibody levels decrease with age, it is important to retain it. Interactions
with age were found to be non-significant, and so we assume that the pattern of
antibody change over time is unrelated to age.

Checking model assumptions

The random coefficients model assumes that the residuals have a normal
distribution and that the random coefficients have a multivariate normal
distribution. We will look at plots of the residuals and random effects for Model 3.

Residuals Residuals are checked by plotting them against their predicted values
and by using a normal plot (Figure 6.5). A plot against time is also used to
determine whether the residual variance varies over time.

These plots show one potential outlying observation with a residual of over
three (patient 67, month 0). On closer examination, it appeared possible that this
was caused by a recording error (the recorded value of 7.22 was well above all
other values for this patient, and it seemed likely that the true value was 1.22). On
removal of this observation and refitting Model 3, the fixed effects results changed
fairly noticeably (Table 6.6). Since a recording error appeared likely, we will base
our conclusions on the analysis with the outlier removed.

Random coefficients The three sets of random coefficients are plotted against
each other to check for any outlying patients (Figure 6.6). These plots indicate
no marked deviation from bivariate normal distributions. However, as for
random effects models (see Section 2.4.6), the plots will not always show up
deviations from normality. The patient time and patient⋅time2 residuals are
highly correlated, as expected from their correlation of −0.98 (calculated from
the covariance parameters by −0.000 709/(0.0236×0.000 0224)1/2).

Plot of predicted virus antibody level

The results become more meaningful when the predicted antibody level is plotted
against time. This is done for Models 2 and 3 with the outlying observation
removed (Figure 6.7). The quadratic model (Model 2) curve is also plotted to
make the conclusions more robust since the cubic coefficient is of dubious
significance.

The curves for the two models differ markedly for higher values of time.
However, only a small proportion of observations was made after 24 months
(5%), and the cubic coefficient will be based largely on these. The models are
therefore only really plausible up to 24 months, for which they are quite similar.
The virus antibody levels decrease most rapidly initially and then flatten. The
divergent curves illustrate how overinterpretation might occur when part of them
is only based on a small amount of data.
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Figure 6.5 Plots of (a) residuals against their predicted values (b) normal plot (c) residuals
against time (months). A=1 obs., B=2 obs., etc.
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Figure 6.5 (Continued)

Table 6.6 Results from Model 3 with and without the outlier.

Model Fixed effects G matrix and residual

⎛
⎜
⎜⎝

0.60
−0.025 0.016

0.0011 −0.0005. 0.00001

⎞
⎟
⎟⎠

3 – (without
outlier)

Intercept 3.75 (0.26)
Type −0.11 (0.26)
Age −0.059 (0.041)
Time −0.097 (0.033)
Time2 0.0055 (0.0024) 0.50
Time3 −0.000 09 (0.000 06)

⎛
⎜
⎜⎝

0.60
−0.045 0.024

0.0017 −0.0007 0.00002

⎞
⎟
⎟⎠

3 Intercept 3.74 (0.25)
Type −0.060 (0.26)
Age −0.049 (0.039)
Time −0.118 (0.036)
Time2 0.0065 (0.0026)
Time3 −0.000 11 (0.000 06) 0.53
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Figure 6.6 Plot of random coefficients: (a) patient coefficients vs. patient⋅time coefficients
(b) patient coefficients vs. patient⋅time2 coefficients (c) patient⋅time coefficients vs.
patient⋅time2 coefficients. A=1 obs., B=2 obs., etc.
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Figure 6.6 (Continued)

Figure 6.7 Predicted virus antibody level vs. time (Models 2 and 3). Curve: – –
cubic; – – – –, quadratic.
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Table 6.7 Results from Model 1 with time centred about its mean of 10 months.

Model Fixed effects G matrix and residual
(

0.44
0.013 0.0042

)
1 Intercept 3.65 (0.24)

Type −0.23 (0.25)
Age −0.046 (0.038)
Time −0.032 (0.014) 0.56

(
1.13

0.056 0.0042

)
1 – with altered time origin Intercept 3.34 (0.27)

Type −0.23 (0.25)
Age −0.046 (0.038)
Time −0.032 (0.014) 0.56

Illustration of invariance to time origin

We pointed out in Section 2.1.4 that the fixed effects and V matrix estimates were
invariant to the origin used for time. We illustrate this property by fitting Model
1 with time centred about its mean of 10 months (i.e. using time= time−10).
Results from this model are shown in Table 6.7.

Thus, the variance parameters connected with the patient random coefficients
(intercepts) and the fixed intercept effect have altered to adjust for the change
in time origin. However, the fixed effects and the other variance parameters are
unaltered. The terms in V= var(y) will also be found to be identical between the
models when calculated for specific values of time.

SAS code and output

Linear random coefficients model (6.6.1)

Variables
patient = patient number,
treat = type of factor VIII,
time = time in years from start of treatment,
cd4_sqrt = square root of CD4 count.

PROC MIXED NOCLPRINT DATA=cd4;
CLASS patient treat;
MODEL cd4_sqrt = treat time treat*time / SOLUTION

DDFM=KENWARDROGER;
RANDOM INT time / SUBJECT=patient TYPE=UN SOLUTION;
TITLE ‘SQUARE ROOT OF CD4 COUNTS OVER TIME’;
TITLE3 ‘RANDOM COEFFICIENTS MODEL’;
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The term INT in the RANDOM statement is a SAS-reserved term for an intercept
effect.

The use of the RANDOM statement to fit patient and patient⋅time effects as
random coefficients is not immediately obvious. Specification of patient as a
SUBJECT effect (SUBJECT = patient) blocks the G matrix by patients and
causes interactions between the effects specified (INT and time) and patient
to be fitted as random coefficients (hence patient and patient⋅time are fitted).
The TYPE = UN option causes the random coefficients specified to have a
multivariate normal distribution (i.e. a general covariance structure). In this
example, the distribution will be bivariate normal as only two random coefficients
are specified.

SQUARE ROOT OF CD4 COUNTS OVER TIME

RANDOM COEFFICIENTS MODEL

Iteration History
Iteration Evaluations -2 Res Log Likelihood Criterion
0 1 30.49214157
1 3 -828.61051673 0.00283032
2 1 -831.97977353 0.00024121
3 1 -832.24370131 0.00000248
4 1 -832.24627574 0.00000000

Convergence criteria met.

Covar iance Parameter Estimates
Cov Parm Subject Estimate
UN(1,1) PATIENT 0.05090
UN(2,1) PATIENT -0.00026
UN(2,2) PATIENT 0.002740
Residual 0.007347

UN(1,1) and UN(2,2) are the variance component estimates for the patient
and patient⋅time random coefficients. UN(2,1) is the covariance between the
random coefficients. Note that the relative sizes of the patient⋅time variance
component cannot be compared directly with the residual because it involves
time. In this analysis, all the variance components are positive. However, in the
situation where a variance component is negative, SAS would not converge
and the variance component estimates output from the final iteration would
usually show that one variance component estimate was becoming very close
to zero.
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Fit Statistics

-2 Res Log Likelihood −832.2
AIC (smaller is better) −824.2
AICC (smaller is better) −824.2
BIC (smaller is better) −813.3

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
3 862.74 <.0001

Solution for Fixed Effects
Standard

Effect treat Estimate Error DF t Value Pr > |t|
Intercept 0.5228 0.02633 112 19.86 <.0001
treat 1 −0.1025 0.04708 112 −2.18 0.0316
treat 2 0 . . 5.55 5.5555
TIME −0.04962 0.007597 103 −6.53 <.0001
TIME*treat 1 0.01583 0.01356 107 1.17 0.2459
TIME*treat 2 0 . . 5.55 5.5555

Solution for Random Effects
Std Err

Effect PATIENT Estimate Pred DF t Value Pr > |t|
Intercept 101 0.1983 0.06494 435 3.05 0.0024
TIME 101 0.008769 0.03049 270 0.29 0.7739
Intercept 102 0.2988 0.05803 506 5.15 <.0001
TIME 102 0.03689 0.02791 336 1.32 0.1872
Intercept 103 0.05650 0.05946 453 0.95 0.3426
TIME 103 0.02604 0.03494 202 0.75 0.4570
Intercept 104 0.2385 0.05872 500 4.06 <.0001
TIME 104 −0.00048 0.02808 331 −0.02 0.9864
etc.

Note that the output immediately above has been generated by the use of the

SOLUTION option in the RANDOM statement. The intercept and time terms do not

give the intercepts and slopes directly. To achieve this, these terms would need to

be added to the relevant fixed effects estimates.

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
treat 1 112 4.74 0.0316
TIME 1 107 37.81 <.0001
TIME*treat 1 107 1.36 0.2459
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Polynomial random coefficients model (6.6.2)

Variables
pat = patient number,
virus = herpes antibody level,
type = illness type: A = acute leukaemia; S = solid lump tumour,
month = time, months since start of treatment,
month2 = month2,
month3 = month3.

SAS code for cubic model selected

PROC MIXED; CLASS type pat;
MODEL virus=age type month month2 month3/ S DDFM=KR;
RANDOM INT month month2/ SUB=pat TYPE=UN;

Iteration History
Iteration Evaluations −2 Res Log Likelihood Criterion
0 1 2062.27052887
1 2 1601.35658286 0.00904154
2 1 1598.68139127 0.00345910
3 1 1597.70596681 0.00073106
4 1 1597.51448892 0.00004682
5 1 1597.50321956 0.00000027
6 1 1597.50315684 0.00000000

Convergence criteria met.

Covariance Parameter Estimates
Cov Parm Subject Estimate
UN(1,1) pat 0.5960
UN(2,1) pat −0.04470
UN(2,2) pat 0.02356
UN(3,1) pat 0.001705
UN(3,2) pat −0.00071
UN(3,3) pat 0.000022
Residual 0.5258

UN(1,1), UN(2,2) and UN(3,3) are the variance component estimates
for the patient, patient⋅time and patient⋅time2 random coefficients. UN(2,1),
UN(3,1) and UN(3,2) are the covariances between the random coefficients.
Note that the relative sizes of the patient⋅time and patient⋅time2 variance compo-
nents cannot be compared directly with other variance components because they
involve time.
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Fit Statistics

−2 Res Log Likelihood 1597.5
AIC (smaller is better) 1611.5
AICC (smaller is better) 1611.7
BIC (smaller is better) 1624.0

Null Model Likelihood Ratio Test

DF Chi−Square Pr > ChiSq
6 464.77 <.0001

Solution for Fixed Effects
Standard

Effect type Estimate Error DF t Value Pr > |t|
Intercept 3.7385 0.2506 50 14.92 <.0001
age −0.04852 0.03947 43.3 −1.23 0.2255
type AL −0.06019 0.2553 43 −0.24 0.8147
type ST 0 . . 51. .8147
month −0.1182 0.03635 39.6 −3.25 0.0023
month2 0.006543 0.002553 123 2.56 0.0116
month3 −0.00011 0.000064 79.5 −1.69 0.0959

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
age 1 43.3 1.51 0.2255
type 1 43 0.06 0.8147
month 1 39.6 10.58 0.0023
month2 1 123 6.57 0.0116
month3 1 79.5 2.84 0.0959

SAS code for other models tested (without output)

PROC MIXED; CLASS type pat;
MODEL virus=age type month/ S DDFM=KR;
RANDOM int month/ SUB=pat TYPE=UN;
PROC MIXED; CLASS type pat;
MODEL virus=age type month month2/ S DDFM=KR;
RANDOM int month month2/ SUB=pat TYPE=UN;
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PROC MIXED; CLASS type pat; MODEL virus=age type month month2
month3 type*month type*month2 type*month3/S DDFM=KR;

RANDOM int month month2/ SUB=pat TYPE=UN;

PROC MIXED; CLASS type pat;
MODEL virus=age type month month2 month3 age*month age*month2
age*month3/S DDFM=KR;
RANDOM int month month2/ SUB=pat TYPE=UN;

Model checking using Model 3

PROC MIXED; CLASS type pat;
MODEL virus=age type month month2 month3/ S DDFM=KR

OUTP=resid OUTPM=work.predm;
RANDOM int month month2/ SUB=pat TYPE=UN SOLUTION;
ID pat month;
ODS OUTPUT SOLUTIONR=solut;

PROC PRINT NOOBS DATA=resid; VAR pat month resid pred;
TITLE ’RESIDUALS AND PREDICTED VALUES’;

PROC PLOT DATA=resid; PLOT resid*pred;
TITLE ’RESIDUALS AGAINST THEIR PREDICTED VALUES’;
PROC PLOT DATA=resid; PLOT resid*month;
TITLE ’RESIDUALS AGAINST TIME (MONTHS)’;
PROC RANK DATA=resid OUT=norm NORMAL=TUKEY;

VAR resid; RANKS s_resid;
PROC PLOT DATA=norm; PLOT resid*s_resid;
TITLE ’RESIDUALS - NORMAL PLOT’;

DATA solut; SET solut;
patx=pat*1; * obtain numeric patient variable;
DROP pat;

DATA p_resid(KEEP=pat p_resid) pt_resid(KEEP=pat pt_resid)
pt2_resi(KEEP=pat pt2_resi); SET solut;
pat=patx;

IF effect=’Intercept’ THEN DO;
p_resid=Estimate;
OUTPUT p_resid;
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END;
ELSE IF effect=’month2’ THEN DO;

pt2_resi=Estimate;
OUTPUT pt2_resi;

END;
ELSE DO;

pt_resid=Estimate;
OUTPUT pt_resid;

END;
PROC SORT DATA=predm; BY pat;
PROC MEANS NOPRINT DATA=predm; BY pat;
VAR pred; OUTPUT OUT=predm MEAN=p_pred N=freq;

DATA a; MERGE p_resid pt_resid pt2_resi predm; BY pat;
PROC PRINT NOOBS; VAR pat p_resid pt_resid pt2_resi

p_pred freq;
TITLE ’RANDOM COEFFICIENTS AND PREDICTED VALUES

FOR EACH PATIENT’;
PROC PLOT; PLOT p_resid*pt_resid;
TITLE ’PATIENT COEFFICIENTS VS PATIENT.TIME COEFFICIENTS’;
PROC PLOT; PLOT p_resid*pt2_resi;
TITLE ’PATIENT COEFFICIENTS VS PATIENT.TIME2 COEFFICIENTS’;
PROC PLOT; PLOT pt_resid*pt2_resi;
TITLE ’PATIENT.TIME COEFFICIENTS VS PATIENT.TIME2

COEFFICIENTS’;

This code may not at first sight be straightforward to understand. The steps used
are summarised as follows:

1. Fit Model 3.
2. Use option OUTP to output the residuals (and predicted values given by

X�̂� + Z𝛃 which are not required here) to dataset resid. Use OUTPM to
output the predicted values given by X�̂� to dataset predm. Use ODS OUTPUT
statement to output the random effects estimates to dataset solut. The ID
statement causes the pat and month variables to be included in the datasets
resid and predm.

3. Produce a print and plots of residuals.
4. Create datasets p_resid, pt_resid and pt2_resid containing random

coefficients estimates for the patient and patient⋅time and patient⋅time2 effects,
respectively.

5. Obtain predicted means for each patient (based on the predicted values X�̂�) and
merge these with the datasets of random coefficients.

6. Produce print and plots of the random coefficients.



Brown778258 c06.tex V3 - 11/14/2014 10:16 A.M. Page 285

Examples of random coefficients models 285

RESIDUALS AND PREDICTED VALUES
pat month Resid Pred
3 0.00 1.55766 3.93234
3 0.75 −0.33901 3.80413
3 2.00 −0.25526 3.61185
3 4.00 −0.42664 3.35687
3 7.00 −0.45030 3.08596
3 9.00 −0.13501 2.97222
3 10.00 −0.47612 2.93348
3 11.00 −0.01450 2.90597
3 12.00 −0.04408 2.88904
3 13.00 −0.80454 2.88206
3 16.00 −0.69730 2.91435
3 21.00 0.61393 3.10700
3 22.00 1.33944 3.16056
3 23.00 0.99236 3.21764
3 23.50 0.80270 3.24730
3 24.00 0.52241 3.27759
3 24.25 −0.09292 3.29292
3 26.00 −0.34351 3.40351
3 26.75 −0.53195 3.45195
3 27.00 −0.07820 3.46820
3 28.00 −1.05319 3.53319
5 0.00 0.30924 2.82254
5 0.50 −0.29235 2.78072
ETC

RANDOM COEFFICIENTS AND PREDICTED VALUES FOR EACH PATIENT
pat p−resid pt−resid pt2−resi p−pred freq
3 0.35106 −0.05926 0.002288204 3.07590 21
5 −0.71021 0.03226 −.001866166 3.05075 22
13 0.87930 0.04089 0.000270946 3.06776 32
61 −0.21678 0.11842 −.004333146 3.07713 22
63 0.72495 0.03671 −.000784259 2.82919 20
65 0.70394 −0.09316 0.003276862 2.82020 10
67 0.38619 −0.30506 0.009039204 2.93704 9
69 −0.27759 −0.00126 0.000636630 2.72964 26
71 0.64374 0.16498 −.004001423 2.90710 25
73 −0.13393 −0.05631 0.001523998 3.39389 7
77 1.17548 −0.27558 0.008724335 3.46298 2
79 0.49003 0.04483 −.000441731 3.04050 24

All the residual plots appear in the main text.
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Note that Figure 6.6(a) and Figure 6.6(b) could be achieved in SAS version 9.3
as part of a residual panel by inserting PLOTS=RESIDUAL in the PROC MIXED
statement, but the other graphs cannot be obtained in a simple way.

6.7 Sample size estimation

Sample sizes for repeated measures studies are often calculated as if a simple
between-patient trial with no repeated measurements was planned. However, it
is possible to take into account the correlation that occurs between the repeated
observations in the sample size estimate. This will lead to a smaller sample
size than that calculated for a simple between-patient study. It therefore seems
desirable ethically and on the grounds of cost that correlations within patients
are taken into account. Obviously, the covariance pattern of the data will not
be known in advance, but the assumption of a constant correlation between
patients (compound symmetry pattern) is likely to be adequate. When no previous
estimate of the within-patient correlation is available, a conservative prediction
of the correlation could be used (i.e. a higher correlation than anticipated).

6.7.1 Normal data

To obtain a formula for sample size estimation, we require the variance of the mean
of measurements on individual patients. The variance of the sum of the observa-
tions on any single patient, i, is

var

(
∑

j

yij

)
= mvar(yij) + m(m − 1)cov(yij, yik)

= m𝜎
2 + m(m − 1)𝜌𝜎2

= m𝜎
2[1 + (m − 1)𝜌].

This gives the variance of each patient mean as

var(yi) = 𝜎
2[1 + (m − 1)𝜌]∕m,

where
m= number of repeated measures,

𝜎
2 = between-patient variation (sum of variance parameters when

compound symmetry pattern fitted using PROC MIXED),
𝜌 = correlation between observations on same patient (compound

symmetry variance parameter divided by sum of variance parameters
in PROC MIXED).
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Using the usual sample size estimation equation,

Δ = (z1−𝛼∕2 + z
𝛽
) × SE(ti − tj),

we obtain the number of patients required per group as

n = 2(z1−𝛼∕2 + z
𝛽
)2
𝜎

2[1 + (m − 1)𝜌]∕mΔ2
,

where
𝛼 = significance level,
𝛽 = power,
Δ = difference to be detected,
ti = ith treatment effect.

If a small trial is planned, for example with less than about 10 patients per group,
a more accurate sample size could be obtained by substituting t statistics for the z
statistics (with DF equal to the number of patients minus the number of treatment
groups).

Example

The analysis of the repeated DBP measurements in the hypertension trial using
a compound symmetry covariance pattern model gave a residual variance of
𝜎

2 =76, and the repeated measures had correlation 𝜌=0.53 (see Section 6.3). We
calculate the sample size required for a future study involving four post-treatment
visits required to detect a difference in DBP of 5 mm Hg at the 5% significance
level with 80% power. The number of patients required per treatment group is

n = 2(1.96 + 0.84)2 × 76 × (1 + 3 × 0.53)∕(4 × 25)

= 31.

Had no account been taken of the repeated measurements, then n would have
been

n = 2(z1−𝛼∕2 + z
𝛽
)2
𝜎

2∕Δ2

= 2(1.96 + 0.84)2 × 76∕25

= 48.

If there is flexibility in the number of repeated measurements, then it might be
worth calculating sample sizes for varying numbers of repeated measurements.
For example, if 10 repeated measures were used, then

n = 2(1.96 + 0.84)2 × 76 × (1 + 9 × 0.53)∕(10 × 25)

= 28.

However, this reduction in the number of patients required would be unlikely to
justify the use of six additional repeated measures.
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6.7.2 Binary data

When the variable of primary interest is binary, the sample size formula can be
adapted to incorporate the binomial variance and may be written as

n =
(Z1−𝛼 + Z

𝛽
)2(p1(1 − p1) + p2(1 − p2))(1 + (m − 1)𝜌)

mΔ2
,

where p1 and p2 are the two group proportions, and 𝜌 is the expected correlation
between the repeated observations on individuals.

Alternatively, if each observation is a number of events out of a total rather than
a binary observation, the formula may be written as

n =
(Z1−𝛼 + Z

𝛽
)2(p1(1 − p1) + p2(1 − p2))(𝜙 + N(m − 1)𝜌)

mNΔ2
,

where there is assumed to be a fixed denominator (N) for each observation and
𝜙 is a dispersion parameter specifying any extra-binomial variation between the
observations (see Section 3.1.4).

Example

We will now assume (unrealistically) that the incidence of the adverse event, cold
feet, is the primary endpoint. A doubling in the proportion of cold feet is to be
detected from 0.1 to 0.2, and thus the required difference is 0.1. The study should
have sufficient power to detect a difference at the 5% significance level with 80%
power. An estimate of the correlation between observations on the same patient
is obtained by analysing our example data (Section 3.4) using PROC GENMOD
with a REPEATED statement and a compound symmetry covariance structure.
This model provided a correlation of 0.48. The number of patients required per
treatment group is

n = (1.96 + 0.84)2(0.1 × 0.9 + 0.2 × 0.8)(1 + 3 × 0.48)
4 × 0.12

= 119.6 = 120 (after rounding up).

6.7.3 Categorical data

Sample size estimation is always difficult when the variable of interest is
categorical. If there are more than about five categories, then the formula for con-
tinuous data is likely to provide a reasonable approximation. In other situations,
the best approach might be to partition the categories and use the formula for
binary data.
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Cross-over trials

7.1 Introduction

In earlier chapters, we have considered parallel group designs, where each subject
is randomised to receive one of a number of alternative treatments. In contrast,
in cross-over trials, subjects are randomised to receive different sequences of
treatments, with the outcome being assessed for each treatment period. As before,
we have a choice in analysis between fixed effects models and random effects
models. In this context, we describe the treatment effect as being crossed with a
random effect (subjects).

The vast majority of cross-over trials that are carried out in practice have the
same basic design. Every subject receives each of the treatments being evaluated,
for a standard period of time, with the outcome variables being assessed in
the same way in each period of treatment. The simplest and most commonly
encountered such design employs just two treatments and is often referred to as a
2×2 cross-over trial or as an AB/BA design. The use of this design with normally
distributed data will be covered in some depth in Section 7.3. The use of more
than two treatments with patients receiving every treatment is known as a higher
order complete block design and is covered in Section 7.4. More complicated
designs are considered in Sections 7.5 and 7.6. In Section 7.7, we will show how
covariance pattern models can be employed in the analysis of cross-over trials.
The following two sections (7.8 and 7.9) will give examples of the analysis of
binary data and categorical data in the setting of cross-over trials. Data following
Poisson distributions are not directly covered but follow the same generalised
linear mixed model approach used for binary data. Section 7.10 will consider the
use of information from random effects models in the planning of future studies.
The chapter finishes with a discussion of some general points in relation to the
analysis of cross-over trials (Section 7.11).

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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7.2 Advantages of mixed models in cross-over trials

Random effects models can be expected to give more precise estimates of treatment
effects in situations where it is possible to recover extra information on treatments
from the between-patient error stratum. The most common situation in which this
occurs is where there are missing data, irrespective of the particular cross-over
design used. It also occurs for the unbalanced designs considered in Sections 7.5
and 7.6. In the balanced situations, which we meet with complete block designs,
the results of a fixed effects analysis and a random effects analysis will generally
be identical in the absence of missing data.

A very different application of mixed models to cross-over trials arises from the
covariance pattern approach. By regarding the results in successive treatment
periods as a form of repeated measures data, we can examine various ways to
model the covariance between repeated observations on the same patients. This
can lead to greater flexibility in the interpretation of the data than with conven-
tional analyses, and we examine examples using this approach in Section 7.7.

7.3 The AB/BA cross-over trial

This design employs two treatments (A and B) and two treatment periods.
Patients are randomised to receive either the AB sequence of treatments or the
BA sequence. We met a simplified hypothetical example of such a trial in Section
1.2. At that time, for simplicity of presentation, we assumed that there was no
effect of the period in which treatments were received. However, such an effect is
always possible, and we recommend that such an ‘order’ effect should be included
in the analysis. Our initial example was also restricted to single observations in
each treatment period. In practice, the randomisation to the AB or BA sequence
is often preceded by a run-in period. This approach has the advantage that
patients showing poor compliance can be removed prior to randomisation, and
the stability of the patient’s condition can be assessed. With or without this
run-in period, baseline levels for the outcome variables are usually recorded
prior to randomisation. Following the first treatment period, there is often a
‘washout’ period prior to the commencement of the second treatment, and a
second ‘baseline’ observation may be made. Details of design considerations, and
analytical methods for a fixed effects analysis, are given in Senn (2002).

If all patients complete the trial without any missing values being generated for
the outcome variables, the results of the fixed effects analysis and an analysis in
which patient effects are regarded as random will usually be identical. This arises
because of balance over random effects in the design, as discussed in Section 1.6.
However, note that an exception occurs when the estimate of the patient variance
component is negative and is set to zero. The standard errors of the treatment
differences will then be lower with the random effects model. It is common for
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missing values to occur, usually because of premature patient withdrawal from the
trial. In the fixed effects analysis of such a trial, observations from subjects with a
missing value are not used because all of the information in the single remaining
observation would be needed to estimate the patient effect. When missing values
do occur, and a random effects analysis is performed, the data from subjects with
a single period of observation are utilised in the analysis in conjunction with the
complete observations to improve the efficiency of treatment comparisons relative
to the fixed effects analysis. This benefit was illustrated in Section 1.2 using the
earlier example but with two observations deleted.

More generally, we will now consider a cross-over trial to compare treatments
A and B, with N patients divided equally between the AB and the BA sequence,
following Brown and Kempton (1994). We will also assume that a proportion,
p, of patients only provide data for the first treatment period. On the assumption
that these dropouts are also equally divided between the two treatment sequences,
we will investigate the effect of p and the variance components on the relative
efficiency of the random effects and fixed effects models in estimating treatment
differences. To do this, we will look first at the variance of the estimate of treatment
differences, varW(A−B), obtained from within-patient comparisons. This will give
the variance appropriate to the fixed effects analysis. We will then look at the cor-
responding term from the between-patient comparison, using those patients who
only have an observation in the first treatment period. We will then pool these two
estimates and obtain the variance of the pooled estimate. In this situation, this will
correspond to the results of fitting a random effects model, and we will compare
the variances of the fixed effects and random effects model treatment estimates.

Within-patient comparisons From our definitions, there will be N(1− p)
patients with complete data. If the residual variance is 𝜎2

r , then

varW(A − B) =
2𝜎2

r

N(1 − p)
.

Between-patient comparisons Each treatment sequence will yield Np/2
patients with observations in the first period only. The variance of individual
observations will be the sum of the residual variance 𝜎2

r and the between-patient
component 𝜎2

p . Hence

varB (A − B) =
2(𝜎2

r + 𝜎
2
p )

Np∕2

= 4𝜎2
r (1 + 𝛾)∕Np,

where
𝛾 = 𝜎

2
p ∕𝜎2

r .

Pooled comparisons If we obtain a weighted average of the treatment effect
from the within-patient and between-patient estimates, using weights inversely
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Figure 7.1 Ratio of variances of treatment differences, with and without recovery of
between-patient information.

proportional to the variances, then we have the standard result that

varp(A − B) = 1∕(1∕varW + 1∕varB).

Thus,

1∕varp(A − B) =
N(1 − p)

2𝜎2
r

+
Np

4𝜎2
r (1 + 𝛾)

and

varp(A − B) =
4𝜎2

r (1 + 𝛾)
Np + 2N(1 − p)(1 + 𝛾)

.

Relative efficiency The ratio of the variance of the treatment estimate using
a fixed effects (within-patient) approach, to that using a random effects model
(pooled), is plotted against p, the proportion of missing observations in the second
period, for a range of values of 𝛾 , in Figure 7.1. From this figure, we can see that
the recovery of between-patient information is most beneficial when 𝛾 is small,
that is when the between-patient variance component is small. If the proportion
of missing values is small, the benefit from analysis with a mixed model will be
correspondingly small, although we can expect some reduction in the variance of
the treatment estimate.

7.3.1 Example: AB/BA cross-over design

We illustrate the AB/BA cross-over design with results from an unpublished
study comparing two diuretics in the treatment of mild to moderate heart failure.
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After initial screening for suitability, there was a period of not less than 1 day and
not more than 7 days, where diuretic treatment was withheld. Immediately prior
to randomisation to either the AB sequence of treatment or the BA sequence,
baseline observations were taken. Each treatment period lasted for 5 days, with
an immediate transfer to the second treatment after the first treatment period was
completed. As a washout was not employed between treatments, observations
made in the first 2 days of each treatment period were not utilised in the analysis
of the trial. The primary outcome measures were the frequency of micturition and
the subjective assessment of urgency. As neither of these is suitable for illustrating
the analysis of normally distributed data, we will instead use a secondary effec-
tiveness variable, namely oedema status, together with diastolic blood pressure
(DBP). Oedema status is formed by the sum of the left and right ankle diameters.
The DBP was calculated from the mean of three readings. Both of these variables
are measured prior to randomisation and at the end of each treatment period.

In total, 101 patients were recruited for the study, but seven withdrew prior
to randomisation. Of the remaining 94 patients, only two failed to complete
both treatment periods. Therefore, in order to illustrate the alternative methods
of analysis, we have systematically removed approximately one in five of the
observations from the second period. The structure of the data as analysed is
shown in Table 7.1.

For each of our outcome variables, four analyses have been performed. In all of
them, a treatment effect and a period effect were included as fixed. In two of the
models, the baseline level was also included in the model as a covariate. Whether
or not the baseline is included in the model, separate models are considered with

Table 7.1 Data structure for a cross-over trial comparing two diuretics in patients with
heart failure.

Baseline values
Post-treatment

values

Patient Treatment Period Oedema DBP Oedema DBP

1 B 1 45 60 45 55
1 A 2 45 60 45 60
2 A 1 51 50 48 60
2 B 2 51 50 48 65
3 A 1 53 70 50 70
3 B 2 53 70 52 80
4 B 1 49 68 47 60
4 A 2 49 68 47 60
5 A 1 46 65 45 60
6 A 1 61 95 60 95
6 B 2 61 95 59 97
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Table 7.2 Analysis of cross-over trial of diuretics in heart failure.

Model Fixed effects Random effects

1 Treatment, period, patient –
2 Treatment, period Patient
3 Treatment, period, patient, baseline –
4 Treatment, period, baseline Patient

Treatment effect:
A–B (SE)

Model Oedema DBP

1 0.304 (0.120) 0.812 (0.775)
2 0.301 (0.120) 0.926 (0.765)
3 0.304 (0.120) 0.812 (0.775)
4 0.309 (0.118) 1.013 (0.748)

Variance components
(SE)

Model Patient Residual Patient Residual

1 – 0.530 – 22.19
2 66.825 0.530 76.77 22.25
3 – 0.530 – 22.19
4 3.763 0.526 25.60 21.91

the patient effect being fitted either as random or as fixed. The results of the models
are summarised in Table 7.2.

Examination of the variance component terms shows that for all models the
patient term is larger than the residual term. This indicates that there may have
been substantial benefits from employing a cross-over design rather than a parallel
group design. We note that this is particularly striking for oedema status. Note also
the effect of including the baseline as a covariate in the analysis. This has the effect
of reducing the size of the patient variance component term in Model 4. The impli-
cations of this are that the benefits of the cross-over are somewhat reduced when a
(highly correlated) baseline covariate is available and, conversely, that the use of a
mixed model is likely to be most helpful in these circumstances if there are missing
values.

We see this in the estimates of the treatment standard errors. Comparison of
Models 1 and 2 for the oedema status shows that the standard errors are identical
(to the number of digits reported), indicating that the between-subject variation is
so large that recovery of between-subject information is ineffective. With inclusion
of the baseline level as a covariate, we see that Model 3 gives the same result as
Model 1. This result is well known, showing that a single baseline has no effect on a



Brown778258 c07.tex V3 - 11/14/2014 10:16 A.M. Page 295

The AB/BA cross-over trial 295

fixed effects analysis. It does, however, produce a small reduction in the treatment
standard error when a mixed model is fitted, showing that some between-subject
information has been utilised.

The results for DBP show the recovery of between-subject information more
clearly because of the relatively smaller between-subject variation. We see a
detectable reduction in the treatment standard error, even when baselines are
not used, and with the inclusion of baselines, a reduction of about 4% in the
standard error is seen with the mixed models approach. This gain is modest but
worthwhile.

The greatest advantage of the mixed models approach will unfortunately be
gained in situations where a cross-over trial shows little benefit over a parallel
group study, that is where the between-subject variance component is small
relative to the residual variance component.

Such a situation occurs in a trial reported by Jones and Kenward (1989). In this
two-period, cross-over trial, an oral mouthwash was compared with a placebo
mouthwash. There were two 6-week treatment periods, with a 3-week washout
period separating them. The outcome variable reported was the average plaque
score per tooth, with each tooth being assessed on an integer scale from zero to
three. Results were presented for the 34 patients with data from both treatment
periods. Interestingly, these data arose from a trial in which 41 patients were
randomised, and 38 completed the trial. For the purposes of this illustration, we
have deleted the second observation from five randomly selected patients from the
34 with complete data.

Two models were fitted to the data using PROC MIXED. In both, a treatment
effect and a period effect were included as fixed. In one, the patient effect was
fitted as random, and in the other, it was fitted as fixed. The results are shown in
Table 7.3.

Examination of the variance component terms shows that the patient term
is appreciably smaller than the residual term. This indicates that the benefit
of employing a cross-over design rather than a parallel group design may be
small. The estimate of the period effect (not shown) is small, but in accord with
our recommendation in the previous section, we retain it in the model. The
main interest, of course, lies in the estimates of the treatment difference and the
associated standard errors. Both analyses demonstrate a clear advantage to using

Table 7.3 Analysis of oral mouthwash trial.

Fixed
patients

Random
patients

Variance components
Patients – 0.029 (0.018)
Residual 0.069 0.066 (0.017)

Treatment difference (SE) 0.25 (0.069) 0.244 (0.065)
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the active mouthwash. For our purposes in comparing the results of the two
analytical strategies, it is the standard errors that interest us because it is purely
a matter of chance which method gives the larger point estimate of the treatment
effect. We see that the use of the random effects model has reduced the standard
error of the estimate of the treatment difference by about 6%.

SAS code and output

The SAS code to generate analyses for oedema status (Table 7.2) is shown for
Models 3 and 4. Models 1 and 2 differ only in the exclusion of the baseline value
from the model.

PROC MIXED NOCLPRINT; CLASS treat period patient;
TITLE ‘FIXED EFFECT ANALYSIS WITH BASELINE’;
MODEL oed=treat period patient oedbase;
LSMEANS treat /DIFF PDIFF;

PROC MIXED NOCLPRINT; CLASS treat period patient;
TITLE ‘RANDOM EFFECTS ANALYSIS WITH BASELINE’;
MODEL oed=treat period oedbase / DDFM=KENWARDROGER;
RANDOM patient;
LSMEANS treat /DIFF PDIFF;

The output reproduced as follows is from Model 4:

Iteration History
Iteration Evaluations -2 Res Log Criterion

Likelihood
0 1 732.30378010
1 3 620.47659711 0.00104614
2 2 620.32698029 0.00001998
3 1 620.32375614 0.00000001

Convergence criteria met

Covariance Parameter

Estimates
Cov Parm Estimate
patient 3.7632
Residual 0.5260

Fit Statistics
-2 Res Log Likelihood 620.3
AIC (smaller is better) 624.3
AICC (smaller is better) 624.4
BIC (smaller is better) 629.4
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Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
treat 1 75.3 6.79 0.0110
period 1 74.9 4.02 0.0487
oedbase 1 94.1 1433.62 <.0001

Least Squares Means
Effect treat Estimate Standard DF t Value Pr > |t|

Error
treat A 55.3621 0.2170 108 255.09 <.0001
treat B 55.0536 0.2168 107 253.90 <.0001

Differences of Least Squares Means
Effect treat -treat Estimate Standard DF t Value Pr > |t|

Error
treat A B 0.3085 0.1184 75.3 2.61 0.0110

7.4 Higher order complete block designs

In these designs, there are as many treatment periods as there are treatments
to be compared, and each patient receives every treatment. If there are no
missing data, then a conventional least squares analysis fitting treatment, period
and patient effects is fully efficient. Whenever there are missing data, some of
the within-patient treatment comparisons are unavailable for every patient.
Therefore, additional between-patient information can be utilised.

7.4.1 Inclusion of carry-over effects

In any cross-over trial, there is the possibility of carry-over effects. That is, the
results in second or subsequent treatment periods may be influenced by treatment
administered in earlier periods. In the simple two-period, cross-over trial consid-
ered previously, there is no possibility of estimating carry-over. In all of the remain-
ing designs considered, carry-over effects can be estimated, and in our examples,
we will consider results from models that include carry-over. However, we do this
for completeness rather than in the belief that this is good practice, and we return
to this point in Section 7.11.
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7.4.2 Example: four-period, four-treatment cross-over trial

We consider the four-period, four-treatment cross-over trial described by Jones
and Kenward (1989). Three drugs, A, C and D and a placebo B were compared
to assess their effect on cardiac output, measured by the left ventricular ejection
time (LVET). Each treatment was given for one week, with a one-week washout
period between treatments. Observations were made at the end of each treatment
period. Fourteen patients were used in the trial, yielding 56 observations. To
demonstrate the use of the mixed models approach, we have arbitrarily set 13 of
the 56 observations to be missing. The results of four analyses are presented in
Table 7.4, from the combinations of inclusion or exclusion of carry-over effects,
and handling the patient effects as fixed or random.

All pairwise comparisons of the carry-over effects were non-significant and will
not be considered further or the details presented. We see that between-patient
variation is moderate, being about 50% higher than the residual variance

Table 7.4 Estimates of variance components and treatment effects.
Standard errors of estimates appear in brackets.

Fixed
patients

Random
patients

Ignoring carry-over
Variance components

Patients – 2721
Residual 1667 1657

Treatment differences
A−B 77.4 (20.1) 72.5 (19.9)
A−C 36.8 (17.3) 32.8 (17.1)
A−D 77.3 (19.5) 74.6 (19.4)
B−C −40.6 (19.9) −39.7 (19.5)
B−D −0.1 (21.2) 2.1 (21.0)
C−D 40.4 (18.7) 41.8 (18.5)

Including carry-over
Variance components

Patients – 2750
Residual 1840 1831

Treatment differences
A−B 76.0 (22.6) 69.1 (22.2)
A−C 40.5 (20.4) 32.1 (20.0)
A−D 84.9 (22.5) 79.0 (22.3)
B−C −35.4 (23.0) −37.0 (22.4)
B−D 8.9 (25.5) 9.9 (25.0)
C−D 44.3 (23.0) 46.9 (22.5)
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component. The random effects analysis without carry-over effects produces an
average 1% reduction in the standard errors of the paired treatment comparisons
compared with the fixed effects model, a modest but worthwhile gain. Comparing
these estimates with the analyses in which carry-over was also fitted, two points
are clear. Firsly, the standard errors of the mean treatment differences are larger
when carry-over terms are present, irrespective of whether a fixed effects model is
fitted or whether the patient term is regarded as random. Secondly, the reduction
in the standard error of the mean treatment difference by fitting patient effects
as random is larger when carry-over terms are also fitted. This latter result is
general, and we will see more dramatic differences in later examples.

SAS code and output

/*create dummy variables for carryover effects*/
DATA new; carry=treat; SET mydata; RUN;
DATA new; SET new;
IF period eq 1 THEN carry=4;
* setting a carryover value for the first period.

it is arbitrary which treatment is selected.
the choice will only influence the absolute values
of the fixed effect estimates and not the difference
between them;

PROC MIXED; CLASS treat period patient;
TITLE ‘Fixed Effect Analysis Without Carryover’;
MODEL lvet=treat patient period;
LSMEANS treat/DIFF PDIFF;

PROC MIXED; CLASS treat period patient;
TITLE ‘Random Effects Analysis Without Carryover’;
MODEL lvet=treat period/DDFM=KENWARDROGER;
RANDOM patient;
LSMEANS treat/DIFF PDIFF;

PROC MIXED; CLASS treat period patient carry;
TITLE ‘Fixed Effect Analysis Including Carryover’;
MODEL lvet=treat patient period carry;
LSMEANS treat carry/DIFF PDIFF;

PROC MIXED; CLASS treat period patient carry;
TITLE ‘Random Effects Analysis Including Carryover’;
MODEL lvet=treat period carry/DDFM=KENWARDROGER;
RANDOM patient;
LSMEANS treat carry/DIFF PDIFF;
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The following output is that generated by the last PROC MIXED procedure.

Random Effects Analysis Including Carryover

The Mixed Procedure

Model Information
Data Set WORK.NEW
Dependent Variable lvet
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville
Degrees of Freedom Method Kenward-Roger

Class Level Information
Class Levels Values
treat 4 1 2 3 4
period 4 1 2 3 4
patient 14 1 2 3 4 5 6 7 8 9 10 11 12 13

14
carry 4 1 2 3 4

Dimensions
Covariance Parameters 2
Columns in X 13
Columns in Z 14
Subjects 1
Max Obs Per Subject 43

Number of Observations
Number of Observations Read 43
Number of Observations Used 43
Number of Observations Not Used 0

Iteration History
Iteration Evaluations -2 Res Log Likelihood Criterion
0 1 390.90717846
1 2 381.33170184 0.00102427
2 1 381.14250906 0.00008011
3 1 381.12896819 0.00000062
4 1 381.12886806 0.00000000

Convergence criteria met



Brown778258 c07.tex V3 - 11/14/2014 10:16 A.M. Page 301

Higher order complete block designs 301

Covariance Parameter

Estimates
Cov Parm Estimate
patient 2749.71
Residual 1831.47

Fit Statistics
-2 Res Log Likelihood 381.1
AIC (smaller is better) 385.1
AICC (smaller is better) 385.5
BIC (smaller is better) 386.4

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
treat 3 22.3 5.59 0.0052
period 3 21.8 3.90 0.0226
carry 3 23.4 0.15 0.9316

Least Squares Means
Standard

Effect treat carry Estimate Error DF t Value Pr > |t|
treat 1 400.10 20.8116 27.5 19.23 <.0001
treat 2 331.02 23.0808 30.4 14.34 <.0001
treat 3 367.99 20.5018 26.8 17.95 <.0001
treat 4 321.12 21.3633 29 15.03 <.0001
carry 1 356.94 23.1999 31.3 15.39 <.0001
carry 2 364.74 24.3531 31.6 14.98 <.0001
carry 3 350.07 27.5438 33 12.71 <.0001
carry 4 348.48 21.4910 27.5 16.22 <.0001

Differences of Least Squares Means
Standard

Effect treat carry −treat −carry Estimate Error DF t Value
treat 1 2 69.0876 22.1976 22.5 3.11
treat 1 3 32.1188 19.9731 22.3 1.61
treat 1 4 78.9793 22.2691 21.5 3.55
treat 2 3 -36.9688 22.4442 22.6 -1.65
treat 2 4 9.8917 25.0367 22.3 0.40
treat 3 4 46.8605 22.4790 22.8 2.08
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carry 1 2 -7.8017 25.7917 23.6 -0.30
carry 1 3 6.8688 30.4508 24.4 0.23
carry 1 4 8.4543 25.8129 21.7 0.33
carry 2 3 14.6705 28.9287 23.2 0.51
carry 2 4 16.2560 29.1453 23.8 0.56
carry 3 4 1.5855 33.3982 25.4 0.05

Differences of Least Squares Means
Effect treat carry −treat −carry Pr > |t|
treat 1 2 0.0050
treat 1 3 0.1219
treat 1 4 0.0019
treat 2 3 0.1133
treat 2 4 0.6965
treat 3 4 0.0485
carry 1 2 0.7649
carry 1 3 0.8234
carry 1 4 0.7464
carry 2 3 0.6168
carry 2 4 0.5822
carry 3 4 0.9625

7.5 Incomplete block designs

The previous example demonstrated a situation where we have a design that is
intended to be balanced but becomes unbalanced owing to missing observations.
In contrast, we now look at incomplete block designs, where the design in itself
is unbalanced. They are used in situations where, for practical reasons, the
maximum possible number of treatment periods in a cross-over trial is less than
the number of treatments to be evaluated, so complete balance is impossible. It
is an area we will look at again in Section 8.18. The principal reason for this
constraint on the number of treatment periods will usually be the duration for
which any patient is in the trial. Some treatments require to be assessed over a
period of several weeks, in order for there to be sufficient time for a ‘steady-state’
response to be reached, and so the length of individual treatment periods in the
trial can be considerable. In these circumstances, it is not feasible to have multiple
treatment periods because of the following reasons.

• The chance that a patient will withdraw before completing the trial protocol
increases with the required time in the trial.

• In the programme of testing of a new treatment, excessively long studies will
delay drug registration.
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• Ethical considerations require that trial participation should not place an
excessive burden on the patient.

It is readily seen that fitting a model with fixed patient effects to such a design will
be inefficient because it does not allow us to use between-patient information in
our treatment comparisons. To demonstrate this, consider a two-period cross-over
trial with three treatments, A, B and C. Direct information on the comparison
of treatments A and B is given from the within-patient differences in patients
receiving both of these treatments. However, taking the random effects approach
to modelling patient effects, we can see additionally that the distribution of the
sum of the responses in patients receiving treatments A and C, and in those
receiving B and C, also yields comparative information about treatments A
and B. Thus, the random effects approach allows recovery of between-subject
information. Although these designs cannot be completely balanced, they can be
partially balanced by ensuring that all possible treatment sequences are used with
equal frequency. As long ago as 1940, Yates described a method for recovering
between-block information (the patient is the block in cross-over designs) for
balanced incomplete block designs, but the benefits of applying this in cross-over
studies have not been widely recognised until recently.

7.5.1 Example: Three treatment two-period cross-over trial

Mead (1988) gives results of a two-period cross-over trial to compare three
analgesic drugs labelled A, B and C. The trial involved 43 patients in total, and the
numbers receiving each treatment combination were as follows: AB 7; BA 5; AC
7; CA 8; BC 8; CB 8. This design is sometimes referred to as ‘Koch’s design’. The
effectiveness of each treatment was assessed by the numbers of hours of pain relief
provided. The design did not include a washout period between treatments, and so
there was a strong possibility of carry-over effects. The model fitted was as follows:

Response = overall mean + patient effect + period effect + treatment effect

+ carry-over effect + random error.

Period, treatment and carry-over effects were taken as fixed. Analyses were
carried out with patient effects specified first as fixed in a conventional least
squares analysis and then as random in a mixed models analysis.

The estimated variance components and treatments effects are shown in
Table 7.5, first omitting and then including carry-over effects. Comparison of
the two analyses omitting carry-over effects shows that the average standard
error for treatment differences from the combined analysis with recovery of
between-patient information is on average 12% less than for the within-patient
analysis. The comparison A−B, which has the largest standard error, shows
the greatest increase in precision, so that the combined analysis also leads



Brown778258 c07.tex V3 - 11/14/2014 10:16 A.M. Page 304

304 Cross-over trials

Table 7.5 Estimates of variance components and treatment effects for a
cross-over trial comparing three analgesic drugs. Standard errors of
estimates appear in brackets.

Fixed
patients

Random
patients

Ignoring carry-over
Variance components

Patients – 1.3
Units within patients 10.8 10.7

Treatment effects
A−B 3.4 (1.05) 3.5 (0.91)
A−C 2.0 (0.99) 1.9 (0.88)
B−C −1.4 (0.98) −1.6 (0.87)

Including carry-over
Variance components

Patients – 1.3
Units within patients 11.3 10.9

Treatment effects
A−B 3.7 (2.01) 3.8 (0.99)
A−C 2.6 (2.14) 1.9 (0.99)
B−C −1.1 (2.08) −1.9 (0.99)

Carry-over effects
A−B 0.4 (3.43) 1.0 (1.45)
A−C 1.1 (3.66) 0.2 (1.41)
B−C 0.7 (3.72) −0.8 (1.46)

to treatment estimates with a smaller range of standard errors. For this trial,
the between-patient component of variance is relatively small, and recovery of
between-patient information is clearly worthwhile.

Although the estimated carry-over effects are generally small relative to their
standard errors, the results from this model could be preferred on the basis of the
trial design and the absolute magnitude of the estimated carry-over effects. With
this model, we see that the magnitudes of the standard errors of the treatment
effects using a mixed model are only half of those obtained from the fixed effects
model. The standard errors of the carry-over effects show an even greater
separation. Using the mixed models approach, the penalty in fitting carry-over
terms is an increase of just over 10% in the standard errors of the treatment
differences.

For this trial, the between-patient variance component is small compared with
the within-patient component (𝛾 =0.12), suggesting that there is little advantage
in using a cross-over trial for testing these analgesics, even if carry-over effects
can be avoided. Indeed, the predicted average standard error for treatment
comparisons for a parallel group trial with the same number of patient sessions
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per treatment is 0.92, compared with 0.89 and 0.99 for the cross-over analysis
ignoring and including carry-over effects, respectively.

SAS code and output

This is similar to that of the earlier examples and is omitted.

7.6 Optimal designs

There has been substantial research into cross-over designs in which estimates
of treatment effects and carry-over effects are both of interest. As indicated
earlier in this chapter, we would question whether such an approach is likely
to be desirable in clinical trials, though it may prove useful in applications in
agriculture. However, for various combinations of numbers of treatments, and
numbers of treatment periods, the so-called optimal designs have been derived.
They satisfy the property of giving uniformly most powerful unbiased estimates
of treatment and carry-over effects.

One particular optimal design has been used in practice and arguably has a
stronger justification for its use than the other optimal designs. This is Balaam’s
design for the situation of two treatments and two treatment periods. Of course,
the most common design for this situation is not Balaam’s design but the simple
AB/BA design. However, its critics would argue that a weakness is its inability to
estimate carry-over effects and simultaneously use data from the second period in
estimating treatment effects. Balaam’s design resolves the problem by employing
all four possible treatment sequences – AA, BB, AB and BA.

7.6.1 Example: Balaam’s design

This is a well-known example initially described by Hunter et al. (1970). The
aim was to determine the effect of amantadine (treatment A) on subjects with
Parkinsonism. The trial was placebo controlled (treatment B). After a run-in
period of 1 week during which baseline information was recorded, there were two
4-weekly treatment periods, without a washout period. Weekly scores (0–4) were
recorded for each of 11 physical signs, and the data presented in Table 7.6 give
the weekly average total scores in each treatment period. Seventeen patients were
randomised, and the data have no missing values.

Table 7.7 presents the results of analyses with and without inclusion of a
carry-over term and with patient effects fitted as fixed or random.

An immediate point to note from the two mixed models is the very high
patient variance component compared with the residual variance component
(Table 7.8). This immediately suggests that little gain in efficiency will accrue
from between-patient information. This is confirmed by comparison of the
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Table 7.6 Average scores for amantadine trial.

Group Subject Baseline Period 1 Period 2

1AA 1 14 12.50 14.00
2 27 24.25 22.50
3 19 17.25 16.25
4 30 28.25 29.75

Mean 22.50 20.56 20.63
2BB 1 21 20.00 19.51

2 11 10.50 10.00
3 20 19.50 20.75
4 25 22.50 23.50

Mean 19.25 18.13 18.44
3AB 1 9 8.75 8.75

2 12 10.50 9.75
3 17 15.00 18.50
4 21 21.00 21.50

Mean 14.75 13.81 14.63
4BA 1 23 22.00 18.00

2 15 15.00 13.00
3 13 14.00 13.75
4 24 22.75 21.50
5 18 17.75 16.75

Mean 18.60 18.30 16.60

Table 7.7 Estimates of variance components and treatment effects. Standard
errors of estimates appear in brackets.

Fixed
patients

Random
patients

Ignoring carry-over
Variance components

Patients – 30.3
Residual (within patients) 1.05 1.1

Treatment difference 1.29 (0.49) 1.24 (0.48)

Including carry-over
Variance components

Patients – 30.5
Residual (within patients) 1.12 1.1

Treatment difference 1.42 (0.73) 1.28 (0.70)
Carry-over difference 0.25 (1.06) 0.10 (0.92)
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treatment standard errors, where even in the model in which carry-over is fitted,
the reduction is only 4%. In most situations, where the between-patient variation
is less extreme, the existence of the AA and BB treatment groups would lead us to
expect greater benefits from the mixed models approach.

In this study, there is no evidence of any carry-over effect, and most statisticians
would choose to report the model that excludes carry-over. However, having
chosen a design for its optimal properties in estimating both treatment and
carry-over effects, there is a strong case for reporting the fuller model.

The presentation in this example has been restricted to the analysis of the results
in the two treatment periods, and the fact that baseline observations were also
recorded has been ignored. Jones and Kenward (1989) present additional analyses
utilising this baseline data, and, in particular, use interactions with the baseline
to test for an effect of the baseline level on the treatment effect, period effect and
carry-over effect. Although none of these terms was statistically significant at the
10% level of significance, they found indications that the treatment differences
were higher with greater baseline levels. These authors also handled carry-over
in a more involved way than we have employed in our analyses. They allowed for
the possibility that carry-over would be different in those on the AA or BB sequence
from those on the AB or BA sequence, but this term in the analysis of variance was
clearly non-significant.

The conclusions from the trial will, in this instance, be qualitatively similar
whichever of the previously described analytical methods is used, as long as
carry-over is ignored in estimating treatment effects. Amantadine produces
a reduction in the physical signs of Parkinson’s disease, which is statistically
significant at the 5% level. Note, however, that inclusion of carry-over terms in
the model produces a substantial increase in the standard error of the treatment
effect, leading to non-significance of the treatment effect.

SAS code and output

TheSAS code and the structure of the output are almost identical to that presented
at the end of Section 7.4, except that two treatments are used instead of four. The
key results are tabulated in Table 7.7.

7.7 Covariance pattern models

In the examples considered so far in this chapter, the mixed models approach has
fitted the patient effects as random. As we have seen earlier, this implies that the
observations within one patient are all assumed to have the same correlation and
variance. However, it could be argued that in trials with three or more periods,
the correlation may vary with different pairs of periods. In particular, periods that
were closer together might be expected to show higher correlations. In this section,
we explore the situation where the covariance patterns used are ‘structured’.
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7.7.1 Structured by period

This is perhaps the most obvious way to structure the residual covariance matrix.
We have already mentioned the possibility that periods close together in time
might have a higher correlation than those far apart in time. In addition, it is
possible that the residual variance may itself change over successive periods. For
example, in early periods of the trial, while the protocol is unfamiliar to patients,
the observations may be more variable than in later periods. We have already
seen that SAS offers a wide choice of covariance patterns, and so a strategy for
investigating alternatives is preferable to a blunderbuss approach of examining
the full range available. A comparison of the compound symmetry structure
(equivalent to simply fitting patient effects as random) and the general covariance
matrix will usually be helpful in determining whether use of a more complicated
covariance structure is likely to be useful. We will explore this further in the
forthcoming example.

7.7.2 Structured by treatment

Although structuring by period is the most obvious way of introducing structure,
this can also be applied to treatments. In parallel group trials, we have already
met situations where we might wish to fit separate variances for each of the
treatment groups. There is an exact analogy in the cross-over situation, where
the variances may differ for some of the treatments. In addition, there may be
good reason to suspect that the results from certain pairs of treatments may be
more highly correlated than others if they have a similar mode of action. Thus, a
more complicated structure for treatments than the simple compound symmetry
may be highly plausible. This type of approach has been found to be particularly
useful in the analysis of bioequivalence trials where treatment differences in
reproducibility are highly relevant; examples of its application are available on
the FDA website (www.fda.gov). We also present an example in Section 8.15.

7.7.3 Example: four-way cross-over trial

We will consider the four-way cross-over trial analysed in Section 7.4, which
compared the effects of three drugs A, C and D and a placebo B on blood flow.
This time, no values are set to missing, and therefore the study is more balanced
(across random effects). Each treatment period lasted a week and was followed
by a washout period also lasting a week. An analysis fitting a random effects
model (i.e. a compound symmetry pattern) is compared with analyses fitting
general covariance matrices. The covariance matrix is first structured according
to periods and then according to treatments. Treatment and period effects are

http://www.fda.gov
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fitted as fixed effects in each analysis. In the first instance, we also include a
carry-over effect as an additional fixed effect in the analysis.

Examination of the second model in Table 7.8 shows that data are more variable
in the first period than in other periods. This is a common occurrence in clinical
trials and is one reason why a run-in period is often used. The correlations
between periods indicate a tendency for more widely separated periods to have
lower correlations than those close together. The third model shows a higher
variation for the placebo treatment (B) than for the three active treatments.
Interestingly, the correlations involving treatment D are substantially lower than
the correlation between treatments A, B and C.

Both general covariance models show significant improvements over the com-
pound symmetry model when tested by likelihood ratio tests (𝜒2

8 = 17.0, p=0.03
and 𝜒

2
8 = 21.2, p=0.007) and might therefore be preferred.

A comparison of the three models with respect to the estimates of treatment
differences shows that the estimates vary substantially when treatment C is
involved. The same comment applies when the carry-over effects are compared.

Tests of the null hypothesis of equal treatment effects are all highly significant
whichever model is used. For the compound symmetry model, the p-value is 0.003
compared with 0.005 for each of structuring by period and structuring by treat-
ment.

The tests for equality of carry-over effects are more dependent on the choice of
model, though none is statistically significant at conventional levels. The three
models yield p-values of 0.54, 0.35 and 0.19.

All three models would therefore produce similar overall conclusions with
respect to the presence of significant treatment differences without evidence of
carry-over. Every model estimates the greatest levels of LVET with treatment A,
followed by treatments C, B and D. The conclusions in respect of particular pairs
of treatments would depend, however, on the model selected. On the basis of the
likelihoods, the model employing structuring by treatment might be preferred,
leading to a conclusion of similar higher levels of LVET for treatments A and
C, with treatments B and D at similar lower levels. One would also conclude
that results with treatment D were only weakly correlated with results on other
treatments, which in turn are quite highly correlated.

In view of the absence of any significant carry-over in any of the models, it
would seem reasonable to go on to consider models in which carry-over is omitted.
We would advocate this even if the above model had demonstrated significant
carry-over for reasons that are elaborated upon in Section 7.11. We note for
the moment that this trial used reasonable washout periods, making physical
carry-over of drugs unlikely, and that even if carry-over does occur, the simple
carry-over model used may be inappropriate.

The use of the same three covariance structures as before, but without
carry-over in the model, is summarised in Table 7.9. Many of the comments
made on the previous models still apply. The patterns of covariances are similar,
and structuring by period or by treatment produces a significant increase in the
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likelihoods compared with the compound symmetry pattern. All of the models
give similar estimates of the treatment differences, which do not involve treatment
C. The estimates involving treatment C are similar for the compound symmetry
model and for the structured-by-treatment model but are substantially different
with structuring by period. In view of the highest likelihood being obtained when
structuring by treatment and the consistency of the estimates when compared
with the compound symmetry model, this model might be tentatively accepted.

As noted in the corresponding model when carry-over was included, the
correlations involving treatment D are relatively low. This treatment is also the
one producing the lowest measurements. This may therefore increase further the
plausibility of this model, suggesting as it does a different but less effective form
of action.

All of the above results have been obtained using the Kenward–Roger option
to correct for the fixed effects standard error bias. In many situations, this bias
has been small in comparison with the use of the Satterthwaite option, but in this
example, it is occasionally large. In the models in which we structure by periods,
the standard errors of the treatment differences are over 30% larger using the
Kenward–Roger option. In some other models, the influence is marginal. Further
details can be obtained by comparison with the corresponding table in the first
edition of this book for which the Kenward–Roger option was unavailable.
We believe that use of the Kenward–Roger option is the correct approach,
and there is indirect support for this view by consideration of the standard
errors across the different models. Their variation is relatively small, and this
compares with the substantial variation seen with other approaches. In the
first edition, we also reported the ‘empirical’ standard errors (see Section 2.4.3)
and raised questions of their validity in this context. For all but one of the 18
treatment comparisons in Table 7.9, the empirical standard errors are less than
the Kenward–Roger standard error, and sometimes the inconsistency is gross.
For example, the empirical standard error of C−D in the structured-by-period
model is only 4.6 compared with 11.2 for the model-based standard error and
14.8 for the Kenward–Roger standard error. We therefore see no place for the
use of unadjusted empirical standard errors with normally distributed, repeated
measures data in relatively small datasets. The role of empirical standard errors
with non-normal data and the adequacy of the corrections to the empirical
standard errors available in PROC GLIMMIX are still an under-researched area.

Returning to the consideration of our findings in Tables 7.8 and 7.9, we believe
that there is a case for basing our inferences on the model without carry-over,
with the covariances being structured by treatment. Choosing the model from
which to present findings is not always straightforward, however. Decisions con-
cerning the inclusion of carry-over terms may be based primarily on how the trial
was designed and, in particular, on the adequacy of washout periods. The choice
between different covariance pattern models may be influenced by consideration
of the likelihoods. However, statistical tests need not be the only factor determining
model choice. The validity of the assumptions relating to a model is also important.
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For example, if we believe that periods and treatments are unlikely to have varying
correlations based on past experience or if the trial is too small to give precise
covariance estimates, then a compound symmetry structure possibly may be the
one of choice.

It will always be a cause for concern when different models give qualitatively
different conclusions, and this is always a greater danger when the data are
relatively sparse. The different conclusions that were reached with different
models and different approaches to the calculation of standard errors that we
reported previously have, however, been resolved with the correction of the fixed
effects standard error bias using the Kenward–Roger method.

This example makes the point that treating a multi-period, cross-over trial as
repeated measures data with a covariance pattern that is structured by treatment
provides an additional approach to analysis, which can be informative. For
analyses that are conducted in the pharmaceutical industry for drug registration
purposes, the requirement to specify the analysis plan in the trial protocol may
be restrictive. This is likely to cause the compound symmetry model to be the
one of choice for a primary analysis. It should be acceptable, though, to specify a
secondary analysis that is structured by treatment, so that the interrelationships
of responses to different treatments can be explored.

SAS code and output

The following code uses the same variable names specified at the end of Section
7.4. The code is given as follows initially for the compound symmetry model, with
inclusion of carry-over effects.

PROC MIXED; CLASS treat period patient carry;
TITLE ‘COMPOUND SYMMETRY’;
MODEL lvet=treat period carry/ DDFM=KENWARDROGER;
REPEATED period/ SUBJECT=patient TYPE=CS RCORR;
LSMEANS treat carry/DIFF PDIFF;

The code for the other covariance pattern models is identical except for the
REPEATED statement.

TITLE ‘STRUCTURED BY PERIOD’;
REPEATED period/ SUBJECT=patient TYPE=UN RCORR;

TITLE ‘STRUCTURED BY TREATMENT’;
REPEATED treat/ SUBJECT=patient TYPE=UN RCORR;

The changes to remove carry-over effects are obvious. The following output is
for the example where structuring by treatment is employed.
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STRUCTURED BY TREATMENT

The Mixed Procedure

Model Information
Data Set WORK.NEW
Dependent Variable lvet
Covariance Structure Unstructured
Subject Effect patient
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville
Degrees of Freedom Method Kenward-Roger

Class Level Information
Class Levels Values
treat 4 1 2 3 4
period 4 1 2 3 4
patient 14 1 2 3 4 5 6 7 8 9 10 11 12 13

14
carry 4 1 2 3 4

Dimensions
Covariance Parameters 10
Columns in X 13
Columns in Z 0
Subjects 14
Max Obs Per Subject 4

Number of Observations
Number of Observations Read 56
Number of Observations Used 56
Number of Observations Not Used 0

Iteration History
Iteration Evaluations -2 Res Log Likelihood Criterion

0 1 531.19328518
1 2 508.00614950 0.02010791
2 1 502.46576070 0.01043261
3 1 499.65259977 0.00468615
4 1 498.42652859 0.00154375
5 1 498.03992412 0.00028985
6 1 497.97162927 0.00002064
7 1 497.96709658 0.00000023
8 1 497.96704876 0.00000000

Convergence criteria met
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Estimated R Correlation Matrix

for patient 1
Row Col1 Col2 Col3 Col4

1 1.0000 0.6367 0.8333 0.09861
2 0.6367 1.0000 0.8184 -0.09949
3 0.8333 0.8184 1.0000 0.1628
4 0.09861 -0.09949 0.1628 1.0000

Covariance

Parameter Estimates
Cov Parm Subject Estimate
UN(1,1) patient 1681.02
UN(2,1) patient 322.45
UN(2,2) patient 6360.25
UN(3,1) patient 390.80
UN(3,2) patient 3891.90
UN(3,3) patient 3429.52
UN(4,1) patient -205.26
UN(4,2) patient 2555.15
UN(4,3) patient 2411.65
UN(4,4) patient 2531.98

Fit Statistics
-2 Res Log Likelihood 498.0
AIC (smaller is better) 518.0
AICC (smaller is better) 524.3
BIC (smaller is better) 524.4

Null Model Likelihood

Ratio Test
DF Chi-Square Pr > ChiSq
9 33.23 0.0001

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
treat 3 10.3 7.75 0.0054
period 3 11 8.91 0.0028
carry 3 14.1 1.82 0.1890
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Least Squares Means
Standard

Effect treat carry Estimate Error DF t Value Pr > |t|
treat 1 388.46 11.5910 13.4 33.51 <.0001
treat 2 344.64 21.7665 12.8 15.83 <.0001
treat 3 380.15 17.9227 16.2 21.21 <.0001
treat 4 322.10 13.9013 10.8 23.17 <.0001
carry 1 338.38 16.3402 21.4 20.71 <.0001
carry 2 361.92 18.4008 23.7 19.67 <.0001
carry 3 392.39 21.0386 33.6 18.65 <.0001
carry 4 342.66 15.5753 19.2 22.00 <.0001

Differences of Least Squares Means
Standard

Effect treat carry -treat -carry Estimate Error DF t Value
treat 1 2 43.8265 23.5349 12.4 1.86
treat 1 3 8.3143 19.2337 12.1 0.43
treat 1 4 66.3686 18.8818 9.8 3.51
treat 2 3 -35.5123 14.4029 13.3 -2.47
treat 2 4 22.5421 18.1408 14.1 1.24
treat 3 4 58.0543 13.2261 15.3 4.39
carry 1 2 -23.5450 18.7010 17 -1.26
carry 1 3 -54.0162 22.6449 17.6 -2.39
carry 1 4 -4.2811 16.4810 7.98 -0.26
carry 2 3 -30.4712 21.5069 17 -1.42
carry 2 4 19.2639 21.4383 11.6 0.90
carry 3 4 49.7351 24.6643 30.2 2.02

Differences of Least Squares Means
Effect treat carry -treat -carry Pr > |t|
treat 1 2 0.0864
treat 1 3 0.6731
treat 1 4 0.0058
treat 2 3 0.0280
treat 2 4 0.2343
treat 3 4 0.0005
carry 1 2 0.2250
carry 1 3 0.0286
carry 1 4 0.8016
carry 2 3 0.1747
carry 2 4 0.3871
carry 3 4 0.0527
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7.8 Analysis of binary data

The earlier sections in this chapter have considered trials where the response
variable was assumed to be normally distributed. Although these types of data
are almost certainly the most common, binary data are by no means unusual.
We have seen in Chapter 3 how the mixed models approach can be extended
from normally distributed data to binary data using generalised linear mixed
models. The approach described in that chapter can be used for any of the designs
considered earlier in this chapter, but we will restrict ourselves to examining the
simplest, and probably most common, cross-over design: the AB/BA design.

We utilise an example presented by Jones and Kenward (1989), with deletion
of some observations in the second treatment period. The sample comes from
safety data from a trial on cerebrovascular insufficiency. The response variable
was whether an electrocardiogram was assessed by a cardiologist to be normal
(1) or abnormal (0). The modified data are presented in Table 7.10.

In a fixed effects analysis, those subjects with a missing observation do not
contribute to the evaluation of treatment effects. Testing the null hypothesis of
no treatment difference can be performed most powerfully using Prescott’s test
(Prescott, 1981). This requires reorganisation of the data in Table 7.10 to the
form in Table 7.11 where the rows can be thought of as representing a ‘change
score’ from period 1 to period 2, with values –1, 0 or 1.

Values of this change score are then compared between the treatment sequence
groups. This is undertaken most appropriately using an exact trend test (which is

Table 7.10 Data from an AB/BA trial on cerebrovascular deficiency. Outcomes 0 and 1
correspond to abnormal and normal ECG readings with deleted observations denoted by •.

Outcomes

Sequence (0, 0) (0, 1) (0, •) (1, 0) (1, 1) (1, •) Total

AB 11 1 2 6 27 3 50
BA 12 5 2 5 23 3 50
Total 23 6 4 11 50 6 100

Table 7.11 Data from Table 7.10 reorganised in form for the
application of Prescott’s test.

Change score

Sequence −1 0 1 Total

AB 1 38 6 45
BA 5 35 5 45
Total 6 73 11 90
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equivalent to a permutation t test). Within SAS, this can be achieved using an
EXACT option within PROC FREQ. It yields a p-value of 0.33 (the corresponding
asymptotic test gives p=0.22).

A problem with this approach is that it is based purely on significance testing.
It does not yield an estimate of the magnitude of the treatment effect. The use
of a mixed model allows us to both recover the between-patient information and
obtain meaningful estimates of the magnitude of the treatment effect.

As discussed in Sections 3.2.3 and 3.3.2, problems caused by uniform random
effects categories are likely to arise if patients are fitted as random, since there
are only two observations per patient. This can be avoided by using instead a
covariance pattern model with a compound symmetry structure. The SAS code
and most relevant parts of the output are presented at the end of this section.

The correlation parameter estimate is 0.59 and indicates that observations on
the same patient are quite strongly correlated.

The estimate of the period effect (0.19) is similar to its standard error (0.20) and
is therefore clearly non-significant. It is not negligible, however, and we repeat our
recommendation that the period effect should always be included in the model.

The treatment estimate of −0.32 with 95% confidence limits from −0.71 to
0.07 corresponds to the estimate on the logistic scale. By exponentiating these
figures, we obtain a point estimate and 95% confidence intervals for the odds ratio
(i.e. a ratio of proportion normal to proportion abnormal in the two treatment
groups). This gives an estimated odds ratio of 0.73, with 95% confidence limits
of 0.49–1.07.

Note that this confidence interval was obtained using the MODELSE option in
PROC GENMOD to give the model-based variance estimator. The default given is
the empirical variance estimator. If empirical variance estimators are used, the
95% confidence interval is slightly narrower, but only the third decimal place is
affected (these results obtained from Version 9 of SAS differ slightly from those
in the first edition of this book, based on Version 6. The previous computational
method can be used by specifying V6CORR as an option in the REPEATED
statement.)

Although we should not be unduly influenced by single examples, we note
that the significance level obtained for the treatment effect in this analysis
was p=0.10 using the empirical variance estimator and p=0.11 with the
model-based variance estimator compared with p=0.33 for Prescott’s test. The
ability of the model to recover information from patients with incomplete data,
together with its capacity to provide meaningful estimates of treatment effects,
should make it the preferred option. This latter feature means that it may also be
preferred when data are complete. When data are complete, treatment estimates
can also be obtained via a bivariate logistic model proposed by Jones and Kenward
(1989). They differ, however, from those provided by the mixed models approach.
The odds ratio that they produce is conditional on different responses being
observed in the two treatment periods. Thus, they report an odds ratio of 0.0385
on the complete data from which our example was derived. Senn (2002) has also
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suggested a method based on applying ordinal logistic regression techniques to
the data as configured in Table 7.11. This method yields yet another different
estimate of a treatment effect in the form of an odds ratio. Our initial examination
of this method suggests that it is less powerful than the alternatives considered,
and we do not consider it further. The estimate from the mixed model provides,
we believe, a natural, comprehensible estimate and is our recommendation for
all cases where confidence interval estimates are required for the magnitude of
the treatment effect. Note, however, that it is based on asymptotic theory, and the
values from small studies must be regarded as approximate.

SAS code and output

PROC GENMOD;
CLASS treat period patient;
MODEL outcome/one=period treat/ ERROR=B;
REPEATED SUBJECT=patient/ WITHIN=period TYPE=CS MODELSE CORRW;

The GENMOD Procedure

Model Information

Data Set WORK.A

Distribution Binomial

Link Function Logit

Response Variable (Events) outcome

Response Variable (Trials) one

Number of Ob servations Read 200

Number of Observations Used 190

Number of Events 125

Number of Trials 190

Missing Values 10

Class Level Information

Class Levels Values

treat 2 A B

period 2 1 2

patient 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

...
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Parameter Information

Parameter Effect treat period

Prm1 Intercept

Prm2 period 1

Prm3 period 2

Prm4 treat A

Prm5 treat B

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 187 242.0829 1.2946

Scaled Deviance 187 242.0829 1.2946

Pearson Chi-Square 187 189.9881 1.0160

Scaled Pearson X2 187 189.9881 1.0160

Log Likelihood -121.0414

Algorithm converged.

Analysis Of Initial Parameter Estimates
Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq
Intercept 1 0.8128 0.2752 0.2734 1.3522 8.72 0.0031
period 1 1 0.1146 0.3077 -0.4884 0.7177 0.14 0.7095
period 2 0 0.0000 0.0000 0.0000 0.0000 . .
treat A 1 -0.4233 0.3082 -1.0273 0.1808 1.89 0.1696
treat B 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

As in the example considered in Section 6.4, the above output will always be
produced, but it is irrelevant.

GEE Model Information
Correlation Structure Exchangeable
Within-Subject Effect period (2 levels)
Subject Effect patient (100 levels)
Number of Clusters 100
Clusters With Missing Values 10
Correlation Matrix Dimension 2
Maximum Cluster Size 2
Minimum Cluster Size 1

Algorithm converged.
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Working Correlation Matrix
Col1 Col2

Row1 1.0000 0.5851
Row2 0.5851 1.0000

Exchangeable Working

Correlation
Correlation 0.5850903245

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates
Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept 0.6842 0.2484 0.1973 1.1712 2.75 0.0059
period 1 0.1901 0.1976 -0.1972 0.5774 0.96 0.3360
period 2 0.0000 0.0000 0.0000 0.0000 . .
treat A -0.3213 0.1979 -0.7091 0.0665 -1.62 0.1044
treat B 0.0000 0.0000 0.0000 0.0000 . .

Analysis Of GEE Parameter Estimates

Model-Based Standard Error Estimates
Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept 0.6842 0.2418 0.2103 1.1581 2.83 0.0047
period 1 0.1901 0.2001 -0.2020 0.5822 0.95 0.3419
period 2 0.0000 0.0000 0.0000 0.0000 . .
treat A -0.3213 0.2004 -0.7140 0.0715 -1.60 0.1089
treat B 0.0000 0.0000 0.0000 0.0000 . .
Scale 1.0013 . . . . .

NOTE: The scale parameter for GEE estimation was computed as
the square root of the normalized Pearson’s chi-square.

7.9 Analysis of categorical data

Apart from the case of binary data, response variables that are purely categorical,
without an underlying scale, are extremely rare. We will therefore only consider
data on ordinal scales in this section. Variables classified as none, mild, moderate
and severe will arise in a variety of contexts.

To illustrate techniques, we will again take an example from Jones and Kenward
(1989) and delete five observations from the second treatment period. The
example is a placebo-controlled trial of a treatment for primary dysmenorrhoea.
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Table 7.12 Data from an AB/BA trial on a treatment for primary dysmenorrhoea (A:
placebo; B: high-dose analgesic; deleted observations in the second period denoted by •).

Sequence (1, 1) (1, 2) (1, 3) (1, •) (2, 1) (2, 2) (2, 3) (2, •) (3, 1) (3, •) Total

AB 2 3 5 1 1 1 2 1 0 0 16
BA 3 2 0 0 1 0 1 1 4 2 14
Total 5 5 5 1 2 1 3 2 4 2 30

Change score

Sequence −2 −1 0 1 2 Total

AB 5 5 3 1 0 14
BA 0 3 3 1 4 11
Total 5 8 6 2 4 25

Thirty patients entered the trial, and in each treatment period, the amount of
relief obtained was recorded as none or minimal (1), moderate (2) and complete
(3). The data as we analyse them are summarised in Table 7.12.

Taking a fixed effects approach, a test of significance is most readily obtained
using methods based on the analysis of an appropriate contingency table. A simple
but inefficient way of producing such a contingency table would be to categorise
the changes in the outcome variable from the first treatment period to the second
as ‘worse’, ‘no change’ and ‘better’ and to tabulate this variable against the treat-
ment sequence. The significance of the treatment effect could then be determined
from this 3×2 contingency table, as in Prescott’s test. However, this configuration
does not use the information that observations of ‘none’ and ‘complete’ in the
two treatment periods represent a larger difference than between ‘none’ and
‘moderate’ or ‘moderate’ and ‘complete’. If we arbitrarily assign numbers of 1, 2
and 3 to the outcome categories, we can generate a 5×2 contingency table based
on the change scores. The ‘obvious’ approach is to then apply a permutation t
test (test for trend) to this table to assess the significance of the treatment effect.
Application to the change scores presented in Table 7.12 gives p=0.005.

In applying this test, it should be appreciated that the scores of −2, −1, 0,
+1 and +2 are arbitrary. They should not be taken to imply that the difference
between ‘none’ and ‘complete’ is twice as large as the difference between ‘none’
and ‘moderate’ nor that the difference between ‘none’ and ‘moderate’ is the same
as that between ‘moderate’ and ‘complete’. For this reason, some statisticians
may wish to replace the change scores with ranks and apply an (exact) Wilcoxon
rank sum test. The choice will rarely make any practical difference, but it is clearly
good practice to make this choice prior to analysis, rather than reporting the
more favourable result. Note that the situation becomes more complicated when
there are more than three categories for the outcome variable. Analysis could still
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be based on the change scores, but there would be an implicit strong assumption
about the meaning of the intervals between the categories. Without such strong
assumptions, many of the categories of change would be indistinguishable from
each other, and a simplified 5×2 contingency table would result. Such an
example is presented by Senn (2002).

The mixed models approach with random patient effects and fixed period and
treatment effects, based on carrying out ordinal logistic regression, is now avail-
able through PROC GLIMMIX. The patient variance component is, surprisingly for
a cross-over trial, estimated to be negative and therefore set to zero. The coefficient
for the treatment effect, on the logistic scale, is 1.92, with a standard error of 0.57
(p=0.003). On exponentiation, the estimate of the odds ratio is 6.8, with 95%
confidence limits of 2.1 and 22.1. The interpretation of the odds ratio in this situ-
ation is that the estimated odds of being in a favourable outcome category when
treated with the analgesic compared with placebo is 6.8, whether favourable is
defined as complete relief or moderate/complete relief.

SAS code and output

PROC GLIMMIX; CLASS patient period treat;
MODEL outc=period treat/DIST=MULT LINK=CLOGIT SOLUTION OR;
RANDOM patient;

Note that, in this example, if the option DDFM=KR is used in the model
statement, the denominator degrees of freedom erroneously appear as 1.

Number of Observations Read 60
Number of Observations Used 55

Response Profile
Ordered Total
Value outc Frequency
1 0 26
2 1 15
3 2 14

The GLIMMIX procedure is modeling the probabilities
of levels of outc having lower Ordered Values in the
Response Profile table.

Dimensions
G-side Cov. Parameters 1
Columns in X 6
Columns in Z 30
Subjects (Blocks in V) 1
Max Obs per Subject 55
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Optimization Information
Optimization Technique Dual Quasi-Newton
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Starting From Data

Iteration History
Objective Max

Iteration Restarts Subiterations Function Change Gradient
0 0 1 371.01856686 2.00000000 2.187345
1 0 0 386.34874615 0.07614525 1.541061
2 0 0 386.2767642 0.00860819 1.571373
3 0 0 386.30470584 0.00062015 1.571598
4 0 0 386.30608754 0.00005055 1.571655
5 0 0 386.30626243 0.00000363 1.571655
6 0 0 386.30627135 0.00000029 1.571655
7 0 0 386.30627234 0.00000002 1.571655
8 0 0 386.3062724 0.00000000 1.571655

Convergence criterion (PCONV=1.11022E-8) satisfied.

Estimated G matrix is not positive definite.

NOTE: The covariance matrix is the null matrix.

Fit Statistics
-2 Res Log Pseudo-Likelihood 386.31

Covariance Parameter Estimates
Cov Standard
Parm Estimate Error
patient 0 .

Solutions for Fixed Effects
Standard

Effect outc period treat Estimate Error DF t Value Pr > |t|
Intercept 0 -1.3774 0.5041 29 -2.73 0.0106
Intercept 1 0.09043 0.4577 29 0.20 0.8448
period 1 0.4195 0.5359 22 0.78 0.4421
period 2 0 . . . .
treat 0 1.9162 0.5679 22 3.37 0.0027
treat 1 0 . . . .

Odds Ratio Estimates
95% Confidence

Effect period treat -period -treat Estimate DF Limits
period 1 2 1.52 22 0.501 4.62
treat 0 1 6.80 22 2.093 22.06
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Type III Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
period 1 22 0.61 0.4421
treat 1 22 11.39 0.0027

7.10 Use of results from random effects models in trial
design

Once a cross-over trial has been analysed and reported, there is a subsequent
question to consider. What has the present study taught us about the trial design
to be used in future studies of this condition? The factors we will wish to take
into consideration are the sizes of the residual and patient variance components
and the dropout rates at various stages during cross-over. If between-subject
variability is large compared with residual variation, a cross-over design may be
vastly more efficient than a corresponding parallel group study. However, the
analysis of a cross-over trial requires more assumptions than a parallel group
design, and if between-subject variability is relatively small, a parallel group
study may be the design of choice. If a multi-period cross-over trial experiences a
substantial dropout in the later phases of the cross-over or if the required duration
of each treatment is long, then an incomplete block design may be considered.

Of course, the most basic way in which we can use data from one cross-over trial
to plan a succeeding trial is to use the estimate of the residual variance in standard
sample size formulae (see, for example, Senn, 2002). If there has been a sequence
of similar trials, then a weighted average of the estimates of the residual variance
would provide a more robust figure.

The more interesting question is whether a cross-over design should be used at
all. This can usually be assessed satisfactorily by comparing the standard error
of the treatment differences in the cross-over trial with the standard errors that
would be expected from a comparable parallel group study. We reported such
information for the trial described in Section 7.5, and we now consider another
example.

7.10.1 Example

We consider the results from the oral mouthwash trial, summarised in Table 7.3.
The estimate of the patient variance component is 0.029 and that of the resid-
ual variance is 0.066. Thus, the estimated residual variance in a parallel group
trial is 0.095, the sum of these two variance components. The expected standard
error of the treatment difference in a parallel group trial with 34 patients per group
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(giving the comparable number of treatment periods to the cross-over trial) is
√

0.095
34

+ 0.095
34

= 0.075.

This compares with the standard error of 0.065 in the data analysed. To achieve
a similar standard error would require 45 patients in each arm of a parallel group
study. There is therefore a trade-off to be made between the advantages of each
design. The advantages of the parallel group design are as follow:

• 6 weeks in the trial per patient compared with 15 weeks;
• simpler administration;
• simpler analysis; and
• absence of assumptions concerning carry-over.

The advantage of the cross-over design is its greater efficiency:

• 34 patients (68 treatment periods) versus 90 patients.

A deciding factor between the alternatives in examples such as this will often be
the availability of an adequate number of patients for the parallel group study.

7.11 General points

This chapter has demonstrated that random effects models can have advantages
over fixed effects models in the context of cross-over trials. In balanced situations,
with normally distributed data, the results of both analyses will generally be
identical. In unbalanced situations, however, the random effects models will lead
to smaller standard errors of the estimates of treatment differences. If the degree
of imbalance is slight (e.g. few missing observations in a balanced design) and/or
if the patient variance component is large compared with the residual variance
component, this reduction in the size of the standard error will be modest. It
should be remembered, though, that some clinical trials are very expensive to
conduct, and even a small gain in statistical efficiency may be equivalent to the
recruitment of one or two additional costly patients.

It is tempting, therefore, to recommend routine use of the random effects model.
There are situations, however, where the methods may not be sufficiently robust.
This is of particular concern when we are dealing with non-normal data. The
methods are based on asymptotic theory, and we are not aware of sufficient
research to quantify the biases that may occur with small samples. The capability
of the random effects model to summarise treatment effects on binary data in the
form of odds ratios is an attractive feature, but at present, it is perhaps prudent to
exercise caution in its use if sample sizes are fairly small.

In the case of normally distributed data, there is somewhat greater experience,
and the methods may be used with more confidence. In the past, a major source
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of concern was the bias in the standard errors of the fixed effects. This arises from
imprecision in the estimates of the variance components, which is inevitably
greater in relatively small studies. For example, in a cross-over design in Phase I or
Phase II trials where the number of subjects is low, the variance components may
be estimated imprecisely. The ‘standard’ estimates of the fixed effects standard
errors are, however, based on the assumption that the variance components are
known. Whenever a fixed effect is estimated from two (or more) error strata, it
is known that the standard errors are biased downwards to some extent. This
will occur in cross-over designs that are unbalanced by design (Section 7.5) or
because of missing values (Sections 7.3 and 7.4) and in which mixed models
are fitted. The implementation of Kenward and Roger’s method for correcting
the fixed effects standard error bias by inflation of var(�̂�), together with the use
of Satterthwaite degrees of freedom, has meant that mixed models can now be
applied to normally distributed data with much greater confidence, even when
the sample sizes are fairly small. We recommend that within SAS the model
option DDFM=KENWARDROGER (or equivalently DDFM=KR) should be used
routinely.

Several of the examples presented in this chapter have demonstrated that the
benefits of using a random effects model are much more pronounced in models
where carry-over is being estimated. We have already alluded briefly to the fact
that the use of such models may be inadvisable. Senn (2002) has expressed
eloquently the arguments against the inclusion of simple carry-over terms, and
we find them compelling.

Senn summarises the case against adjusting for carry-over as follows:

• The simple carry-over model has been developed without reference to
pharmacological or biological models.

• It does not provide a useful approximation to reality.
• It leads to more complicated estimation procedures that are more difficult to

describe and understand.
• Usually, the adjusted estimators have higher variance than the unadjusted

ones.
• Although the adjusted estimators will be unbiased if simple carry-over applies,

in practice, if carry-over occurs, then they will be biased, and it is perfectly
possible that this bias will be larger than it is for unadjusted estimators.

• The most serious objection, however, is that the use of such approaches
encourages the erroneous belief that the validity of estimates obtained from
cross-over trials does not depend on adequate washout having taken place.

We end this section by highlighting the potential for the use of covariance
pattern models in the analysis of cross-over trials. The nature of the cross-over
with repeated observations on the same subject leads naturally to the consider-
ation of a ‘standard’ repeated measures approach, with the covariance pattern
structured by the visits. The use of this approach to structure by treatment
is perhaps not immediately obvious, but in multi-treatment trials, this may
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well have much to offer, with subsets of similar treatments producing greater
correlations than those with very different modes of action. Experimentation
with such plausible covariance structures can provide a greater insight into the
data. Importantly, the treatment effect estimates and their standard errors will
also be more appropriate if the best covariance structure is modelled. This type of
modelling is becoming more important in the analysis of multi-period cross-over
trials to assess bioequivalence, and this is considered further in Section 8.15.
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Other applications of mixed
models

In this chapter, the use of mixed models in a variety of situations is considered. In
Chapters 5, 6 and 7, we covered three different types of data structure: hierarchi-
cal, repeated measures and crossed. Designs with a combination of these features
can also arise, and some of these are considered in Sections 8.1–8.4. In Section
8.5, the matched case–control study data are considered, and in Section 8.6,
a covariance pattern model is used to allow treatment groups to have different
variances in a simple between-patient study. The examples in Sections 8.7–8.14
have arisen from consultancy work and have a variety of structures. In Section
8.15, we look at bioequivalence studies with replicate cross-over designs. The
use of mixed models in the analysis of cluster randomized trials is considered in
Section 8.16. Section 8.17 looks at the analysis of bilateral data. The chapter
finishes in Section 8.18 by looking at the design of incomplete block studies.

8.1 Trials with repeated measurements within visits

Sometimes, repeated measurements occur within visits in cross-over or repeated
measures trials. For example, bioequivalence trials often record several blood or
urine measurements at each visit within a cross-over design. Studies in cardi-
ology sometimes involve exercise tests where repeated measurements are made
throughout the test at each visit. Cross-over trials in asthma may involve a series
of lung function measurements made after a ‘challenge’ designed to provoke an
asthma attack.

When the data are complete at each visit, a simple approach would be to calcu-
late summary statistics for each visit (e.g. area under the curve, maximum value

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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or time to maximum value) and to analyse these derived variables using methods
suggested for ordinary repeated measures or cross-over data (see Chapters 6
and 7). This approach has the advantage of simplicity and gives a straightforward
interpretation. It cannot, however, test the treatment⋅reps interaction (reps are
repeated measurements within visits) or always overcome problems caused by
missing data.

When there are missing data, the use of summary statistics may not be sat-
isfactory, and a mixed model is often more appropriate. If visits and reps occur
at fixed time intervals, a covariance pattern model can be used to structure the
covariances by visits and reps. Alternatively, if the visits and/or reps occur at
irregular intervals or if it is of interest to model the relationship of the response
with time, then a random coefficients model can be used instead.

8.1.1 Covariance pattern models

There are several ways in which the covariance of the data can be modelled when
measurements are taken across both visits and reps. In this section, we will present
five of the more plausible options. In models for ordinary repeated measures trials
(considered in Chapter 6), the overall variance matrix, V, had a block diagonal
form, with zero correlations between observations on different patients:

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

V𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 V𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 V𝟑 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 V𝟒 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 V𝟓 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 V𝟔 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 V𝟕 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 V𝟖 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 V𝟗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,

where the Vi are blocks of covariances for observations on the ith patient. We will
again use this form for V, but now there are more ways in which the Vi can be
structured. We will illustrate a variety of possible structures, assuming a dataset
with three visits and three reps per visit (nine observations per patient), which
leads to each Vi being a 9×9 submatrix.

Constant covariances A very simple structure for Vi would assume a constant
correlation between all observations on the same patient regardless of the visit or
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rep number such that

1 1 1 2 2 2 3 3 3 Visit
1 2 3 1 2 3 1 2 3 Rep

Vi =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃

𝜃 𝜎
2

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃

𝜃 𝜃 𝜎
2

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜎
2

𝜃 𝜃 𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜃 𝜎
2

𝜃 𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜃 𝜃 𝜎
2

𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜎
2

𝜃 𝜃

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜎
2

𝜃

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜎
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

1
2
3
1
2
3
1
2
3

1
1
1
2
2
2
3
3
3

(A)

where
𝜃 = covariance between observations on same patient,

𝜎
2 = residual variance.

Extra covariance for observations at the same visit The above pattern is
perhaps oversimplistic, as it takes no account of the possibility that observations
taken at the same visit are more highly correlated than those taken at different
visits. A simple way to account for this would be to parameterise Vi with a different
covariance for observations on the same visit,

Vi =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2

𝜃v 𝜃v 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃

𝜃v 𝜎
2

𝜃v 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃

𝜃v 𝜃v 𝜎
2

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜎
2

𝜃v 𝜃v 𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜃v 𝜎
2

𝜃v 𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜃v 𝜃v 𝜎
2

𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜎
2

𝜃v 𝜃v

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃v 𝜎
2

𝜃v

𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃v 𝜃v 𝜎
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

, (B)

where
𝜃 = covariance between observations on different visits,
𝜃v = covariance between observations at the same visit,
𝜎

2 = residual variance.
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A covariance pattern structured by visits Alternatively, it is possible that the
correlation between observations is different for each pair of visits leading to

Vi =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
1 𝜃11 𝜃11 𝜃12 𝜃12 𝜃12 𝜃13 𝜃13 𝜃13

𝜃11 𝜎
2
1 𝜃11 𝜃12 𝜃12 𝜃12 𝜃13 𝜃13 𝜃13

𝜃11 𝜃11 𝜎
2
1 𝜃12 𝜃12 𝜃12 𝜃13 𝜃13 𝜃13

𝜃12 𝜃12 𝜃12 𝜃22 𝜃22 𝜎
2
2 𝜃23 𝜃23 𝜃23

𝜃12 𝜃12 𝜃12 𝜃22 𝜎
2
2 𝜃22 𝜃23 𝜃23 𝜃23

𝜃12 𝜃12 𝜃12 𝜃23 𝜃22 𝜎
2
2 𝜃23 𝜃23 𝜃23

𝜃13 𝜃13 𝜃13 𝜃23 𝜃23 𝜃23 𝜎
2
3 𝜃33 𝜃33

𝜃13 𝜃13 𝜃13 𝜃23 𝜃23 𝜃23 𝜃33 𝜎
2
3 𝜃33

𝜃13 𝜃13 𝜃13 𝜃23 𝜃23 𝜃23 𝜃33 𝜃33 𝜎
2
3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

, (C1)

where
𝜃ij = covariance between observations at visits i and j,

𝜎
2
i = residual variance at visit i (this may be parameterised as 𝜃ii + 𝜎

2).

This matrix, in fact, has a general covariance pattern structured by visits.
Another alternative would be to use a different covariance pattern for the

correlations between visits. For example, by using a Toeplitz pattern, the
correlation between observations will depend on the separation of the visits and
has the form

Vi =
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⎜⎝
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⎟
⎟⎠

, (C2)

where
𝜃i = covariance between observations separated by i−1 visits,
𝜎

2 = residual variance at visit.

A covariance pattern structured by reps It is also possible that correlation
between observations at the same visit differs depending on the rep number.
A structure assuming constant correlation between observations on different
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visits (as in (B)) but a different correlation for each pair of reps at the same visit is

Vi =

⎛
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⎜
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⎜
⎜
⎜
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2
3 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃

𝜃 𝜃 𝜃 𝜎
2
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⎟
⎟
⎟
⎟⎠

, (D1)

where
𝜃 = covariance between observations on different visits,
𝜃ij = covariance between observations on reps i and j (at the same visit),

𝜎
2
i = residual variance at rep i (this may be parameterised as 𝜃ii + 𝜎

2).

This matrix, in fact, has a general covariance pattern structured by reps (within
visits).

Alternatively, a different pattern from the general pattern could be considered.
For example, a first-order autoregressive pattern allowing the correlation between
observations to decrease exponentially depending on the separation of the reps
would have the form

Vi =
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, (D2)

where
𝜃 = covariance between observations on different visits,

𝜌
|i− j| = correlation between observations on reps i and j,
𝜎

2 = residual variance.

In both of these models, observations at the same visit could be estimated to be
less correlated than those at different visits. This will usually be implausible and
can be avoided if we add 𝜃 to the covariance of observations at the same visit but



Brown778258 c08.tex V3 - 11/14/2014 10:17 A.M. Page 334

334 Other applications of mixed models

with different rep. As we will see in Section 8.1.2, it is this more plausible version
of the model that can be implemented in SAS.

Extra covariance for observations on the same reps It is also possible that
there is additional correlation between observations on the same reps. Adding this
feature to structure (B) previously shown we obtain the structure

Vi =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2

𝜃v 𝜃v 𝜃r 𝜃 𝜃 𝜃r 𝜃 𝜃

𝜃v 𝜎
2

𝜃v 𝜃 𝜃r 𝜃 𝜃 𝜃r 𝜃

𝜃v 𝜃v 𝜎
2

𝜃 𝜃 𝜃r 𝜃 𝜃 𝜃r

𝜃r 𝜃 𝜃 𝜎
2

𝜃v 𝜃v 𝜃r 𝜃 𝜃

𝜃 𝜃r 𝜃 𝜃v 𝜎
2

𝜃v 𝜃 𝜃r 𝜃

𝜃 𝜃 𝜃r 𝜃v 𝜃v 𝜎
2

𝜃 𝜃 𝜃r

𝜃r 𝜃 𝜃 𝜃r 𝜃 𝜃 𝜎
2

𝜃v 𝜃v

𝜃 𝜃r 𝜃 𝜃 𝜃r 𝜃 𝜃v 𝜎
2

𝜃v

𝜃 𝜃 𝜃r 𝜃 𝜃 𝜃r 𝜃v 𝜃v 𝜎
2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

, (E1)

where
𝜃 = covariance between observations at different visits and reps,
𝜃v = covariance between observations at the same visit but different rep,
𝜃r = covariance between observations at the same rep but different visits,
𝜎

2 = residual variance.

We can also make this structure slightly more complex by assuming that each
visit has a different variance and each pair of visits has a different covariance:

Vi =
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, (E2)

where
𝜃 = covariance between observations at different visits and reps,
𝜃v = covariance between observations at the same visit but at different reps,
𝜃ij = covariance between observations at the same rep at visits i and j,

𝜎
2
ii = residual variance at visit i.
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Choosing the covariance pattern

It is clear from the options given previously that there is a huge amount of
flexibility in choosing how to define the covariance structure of the data. If the
covariance structure in itself is of particular interest, it may be worthwhile to
experiment with several different structures, building up a model by starting
with a very simple structure such as (A), and then using likelihood ratio tests (see
Section 6.2.2) to determine whether more complex structures lead to significant
improvements. However, if interest lies only with, say, comparing two treatment
groups or their interaction with visit or rep, estimates of means and standard
errors from a fairly simple structure such as (B), which allows for correlation
between observations on the same visit, are likely to differ little from those
obtained using a more complex structure.

We note that the range of covariance structures available may be limited by the
software, and care is sometimes needed to ensure that covariance parameters are
not confounded.

8.1.2 Example

The data were from a three-period cross-over trial taken from Jones and Kenward
(1989) to compare the effects of three treatments on systolic blood pressure.
Treatments A and B are 20 and 40 mg doses of an active drug, and treatment C
is a placebo. There were 12 patients, and 10 measurements were made at each
visit. These were taken at 30 and 15 min before treatment and at 15, 30, 45,
60, 75, 90, 120 and 240 min after treatment. We assume that the objective is
to assess whether there are any post-treatment differences between treatments
and to test whether these differences are constant over the reps. Since the data
are complete, calculating summary statistics (e.g. AUC, minimum or maximum
value, time to maximum value) and analysing them as cross-over data would
form a simple strategy, although the treatment⋅rep interaction could not then
be tested. However, in this section, for illustration, we will analyse the raw data
using covariance pattern models. Measurements at 15 min pre-treatment will be
taken as baseline values.

Although the main interest in this example lies with the comparison of
treatments, for illustration, we will use likelihood ratio tests to determine an
appropriate covariance structure for the data. The models that we examined
and the resulting values of −2 log(L) are shown in Table 8.1. The covariance
structures relate to the example structures defined previously. Initially, Model 1
was used to test treatment⋅visit, treatment⋅rep and carry-over effects to determine
whether they could be omitted from the models. None of these effects was
significant; however, treatment⋅rep effects were retained in the models so that
mean treatment⋅rep profiles could be produced. The fixed effects included in the
models were therefore baseline (15 min pre-treatment), treatment, visit, rep and
treatment⋅rep effects.
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Table 8.1 Values of −2 log(L) for all models.

Model Covariance structure −2 log(L) Parameters

1 B 1879.79 3
2 E1 1876.84 4
3 C1 1878.09 7
4 D2 1866.98 3
5 D2, by treatment 1861.68 9

Models 1 and 2 are compared to establish whether there is extra correlation
between observations on the same rep. The likelihood ratio statistic is
𝜒

2
1 = 1879.79 − 1876.84 = 2.95(p = 0.09). Therefore, we do not have strong

statistical evidence that there is any additional correlation across the reps, and
structures taking account of this are not considered further.

Model 3, with a general structure across visits, is compared with Model 1 to
determine whether different correlations are justified for each pair of visits. On
comparison with Model 1, we obtain 𝜒

2
4 = 1.70 (p=0.79), which indicates no

significant improvement over Model 1 that uses the same correlation between all
visits.

Model 4 tests whether the correlation between observations within the same
visit decreases as reps become more widely separated. The structure fitted is similar
to (D2) but with the modification to ensure that covariances at the same visit are
not less than those across different visits. The same number of parameters is used
as in Model 2, and therefore the log likelihoods can be compared directly. Model 4
has a higher likelihood, and we therefore conclude that the first-order autoregres-
sive structure is the more appropriate and that correlation does decrease with the
separation of the reps.

Model 5 is similar to Model 4 but fits a separate covariance matrix for each
treatment. The likelihood ratio statistic on comparison with Model 4 is 𝜒2

6 = 5.30
(p=0.51). This is non-significant, and so there is no evidence that the covariances
differ between treatments, and we can choose to base our conclusions on results
from Model 4.

Results from Model 4

The exact form of structure (D2) could not be fitted using PROC MIXED because
theREPEATED statement can only be used to fit a single covariance pattern. It was
necessary to use a RANDOM statement to give the constant covariance between
observations on the same patient. The covariance parameter estimates obtained
were

Covariance between observations on same patient = 46.100

Autoregressive correlation coefficient = 0.323

Residual = 55.600.
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Thus, the variance matrix block for observations on the same patient, Vi, has
the form

Vi =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

+ 56

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 0.32 0.322 0 0 0 0 0 0
0.32 1 0.32 0 0 0 0 0 0

0.322 0.32 1 0 0 0 0 0 0
0 0 0 1 0.32 0.322 0 0 0
0 0 0 0.32 1 0.32 0 0 0
0 0 0 0.322 0.32 1 0 0 0
0 0 0 0 0 0 1 0.32 0.322

0 0 0 0 0 0 0.32 1 0.32
0 0 0 0 0 0 0.322 0.32 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

Note that the diagonal blocks are in fact 8×8, with autoregressive correlations
ranging between 0.32 and 0.328. However, owing to space limitations, their
general form is illustrated in this section using 3×3 blocks.

The results for the treatment effects were as follows:

Effect Difference (SE) t test DF p - value

A−B −3.18 (1.46) 261 0.03
A−C 3.05 (1.61) 234 0.06
B−C 6.24 (1.52) 261 0.0001

Thus, the 40 mg treatment (B) produces significantly higher systolic blood
pressure than the 20 mg treatment (A) and the placebo (C). The treatment⋅rep
interaction was non-significant (p=0.35) and, therefore, we can be reasonably
confident in reporting treatment effects over all reps. The standard errors are
‘model based’ and are thus calculated from the covariance pattern parameters
estimated by the model. However, if we had assumed a simple pattern (e.g. Model
A or B) without testing more complex patterns, an alternative would be to use the
‘empirical’ estimates, with a correction for the standard error bias, which would
have taken more account of the observed covariance of the data.
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SAS code and output

Variables
pat = patient,
visit = visit,
treat = treatment (A=20 mg dose, B=40 mg dose, C= placebo),
rep = rep,
sbp = post-treatment systolic blood pressure (mm Hg),
pre = pre-treatment systolic blood pressure (mm Hg).

The following statements were used in all the models to specify the fixed effects:

PROC MIXED; CLASS pat visit treat rep;
MODEL sbp=pre treat visit rep treat*rep/ DDFM=KR;

The following RANDOM and REPEATED statements were added to specify the
covariance pattern for each model. Fitting effects as random leads to compound
symmetry covariance structures within each effect specified. For example,
in Model 1, a compound symmetry structure is fitted within patients and
patient⋅visits.

Model 1: RANDOM pat pat*visit;
Model 2: RANDOM pat pat*visit pat*rep;
Model 3: RANDOM visit/ SUB=pat TYPE=UN;
Model 4: RANDOM pat;

REPEATED rep/ SUB=pat*visit TYPE=AR(1) R RCORR;
Model 5: RANDOM pat/ GROUP=treat;

REPEATED rep/SUB=pat*visit TYPE=AR(1) R RCORR
GROUP=treat;

We note that TYPE options are also available in SAS to fit covariance patterns
structured by two effects (e.g. by visit and rep). However, the range of structures
available is limited. The first-level structure (e.g. across visits) is always
unstructured (UN), and the second-level structure (e.g. across reps) can be
compound symmetry, first-order autoregressive or unstructured. A model with
a similar covariance pattern to Model 3 could be fitted by replacing the RANDOM
statement with

REPEATED visit rep/SUB=pat TYPE=UN@CS;

However, the resulting pattern is not identical because the compound symmetry
pattern is fitted as a correlation term, rather than a covariance term.

Since the last edition of this text, the improved adjustment based on Kenward
and Roger’s 2009 publication, DDFM=KR(LINEAR), has become available in
SAS/STAT 12.1. In general, we would recommend its use when the AR(1)
covariance pattern is used. However, in this example, there are no missing data,
and use of the option leads to the same standard errors as the DDFM=KR option
shown previously.
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Model 4 code and output The full code and output is given as follows for Model
4 on which the conclusions were based.

PROC MIXED; CLASS pat visit treat rep;
MODEL sbp=pre treat visit rep treat*rep/ DDFM=KR;
RANDOM pat;
REPEATED rep/ SUB=pat*visit TYPE=AR(1) R RCORR;
LSMEANS treat/ PDIFF DIFF;

Model Information
Data Set WORK.A
Dependent Variable sbp
Covariance Structures Variance Components,

Autoregressive
Subject Effect pat*visit
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville
Degrees of Freedom Method Kenward-Roger

Class Level Information
Class Levels Values
pat 12 1 2 3 4 5 6 7 8 9 10 11 12
visit 3 1 2 3
treat 3 A B C
rep 8 2 3 4 5 6 7 8 9

Dimensions
Covariance Parameters 3
Columns in X 40
Columns in Z 12
Subjects 1
Max Obs Per Subject 288

Number of Observations
Number of Observations Read 288
Number of Observations Used 288
Number of Observations Not Used 0

Iteration History
Iteration Evaluations −2 Res Log Like Criterion

0 1 2004.94119030
1 2 1866.97552103 0.00000136
2 1 1866.97456592 0.00000000

Convergence criteria met.
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Covariances in the R matrix are calculated as 55.6×0.323d, where
d= separation of reps.

Estimated R Matrix for pat*visit 1 1
Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8
1 55.6430 17.9844 5.8127 1.8787 0.6072 0.1963 0.06343 0.02050
2 17.9844 55.6430 17.9844 5.8127 1.8787 0.6072 0.1963 0.06343
3 5.8127 17.9844 55.6430 17.9844 5.8127 1.8787 0.6072 0.1963
4 1.8787 5.8127 17.9844 55.6430 17.9844 5.8127 1.8787 0.6072
5 0.6072 1.8787 5.8127 17.9844 55.6430 17.9844 5.8127 1.8787
6 0.1963 0.6072 1.8787 5.8127 17.9844 55.6430 17.9844 5.8127
7 0.06343 0.1963 0.6072 1.8787 5.8127 17.9844 55.6430 17.9844
8 0.02050 0.06343 0.1963 0.6072 1.8787 5.8127 17.9844 55.6430

Estimated R Correlation Matrix for pat*visit 1 1
Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8
1 1.0000 0.3232 0.1045 0.03376 0.01091 0.003527 0.001140 0.000368
2 0.3232 1.0000 0.3232 0.1045 0.03376 0.01091 0.003527 0.001140
3 0.1045 0.3232 1.0000 0.3232 0.1045 0.03376 0.01091 0.003527
4 0.03376 0.1045 0.3232 1.0000 0.3232 0.1045 0.03376 0.01091
5 0.01091 0.03376 0.1045 0.3232 1.0000 0.3232 0.1045 0.03376
6 0.003527 0.01091 0.03376 0.1045 0.3232 1.0000 0.3232 0.1045
7 0.001140 0.003527 0.01091 0.03376 0.1045 0.3232 1.0000 0.3232
8 0.000368 0.001140 0.003527 0.01091 0.03376 0.1045 0.3232 1.0000

Covariance Parameter Estimates
Cov Parm Subject Estimate
Pat 46.0598
AR(1) pat*visit 0.3232
Residual 55.6430

Fit Statistics
−2 Res Log Likelihood 1867.0
AIC (smaller is better) 1873.0
AICC (smaller is better) 1873.1
BIC (smaller is better) 1874.4

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
pre 1 63.8 11.08 0.0015
treat 2 54.6 8.63 0.0006
visit 2 59.1 3.39 0.0402
rep 7 209 3.28 0.0025
treat*rep 14 219 1.10 0.3612
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Least Squares Means
Standard

Effect treat Estimate Error DF t Value Pr > |t|
treat A 105.57 2.2285 13.5 47.37 <.0001
treat B 108.75 2.2049 13.2 49.32 <.0001
treat C 102.51 2.2440 13.8 45.68 <.0001

Differences of Least Squares Means
Standard

Effect treat −treat Estimate Error DF t Value Pr > |t|
treat A B −3.1820 1.4457 52.3 −2.20 0.0322
treat A C 3.0540 1.6161 57.7 1.89 0.0638
treat B C 6.2360 1.5157 54.8 4.11 0.0001

8.1.3 Random coefficients models

Random coefficients models can also be utilised for analysing data with repeated
measurements made within visits. This type of model would be more appropriate if
greatest interest is centred on explaining the relationship of a measurement with
time. However, time is now measured across both visits and reps, and it is therefore
possible to consider fitting slopes across both of these time scales. Alternatively,
slopes can be fitted across just one time scale, that is, against either visit time or
rep time. In many applications, one of these simpler models will be of greatest rel-
evance. We will now describe three possible models. Model 1 fits slopes against
visit time only, Models 2(a) and 2(b) fit slopes against rep time only, and Model 3
fits slopes against both visit time and rep time. The SAS code required to fit each
model will be supplied following Section 8.1.4.

Model 1 – modelling response against visit time

In some examples, only the relationship of the response with visit time may
be of interest. For example, this might be the case for a trial where patients
make varying numbers of visits to a hospital clinic at unevenly spaced intervals
during the course of a treatment, with only two replicates of measurements
per visit. In this situation, a slope against visit time can be fitted, and reps
can be taken as categorical fixed effects. To allow the slopes to vary randomly
between the patients, patient and patient⋅tvisit (tvisit= visit time) are fitted as
random coefficients. The patient coefficients will represent the intercepts, and
the patient⋅tvisit coefficients the slopes of separate regression lines for each
patient. The average slopes will be determined by the fixed effects tvisit and
treatment⋅tvisit. The random coefficients cause the regression lines (each made
up of an intercept and slope) to be compared between treatments against an
appropriate background of between-patient variability. It is unlikely that the
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estimation of slopes against visit will be of interest in a cross-over trial; so this
model will be of greatest use for analysing repeated measures designs.

Random coefficients Fixed effects

Patient Baseline
Patient⋅tvisit Treatment

Tvisit
Rep
Treatment⋅tvisit
Treatment⋅rep

Note that tvisit represents the actual times of the visits (e.g. in weeks) rather than
the visit number. However, in clinical trials with evenly spaced visits, use of the visit
number will often suffice as the visit time.

Model 2 – modelling response against rep time

In some applications, the slope against rep time is of greatest interest. To allow
the slopes to vary randomly between the patients, patient and patient⋅trep
(trep= rep time) are fitted as random coefficients. In addition, to allow the
slopes to vary randomly within the patients, patient⋅visit and patient⋅visit⋅trep
(trep= rep time) are also fitted as random coefficients. Thus, a separate regression
line is fitted for each patient at each visit. In repeated measures trials, slopes
will be appropriately compared between treatments against a background of
between-patient variability, and in cross-over trials, against a background of
within-patient variability. Slope effects can also be compared between visits, and
this is always against a background of within-patient variability.

Random coefficients Fixed effects

Patient Baseline
Patient⋅trep Treatment
Patient⋅visit Visit
Patient⋅visit⋅trep Trep

Treatment⋅visit
Visit⋅trep
Treatment⋅trep

Visit effects are still included in the model but as categorical fixed effects. In a
cross-over study, fixed carry-over effects can also be included if required, though
we advise caution in doing this (see Section 7.11). Note that the trep represents
the actual times of the reps (e.g. in minutes) rather than the rep number (denoted
by rep in Model 1).
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Model 3 – modelling response against rep time and visit time

This model can be used when both the slopes against visit time and rep time
are of interest. Separate slopes are fitted across visit time and rep time. To allow
slopes to be compared between treatments against an appropriate background
of between-patient variability, patient, patient⋅trep and patient⋅tvisit are fitted as
random coefficients. As with Model 2, this model is appropriate for comparing
slopes between treatments in repeated measures designs only. We do not suggest a
corresponding model for cross-over trials because it is unlikely that the estimation
of slopes against visit will be sensible in a cross-over trial.

Random coefficients Fixed effects

Patient Baseline
Patient⋅tvisit Treatment
Patient⋅trep Tvisit

Trep
Treatment⋅tvisit
Treatment⋅trep

Non-linear models

We have in the previous section considered only linear relationships with time.
However, the models can also be adapted to fit non-linear relationships if required,
as discussed in Section 6.5.

Choice of model

The models we have introduced each fit different fixed effects and so cannot be
compared using likelihood ratio tests. However, a statistical comparison of the
models is not really relevant in this case, since the choice of model should depend
on which model best answers the required questions. For this reason, statistical
comparisons between random coefficients models and covariance pattern models
are also not helpful, since the two approaches are designed to answer different
questions.

8.1.4 Example: random coefficients models

We again consider the three-period cross-over trial introduced in Section 8.1.2.
A random coefficients model might be chosen instead of a covariance pattern
model if interest were principally focused on modelling the relationship of systolic
blood pressure across either visits or reps. In this trial, it is likely that comparing
the rep slopes between treatments will be of greatest interest, and therefore only
Model 2 will be considered. This model examines whether the rates of change
of systolic blood pressure during each phase of the cross-over differ between
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Table 8.2 Covariance parameter estimates.

Covariance parameters

Covariances for patient and patient⋅trep coefficients
(

63.6
−8.7 2.96

)

Covariances for patient⋅visit and patient⋅visit⋅trep coefficients
(

182.5
−33.8 6.48

)

Residual 42.9

Note: Here, trep= log (rep time).

treatments. It was found that taking the log of rep time gave a more linear
relationship with systolic blood pressure. Thus, log(rep time) is used in place of
rep time in the model.

The covariance parameter estimates are shown in Table 8.2. The positive
diagonal terms in the two covariance matrices indicate that there is additional
random variation in the regression lines both between patients and within
patients over the set of visits (i.e. the regression lines differ to a greater extent
than would be expected as a result of the residual variation). The negative
covariance term is not surprising because of the expected negative correlation
between estimates of slopes and intercepts in regression analysis. It is hard to
assess the relative sizes of the covariance parameters, since the patient⋅trep and
patient⋅visit⋅trep coefficients involve continuous effects of differing sizes. However,
a comparison of the patient, patient⋅visit and residual variances indicates that
most of the variation in the data is occurring at the patient⋅visit level.

The results for the treatment and treatment⋅rep effects are shown in Table 8.3.
The rep slope estimates are positive for each treatment showing an increase in
blood pressure following the administration of treatment. The overall test of the
treatment⋅slope interaction was not significant (p=0.22), neither were any of
the pairwise comparisons of rep slopes between treatments. Note that identical
standard errors are obtained in this case for each of the rep slopes because the
data were complete.

Table 8.3 Rep slope estimates (standard errors).

Rep slopes

A 1.41 (1.22)
B 4.11 (1.22)
C 2.04 (1.22)

Treatment differences in rep slope

A−B −2.70 (1.58)
A−C −0.63 (1.58)
B−C 2.07 (1.58)
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SAS code and output

Variables
pat = patient,
sbp = post-treatment systolic blood pressure (mm Hg),
pre = pre-treatment systolic blood pressure (mm Hg),
treat = treatment (A=20 mg dose, B=40 mg dose, C= placebo),
visit = visit number,
rep = rep,
trep = log(time since dose in minutes).

The SAS code and output are shown for Model 2, which was used to analyse
this example. Following this, the code required for the other models described in
Section 8.1.3. (Models 1 and 3) is shown.

PROC MIXED; CLASS pat treat visit;
TITLE ‘MODEL 2B. SLOPES ACROSS REP TIME - RANDOM SLOPES

FOR PATIENTS AND PATIENT.VISITS’;
MODEL sbp=pre treat visit trep treat*visit treat*trep/
DDFM=KR;
RANDOM int trep / SUB=pat TYPE=UN;
RANDOM int trep / SUB=pat*visit TYPE=UN;
LSMEANS treat/ DIFF PDIFF;
ESTIMATE ‘A, REP SLOPE’ trep 1 treat*trep 1 0 0;
ESTIMATE ‘B, REP SLOPE’ trep 1 treat*trep 0 1 0;
ESTIMATE ‘C, REP SLOPE’ trep 1 treat*trep 0 0 1;
ESTIMATE ‘A-B, REP SLOPE’ treat*trep 1 -1 0;
ESTIMATE ‘A-C, REP SLOPE’ treat*trep 1 0 -1;
ESTIMATE ‘B-C, REP SLOPE’ treat*trep 0 1 -1;

The ESTIMATE statements are required to estimate the slope effects by treatment
and their differences in this case. This is because theLSMEANS statement can only
be used with CLASS variables.

The Mixed Procedure

Model Information
Data Set WORK.A
Dependent Variable sbp
Covariance Structure Unstructured
Subject Effects pat, pat*visit
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville
Degrees of Freedom Method Kenward-Roger
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Class Level Information
Class Levels Values
pat 12 1 2 3 4 5 6 7 8 9 10 11 12
treat 3 A B C
visit 3 1 2 3

Dimensions
Covariance Parameters 7
Columns in X 21
Columns in Z Per Subject 8
Subjects 12
Max Obs Per Subject 24

Number of Observations
Number of Observations Read 288
Number of Observations Used 288
Number of Observations Not Used 0

Iteration History
Iteration Evaluations −2 Res Log Like Criterion
0 1 2068.81350873
1 2 1940.47935288 0.00001352
2 1 1940.46924844 0.00000006
3 1 1940.46920458 0.00000000

Convergence criteria met.

Covariance Parameter Estimates
Cov Parm Subject Estimate
UN(1,1) pat 63.6303
UN(2,1) pat −8.6675
UN(2,2) pat 2.9646
UN(1,1) pat*visit 182.46
UN(2,1) pat*visit −33.8450
UN(2,2) pat*visit 6.4842
Residual 42.9001

UN(1,1) and UN(2,2) are the variance component estimates for the patient
and patient⋅trep random coefficients, andUN(2,1) is the covariance between the
two random coefficients. Likewise, the second UN(1,1) and UN(2,2) are the
variance component estimates for the patient⋅visit and patient⋅visit⋅trep random
coefficients, and UN(2,1) is their covariance.
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Fit Statistics
−2 Res Log Likelihood 1940.5
AIC (smaller is better) 1954.5
AICC (smaller is better) 1954.9
BIC (smaller is better) 1957.9

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
6 128.34 <.0001

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
Pre 1 25.9 7.69 0.0102
Treat 2 21.1 0.58 0.5680
visit 2 16.4 2.65 0.1004
trep 1 11 9.61 0.0101
treat*visit 4 18.4 0.48 0.7520
trep*treat 2 22 1.61 0.2234

Estimates
Standard

Label Estimate Error DF t Value Pr > |t|
A, REP SLOPE 1.4114 1.2207 31.3 1.16 0.2564
B, REP SLOPE 4.1118 1.2207 31.3 3.37 0.0020
C, REP SLOPE 2.0411 1.2207 31.3 1.67 0.1045
A-B, REP SLOPE −2.7004 1.5768 22 −1.71 0.1008
A-C, REP SLOPE −0.6297 1.5768 22 −0.40 0.6935
B-C, REP SLOPE 2.0707 1.5768 22 1.31 0.2026

The first three estimates give the rep slopes corresponding to each of the
treatment groups. The last three estimates are of the differences between the
slopes for each treatment and are the slope differences shown in Table 8.3.

Least Squares Means
Standard

Effect treat Estimate Error DF t Value Pr > |t|
treat A 105.42 2.3081 14.5 45.67 <.0001
treat B 108.71 2.2658 14.1 47.98 <.0001
treat C 102.70 2.3357 14.8 43.97 <.0001
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Differences of Least Squares Means
Standard

Effect treat −treat Estimate Error DF t Value Pr > |t|
treat A B −3.2906 1.7999 14.9 −1.83 0.0875
treat A C 2.7164 2.0506 17.9 1.32 0.2020
treat B C 6.0070 1.9035 16.2 3.16 0.0060

SAS code for Model 1

PROC MIXED; CLASS pat time treat;
TITLE ‘MODEL 1. SLOPES ACROSS VISIT TIME ONLY’;
MODEL sbp=pre treat tvisit time treat*tvisit treat*time/
DDFM=KR;
RANDOM INT tvisit / SUB=pat TYPE=UN;
LSMEANS treat/ DIFF PDIFF;
ESTIMATE ‘A, VISIT SLOPE’ tvisit 1 treat*tvisit 1 0 0;
ESTIMATE ‘B, VISIT SLOPE’ tvisit 1 treat*tvisit 0 1 0;
ESTIMATE ‘C, VISIT SLOPE’ tvisit 1 treat*tvisit 0 0 1;
ESTIMATE ‘A-B, VISIT SLOPE’ treat*tvisit 1 -1 0;
ESTIMATE ‘A-C, VISIT SLOPE’ treat*tvisit 1 0 -1;
ESTIMATE ‘B-C, VISIT SLOPE’ treat*tvisit 0 1 -1;

SAS code for Model 3

PROC MIXED; CLASS pat treat;
TITLE ‘MODEL 3. SLOPES ACROSS VISIT TIME AND REP TIME’;
MODEL sbp=pre treat tvisit trep treat*tvisit treat*trep
/DDFM=KR;
RANDOM INT tvisit trep / SUB=pat TYPE=UN;
LSMEANS treat/ DIFF PDIFF;
ESTIMATE ‘A, VISIT SLOPE’ tvisit 1 treat*tvisit 1 0 0;
ESTIMATE ‘B, VISIT SLOPE’ tvisit 1 treat*tvisit 0 1 0;
ESTIMATE ‘C, VISIT SLOPE’ tvisit 1 treat*tvisit 0 0 1;
ESTIMATE ‘A, REP SLOPE’ trep 1 treat*trep 1 0 0;
ESTIMATE ‘B, REP SLOPE’ trep 1 treat*trep 0 1 0;
ESTIMATE ‘C, REP SLOPE’ trep 1 treat*trep 0 0 1;
ESTIMATE ‘A-B, VISIT SLOPE’ treat*tvisit 1 -1 0;
ESTIMATE ‘A-C, VISIT SLOPE’ treat*tvisit 1 0 -1;
ESTIMATE ‘B-C, VISIT SLOPE’ treat*tvisit 0 1 -1;
ESTIMATE ‘A-B, REP SLOPE’ treat*trep 1 -1 0;
ESTIMATE ‘A-C, REP SLOPE’ treat*trep 1 0 -1;
ESTIMATE ‘B-C, REP SLOPE’ treat*trep 0 1 -1;



Brown778258 c08.tex V3 - 11/14/2014 10:17 A.M. Page 349

Multi-centre trials with repeated measurements 349

8.2 Multi-centre trials with repeated measurements

It is not uncommon for clinical trials to record measurements over several
visits and also to recruit patients from several centres. The hypertension study
introduced in Section 1.3 in fact has this structure. A mixed model can then be
used to allow treatment effects to vary randomly across centres and also to fit a
covariance pattern for the repeated measurements. As in ordinary multi-centre
studies, treatments can be allowed to vary randomly across centres by fitting
centre and centre⋅treatment effects as random, and inference is then wider and
can be applied to the population of centres (see Chapter 5). The treatment standard
errors will be increased compared with models omitting centre⋅treatment effects
or fitting them as fixed, whenever the centre⋅treatment variance component is
positive. Time and treatment⋅time effects can also be allowed to vary randomly
between centres by fitting centre⋅time and centre⋅treatment⋅time effects as
random. Alternatively, if a ‘local’ interpretation is required, interactions with
centre effects can be omitted or taken as fixed. If the interaction terms involving
centre are omitted, retaining centre effects as random in the model will still allow
any additional information on treatments available from the centre stratum
to be recovered. Covariance patterns for the repeated observations occurring
on the same patients can be constructed in the same way as described for
ordinary repeated measures trials and compared using likelihood ratio tests
(see Section 6.2.2).

8.2.1 Example: multi-centre hypertension trial

The multi-centre hypertension trial introduced in Section 1.3 had visits at 2, 4, 6
and 8 weeks post-treatment. We will initially analyse the primary endpoint, DBP,
using the following mixed model:

Random effects Fixed effects

Centre Treatment
Centre⋅treatment Time
Centre⋅time Treatment⋅time
Centre⋅treatment⋅time Baseline
Patient

Note that a compound symmetry structure for the repeated measurements is
obtained in this case by fitting patients as random.
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The resulting variance component estimates were as follows:

Effect Variance component

Centre 4.4
Centre⋅treat 0.5
Visit⋅centre 1.0
Visit⋅centre⋅treat 0.5
Patient 35.0
Residual 34.3

These values indicate that most of the variation occurs at the patient and residual
level. The very small variance components for treatment⋅centre, visit⋅centre
and visit⋅centre⋅treatment effects will influence the results very little and
will be removed from the analysis in order to simplify the model. The small
centre⋅treatment variance component indicates that treatments are varying
hardly at all across the centres. Thus, results can still be related to the population
of centres with some confidence, even when centre⋅treatment effects are removed.
However, retaining the centre effects as random allows additional information on
treatments to be recovered from the centre error stratum. The fixed treatment⋅time
interaction was not significant, and we will omit it from the model.

8.2.2 Covariance pattern models

We can also consider fitting covariance patterns to the repeated measurements,
although in many situations, a constant compound symmetry covariance
(achieved by fitting patients as random) will be sufficient. As in ordinary repeated
measures trials, models using different covariance patterns can be compared
using likelihood ratio tests (see Section 6.2.2). The six models discussed in the
following section were fitted to the hypertension data. In each model, centre
effects are fitted as random, and treatment, time and baseline effects are fitted
as fixed. The other terms that were considered in the initial model but found to
be negligible have been omitted. The covariance parameters estimated in each
model are shown in Table 8.4 and values of −2 log(L) in Table 8.5.

The comparison of the covariance pattern models is quite similar to that
presented in Section 6.3, where the effects of centre were not considered. Model 2
has the same number of covariance parameters as Model 1, and a direct com-
parison of their likelihoods can be made. Model 1 has the highest likelihood, and
therefore we have no evidence that correlations decay exponentially as visits
become further apart. The likelihood ratio tests comparing Models 3–6 with
Model 1 are all highly significant, indicating that all these models are preferable
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Table 8.4 Variance parameters from covariance pattern models.

Variance components

Model Period Centre Residual Correlation

1. Compound symmetry 1 – 4 4.8 71.4 0.52

2. First-order autoregressive 1 5.1 70.8
2
3
4

⎛
⎜
⎜
⎜⎝

1
0.53 1

0.532 0.53 1
0.533 0.532 0.53 1

⎞
⎟
⎟
⎟⎠

3. Compound symmetry with
separate covariances for
treatments

1 – 4 A 4.6 78.7 0.49
1 – 4 B 63.5 0.35
1 – 4 C 72.6 0.61

4. Toeplitz 1 4.8 71.3
2
3
4

⎛
⎜
⎜
⎜⎝

1
0.54 1
0.45 0.54 1
0.42 0.45 0.54 1

⎞
⎟
⎟
⎟⎠

5. Unstructured 1 4.5 73.2
2 66.8
3 80.0
4 66.4

⎛
⎜
⎜
⎜⎝

1
0.49 1
0.44 0.57 1
0.42 0.47 0.56 1

⎞
⎟
⎟
⎟⎠

6. Toeplitz with separate
covariances for treatments

1 A 4.7 78.5
2 A
3 A
4 A

⎛
⎜
⎜
⎜⎝

1
0.54 1
0.45 0.54 1
0.46 0.45 0.54 1

⎞
⎟
⎟
⎟⎠

1 B 63.4
2 B
3 B
4 B

⎛
⎜
⎜
⎜⎝

1
0.38 1
0.29 0.38 1
0.40 0.29 0.38 1

⎞
⎟
⎟
⎟⎠

1 C 72.1
2 C
3 C
4 C

⎛
⎜
⎜
⎜⎝

1
0.68 1
0.60 0.68 1
0.43 0.60 0.68 1

⎞
⎟
⎟
⎟⎠

to Model 1. Models 3 and 4 are not nested, and therefore cannot be compared
using a likelihood ratio test. Model 4 is nested within Model 5, and the likelihood
ratio test statistic is 6.78 ∼ 𝜒

2
6 . This is not significant, and therefore Model 5 can

be rejected. Models 3 and 4 are nested within Model 6, and the likelihood ratio
statistics for comparisons with Model 6 are 22.47 ∼ 𝜒

2
6 and 27.92 ∼ 𝜒

2
8 , which

are both highly significant. Since Model 6 is a significant improvement over
both Models 3 and 4, we might choose to base our conclusions on it. However,
we note that in practice it may be difficult to justify experimentation with so
many structures, particularly in regulatory trials where it is necessary to specify
analysis methods in the protocol.
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Table 8.5 Values of −2log(L) for covariance pattern models.

Model −2 log(L) Covariance parameters

1. Compound symmetry 7483.21 3
2. First-order autoregressive 7492.70 3
3. Compound symmetry separate treatment

covariances
7454.48 7

4. Toeplitz 7459.93 5
5. Unstructured 7453.15 11
6. Toeplitz separate treatment covariances 7432.01 13

Table 8.6 Treatment effect estimates from Model 6 and corresponding estimates from
Section 6.3 without centre effects.

Difference Mean difference SE

Model 6 including centre effects
A−B 1.26 0.94
A−C 3.01 1.02
B−C 1.75 0.95
Model 6 excluding centre effects
A−B 1.23 0.99
A−C 3.02 1.07
B−C 1.79 1.00

The treatment effects from Model 6 are given in Table 8.6 with model-based
standard errors. They indicate that treatment C produces a significantly lower
DBP than treatment A. Ideally, we would like additionally to calculate empirical
standard errors to reassure ourselves further that the covariance pattern fitted
by Model 6 is close to the observed covariance in the data. However, an error
message occurred when these standard errors were requested using PROC
MIXED. Model 6 in Section 6.3 used an identical covariance pattern to Model 6 in
this section but did not include centre effects. This model gave similar treatment
effect results but with larger standard errors, indicating that fitting centre effects
as random had led to some recovery of extra information on the treatments.

SAS code and output

Variables
pat = patient,
centre = centre,
visit = visit,
treat = treatment (A,B,C),
dbp = post-treatment diastolic blood pressure (mmHg),
dbp1 = pre-treatment diastolic blood pressure (mmHg).
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The following first three statements were used in all the models. The RANDOM
and REPEATED statements to set the covariance structure are then shown for
each model. The full code and output are given only for Model 6 on which the
conclusions were based.

PROC MIXED NOCLPRINT; CLASS visit centre pat treat;
MODEL dbp=dbp1 treat visit/ DDFM=KR;
LSMEANS treat/ DIFF PDIFF;

Model 1: RANDOM centre;
REPEATED visit/SUB=pat TYPE=CS GROUP=treat;

Model 2: RANDOM centre;
REPEATED visit/SUB=pat TYPE=AR(1);

Model 3: RANDOM centre;
REPEATED visit/SUB=pat TYPE=CS GROUP=treat;

Model 4: RANDOM centre;
REPEATED visit/SUB=pat TYPE=TOEP;

Model 5: RANDOM centre;
REPEATED visit/SUB=pat TYPE=UN;

Model 6: RANDOM centre;
REPEATED visit/SUB=pat TYPE=TOEP GROUP=treat;

Model 6

PROC MIXED NOCLPRINT; CLASS visit centre pat treat;
MODEL dbp=dbp1 treat visit centre/ DDFM=KR;
RANDOM centre;
REPEATED visit/ SUB=pat TYPE=TOEP GROUP=treat;
LSMEANS treat/ DIFF PDIFF;

Model Information
Data Set WORK.A
Dependent Variable dbp
Covariance Structures Variance Components,

Toeplitz
Subject Effect pat
Group Effect treat
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville
Degrees of Freedom Method Kenward-Roger

Dimensions
Covariance Parameters 13
Columns in X 9
Columns in Z 29
Subjects 1
Max Obs Per Subject 1092
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Number of Observations
Number of Observations Read 1092
Number of Observations Used 1092
Number of Observations Not Used 0

Iteration History
Iteration Evaluations −2 Res Log Like Criterion
0 1 7814.58209591
1 3 7432.27303121 0.00008952
2 1 7432.01391988 0.00000111
3 1 7432.01088005 0.00000000

Convergence criteria met.

Covariance Parameter Estimates
Cov Parm Subject Group Estimate
centre 4.7466
Variance pat treat A 78.4613
TOEP(2) pat treat A 41.6205
TOEP(3) pat treat A 35.0193
TOEP(4) pat treat A 35.5072
Variance pat treat B 63.4263
TOEP(2) pat treat B 24.2283
TOEP(3) pat treat B 18.0183
TOEP(4) pat treat B 24.5094
Variance pat treat C 72.1075
TOEP(2) pat treat C 48.6675
TOEP(3) pat treat C 42.5151
TOEP(4) pat treat C 30.6658

Fit Statistics
−2 Res Log Likelihood 7432.0
AIC (smaller is better) 7458.0
AICC (smaller is better) 7458.4
BIC (smaller is better) 7475.8

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
dbp1 1 283 28.31 <.0001
treat 2 174 4.36 0.0143
visit 3 433 12.75 <.0001



Brown778258 c08.tex V3 - 11/14/2014 10:17 A.M. Page 355

Multi-centre cross-over trials 355

Least Squares Means
Standard

Effect treat Estimate Error DF t Value Pr > |t|
treat A 93.3399 0.8633 71.8 108.12 <.0001
treat B 92.0772 0.7822 51.1 117.71 <.0001
treat C 90.3293 0.8743 71.9 103.32 <.0001

Differences of Least Squares Means
Standard

Effect treat −treat Estimate Error DF t Value Pr > |t|
treat A B 1.2626 0.9361 172 1.35 0.1792
treat A C 3.0106 1.0214 175 2.95 0.0036
treat B C 1.7479 0.9541 169 1.83 0.0687

8.3 Multi-centre cross-over trials

Multi-centre trials are most frequently used for demonstrating the effectiveness
of a drug in its later stages of development and usually have between-patient
designs. However, occasionally, multi-centre cross-over trials will be encountered.
Although we do not show an example of this design, we suggest how a mixed
model can be applied.

As in ordinary multi-centre trials, ‘global’ estimates can be obtained by allowing
treatment effects to vary randomly across centres. This is achieved by fitting
centre and centre⋅treatment effects as random. In addition, period effects can
be allowed to vary randomly across the centres by fitting centre⋅period effects
as random. A ‘local’ model (Model A) where results relate only to the centres
sampled can be obtained by fitting interactions with centre effects as fixed. If
the interaction terms involving centre can safely be removed from the model,
then there can be an advantage in setting the centre effects to random to allow
any additional information on treatments and periods to be recovered from the
between-centre error stratum (Model B).

The fixed and random effects that are fitted in global and local models are
listed in the following section. Fitting patients as random gives a constant
correlation for observations on the same patient. Alternatively, a more complex
covariance pattern can be fitted by using a covariance pattern model (see
Section 7.7).
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Global model

Random Fixed

Centre Treatment
Centre⋅treatment Period
Centre⋅period Baseline
Patient

Local model (A)

Random Fixed

Patient Treatment
Period
Centre
Centre⋅treatment
Centre⋅period
Baseline

Local model (B)

Random Fixed

Centre Treatment
Patient Period

Baseline

8.4 Hierarchical multi-centre trials and meta-analysis

Sometimes, centres within a multi-centre trial, or trials within a meta-analysis,
may be grouped in some way: for example, by country or continent. Such tri-
als can then be described as having a double hierarchical structure. Although
we do not consider an example with this design, we suggest how a mixed model
can be applied. The double hierarchical structure can be taken into account in
the analysis by modelling both hierarchies and their interactions with treatment
effects as random. For example, in a multi-centre trial with centres grouped by
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country, a ‘global’ model taking into account possible random variation in the
treatment effect between centres and countries would be as follows:

Random Fixed

Centre Treatment
Centre⋅treatment Baseline
Country
Country⋅treatment

This model will allow treatment effect results to be related with more confidence
to the potential population of centres and countries, and ‘shrunken’ estimates
of treatment effects can be obtained for each country and centre. Note that it is
not necessary in the mixed model to specify formally that countries are nested
within centres, provided each centre is numbered individually. However, if centres
are numbered separately within each country, specifying centre(country) in the
software will usually avoid the need to create a variable with separate numbers
for each centre (this is the case with PROC MIXED). In a meta-analysis with
trials grouped by country, trial effects could be substituted for centre effects in the
above model. Note though that some meta-analysts might prefer the trial effect
to be fixed and only the trial⋅treatment effect to be random, as noted in Chapter
5. There are also other possibilities for double hierarchical structures in which
this type of analysis can be used. For example, trials within a meta-analysis may
each have multi-centre designs, and the model can be fitted with trial effects
substituted for country effects.

8.5 Matched case–control studies

In a matched case–control study, a group of subjects who have a particular
disease or outcome (cases) is compared with a group of subjects who do not have
the disease or outcome (controls). Each case is matched to one or more controls
using one or more factors that are known to be connected with the disease; for
example, age and sex are often used. We will refer to sets of matched subjects as
‘matched sets’. The primary objective in a case–control analysis is to determine
which factors (not used in matching) differ between the case and control groups.
However, in doing so, it is important to allow for the matched nature of the data.
This can be achieved by taking candidate risk factors as outcome variables and by
fitting matched sets as a random effect.

The design of the matched case–control study has similarities with that of the
cross-over trial. In the cross-over trial, the treatment effects are ‘crossed’ with
patient effects (i.e. each patient may receive several treatments). In the matched
case–control study, group effects (i.e. whether case or control) are crossed with
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matched set effects (each matched set may contain cases and controls). The effect
of fitting matched sets as random in a case–control study is similar to that of
fitting patients as random in a cross-over study. Results will be identical to an
analysis fitting matched sets as a fixed effect when there are the same number
of controls for every case and the matched set variance component is positive
(when it is negative and set to zero, the mean group differences will be identical
but their standard errors will differ). In an analysis fitting matched sets as fixed,
information is completely lost on group effects in any matched sets that contain
either only a case or only controls (although matched sets containing two or
more controls, but no cases can contribute information if the model fits at least
one effect in addition to the group effect). In addition, in a fixed effects analysis
of binary data (which can be performed using conditional logistic regression),
matched sets whose members all have identical outcomes (i.e. are uniform) do not
contribute information to the analysis. This loss of information does not occur
when matched sets are fitted as random because information is then ‘recovered’
from the matched sets error stratum.

Another fixed effects approach sometimes used is to fit the matching variables
(e.g. sex and age) as covariates but otherwise to ignore the matching. However,
this can sometimes cause a bias in the group estimates if the matching variables
are associated with group (i.e. case or control) and there are an uneven number
of controls per case, causing the groups to be unbalanced. Results may also be
misleading if the relationship with quantitative matching variables such as age is
non-linear.

8.5.1 Example

This study was carried out by the Scottish Cot Death Trust, which aimed to
interview the parents of every baby with sudden infant death syndrome (SIDS)
in Scotland between 1992 and 1995 (Brooke et al., 1997). The parents of two
matched control babies born immediately before and after each case at the same
hospital were also interviewed. As with most interview studies, not all parents
agreed to participate, and this caused some of the matched sets to be incomplete. A
summary of the content of the matched sets is given as follows for the interviewed
subjects. Only 65% of the matched sets had their full complement of subjects.

Matched set content Number of matched sets (%)

ABB 108 (65)
AB 128 (17)
A 11 (7)
BB 12 (7)
B 17 (4)

Note: A= case, B= control.
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8.5.2 Analysis of a quantitative variable

We consider analysing a social deprivation score (depcat) that is measured on a
scale of one to seven and is derived from post codes using information given in the
1991 Census (Carstairs and Morris, 1991). The distribution of depcat by group
is shown in Figure 8.1. Although the score is an ordered categorical variable, we
analyse it using a normal mixed model, and then check that this is a reasonable
approximation by examining residual plots.

Results from a random effects model are compared with those from three
alternative fixed effects approaches. In Model 1, group (case or control) is
fitted as fixed and matched set as random. Model 2 allows for the matching
by fitting matched sets as fixed. Model 3 fits the matching variables, age and
season (at death/interview), as fixed effects. Season is categorised as Summer
(June–August), Winter (December–February) or Spring/Autumn (March–May,
September–November). Model 4 simply treats the data as unmatched.

The results are shown in Table 8.7. From all the models, we would conclude
that SIDS is associated with deprivation, since the cases on average have increased
depcat scores. The residual estimates in Models 3 and 4 are greatly increased
over those in Models 1 and 2, indicating that for analyses of depcat, it is
important to allow for matching.

Model 1 fits matched sets as random, and the positive variance component shows
thatdepcat scores are positively correlated within the matched sets. This is likely

Group

Figure 8.1 Histogram of deprivation category (depcat).
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Table 8.7 Results from analyses of deprivation category (depcat).

Model Fixed effects Random effects Method

1 Group Matched set REML
2 Group, matched set – OLS
3 Group, age, season – OLS
4 Group – OLS

Variance components
Model Matched set Residual

1 0.96 1.86
2 – 1.87
3 – 2.83
4 – 2.82

Group difference and SE (cases–controls)
Model

1 0.84 (0.13)
2 0.88 (0.14)
3 0.82 (0.16)
4 0.82 (0.16)

to be because matching is carried out within hospitals, which each have different
catchment areas reflecting different levels of deprivation.

Model 2 takes account of the matching by fitting matched set as fixed. The group
estimate differs from that in Model 1, and its standard error is larger. This is mainly
because Model 2 does not use information from the matched set error stratum, and
the 30 matched sets that contain either just cases or just controls are effectively
lost from the analysis.

In Model 3, adjustment is made for the two matching variables, age and season
of case birth. Neither of these is significant (p=0.76 and 0.55, respectively), and
the group estimates are the same as in Model 4, which ignores matching.

8.5.3 Check of model assumptions

Since depcat is an ordered categorical variable, we should check model
assumptions to ensure that a normal mixed model is reasonable. The residuals
from Model 1 are plotted against their predicted values in Figure 8.2 and appear
evenly distributed. Note that the diagonal pattern is caused by the fact that the
score is an ordered categorical variable. The agreement with normality is quite
reasonable whether assessed by a histogram of the residuals or by a normal plot.
The normal plot of the matched set effects in Figure 8.3 indicates no significant
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Conditional residuals for depcat
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Figure 8.2 Panel of conditional residual plots.
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Figure 8.3 Normal plot of matched set effects.
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deviation from normality or outlying matched sets. However, as cautioned in
Section 4.6.4, the predicted random effects will not show up non-normality in all
situations.

8.5.4 Analysis of binary Variables

In this section, we consider analysing two binary variables recorded in the cot
death study – the sex of the infant and whether the infant slept in a cot. Now that
the analysis variable is binary, several uniform categories (see Section 3.2.3) are
likely to occur for the matched set effects (i.e. there will be several matched sets in
which all subjects have the same response, e.g. are of the same sex). In the random
effects model, this may cause bias in the matched sets variance component, and
we will therefore reparameterise the model as a covariance pattern model with a
compound symmetry covariance structure (see Sections 3.2.3 and 3.3.2). This
approach is usually preferable to a conditional logistic regression model (see
Section 3.1.8), where information is lost on all tied matched sets (i.e. any sets
with all members answering ‘no’ or all members answering ‘yes’) and on any
matched sets that contain either only a case or only controls.

A similar set of models is considered to those used for analysing depcat (see
Table 8.8) except that Model 2 is fitted using conditional logistic regression

Table 8.8 Results from analyses of sex of the infant and sleeps in cot.

Model Fixed effects Random effects Method

1 Group Matched set GLMM
2 Group, (matched set) Conditional LR
3 Group, age, season GLM
4 Group GLM

Group effect on logit scale (case–controls) (SE) and odds ratio
(cases ÷ controls) (95% confidence interval)

Male Sleeps in cot
Model On logit scale OR On logit scale OR

1 0.78 (0.19) 2.18 (1.50, 3.17) –0.67 (0.18) 0.51 (0.36, 0.73)
2 0.61 (0.21) 1.84 (1.22, 2.77) –1.04 (0.29) 0.35 (0.20, 0.62)
3 0.77 (0.20) 2.15 (1.47, 3.15) –1.01 (0.27) 0.37 (0.22, 0.62)
4 0.78 (0.19) 2.18 (1.50, 3.17) –0.65 (0.22) 0.52 (0.34, 0.79)

Variance parameters for Model 1
Parameter Male Sleeps in cot

Within matched set correlation 0.00 0.29
Dispersion 1.00 1.00
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(see Section 3.1.8) and conditions the data on the matched sets. We will consider
the results obtained for sex and sleeping in a cot separately.

Sex

The within-matched-set correlation parameter was 0.00 in Model 1. This
indicates, not surprisingly, that control babies were no more likely to be of the
same sex as the case baby than of the opposite sex. The zero correlation parameter
causes the results from Model 1 to be the same as Model 4 where matching is
completely ignored. We should mention that since Model 1 was reparameterised
as a covariance pattern model, a negative correlation estimate will not be set
to zero by default. When a negative variance correlation occurs, it would be
advisable to remove the effect of matched sets from the analysis by fitting Model 4
(effectively setting the correlation parameter to zero).

All models show statistically significant group effects, with a greater chance of
SIDS in male infants. However, the group estimate in Model 2 is lower than in the
other models and the standard error higher. This is because information from the
matched set error stratum is lost from matched sets with all cases or all controls or
with the same sex for all members. Age and season were not significantly related
to sex in Model 3 (p=0.21 and 0.76), and this leads to only slight differences in
the results compared with Model 4.

Sleeps in cot

The within-matched-set correlation parameter is now positive, and this causes the
results to differ between Models 1 and 4. It indicates that control infants were more
likely to sleep in a cot if the case infant did and vice versa. This is not surprising
since the infants were matched by age, and older babies are more likely to sleep
in cots.

All of the models show a statistically significant group effect, indicating that the
risk of SIDS is less in those infants who were sleeping in a cot compared with those
who slept elsewhere (in carrycots, Moses baskets, prams, etc.). However, the group
effect differs widely between the four models. This is mainly because sleep place
is associated with age, and each model allows for this association in a different
way. In Models 1 and 2, the exact matching is taken into account, and the results
only differ because information from the matched set error stratum is completely
omitted in Model 2 from the matched sets containing all cases or all controls or
all with the same sleep place. The age effect was highly significant in Model 3
(p=0.0001). However, this model fits age as a quantitative variable and therefore
does not allow for any non-linear effects (i.e. it only allows the proportion of babies
sleeping in a cot to increase linearly with age on the logistic scale). Model 4 did not
fit age at all and is clearly inappropriate, given the influence that age has on sleep
place. At first sight, it is therefore surprising that the standard error in Model 4 is
smaller than that in Model 3. This has occurred because the pattern of ‘dropouts’
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from the study has resulted in cases and controls being unbalanced for age, with
a resultant increase in the standard error in Model 3.

Analysis of both variables demonstrates the value of the mixed models approach.
The standard errors of the group effect are minimised, as we might expect, because
the data are being utilised more fully than is the case with any of the fixed effects
approaches.

SAS code and output

Depcat analyses

Variables
group = group (A= cases, B= controls),
id =matched set,
depcat = deprivation score (1–7, 7=most deprived),
age = age (weeks),
seas =1=Winter, 2= Spring/Autumn, 3= Summer.

Full code and output are given for Model 1.SAS code only is given for Models 2–4.

Model 1

PROC MIXED DATA=a NOCLPRINT PLOTS=RESIDUALPANEL;
CLASS group id;

MODEL depcat= group/ DDFM=KR;
RANDOM ID;
ESTIMATE ’A-B’ group 1 -1;

Model Information
Data Set WORK.A
Dependent Variable depcat
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville
Degrees of Freedom Method Kenward-Roger

Dimensions
Covariance Parameters 2
Columns in X 3
Columns in Z 201
Subjects 1
Max Obs Per Subject 477
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Number of Observations
Number of Observations Read 477
Number of Observations Used 461
Number of Observations Not Used 16

Iteration History
Iteration Evaluations −2 Res Log Like Criterion
0 1 1789.12644328
1 2 1749.59861552 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates
Cov Parm Estimate
id 0.9576
Residual 1.8602

Fit Statistics
−2 Res Log Likelihood 1749.6
AIC (smaller is better) 1753.6
AICC (smaller is better) 1753.6
BIC (smaller is better) 1760.2

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
group 1 315 40.11 <.0001

Estimates
Standard

Label Estimate Error DF t Value Pr > |t|
A-B 0.8446 0.1334 315 6.33 <.0001

Model 1 – model checking

ODS HTML FILE=<output file.html> GPATH=<directory>;
ODS GRAPHICS ON;
PROC MIXED DATA=a NOCLPRINT; CLASS group id;
MODEL depcat= group/ RESIDUAL DDFM=KR;
RANDOM id/ SOLUTION;
ESTIMATE ’A-B’ group 1 -1;
ODS LISTING EXCLUDE SOLUTIONR;
ODS OUTPUT SOLUTIONR=solut; RUN;
ODS GRAPHICS OFF; ODS HTML CLOSE;
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PROC RANK data=SOLUT OUT=norm NORMAL=TUKEY DATA=id_est;
VAR estimate; RANKS rank;

PROC GPLOT DATA=norm; PLOT estimate*rank;

Figure 8.2 shows part of the output generated by the option PLOTS =
RESIDUALPANEL in the code for Model 1. Similar output would be produced by
the code in the model checking section. Figure 8.3 cannot be generated directly
from PROC MIXED and is obtained from the code just shown.

Model 2

PROC GLM; CLASS group id;
MODEL depcat= group id;
ESTIMATE ‘A-B’ group 1 -1;

Model 3

PROC GLM; CLASS group id seas;
MODEL depcat= group age seas;
ESTIMATE ‘A-B’ group 1 -1;

Model 4

PROC GLM; CLASS group;
MODEL depcat= group;
ESTIMATE ‘A-B’ group 1 -1;

Binary analyses

SAS code is given in the following section for the analyses of ‘sleeps in cot’.
Identical code is used for the sex analyses with ‘sex’ replacing ‘sleepn1’ in the
MODEL statement. Output is only given for Models 1 and 2 to illustrate the use of
different procedures to fit each type of model. The output for Models 3 and 4 is
similar to that from Model 1.

Variables
grp = group (1 = cases, 2 = controls),
id =matched set,
one =1 for all observations,
sleepn1 = sleeps in cot at night (1 = yes, 0 = no).

Model 1

PROC GLIMMIX; CLASS id grp;
MODEL sleepn1/one=grp / LINK=LOGIT DDFM=KR SOLUTION OR CL;
RANDOM INTERCEPT/ SUBJECT=id TYPE=CS RESIDUAL;
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Iteration History
Objective Max

Iteration Restarts Subiterations Function Change Gradient
0 0 2 1785.8341804 0.16337371 9.27E-7
1 0 2 1771.2181425 0.00397342 4.03E-7
2 0 2 1771.494358 0.00003078 5.362E-9
3 0 0 1771.4950761 0.00000013 4.703E-6
4 0 0 1771.4950787 0.00000000 4.721E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics
−2 Res Log Pseudo-Likelihood 1771.50
Generalized Chi-Square 290.03
Gener. Chi-Square / DF 0.69

Covariance Parameter Estimates
Standard

Cov Parm Subject Estimate Error
CS id 0.3138 0.07081

Residual 0.6922 0.06138

Solutions for Fixed Effects
Standard

Effect grp Estimate Error DF t Value Pr > |t| Alpha
Intercept −0.08622 0.1353 231.4 −0.64 0.5245 0.05
Grp 1 −0.6732 0.1825 279.8 −3.69 0.0003 0.05
Grp 2 0 .1825 .8 .69 .5245 .05

Effect grp Lower Upper
Intercept −0.3527 0.1803
grp 1 −1.0324 −0.3141
grp 2 .0324 .3141

Odds Ratio Estimates
95% Confidence

Effect grp −grp Estimate DF Limits
grp 1 2 0.51 279.8 0.356 0.730

Type III Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
grp 1 279.8 13.61 0.0003
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Model 2
A conditional logistic regression analysis can be performed by including a

STRATA statement in the PROC LOGISTIC procedure. The EVENT option specifies
the order for comparing ‘sleepn1’ effects and the CLODDS option causes odds
ratios and their confidence intervals to be produced.

PROC LOGISTIC; CLASS id grp;
MODEL sleepn1(EVENT=’1’) = grp/ CLODDS=WALD;
STRATA id;

The LOGISTIC Procedure

Conditional Analysis

Model Information
Data Set WORK.A
Response Variable sleepn1
Number of Response Levels 2
Number of Strata 166
Number of Uninformative Strata 97
Frequency Uninformative 226
Model binary logit
Optimization Technique Newton-Raphson ridge

Number of Observations Read 477
Number of Observations Used 421

Response Profile
Ordered Total
Value sleepn1 Frequency
1 0 246
2 1 175

Probability modeled is sleepn1=1.
NOTE: 56 observations were deleted due to missing values for
the response, explanatory, or strata variables.

Class Level Information
Design

Class Value Variables
grp 1 1

2 −1
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Strata Summary
sleepn1

Response −------ Number of
Pattern 0 1 Strata Frequency
1 0 1 8 8
2 1 0 11 11
3 0 2 16 32
4 1 1 12 24
5 2 0 11 22
6 0 3 13 39
7 1 2 27 81
8 2 1 30 90
9 3 0 38 114

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics
Without With

Criterion Covariates Covariates
AIC 141.877 129.273
SC 141.877 133.315
−2 Log L 141.877 127.273

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 14.6047 1 0.0001
Score 14.0950 1 0.0002
Wald 13.1683 1 0.0003

Type 3 Analysis of Effects
Wald

Effect DF Chi-Square Pr > ChiSq
grp 1 13.1683 0.0003

Analysis of Maximum Likelihood Estimates
Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq
grp 1 1 −0.5216 0.1437 13.1683 0.0003
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Odds Ratio Estimates and Wald Confidence Intervals
Effect Unit Estimate 95% Confidence Limits
grp 1 vs 2 1.0000 0.352 0.201 0.619

Note that the ‘grp’ effect in this case is half of that given in Table 8.8. This is due
to the different parameterisation used in PROC LOGISTIC.

Model 3

PROC GLIMMIX;
MODEL sleepn1/one = grp seas age/LINK = LOGIT SOLUTION OR CL;

Model 4

PROC GLIMMIX;
MODEL sleepn1/one = grp/ LINK = LOGIT SOLUTION OR CL;

8.6 Different variances for treatment groups in a simple
between-patient trial

In a simple between-patient trial, the treatment groups will sometimes have
different variances. Allowing for this can produce more appropriate standard
errors for treatment estimates, and also the variance values themselves may aid
the understanding of the different treatment mechanisms. Often, the possibility of
different treatment variances is not considered when choosing an analysis model.
However, it can easily be allowed for in a mixed model by structuring the residual
matrix to have a different variance for each treatment group. Observations will
remain uncorrelated (provided no random effects are specified), and thus the
model retains many of the features of a fixed effects analysis. Consider the example
data used to illustrate the notation in Section 2.1.

Centre Treatment Baseline systolic BP Post-treatment systolic BP

1 A 178 176
1 A 168 194
1 B 196 156
1 B 170 150
2 A 165 150
2 B 190 160
3 A 175 150
3 A 180 160
3 B 175 160
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If different variances are allowed for the treatment groups, the variance matrix
would have the form (assuming no random effects are fitted)

V = R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

𝜎
2
A 0 0 0 0 0 0 0 0

0 𝜎
2
A 0 0 0 0 0 0 0

0 0 𝜎
2
B 0 0 0 0 0 0

0 0 0 𝜎
2
B 0 0 0 0 0

0 0 0 0 𝜎
2
A 0 0 0 0

0 0 0 0 0 𝜎
2
B 0 0 0

0 0 0 0 0 0 𝜎
2
A 0 0

0 0 0 0 0 0 0 𝜎
2
A 0

0 0 0 0 0 0 0 0 𝜎
2
B

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

8.6.1 Example

We now consider the hypertension trial introduced in Section 1.3 as a simple
between-patient trial. The final DBP measurement is analysed, and centre effects
are ignored. A model with separate variances for each treatment group (Model 2)
is compared with a standard model that assumes a constant variance over all
treatments (Model 1). Both models fit baseline and treatment effects as fixed. The
results obtained are given in Table 8.9.

Model 2 indicates that treatment A may be more variable than treatments B
and C. A likelihood ratio test is used to test whether this model is significantly better

Table 8.9 Results from Models 1 – 3.

Model Treatment
Residual
variance

Centre variance
component

Centre. treatment
variance component Log (L)

1 A – C 79.8 – – –1036.15
2 A 104.3 – – –1031.72

B 56.5
C 76.9

3 A 92.4 5.76 4.43 –1022.47
B 44.5
C 66.7

Fixed effects (SEs)

Model Baseline A−B A−C B−C

1 0.30 (0.11) 1.01 (1.29) 3.04 (1.28) 2.04 (1.31)
2 0.31 (0.11) 1.00 (1.29) 3.05 (1.36) 2.05 (1.19)
3 0.30 (0.11) 1.23 (1.42) 2.88 (1.49) 1.65 (1.35)
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than Model 1. This gives 2 × (1036.15 − 1031.72) = 8.86 ∼ 𝜒
2
2 (two DF are used

because Model 2 uses two additional variance parameters) and shows that Model 2
is a significant improvement (p=0.012). Thus, it is unlikely that the differences in
the treatment variances have occurred by chance. The standard errors in Model 2
reflect the different treatment variances. The standard error has become larger for
A−C and smaller for B−C.

Including random centre and centre⋅treatment effects

Different treatment variances can be modelled at the residual level even when
random effects are included. We illustrate this by adding random centre and
centre⋅treatment effects (Model 3). The standard errors are increased over those
in Models 1 and 2 because treatment effects are assumed to vary randomly
across the centres. As in Model 2, the standard errors reflect the different residual
variances for treatments.

SAS code and output

Variables
pat = patient,
centre = centre,
treat = treatment (A = 20 mg dose, B = 40 mg dose, C = placebo),
dbp = post-treatment DBP (mmHg),
dbp1 = pre-treatment DBP (mmHg).

Output is only given for Model 2, since it is the main model we are illustrating in
this section.

Model 1

PROC MIXED; CLASS centre treat;
MODEL dbp = dbp1 treat/ S;
LSMEANS treat/ DIFF PDIFF CL;

Model 2

PROC MIXED NOCLPRINT; CLASS centre treat pat;
MODEL dbp = dbp1 treat/ S DDFM=KR;
REPEATED /SUBJECT=pat GROUP=treat;
LSMEANS treat/ DIFF PDIFF CL;

The REPEATED statement causes the covariance matrix to be blocked by
patients. Because there is only one observation per patient, there will be no
correlation between the observations. The GROUP option causes a separate
variance parameter to be used for each treatment group. Only the more relevant
parts of the output are listed.
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Dimensions
Covariance Parameters 3
Columns in X 5
Columns in Z 0
Subjects 288

Covariance Parameter Estimates
Cov Parm Subject Group Estimate
Residual pat treat A 104.31
Residual pat treat B 56.4517
Residual pat treat C 76.8822

Fit Statistics
−2 Res Log Likelihood 2063.4
AIC (smaller is better) 2069.4
AICC (smaller is better) 2069.5
BIC (smaller is better) 2080.4

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
2 8.87 0.0119

In this case, the likelihood ratio test compares this model to Model 1 where the
same variance is fitted across all treatment groups. It demonstrates that fitting
separate variances for treatment groups leads to a significant improvement.

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
dbp1 1 281 7.89 0.0053
treat 2 188 2.73 0.0676

Least Squares Means
Standard

Effect treat Estimate Error DF t Value Pr > |t| Alpha
treat A 91.5727 1.0215 98.6 89.64 <.0001 0.05
treat B 90.5767 0.7811 92.4 115.96 <.0001 0.05
treat C 88.5274 0.9002 93.5 98.34 <.0001 0.05

Least Squares Means
Effect Treat Lower Upper
treat A 89.5456 93.5997
treat B 89.0254 92.1280
treat C 86.7398 90.3149
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Differences of Least Squares Means
Standard

Effect treat −treat Estimate Error DF t Value Pr > |t| Alpha
treat A B 0.9960 1.2869 181 0.77 0.4400 0.05
treat A C 3.0453 1.3611 191 2.24 0.0264 0.05
treat B C 2.0494 1.1934 183 1.72 0.0876 0.05

Differences of Least Squares Means
Effect treat −treat Lower Upper
treat A B −1.5432 3.5351
treat A C 0.3606 5.7301
treat B C −0.3053 4.4041

Model 3

PROC MIXED; CLASS centre treat pat;
MODEL dbp = dbp1 treat/ S DDFM=KR;
RANDOM centre centre*treat;
REPEATED /SUBJECT=pat GROUP=treat;
LSMEANS treat/ DIFF PDIFF CL;

8.7 Estimating variance components in an animal
physiology trial

The purpose of this experiment was to calculate variance components for breath-
ing measurements in rabbits and to use them to design a future clinical trial to
compare two treatments. The inspiration times for 100 breaths were measured
on four rabbits on each of 4 days. This gave rise to four potential sources of
variation rabbits, days, rabbit⋅day interaction and residual (between breaths).
Note that the variability of individual breaths is given by the sum of the variance
components, 𝜎2

b + 𝜎
2
d + 𝜎

2
bd + 𝜎

2
r . A random effects model was fitted to inspiration

time (seconds) with each of these effects taken as random. The resulting variance
components were as follows:

Source Variance component

Rabbit (𝜎2
b ) 0.00231

Day (𝜎2
d ) 0.00247

Rabbit⋅day (𝜎2
bd) 0.00442

Residual (𝜎2
r ) 0.00318

The positive rabbit component indicates that, not surprisingly, inspiration time
varies between rabbits. The positive day and rabbit⋅day components show there is
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variation between days and additional variation within rabbits on different days.
Thus, the rabbits’ breathing is sensitive to the trial environment on each day.
Factors such as time of day, time since last meal, the experimenter, differences in
trial set-up, could all have contributed to this variation. However, we should bear
in mind that there were only three DF available for estimating the rabbit and day
components (𝜎2

b and 𝜎
2
d ), and these estimates are therefore only approximate.

8.7.1 Sample size estimation for a future experiment

We seek to design a study to compare two treatments that are expected to influence
breathing in rabbits. Two possibilities are a parallel group study, where each rabbit
receives only one treatment or a cross-over design where each rabbit will receive
each treatment. For ethical reasons, the number of rabbits should be kept as low
as possible, as should the number of days for which each rabbit is studied. We set
a maximum of 10 days in the study for each rabbit, but as many as 100 breaths
could easily be sampled on each day.

Initially, we must consider the mean difference in inspiration time between the
two treatments, Δ, which we wish the study to be able to detect. We must also
set the significance level 𝛼 and the power 𝛽. Then, for either design, the standard
sample size estimation method can be used to estimate the required number of
rabbits, number of days and the number of breaths per session. We require

Δ = (Z(1−𝛼)∕2 + Z
𝛽
) × SE(t1 − t2).

A range of possible values for the number of rabbits per treatment (nt), the
number of days (nd) and the number of breaths (nb) can be calculated from which
the preferred design can be chosen. If the relative costs of using rabbits, days
and breaths were specified, we could determine the optimal design. In practice,
though, it is usually easier to select the design by scrutinising the range of possible
designs that satisfy the power requirements. In the context of this design, there
is a clear hierarchy in the design priorities. The first priority is to minimise the
number of rabbits, then the number of days per rabbit, and then the number of
breaths per day.

In the first instance, we consider setting Δ = 0.10, 𝛼 = 0.05 and 𝛽 =0.1.

Between-rabbit design

The variation of the mean treatment difference in inspiration duration is given by

var(t1 − t2) = 2[𝜎2
b∕nt + 𝜎

2
d∕nd + 𝜎

2
bd∕(nt × nd) + 𝜎

2
r ∕(nt × nd × nb)],

and from this we obtain

Δ = (Z
𝛼∕2 + Z1−𝛽) × {2[𝜎2

b∕nt + 𝜎
2
d∕nd + 𝜎

2
bd∕(nt × nd)∕ + 𝜎

2
r ∕(nt × nd × nb)]}1∕2

.

The approach that we recommend to determine the final design is to calculate Δ
for a range of values for nt, nd and nb, accepting only those which yield Δ<0.10.
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A SAS program to undertake this calculation is given at the end of this section.
The smallest number of rabbits to give a viable design is 14 rabbits per treatment
with 9 days of observation and 25 breaths per day. By increasing the number of
rabbits to 18 per treatment, the number of days per rabbit can be reduced to eight.

Within-rabbit design

In this design, each treatment is received by each of the nt rabbits for nd days.
Again, nb breaths are measured on each day. The variation of the mean treatment
difference in inspiration duration is now given by

var(t1 − t2) = 2 × [𝜎2
d∕nd + 𝜎

2
bd∕(nt × nd) + 𝜎

2
r ∕(nt × nd × nb)],

Δ = (Z
𝛼∕2 + Z1−𝛽) × {2 × [𝜎2

d∕nd + 𝜎
2
bd∕(nt × nd) + 𝜎

2
r ∕(nt × nd × nb)]}1∕2

.

As before, Δ is calculated for a range of values for nt, nd and nb. We find in
this instance that none of the designs satisfies the study requirements. This
occurs because the requirement to limit rabbits to 10 days of study means that
a maximum of 5 days are allowed per treatment. Thus, however, large nt is set,
var(t1 − t2) > 2𝜎2

d
∕nd, and Δ > (Z

𝛼∕2 + Z1−a) × (2𝜎2
d
∕nd)1∕2 = 0.102.

Thus, with these design requirements, we could only undertake a between-rabbit
design with 14 rabbits per treatment group. This could cause the design require-
ments to be rethought, and we illustrate the following method with Δ changed to
0.15.

The following table lists, for the between-rabbit design, combinations of the
numbers of rabbits, days and breaths that satisfy Δ<0.15. The table is structured
so that for any specified number of rabbits, the number of days is the minimum
possible to give Δ<0.15, and then for that number of rabbits and days, the
number of breaths is also the minimum to satisfy Δ<0.15.

Rabbits per group (nt) Days (nd) Breaths (nb) 𝚫

4 8 5 0.148 16
6 5 5 0.148 39
8 4 5 0.149 57

10 4 5 0.143 15
12 4 5 0.138 71
14 4 5 0.135 45
16 3 10 0.149 72
18 3 5 0.148 23
20 3 5 0.146 65

– – – –

– – – –
100 3 5 0.134 71
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Since our priority in this study is to minimise the number of rabbits, we would
prefer the design with four rabbits per group, studied for eight days each, with five
breaths measured per day. If our priorities were different, we could alternatively
consider six rabbits studied for five days, eight rabbits studied for four days, each
with five breaths per day, or even 16 rabbits studied for three days with 10 breaths
per day.

With the requirement that Δ<0.15, it is now also possible to use the
within-rabbit design. The following table, constructed along the lines of the
previous table, provides alternative designs.

Rabbits (nt) Days (nd) Breaths (nb) 𝚫

2 5 5 0.144 95
4 4 5 0.140 08
6 4 5 0.131 94
8 3 5 0.147 43

10 3 5 0.144 39
12 3 5 0.142 33
14 3 5 0.140 84
– – – –
– – – –

48 3 5 0.134 33
50 3 5 0.134 22

We could therefore opt for only two rabbits studied for five days per treatment
with five breaths per day. Although this does satisfy the sample size requirement
as specified, it is intuitively unappealing to conduct such a small study, and the
design with four rabbits studied for four days per treatment might be preferred.

Note that in these tables, we have only considered intervals of two in the number
of rabbits. We could, of course, fill in the gaps in the regions, which we are consid-
ering implementing. We should bear in mind, however, the limited accuracy of
the estimates of the variance components on which our calculations are based.
Apparently, precise sample size calculations could be misleading. Therefore, we
recommend that the sample size calculations be viewed as establishing ballpark
figures for the size of the study and helping in determining the most appropriate
type of design.

We also recommend that some form of sensitivity analysis is performed before
a trial design is finalised. This can have two dimensions. One of these is how the
design changes with the choice of Δ, 𝛼 and 𝛽. We have seen previously that a
between-rabbit design would be essential with our first choice of figures, while
a within-subject design would be preferable when Δ was larger. The second
dimension is the sensitivity of the design to the values used for the estimates of
variance components. Sometimes, quite small changes can modify the design
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appreciably. The wisest design might not be the one that is optimal with the initial
choice of parameters but the one that performs well over a wider range of possible
parameter values.

SAS code and output

Variables
rabbit = rabbit number
ins = inspiration time (seconds)
day = day number

Analysis model

PROC MIXED; CLASS rabbit day;
MODEL ins=;
RANDOM day rabbit day*rabbit;

Class Level Information
Class Levels Values
rabbit 4 1 2 3 4
day 4 1 2 3 4

Iteration History
Iteration Evaluations −2 Res Log Like Criterion
0 1 −2724.63410044
1 2 −4378.01162932 0.00014476
2 1 −4378.64036487 0.00002574
3 1 −4378.74485209 0.00000138
4 1 −4378.75001721 0.00000001

Convergence criteria met.

Covariance Parameter

Estimates
Cov Parm Estimate
day 0.002467
rabbit 0.002312
rabbit*day 0.004419
Residual 0.003185

Fit Statistics
−2 Res Log Likelihood −4378.8
AIC (smaller is better) −4370.8
AICC (smaller is better) −4370.7
BIC (smaller is better) −4373.2
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Sample size estimation for between-rabbit trial

DATA a; SET a;
DO rabbit = 2 TO 100 BY 2;
DO day = 1 TO 10;
DO breath = 5 TO 100 BY 5;
OUTPUT;
END;
END;
END;

DATA a; SET a;
d = (2*10.51*(0.00231/rabbit + 0.00247/day +

0.00442/(day*rabbit) +
0.00318/(breath*day*rabbit)))**0.5;

*IF d<0.10; * for delta<0.10;
IF d<0.15;
PROC SORT; BY rabbit day breath;

DATA a; SET a; BY rabbit;
IF FIRST.rabbit;
PROC PRINT NOOBS; VAR rabbit day breath d;

Output appears in the main text.

Sample size estimation for within-rabbit trial

DATA a; SET a;
DO rabbit = 2 TO 50 by 2;
DO day = 1 TO 10;
DO breath = 5 TO 100 BY 5;
OUTPUT;
END;
END;
END;

DATA a; SET a;
d = (2*10.51*(0.00442/(day*rabbit)

+ 0.00247/day + 0.00318/(breath*day*rabbit)))**0.5;
IF d<0.15;
PROC SORT; BY rabbit day breath;

DATA a; SET a; BY rabbit;
IF first.rabbit;
PROC PRINT NOOBS; VAR rabbit day breath d;

Results appear in the main text.



Brown778258 c08.tex V3 - 11/14/2014 10:17 A.M. Page 380

380 Other applications of mixed models

8.8 Inter- and intra-observer variation in foetal scan
measurements

Ultrasound scans are often used during pregnancy to predict gestation (age of
foetus). However, predictions made using ultrasound can be unreliable, partic-
ularly in the later stages of pregnancy. An experiment to measure inter- and
intra-observer variability in ultrasound measurements was carried out at an
Edinburgh maternity hospital. Six radiologists participated in the experiment.
Fifty-two women in the latter stages of pregnancy with a mean gestation of 29.9
(SD 3.2) weeks were each scanned by two of the radiologists selected at random.
Both scans were carried out in the same session. Note that it would not have been
ethical or, indeed, feasible to have used all six radiologists at each session.

A random effects model was fitted to the data, with radiologist effects taken as
random and subject (women) effects as fixed. In this case, subjects are fitted as fixed
because they each have a different gestation and therefore cannot be treated as a
randomly distributed sample. The resulting variance components were as follows:

Radiologist 0.000,
Residual 0.287.

The zero radiologist component indicates that there was no systematic variability
between the radiologists. This reassured the radiologists that although they
often obtained different gestation predictions on the same women, none of
them had a tendency to produce particularly high or low readings. The residual
variance of 0.287 potentially incorporates several types of variability such as
image variation, variation caused by foetus changing position, and radiologist
measurement error. The residual value indicates that predicted gestations have
a standard deviation of

√
0.287 = 0.54 weeks and hence a 95% confidence

interval of ± t47,0.975 ×0.54=±2.01×0.54=±1.09 weeks (a t47 statistic is
used because 47 is the residual DF). Note that this is the error encountered in
measuring foetus size from which gestation is predicted. It does not incorporate
the variability in foetal size that occurs naturally at given gestations. The standard
error would be higher if this were taken into account.

SAS code and output

Variables
obs = observer ID,
pat = patient number,
gest= estimated gestation (weeks).

PROC MIXED; CLASS pat obs;
MODEL gest=pat/ DDFM=KR;
RANDOM obs;
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Class Level Information
Class Levels Values
pat 52 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52

obs 6 e i j n r s

Iteration History
Iteration Evaluations −2 Res Log Like Criterion
0 1 118.98383527
1 1 118.98383527 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates
Cov Parm Estimate
Obs 0
Residual 0.2886

Fit Statistics
−2 Res Log Likelihood 119.0
AIC (smaller is better) 121.0
AICC (smaller is better) 121.1
BIC (smaller is better) 120.8

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
Pat 51 52 71.92 <.0001

8.9 Components of variation and mean estimates in a
cardiology experiment

In this experiment, the heart wall thickness of 11 healthy dogs was measured
using ultrasound scans. Each scan consisted of 20 thickness measurements
taken over a single heartbeat cycle. In this case, we consider the maximum
thickness (millimetres) obtained over the cycle. This was not a carefully planned
experiment, and a varying number of scans and observers were used for each dog.
Each dog had between two and six scans, and each scan was assessed by between
one and three observers (see Table 8.10). Although the data are not balanced,
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Table 8.10 Number of scans and observers per scan for each dog.

Dog
Number
of scans

Minimum number
of observers

Maximum number
of observers Mean thickness

Aussie 4 1 2 3.52
Corrie 2 3 3 3.78
Dance 4 1 3 4.27
Gem 2 1 3 5.53
Gus 2 1 1 3.87
Isla 2 2 3 6.54
Jenny 2 3 3 4.51
Jos 2 3 3 4.64
Midge 4 1 1 2.94
Mist 3 1 3 3.78
Tara 2 3 3 3.67

a random effects model can still be used to estimate variance components and
to calculate an appropriate estimate for the mean and standard error of heart
wall thickness. Taking the raw mean thickness and its standard error would be
inappropriate in this study, since greater weight would then be given to the dogs
and observers who were used most frequently. A random effects model was fitted
with dog, observer, dog⋅observer and scan effects taken as random. The variance
component estimates were as follows:

Source Variance component

Dog 0.294
Obs 0.083
Dog⋅obs 0.307
Scan 0.705
Residual 0.566

These indicate little systematic variation (bias) between observers. Not sur-
prisingly, there is some additional variation occurring between the heart wall
thicknesses of individual dogs. There is also some variation between the observers
in their overall readings (i.e. over all scans) for each dog (dog⋅obs). However, most
of the variation occurs at the scan and residual levels. Thus, there is variability
between scans even after allowing for between-dog variability, and there is
variability in readings made from the same scans by different observers (residual).

The overall mean maximum thickness estimate was 4.42 mm, with a standard
error of 0.33. This compares with a raw mean of 4.25 mm, with standard error
0.18 (calculated taking the naive approach that all observations are independent).
While the means are of a similar order, the raw mean standard error does not
adequately take into account the variation from each source.
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SAS code and output

Variables
dog = dog name,
obs = observer initials,
max =maximum heart wall thickness (mm),
scan = scan ID

PROC MIXED; CLASS dog obs scan;
MODEL max =/ SOLUTION DDFM=KR;
RANDOM dog obs dog*obs scan;

Class Level Information
Class Levels Values
dog 11 Aussie Corrie Dance Gem Gus

Isla Jenny Jos Midge Mist Tara
obs 3 AA BB CC
scan 29 dog 100 dog 101 dog 102 dog

105 dog 106 dog 107 dog 108
dog 110 dog 111 dog 112 dog
113 dog 114 dog 115 dog 67 dog
77 dog 78 dog 79 dog 80 dog 83
dog 84 dog 85 dog 86 dog 90
dog 92 dog 95 dog 96 dog 97
dog 98 dog 99

(dog in scan values is irrelevant).

Covariance Parameter

Estimates
Cov Parm Estimate
Dog 0.2939
Obs 0.08281
dog*obs 0.3070
scan 0.7047
Residual 0.5656

Fit Statistics
−2 Res Log Likelihood 177.8
AIC (smaller is better) 187.8
AICC (smaller is better) 189.1
BIC (smaller is better) 189.8

Solution for Fixed Effects
Standard

Effect Estimate Error DF t Value Pr > |t|
Intercept 4.4157 0.3298 2 13.39 0.0055



Brown778258 c08.tex V3 - 11/14/2014 10:17 A.M. Page 384

384 Other applications of mixed models

8.10 Cluster sample surveys

Sometimes, data occur within clusters; for example, patients may be treated at
particular hospitals or by particular GPs. In a cluster sample survey, clusters
are usually sampled at random. Either all items (e.g. patients) within a cluster
are then observed or, alternatively, a random sample of items is taken from each
cluster (a two-stage cluster sample). Random variation between clusters can be
allowed by fitting cluster effects as random in the analysis. The ‘global’ results
obtained can then be related with some confidence to the population of clusters.
Note that inference will be stronger than in multi-centre analyses where centres
are rarely sampled randomly. The model can also be used to produce shrunken
cluster estimates, which help to prevent unrealistic estimates occurring as a
result of chance variation when cluster sizes are small.

8.10.1 Example: cluster sample survey

This was a cluster sample survey undertaken to determine the prevalence of a
disease in animals, taken from Thrusfield (1995) (neither disease nor animal
species is specified in this reference). There were a total of 865 farms in the
population of interest, and 14 were sampled at random. All animals at these
farms were assessed for the presence of the disease. The disease frequencies and
prevalences are listed as follows:

Farm Animals Diseased animals Prevalence

1 272 17 0.063
2 87 15 0.172
3 322 71 0.220
4 176 17 0.097
5 94 9 0.096
6 387 23 0.059
7 279 78 0.280
8 194 59 0.304
9 65 37 0.569

10 110 34 0.309
11 266 23 0.087
12 397 57 0.144
13 152 19 0.125
14 231 17 0.074
Total 3 032 476 0.157
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A random effects model is fitted to the data using pseudo-likelihood, with farm
effects taken as random. The data are analysed in binomial form. Since there will
be a separate farm effect for each observation, the dispersion parameter is fixed
at one to prevent the farm variance component from becoming incorporated into
the dispersion parameter. There are no farms with a prevalence of zero. Therefore,
there will be no uniform farm effects, and we would not expect any bias in the farm
variance component (see Section 3.2.3).

The farm variance component was 0.727 and indicates that, not surprisingly,
disease rates vary by more than chance variation between the farms. The
random effects model gave the logit (SE) for overall disease as −1.684 (0.236),
which leads to an overall prevalence rate of 15.7%, with 95% confidence limits
of 10.0–23.6% (calculated by −1.684± t13,0.975 ×0.236=−1.684±2.160×
0.236 and converting to rates by (1+ exp(−logit))−1).

This compares with the ‘local’ raw prevalence rate of 15.7(14.4,17.0)%, which
has a much narrower confidence interval, since it does not take the between-farm
variation into account. (Note also that since there is no estimation of a variance
component, the asymptotic normality of the estimate is used to calculate the 95%
confidence limits from estimate ±1.96× SE.) The latter estimate and standard
error would only be applicable if the animals were (erroneously) assumed to
be a random sample of all animals in the population. In contrast, the ‘global’
estimate obtained from the random effects model can legitimately be related to
the potential population of farms.

SAS code and output

Variables
farm = farm ID,
dis =number of animals with the disease,
n =number of animals at farm.

PROC GLIMMIX; CLASS farm;
MODEL dis/n= /SOLUTION LINK=LOGIT DDFM=KR OR CL;
RANDOM farm;

Fit Statistics
−2 Res Log Pseudo-Likelihood 36.29
Generalized Chi-Square 13.03
Gener. Chi-Square / DF 1.00

Covariance Parameter

Estimates
Cov Standard
Parm Estimate Error
Farm 0.7267 0.3055
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Solutions for Fixed Effects
Standard

Effect Estimate Error DF t Value Pr > |t| Alpha
Intercept −1.6843 0.2356 12.9 −7.15 <.0001 0.05

Solutions for Fixed Effects
Effect Lower Upper
Intercept −2.1937 −1.1750

8.11 Small area mortality estimates

There is a need to assess health needs of particular populations to allocate medical
resources effectively. We consider mortality rates in the 40–64 years age group
in Edinburgh by post code area (e.g. EH6). These rates provide some measure
of general health in the area and could conceivably have some value for health
care planning. However, mortality rates are subject to random variation and
may be inaccurate, particularly in small areas. This problem can be alleviated by
obtaining shrunken mortality estimates using a random effects model, with post
code area taken as random. The data are analysed in binomial form, with the
dispersion parameter fixed at one. This prevents the area variance component
from becoming incorporated into the dispersion parameter. The data could
alternatively have been analysed in Bernoulli form (i.e. a separate observation for
each person), although this would have led to a very large dataset. If there had
been no uniform area categories (i.e. with zero mortality), we would expect the
results to have been identical, regardless of the data form. Since one of the areas
does have a mortality of zero, the Bernoulli analysis might have been marginally
preferable, since the (unfixed) dispersion parameter would then help to overcome
any bias caused by random effects shrinkage (see Section 3.2.4). However, we
found that the results changed only very slightly when the data were analysed in
this form.

The overall mortality rate of 40–64-year-old people in 1991 in Edinburgh was
1.29% (2845/220,178). The variance component obtained for post code area is
0.0576, indicating that more variability occurs between the areas than expected
by chance variation. This is not surprising, since the areas are known to differ
in terms of socioeconomic factors and age distribution within the 40–64-years
range. The shrunken mortality estimates are listed in Table 8.11 in increasing
order. Note that they are calculated by {1+ exp[−(intercept+ logit)]}−1.

The ranking of the areas is quite different between the raw and shrunken mor-
tality rates. As expected, greatest shrinkage towards the overall mortality rate of
1.29% occurs in the areas with smaller populations. For example, 0% mortal-
ity is observed in area EH38 with a population of 93, but the shrunken rate of
1.19% is close to the overall rate of 1.29%. The area with the highest raw mortal-
ity rate, EH24, with a relatively small population of 386, has its raw rate of 2.85%
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Table 8.11 Mortality and shrunken mortality prediction of 40–64-year-old people in
Edinburgh by post code area.

Post
code
sector

Deaths
aged

40–64

Population
aged

40–64

Shrunken
logit

estimate

Raw
mortality
rate per

100

Shrunken
mortality
rate per

100
Original

rank

EH10 60 8298 −0.442 0.72 0.81 3
EH9 38 4704 −0.316 0.81 0.92 7
EH12 99 11105 −0.300 0.89 0.94 9
EH53 19 2456 −0.271 0.77 0.96 4
EH39 20 2399 −0.233 0.83 1.00 8
EH26 53 5550 −0.214 0.95 1.02 15
EH45 23 2534 −0.195 0.91 1.04 11
EH14 122 11922 −0.186 1.02 1.05 16
EH54 114 10956 −0.170 1.04 1.07 17
EH35 5 693 −0.148 0.72 1.09 2
EH32 52 4941 −0.139 1.05 1.10 19
EH51 47 4459 −0.134 1.05 1.11 20
EH34 5 644 −0.126 0.78 1.11 5
EH29 9 999 −0.124 0.90 1.12 10
EH55 24 2294 −0.112 1.05 1.13 18
EH37 4 512 −0.105 0.78 1.14 6
EH31 7 769 −0.102 0.91 1.14 12
EH46 8 853 −0.101 0.94 1.14 14
EH42 25 2315 −0.094 1.08 1.15 21
EH3 52 4630 −0.089 1.12 1.16 22
EH38 0 93 −0.064 0.00 1.19 1
EH41 40 3416 −0.053 1.17 1.20 23
EH30 32 2678 −0.036 1.19 1.22 24
EH20 25 2087 −0.032 1.20 1.22 25
EH19 45 3704 −0.028 1.21 1.23 26
EH21 77 6258 −0.022 1.23 1.24 28
EH36 1 108 −0.019 0.93 1.24 13
EH49 56 4529 −0.016 1.24 1.24 29
EH18 9 732 −0.009 1.23 1.25 27
EH48 102 8130 −0.006 1.25 1.25 30
EH43 3 237 0.000 1.27 1.26 31
EH40 7 548 0.003 1.28 1.27 33
EH25 14 1099 0.004 1.27 1.27 32
EH44 12 906 0.019 1.32 1.29 35
EH33 42 3233 0.020 1.30 1.29 34
EH4 220 16382 0.058 1.34 1.34 36
EH2 3 134 0.068 2.24 1.35 52
EH15 85 6106 0.082 1.39 1.37 37
EH28 14 918 0.082 1.53 1.37 40

(continued overleaf )
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Table 8.11 (continued)

Post
code
sector

Deaths
aged

40–64

Population
aged

40–64

Shrunken
logit

estimate

Raw
mortality
rate per

100

Shrunken
mortality
rate per

100
Original

rank

EH22 116 8297 0.089 1.40 1.38 38
EH47 113 7649 0.137 1.48 1.44 39
EH13 65 4251 0.152 1.53 1.47 41
EH5 73 4772 0.156 1.53 1.47 42
EH8 84 5480 0.162 1.53 1.48 43
EH52 78 5044 0.167 1.55 1.49 44
EH17 79 5084 0.171 1.55 1.49 45
EH27 12 569 0.191 2.11 1.52 51
EH6 121 7624 0.202 1.59 1.54 46
EH24 11 386 0.268 2.85 1.64 54
EH23 39 2031 0.287 1.92 1.67 49
EH16 147 7731 0.370 1.90 1.82 47
EH11 165 8604 0.383 1.92 1.84 48
EH7 143 7355 0.389 1.94 1.85 50
EH1 26 970 0.425 2.68 1.92 53

shrunken to 1.64% and no longer ranks the highest. Any planning decisions based
on the mortality rates would differ widely depending on which estimates were
taken. Use of shrunken estimates is an important aid to overcoming the problem of
extreme estimates that can occur when estimates are based on small populations.
However, it is important to bear in mind that the estimates will be sensitive to
the assumption that the underlying practice rates, that is, the 𝛽, are normally
distributed on the logit scale (see Section 2.4.6). Unfortunately, at present, it is
difficult to check with confidence that this assumption is met.

It is possible to use t tests to determine whether the mortality estimates for each
area are significantly different from the average. From the SAS output produced
at the end of this section, we find that post code areas EH1, EH11, EH16, EH6 and
EH7 have significantly higher mortality rates (p=0.01, 0.0001, 0.0001, 0.04,
0.0001, respectively), and areas EH10, EH12, EH14 and EH9 have significantly
lower mortality rates (p=0.0003, 0.003, 0.05, 0.02, respectively). If required,
the estimated standard errors produced by the analysis can be used to calculate
confidence intervals for the shrunken mortality rates.

SAS code and output

Variables
pc = post code area,
death =number of deaths in post code area,
pop = population in post code area.
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PROC GLIMMIX; CLASS pc;
MODEL death/pop= / LINK=LOGIT SOLUTION DDFM=KENWARDROGER;
RANDOM pc /SOLUTION;

Fit Statistics
−2 Res Log Pseudo-Likelihood 36.88
Generalized Chi-Square 52.61
Gener. Chi-Square / DF 0.99

Covariance Parameter

Estimates
Cov Standard
Parm Estimate Error
Pc 0.05755 0.01709

Solutions for Fixed Effects
Standard

Effect Estimate Error DF t Value Pr > |t|
Intercept −4.3591 0.04199 44.99 −103.82 <.0001

Solution for Random Effects
Std Err

Effect pc Estimate Pred DF t Value Pr > |t|
Pc EH1 0.4250 0.1724 53 2.47 0.0170
Pc EH10 −0.4418 0.1153 53 −3.83 0.0003
Pc EH11 0.3825 0.08551 53 4.47 <.0001
Pc EH12 −0.3002 0.09883 53 −3.04 0.0037
Pc EH13 0.1519 0.1189 53 1.28 0.2071
ETC.

8.12 Estimating surgeon performance

The performance of nine surgeons undertaking mastectomy operations at
an Edinburgh hospital was recorded in terms of whether any post-operative
complications arose (reported by Dixon et al., 1996). However, some of the
surgeons only performed a few operations, and therefore their complication rates
are likely to be unreliable. More appropriate shrunken estimates can be obtained
by fitting a random effects model with surgeons taken as random. The data were
analysed in binomial form, with the dispersion parameter fixed at one.

The overall complication rate was 42.6%. The surgeon variance component was
1.296, indicating greater variability between surgeons than expected by chance.
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The raw and shrunken complication rates are given as follows. As in the previous
example, the shrunken rates are calculated by {1+ exp[−(intercept+ logit)]}−1.

Surgeon
number

Number of
compli-
cations

Number of
operations

Shrunken
logit

estimate

Compli-
cation

rate (%)

Shrunken
compli-
cation

rate (%)
Original

rank

1 7 91 −1.957 8 9 1.0
3 3 15 −0.825 20 25 2.0
9 1 3 −0.179 33 38 3.0
5 2 5 −0.057 40 41 4.0
4 7 13 0.375 54 52 5.0
6 3 5 0.438 60 53 6.0
8 2 3 0.479 67 54 7.5
2 10 15 0.818 67 63 7.5
7 2 2 0.908 100 65 9.0

Although the ranking of the surgeons does not change, some of the shrunken rates
have changed noticeably from the raw rates. For example, surgeon 7 has a raw
complication rate of 100% based on only two operations, but his shrunken rate of
65% is more acceptable. However, even after shrinkage, it is clear that complica-
tion rates differ widely between the surgeons. From the SAS output produced at the
end of this section, we find that surgeon 1 has a significantly lower complication
rate than average (p=0.008) but that no surgeon has a significantly higher rate
than average. If required, the estimated standard errors produced by the analysis
can be used to calculate confidence intervals for the complication rate of each
surgeon. As with the previous example, it is important to bear in mind that the
estimates will be sensitive to the strong assumption that the underlying practice
rates, that is, the 𝛽, are normally distributed on the logit scale (see Section 2.4.6).

SAS code and output

Variables
surg = surgeon ID
outcome =number of patients with post-operative complications
n =number of patients operated on by surgeon.

PROC GLIMMIX; CLASS surg;
MODEL outcome/n= /LINK=LOGIT SOLUTION DDFM=KENWARDROGER;
RANDOM surg / SOLUTION;
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Fit Statistics
−2 Res Log Pseudo-Likelihood 29.82
Generalized Chi-Square 7.18
Gener. Chi-Square / DF 0.90

Covariance Parameter

Estimates
Cov Standard
Parm Estimate Error
surg 1.2779 0.8543

Solutions for Fixed Effects
Standard

Effect Estimate Error DF t Value Pr > |t|
Intercept −0.3115 0.4725 8 −0.66 0.5283

Solution for Random Effects
Std Err

Effect surg Estimate Pred DF t Value Pr > |t|
surg 1 −1.9572 0.5614 8 −3.49 0.0082
surg 2 0.8180 0.6436 8 1.27 0.2394
surg 3 −0.8247 0.6780 8 −1.22 0.2585
surg 4 0.3750 0.6545 8 0.57 0.5824
surg 5 −0.05697 0.8218 8 −0.07 0.9464
surg 6 0.4377 0.8162 8 0.54 0.6064
surg 7 0.9078 0.9913 8 0.92 0.3866
surg 8 0.4789 0.9121 8 0.53 0.6138
surg 9 −0.1785 0.9214 8 −0.19 0.8512

8.13 Event history analysis

Sometimes, data on the exact times of a particular event (or events) are available
on a group of patients. Examples of events would include asthma attacks, epilepsy
attacks, myocardial infarctions and hospital admissions. Often, occurrence (and
non-occurrence) of an event is available on a regular basis (e.g. daily), and
the data can then be thought of as having a repeated measures structure. An
objective may be to determine whether any concurrent events or measurements
have influenced the occurrence of the event of interest. For example, daily pollen
counts may influence the risk of asthma attacks; high blood pressure may precede
a myocardial infarction.
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8.13.1 Example

We will consider data from a placebo-controlled study of a treatment for eczema,
which can cause itchiness. Thirty-four female subjects were asked to complete
a diary, recording the severity of their eczema and days of menstrual bleeding.
This was done daily during a 4-week run-in period and for 6 months following
treatment. We will consider analysing the occurrence of severe itchiness. To
assess whether itchiness was related to the menstrual cycle, a covariance pattern
model was fitted with average pre-treatment itchiness, treatment (active or
placebo) and cycle (menstrual bleeding, y/n) taken as fixed effects and with a
compound symmetry covariance pattern to model the correlation between the
repeated observations on each subject. Many of the subjects had not recorded
their symptoms on every day or had stopped filling in their diaries before the
end of the trial. However, such missing data did not pose problems in fitting a
covariance pattern model.

This analysis produced a compound symmetry correlation parameter of 0.30,
showing a moderate correlation between itchiness records on the same subjects.
The treatment effect was clearly non-significant. The cycle effect was significant
(p=0.02), and subjects were more likely to experience severe itchiness during
menstrual bleeding. The cycle odds ratio and 95% confidence interval based on
empirical standard errors were 1.41 (1.05, 1.89). We suggest that the empirical
standard errors are taken because more complex covariance patterns have not
been explored, and it is possible that the true covariance pattern is not compound
symmetry. In this instance, the empirical standard errors are appreciably larger
than the model-based standard errors, making this the conservative approach. In
the following code, we use one of the options for reducing the standard error bias
with the empirical approach. All such methods gave broadly similar results with
slightly higher standard errors than the classical method.

SAS code and output

Variables
treat = treatment (a = active, p = placebo)
pat = subject
cycle =menstrual bleeding (1 = yes, 2 = no)
itch = response variable (0 = no itch, 1 = itch)
itch1 = proportion of days of severe itchiness pre-treatment
one =1 for all observations

PROC GLIMMIX ABSPCONV=0.00001 EMPIRICAL=FIRORES;
CLASS pat treat cycle;
NLOPTIONS MAXITER=50;

MODEL itch/one= itch1 treat cycle / LINK=LOGIT SOLUTION
DDFM=SATTERTH CL OR;
RANDOM INT /SUBJECT=pat TYPE=CS RESIDUAL;
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Note that the ABSPCONV and MAXITER options have been used, as the
procedure did not converge using the default settings. Note also that we could
have fitted this model using PROC GENMOD.

Fit Statistics
−2 Res Log Pseudo-Likelihood 21646.08
Generalized Chi-Square 3715.76
Gener. Chi-Square / DF 0.76

Covariance Parameter Estimates
Standard

Cov Parm Subject Estimate Error
CS pat 0.2957 0.07653
Residual 0.7616 0.01547

Solutions for Fixed Effects
Standard

Effect treat cycle Estimate Error DF t Value Pr > |t| Alpha
Intercept −1.8636 0.4244 31 −4.39 0.0001 0.05
itch1 2.0262 1.3196 31 1.54 0.1348 0.05
treat a 0.09362 0.4785 31 0.20 0.8462 0.05
treat p 0 .4785 . .38 .8462 .
cycle 1 0.3443 0.1446 33 2.38 0.0232 0.05
cycle 2 0 .4785 . .38 .8462 .

Solutions for Fixed Effects
Effect treat cycle Lower Upper
Intercept −2.7291 −0.9982
itch1 −0.6652 4.7176
treat a −0.8824 1.0696
treat p . .
cycle 1 0.05016 0.6385
cycle 2 . .

Odds Ratio Estimates
95% Confidence

Effect treat cycle −treat −cycle Estimate DF Limits
itch1 7.59 31 0.514 111.90
treat a p 1.10 31 0.414 2.91
cycle 1 2 1.41 33 1.051 1.89
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Type III Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
itch1 1 31 2.36 0.1348
treat 1 31 0.04 0.8462
cycle 1 33 5.67 0.0232

8.14 A laboratory study using a within-subject 4×4
factorial design

This example is part of a more extensive experiment investigating inflammatory
processes in cells, including the effects of nicotine and smoking habit, from three
categories of subjects: those with ulcerative colitis, Crohn’s disease, or controls
(Aldhous et al., 2008). For each subject, cells are treated with one of four doses of
nicotine (0, 1, 10 or 100 μg/ml) in combination with one of four stimuli (medium
alone, lipopolysaccharide (LPS, a component of cell walls of bacteria that will
stimulate cells, especially monocytes) at 1 μg/ml and phytohaemmaglutinin
(PHA, a mitogenic agent that stimulates all T cells in a manner which gives
a maximal response) at 0.5 μg/ml and 5 μg/ml; the two concentrations were
used to assess sensitivity of T cells to a sub-optimal concentration, leading to
16 treatment combinations within each subject. There were 15 subjects with
ulcerative colitis, 18 with Crohn’s disease and 12 controls, of whom 1, 6 and
3, respectively, were current cigarette smokers. In this analysis, the response
variable is the percentage of cells in the stage of apoptosis (cell death), 3 days after
stimulation. Missing values are fairly extensive, with all 16 observations being
present for only 10 of the subjects (206 of the possible 720 observations were
missing). The reasons for missing values were associated with the practicalities of
conducting the experiment and could be considered as missing at random.

The first stage of analysis of this dataset is to consider transformations
of the outcome variable. The logit transformation was found to have good
variance stabilising properties both for apoptosis and for other outcome variables
not considered in this section. All subsequent results are therefore based on
log(x/(100− x)) where x denotes the percentage of cells showing apoptosis. There
were no values of 0 or 100 leading to infinite values after transformation within
the dataset.

There are four fixed effects that need to be considered in our model, together with
their interactions:

Disease category (ulcerative colitis, Crohn’s disease, control)
Current smoker? (yes, no)
Nicotine dose (0, 1, 10, 100 μg/ml)
Stimulant nicotine alone, LPS, PHA at 5 or 0.5 μg/ml.
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We also need to consider the variance–covariance structure across the 16
observations on each subject. The simplest approach is to fit subjects as a random
effect, producing equal correlations between all pairs of treatments. This could be
seen as a ‘natural’ model to use as results arise from 16 physically distinct sets of
cells. Further thought, however, leads us to consider slightly more complicated
relationships. It is plausible that the four observations obtained from the same
stimulant would be more highly correlated with each other than with other
observations. This is achieved with the use of subject⋅stimulant as an additional
random effect. By a similar argument, observations at the same dose of nicotine
may be more highly correlated than those at different doses of nicotine. Thus
subject⋅nicotine dose can also be fitted as a random effect.

In principle, the proposed correlation structure induced by fitting subject,
subject⋅stimulant and subject⋅nicotine as random could be compared with
more complicated covariance patterns. There are, however, a limited number of
subjects and a high proportion of missing values, with a danger of overfitting.
More complicated structures will therefore not be considered in this example.

As there are biologically plausible reasons for high-level interactions between
the four fixed effects we have specified, our fitting strategy has been to start with
a model including all possible main effects and interactions, then dropping the
highest level interaction terms if these are non-significant. The random effects
have consistently given positive estimates for all three terms, with a substantial
subject⋅stimulant effect but only a tiny subject⋅nicotine dose effect. This has been
retained, nevertheless, because of its plausibility.

The results of our final model are shown in Table 8.12. The variable represent-
ing current smoking status, and all interactions involving smoking, all showed
no indication of any effect on the proportion of cells in apoptosis, but there was a
significant three-way interaction between the disease category, the stimulant and
the nicotine dose. For comparison, we show the corresponding model fitting only
a simple correlation structure (subject⋅stimulant and subject⋅nicotine random
effects omitted). It is apparent that the more appropriate covariance structure has
yielded a more informative analysis.

SAS code and output

Variables
smoker = current smoker (yes, no),
disease= disease (CD = Crohn’s Disease, UC = Ulcerative Colitis, HC = Healthy

Control),
stim = stimulant used,
dose =nicotine dose (0, 1, 10, 100),
patient= patient identifier,
result = logit (proportion of cells in apoptosis).
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The firstPROC MIXEDfits a model with all possible interactions among the fixed
effects and the more complicated random effects modelling.

PROC MIXED; CLASS smoker disease stim dose patient;
MODEL result= smoker | disease | stim | dose/DDFM=KR
RANDOM patient patient*stim patient*dose;

The following SAS code fits the simple model for which the results are
summarised in Table. 8.12:

PROC MIXED; CLASS smoker disease stim dose patient;
MODEL result=disease | stim | dose/DDFM=KR;
RANDOM patient;

The following LSMEANS statement allows the three-way interaction to be
explored in more detail:

LSMEANS disease*stim*dose;

The details of the outputs do not introduce any new features and are not included
in this section.

8.15 Bioequivalence studies with replicate cross-over
designs

Bioequivalence studies are used to demonstrate whether two formulations of a
drug will produce the same bioavailability. Typically, studies have a cross-over
design, and healthy volunteers will take a single dose of a drug at each visit,
following which their blood and/or urine drug concentrations are measured
repeatedly. Bioavailability is then usually assessed using the summary statistics
such as the area under the curve and maximum concentration. When a study
has a two-way cross-over design, the methods described in Section 7.3 and
Section 8.1 are appropriate. This design can be used for the determination of
average bioequivalence. More recently, bioequivalence studies using replicate
cross-over designs, where treatments are received more than once by each patient,
have become popular. These can be used to assess the within-subject variability on
each treatment, the variability of the within-subject treatment difference and the
between-subject variability of each treatment. These parameters are used in the
criteria to establish ‘individual bioequivalence’ and ‘population bioequivalence’.
It is beyond the scope of this book to examine these topics in depth, and a detailed
description of the issues is available on the FDA Website (http://www.fda.gov
/downloads/Drugs/Guidances/ucm070244.pdf). In this section, we will look at
some of the possibilities for modelling data from such designs. (the FDA guidance
is more prescriptive).

http://www.fda.gov/downloads/Drugs/Guidances/ucm070244.pdf
http://www.fda.gov/downloads/Drugs/Guidances/ucm070244.pdf
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A common design has four periods, and patients are randomised to receive
treatments in one of the sequences: ABAB, ABBA, BABA, BAAB. Usually,
summary statistics calculated at each visit are analysed, and this is the approach
we will consider. However, if the treatment interaction with time point (within
visit) was of interest or if there were missing data within visits, it may alternatively
be appropriate to consider analysing the individual data using the covariance
structures suggested in Section 8.1. Treatment and period effects should be
fitted as fixed. Sequence and sequence-by-period interaction can also be fitted
as fixed; however, we do not see an advantage to it. The sequence effect will
only reflect the between-subject group variation that we know is the direct
consequence of the randomisation in the trial (unless there is carry-over). The
sequence-by-period interaction will estimate within-subject variation, unless the
model is mis-specified.

There are various structures that can be used for the covariance matrix.
Some of the more plausible options are described as follows starting with the
simplest structures. As with other designs where there are many possibilities
for modelling covariance structure, the structure can be chosen by performing
likelihood ratio tests to determine whether more complex features can be justified
statistically. Alternatively, statistics such as Akaike’s information criterion can be
used, although this is not our preferred option (see Section 6.2.2). The models
will all have a block diagonal form for the overall variance matrix, V, with zero
correlations between observations on different patients. For example, for a trial
with nine patients, the V matrix can written as

V=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

V𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 V𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 V𝟑 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 V𝟒 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 V𝟓 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 V𝟔 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 V𝟕 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 V𝟖 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 V𝟗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

The Vi are blocks of covariances for observations on the ith patient. We will
illustrate structures assuming a four-period trial; however, the structures can be
extended for trials with more periods. For ease of interpretation, structures are
given as if a patient had received sequence AABB. The terms can be appropriately
reordered to give matrices for the actual sequences used: ABAB, ABBA, BABA,
BAAB or BBAA.

Model 1. Constant covariances for observations on the same patient A
very simple structure for Vi would assume a constant correlation between all
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observations on the same patient regardless of the treatment or period,

Vi =
⎛
⎜
⎜
⎜⎝

𝜎
2

𝜃 𝜃 𝜃

𝜃 𝜎
2

𝜃 𝜃

𝜃 𝜃 𝜎
2

𝜃

𝜃 𝜃 𝜃 𝜎
2

⎞
⎟
⎟
⎟⎠

,

where
𝜃 = covariance between observations on same patient,

𝜎
2 = variance.

Model 2. Different variances for treatments It is possible that observations
on the two drug formulations have different residual variances. This can be
allowed for by modelling separate residuals for observations on each treatment,

Vi =
⎛
⎜
⎜
⎜⎝

𝜎
2
A 𝜃 𝜃 𝜃

𝜃 𝜎
2
A 𝜃 𝜃

𝜃 𝜃 𝜎
2
B 𝜃

𝜃 𝜃 𝜃 𝜎
2
B

⎞
⎟
⎟
⎟⎠

,

where
𝜃 = covariance between observations on the same patient,

𝜎
2
A = variance for treatment A,
𝜎

2
B = variance for treatment B.

Model 3. Extra covariance for observations on the same treatment The
covariance pattern used for Model 2 takes no account of the possibility that
observations taken on the same treatment may be more highly correlated than
those taken on different treatments. This can be allowed for using the following
structure, which builds on Model 1,

Vi =

⎛
⎜
⎜
⎜
⎜⎝

𝜎
2
𝜃T 𝜃 𝜃

𝜃T 𝜎
2

𝜃 𝜃

𝜃 𝜃 𝜎
2
𝜃T

𝜃 𝜃 𝜃T 𝜎
2

⎞
⎟
⎟
⎟
⎟⎠

,

where
𝜃 = covariance between observations on different treatments,
𝜃T = covariance between observations on the same treatments,
𝜎

2 = variance.

Model 4. Difference covariances for treatments It is possible that
observations on the two treatments have different variances and covariances.
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This can be allowed for by including two extra parameters.

Vi =

⎛
⎜
⎜
⎜
⎜⎝

𝜎
2
A 𝜃A 𝜃 𝜃

𝜃A 𝜎
2
A 𝜃 𝜃

𝜃 𝜃 𝜎
2
B 𝜃B

𝜃 𝜃 𝜃B 𝜎
2
B

⎞
⎟
⎟
⎟
⎟⎠

,

where
𝜃 = covariance between observations on different treatments,

𝜃A = covariance between observations on treatments A,
𝜃B = covariance between observations on treatments B,
𝜎

2
A = variance for treatment A,
𝜎

2
B = variance for treatment B.

This model can, if required, be optionally constrained so that 𝜃 is less than or
equal to

√
(𝜃A𝜃B). Alternatively, the model can be further constrained so that

the covariance between observations on the same patient and treatment is never
less than that for observations on the same patient but different treatments (i.e.
𝜃 ≤ 𝜃A and 𝜃 ≤ 𝜃B). As we will see later, this model facilitates the use of Bayesian
methods in PROC MIXED for obtaining confidence bounds.

Model 5. Modelling covariance across time An alternative to Models 3
and 4, where the treatment groups have different variances and covariances, is to
model covariance based on the order of the repeated measurements across time.
For example, a general structure with a different covariance parameter for each
period pair can be written as

Vi =

⎛
⎜
⎜
⎜
⎜⎝

𝜎
2
1 𝜃12 𝜃13 𝜃14

𝜃12 𝜎
2
2 𝜃23 𝜃24

𝜃13 𝜃23 𝜎
2
3 𝜃34

𝜃14 𝜃24 𝜃34 𝜎
2
4

⎞
⎟
⎟
⎟
⎟⎠

.

where
𝜃ij = covariance between observations at periods i and j,

𝜎
2
i = variance for ith period.

Alternatively any of the other covariance structures described in Section 6.2 can
be used.

Other models In addition, models can be constructed to model both the
correlation structure across the repeated measurements (as in Model 5) and also
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take into account whether observations are in the same treatment group. One
such model is considered in the following example (Model 6).

Assessing average, population and individual bioequivalence

The current FDA recommendations describe three criteria for demonstrating
bioequivalence: average, population and individual bioequivalence. Any of the
models described can be used to demonstrate average bioequivalence; however,
parameter estimates from Model 4 are required to obtain population and
individual bioequivalence.

Average bioequivalence is always required and is demonstrated when the
90% confidence interval of the ratio of the treatment mean to reference mean
falls between 0.80 and 1.25. This is equivalently demonstrated when the 90%
confidence interval of the difference of the treatment mean to reference mean on
the log scale falls between ±log(1.25).

Population bioequivalence compares the expected squared difference between
observations on different patients and different treatments, to the expected
squared difference between observations on different patients who are both
on the reference treatment. The criterion is defined by the difference in these
expected squared differences divided by the variance for the reference treatment
and can be written as

E(Yi,A − Yj,B)2 − E(Yi,B − Yj,B)2

𝜎
2
B

with treatment B in this case assumed to be the reference treatment and Yi,T
representing an observation on patient i receiving treatment T. The usual speci-
fication of the criterion in terms of the covariance parameters for Model 4 can be
obtained from the above expression as,

(𝜇A − 𝜇B)2 + (𝜎2
A − 𝜎

2
B)

𝜎
2
B

To achieve population bioequivalence, the upper 95% confidence bound for the
criterion based on a one-sided confidence interval should be no more than a
maximum limit, 𝜃p. There is no generally recommended limit for 𝜃p, and the FDA
guidance suggests that they (the FDA) can be contacted for more information on
setting it. In addition, an upper limit, 𝜎2

B,Max, for is set for the denominator vari-
ance. This is substituted as the denominator term in the criterion if 𝜎2

B > 𝜎
2
B,Max,

and the criterion is then described as ‘reference scaled’.

Individual bioequivalence compares the expected squared difference between
observations on the same patient but different treatments, to the expected squared
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difference between repeated observations on the same patient on the reference
treatment. The criterion is defined by the difference in these expected squared
differences divided by the residual variance for the reference treatment and can
be written as

E
(

Yi,A − Yi,B

)2 − E
(

Yi,B − Yi,B′
)2

𝜎
2
R,B

where Yi,B ′ represents a repeated observation on patient i and treatment B. The
criterion in terms of the covariance parameters in Model 4 can be obtained from
this expression as, (

𝜇A − 𝜇B

)2 + 𝜎
2
D +

(
𝜎

2
R,A − 𝜎

2
R,B

)

𝜎
2
R,B

𝜎
2
D relates to the subject-by-treatment variance components and, using the

parameterisation of Model 4 given earlier, can be calculated as 𝜃A + 𝜃B −2𝜃. 𝜎2
R,A

and 𝜎
2
R,B are the residual variances for treatments A and B and are estimated

directly from the model. Note that the variance terms in Model 4 can be written
as 𝜎2

A = 𝜎
2
R,A + 𝜃A and 𝜎

2
R,B = 𝜎

2
R,B + 𝜃B. To achieve individual bioequivalence, the

upper 95% confidence bound of the criterion should be no more than a maximum
limit, 𝜃I (𝜃I is often set at 2.495). In addition, an upper limit, 𝜎2

R,B,Max, for is set
for the denominator variance. This is substituted as the denominator term in the
criterion if 𝜎2

R,B > 𝜎
2
R,B,Max and, as with population bioequivalence, the criterion is

then described as ‘reference scaled’.

8.15.1 Example

This was a four-period trial to compare two formulations of an anti-anxiety agent
where patients were randomised to receive treatments in the sequences ABAB,
ABBA, BABA, BAAB. It is taken from the FDA website (http://www.fda.gov/drugs
/scienceresearch/ucm301277.htm). In this case, analyses of the log area under
the curve (AUC) will be carried out. Each of the covariance structures detailed
previously is fitted, and treatment and period effects are fitted as fixed. The result-
ing covariance matrices along with – 2REML, Akaike’s information criterion
(AIC) and the Bayesian criterion (BIC) are shown in Table 8.13. A covariance
structure is selected by using likelihood ratio tests to statistically justify the
inclusion of variance and covariance terms in the model.

Model 2 fits different residual variances for treatments. It is significantly better
than Model 1 (𝜒2 =7.9, p<0.05) and also has lower information criteria. Model 3
reduces to Model 1 as zero additional covariance is estimated for observations on
the same treatment. (Note that although SAS reduces the number of parameters
in Model 3 from 3 to 2 our view is that the parameter should still be counted. Thus,
the values of AIC and BIC shown in Table 8.13 are different to those produced by

http://www.fda.gov/drugs/scienceresearch/ucm301277.htm
http://www.fda.gov/drugs/scienceresearch/ucm301277.htm
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Table 8.13 Comparison of models for an equivalence trial of anti-anxiety agents.

Model Covariance

Number
of para-
meters −2REML

Akaike’s
infor-

mation
criterion

Bayes
infor-

mation
criterion

1 ⎛
⎜
⎜
⎜⎝

.59 .45 .45 .45

.45 .59 .45 .45

.45 .45 .59 .45

.45 .45 .45 .59

⎞
⎟
⎟
⎟⎠

2 248.3 252.3 255.6

2 ⎛
⎜
⎜
⎜⎝

.56 .49 .49 .49

.49 .56 .49 .49

.49 .49 .68 .49

.49 .49 .49 .68

⎞
⎟
⎟
⎟⎠

3 240.4 246.4 251.5

3 ⎛
⎜
⎜
⎜⎝

.59 .45 .45 .45

.45 .59 .45 .45

.45 .45 .59 .45

.45 .45 .45 .59

⎞
⎟
⎟
⎟⎠

3 248.3 252.3 255.6

4 (unconstrained) ⎛
⎜
⎜
⎜⎝

.61 .54 .45 .45

.54 .61 .45 .45

.45 .45 .57 .36

.45 .45 .36 .57

⎞
⎟
⎟
⎟⎠

5 236.2 246.2 254.7

4 (constrained such that
𝜃 ≤

√
(𝜃A𝜃B))

⎛
⎜
⎜
⎜⎝

.60 .54 .45 .45

.54 .60 .45 .45

.45 .45 .57 .38

.45 .45 .38 .57

⎞
⎟
⎟
⎟⎠

5 236.7 244.7 251.5

4 (totally constrained so
that 𝜃 ≤ 𝜃A and 𝜃 ≤ 𝜃B)

⎛
⎜
⎜
⎜⎝

.65 .49 .45 .45

.49 .65 .45 .45

.46 .46 .56 .49

.46 .46 .49 .56

⎞
⎟
⎟
⎟⎠

5 239.8 247.8 254.5

5 AR(1) ⎛
⎜
⎜
⎜⎝

.59 .48 .40 .33

.48 .59 .48 .40

.40 .48 .59 .48

.33 .40 .48 .59

⎞
⎟
⎟
⎟⎠

2 238.6 242.6 256.6

5 Toeplitz (TOEP) ⎛
⎜
⎜
⎜⎝

.59 .48 .42 .38

.48 .59 .48 .42

.42 .48 .59 .48

.38 .42 .48 .59

⎞
⎟
⎟
⎟⎠

4 237.2 245.2 252.0

5 Heterogeneous
compound symmetry
(CSH)

⎛
⎜
⎜
⎜⎝

.61 .45 .45 .47

.45 .56 .44 .46

.45 .44 .56 .45

.47 .46 .45 .61

⎞
⎟
⎟
⎟⎠

5 248.0 258.0 266.4

5 General (UN) ⎛
⎜
⎜
⎜⎝

.58 .44 .44 .38

.44 .56 .54 .43

.44 .54 .56 .49

.38 .43 .49 .61

⎞
⎟
⎟
⎟⎠

10 228.9 248.9 265.8

6 AR(1) with different
residual variances for
treatments

⎛
⎜
⎜
⎜⎝

.63 .48 .44 .40

.48 .63 .48 .44

.44 .48 .56 .48

.40 .44 .48 .56

⎞
⎟
⎟
⎟⎠

4 235.4 243.4 235.4
(PROC MIXED

appears to
give wrong
value here)
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PROC MIXED.) Slightly different covariance parameters are obtained for Model 4
depending on whether and how 𝜃 is constrained. As with Model 2, we count 𝜃 as
a parameter when calculating AIC and BIC. None of the constrained or uncon-
strained versions of Model 4 leads to a significant improvement over Model 2.
Model 5 examines covariance matrices that are structured by time. The first order
autoregressive structure cannot be compared to Model 2 using a likelihood ratio
test, as the two models are not nested. However, its information criteria are lower,
demonstrating that structuring the covariance matrix by periods has led to a
better model than structuring it by treatment. None of the other structures for
Model 5 shows any improvement over the autoregressive structure. Thus, in this
example, more has been gained from fitting an autoregressive structure across
all the repeated measurements than from using different covariance terms for
treatments. To use the features of both Model 2 and Model 5, Model 6 is fitted
with an autoregressive structure for the repeated measurements and also fitting
different residual variances for each treatment. However, this model does not lead
to an improvement over Model 5.

The FDA currently requires the 90% confidence interval of the ratio of the mean
of the new formulation to the reference formulation to be within 0.80 and 1.25
to demonstrate average bioequivalence. The ratio and confidence interval were
obtained by taking the exponential of the difference in treatment means (on the
log scale) and its confidence interval based on standard errors obtained using the
Kenward–Roger adjustment. To provide consistency, we consider results from
Model 4 (totally constrained), as this model will be used to assess population and
individual bioequivalence. The ratio and confidence interval resulting from this
model were 0.98 (0.88, 1.09), and thus average bioequivalence is achieved. In
addition, each of the other models considered led to confidence intervals that
demonstrated bioequivalence.

The population bioequivalence criterion was calculated from maximum likeli-
hood estimates obtained from the REML analysis of the totally constrained version
of Model 4 (see SAS output) as,

(𝜇A − 𝜇B)2 + (𝜎2
A − 𝜎

2
B)

𝜎
2
B

= 0.02082 + (0.4605 + 0.0272 + 0.0710) − (0.4605 + 0 + 0.1851)
(0.4605 + 0 + 0.1851)

= −0.134

The upper 95% confidence bound for the criterion was taken as the 95% centile
point in the Bayesian analysis of Model 4 (totally constrained). A value of 0.036
was obtained, and individual bioequivalence can then be assessed by comparing
this value to a maximum limit, 𝜃p. Recommendations for setting 𝜃p are given in
the FDA guidance. The Bayesian model can also be used to provide an alternative
point estimate for the criterion. The median value was −0.110 and differs from
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the value calculated using maximum likelihood estimates. However, a difference
is expected between the two approaches because the distribution of the criterion
is likely to be skewed and its median unlikely to coincide with the value calculated
from maximum likelihood parameter estimates. Also, the Bayesian analysis used
the full joint posterior distribution of the parameters to obtain the distribution
of the criterion, whereas REML does not take this into account. However, in the
context of assessing bioequivalence, the point estimate is of minor interest.

The individual bioequivalence criterion was calculated from the maximum like-
lihood estimates obtained in the REML analysis of Model 4 (totally constrained) as,

(𝜇A − 𝜇B)2 + 𝜎
2
D + (𝜎2

R,A − 𝜎
2
R,B)

𝜎
2
R,B

= 0.02082 + (0.0272 + 0) + (0.0710 − 0.1851)
0.1851

= −0.467

The upper 95% confidence bound for the criterion was taken as the 95% centile
point in the Bayesian analysis of Model 4 (totally constrained), and a value of
0.504 was obtained. This is lower than the generally recommended limit of
2.495 for 𝜃p and thus indicates individual bioequivalence has been demonstrated.
However, if the value of 𝜎

2
R,B (0.1851) exceeded the value set for 𝜎

2
R,B,Max, it

would be necessary to assess individual bioequivalence based on the reference
scaled criterion where 𝜎

2
R,B,Max was substituted for 𝜎

2
R,B in the denominator of

the criterion. The Bayesian model can also be used to provide an alternative
location estimate for the criterion. The median value was 0.177 and, as with the
individual criterion, differs from the value calculated using maximum likelihood
estimates.

SAS code

The SAS code to fit each model is shown as follows. For some models, alternative
code is also given, which sometimes leads to different parameterisations of the
same model.

Variables
lauc = log(AUC)
treat = drug formulation
per = period
pat = patient

The following statements are used in all the models.

PROC MIXED; CLASS pat treat per;
MODEL lauc = treat per/ DDFM=KR;
LSMEANS treat/ DIFF PDIFF CL;
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Sequence and sequence. period interaction effects can be additionally fitted as
fixed in the MODEL statement if required. The following RANDOM and REPEATED
statements are then included for each model.

Model 1

RANDOM pat;

Model 2

RANDOM pat;
REPEATED /GROUP=treat TYPE=SIMPLE R;

Or equivalently using the following statement that allows the variance matrix
to be viewed more easily via the V option.

RANDOM int treat/ SUB=pat TYPE=SIMPLE V;

Model 3

RANDOM pat pat*treat;

Or equivalently using,

RANDOM int treat/ SUB=pat TYPE=SIMPLE V;

Model 4 (unconstrained)

RANDOM treat/ SUB=pat TYPE=UN V;
REPEATED /GROUP=treat TYPE=SIMPLE;

Model 4 (constrained so that 𝛉 ≤
√
𝛉A𝛉B)

RANDOM treat/ SUB=pat TYPE=CSH V;
REPEATED /GROUP=treat TYPE=SIMPLE;

Or equivalently substituting the random statement,

RANDOM treat/ SUB=pat TYPE=FA0(2) V;

Model 4 (totally constrained so that 𝛉≤ 𝛉A and 𝛉≤ 𝛉B)

RANDOM pat;
RANDOM pat*treat/ GROUP=treat;
REPEATED /GROUP=treat TYPE=SIMPLE;
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Model 5
The covariance structure across periods can be modelled using one of the follow-

ing REPEATED statements,

REPEATED per/ SUBJECT=pat TYPE=AR(1) R; * autoregressive;
REPEATED per/ SUBJECT=pat TYPE=TOEP R; * Toeplitz;
REPEATED per/ SUBJECT=pat TYPE=CSH R; * heterogeneous

compound symmetry;
REPEATED per/ SUBJECT=pat TYPE=UN R; * general;

To allow extra covariance for observations on the same treatment, the following
RANDOM statement should be included,

RANDOM pat*treat;

Model 6
To fit different variances for treatments include,

RANDOM int/ sub=obs group=treat type=simple v;

Note that ‘obs’ is a variable denoting the observation number (obs=_N_;).

SAS output

SAS output is listed from three of the models fitted (2, 4 and 5) in order to demon-
strate some of the different parameterisations used by PROC MIXED.

Model 2
Estimated R

Matrix for

Index 1

Row Col1

1 0.07529

Estimated V Matrix for pat 1

Row Col1 Col2 Col3 Col4

1 0.5642 0.4889 0.4889 0.4889

2 0.4889 0.5642 0.4889 0.4889

3 0.4889 0.4889 0.6847 0.4889

4 0.4889 0.4889 0.4889 0.6847

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Intercept pat 0.4889

Residual treat 1 0.07529

Residual treat 2 0.1958

Fit Statistics

−2 Res Log Likelihood 240.4

AIC (smaller is better) 246.4

AICC (smaller is better) 246.6

BIC (smaller is better) 251.5
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Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

treat 1 103 0.12 0.7264

per 3 90.6 1.93 0.1297

Least Squares Means

Standard

Effect treat Estimate Error DF t Value Pr > |t| Alpha Lower Upper

treat 1 2.2724 0.1162 39.4 19.56 <.0001 0.05 2.0375 2.5074

treat 2 2.2931 0.1227 46.4 18.69 <.0001 0.05 2.0463 2.5400

Differences of Least Squares Means

Standard

Effect treat −treat Estimate Error DF t Value Pr > |t| Alpha Lower Upper

treat 1 2 −0.02073 0.05907 103 −0.35 0.7264 0.05 −0.1379 0.09641

Model 4 (totally constrained) Only output relating to the covariance
structure is shown for this model. Note that output listing the individual Vi
matrices is not readily available in SAS for this model.

Covariance Parameter Estimates
Cov Parm Group Estimate
pat 0.4605
pat*treattreat 1 0.02723
pat*treattreat 2 0
Residual treat 1 0.07104
Residual treat 2 0.1851

Fit Statistics
−2 Res Log Likelihood 239.8
AIC (smaller is better) 247.8
AICC (smaller is better) 248.1
BIC (smaller is better) 254.5

Model 5 Only output relating to the covariance structure is shown.

Estimated R Matrix for pat 1
Row Col1 Col2 Col3 Col4
1 0.5867 0.4831 0.3978 0.3275
2 0.4831 0.5867 0.4831 0.3978
3 0.3978 0.4831 0.5867 0.4831
4 0.3275 0.3978 0.4831 0.5867
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Covariance Parameter Estimates
Cov Parm Subject Estimate
AR(1) Pat 0.8234
Residual 0.5867

2 Fit Statistics
−2 Res Log Likelihood 238.6
AIC (smaller is better) 242.6
AICC (smaller is better) 242.7
BIC (smaller is better) 245.9

SAS code to assess population and individual bioequivalence criteria

These criteria are calculated by fitting the totally constrained version of Model
4 using the Bayesian approach to allow probability points to be obtained. In
contrast to Bayesian analyses carried out in earlier sections using PROC MCMC,
this analysis is carried out using the PRIOR in PROC MIXED (see Section 9.2).
Although in general we prefer the use of PROC MCMC for Bayesian analysis,
in this case, the MIXED procedure is used because it allows different residual
variances for the treatment groups to be specified.

DATA b; SET a;
obs=_n_;
PROC MIXED CONVH=0.000001; CLASS pat treat per obs;
MODEL lauc = treat per/ DDFM=KR S;
RANDOM pat;
RANDOM pat*treat/ GROUP=treat V;
RANDOM obs/ GROUP=treat;
PRIOR/ NSAMPLE=11000 OUT=bioeq;
LSMEANS treat/ DIFF PDIFF;

The last RANDOM statement has replaced the REPEATED statement used in
the previous version of this model. This is because a Bayesian analysis is not
available in SAS when a REPEATED statement is used. The model results in
identical estimates to the earlier model fitted using a REPEATED statement but
it is parameterised slightly differently. An overall residual term is included and
needs to be added to each of the treatment residuals.

The unconstrained version of Model 4 can alternatively be obtained by adding a
PARMS statement with the NOBOUND option to the code above,

PARMS / NOBOUND;

SAS output

Only output relating to the covariance parameters is shown.
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Covariance Parameter Estimates
Cov Parm Group Estimate
pat 0.4605
pat*treat treat 1 0.02724
pat*treat treat 2 0
obs treat 1 3.58E-19
obs treat 2 0.1141
Residual 0.07105

SAS code to analyse the posterior densities

The PRIOR statement in the SAS code causes a large sample of the model
parameters to be output to a new dataset ‘bioeq’. This dataset contains seven
fixed effects parameters, beta1-beta7, representing the intercept, two treatment
effects and the four period effects. Note that the last treatment effect and period
effect parameters (beta3 and beta7) are redundant, and all their samples take
a value of zero. The six covariance parameters, covp1-covp6, represent the
patient variance component, patient. treatment variance components for the
two treatments, residual variance components for each treatment and an overall
residual variance as shown previously in the ‘Covariance Parameter Estimates’
output. Note that the residual term needs to be added to each of the treatment
residuals to obtain the treatment residual variances shown in the earlier output
for Model 4 where a REPEATED statement was used. The parameters required for
calculating population and individual bioequivalence criteria are then obtained
from the sampled model parameters in SAS as,

𝜇A − 𝜇B = beta2

𝜃 = covp1

𝜃A = covp2 + 𝜃

𝜃B = covp3 + 𝜃

𝜎
2
R,A = covp4 + covp6

𝜎
2
R,B = covp5 + covp6

𝜎
2
A = covp1 + covp2 + 𝜎

2
R,A

𝜎
2
B = covp1 + covp3 + 𝜎

2
R,B

𝜎
2
D = 𝜃A + 𝜃B − 2𝜃 = covp2 + covp3

These parameters and values of the individual and population and individual
bioequivalence criteria are calculated for each of 10,000 samples using the
following SAS code. The first 1000 samples are assumed to be ‘burn in’ samples,
which may be unreliable and are therefore deleted.
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DATA a; SET data.bioeq;
IF _n_<1000 THEN DELETE;
trt_diff=beta2;
resida = covp4+covp6;
residb = covp5+covp6;
resid_diff=resida-residb;
sig2d = covp2+covp3;
sig2a = covp1+covp2+resida;
sig2b = covp1+covp3+residb;
tot_diff=sig2a-sig2b;
trt2=trt_diff**2;
popn_crit = ( trt_diff**2 + tot_diff ) / sig2b;
indiv_crit = ( trt_diff**2 + sig2d + resid_diff ) / residb;
PROC UNIVARIATE FREQ ROUND=0.001 DATA=a;
VAR trt_diff popn_crit indiv_crit;

The mean, median and upper 95% centile are obtained from the PROC
UNIVARIATE output. The 90% probability interval for the treatment difference is
given by the 5% and 95% centile points.

8.16 Cluster randomised trials

In the clinical trials we have considered so far, subjects have been randomised
directly to treatments or health care interventions. However, in some situations,
subjects are grouped within ‘clusters’, and it may not be practical or ethical
for subjects to receive different treatments within the same cluster (e.g. centre,
hospital, clinic or general practice). For example, in a trial of breast screening
carried out in Edinburgh (Alexander et al., 1999), it was not considered ethical to
offer screening to some women within a general practice and not to others. In this
situation, clusters rather than subjects can be randomised to treatment groups
to form a so-called ‘cluster randomised’ design. An appropriate analysis for this
design can be achieved using a mixed model fitting treatment effects as fixed and
cluster effects as random. Compared with a multi-centre, individually randomised
design this leads to some loss of efficiency as treatment effects are compared
between clusters rather than within centres, and hence their standard errors are
larger whenever the cluster variance component is positive. The variance of the
difference between treatments is given by

var(ti − tj) = 𝜎
2(1∕ni + 1∕nj) + 𝜎

2
c ∕(1∕ci + 1∕cj)

where 𝜎
2 is the residual variance, ni and nj are the numbers of subjects receiv-

ing treatments i and j, 𝜎
2
c is the cluster variance component, and ci and cj

are the number of clusters allocated to groups i and j. In a between-subject
analysis taking no account of cluster effects, the variance would have been
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var(ti − tj)= 𝜎
2(1/ni +1/nj). Note that unlike the multi-centre trial where there

is a choice of whether to fit centre effects either as fixed or random giving results
with alternative interpretations, a cluster randomised design should always be
analysed comparing treatments at the cluster level of variation by fitting cluster
effects as random.

8.16.1 Example: A trial to evaluate integrated care pathways
for treatment of children with asthma in hospital

Within a children’s hospital, there is a wish to evaluate the use of ‘integrated
care pathways’ for children attending the Accident and Emergency Department
with attacks of asthma. This more structured form of care is being compared with
usual hospital practice. It is not administratively possible to simultaneously use
one system for one child and the alternative for another, and so the trial was set
up as a cluster randomised trial based on one system being chosen randomly to
be used for each week. All children seen during the same week form a cluster.

Analysis of a cluster randomised trial using a mixed model is extremely simple,
as we have seen previously. The feature that distinguishes it from a more con-
ventional parallel group trial is that individuals within a cluster may exhibit
intra-cluster correlation, as a consequence of individuals within the cluster
producing results that are more similar than those from subjects from different
clusters. We can achieve the desired analysis in SAS by simply having a variable
cluster to identify cluster membership, and then adding cluster as a random effect
to the fixed effects model that would otherwise be used.

This particular example has been chosen, though, because it demonstrates an
additional benefit of the mixed models approach. Some children have repeated
attacks of asthma and will therefore attend the Accident and Emergency
Department on multiple occasions. In a conventional parallel group trial,
such children would not be considered for the trial again after they had been
randomised once. In this setting, we can utilise every visit made by a child. Our
analysis has to recognise that the results from the same child cannot be regarded
as independent. If we assume a constant correlation between all observations on
a child, then we can handle the analysis by simply fitting the patient identifier as
a random effect as well as cluster.

The primary outcome variable for this trial is the interval from arrival to
discharge for patients admitted to the ward. We do not discuss the results in
detail, (see Cunningham et al. (2008)) but the code and key parts of the output
are summarised as follows.

Also, analysis is presented for all patients attending the hospital, in order to
maximise data for analysis. In this example, we see from the output presented
as follows that the variance component for the subject is estimated as zero, with
a moderate variance component for the clusters. In this analysis, there is no
evidence for a treatment effect, but the confidence interval for the treatment
difference is still relatively wide.
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SAS code and output

Variables
weekno =week number that defines clusters,
subject = subject identifier,
treat = treatment,
logmins = log of duration of stay in minutes.

PROC MIXED NOCLPRINT;
CLASS treat subject weekno;
MODEL logmins= treat / DDFM=KR;
RANDOM subject weekno;
LSMEANS treat / DIFF PDIFF CL;

Covariance Parameter

Estimates
Cov Parm Estimate
subject 0
WEEKNO 0.09455
Residual 2.1708

Fit Statistics
−2 Res Log Likelihood 543.4
AIC (smaller is better) 547.4
AICC (smaller is better) 547.5
BIC (smaller is better) 553.4

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
Treat 1 5.89 0.81 0.4034

Least Squares Means
Standard

Effect treat Estimate Error DF t Value Pr > |t| Alpha
Treat CONTROL 6.8962 0.2468 6.14 27.94 <.0001 0.05
Treat ICP 6.6019 0.2145 5.57 30.78 <.0001 0.05

Least Squares Means
Effect treat Lower Upper
treat CONTROL 6.2958 7.4966
treat ICP 6.0672 7.1366
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Differences of Least Squares Means
Standard

Effect treat −treat Estimate Error DF t Value Pr > |t| Alpha
treat CONTROL ICP 0.2943 0.3270 5.89 0.90 0.4034 0.05

Differences of Least Squares Means
Effect treat −treat Lower Upper
treat CONTROL ICP −0.5094 1.0980

8.16.2 Example: Edinburgh randomised trial of breast screening

This study involved 54 654 women aged between 45 and 64 years from 87
general practices in Edinburgh. Women were recruited between 1978 and 1981
at a time when there was no breast screening programme in Scotland. Practices
were randomly assigned either to an intervention or to a control group. Women
in the intervention group were invited to participate in a screening programme
involving an annual screen for breast cancer, while those in the control group
received normal medical care. All subjects in the intervention practices were
considered part of the intervention group, whether they attended screening
or not. The primary endpoint was death because of breast cancer during the
following 14 years. However, as the practice variance component was zero for
this endpoint, death from all causes will be considered, since a positive practice
variance component and hence a more interesting analysis is obtained. Age and
deprivation category were available for individual women and are considered as
covariates in the analyses. Table 8.14 shows the models fitted and their results.
The first set of models (1a–4a) is unadjusted for age and deprivation, and the
second set of models adjust for these factors. Analyses of the data are considered
with and without fitting practice effects as random and with the data in both
Bernoulli and binomial form. Individual subject values for age and deprivation
are fitted when data are in Bernoulli form (Models 3a, 3b). However, this is not
possible when the data are in binomial form (Models 4a, 4b) and instead average
age and deprivation for each practice are fitted.

All the unadjusted analyses showed a significant reduction in mortality in the
intervention group. The dispersion parameter is greater than one in Model 2a, and
the practice variance component is positive in Models 3a and 4a, indicating that
more than chance variation has occurred between the practices. The odds ratio
in Model 1a erroneously treats all subjects as independent, ignoring the fact that
they come from different practices. This has led to a smaller confidence interval
than for the other models. Results from Models 2a and 4a are similar. Thus, in this
case, it has made little difference whether practice variation is modelled using a
random effect or a dispersion parameter.

Age and deprivation were highly significant in all the adjusted analyses (Models
1b and 4b), and the odds ratios were higher than in the unadjusted models. The
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Table 8.14 Results of analyses of Edinburgh breast screening trial.

Model Data
Fixed
effects

Random
effects

Practice
variance
component OR (95% CI)

1a Bernoulli Group – – 0.79 (0.75, 0.83)
2a Binomial Group 𝜙

a (𝜙=1.30) 0.83 (0.74, 0.94)
3a Bernoulli Group Practice 0.056 (𝜙=0.99) 0.82 (0.73,0.92)
4a Binomial Group Practice 0.054 (𝜙=1.35) 0.84 (0.75, 0.95)
1b Bernoulli Group, age,

deprivation
– – 0.86 (0.82, 0.91)

2b Binomial Group, age,
deprivation

𝜙
a (𝜙=1.48) 0.95 (0.87, 1.03)

3b Bernoulli Group, age,
deprivation

Practice 0.034 (𝜙=0.98) 0.87 (0.79,0.96)

4b Binomial Group, age,
deprivation

Practice 0.020 (𝜙=0.77) 0.93 (0.86, 1.01)

a
𝜙 indicates the dispersion parameter is fitted.

odds ratios were notably higher (and non-significant) in Models 2b and 4b, where
average age and deprivation covariates were used to analyse the data in binomial
form, than in Models 1b and 3b where data were analysed in Bernoulli form. Thus,
in this case, it has been important to adjust for age and deprivation at the subject
level. Modelling the practice effect as random in Models 3b and 4b is preferable to
Model 2b where a dispersion parameter is used. This is because differing sizes of
the practices are taken into account when determining the variance component.
The results from the Bernoulli model fitting practice as random (Model 3b) showed
a significant difference in all-cause mortality between the treatment groups. This
was not accounted for by the breast screening intervention, and this could indicate
that the randomisation may not have been strictly adhered to or this may be one
of the occasions where chance has resulted in a false positive.

SAS code and output

Datasets
bern = dataset in Bernoulli form,
bin = dataset in binomial form (frequencies by general practice).

Variables
death = dead or alive after 14 years’ follow-up,
group = intervention or control group,
dep = deprivation category,
gp = general practice,
age = age (divided by 10 for easier fitting),
one =1,
n =numbers of subjects.
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SAS code is given for the analyses adjusted for age and deprivation (Models
1b–4b). Models 1a–4a are obtained by using the same code, with ‘age’ and
‘dep’ omitted in the MODEL statements. Relevant output is given for Models 1b
and 3b with Models 2b and 4b having a similar form.

Model 1b

PROC GENMOD DATA=bern; CLASS group dep;
MODEL death/one=group dep age / DIST=B WALD TYPE3;
ESTIMATE ’group’ group 1 -1/ EXP ALPHA=0.05;

Analysis Of Parameter Estimates
Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr> ChiSq
Intercept 1 −1.7696 0.0177 −1.8042 −1.7349 10032.8 <.0001
GROUP 1 1 −0.2398 0.0255 −0.2898 −0.1898 88.35 <.0001
GROUP 2 0 0.0000 0.0000 0.0000 0.0000 .35 .0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Wald Statistics For Type 3 Analysis
Chi-

Source DF Square Pr > ChiSq
GROUP 1 88.35 <.0001

Contrast Estimate Results
Standard Chi-

Label Estimate Error Alpha Confidence Limits Square Pr> ChiSq
group −0.2398 0.0255 0.05 −0.2898 −0.1898 88.35 <.0001
Exp(group) 0.7868 0.0201 0.05 0.7484 0.8271

Model 2b

PROC GENMOD DATA=bin; CLASS group dep;
MODEL death/n=group dep age / DIST=B WALD TYPE3 DSCALE;
ESTIMATE ’group’ group 1 -1/ EXP ALPHA=0.05;

Model 3b

PROC GLIMMIX DATA=bern; CLASS gp group dep;
MODEL death=group age dep/ DIST=B S DDFM=KR;
RANDOM _RESIDUAL_;
RANDOM gp;
INITITER=20;
NLOPTIONS MAXITER=100;
ESTIMATE ’group’ group 1 -1/ CL OR;
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Fit Statistics
−2 Res Log Pseudo-Likelihood 283832.8
Generalized Chi-Square 53007.66
Gener. Chi-Square / DF 0.98

Covariance Parameter Estimates
Standard

Cov Parm Estimate Error
GP 0.03404 0.008147
Residual (VC) 0.9803 0.005966

Solutions for Fixed Effects
Standard

Effect GROUP DEP Estimate Error DF t Value Pr> |t|
Intercept −8.3411 0.1414 10704 −58.99 <.0001
GROUP 1 −0.1427 0.04953 79.97 −2.88 0.0051
GROUP 2 0 . . .88 .0051
AGE 0.1254 0.002240 53971 56.01 <.0001
DEP 1 −0.6231 0.07654 13289 −8.14 <.0001
DEP 2 −0.4736 0.07079 17540 −6.69 <.0001
DEP 3 −0.3987 0.07100 20476 −5.62 <.0001
DEP 4 −0.3049 0.06510 18629 −4.68 <.0001
DEP 5 −0.2061 0.07398 19757 −2.79 0.0054
DEP 6 −0.09823 0.07552 32847 −1.30 0.1934
DEP 7 0 . . .88 .0051

Type III Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
GROUP 1 79.97 8.30 0.0051
AGE 1 53971 3136.84 <.0001
DEP 6 22689 18.85 <.0001

Estimates
Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper
group −0.1427 0.04953 79.97 −2.88 0.0051 0.05 −0.2413 −0.04412

Estimates
Odds Lower Upper

Label Ratio Odds Ratio Odds Ratio
group 0.867 0.786 0.957

Model 4b

PROC GLIMMIX DATA=bin; CLASS gp group dep;
MODEL death/n=group age dep/ DIST=B S DDFM=KR;
RANDOM _RESIDUAL_;
RANDOM gp;
ESTIMATE ’group’ group 1 -1/ CL OR;
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8.17 Analysis of bilateral data

The near symmetry of the human body, and indeed of other animals, ensures that
measurements in human and animal research are commonly bilateral. Opthal-
mology, rhinology and dentistry are candidate disciplines for this type of data.
Most examples, though, arguably occur in orthopaedics. Observations on gait,
muscle strength and joint mobility provide examples where measurements may
be made, but there are also subjective measures such as pain where observations
may be bilateral.

We will present two examples. The data for the first of these examples come
from a large database of children and young adults with gait problems. It is used
purely to illustrate the differences in conclusions that can arise from alternative
methods of analysis when we wish to compare measurements in two groups of
subjects. Subjects are grouped according to whether they had received previous
femoral derotation osteotomy (FDO) (an operation to re-position the ball of the
femur in the hip socket) and whether there had been surgery to remove implants
used in earlier operations to correct gait. The outcome variables considered are
mean stance hip rotation (the amount the hip rotates when the foot is in contact
with the ground during walking) and hip external rotation (a clinical measure-
ment when the patient is static).

Within the medical literature, it has been common practice to treat observations
on each limb, for example, as though they are independent and to apply
standard statistical methods for analysis. In most instances, this assumption of
independence will be unsound, as it will be unusual for an observation on the
right and left side of an individual to be uncorrelated. The consequence will
usually be to obtain standard errors that are smaller than is justified and to
obtain p-values that are too small (i.e. biased towards statistical significance).
A valid but potentially inefficient approach to analysis in the situation we are
considering is to revert to the individual as the subject of analysis, either by
randomly deleting one observation in each pair or, more commonly, by using
the mean of observations on the left and right. Thus standard errors may be
larger than necessary with higher p-values. A mixed models approach, in which
subjects are fitted as random, takes into account any correlation and provides a
fully efficient analysis. We will explore the practical effect of undertaking such
analyses in the following simple example and, at the end of this section, we show
the simple SAS code to conduct such an analysis.

Example 1

Our dataset contains results from 979 hips from 573 subjects (167 unilateral
and 406 bilateral). In Table 8.15, we illustrate the results obtained with all 3
methods, including the invalid ‘individual value’ approach, when applied to
the two outcome variables when dichotomised by prior FDO (yes or no) and by
instrumentation removal (yes or no). We see a general pattern that the results
from the mixed model are intermediate between those from analysis of individual
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Table 8.15 Illustration of results from three methods of analysis of bilateral data.

No FDO FDO No removal Removal
N=814 N=165 p-value N=876 N=103 p-value

Mean stance I 12.6(0.5) 9.1(1.1) 0.003 12.2(0.5) 10.5(1.3) 0.24
Hip rotation A 12.9(0.5) 10.2(1.3) 0.04 12.6(0.5) 11.3(1.6) 0.43

M 12.7(0.5) 9.7(1.2) 0.02 12.3(0.5) 10.8(1.5) 0.34
Hip External I 29.2(0.5) 33.3(1.2) 0.0007 29.5(0.5) 32.8(1.5) 0.03
Rotation A 29.0(0.6) 33.6(1.4) 0.0011 29.5(0.6) 32.6(1.7) 0.07

M 29.2(0.6) 33.2(1.3) 0.0044 29.5(0.6) 32.7(1.6) 0.06

I=analysis of individual values
A=analysis of averages
M=mixed model analysis

data (invalid) and analysis of averages per patient. In relation to the precision
of the estimates (the standard errors), this is always true. Although this is also
the usual situation with the p-values, note that it does not always happen.
The analysis of hip external rotation comparing those with and without prior
FDO yields the highest p-value with the mixed models analysis. This is due to
the particular pattern of missing values, which gives a smaller estimate of the
between-group difference with the mixed models analysis compared to using the
averages, although the standard errors are intermediate as we would expect.

The same principle holds with regression situations, whether this is a univariate
or multivariable association that is being investigated using bilateral data. Simply
amalgamating all data points will violate the assumption of independence of
the observations and produce an invalid analysis. Using averages or deleting
observations are the only valid approaches using basic statistical methods, but
the most efficient analysis will use mixed models. If we regress mean stance hip
rotation on hip external rotation, the regression coefficients (standard errors) are
−0.408 (0.027) erroneously using data points as independent, −0.374 (0.036)
using averages and −0.428 (0.028) with mixed models.

Mixed models also allow the investigation of far more complicated questions
that might not be possible at all with an approach of averaging results from the
left and right sides. When there are multiple covariates recorded on each side
(such as previous operations, previous fractures, dominant side, range of joint
movements and muscle strengths), plus systemic covariates (such as age and
gender) that might affect the outcome variable of interest, mixed models can
allow for these effects while simultaneously allowing for the correlation between
the bilateral observations.

Example 2

Our second example of bilateral data comes from a database used to study patella
tracking after surgery to implant an artificial knee joint. Patella tracking is the
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examination of the path of the patella or kneecap bone as the leg is bent. It may
be assessed by radiographic examination of the knee from the lateral view at a
sequence of knee flexion angles. From each radiograph, the position of the patella
is assessed by a measure of distance, obtained between fixed landmarks on the
femur and tibia, and an associated angle. In this study, these measurements were
made at full extension of the leg, with the leg bent to an angle of 30∘ and at full
flexion (maximum angle). In knee replacement surgery, the kneecap may be
retained or it may be resurfaced on the articular side with an artificial surface.
In this example, we will be looking at the effect of patella resurfacing on tracking
of the patella in the sagittal plane. Observations were made pre-operatively, at
6 months post-operatively and at 12 months. The original dataset contained a
mixture of patients who were studied prospectively from the preoperative phase
onwards and others who were examined in a less systematic way for clinical
reasons. For the latter group of patients, any missing observations are unlikely to
be missing at random. We have therefore taken the approach of including only
those patients for whom a full set of preoperative patella tracking observations
was taken, as this indicates a prior intention to obtain full tracking data. The
assumption of missing at random is more reasonable for any subsequent missing
values, which may be due to technical problems such as obtaining measurements
from the radiograph. There are 31 such patients, 24 of whom had unilateral
operations and 7 of whom had bilateral operations.

In principle, both the angular and distance data could be analysed simultane-
ously, but this will be far more complicated to analyse and interpret, and so each
will be analysed separately. We will concentrate principally on the angular data,
as this shows the more interesting results. We can expect correlation between
bilateral observations on the same subject, and so the patient identifier (id) will
be fitted as a random effect. In addition, observations at the two postoperative
time points, within a patient, are likely to be correlated, and so id⋅time will also be
fitted as a random effect. The data at the three knee angles (flex) within a patient
could be fitted as a repeated term, with a choice of covariate pattern but will be
analysed in this case by fitting id⋅flex as a third random effect term, generating the
compound symmetry structure. The relationship between results at each of the
time points and at each flexion may be related to the corresponding preoperative
measurements (anglebase), but the coefficients for these covariate effects may
not necessarily be identical. As well as a covariate term in the model we will
also initially fit an anglebase⋅time and an anglebase⋅flex interaction. The initial
model will also contain fixed effects for time, flex, time⋅flex, resurface (the variable
indicating whether resurfacing was carried out), resurface⋅time, resurface⋅flex
and resurface⋅flex⋅time.

The initial model confirmed the correlation across bilateral observations,
across time and across the three angles. The anglebase⋅time interaction (p =
0.84) and anglebase⋅flex interaction (p = 0.36) indicated a similar baseline effect
throughout the postoperative observations, and the three-way interaction was
also non-significant (p = 0.43). Successive fitting of reduced models also led to the
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removal from the model of resurface⋅time (p = 0.23) and time⋅flex (p = 0.21). In
the final model (see output at the end of this section), time is also non-significant
with an estimate that at 12 months, the angles are, on average 0.5∘ higher than
at 6 months (SE 0.9, p = 0.63). The baseline is having only a modest effect on
postoperative readings (coefficient 0.16, SE 0.07, p = 0.02). The most noticeable
effect in the model is the highly significant resurface⋅flex interaction (p<0.0001),
which is summarised as follows.

LSMEANS for angle (∘)(SE)

Flexion Not Resurfaced Resurfaced

Full extension 19.4 (1.3) 14.8 (1.4)
30∘ 22.4 (1.4) 21.1 (1.5)
Full flexion 23.5 (1.4) 29.3 (1.5)

Preoperatively, the angles did not differ significantly with flexion (p = 0.08) with
overall means and standard errors of 20.2∘ (1.4), 22.3∘ (1.3) and 18.2∘ (1.3).
Thus, the pattern seen is that, after operation, if the patella has been retained
intact, there is no important change in the angles from preoperative levels, while
after resurfacing, the angle is relatively decreased at full extension and increased
at full flexion. We can examine the statistical significance of these changes by
modifying our analysis to consider change in angle as our outcome variable
instead of actual angle. As the baseline angle is included in both models as a
covariate, the analysis is just a reparameterisation of the original model. This
shows the mean adjusted changes (SE) (p), as −5.3∘ (1.4) (p = 0.0003) at full
extension after resurfacing and 9.2∘ (1.5) (p<0.0001) at full flexion. In the group
without resurfacing, the mean adjusted changes are also statistically significant
at full flexion (3.5 (1.4), p=0.02), though we retain the conclusion that, overall in
this group, there are no important changes in the angles from preoperative levels.

The analysis of the distance measure (dist) showed no statistically significant
effect for any of the terms involving resurfacing (minimum p = 0.07 for
distbase⋅flex interaction) and the final model (see code at the end of this section)
included only effects for time (p = 0.13), flex (p < 0.001) and time by flex
(p=0.01). The corresponding least squares means are shown as follows.

LSMEANS for distance (mm)(SE)

Flexion 6 months postoperatively 12 months postoperatively

Full extension 64.1 (2.1) 64.0 (2.1)
30∘ 19.2 (2.4) 26.8 (2.2)
Full flexion 48.0 (2.4) 47.7 (2.1)
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At 6 months, the least squares means are very similar to the corresponding
preoperative means (SE) of 62.1 (1.0), 19.3 (1.6) and 47.4 (2.0). At 12 months,
there has been a moderate increase in the distance at 30∘ with no change at the
other flexions.

Checks were made on outliers and influence, but neither outcome variable
produced any cause for concern.

Sample SAS code for first example (output not shown)

PROC MIXED;
CLASS subject priorfdo;
MODEL meanstancehiprotation=priorfdo / DDFM=KR;
RANDOM subject;
LSMEANS priorfdo / DIFF PDIFF;

SAS code and output for second example

Variables
id = patient identifier,
resurf =was the patella resurfaced?,
time = time of measurement (2=6 months, 3=12 months),
flex = angle of flexion (1=full extension, 2=30∘, 3=full flexion),
angle =measurement of angle,
anglebase= corresponding preoperative measurement of angle,
dist =measurement of distance,
distbase = corresponding preoperative measurement of distance.

Final model for angles and output

PROC MIXED; CLASS time flex id resurf;
MODEL angle= time flex resurf resurf*flex anglebase/

DDFM=KR SOLUTION;
RANDOM id id*flex id*time;
LSMEANS resurf*flex;

Model Information

Data Set WORK.C

Dependent Variable angle

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Kenward-Roger

Degrees of Freedom Method Kenward-Roger
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Class Level Information

Class Levels Values

time 2 2 3

flex 3 1 2 3

id 31 2 4 5 12 13 16 17 23 26 32 39

43 44 46 49 50 51 56 60 61 62

66 68 69 74 75 78 80 83 85 86

resurf 2 No Yes

Dimensions

Covariance Parameters 4

Columns in X 15

Columns in Z 186

Subjects 1

Max Obs Per Subject 228

Number of Observations

Number of Observations Read 228

Number of Observations Used 185

Number of Observations Not Used 43

Iteration History

Iteration Evaluations −2 Res Log Like Criterion

0 1 1168.99570666

1 2 1126.22961000 0.00069923

2 1 1125.92178949 0.00002074

3 1 1125.91329805 0.00000003

4 1 1125.91328730 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

id 7.1001

flex*id 9.8319

time*id 6.2011

Residual 14.7438

Fit Statistics

−2 Res Log Likelihood 1125.9

AIC (smaller is better) 1133.9

AICC (smaller is better) 1134.1

BIC (smaller is better) 1139.6
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Solution for Fixed Effects

Standard

Effect resurf time flex Estimate Error DF t Value Pr > |t|

Intercept 26.2697 1.9616 95.4 13.39 <.0001

time 2 −0.4610 0.9489 28.7 −0.49 0.6308

time 3 0 . . . .

flex 1 −14.4650 1.6206 50.2 −8.93 <.0001

flex 2 −8.1253 1.7043 52 −4.77 <.0001

flex 3 0 . . . .

resurf No −5.7440 2.0115 67 −2.86 0.0057

resurf Yes 0 . . . .

flex*resurf No 1 10.3026 2.2089 45.9 4.66 <.0001

flex*resurf Yes 1 0 . . . .

flex*resurf No 2 7.0202 2.3030 48.2 3.05 0.0037

flex*resurf Yes 2 0 . . . .

flex*resurf No 3 0 . . . .

flex*resurf Yes 3 0 . . . .

anglebase 0.1610 0.07067 122 2.28 0.0244

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

time 1 28.7 0.24 0.6308

flex 2 49.2 34.89 <.0001

resurf 1 28.9 0.00 0.9842

flex*resurf 2 47.3 11.23 0.0001

anglebase 1 122 5.19 0.0244

Least Squares Means

Standard

Effect resurf −flex Estimate Error DF t Value Pr > |t|

flex*resurf No 1 19.3654 1.3165 59.1 14.71 <.0001

flex*resurf Yes 1 14.8068 1.3783 62.7 10.74 <.0001

flex*resurf No 2 22.4227 1.4197 69.3 15.79 <.0001

flex*resurf Yes 2 21.1465 1.5219 74 13.90 <.0001

flex*resurf No 3 23.5279 1.3830 62.8 17.01 <.0001

flex*resurf Yes 3 29.2718 1.4817 72 19.76 <.0001

Code for final model for distance data (output not shown)

PROC MIXED; CLASS time flex id resurf;

MODEL dist=time flex time*flex / DDFM=KR SOLUTION;

RANDOM id id*flex id*time
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8.18 Incomplete block designs

8.18.1 Introduction

Incomplete block designs often provide an efficient design where it is not practical
for subjects to receive all available treatments. For example, in a trial of a topical
skin treatments, subjects may receive two of four possible treatments on each
hand, or in a crossover trial, subjects may only receive some of the available
treatments (see Section 7.5). The design is often suitable in situations where it
is practical to observe more than one treatment per subject, but the number of
assessments available per subject is limited. It is almost always more efficient
than assessing each treatment pair in separate trials, although, of course, there
may be other considerations that would make separate trials preferable: for
example, the possibility of carryover effects or the risk of subjects dropping out in
a crossover study.

A mixed model is usually the most efficient way to analyse data from incom-
plete block studies because information is combined from the within- and
between-subject error strata. However, the mixed model variance for treatment
comparisons is frequently not taken into account in study design. This is
likely to be because formulae for these variances involve matrix multiplication
and have not been readily available in a simpler algebraic form. However,
the most appropriate sample size estimate will be based on the mixed model
variance, and knowledge of this variance allows the efficiency of alternative
incomplete block designs to be compared for a particular set of study objectives
and practical constraints. For example, there may be a choice in the number of
treatments to be studied or in the number of treatments that may be received per
subject. Alternatively, a design providing a lower variance for certain treatment
comparisons may be desirable when comparisons to a benchmark treatment
are of greater interest or the difference between a particular treatment pair is
expected to be smaller than for other pairs. In these situations, the more usual
balanced incomplete block (BIB) design may be adapted to achieve the desired
variances for the different treatment pairs.

As with the majority of clinical trials, the primary aim is usually to detect a
significant difference between treatment pairs, and their expected variance is
usually used to estimate sample size. Algebraic expressions for this variance
may be obtained for some designs. However, algebraic expressions for more
complex designs can become more cumbersome and may be difficult to obtain.
It is then usually easier to calculate the variance using matrix multiplication
within suitable software. This may be achieved using either software that carries
out matrix multiplication (e.g. Matlab), custom software for trial design, or mixed
models software (e.g. PROC MIXED), with a suitably constructed dataset to reflect
a specific design. The latter will sometimes be more accessible to the practising
scientist or statistician involved in designing the study who may not have ready
access to specialist software for matrix multiplication or trial design.
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A range of designs will be considered in Sections 8.18.2–8.18.5 and, where
feasible, formulae for the mixed model variances of the treatment differences will
be provided. The variances are computed based on the generic formula for a differ-
ence in fixed effects is c ′ (X′V−1X)−1c, where c is the contrast vector defining the
difference (see Section 2.2.2). For example, in a trial comparing three treatments
A, B and C, a pairwise comparison of treatments A and B may be given by
c= (0 1 −1 0)’ (see Section 2.4.4). The V matrix has a diagonal form as described
in Section 2.1 and is specified in terms of the residual variance and the ratio of the
subject variance component to the residual. The X matrix encapsulates the study
design, and the rows specify each combination of treatments received by subjects
in the study. In order to obtain algebraic formulae for the variances of treatment
differences, the X and V matrices were assembled in Matlab and evaluated
algebraically using the Matlab Symbolic Math toolbox (a software toolbox for the
simplification and manipulation of symbolic expressions, http://www.mathworks
.co.uk/products/symbolic/). The resulting algebraic formulae obtained were
simplified into ratios of polynomials using further Matlab computational algebra
and manual manipulation.

In Section 8.18.2, the BIB design is considered where the aim is to compare
all treatment pairs with equal importance, but there may be scope to vary either
the number of treatments per subject or the number of treatments included in
the study. Section 8.18.3 covers designs for the situation where comparisons to
a particular treatment are of primary interest. Section 8.18.4 looks at designs for
the situation where it is desirable for comparisons between a particular treatment
pair to have a lower variance than for other treatment pairs. This may be either
because the treatment pair is of primary interest or because a smaller difference is
expected between the treatments and thus a smaller variance required to obtain
statistical significance. Section 8.18.5 examines designs for the situation where it
is desirable for comparisons between two particular treatment pairs to have lower
variance than for other treatment pairs. Although the most obvious use for the
formulae will be for sample size estimation, we will also consider examples of their
use as an aid to study design choice in the second part of each section.

8.18.2 Balanced incomplete block (BIB) designs

In a BIB design, each treatment is received an equal number of times, although
only a subset of the treatments will be received by each subject. The variance
of the mean difference between two treatments, where subjects receive T of N
possible treatments and where there is an equal allocation of subjects to all
possible treatment combinations, may be written

Var(treatment difference) =
2(T𝛾 + 1)𝜎2

r

R(Nn1𝛾 + n1 + n2)

http://www.mathworks.co.uk/products/symbolic/
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Where
𝜎

2
r = residual (within subject) variance

𝜎
2
s = subject variance component
𝛾 = 𝜎

2
s ∕𝜎2

r
T=number of treatments received by each subject
N= total number of treatments in experiment
R=number of replicates of the set of all possible

combinations of T treatments (e.g. for T = 2
and N = 4, R replicates of AB, AC, AD, BC, BD,
and CD will lead to a total of 6R subjects)

n1 =
(

N − 2
T − 2

)
=number of instances of the treatment pair

occurring on the same subject (e.g. for T = 3
and N = 4 there are 2 instances of treatment
pair AB: ABC and ABD), note n1 = 1 when
T = 2.

n2 =
(

N
T

)
− n1 −

(
N − 1

T

)
=number of instances of one treatment from a

pair (e.g. A or B from AB) occurring without
the other, (e.g. for T = 2 and N = 4 there are
two instances where just A or B are received:
AC and AD for A, and BC and BD for B).

We will now consider scenarios where: the number of treatments (N) has been
decided and there is flexibility in the number of treatments each subject may
receive (T) (and hence the duration of the study); and where subjects receive
a fixed number of treatments (T) but there is flexibility in the total number of
treatments to be included in the study (N); and use the mixed model variance
formula to examine alternative designs.

Varying the number of treatments per subject (T) when the total
number of treatments (N) has been set

We assume that there is flexibility in the number of treatments that subjects can
receive (T) but that a fixed number of treatments (N) are used in the study. It is
assumed that all treatment comparisons are of equal interest, and so the BIB
design is the best choice of design when it is not possible for subjects to receive
all treatments. We consider a scenario where eight treatments in total are to be
assessed (N = 8) and consider how the variance of the treatment difference is
affected by varying numbers of treatments per subject (T) and varying values of
the ratio of the between- and within-subject variances (𝛾). Variances are shown in
Figure 8.4 as a ratio to the variance for the simplest design with two treatments per
subject (T=2) and assuming a fixed number of assessment sessions. The number
of assessment sessions is the number of subjects multiplied by the number of treat-
ments received per subject (T). It is fixed so that there is a fair comparison between
the designs. However, comparisons could alternatively have been made between
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Figure 8.4 Variance of treatment difference for varying T with N fixed at 8. Expressed as ratio of variance for study with T = 2
and for a fixed number of assessment sessions.
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designs using a fixed number of subjects if this was of more importance. The SAS
code for calculating these variances will be provided at the end of the section.

If 𝛾 is positive, there is a reduction in the variance of the treatment difference
as the number of treatments per subject (T) increases. The reduction is greater
for larger values of 𝛾 (i.e. the between-subject variance is high compared to the
residual, and so there is a higher correlation between the repeated observations
on the same subject). Thus, using as many treatments as possible per subject
provides the most efficient design. Of course, the choice of T may be limited by
the number of assessments on subjects that is practical, and the increased risks
associated with using more treatments such as more subjects dropping out would
need to be weighed against the expected gain in efficiency. Note that the most
efficient study where all treatments are received by subjects (i.e. T=N) would be
no longer ‘incomplete’.

Varying the number of treatments to be assessed (N) when the number
of treatments per subject (T) is fixed

Sometimes, the number of treatments that may be used per subject (T) will be
limited by practical constraints, for example, if measurements are taken from
each eye of a subject, then only two treatments per subject are possible. However,
there may still be flexibility in the total number of treatments to be assessed in the
study (N).

In this section, we consider a design where the number of treatments per subject
(T) is limited to two and consider variances for varying numbers of treatments
(N). The design will be compared to the situation where all treatment pairs are
evaluated in separate studies (i.e. N = 2, not necessarily a sensible approach
when N becomes too large). The variance is expressed as a ratio of the variance
obtained from separate studies and for a fixed total number of assessment sessions
per treatment.

The variance is notably reduced as more treatments are assessed (Figure 8.5),
although the reduction becomes a little less pronounced for larger values of 𝛾 .
However, the reduced variance achieved by including more treatments in a single
study would need to be weighed against the possible disadvantages of a carrying
out one larger study, rather than several smaller ones. Note comparisons could
alternatively be made between designs with a fixed number of subjects or a fixed
total number of sessions over all treatments if either of these a more relevant
measure of study cost.

8.18.3 Studies where only comparisons to a particular treatment
are of interest

In some studies, the main interest is in comparing treatments to one particular
treatment, which we will denote by T *. This may be an established comparator
treatment or, alternatively, it may be a new treatment that needs to be compared to
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Figure 8.5 Variance of treatment difference for varying N and with T fixed at 2. Expressed as ratio of variance for study with
N = 2, and for studies with a fixed number of assessment sessions per treatment.
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several alternatives. A simple design to produce a lower variance for comparisons
to T * might have two treatments per subject (T = 2), with T * always being one
of the treatments received. For example, in a design to compare three comparator
treatments (B, C, D) to treatment A (T *), subjects would receive treatment pairs
AB, AC and AD, and no subjects would receive the other pairs BC, BD and CD.
We refer to the comparisons to T * as ‘primary comparisons’, and to this design
as a ‘selected comparison design’. It is still an incomplete block design, but it is
not balanced because treatments are not allocated equally to subjects. A selected
comparison design will always be more efficient than a BIB design for the primary
comparisons. It is helpful to know the size of the reduction in variance, both for
sample size estimation and for choosing between different designs when there is
flexibility in T or the number of comparator treatments to compare to T* (M).

Comparing selected comparison designs to a balanced incomplete
block design, for T = 2

In this simple situation and assuming an equal allocation of the non-T *
treatments, the variance of the primary comparisons may be written as

Var(Treatment − T∗) =
(M(1 + 2𝛾) + 1)𝜎2

r

RM(1 + 𝛾)

Where
𝜎

2
r = residual (within unit) variance
𝛾 = 𝜎

2
s ∕𝜎2

r
𝜎

2
s = subject variance component
M=number of non-T * treatments
R=number of subjects receiving each set of treatment pairs (so the total

number of subjects is RM)

Although no subjects receive the pairs of non-T * treatments (e.g. BC, BD and
CD in a design involving four treatments where T * = A), comparisons between
these pairs may still be made, and their variance is readily obtained from the
between-subject variance (1 + 𝛾)𝜎2

r as

Var(Treatment difference) =
2(1 + 𝛾)𝜎2

r

R

We refer to these as ‘secondary comparisons’. If the secondary comparisons of
non-T * treatments are also of some interest, their increase in variance compared
to the BIB would need to be weighed against the reduction in variance for the
primary comparisons.

The variance of the primary comparisons is shown as a ratio of the variance
for a BIB design in Figure 8.6, for varying values of M and 𝛾 . Although there is
always some benefit in the selected comparison design, the reduction in variance
is very small. Interestingly, the ratios of variances are identical when the number
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Figure 8.6 Ratio of variance for primary comparisons to BIB design variance, for T = 2 and a fixed number of subjects (and
assessment sessions). M = number of comparator treatments (excluding T *).
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of comparator treatments (M) is either 2 or 3. As expected, the variance of the
secondary comparisons is increased compared to the BIB design (Figure 8.7). If
secondary comparisons are also of interest, it is debatable whether the selected
comparison design is preferable, given the increase in variance of secondary
comparisons is relatively large compared to the small reductions in variance
obtained for the primary comparisons.

How much is the variance of primary comparisons reduced in a selected
comparison design compared to a balanced incomplete block design
with T = 3 and M = 5?

Next, we consider a scenario where five treatments are to be compared to T * (i.e.
M = 5), and three treatments are received by each subject (T = 3). Only treat-
ment combinations that include T * will be allocated to subjects in the selected
comparison design. For example, if the comparator treatment (T *) is A, the design
would include only treatment combinations: ABC, ABD, ABE, ABF, ACD, ACE, ACF,
ADE, ADF and AEF, and not the other possible combinations. For this design, it was
more straightforward to compute variances numerically using PROC MIXED to
perform matrix multiplication, than to derive an algebraic formula. Variances for
the primary and secondary comparisons as ratios to the BIB variance are shown in
Figure 8.8. The variance of the primary comparisons is always less than the BIB
variance, although the reduction is never more than 20%. Thus, again, there is
always benefit in the selected comparison design if the only objective is to compare
treatments to T *. Variances of secondary comparisons are increased compared to
the BIB design as expected. As with the previous scenario, if the secondary com-
parisons are also of some interest, the increase in the variance would need to be
weighed against the reduction in variance achieved for the primary comparisons.

How efficient is a selected comparison design (with T = 2) compared
to the use of separate trials for each pair of treatments?

The variance of the primary comparisons from a selected comparison design
with T = 2 is shown as a ratio for the variance that would be obtained by using
separate trials for each primary comparison and assuming an equal number of
subjects in total (Figure 8.9). The selected comparison design is always more
efficient, particularly for higher values of 𝛾 , and has the advantage over separate
studies that secondary comparisons of treatments are also available. Of course,
any practical difficulties associated with assessing all treatments in a single study
would need to be weighed against the expected gain in efficiency.

8.18.4 Designs to produce lower variances for a specific treatment
pair

Sometimes, the comparison of a particular pair of treatments is of primary interest,
while other treatment comparisons are of secondary interest. In another situation,
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Figure 8.7 Ratio of variance for secondary comparisons to BIB design variance, for T = 2 and a fixed number of subjects (and
assessment sessions). M = number of comparator treatments (excluding T *).
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Figure 8.8 Variance of primary and secondary comparisons as ratio of BIB variance, for T = 3 and m = 5, comparing studies
with same number of subjects.
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Figure 8.9 Ratio of variance for primary comparisons to variance from separate studies for each primary comparison, for T=2
and a fixed number of subjects (and assessment sessions). M = number of comparator treatments (excluding T *).
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the difference between two particular treatments is expected to be smaller, but it
is still important to detect the difference as significant. In both these situations, it
is desirable for the variance of the treatment difference to be smaller, and we refer
to the treatment pair of interest as the ‘primary pair’. Two different approaches to
achieving a reduced variance are considered.

Approach 1: The design includes only treatment combinations containing the
comparison pair of interest. For example, if T = 3 and N = 4 and treatments AB
form the primary pair, the design will allocate only combinations ABC and ABD to
subjects. Note this design is only of interest if the number of treatments per subject
(T) is three or more, otherwise all subjects would receive the primary pair, and the
study would not have an incomplete block design.

Approach 2: The BIB design is adapted by including extra subjects receiving the
primary treatment pair to the usual BIB treatment combinations. For example, in
a design comparing four treatments (A, B, C and D), if AB is the primary pair, then
extra subjects would receive AB on top of the BIB allocations (AB, AC, AD, BC, BD
and CD).

Both these approaches will result in lower variances for the primary comparison
(e.g. A–B) compared to the BIB design but higher variances for secondary compar-
isons not involving A or B (e.g. C-D if 4 treatments). Variances for comparisons only
involving one of the primary pair (e.g. A–C, A–D, B–C and B–D) will be also be
higher, but not as high as for the secondary comparison. We note, however, that
if only comparison A-B was of interest, then obviously a study where all subjects
receive AB would be preferable. However, this would not be a BIB design. Here we
assume that there is still some interest in the other treatment comparisons.

When Approach 2 is used for a design where subjects receive two of four
treatments (T = 2 and N = 4) and an extra m subjects receive the primary pair
in addition to one full set of the BIB treatment allocations, the variance of the
primary treatment comparison (assumed to be A–B) may be written as

Var(A − B) =
2(2𝛾 + 1)𝜎2

r

2(m + 2)𝛾 + m + 3

Comparison C-D is the only comparison not involving A or B and is unaffected by
the extra subjects added with AB. It has variance as

Var(C − D) =
2(2𝛾 + 1)𝜎2

r

4𝛾 + 3

Comparisons involving just one of A or B have a variance in between these two
variances

Var(A − C) = Var(A − D) = Var(B − C) = Var(B − D)

=
(2𝛾 + 1)(2(3m + 8)(m + 6)𝛾2 + 3(m + 3)(3m + 16)𝛾 + 3(m + 3)(m + 6)𝜎2

r

(4𝛾 + 3)(2(m + 2)𝛾 + m + 3)(2(m + 6)𝛾 + 3(m + 3))
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If this set of subjects (i.e. the full set of the BIB treatment allocations plus m subjects
receiving the primary pair) is replicated R times, then the variances are, of course,
divided by R.

For more complex designs where T > 2 or N > 4, it is usually more
straightforward to compute variances directly using matrix multiplication.

Design with T = 2 and N = 4 with extra subjects receiving primary
comparison

The variance for the primary comparison (A–B) is always less when extra
subjects receive AB than the BIB design (Figure 8.10). However, there is an
increase in the variance of the secondary comparison (C–D) compared to BIB
design (Figure 8.11), which is unrelated to the size of 𝛾 . Comparisons involving
only one treatment from the primary pair (A–C, A–D, B–C and B–D) also have
an increase in variance, which increases with increasing 𝛾 , but this is noticeably
smaller than the increase for the secondary comparison, C–D (Figure 8.12). The
reduction in variance for the primary comparison would need to be weighed
against the amount of increase in variance for the other comparisons. In this
case, it is possible to vary the proportion of subjects receiving allocations with AB
by varying m, so that the desired differential of variances is achieved.

Design with T = 3 and N = 6 using only treatment combinations
including the primary pair

Next, we consider a design where six treatments are to be assessed (N = 6) and
three treatments are received per subject (T=3). Only treatment combinations
containing the primary pair (AB) are allocated to subjects (ABC, ABD, ABE and
ABF). The variances of treatment differences are calculated using matrix multi-
plication for different values of 𝛾 . The variance for the primary comparison (A–B)
is always less than the BIB variance, but, as with the previous scenario, there is
an increase in the variance of the secondary comparisons compared to the BIB
design and a smaller increase for comparisons involving only one of the primary
pair (Figure 8.13). The lower variances achieved for A–B will need to be weighed
against the increased variances for comparisons not involving A and B or only
involving one of A or B. Again, it is possible to vary the proportion of subjects
receiving allocations including AB, so that the desired variance differentials are
achieved.

8.18.5 Design to produce lower variances for more than one
treatment pair

Sometimes comparisons between more than one pair of treatments are of primary
interest or alternatively the differences between more than one pair of treatments
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Figure 8.10 Variance of primary comparison as ratio to BIB variance, for T = 2, N = 6 and the primary pair repeated m times,
comparing designs with same numbers of subjects (and assessment sessions).
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Figure 8.11 Variance of secondary comparisons as ratio to BIB variance, for T = 2, N = 6 and primary pairs repeated m times,
comparing designs with same numbers of subjects (and assessment sessions).
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Figure 8.12 Variance of comparisons involving only one of primary pair treatments as ratio to BIB variance, for T = 2 and
N = 6. Primary pairs repeated m times, comparing designs with same numbers of subjects (and assessment sessions).
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Figure 8.13 Ratio of variances of treatment differences to BIB variance. Design including only combinations with A and B,
T = 3 and N = 6.
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may be expected to be smaller than those between other treatments. In both these
scenarios, we refer to the treatment pairs of interest as the ‘primary pairs’, and it
is desirable for the variances of their differences to be smaller than for the other
treatment pairs. However, we assume that there is still some interest in comparing
the other pairs. Two approaches are considered for achieving a reduced variance
for the primary pairs.

Approach 1: A simple strategy is to include only treatment combinations
involving the primary pairs. For example, consider a design where subjects
receiving two treatments (T = 2) and four treatments (A, B, C and D) are
compared. If AB and CD are the primary pairs, then all subjects receive either
AB or CD, and no subjects receive the other secondary pairs (AC, AD, BC and
BD). The variance of the primary treatment comparisons is simply 2𝜎2

r ∕R based
on the residual variance. The variance of the secondary treatment comparisons
is 2(𝛾 + 1) 𝜎2

r ∕R based on the between-subject variance. Thus, the variance of
the primary treatment comparisons is lower than in the BIB variance, and for
secondary comparisons, it is higher. This design has the same efficiency as the
use of a separate study for each primary treatment pair but has the advantage of
additionally providing comparisons of the secondary treatment pairs (AC, AD, BC
and CD).

In designs where subjects receive more than two treatments (T ≥ 3), all
combinations involving the primary treatment pairs would be allocated to
subjects. For example, if T = 3 and the study includes four treatments (A, B, C and
D) with primary pairs AB and CD, the design will allocate only combinations ABC,
ABD, ACD and BCD to subjects. Again, this will result in lower variances for A–B
and C–D compared to the BIB design, but higher variances for the secondary
treatment comparisons (A–C, A–D, B–C and B–D). For these designs, algebraic
formulae are cumbersome, and it is easier to compute variances directly using
matrix multiplication.

Approach 2: An alternative approach that also leads to lower variances for the
primary treatment pairs is to add extra subjects receiving the primary treatment
pairs to the full complement of treatment pairs in the BIB. For example, in a design
comparing four treatments (A, B, C and D) with primary treatment pairs AB and
CD, extra subjects receive AB or CD on top of the BIB allocations (AB, AC, AD,
BC, BD and CD). The reduction in primary comparison variances in this design
will not be as great as for Approach 1, but there is more scope to achieve the
desired variance differential by varying the number of extra subjects receiving the
primary pairs. The differential will become greater as the number of extra subjects
receiving combinations containing the primary treatment pairs increases, with
the maximum differential is achieved when all subjects receive the primary pairs
(i.e. reverting to Approach 1).

In a study of this type where subjects receive two of four treatments (T = 2 and N
= 4) and an extra m subjects receive each of the primary pairs in addition to each
set of the BIB allocations (AB, AC, AD, BC, BD and CD), the variance for primary
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Figure 8.14 Variance of primary comparisons as ratio of BIB variance, for studies with same number subjects. Designs using
m extra subjects receiving primary pairs in addition to BIB allocations.
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Figure 8.15 Variance of secondary comparisons as ratio of BIB variance, for studies with same number subjects. Designs using
m extra subjects with each primary pair, in addition to BIB allocations.
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comparisons (assumed to be A–B and C–D) is given by

Var(A–B) = Var(C–D) =
4(2𝛾 + 1)𝜎2

r

2m(2𝛾 + 1) + 2(4𝛾 + 3)
For the secondary treatment comparisons it is

Var(A − C) = Var(A − D) = Var(B − C) = Var(B − D)

=
2(((m + 4)𝛾 + m + 3)(2𝛾 + 1))𝜎2

r

2((m + 2)𝛾 + m + 3)(4𝛾 + m + 3)
For other designs involving more treatments per subject (T>2) or total treatments
(N>4), the algebraic formulae are cumbersome, and it is easiest to compute
variances directly using matrix multiplication.

Comparing variances of alternative designs when T = 2 and N = 4

The variance for the differences between the primary treatment compar-
isons (A–B and C–D) is reduced in a design including only the primary pairs
(Approach 1) and to a lesser extent in designs adding additional subjects receiving
primary pairs to the BIB allocations (Approach 2). Both are compared to a BIB
using the same number of subjects (Figure 8.14). As expected, the variances of
the comparisons of secondary treatment pairs are larger than in the BIB design
(Figure 8.15). Again, the benefits of lower variances for the primary comparisons
would need to be weighed against the disadvantage of higher variances for the
secondary comparisons. The number of extra subjects (m) included in Approach 2
may be varied to achieve the desired balance between the primary and secondary
pair variances.

SAS Code

The SAS code is given to obtain Figures 8.4, 8.5 and 8.9. The variances for
Figures 8.4 and 8.5 were obtained using formulae, and for Figure 8.9, PROC
MIXED was used to compute variances for alternative designs. SAS code for the
other figures is available on the book web pages at www.wiley.com/go/brown
/applied_mixed.

Code for Figures 8.4 and 8.5

OPTIONS ORIENTATION=LANDSCAPE;
SYMBOL1 C=R L=1 V=DOT I=JOIN;
SYMBOL2 C=BLUE L=1 V=TRIANGLE I=JOIN;
SYMBOL3 C=ORANGE L=1 V=HASH I=JOIN;
SYMBOL4 C=PURPLE L=1 V=HASH I=JOIN;
SYMBOL5 C=GREEN L=1 V=HASH I=JOIN;
SYMBOL6 C=GREY L=1 V=HASH I=JOIN;
SYMBOL7 C=BROWN L=1 V=HASH I=JOIN;

http://www.wiley.com/go/brown/applied_mixed
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* CALCULATE VARIANCE FOR DESIGNS WITH VARYING N AND T, AND
DIFFERENT VALUES FOR GAMMA;

DATA ALL_DESIGNS;
NS = 100; * SET FIXED NUMBER OF SESSIONS TO USE FOR VARIANCE

CALCULATION;
DO N=2 TO 8; * TOTAL NUMBER OF TREATMENTS IN STUDY;
DO GAMMA=0, 0.2, 0.5, 1.0, 2, 3, 4, 5;
DO T=2 TO N; * T=TREATMENTS PER SUBJECT;
NC=COMB(N,T); NP=COMB(N-2,T-2); NU = NC-NP-COMB(N-1,T);
IF NU=. THEN NU=0;
VAR = 2*(T*GAMMA+1)/(N*NP*GAMMA+NP+NU); * VARIANCE FOR

STUDY USING ALL TREATMENT COMBINATIONS,
SO NC*T TREATMENT SESSIONS;

VAR_PER_SESSIONS = VAR*NC*T/NS; * MULTIPLY VAR BY NC*T AND
DIVIDE BY NS, TO GET VARIANCE FOR NS SESSIONS;

OUTPUT;
END; END; END;
PROC SORT; BY N GAMMA;

* OBTAIN VARIANCES FOR 2 TREATMENTS PER SUBJECT;
DATA T_TWO; SET ALL_DESIGNS;
IF T=2;
VAR2_PER_SESSIONS=VAR_PER_SESSIONS; * RELABEL VARIANCE

FOR T=2;
KEEP GAMMA N VAR2_PER_SESSIONS;
PROC SORT; BY N GAMMA;

DATA FIXEDN; MERGE ALL_DESIGNS T_TWO; BY N GAMMA; * MERGE
VARIANCES FOR ALL DESIGNS WITH VARIANCES FOR T=2;

IF N=8; * SELECT ONLY N=8 FOR PLOT;
RATIO_PER_SESSIONS=VAR_PER_SESSIONS/VAR2_PER_SESSIONS;

PROC GPLOT;
TITLE "8.18 VARIANCE OF TREATMENT DIFFERENCE FOR VARYING T

AND N=8";
TITLE3 "AS RATIO TO VARIANCE FOR STUDY WITH T=2 AND

FOR A FIXED NUMBER OF ASSESSENT SESSIONS";
LABEL T=’TREATMENTS PER SUBJECT (T)’

RATIO_PER_SESSIONS=’RATIO’ GAMMA=’GAMMA = RATIO OF
BETWEEN SUBJECT VARIANCE COMPONENT TO RESIDUAL’;

PLOT RATIO_PER_SESSIONS*GAMMA=T; RUN;

DATA N_SET; SET ALL_DESIGNS;
IF N=T;
VARN_PER_SESSIONS=VAR_PER_SESSIONS;
KEEP GAMMA N VAR_PER_SUBJECTS3 VARN_PER_SESSIONS;
PROC SORT; BY N GAMMA;
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DATA FIXEDT; MERGE ALL_DESIGNS N_SET; BY N GAMMA;
IF T=2;
RATIO_PER_SESSIONS_PER_TREAT = (VAR_PER_SESSIONS/N) /

(VARN_PER_SESSIONS/2);
PROC SORT; BY N GAMMA;

AXIS1 LABEL=(F="ARIAL" "GAMMA = RATIO OF BETWEEN SUBJECT
VARIANCE COMPONENT TO RESIDUAL");

PROC GPLOT;
TITLE "FIGURE 8.5 VARIANCE OF TREATMENT DIFFERENCE FOR

VARYING N AND T=2";
TITLE3 ’AS RATIO OF VARIANCE FOR STUDY WITH N=2 AND FOR

TRIALS WITH A FIXED NUMBER OF ASSESSENT SESSIONS PER
TREATMENT’;

LABEL N=’TOTAL TREATMENTS IN STUDY (N)’
RATIO_PER_SESSIONS_PER_TREAT=’RATIO’;

PLOT RATIO_PER_SESSIONS_PER_TREAT*GAMMA=N/ HAXIS=AXIS1;

Code for Figure 8.9

* ALL COMBINATIONS OF 3 FORMING INCOMPLETE BLOCK DESIGN WHERE
SUBJECTS RECEIVE 3 OF 6 TREATMENTS;

DATA IB; INPUT TREAT1 $ TREAT2 $ TREAT3 $;
CARDS;
A B C
A B D
A B E
A B F
A C D
A C E
A C F
A D E
A D F
A E F
B C D
B C E
B C F
B D E
B D F
B E F
C D E
C D F
C E F
D E F
;

* COMBINATIONS OF 3 OMITTING ALL THOSE WITHOUT TREATMENT A,
FORMING FAVOURED TREATMENT DESIGN;
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DATA SELECT; INPUT TREAT1 $ TREAT2 $ TREAT3 $;
CARDS;
A B C
A B D
A B E
A B F
A C D
A C E
A C F
A D E
A D F
A E F
;

* MACRO TO OBTAIN VARIANCES FOR COMPARISONS;
%MACRO GET_VARS(DESIGN,GAMMA);

DATA A; SET &DESIGN;
ID=_N_;
PROC TRANSPOSE OUT=P2; BY ID; VAR TREAT1 TREAT2 TREAT3;

PROC MEANS DATA=A; VAR ID; OUTPUT OUT=NUM_SUBJECTS
N=NUM_SUBJECTS;

* GENERATE VALUES FOR THE ANALYSIS (ACTUAL VALUES
IRRELEVANT);

DATA P3; SET P2;
TREAT=COL1;
Y=1; Y=RANNORM(1);

PROC MIXED; CLASS TREAT ID;
MODEL Y=TREAT;
* FIX THE VALUES OF GAMMA AND RESIDUAL (ACTUAL VALUES OF

Y IRRELEVANT);
PARMS &GAMMA 1 / HOLD=1 2 NOITER NOPROFILE;
RANDOM ID;
LSMEANS TREAT/ DIFF;
ESTIMATE ’A-B’ TREAT 1 -1 0; * COMPARISON TO T*;
ESTIMATE ’B-C’ TREAT 0 1 -1; * COMPARISON BETWEEN 2

OTHER TREATMENTS;
ODS OUTPUT ESTIMATES=EST;

* CREATE DATASET WITH VARIANCES OF A-B AND B-C,
ALONG WITH NUMBER OF

OBSERVATIONS IN DATASET;
DATA VAR; SET EST; IF _N_ EQ 1 THEN DO; SET NUM_SUBJECTS;
END;
LENGTH DESIGN $ 20;
DESIGN="&DESIGN";
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GAMMA="&GAMMA"*1;
VAR=STDERR**2;

* CONCATENATE WITH RESULTS FOR OTHER VALUES OF GAMMA;
DATA &DESIGN._VAR; SET &DESIGN._VAR VAR;
RUN;

%MEND;

%MACRO OVER_GAMMA(DESIGN); * RUN ABOVE MACRO OVER SEVERAL
VALUES FOR GAMMA;

%GET_VARS(&DESIGN,0.1);%GET_VARS(&DESIGN,0.2);
%GET_VARS(&DESIGN,0.3);%GET_VARS(&DESIGN,0.4);
%GET_VARS(&DESIGN,0);%GET_VARS(&DESIGN,0.5);
%GET_VARS(&DESIGN,1);%GET_VARS(&DESIGN,2);
%GET_VARS(&DESIGN,3);%GET_VARS(&DESIGN,4);
%GET_VARS(&DESIGN,5);*%GET_VARS(&DESIGN,10);

%MEND;

DATA IB_VAR; SET _NULL_;
DATA SELECT_VAR; SET _NULL_;

%OVER_GAMMA(IB); %OVER_GAMMA(SELECT);

* MODIFY DATASET CONTAINING RESULTS FOR IB DESIGN;
DATA IB_VAR2; SET IB_VAR;
IB_SUBJECTS=NUM_SUBJECTS;
IB_VAR=VAR;
IF DESIGN=’IB’ AND LABEL=’A-B’ THEN OUTPUT; * OUTPUT

RESULTS FOR ONE COMPARISON, DOESNT MATTER WHICH;
KEEP GAMMA IB_SUBJECTS IB_VAR;
PROC SORT; BY GAMMA;

PROC SORT DATA=SELECT_VAR; BY GAMMA;

* MERGE RESULTS FOR 2 DESIGNS BY GAMMA AND CALCULATE
RATIOS OF VARIANCES;

DATA MERGED; MERGE SELECT_VAR IB_VAR2; BY GAMMA;
RATIO=VAR/IB_VAR;
SCALE=NUM_SUBJECTS/IB_SUBJECTS;
RATIO_SCALED=RATIO*SCALE;
PROC SORT; BY LABEL GAMMA;

OPTIONS ORIENTATION=LANDSCAPE;
SYMBOL1 C=R L=1 V=DOT I=JOIN;
SYMBOL2 C=BLUE L=1 V=TRIANGLE I=JOIN;
SYMBOL3 C=ORANGE L=1 V=HASH I=JOIN;
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PROC FORMAT; VALUE $TDIFF ’A-B’=’PRIMARY COMPARISONS
INVOLVING T*’

’B-C’=’SECONDARY COMPARISONS NOT INVOLVING T*’;

PROC GPLOT DATA=MERGED;
PLOT RATIO_SCALED*GAMMA=LABEL/ VREF=1 VAXIS=0 TO 1.5 BY 0.1;
TITLE ’FIGURE 8.9 VARIANCE OF PRIMARY AND SECONDARY

COMPARISONS AS RATIO OF BIB VARIANCE, FOR T=3 AND N=6’;
TITLE3 "COMPARING STUDIES WITH SAME NUMBER OF SUBJECTS";
LABEL LABEL=’TREATMENT DIFFERENCE’ GAMMA=’GAMMA = RATIO OF

BETWEEN SUBJECT VARIANCE COMPONENT TO RESIDUAL’
RATIO_SCALED=’RATIO’;

FORMAT LABEL $TDIFF.;
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Software for fitting mixed
models

In this chapter, we will look at software for fitting mixed models, with a particular
emphasis on the SAS package, which has been used to analyse the majority of
our examples. In Section 9.1, we mention briefly some of other packages and
programs that are available for fitting mixed models. Basic details on the use of
the SAS procedure PROC MIXED for fitting normal mixed models are given in
Section 9.2. In Section 9.3, we give details on using PROC GENMOD and PROC
GLIMMIX for fitting GLMMs, and in Section 9.4, details on PROC MCMC for fitting
models using a Bayesian approach.

9.1 Packages for fitting mixed models

There have been very many different programs and software packages developed
to implement mixed models or multi-level models. These range from programs
to implement a single type of model to comprehensive statistical packages such
as SAS. Some are regularly updated to run on the latest versions of operating
systems, while others are only available on relatively old operating systems. New
products are constantly being introduced to the market, often for a very specific
application. As an example, GEMMA is software ‘implementing the Genome-wide
Efficient Mixed Model Association algorithm for a standard linear mixed model and
some of its close relatives for genome wide association studies (GWAS)’. Further
details can be found at (home.uchicago.edu/xz7/software.html). It is impractical
to list all of the software available for fitting mixed models, and we will not attempt
to try it. We will, however, say a few words about some of the packages available.
Inclusion within the following list is not an endorsement of these packages, and
neither should the absence of any package be taken as a criticism.

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/brown/applied_mixed
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License fees for many of the more comprehensive statistical software packages
can be quite expensive, and so it is a wise precaution to ensure that the capabilities
match all of a user’s needs and not just those relating to mixed models. For
those unable to afford license fees, it is worth mentioning R software. This is free
software that is now used widely, but by no means exclusively, in the academic
community. The authors of this book are not themselves R users, but some of our
colleagues are enthusiastic, particularly about its graphics capabilities. It requires
an initial investment of time to learn R but is well worth considering, especially
when funding is an issue, though its mixed models capability is not as good as
that provided by SAS.

SAS The MIXED and GLIMMIX procedures provide very versatile software for
fitting mixed models. They can be used to fit all types of mixed models (random
effects, random coefficients and covariance pattern models). In addition, the
MCMC procedure may be used to fit mixed models using a Bayesian approach.
More details are provided in Sections 9.2–9.4.

Genstat Mixed models for normal data can be fitted using the VCOMP and REML
directives, and GLMMs can be fitted using the GLMM directive. In addition, a
set of procedures to fit the GLMM models described by Lee and Nelder (1996)
is available. These allow the random effects in GLMMs to assume alternative
distributions to the normal distribution. The VSTRUCTURE directive can be used
to specify covariance patterns. There is not a directive for analysing ordinal data;
however, the Biometris GenStat Procedure Library written by members of the
Centre for Biometry Wageningen (CBW) contains a suitable procedure,IRCLASS.
This procedure library may be freely downloaded from http://www.wageningenur
.nl/en/show/Biometris-GenStat-Procedure-Library-Edition-15.htm.

MLwiN MLwiN is a package originally developed by the Multilevel Modelling
Project at the Institute of Education in London. It can be used to fit both normal
mixed models, GLMMs, and mixed models for ordinal and categorical data.
However, the choice of covariance patterns available is more limited than in PROC
MIXED. An R command interface to the MLwiN software package is available
via software called R2MLwiN. Further information on MLwiN can be found at
http://www.bristol.ac.uk/cmm/software/mlwin/.

R R is a free software environment for statistical computing and graphics. Mixed
models for normal data can be fitted in using ‘lme4’ and ‘nlme4’ functions.
More details on these functions can be found in the textbook ‘Mixed-effects
models in S and S-PLUS’ by Pinheiro and Bates (2000) (R functions were
originally developed for use within S and S-PLUS). Covariance patterns can be
specified using the ‘correlation’ argument. GLMMs can be fitted using the ‘glmm’
or ‘glmmpql’ functions. The ‘glmmpql’ function is discussed in the fourth
edition of Modern applied statistics with S, Venables and Ripley (2002); the book
also covers normal theory models; and there is online support for the book at
www.stats.ox.ac.uk/pub/MASS4/. Interfaces have been written to allow use of

http://www.wageningenur.nl/en/show/Biometris-GenStat-Procedure-Library-Edition-15.htm
http://www.bristol.ac.uk/cmm/software/mlwin
http://www.stats.ox.ac.uk/pub/MASS4
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both MlwiN and WinBUGS software to be accessed from within R (R2MLwiN and
R2WinBUGS). More information on R is available at www.r-project.org.

SPSS Mixed models for normal data can be fitted using the MIXED procedure.
GLMMs may be fitted using the GLMM procedure, which is available within the
Advanced Statistics software ad-on.

Stata Random effects models may be fitted using the ‘xtmixed’ command.
Non-normal mixed models may be fitted within the GLLAMM add-on software
(see www.gllamm.org/). The range of available covariance pattern models
appears to be more restricted than is available in SAS.

WinBUGS This is a package dedicated to Bayesian analysis using the Gibbs
sampler and has been developed by the Medical Research Council Biostatistics
Unit in Cambridge. It can be used to fit random effects models to all types of
data. The package can be obtained at www.mrc-bsu.cam.ac.uk/bugs. It is free of
charge at the time of writing. WinBUGS software may be accessed from R using
R2WinBUGS. This writes a data file, input file, and a script, runs the script in
WinBUGS, and returns the output simulations to R.

9.2 PROC MIXED

PROC MIXED is a SAS procedure for fitting normal mixed models. It can
be used to fit any type of mixed model (random effects, random coefficients,
covariance pattern or a combination). It has great flexibility, and there
are many options available for defining mixed models and their output. By
default, the REML estimation method is applied (see Section 2.2.1). Alter-
natively, other likelihood-based methods can be applied, and a Bayesian
analysis is also available for random effects and random coefficients models
(see Section 2.3). Documentation for PROC MIXED is perhaps most easily
accessed online during a SAS session. Details are also available from sup-
port.sas.com/documentation/onlinedoc. Another excellent text on using SAS
to fit mixed models is SAS System for Mixed Models, Second edition by Littell et al.
(2006).

Our aim in this section is to give a basic description of the most useful PROC
MIXED statements and options to enable those not wishing to learn the procedure
in depth to perform mixed models analyses. Details on the many other options
available can be found in theSAS documentation. The presentation in this section
will assume a working knowledge of SAS.

Syntax

The statements available in PROC MIXED in version 9.3 are as follows:
PROC MIXED statement, BY, CLASS, CONTRAST, ESTIMATE, ID, LSMEANS,
LSMESTIMATE, MODEL, PARMS, PRIOR, RANDOM, REPEATED, SLICE, STORE,
and WEIGHT statements. In addition, ODS statements can be used to control
what is printed when running PROC MIXED and what is output in SAS datasets

http://www.r-project.org
http://www.gllamm.org
http://www.mrc-bsu.cam.ac.uk/bugs
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for handling by other procedures. The BY statement is the same as in other SAS
procedures and will not be considered further in this chapter. We will mention all
of the other statements, at least briefly, while concentrating on those statements
we have used in this book. Those with older versions of SAS may find that some
of the statements listed here are not implemented in their version.

Simple example

Data from the multi-centre hypertension trial introduced in Section 1.3 will be
used to illustrate the use of PROC MIXED to fit a simple random effects model.
The following code fits a random effects model with pre-treatment DBP (dbp1)
and treatment effects fixed and centre and centre⋅treatment effects random.

PROC MIXED; CLASS centre treat;
MODEL dbp = dbp1 treat;
RANDOM centre centre*treat;

The Mixed Procedure

Model Information
Data Set WORK.A
Dependent Variable dbp
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information
Class Levels Values
centre 29 1 2 3 4 5 6 7 8 9 11 12 13 14

15 18 23 24 25 26 27 29 30 31
32 35 36 37 40 41

treat 3 A B C

Dimensions
Covariance Parameters 3
Columns in X 5
Columns in Z 108
Subjects 1
Max Obs Per Subject 288

Number of Observations
Number of Observations Read 288
Number of Observations Used 288
Number of Observations Not Used 0
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Iteration History
Iteration Evaluations -2 Res Log Like Criterion

0 1 2072.30225900
1 3 2055.64188178 0.00000322
2 1 2055.63936685 0.00000000

Convergence criteria met.

The Model Information gives basic information on the dataset that was used and
some methodological information on how the model was fitted (in this case using
the default options). The Class Level Information provides us with the values
in our dataset for those categorical variables specified in the CLASS statement.
Dimensions show the size of the matrices thatSAS is working with. It is potentially
confusing that the number of subjects is shown as one when we have 288 patients
in the trial. This is because our dataset has not been ‘blocked’ (see Section 6.2).
The Number of Observations allows us to see if any observations have been
excluded from analysis, perhaps, because of missing values. The Iteration History
table shows how quickly the algorithm has converged. The criterion is a measure
of convergence and should be very close to zero. In this example, convergence
has been reached quickly. The table gives the value of minus twice the REML log
likelihood. If this is very large, then it is likely that the covariance matrix, V, is
singular, leading to an infinite likelihood. In this situation, the results would be
invalid and the model would need to be respecified, probably refitting certain
random effects as fixed or removing them altogether. The Evaluations column
gives the number of evaluations of the objective function carried out at each
iteration. Occasionally, a message stating that the G matrix is not positive definite
will appear. Usually, this indicates that a negative variance component has been
set to zero by PROC MIXED and is not a cause for concern. However, if this is not
the case, it is possible that only a local maximum has been reached and a ‘grid
search’ for other solutions might be advisable (see the PARMS statement).

Covariance Parameter

Estimates
Cov Parm Estimate
centre 6.4628
centre*treat 4.0962
Residual 68.3677

This gives the variance parameter estimates. The variance component for
centres is 6.46 and for the centre⋅treatment interaction 4.10. The residual
estimate is 68.37.
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Fit Statistics
-2 Res Log Likelihood 2055.6
AIC (smaller is better) 2061.6
AICC (smaller is better) 2061.7
BIC (smaller is better) 2065.7

This table gives information about the model fit. It includes several statistics
based on the likelihood value. AIC is Akaike’s Information Criterion, AICC is a
variation on AIC and BIC is Schwartz’s Bayesian Information Criterion. Each of
these criteria attempts to make adjustment for the number of parameters fitted
in the model so that models can be compared directly. However, note that SAS
presents minus twice the usual criteria. They are of greatest value for comparing
models using different covariance patterns (see Chapter 6). More detail on their
calculation is given in the SAS documentation.

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
dbp1 1 208 6.31 0.0128
treat 2 48 2.28 0.1131

Results from F tests are given for all fixed effects. The ‘Type 3’ tests are the Wald
tests described in Section 2.4.4. These tests arise naturally from mixed models and
adjust for other effects fitted in the model. The denominator DF for the F tests are
given by the residual DF or, if the fixed effect is contained, by the DF of the contain-
ing effect. Here dbp1 is tested using the residual DF of 208 and treat using the
centre⋅treatment DF of 48, since it is contained within this effect. Other methods
for calculating the denominator DF are available by using the DDFM option in the
MODEL statement (see the following section).

We will now give basic details on the use of each statement within the procedure.

The PROC MIXED statement

This statement initiates the procedure, and its options are concerned with the
general aspects of fitting the procedure and specifying its output.

PROC MIXED options;

Some of the more useful PROC MIXED options are listed in the following table.
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METHOD = <method> Specifies estimation method.
= REML REML (default).
= ML Maximum likelihood.
= MINQUE Minimum variance quadratic variance estimation. This is an

estimation method that we have not covered. It is based on
equating mean squares to their expected values, and it is less
computationally expensive than maximum likelihood. Further
information can be found in Rao (1971, 1972). Searle et al.
(1992) show that the solution is equivalent to that obtained
using just one iteration with REML.

CL Prints Wald confidence intervals for covariance parameters.
Default is 95% limits unless ALPHA=<p> option is used.

ASYCOV Prints asymptotic covariance matrix of covariance parameters.
EMPIRICAL Empirical estimator of variance matrix of fixed effects,

var(�̂�) = (X′V−1X)−1(X′V−1cov(y)V−1X)(X′V−1X)−1, is used in
place of V for all fixed effects variance estimates in covariance
pattern models fitted using REPEATED statement (see Section
2.4.3).

IC Displays additional information criteria to compare model fit.
Criteria due to Akaike–AIC and AICC (1974), Hannan and
Quinn–HQIC (1979), Schwarz–BIC (1978) and
Bozdogan–CAIC (1987) are displayed.

NOCLPRINT Suppresses printing of class levels. (This is useful when a CLASS
effect has many categories.)

NOINFO Suppresses printing of Model Information, Dimensions and
Number of Observations tables.

NOITPRINT Suppresses printing of Iteration History
PLOTS options A variety of statistical graphics can be specified via the Output

Delivery System (in more recent versions of SAS). See online
help for details

The MODEL statement

This statement is used to specify the dependent variable and the fixed effects in
the model. Options are available for specifying the model, significance tests and
for requesting specific output to be printed.

MODEL <dependent> = <fixed effects>/options;

Options relating to the model specification

NOINT Requests no intercept be included in the model.
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Options relating to statistical tests

DDFM =<DF type> Selects DF type for F test denominator DF for all F tests.
RESIDUAL Uses residual DF.
CONTAIN If the effect of interest is contained within another effect, then

the DF of the containing effect are used. If the effect is not
contained, then the residual DF are used. These are the
default DF.

BETWITHIN Assigns between- or within-subject DF to effects when the
REPEATED statement is used. Effects nested within the
SUBJECT effect take the subject effect DF, others take the
residual DF.

SATTERTH Uses Satterthwaite’s approximation to the true DF (see
Section 2.4.4).

KR <(FIRSTORDER)>
or KENWARDROGER
<(FIRSTORDER)>

Calculates DF suggested by Kenward and Roger (1997). This
substitutes an improved estimate of the covariance matrix of the
fixed and random effects into Satterthwaite’s approximation for
the DF (see Section 2.4.3). It also causes the improved estimates
of fixed and random effects variances to be used throughout the
whole procedure (e.g. for calculating standard errors and test
statistics). Addition of the FIRSTORDER or LINEAR sub-option
will sometimes lead to an improved adjustment in certain types
of covariance pattern model (see Section 6.2.4).

Options relating to output

SOLUTION Solution for fixed effects is printed.
CL Requests t-type confidence intervals for fixed effects given by

SOLUTION option.
ALPHA=<p> Specifies size of confidence intervals (default 0.05).
E3 Prints design matrix for all fixed effects.
OUTP=<dataset> For each observation gives predicted values (X�̂� + Z𝛃) and

residuals (y − X�̂� − Z𝛃) based on fixed and random effects.
Approximate variances, standard errors and 95% confidence
intervals for each predicted value are also listed.

OUTPM=<dataset> Predicted values (X�̂�) and residuals (y − X�̂�) based on fixed effects
only are given. Approximate variances, standard errors and 95%
confidence intervals for each predicted value are also listed.

Options relating to model checking

RESIDUAL Produces residual plots when used with ODS graphics.
INFLUENCE Influence diagnostic plots to be produced when used with ODS graphics.
VCIRY Standardises the residuals in a covariance pattern model

(see Section 6.2.4).
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Example

PROC MIXED DATA=a; CLASS centre treat;
MODEL dbp = dbp1 treat/ E3 SOLUTION DDFM=KR OUTP=pred

OUTPM=predm;
RANDOM centre centre*treat;
PROC PRINT NOOBS DATA=pred;
PROC PRINT NOOBS DATA=predm;

Use of the SOLUTION and DDFM=KR options

Solution for Fixed Effects
Standard

Effect treat Estimate Error DF t Value Pr > |t|
Intercept 61.7638 11.2440 284 5.49 <.0001
dbp1 0.2689 0.1084 284 2.48 0.0137
treat A 2.9274 1.4109 25.6 2.07 0.0482
treat B 1.6415 1.4453 25.7 1.14 0.2666
treat C 0 ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅

Note that use of DDFM=KR has caused the standard errors to be based on an
improved estimate (as described by Kenward and Roger, 1997), which helps
alleviate bias (see Section 2.4.3). These standard errors are also used to calculate
the t statistics and their approximate DF. (It is somewhat confusing that the
DDFM=KR option in fact relates to the standard error calculation. The DF are
still calculated using Satterthwaite’s approximation but based on these improved
standard errors.)

Use of the E3 option

Type 3 Coefficients for dbp1

Effect treat Row1
Intercept
dbp1 1
treat A
treat B
treat C
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Type 3 Coefficients for treat

Effect treat Row1 Row2
Intercept
dbp1
treat A 1
treat B 1
treat C −1 −1

This shows that SAS has parameterised treatment effects by using differences
from the last treatment (C).

Use of the DDFM=KR option

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F
dbp1 1 284 6.16 0.0137
treat 2 25 2.16 0.1364

Note that these tests differ from the earlier analysis where the DDFM=KR option
was not used.

Use of the OUTP= option

S

t

d

p E

a c r

t v e t r A L U R

i i n r d P P l o p e

e s t e d b c r r p w p s

n i r a b p c f e e D h e e i

t t e t p 1 f 1 d d F a r r d

1 6 29 C 86 97 . 1 84.9727 3.16871 18.4533 0.05 78.3272 91.618 1.0273

2 3 29 C 72 109 . . 88.1995 3.15570 17.9756 0.05 81.5690 94.830 -16.1995

3 6 5 B 109 117 . 5 96.4061 3.03187 47.2421 0.05 90.3076 102.505 12.5939

4 6 5 A 87 100 3 1 93.7690 2.78800 16.4832 0.05 87.8727 99.665 -6.7690

5 6 29 A 85 105 3 3 90.6234 3.25199 11.7170 0.05 83.5189 97.728 -5.6234

7 6 3 A 100 114 1 2 99.9119 3.01901 20.6093 0.05 93.6263 106.198 0.0881

8 6

etc.



Brown778258 c09.tex V3 - 11/14/2014 10:23 A.M. Page 462

462 Software for fitting mixed models

Use of the OUTPM= option

S

t

d

p E

a c r

t v e t r A L U R

i i n r d P p l o p e

e s t e d b c r r p w p s

n i r a b p c f e e D h e e i

t t e t p 1 f 1 d d F a r r d

1 6 29 C 86 97 . 1 87.8475 1.31873 95.212 0.05 85.2296 90.4655 -1.8475

2 3 29 C 72 109 . . 91.0744 1.29205 85.384 0.05 88.5056 93.6432 -19.0744

3 6 5 B 109 117 . 5 94.8671 1.95897 189.699 0.05 91.0029 98.7313 14.1329

4 6 5 A 87 100 3 1 91.5816 1.17842 58.874 0.05 89.2235 93.9397 -4.5816

5 6 29 A 85 105 3 3 92.9262 1.13687 55.620 0.05 90.6484 95.2039 -7.9262

7 6 3 A 100 114 1 2 95.3463 1.61199 153.490 0.05 92.1617 98.5309 4.6537

etc.

Options relating to model checking Use of these options is illustrated in
Section 2.5 and Section 6.3.

The RANDOM statement

This statement can be used to specify random effects and/or random coefficients,
𝛽, and the form of their variance matrix, G. Several RANDOM statements may be
specified, although usually only one will be needed. When no RANDOM statement
is included, the results will be the same as those obtained using PROC GLM.

RANDOM <random effects>/options;

Output options

CL Requests t-type confidence intervals for each random effects estimate.
ALPHA=<p> Specifies size of confidence interval (default is 0.05 to give 95%

confidence intervals).
SOLUTION Solution for random effects is printed.

Options corresponding to the G and V matrices

G Prints G.
GCORR Prints correlation matrix corresponding to G.
V Prints V.
VCORR Prints correlation matrix corresponding to V.
GDATA=<dataset> Specifies a fixed G matrix.
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Example

PROC MIXED DATA=a; CLASS centre treat;
MODEL dbp = dbp1 treat/ DDFM=KR;
RANDOM centre centre*treat/ V SOLUTION;

Use of the V option

Estimated V Matrix for Subject 1

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

1 78.9267 10.5590 6.4628

2 10.5590 78.9267 6.4628

3 78.9267 6.4628

4 6.4628 78.9267

5 6.4628 6.4628 78.9267

6 78.9267 6.4628

This matrix has a dimension equal to the number of observations in the dataset
and is hence very large in this example. (If a SUBJECT option is used in the
RANDOM statement, the matrix will relate to only the first subject, otherwise the
full variance matrix for all observations is given.) The diagonal terms are equal
to the sum of the three variance components. Off-diagonal terms are equal to
the sum of the centre and centre⋅treatment variance components, 10.6, when
patients are at the same centre and receive the same treatment; they are equal
to the centre variance component, 6.5, when patients are at the same centre
but receive different treatments; they and are zero when patients are at different
centres (denoted by blank entries).

Use of the SOLUTION option

Solution for Random Effects
Std Err

Effect treat centre Estimate Pred DF t Value Pr > |t|
centre 1 0.7966 1.8325 20.7 0.43 0.6683
centre 2 -2.3441 2.1884 14.5 -1.07 0.3016
centre 3 1.9760 2.2547 12.1 0.88 0.3978
centre 4 -0.1429 2.1410 16.4 -0.07 0.9476
centre 5 1.1779 2.1764 15.4 0.54 0.5961
⋅
⋅
centre 31 -4.7913 1.8470 21.5 -2.59 0.0167
⋅

⋅
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centre*treat A 1 -0.4605 2.2025 2.36 -0.21 0.8511
centre*treat B 1 1.6900 2.1965 2.38 0.77 0.5106
centre*treat C 1 -0.7246 2.2093 2.3 -0.33 0.7705
centre*treat A 2 -0.8330 2.2406 1.56 -0.37 0.7543
⋅

⋅

⋅

The Estimate and Std Err Pred columns give the random effects
estimates and their standard errors. The Wald t tests help to determine whether
any centre is outlying.

Options for specifying the G matrix structure

GROUP=<effect> This causes a separate G matrix to be estimated within each
group. For example, if patient effects were fitted as random and
the GROUP=treat option were used, then a separate variance
patient component would be estimated for each treatment
group. If patients 1 and 3 received treatment A and patients 2
and 4 received treatment B, then the G matrix for the first four
patients would have the form

G =

⎛
⎜
⎜
⎜
⎜⎝

𝜎
2
A 0 0 0

0 𝜎
2
B 0 0

0 0 𝜎
2
A 0

0 0 0 𝜎
2
B

⎞
⎟
⎟
⎟
⎟⎠

.

However, the statement should be used cautiously when there are many group
levels, since a large number of parameters will then need to be estimated.

The G matrix is always diagonal in random effects models, and the follow-
ing options given for the RANDOM statement are not required. However, a
non-diagonal G matrix is necessary to fit a random coefficients model to allow
the intercepts and slopes of the random coefficients to be correlated and also for
fitting certain covariance structures in hierarchical repeated measures designs
(see Section 8.1). The G matrix is blocked by the specified SUBJECT effect, and
the covariance pattern is specified by the TYPE options in a very similar way to
the REPEATED statement.

RANDOM <random effects or coefficients>/
SUBJECT=<blocking effect> TYPE=<covariance pattern>;
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Covariance patterns available for the TYPE= option will be listed under the
REPEATED statement.

Random coefficients models In these models, the random coefficients on the same
subject are assumed to be correlated (e.g. intercepts and slope effects are correlated
for each subject in a repeated measures trial). This is achieved using a RANDOM
statement of the following form:

RANDOM <random coefficients>/SUBJECT=<subject effect> TYPE=UN;

For example, to model random coefficients for the effect of time, the code
might be

RANDOM INT time/SUBJECT=patient TYPE=UN;

This fits the random coefficients patient and patient⋅time. Patient effects are
specified by the reserved SAS term INT, which fits an intercept for each patient.

Example

Examples of fitting random coefficients models are given in Section 6.6.

The LSMEANS statement

This statement calculates the least squares mean estimates of specified fixed
effects.

LSMEANS <fixed effects>/options;

Options

CL Requests t-type confidence intervals for least squares means.
ALPHA=<p> Specifies size of confidence interval (default is 0.05 for a 95%

confidence interval).
ADJUST=<type> Requests adjusted p-values for multiple comparisons (see manual

for further details).
DIFF Prints differences between each pair of least squares means.
PDIFF Prints p-values for comparisons between each pair of least squares

means, by default. PDIFF=CONTROL compares difference with a
control group (first level of the LSMEANS variables, by default).

AT<variables>=
<values>

Modifies the covariate value(s) at which LSMEANS are computed.
Otherwise they are evaluated at mean values.
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Example

PROC MIXED; CLASS centre treat;
MODEL dbp = dbp1 treat/ DDFM=KR;
RANDOM centre centre*treat;
LSMEANS treat/ CL COV CORR DIFF PDIFF;

Least Squares Means
Standard

Effect treat Estimate Error DF t Value Pr > |t| Alpha Lower Upper
treat A 92.3491 1.1233 52 82.21 <.0001 0.05 90.0951 94.6032
treat B 91.0632 1.1695 51.4 77.86 <.0001 0.05 88.7157 93.4107
treat C 89.4217 1.1326 58.7 78.96 <.0001 0.05 87.1552 91.6882

Least Squares Means
Effect treat Cov1 Cov2 Cov3 Corr1 Corr2 Corr3
treat A 1.2619 0.2923 0.2770 1.0000 0.2225 0.2177
treat B 0.2923 1.3678 0.2807 0.2225 1.0000 0.2119
treat C 0.2770 0.2807 1.2827 0.2177 0.2119 1.0000

The last six columns show covariance and correlation matrices for the least
squares means.

Differences of Least Squares Means
Standard

Effect treat -treat Estimate Error DF t Value Pr > |t| Alpha
treat A B 1.2859 1.4300 23.8 0.90 0.3775 0.05
treat A C 2.9274 1.4109 25.6 2.07 0.0482 0.05
treat B C 1.6415 1.4453 25.7 1.14 0.2666 0.05

Differences of Least Squares Means
Effect treat -treat Lower Upper
treat A B -1.6665 4.2384
treat A C 0.02511 5.8297
treat B C -1.3314 4.6144

Note that the DF differ markedly between the least squares means and
their differences because they are estimated using information from different
combinations of error strata.

The ESTIMATE statement

This statement calculates a linear function of fixed and/or random effects
estimates (�̂� and 𝜷).
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ESTIMATE ‘<label>’ <fixed effect1> <values>

<fixed effect2><values>

... |

<random effect 1> <values>

<random effect 2> <values>

... / options;

Options

CL Requests t-type confidence intervals for estimate.
ALPHA=<p> Specifies size of confidence interval (default is 0.05 for a 95% CI).
DIVISOR=<n> Value by which to divide all coefficients so that fractional

coefficients can be entered as integer numerators.
E Shows the effect coefficients used in the estimate (useful to check

ordering if interaction effects are used).

When the effect of interest is contained within another fixed interaction effect,
the coefficients for this effect are automatically included in the estimate by SAS.
For example, the following code for a fixed effects analysis of the multi-centre
hypertension data

PROC MIXED; CLASS centre treat;

MODEL dbp = dbp1 treat centre centre*treat/ DDFM=KR;

ESTIMATE ‘A-B’ treat 1 -1 0/ E CL;

would cause the following coefficients to be used by SAS for constructing the
estimate.

Coefficients for A-B
Effect treat centre Row1
centre 4
centre 5
centre 6
centre 7
centre 8
centre 9
centre 11
.
.
.



Brown778258 c09.tex V3 - 11/14/2014 10:23 A.M. Page 468

468 Software for fitting mixed models

centre*treat A 1 0.0385
centre*treat B 1 -0.04
centre*treat C 1
centre*treat A 2 0.0385
centre*treat B 2 -0.04
centre*treat C 2
centre*treat A 3 0.0385
.
.
.

The centre⋅treatment coefficients are equal to 1/ni, where ni is the number of
centres at which treatment i is received (26 for treatment A and 25 for treatment
B). Because treatments A and B are not received at every centre, this estimate is in
fact ‘non-estimable’, and SAS gives the following output:

Estimates
Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper
A-B Non-est . . . . . . .

However, if the containing effect is fitted as random, SAS does not include any
coefficients for this containing effect in the estimate. For example, the following
code for a random effects analysis of the multi-centre hypertension data

PROC MIXED; CLASS centre treat;
MODEL dbp = dbp1 treat/DDFM=KR;
RANDOM centre centre*treat;
ESTIMATE ‘A-B’ treat 1 -1 0/ E CL;

would cause the following coefficients to be used by SAS for constructing the
estimate:

Coefficients for A-B
Effect treat Row1
Intercept
dbp1
treat A 1
treat B -1
treat C
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Estimates
Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper
A-B 1.2859 1.4300 23.8 0.90 0.3775 0.05 -1.6665 4.2384

TheESTIMATE statement can also be used to estimate shrunken random effects
by specifying the coefficients of the random effects. For example, to estimate the
shrunken difference between the first two treatments within the first two centres,
the following ESTIMATE statements can be added to the previous code:

ESTIMATE ‘C1, A-B’ treat 1 -1 0| centre*treat 1 - 1 0/ E CL;
ESTIMATE ‘C2, A-B’ treat 1 -1 0| centre*treat

0 0 0 1-1 0/ CL;

These cause the following coefficients to be used for the first estimate

Coefficients for C1, A-B
Effect treat centre Row1
Intercept
dbp1
treat A 1
treat B -1
treat C
centre 1
centre 2
centre 3
.
.
.
centre 41
centre*treat A 1 1
centre*treat B 1 -1
centre*treat C 1
centre*treat A 2
centre*treat B 2
centre*treat C 2
centre*treat A 3
.
.
.
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centre*treat A 41
centre*treat B 41
centre*treat C 41

and give the following estimates:

Estimates
Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper
C1, A-B -0.8646 2.8933 7.35 -0.30 0.7733 0.05 -7.6405 5.9113
C2, A-B 1.6405 3.4054 2.65 0.48 0.6669 0.05 -10.0418 13.3229

The CONTRAST statement

This statement can be used to define F tests for fixed and random effects. A single
or multiple contrast, C, can be defined by

C = L′
(
�̂�
𝛃

)
.

The test may involve either a single contrast (L has a single column), for example,
to compare two treatments, or several contrasts (L has several columns), for
example, to test the equality of several treatments. Details of how the F statistic
is obtained from a contrast are given in Section 2.4.4. When only one row is
specified, the F test results will give the same p-value as the t test in an equivalent
ESTIMATE statement.

CONTRAST ‘<label>’ <effect1> <effect1 values>
<effect2> <effect2 values>
... |
<random effect 1> <values>
<random effect 2> <values>
...,
second row of L,
...
/ options;

As for the ESTIMATE statement, when the effect of interest is contained within
another fixed interaction effect, the coefficients for this effect are automatically
included in the estimate by SAS.

Options

CHISQ Requests Wald chi-squared test (see Section 2.4.4) in addition to the F test.
This is an asymptotic test that makes no adjustment for the denominator DF
and therefore will be inaccurate for small samples.

E Prints the L matrix.
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Example

PROC MIXED; CLASS centre treat;
MODEL dbp = dbp1 treat/ DDFM=KR;
RANDOM centre centre*treat;
CONTRAST ‘TREAT’ treat 1 -1 0, treat 1 0 -1/ CHISQ E;

Contrasts
Num Den

Label DF DF Chi-Square F Value Pr > ChiSq Pr > F
TREAT 2 25 4.32 2.16 0.1154 0.1364

Use of the E option

Coefficients for TREAT
Effect treat Row1 Row2
Intercept
dbp1
treat A 1 1
treat B -1
treat C -1

This contrast gives an identical F test result to that given under ‘Tests of Fixed
Effects’, seen earlier in this section. Printing the L matrix coefficients is particu-
larly helpful when interactions are involved to check the ordering of effects used
by SAS. This option may be most useful if identity of a subgroup of treatments
requires testing.

The LSMESTIMATE statement

This statement has been introduced in recent versions of SAS. Its features and
capabilities are an amalgam of the LSMEANS and ESTIMATE statements and
has similar syntax. It facilitates a straightforward way of obtaining customized
hypothesis tests among least squares means without actually producing the least
squares means. Coefficients only need to be supplied for the least squares means,
and these are automatically converted into estimable functions of the parameter
estimates. This statement is likely to be very helpful with somewhat complicated
experimental designs with a number of hypotheses of interest. It has not been
applied to any examples in this book, and those interested should refer to the
online SAS help.

The SLICE statement

Another more recent addition toPROC MIXED, this statement provides a method
for performing a partitioned analysis of least squares means for interaction terms
formed from classification variables. It has similarities to the LSMEANS statement.
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The REPEATED statement

The REPEATED statement is used to specify a covariance pattern for the residual
matrix, R. The repeated measurements should appear in a single variable with
the time points specified by another variable. The blocking effect is specified by the
SUBJECT variable, and the repeated effect (e.g. time) is the effect used to structure
the R matrix.

REPEATED <repeated effect>/SUBJECT=<blocking effect> options;

Note that the blocking effect should have only one observation per repeated effect
(otherwise, an infinite covariance matrix will occur). A repeated effect should
always be used unless the covariance pattern does not depend on order (e.g. the
compound symmetry structure).

Options relating to the R matrix structure

TYPE=<pattern> This specifies the covariance pattern for the R matrix. A wide range
of patterns is available, some of which are listed here. These
patterns are defined in Section 6.2.

UN General
AR(1) First-order autoregressive
CS Compound symmetry
TOEP Toeplitz
UN(1) Heterogeneous uncorrelated
CSH Heterogeneous compound symmetry
ARH(1) Heterogeneous first-order autoregressive
TOEPH Heterogeneous Toeplitz
UN(n) Banded general, n bands
TOEP(n) Banded Toeplitz, n bands
UN@CS Direct product. Suitable for trials with blocked repeated

measurements (e.g. repeated measurements within visits, see
Section 8.1).

UN@AR(1)
UN@UN

Other covariance patterns available are listed in the SAS manual.

GROUP=<effect> This causes a separate covariance pattern to be estimated for
each category of the group effect. This option should be used
cautiously if there are a large number of group categories, since
it can lead to many extra parameters, particularly if a complex
pattern (e.g. general) is used.
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Options to print the variance parameters

R=<values> Prints the R matrix for subjects denoted by values (first subject is
listed if <values> is omitted).

RCORR=<values> Prints the correlation matrix corresponding to the R matrix for
subjects denoted by values.

Other options

LOCAL Expresses residual variance as R + 𝜎
2
r I, allowing 𝜎

2
r to be fitted separately

from the other parameters of R.

Example

Examples of using the REPEATED statement are given in Sections 6.3, 7.7, 8.1.2
and 8.2.

The PARMS statement

This statement can be used to:

• Fix the values of variance components. This can be useful when the
covariances are known with a greater accuracy from previous studies than
that likely to be obtained in the data analysed.

• Supply initial values for variance components for the iterative procedure.
• Carry out a grid search over a range of variance component values, and take

those with the highest likelihood as initial values for the iterative procedure.
• Carry out a grid search over a range of variance component values, and take

those with the highest likelihood as the final estimates.

The latter two options can be helpful in a situation where there is the possibility
of local (rather than global) solutions. This is most likely to occur when a large
number of variance parameters are fitted.

Since a PARMS statement is not needed for most types of mixed models analysis,
we have not included details of its use in this section.

The PRIOR statement

A random effects model can be fitted using the Bayesian approach by including a
PRIOR statement. Although the use of PROC MIXED for Bayesian analysis has
largely been eclipsed by the introduction of PROC MCMC (see Section 9.4), there
are situations where a Bayesian model would appear most easily fitted usingPROC
MIXED. For example, when different residual variances for treatment groups are
required. The MIXED procedure uses an independence chain algorithm to sample
the posterior distribution, rather than the Markov Chain Monte Carlo algorithm
used by PROC MCMC (see SAS documentation for further detail).
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Syntax

PRIOR <prior distribution>/ options;

If no prior distribution is specified in this statement, then the default Jeffreys prior
is used (see Section 2.3.4). The only other non-informative prior available is a flat
prior, which is specified by

PRIOR FLAT;

Options

ALG=<algorithm> Specifies sampling algorithm, see Section 2.3.5.
IC Independence chain (default).
IS Importance sampling.
RS Rejection sampling.
RWC Random chain walk.

NSAMPLE=<n> Specifies number of samples, default 1000.
OUT=<dataset> Outputs sampled values to a dataset.

Fixed and random effects samples are produced when the SOLUTION option is
used in the MODEL and RANDOM statements, respectively.

Example Use of the PRIOR statement is illustrated in Section 8.15.

The ID statement

Specifies which variables from the input dataset are to be included in the OUTP=
and OUTPM= datasets from the MODEL statement. If you do not specify an ID
statement, then all variables are included in these datasets. An example using
this statement is given in Section 6.6.2.

ID <ID variables>;

The WEIGHT statement

Fits a weighted mixed model with weights given by specified variable.

WEIGHT <weight variable>;

The STORE statement

This statement saves the context and results of the analysis in a binary file format
that cannot be modified.
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The ODS OUTPUT statement

An ODS OUTPUT statement can be used to read a selected part of a PROC
MIXED output into a SAS dataset, thus allowing it to be manipulated by other
SAS procedures. Any number of ODS OUTPUT statements can be used in a PROC
MIXED analysis.

ODS OUTPUT <table>=<dataset>;

Tables are available corresponding to all PROC MIXED output. Some of the more
useful tables are as follows:

Table Name Corresponding Statement/option

SOLUTIONF MODEL/SOLUTION
SOLUTIONR RANDOM/SOLUTION

LSMEANS LSMEANS
ESTIMATES ESTIMATE
CONTRASTS CONTRAST

R<n> REPEATED/R=<n>
RCORR<n> REPEATED/RCORR=<n>

A PROC CONTENTS statement is suggested to find out the variable names
created within each dataset (or alternatively they are listed in the SAS documen-
tation). Other tables available are listed in the SAS documentation. The following
statement can be used to suppress the printing of output from chosen tables; this
is particularly useful for statements or options that can give lengthy output:

ODS LISTING EXCLUDE <table1> <table2> etc;

Example

PROC MIXED; CLASS centre treat;
MODEL dbp = dbp1 treat/ DDFM=KR;
RANDOM centre centre*treat;
LSMEANS treat/ CL;
ESTIMATE ‘A-B’ treat 1 -1 0/ CL;
ESTIMATE ‘A-C’ treat 1 0 -1/ CL;
ESTIMATE ‘B-C’ treat 0 1 -1/ CL;
CONTRAST ‘TREAT’ treat 1 -1 0, treat 1 0 -1;
ODS LISTING EXCLUDE LSMEANS ESTIMATES CONTRASTS;
ODS OUTPUT LSMEANS=lsmeans;
ODS OUTPUT ESTIMATES=estimate;
ODS OUTPUT CONTRASTS=contrast;
PROC PRINT DATA=lsmeans;
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PROC PRINT DATA=estimate;
PROC PRINT DATA=contrast;

Obs Effect treat Estimate StdErr DF tValue Probt Alpha Lower Upper
1 treat A 93.5545 0.8349 66.2 112.05 <.0001 0.05 91.8876 95.2214
2 treat B 92.0060 0.8519 66.3 108.00 <.0001 0.05 90.3053 93.7067
3 treat C 91.0582 0.8067 68 112.88 <.0001 0.05 89.4485 92.6679

Obs Label Estimate StdErr DF tValue Probt Alpha Lower Upper
1 A-B 1.5485 1.0256 39.2 1.51 0.1391 0.05 -0.5256 3.6225
2 A-C 2.4962 0.9991 40.8 2.50 0.0166 0.05 0.4782 4.5143
3 B-C 0.9478 1.0127 40.8 0.94 0.3549 0.05 -1.0978 2.9933

Num Den
Obs Label DF DF FValue ProbF
1 TREAT 2 40.3 3.17 0.0528

The MAKE statement

This statement was available in earlier versions of SAS but has now been super-
seded by the ODS OUTPUT statement.

9.3 Using SAS to fit mixed models to non-normal data

A major advance in SAS in recent years has been the development of PROC
GLIMMIX. This is a very flexible procedure that allows the fitting of all types of
generalized linear mixed models (see Chapter 3). It will also fit random effects
models to categorical data (see Chapter 4). In this section, we will only be intro-
ducing some of the basic syntax but it has additional attractive features. These
include the capability to define variables with assignment statements within the
procedure and to introduce smoothing effects to capture trends over time. Users
can specify their own link functions and variance functions. Multivariate (rather
than multivariable) models can be specified.

Most models that can be fitted using PROC MIXED can also be fitted in PROC
GLIMMIX (through the use of the identity link function) so, as SAS themselves
state, the MIXED procedure can be thought of as subsumed by the GLIMMIX
procedure in some sense. Therefore, there is a strong impetus for regular users
of mixed models to become more familiar with the GLIMMIX procedure than is
possible from the information we supply in this section. The online help is very
useful.PROC NLMIXED is also a possibility for random effects models but this has
offered no advantages over GLIMMIX for the examples we have considered. PROC
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GENMOD can also be used for covariance pattern models, using a different fitting
method. If a covariance pattern model is required for use with categorical data,
the trick of specifying the ‘time’ variable as random will generate a compound
symmetry structure and allow the GLIMMIX procedure to be used. Otherwise,
such an analysis cannot be performed at present using SAS. We have used,
in this book, a macro written by Stuart Lipsitz (Lipsitz et al., 1994) that works
by iteratively calling PROC LOGISTIC. This is available through the website
www.wiley.com/go/brown/applied_mixed.

In the following sections, we give the basic syntax required to fit GLMMs and
some mixed categorical models using PROC GLIMMIX and PROC GENMOD.

9.3.1 PROC GLIMMIX

This procedure can be used to fit all types of GLMMs and additionally random
effects models for categorical data. There is a range of optional fitting methods
with the default method based on pseudo-likelihood (see Section 3.2). Many of
the statements in GLIMMIX are in common with the MIXED procedure though
a few extra statements are also available. A wide range of options is available as
well, giving the expert user considerable control over the analysis. In this section,
we will only provide syntax required to produce basic analyses. Examples using
PROC GLIMMIX can be found in Sections 3.4, 4.5, 5.7, 6.4, 7.9, 8.5, 8.10, 8.11,
8.12, 8.13 and 8.16.

Syntax

The BY, CLASS, CONTRAST, ESTIMATE, ID, LSMEANS, LSMESTIMATE,
PARMS, SLICE, STORE and WEIGHT statements are all similar to the corre-
sponding statements in PROC MIXED and will not be considered further in this
section. We will look briefly at the PROC GLIMMIX and MODEL statements and
in slightly more detail at the RANDOM statement, which functions quite differently
from the equivalent statement in the MIXED procedure.

The PROC GLIMMIX statement

There are many options available relating mainly to methods used to fit the model
and the display of additional results and plots. In this section, we only list the
EMPIRICAL option, which may help to overcome downward biases in the fixed
effects variance estimates. Although the standard empirical variance is known
to be biased, the latter four choices attempt to adjust for this bias. More detail on
their calculation and appropriateness for different situations is given in the PROC
GLIMMIX documentation.

http://www.wiley.com/go/brown/applied_mixed
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EMPIRICAL= <type of
empirical variance>

Requests variances and standard errors to be calculated
using the empirical variance.

CLASSICAL Standard empirical variance (default if no type specified).
DF Bias-adjusted empirical variance.
ROOT Bias-adjusted empirical variance.
FIRORES Bias-adjusted empirical variance.
FIROREEQ Bias-adjusted empirical variance.

The MODEL statement

This statement is used to specify the dependent variable and the fixed effects in
the model. The dependent variable is specified as a single value for most data
types or as a numerator with denominator for binary data (e.g. r/n). Bernoulli
and binomial distributions are available for modelling binary data. We have used
the binomial distribution for all examples involving binary data so that zero is
used for the reference category. (If the data are recorded as zeros and ones and the
BINARY option is used, then one is used as the reference category, and the signs
of the fixed effects are reversed.) We suggest the use of DDFM=KR or DDFM=KR2
(available inSAS/STAT12.1 or later) in most of the examples, as it helps to adjust
for any bias in fixed effects standard errors; however, we have found occasionally
that the use of these options has caused the procedure to fail. The DF2 option
is based on a revised adjustment by Kenward and Roger (Kenward and Roger,
2009), which is expected to further reduce bias in fixed effects standard errors in
certain types of covariance pattern model (see Section 6.2.4).

Ordinal data can be analysed using theDIST=MULT option. This option can also
be used to analyse unordered categorical data; however, the response variable then
needs to be specified as a GROUP in the RANDOM statement and the BYCAT option
should be included in any ESTIMATE or CONTRAST statements used.

Options

DIST=<distribution> This option specifies the distribution:
BINARY Bernoulli (No denominator required for dependent variable.

The highest category is taken as the reference category.)
B(INOMIAL) Binomial (Denominator can be given with dependent

variable. If omitted, it is assumed to be 1.)
P Poisson
MULT Multinomial (By default data are assumed ordinal.)

LINK=<link function> The default link is often adequate, but with unordered
GLOGIT multinomial data, the generalized logit link is needed.

OFFSET=<variable> Sets the offset for a Poisson distribution.
CHISQ Carries out chi-squared tests in addition to the F tests of

fixed effects.
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SOLUTION Prints solution for fixed effects.
CL Requests t-type confidence intervals for fixed effects given

by SOLUTION option
ALPHA=<p> Specifies size of confidence intervals (default 0.05)
ODDSRATIO Displays odds ratios and confidence limits
DDFM=<DF type> Selects DF type for t tests and for the denominator DF in F

tests of fixed effects. All of the options given in Section 9.2
for the MIXED procedure also apply to GLIMMIX. In
addition, the KR2 option applies the revised
Kenward-Roger adjustment (Kenward and Roger, 2009) in
SAS/STAT 12.1 or later.

The RANDOM statement

RANDOM statements can be used to specify random effects, covariance patterns
and a dispersion parameter. Thus, the REPEATED statement used in PROC
MIXED and PROC GENMOD is now subsumed into the RANDOM statement. The
SAS documentation refers to random effects as ‘G-side’ effects and covariance
patterns as ‘R-side’ effects. Several RANDOM statements may be used within the
same analysis.

Dispersion parameters By default, the dispersion parameter is fixed at one. It
can be fitted in the model by including the SAS fixed variable _RESIDUAL_ as a
random effect.

RANDOM _RESIDUAL_;

Random effects Random effects are fitted just as inPROC MIXEDby simply list-
ing the effects in the main part of the statement.

RANDOM <random effect variables>/ options;

Covariance pattern models For covariance pattern models, the RANDOM
statement has a similar syntax to the REPEATED statement in PROC MIXED
except that it is necessary to include the RSIDE or RESIDUAL option:

RANDOM <time effect>/SUBJECT=<subject effect> RSIDE options;

Options corresponding to output

CL Requests t-type confidence intervals for each random effect
estimate.

ALPHA=<p> Specifies size of confidence interval (default is 0.05).
G Prints G.
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SOLUTION Prints solution for random effects.
V=<subjects> Prints variances in V for subjects listed (given for subject, one if

no subjects listed).
VCORR=<subjects> Prints correlation matrix corresponding to V for subjects listed

(for subject, one if no subjects listed).

Options corresponding to model specification

GROUP=<effect> A different set of covariance parameters is used for each
category of the group effect.

RSIDE or RESIDUAL Causes a covariance pattern model to be fitted.
TYPE=<pattern> This specifies the covariance pattern. A wide range of patterns is

available, some of which are listed here. These patterns are
defined in Section 6.2

AR(1) First-order autoregressive,
CS Compound symmetry,
TOEP Toeplitz,
TOEP(n) Banded Toeplitz, n bands,
UN or UNR General,
UN(1) or UNR(1) Heterogeneous uncorrelated,
UN(n) or UNR(n) Banded general, n bands,

The last three covariance patterns can be achieved using either the UN or UNR
options. The UN option parameterises the model directly in terms of variance
and covariance parameters, while the UNR option uses variances and correlation
parameters providing a clearer picture of the correlations between time points.
Many more covariance patterns for the TYPE option are detailed in the procedure
documentation. An example using PROC GLIMMIX to fit covariance patterns is
given in Section 6.4.

The ODS OUTPUT statement

Tables are available corresponding to all PROC GLIMMIX output. Several model
diagnostic graphs are also available using ODS to check residuals; however,
for many examples where data are in Bernoulli form, this is not necessary (see
Section 3.3.10). No graphs are available for checking random effects, and it is still
necessary to construct these manually (see SAS code in Section 3.4).

9.3.2 PROC GENMOD

This procedure can be used to fit fixed effects GLMs, ordinal logistic regression
models and GLMMs with covariance patterns. Covariance pattern models are
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fitted using a method known as generalised estimating equations (GEEs, see Liang
and Zeger, 1986); however, these are not available for ordinal data. The empirical
estimator is produced by default for estimating fixed effects standard errors (see
Section 2.4.3), but the model-based estimator can additionally be requested.
Compared with PROC GLIMMIX (see Section 9.3.1), PROC GENMOD has the
disadvantage that the tests of significance it produces for GLMMs are asymptotic,
whereas the Kenward–Roger option can be used in PROC GLIMMIX. We give
basic details of the SAS code required to fit covariance pattern models to binomial
and Poisson data. More detail can be found in the online documentation.

Basic syntax

Many statements that are common to the MIXED and GLIMMIX procedures
also appear in GENMOD. These include BY, CLASS, CONTRAST, ESTIMATE,
LSMEANS, LSMESTIMATE, SLICE, STORE and WEIGHT. In this section, we will
only highlight key statements that differ noticeably in PROC GENMOD.

PROC GENMOD statement

This has the structure:

PROC GENMOD options;

It invokes the GENMOD procedure. Useful options include plots for a variety of
residual and influence statistics.

MODEL statement and options

MODEL <y variable(s)> = <fixed effects>/ <options>;

The y variable is specified as a single value for most data types or as a numerator
with denominator for binomial data (e.g. r/n).

Useful Options

DIST=<distribution> This option specifies the distribution:
B Binomial.
P Poisson.
MULT Multinomial (but note that the REPEATED statement

cannot be used to fit covariance pattern models with this
data type).

OFFSET=<variable> Sets the offset for a Poisson distribution.
TYPE3
WALD

}
Used together these options produce composite
chi-squared tests of fixed effects.
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REPEATED statement and options

REPEATED SUBJECT=<subject effect>/ <options>;

The subject effect is the blocking effect for the covariance pattern (see
Section 6.2) and has the same role as the subject effect in the REPEATED
statement of PROC MIXED.

Useful Options

TYPE=<covariance
pattern>

This option specifies the covariance pattern:

CS Compound symmetry.
AR(1) First-order autoregressive.
MDEP(n) Toeplitz (Notice that unlike the TOEP option in PROC MIXED,

n, the number of bands of parameters, needs to be specified
otherwise only one band is fitted.)

UN General.
WITHIN=<fixed

effect>
This defines the effect to be used for structuring the
covariance pattern. It has the same role as the main effect
used in the REPEATED statement in PROC MIXED. In
repeated measures analyses, it is usually time or visit.

CORRW Prints the correlation parameters in the P matrix
(R=𝜙A1/2B1/2PB1/2A1/2, see Section 3.2.1).

MODELSE Prints fixed effects estimates with model-based standard
errors in addition to the (default) empirical estimators.

The OUTPUT statement

OUTPUT OUT=<dataset> P=<predicted values variable>
RESCHI=<Pearson residuals variable>;

This statement outputs the residuals and prediction values to a SAS dataset.
There are also a large number of other keywords that can be specified, as well as P
and RESCHI to output residual and influence statistics.

The ODS OUTPUT statement

ODS OUTPUT <TABLE>=<dataset>;

Tables are available corresponding to all PROC GENMOD output. Some of the
more useful tables are now listed:
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Table name Corresponding statement/option

CONTRASTS CONTRAST
ESTIMATES ESTIMATE
GEEMODPEST REPEATED
LSMEANS LSMEANS
LSMEANDIFFS LSMEANS/ DIFF
PARAMETERESTIMATES MODEL

Use of the GENMOD procedure is illustrated in Sections 3.4, 7.8 and 8.16.2.

9.4 PROC MCMC

This procedure was introduced into SAS Version 9.3 and was further updated
in SAS/STAT 12.1. It may be used to fit mixed models to both normal and
non-normal data using the Bayesian approach. It uses the Metropolis algorithm
to simulate the posterior distribution. In this section information is provided on its
basic use for fitting mixed models. However, it is a flexible procedure that may be
used to fit a wide variety of models to data with different underlying distributions.
Use of the procedure including SAS output is illustrated in the examples in
Sections 2.5, 3.4 and 4.5.

Syntax

PROC MCMC options;
ODS SELECT <output>;
PARMS <parameters followed by starting values>;
PRIOR <parameter> ∼ <distribution>;
RANDOM <random parameter> ∼ <distribution>

SUBJECT=<random effect>;
<Model defined as an equation>;

The syntax is more easily understood with the aid of an example. The following
syntax was used in Section 2.5 to analyse the multicentre hypertension example
and fit a model with baseline and treatment effects as fixed and centre and
centre⋅treatment effects as random (Model 5).

PROC MCMC DATA=C OUTPOST=post2 NMC=100000 THIN=5 SEED=7893;
ODS SELECT PARAMETERS REPARAMETERS POSTSUMMARIES

POSTINTERVALS;
PARMS alpha0 alpha1 alpha2 alpha3 v1 v2 v3;
PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);



Brown778258 c09.tex V3 - 11/14/2014 10:23 A.M. Page 484

484 Software for fitting mixed models

RANDOM b_centre ∼ NORMAL(0, VAR=v2) SUBJECT=centre
MONITOR=(CENTRE);

RANDOM b_ct ∼ NORMAL(0, VAR=v3) SUBJECT=centre_treat
MONITOR=(CENTRE);

mu = alpha0 + alpha1*dbp1 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

MODEL dbp ∼ NORMAL(mu, VAR = v1);

Each of these statements is now described. Although this is a model for normal
data, we will indicate how the syntax may be adapted to fit a GLMM or a mixed
model for ordinal data.

PROC MCMC statement

PROC MCMC DATA=C OUTPOST=post NMC=100000 THIN=5 NBI=1000
SEED=7893;

TheOUTPUToption specifies theSASdataset for output of the simulated samples
of parameters, here as ‘post’.

The NMC option specifies the number of samples to be taken. The THIN option
specifies what proportion of these are used to calculate parameter estimates. Here
every one in five samples will be used. Higher thinning makes adjacent samples
less correlated but means more samples need to be taken for a given size of sample.
The NBI option specifies the number of initial samples to be discounted and is
used when the samples need a while to settle down. These may be called ‘burn in’
samples. The eventual number of samples used to form the posterior distribution
for the parameters will be (NMC-NBI)/THIN. The use of some of these options is
considered in Sections 2.5 and 3.5.

The SEED option gives the seed for the random process. It can sometimes be
helpful to repeat an analysis with different seeds and check whether the results
are similar. Large odd numbers are recommended.

ODS SELECT statement

This statement selects the output to be provided. Note that use of this statement
will cause some of the default output (obtained without use of the statement) to be
omitted.

ODS SELECT POSTSUMMARIES POSTINTERVALS;

Options

POSTSUMMARIES – Gives the mean, SD, 25% 50% (median) and 75% centiles for
each parameter
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POSTINTERVALS – Lists the probability intervals for each parameter for specified
alpha (default 0.05), as an equal tail interval and an HPD interval

Statement to define the model

The following statement specifies the model equation:

mu = alpha0 + alpha1*dbp1 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

Unlike PROC MIXED and PROC GLIMMIX, the model equation needs to be
specified in full with variable names for the model parameters to be sampled, as
well as including variables for the observed values corresponding to the param-
eters. alpha0, alpha1, alpha2 and alpha3 will be the sampled parameters
for the fixed effects: intercept, baseline and two treatment effects. Together they
form the 𝛂 vector of fixed effects parameters used to define the generic mixed
model defined in Section 2.1. The variables dpb1, treata and treatb are the
corresponding observed fixed effects. These are the values that form the X matrix
in the generic mixed model defined in Section 2.1. Note that it is not possible
to specify the three treatments using a CLASS statement in this procedure, and
treata and treatb are binary variables indicating the presence of treatments
A and B. Treatment C is indicated by the absence of treatments A and B intreata
and treatb. Convenient SAS code to set up such binary variables is given at
the end of the section. The variables b_centre and b_ct are the random effect
parameters and together form the 𝛃 vector in the generic mixed model defined in
Section 2.1. Note that, in contrast to the fixed categorical effect (treatment), we do
not need to set up dummy variables for the levels of our random effect variables.

MODEL statement

This statement specifies the distribution of the outcome y variable, post-treatment
dbp. Following our assumption for the mixed model for normally distributed
data, dbp is assumed to have a distribution with mean mu and the residual
variance, v1.

MODEL dbp ∼ NORMAL(mu, VAR = v1);

For GLMMs, an alternative distribution needs to be used. For example, a binary
variable cf (cold feet, Y/N) also recorded in this study is analysed in Section 3.4
using the following two statements:

mu = alpha0 + alpha1*cf1 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

expected = LOGISTIC(mu);
MODEL cf ∼ BINARY(expected);
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To fit a mixed model to ordinal data, multiple statements defining the model
and the multinomial probabilities are required before defining the multinomial
distribution. In Section 4.5, an ordinal variable cfm (cold feet on a scale of 1–5)
is analysed by including the following statements:

mu1 = alpha01 + alpha11*cf11 + alpha12*cf12 + alpha13*cf13
+ alpha14*cf14 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

mu2 = alpha02 + alpha11*cf11 + alpha12*cf12 + alpha13*cf13
+ alpha14*cf14 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

mu3 = alpha03 + alpha11*cf11 + alpha12*cf12 + alpha13*cf13
+ alpha14*cf14 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

mu4 = alpha04 + alpha11*cf11 + alpha12*cf12 + alpha13*cf13
+ alpha14*cf14 + alpha2*treata + alpha3*treatb
+ b_centre + b_ct;

p1 = LOGISTIC(mu1);
p2 = LOGISTIC(mu2)-LOGISTIC(mu1);
p3 = LOGISTIC(mu3)-LOGISTIC(mu2);
p4 = LOGISTIC(mu4)-LOGISTIC(mu3);
p5 = 1-LOGISTIC(mu4);
ARRAY p[5] p1 p2 p3 p4 p5;
MODEL cfm ∼ MULTINOM(p);

PARMS statement

This statement provides variable names for parameters for the fixed effects and
the variance components. Thus, unlike PROC MIXED, it is necessary to provide
separate variable names for the parameters. Values for the first sample can
optionally be specified after each parameter name. When this is not done, values
will be obtained from their prior distributions, either by drawing a random sample
or by taking the mode. In the following PARMS statement initial parameter values
are provided.

PARMS alpha0 0 alpha1 0 alpha2 0 alpha3 0 v1 1 v2 1 v3 1;

PRIOR statements

The first prior statement defines non-informative priors for the fixed effects param-
eters using normal distributions with a very large variance. Use of ‘:’ causes all
parameters with names starting with ‘alpha’ to be given the specified normal dis-
tribution.

PRIOR alpha: ∼ NORMAL(0, VAR = 10000);
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The second prior statement defines non-informative priors for the variance
component and residual parameters with inverse gamma distributions with small
parameters. All parameters with names starting with ‘v’ are given the specified
inverse gamma distribution.

PRIOR v: ∼ IGAMMA(0.01, SCALE = 0.01);

RANDOM statement

Random statements specify the distributions for the random effects (centre and
centre⋅treatment) with zero means and variance equal to the corresponding
variance components. The MONITOR option causes sampled values for individual
centres (and each centre⋅treatment combination) to be included in the param-
eter summary tables in addition to the fixed effects and variance component
parameters.

RANDOM b_centre ∼ NORMAL(0, VAR=v2) SUBJECT=centre
MONITOR=(b_centre);

RANDOM b_ct ∼ NORMAL(0, VAR=v3) SUBJECT=centre_treat
MONITOR=(b_ct);

Defining categorical variables and interactions

As we noted previously, the MCMC procedure has no CLASS statement and cannot
fit categorical fixed effects directly. If a categorical effect has c categories, then
c-1 binary variables need to be specified. In addition, it is not possible to specify
interactions between variables using the * symbol.

The following code first defines a variable, centre_treat, denoting the interaction
between treatment and centre effects. Then, the TRANSREG procedure is used
to define two dummy binary variables denoting the presence or absence of
treatments A and B. The ZERO=LAST option specifies that the last treatment
category (C) is not parameterised.

DATA b; SET a; BY patient;
IF LAST.patient;
centre_treat=COMPRESS(centre||treat);

PROC TRANSREG DATA=b DESIGN;
MODEL CLASS(treat / ZERO=LAST);
ID dbp dbp1 centre centre_treat;
OUTPUT OUT=c(DROP=_: INT:); RUN;

The first few observations from the resulting dataset (‘c’) are printed as follows
showing the new variables, treatA and treatB.
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treat treat centre_
A B treat dbp dbp1 centre treat

0 0 C 86 97 29 29C
0 0 C 72 109 29 29C
0 1 B 109 117 5 5B
1 0 A 87 100 5 5A
1 0 A 85 105 29 29A
1 0 A 100 114 3 3A
0 1 B 80 105 3 3B
0 1 B 90 100 3 3B
1 0 A 100 102 3 3A
0 0 C 94 105 3 3C
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Terms referred to frequently within the book are defined below. Because mixed
models have been developed for use in several areas there is sometimes ambigu-
ity in the meanings of the same terms. Thus, the definitions given here may not
always agree with those in other sources. They will, however, be adhered to within
this book.

Balance. See Section 1.6.

Bernoulli form. Binary data specified as observations of zero and one. This form
must be used if covariates at the residual level are modelled; for example, if a 0/1
variable is recorded pre- and post-treatment.

Binomial form. Binary data specified as frequencies with denominators.

Blocking effect. An effect used to block the variance matrix. A covariance pat-
tern is specified for data within the categories of the blocking effect. For example,
in a repeated measures trial the covariance matrix is blocked by patient effects (see
Section 6.2).

Containment. An effect (A) is described as contained within another effect (B)
either if (B) is nested within (A), or if (B) is a random interaction term containing
(A) (e.g. B = A ⋅ C) (see Section 1.6).

Containment level. This is defined as the residual error level unless the fixed
effect is contained within another effect (see Section 1.6).

Contrast. A contrast defines a specific linear comparison of fixed effects cat-
egories. The objective is usually to determine whether the categories differ
significantly by defining an appropriate test statistic from the contrast. Pairwise
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differences between two categories (e.g. treatments) are a common type of
contrast. Multiple contrasts can be used to test the overall equality of a set of
contrasts; for example, to test the overall equality of a group of treatments.
Contrasts are defined in more detail in Section 2.4.4.

Crossed effects. An effect (A) is described as crossed with another effect (B) when
different categories of (A) occur within each category of (B). For example, in a
cross-over trial, different treatment categories occur within patients, so treatment
effects are crossed with patient effects.

Effect1⋅ effect2. Interaction effect, for example centre⋅treatment denotes the
interaction effect between centres and treatments.

Error stratum. See Section 1.6.

Fixed effects model. A model fitting only fixed effects.

Fixed or random effects category. An effect level; for example, if three treat-
ments are fitted, then the treatment effect has three categories.

Full residuals. Residuals calculated by deducting only the fixed effects, y − X�̂�
(ordinary residuals are defined when both the fixed and random effects are
deducted, y − X�̂� − Z𝛃).

Generalised linear mixed model (GLMM). A mixed model for non-normal
data that assumes residuals have variances proportional to those specified by a
chosen distribution from the exponential family.

Least squares mean. Mean estimate for an effect category, adjusted for other
effects in the model.

Mean predicted values. Values predicted for individual observations based on
fixed effects only as X�̂�.

Mixed model. The description ‘mixed’ was originally used to describe a model
fitting both fixed effects and random effects. Here, we use it more widely to encom-
pass random effects models, random coefficients models and covariance pattern
models (see Section 1.1).

Nested. An effect (A) is defined as nested within another effect (B) if B takes
the same value for all observations within every category of A. For example, in
repeated measures trials each patient receives only one treatment and patients
are nested within treatments. However, in cross-over trials treatments vary
between periods and patients are not nested within treatments. Note that nesting
is the reverse of containment: if A is nested within B, then B can be described as
contained within A.

Normal mixed model. A mixed model for normally distributed data.
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Predicted values. Values predicted for individual observations based on both
fixed and random effects as X�̂� + Z𝛃.

Random effects model. A model fitting fixed and random effects. The residuals
are assumed independent.

Random effects predictions. These are effectively random effects estimates.
However, since they are not formally estimated within the model they are some-
times referred to as predictions. They are shrunken compared with their fixed
effects counterparts (see Section 1.3).

Residuals. Residuals from the residual error strata, equal to y − X�̂� − Z𝛃.

SAS® Statistical Analysis System. The most commonly used statistical analy-
sis package within the pharmaceutical industry.

Uniform fixed/random effects category. See Sections 3.3.3 and 3.3.4.

Variance component. Additional variation due specifically to a random effect.

Variance matrix. Matrix of variance and covariance terms.
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ADJUST option, 465
agriculture, 26
Akaike’s information criterion, 240, 457
PROC MIXED, 457

amantadine, 305–308
analgesic trial, 303–305
analysis of covariance, 15, 16, 18
animal breeding, 26
animal disease, cluster sample, 384–385
animal feeding, 72–73
animal physiology trial (breathing),

374–379
ANOVA, 5, 8, 9, 26

repeated measures, 233
anti-anxiety agent, 402
apoptosis, 394, 395
approximation, and bias, 137
area under curve (AUC), 232, 335
asthma, 329, 391, 412
ASYCOV option, 458
autocorrelation plot, 83, 96
autoregression: see first-order autoregressive

correlation
average bioequivalence, 397, 401

Balaam’s design, 305–308
balance, 27, 29–31

continuous effect, 31
least squares, 51
multi-centre, 211
unbalanced design, 327
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balanced incomplete block designs,
425–429, 431, 433

banded covariance, 239
baseline covariate, 143

cross-over, 294
fixed effects, 294
hypertension study, 15–16
linearity assumption, 15–16
pre-treatment, 264

Bayesian approach
classical statistics comparison, 57
‘cold feet’ analysis, 147
exact statistics, 59
GLMM significance testing, 141
historical, 27
hypertension trial analysis, 84–86
negative variance components, 72
parameter estimation, 61
pre-eclampsia, 220, 221
software (PROC MCMC), 483
software (PROC MIXED), 473
standard error bias, 74
see also posterior density; posterior

distribution; prior distribution
Bernoulli distribution, 115

general exponential form, 123
variance matrix, 120

Bernoulli form, 133, 480
dispersion parameter, 139
PROC GLIMMIX, 220
pre-eclampsia, 218–230
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beta distribution, 67
between-subject design

animal physiology, 375
different variances, 370–373

bias
of approximations, 137
Bayesian models, 60
cross-over, 327
dispersion parameter, 139–140
empirical estimator, 243
fixed effects, 50
GLMM, 139
mixed model, 26
ML estimates, 48
pseudo-likelihood, 131, 132
random effects, 133, 137
random effects prediction, 53
shrinkage, 136–137, 139
see also error; standard error

bilateral data, 418–422
binary data

cross-over, 317–321
dispersion parameter, 120
extended binary form, 170, 177
matched sets, 357
modelling, 115–117
odds ratio, 318, 326
sample size estimation, 215, 288
see also Bernoulli form; binomial form;

parameterisation
binomial distribution, 116, 120

exponential form, 123–124
variance matrix, 120

binomial form, 133, 480
covariance pattern model, 477
dispersion parameter, 139
mortality estimate, 388

bioavailability, 397
bioequivalence, 329, 397
bioequivalence trials, 329
bivariate normal distribution, 22
block diagonal matrix, 41, 44
blocking effect, 31, 234, 482

covariance pattern, 31, 44–46
error stratum, 32
G matrix, 46, 279, 464
R matrix, 44–45
random coefficients model, 31
REPEATED statement, 372

blood pressure: see hypertension

breast screening, 414–415
Edinburgh randomised trial of, 414–415

breathing trial: see animal physiology trial

cancer
children’s (herpes virus study), 270–286
ovarian, 262

canonical link function: see under link
function

cardiac output trial
complete block design, 297–299
covariance pattern model, 309–314

cardiology: see heart failure; hypertension
cardiology trial, dogs, 381–383
carry-over

Balaam’s design, 305–308
critiqued, 305
four-period, four-treatment, 298–299
information recovery, 303
Koch’s design, 303–305, 310
model choice, 312
standard error, 308

case control studies: see matched
case–control studies

categorical data
cross-over trial, 321–323
sample size, 217, 288
unordered, 180
see also mixed ordinal logistic regression;

ordinal logistic regression;
unordered categorical data

categorical effects, 36
X matrix, 36

categorical mixed model, 168–196
‘cold feet’ analysis, 183, 196
epilepsy trial, 258
GLMM comparison, 240
model checking, 182, 360–362

CD4 count, 267–269
centre effects

model analysis, 198–202
model checking, 93
random, 372–373
see also centre⋅treatment effects

centre⋅treatment effects, 199–201
binary data, 198–202
‘cold feet’ analysis, 150
DBP analysis, 90, 95
different variances, 372–373
model analysis, 198–202
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negative variance components, 211
random effects model, 18–19
see also multi-centre trial; treatment effect

estimates
centre⋅treatment interaction

normal mixed models, 86–88
plausibility, 209

centres
number of, 210
size, 210

cerebrovascular insufficiency, 317–321
change score, 317, 322

contingency table, 323
chemotherapy: see herpes virus cancer study
chi-squared test, 78, 224
CHISQ option, 470, 478
GLM, 140–141
Pearson, 224
test for trend (contingency table), 115,

168
Wald statistic, 220, 470

childhood cancer study, 270–286
CL option, 458, 459, 462, 467
cluster randomised trials, 411–415

asthma treatment, 412
‘cold feet’ analysis: see under hypertension

study
cluster sample survey, 384–385
communicating results, 24–25, 58
complete block designs, 297–299
compound symmetry pattern, 46
conditional distribution, 68
conditional logistic regression, 125
confidence intervals

‘cold feet’ analysis, 149–150
ESTIMATE statement, 467
GLM(M), 141–142
LSMEANS statement, 465
MODEL statement, 457, 458
normal mixed model, 78

conjugacy, 67
containment, 28–29
ESTIMATE statement, 466–470

containment stratum, 31–33
contingency table analysis

dysmenorrhoea trial, 321–323
GLM superiority, 115
logistic regression, 168

contrast, 75–77, 470
CONTRAST statement, 470–471

convergence
Bayesian methods, 59
GEE, 130
GLM, 123
GLMM, 134
iterative methods, 54–55
Newton–Raphson, 54
PROC MIXED, 271, 456
pseudo-likelihood, 132
shrinkage, 176
uniform effect categories, 133–134, 139

CORR option, 462, 482
correlation

compound symmetry, 46
negative, 72–73
sample size, 286–288

cot death study, 357–370
binary variables, 362

count data, 116, 254
categorical mixed model, 260
GLMM, 260
see also under covariance pattern model;

Poisson distribution
covariance matrix: see V matrix
covariance parameters

categorical mixed model, 259
exponential decay, 245
fixed/mixed comparison, 19–20
nested, 240: see also nesting
R matrix, 182
simple model, 19–20

covariance pattern
compound symmetry model, 236–237
count data, 254–262
first-order autoregressive, 235–237, 241
general (unstructured), 235
heterogeneous, 237
SAS, 472, 479
simple, 235–237
Toeplitz, 236, 247

covariance pattern choice
categorical mixed models, 182
repeated measures, 239–241, 335
strategy for, 241, 335
and trial size, 247

covariance pattern model, 19–22,
175–177, 362

blocking variable, 31, 234–235
compound symmetry structure, 313
cross-over trial, 140, 290, 308–313
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covariance pattern model (continued)
dispersion parameter, 140
error stratum, 32
first-order autoregressive, 333
four-way cross-over trial, 309–314
GLMM V matrix, 127
historical, 26
mixed ordinal logistic regression, 175
model fitting, 245–247
multi-centre trial with repeated measures,

350–352
normal data, 244–254

model checking, 248–254
pattern selection, 245–247

number of parameters, 181
quasi-likelihood, 128
random coefficients model comparison,

343
repeated measures, 234–244
REPEATED statement, 472–473
repeated within visits, 330–335
see also reparameterisation

covariance structure
covariance pattern models, 44–46
likelihood ratio test, 335
random coefficients model, 42–44
random effects model, 39–42
SAS options, 464

covariate effects
parameters, 36
X matrix, 36

Crohn’s disease, 394
cross-over trial

AB/BA, 290–296, 317–321
Balaam’s design, 305–308
balance, 30
binary data analysis, 317–321
categorical data, 321–323
complete block, 297–299
covariance pattern models, 140, 290,

308–313
defined, 289
error stratum, 31–33
fixed effects model, 35
four-way, 309–314
higher order complete block designs,

297–299
incomplete block designs, 302–305
Koch’s design, 303–305
matched studies similarity, 357

mixed models advantage, 1–3, 24, 290
multi-centre, 355
non-informative prior, 66, 76
optimal designs, 305–308
parallel group comparison, 294, 295,

325, 375
random effects model advantage,

326–328
simple model, 3–12
structured covariance pattern model,

308–313
by time, 309
by treatment, 309
trial design, 325
two-period, 303–305

cubic random coefficients model, 271, 273
cumulative probability, 169, 170

data transformation, 79
DDFM option, 457, 459
degrees of freedom (DF)

confidence intervals, 78
F tests, 76–77
negative variance, 70, 211
REML adjustment, 26
SAS default, 459
variance parameter accuracy, 49, 50, 75,

148
see also Satterthwaite DF

density function, 123, 124
canonical link function, 118
general exponential form, 117
likelihood function, 47

deprivation score, 359–360
design matrix: see X matrix; Z matrix
DIFF option, 465
dispersion parameter, 120–121

and bias, 139
‘cold feet’ analysis, 148–149
covariance pattern model, 140
fitting, 139–140
GLM, 139
GLMM, 127, 139–140

diuretic treatment
heart failure, 292–294
pre-eclampsia, 218–230

dose response studies: see repeated measures
within visits

dropout, 1–3, 91
cot death study, 363
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DBP analysis, 95
hypertension trial, 13
repeated measures, 3, 242

drug registration, 313
dysmenorrhoea, 321–323

E option, 467
E3 option, 459, 460
eczema treatment, 391–393
effective sample size, 83, 100, 101, 152
efficiency, 292
electrocardiogram assessment, 317–321
EMPIRICAL option, 75, 244, 458
empirical variance, 75, 137, 243
PROC GENMOD, 318, 479

epilepsy trial, 114, 254, 258
categorical mixed model, 258
GLMM analysis, 260

error
model choice, 7, 312
residual variance, 70
sample size, 327
variance parameters, 73
see also bias; residual; standard error

error stratum, 31
higher level, 32

mixed models information recovery, 32
multi-centre trial, 198

hypertension trial, REML, 85
ESTIMATE statement, 204, 345, 466–470

non-estimable, 468
non-estimable effects, 468

ethics
medical studies, 25
sample size calculation, 286
trial design, 375

event history analysis, 391–393
exact logistic regression, 134
experiment design, sample size, 375–379
explaining results, 24–25, 59
exponential family, 113, 117–118 see also

GLM
exponential form, general, 117–118,

123–125
extended binary form, 177

F distribution, 70
F test, 5
CONTRAST statement, 470
contrasts, 76

denominator DF, 76–77
GLM(M), 140–141
PROC MIXED, 457
repeated measures, 242

factor effects: see categorical effects
farm, disease prevalence, 384
FDA, 397, 398
first-order autoregressive correlation,

235–237
Fisher scoring, 55
fixed effects estimates, 50–51

categorical mixed model, 260
covariance pattern models, 23

fixed effects matrix: see X matrix
fixed effects model, 35–37

assessing fixed effects, 247
assumptions, 7
balance, 29
cerebrovascular insufficiency, 317–321
complete block designs, 297–299
GEE, 130
incomplete data, 7, 290
matched sets, 357
mixed models comparison, 7
multi-centre trial, 198–199, 202–204
outliers, multi-centre trial, 198
random coefficients comparison, 263
random effects model, 7
repeated measures, 232–233

choice, 241–242
significance testing, 75–78
uniform categories, 133–134, 139
see also contingency table analysis; GLM

foetal scans, 380
4 × 4 factorial design

laboratory study of, 394–397

G matrix
covariance pattern model, 46
mixed ordinal logistic regression, 174
random coefficients model, 43–44
random effects model, 39–40
SAS, 462, 464
unordered categorical data, 180

gait, 418
general autoregressive model: see Toeplitz

covariance pattern model
generalisation of results, 210
generalised estimating equations (GEEs),

130–131, 481–483
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generalised least squares: see iterative
generalised least squares

generalised linear mixed models:
see GLMM

generalised linear models: see GLM
generalised logit, 178
Genstat, 453
Gewerke test, 111, 152
GLIMMIX macro, 131, 158–480
GLM (generalised linear model),

113–125
V matrix, 119–120
confidence intervals, 141–142
contingency table, 114
defined, 118–121
dispersion parameter, 139
distributions, 105–107
fitting, 121–123
meta-analysis, 219–220
PROC GENMOD, 155, 481–483
significance testing, 140–141

GLMM (generalised linear mixed model),
125–132, 480

categorical model comparison, 240
confidence intervals, 141–142
defined, 126–127
dispersion parameter, 139–140
epilepsy trial, 260
fitting, 129–132

Bayesian approach, 132
GEE, 130–131, 481–483
pseudo-likelihood, 131–132

likelihood function, 127
meta-analysis, 218–230
model checking, 142
quasi-likelihood, 128–129
significance testing, 141
see also GLIMMIX macro; mixed ordinal

logistic regression; unordered
categorical data

global estimates, 198, 355
centre and centre⋅treatment effects

random, 198
centre number, 198, 355
centre⋅treatment interaction,

198, 355
cluster sample surveys, 384
double hierarchical, 356–357
effect on standard error, 217

Goldstein, random effects fitting software,
177

grid search, 473
GROUP option, 372, 464

haemophilia study: see HIV
heart failure (diuretics) study, 292–294
Hedeker and Gibbons software, 177
herpes virus cancer study, 270–286

antibody level, 270–286
Hessian matrix, 54
hierarchical data, 23–24, 28–29

containment, 28–29
mixed model, 23–24

hierarchical model, 18
hierarchical structure

double, 356–357
multi-centre trial, 217, 356

highest posterior density interval (HPD), 61,
108

HIV
linear random coefficients model,

267–269
model fitting, 268

hypertension study
analysis models, 84–86
baseline covariate, 15–16
between-subject analysis, 371
categorical ‘cold feet’ analysis, 183

correlation parameter interpretation,
186

odds ratio, 185, 186
centre effects, 16–17
centre⋅treatment interaction, 17–18
‘cold feet’ analysis, 143–147, 162–163
data modelling, 13–14
fixed effects models, 157
Hedeker & Gibbons software, 183, 184
incomplete data, 90–95
introduction, 12–13
model checking, 90–95, 162–163
models, 143–144
multi-centre trial, 350–352
normal data, 244–254
random effects model, 147
repeated measures, 19–22, 350–352
results analysis, 86–88
sample size, 287
SAS code, 101–112
treatment⋅centre, 213–217
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ID statement, 474
identity function, as link function, 115, 125
incomplete block design, 302–305
incomplete data, 7

balance, 31
cross-over trial, 290–291
DBP analysis, 91
mixed model advantage, 1–3, 23–24
not at random, 234
randomness requirement, 81
repeated measures, 3, 231–234,

329–330
unbalanced design, 327

individual bioequivalence, 401–402
inference

fixed effects model, 202
model choice, 198
random effects model, 200, 209
see also generalisation of results

information matrix, 55
information recovery, 10, 32, 303, 304 see

also incomplete data
integrated care pathways, 412
intention to treat, 84
inter/intra-observer variability

foetal scan, 380
heart wall thickness, 381–383

invariance to time origin, 44, 278
inverse gamma distribution, 63,

66, 148
PRIOR statement, 473

iterative generalised least squares, 49–50
fixed effects estimation, 51
incomplete block design, 303
random effects prediction, 53
restricted, 49–50, 57
variance parameter estimation, 55–57

iterative methods, 53–55
GEE, 132
GLM fitting, 121–123
Newton–Raphson, 54–55,

121–123
pseudo-likelihood maximisation,

131–132

Jeffreys’ method, 66, 474

Kenward–Roger adjustment, 74–76, 88,
89, 148, 243, 265, 272, 312, 313,
327, 404, 459

knee angles, 420
Koch’s design, 303–305

L matrix, 470
last value carried forward, 14
least squares: see IGLS; ordinary least

squares
least squares mean, 471, 490
leukaemia: see childhood cancer study
likelihood function

GLM, 121
GLMM, 127
infinite, 456
information criteria measures, 240
log likelihood, 47–50

GLM fitting, 121
GLMM, 128
ordinary/REML, 48–49

mixed ordinal logistic regression, 173
model fitting, 47–50
non-informative prior similarity, 62
ordinal logistic regression, 169
ordinary/REML, 48–49
standardised, 60
true likelihood, 47–50
see also maximum likelihood;

pseudo-likelihood;
quasi-likelihood; REML

likelihood ratio test, 240
covariance structure determination,

335–336
variance components significance, 77,

265
linear dependencies, X matrix, 37
linearised pseudo variable, 122, 131–132,

142
link function, 114–115
canonical, 115, 118–119, 123, 124
GLMM, 126
mixed ordinal logistic regression, 169
non-canonical, 119
see also log likelihood function; logit link

function
Lipsitz macro

parameterisation, 177
source, 477

local estimates, 198, 355
centre effects random, 355
grid search, 456
meta-analysis, 217
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local maximum, PROC MIXED, 456
location parameter, 61, 117
log likelihood: see under likelihood function
log link function, 135–136
logistic regression, 125

conditional, 125
see also conditional logistic regression;

logit link function
logit link function, 123

Bernoulli, 123
binomial, 123–124
cumulative probability, 169
generalised, 178
see also link function; log link function

LSMEANS statement, 465–466
LSMESTIMATE statement, 454, 477,

481
lung function trial, 374–379

MAKE statement, 476
marginal methods, 49 see also REML
marginal posterior distribution, 61
Markov chain Monte Carlo methods, 68
matched case–control studies, 357

cot death study, 357–370
see also matched sets

matched sets
cot death study, 362–364
fixed effects model, 358

Matlab, 425, 426
matrix notation, 34
matrix, positive semi-definite, 264
maximum likelihood

Bayesian comparison, 58
fixed effects estimation, 50
historical context, 25
model fitting, 47
random effects prediction, 51–53
see also likelihood function; REML

mean response, 232–233
median, 61, 86
meta-analysis, 217–218, 356

data inclusion criteria, 221
example, 218–230
mixed model, 2

method of scoring: see Fisher scoring
METHOD option, 458
Metropolis algorithm 68–69, 86, 483
micturition frequency, 293
missing data: see incomplete data

mixed model, 476
advantages, 1–3, 23–24
defined, 2, 22, 37–39
disadvantages, 24
historical, 25–27
incomplete data, 234
multi-centre trial, 198
see also covariance pattern model; normal

mixed model; random coefficients
model; random effects model

mixed ordinal logistic regression
binary modelling, 169
covariance pattern model, 175
defined, 173–174
as GLMM, 169, 173–177
model fitting, 177, 183, 184
R matrix, 174–176

MLwiN, 453–454
mode, 61
model-based approach, covariance pattern

models, cross-over trials, 312
model building, 3–12

childhood cancer study, 270
non-linear temporal, 270
repeated measures, 335

model checking, 79–81
categorical mixed, 182
covariance pattern, 244, 248–254
DBP analysis

centre effects, 93, 95
centre⋅treatment effects, 95, 95
GLMM, 142
outliers, 90
residuals, 90–95
SAS code, 101

matched case–control, 360–362
Pearson residuals, 256
polynomial random coefficients, 270
random coefficients, 265, 273
random effects ‘cold feet’ analysis, 145,

162–163
see also residual plots

model choice
assumptions, 312
binary data, 326
covariance pattern model, 312
multi-centre trial, 198–202
non-normal data, 326
small samples, 410
standard error, 295, 312
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model comparison, covariance pattern
models, 240

model fitting, 46–57
Bayesian, 57–69
covariance pattern model

repeated measures, 240, 245–247
systolic blood pressure trial, 335–340

GLM, 121–123
GLMM problems, 139–140
likelihood function, 47–50
linear random coefficients, 267
manually, 11
measures of, 224, 240
mixed ordinal logistic regression, 177,

183, 184
multi-centre trial with repeated measures,

350–352
overfitting, 239–240
parameter estimation, 108–110
PROC MIXED, 457
statistical comparison, 240
unordered categorical data, 180

model selection: see model choice
MODEL statement, 458–462, 481
mortality estimates, 386–388
mouthwash trial, 295, 325
multi-centre trial

analysis considerations, 209–211
balance, 211
centre effects, 209–211
cross-over, 355
defined, 197
fixed effects model

analysis implications, 198–199
centre⋅treatment effects omitted,

201–202
outliers, 198

hierarchical, 217, 356
meta-analysis, 198–202, 217–218

data inclusion criteria, 221
example, 218–230
outliers, 217–218

mixed model, 198
number of centres, 210
random effects model, 220
repeated measurements, 349–352
sample size estimation, 211–217

multinomial correlation, R matrix,
172–173

multinomial distribution, mixed ordinal
logistic regression, 172

multinomial probability, unordered
categorical, 178

multiple contrast, 75–77
multivariate normal distribution

checking, 248–254, 266, 273
density function, likelihood, 47
SAS coding, 279

negative correlation, 72–73
nesting, 240–241, 247, 351
Newton–Raphson iteration, 54–55,

121–123
nicotine, 394, 395
NOBOUND option, 264, 272, 409
NOCLPRINT option, 458
NOINFO option, 458
NOITPRINT option, 458
non-comparative data, 265
non-estimable effects, 158, 468
non-normal data

distribution, 113, 114
likelihood, 128
model selection, 326
see also GLM

normal data
covariance pattern model, 244–254
sample size estimation, 211–217, 286

normal distribution
assumption checking, 79
bivariate, 22
link function, 125
residual, 4
transformation to, 267
see also multivariate normal distribution

normal mixed model, 34, 37–39
Bayesian approach, 57–69
fixed effects estimation, 50–51
likelihood function, 47–50
model fitting, 46–57
random effects estimation, 51–53
relation to GLM, 113
variance parameter estimation,

53–57
see also covariance pattern model; mixed

model; random coefficients model;
random effects model

normal probability plots, 79, 90, 142, 163,
360, 361
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null hypothesis, 62, 76
numerical methods, 53–55, 67

observer variation
binary data, 28, 325, 326
categorical data, 265, 321
‘cold feet’ analysis, 150
dog cardiology, 381–382
epilepsy, 260
foetal scans, 380
logit link function, 123

odds ratio, 135, 166, 185, 186, 318,
326

ODS OUTPUT statement, 475, 480, 482
ODS SELECT statement, 110, 164, 484
oedema status, 293, 296
offset, Poisson distribution, 116
one-parameter distributions, 115–117
order effects, 290
ordered categorical data: see under ordinal

logistic regression
ordinal logistic regression, 168–173

binary data, 319
categorical data, 323, 357, 359, 363
see also mixed ordinary logistic regression

ordinary least squares, 51, 84
outliers, 79–81

GLMM model checking, 142
meta-analysis, 217–218
multi-centre analysis, 84, 87
Pearson residual plots, 257
polynomial random coefficients model,

244, 266
random coefficients model, 267
random effects model, 198
repeated measures analysis, 248–254
SOLUTION option, 464

ovarian cancer trial, 262
overfitting, 239–240
overinterpretation of data, 273
overparameterisation, 37

p-values, Bayesian, 59, 78

parallel group design, 294, 325, 375
parameter estimation, Bayesian, 61
parameterisation, 175, 181
Parkinsonism drug trial, 305–308
PARMS statement, 473
partitioning

categorical data, 217

extended binary form, 169
proportional odds assumption, 181

patella tracking, 419, 420
patient: see subject
PDIFF option, 465
Pearson residuals, 156, 257
period effect, 293: see also time effect
pharmaceutical industry

empirical variance, 244
model choice, 313

physiological response, 232
plaque score, 295
PM option, 459, 462
Poisson data

covariance pattern model fitting, SAS,
481

dispersion parameter, 139
shrinkage, 136–137

Poisson distribution
general exponential form, 124
model checking, 257
offset, 116
variance matrix, 120

Poisson regression: see log link function
polynomial model building, 270–272
pooled comparison, 291
population bioequivalence, 397, 401, 402
population averaged method: see marginal

quasi-likelihood
post-operative complications, 389
posterior density, 59–60

determination, 59–60
posterior distribution, 58, 61

evaluation, 67–69
marginal, 61
SAS, 110
simulated, 68

power: see sample size estimation
pre-eclampsia, 218–230
pre-treatment: see under baseline covariate
predicted values, 482
Prescott’s test, 318, 322
prior distribution, 58

conjugate, 67
flat, 63, 66, 474
informative, 74
non-informative, 58, 66

‘cold feet’ analysis, 143, 149
prior similarity, 63
specification, 62–67
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PRIOR statement, 473–474, 486–487
proper, 66–67
properties, 66–67

probability
cumulative, 169, 170
multinomial, 178
see also p-values

probability intervals, 60
probit function, 119
PROC GENMOD, 155, 480–483
PROC GLIMMIX, 137–138, 150, 185,

260, 313, 476
PROC MCMC, 483–488
PROC MIXED, 454–476

default fitting, 55
empirical variance, 75
negative variance, 70
statement options, 478: see also specific

statement
variance parameter fixing, 74

proportional odds assumption, 181
protocol checking, multi-centre trial, 198
pseudo-likelihood, 131–132

‘cold feet’ analysis, 147
GLIMMIX macro, 476

pseudo variable, 122, 131–132

quadratic function, 53
quadratic random coefficients model,

273–278
qualitative variables: see categorical effects
quasi-likelihood, 128–129

categorical, 182
GLMM, 129
maximisation, 129–132

R matrix, 40
banded covariance, 239
compound symmetry structure, 238
covariance pattern model, 44–46
general structure, 238
GLMM, 126
mixed ordinal logistic regression,

174–176
random coefficients model, 43
random effects model, 40
repeated measures, 235, 238
REPEATED statement, 472–473
submatrices, 45
uncorrelated, 238

radiologist reliability, 380

random coefficients model, 23, 267
covariance pattern model comparison,

343
covariance structure, 42–44
cubic, 273
error stratum, 33
examples, 267–286
fitting by GEE, 132
GLMM V matrix, 127
likelihood function, 127
linear, 263

model fitting, 263
repeated measures (HIV), 267–269

model checking, 273
non-linear, 270
polynomial (childhood cancer), 270, 281
quadratic, 273–278
random effects, 21
RANDOM statement, 279, 464
repeated measures, 21–22, 262
repeated measures within visits, 341–343
shrinkage of estimates, 265
significance testing, 75–78, 265
systolic blood pressure trial, 341–347
see also count data; covariance pattern

model; event history analysis;
random coefficients model

random effects coefficient, 37, 51–53
random effects estimation, 12
random effects model, 22

assumptions, 7
balance, 30–31
‘cold feet’ analysis, 147
complete block designs, 297–299
compound symmetry, 236
covariance pattern comparison, 309–314
covariance structure, 39–42
cross-over trial, 143, 326–328
fitting by GEE, 132
fitting software, 181, 452–454
fixed models comparison, 7–9
GLMM, 126, 127
hierarchical, 18
likelihood, 127
model checking, 79–81
multi-centre trial, 200–202
negative variance, 69
pre-eclampsia trial, 218–230
R matrix, 176
random coefficient models, 21



Brown778258 Index.tex V3 - 11/25/2014 2:55 P.M. Page 508

508 Index

random effects model (continued)
significance testing, 75–78
standard error bias, 148
uniform effects, 133–134, 139
V matrix, 127
see also reparameterisation

RANDOM statement, 279, 336–338,
462–465

random vs. fixed effects modelling, 7
randomisation, cross-over trial, 290
ranking, 322, 387–388
reciprocal distribution, 63
recovery of information

binary data cross-over, 317–321
cross-over, 292, 294
incomplete block, 303
Koch’s design, 303
matched sets, 357
two-subject period cross-over, 303

reference category, 158
relative rate, 136, 257
relative risk, 136

see also log link function
REML (residual maximum likelihood)

DBP analysis model, 85
definition, 48
fixed effects estimation, 50
historical, 26
log likelihood, PROC MIXED, 454
model fitting, 47
random effects prediction, 51–53
standard error, 87

reparameterisation
case control, 362
GLMM, 176
random effects models as covariance

pattern model, 175–176
repeated measures, 231–234

analyses by time point, 233
banded covariance, 239
containment stratum, 32
covariance pattern model, 234–244

count data, 254
normal data, 244–254

different covariances, 238
different variances, 237
error stratum, 32
event history analysis, 391
fixed effects model, 232–233
hypertension trial, 19–22, 244–254

linear, 262, 267–269
mixed model, 3, 234
model choice, 241–242, 266
non-comparative datasets, 265
polynomial, 270–272
sample size estimation, 287
see also outliers

repeated measures within visits, 329–347
covariance structure, 332
cross-over trial (SBP)

covariance pattern choice, 335–340,
343–347

random coefficients, 341–347
reps cross-over, 335–340, 343–347

defined, 329
multi-centre trial, 349–352
random coefficients model, 341–347
treatment⋅reps interaction, 329–330

REPEATED statement, 336–338, 472–473,
482

replicate cross-over designs, bioequivalence
studies with, 397–411

residual, 4, 482
error strata, 31
full, 48
homogeneity, 79
normal distribution, 4
Pearson, 142
standardised, 79
see also R matrix; residual plots

residual maximum likelihood: see REML
residual plots

covariance pattern model, 244
GLMM, 142
matched case–control, 359
normal data, 79–81, 90–92
polynomial random coefficients model,

257, 262
repeated measures, 248–254, 262
SAS code, 155

residual variance, 4–6
response profile, 232
restricted IGLS, 49–50, 57
restricted maximum likelihood: see REML
resurface, 420
robust methods, 80
run-in period, 290, 310

safety trials, 263
sample size
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model selection, 389
shrinkage, 386–390
small, 326

sample size estimation
animal physiology trial, 375–379
categorical data, 288
multi-centre trial, 211–217
precision of, 217
repeated measures, 287

sampling cost
binary data, 215
normal data, 214

SAS
empirical standard error, 352
GLIMMIX macro, 480
Lipsitz macro source, 453
ordinal logistic regression macro, 323
PROC GENMOD, 158, 480–483
PROC MIXED, 454–476

base density, 75
default fitting, 55
empirical variance, 75
negative variance, 75
statement options, 478: see also specific

statement
residual plots, 155
syntax, 454

variance parameter fixing, 75
uniform reference category, 155
V matrix, 462

SATTERTH option, 459, 460
Satterthwaite DF, 76–77

GLMM, 141
repeated measures data, 242

Schwarz’s information criterion, 241,
457

selected comparison design, 431–433
sensitivity analysis, 377
shrinkage, 12, 24

bias, 132, 136, 139
dispersion parameter as metric, 139
ESTIMATE statement, 469–470
GLMM, 136–137, 139
hierarchical multi-centre trial, 356
meta-analysis, 217–218
random coefficients estimates, 265
random effects, 52, 218, 220, 221
ranking, 386–388
raw data comparison, 386–388
small area mortality, 386, 387

surgeon performance, 390
treatment by centre, 203

side effects, 80, 263
significance testing, 75–78

Bayesian: see p-values
‘cold feet’ analysis, 143, 147
GLM, 140–141
GLMM, 141
negative variance components, 211
random coefficients model, 265
repeated measures, 242

simulation, 59, 74, 243
SLICE statement, 471
SLICEDIFF option,
small area estimates, 386–388
small sample bias, 312, 326

shrunken estimates, 386
social deprivation score, 359–360
SOLUTION option, 163, 459, 463–464,

480
sparse data, 141, 313
sphericity, test of, 236
S-plus, 453
SPSS, 453
standard error, 50, 72, 87–88, 134, 149,

243–244
Bayesian, 61, 86–88
carry-over, 298, 303, 308
compound symmetry structure, 313
covariance pattern models, 23, 312
cross-over, 326
different variances, 370, 371
empirical

‘cold feet’ analysis, 187
model-based comparison, 247, 257

fixed effects, 50, 243–244
heart failure cross-over trial, 294
hypertension study, 86–88
increase by mixed model, 198
linear random coefficients model, 267
model-based, compound symmetry

structure, 312
model-based/empirical

covariance pattern model (cross-over),
312, 337

epilepsy trial, 260
model choice, 10, 295, 313
multi-centre trial, 202–204, 217
random effects, 137
repeated measures fixed effects, 233
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standard error (continued)
simple model, 6
treatment⋅centre interaction, 86, 87
treatment, fixed effects model, 199

Stata, 454
statistics, explaining results, 24–25
STORE statement, 474
subject effects, 3
SUBJECT option, G matrix blocking, 464
subject⋅time effects, 21
submatrices, R matrix, 45
sudden infant death syndrome: see cot death

study
summary statistics, 329
surgical audit, 2
syntax: see specific procedure or option

t test, 6, 76, 322, 388
Taylor series, 122, 131
test for trend: see chi-squared test; t-test
thinning, 83, 111, 167
time effect, 293

covariance patterns, 237
model choice, 271
non-linear models, 263
random coefficients model, 21–22, 265,

341–343
virus antibodies, 19, 270–278
visit time–response model, 341–342

time interval, 239
time slope, 21, 341
Toeplitz covariance pattern model, 236,

245
repeated measures, 332
SAS, 480, 482

toxicology experiments, 119
trace plot, 69, 83, 96
treatment effect estimates, 198–199

binary data cross-over trial, 317–321
DBP study, 89
fixed effects, 198–199
local/global, multi-centre trial, 217
multi-centre trial with repeated measures,

349, 352
random effects model, 197, 203
relative rate, 257
separate analyses by time, 233
variance, 292

treatment⋅centre: see centre⋅treatment
treatment⋅rep effects, 344

treatment⋅time effect
hypertension trial, 19–20
linear random coefficients model, 265
omitted, 241–242
random coefficients models, 263
repeated measures, 247
weighting, 247
see also time effect

trial design
cross-over trial, 325
inclusion criteria, 221
optimisation, 375–379
sensitivity analysis, 377
variance components, 374–379
see also sample size estimation

trial⋅treatment, pre-eclampsia study,
218–221

type III tests: see Wald statistic
TYPE option, 279

ulcerative colitis, 394
ultrasound scans

dog cardiology, 381–382
foetal, 380

under-dispersion, 139
uniform distribution, non-informative prior,

63
uniform effect categories, 144

‘cold feet’ analysis, 143
GLMM, 133–134
reparameterisation, 362

uniform reference category, standard error,
144

unordered categorical data, 180

V matrix, 37, 39, 462
Bernoulli distribution, 120
between-subject trial, 371
binomial distribution, 120
fitting methods, 126
GLM, 119–120
GLMM, 126
Poisson distribution, 120
random coefficients model, 44
random effects model, 40–42
repeated measures within visits,

330–335
SAS, 456, 462
standard error bias, 87–88
time origin invariance, 44, 278
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V option, 463
variance

canonical link function, 119
different variances, 237, 370–373
dispersion parameter, 120–121, 127
empirical, 75, 137, 244
empirical/model based (PROC GENMOD),

480–483
general exponential form, 117–118
negative, 363
non-convergence, 264
randomisation, cross-over trial, 291
sample size estimation, 215–216, 286

variance components, 7, 473
animal physiology trial, 374
ANOVA, 8
Bayesian, 85
bias, 149
DBP, 89
estimation, 61
negative, 69–73, 134, 143, 211

random coefficients, 272
negative:Bayesian, 72
number of centres, 210

variance matrix: see V matrix
variance parameters

accuracy, 73, 148
bias, 50

pseudo-likelihood, 131
shrinkage, 136–137

covariance, 55
defined, 46–47

GEE, 131
IGLS, 54–57
maximum likelihood methods, 53
significance testing, 77, 141

Wald statistic
GLM(M), 141
PROC MIXED (Type III test), 457
t test, 76

washout, 290
WEIGHT statement, 474
weighting, treatment⋅time effect,

247
Williams modification, dispersion parameter,

121
WinBUGS, 454
withdrawal: see dropout
within-subject design

animal physiology, 375–378
correlation, 20
cross-over trial, 291
see also cross-over trial

within-visit observations, correlation
matrix, 330

X matrix, 36–37
mixed ordinal logistic regression, 171
unordered categorical data, 179

Z matrix, 38–39
random coefficients, 43
unordered categorical data, 179
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