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Foreword

Medical imaging is a field of knowledge dealing with the methods of acquisition
and analysis of images occurring in biological and medical research. The acquired
images are used for research, diagnostic, therapeutic or educational purposes. The
rapid development of diagnostic medical equipment and information technology
enables the growing interaction of these two areas of expertise for the benefit of
patients.

It is generally difficult to show the characteristics of real medical images pic-
torially and in a useful form for a physician. In addition to qualitative assessment,
the physician also needs quantification of medical images, which will illustrate the
various diagnostic parameters of medical objects. On their basis, the physician
makes decisions related to the course of treatment, the strategy and the selection of
appropriate drugs.

Quantitative assessment, achievable through the analysis of biomedical images,
involves profiling contemporary analysis methods and algorithms. Such methods
include not only image filtering but also its morphological and point transforma-
tions as well as their various classifications.

One of the rapidly developing techniques of image registration is the so-called
hyperspectral imaging, which is used, inter alia, in biology and medicine. Issues
related to the development of profiled software allowing for the hyperspectral
analysis of biological and medical images is the goal of this monograph.

Zygmunt Wróbel
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Preface

Modern methods of infrared, visible light or UV-light imaging are used in many
fields of science, starting with astronomy through biophysics, physics, geography
and ending with medicine. One such method allowing for imaging in a wide
wavelength spectrum is hyperspectral imaging. The use of this type of imaging
provides ample opportunities not only in terms of the qualitative assessment of
acquired images but also in their quantification. The possibility of quantitative
assessment is the result of analysis performed in the software provided with
hyperspectral cameras. However, due to the large amount of data, this software has
numerous limitations and is user-friendly in a limited way. On the other hand, there
are well-known methods of 2D image analysis and processing. Their implemen-
tation in hyperspectral imaging is not an easy task. Apart from the need to extend
2D images into the third dimension (in which respect there are known methods of
image analysis and processing, but in visible light), there remains the issue of
optimization. It concerns optimization of computational complexity, optimization
of analysis time and performance of preliminary calculations commonly used by
users. The tasks that need to be solved by the users analysing hyperspectral medical
images are also specific by their very nature. The specificity of these images stems
directly from the inter-individual variability in patients and thus the images anal-
ysed. For this reason, for almost any task in question, object segmentation,
comparison, calculation of characteristics, individual profiling of an algorithm are
extremely important. Dedicated algorithms enable to conduct automated, repeatable
measurements of, for example, a specific disease entity. However, profiled
(dedicated) algorithms also have drawbacks—data overfitting. Therefore, these
methods must be tested on images acquired under different conditions, with dif-
ferent hardware settings and for different operators, for example, a hyperspectral
camera. Only in this case, it is certain that the proposed new algorithm will meet the
requirements of universality when it comes to the data source and manner of
acquisition and will be profiled for a particular application. Therefore, the key
element is not only to propose new dedicated methods of hyperspectral image
analysis and processing but also to try to implement them in practice and test their
properties.
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The presented methods of analysis and processing of hyperspectral medical
images have been tested in practice in the Matlab® environment. The applied source
code is attached to this monograph. The reader does not need to rewrite its frag-
ments from the text. The source code is also described in detail in the monograph.

The monograph is intended for computer scientists, bioengineers, doctoral stu-
dents and dermatologists interested in contemporary analysis methods. It can also
be used to teach senior students of engineering studies related to computer science
if the price of the book does not constitute a barrier. For the full understanding
of the issues discussed, it has been assumed that the reader knows the basic methods
and matrix operations in Matlab and knows the basic functions of Image
Processing, Signal Processing and Statistics Toolboxes. Finally, other group of
readers who want to know the way to solve the discussed problems in the field of
image analysis and processing in Matlab may become interested in this monograph.

Sosnowiec, Poland Robert Koprowski
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Chapter 1
Introduction

1.1 Purpose and Scope of the Monograph

The purpose of this monograph is to present new and known modified methods of
hyperspectral image analysis and processing and profile them in terms of their
usefulness in medical diagnostics and research, as well as develop quantitative
diagnostic tools that can be used in everyday medical practice. The algorithms
proposed in this monograph have the following characteristics:

• they are fully automatic—they do not require operator intervention, if it is
necessary to provide additional parameters of the algorithm operation, they are
selected automatically,

• the results obtained on their basis are fully reproducible,
• their operation was tested on a group of several thousands of hyperspectral

images,
• they were implemented in Matlab,
• they have an open and tested source code attached to this monograph (in the

form of an external link),
• they can be freely extended and modified—owing to the open source code.

The scope of the monograph includes medical images and, in particular, der-
matological ones. However, they are only used to test the discussed methods. The
scope of the monograph is divided into acquisition, image pre-processing, image
processing and their classification presented in the following chapters.

© Springer International Publishing AG 2017
R. Koprowski, Processing of Hyperspectral Medical Images,
Studies in Computational Intelligence 682,
DOI 10.1007/978-3-319-50490-2_1
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1.2 Material

Most of the images analysed in this monograph had a resolution
M × N × I = 696 × 520 × 128, whereM—the number of rows, N—the number of
columns, I—the number of analysed wavelengths. Images of such or similar res-
olution (dependent on individual camera settings) were acquired with different
hyperspectral cameras. The overwhelming part (approximately 75%) of all 200,000
images was registered using the SOC710-VP Hyperspectral Imager with a colour
resolution B = 12 bits and spectral resolution from 400 to 1000 nm. This camera
enables to register 128 bands (I = 128) and is powered by 12 V. The analysed
images were obtained retrospectively and showed the skin of the hand, forearm, and
other areas of the body recorded for dozens of patients. The patients were subject to
exclusion criteria which were undisclosed skin diseases, fever, cardiac arrhythmias,
seizures, inflammation of the skin and pregnancy. The analysed areas were illu-
minated by sunlight or using 40 W halogen lamps of a constant radiation spectrum
ranging from 400 to 1000 nm. All the patients gave informed consent for the study
which was conducted in accordance with the Declaration of Helsinki. No tests,
measurements or experiments were performed on humans as part of this work. This
monograph only deals with the methods of analysis of their images and diagnostic
utility of the obtained results.

1.3 State of the Art

The subject of hyperspectral image analysis and the imaging method itself has been
known for many years. On the day of writing this monograph, the end of 2016, the
PubMed database contained 1922 publications containing the word “hyperspectral”
in the title or description. Slightly different numbers (the number of articles) were
given by the AuthorMapper database, namely 1825 publications, 18,643 authors
from 6105 institutions. A breakdown by countries, institutions, authors, journals
and subjects (the first 5 are listed) is presented in Table 1.1.

As shown above, the leaders in terms of publications on hyperspectral imaging
are the United States, author Chang Chein-I and the area of Computer Science with
1420, 56, 1299 publications respectively. Image Processing and Computer Vision is
a particularly exploited subject, which is extremely important from the point of
view of this monograph. This subject includes such areas as (the number of pub-
lications is given in parentheses): Signal, Image and Video Processing (39); Journal
of Real-Time Image Processing (37); Reference Recognition and Image Analysis
(27); Hyperspectral Imaging (26); Real-Time Progressive Hyperspectral Image
Processing (26); Neural Computing and Applications (25); Advances in Visual
Computing (22) Image Analysis and Recognition (22); Image and Signal
Processing (22); Multiple Classifier Systems (20); Machine Vision and
Applications (19); Hyperspectral Data Compression (17); Advanced Concepts for
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Intelligent Vision Systems (16); Journal of Signal Processing Systems (16);
Mathematical Morphology and Its Applications to Signal and Image Processing
(15); Remote Sensing Digital Image Analysis (15); Image Analysis (14);
Hyperspectral Image Fusion (13); Hyperspectral Image Processing (12); Journal of
Mathematical Imaging and Vision (11).

When reviewing publications [83–91] in terms of the described research prob-
lems and their solutions, several open issues in the field of hyperspectral image
analysis can be observed:

• the need for profiling methods of image analysis and processing to a particular
research problem,

• lack of universal methods of analysis and
• lack of or limited availability of source codes.

Therefore, this monograph describes a sample application for the analysis and
processing of hyperspectral images. The application was profiled to the area of
biomedical engineering, and includes both known and new algorithms for image
analysis and processing.

Table 1.1 The first 5 countries, 5 institutions, 5 authors, 5 journals, 5 subjects related to the word
“hyperspectral”

Country United
States

China Germany India France

Number of
publications

1420 [1–5] 995 [6–10] 455 [11–15] 347 [16–20] 311 [21–25]

Institution Chinese
Academy of
Sciences

Zhejiang
University

University of
California

University of
Maryland

Wuhan
University

Number of
publications

162 [26–30] 67 [31–34] 64 [35–40] 47 [41–44] 43 [44–50]

Author Chang,
Chein-I [51,
52]

Graña, Manuel
[53, 54]

Sun, Da-Wen
[55–58]

Goodacre,
Royston [59,
60]

Wang, Liguo
[61, 62]

Number of
publications

56 29 21 18 18

Journal Precision
Agriculture

Journal of the
Indian Society of
Remote Sensing

Environmental
Monitoring and
Assessment

Analytical
and
Bioanalytical
Chemistry

Environmental
Earth Sciences

Number of
publications

144 [63, 64] 140 [65, 66] 100 [67, 68 91 [69, 70] 77 [71, 72]

Subject Computer
Science

Life Sciences Artificial
Intelligence
(incl. Robotics)

Earth
Sciences

Image
Processing and
Computer
Vision

Number of
publications

1299 [73,
74]

960 [75, 76] 908 [77, 78] 859 [79, 80] 830 [81, 82]
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The discussed scope of biomedical engineering involves the use of hyperspectral
cameras in dermatology. These issues have been partly presented in several pub-
lications [92–96]. Some of them are not profiled to solve a particular segmentation
issue and do not address the issue of the algorithm sensitivity to parameter changes
or the impact of different methods of acquisition on the results obtained.
Accordingly, the analysis of the impact of acquisition on the results obtained, at the
full automation of the proposed algorithm, constitutes another area (chapter) of this
monograph.

1.4 Basic Definitions

Basic definitions apply to two issues:

• orientation of coordinate systems and
• assessment of the classifier quality.

They are described in the following sections.

1.4.1 Coordinate System

The orientation of the coordinate system is strongly dependent on the individual
settings of the camera relative to the object, frame of reference. Regardless of the
individual camera setting, to which all the described algorithms cannot be sensitive,
it was assumed that the size of each image sequence would be defined by the
number of rows M numbered from one, the number of columns N and the number
of individual wavelengths I. The numbering from one and not zero, as in the case of
well-known programming languages C++, C#, results from the adopted nomen-
clature and numbering in Matlab, Scilab or Octave. As a result, it was adopted in
this monograph—Fig. 1.1 and Fig. 1.2.

The presented coordinate system (Fig. 1.1) will be used for all the presented
analyses and algorithms. When an image (matrix) is a single 2D matrix, dimension
I will be 1.

1.4.2 Evaluation of the Classifier Quality

Classifiers were usually induced by using the training data representing 2/3 of the
total number of data. The remaining 1/3 of the data was used to test the classifier
quality [96]. The training and test data were divided randomly. In the cases pre-
sented in this monograph, the division can be distorted. This is due to the fact that
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both the training and test vectors result from calculations for a sequence of images.
The number of images in the sequence to be analysed is affected by the operator.
Therefore, it does not have to be a strict division into 1/3 and 2/3. In each case,
evaluation of the classifier quality was based on determination of four values:

• False Positive (FP)—cases incorrectly classified as positive,
• False Negative (FN)—cases incorrectly classified as negative,
• True Positive (TP)—positive cases classified correctly,
• True Negative (FN)—negative cases classified correctly.

On their basis, sensitivity TPR and specificity SPC were defined as [97, 98]:





















Fig. 1.1 The following
symbols were adopted in the
coordinate system: M number
of rows, N number of
columns, I number of
wavelengths (random colours
of individual pixels were
adopted)









1 - R

2 - G

3 - B

Fig. 1.2 Orientation of the
adopted coordinate system for
a colour image—RGB (pixel
colours correspond to R, G
and B components)
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TPR ¼ TP
TPþFN

� 100% ð1:1Þ

SPC ¼ TN
TNþFP

� 100% ð1:2Þ

and accuracy ACC:

ACC ¼ TPþ TN
TPþ TNþFPþFN

� 100% ð1:3Þ

The parameters SPC and TPR will be the basis for creating the receiver operating
characteristic curves (ROC), which are graphs of changes in TPR as a function of
100-SPC [99]. Additionally, the area under the curve (AUC) will be calculated
[100].
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Chapter 2
Image Acquisition

2.1 Introduction

Image acquisition was carried out with the SOC710-VP hyperspectral camera. The
camera was positioned perpendicular to the table on which the object was placed.
The scanning area and the focal length were selected in such a way that the
analysed object filled, if possible, the entire stage—Fig. 2.1.

Two different types of illumination were adopted:

• natural light—sunlight,
• artificial lighting—40 W halogen lamps with a constant radiation spectrum in

the range from 400 to 1000 nm.

For each registered image LGRAY(m, n, i), a reference gray level in the full
spectrum sized 10 cm × 10 cm was used as a reference—Fig. 2.2. The reference
was an integral part of the camera equipment. In addition, for testing purposes, for
several cases, two additional series of images were recorded when there was no
light LDARK(m, n, i) and for the full illumination LWHITE(m, n, i)—in both cases
without an object. The images LDARK(m, n, i), LWHITE(m, n, i) are the basis for
normalization of the image LGRAY(m, n, i) which is described in the next chapter.

All images are saved in a *.cube format. They can also be saved in other formats,
*.raw and *.dat, which are further converted to Matlab in the form of a
three-dimensional matrix [1]. This conversion is specific to each of these types of
record (*.cube, *.raw or *.dat). The files with these extensions are saved by the
hyperspectral camera in the format shown in Fig. 2.3.

Saving data in the hyperspectral camera stems from the idea of its operation. The
first data saved to *.cube, *.raw or *.dat * files relate to the first row or column
(depending on the camera position relative to the object). The first row is stored for
all the wavelengths i 2 (1, I), then the next row etc. The number of rows, columns

© Springer International Publishing AG 2017
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Fig. 2.1 Image acquisition—the position of the camera relative to the subject: 1 test object—
hand; 2 window; 3 hyperspectral camera; 4 table top illuminated by sunlight; 5 reference

Fig. 2.2 Zoom of the
acquisition area for artificial
lighting: 1 test object—
subject’s hand; 2 grey
reference; 3 stage; 4 halogen
bulbs
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and individual wavelengths is stored in a separate *.hdr file. An example of its
structure is shown below:

ENVI
Description = {}
samples = 520
lines = 696
bands = 128
header offset = 32768
major frame offsets = {0, 0}
file type = ENVI Standard
data type = 12
interleave = bil
sensor type = Unknown
byte order = 0
wavelength units = Unknown
wavelength = {
374.980011, 379.953130, 384.929945, 389.910456, 394.894663, 399.882566,
404.874165, 409.869460, 414.868451, 419.871138, 424.877521, 429.887600,
434.901375, 439.918846, 444.940014, 449.964877, 454.993436, 460.025691,




















raw file

i=1
i=2
i=3
i=4
i=5
i=6
i=1

m=1
m=2

m=3
m=4

m=5
m=6

Fig. 2.3 Data organization in *.raw, *.cube and *.dat files
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465.061642, 470.101289, 475.144632, 480.191671, 485.242406, 490.296837,
495.354964, 500.416787, 505.482306, 510.551521, 515.624432, 520.701039,
525.781342, 530.865341, 535.953036, 541.044427, 546.139514, 551.238297,
556.340776, 561.446951, 566.556822, 571.670389, 576.787652, 581.908612,
587.033267, 592.161618, 597.293665, 602.429408, 607.568847, 612.711982,
617.858813, 623.009340, 628.163563, 633.321482, 638.483097, 643.648408,
648.817415, 653.990118, 659.166517, 664.346612, 669.530403, 674.717890,
679.909073, 685.103952, 690.302527, 695.504798, 700.710765, 705.920428,
711.133787, 716.350842, 721.571594, 726.796041, 732.024184, 737.256023,
742.491558, 747.730789, 752.973716, 758.220339, 763.470658, 768.724673,
773.982384, 779.243791, 784.508894, 789.777693, 795.050188, 800.326379,
805.606266, 810.889849, 816.177128, 821.468103, 826.762774, 832.061141,
837.363204, 842.668963, 847.978418, 853.291569, 858.608416, 863.928959,
869.253199, 874.581134, 879.912765, 885.248092, 890.587115, 895.929834,
901.276249, 906.626360, 911.980167, 917.337670, 922.698869, 928.063764,
933.432355, 938.804642, 944.180625, 949.560304, 954.943679, 960.330750,
965.721517, 971.115980, 976.514139, 981.915994, 987.321545, 992.730792,
998.143735, 1003.560374, 1008.980709, 1014.404740, 1019.832467,
1025.263891, 1030.699010, 1036.137825}

The arrangement of individual elements is typical for almost all types of
hyperspectral cameras. The first elements of the header are designed to provide
information on the number of samples (samples = 520) or the number of columns
N, then the number of lines (lines = 696) or the number of rows M and the number
of different wavelengths (bands = 128) or I-th number of a matrix sized
M × N. Then there are two more important elements: header offset = 32,768
relating to the transfer of data in bytes (in this case 32,768 bytes), and data type
data type = 12 meaning that there is 16-bit unsigned integer per one pixel [2]. For
other values of variable ‘data type’ per one pixel there is:

• 8-bit unsigned integer (data type = 1),
• 16-bit signed integer (data type = 2),
• 32-bit signed integer (data type = 3),
• 32-bit single-precision (data type = 4),
• 64-bit double-precision floating-point (data type = 5),
• real-imaginary pair of single-precision floating-point (data type = 6),
• 16-bit unsigned integer (data type = 12),
• 32-bit unsigned long integer (data type = 13),
• 64-bit long integer (data type = 14),
• 64-bit unsigned long integer (data type = 15).

The last element in the *.hdr file is the variable wavelength. It means the
wavelengths in nanometres for which the individual images were acquired. In the
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present case, it is 374.980011 nm (i = 1), 379.953130 nm (i = 2), 384.929945 nm
(i = 3) etc.

Therefore, the *.hdr file is useful as it downloads the parameters (number of
rows, columns, wavelengths) necessary to read data in the *.cube, *.raw or *.dat
files. The following are excerpts (separated by ‘…’) of the source code of the file
read_envi_header enabling to read and interpret the file *.hdr consisting of
three blocks: the search for the sign '{}= ', the search for the numerical value of

the variable lines and the values of the variable 'Wavelength' i.e.:

function
[lines,bands,samples,Wavelength,data_type,header_offse
t]=read_envi_header(src)

...

fid = fopen(src);
[drep] = textscan(fid,'%s','delimiter','{}=
','MultipleDelimsAsOne', 1);
fclose(fid); drep_=drep{:,1};

Dlines=strcmpi(drep{1,:},'lines');
DlinesY=[Dlines,(1:size(Dlines,1))'];
DlinesY(DlinesY(:,1)~=1,:)=[];
nrl=DlinesY(1,2);
lines=str2num(str2mat(drep_{nrl+1}));

...

Dwavelength=strcmpi(drep{1,:},'Wavelength');
DwavelengthY=[Dwavelength,(1:size(Dwavelength,1))'];
DwavelengthY(DwavelengthY(:,1)~=1,:)=[];
nrsw=DwavelengthY(end,2);
Wavelength=str2num(str2mat(drep_{(nrsw+1) : 
(nrsw+1+bands-1)}));

...

The dots ‘…’ (as mentioned above) mean that some part of the source code has
been removed. It should be noted that they play a different role than the dotted line
‘…’ in Matlab which indicates that a further part of the code will be continued in
the next line.
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The readvalues oflines,bands,samples,Wavelength,data_type,
header_offset are further used for reading the image data contained in the files *.
cube, *.raw or *.dat. The function designed for this purpose called read_envi_-
data is as follows:

function
[LGRAY]=read_envi_data(src,lines,bands,samples,data_ty
pe,band_no,header_offset)

...

if (data_type~=12) && (data_type~=4)
disp('Unsupported file type')

else
fid = fopen(src);
frewind(fid)
if data_type==12

fseek(fid,band_no*samples*2+header_offset,
'bof');

[LGRAY, COUNT] = 
fread(fid,[samples,lines],[mat2str(samples),'*integer*
2'],samples*bands*2-samples*2);

else % data_type==4
fseek(fid,band_no*samples*4+header_offset,

'bof');
[LGRAY, COUNT] = 

fread(fid,[samples,lines],[mat2str(samples),'*float'],
samples*bands*4-samples*4);

end
fclose(fid);
LGRAY=LGRAY';

end

In its first part, the data type is checked. Two types of data mentioned above
numbered ‘12’ and ‘4’are handled [3]. If the data type is different, the message
‘Unsupported file type’ will be displayed. Then the data will be read from the
header_offset. The reading for the data type ‘12’ takes place every sam-
ples*bands*2-samples*2 while in the case of data type ‘4’ every sam-
ples*bands*4-samples*4, 16 and 32 bits per pixel respectively. The result is
the matrix LGRAY used for image pre-processing.
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Chapter 3
Image Pre-Processing

Preliminary analysis and processing of images is associated with three main
elements:

• affine transformation of the image,
• image filtering and
• image calibration.

These three elements are presented in the following subchapters. The source
code of these three elements was implemented in three Matlab files: GUI_hyper-
spectral_trans, GUI_hyperspectral and GUI_hyperspe-
ctral_fun. The first one concerns affine transformations, the second one relates
to the graphical user interface and the third one concerns the function associated
with the response to specific user’s actions. The content, source code, of these
functions (mainly GUI_hyperspectral_fun) will be presented in fragments in
the order of its description in the text.

It is possible to read the image owing to the functions read_envi_data and
read_envi_header described above. In the file GUI_hyperspectral_fun,
each 2D image read correctly is saved to disk with the same name as the input file *.
cube, *.raw or *.datwith the extension *.mat. When re-reading the file *.cube, *.raw
or *.dat, it is checked whether the file *.mat exists. If it exists, it is loaded. Saving
individual 2D files with the extension *.mat means that the data are read at least 2
times faster. A fragment of the source code of the file GUI_hyperspe-
ctral_fun is shown below:

© Springer International Publishing AG 2017
R. Koprowski, Processing of Hyperspectral Medical Images,
Studies in Computational Intelligence 682,
DOI 10.1007/978-3-319-50490-2_3
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try
load([src,mat2str(band_no),'.mat'],'L1');

catch
[L1]=read_envi_data(src,lines,bands,samples,data_type,
band_no,header_offset);

save([src,mat2str(band_no),'.mat'],'L1');
L_(:,band_no,[1 3])=0;L_(:,band_no,2)=1;

end

The menu allowing for the selection of the file *.cube, *.raw or *.dat is invoked
at the beginning of the function GUI_hyperspectral_fun, i.e.:

[FileName,PathName,FilterIndex] = uiget-
file({'*.cube';'*.dat';'*.raw'},'Select file');
if FilterIndex~=0

src=[PathName,FileName];
if strcmp(src(end-2:end),'ube')

[lines,bands,samples,Wavelength,data_type,header_offse
t]=read_envi_header([src(1:end-4),'hdr']);

else
[lines,bands,samples,Wavelength,data_type,header_offse
t]=read_envi_header([src(1:end-3),'hdr']);

end
band_no=round(bands/2);
[L1]=read_envi_data(src,lines,bands,samples,data_type,
band_no,header_offset);

According to the source code shown above, the middle 2D image from the image
sequence, when properly loaded, is displayed by default. Since the number of
individual *.mat files initially converted by Matlab (with prior reading of the same
file) is not known, its status is read. Reading and showing the status in the visual
form involves a sequential attempt to read all the files *.mat, i.e.:

L_=cat(3,ones([20 bands]),zeros([20 bands]),zeros([20
bands]));

for band_no=1:bands
if ex-

ist([src,mat2str(band_no),'.mat'])==2
L_(:,band_no,[1

3])=0;L_(:,band_no,2)=1;
end

end
Lvar=imresize(L_,[20 800]); 

Lvar(Lvar<0)=0;Lvar(Lvar>1)=1;
set(hObj(20),'CData',Lvar);
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The displayed image is 20 × 800 pixels. The red stripes represent the absence of
the *.mat file, while the green ones mean that it is located on the disk. An exem-
plary image is shown in Fig. 3.1.

3.1 Affine Transformations of the Image

The range of affine transformations applied in hyperspectral imaging is much wider
than in the case of classic 2D images. Only those which are most often applied in
hyperspectral imaging were selected. These are:

• rotation by any angle in the angular range of α 2 (0,360] degrees every 10
degrees—the new coordinates of pixels in this case (mA, nA) are as follows:

nA ¼ N
2
þ n� N

2

� �
� cos að Þ � m�M

2

� �
� sin að Þ ð3:1Þ

mA ¼ M
2

þ n� N
2

� �
� sin að Þþ m�M

2

� �
� cos að Þ ð3:2Þ

• reordering of rows—the image LGRAYM(m, n, i)—mirrored around the x-axis,
• reordering of columns—the image LGRAYN(m, n, i)—mirrored around the y-axis,

i.e.:

LGRAYM m; n; ið Þ ¼ LGRAY M � m; n; ið Þ ð3:3Þ

LGRAYN m; n; ið Þ ¼ LGRAY m;N � n; ið Þ ð3:4Þ

*.mat exist *.mat no exist

Fig. 3.1 Exemplary image indicating the distribution: the existence of the file *.mat is shown in
green, its absence in red
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• Cropping—cutting a portion of the image, i.e.:

LGRAYROI ¼ LGRAY m; n; ið Þ ð3:5Þ

where: m, n 2 ROI.
Since in practice, the user manually selects the option of rotation, shift or

cropping, the variable names in the function were standardized to ‘L1’ for sim-
plicity. In practice, a record in the source code overwrites the value in variable L1,
but it is consistent and clear:

if get(hObj(7),'Value')==1 % ROI
if min(r(2:3))>1

L1=L1(r(2):(r(2)+r(4)),r(1):(r(1)+r(3)));
end
end

if get(hObj(8),'Value')==1
L1=L1(:,end:-1:1);

end
if get(hObj(9),'Value')==1

L1=L1(end:-1:1,:);
end
if get(hObj(10),'Value')==1

L1=mat2gray(L1);
end
if get(hObj(12),'Value')~=1

L1=imrotate(L1,(get(hObj(12),'Value')-
1)*10,'crop');
end

For each condition if, the value set by the user is taken—from the handle
hObj. In this case, these are the handles to checkbox (7,8,9,10) and the
pull-down menu (popup), the value of 12.

3.2 Image Filtration

3.2.1 Non-Adaptive

The read image LGRAY(m, n, i) and the calibrated images LDARK(m, n, i) and
LWHITE(m, n, i) are subjected to noise removal. The noise is removed using a
median filter with a mask hw sized Mw × Nw = 3 × 3 pixels or more set manually
using the graphical user interface (GUI). Each 2D image is filtered individually. The
minimum size of the mask hw was selected based on the maximum size of a single
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distortion whose area of concentration did not exceed 4 pixels. The size of dis-
tortions in hyperspectral images may be different and therefore the size of the filter
is set manually. The specific size is set in the menu checkbox with the handle
hObj(14), i.e.:

if get(hObj(14),'Value')==2
L1=medfilt2(L1,[3 3],'symmetric');

end
if get(hObj(14),'Value')==3

L1=medfilt2(L1,[5 5],'symmetric');
end
if get(hObj(14),'Value')==4

L1=medfilt2(L1,[7 7],'symmetric');
end
if get(hObj(14),'Value')==5

L1=medfilt2(L1,[9 9],'symmetric');
end
if get(hObj(14),'Value')==6

L1=medfilt2(L1,[11 11],'symmetric');
end

The above source code shows that for the value ‘1’, the image L1 is not filtered
in any way, and the filtration itself ranges from Mw × Nw = 3 × 3 pixels to
Mw × Nw = 11 × 11 pixels. This is enough to remove noise from most hyper-
spectral images.

3.2.2 Adaptive

The second type of noise removal from a sequence of hyperspectral images is
adaptive adjustment of the size of the filter [1–7], for example, the median filter.
There are three options here:

• adaptation of the filter size to the 2D image content independently for each i-th
image,

• adaptation to the i-th 2D image—depending on the wavelength,
• adaptation of the filter size to both the 2D image content and the i-th image.

Choosing the right solution for hyperspectral images should be preceded by the
analysis of changes in the Peak Signal-to-Noise Ratio (PSNR) for individual i
images in a series of measurements. The values of PSNR, the vector LPSNR(i), are
defined as:

LPSNR ið Þ ¼ 10 � log10
2B � 1ð Þ2

LMSE m; n; ið Þ

 !
ð3:6Þ
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where: B is the number of bits per one image pixel, LMSE(m, n, i) is the mean
squared error. i.e.:

LMSE m; n; ið Þ ¼ 1
M � N

XM
m¼1

XN
n¼1

LMEAN ið Þ � LGRAY m; n; ið Þð Þ2 ð3:7Þ

LMEAN ið Þ ¼ 1
M � N

XM
m¼1

XN
n¼1

LGRAY m; n; ið Þ ð3:8Þ

The problem of selecting the size of the filter hw (its size Mw × Nw) and making
it dependent on LPSNR(i) is directly related to the content of images. This content
may be different in each case—especially when it comes to diagnosis of the skin. In
this regard, the selected ROIs shown in Fig. 3.2 were analysed.

The sample results shown in Fig. 3.2 confirm an increase in noise for hyper-
spectral cameras for extreme wavelength values. In addition, it should be noted that
median filtering with a mask hw sized 3 × 3 pixels increases the value of PSNR to
the greatest extent (almost 10 dB). The source code of m-file GUI_hyperspe-
ctral_filter_test providing the above graphs is as follows:

(a)

(b) (c)

Fig. 3.2 Results of analysis of PSNR values for two selected regions: a the input image LGRAY(m,
n,i = 80), b a graph of changes in LPSNR(i) for i images without median filtering and with median
filtering using masks sized Mw × Nw = 3 × 3, 5 × 5, 9 × 9 and 11 × 11 pixels; c an analogous
graph for another ROI
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L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(80),'.mat']);
Lgrayi=mat2gray(L1.L1);
figure;
[X,Y,I2,RECT] = IMCROP(Lgrayi);
hObj=waitbar(0,'Please wait...');
LPSNR=[];
for i=1:128

L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(i),'.mat']);

Lgrayi=mat2gray(L1.L1);
Lgrayi=IMCROP(Lgrayi,RECT);
LPSNR(i,1)=20*log10(1)-10*log10( sum(sum( 

(mean(Lgrayi(:)) - Lgrayi).^2 )) ./ (size(Lgrayi,1) * 
size(Lgrayi,2)) );

Lgrayi=mat2gray(L1.L1);
Lgrayi=medfilt2(Lgrayi,[3 3]);
Lgrayi=IMCROP(Lgrayi,RECT);
LPSNR(i,2)=20*log10(1)-10*log10( sum(sum( 

(mean(Lgrayi(:)) - Lgrayi).^2 )) ./ (size(Lgrayi,1) * 
size(Lgrayi,2)) );

Lgrayi=mat2gray(L1.L1);
Lgrayi=medfilt2(Lgrayi,[5 5]);
Lgrayi=IMCROP(Lgrayi,RECT);
LPSNR(i,3)=20*log10(1)-10*log10( sum(sum( 

(mean(Lgrayi(:)) - Lgrayi).^2 )) ./ (size(Lgrayi,1) * 
size(Lgrayi,2)) );

Lgrayi=mat2gray(L1.L1);
Lgrayi=medfilt2(Lgrayi,[9 9]);
Lgrayi=IMCROP(Lgrayi,RECT);
LPSNR(i,4)=20*log10(1)-10*log10( sum(sum(

(mean(Lgrayi(:)) - Lgrayi).^2 )) ./ (size(Lgrayi,1) * 
size(Lgrayi,2)) );

Lgrayi=mat2gray(L1.L1);
Lgrayi=medfilt2(Lgrayi,[11 11]);
Lgrayi=IMCROP(Lgrayi,RECT);
LPSNR(i,5)=20*log10(1)-10*log10( sum(sum( 

(mean(Lgrayi(:)) - Lgrayi).^2 )) ./ (size(Lgrayi,1) * 
size(Lgrayi,2)) );

waitbar(i/128)
end
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close(hObj)
figure
plot(LPSNR(:,1),'-r*'); grid on; hold on
plot(LPSNR(:,2),'-g*');
plot(LPSNR(:,3),'-b*');
plot(LPSNR(:,4),'-m*');
plot(LPSNR(:,5),'-k*');
xlabel('i [pixel]','FontSize',14,'FontAngle','Italic')
ylabel('L_{PSNR}
[dB]','FontSize',14,'FontAngle','Italic')
legend('None','3x3','5x5','9x9','11x11') 

The first part of the code allows to identify the ROI in the image i = 80. Then,
the images from i = 1 to 128 are loaded sequentially from the disk and the ROI is
separated. Then, the value of PSNR after median filtering with different mask sizes
is calculated.

The results shown in Fig. 3.2 could suggest that increasing the size of the mask
hw of the median filter to the value of Mw × Nw = 11 × 11 pixels and more is the
right approach. The attentive reader probably drew attention to the formulas (3.7)
and (3.8), where due to the lack of the source image (devoid of noise), the mean
value of LMEAN(i) is taken into account. These calculations are only justified when a
homogeneous ROI is analysed and there is no source image free from noise. In
other cases, the formulas (3.7) and (3.8) must be modified by replacing
LMEAN(i) with an image devoid of noise. Since there is no noise-free image, it will
be artificially added to the existing i images in gray levels. The function imnoise
enables to add Gaussian or salt and pepper noise to the image LGRAY(m, n, i). The
resulting image LNOISE(m, n, i) will be further used to test changes in PSNR but for
the entire image (without the need to manually select the ROI). Filtration efficiency
is here compared with the adaptive median filter, median filter and image without
filtration. The source code of the m-file GUI_hyperspectral_filter_test2
allowing for this type of calculations is shown below:
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hObj=waitbar(0,'Please wait...');
LPSNR=[]; LSEU=[];
for i=1:128

L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(i),'.mat']);

Lgrayi=mat2gray(L1.L1);Lgrayi_=Lgrayi;
Lnoise=imnoise(Lgrayi,'salt & pepper',0.5);
LPSNR(i,1)=20*log10(1)-10*log10( sum(sum( (Lnoise 

- Lgrayi).^2 )) ./ (size(Lgrayi,1) * size(Lgrayi,2)) 
);

[Lnoise_a,LSE]=GUI_hyperspectral_adaptive_filter(Lnois
e);

LSEU(i,1:4)=hist(LSE(:),[0 3 5 7]);

LPSNR(i,2)=20*log10(1)-10*log10( sum(sum( 
(Lnoise_a - Lgrayi).^2 )) ./ (size(Lgrayi,1) * 
size(Lgrayi,2)) );

Lnoise_m=medfilt2(Lnoise,[7 7]);
LPSNR(i,3)=20*log10(1)-10*log10( sum(sum( 

(Lnoise_m - Lgrayi).^2 )) ./ (size(Lgrayi,1) * 
size(Lgrayi,2)) );

if i==80
figure; imshow([Lgrayi,Lnoise,Lnoise_a]);
figure; imshow([Lgrayi,Lnoise,Lnoise_m]);

end
waitbar(i/128)

end
close(hObj)
figure
plot(LPSNR(:,1),'-r*'); grid on; hold on
plot(LPSNR(:,2),'-g*');
plot(LPSNR(:,3),'-b*');
xlabel('i [pixel]','FontSize',14,'FontAngle','Italic')
ylabel('L_{PSNR}
[dB]','FontSize',14,'FontAngle','Italic')
legend('None','Adaptive','Median 3x3')
LSEU=LSEU./(size(Lgrayi,1) * size(Lgrayi,2))*100;
figure
plot(LSEU(:,2),'-r*'); grid on; hold on
plot(LSEU(:,3),'-g*');
plot(LSEU(:,4),'-b*');
xlabel('i [pixel]','FontSize',14,'FontAngle','Italic')
ylabel('L_{SEU}(i)
[%]','FontSize',14,'FontAngle','Italic')
legend('3x3','5x5','7x7') 
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The function GUI_hyperspectral_adaptive_filter is implemented
with adaptive median filtering with a mask hw whose size ranges from
Mw × Nw = 3 × 3 pixels to Mw × Nw = 7 × 7 pixels. The main idea of the pro-
posed adaptive filtering is to calculate erosion (image LGRAYE(m, n, i)), dilation
(image LGRAYD(m, n, i)) and perform median filtering (image LMED(m, n, i)) with a
structural element SEw (in the case of erosion and dilation) and a mask hw (in the
case of filtration) sized 3 × 3, 5 × 5 and 7 × 7 pixels, i.e.:

LGRAYE m; n; ið Þ ¼ min
mSEw;nSEw2SEw

LGRAY mþmSEw; nþ nSEw; ið Þ� � ð3:9Þ

LGRAYD m; n; ið Þ ¼ max
mSEw;nSEw2SEw

LGRAY mþmSEw; nþ nSEw; ið Þ� � ð3:10Þ

In order to calculate the resulting image LMED
(c) (m, n, i) after filtration with

the adaptive median filter, auxiliary variables (binary images) Lcw(m, n, i),
Lgw(m, n, i) and the image in gray levels Low(m, n, i) need to be introduced:

Lcw m; n; ið Þ ¼
1 if LGRAYE m; n; ið Þ\LMED m; n; ið Þ� �^

LGRAYD m; n; ið Þ[ LMED m; n; ið Þ� �
0 other

8<
: ð3:11Þ

Lgw m; n; ið Þ ¼ 1 if
LGRAYE m; n; ið Þ\LGRAY m; n; ið Þ� �

^ LGRAYD m; n; ið Þ[ LGRAY m; n; ið Þ� �
0 other

8><
>: ð3:12Þ

Low m; n; ið Þ ¼
LMED m; n; ið Þ if Lcw m; n; ið Þ ¼ 1

� � ^ Lgw m; n; ið Þ ¼ 0
� �

0 other

8<
:

ð3:13Þ

where LMED(m, n, i) is the result of filtration of the image LGRAY(m, n, i) for the
mask sized Mw × Nw. In order to simplify the notation of the results of filtration,
erosion and dilation carried out for a specific mask size, the size Mw = Nw was
given as one number as a subscript, for example, LMED,3(m, n, i) is the result of
median filtering with a mask sized Mw × Nw = 3 × 3 pixels. Thus, the resulting
image LMED

(c) (m, n, i) is equal to:

LðcÞMED m; n; ið Þ ¼
Low;5 m; n; ið Þ if Lcw;3 m; n; ið Þ ¼ 0

� �
^ Lcw;5 m; n; ið Þ ¼ 1
� �

Low;7 m; n; ið Þ if Lcw;3 m; n; ið Þ ¼ 0
� �

^ Lcw;5 m; n; ið Þ ¼ 0
� �

Low;3 m; n; ið Þ other

8>>><
>>>:

ð3:14Þ
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The individual subscripts, e.g. 3, (as mentioned above) are directly related to the
size of the mask (structural element) amounting to, for example, 3 × 3 pixels.
Adaptive filtration is performed by the afore-mentioned and already used function
GUI_hyperspectral_adaptive_filter with the following source code:

function
[Lout,LSE]=GUI_hyperspectral_adaptive_filter(Lgrayi)
Lout3=Lgrayi;
Lout5=Lgrayi;
Lout7=Lgrayi;
LSE=zeros(size(Lgrayi));
SE3=ones(3);
SE5=ones(5);
SE7=ones(7);
Lgrayei3=imerode(Lgrayi,SE3);
Lgrayei5=imerode(Lgrayi,SE5);
Lgrayei7=imerode(Lgrayi,SE7);
Lgraydi3=imdilate(Lgrayi,SE3);
Lgraydi5=imdilate(Lgrayi,SE5);
Lgraydi7=imdilate(Lgrayi,SE7);
Lmedi3=medfilt2(Lgrayi,size(SE3));
Lmedi5=medfilt2(Lgrayi,size(SE5));
Lmedi7=medfilt2(Lgrayi,size(SE7));
Lc3=(Lgrayei3<Lmedi3) & (Lgraydi3>Lmedi3);
Lc5=(Lgrayei5<Lmedi5) & (Lgraydi3>Lmedi5);
Lc7=(Lgrayei7<Lmedi7) & (Lgraydi3>Lmedi7);
Lg3=(Lgrayei3<Lgrayi) & (Lgraydi3>Lgrayi);
Lg5=(Lgrayei5<Lgrayi) & (Lgraydi5>Lgrayi);
Lg7=(Lgrayei7<Lgrayi) & (Lgraydi7>Lgrayi);
Lout3( (Lc3==1) & (Lg3==0) )=Lmedi3( (Lc3==1) & 
(Lg3==0) );
Lout5( (Lc5==1) & (Lg5==0) )=Lmedi5( (Lc5==1) & 
(Lg5==0) );
Lout7( (Lc7==1) & (Lg7==0) )=Lmedi7( (Lc7==1) & 
(Lg7==0) );
Lout=Lout3;
Lout((Lc3==0)&(Lc5==1))=Lout5((Lc3==0)&(Lc5==1));
Lout((Lc3==0)&(Lc5==0))=Lout7((Lc3==0)&(Lc5==0));
LSE((Lc3==1) & (Lg3==0))=3;
LSE((Lc3==0)&(Lc5==1))=5;
LSE((Lc3==0)&(Lc5==0))=7;
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The above source code has a block structure associated with conducting triple
calculations of individual variables for three different mask sizes, i.e.: 3 × 3, 5 × 5,
7 × 7 pixels. These calculations are necessary to determine the final form of the
image LMED

(c) (m, n, i) in accordance with the formula (3.14). This function, with the
source code mentioned above, provides practically relevant results—Fig. 3.3.

The results of analysis of LPSNR(i) values presented in Fig. 3.3(a) clearly indicate
the advantage of applying an adaptive median filter over the conventional median
filter with a mask sized 7 × 7 pixels (a difference of about 3 dB for i 2 (40,60)) and
compared to an image without any interference (filtration). Figure 3.3 b) shows the
percentage share with respect to all pixels in the image LGRAY(m, n, i) of individual
masks Mw × Nw = 3 × 3, 5 × 5, 7 × 7 pixels. As can be seen in Fig. 3.3(b), the
share of the mask sized 3 × 3 pixels is the largest, about 45%. Additionally, the
percentage share of the mask sized 5 × 5 pixels is similar to the distribution shown
in Fig. 3.2. For extreme images (extreme values of i), more filtration is required,
while the middle ones require less filtration. In each case of filtration, sample
images and their visual assessment are much more convincing than PSNR.
Therefore, Fig. 3.4 shows the images LNOISE(m, n, i) and LMED,7(m, n, i) as well as
LMED
(c) (m, n, i).
The problem presented at the beginning of this subchapter, i.e.: adaptation of the

filter size to the 2D image content independently for each i-th image and adaptation
to the i-th 2D image depending on the wavelength, is solved by the above adaptive
approach. Therefore, there is no need to develop two separate algorithms.

The presented adaptive filtration was not deliberately included in the GUI or the
m-files of the program. At this point, I encourage the reader to make the appropriate
changes in the files GUI_hyperspectral and GUI_hyperspectral_fun
so that adaptive filtering will be available in the main application menu.

Fig. 3.3 Results of analysis of LPSNR(i) and LSEU(i) for all i images LGRAY(m,n,i). The graph
a shows the measurement results of LPSNR(i) without filtration, with adaptive filtration and with
median filtration. The graph b shows the values of LSEU(i), the percentage share in filtration of the
masks sized Mw × Nw = 3 × 3, 5 × 5, 7 × 7 pixels
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3.3 Image Calibration

Calibration of hyperspectral images is a very important element, because it is
affected by many factors that can introduce significant errors to the interpretation of
results (the read intensity). In practice, assuming constant light intensity in the full
spectral range of the camera, there are two methods of calibration:

• using a reference visible in the analysed image or
• using calibrating images.

In the first case, calibration is related to image normalization from the value of
minimum brightness occurring in the image to the mean value read from the area
visible in the reference image. Therefore, the file after calibration LCAL(m,n,i) is
calculated as:

LCAL m; n; ið Þ ¼ LCA2 m; n; ið Þ
max
n

max
m

LCA2 m; n; ið Þ
� � ð3:15Þ

(a) (b) (c)

Fig. 3.4 Results of analysis for a sample image i = 80 a input image LGRAY(m, n, i = 80); b result
of median filtering LMED(m, n, i = 80) for the mask sized Mw × Nw = 7 × 7 pixels; c result of
adaptive median filtering LMED

(c) (m, n, i = 80)
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where:

LCA2 m; n; ið Þ ¼
LGRAY m; n; ið Þ if LGRAY m; n; ið Þ\Calw ið Þ

max
n

max
m

LGRAY m; n; ið Þ
� �

other

8<
:

ð3:16Þ

and:

Calw ið Þ ¼ 1
Mc � Nc

X
m;n2ROIc

LGRAY m; n; ið Þ ð3:17Þ

Mc and Nc—are the numbers of rows and columns of the ROIc being the reference—
Fig. 2.2.

The size of the ROIc is most often Mc × Nc = 40 × 40 pixels. The calibrated
image LCAL(m, n, i) has values (for bright pixels) limited from the top by the mean
brightness from the area of the reference Calw(i). Implementation of this fragment
in Matlab is simple:

if get(hObj(11),'Value')==1
if min(rc(2:3))>1

Cal_w=mean(mean(L1(rc(2):(rc(2)+rc(4)),rc(1):(rc(1)+rc
(3)))));

L1(L1>Cal_w)=Cal_w;
L1=mat2gray(L1);

end
end

Four values stored in the variable rc come from manual selection of the ROIc. It
must be made clear that this calibration method can be fully automated with a
constant position of the reference—e.g. always in the upper left corner of the stage.
In this case, it is enough to assign the variable rc to 4 constants—x and y coor-
dinates and the size of the ROIc in x- and y-axis.

In the second case, calibration is related to the performance of 2 additional
registrations of images LDARK(m, n, i) and LWHITE(m, n, i). The idea of this cali-
bration is shown in Fig. 3.5.

These images (Fig. 3.5) are the basis for calibration. The calibrated image
LCAL
(2) (m, n, i) is calculated as:

Lð2ÞCAL m; n; ið Þ ¼ LGRAY m;n;ið Þ�LDARK m;n;ið Þ
max
n

max
m

LGRAY m;n;ið Þ�LDARK m;n;ið Þð Þ
� � :

�LWHITE m; n; ið Þ
ð3:18Þ
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I encourage the reader to implement this second calibration method in practice.
In this case, the reader should duplicate the reading of files in the GUI and add the
relevant fragment in the file GUI_hyperspectral_fun. The further course of
action and the algorithm fragment remain unchanged.

3.4 Preliminary Version of the GUI

The issues of data reading and image pre-processing presented in the previous
chapters have been linked with the preparation of a preliminary version of the GUI.
The GUI has been divided into several areas—Fig. 3.6.

The GUI presented in Fig. 3.6 allows for opening *.cube, *.raw or *.dat files,
automatic conversion to *.mat files, reordering of image rows and columns, nor-
malization, image rotation, artificial colouring of images, median filtering, visual-
ization of the number of image columns and rows as well as the number of images
for individual wavelengths, viewing and analysis of individual images, viewing the
analysed image, displaying changes in the mean, minimum and maximum bright-
ness for the entire area or the selected ROI for individual images, selecting the ROI,
image calibration, displaying text data on the wavelength and the file name.

This GUI will be further expanded and its functionality will be increased.

3.5 Block Diagram of the Discussed Transformations

The discussed transformations along with the source code excerpts and the corre-
sponding m-files can be presented in the form of a block diagram. This diagram is
shown in Fig. 3.7.

LGRAY(m,n,i) 

n

LWHITE(m,n,i) 

LDARK(m,n,i) 

LCAL(m,n,i) 

in
te
ns
ity







Fig. 3.5 Schematic graph of calibration results for LCAL
(2) (m, n, i) of brightness changes in the

image LGRAY(m, n, i) using the images LDARK(m, n, i) and LWHITE(m, n, i) when m = const
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The algorithm discussed so far has been divided into three blocks: image
acquisition, image pre-processing and image processing discussed later in this
monograph.

The m-files containing the discussed functions and methods are available in this
book as an attachment. It should be borne in mind that the files will be further
expanded to add new functionality. For this reason, a container has been developed
for readers interested in testing the discussed scope of functionality of the proposed
algorithms. The container includes the discussed functions in GUI_ver_pre.zip
attached to the book.

4
5
6
7
8

3
2

1

12

9
10
11

13 14 15

1716 18 19

Fig. 3.6 Main menu of the application: 1 default window menu; 2 open button; 3 conversion
button; 4 reordering image rows; 5 normalization; 6 image rotation; 7 artificial colour palette; 8
median filter size; 9 number of samples (number of columns); 10 number of lines (number of
rows); 11 number of bands (number of images for each wavelength); 12 slider for viewing and
analysis of individual images; 13 image showing the amount of converted images *.mat; 14
viewing the analysed image; 15 graph of the mean, minimum and maximum brightness for the
entire area or the selected ROI; 16 reordering of image columns; 17 option of selecting the ROI; 18
calibration; 19 text data on the wavelength and the file name
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Fig. 3.7 Block diagram of
the initial version of the
algorithm. The block diagram
has been divided into three
main parts: image acquisition,
image pre-processing and
image processing discussed
later in this monograph. This
diagram includes one of the
blocks highlighted in blue
whose functionality has not
been deliberately included in
the main application
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Chapter 4
Image Processing

4.1 Diagnostic Expectations

One of the key elements in the construction of the image processing algorithm is the
diagnostic usefulness of the results. The literature review presented in the intro-
duction and the publications from [1–4] show that there is a wide range of seg-
mentation methods. Due to the large amount of information extracted from
hyperspectral images, there are virtually no restrictions (relating to the minimum
amount of data) to use any method of image analysis and segmentation. Therefore,
many authors use segmentation methods (also used in classification) such as sup-
port vector machines (SVM) [1, 2], the nearest neighbours [3] and others [4]. These
segmentation methods are based primarily on a set of data obtained from the
manually selected for all acquired wavelengths. From a practical, dermatological,
point of view, these methods used in hyperspectral imaging should:

• allow for segmentation of objects,
• allow for spectral analysis of any image portion,
• enable to compare the spectral characteristics of any two areas,
• allow for building a classifier based on binary decision trees, discriminant

analysis and others,
• test the created classifier for different images.

© Springer International Publishing AG 2017
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In addition, the methods used in dermatology and biomedical engineering in the
field of hyperspectral imaging should be fully automatic, provide reproducible
results, allow for batch data analysis (selecting only a catalogue), and be resistant to
individual variability of patients. Given these expectations, both diagnostic and
functional, image processing presented in the following sections has been proposed.

4.2 Tracking Changes in the Shape of an Object

An extremely important element in hyperspectral imaging is the analysis of the
object/objects. This analysis is determined by the method of selecting the object.
Besides simple selection of the ROI, automatic selection is often used in practice.
Automatic selection is simply binarization or another more advanced method of
segmentation. However, regardless of the segmentation method, a hyperspectral
image sequence, by definition, does not provide the same image for different
wavelengths. Accordingly, the segmentation process typically occurs for one of the
images and its result (binary image) is used for the subsequent images. The object
shape hardly ever remains the same in successive images. Therefore the only
solution is to perform 3D segmentation. However, this type of segmentation
requires the analysis of the entire sequence of cube images sized, for example,
M � N � I = 696 � 520 � 128 pixels. In most types of computer programs, it is
not possible due to the large amount of data for analysis (�100 MB for data
type = 12). Therefore, one possible solution to such problems is to track changes in
the shape of an object for the successive images. One possibility is to use the
methods of conditional erosion and dilation. These methods are typically used to
improve the quality of binary images obtained (most often) by binarization.

Tracking changes in the shape of an object requires:

• indicating the image that will be the basis for segmentation (binarization),
• indicating the algorithm enabling the correction of the object in the binarized

image relative to the other images in gray levels, for subsequent wavelengths.

The method of conditional erosion and dilation involves designation of one of
the images LGRAY(m, n, i), most often for i = 1, and then segmentation, for example,
using binarization with a threshold pbg, providing the image LBIN(m, n, i), i.e.:

LBIN m; n; ið Þ ¼ 1 if LGRAY m; n; ið Þ[ pbg
0 other

�
ð4:1Þ
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As a consequence, two images are obtained (e.g. for i = 1), namely LGRAY(m, n,
i = 1) and LBIN(m, n, i = 1). Let us assume that there is only one object in the binary
image LBIN(m, n, i = 1). Conditional erosion and dilation for the adopted symmetric
structural element SE2(mSE2, nSE2) sized MSE2 � NSE2 are shown below:

L Cð Þ
BINE m; n; ið Þ

¼
LBIN m; n; 1ð Þ if pc m; n; ið Þ\pdc

min
mSE2;nSE22SE2

LBIN mþmSE2; nþ nSE2; ið Þð Þ other

( ð4:2Þ

LðCÞBIND m; n; ið Þ ¼ L m;n;1ð Þ
BIN if pc m; n; ið Þ[ pec

max
mSE2;nSE22SE2

LBIN mþmSE2; nþ nSE2; ið Þð Þ other

(

ð4:3Þ

where

pc m; n; ið Þ ¼ 1
MSE2 � NSE2

XMSE2

mSE2¼1

XNSE2

nSE2¼1

LGRAY mþmSE2; nþ nSE2; ið Þ ð4:4Þ

as well as pec and pdc—the thresholds set by the user.
The constants pec and pdc determining the effectiveness of erosion and dilation

respectively take values dependent on the type of the variable in which the image
LGRAY(m, n, i) is stored. In the case of the variable type double, these are values
from the range pe = pd 2 (0, 1), whereas for the variable type uint8—pe = pd
(0, 255). The corresponding source codes for erosion and dilation are shown below
—these are functions GUI_hyperspectral_dilate_c and GUI_hypers-
pectral_erode_c:
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function
[Lbind]=GUI_hyperspectral_dilate_c(Lgray,Lbin,se2,pdc,
vi)
...
[sm,sn]=size(se2);
[m,n]=size(Lbin);
ppp=floor(([sm,sn]+1)/2); pm=ppp(1); pn=ppp(2);
if vi==1

hg = waitbar(0,'Working.... ');
end
Lbind=Lbin;
for mm=1:(m-sm)

for nn=1:(n-sn)
Lsu=sum(sum(Lbin(  mm : (mm+sm-1) , nn : 

(nn+sn-1)  ).*se2 ));
if Lsu<sum(se2(:))
if Lsu>0
if Lbin(mm+pm-1,nn+pn-1)==1;

wyy=Lgray(  mm : (mm+sm-1) , nn : (nn+sn-1)
);

if sum(sum(  wyy .*se2
))/sum(sum(se2>0))>pdc;

Lbind(  mm : (mm+sm-1) , nn : (nn+sn-1)
)=se2;

end
end
end
end

end
if vi==1

waitbar(mm/(m-sm),hg)
end
end
if vi==1

close(hg)
end
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Analogously for dilation, i.e.:

function
[Lbine]=GUI_hyperspectral_erode_c(Lgray,Lbin,se2,pec,v
i)
...
[sm,sn]=size(se2);
[m,n]=size(Lbin);
if vi==1

hg = waitbar(0,'Working....');
end
Lbine=Lbin;
for mm=1:(m-sm)

for nn=1:(n-sn)
Lsu=sum(sum(Lbin(  mm : (mm+sm-1) , nn : 

(nn+sn-1)  ).*se2 ));
if Lsu<sum(se2(:))
if Lsu>0
if Lbin( round((mm+sm-1+mm)/2) , round((nn+sn-

1+nn)/2) )==1; 
wyy=Lgray(  mm : (mm+sm-1) , nn : (nn+sn-1)

);
if sum(sum(  wyy .*se2

))/sum(sum(se2>0))<pec;
Lbine(  mm : (mm+sm-1) , nn : (nn+sn-1)

)=0;
end

end
end
end

end
if vi==1

waitbar(mm/(m-sm),hg)
end
end
if vi==1

close(hg);
end

The described functions of conditional opening and closing do not fulfil, in
comparison with the classical approach, the following relationships:

• subsequent operations of opening or closing may cause further changes in the
size of the object in the image, i.e.:
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LBIN m; n; ið Þ � SE2ð Þ � SE2

6¼ LBIN m; n; ið Þ � SE2ð Þ � SE2ð Þ � SE2ð Þ � SE2
ð4:5Þ

LBIN m; n; ið Þ � SE2ð Þ � SE2

6¼ LBIN m; n; ið Þ � SE2ð Þ � SE2ð Þ � SE2ð Þ � SE2
ð4:6Þ

where symbols �;� refer to erosion and dilation respectively.

• opening the image completeness is not equal to the completeness of its closing
and vice versa, i.e.:

LðDÞBIN m; n; ið Þ � SE2
� �

� SE2 6¼ LðDÞBIN m; n; ið Þ � SE2
� �

� SE2
� �ðDÞ

ð4:7Þ

LðDÞBIN m; n; ið Þ � SE2
� �

� SE2
� �ðDÞ

6¼ LðDÞBIN m; n; ið Þ � SE2
� �

� SE2 ð4:8Þ

where

LBIN
(D)—completeness (superscript D) of the image LBIN,

• the images resulting from opening for the included structural elements ‘a’ and
‘b’ do not need to be included, i.e.:

LðaÞBIN m; n; ið Þ � SE2
� �

� SE2 6� L bð Þ
BIN m; n; ið Þ � SE2

� �
� SE2 ð4:9Þ

LðaÞBIN m; n; ið Þ � SE2
� �

� SE2 6� LðbÞBIN m; n; ið Þ � SE2
� �

� SE2 ð4:10Þ

where LBIN
(a) � LBIN

(b) .
Specificity of the described conditional erosion and dilation operations is based

on the sequential performance of conditional erosion and dilation, i.e.:

L Fð Þ
BIN m; n; ið Þ
¼ LBIN m; n; ið Þ � SE2ð Þ � SE2ð Þ � SE2ð Þ � SE2ð Þ � SE2

ð4:11Þ

The number of performed sequential operations of conditional erosion and
dilation strictly depends on the size of the structural element SE2 and the shape of
the object in the binary image LBIN(m, n, i). Figure 4.1 shows changes in the surface
area for successive iterations and various values of the threshold pec = pdc
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2 {0.2, 0.3, …, 0.7, 0.8} for a sample object with the total surface area of
3667 pixels. It also shows the first images LGRAY(m, n, i = 1) and LBIN(m, n, i = 1)
for which the calculations were made.

Figure 4.1 shows three different situations. The first one is the complete removal
of the object from the image obtained for pec = pdc = 0.8. The second one is the
adjustment of the position and shape of the object visible when pec = pdc 2 {0.4,
0.5, 0.6, 0.7}. The third one is zooming the object to the full size of the image for
pec = pdc2{0.2, 0.3}. The source code providing the above graph is shown below:

m
 [p

ix
el

]

m
 [p

ix
el

]

n [pixel] n [pixel]

LGRAY(m,n,i=1) LBIN(m,n,i=1)

Fig. 4.1 Changes in the surface area for successive iterations and various values of the threshold
pec = pdc
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L1=load('D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube50.mat');
Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,0.2);
Lbin=Lgray>0.4;
figure; imshow(Lbin)

L1=load('D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube80.mat');
Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,0.2);
figure; imshow(Lgray,[])

Lorg=Lbin;
se2=ones(3); pam=[];
for pec=0.2:0.1:0.8;

vi=1; Lbin=Lorg;
pami=[];
pami=[pami;[0, sum(sum(Lbin))]];
for it=1:16

[Lbin]=GUI_hyperspectral_erode_c(Lgray,Lbin,se2,pec,vi
);
%        imshow(Lbin)
%        pause(0.1)

pami=[pami;[it, sum(sum(Lbin))]];

[Lbin]=GUI_hyperspectral_dilate_c(Lgray,Lbin,se2,pec,v
i);
%        imshow(Lbin)
%        pause(0.1)

pami=[pami;[it, sum(sum(Lbin))]];
end
pam=[pam,pami(:,2)];

end
figure; plot(pam,'-*'); grid on
xlabel('it [/]','FontSize',14)
ylabel('area [pixel]','FontSize',14)
leg-
end('p_{ec}=p_{de}=0.2','p_{ec}=p_{de}=0.3','p_{ec}=p_
{de}=0.4','p_{ec}=p_{de}=0.5','p_{ec}=p_{de}=0.6','p_{
ec}=p_{de}=0.7','p_{ec}=p_{de}=0.8') 

In the above source code, a change in the value of pec and pdc ranging from 0.2
to 0.8 in each loop circulation is noteworthy. Then, according to the idea presented
above, conditional erosion and dilation, functions GUI_hyper-
spectral_dilate_c and GUI_hyperspectral_erode_c, are calculated
alternately.
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The assessment of the convergence of the algorithm should be carried out also
for other sizes of the structural element SE2 (in the present case it was
3 � 3 pixels). A more detailed analysis of the various types of collected images
and various sizes of objects confirmed that typically the convergence of the algo-
rithm can be reached after approximately 15 iterations, when fluctuations around
the correct value of the surface area are in the range of ±10% (quasi steady state).
An increase in the size of the structural element SE2 increases the rate of con-
vergence but also the error of approximately ±40% in relation to the object sep-
arated by an expert. The accuracy of 10% is usually obtained if the size of the
structural element SE2 constitutes ≅3% of the object surface area. This relationship
is clearly visible in Fig. 4.2a which shows a graph of changes in the surface area of
the object for subsequent iterations and resizing the structural element SE2 from
3 � 3 pixels to 11 � 11 pixels.

The other graphs in Fig. 4.2b–d show the results for the input image resolution
M � N = 279 � 208 pixels, M � N = 557 � 416 pixels as well as 32 and 64

Fig. 4.2 Graph of changes in the surface area of the object for subsequent iterations and resizing
the structural element SE2 from 3 � 3 pixels to 11 � 11 pixels: a forM � N = 279 � 208 pixels
and 32 iterations; b for M � N = 557 � 416 pixels and 32 iterations; c for
M � N = 279 � 208 pixels and 64 iterations; d for M � N = 557 � 416 pixels and 64 iterations
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iterations. The source code allowing for the calculations for the first graph presented
in Fig. 4.2a is shown below:

L1=load('D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube50.mat');
Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,0.4);
Lbin=Lgray>0.4;
figure; imshow(Lbin)

L1=load('D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube80.mat');
Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,0.4);
figure; imshow(Lgray,[])

Lorg=Lbin;
pam=[];
for MSE2NSE2=3:2:11

SE2=ones(MSE2NSE2);
pec=0.6;
vi=1; Lbin=Lorg;
pami=[];
pami=[pami;[0, sum(sum(Lbin))]];
for it=1:16

[Lbin]=GUI_hyperspectral_erode_c(Lgray,Lbin,SE2,pec,vi
);

pami=[pami;[it, sum(sum(Lbin))]];

[Lbin]=GUI_hyperspectral_dilate_c(Lgray,Lbin,SE2,pec,v
i);

pami=[pami;[it, sum(sum(Lbin))]];
end
pam=[pam,pami(:,2)];

end
figure; plot(pam,'-*'); grid on
xlabel('it [/]','FontSize',14)
ylabel('area [pixel]','FontSize',14)
leg-
end('M_{SE2}=N_{SE2}=3','M_{SE2}=N_{SE2}=5','M_{SE2}=N
_{SE2}=7','M_{SE2}=N_{SE2}=9','M_{SE2}=N_{SE2}=11')

To better understand and illustrate the transformations in the above source code,
the parts responsible for reading the image (for i = 50 and i = 80) are separated.
The presented loop enables to resize the mask SE2 = ones(MSE2NSE2) in the
range from 3 to 11 every 2 pixels.
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For zero iteration (it = 0), which is the initial state, the total surface area shown
in Fig. 4.2 is greater than the surface area for the same iteration shown in Fig. 4.1.
This is due to the adopted change in the resolution of the input image. In the first
case, the resolution is reduced to 20% of the original size, while in the second case
it is 40% of the original image resolution.

Due to the nature of conditional erosion and dilation, two-dimensional image
convolution, the time necessary to obtain the results depends on the image reso-
lution, the size and shape of the object and the size of the structural element SE2.
Some selected times of analysis are shown in Table 4.1. IT indicates the maximum
number of iterations, and it* the number of iterations after which the quasi steady
state is achieved.

The time of analysis shown in Table 4.1 is affected to the greatest extent by the
image resolution. According to the intuition, doubling the image resolution results
in an almost fourfold increase in computation time. The structural element SE2
influences the calculation time to the least extent.

The results of the proposed algorithm for tracking the object based on condi-
tional erosion and dilation are presented in Figs. 4.3 and 4.4.

Table 4.1 Some selected
times of analysis for two
different sizes of the object,
five different sizes of the
structural element and
different numbers of iterations
(for Intel® Xenon® CPU
X5680@3.33 GHz)

Time
(s)

M � N (pixel) MSE2 � NSE2

(pixel)
IT [/] it* [/]

7.7 279 � 208 3 � 3 16.2 21

7.5 279 � 208 5 � 5 16.2 11

7.7 279 � 208 7 � 7 16.2 7

7.9 279 � 208 9 � 9 16.2 6

8.4 279 � 208 11 � 11 16.2 6

30.1 557 � 416 3 � 3 16.2 32

30.4 557 � 416 5 � 5 16.2 20

31.6 557 � 416 7 � 7 16.2 13

32.6 557 � 416 9 � 9 16.2 12

34 557 � 416 11 � 11 16.2 8

15.5 279 � 208 3 � 3 32.2 28

15.1 279 � 208 5 � 5 32.2 18

15.6 279 � 208 7 � 7 32.2 11

16.0 279 � 208 9 � 9 32.2 9

16.7 279 � 208 11 � 11 32.2 7

59.7 557 � 416 3 � 3 32.2 40

60.9 557 � 416 5 � 5 32.2 19

62.9 557 � 416 7 � 7 32.2 13

65.4 557 � 416 9 � 9 32.2 11

69.6 557 � 416 11 � 11 32.2 8
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The results of conditional erosion and dilation presented in Figs. 4.3 and 4.4
were obtained for an artificial binary image representing a rectangle. Part a shows
the output image as a binary image superimposed on the image in gray levels.
Figures 4.3b and 4.4 show the input image as a binary image superimposed on the
input image in gray levels. The subsequent stages of erosion and dilation are shown
in Figs. 4.3c and 4.4c. These are the successive stages of conditional erosion and
dilation for successive conditional erosions and dilations of the images LBINE(m, n,
i) and LBIND(m, n, i). Figure 4.3 shows the results for pec = pdc = 0.8 and Fig. 4.4
for pec = pdc = 0.4. In both cases the size of the structural element SE2 was the
same, namely 3 � 3 pixels. Therefore, Figs. 4.3 and 4.4 show how conditional
erosion and dilation, which enable to change the shape of the object present in the
image from a rectangle to the shape corresponding to the content of the image
LGRAY(m, n, i), work in practice.
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(c)
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m  n  

Fig. 4.3 Results of conditional erosion and dilation for an artificial binary image representing a
rectangle. Part a shows the output image LBINE(m, n, i) as a binary image superimposed on the
image in gray levels LGRAY(m, n, i). Part b shows the input image LBINE(m, n, i) as a binary image
superimposed on the input image in gray levels LGRAY(m, n, i). Subsequent stages of erosion and
dilation are shown in part (c) for pec = pdc = 0.8
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In this way, the above algorithm was implemented to track an object whose
shape changes for successive i images in a series. To this end, setting the threshold
manually or automatically, the first image LGRAY(m, n, i = 1) can be subjected to
binarization providing the image LBIN(m, n, i = 1) and then, conditional erosion and
dilation of the images LBINE(m, n, i 6¼ 1) and LBIND(m, n, i 6¼ 1) can be performed
alternately. In practice, however, the first image (i = 1) is rarely used as a basis for
binarization and then determination of the starting object whose shape is further
corrected. This is due to the large amount of noise in the image. The middle image
in a series is most commonly adopted as the value i, i.e.: i = I/2 = 64 (assuming an
even number of I). The results are shown in Fig. 4.5.

The results of conditional erosion and dilation shown in Fig. 4.5 were obtained
for successive images in a sequence for i 2 (1, I) and IT = 11. The analysis was
started from the binary image LBIN(m, n, i = I/2). The next images in Fig. 4.5a–d
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Fig. 4.4 Results of conditional erosion and dilation for an artificial binary image representing a
rectangle. Part a shows the output image LBINE(m, n, i) as a binary image superimposed on the
image in gray levels LGRAY(m, n, i). Part b shows the input image LBINE(m, n, i) as a binary image
superimposed on the input image in gray levels LGRAY(m, n, i). Subsequent stages of erosion and
dilation are shown in part (c) for pec = pdc = 0.4
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were obtained for pec = pdc 2 {0.3, 0.5} and MSE2 � NSE2 2 {3 � 3, 5 � 5}.
Depending on the selected parameters of the algorithm, the shape of the tracked
object changes significantly. These changes are due to the different amount of noise
in the image, the individual changes in the size of the object for the adjacent 2D
images etc. In each case, these parameters (pec, pdc, MSE2, NSE2) are selected
individually.

The source code for displaying the results from Fig. 4.5a is shown below:

Fig. 4.5 Results of conditional erosion and dilation performed for subsequent images in a
sequence for i 2 (1, I) and IT = 11 starting with the binary image LBIN(m, n, i = I/2) when:
a pec = pdc = 0.5 and MSE2 � N SE2 = 3�3; b pec = pdc = 0.3 and MSE2 � N SE2 = 3�3;
c pec = pdc = 0.5 and MSE2 � N SE2 = 5�5; d pec = pdc = 0.3 and MSE2 � NSE2 = 5�5
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L1=load('D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube64.mat');
Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,0.4);
Lbin=Lgray>0.4;
Lbini=[];
Lbini(1:size(Lbin,1),1:size(Lbin,2),64)=Lbin;
SE2=ones(5);
pec=0.5;
vi=0;
for i=65:128

L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(i),'.mat']);

Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,0.4);
for it=1:2:10

[Lbin]=GUI_hyperspectral_erode_c(Lgray,Lbin,SE2,pec,vi
);

[Lbin]=GUI_hyperspectral_dilate_c(Lgray,Lbin,SE2,pec,v
i);

[i it]
end
Lbini(1:size(Lbin,1),1:size(Lbin,2),i)=Lbin;
if (i==80)|(i==120)

Lbeg=Lgray; Lbeg(Lbin==1)=max(Lbeg(:));
figure; imshow(Lbeg,[]); ti-

tle(['i=',mat2str(i)])
end

end
Lbin=Lbini(1:size(Lbin,1),1:size(Lbin,2),64);
for i=63:-1:1

L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(i),'.mat']);

Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,0.4);
for it=1:2:10

[Lbin]=GUI_hyperspectral_erode_c(Lgray,Lbin,SE2,pec,vi
);

[Lbin]=GUI_hyperspectral_dilate_c(Lgray,Lbin,SE2,pec,v
i);

[i it]
end
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Lbini(1:size(Lbin,1),1:size(Lbin,2),i)=Lbin;
if (i==10)|(i==40)

Lbeg=Lgray; Lbeg(Lbin==1)=max(Lbeg(:));
figure; imshow(Lbeg,[]); ti-

tle(['i=',mat2str(i)])
end

end

figure
[x,y,z]=meshgrid( 1:size(Lbini,2) , 1:size(Lbini,1) , 
1:size(Lbini,3));
p1 = patch(isosurface(x,y,z,Lbini,0.5),'FaceColor',[0
0 1 ],'EdgeColor','none');
view(33,12);
camlight; camlight(-80,-10); lighting phong;
grid on
alpha(p1,0.3)
hold on
axis square
axis([0 220 20 290 0 128])
xlabel('m [pixel]','FontSize',14)
ylabel('n [pixel]','FontSize',14)
zlabel('i [/]','FontSize',14)

The above source code consists of two parts. In the first one, there is a loop
designed for the analysis of images from i equal to 65 to 128. This analysis involves
a sequence of conditional erosions and dilations for it = 1:2:10. The other part
of the source code concerns the analysis for decreasing values of i, i.e. from 63 to 1.
Thus, the 2D image for i = 64 is the beginning of the analysis running in both
directions (decreasing and increasing i).

The presented method for tracking the shape of an object was not deliberately
included in the overall GUI of the described program to encourage readers to its
independent implementation. The full source code shown above is attached to this
monograph in the form of the following m-files:

GUI_hyperspectral_erode_dilate_test,
GUI_hyperspectral_erode_dilate_test2,
GUI_hyperspectral_erode_dilate_test3
and
GUI_hyperspectral_erode_dilate_test4.
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4.3 Basic Analysis of Features

The basic element of hyperspectral image analysis is a comparative analysis of
features such as the mean value or contrast both of the whole image and the ROI. In
this case, two groups of data are compared.

The first group of data is derived directly from the analysed image. This may
be, as previously mentioned, the mean value of brightness LS(i) of the selected
ROIS, for example [similarly to (3.17)]:

LS ið Þ ¼ 1
MS � NS

X
m;n2ROIS

LGRAY m; n; ið Þ ð4:12Þ

It may be also the value of minimum or maximum brightness. The first group of
data can be also created as a result of texture analysis. These may be, for example,
the results of analysis of gray-level co-occurrence matrix (GLCM), i.e.:

LGLCM u; v; ið Þ ¼
XN
n¼1

XM
m¼1

LGB m; n; i; u; vð Þ ð4:13Þ

where LGB can be calculated for the horizontal neighbourhood (an arrow as a
superscript) L!GB:

L!GB m; n; i; u; vð Þ

¼ 1 if LGRAY m; n; ið Þ ¼ uð Þ ^ LGRAY mþ 1; n; ið Þ ¼ vð Þ
0 other

� ð4:14Þ

for m 2 (1, M − 1) and n 2 (1, N), u 2 (1, U) and v 2 (1, V) where U and V are
equal to the number of brightness levels, i.e. 2B where B is the number of bits per
pixel. The above notation concerns the comparison of the horizontal neighbourhood
of pixels. For the vertical arrangement, the formula (4.14) is converted to the
following relationship:

L#GB m; n; i; u; vð Þ

¼ 1 if LGRAY m; n; ið Þ ¼ uð Þ ^ LGRAY mþ 1; n; ið Þ ¼ vð Þ
0 other

� ð4:15Þ

for m 2 (1, M) and n 2 (1, N − 1).
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On this basis (LGLCM(u, v, i)), the parameters such as contrast LCON(i), energy
LENE(i) or homogeneity LHOM(i) are calculated, i.e.:

LCON ið Þ ¼
XV
v¼1

XU
u¼1

v	 uð Þ2LGLCM u; v; ið Þ ð4:16Þ

LENE ið Þ ¼
XV
v¼1

XU
u¼1

LGLCM u; v; ið Þ2 ð4:17Þ

LHOM ið Þ ¼
XV
v¼1

XU
u¼1

1

1þ v	 uð Þ2 LGLCM u; v; ið Þ ð4:18Þ

Apart from analysis of GLCM, other texture features such as the surface area of
the recognized references can be also analysed. In the simplest form, this is the sum
LDET(i) of the image LWZ(m, n, i) after binarization using the threshold prw:

LDET ið Þ ¼
XM
m¼1

XN
n¼1

LD m; n; ið Þ ð4:19Þ

where

LD m; n; ið Þ ¼ 1 if LOC m; n; ið Þ[ prw
0 other

�
ð4:20Þ

LOC m; n; ið Þ ¼ LGRAY m; n; ið Þ

	 min
m;n

min
SE

max
SE

max
SE

min
SE

LGRAY m; n; ið Þð Þ
� �� �� �

; LGRAY m; n; ið Þ
� � ð4:21Þ

SE—is a structural element whose shape corresponds to the shape of the rec-
ognized reference.

All the above new features are calculated separately for each ith wavelength and
will be further used.

The other group of data is derived from another portion of the same image. It
can be also acquired from another image or it may be a data vector (loaded outside).

To distinguish between these two groups of data, upper indexes were introduced
—‘W’ for the second group of data and ‘E’ for the first group of data. A basic
comparison involves calculating the difference between the data vectors, for
example, the calculated mean value of brightness, i.e.:

dS ið Þ ¼ LWS ið Þ 	 LES ið Þ�� ��
max
i2 1;Ið Þ

LWS ið Þ ð4:22Þ
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These differences are then binarized with respect to the threshold pq that is set
manually and expressed as a percentage of the value of the variable dS(i).

The analysis of the two discussed groups of data and the values they provide is
related to the areas selected manually. On this basis, the values of FN, FP, TP and
TN are calculated. The idea of these calculations is shown in Fig. 4.6.

The values of the variable dS(i) below the assumed threshold prg satisfy the
condition of allowable differences between comparable features - in this case the
mean brightness values. These wavelengths (values i) that are different or exceed
the threshold prg are marked in Fig. 4.6a with a red background. Similar colours
(red and green) were used to mark in Fig. 4.6b the areas that must comply with the
condition of miscellaneous brightness levels below the set threshold. The following
excerpt in the function GUI_hyperspectral_fun is to enable the user to
manually select these areas on a graph:

ax=axis(hObj(21));

set(hObj(70),'XData',[ax(1)],'YData',[ax(4)],'FaceColo
r','g');

set(hObj(71),'XData',[ax(1)],'YData',[ax(4)],'FaceColo
r','r');

re=getrect(hObj(21));
rect=[re(1),re(1)+re(3)];
set(hObj(70),'XData',[ax(1) rect(1) rect(1) 

rect(2) rect(2) ax(2)],'YData',[ax(4) ax(4) 0 0 ax(4) 
ax(4) ],'FaceColor','r');

set(hObj(71),'XData',[rect(1)
rect(2)],'YData',[ax(4) ax(4)],'FaceColor','g');

alpha(0.1)

A comparison of the two results calculated automatically and set manually is
shown in Fig. 4.6c. On this basis, the aforementioned values of FN, FP, TP and TN

i
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in
te
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ity
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LS(i) E

S(i) 

user

resultFPFN TP TN

(a)

(b)

(c)

measurement

prg

TP

Fig. 4.6 The idea of
calculating FN, FP, TP and
TN for a sample graph of the
variable dS(i): a a graph of the
mean brightness for
comparable areas and their
difference dS(i), b the areas
marked in red and green by
the user meet or do not meet
the condition of compliance;
c the results of comparisons of
the red and green areas from
parts (a) and (b)
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as well as ACC are calculated. The usefulness of this type of analysis is very high in
practical applications and diagnostics, for which the degree of compliance of the
mean brightness level with the actual values is analysed.

A fragment of the source code responsible for this part of calculations is located in
four m-files GUI_hyperspectral_diff, GUI_hyperspectral_class,
GUI_hyperspectral and GUI_hyperspectral_fun. The source code of
the function GUI_hyperspectral_diff is shown below:

function
[diff_test_reference,wavelength_reference_test]=GUI_hy
perspectral_diff(reference,test)

tw=test.Wavelength_;
td=test.anal;

pw=reference.Wavelength_;
pd=reference.anal;

twd=[tw,td];
pwd=[pw,pd];

twd(min(pwd(:,1))>twd(:,1),:)=[];
twd(max(pwd(:,1))<twd(:,1),:)=[];
pwd(min(twd(:,1))>pwd(:,1),:)=[];
pwd(max(twd(:,1))<pwd(:,1),:)=[];

if (size(twd,1)>0) && (size(pwd,1)>0)
y1 = interp1(twd(:,1),twd(:,4),pwd(:,1));
y2 = interp1(twd(:,1),twd(:,5),pwd(:,1));
y3 = interp1(twd(:,1),twd(:,6),pwd(:,1));
y4 = interp1(twd(:,1),twd(:,7),pwd(:,1));
diff_test_reference=[twd(:,1),abs(pwd(:,4)-

y1)./max(pwd(:,4)),abs(pwd(:,5)-
y2)./max(pwd(:,5)),abs(pwd(:,6)-
y3)./max(pwd(:,6)),abs(pwd(:,7)-y4)./max(pwd(:,7))];

wave-
length_reference_test=[twd(:,1),pwd(:,4:7),y1,y2,y3,y4
];
else

diff_test_reference=[];
wavelength_reference_test=[];

end

The presented source code can be divided into 2 elements:

• standardization of the variables test and reference so that they cover the
same range of wavelengths (of the measured i images). This is due to the
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versatility of the approach for which, in any case, it is possible to perform
calculations in the proposed application for any range of wavelengths.

• calculation of the values of dS(i) as well as dCON(i), dENE(i) and dHOM(i) – stored
in the variable diff_test_reference.

The values included in the variables test and reference are obtained using
two possibilities:

• the first one is the aforementioned manual selection of the ROI. Manual
selection of the ROI was realized in the fragment of the source code in the file
GUI_hyperspectral_fun, i.e.:

if sw==14
ax=axis(hObj(21));

set(hObj(70),'XData',[ax(1)],'YData',[ax(4)],'Fac
eColor','g');

set(hObj(71),'XData',[ax(1)],'YData',[ax(4)],'Fac
eColor','r');

re=getrect(hObj(21));
rect=[re(1),re(1)+re(3)];
set(hObj(70),'XData',[ax(1) rect(1) rect(1) 

rect(2) rect(2) ax(2)],'YData',[ax(4) ax(4) 0 0 
ax(4) ax(4) ],'FaceColor','r');

set(hObj(71),'XData',[rect(1)
rect(2)],'YData',[ax(4) ax(4)],'FaceColor','g');

alpha(0.1)
GUI_hyperspectral_fun(8)

end

It (the above code fragment) is invoked in the function GUI_hyperspectral
in the fragment:

hObj(34) =uicontrol('Style', 'pushbut-
ton','units','normalized', 'String',
'SELECT','Position', [0.69 0.95 0.3 0.03],...

'Callback',
'GUI_hyperspectral_fun(14)','BackgroundColor',col
or2);

• the other one is reading from the external file test.mat and/or refer-
ence.mat. The code fragment of the function GUI_hyperspectral_fun
is responsible for reading, i.e.:
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if sw==6 % GET FILE TEST
[filen_, pathn_] = uigetfile('test.mat',

'Select test.mat file');
if isequal(filen_,0)==0

test=load([pathn_,filen_]);
set(hObj(35),'ForegroundColor','g')

GUI_hyperspectral_fun(8)
else

set(hObj(35),'ForegroundColor','r')
errordlg('File test.mat not found','File

Error');
end

end
if sw==7 % GET FILE REFERENCE

[filen_, pathn_] = uiget-
file('reference.mat', 'Select reference.mat 
file');

if isequal(filen_,0)==0
reference=load([pathn_,filen_]);
set(hObj(36),'ForegroundColor','g')

GUI_hyperspectral_fun(8)
else

set(hObj(36),'ForegroundColor','r')
errordlg('File reference.mat not 

found','File Error');
end

end

When a wrong file is indicated or no file is indicated, there appears errordlg
saying 'File reference.mat not found' and/or

'File test.mat not found'. Reading is possible by placing the two buttons

in the main window, in the file GUI_hyperspectral, i.e.:

hObj(37) =uicontrol('Style', 'pushbut-
ton','units','normalized', 'String',
'OPEN','Position', [0.06 0.48 0.05 0.04],...

'Callback',
'GUI_hyperspectral_fun(6)','BackgroundColor',colo
r2);
hObj(38) =uicontrol('Style', 'pushbut-
ton','units','normalized', 'String',
'OPEN','Position', [0.06 0.44 0.05 0.04],...

'Callback',
'GUI_hyperspectral_fun(7)','BackgroundColor',colo
r2);
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Figure 4.7 shows the graphs of dS(i) as well as dCON(i), dENE(i) and dHOM(i) as a
function of wavelength, whereas Fig. 4.8 shows a graph of changes in the mean,
minimum and maximum brightness values for the reference LS

W(i).

Fig. 4.7 Graphs of dS(i) as
well as dCON(i), dENE(i) and
dHOM(i) as a function of
wavelength and (black line)
the manually set threshold pq

Fig. 4.8 Graph of changes in
the mean, minimum and
maximum brightness for the
reference LWS ið Þ

4.3 Basic Analysis of Features 61



The first graph (Fig. 4.7) is shown in a separate application window. The second
one (Fig. 4.8) constitutes the right part of the main window—Fig. 4.9.

The values of ACC, TPR, SPC, TN, TP, FN, FP are calculated using the function
GUI_hyperspectral_class, i.e.:

Fig. 4.9 The main menu of the application and additional windows: 1 main menu; 2 the results of
ACC, TPR, SPC, TN, TP, FN, FP; 3 GLCM; 4 graphs of LCON(i), LENE(i) and LHOM(i); 5 graphs of
dS(i) as well as dCON(i), dENE(i) and dHOM(i); 6 changes in the brightness for the mth row and nth
column selected manually by moving the slider
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function
[ACC,TP,TN,FP,FN,TPR,SPC,meas,measT,nam,TRR]=GUI_hyper
spectral_class(diff_test_reference,wavelength_referenc
e_test,rect,prg,type)
...
global hObj

err=[diff_test_reference(:,1)];
meas=[];
measT=[];
nam=[];
TRR=(err(:,1)>rect(1))&(err(:,1)<rect(2));

if get(hObj(30),'Value')==1
err=[err,diff_test_reference(:,2)];
meas=[meas,wavelength_reference_test(:,2)];
measT=[measT,wavelength_reference_test(:,6)];
nam{length(nam)+1}='L_{INT}(i)';

end
if get(hObj(31),'Value')==1

err=[err,diff_test_reference(:,3)];
meas=[meas,wavelength_reference_test(:,3)];
measT=[measT,wavelength_reference_test(:,7)];
nam{length(nam)+1}='L_{CON}(i)';

end
if get(hObj(32),'Value')==1

err=[err,diff_test_reference(:,4)];
meas=[meas,wavelength_reference_test(:,4)];
measT=[measT,wavelength_reference_test(:,8)];
nam{length(nam)+1}='L_{ENE}(i)';

end
if get(hObj(33),'Value')==1

err=[err,diff_test_reference(:,5)];
meas=[meas,wavelength_reference_test(:,5)];
measT=[measT,wavelength_reference_test(:,9)];
nam{length(nam)+1}='L_{HOM}(i)';

end
if size(err,2)>=2;

if type==1

err=[err,sum(err(:,2:end)>prg,2)>0,(err(:,1)>rect(1))&
(err(:,1)<rect(2))];

TP=sum( (err(:,end-1)==1).*(err(:,end)==1) );
TN=sum( (err(:,end-1)==0).*(err(:,end)==0) );
FP=sum( (err(:,end-1)==1).*(err(:,end)==0) );
FN=sum( (err(:,end-1)==0).*(err(:,end)==1) );
ACC=round( (TP+TN)/(TP+TN+FP+FN).*100);
TPR=round(TP/(TP+FN)*100);
SPC=round(TN/(TN+FP)*100);
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When analysing the next fragments of the proposed source code, it is divided
into two areas:

• in the first area the values are gathered in the variable err constituting the basis
for further analysis. Gathering is directly related to manual (by the user)
determination which features (dS(i) as well as dCON(i), dENE(i) and dHOM(i)) are
taken into account in the analysis. This option is provided by a suitable code
fragment in the GUI_hyperspectral, i.e.:

hObj(30) =uicontrol('Style',
'checkbox','units','normalized', 'String',
'INT','Position', [0.01 0.57 0.05 0.05],...

'Callback','GUI_hyperspectral_fun(8)','Background
Color',color2,'Value',1);
hObj(31)=uicontrol('Style',
'checkbox','units','normalized', 'String',
'CON','Position', [0.051 0.57 0.059 0.05],...

'Callback','GUI_hyperspectral_fun(8)','Background
Color',color2);
hObj(32)=uicontrol('Style',
'checkbox','units','normalized', 'String',
'ENE','Position', [0.01 0.52 0.05 0.05],...

'Callback','GUI_hyperspectral_fun(8)','Background
Color',color2);
hObj(33)=uicontrol('Style',
'checkbox','units','normalized', 'String',
'HOM','Position', [0.051 0.52 0.059 0.05],...

'Callback','GUI_hyperspectral_fun(8)','Background
Color',color2);

When appropriate values (as selected) are added to the variable err, there
follows its binarization with the threshold prg sum(err(:,2:end) >
prg,2) > 0. Then the range of TP and TN located in the manually selected ROI is
calculated, i.e.: (err(:,1) > rect(1))&(err(:,1) < rect(2)).

• In the other area, the values of ACC, TPR, SPC, TN, TP, FN, FP are calculated.
The obtained results are shown in a separate window—Fig. 4.9 (2).

Depending on the option INT, ENE, VAR, HOM (Fig. 4.10) chosen to calculate
ACC, TPR, SPC, TN, TP, FN, FP, different configurations of features are taken into
account. Therefore, for the set threshold prg (in this case equal to 15%), different
results are obtained. For example, for the test and reference ROIs shown in
Fig. 4.11, the results for different configurations of features are presented in
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Table 4.2. The task is to verify the quality of the recognition of the skin area for a
selected characteristic spectral region—Fig. 4.11 (right). In this case, 86 mea-
surements of TN and 42 measurements of TP are marked. The number of mea-
surements is equivalent to the number I of images for individual wavelengths.

Table 4.2 shows that the presented simple method of analysis of features does
not work in every case. First, the results of TPR, SPC obtained for individual
features (INT, ENE, VAR or HOM) are at the level of 0 and 100% or 0 and 87% (for
TPR and SPC respectively). Secondly, in the present case, the feature which is
brightness (INT) improves the results regardless of the presence of the other features
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Fig. 4.10 Fragment of the
main menu with the elements
responsible for image
pre-processing—green and
image processing—red: 1
calculation of intensity; 2
calculation of energy; 3 types
of analysis ERR/DEC
TREE/BAYES/DISC/SVM; 4
threshold prg; 5 on/off
window of classification
results; 6 on/off window of
results of ACC, TPR, SPC,
TN, TP, FN, FP; 7 on/off
window of texture analysis; 8
on/off window of GLCM; 9
on/off window of graphs of
feature errors; 10 choice of
test/pattern analysis; 11
calculation of contrast; 12
calculation of homogeneity;
13 loading of the external file
test.mat; 14 loading of the
external file reference.mat
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Fig. 4.11 Reference and test ROIs and the marked range of TN and TP for the tested case

Table 4.2 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
different configurations of features—on/off position of checkbox objects (INT, ENE, VAR, HOM)a

INT CON ENE HOM ACC TPR SPC TN TP FN FP

0 0 0 1 67 0 100 86 0 42 0

0 0 1 0 67 0 100 86 0 42 0

0 0 1 1 67 0 100 86 0 42 0

0 1 0 0 59 0 87 75 0 42 11

0 1 0 1 59 0 87 75 0 42 11

0 1 1 0 59 0 87 75 0 42 11

0 1 1 1 59 0 87 75 0 42 11

1 0 0 0 90 69 100 86 29 13 0

1 0 0 1 90 69 100 86 29 13 0

1 0 1 0 90 69 100 86 29 13 0

1 0 1 1 90 69 100 86 29 13 0

1 1 0 0 81 69 87 75 29 13 11

1 1 0 1 81 69 87 75 29 13 11

1 1 1 0 81 69 87 75 29 13 11

1 1 1 1 81 69 87 75 29 13 11
aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in calculations
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(see the last rows in Table 4.2), i.e.: TPR = 69% and SPC = 100%. To sum up, this
simple method of analysis of features cannot use the full potential and results
obtained from texture analysis. Consequently, the selected types of classifiers
described in the following sections were implemented.

4.4 Block Diagram of the Discussed Transformations

The discussed transformations, extraction of features, including the parts of the
source code are presented in the form of a block diagram in Fig. 4.12. This diagram
applies to parts of the algorithm responsible for fundamental analysis of features.
Additionally, it was subdivided into the part responsible for the extraction of fea-
tures. The blocks of image acquisition and pre-processing have been discussed in
earlier chapters of the monograph.

The block diagram will be further supplemented by the blocks associated with
classification. The diagram intentionally does not include the module, the portion of
the source code and the corresponding functionality of tracking changes in the
contour, which, as mentioned above, readers can implement themselves.

The collected features are the basis for the construction of classifiers.

4.5 Measurement of Additional Features

The previous chapter discusses the features obtained from the analysis and pro-
cessing of hyperspectral images, and to be more specific, derived from GLCM
analysis of the ROI selected by the user. This analysis has been implemented in the
described software both in terms of the source codes and the GUI. However, this is
not the only possible implementation as well as not the only possible set of features.
Typical analyses of textures used for hyperspectral images include: quadtree
decomposition, Hough transform, entropy and not discussed above—correlation—
extracted from the GLCM. Acquisition of these new features from the ROI is almost
intuitive, and requires only the knowledge and the correct use of the function
hough, entropy and the parameter of the function graycoprops which is
‘Correlation’. Acquisition of quantitative scalar features from quadtree
decomposition requires the use of qtdecomp and the following code implemented
for:
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Fig. 4.12 Block diagram of the algorithm part responsible for fundamental analysis of features.
The block diagram is subdivided into a part responsible for the extraction of the features. Blocks of
image acquisition and pre-processing have been discussed in earlier chapters of the monograph.
This diagram includes one of the blocks highlighted in blue whose functionality has not been
included in the main application
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L1=load('D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube50.mat');
Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,[512 512]);
figure; imshow(Lgray)
L2 = qtdecomp(Lgray,.27);
L3 = zeros(size(L2));
pam=[];
for q=0:9
pam=[pam;[2^q length(find(L2==2^q))]];
if pam(end,2)>0
L4=ones([2^q 2^q pam(end,2)]);
L4(2:2^q,2:2^q,:)=0;
L3=qtsetblk(L3,L2,2^q,L4);

end
end
L3(end,1:end)=1;
L3(1:end,end)=1;
L5=Lgray; L5(L3==1)=1;
figure, imshow(L5,[]);
xlabel('n
[pixel]','FontSize',14,'FontAngle','Italic');
ylabel('m [pixel]','FontSize',14,'FontAngle','Italic')
figure; plot(pam(:,1),pam(:,2),'-r*'); hold on; grid 
on
xlabel('N_q=M_q
[pixel]','FontSize',14,'FontAngle','Italic');
ylabel('number of blocks [/]','FontSize',14);

The presented source code contains a loop that enables to change the size of the
sought areas (q=0:9 for a code fragment find(L2==2^q)). If at least one area of
this size (if pam(end,2)>0) is found, it is filled with blocks:

L4=ones([2^q 2^q pam(end,2)]);
L4(2:2^q,2:2^q,:)=0;

The results obtained for the threshold above which the division into smaller
blocks was performed, i.e.: pqt = 0.27, is shown in Figs. 4.13 and 4.14.

Figure 4.13 shows the image LGRAY(m, n, i) with a superimposed division into
individual blocks sized from Mq � Nq = 1 � 1 pixel to Mq � Nq =
512 � 512 pixels. The size of each block is a power of 2, i.e.: it is equal to 2q for
q 2 (0, 10) for the analysed case. Attention should be paid here to the need to resize
the image LGRAY(m, n, i) to the size of rows and columns that are a power of two.
Figure 4.14 shows a graph of the total number of blocks Mq � Nq as a function of
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Fig. 4.13 Image LGRAY(m, n, i) with superimposed division into individual blocks sized Mq � Nq

Fig. 4.14 Graph of the total
number of blocks as a
function of their size
Mq � Nq
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their size. This type of analysis can complement the existing analysis presented in
the previous chapters. It may also be carried out for all i images of the sequence (for
different wavelengths). In this case (analysis of an image sequence for i 2 (1, 128)),
the source code has been modified to the following form:

pam=[];hObj=waitbar(0,'Please wait...');
for i=1:128

L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(i),'.mat']);

Lgray=mat2gray(L1.L1);
Lgray=imresize(Lgray,[512 512]);
L2 = qtdecomp(Lgray,.27);
L3 = zeros(size(L2));
for d=0:9
pam(i,d+1)=length(find(L2==2^d));

end
waitbar(i/128)
end
close(hObj)
figure, mesh(pam);
xlabel('q+1
[pixel]','FontSize',14,'FontAngle','Italic');
ylabel('i [/]','FontSize',14,'FontAngle','Italic');
zlabel('number of blocks 
[/]','FontSize',14,'FontAngle','Italic');
figure, plot(pam(:,1),'-r*'); hold on; grid on
xlabel('i [/]','FontSize',14,'FontAngle','Italic');
ylabel('number of blocks 
[/]','FontSize',14,'FontAngle','Italic') 

As is apparent from the above source code, the said modification involves the
introduction of automatic analysis of all images of the sequence (i 2 (1, 128)), and
plotting, at the end of the algorithm, a graph. The results obtained are shown in
Figs. 4.15 and 4.16.

Figure 4.15 shows a graph of changes in the number of blocks sized Mq � Nq as
a function of their size for subsequent i images. As is apparent from the presented
graph, the number of the smallest areas sizedMq � Nq = 1 � 1 pixel is the greatest
for each i image. Figure 4.16 shows a graph of the total number of blocks sized
Mq � Nq = 1 � 1 pixel as a function of subsequent i images.

The above are excerpts of the code of m-files
GUI_hyperspectral_qtdecomp_test and
GUI_hyperspectral_qtdecomp_test2 that are available to the reader in
the form of supporting materials attached to this monograph.

Apart from the discussed features that can be analysed, other calculations
can also be performed. New features can be obtained from image analysis using
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Riesz transform [5–7] or Gabor filtration. The basis will be a Gaussian function for
three dimensions [8–10], i.e.:

hGA mGA; nGA; iGA; rm; rn; rið Þ

¼ AGA � exp 	 m2
GA

2� r2m
	 n2GA
2� r2n

	 i2GA
2� r2i

� � ð4:23Þ

Fig. 4.15 Graph of changes
in the number of blocks sized
Mq � Nq as a function of their
size (2q) for subsequent
i images

Fig. 4.16 Graph of the total
number of blocks sized
Mq � Nq = 1 � 1 pixel as a
function of subsequent
i images
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where

AGA ¼ 1

rm � rn � ri � 2� pð Þ32
ð4:24Þ

and rm, rn, ri—standard deviation of the mean for three dimensions m, n, i.
mGA, nGA, iGA—values m, n, i normalized to the range from −0.5 to 0.5, for

example for mGA:

mGA ¼ m
M

	 0:5 ð4:25Þ

Due to the nature of hyperspectral images of the skin, in practice, it is often
necessary to rotate the mask hGA but only in two dimensions, i.e. the new coor-
dinates (mGAh, nGAh) after rotation are equal (similarly to Sect. 3.1. Affine trans-
formations of the image):

mGAh ¼ 	mGA � sin hð Þþ nGA � cos hð Þ ð4:26Þ

nGAh ¼ nGA � cos hð ÞþmGA � sin hð Þ ð4:27Þ

Also in practical applications [11–16], it is often necessary to use a derivative in
each of the three possible dimensions. Therefore, it was assumed, for simplicity of
calculations, that the variable hdevGA will be the result of calculating the derivative
in three dimensions. The superscript will mean the wth degree of the derivative for
three consecutive dimensions. For example, hdevGA

(0,0,1) is the first derivative in the third
dimension, i.e.:

hð0;0;1ÞdevGA mGAh; nGAh; iGAh; rm; rn; rið Þ

¼ @hGA mGAh; nGAh; iGAh; rm;rn; rið Þ
@iGA

ð4:28Þ

On this basis, it is possible to create a pyramid of masks hdevGA for changes in
various arguments. Changes in the angle h in the range h 2 (0, 2�p), e.g. every value
of 0.1, are most often used. The results obtained in the form of a pyramid of masks
hdevGA are shown in Fig. 4.17.
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Fig. 4.17 Pyramid of masks hdevGA for h2(0, 2�p) every 0.1 and various degrees of derivatives
hdevGAð0;0;0Þ; hdevGAð1;0;0Þ; hdevGAð1;1;0Þ; hdevGAð1;1;1Þ; hdevGAð2;0;0Þ and hdevGAð0;2;1Þ. Negative values of
the mask are marked in red, and positive values in blue. In each case, one of the masks for h = 0°
has been placed in the top left corner
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The masks hdevGA shown in Fig. 4.17 were calculated for h 2 (0,2�p) every 0.1
and various degrees of derivatives hdevGAð0;0;0Þ; hdevGAð1;0;0Þ; hdevGAð1;1;0Þ; hdevGAð1;1;1Þ;
hdevGAð2;0;0Þ and hdevGAð0;2;1Þ. Negative values of the mask are marked in red
(Fig. 4.17), and positive values in blue. These results were obtained using two
functions. The first one is dergauss which calculates the derivative of the
Gaussian function for the row w 2 (0, 4), i.e.:

function y = dergauss(x,sigma,w)
if w==0

y = exp(-x.^2/(2*sigma^2)) / (sigma*sqrt(2*pi));
elseif w==1

y =(-x./(sigma.^2)).*exp(-x.^2/(2.*sigma.^2)) ./ 
(sigma.*sqrt(2.*pi));
elseif w==2

y =((x.^2-sigma.^2)./(sigma.^4)).*exp(-
x.^2/(2.*sigma.^2)) ./ (sigma.*sqrt(2.*pi));
elseif w==3

y =( (x.^3-3.*x.*sigma.^2) ./(sigma.^6)).*exp(-
x.^2/(2.*sigma.^2)) ./ (sigma.*sqrt(2.*pi));
elseif w==4

y =( (x.^4-
6.*x.^2.*sigma.^2+3.*sigma.^4)./(sigma.^8)).*exp(-
x.^2/(2.*sigma.^2)) ./ (sigma.*sqrt(2.*pi));
else
end

As is apparent from the presented function, for each condition (the degree of
derivative—the value of the variable w), the value of y is calculated using a
different formula.

The second function is Gauss_test with the following source code:
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hdevGA=[];
sigman=0.1;
sigmam=0.1;
M=200;N=200;
devm=3;
devn=0;
hObj = waitbar(0,'Please wait...');
for theta=0:0.1:(2*pi);

[nGA,mGA]=meshgrid(linspace(-0.5,0.5,M),linspace(-
0.5,0.5,N));

nGAtheta=nGA.*cos(theta)+mGA.*sin(theta);
mGAtheta=-nGA.*sin(theta)+mGA.*cos(theta);

hdevGA(1:M,1:N,round(theta*10+1))=dergauss(nGAtheta,si
gman,devn).*dergauss(mGAtheta,sigmam,devm);

if theta ==0
figure; mesh(hdevGA)
xlabel('m

[pixel]','FontSize',14,'FontAngle','Italic')
ylabel('n

[pixel]','FontSize',14,'FontAngle','Italic')
zlabel('h_{devGA}

[rad]','FontSize',14,'FontAngle','Italic')
end

waitbar(theta/(2*pi),hObj)
end
close(hObj)
figure
[n,m,i]=meshgrid( 1:size(hdevGA,2) , 1:size(hdevGA,1) 
, 0:0.1:(2*pi));
p1 = 
patch(isosurface(n,m,i,hdevGA>1,0.1),'FaceColor',[0 0 
1 ],'EdgeColor','none');
alpha(p1,0.2)
p2 = patch(isosurface(n,m,i,hdevGA<-
1,0.1),'FaceColor',[1 0 0 ],'EdgeColor','none');
alpha(p2,0.9)
view(41,24);
camlight; camlight(-80,-10); lighting phong;
grid on
hold on
axis square
axis([1 N 1 M 0 2*pi])
xlabel('m [pixel]','FontSize',14,'FontAngle','Italic')
ylabel('n [pixel]','FontSize',14,'FontAngle','Italic')
zlabel('\theta  [deg]','FontSize',14)

The first part of this source code relates to the declaration of variables and
determination of their values. Then the values of matrices nGA,mGA are deter-
mined, which are the basis for calculating the mask hdevGA. Rotation by the angle
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theta is initially implemented. In the next step, the previously discussed function
dergauss is used. In the final stage, a three-dimensional graph (Fig. 4.17) is
shown using the functions patch and isosurface.

The results of the presented functions (dergauss,Gauss_test) are shown
in Fig. 4.17, but this is only one of many cases of the pyramid. In hyperspectral
imaging the derivative in the third axis is also often used for analysis and acqui-
sition of features (the results shown earlier involve only two axes and rotation). The
function dergauss will be still used as well as the following new command
sequence Gauss_test2:

hdevGA=[];
sigman=0.08;
sigmam=0.08;
sigmai=0.08;
devm=2;
devn=0;
devi=0;
M=100;N=100;I=100;
Ii=linspace(-0.5,0.5,I);
Iid=dergauss(Ii,sigmai,devi);
hObj = waitbar(0,'Please wait...');
for i=1:length(Iid);

[nGA,mGA]=meshgrid(linspace(-0.5,0.5,M),linspace(-
0.5,0.5,N));

hdevGA(1:M,1:N,i)=dergauss(nGA,sigman,devn).*dergauss(
mGA,sigmam,devm).*Iid(i);

waitbar(i/length(Iid),hObj)
end

close(hObj)
figure
[n,m,i]=meshgrid( 1:size(hdevGA,2) , 1:size(hdevGA,1) 
, 1:size(hdevGA,3));
p1 = 
patch(isosurface(n,m,i,hdevGA>1,0.1),'FaceColor',[0 0 
1 ],'EdgeColor','none');
alpha(p1,0.9)
p2 = patch(isosurface(n,m,i,hdevGA<-
1,0.1),'FaceColor',[1 0 0 ],'EdgeColor','none');
alpha(p2,0.9)
view(41,24);
camlight; camlight(-80,-10); lighting phong;
grid on
hold on
axis square
axis([1 N 1 M 0 length(Iid)])
xlabel('m [pixel]','FontSize',14,'FontAngle','Italic')
ylabel('n [pixel]','FontSize',14,'FontAngle','Italic')
zlabel('i [pixel]','FontSize',14,'FontAngle','Italic') 
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As in the previously discussed source code, the values of constants are initially
declared along with 3D spaces of variable parameters ([nGA,mGA]=mesh-
grid…). Next, for subsequent i, values of hdevGA(1:M,1:N,i)are declared.
In the last stage, the results in three dimensional space are shown. They are pre-
sented in Fig. 4.18.

The results in Fig. 4.18 indicate the range of variation in the masks hdevGA with
respect to different degrees of derivatives for three dimensions. Other parameters
that can be changed for individual dimensions are h and r. Figure 4.19 shows
different variants of a sequence of masks for different values of the degree of
derivatives, and various values of standard deviations of the mean r. The following
is a portion of the source code that was used to create Fig. 4.19, i.e.:

hdevGA=[];
sigman=0.01;
sigmam=0.18;
sigmai=0.08;
devm=0;
devn=1;
devi=2;
M=100;N=100;I=100;
Ii=linspace(-0.5,0.5,I);
Iid=dergauss(Ii,sigmai,devi);
hObj = waitbar(0,'Please wait...');
for i=1:length(Iid);

[nGA,mGA]=meshgrid(linspace(-0.5,0.5,M),linspace(-
0.5,0.5,N));

theta=i/I*pi;
nGAtheta=nGA.*cos(theta)+mGA.*sin(theta);
mGAtheta=-nGA.*sin(theta)+mGA.*cos(theta);

hdevGA(1:M,1:N,i)=dergauss(nGAtheta,sigman,devn).*derg
auss(mGAtheta,sigmam,devm).*Iid(i);

waitbar(i/length(Iid),hObj)
end

Masks hdevGA defined for different values of parameters enable to acquire fea-
tures that are not available for typical methods of analysis and typical known mask
filters (Sobel, Roberts or Canny). This problem is visible for simple binarization of
a sequence of images LGRAY(m, n, i) for two thresholds equal to 0.5 (Fig. 4.20—red)
and 0.4 (Fig. 4.20—blue).

The results of the convolution of the image LGRAY(m, n, i) with the pyramid of
masks hdevGAð1;0;0Þ, h = 0° and r = 0.08 (see Fig. 4.18), are shown in Fig. 4.21. The
colours (Fig. 4.21) indicate the results of binarization for the negative areas (blue)
and positive ones (red). The acquisition of a feature from each ith image, necessary
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Fig. 4.18 Pyramid of masks hdevGA for three dimensions and different degrees of derivatives
hdevGAð0;0;0Þ; hdevGAð1;0;0Þ; hdevGAð1;1;0Þ; hdevGAð1;1;1Þ; hdevGAð2;0;0Þ and hdevGAð0;2;1Þ (respectively) when
h = 0° and r = 0.08. Negative values of the mask are marked in red, and the positive ones in blue
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Fig. 4.19 Pyramid of masks hdevGA for three dimensions, different degrees of derivatives and
various values of r. Negative values of the mask are marked in red, and the positive ones in blue
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for further use in the classification, is dependent on the type of the processing task.
This can be either the maximum or minimum value of the image convolution
LCONV(m, n, i) (Fig. 4.21), as well as the surface area of the areas above or below
the predetermined threshold. As mentioned earlier, pyramids of masks hdevGA are
generally profiled to a specific type of images and their nature. This applies to both
hyperspectral images and other types of medical images.

The final parts of the source code are in the m-files Gauss_test3 and
Gauss_test4 and are available as supplementary material attached to this
monograph.

Fig. 4.20 Results of
binarization of the image
LGRAY(m, n, i) for two
thresholds equal to 0.5 (red)
and 0.4 (blue)

Fig. 4.21 Result of the
convolution of the image
LGRAY(m, n, i) with the
pyramid of masks hdevGAð1;0;0Þ,
h = 0° and r = 0.08 (see
Fig. 4.18). The colours
indicate the results of
binarization for the negative
areas (blue) and positive ones
(red)
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Chapter 5
Classification

The acquired image features such as mean brightness, contrast, energy and
homogeneity can be used for machine learning and classification. Of the many
types of classifiers, decision trees, the naive Bayes classifier, discriminant analysis
and support vector machine were selected. The training mode for all classifiers is
carried out in the same way. The group of data is a set of four features (brightness,
contrast, energy and homogeneity) calculated for two ROIs selected by the user.
The first region, whose data may be also loaded as a reference.mat file, relates to
the training area. The second ROI concerns the test area, and the data on individual
features can also be loaded from an external file test.mat. The length of the test and
training data vectors is dependent on the user and the number of analysed i images.
It is also dependent on the number of common, for both the training and test group,
wavelengths. Each ith image complying with these conditions creates a new record
in the training vector entering four subsequent scalar values. The idea of selecting
the values reference and test and the ROI is shown schematically in Fig. 5.1.

Figure 5.1 shows a schematic diagram of an exemplary pattern and test vector
created from the variables LS(i), LCON(i), LENE(i) and LHOM(i). The results that are
deleted are marked in red, whereas the results participating in training and testing
the classifier in blue. The green area results from harmonisation, for each analysis,
of common wavelengths. In this case, these are the values 900, 901, 902, 903 and
904 nm. The vectors (training and test) thus prepared are used in the construction
and testing of the following classifiers (mentioned above):

• decision trees,
• naive Bayes classifier,
• discriminant analysis and
• support vector machine.

© Springer International Publishing AG 2017
R. Koprowski, Processing of Hyperspectral Medical Images,
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DOI 10.1007/978-3-319-50490-2_5
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These classifiers and their implementation are described in detail in the next
subchapters (for this purpose Statistics Toolbox is additionally required). For the
classifiers described in the following subchapters, the same test and pattern data
were used. They were obtained from the manually selected areas of the image
shown in Fig. 4.11. In total, 92 cases of wavelengths for which there should be
compliance with the pattern and 36 cases where such compliance cannot exist were
obtained for the test and training vectors.

The length of both vectors is due to the results of harmonisation of wavelengths
(see Fig. 4.6). In this case, there was complete compatibility of wavelengths—the
analysed ROIs come from the same image LGRAY(m, n, i).

5.1 Decision Trees

Decision trees have been used in machine learning [1] for many years [2–17]. They
have been also used and implemented in Matlab for a few years. Several functions
are designed for this purpose:

• classregtree—function responsible for the tree induction,
• test—function responsible for testing the tree,
• prune—function responsible for pruning the tree.

ROI

pattern

ROI

test

wavelength, intensity,     contrast,  energy, homogeneity





















wavelength, intensity,     contrast,  energy, homogeneity

SE
LE

C
T

SE
LE

C
T

LS(i),        LCON(i),   LENE(i),    LHOM(i) LS(i),        LCON(i),   LENE(i),    LHOM(i)

Fig. 5.1 Schematic diagram of an exemplary pattern and test vector created from the variables
LS(i), LCON(i), LENE(i) and LHOM(i). The results which are deleted are marked in red, and the results
participating in training and testing the classifier in blue
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The Gini index is the criterion for assessing the split point of decision trees used
in Matlab. Decision trees were induced using the CART algorithm. Classification
with the use of decision trees was implemented in the function
GUI_hyperspectral_class_dec_tree. This function can be divided into
several areas. In the first area, the true and false cases were divided into and

strings, i.e.:

In the next area, the tree is induced and tested for the training data, i.e.:

In the next area, the tree is pruned.

The last part of the function refers to the visualization of both cross-validation
and resubstitution and the site of tree pruning. 2D and 3D graphs are also shown
depending on the number of features selected for analysis, i.e.:
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This function (GUI_hyperspectral_class_dec_tree) is activated by
the function GUI_hyperspectral_class in one of the lines verifying the
user’s choice of a decision tree as a classifier, i.e.:
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The decision trees thus implemented were tested for three features (brightness,
energy, homogeneity) acquired from the reference and test ROIs shown in Fig. 4.11.
The obtained results are presented in Fig. 5.2.

The graph presented in Fig. 5.2d and the pruned decision tree provide in this
case: ACC = 88%, TPR = 56%, SPC = 100%, TN = 92, TP = 20, FN = 16 and
FP = 0. Table 5.1 shows the results of ACC, TPR, SPC, TN, TP, FN, FP (expressed
as a percentage) for various combinations of the features.

As is apparent from Table 5.1, brightness (INT) improves sensitivity to 56%
compared to other combinations of features. In the case of the combinations of some
of the features such as.: HOM, ENE, ENE and HOM, CON and ENE, CON ENE
and HOM, TPR = 0%. Much better results are obtained in the case of the same data
for another type of a classifier.

Fig. 5.2 Graphs of a the complete decision tree; b dependence of cross-validation errors on the
number of tree nodes; c the pruned decision tree; d the results of classification
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5.2 Naive Bayes Classifier

One possible classification method implemented in MATLAB is a naive Bayes
classifier [18–31]. It is based on the assumption of the mutual independence of the
independent variables [19–21]. This simple probabilistic classifier provides good
results in hyperspectral image classification. The implementation of the naive Bayes
classifier [23–25] was carried out in the function GUI_hyperspec-
tral_class_naiv_bayes. The greater part of the source code is the same as
in the function GUI_hyperspectral_class_dec_tree for decision trees.
The following shows only a portion of the source code for the most important
differences between these functions, i.e.:

Table 5.1 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
the pruned decision tree for different combinations of features—on/off position of checkbox
objects (INT, ENE, VAR, HOM)a

INT CON ENE HOM ACC TPR SPC TN TP FN FP

0 0 0 1 66 0 92 85 0 36 7

0 0 1 0 72 0 100 92 0 36 0

0 0 1 1 72 0 100 92 0 36 0

0 1 0 0 75 11 100 92 4 32 0

0 1 0 1 75 11 100 92 4 32 0

0 1 1 0 72 0 100 92 0 36 0

0 1 1 1 72 0 100 92 0 36 0

1 0 0 0 88 56 100 92 20 16 0

1 0 0 1 88 56 100 92 20 16 0

1 0 1 0 88 56 100 92 20 16 0

1 0 1 1 88 56 100 92 20 16 0

1 1 0 0 88 56 100 92 20 16 0

1 1 0 1 88 56 100 92 20 16 0

1 1 1 0 88 56 100 92 20 16 0

1 1 1 1 88 56 100 92 20 16 0
aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in calculations
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The results of classification, for the same training and test data as in the case of
decision trees described in the previous subchapter (for the test and training vectors,
92 cases of wavelengths for which there should be compliance with the pattern and
36 cases where such compliance cannot exist), are shown in Fig. 5.3 and Table 5.2.

As follows from the numerical values in Table 5.2, the highest value of
ACC = 94% was obtained for the combination of features INT and ENE. The
smallest value of ACC = 66% was obtained for a single feature HOM.

Fig. 5.3 Results of classification with a naive Bayes classifier. Negative and positive cases
(wavelengths) are marked in green and red and the classification function in blue: a for features:
intensity (LINT(i)), homogeneity (LHOM(i)) and energy (LENE(i)); b for features: contrast (LCON(i)),
homogeneity (LHOM(i)) and energy (LENE(i))

Table 5.2 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
the nave Bayes classifier for different combinations of features—on/off position of checkbox
objects (INT, ENE, VAR, HOM)a

INT CON ENE HOM ACC TPR SPC TN TP FN FP

0 0 0 1 66 25 83 76 9 27 16

0 0 1 0 92 89 93 86 32 4 6

0 0 1 1 84 69 90 83 25 11 9

0 1 0 0 85 61 95 87 22 14 5

0 1 0 1 82 58 91 84 21 15 8

0 1 1 0 90 83 92 85 30 6 7

0 1 1 1 86 75 90 83 27 9 9

1 0 0 0 89 61 100 92 22 14 0

1 0 0 1 90 64 100 92 23 13 0

1 0 1 0 94 81 99 91 29 7 1

1 0 1 1 91 78 96 88 28 8 4

1 1 0 0 91 67 100 92 24 12 0

1 1 0 1 91 72 99 91 26 10 1

1 1 1 0 91 81 96 88 29 7 4

1 1 1 1 91 81 95 87 29 7 5
aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in calculations
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5.3 Discriminant Analysis

Discriminant analysis [32–38] feasible in Matlab is associated with the function
classify. It enabled to implement one possible type of discriminant function—
quadratic (fits multivariate normal densities with covariance estimates stratified
by group) in the function GUI_hyperspectral_class_disc. Besides the
above type, it is possible to use the following discriminant functions [35–37]:

• linear—fits a multivariate normal density to each group,
• diaglinear—with a diagonal covariance matrix estimate.
• diagquadratic—with a diagonal covariance matrix estimate.
• mahalanobis—uses Mahalanobis distances with stratified covariance

estimates.

Implementation of a discriminant function in the function GUI_hyperspec-
tral_class_disc is as follows:

The above excerpt provides the results presented in Fig. 5.4.
Similarly to the previously discussed classifiers, in Fig. 5.4 negative and positive

cases (wavelengths) are marked in green and red and the classification function in
blue: in Fig. 5.4a for features: intensity (LINT(i)), homogeneity (LHOM(i)) and
energy (LENE(i)); in Fig. 5.4b for features: contrast (LCON(i)), homogeneity
(LHOM(i)) and energy (LENE(i)). For these and other combinations of features, the
numerical results of ACC, TPR, SPC, TN, TP, FN, FP are shown in Table 5.3.

In Table 5.3, there is only one case when ACC = 95%. This is the accuracy
value for the combination of features INT and CON. The minimum value of
accuracy is 65% and occurs for a single feature HOM.

As mentioned above, discriminant analysis enables to use different types of
discriminant function. Figure 5.5 and Table 5.4 show the results obtained for three
features (homogeneity, intensity and energy) for various types of discriminant
analysis: ‘linear’, ‘diaglinear’, ‘diagquadratic’ and ‘mahalanobis’.
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Different results, presented in Table 5.4, are obtained depending on the selected
type of discriminant analysis.

The best results (Table 5.4) are for ‘mahalanobis’ type of discriminant analysis,
i.e. ACC = 97%. The worst results are for ‘diagquadratic’ type, i.e. ACC = 92%.
The differences arise directly from the type of analysis and the distribution of values
of individual features.

Fig. 5.4 Results of classification, discriminant analysis—’quadratic’. Negative and positive
cases (wavelengths) are marked in green and red and the classification function in blue: a for
features: intensity (LINT(i)), homogeneity (LHOM(i)) and energy (LENE(i)); b for features: contrast
(LCON(i)), homogeneity (LHOM(i)) and energy (LENE(i))

Table 5.3 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
discriminant analysis for different combinations of features—on/off position of checkbox objects
(INT, ENE, VAR, HOM)a

INT CON ENE HOM ACC TPR SPC TN TP FN FP

0 0 0 1 65 50 71 65 18 18 27

0 0 1 0 91 92 90 83 33 3 9

0 0 1 1 84 75 87 80 27 9 12

0 1 0 0 88 83 90 83 30 6 9

0 1 0 1 84 75 88 81 27 9 11

0 1 1 0 87 92 85 78 33 3 14

0 1 1 1 88 92 86 79 33 3 13

1 0 0 0 92 72 100 92 26 10 0

1 0 0 1 91 75 97 89 27 9 3

1 0 1 0 94 94 93 86 34 2 6

1 0 1 1 94 94 93 86 34 2 6

1 1 0 0 95 86 98 90 31 5 2

1 1 0 1 94 94 93 86 34 2 6

1 1 1 0 90 94 88 81 34 2 11

1 1 1 1 90 97 87 80 35 1 12
aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in calculations
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5.4 Support Vector Machine

Support vector machine has been one of the most popular classifiers in recent years
[38–51]. It allows for the appointment of a hyperplane that enables to separate two
classes [41, 42, 44] with the greatest possible margin [45–48]. The implementation
of the SVM classifier was carried out in the function GUI_hyperspectral_

Fig. 5.5 Results of classification for three features—homogeneity LHOM(i)), intensity (LINT(i))
and energy (LENE(i)) for different types of discriminant analysis: a ‘linear’; b ‘diaglinear’;
c ‘diagquadratic’; d ‘mahalanobis’. Negative and positive cases (wavelengths) are
marked in green and red and the classification function in blue

Table 5.4 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
different types of discriminant analysis and the features INT, ENE and HOM

Type ACC TPR SPC TN TP FN FP

Linear 93 75 100 92 27 9 0

Diaglinear 94 92 95 87 33 3 5

Quadratic 94 94 93 86 34 2 6

Diagquadratic 92 86 95 87 31 5 5

Mahalanobis 97 92 99 91 33 3 1
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class_svm which, in turn, uses the function svmtrain. A fragment of the
source code of the function GUI_hyperspectral_class_svm responsible for
SVM classification is shown below:

The results of SVM classification are shown in Fig. 5.6 and Table 5.5. Negative
and positive cases (wavelengths) (Fig. 5.6) are marked in green and red and the
classification function in blue for features: intensity (LINT(i)), homogeneity
(LHOM(i)) and energy (LENE(i))—Fig. 5.6a); for features: contrast (LCON(i)),
homogeneity (LHOM(i)) and energy (LENE(i))—Fig. 5.6b).

Numerical results of individual combinations of features in the training and test
vectors are shown in Table 5.5.

The greatest values of ACC = 91% were obtained for a few combinations of
features ENE, ENE and HOM, INT and HOM, INT and ENE and HOM, INT and
CON and HOM, INT and CON and ENE and HOM. In almost each of these

Fig. 5.6 Results of SVM classification. Negative and positive cases (wavelengths) are marked in
green and red and the classification function in blue: a for features: intensity (LINT(i)),
homogeneity (LHOM(i)) and energy (LENE(i)); b for features: contrast (LCON(i)), homogeneity
(LHOM(i)) and energy (LENE(i))
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combinations, there is the feature HOM. The feature ENE is noteworthy as it is able
(as a single feature) to provide the best results of accuracy for the considered SVM
classifier.

Summing up, the best results for the analysed case are obtained for ‘maha-
lanobis’ type of discriminant analysis, i.e. ACC = 97%. The results should be
treated only illustratively as they present possible problems and methods of analysis
of the results obtained from the implemented classifiers.

5.5 Receiver Operating Characteristics

The receiver operating characteristics (ROC) curve is obtained on the basis of
classification results. Changes in sensitivity as a function of specificity are analysed.
The individual measurement points can, in the general case, be the result of a
classifier operation for different types of changes. A classic example is a change in
the position of the cut-off threshold during data classification. For the described
types of classifiers and the presented data, the ROC curve enables to show extre-
mely important information, which is sensitive to changing parameters. The
assessment of sensitivity relates here to resizing the averaging filter hw (from the
default parameters Mw × Nw = 3 × 3 pixels), choosing the size of the ROIc

Table 5.5 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage)
for SVM for different combinations of features—on/off position of checkbox objects (INT, ENE,
VAR, HOM)a

INT CON ENE HOM ACC TPR SPC TN TP FN FP

0 0 0 1 72 0 100 92 0 36 0

0 0 1 0 91 89 91 84 32 4 8

0 0 1 1 91 89 91 84 32 4 8

0 1 0 0 84 50 98 90 18 18 2

0 1 0 1 88 81 91 84 29 7 8

0 1 1 0 87 53 100 92 19 17 0

0 1 1 1 87 69 93 86 25 11 6

1 0 0 0 88 58 100 92 21 15 0

1 0 0 1 91 69 100 92 25 11 0

1 0 1 0 88 58 100 92 21 15 0

1 0 1 1 91 69 100 92 25 11 0

1 1 0 0 89 61 100 92 22 14 0

1 1 0 1 91 69 100 92 25 11 0

1 1 1 0 89 61 100 92 22 14 0

1 1 1 1 91 69 100 92 25 11 0
aThe value of ‘0’ means that the feature does not occur, ‘1’ that it occurs in calculations
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(typically Mc × Nc = 40 × 40 pixels), choosing the size of the structural element
SE2 for conditional erosion and dilation (the default size MSE2 × NSE2), and the
values of the thresholds pec and pdc, classifier type (decision trees, naive Bayes
classifier, SVM), choosing the threshold prg, choosing True and False areas
(Fig. 4.8). The potential impact of the settings (selection) of the above variables on
the results obtained must be verified in practice. The impact of changes in the last
parameter—manual selection of True and False areas—has been further described
in the monograph (Fig. 4.8). Figure 5.7 shows the idea of measuring the ROC
curve.

A change in the range of ±iv (Fig. 5.7) of the location of the TP area will affect
the division into TP and TN of the training vector, a different structure of the
decision tree and thus different values of SPC and TPR representing a point on the
ROC plot. The source code responsible for the calculation of the various values
needed to plot the ROC curve is in the function GUI_hyperspectral_class.
It has been deliberately marked (symbol ‘%’) as a comment to encourage, at this
point, the readers to introduce their own element (e.g. a button) on the menu

Classification
decision trees

1-SPC

TPR







iv

Fig. 5.7 Block diagram of calculating the values for the ROC curve and changes in the location of
the TP area in the range of ±iv
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that would run the ROC analysis for changes in the range of ±iv. A fragment
of the source code responsible for changes in the range of ±iv for iv = 30 is as
follows:

The result is the ROC curve presented in Fig. 5.8.

iv =-30
iv =30

Fig. 5.8 ROC curve for
changes in the location of the
TP area in the range of ±iv for
iv = 30
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The above example is only one possible application of this approach for plotting
ROC curves. I encourage the reader to further test and analyse changes in the value
of sensitivity and specificity for changes in other aforementioned variables, for
example, the impact of resizing the averaging filter hw from Mw × Nw = 3 × 3
(default parameters) to, for example, Mw × Nw = 33 × 33 pixels.

5.6 Pitfalls and Limitations of Classification

Classification in most cases is the crowning stage of the tedious process of image
analysis. Proper preparation of the data vector(s) is extremely important from a
practical point of view [52]. An increase in the length of the training vector and/or a
reduction in the length of the test vector improve the results obtained, but the
created classifier is also less universal [53, 54]. In addition, the pressure to improve
the results obtained is high, especially if the area of the publication of results in
scientific journals and (almost) the need to confirm the superiority of the developed
method are taken into account. Apart from changing the length of the training and
test vector, also other errors can be made during classification [52, 55, 56]. The
most common errors are:

• providing the results of classification for the training vector as those for the test
vector,

• reducing the length of the test vector—increasing the length of the training
vector (as mentioned above),

• overfitting,
• an excessive number of features at a too small vector length,
• leakage of data between the training and test data,
• artificial reproduction of data,
• failure to provide an appropriate range of variation.

Ignoring the mathematical relations and moving on to the practical implemen-
tation, two files are taken into account: test.mat and reference.mat. These
files are the result of previously conducted analysis and were previously stored on
the disk. After reading them and standardizing common wavelengths, an SVM
classifier will be built and tested for both the training and test data. The corre-
sponding source code (the part concerning graphs is similar to the previously
described one—in previous subchapters) is shown below:

98 5 Classification



5.6 Pitfalls and Limitations of Classification 99



The results obtained for the training and test data (see %measT = meas;) are
shown in Figs. 5.9 and 5.10.

The results shown in Figs. 5.9 and 5.10 are clearly better (a change in ACC from
41 to 89% for the training vector). However, the classifier due to its characteristics
does not fit to the data (there is no problem of overfitting).

The second discussed issue is reducing the length of the test vector. Let us
assume the length u of the test vector is changed from 1 (one positive or negative
case) to 100 cases (the number of positive and negative cases is random), i.e.
u 2 (1, 100). The results obtained are shown in the graph in Fig. 5.11.

Fig. 5.9 Results of the SVM
classification for exemplary
features of the training data.
TP = 85, TN = 24, FN = 6,
FP = 7, ACC = 89%,
TPR = 93%, SPC = 77%
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The results shown in the graph in Fig. 5.11 relate to changes in ACC for different
lengths of the test vector. Each value of u is the result of 1000 random data.
Accordingly, the maximum values are marked in green (Fig. 5.11), whereas the
minimum ones in blue. The presented graph indicates almost complete dependence
of the result (ACC) on the appropriate selection of data if there are no more than 10
of them (for the considered case). The more data are drawn, the narrower the range
of variability of ACC. In an extreme case, ACC = 40 ± 20% in the graph in
Fig. 5.11. To sum up, a reduction in the length of the test vector allows for almost
any change in the results of, for example, accuracy.

The third discussed issue is overfitting. Overfitting the data is typical for most
classifiers. For example, this is the induction of binary decision trees without
pruning. This problem is mentioned in the subchapter “Decision trees”. Figure 5.2b
shows a graph of dependence of cross-validation errors on the number of tree

Fig. 5.10 Results of the
SVM classification for
exemplary features of the test
data. TP = 19, TN = 31,
FN = 72, FP = 0,
ACC = 41%, TPR = 21%,
SPC = 100%

Fig. 5.11 Graph of changes
in ACC for different lengths of
the test vector
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nodes. The problem of overfitting produces very good results of accuracy, sensi-
tivity and specificity. Unfortunately, an induced decision tree (classifier) is not able
to generalize data, so its practical clinical usefulness is limited. Overfitting the data
applies not only to the classifier construction. It is also related to the type of data
source.

The induction of the decision tree for data from a single source, one hospital
and/or one imaging device, causes excessive fit to the data despite, for example,
pruning the tree. A similar problem occurs in the analysis of data from a single
operator (physician) operating the imaging device.

The discussed issues are well illustrated by the example of the induction of a
decision tree for the training data and showing the results obtained for the training
and test data of both the complete and pruned decision tree—Table 5.6.

The results presented in Table 5.6 show small differences in accuracy for the
pruned trees and test and training data (5%). There are also big differences between
the test and training data obtained for the complete decision tree—the difference in
accuracy of 35%. Pruning the decision tree produces worse results but the created
decision tree is less sensitive to the data. In addition, transparency increases and the
computational complexity of the created tree decreases.

The fourth issue is an excessive number of features in relation to the vector
length (number of analysed cases). To some extent this is justified. In the case of the
tedious process of designing the algorithm for analysis and processing, the cul-
mination of this work is the data vector—the vector of features. Adding a new
feature is the result of a small amount of work compared to the said process of
algorithm designing. Therefore, the authors of various works induce a classifier and
test it for dozens and even hundreds of features which are acquired from only a few
cases of data (patients). The question to which the answer will be given below
refers to the maximum number of features that can be used for classification so as to
obtain reliable and diagnostically useful results. For this purpose, the SVM clas-
sifier was used and a different number of features k 2 (1, 50) and different lengths
of the vector u 2 (4, 50) were chosen at random (uniform distribution in the set {0,
1}). The results of ACC are shown in Fig. 5.11 and Fig. 5.12.

The source code for performing these calculations and creating the graph shown
in Fig. 5.11 is as follows:

Table 5.6 Results of TN, TP, FN, FP as well as ACC, TPR, SPC (expressed as a percentage) for
the complete and pruned decision tree for the training and test data

Decision tree Data type ACC TPR SPC TN TP FN FP

Complete Traininga 92 91 92 52 60 5 5

Complete Test 57 26 85 15 55 42 10

Pruned Training 73 75 71 43 46 14 19

Pruned Test 68 79 58 45 38 12 27
aThe lack of specificity, sensitivity and accuracy equal to 100% for the complete decision tree and
the test data is due to 10-fold cross-validation of data which is determined by default
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The result of changes in ACC as a function of changes in the number of features
and vector length shown in Fig. 5.11 is of great practical importance. It enables to
determine the minimum u/k ratio which provides diagnostically useful results.
Figure 5.13 shows the dependence of ACC as a function of u/k which shows that
for u/k = 10 and less, the results exceed the value of 50% of accuracy. This means
that the classification accuracy of the classifier, regardless of the data (they may be
even random), is well above 50%, and for u/k = 5 and less accuracy is approxi-
mately 100%. Therefore, the practical utility of such a classifier is questionable. It is
therefore necessary to provide in each case at least several-fold increase in the
training vector length in relation to the number of features.

The fifth problem is the data leakage between the training and test data. The
leakage is further understood as the overlap of data from the training and test
vectors. If we assume that s will mean the percentage overlap of the two data
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vectors, the result of accuracy (ACC) for different values of s 2 (0, 100) will run for
the SVM classifier in accordance with the graph shown in Fig. 5.14.

According to the graph shown in Fig. 5.14 and as expected, the larger the
percentage share of the test vector in the training vector, the better the results
obtained. For example, for a few per cent (from 0 to about 20) of common data, the
value of ACC does not change. For s ranging from 40 to 85%, the value of ACC
increased by 9%. It should be noted here that data leakage is mainly associated with
the wrong (intended or unintended) implementation of the classifier.

The last mentioned problems, i.e. artificial duplication of data and failure to
provide an adequate range of variability of data, have already been partially dis-
cussed in the previous problems.

In the presented application related to hyperspectral images, the number of
features is disproportionately smaller than the length of the data vector (i = 128 for
4 features). Lack of data leakage ensures proper implementation of the transfor-
mations discussed in earlier chapters. Only deliberate action, such as reducing the

Fig. 5.13 Graph of changes
in ACC for different values of
the ratio of the test vector
length u to the number of
features k

Fig. 5.12 Graph of changes
in ACC for different lengths of
the test vector u and a
different number of features k
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training vector length to several 2D images can cause the discussed problems. At
this point, I encourage the reader to create appropriate warnings for the application
user about the occurrence of one of the discussed problems, for example using the
function warndlg .

The source codes of all the discussed problems have been saved in separate m-
files in the materials attached to this monograph, namely Class_test,
Class_test2, Class_test3, Class_test4 and Class_test5.

5.7 Blok Diagram of the Discussed Transformations

The block diagram of the discussed issues is presented in Fig. 5.15.
The block diagram presented in Fig. 5.15 concerns the algorithm part respon-

sible for the selection of a classifier. Depending on the operator’s individual choice,
it is possible to analyse in the proposed application the results obtained for the
following classifiers: decision trees, naive Bayes classifier, discriminant analysis
and support vector machine. In Matlab in Statistics Toolbox, implementation of
other types of classifications, e.g., k-means, is also possible. I encourage the
readers at this point to perform their own implementation of the above functions for
one of the possible definitions of distance, i.e.: ‘sqEuclidean’ (squared eucli-
dean distance); ‘cityblock’ (sum of absolute differences); ‘cosine’ (one minus
the cosine of the included angle between points); ‘correlation’ (one minus the
sample correlation between points); ‘Hamming’—(percentage of bits that differ).

Fig. 5.14 Graph of changes
in ACC for different s degrees
of overlap of the test vector
and the training vector
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Chapter 6
Sensitivity to Parameter Changes

In every algorithm and software, especially those designed for the needs of med-
icine, it is important to assess the algorithm sensitivity to parameter changes [1].
This evaluation should be a standard item for each algorithm. Unfortunately, this is
rarely encountered in practice. The authors of the new software solutions do not
mention these parameters in fear of both lack of interest of buyers of the created
software and the possibility of rejection of the scientific article for that reason.
Sensitivity to parameter changes of any algorithm is usually strongly related to its
internal structure (e.g. setting the parameters of its operation automatically) and the
test method (selection of a method for changing parameters) [2, 3]. It should be
emphasized here that each algorithm allows for errors at the level of 100% in
extreme cases of its application [4, 5]. Therefore, it is very important to link the
range of variability of parameters with the error value.

In the case of medical hyperspectral imaging, the issue of sensitivity to
parameter changes is not easier. In practical terms, there are numerous different
combinations of measured features and parameter changes. It is difficult to separate
those combinations that are not only the most interesting but also the most diag-
nostically important. Certainly the most interesting element is the analysis of the
sensitivity of patient positioning and the whole image acquisition on the classifi-
cation results. This area, however, due to its specificity (very high dependence on
the affected place and the type and severity of the disease), is left to the reader.
Below there is a narrower analysis of the algorithm sensitivity to parameter
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changes. The selected parameter is the mean brightness of the manually selected
ROI. The size of the ROI and its position relative to the original one (specified by
the operator) will be changed.

The evaluation of the algorithm sensitivity in the evaluation of the mean
brightness value for each i frame of the image LGRAY(m, n, i) was performed for
repositioning the ROI, resizing the ROI and its rotation around its axis. The results
obtained are presented in the following subchapters. The evaluation criterion JM in
each case is defined as:

JM ið Þ ¼ LMROIT ið Þ � LMROIP ið Þ
1

� 100% ð6:1Þ

where
LMROIT(i) and LMROIP(i) are the mean brightness values for subsequent ROIs.

The value of ‘1’ results from the adopted range of the brightness level (from 0 to 1
—variable type double).

For example LMROIT(i) is equal to:

LMROIT ið Þ ¼ 1
MROI � NROI

X

m;n2ROI
LGRAY m; n; ið Þ ð6:2Þ

where MROI and NROI are the number of rows and columns of the ROI.

6.1 Respositioning the ROI

Repositioning the ROI involves changing its position in the row axis by Δm and in
the column axis by Δn. The position of the ROI, in accordance with the operator’s
selection, shown in Fig. 4.11 was adopted by default. Its position was changed in
the range Δm = ±10 pixels and Δn = ±10 pixels. The resolution of the ROI was
MROI × NROI = 100 × 100 pixels. The results obtained are shown in Figs. 6.1
and 6.2.

The presented graphs of sensitivity to repositioning the ROI show that the
brightness changes are smaller than ±2%. The source code providing the graph
shown in Fig. 6.1 is as follows:
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n

Fig. 6.2 Graph of changes in JM for different values of Δn and subsequent i images

m

Fig. 6.1 Graph of changes in JM for different values of Δm and subsequent i images
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L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(80),'.mat']);
Lgrayi=mat2gray(L1.L1);
figure;
[X,Y,I2,RECTP] = IMCROP(Lgrayi);
Lgrayi=IMCROP(Lgrayi,RECTP);
hObj=waitbar(0,'Please wait...');
JM=[];
for i=1:128

L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(i),'.mat']);

Lgrayi=mat2gray(L1.L1);
LgrayiP=IMCROP(Lgrayi,RECTP);
LMROIP=mean(LgrayiP(:));
for deltam=-10:10

RECTT=RECTP; RECTT(2)=RECTT(2)+deltam;
LgrayiT=IMCROP(Lgrayi,RECTT);
LMROIT=mean(LgrayiT(:));
JM(i,deltam+11)=(LMROIT-LMROIP)*100;

end
waitbar(i/128)

end
close(hObj)
[i,deltam]=meshgrid((1:size(JM,2))-10,1:size(JM,1));
figure
mesh(i,deltam,JM); grid on; hold on
ylabel('i [pixel]','FontSize',14,'FontAngle','Italic')
xlabel('\Delta m 
[pixel]','FontSize',14,'FontAngle','Italic')
zlabel('J_M [%]','FontSize',14,'FontAngle','Italic')
view(-25,32)

Similar results (Figs. 6.1 and 6.2) are obtained for resizing the ROI, which is
presented in the next subchapter.

6.2 Resizing the ROI

The impact of resizing the ROI (as specified above) on the percentage change in the
mean brightness was determined in the same way as in the previous subchapter. In
this case, the size M × N was changed in the range ΔM == ±10 pixels and
ΔN == ±10 pixels. The results are shown in Figs. 6.3 and 6.4.

Similarly to the results obtained in the previous subchapter, the sensitivity of the
brightness change to resizing the ROI is less than ±2%. The next subchapter
presents the effect of rotation on the change in the mean brightness in the ROI.
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M

Fig. 6.3 Graph of changes in JM for different values of ΔM and subsequent i images

N

Fig. 6.4 Graph of changes in JM for different values of ΔN and subsequent i images
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6.3 Rotation of the ROI

Similarly to the previous subchapters, the algorithm sensitivity (the mean brightness
value) to rotation of the ROI (as specified above) was verified. In this case, the
rotation λ ranged from 0° to 360° (Fig. 6.5).

In this case, slightly worse results were obtained. Sensitivity to rotation of the
ROI is the greatest in comparison with its repositioning and resizing. It is related not
only to the participation of new pixels resulting from the rotation of the ROI itself
but also from interpolation problems and the method of filling the missing pixels in
the corners (see the function imrotate with the parameter ‘crop’). The sensi-
tivity values in this case are not greater than 15% compared with the absolute value.
The full source code for the examples discussed above can be found in the m–files
GUI_hyperspectral_para_changes, GUI_hyperspectral_para_
changes2, GUI_hyperspectral_para_changes3 and GUI_hypers-
pectral_para_changes4. Once again I encourage the readers to create their
own m-files designed to assess the algorithm sensitivity to changes in other
parameters or to include classification in the analysis. Extension of this analysis will
provide a lot of useful and new information on the nature of the algorithm operation
and its weaknesses. Especially the latter makes the operator more attentive to their
skilful and careful selection. The analysis can also be based on the ROC curves
presented in one of the earlier chapters.



Fig. 6.5 Graph of changes in JM for different values of λ and subsequent i images
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6.4 The Other Parameters

The analysis of the algorithm sensitivity to parameter changes is a broad issue. Any
change of any parameter located in the acceptable range should be examined in
terms of its impact on the results obtained—brightness in the simplest form, clas-
sification results in an advanced form. Therefore, in addition to the above-discussed
impact of the size, position and rotation of the ROI on the obtained results of the
mean brightness, it is also interesting to analyse the impact of lighting or posi-
tioning the pattern relative to the analysed object. It is possible to analyse inde-
pendently the sensitivity of the classification results to repositioning and resizing
the ROI and the impact of noise in the image (due to both the properties of the
camera and the type and brightness of lighting). Below there are the results of
measurement of ACC for the manually selected ROIs, with the test area being
moved in the row axis by Δm = ±20 pixels and in the column axis by Δn = ±20
pixels. Two features are analysed: the mean brightness in the ROI and the standard
deviation of the mean. The results obtained are shown in Figs. 6.6 and 6.7.

The source code in this case is a bit different than that presented in the previous
subchapters, i.e.:

m

Fig. 6.6 Graph of changes in ACC for different values of Δm
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L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(80),'.mat']);
Lgrayi=mat2gray(L1.L1);
figure; res=[];     hObj=waitbar(0,'Please wait...');
[X,Y,I,RECTP] = IMCROP(Lgrayi);
for deltam=-20:20

RECTT=RECTP;
RECTT(2)=RECTT(2)+deltam;
meas=[];
measT=[];
for i=1:128

L1=load(['D:/k/_I20_L0-511_13-1-
2016_13.5.59.cube',mat2str(i),'.mat']);

Lgrayi=mat2gray(L1.L1);
LgrayiP=IMCROP(Lgrayi,RECTP);
LgrayiT=IMCROP(Lgrayi,RECTT);
meas(i,1)=mean(LgrayiP(:));
meas(i,2)=std(LgrayiP(:));
measT(i,1)=mean(LgrayiT(:));
measT(i,2)=std(LgrayiT(:));

end
TRR=zeros([size(meas,1), 1]);
TRR(20:110)=1;
species=[];
for ijj=1:length(TRR)

if TRR(ijj)==1
species{ijj}='Yes';

else
species{ijj}='No';

end
end
svmStruct = svmtrain(meas,species');
grpname = svmclassify(svmStruct,measT);
TP=sum( strcmp(grpname,'Yes').*

strcmp(species','Yes') ); 
TN=sum( strcmp(grpname,'No') .* 

strcmp(species','No')  ); 
FN=sum( strcmp(grpname,'No') .* 

strcmp(species','Yes')  ); 
FP=sum( strcmp(grpname,'Yes').*

strcmp(species','No')  );
ACC= round((TP+TN)/(FN+FP+TN+TP).*100);
TPR= round(TP/(TP+FN).*100);
SPC= round(TN/(TN+FP).*100);
res=[res;[deltam, TP, TN, FN, FP, ACC, TPR, SPC]];
waitbar((deltam+20)/40)

end
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close(hObj)
figure; plot(res(:,1),res(:,6),'-r*'); hold on; grid 
on;
xlabel('\Delta m 
[pixel]','FontSize',14,'FontAngle','Italic')
ylabel('ACC [%]','FontSize',14,'FontAngle','Italic') 

The source code in its first part enables to manually identify the ROI in the image
for i = 80. Then the test ROI is artificially moved, i.e.: RECTT = RECTP; RECTT
(2) = RECTT(2) + deltam; and two features are calculated: the mean
brightness mean(LgrayiP(:)) and the standard deviation of the mean std
(LgrayiP(:). The length of the training and test vectors is the same and is equal
to the total number of frames, i.e. I = 128. In the next stage, the SVM classifier is
trained (variable meas) and tested, and ACC is calculated (variable measT). The
results are shown in the last part of the presented source code figure; plot…).

Noise can be introduced artificially to the ith sequence of images using the
previously applied function imnoise. In this case, the value of ACC for the SVM
classifier (as in the previous example) was initially analysed for different values of
variance v 2 (0, 1) and a zero mean value. The results obtained are shown in
Fig. 6.8.

The form of the source code is almost identical to the previous example. The only
significant difference is the change in the value of v in each loop circulation in the

n

Fig. 6.7 Graph of changes in ACC for different values of Δn
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range from 0 to 1 every 0.01 and the notation LgraiTm = imnoise(IMCROP

(Lgrayi,RECTT), 'gaussian',0,v) allowing for the addition of noise to the

image. Only one type of noise ('gaussian') is analysed. By a slight modification of
the source code, similar tests can be performed for the following noise types:
'localvar', 'poisson', 'salt & pepper' or 'speckle'.

It is apparent from the graph presented in Fig. 6.8 that the value of accuracy is
reduced for successive values of variance from 92 to 72%—by exactly 20%. This is
a significant change when compared, for example, with the graphs shown in
Figs. 6.6 and 6.7. For repositioning the test ROI, the change in ACC was only a few
per cent. This information gives the picture of the algorithm sensitivity (in this case
the results of SVM classification) to the degree of noise in the image.

At the end it should be emphasized that the presented results of the evaluation of
the algorithm sensitivity to parameter changes are exemplary. They do not exhaust
in any way the full diversity of hyperspectral images dependent on individual
variability of patients, the imaging area, lighting and many others.
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Chapter 7
Conclusions

This monograph presents both new and known methods of analysis and processing
of hyperspectral medical images. The developed GUI allows for easy and intuitive
performance of basic operations both on a single image and a sequence of hyper-
spectral images. These are operations such as filtration, separation of an object,
measurements of basic and complex texture features as well as classification.
Therefore the developed GUI may be useful both diagnostically in the analysis, for
example, of dermatological images and may also serve as a foundation for software
development. In addition, the monograph presents new approaches to analysis and
processing of hyperspectral images. After minor modifications, they can be used for
other purposes and image analyses. The algorithm sensitivity to changes in the
selected parameters has also been evaluated. The presented source code can be used
without licensing restrictions provided this monograph is cited. It should also be
emphasized here that the author is not responsible for the consequences of wrong
use and operation of this software. Despite the author’s best efforts, errors may
occur in the presented source code. The presented software is deliberately free of
restrictions, which should encourage the reader to its subsequent modifications and
improvements. An equally open issue is the time optimization of the described
methods of image analysis and processing, which has been deliberately omitted in
almost the entire monograph (except Table 4.1). Thus the presented software does
not close the interesting subject of analysis and processing of hyperspectral medical
images.
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Appendix

A set of Matlab m-files is attached to this monograph so that the reader does not
have to rewrite each selected part of the source code from the text. According to the
information given in the monograph, the files have been divided into two
containers:

• GUI_ver_pre.zip—containing 5 m-files enabling to test the initial version of the
application;

• GUI_ver_full.zip—containing 21 test m-files and 15 GUI files.

The container GUI_ver_pre.zip includes 5 m-files with the following names and
functionalities:

• read_envi_header—reading the header from *.hdr file,
• read_envi_data—reading data from *.cube, *.raw or *.dat files,
• GUI_hyperspectral_trans—affine transformations of the image,
• GUI_hyperspectral—main GUI file (run first),
• GUI_hyperspectral_fun—function responsible for the functionality of

individual menu elements.

The container GUI_ver_full.zip includes 36 m-files (including m-files for tests)
with the following names and functionalities:

• read_envi_header—reading the header from *.hdr file (the same as in the
container GUI_ver_pre.zip)

• read_envi_data—reading data from *.cube, *.raw or *.dat files (the same
as in the container GUI_ver_pre.zip)

• GUI_hyperspectral_trans—affine transformations of the image (the
same as in the container GUI_ver_pre.zip)

• GUI_hyperspectral—main GUI file extended with respect to the file from
the container GUI_ver_pre.zip (run first),
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• GUI_hyperspectral_fun—function responsible for the functionality of
individual menu elements extended with respect to the file from the container
GUI_ver_pre.zip,

• Class_test—m-file for testing different classification variants,
• Class_test2—m-file for testing different classification variants,
• Class_test3—m-file for testing different classification variants,
• Class_test4—m-file for testing different classification variants,
• Class_test5—m-file for testing different classification variants,
• Gauss_test—m-file for testing different variants of the Gaussian function,
• Gauss_test2—m-file for testing different variants of the Gaussian function,
• Gauss_test3—m-file for testing different variants of the Gaussian function,
• Gauss_test4—m-file for testing different variants of the Gaussian function,
• Dergauss—function of the Gaussian function derivatives,
• GUI_hyperspectral_adaptive_filter—function of the adaptive filter,
• GUI_hyperspectral_class—function of selecting classification type,
• GUI_hyperspectral_class_dec_tree—classifier function—decision

trees,
• GUI_hyperspectral_class_disc—classifier function—discriminant

analysis,
• GUI_hyperspectral_naive_bayes—classifier function—naive Bayes

classifier,
• GUI_hyperspectral_class_svm—classifier function—SVM,
• GUI_hyperspectral_diff—function responsible for calculating bright-

ness differences,
• GUI_hyperspectral_dilate_c—function of conditional dilation,
• GUI_hyperspectral_erode_c—function of conditional erosion,
• GUI_hyperspectral_erode_dilate_test—m-file for testing the

properties of conditional erosion and dilation,
• GUI_hyperspectral_erode_dilate_test2—m-file for testing the

properties of conditional erosion and dilation,
• GUI_hyperspectral_erode_dilate_test3—m-file for testing the

properties of conditional erosion and dilation,
• GUI_hyperspectral_erode_dilate_test4—m-file for testing the

properties of conditional erosion and dilation,
• GUI_hyperspectral_filter_test—m-file for testing dedicated

filtration,
• GUI_hyperspectral_filter_test2—m-file for testing dedicated

filtration,
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• GUI_hyperspectral_qtdecomp_test—m-file for testing square-tree
decomposition,

• GUI_hyperspectral_qtdecomp_test2—m-file for testing square-tree
decomposition,

• GUI_hyperspectral_para_change—m-file for testing the effect of
parameter changes on the results obtained,

• GUI_hyperspectral_para_changes2—m-file for testing the effect of
parameter changes on the results obtained,

• GUI_hyperspectral_para_changes3—m-file for testing the effect of
parameter changes on the results obtained,

• GUI_hyperspectral_para_changes4—m-file for testing the effect of
parameter changes on the results obtained.

The two described containers containing all the m-files discussed in this
monograph along with the source codes are available at http://extras.springer.com/.
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