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Preface

Digital signal processing (DSP) is concerned with the theoretical and practical aspects of representing
information-bearing signals in a digital form and with using computers, special-purpose hardware and
software, or similar platforms to extract information, process it, or transform it in useful ways. Areas
where DSP has made a significant impact include telecommunications, wireless and mobile communi-
cations, multimedia applications, user interfaces, medical technology, digital entertainment, radar and
sonar, seismic signal processing, and remote sensing, to name just a few.

Given the widespread use of DSP, a need developed for an authoritative reference, written by the top
experts in the world, that would provide information on both theoretical and practical aspects in a
manner that was suitable for a broad audience—ranging from professionals in electrical engineering,
computer science, and related engineering and scientific professions to managers involved in technical
marketing, and to graduate students and scholars in the field. Given the abundance of basic and
introductory texts on DSP, it was important to focus on topics that were useful to engineers and scholars
without overemphasizing those topics that were already widely accessible. In short, the DSP handbook
was created to be relevant to the needs of the engineering community.

A task of this magnitude could only be possible through the cooperation of some of the foremost DSP
researchers and practitioners. That collaboration, over 10 years ago, produced the first edition of the
successful DSP handbook that contained a comprehensive range of DSP topics presented with a clarity of
vision and a depth of coverage to inform, educate, and guide the reader. Indeed, many of the chapters,
written by leaders in their field, have guided readers through a unique vision and perception garnered by
the authors through years of experience.

The second edition of the DSP handbook consists of volumes on Digital Signal Processing Fundamen-
tals; Video, Speech, and Audio Signal Processing and Associated Standards; and Wireless, Networking,
Radar, Sensor Array Processing, and Nonlinear Signal Processing to ensure that each part is dealt with in
adequate detail, and that each part is then able to develop its own individual identity and role in terms of
its educational mission and audience. I expect each part to be frequently updated with chapters that reflect
the changes and new developments in the technology and in the field. The distribution model for the DSP
handbook also reflects the increasing need by professionals to access content in electronic form anywhere
and at anytime.

Digital Signal Processing Fundamentals, as the name implies, provides a comprehensive coverage of the
basic foundations of DSP and includes the following parts: Signals and Systems; Signal Representation
and Quantization; Fast Algorithms and Structures; Digital Filtering; Statistical Signal Processing;
Adaptive Filtering; Inverse Problems and Signal Reconstruction; and Time–Frequency and Multirate
Signal Processing.

ix



I look forward to suggestions on how this handbook can be improved to serve you better.
MATLAB1 is a registered trademark of The MathWorks, Inc. For product information, please

contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

x Preface



Editor

Vijay K. Madisetti is a professor in the School of Electrical and Com-
puter Engineering at the Georgia Institute of Technology in Atlanta. He
teaches graduate and undergraduate courses in digital signal processing
and computer engineering, and leads a strong research program in digital
signal processing, telecommunications, and computer engineering.

Dr. Madisetti received his BTech (Hons) in electronics and electrical
communications engineering in 1984 from the Indian Institute of Tech-
nology, Kharagpur, India, and his PhD in electrical engineering and
computer sciences in 1989 from the University of California at Berkeley.

He has authored or edited several books in the areas of digital signal
processing, computer engineering, and software systems, and has served extensively as a consultant to
industry and the government. He is a fellow of the IEEE and received the 2006 Frederick Emmons Terman
Medal from the American Society of Engineering Education for his contributions to electrical engineering.

xi





Contributors

Joseph Arrowood
IvySys Technologies, LLC
Arlington, Virginia

Bruce W. Bomar
Department of Electrical and Computer

Engineering
University of Tennessee Space Institute
Tullahoma, Tennessee

C. Sidney Burrus
Department of Electrical and Computer

Engineering
Rice University
Houston, Texas

Zhi Ding
Department of Electrical and Computer

Engineering
University of California
Davis, California

Petar M. Djuri�c
Department of Electrical and Computer

Engineering
Stony Brook University
Stony Brook, New York

John F. Doherty
Department of Electrical Engineering
The Pennsylvania State University
University Park, Pennsylvania

Scott C. Douglas
Department of Electrical Engineering
Southern Methodist University
Dallas, Texas

Pierre Duhamel
CNRS
Gif sur Yvette, France

Kevin R. Farrell
T-NETIX, Inc.
Englewood, Colorado

Ephraim Feig
Innovations-to-Market
San Diego, California

Georgios B. Giannakis
Department of Electrical and Computer

Engineering
University of Minnesota
Minneapolis, Minnesota

Cormac Herley
Microsoft Research
Redmond, Washington

Gabor T. Herman
Department of Computer Science
City University of New York
New York, New York

Alfred Hero
Department of Electrical Engineering

and Computer Sciences
University of Michigan
Ann Arbor, Michigan

W. Kenneth Jenkins
Department of Electrical Engineering
The Pennsylvania State University
University Park, Pennsylvania

xiii



Thomas Kailath
Department of Electrical Engineering
Stanford University
Stanford, California

Ton Kalker
HP Labs
Palo Alto, California

Lina J. Karam
Department of Electrical, Computer and Energy

Engineering
Arizona State University
Tempe, Arizona

Aggelos K. Katsaggelos
Department of Electrical Engineering

and Computer Science
Northwestern University
Evanston, Illinois

Steven M. Kay
Department of Electrical, Computer,

and Biomedical Engineering
University of Rhode Island
Kingston, Rhode Island

Stephen Kosonocky
Advanced Micro Devices
Fort Collins, Colorado

Jelena Kova�cevi�c
Lucent Technologies
Bell Laboratories
Murray Hill, New Jersey

Vic Larson
Science Applications International Corporation
Arlington, Virginia

B.P. Lathi
Department of Electrical Engineering
California State University
Sacramento, California

Vijay K. Madisetti
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia

Richard J. Mammone
Department of Electrical and Computer

Engineering
Rutgers University
Piscataway, New Jersey

Daniel F. Marshall
Raytheon Company
Lexington, Massachusetts

James H. McClellan
Department of Electrical and Computer

Engineering
Georgia Institute of Technology
Atlanta, Georgia

Jerry M. Mendel
Department of Electrical Engineering
University of Southern California
Los Angeles, California

Kambiz Nayebi
Beena Vision Systems Inc.
Roswell, Georgia

Christine Podilchuk
CAIP
Rutgers University
Piscataway, New Jersey

K. Venkatesh Prasad
Ford Motor Company
Detroit, Michigan

Ricardo L. de Queiroz
Engenharia Eletrica
Universidade de Brasilia
Brasília, Brazil

C. Radhakrishnan
Department of Electrical Engineering
The Pennsylvania State University
University Park, Pennsylvania

Ravi P. Ramachandran
Department of Electrical and Computer

Engineering
Rowan University
Glassboro, New Jersey

xiv Contributors



Tami Randolph
Department of Electrical and Computer

Engineering
Georgia Institute of Technology
Atlanta, Georgia

Markus Rupp
Mobile Communications Department
Technical University of Vienna
Vienna, Austria

Ali H. Sayed
Department of Electrical Engineering
University of California at Los Angeles
Los Angeles, California

Ivan W. Selesnick
Department of Electrical and Computer

Engineering
Polytechnic University
Brooklyn, New York

Mark J.T. Smith
Department of Electrical and Computer

Engineering
Purdue University
West Lafayette, Indiana

Iraj Sodagar
PacketVideo
San Diego, California

Clay Stewart
Science Applications International

Corporation
Arlington, Virginia

A.C. Surendran
Lucent Technologies
Bell Laboratories
Murray Hill, New Jersey

Charles W. Therrien
Naval Postgraduate School
Monterey, California

Jitendra K. Tugnait
Department of Electrical and Computer

Engineering
Auburn University
Auburn, Alabama

Martin Vetterli
École Polytechnique
Lausanne, Switzerland

Douglas B. Williams
Department of Electrical and Computer

Engineering
Georgia Institute of Technology
Atlanta, Georgia

Geoffrey A. Williamson
Department of Electrical and Computer

Engineering
Illinois Institute of Technology
Chicago, Illinois

Peter Xiao
NeoParadigm Labs. Inc.
San Jose, California

Andrew E. Yagle
Department of Electrical Engineering

and Computer Science
University of Michigan
Ann Arbor, Michigan

Jun Zhang
Department of Electrical Engineering

and Computer Science
University of Milwaukee
Milwaukee, Wisconsin

Xiaoyu Zhang
CAIP
Rutgers University
Piscataway, New Jersey

Contributors xv





I
Signals and Systems
Vijay K. Madisetti
Georgia Institute of Technology

Douglas B. Williams
Georgia Institute of Technology

1 Fourier Methods for Signal Analysis and Processing W. Kenneth Jenkins ................. 1-1
Introduction . Classical Fourier Transform for Continuous-Time Signals . Fourier Series
Representation of Continuous Time Periodic Signals . Discrete-Time Fourier Transform .

Discrete Fourier Transform . Family Tree of Fourier Transforms . Selected Applications
of Fourier Methods . Summary . References

2 Ordinary Linear Differential and Difference Equations B.P. Lathi .............................. 2-1
Differential Equations . Difference Equations . References

3 Finite Wordlength Effects Bruce W. Bomar ......................................................................... 3-1
Introduction . Number Representation . Fixed-Point Quantization Errors .

Floating-Point Quantization Errors . Roundoff Noise . Limit Cycles . Overflow
Oscillations . Coefficient Quantization Error . Realization Considerations . References

T HE STUDY OF ‘‘SIGNALS AND SYSTEMS’’ has formed a cornerstone for the development
of digital signal processing and is crucial for all of the topics discussed in this book. While
the reader is assumed to be familiar with the basics of signals and systems, a small portion

is reviewed in this section with an emphasis on the transition from continuous time to discrete time.
The reader wishing more background may find in it any of the many fine textbooks in this area, for
example [1–6].

In Chapter 1, many important Fourier transform concepts in continuous and discrete time are
presented. The discrete Fourier transform, which forms the backbone of modern digital signal processing
as its most common signal analysis tool, is also described, together with an introduction to the fast
Fourier transform algorithms.

In Chapter 2, the author, B.P. Lathi, presents a detailed tutorial of differential and difference equations
and their solutions. Because these equations are the most common structures for both implementing and
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modeling systems, this background is necessary for the understanding of many of the later topics in this
book. Of particular interest are a number of solved examples that illustrate the solutions to these
formulations.

While most software based on workstations and PCs is executed in single or double precision
arithmetic, practical realizations for some high throughput digital signal processing applications must
be implemented in fixed point arithmetic. These low cost implementations are still of interest to a wide
community in the consumer electronics arena. Chapter 3 describes basic number representations, fixed
and floating point errors, roundoff noise, and practical considerations for realizations of digital signal
processing applications, with a special emphasis on filtering.

References

1. Jackson, L.B., Signals, Systems, and Transforms, Addison-Wesley, Reading, MA, 1991.
2. Kamen, E.W. and Heck, B.S., Fundamentals of Signals and Systems Using MATLAB, Prentice-

Hall, Upper Saddle River, NJ, 1997.
3. Oppenheim, A.V. and Willsky, A.S., with Nawab, S.H., Signals and Systems, 2nd ed., Prentice-Hall,

Upper Saddle River, NJ, 1997.
4. Strum, R.D. and Kirk, D.E., Contemporary Linear Systems Using MATLAB, PWS Publishing,

Boston, MA, 1994.
5. Proakis, J.G. and Manolakis, D.G., Introduction to Digital Signal Processing, Macmillan, New York;

Collier Macmillan, London, UK, 1988.
6. Oppenheim, A.V. and Schafer, R.W., Discrete Time Signal Processing, Prentice-Hall, Englewood

Cliffs, NJ, 1989.
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Fourier Methods

for Signal Analysis
and Processing

W. Kenneth Jenkins
The Pennsylvania State
University

1.1 Introduction........................................................................................... 1-1
1.2 Classical Fourier Transform for Continuous-Time Signals........ 1-2

Properties of the Continuous-Time Fourier Transform .

Sampling Models for Continuous- and Discrete-Time Signals .

Fourier Spectrum of a Continuous Time Sampled Signal .

Generalized Complex Fourier Transform

1.3 Fourier Series Representation of Continuous
Time Periodic Signals.......................................................................... 1-7
Exponential Fourier Series . Trigonometric Fourier Series .

Convergence of the Fourier Series . Fourier Transform of Periodic
Continuous Time Signals

1.4 Discrete-Time Fourier Transform.................................................. 1-11
Properties of the Discrete-Time Fourier Transform . Relationship
between the CT and DT Spectra

1.5 Discrete Fourier Transform ............................................................. 1-15
Properties of the DFT . Fast Fourier Transform Algorithms

1.6 Family Tree of Fourier Transforms ............................................... 1-19
Walsh–Hadamard Transform

1.7 Selected Applications of Fourier Methods ................................... 1-20
DFT (FFT) Spectral Analysis . FIR Digital Filter Design . Fourier
Block Processing in Real-Time Filtering Applications .

Fourier Domain Adaptive Filtering . Adaptive Fault Tolerance
via Fourier Domain Adaptive Filtering

1.8 Summary ..............................................................................................1-28
References ........................................................................................................1-29

1.1 Introduction

The Fourier transform is a mathematical tool that is used to expand signals into a spectrum of sinusoidal
components to facilitate signal representation and the analysis of system performance. In certain
applications the Fourier transform is used for spectral analysis, and while in others it is used for spectrum
shaping that adjusts the relative contributions of different frequency components in the filtered result.
In certain applications the Fourier transform is used for its ability to decompose the input signal into
uncorrelated components, so that signal processing can be more effectively implemented on the indi-
vidual spectral components. Different forms of the Fourier transform, such as the continuous-time (CT)
Fourier series, the CT Fourier transform, the discrete-time Fourier transform (DTFT), the discrete
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Fourier transform (DFT), and the fast Fourier transform (FFT) are applicable in different circumstances.
One goal of this chapter is to clearly define the various Fourier transforms, to discuss their properties, and
to illustrate how each form is related to the others in the context of a family tree of Fourier signal
processing methods.

Classical Fourier methods such as the Fourier series and the Fourier integral are used for CT signals
and systems, i.e., systems in which the signals are defined at all values of t on the continuum
�1 < t < 1. A more recently developed set of discrete Fourier methods, including the DTFT and
the DFT, are extensions of basic Fourier concepts for discrete-time (DT) signals and systems. A DT signal
is defined only for integer values of n in the range �1 < n < 1. The class of DT Fourier methods is
particularly useful as a basis for digital signal processing (DSP) because it extends the theory of classical
Fourier analysis to DT signals and leads to many effective algorithms that can be directly implemented on
general computers or special purpose DSP devices.

1.2 Classical Fourier Transform for Continuous-Time Signals

A CT signal s(t) and its Fourier transform S(jv) form a transform pair that are related by Equations 1.1a
and b for any s(t) for which the integral (Equation 1.1a) converges:

S( jv) ¼
ð1

�1
s(t)e�jvtdt (1:1a)

s(t) ¼ 1
2P

ð1
�1

S( jv)e jvtdv: (1:1b)

In most literature Equation 1.1a is simply called the Fourier transform, whereas Equation 1.1b is called
the Fourier integral. The relationship S(jv) ¼ Ffs(t)g denotes the Fourier transformation of s(t), where
Ff�g is a symbolic notation for the integral operator, and where v is the continuous frequency variable
expressed in rad/s. A transform pair s(t) $ S(jv) represents a one-to-one invertible mapping as long as
s(t) satisfies conditions which guarantee that the Fourier integral converges.

In the following discussion the symbol d(t) is used to denote a CT impulse function that is defined to
be zero for all t 6¼ 0, undefined for t ¼ 0, and has unit area when integrated over the range
�1 < t < 1. From Equation 1.1a it is found that Ffd(t � t0)g ¼ e�jvt0 due to the well known sifting
property of d(t). Similarly, from Equation 1.1b we find that F�1f2pd(v� v0)g ¼ e jv0t , so that
d(t � t0) $ e�jvt0 and e jv0 t $ 2pd(v� v0) are Fourier transform pairs. Using these relationships it is
easy to establish the Fourier transforms of cos (v0t) and sin (v0t), as well as many other useful
waveforms, many of which are listed in Table 1.1.

The CT Fourier transform is useful in the analysis and design of CT systems, i.e., systems that process
CT signals. Fourier analysis is particularly applicable to the design of CT filters which are characterized
by Fourier magnitude and phase spectra, i.e., by jH( jv)j and arg H( jv), where H( jv) is commonly called
the frequency response of the filter.

1.2.1 Properties of the Continuous-Time Fourier Transform

The CT Fourier transform has many properties that make it useful for the analysis and design of linear
CT systems. Some of the more useful properties are summarized in this section, while a more complete list of
the CT Fourier transform properties is given in Table 1.2. Proofs of these properties are found in Oppenheim
et al. (1983) and Bracewell (1986). Note that Ff�g denotes the Fourier transform operation, F�1f�g denotes
the inverse Fourier transform operation, and ‘‘*’’ denotes the linear convolution operation defined as
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TABLE 1.1 CT Fourier Transform Pairs

Single Fourier Transform Fourier Series Coefficients (If Periodic)

Pþ1

k¼�1
akeavd 2p

Pþ1

k¼�1
akd(vk � v0)

ak

e jv0 t 2pd(v� v0) a1 ¼ 1

ak ¼ 0, otherwise

cos v0t p[d(v� v0)þ d(vþ v0)] a1 ¼ a�1 ¼ 1=2

ak ¼ 0, otherwise

sin v0t
p

j
[d(v� v0)þ d(vþ v0)] a1 ¼ �a�1 ¼ 1=2j

ak ¼ 0, otherwise

x tð Þ ¼ 1 2pd(v) a0 ¼ 1, ak ¼ 0, k 6¼ 0

(has this Fourier series representation
for any choice of T0 > 0)

Periodic square wave

x tð ) ¼ 1, tj j < T1

0,T1 < tj j � T0
2

( Pþ1

k¼�1

2 sin kv0T1

k
d(vkv0)

v0T1

p
sin c

kv0T1

p

� �
¼ sin kv0T1

kp

and x(t þ T0) ¼ x(t)Pþ1

n¼�1
d(t � nT)

2p
T

Xþ1

k¼�1
k ¼ �1d v� 2pk

T

� �
ak ¼ 1

T
for all k

x(t) ¼ 1, tj j < T1

0, tj j > T1

�
2T1 sin c

vT1

p

� �
¼ 2 sinvT1

v
—

W
p

sin c
Wt
p

� �
¼ sinWt

pt
X vð Þ ¼ 1, vj j < W

0, vj j > W

�
—

d(t) 1 —

u(t)
1
jv

þ pd(v) —

d(t � t0) e�jvr0 —

e�aru(t), Re af g > 0
1

aþ jv
—

te�atu tð Þ, Refag > 0
1

(aþ jv)2
—

tn�1

n� 1ð Þe
�atu(t),

1
(aþ jv)n

—

Re af g > 0

Source: Oppenheim, A.V. et al., Signals and Systems, Prentice-Hall, Englewood Cliffs, NJ, 1983. With
permission.

f1(t) * f2(t) ¼
ð1

�1
f1(t)f2(t � t)dt:

1. Linearity (a and b are complex constants) Ffaf1(t)þ bf2(t)g ¼ aFf f1(t)g þ bFf f2(t)g
2. Time-shifting Ff f (t � t0)g ¼ e�jvt0Ff f (t)g
3. Frequency-shifting e jv0tF�1fFfj(v� v0)g
4. Time-domain convolution Ff f1(t) * f2(t)g ¼ Ff f1(t)g � Ff f2(t)g
5. Frequency-domain convolution Ff f1(t) � f2(t)g ¼ 1

2P Ff f1(t)g * Ff f2(t)g
6. Time-differentiation �jvF( jv) ¼ Ffd f (t)½ �=dtg
7. Time-integration F

Ðt
�1

f (t)dt

� �
¼ 1

jv F( jv)þ pF(0)d(v)
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The above properties are particularly useful in CT system analysis and design, especially when the system
characteristics are easily specified in the frequency domain, as in linear filtering. Note that properties 1, 6,
and 7 are useful for solving differential or integral equations. Property 4 (time-domain convolution)
provides the basis for many signal processing algorithms, since many systems can be specified directly by
their impulse or frequency response. Property 3 (frequency-shifting) is useful for analyzing the perform-
ance of communication systems where different modulation formats are commonly used to shift spectral
energy among different frequency bands.

TABLE 1.2 Properties of the CT Fourier Transform

Name If F f(t) ¼ F( jv), then:

Definition F( jv) ¼
ð1

�1
f (t)e�jvtdt

f (t) ¼ 1
2p

ð1
�1

F( jv)e jvtdv

Superposition F [af1(t) þ bf2(t)] ¼ aF1( jv) þ bF2( jv)

Simplification if:

(a) f(t) is even F( jv) ¼ 2
ð1
0

f (t) cosvt dt

(b) f(t) is odd F( jv) ¼ 2j
ð1
0

f (t) sinvt dt

Negative t F f(�t) ¼ F* ( jv)

Scaling:

(a) Time Ff (at) ¼ 1
jaj F

jv
a

� �
(b) Magnitude Faf(t) ¼ aF( jv)

Differentiation F dn

dtn
f (t)

� �
¼ ( jv)nF( jv)

Integration F
ðt

�1
f (x)dx

2
4

3
5 ¼ 1

jv
F( jv)þ pF(0)d(v)

Time shifting F f(t � a) ¼ F( jv)e�jva

Modulation F f(t)e jv0t ¼ F[ j(v � v0)]

F f (t) cosv0t ¼ 1
2
{F[ j(v� v0)]þ F[ j(vþ v0)]}

F f (t) sinv0t ¼ 1
2
j{F[ j(v� v0)]þ F[ j(vþ v0)]}

Time convolution F�1[F1( jv)F2( jv)] ¼
ð1

�1
f1(t)f2(t � t)dt

Frequency convolution F [ f1(t)f2(t)] ¼ 1
2p

ð1
�1

F1( jl)F2[ j(v� l)]dl

Source: Van Valkinburg, M.E., Network Analysis, 3rd ed., Prentice Hall,
Englewood Cliffs, NJ, 1974. With permission.
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1.2.2 Sampling Models for Continuous- and Discrete-Time Signals

The relationship between the CT and the DT domains is characterized by the operations of sampling and
reconstruction. If sa(t) denotes a signal s(t) that has been uniformly sampled every T seconds, then the
mathematical representation of sa(t) is given by

sa(t) ¼
Xn¼1

n¼�1
s(t)d(t � nT), (1:2a)

where d(t) is the CT impulse function defined previously. Since the only places where the product
s(t)d(t � nT) is not identically equal to zero are at the sampling instances, s(t) in Equation 1.2a can be
replaced with s(nT) without changing the overall meaning of the expression. Hence, an alternate
expression for sa(t) that is often useful in Fourier analysis is

sa(t) ¼
Xn¼1

n¼�1
s(nT)d(t � nT): (1:2b)

The CT sampling model sa(t) consists of a sequence of CT impulse functions uniformly spaced at
intervals of T seconds and weighted by the values of the signal s(t) at the sampling instants, as depicted in
Figure 1.1. Note that sa(t) is not defined at the sampling instants because the CT impulse function itself is
not defined at t ¼ 0. However, the values of s(t) at the sampling instants are imbedded as ‘‘area under the
curve’’ of sa(t), and as such represent a useful mathematical model of the sampling process. In the DT
domain, the sampling model is simply the sequence defined by taking the values of s(t) at the sampling
instants, i.e.,

s[n] ¼ s(t)jt¼nT : (1:3)

In contrast to sa(t), which is not defined at the sampling instants, s[n] is well defined at the sampling
instants, as illustrated in Figure 1.2. From this discussion it is now clear that sa(t) and s[n] are different
but equivalent models of the sampling process in the CT and DT domains, respectively. They are both
useful for signal analysis in their corresponding domains. It will be shown later that their equivalence is
established by the fact that they have equal spectra in the Fourier domain, and that the underlying CT
signal from which sa(t) and s[n] are derived can be recovered from either sampling representation
provided that a sufficiently high sampling rate is used in the sampling operation.

–2T –T 0 T 2T

s(–2T ) s(–T )

sa(t)

s(0) s(T ) s(2T )

FIGURE 1.1 CT model of a sampled CT signal.
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1.2.3 Fourier Spectrum of a Continuous Time Sampled Signal

The operation of uniformly sampling a CT signal s(t) at every T seconds is characterized by Equations
1.2a and b, where d(t) is the CT time impulse function defined earlier:

sa tð ) ¼
X1

n¼�1
sa(t)d(t � nT) ¼

X1
n¼�1

sa(nT)d(t � nT):

Since sa(t) is a CT signal it is appropriate to apply the CT Fourier transform to obtain an expression for
the spectrum of the sampled signal:

Ffsa(t)g ¼ F
X1

n¼�1
sa(nT)d(t � nT)

( )
¼

X1
n¼�1

sa(nT)[e
jvT ]

�n
: (1:4)

Since the expression on the right-hand side of Equation 1.4 is a function of e jvT it is customary to express
the transform as F(e jvT ) ¼ Ffsa(t)g. If v is replaced with a normalized frequency v0 ¼ v=T , so that
�p < v0 < p, then the right-hand side of Equation 1.4 becomes identical to the DTFT that is defined
directly for the sequence s[n] ¼ sa(nT).

1.2.4 Generalized Complex Fourier Transform

The CT Fourier transform characterized by Equation 1.1 can be generalized by considering the variable
jv to be the special case of u ¼ sþ jv with s ¼ 0, writing Equation 1.1 in terms of u, and interpreting u
as a complex frequency variable. The resulting complex Fourier transform pair is given by Equations 1.5a
and b (Bracewell 1986):

s(t) ¼ 1
2Pj

ðsþj1

s�j1
S(u)e jutdu (1:5a)

S(u) ¼
ð1

�1
s(t)e�jutdt: (1:5b)

The set of all values of u for which the integral of Equation 1.5b converges is called the region of
convergence, denoted ROC. Since the transform S(u) is defined only for values of u within the ROC, the
path of integration in Equation 1.5a must be defined so the entire path lies within the ROC. In some

s[n]

s(0)
s(–T )

–2 –1 0 1

s(2T )

s(T )s(–2T )

2

FIGURE 1.2 DT model of a sampled CT signal.
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literature this transform pair is called the bilateral Laplace transform because it is the same result
obtained by including both the negative and positive portions of the time axis in the classical Laplace
transform integral. The complex Fourier transform (bilateral Laplace transform) is not often used in
solving practical problems, but its significance lies in the fact that it is the most general form that
represents the place where Fourier and Laplace transform concepts merge together. Identifying this
connection reinforces the observation that Fourier and Laplace transform concepts share common
properties because they result from placing different constraints on the same parent form.

1.3 Fourier Series Representation of Continuous
Time Periodic Signals

The classical Fourier series representation of a periodic time domain signal s(t) involves an expansion of
s(t) into an infinite series of terms that consist of sinusoidal basis functions, each weighted by a complex
constant (Fourier coefficient) that provides the proper contribution of that frequency component to the
complete waveform. The conditions under which a periodic signal s(t) can be expanded in a Fourier
series are known as the Dirichlet conditions. They require that in each period s(t) has a finite number of
discontinuities, a finite number of maxima and minima, and satisfies the absolute convergence criterion
of Equation 1.6 (VanValkenburg 1974):

ðT=2
�T=2

s(t)j jdt < 1: (1:6)

It is assumed throughout the following discussion that the Dirichlet conditions are satisfied by all
functions that will be represented by a Fourier series.

1.3.1 Exponential Fourier Series

If s(t) is a CT periodic signal with period T the exponential Fourier series expansion of s(t) is given by

s(t) ¼
X1

n¼�1
ane

jnv0t , (1:7a)

where v0 ¼ 2p=T . The an’s are the complex Fourier coefficients given by

an ¼ 1
T

ðT2
�T
2

s(t)e�jnv0tdt �1 < n < 1: (1:7b)

For every value of t where s(t) is continuous the right-hand side of Equation 1.7a converges to s(t). At
values of t where s(t) has a finite jump discontinuity, the right-hand side of Equation 1.7a converges to
the average of s(t�) and s(tþ), where s(t�) ¼ lime!0 (t � e) and s(tþ) ¼ lime!0 (t þ e).

For example, the Fourier series expansion of the sawtooth waveform illustrated in Figure 1.3 is
characterized by T ¼ 2p,v0 ¼ 1, a0 ¼ 0, and an ¼ a�n ¼ A cos(np)=( jnp) for n ¼ 1, 2, . . . . The coef-
ficients of the exponential Fourier series given by Equation 1.5b can be interpreted as a spectral
representation of s(t), since the anth coefficient represents the contribution of the (nv0)th frequency
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component to the complete waveform. Since the an’s are complex valued, the Fourier domain (spectral)
representation has both magnitude and phase spectra. For example, the magnitudes of the an’s are
plotted in Figure 1.4 for the saw tooth waveform of Figure 1.3 (Example 1). The fact that the an’s
constitute a discrete set is consistent with the fact that a periodic signal has a spectrum that contains
only integer multiples of the fundamental frequency v0. The equation pair given by Equations 1.5a
and b can be interpreted as a transform pair that is similar to the CT Fourier transform for periodic
signals. This leads to the observation that the classical Fourier series can be interpreted as a special
transform that provides a one-to-one invertible mapping between the discrete-spectral domain and the
CT domain.

1.3.2 Trigonometric Fourier Series

Although the complex form of the Fourier series expansion is useful for complex periodic signals, the
Fourier series can bemore easily expressed in terms of real-valued sine and cosine functions for real-valued
periodic signals. In the following discussion it is assumed that the signal s(t) is real-valued. When s(t)
is periodic and real-valued it is convenient to replace the complex exponential Fourier series with
a trigonometric expansion that contains sin (v0t) and cos (v0t) terms with corresponding real-valued
coefficients (VanValkenburg 1974). The trigonometric form of the Fourier series for a real-valued signal
s(t) is given by

s tð ) ¼
X1
n¼0

bn cos (nv0)þ
X1
n¼1

cn sin (nv0), (1:8a)

where v0 ¼ 2p=T . In Equation 1.8a the bn’s and cn’s are real-valued Fourier coefficients determined by

–2π –π π 2π

A

–A

0

s(t)

FIGURE 1.3 Periodic CT signal used in Fourier series Example 1.

–4 –3 –2 –1 0

A/2π

A/π

|an|

1 2 3 4 n

FIGURE 1.4 Magnitude of the Fourier coefficients for Example 1.
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b0 ¼ 1
T

ðT2
�T
2

s(t)dt

bn ¼ 2
T

ðT2
�T
2

s(t) cos (nv0t)dt, n ¼ 1, 2, . . .

and cn ¼ 2
T

ðT2
�T
2

s(t) sin (nv0t)dt, n ¼ 1, 2, . . . :

(1:8b)

An arbitrary real-valued signal s(t) can be expressed as a sum of even and odd components, s(t) ¼ seven(t)þ
sodd(t), where seven(t) ¼ seven(�t) and sodd(t) ¼ �sodd(�t), and where seven(t) ¼ [s(t)þ s(�t)]=2 and
sodd(t) ¼ [s(t)� s(�t)]=2. For the trigonometric Fourier series, it can be shown that seven(t) is represented
by the (even) cosine terms in the infinite series, sodd(t) is represented by the (odd) sine terms, and b0 is
the DC level of the signal. Therefore, if it can be determined by inspection that a signal has a DC level, or if
it is even or odd, then the correct form of the trigonometric series can be chosen to simplify the
analysis. For example, it is easily seen that the signal shown in Figure 1.5 (Example 2) is an even
signal with a zero DC level, and therefore, can be accurately represented by the cosine series with
bn ¼ 2A sin (pn=2)=(pn=2), n ¼ 1, 2, . . ., as shown in Figure 1.6. In contrast note that the sawtooth
waveform used in the previous example is an odd signal with zero DC level, so that it can be completely
specified by the sine terms of the trigonometric series. This result can be demonstrated by pairing
each positive frequency component from the exponential series with its conjugate partner, i.e.,
cn ¼ sin (nv0t) ¼ ane jnvot þ a�ne�jnvot , whereby it is found that cn ¼ 2A cos (np)=(np) for this example.
In general it is found that an ¼ (bn � jcn)=2 for n ¼ 1, 2, . . . , a0 ¼ b0, and a�n ¼ an*. The trigonometric

s(t)
A

0 π 2π–π–2π

FIGURE 1.5 Periodic CT signal used in Fourier series Example 2.

bn

4A

4A/π

–3 –2 –1 0 1 2 3 n

FIGURE 1.6 Fourier coefficients for example of Figure 1.5.
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Fourier series is common in the signal processing literature because it replaces complex coefficients with real
ones and often results in a simpler and more intuitive interpretation of the results.

1.3.3 Convergence of the Fourier Series

The Fourier series representation of a periodic signal is an approximation that exhibits mean squared
convergence to the true signal. If s(t) is a periodic signal of period T, and s0(t) denotes the Fourier series
approximation of s(t), then s(t) and s0(t) are equal in the mean square sense if

mse ¼
ðT2
�T
2

s(t)� s0(t)j j2dt ¼ 0: (1:9)

Even with Equation 1.9 is satisfied, mean square error convergence does not guarantee that s(t) ¼ s0(t) at
every value of t. In particular, it is known that at values of t where s(t) is discontinuous the Fourier series
converges to the average of the limiting values to the left and right of the discontinuity. For example if t0
is a point of discontinuity, then s0(t0) ¼ [s(t�0 )þ s(tþ0 )]=2, where s(t

�
0 ) and s(tþ0 ) were defined previously

(note that at points of continuity, this condition is also satisfied by the very definition of continuity).
Since the Dirichlet conditions require that s(t) have at most a finite number of points of discontinuity in
one period, the set St such that s(t) 6¼ s0(t) within one period contains a finite number of points, and St is
a set of measure zero in the formal mathematical sense. Therefore s(t) and its Fourier series expansion
s0(t) are equal almost everywhere, and s(t) can be considered identical to s0(t) for analysis in most
practical engineering problems.

The condition of convergence almost everywhere is satisfied only in the limit as an infinite number of
terms are included in the Fourier series expansion. If the infinite series expansion of the Fourier series is
truncated to a finite number of terms, as it must always be in practical applications, then the approxi-
mation will exhibit an oscillatory behavior around the discontinuity, known as the Gibbs phenomenon
(VanValkenburg 1974). Let s0N(t) denote a truncated Fourier series approximation of s(t), where only
the terms in Equation 1.7a from n ¼ �N to n ¼ N are included if the complex Fourier series represen-
tation is used, or where only the terms in Equation 1.8a from n ¼ 0 to n ¼ N are included if the
trigonometric form of the Fourier series is used. It is well known that in the vicinity of a discontinuity at
t0 the Gibbs phenomenon causes s0N (t) to be a poor approximation to s(t). The peak magnitude of the
Gibbs oscillation is 13% of the size of the jump discontinuity s(t�0 )� s(tþ0 ) regardless of the number of
terms used in the approximation. As N increases, the region that contains the oscillation becomes
more concentrated in the neighborhood of the discontinuity, until, in the limit as N approaches infinity,
the Gibbs oscillation is squeezed into a single point of mismatch at t0. The Gibbs phenomenon is
illustrated in Figure 1.7 where an ideal lowpass frequency response is approximated by impulse response

0

Truncated
filter

|H
(e

jω
)|

ωb

ω

FIGURE 1.7 Gibbs phenomenon in a lowpass digital filter caused by truncating the impulse response to N terms.
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function that has been limited to having only N nonzero coefficients, and hence the Fourier series
expansion contains only a finite number of terms.

An important property of the Fourier series is that the exponential basis functions e jnvot (or sin (nv0t)
and cos (nv0t) for the trigonometric form) for n ¼ 0, �1, �2, . . . (or n ¼ 0, 1, 2, . . . for the trigonometric
form) constitute an ‘‘orthonormal set,’’ i.e., tnk ¼ 1 for n ¼ k, and tnk ¼ 0 for n 6¼ k, where

tnk ¼ 1
T

ðT2
�T
2

(e�jnv0t)(e jkv0t)dt:

As terms are added to the Fourier series expansion, the orthogonality of the basis functions guarantees
that the approximation error decreases in the mean square sense, i.e., that mseN decreases monotonically
as N is increased, where

mseN ¼
ðT2
�T
2

s(t)� s0N (t)
�� ��2dt:

Therefore, when applying Fourier series analysis including more terms always improves the accuracy of
the signal representation.

1.3.4 Fourier Transform of Periodic Continuous Time Signals

For a periodic signal s(t) the CT Fourier transform can then be applied to the Fourier series expansion of
s(t) to produce a mathematical expression for the ‘‘line spectrum’’ that is characteristic of periodic signals:

Ffs(t)g ¼ F
X1

n¼�1
ane

jnv0t

( )
¼ 2p

X1
n¼�1

and(v� v0): (1:10)

The spectrum is shown in Figure 1.8. Note the similarity between the spectral representation of Figure 1.8
and the plots of the Fourier coefficients in Figures 1.4 and 1.6, which were heuristically interpreted as a
line spectrum. Figures 1.4 and 1.6 are different from Figure 1.8 but they are equivalent representations of
the Fourier line spectrum that is characteristic of periodic signals.

1.4 Discrete-Time Fourier Transform

The DTFT is obtained directly in terms of the sequence samples s[n] by taking the relationship obtained
in Equation 1.4 to be the definition of the DTFT. Letting T ¼ 1 so that the sampling period is removed
from the equations and the frequency variable is replaced with a normalized frequency v0 ¼ vT , the
DTFT pair is defined by Equation 1.11. In order to simplify notation it is not customary to distinguish

2πc–2

–2 –1 0 1 2 n

2πc–1 2πc0 2πc1 2πc2

F {s(t)}

FIGURE 1.8 Spectrum of the Fourier representation of a periodic signal.
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between v and v0, but rather to rely on the context of the discussion to determine whether v refers to the
normalized (T ¼ 1) or the un-normalized (T 6¼ 1) frequency variable:

S(e jv
0
) ¼

X1
n¼�1

s[n]e�jv0n
(1:11a)

s[n] ¼ 1
2P

ðP
�P

S(e jv
0
)e jnv

0
dv0: (1:11b)

The spectrum S(e jv
0
) is periodic inv0 with period 2p. The fundamental period in the range�p < v0 � p,

referred to as the baseband, is the useful frequency range of the DT system because frequency components
in this range can be represented unambiguously in sampled form (without aliasing error). In much of the
signal processing literature the explicit primed notation is omitted from the frequency variable. However,
the explicit primed notation will be used throughout this section because there is a potential for confusion
when so many related Fourier concepts are discussed within the same framework.

By comparing Equations 1.4 and 1.11a, and noting that v0 ¼ vT , it is seen that

Ffsa(t)g ¼ DTFTfs[n]g,

where s[n] ¼ sa(t)jt¼nT . This demonstrates that the spectrum of sa(t) as calculated by the CT Fourier
transform is identical to the spectrum of s[n] as calculated by the DTFT. Therefore although sa(t) and
s[n] are quite different sampling models, they are equivalent in the sense that they have the same Fourier
domain representation. A list of common DTFT pairs is presented in Table 1.3. Just as the CT Fourier

TABLE 1.3 Some Basic DTFT Pairs

Sequence Fourier Transform

1. d[n] 1

2. d[n� n0] e�jvn0

3. 1(�1 < n < 1)
P1

k¼�1
2pd(vþ 2pk)

4. anu[n] ( aj j < 1)
1

1� ae�jv

5. u[n]
1

1� e�jv
þ

X1
k¼�1

pd vþ 2pkð Þ

6. (nþ 1)anu[n] ( aj j < 1)
1

(1� ae�jv)2

7.
rn sinvp(nþ 1)

sinvp
u[n] ( rj j < 1)

1
1� 2r cosvpe�jv þ r2e�j2v

8.
sinvcn
pn

X(ejv) ¼ 1, vj j < vc,
0, vc < vj j � p

�

9. x[n] ¼ 1, 0 � n � M
0, otherwise

�
sin v(M þ 1)=2½ �

sin (v=2)
¼ e�jvM=2

10. e jv0n
P1

k¼�1
2pd(v� v0 þ 2pk)

11. cos (v0nþ w) p
P1

k¼�1
e jwd(v� v0 þ 2pk)þ e jwd vþ v0 þ 2pkð Þ	 


Source: Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1989. With permission.
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transform is useful in CT signal system analysis and design, the DTFT is equally useful for DT system
analysis and design.

In the same way that the CT Fourier transform was found to be a special case of the complex Fourier
transform (or bilateral Laplace transform), the DTFT is a special case of the bilateral z-transform with
z ¼ e jv

0t . The more general bilateral z-transform is given by

S(z) ¼
X1

n¼�1
s[n]z�n (1:12a)

s[n] ¼ 1
2pj

þ
C

S(z)zn�1dz, (1:12b)

where C is a counterclockwise contour of integration which is a closed path completely contained within
the region of convergence of S(z). Recall that the DTFT was obtained by taking the CT Fourier transform
of the CT sampling model sa(t). Similarly, the bilateral z-transform results by taking the bilateral Laplace
transform of sa(t). If the lower limit on the summation of Equation 1.12a is taken to be n ¼ 0, then
Equations 1.12a and b become the one-sided z-transform, which is the DT equivalent of the one-sided
Laplace transform for CT signals.

1.4.1 Properties of the Discrete-Time Fourier Transform

Since the DTFT is a close relative of the classical CT Fourier transform, it should come as no surprise that
many properties of the DTFT are similar to those of the CT Fourier transform. In fact, for many of the
properties presented earlier there is an analogous property for the DTFT. The following list parallels
the list that was presented earlier for the CT Fourier transform, to the extent that the same properties
exist (a more complete list of DTFT properties is given in Table 1.4). Note that Ff�g denotes the DTFT

TABLE 1.4 Properties of the DTFT

Sequence Fourier
x[n] X(e jv)
y[n] Y(e jv)

1. ax[n]þ by[n] aX(e jv)þ bY(e jv)

2. x[n� nd] (nd an integer) e�jvndX(e jv)

3. e jv0nx[n] X e j v�v0ð Þ	 

4. x[�n] X(e�jv) if x[n] real

X*(e jv)

5. nx[n] j
dX(e jv)
dv

6. x[n] ¼ y[n] X(e jv)Y(e jv)

7. x[n]y[n] 1
2p

Ðx
�x

X(e ju)Y e j(v�u)
	 


du

Parseval’s theorem

8.
P1

n¼�1
jx[n]j2 ¼ 1

2p

Ðx
�x

jX(e jv)j2dv

9.
P1

n¼�1
x[n]y*[n] ¼ 1

2p

Ðx
�x

X(e jv)Y*(e jv) dv

Source: Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal
Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989. With permission.
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operation, F�1f�g denotes the inverse DTFT operation, and ‘‘*’’ denotes the DT convolution operation
defined as

f1[n] * f2[n] ¼
Xþ1

k¼�1
f1[n]f2[n� k]:

1. Linearity (a and b are complex constants) DTFTfaf1[n]þ bf2[n]g ¼ a � DTFTf f1[n]g þ b � DTFTf f2[n]g
2. Index-shifting DTFTf f [n� n0]g ¼ e�jvn0DTFTf f [n]g
3. Frequency-shifting e jv0nf [n] ¼ DTFT�1fF( j(v� v0)g
4. Time-domain convolution DTFTf f1[n] * f2[n]g ¼ Ff f1[n]g � Ff f2[n]g
5. Frequency-domain convolution DTFTf f1[n] � f2[n]g ¼ 1

2PDTFTf f1[n]g *DTFTf f2[n]g
6. Frequency-differentiation nf [n] ¼ DTFT�1fdF( jv)=dvg

Note that the time-differentiation and time-integration properties of the CT Fourier transform do not
have analogous counterparts in the DTFT because time domain differentiation and integration are not
defined for DT signals. When working with DT systems practitioners must often manipulate difference
equations in the frequency domain. For this purpose the properties of linearity and index-shifting are
very important. As with the CT Fourier transform time-domain convolution is also important for DT
systems because it allows engineers to work with the frequency response of the system in order to achieve
proper shaping of the input spectrum, or to achieve frequency selective filtering for noise reduction or
signal detection.

1.4.2 Relationship between the CT and DT Spectra

Since DT signals often originate by sampling a CT signal, it is important to develop the relationship
between the original spectrum of the CT signal and the spectrum of the DT signal that results. First, the
CT Fourier transform is applied to the CT sampling model, and the properties are used to produce the
following result:

Ffsa(t)g ¼ F sa(t)
X1

n¼�1
d(t � nT)

( )
¼ 1

2p
Sa( jv)F

X1
n¼�1

d(t � nT)

( )
: (1:13)

Since the sampling function (summation of shifted impulses) on the right-hand side of Equation 1.13 is
periodic with period T it can be replaced with a CT Fourier series expansion and the frequency-domain
convolution property of the CT Fourier transform can be applied to yield two equivalent expressions for
the DT spectrum:

S(e jvT ) ¼ 1
T

X1
n¼�1

Sa( j[v� nvs]) or S(e jv
0
) ¼ 1

T

X1
n¼�1

Sa( j[v
0 � n2p=T]): (1:14)

In Equation 1.14 vs ¼ (2p=T) is the sampling frequency and v0 ¼ vT is the normalized DT frequency
axis expressed in radians. Note that S(e jvT ) ¼ S(e jv

0
) consists of an infinite number of replicas of the CT

spectrum S(jv), positioned at intervals of (2p=T) on the v-axis (or at intervals of 2p on the v0-axis),
as illustrated in Figure 1.9. Note that if S(jv) is band-limited with a bandwidth vc, and if T is chosen
sufficiently small so that vs > 2vc, then the DT spectrum is a copy of S(jv) (scaled by 1/T) in the
baseband. The limiting case of vs ¼ 2vc is called the Nyquist sampling frequency. Whenever a CT signal
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is sampled at or above the Nyquist rate, no aliasing distortion occurs (i.e., the baseband spectrum does
not overlap with the higher order replicas) and the CT signal can be exactly recovered from its samples
by extracting the baseband spectrum of S(e jv

0
) with an ideal lowpass filter that recovers the original

CT spectrum by removing all spectral replicas outside the baseband and scaling the baseband by a
factor of T.

1.5 Discrete Fourier Transform

To obtain the DFT the continuous-frequency domain of the DTFT is sampled at N points uniformly
spaced around the unit circle in the z-plane, i.e., at the points vk ¼ (2pk=N), k ¼ 0, 1, . . . ,N � 1. The
result is the DFT transform pair defined by Equations 1.15a and b:

S[k] ¼
XN�1

n¼0

s[n]e�j
2pkn
N , k ¼ 0, 1, . . . ,N � 1 (1:15a)

s[k] ¼ 1
N

XN�1

k¼0

S[k]e j
2pkn
N , n ¼ 0, 1, . . . ,N � 1, (1:15b)

The signal s[n] is either a finite length sequence of length N, or it is a periodic sequence with period N.
Regardless of whether s[n] is a finite length or periodic sequence, the DFT treats the N samples of s[n] as
though they are one period of a periodic sequence. This is a peculiar feature of the DFT, and one that
must be handled properly in signal processing to prevent the introduction of artifacts.

1.5.1 Properties of the DFT

Important properties of the DFT are summarized in Table 1.5. The notation [k]N denotes kmoduloN, and
RN [n] is a rectangular window such that RN [n] ¼ 1 for n ¼ 0, . . . ,N � 1, and RN [n] ¼ 0 for n < 0 and
n � N . The transform relationship given by Equations 1.15a and 1.15b is also valid when s[n] and S[k] are
periodic sequences, each of period N. In this case n and k are permitted to range over the complete set
of real integers, and S[k] is referred to as the discrete Fourier series (DFS). In some cases the DFS is
developed as a distinct transform pair in its own right (Jenkins and Desai 1986). Whether or not the DFT
and the DFS are considered identical or distinct is not important in this discussion. The important point to
be emphasized here is that the DFT treats s[n] as though it were a single period of a periodic sequence,
and all signal processing done with the DFT will inherit the consequences of this assumed periodicity.

Most of the properties listed in Table 1.5 for the DFT are similar to those of the z-transform and the
DTFT, although there are important differences. For example, Property 5 (time-shifting property), holds
for circular shifts of the finite length sequence s[n], which is consistent with the notion that the DFT
treats s[n] as one period of a periodic sequence. Also, the multiplication of two DFTs results in the
circular convolution of the corresponding DT sequences, as specified by Property 7. This later property is
quite different from the linear convolution property of the DTFT. Circular convolution is simply a linear

–2π –ώc ώc ώ2π0

S(e jώ )
ώ = ωT

T

Baseband spectrum
Sa(jω)

FIGURE 1.9 Relationship between the CT and DT spectra.
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convolution of the periodic extensions of the finite sequences being convolved, where each of the finite
sequences of length N defines the structure of one period of the periodic extensions.

For example, suppose it is desired to implement a digital filter with finite impulse response (FIR) h[n].
The output in response to s[n] is

y[n] ¼
XN�1

k¼0

h[k]s[n� k] (1:16)

which is obtained by transforming h[n] and s[n] into H[k] and S[k] using the DFT, multiplying the
transforms point-wise to obtain Y[k] ¼ H[k]S[k], and then using the inverse DFT to obtain
y[n] ¼ DFT�1fY[k]g. If s[n] is a finite sequence of length M, then the results of the circular convolution
implemented by the DFT will correspond to the desired linear convolution if and only if the block length
of the DFT, NDFT, is chosen sufficiently large so that NDFT > N þ (M � 1) and both h[n] and s[n] are
padded with zeros to form blocks of length NDFT.

1.5.2 Fast Fourier Transform Algorithms

The DFT is typically implemented in practice with one of the common forms of the FFT algorithm. The
FFT is not a Fourier transform in its own right, but rather it is simply a computationally efficient

TABLE 1.5 Properties of the DFT

Finite-Length Sequence (Length N) N-Point DFT (Length N)

1. x[n] X[k]

2. x1[n], x2[n] X1[k],X2[k]

3. ax1[n]þ bx2[n] aX1[k]þ bX2[k]

4. X[n] Nx[(�k)N ]

5. x[(n�m)N ] Wkm
N X[k]

6. W�‘n
N x[n] X[(k� ‘)N ]

7.
PN�1

m¼0
x1(m)x2[(n�m)N ] X1[k]X2[k]

8. x1[n]x2[n] 1
N

PN�1

‘¼0
X1(‘)X2[(k� ‘)N ]

9. x*[n] X*[(�k)N ]

10. x*[(�n)N ] X*[k]

11. Refx[n]g Xep[k] ¼ 1
2 fX[(k)N ]þ X*[(�k)N ]g

12. jImfx[n]g Xop[k] ¼ 1
2 fX[(k)N ]� X*[(�k)N ]g

13. xep[n] ¼ 1
2 fx[n]þ x*[(�n)N ]g RefX[k]g

14. xop[n] ¼ 1
2 fx[n]� x*[(�n)N ]g jImfX[k]g

Properties 15–17 apply only when x[n] is real

15. Symmetry properties

X[k] ¼ X*[(�k)N ]

RefX[k]g ¼ RefX[(�k)N ]g
ImfX[k]g ¼ �ImfX[(�k)N ]g

jX[k]j ¼ jX[(�k)N ]j
\X[k]g ¼ �\fX[(�k)N ]g:

8>>>>>><
>>>>>>:

16. xep[n] ¼ 1
2 fx[n]þ x[(�n)N ]g RefX[k]g

17. xop[n] ¼ 1
2 fx[n]� x[(�n)N ]g jImfX[k]g

Source: Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1989. With permission.
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algorithm that reduces the complexity of the computing DFT from Order {N2} to Order {N log2 N}.
When N is large, the computational savings provided by the FFT algorithm is so great that the FFT makes
real-time DFT analysis practical in many situations which would be entirely impractical without it. There
are numerous FFT algorithms, including decimation-in-time (D-I-T) algorithms, decimation-in-
frequency (D-I-F) algorithms, bit-reversed algorithms, normally ordered algorithms, mixed-radix algo-
rithms (for block lengths that are not powers-of-2 [PO2]), prime factor algorithms, and Winograd
algorithms [Blahut 1985]. The D-I-T and the D-I-F radix-2 FFT algorithms are the most widely used in
practice. Detailed discussions of various FFT algorithms can be found in Brigham (1974) and Oppenheim
and Schafer (1975).

The FFT is easily understood by examining the simple example of N ¼ 8. There are numerous ways to
develop the FFT algorithm, all of which deal with a nested decomposition of the summation operator of
Equation 1.20a. The development presented here is called an algebraic development of the FFT because it
follows straightforward algebraic manipulation. First, each of the summation indices (k, n) in Equation
1.15a is expressed as explicit binary integers, k ¼ 4k2 þ 2k1 þ k0 and n ¼ 4n2 þ 2n1 þ n0, where ki and
ni are bits that take on the values of either 0 or 1. If these expressions are substituted into Equation 1.20a,
all terms in the exponent that contain the factor N ¼ 8 can be deleted because e�j2pl ¼ 1 for any integer l.
Upon deleting such terms and re-grouping the remaining terms, the product nk can be expressed in
either of two ways:

nk ¼ (4k0)n2 þ (4k1 þ 2k0)n1 þ (4k2 þ 2k1 þ k0)n0 (1:17a)

nk ¼ (4n0)k2 þ (4n1 þ 2n0)k1 þ (4n2 þ 2n1 þ n0)k0: (1:17b)

Substituting Equation 1.17a into Equation 1.15a leads to the D-I-T FFT, whereas substituting Equation
1.25b leads to the D-I-F FFT. Only the D-I-T FFT is discussed further here. The D-I-F and various related
forms are treated in detail in Oppenheim and Schafer (1975).

The D-I-T FFT decomposes into log2 N stages of computation, plus a stage of bit reversal,

x1[k0, n1, n0] ¼
Xn2¼1

n2¼0

s[n2, n1, n0]W
4k0n2
8 (stage 1) (1:18a)

x2[k0, k1, n0] ¼
Xn1¼1

n1¼0

x1[k0, n1, n0]W
(4k1þ2k0)n1
8 (stage 2) (1:18b)

x3[k0, k1, k2] ¼
Xn0¼1

n0¼0

x2[k0, k1, n0]W
(4k2þ2k1þk0)n0
8 (stage 3) (1:18c)

s(k2, k1, k0) ¼ x3(k0, k1, k2) (bit reversal): (1:18d)

In each summation above, one of the ni’s is summed out of the expression, while at the same time a new
ki is introduced. The notation is chosen to reflect this. For example, in stage 3, n0 is summed out, k2 is
introduced as a new variable, and n0 is replaced by k2 in the result. The last operation, called bit reversal,
is necessary to correctly locate the frequency samples X[k] in the memory. It is easy to show that if the
samples are paired correctly, an in-place computation can be done by a sequence of butterfly operations.
The term in-place means that each time a butterfly is to be computed, a pair of data samples is read from
memory, and the new data pair produced by the butterfly calculation is written back into the memory
locations where the original pair was stored, thereby overwriting the original data. An in-place algorithm
is designed so that each data pair is needed for only one butterfly, and so the new results can be
immediately stored on top of the old in order to minimize memory requirements.
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For example, in stage 3 the k ¼ 6 and k ¼ 7 samples should be paired, yielding a ‘‘butterfly’’
computation that requires one complex multiply, one complex add, and one subtract:

x3(1, 1, 0) ¼ x2(1, 1, 0)þW3
8x2(1, 1, 1) (1:19a)

x3(1, 1, 1) ¼ x2(1, 1, 0)�W3
8x2(1, 1, 1) (1:19b)

Samples x2(6) and x2(7) are read from the memory, the butterfly is executed on the pair, and x3(6)
and x3(7) are written back to the memory, overwriting the original values of x2(6) and x2(7). In
general, there are N/2 butterflies per stage and log2 N stages, so the total number of butterflies is
(N=2) log2 N . Since there is at most one complex multiplication per butterfly, the total number of
multiplications is bounded by (N=2) log2 N (some of the multiplies involve factors of unity and should
not be counted).

Figure 1.10 shows the signal flow graph of the D-I-T FFT for N ¼ 8. This algorithm is referred to as an
in-place FFT with normally ordered input samples and bit-reversed outputs. Minor variations that include
bit-reversed inputs and normally ordered outputs, and non-in-place algorithms with normally ordered
inputs and outputs are possible. Also, whenN is not a PO2, a mixed-radix algorithm can be used to reduce
computation. The mixed-radix FFT is most efficient when N is highly composite, i.e., N ¼ pr11 p

r2
2 � � � prLL ,

where the pi’s are small prime numbers and the ri’s are positive integers. It can be shown that the order
of complexity of the mixed-radix FFT is Order fN[r1(p1 � 1)þ r2(p2 � 1)þ � � � þ rL(pL � 1)]g. Because
of the lack of uniformity of structure among stages, this algorithm has not received much attention
for hardware implementation. However, the mixed-radix FFT is often used in software applications,
especially for processing data recorded in laboratory experiments where it is not convenient to restrict
the block lengths to be PO2. Many advanced FFT algorithms, such as higher radix forms, the mixed-radix
form, prime-factor algorithm, and the Winograd algorithm are described in Blahut (1985). Algorithms
specialized for real-valued data reduce the computational cost by a factor of 2.
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FIGURE 1.10 D-I-T FFT algorithm with normally ordered inputs and bit-reversed outputs.
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1.6 Family Tree of Fourier Transforms

Figure 1.11 illustrates the functional relationships among the various forms of CT Fourier transform
and DTFT that have been discussed in the previous sections. The family of CT Fourier transforms is
shown on the left side of Figure 1.11, whereas the right side of the figure shows the hierarchy of DTFTs.
Note that the most general, and consequently the most powerful, Fourier transform is the classical
complex Fourier transform (or equivalently, the bilateral Laplace transform). Note also that the complex
Fourier transform is identical to the bilateral Laplace transform, and it is at this level that the classical
Laplace transform techniques and Fourier transform techniques become identical. Each special member
of the CT Fourier family is obtained by impressing certain constraints on the general form, thereby
producing special transforms that are simpler and more useful in practical problems where the con-
straints are met. In Figure 1.11 it is seen that the bilateral z-transform is analogous to the complex Fourier
transform, the unilateral z-transform is analogous to the classical (one-sided) Laplace transform, the
DTFT is analogous to the classical Fourier (CT) transform, and the DFT is analogous to the classical (CT)
Fourier series.

1.6.1 Walsh–Hadamard Transform

The Walsh–Hadamard transform (WHT) is a computationally attractive orthogonal transform that is
structurally related to the DFT, and which can be implemented in practical applications without

Sampling

Reconstruction

CT domain

Complex Fourier transform
bilateral Laplace transform

u = σ + jω (complex frequency)

DT domain

Bilateral z-transform
z = euT

DTFT

DFTFourier series

CT
Fourier transform

Signal
with

period T

Signal
with

period N

z = e jωu = jω

FIGURE 1.11 Functional relationships among various forms of the Fourier transform.
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multiplication, and with a computational complexity for addition that is on the same order of complexity
as that of an FFT. The tmkth element of the WHT matrix TWHT is given by

tmk ¼ 1ffiffiffiffi
N

p
Yp�1

‘¼0

(�1)bl(m)bp�1�‘(k), m and k ¼ 0, . . . ,N � 1,

where b‘(m) is the ‘th order bit in the binary representation of m, and N ¼ 2p. The WHT is defined only
when N is a PO2. Note that the columns of TWHT form a set of orthogonal basis vectors whose elements
are all 1’s or �1’s, so that the calculation of the matrix-vector product TWHTX can be accomplished with
only additions and subtractions. It is well known that TWHT of dimension (N � N), for N a PO2, can be
computed recursively according to

Tk ¼
Tk=2 Tk=2

Tk=2 �Tk=2

" #
for K ¼ 4, . . . ,N (even) and T2 ¼

1 1

1 �1

� �
:

The above relationship provides a convenient way of quickly constructing the Walsh–Hadamard matrix
for any arbitrary (even) size N.

Due to structural similarities between the DFT and the WHT matrices, the WHT transform can be
implemented using a modified FFT algorithm. The core of any FFT program is a butterfly calculation that
is characterized by a pair of coupled equations that have the following form:

Xiþ1(‘,m) ¼ Xi(‘,m)þ e ju(‘,m,k,s)Xi(k, s)

Xiþ1(‘,m) ¼ Xi(‘,m)� e ju(‘,m,k,s)Xi(k, s):

If the exponential factor in the butterfly calculation is replaced by a ‘‘1,’’ so the ‘‘modified butterfly’’
calculation becomes

Xiþ1(‘,m) ¼ Xi(‘,m)þ Xi(k, s)

Xiþ1(‘,m) ¼ Xi(‘,m)� Xi(k, s),

the modified FFT program will in fact perform a WHT on the input vector. This property not only
provides a quick and convenient way to implement the WHT, but is also establishes clearly that in
addition to the WHT requiring no multiplication, the number of additions required has order of
complexity of (N=2) log2 N , i.e., the same as the that of the FFT.

The WHT is used in many applications that require signals to be decomposed in real time into a set of
orthogonal components. A typical application in which the WHT has been used in this manner is in code
division multiple access (CDMA) wireless communication systems. A CDMA system requires spreading
of each user’s signal spectrum using a PN sequence. In addition to the PN spreading codes, a set of
length-64 mutually orthogonal codes, called the Walsh codes, are used to ensure orthogonality among the
signals for users received from the same base station. The length N ¼ 64 Walsh codes can be thought of
as the orthogonal column vectors from a (64� 64) Walsh–Hadamard matrix, and the process of
demodulation in the receiver can be interpreted as performing a WHT on the complex input signal
containing all the modulated user’s signals so they can be separated for accurate detection.

1.7 Selected Applications of Fourier Methods

1.7.1 DFT (FFT) Spectral Analysis

An FFT program is often used to perform spectral analysis on signals that are sampled and recorded as
part of laboratory experiments, or in certain types of data acquisition systems. There are several issues to
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be addressed when spectral analysis is performed on (sampled) analog waveforms that are observed over
a finite interval of time.

1.7.1.1 Windowing

The FFT treats the block of data as though it were one period of a periodic sequence. If the underlying
waveform is not periodic, then harmonic distortion may occur because the periodic waveform created by
the FFT may have sharp discontinuities at the boundaries of the blocks. This effect is minimized
by removing the mean of the data (it can always be reinserted) and by windowing the data so the ends
of the block are smoothly tapered to zero. A good rule of thumb is to taper 10% of the data on each end of
the block using either a cosine taper or one of the other common windows (e.g., Hamming, Von Hann,
Kaiser windows, etc.). An alternate interpretation of this phenomenon is that the finite length observa-
tion has already windowed the true waveform with a rectangular window that has large spectral sidelobes.
Hence, applying an additional window results in a more desirable window that minimizes frequency-
domain distortion.

1.7.1.2 Zero-Padding

An improved spectral analysis is achieved if the block length of the FFT is increased. This can be done by
(1) taking more samples within the observation interval, (2) increasing the length of the observation
interval, or (3) augmenting the original data set with zeros. First, it must be understood that the finite
observation interval results in a fundamental limit on the spectral resolution, even before the signals are
sampled. The CT rectangular window has a (sin x)=x spectrum, which is convolved with the true spectrum
of the analog signal. Therefore, the frequency resolution is limited by the width of the mainlobe in the
(sin x)=x spectrum, which is inversely proportional to the length of the observation interval. Sampling
causes a certain degree of aliasing, although this effect can be minimized by using a sufficiently high
sampling rate. Therefore, lengthening the observation interval increases the fundamental resolution limit,
while taking more samples within the observation interval minimizes aliasing distortion and provides a
better definition (more sample points) on the underlying spectrum.

Padding the data with zeros and computing a longer FFT does give more frequency domain points
(improved spectral resolution), but it does not improve the fundamental limit, nor does it alter the effects
of aliasing error. The resolution limits are established by the observation interval and the sampling rate.
No amount of zero padding can improve these basic limits. However, zero padding is a useful tool for
providing more spectral definition, i.e., it enables one to get a better look at the (distorted) spectrum that
results once the observation and sampling effects have occurred.

1.7.1.3 Leakage and the Picket-Fence Effect

An FFT with block length N can accurately resolve only frequencies wk ¼ (2p=N)k, k ¼ 0, . . . ,N � 1
that are integer multiples of the fundamental w1 ¼ (2p=N). An analog waveform that is sampled and
subjected to spectral analysis may have frequency components between the harmonics. For example, a
component at frequency wkþ1=2 ¼ (2p=N)(kþ 1=2) will appear scattered throughout the spectrum. The
effect is illustrated in Figure 1.12 for a sinusoid that is observed through a rectangular window and then
sampled a N points. The ‘‘picket-fence effect’’ means that not all frequencies can be seen by the FFT.
Harmonic components are seen accurately, but other components ‘‘slip through the picket fence’’ while
their energy is ‘‘leaked’’ into the harmonics. These effects produce artifacts in the spectral domain that
must be carefully monitored to assure that an accurate spectrum is obtained from FFT processing.

1.7.2 FIR Digital Filter Design

A common method for designing FIR digital filters is by use of windowing and FFT analysis. In general,
window designs can be carried out with the aid of a hand calculator and a table of well-known window
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functions. Let h[n] be the impulse response that corresponds to some desired frequency response, H(e jv).
If H(e jv) has sharp discontinuities then h[n] will represent an infinite impulse response function. The
objective is to time-limit h[n] in such a way as to not distort H(e jv) any more than necessary. If h[n] is
simply truncated, a ripple (Gibbs phenomenon) occurs around the discontinuities in the spectrum,
resulting in a distorted filter, as was earlier illustrated in Figure 1.7.

Suppose that w[n] is a window function that time-limits h[n] to create an FIR approximation, h0[n];
i.e., h0[n] ¼ w[n]h[n]. Then if W(e jv) is the DTFT of w[n], h0[n] will have a Fourier transform given
by H0(e jv) ¼ W(e jv) *H(e jv), where * denotes convolution. From this it can be seen that the ripples in
H0(e jv) result from the sidelobes of W(e jv). Ideally, W(e jv) should be similar to an impulse so
that H0(e jv) is approximately equal to H(e jv).

1.7.2.1 Special Case

Let h[n] ¼ cos nv0, for all n. Then h[n] ¼ w[n] cos nv0, and

H0(e jv) ¼ (1=2)W(e j(vþ~v))þ (1=2)W(e j(v�~v)) (1:20)

as illustrated in Figure 1.13. For this simple class, the center frequency of the passband is controlled by
v0, and both the shape of the passband and the sidelobe structure are strictly determined by the choice of
the window. While this simple class of FIRs does not allow for very flexible designs, it is a simple
technique for determining quite useful lowpass, bandpass, and highpass FIR filters.

Underlying spectrum

(a)

(b)

ωk–1 ωk ωk+1

ωk–1 ωk ωk+1/2
ωk+1

ω

ω

Underlying spectrum

FIGURE 1.12 Illustration of leakage and the picket fence effects. (a) FFT of a windowed sinusoid with frequency
vk ¼ 2pk=N and (b) leakage for a nonharmonic sinusoidal component.
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|Ĥ
(e

jω
)|

ω0
ω

(2π – ω0) 2ππ

FIGURE 1.13 Design of a simple bandpass FIR filter by windowing.
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1.7.2.2 General Case

Specify an ideal frequency response, H(e jv), and choose samples at selected values of w. Use a long
inverse FFT of length N 0 to find h0[n], an approximation to h[n], where if N is the desired length of the
final filter, then N 0 	 N . Then use a carefully selected window to truncate h0[n] to obtain h[n] by letting
h[n] ¼ w[n]h0[n]. Finally, use an FFT of length N 0 to find H0(e jv). If H0(e jv) is a satisfactory approxi-
mation to H(e jv), the design is finished. If not, choose a new H(e jv), or a new w[n] and repeat.
Throughout the design procedure it is important to choose N 0 ¼ kN , with k an integer that is typically
in the range [4, . . . , 10]. Since this design technique is a trial-and-error procedure, the quality of the result
depends to some degree on the skill and experience of the designer.

1.7.3 Fourier Block Processing in Real-Time Filtering Applications

In some practical applications, either the value ofM is too large for the memory available, or s[n] may not
actually be finite in length, but rather a continual stream of data samples that must be processed by a filter
at real time rates. Two well-known algorithms are available that partition s[n] into smaller blocks and
process the individual blocks with a smaller-length DFT: (1) overlap-save partitioning and (2) overlap-
add partitioning. Each of these algorithms is summarized below (Burrus and Parks 1985, Jenkins 2002).

1.7.3.1 Overlap-Save Processing

In this algorithm, NDFT is chosen to be some convenient value with NDFT > N . The signal, s[n], is
partitioned into blocks which are of length NDFT and which overlap by N � 1 data points. Hence, the kth
block is sk[n] ¼ s[nþ k(NDFT � N þ 1)], n ¼ 0, . . . ,NDFT � 1. The filter impulse response h[n] is aug-
mented with NDFT � N zeros to produce

hpad[n] ¼ h[n], n ¼ 0, . . . ,N � 1

0, n ¼ N , . . . ,NDFT � 1

� �
: (1:21)

The DFT is then used to obtain Ypad[n] ¼ DFTfhpad[n]g � DFTfsk[n]g, and ypad[n] ¼ IDFTfYpad[n]g.
From the ypad[n] array the values that correctly correspond to the linear convolution are saved; values
that are erroneous due to wraparound error caused by the circular convolution of the DFT are discarded.
The kth block of the filtered output is obtained by

yk[n] ¼ ypad[n], n ¼ 0, . . . ,N � 1

0, n ¼ N , . . . ,NDFT � 1

� �
: (1:22)

For the overlap-save algorithm, each time a block is processed there are NDFT � N þ 1 points saved
and N � 1 points discarded. Each block moves forward by NDFT � N þ 1 data points and overlaps the
previous block by N � 1 points.

1.7.3.2 Overlap-Add Processing

This algorithm is similar to the previous one except that the kth input block is defined to be

sk[n] ¼ s[n], n ¼ 0, . . . , L� 1

0, n ¼ L, . . . ,NDFT � 1

� �
, (1:23)

where L ¼ NDFT � N þ 1. The filter function hpad[n] is augmented with zeros, as before, to create hpad[n],
and the DFT processing is executed as before. In each block ypad[n] that is obtained at the output, the first
N � 1 points are erroneous, the last N � 1 points are erroneous, and the middle NDFT � 2(N � 1) points
correctly correspond to the linear convolution. However, if the last N � 1 points from block k are
overlapped with the firstN � 1 points from block kþ 1 and added pairwise, correct results corresponding
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to linear convolution are obtained from these positions, too. Hence, after this addition the number of
correct points produced per block is NDFT � N þ 1, which is the same as that for the overlap-save
algorithm. The overlap-add algorithm requires approximately the same amount of computation as
the overlap-save algorithm, although the addition of the overlapping portions of blocks is extra.
This feature, together with the extra delay of waiting for the next block to be finished before the previous
one is complete, has resulted in more popularity for the overlap-save algorithm in practical applications.

Block filtering algorithms make it possible to efficiently filter continual data streams in real time
because the FFT algorithm can be used to implement the DFT, thereby minimizing the total computation
time and permits reasonably high overall data rates. However, block filtering generates data in bursts, i.e.,
there is a delay during which no filtered data appears, and then suddenly an entire block is generated.
In real-time systems, buffering must be used. The block algorithms are particularly effective for filtering
very long sequences of data that are pre-recorded on magnetic tape or disk.

1.7.4 Fourier Domain Adaptive Filtering

A transform domain adaptive filter (TDAF) is a generalization of the well-known least mean square (LMS)
adaptive filter in which the input signal is passed through a linear transformation in order to decompose it
into a set of orthogonal components and to optimize the adaptive step size for each component and thereby
maximize the learning rate of the adaptive filter (Jenkins et al. 1996). The LMS algorithm is an approximation
to the steepest descent optimization strategy. For a length N FIR filter with the input expressed as a column
vector x(n) ¼ [x(n), x(n� 1), . . . , x(n� N þ 1)]T, the filter output y(n) is expressed as

y(n) ¼ wT(n)x(n),

where
w(n) ¼ [w0(n),w1(n), . . . ,wN�1(n)]

T is the time varying vector of filter coefficients (tap weights) and
superscript ‘‘T’’ denotes the vector transpose

The output error is formed as the difference between the filter output and a training signal d(n), i.e.
e(n) ¼ d(n)� y(n). Strategies for obtaining an appropriate d(n) vary from one application to another.
In many cases the availability of a suitable training signal determines whether an adaptive filtering
solution will be successful in a particular application. The ideal cost function is defined by the mean
squared error (MSE) criterion, Efje(n)j2g. The LMS algorithm is derived by approximating the ideal cost
function by the instantaneous squared error, resulting in JLMS(n) ¼ je(n)j2. While the LMS seems to
make a rather crude approximation at the very beginning, the approximation results in an unbiased
estimator. In many applications the LMS algorithm is quite robust and is able to converge rapidly to a
small neighborhood of the Wiener solution.

When a steepest descent optimization strategy is combined with a gradient approximation formed
using the LMS cost function JLMS(n) ¼ je(n)j2, the conventional LMS adaptive algorithm results

w(nþ 1) ¼ w(n)þ me(n)x(n),

e(n) ¼ d(n)� y(n),
(1:24)

and

y(n) ¼ x(n)Tw(n):

The convergence behavior of the LMS algorithm, as applied to a direct form FIR filter structure, is
controlled by the autocorrelation matrix Rx of the input process, where

Rx 
 E[x*(n)xT(n)]: (1:25)
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The autocorrelation matrix Rx is usually positive definite, which is one of the conditions necessary
to guarantee convergence to the Wiener solution. Another necessary condition for convergence is
0 < m < 1=lmax, where lmax is the largest eigenvalue of Rx . It is well established that the convergence of
this algorithm is directly related to the eigenvalue spread of Rx. The eigenvalue spread is measured by
the condition number of Rx , defined as k: ¼ lmax=lmin, where lmin is the minimum eigenvalue of Rx .
Ideal conditioning occurs when k: ¼ 1 (white noise); as this ratio increases, slower convergence results.
The eigenvalue spread (condition number) depends on the spectral distribution of the input signal, and
is related to the maximum and minimum values of the input power spectrum. From this line of
reasoning it becomes clear that white noise is the ideal input signal for rapidly training an LMS
adaptive filter. The adaptive process is slower and requires more computation for input signals that are
colored.

The TDAF structure is shown in Figure 1.14. The input x(n) and the desired signal d(n) are assumed to
be zero mean and jointly stationary. The input to the filter is a vector of N current and past input samples,
defined in the previous section and denoted as x(n). This vector is processed by a unitary transform, such
as the DFT. Once the filter order N is fixed, the transform is simply an N � N matrix T, which is in
general complex, with orthonormal rows. The transformed outputs form a vector v(n) which is given by

z(n) ¼ [v0(n), v1(n), . . . , vN�1(n)]
T ¼ Tx(n):

With an adaptive tap vector defined as w(n) ¼ [w0(n),w1(n), . . . ,wN�1(n)]
T, the filter output is given by

y(n) ¼ wT(n)v(n) ¼ WT(n)Tx(n): (1:26)

The instantaneous output error is then formed and used to update the adaptive filter taps using a
modified form of the LMS algorithm (Jenkins et al. 1996):

W(nþ 1) ¼ W(n)þ me(n)L�2v*(n)

L2 
 diag s2
1,s

2
2, . . . ,s

2
N

	 

,

(1:27)

where s2
i ¼ E[jvi(n)j2].

The power estimates s2
i can be developed on-line by computing an exponentially weighted average of

past samples according to

s2
i (n) ¼ as2

i (n� 1)þ vi(n)j j2, 0 < a < 1: (1:28)

x(n)

x(n – 1)

x(n – N + 1)

N × N
linear

transform

z0

z1

zN–1
WN – 1

W1

y(n)

d(n)

+
+

–

e(n)

W0

Σ

FIGURE 1.14 TDAF structure. (From Jenkins, W. K., Marshall, D. F., Kreidle, J. R., and Murphy, J. J., IEEE Trans.
Circuits Sys., 36(4), 474, 1989. With permission.)
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If s2
i becomes too small due to an insufficient amount of energy in the ith channel, the update

mechanism becomes ill-conditioned due to a very large effective step size. In some cases the process
will become unstable and register overflow will cause the adaptation to catastrophically fail. So the
algorithm given by Equation 1.27 should have the update mechanism disabled for the ith orthogonal
channel if s2

i falls below a critical threshold.
The motivation for using the TDAF adaptive system instead of a simpler LMS based system is to

achieve rapid convergence of the filters coefficients when the input signal is not white, while maintaining
a reasonably low computational complexity requirement. The optimal decorrelating transform is com-
posed of the orthonormal eigenvectors of the input autocorrelation matrix, and is known as the
Karhunen–Loéve transform (KLT). The KLT is signal dependent and usually cannot be easily computed
in real time. Throughout the literature the DFT, discrete cosine transform (DCT), and WHT have
received considerable attention as possible candidates for use in TDAF.

Figure 1.15 shows learning characteristics for computer generated TDAF examples using six different
orthogonal transforms to decorrelate the input signal. The examples presented are for system identifi-
cation experiments, where the desired signal was derived by passing the input through an 8-tap FIR filter
that is the ‘‘unknown system’’ to be identified. The filter input was generated by filtering white pseudo-
noise with a 32-tap linear phase FIR coloring filter to produce an input autocorrelation matrix with a
condition number (eigenvalue ratio) of 681. Examples were then produced using the DFT, DCT, WHT,
discrete Hartley transform (DHT), and a specially designed computationally efficient PO2 transform.
The condition numbers that result from transform processing with each of these transforms are also
shown in Figure 1.15. Note that all of the transforms used in this example are able to reduce the input
condition number and greatly improve convergence rates, although some transforms are seen to be more
effective than others for the coloring chosen for these examples.
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FIGURE 1.15 Comparison of (smoothed) learning curves for five different transforms operating on a colored noise
input signal with condition number 681 fault in any of the coefficients. When R redundant coefficients are added as
many as R coefficients can fail to adjust without any adverse effect on the filter’s ability to achieve the minimum MSE
condition. (From Jenkins, W. K., Marshall, D. F., Kreidle, J. R., and Murphy, J. J., IEEE Trans. Circuits Sys., 36(4), 474,
1989. With permission.)
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Transform
Effective Input Correlation
Matrix Eigenvalue Ratio

Identity (I) 681

DFT 210

DCT 200

WHT 216

DHT 218

PO2 transform 128

1.7.5 Adaptive Fault Tolerance via Fourier Domain Adaptive Filtering

Adaptive systems adjust their parameters to minimize a specified error criterion under normal operating
conditions. Fixed errors or Hardware faults would prevent the system to minimize the error criterion, but
at the same time the system will adapt the parameters such that the best possible solution is reached. In
adaptive fault tolerance the inherent learning ability of the adaptive system is used to compensate for
failure of the adaptive coefficients. This mechanism can be used with specially designed structures whose
redundant coefficients have the ability to compensate for the adjustment failures of other coefficients
[Jenkins et al. 1996].

The FFT-based transform domain fault tolerant adaptive filter (FTAF) is described by the following
equations:

x[n] ¼ xin[n], 0 0 � � � 0½ ]

xT[n] ¼ Tx[n]

y[n] ¼ wt
T[n]xT[n]

e[n] ¼ y[n]� d[n],

(1:29)

where
xin[n] ¼ x[n], x[n� 1], . . . , x[n� N þ 1]½ � is the vector of the current input and N � 1 past inputs
samples

x[n] is xin[n] zero-padded with R zeros
T is the M �M DFT matrix where M ¼ N þ R
wT[n] is the vector of M adaptive coefficients in the transform domain
d[n] is the desired response
e[n] is the output error

The FFT-based transform domain FTAF is similar to a standard TDAF except that the input data vector
is zero-padded with R zeros before it is multiplied by the transform matrix. Since the input data vector is
zero padded the transform domain FTAF maintains a length N impulse response and has R redundant
coefficients in the transform domain. When used with the zero padding strategy described above, this
structure possesses a property called full fault tolerance, where each redundant coefficient is sufficient to
compensate for a single ‘‘stuck at’’ fault condition in any of the coefficients. When R redundant
coefficients are added as many as R coefficients can fail without any adverse effect on the filter’s ability
to achieve the minimum MSE condition.

An example of a transform domain FTAF with one redundant filter tap (R ¼ 1) is demonstrated below
for the identification of a 64-tap FIR lowpass ‘‘unknown’’ system. The training signal is Gaussian white
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noise with a unit variance and a noise floor of �60 dB. A fixed fault is introduced at iteration 3000 by
setting an arbitrary filter coefficient to a random fixed value. Simulated learning curves are shown in
Figure 1.16 both demonstrated that the redundant tap allows the filter to re-converge after the occurrence
of the fault, although the post-fault convergence rate slowed somewhat due to an increased condition
number of the post-fault autocorrelation matrix [Jenkins et al. 1996].

1.8 Summary

Numerous Fourier transform concepts have been presented for both CT and DT signals and systems.
Emphasis was placed on illustrating how various forms of the Fourier transform relate to one another,
and how they are all derived from more general complex transforms, the complex Fourier (or bilateral
Laplace) transform for CT, and the bilateral z-transform for DT. It was shown that many of these
transforms have similar properties that are inherited from their parent forms, and that there is a parallel
hierarchy among Fourier transform concepts in the CT and DT domains. Both CT and DT sampling
models were introduced as a means of representing sampled signals in these two different domains and
it was shown that the models are equivalent by virtue of having the same Fourier spectra when
transformed into the Fourier domain with the appropriate Fourier transform. It was shown how Fourier
analysis properly characterizes the relationship between the spectra of a CT signal and its DT counterpart
obtained by sampling, and the classical reconstruction formula was obtained as a result of this analysis.
Finally, the DFT, the backbone for much of modern DSP, was obtained from more classical forms of the
Fourier transform by simultaneously discretizing the time and frequency domains. The DFT, together
with the remarkable computational efficiency provided by the FFT algorithm, has contributed to the
resounding success that engineers and scientists have had in applying DSP to many practical scientific
problems.
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2.1 Differential Equations

A function containing variables and their derivatives is called a differential expression, and an equation
involving differential expressions is called a differential equation. A differential equation is an ordinary
differential equation if it contains only one independent variable; it is a partial differential equation if
it contains more than one independent variable. We shall deal here only with ordinary differential
equations.

In the mathematical texts, the independent variable is generally x, which can be anything such as time,
distance, velocity, pressure, and so on. In most of the applications in control systems, the independent
variable is time. For this reason we shall use here independent variable t for time, although it can stand
for any other variable as well.

The following equation

d2y
dt2

� �4

þ 3
dy
dt

þ 5y2(t) ¼ sin t

is an ordinary differential equation of second order because the highest derivative is of the second order.
An nth-order differential equation is linear if it is of the form

an(t)
dny
dtn

þ an�1(t)
dn�1y
dtn�1

þ � � � þ a1(t)
dy
dt

þ a0(t)y(t) ¼ r(t) (2:1)

where the coefficients ai(t) are not functions of y(t). If these coefficients (ai) are constants, the equation is
linear with constant coefficients. Many engineering (as well as nonengineering) systems can be modeled
by these equations. Systems modeled by these equations are known as linear time-invariant (LTI)
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systems. In this chapter we shall deal exclusively with linear differential equations with constant
coefficients. Certain other forms of differential equations are dealt with elsewhere in this book.

2.1.1 Role of Auxiliary Conditions in Solution of Differential Equations

We now show that a differential equation does not, in general, have a unique solution unless some
additional constraints (or conditions) on the solution are known. This fact should not come as a surprise.
A function y(t) has a unique derivative dy=dt, but for a given derivative dy=dt there are infinite possible
functions y(t). If we are given dy=dt, it is impossible to determine y(t) uniquely unless an additional
piece of information about y(t) is given. For example, the solution of a differential equation

dy
dt

¼ 2 (2:2)

obtained by integrating both sides of the equation is

y(t) ¼ 2t þ c (2:3)

for any value of c. Equation 2.2 specifies a function whose slope is 2 for all t. Any straight line with a slope
of 2 satisfies this equation. Clearly the solution is not unique, but if we place an additional constraint on
the solution y(t), then we specify a unique solution.

For example, suppose we require that y(0)¼ 5; then out of all the possible solutions available, only one
function has a slope of 2 and an intercept with the vertical axis at 5. By setting t¼ 0 in Equation 2.3 and
substituting y(0)¼ 5 in the same equation, we obtain y(0)¼ 5¼ c and

y(t) ¼ 2t þ 5

which is the unique solution satisfying both Equation 2.2 and the constraint y(0)¼ 5.
In conclusion, differentiation is an irreversible operation during which certain information is lost. To

reverse this operation, one piece of information about y(t) must be provided to restore the original y(t).
Using a similar argument, we can show that, given d2y=dt2, we can determine y(t) uniquely only if two
additional pieces of information (constraints) about y(t) are given. In general, to determine y(t) uniquely
from its nth derivative, we need n additional pieces of information (constraints) about y(t). These
constraints are also called auxiliary conditions. When these conditions are given at t¼ 0, they are called
initial conditions.

We discuss here two systematic procedures for solving linear differential equations of the form in
Equation 2.1. The first method is the classical method, which is relatively simple, but restricted to a
certain class of inputs. The second method (the convolution method) is general and is applicable to all
types of inputs. A third method (Laplace transform) is discussed elsewhere in this book. Both the
methods discussed here are classified as time-domain methods because with these methods we are able
to solve the above equation directly, using t as the independent variable. The method of Laplace
transform (also known as the frequency-domain method), on the other hand, requires transformation
of variable t into a frequency variable s.

In engineering applications, the form of linear differential equation that occurs most commonly is
given by

dny
dtn

þ an�1
dn�1y
dtn�1

þ � � � þ a1
dy
dt

þ a0y(t)

¼ bm
dmf
dtm

þ bm�1
dm�1f
dtm�1

þ � � � þ b1
df
dt

þ b0f (t) (2:4a)
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where all the coefficients ai and bi are constants. Using operational notation D to represent d=dt, this
equation can be expressed as

Dn þ an�1D
n�1 þ � � � þ a1Dþ a0

� �
y(t)

¼ bmD
m þ bm�1D

m�1 þ � � � þ b1Dþ b0
� �

f (t) (2:4b)

or

Q(D)y(t) ¼ P(D)f (t) (2:4c)

where the polynomials Q(D) and P(D), respectively, are

Q(D) ¼ Dn þ an�1D
n�1 þ � � � þ a1Dþ a0

P(D) ¼ bmD
m þ bm�1D

m�1 þ � � � þ b1Dþ b0

Observe that this equation is of the form of Equation 2.1, where r(t) is in the form of a linear combination
of f(t) and its derivatives. In this equation, y(t) represents an output variable, and f(t) represents an input
variable of an LTI system. Theoretically, the powers m and n in the above equations can take on any
value. Practical noise considerations, however, require [1] m� n.

2.1.2 Classical Solution

When f(t) � 0, Equation 2.4 is known as the homogeneous (or complementary) equation. We shall first
solve the homogeneous equation. Let the solution of the homogeneous equation be yc(t), that is,

Q(D)yc(t) ¼ 0

or

Dn þ an�1D
n�1 þ � � � þ a1Dþ a0

� �
yc(t) ¼ 0

We first show that if yp(t) is the solution of Equation 2.4, then yc(t)þ yP(t) is also its solution. This
follows from the fact that

Q(D)yc(t) ¼ 0

If yP(t) is the solution of Equation 2.4, then

Q(D)yP(t) ¼ P(D)f (t)

Addition of these two equations yields

Q(D) yc(t)þ yP(t)½ � ¼ P(D)f (t)

Thus, yc(t)þ yP(t) satisfies Equation 2.4 and therefore is the general solution of Equation 2.4. We call
yc(t) the complementary solution and yP(t) the particular solution. In system analysis parlance, these
components are called the natural response and the forced response, respectively.
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2.1.2.1 Complementary Solution (the Natural Response)

The complementary solution yc(t) is the solution of

Q(D)yc(t) ¼ 0 (2:5a)

or

Dn þ an�1D
n�1 þ � � � þ a1Dþ a0

� �
yc(t) ¼ 0 (2:5b)

A solution to this equation can be found in a systematic and formal way. However, we will take a short
cut by using heuristic reasoning. Equation 2.5b shows that a linear combination of yc(t) and its n
successive derivatives is zero, not at some values of t, but for all t. This is possible if and only if yc(t)
and all its n successive derivatives are of the same form. Otherwise their sum can never add to
zero for all values of t. We know that only an exponential function elt has this property. So let us
assume that

yc(t) ¼ celt

is a solution to Equation 2.5b. Now

Dyc(t) ¼ dyc
dt

¼ clelt

D2yc(t) ¼ d2yc
dt2

¼ cl2elt

..

.

Dnyc(t) ¼ dnyc
dtn

¼ clnelt

Substituting these results in Equation 2.5b, we obtain

c ln þ an�1l
n�1 þ � � � þ a1lþ a0

� �
elt ¼ 0

For a nontrivial solution of this equation,

ln þ an�1l
n�1 þ � � � þ a1lþ a0 ¼ 0 (2:6a)

This result means that celt is indeed a solution of Equation 2.5 provided that l satisfies Equation 2.6a.
Note that the polynomial in Equation 2.6a is identical to the polynomial Q(D) in Equation 2.5b, with l

replacing D. Therefore, Equation 2.6a can be expressed as

Q(l) ¼ 0 (2:6b)

When Q(l) is expressed in factorized form, Equation 2.6b can be represented as

Q(l) ¼ (l� l1)(l� l2) � � � (l� ln) ¼ 0 (2:6c)
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Clearly l has n solutions: l1, l2, . . . , ln. Consequently, Equation 2.5 has n possible solutions: c1e
l1t,

c2e
l2t, . . . , cne

lnt, with c1, c2, . . . , cn as arbitrary constants. We can readily show that a general solution is
given by the sum of these n solutions,* so that

yc(t) ¼ c1e
l1t þ c2e

l2t þ � � � þ cne
lnt (2:7)

where c1, c2, . . . , cn are arbitrary constants determined by n constraints (the auxiliary conditions) on
the solution.

The polynomial Q(l) is known as the characteristic polynomial. The equation

Q(l) ¼ 0 (2:8)

is called the characteristic or auxiliary equation. From Equation 2.6c, it is clear that l1, l2, . . . ,ln are the
roots of the characteristic equation; consequently, they are called the characteristic roots. The terms
characteristic values, eigenvalues, and natural frequencies are also used for characteristic roots.y The
expotentials el1t(i¼ 1, 2, . . . , n) in the complementary solution are the characteristic modes (also known
as modes or natural modes). There is a characteristic mode for each characteristic root, and the
complementary solution is a linear combination of the characteristic modes.

2.1.2.2 Repeated Roots

The solution of Equation 2.5 as given in Equation 2.7 assumes that the characteristic roots l1, l2, . . . ,ln
are distinct. If there are repeated roots (same root occurring more than once), the form of the solution is
modified slightly. By direct substitution we can show that the solution of the equation

(D� l)2yc(t) ¼ 0

is given by

yc(t) ¼ (c1 þ c2t)e
lt

In this case the root l repeats twice. Observe that the characteristic modes in this case are elt and telt.
Continuing this pattern, we can show that for the differential equation

(D� l)ryc(t) ¼ 0 (2:9)

the characteristic modes are elt, telt, t2elt, . . . , tr�1elt, and the solution is

yc(t) ¼ c1 þ c2t þ � � � þ crt
r�1

� �
elt (2:10)

* To prove this fact, assume that y1(t), y2(t), . . . , yn(t) are all solutions of Equation 2.5. Then

Q(D)y1(t) ¼ 0
Q(D)y2(t) ¼ 0

..

.

Q(D)yn(t) ¼ 0

Multiplying these equations by c1, c2, . . . , cn, respectively, and adding them together yields

Q(D)[c1y1(t)þ c2yn(t)]¼ 0

This result shows that c1y1(t)þ c2y2(t)þ � � �þ cnyn(t) is also a solution of the homogeneous equation (Equation 2.5).
y The term eigenvalue is German for characteristic value.
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Consequently, for a characteristic polynomial

Q(l) ¼ (l� l1)
r(l� lrþ1) . . . (l� ln)

the characteristic modes are el1t, tel1t, . . . , tr�1 elt, elrþ1t, . . . , elnt and the complementary solution is

yc(t) ¼ c1 þ c2t þ � � � þ crt
r�1

� �
elt þ crþ1e

lrþ1t þ � � � þ cne
lnt

2.1.2.3 Particular Solution (the Forced Response): Method of Undetermined Coefficients

The particular solution yp(t) is the solution of

Q(D)yp(t) ¼ P(D)f (t) (2:11)

It is a relatively simple task to determine yp(t) when the input f(t) is such that it yields only a finite
number of independent derivatives. Inputs having the form ezt or tr fall into this category. For example,
ezt has only one independent derivative; the repeated differentiation of ezt yields the same form, that is,
ezt. Similarly, the repeated differentiation of tr yields only r independent derivatives. The particular
solution to such an input can be expressed as a linear combination of the input and its independent
derivatives. Consider, for example, the input f(t)¼ at2þ btþ c. The successive derivatives of this input
are 2atþ b and 2a. In this case, the input has only two independent derivatives. Therefore the particular
solution can be assumed to be a linear combination of f(t) and its two derivatives. The suitable form for
yp(t) in this case is therefore

yp(t) ¼ b2t
2 þ b1t þ b0

The undetermined coefficients b0, b1, and b2 are determined by substituting this expression for yp(t) in
Equation 2.11 and then equating coefficients of similar terms on both sides of the resulting expression.

Although this method can be used only for inputs with a finite number of derivatives, this class of
inputs includes a wide variety of the most commonly encountered signals in practice. Table 2.1 shows a
variety of such inputs and the form of the particular solution corresponding to each input. We shall
demonstrate this procedure with an example.

Note: By definition, yp(t) cannot have any characteristic mode terms. If any term p(t) shown in the
right-hand column for the particular solution is also a characteristic mode, the correct form of the forced
response must be modified to tip(t), where i is the smallest possible integer that can be used and still can
prevent tip(t) from having characteristic mode term. For example, when the input is ezt, the forced
response (right-hand column) has the form bezt. But if ezt happens to be a characteristic mode, the
correct form of the particular solution is btezt (see Pair 2). If tezt also happens to be characteristic mode,
the correct form of the particular solution is bt2ezt, and so on.

TABLE 2.1 Inputs and Responses for Commonly Encountered Signals

No. Input f(t) Forced Response

1 ezt z 6¼ li(i¼ 1, 2, . . . , n) bezt

2 ezt z 6¼ li btezt

3 k (a constant) b (a constant)

4 cos(vtþ u) (b cos(vtþw)

5 (trþar�1t
r�1 þ � � �þ a1tþa0)e

zt (brt
rþbr�1t

r�1 þ � � �þ b1tþb0)e
zt
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Example 2.1

Solve the differential equation

(D2 þ 3Dþ 2)y(t) ¼ Df (t) (2:12)

if the input

f (t) ¼ t2 þ 5t þ 3

and the initial conditions are y(0þ)¼ 2 and _y(0þ)¼ 3.
The characteristic polynomial is

l2 þ 3lþ 2 ¼ (lþ 1)(lþ 2)

Therefore the characteristic modes are e�t and e�2t. The complementary solution is a linear combination
of these modes, so that

yc(t) ¼ c1e
�t þ c2e

�2t t � 0

Here the arbitrary constants c1 and c2 must be determined from the given initial conditions.
The particular solution to the input t2þ 5tþ 3 is found from Table 2.1 (Pair 5 with z¼ 0) to be

yp(t) ¼ b2t
2 þ b1t þ b0

Moreover, yp(t) satisfies Equation 2.11, that is,

(D2 þ 3Dþ 2)yp(t) ¼ Df (t) (2:13)

Now

Dyp(t) ¼ d
dt

b2t
2 þ b1t þ b0

� � ¼ 2b2t þ b1

D2yp(t) ¼ d2

dt2
b2t

2 þ b1t þ b0

� � ¼ 2b2

and

Df (t) ¼ d
dt

[t2 þ 5t þ 3] ¼ 2t þ 5

Substituting these results in Equation 2.13 yields

2b2 þ 3(2b2t þ b1)þ 2(b2t
2 þ b1t þ b0) ¼ 2t þ 5

or

2b2t
2 þ (2b1 þ 6b2)t þ (2b0 þ 3b1 þ 2b2) ¼ 2t þ 5
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Equating coefficients of similar powers on both sides of this expression yields

2b2 ¼ 0

2b1 þ 6b2 ¼ 2

2b0 þ 3b1 þ 2b2 ¼ 5

Solving these three equations for their unknowns, we obtain b0¼ 1, b1¼ 1, and b2¼ 0. Therefore,

yp(t) ¼ t þ 1 t > 0

The total solution y(t) is the sum of the complementary and particular solutions. Therefore,

y(t) ¼ yc(t)þ yp(t)

¼ c1e
�t þ c2e

�2t þ t þ 1 t > 0

so that

_y(t) ¼ �c1e
�t � 2c2e

�2t þ 1

Setting t¼ 0 and substituting the given initial conditions y(0)¼ 2 and _y(0)¼ 3 in these equations, we
have

2 ¼ c1 þ c2 þ 1

3 ¼ �c1 � 2c2 þ 1

The solution to these two simultaneous equations is c1¼ 4 and c2¼�3. Therefore,

y(t) ¼ 4e�t � 3e�2t þ t þ 1 t � 0

2.1.2.4 The Exponential Input ezt

The exponential signal is the most important signal in the study of LTI systems. Interestingly, the
particular solution for an exponential input signal turns out to be very simple. From Table 2.1 we see that
the particular solution for the input ezt has the form bezt. We now show that b¼Q(z)=P(z).*
To determine the constant b, we substitute yp(t)¼bezt in Equation 2.11, which gives us

Q(D) bezt
� � ¼ P(D)ezt (2:14a)

Now observe that

Dezt ¼ d
dt

(ezt) ¼ zezt

D2ezt ¼ d2

dt2
(ezt) ¼ z2ezt

..

.

Drezt ¼ zrezt

* This is true only if z is not a characteristic root.

2-8 Digital Signal Processing Fundamentals



Consequently,

Q(D)ezt ¼ Q(z)ezt and P(D)ezt ¼ P(z)ezt

Therefore, Equation 2.14a becomes

bQ(z)ezt ¼ P(z)ezt (2:14b)

and

b ¼ P(z)
Q(z)

Thus, for the input f(t)¼ ezt, the particular solution is given by

yp(t) ¼ H(z)ezt t > 0 (2:15a)

where

H(z) ¼ P(z)
Q(z)

(2:15b)

This is an interesting and significant result. It states that for an exponential input ezt the particular
solution yp(t) is the same exponential multiplied by H(z)¼ P(z)=Q(z). The total solution y(t) to an
exponential input ezt is then given by

y(t) ¼
Xn
j¼1

cje
ljt þ H(z)ezt

where the arbitrary constants c1, c2, . . . , cn are determined from auxiliary conditions.
Recall that the exponential signal includes a large variety of signals, such as a constant (z¼ 0), a

sinusoid (z ¼ � jv), and an exponentially growing or decaying sinusoid (z¼s� jv). Let us consider the
forced response for some of these cases.

2.1.2.5 The Constant Input f (t)¼C

Because C¼Ce0t, the constant input is a special case of the exponential input Cezt with z¼ 0. The
particular solution to this input is then given by

yp(t) ¼ CH(z)ezt with z ¼ 0

¼ CH(0) (2:16)

2.1.2.6 The Complex Exponential Input ejvt

Here z¼ jv, and

yp(t) ¼ H( jv)ejvt (2:17)
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2.1.2.7 The Sinusoidal Input f (t)¼ cos v0t

We know that the particular solution for the input e�jvt is H(�jv)e�jvt. Since cos vt¼ (ejvtþ e�jvt)=2,
the particular solution to cos vt is

yp(t) ¼ 1
2

H( jv)ejvt þH(�jv)e�jvt
� �

Because the two terms on the right-hand side are conjugates,

yp(t) ¼ Re H( jv)ejvt
� �

But

H( jv) ¼ jH( jv)jejffH( jv)

so that

yp(t) ¼ Re jH( jv)jej vtþffH( jv)½ �
n o

¼ jH( jv)j cos vt þ ffH( jv)½ � (2:18)

This result can be generalized for the input f(t)¼ cos(vtþ u). The particular solution in this case is

yp(t) ¼ jH( jv)j cos vt þ uþ ffH( jv)½ � (2:19)

Example 2.2

Solve Equation 2.12 for the following inputs:

(a) 10e�3t (b) 5 (c) e�2t (d) 10 cos(3tþ 308).

The initial conditions are y(0þ)¼ 2, _y(0þ)¼ 3.
The complementary solution for this case is already found in Example 2.1 as

yc(t) ¼ c1e
�t þ c2e

�2t t � 0

For the exponential input f(t)¼ ezt, the particular solution, as found in Equation 2.15 is H(z)ezt, where

H(z) ¼ P(z)
Q(z)

¼ z

z2 þ 3zþ 2
(a) For input f(t)¼ 10e�3t, z¼�3, and

yp(t) ¼ 10H(�3)e�3t

¼ 10
�3

(�3)2 þ 3(�3)þ 2

� 	
e�3t

¼ �15e�3t t > 0

The total solution (the sum of the complementary and particular solutions) is

y(t) ¼ c1e
�t þ c2e

�2t � 15e�3t t � 0
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and

_y(t) ¼ �c1e
�t � 2c2e

�2t þ 45e�3t t � 0

The initial conditions are y(0þ)¼ 2 and _y(0þ)¼ 3. Setting t¼ 0 in the above equations and
substituting the initial conditions yields

c1 þ c2 � 15 ¼ 2 and �c1 � 2c2 þ 45 ¼ 3

Solution of these equations yields c1¼�8 and c2¼ 25. Therefore,

y(t) ¼ �8e�t þ 25e�2t � 15e�3t t � 0

(b) For input f(t)¼ 5¼ 5e0t, z¼ 0, and

yp(t) ¼ 5H(0) ¼ 0 t > 0

The complete solution is y(t)¼ yc(t)þ yp(t)¼ c1e
�tþ c2e

�2t. We then substitute the initial
conditions to determine c1 and c2 as explained in (a).

(c) Here z¼�2, which is also a characteristic root. Hence (see Pair 2, Table 2.1, or the comment at
the bottom of the table),

yp(t) ¼ bte�2t

To find b, we substitute yp(t) in Equation 2.11, giving us

(D2 þ 3Dþ 2)yp(t) ¼ Df (t)

or

(D2 þ 3Dþ 2) bte�2t
� � ¼ De�2t

But

D[bte�2t ] ¼ b(1� 2t)e�2t

D2[bte�2t ] ¼ 4b(t � 1)e�2t

De�2t ¼ �2e�2t

Consequently,

b(4t � 4þ 3� 6t þ 2t)e�2t ¼ �2e�2t

or

�be�2t ¼ �2e�2t

This means that b¼ 2, so that

yp(t) ¼ 2te�2t
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The complete solution is y(t) ¼ yc(t)þ yp(t) ¼ c1e�t þ c2e�2t þ 2te�2t . We then substitute
the initial conditions to determine c1 and c2 as explained in (a).

(d) For the input f(t)¼ 10 cos (3tþ 308), the particular solution (see Equation 2.19) is

yp(t) ¼ 10 H( j3)j j cos 3t þ 30
 þ ffH( j3)½ �

where

H( j3) ¼ P( j3)
Q( j3)

¼ j3

( j3)2 þ 3( j3)þ 2

¼ j3
�7þ j9

¼ 27� j21
130

¼ 0:263e�j37:9


Therefore,

H( j3)j j ¼ 0:263, ffH( j3) ¼ �37:9


and

yp(t) ¼ 10(0:263) cos (3t þ 30
 � 37:9
)
¼ 2:63 cos (3t � 7:9
)

The complete solution is y(t) ¼ yc(t)þ yp(t) ¼ c1e�t þ c2e�2t þ 2:63 cos (3t � 7:9
). We then
substitute the initial conditions to determine c1 and c2 as explained in (a).

2.1.3 Method of Convolution

In this method, the input f(t) is expressed as a sum of impulses. The solution is then obtained as a sum of
the solutions to all the impulse components. The method exploits the superposition property of the linear
differential equations. From the sampling (or sifting) property of the impulse function, we have

f (t) ¼
ðt
0

f (x)d(t � x)dx t � 0 (2:20)

The right-hand side expresses f(t) as a sum (integral) of impulse components. Let the solution of
Equation 2.4 be y(t)¼ h(t) when f(t)¼ d(t) and all the initial conditions are zero. Then use of the
linearity property yields the solution of Equation 2.4 to input f(t) as

y(t) ¼
ðt
0

f (x)h(t � x)dx (2:21)

For this solution to be general, we must add a complementary solution. Thus, the general solution is
given by

y(t) ¼
Xn
j¼1

cje
ljt þ

ðt
0

f (x)h(t � x)dx (2:22)
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The first term on the right-hand side consists of a linear combination of natural modes and should be
appropriately modified for repeated roots. For the integral on the right-hand side, the lower limit 0 is
understood to be 0� in order to ensure that impulses, if any, in the input f(t) at the origin are accounted
for. The integral on the right-hand side of Equation 2.22 is well known in the literature as the convolution
integral. The function h(t) appearing in the integral is the solution of Equation 2.4 for the impulsive input
[ f(t)¼ d(t)]. It can be shown that [2]

h(t) ¼ P(D) yo(t)u(t)½ � (2:23)

where yo(t) is a linear combination of the characteristic modes subject to initial conditions

y(n�1)
o (0) ¼ 1

yo(0) ¼ y(1)o (0) ¼ � � � ¼ y(n�2)
o (0) ¼ 0

(2:24)

The function u(t) appearing on the right-hand side of Equation 2.23 represents the unit step function,
which is unity for t� 0 and is 0 for t< 0.

The right-hand side of Equation 2.23 is a linear combination of the derivatives of yo(t)u(t). Evaluating
these derivatives is clumsy and inconvenient because of the presence of u(t). The derivatives will generate
an impulse and its derivatives at the origin [recall that d

dt u(t) ¼ d(t)]. Fortunately when m� n in
Equation 2.4, the solution simplifies to

h(t) ¼ bnd(t)þ P(D)yo(t)½ �u(t) (2:25)

Example 2.3

Solve Example 2.2(a) using the method of convolution.
We first determine h(t). The characteristic modes for this case, as found in Example 2.1, are e�t and

e�2t. Since yo(t) is a linear combination of the characteristic modes

yo(t) ¼ K1e
�t þ K2e

�2t t � 0

Therefore,

_yo(t) ¼ �K1e
�t � 2K2e

�2t t � 0

The initial conditions according to Equation 2.24 are _yo(0)¼ 1 and yo(0)¼ 0. Setting t¼ 0 in the above
equations and using the initial conditions, we obtain

K1 þ K2 ¼ 0 and � K1 � 2K2 ¼ 1

Solution of these equations yields K1¼ 1 and K2¼�1. Therefore,

yo(t) ¼ e�t � e�2t

Also in this case the polynomial P(D)¼D is of the first-order, and b2¼ 0. Therefore, from Equation 2.25

h(t) ¼ P(D)yo(t)½ �u(t) ¼ Dyo(t)½ �u(t)

¼ d
dt

e�t � e�2t
� �� 	

u(t)

¼ (�e�t þ 2e�2t)u(t)
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and

ðt
0

f (x)h(t � x)dx ¼
ðt
0

10e�3x �e�(t�x)
� þ 2e�2(t�x)

�
dx

¼ �5e�t þ 20e�2t � 15e�3t

The total solution is obtained by adding the complementary solution yc(t)¼ c1e
�tþ c2e

�2t to this
component. Therefore,

y(t) ¼ c1e
�t þ c2e

�2t � 5e�t þ 20e�2t � 15e�3t

Setting the conditions y(0þ)¼ 2 and y(0þ)¼ 3 in this equation (and its derivative), we obtain c1¼�3,
c2¼ 5 so that

y(t) ¼ �8e�t þ 25e�2t � 15e�3t t � 0

which is identical to the solution found by the classical method.

2.1.3.1 Assessment of the Convolution Method

The convolutionmethod is more laborious compared to the classical method. However, in system analysis,
its advantages outweigh the extra work. The classical method has a serious drawback because it yields the
total response, which cannot be separated into components arising from the internal conditions and the
external input. In the study of systems it is important to be able to express the system response to an input
f(t) as an explicit function of f(t). This is not possible in the classical method. Moreover, the classical
method is restricted to a certain class of inputs; it cannot be applied to any input.*

If wemust solve a particular linear differential equation or find a response of a particular LTI system, the
classical methodmay be the best. In the theoretical study of linear systems, however, it is practically useless.
General discussion of differential equations can be found in numerous texts on the subject [1].

2.2 Difference Equations

The development of difference equations is parallel to that of differential equations. We consider here
only linear difference equations with constant coefficients. An n th-order difference equation can be
expressed in two different forms; the first form uses delay terms such as y[k� 1], y[k� 2], f[k� 1],
f[k� 2], etc., and the alternative form uses advance terms such as y[kþ 1], y[kþ 2], etc. Both forms are
useful. We start here with a general nth-order difference equation, using advance operator form.

y[kþ n]þ an�1y[kþ n� 1]þ � � � þ a1y[kþ 1]þ a0y[k]

¼ bmf [kþm]þ bm�1f [kþm� 1]þ � � � þ b1f [kþ 1]þ b0f [k] (2:26)

* Another minor problem is that because the classical method yields total response, the auxiliary conditions must be on the
total response, which exists only for t� 0þ. In practice we are most likely to know the conditions at t¼ 0� (before the input
is applied). Therefore, we need to derive a new set of auxiliary conditions at t¼ 0þ from the known conditions at t¼ 0�.
The convolution method can handle both kinds of initial conditions. If the conditions are given at t¼ 0�, we apply these
conditions only to yc(t) because by its definition the convolution integral is 0 at t¼ 0�.
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2.2.1 Causality Condition

The left-hand side of Equation 2.26 consists of values of y[k] at instants kþ n, kþ n� 1, kþ n� 2, and so
on. The right-hand side of Equation 2.26 consists of the input at instants kþm, kþm� 1, kþm� 2,
and so on. For a casual equation, the solution cannot depend on future input values. This show that when
the equation is in the advance operator form of Equation 2.26, casuality requires m� n. For a general
casual case, m¼ n, and Equation 2.26 becomes

y[kþ n]þ an�1y[kþ n� 1]þ � � � þ a1y[kþ 1]þ a0y[k]

¼ bnf [kþ n]þ bn�1f [kþ n� 1]þ � � � þ b1f [kþ 1]þ b0f [k] (2:27a)

where some of the coefficients on both sides can be zero. However, the coefficient of y[kþ n] is
normalized to unity. Equation 2.27a is valid for all values of k. Therefore, the equation is still valid if
we replace k by k� n throughout the equation. This yields the alternative form (the delay operator form)
of Equation 2.27a

y[k]þ an�1y[k� 1]þ � � � þ a1y[k� nþ 1]þ a0y[k� n]

¼ bnf [k]þ bn�1f [k� 1]þ � � � þ b1f [k� nþ 1]þ b0f [k� n] (2:27b)

We designate the form of Equation 2.27a the advance operator form, and the form of Equation 2.27b the
delay operator form.

2.2.2 Initial Conditions and Iterative Solution

Equation 2.27b can be expressed as

y[k] ¼� an�1y[k�1]� an�2y[k� 2]� � � � � a0y[k� n]þ bnf [k]

þ bn�1f [k� 1]þ � � � þ b0f [k� n] (2:27c)

This equation shows that y[k], the solution at the k th instant, is computed from 2nþ 1 pieces of
information. These are the past n values of y[k]: y[k� 1], y[k� 2], . . . , y[k� n] and the present and past
n values of the input: f [k], f [k� 1], f [k� 2], . . . , f [k� n]. If the input f [k] is known for k¼ 0, 1, 2, . . . , then
the values of y[k] for k¼ 0, 1, 2, . . . can be computed from the 2n initial conditions y[�1], y[�2], . . . , y[�n]
and f [�1], f [�2], . . . , f [�n]. If the input is causal, that is, if f [k]¼ 0 for k< 0, then f [�1]¼ f [�2] ¼ � � � ¼
f [�n]¼ 0, and we need only n initial conditions y[�1], y[�2], . . . , y[�n]. This allows us to compute
iteratively or recursively the values y[0], y[1], y[2], y[3], . . . , and so on.* For instance, to find y[0] we set
k¼ 0 in Equation 2.27c. The left-hand side is y[0], and the right-hand side contains terms y[�1], y[�2], . . . ,
y[�n], and the inputs f [0], f [�1], f [�2], . . . , f [�n].

Therefore, to begin with, we must know the n initial conditions y[�1], y[�2], . . . , y[�n]. Knowing
these conditions and the input f [k], we can iteratively find the response y[0], y[1], y[2], . . . , and so on.
The following example demonstrates this procedure. This method basically reflects the manner in which
a computer would solve a difference equation, given the input and initial conditions.

* For this reason Equation 2.27 is called a recursive difference equation. However, in Equation 2.27 if a0¼ a1¼
a2¼ � � � ¼ an�1¼ 0, then it follows from Equation 2.27c that determination of the present value of y[k] does not require
the past values y[k� 1], y [k� 2], etc. For this reason when ai¼ 0 (i¼ 0, 1, . . . , n� 1), the difference Equation 2.27 is
nonrecursive. This classification is important in designing and realizing digital filters. In this discussion, however, this
classification is not important. The analysis techniques developed here apply to general recursive and nonrecursive
equations. Observe that a nonrecursive equation is a special case of recursive equation with a0¼ a1¼ � � � ¼ an�1¼ 0.
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Example 2.4

Solve iteratively

y[k]� 0:5y[k � 1] ¼ f [k] (2:28a)

with initial condition y[�1]¼ 16 and the input f [k]¼ k2 (starting at k¼ 0). This equation can be expressed as

y[k] ¼ 0:5y[k � 1]þ f [k] (2:28b)

If we set k¼ 0 in this equation, we obtain

y[0] ¼ 0:5y[�1]þ f [0]

¼ 0:5(16)þ 0 ¼ 8

Now, setting k¼ 1 in Equation 2.28b and using the value y[0]¼ 8 (computed in the first step) and f [1]¼
(1)2¼ 1, we obtain

y[1] ¼ 0:5(8)þ (1)2 ¼ 5

Next, setting k¼ 2 in Equation 2.28b and using the value y[1]¼ 5 (computed in the previous step) and
f [2]¼ (2)2, we obtain

y[2] ¼ 0:5(5)þ (2)2 ¼ 6:5

Continuing in this way iteratively, we obtain

y[3] ¼ 0:5(6:5)þ (3)2 ¼ 12:25

y[4] ¼ 0:5(12:25)þ (4)2 ¼ 22:125

and so on.
This iterative solution procedure is available only for difference equations; it cannot be applied to

differential equations. Despite the many uses of this method, a closed-form solution of a difference
equation is far more useful in the study of system behavior and its dependence on the input and the
various system parameters. For this reason we shall develop a systematic procedure to obtain a closed-
form solution of Equation 2.27.

2.2.3 Operational Notation

In difference equations it is convenient to use operational notation similar to that used in differential
equations for the sake of compactness and convenience. For differential equations, we use the operator D
to denote the operation of differentiation. For difference equations, we use the operator E to denote the
operation for advancing the sequence by one time interval. Thus,

Ef [k] � f [kþ 1]

E2f [k] � f [kþ 2]

..

.

Enf [k] � f [kþ n]

(2:29)
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A general n th-order difference Equation 2.27a can be expressed as

En þ an�1E
n�1 þ � � � þ a1E þ a0

� �
y[k]

¼ bnE
n þ bn�1E

n�1 þ � � � þ b1E þ b0
� �

f [k] (2:30a)

or

Q[E]y[k] ¼ P[E]f [k] (2:30b)

where Q[E] and P[E] are n th-order polynomial operators, respectively,

Q[E] ¼ En þ an�1E
n�1 þ � � � þ a1E þ a0 (2:31a)

P[E] ¼ bnE
n þ bn�1E

n�1 þ � � � þ b1E þ b0 (2:31b)

2.2.4 Classical Solution

Following the discussion of differential equations, we can show that if yp[k] is a solution of Equation 2.27
or Equation 2.30, that is,

Q[E]yp[k] ¼ P[E]f [k] (2:32)

then yp[k]þ yc[k] is also a solution of Equation 2.30, where yc[k] is a solution of the homogeneous
equation

Q[E]yc[k] ¼ 0 (2:33)

As before, we call yp[k] the particular solution and yc[k] the complementary solution.

2.2.4.1 Complementary Solution (the Natural Response)

By definition

Q[E]yc[k] ¼ 0 (2:33a)

or

(En þ an�1E
n�1 þ � � � þ a1E þ a0)yc[k] ¼ 0 (2:33b)

or

yc[kþ n]þ an�1yc[kþ n� 1]þ � � � þ a1yc[kþ 1]þ a0yc[k] ¼ 0 (2:33c)

We can solve this equation systematically, but even a cursory examination of this equation points to its
solution. This equation states that a linear combination of yc[k] and delayed yc[k] is zero not for some
values of k, but for all k. This is possible if and only if yc[k] and delayed yc[k] have the same form. Only an
exponential function gk has this property as seen from the equation

gk�m ¼ g�mgk
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This shows that the delayed gk is a constant times gk. Therefore, the solution of Equation 2.33 must be of
the form

yc[k] ¼ cgk (2:34)

To determine c and g, we substitute this solution in Equation 2.33. From Equation 2.34, we have

Eyc[k] ¼ yc[kþ 1] ¼ cgkþ1 ¼ (cg)gk

E2yc[k] ¼ yc[kþ 2] ¼ cgkþ2 ¼ (cg2)gk

..

.

Enyc[k] ¼ yc[kþ n] ¼ cgkþn ¼ (cgn)gk

(2:35)

Substitution of this in Equation 2.33 yields

c gn þ an�1g
n�1 þ � � � þ a1gþ a0

� �
gk ¼ 0 (2:36)

For a nontrivial solution of this equation

gn þ an�1g
n�1 þ � � � þ a1gþ a0

� � ¼ 0 (2:37a)

or

Q[g] ¼ 0 (2:37b)

Our solution cgk (Equation 2.34) is correct, provided that g satisfies Equation 2.37. Now, Q[g] is an
nth-order polynomial and can be expressed in the factorized form (assuming all distinct roots):

(g� g1)(g� g2) � � � (g� gn) ¼ 0 (2:37c)

Clearly g has n solutions g1, g2, . . . ,gn and, therefore, Equation 2.33 also has n solutions
c1gk1, c2g

k
2, . . . , cng

k
n. In such a case we have shown that the general solution is a linear combination of

the n solutions. Thus,

yc[k] ¼ c1g
k
1 þ c2g

k
2 þ � � � þ cng

k
n (2:38)

where g1,g2, . . . , gn are the roots of Equation 2.37 and c1, c2, . . . , cn are arbitrary constants determined
from n auxiliary conditions. The polynomial Q[g] is called the characteristic polynomial, and

Q[g] ¼ 0 (2:39)

is the characteristic equation. Moreover, g1,g2, . . . ,gn the roots of the characteristic equation, are called
characteristic roots or characteristic values (also eigenvalues). The exponentials gki (i ¼ 1, 2, . . . , n) are
the characteristic modes or natural modes. A characteristic mode corresponds to each characteristic root,
and the complementary solution is a linear combination of the characteristic modes of the system.

2-18 Digital Signal Processing Fundamentals



2.2.4.2 Repeated Roots

For repeated roots, the form of characteristic modes is modified. It can be shown by direct substitution
that if a root g repeats r times (root of multiplicity r), the characteristic modes corresponding to this root
are gk, kgk, k2gk, . . . , kr�1gk. Thus, if the characteristic equation is

Q[g] ¼ (g� g1)
r(g� grþ1)(g� grþ2) . . . (g� gn) (2:40)

the complementary solution is

yc[k] ¼ c1 þ c2kþ c3k
2 þ � � � þ crk

r�1
� �

gk1

þ crþ1g
k
rþ1 þ crþ2g

k
rþ2 þ � � � þ cng

k
n (2:41)

2.2.4.3 Particular Solution

The particular solution yp[k] is the solution of

Q[E]yp[k] ¼ p[E]f [k] (2:42)

We shall find the particular solution using the method of undetermined coefficients, the same method
used for differential equations. Table 2.2 lists the inputs and the corresponding forms of solution with
undetermined coefficients. These coefficients can be determined by substituting yp[k] in Equation 2.42
and equating the coefficients of similar terms.

Note: By definition, yp[k] cannot have any characteristic mode terms. If any term p[k] shown in the
right-hand column for the particular solution should also be a characteristic mode, the correct form of
the particular solution must be modified to kip[k], where i is the smallest integer that will prevent kip[k]
from having a characteristic mode term. For example, when the input is rk, the particular solution in the
right-hand column is of the form crk. But if rk happens to be a natural mode, the correct form of the
particular solution is bkrk (see Pair 2).

Example 2.5

Solve

(E2 � 5E þ 6)y[k] ¼ (E � 5)f [k] (2:43)

if the input f [k]¼ (3kþ 5)u[k] and the auxiliary conditions are y[0]¼ 4, y[1]¼ 13.
The characteristic equation is

g2 � 5gþ 6 ¼ (g� 2)(g� 3) ¼ 0

TABLE 2.2 Inputs and Forms of Solution

No. Input f [k] Forced Response yp[k]

1 rk r 6¼ gi (i¼ 1, 2, . . . , n) brk

2 rk r¼ gi bkrk

3 cos(Vkþ u) b cos(Vkþw)

4
Pm
i¼0

aiki
� �

rk
Pm
i¼0

bik
i

� �
rk
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Therefore, the complementary solution is

yc[k] ¼ c1(2)
k þ c2(3)

k

To find the form of yp[k] we use Table 2.2, Pair 4 with r¼ 1, m¼ 1. This yields

yp[k] ¼ b1k þ b0

Therefore,

yp[k þ 1] ¼ b1(k þ 1)þ b0 ¼ b1k þ b1 þ b0

yp[k þ 2] ¼ b1(k þ 2)þ b0 ¼ b1k þ 2b1 þ b0

Also,

f [k] ¼ 3k þ 5

and

f [k þ 1] ¼ 3(k þ 1)þ 5 ¼ 3k þ 8

Substitution of the above results in Equation 2.43 yields

b1k þ 2b1 þ b0 � 5(b1k þ b1 þ b0)þ 6(b1k þ b0)

¼ 3k þ 8� 5(3k þ 5)

or

2b1k � 3b1 þ 2b0 ¼ �12k � 17

Comparison of similar terms on two sides yields

2b1 ¼ �12

�3b1 þ 2b0 ¼ �17



) b1 ¼ �6

b2 ¼ � 35
2

This means

yp[k] ¼ �6k � 35
2

The total response is

y[k] ¼ yc[k]þ yp[k]

¼ c1(2)
k þ c2(3)

k � 6k � 35
2

k � 0 (2:44)

To determine arbitrary constants c1 and c2 we set k¼ 0 and 1 and substitute the auxiliary conditions
y[0]¼ 4, y[1]¼ 13, to obtain

4 ¼ c1 þ c2 � 35
2

13 ¼ 2c1 þ 3c2 � 47
2

)
) c1 ¼ 28

c2 ¼ �13
2
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Therefore,

yc[k] ¼ 28(2)k � 13
2
(3)k (2:45)

and

y[k] ¼ 28(2)k � 13
2
(3)k|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

yc[k]

� 6k � 35
2|fflfflfflffl{zfflfflfflffl}

yp[k]

(2:46)

2.2.4.4 A Comment on Auxiliary Conditions

This method requires auxiliary conditions y[0], y[1], . . . , y[n� 1], because the total solution is valid only
for k� 0. But if we are given the initial conditions y[�1], y[�2], . . . , y[�n], we can derive the conditions
y[0], y[1], . . . , y[n� 1], using the iterative procedure discussed earlier.

2.2.4.5 Exponential Input

As in the case of differential equations, we can show that for the equation

Q[E]y[k] ¼ P[E]f [k] (2:47)

the particular solution for the exponential input f[k]¼ rk is given by

yp[k] ¼ H[r]rk r 6¼ gi (2:48)

where

H[r] ¼ P[r]
Q[r]

(2:49)

The proof follows from the fact that if the input f[k]¼ rk, then from Table 2.2 (Pair 4), yp[k]¼brk.
Therefore,

Eif [k] ¼ f [kþ i] ¼ rkþi ¼ rirk and P[E]f [k] ¼ P[r]rk

Ejyp[k] ¼ brkþj ¼ brjrk and Q[E]y[k] ¼ bQ[r]rk

so that Equation 2.47 reduces to

bQ[r]rk ¼ P[r]rk

which yields b¼P[r]=Q[r]¼H[r].
This result is valid only if r is not a characteristic root. If r is a characteristic root, the particular

solution is bkrk where b is determined by substituting yp[k] in Equation 2.47 and equating coefficients of
similar terms on the two sides. Observe that the exponential rk includes a wide variety of signals such as a
constant C, a sinusoid cos(Vkþ u), and an exponentially growing or decaying sinusoid jgjk cos(Vkþ u).
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2.2.4.6 A Constant Input f (k)¼C

This is a special case of exponential Crk with r¼ 1. Therefore, from Equation 2.48 we have

yp[k] ¼ C
P[1]
Q[1]

(1)k ¼ CH[1] (2:50)

2.2.4.7 A Sinusoidal Input

The input e jVk is an exponential rk with r¼ e jV. Hence,

yp[k] ¼ H[e jV]e jVk ¼ P[e jV]
Q[e jV]

e jVk

Similarly for the input e�jVk

yp[k] ¼ H[e�jV]e�jVk

Consequently, if the input

f [k] ¼ cosVk ¼ 1
2
(e jVk þ e�jVk)

yp[k] ¼ 1
2

H[e jV]e jVk þ H[e�jV]e�jVk
� 

Since the two terms on the right-hand side are conjugates

yp[k] ¼ Re H[e jV]e jVk
� 

If

H[e jV] ¼ H[e jV]
�� ��e jffH[ejV]

then

yp[k] ¼ Re H[e jV]
�� ��e j VkþffH[e jV]ð Þn o

¼ H[e jV]
�� �� cos Vkþ ffH[e jV]

� �
(2:51)

Using a similar argument, we can show that for the input

f [k] ¼ cos (Vkþ u)

yp[k] ¼ H[e jV]
�� �� cos Vkþ uþ ffH[e jV]

� � (2:52)

Example 2.6

Solve

(E2 � 3E þ 2)y[k] ¼ (E þ 2)f [k]

for f [k]¼ (3)ku[k] and the auxiliary conditions y[0]¼ 2, y[1]¼ 1.
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In this case

H[r] ¼ P[r]
Q[r]

¼ r þ 2
r2 � 3r þ 2

and the particular solution to input (3)ku[k] is H[3](3)k, that is,

yp[k] ¼ 3þ 2

(3)2 � 3(3)þ 2
(3)k ¼ 5

2
(3)k

The characteristic polynomial is (g2� 3gþ 2)¼ (g� 1)(g� 2). The characteristic roots are 1 and 2. Hence,
the complementary solution is yc[k]¼ c1þ c2(2)

k and the total solution is

y[k] ¼ c1(1)
k þ c2(2)

k þ 5
2
(3)k

Setting k¼ 0 and 1 in this equation and substituting auxiliary conditions yields

2 ¼ c1 þ c2 þ 5
2

and 1 ¼ c1 þ 2c2 þ 15
2

Solution of these two simultaneous equations yields c1¼ 5.5, c2¼�5. Therefore,

y[k] ¼ 5:5� 6(2)k þ 5
2
(3)k k � 0

2.2.5 Method of Convolution

In this method, the input f [k] is expressed as a sum of impulses. The solution is then obtained as a sum of
the solutions to all the impulse components. The method exploits the superposition property of the linear
difference equations. A discrete-time unit impulse function d[k] is defined as

d[k] ¼ 1 k ¼ 0(94)
0 k 6¼ 0

�
(2:53)

Hence, an arbitrary signal f [k] can be expressed in terms of impulse and delayed impulse functions as

f [k] ¼ f [0]d[k]þ f [1]d[k� 1]þ f [2]d[k� 2]þ � � � þ f [k]d[0]þ � � � k � 0 (2:54)

The right-hand side expresses f [k] as a sum of impulse components. If h[k] is the solution of Equation
2.30 to the impulse input f [k]¼ d[k], then the solution to input d[k�m] is h[k�m]. This follows from
the fact that because of constant coefficients, Equation 2.30 has time invariance property. Also, because
Equation 2.30 is linear, its solution is the sum of the solutions to each of the impulse components of f[k]
on the right-hand side of Equation 2.54 Therefore,

y[k] ¼ f [0]h[k]þ f [1]h[k� 1]þ f [2]h[k� 2]

þ � � � þ f [k]h[0]þ f [kþ 1]h[� 1]þ � � �
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All practical systems with time as the independent variable are causal, that is, h[k]¼ 0 for k< 0. Hence,
all the terms on the right-hand side beyond f[k]h[0] are zero. Thus,

y[k] ¼ f [0]h[k]þ f [1]h[k� 1]þ f [2]h[k� 2]þ � � � þ f [k]h[0]

¼
Xk

m¼0

f [m]h[k�m] (2:55)

The first term on the right-hand side consists of a linear combination of natural modes and should be
appropriately modified for repeated roots. The general solution is obtained by adding a complementary
solution to the above solution. Therefore, the general solution is given by

y[k] ¼
Xn
j¼1

cjg
k
j þ

Xk
m¼0

f [m]h[k�m] (2:56)

The last sum on the right-hand side is known as the convolution sum of f[k] and h[k].
The function h[k] appearing in Equation 2.56 is the solution of Equation 2.30 for the impulsive input

( f[k]¼ d[k]) when all initial conditions are zero, that is, h[�1]¼ h[�2]¼ � � � ¼ h[�n]¼ 0. It can be
shown that [2] h[k] contains an impulse and a linear combination of characteristic modes as

h[k] ¼ b0
a0

d[k]þ A1g
k
1 þ A2g

k
2 þ � � � þ Ang

k
n (2:57)

where the unknown constants Ai are determined from n values of h[k] obtained by solving the equation
Q[E]h[k]¼P[E]d[k] iteratively.

Example 2.7

Solve Example 2.5 using convolution method. In other words solve

(E2 � 3E þ 2)y[k] ¼ (E þ 2)f [k]

for f [k]¼ (3)ku[k] and the auxiliary conditions y[0]¼ 2, y [1]¼ 1.
The unit impulse solution h[k] is given by Equation 2.57. In this case a0¼ 2 and b0¼ 2. Therefore,

h[k] ¼ d[k]þ A1(1)
k þ A2(2)

k (2:58)

To determine the two unknown constants A1 and A2 in Equation 2.58, we need two values of h[k], for
instance h[0] and h[1]. These can be determined iteratively by observing that h[k] is the solution of
(E2� 3Eþ 2)h[k]¼ (Eþ 2)d[k], that is,

h[k þ 2]� 3h[k þ 1]þ 2h[k] ¼ d[k þ 1]þ 2d[k] (2:59)

subject to initial conditions h[�1]¼ h[�2]¼ 0. We now determine h[0] and h[1] iteratively from Equation
2.59. Setting k¼�2 in this equation yields

h[0]� 3(0)þ 2(0) ¼ 0þ 0 ) h[0] ¼ 0
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Next, setting k¼�1 in Equation 2.59 and using h[0]¼ 0, we obtain

h[1]� 3(0)þ 2(0) ¼ 1þ 0 ) h[1] ¼ 1

Setting k¼ 0 and 1 in Equation 2.58 and substituting h[0]¼ 0, h[1]¼ 1 yields

0 ¼ 1þ A1 þ A2 and 1 ¼ A1 þ 2A2

Solution of these two equations yields A1¼�3 and A2¼ 2. Therefore,

h[k] ¼ d[k]� 3þ 2(2)k

and from Equation 2.56

y[k] ¼ c1 þ c2(2)
k þ

Xk

m¼0

(3)m d[k �m]� 3þ 2(2)k�m
� �

¼ c1 þ c2(2)
k þ 1:5� 4(2)k þ 2:5(3)k

The sums in the above expression are found by using the geometric progression sum formula

Xk

m¼0

rm ¼ rkþ1 � 1
r � 1

r 6¼ 1

Setting k¼ 0 and 1 and substituting the given auxiliary conditions y[0]¼ 2, y[1]¼ 1, we obtain

2 ¼ c1 þ c2 þ 1:5� 4þ 2:5 and 1 ¼ c1 þ 2c2 þ 1:5� 8þ 7:5

Solution of these equations yields c1¼ 4 and c2¼�2. Therefore,

y[k] ¼ 5:5� 6(2)k þ 2:5(3)k

which confirms the result obtained by the classical method.

2.2.5.1 Assessment of the Classical Method

The earlier remarks concerning the classical method for solving differential equations also apply to
difference equations. General discussion of difference equations can be found in texts on the subject [3].
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3.1 Introduction

Practical digital filters must be implemented with finite precision numbers and arithmetic. As a result,
both the filter coefficients and the filter input and output signals are in discrete form. This leads to four
types of finite wordlength effects.

Discretization (quantization) of the filter coefficients has the effect of perturbing the location of the
filter poles and zeros. As a result, the actual filter response differs slightly from the ideal response. This
deterministic frequency response error is referred to as coefficient quantization error.

The use of finite precision arithmetic makes it necessary to quantize filter calculations by rounding
or truncation. Roundoff noise is that error in the filter output that results from rounding or truncating
calculations within the filter. As the name implies, this error looks like low-level noise at the filter
output.

Quantization of the filter calculations also renders the filter slightly nonlinear. For large signals this
nonlinearity is negligible and roundoff noise is the major concern. However, for recursive filters with a
zero or constant input, this nonlinearity can cause spurious oscillations called limit cycles.

With fixed-point arithmetic it is possible for filter calculations to overflow. The term overflow
oscillation, sometimes also called adder overflow limit cycle, refers to a high-level oscillation that can
exist in an otherwise stable filter due to the nonlinearity associated with the overflow of internal filter
calculations.

In this chapter, we examine each of these finite wordlength effects. Both fixed-point and floating-point
number representations are considered.
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3.2 Number Representation

In digital signal processing, (Bþ 1)-bit fixed-point numbers are usually represented as two’s-complement
signed fractions in the format

b0b�1b�2 . . . b�B

The number represented is then

X ¼ �b0 þ b�12
�1 þ b�22

�2 þ � � � þ b�B2
�B (3:1)

where b0 is the sign bit and the number range is�1�X< 1. The advantage of this representation is that
the product of two numbers in the range from �1 to 1 is another number in the same range.

Floating-point numbers are represented as

X ¼ (�1)sm2c (3:2)

where
s is the sign bit
m is the mantissa
c is the characteristic or exponent

To make the representation of a number unique, the mantissa is normalized so that 0.5�m< 1.
Although floating-point numbers are always represented in the form of Equation 3.2, the way in which

this representation is actually stored in a machine may differ. Since m� 0.5, it is not necessary to store
the 2�1-weight bit of m, which is always set. Therefore, in practice numbers are usually stored as

X ¼ (�1)s(0:5þ f )2c (3:3)

where f is an unsigned fraction, 0� f< 0.5.
Most floating-point processors now use the IEEE Standard 754 32-bit floating-point format for storing

numbers. According to this standard the exponent is stored as an unsigned integer p where

p ¼ cþ 126 (3:4)

Therefore, a number is stored as

X ¼ (�1)s(0:5þ f )2p�126 (3:5)

where
s is the sign bit
f is a 23-bit unsigned fraction in the range 0� f< 0.5
p is an 8-bit unsigned integer in the range 0� p� 255

The total number of bits is 1þ 23þ 8¼ 32. For example, in IEEE format 3=4 is written (�1)0(0.5þ 0.25)20

so s¼ 0, p¼ 126, and f¼ 0.25. The valueX¼ 0 is a unique case and is represented by all bits zero (i.e., s¼ 0,
f¼ 0, and p¼ 0). Although the 2�1-weight mantissa bit is not actually stored, it does exist so the mantissa
has 24 bits plus a sign bit.
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3.3 Fixed-Point Quantization Errors

In fixed-point arithmetic, a multiply doubles the number of significant bits. For example, the product of
the two 5-bit numbers 0.0011 and 0.1001 is the 10-bit number 00.00011011. The extra bit to the left of the
decimal point can be discarded without introducing any error. However, the least significant four of the
remaining bits must ultimately be discarded by some form of quantization so that the result can be stored
to 5 bits for use in other calculations. In the example above this results in 0.0010 (quantization by
rounding) or 0.0001 (quantization by truncating). When a sum of products calculation is performed, the
quantization can be performed either after each multiply or after all products have been summed with
double-length precision.

We will examine three types of fixed-point quantization: rounding, truncation, and magnitude trunca-
tion. If X is an exact value, then the rounded value will be denoted Qr(X), the truncated value Qt(X), and
themagnitude truncated valueQmt(X). If the quantized value hasB bits to the right of the decimal point, the
quantization step size is

D ¼ 2�B (3:6)

Since rounding selects the quantized value nearest the unquantized value, it gives a value which is never
more than �D=2 away from the exact value. If we denote the rounding error by �D=2 away from the
exact value. If we denote the rounding error by

er ¼ Qr(X)� X (3:7)

then

�D

2
� er

D

2
(3:8)

Truncation simply discards the low-order bits, giving a quantized value that is always less than or equal
to the exact value so

�D < et � 0 (3:9)

Magnitude truncation chooses the nearest quantized value that has a magnitude less than or equal to the
exact value so

�D < emt � D (3:10)

The error resulting from quantization can be modeled as a random variable uniformly distributed over
the appropriate error range. Therefore, calculations with roundoff error can be considered error-free
calculations that have been corrupted by additive white noise. The mean of this noise for rounding is

mer ¼ E{er} ¼ 1
D

ðD=2
�D=2

erder ¼ 0 (3:11)
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where E{ } represents the operation of taking the expected value of a random variable. Similarly, the
variance of the noise for rounding is

s2
er ¼ E er �merð Þ2� � ¼ 1

D

ðD=2
�D=2

er �merð Þ2der ¼ D2

12
(3:12)

Likewise, for truncation,

met ¼ E{et} ¼ �D

2

s2
et ¼ E et �metð Þ2� � ¼ D2

12

(3:13)

and, for magnitude truncation,

met ¼ E emt �memtð Þ2� � ¼ D2

3
(3:14)

3.4 Floating-Point Quantization Errors

With floating-point arithmetic, it is necessary to quantize after both multiplications and additions. The
addition quantization arises because, prior to addition, the mantissa of the smaller number in the sum is
shifted right until the exponent of both numbers is the same. In general, this gives a sum mantissa that
is too long and so must be quantized.

We will assume that quantization in floating-point arithmetic is performed by rounding. Because of
the exponent in floating-point arithmetic, it is the relative error that is important. The relative error is
defined as

er ¼ Qr(X)� X
X

¼ er
X

(3:15)

Since X ¼ (�1)s m2c, Qr(X) ¼ (�1)sQr(m)2c and

er ¼ Qr(m)�m
m

¼ e
m

(3:16)

If the quantized mantissa has B bits to the right of the decimal point, jej<D=2 where, as before, D¼ 2�B.
Therefore, since 0.5�m< 1,

jerj < D (3:17)

If we assume that e is uniformly distributed over the range from �D=2 to D=2 and m is uniformly
distributed over 0.5–1, then

mer ¼ E
e
m

n o
¼ 0
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and

s2
er ¼ E

e
m

� �2� �
¼ 2

D

ð1
1=2

ðD=2
�D=2

e2

m2
dedm

¼ D2

6
¼ (0:167)2�2B (3:18)

In practice, the distribution of m is not exactly uniform. Actual measurements of roundoff noise in [1]
suggested that

s2
er � 0:23D2 (3:19)

while a detailed theoretical and experimental analysis in [2] determined

s2
er � 0:18D2 (3:20)

From Equation 3.15, we can represent a quantized floating-point value in terms of the unquantized value
and the random variable er using

Qr(X) ¼ X(1þ er) (3:21)

Therefore, the finite-precision product X1X2 and the sum X1þX2 can be written as

fl(X1X2) ¼ X1X2(1þ er) (3:22)

and

fl(X1 þ X2) ¼ (X1 þ X2)(1þ er) (3:23)

where er is zero-mean with the variance of Equation 3.20.

3.5 Roundoff Noise

To determine the roundoff noise at the output of a digital filter, we will assume that the noise due to a
quantization is stationary, white, and uncorrelated with the filter input, output, and internal variables.
This assumption is good if the filter input changes from sample to sample in a sufficiently complex
manner. It is not valid for zero or constant inputs for which the effects of rounding are analyzed from a
limit-cycle perspective.

To satisfy the assumption of a sufficiently complex input, roundoff noise in digital filters is often
calculated for the case of a zero-mean white noise filter input signal x(n) of variance s2

x. This simplifies
calculation of the output roundoff noise because expected values of the form E{x(n)x(n� k)} are zero for
k 6¼ 0 and give s2

x when k¼ 0. This approach to analysis has been found to give estimates of the output
roundoff noise that are close to the noise actually observed for other input signals.

Another assumption that will be made in calculating roundoff noise is that the product of two
quantization errors is zero. To justify this assumption, consider the case of a 16-bit fixed-point processor.
In this case, a quantization error is of the order 2�15, while the product of two quantization errors is of
the order 2�30, which is negligible by comparison.
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If a linear system with impulse response g(n) is excited by white noise with mean mx and variance s2
x ,

the output is noise of mean [3, pp. 788–790]

my ¼ mx

X1
n¼�1

g(n) (3:24)

and variance

s2
y ¼ s2

x

X1
n¼�1

g2(n) (3:25)

Therefore, if g(n) is the impulse response from the point where a roundoff takes place to the filter output,
the contribution of that roundoff to the variance (mean-square value) of the output roundoff noise is
given by Equation 3.25 with s2

x replaced with the variance of the roundoff. If there is more than one
source of roundoff error in the filter, it is assumed that the errors are uncorrelated so the output noise
variance is simply the sum of the contributions from each source.

3.5.1 Roundoff Noise in FIR Filters

The simplest case to analyze is a finite impulse response (FIR) filter realized via the convolution
summation

y(n) ¼
XN�1

k¼0

h(k)x(n� k) (3:26)

When fixed-point arithmetic is used and quantization is performed after each multiply, the result of the
N multiplies is N-times the quantization noise of a single multiply. For example, rounding after each
multiply gives, from Equations 3.6 and 3.12, an output noise variance of

s2
o ¼ N

2�2B

12
(3:27)

Virtually all digital signal processor integrated circuits contain one or more double-length accumulator
registers which permit the sum-of-products in Equation 3.26 to be accumulated without quantization. In
this case only a single quantization is necessary following the summation and

s2
o ¼

2�2B

12
(3:28)

For the floating-point roundoff noise case we will consider Equation 3.26 for N¼ 4 and then generalize
the result to other values of N. The finite-precision output can be written as the exact output plus an error
term e(n). Thus,

y(n)þ e(n) ¼ h(0)x(n) 1þ e1(n)½ �½fð
þ h(1)x(n� 1) 1þ e2(n)½ �� 1þ e3(n)½ �
þ h(2)x(n� 2) 1þ e4(n)½ �g 1þ e5(n)f g
þ h(3)x(n� 3) 1þ e6(n)½ �Þ 1þ e7(n)½ � (3:29)
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In Equation 3.29, e1(n) represents the error in the first product, e2(n) the error in the second product,
e3(n) the error in the first addition, etc. Notice that it has been assumed that the products are summed in
the order implied by the summation of Equation 3.26.

Expanding Equation 3.29, ignoring products of error terms, and recognizing y(n) gives

e(n) ¼ h(0)x(n) e1(n)þ e3(n)þ e5(n)þ e7(n)½ �
þ h(1)x(n� 1) e2(n)þ e3(n)þ e5(n)þ e7(n)½ �
þ h(2)x(n� 2) e4(n)þ e5(n)þ e7(n)½ �
þ h(3)x(n� 3) e6(n)þ e7(n)½ � (3:30)

Assuming that the input is white noise of variance s2
x so that E{x(n)x(n� k)} is zero for k 6¼ 0, and

assuming that the errors are uncorrelated,

E e2(n)
� � ¼ 4h2(0)þ 4h2(1)þ 3h2(2)þ 2h2(3)

� 	
s2
xs

2
er (3:31)

In general, for any N,

s2
o ¼ E e2(n)

� � ¼ Nh2(0)þ
XN�1

k¼1

(N þ 1� k)h2(k)

" #
s2
xs

2
er (3:32)

Notice that if the order of summation of the product terms in the convolution summation is changed,
then the order in which the h(k)’s appear in Equation 3.32 changes. If the order is changed so that
the h(k) with smallest magnitude is first, followed by the next smallest, etc., then the roundoff noise
variance is minimized. However, performing the convolution summation in nonsequential order greatly
complicates data indexing and so may not be worth the reduction obtained in roundoff noise.

3.5.2 Roundoff Noise in Fixed-Point IIR Filters

To determine the roundoff noise of a fixed-point infinite impulse response (IIR) filter realization,
consider a causal first-order filter with impulse response

h(n) ¼ anu(n) (3:33)

realized by the difference equation

y(n) ¼ ay(n� 1)þ x(n) (3:34)

Due to roundoff error, the output actually obtained is

ŷ(n) ¼ Q ay(n� 1)þ x(n)f g ¼ ay(n� 1)þ x(n)þ e(n) (3:35)

where e(n) is a random roundoff noise sequence. Since e(n) is injected at the same point as the input, it
propagates through a system with impulse response h(n). Therefore, for fixed-point arithmetic with
rounding, the output roundoff noise variance from Equations 3.6, 3.12, 3.25, and 3.33 is

s2
o ¼

D2

12

X1
n¼�1

h2(n) ¼ D2

12

X1
n¼0

a2n ¼ 2�2B

12
1

1� a2
(3:36)
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With fixed-point arithmetic there is the possibility of overflow following addition. To avoid overflow it is
necessary to restrict the input signal amplitude. This can be accomplished by either placing a scaling
multiplier at the filter input or by simply limiting the maximum input signal amplitude. Consider the
case of the first-order filter of Equation 3.34. The transfer function of this filter is

H(e jv) ¼ Y(e jv)
X(e jv)

¼ 1
e jv � a

(3:37)

so

H(e jv)


 

2¼ 1

1þ a2 � 2a cos(v)
(3:38)

and

H(e jv)


 



max
¼ 1

1� jaj (3:39)

The peak gain of the filter is 1= 1� jajð Þ so limiting input signal amplitudes to x(n)j j � 1� jaj will make
overflows unlikely.

An expression for the output roundoff noise-to-signal ratio can easily be obtained for the case where
the filter input is white noise, uniformly distributed over the interval from � 1� jajð Þ to 1� jajð Þ [4,5].
In this case,

s2
x ¼

1
2 1� jajð Þ

ð1�jaj

� 1�jajð Þ

x2dx ¼ 1
3

1� jajð Þ2 (3:40)

so, from Equation 3.25,

s2
y ¼

1
3

1� jajð Þ2
1� a2

(3:41)

Combining Equations 3.36 and 3.41 then gives

s2
o

s2
y
¼ 2�2B

12
1

1� a2

� �
3

1� a2

1� jajð Þ2
 !

¼ 2�2B

12
3

1� jajð Þ2 (3:42)

Notice that the noise-to-signal ratio increases without bound as jaj ! 1.
Similar results can be obtained for the case of the causal second-order filter realized by the difference

equation

y(n) ¼ 2r cos(u)y(n� 1)� r2y(n� 2)þ x(n) (3:43)

This filter has complex-conjugate poles at re�ju and impulse response

h(n) ¼ 1
sin(u)

rnsin (nþ 1)u½ �u(n) (3:44)
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Due to roundoff error, the output actually obtained is

ŷ(n) ¼ 2rcos(u)y(n� 1)� r2y(n� 2)þ x(n)þ e(n) (3:45)

There are two noise sources contributing to e(n) if quantization is performed after each multiply, and
there is one noise source if quantization is performed after summation. Since

X1
n¼�1

h2(n) ¼ 1þ r2

1� r2
1

(1þ r2)2 � 4r2cos2(u)
(3:46)

the output roundoff noise is

s2
o ¼ n

2�2B

12
1þ r2

1� r2
1

(1þ r2)2 � 4r2cos2(u)
(3:47)

where n¼ 1 for quantization after summation, and n¼ 2 for quantization after each multiply.
To obtain an output noise-to-signal ratio we note that

H(ejv) ¼ 1
1� 2rcos(u)e�jv þ r2e�j2v

(3:48)

and, using the approach of [6],

H(e jv)


 

2

max¼
1

4r2 sat 1þr2
2r cos(u)

 �� 1þr2
2r cos(u)

� 	2 þ 1�r2
2r sin(u)

� 	2n o (3:49)

where

sat(m) ¼
1 m > 1
m �1 � m � 1
�1 m < �1

8<
: (3:50)

Following the same approach as for the first-order case then gives

s2
o

s2
y
¼ n

2�2B

12
1þ r2

1� r2
3

(1þ r2)2 � 4r2cos2(u)

	 1

4r2 sat 1þr2
2r cos(u)

 �� 1þr2
2r cos(u)

� 	2 þ 1�r2
2r sin(u)

� 	2n o (3:51)

Figure 3.1 is a contour plot showing the noise-to-signal ratio of Equation 3.51 for n¼ 1 in units of the
noise variance of a single quantization, 2�2B=12. The plot is symmetrical about u¼ 908, so only the range
from 08 to 908 is shown. Notice that as r ! 1, the roundoff noise increases without bound. Also notice
that the noise increases as u ! 08.

It is possible to design state-space filter realizations that minimize fixed-point roundoff noise [7–10].
Depending on the transfer function being realized, these structures may provide a roundoff noise level
that is orders-of-magnitude lower than for a nonoptimal realization. The price paid for this reduction in
roundoff noise is an increase in the number of computations required to implement the filter. For an
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Nth-order filter the increase is from roughly 2N multiplies for a direct form realization to roughly
(Nþ 1)2 for an optimal realization. However, if the filter is realized by the parallel or cascade connection
of first- and second-order optimal subfilters, the increase is only to about 4N multiplies. Furthermore,
near-optimal realizations exist that increase the number of multiplies to only about 3N [10].

3.5.3 Roundoff Noise in Floating-Point IIR Filters

For floating-point arithmetic it is first necessary to determine the injected noise variance of each
quantization. For the first-order filter this is done by writing the computed output as

y(n)þ e(n) ¼ ay(n� 1) 1þ e1(n)ð Þ þ x(n)½ � 1þ e2(n)ð Þ (3:52)

where
e1(n) represents the error due to the multiplication
e2(n) represents the error due to the addition

Neglecting the product of errors, Equation 3.52 becomes

y(n)þ e(n) � ay(n� 1)þ x(n)þ ay(n� 1)e1(n)þ ay(n� 1)e2(n)þ x(n)e2(n) (3:53)

Comparing Equations 3.34 and 3.53, it is clear that

e(n) ¼ ay(n� 1)e1(n)þ ay(n� 1)e2(n)þ x(n)e2(n) (3:54)

Taking the expected value of e2(n) to obtain the injected noise variance then gives

E e2(n)
� � ¼ a2E y2(n� 1)

� �
E e21(n)
� �þ a2E y2(n� 1)

� �
E e22(n)
� �

þ E x2(n)
� �

E e22(n)
� �þ E x(n)y(n� 1)f gE e22(n)

� �
(3:55)
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FIGURE 3.1 Normalized fixed-point roundoff noise variance.
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To carry this further it is necessary to know something about the input. If we assume the input is zero-mean
white noise with variance s2

x , then E x2(n)f g ¼ s2
x and the input is uncorrelated with past values of the

output so E{x(n)y(n� 1)}¼ 0 giving

E e2(n)
� � ¼ 2a2s2

ys
2
er þ s2

xs
2
er (3:56)

and

s2
o ¼ 2a2s2

ys
2
er þ s2

xs
2
er

� � X1
n¼�1

h2(n) ¼ 2a2s2
y þ s2

x

1� a2
s2
er (3:57)

However,

s2
y ¼ s2

x

X1
n¼�1

h2(n) ¼ s2
x

1� a2
(3:58)

so

s2
o ¼

1þ a2

(1� a2)2
s2
ers

2
x ¼

1þ a2

1� a2
s2
ers

2
y (3:59)

and the output roundoff noise-to-signal ratio is

s2
o

s2
y
¼ 1þ a2

1� a2
s2
er (3:60)

Similar results can be obtained for the second-order filter of Equation 3.43 by writing

y(n)þ e(n) ¼ 2rcos(u)y(n� 1) 1þ e1(n)ð Þ � r2y(n� 2) 1þ e2(n)ð Þ� 		 1þ e3(n)½ � þ x(n)
 �

1þ e4(n)ð Þ
(3:61)

Expanding with the same assumptions as before gives

e(n) � 2rcos(u)y(n� 1) e1(n)þ e3(n)þ e4(n)½ �
� r2y(n� 2) e2(n)þ e3(n)þ e4(n)½ � þ x(n)e4(n) (3:62)

and

E e2(n)
� � ¼ 4r2cos2(u)s2

y3s
2
er þ r2s2

y3s
2
er

þ s2
xs

2
er � 8r3cos(u)s2

erE y(n� 1)y(n� 2)f g (3:63)

However,

E y(n� 1)y(n� 2)f g ¼ E 2r cos(u)y(n� 2)� r2y(n� 3)þ x(n� 1)
� 	

y(n� 2)
� �

¼ 2r cos(u)E y2(n� 2)
� �� r2E y(n� 2)y(n� 3)f g

¼ 2r cos(u)E y2(n� 2)
� �� r2E y(n� 1)y(n� 2)f g

¼ 2r cos(u)
1þ r2

s2
y (3:64)
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so

E e2(n)
� � ¼ s2

ers
2
x þ 3r2 þ 12r2cos2(u)� 16r4cos2(u)

1þ r2

� �
s2
ers

2
y (3:65)

and

s2
o ¼ E e2(n)

� � X1
n¼�1

h2(n)j s2
ers

2
x þ 3r4 þ 12r2cos2(u)� 16r4cos2(u)

1þ r2

� �
s2
ers

2
y

� �
(3:66)

where from Equation 3.46,

j ¼
X1

n¼�1
h2(n) ¼ 1þ r2

1� r2
1

(1þ r2)2 � 4r2cos2(u)
(3:67)

Since s2
y ¼ js2

x , the output roundoff noise-to-signal ratio is then

s2
o

s2
y
¼ j 1þ j 3r2 þ 12r2cos2(u)� 16r4cos2(u)

1þ r2

� �� �
s2
er (3:68)

Figure 3.2 is a contour plot showing the noise-to-signal ratio of Equation 3.68 in units of the noise
variance of a single quantization s2

er . The plot is symmetrical about u¼ 908, so only the range from 08 to
908 is shown. Notice the similarity of this plot to that of Figure 3.1 for the fixed-point case. It has been
observed that filter structures generally have very similar fixed-point and floating-point roundoff
characteristics [2]. Therefore, the techniques of [7–10], which were developed for the fixed-point case,
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FIGURE 3.2 Normalized floating-point roundoff noise variance.
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can also be used to design low-noise floating-point filter realizations. Furthermore, since it is not
necessary to scale the floating-point realization, the low-noise realizations need not require significantly
more computation than the direct form realization.

3.6 Limit Cycles

A limit cycle, sometimes referred to as a multiplier roundoff limit cycle, is a low-level oscillation that
can exist in an otherwise stable filter as a result of the nonlinearity associated with rounding (or
truncating) internal filter calculations [11]. Limit cycles require recursion to exist and do not occur in
nonrecursive FIR filters.

As an example of a limit cycle, consider the second-order filter realized by

y(n) ¼ Qr
7
8
y(n� 1)� 5

8
y(n� 2)þ x(n)

� �
(3:69)

where Qr{ } represents quantization by rounding. This is stable filter with poles at 0.4375� j0.6585.
Consider the implementation of this filter with 4-bit (3-bit and a sign bit) two’s complement fixed-point
arithmetic, zero initial conditions (y(�1)¼ y(�2)¼ 0), and an input sequence x(n) ¼ 3

8 d(n), where d(n)
is the unit impulse or unit sample. The following sequence is obtained:

y(0) ¼ Qr
3
8

� �
¼ 3

8

y(1) ¼ Qr
21
64

� �
¼ 3

8

y(2) ¼ Qr
3
32

� �
¼ 1

8

y(3) ¼ Qr � 1
8

� �
¼ � 1

8

y(4) ¼ Qr � 3
16

� �
¼ � 1

8

y(5) ¼ Qr � 1
32

� �
¼ 0

y(6) ¼ Qr
5
64

� �
¼ 1

8

y(7) ¼ Qr
7
64

� �
¼ 1

8

y(8) ¼ Qr
1
32

� �
¼ 0

y(9) ¼ Qr � 5
64

� �
¼ � 1

8

y(10) ¼ Qr � 7
64

� �
¼ � 1

8

y(11) ¼ Qr � 1
32

� �
¼ 0

y(12) ¼ Qr
5
64

� �
¼ 1

8

(3:70)
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Notice that while the input is zero except for the first sample, the output oscillates with amplitude 1=8 and
period 6.

Limit cycles are primarily of concern in fixed-point recursive filters. As long as floating-point filters are
realized as the parallel or cascade connection of first- and second-order subfilters, limit cycles will
generally not be a problem since limit cycles are practically not observable in first- and second-order
systems implemented with 32-bit floating-point arithmetic [12]. It has been shown that such systems
must have an extremely small margin of stability for limit cycles to exist at anything other than underflow
levels, which are at an amplitude of less than 10�38 [12].

There are at least three ways of dealing with limit cycles when fixed-point arithmetic is used. One is to
determine a bound on the maximum limit cycle amplitude, expressed as an integral number of
quantization steps [13]. It is then possible to choose a wordlength that makes the limit cycle amplitude
acceptably low. Alternately, limit cycles can be prevented by randomly rounding calculations up or down
[14]. However, this approach is complicated to implement. The third approach is to properly choose the
filter realization structure and then quantize the filter calculations using magnitude truncation [15,16].
This approach has the disadvantage of producing more roundoff noise than truncation or rounding (see
Equations 3.12 through 3.14).

3.7 Overflow Oscillations

With fixed-point arithmetic it is possible for filter calculations to overflow. This happens when two
numbers of the same sign add to give a value having magnitude greater than one. Since numbers
with magnitude greater than one are not representable, the result overflows. For example, the two’s
complement numbers 0.101 (5=8) and 0.100 (4=8) add to give 1.001 which is the two’s complement
representation of �7=8.

The overflow characteristic of two’s complement arithmetic can be represented as R{ } where

R{X} ¼
X � 2 X � 1
X �1 � X < 1

X þ 2 X < �1

8<
: (3:71)

For the example just considered, R{9=8}¼� 7=8.
An overflow oscillation, sometimes also referred to as an adder overflow limit cycle, is a high-level

oscillation that can exist in an otherwise stable fixed-point filter due to the gross nonlinearity associated
with the overflow of internal filter calculations [17]. Like limit cycles, overflow oscillations require
recursion to exist and do not occur in nonrecursive FIR filters. Overflow oscillations also do not occur
with floating-point arithmetic due to the virtual impossibility of overflow.

As an example of an overflow oscillation, once again consider the filter of Equation 3.69 with 4-bit
fixed-point two’s complement arithmetic and with the two’s complement overflow characteristic of
Equation 3.71:

y(n) ¼ Qr R
7
8
y(n� 1)� 5

8
y(n� 2)þ x(n)

� �� �
(3:72)

In this case, we apply the input

x(n) ¼ � 3
4
d(n)� 5

8
d(n� 1)

¼ � 3
4
,� 5

8
, 0, 0, . . .

� �
(3:73)
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giving the output sequence

y(0) ¼ Qr R � 3
4

� �� �
¼ Qr � 3

4

� �
¼ � 3

4

y(1) ¼ Qr R � 41
32

� �� �
¼ Qr

23
32

� �
¼ 3

4

y(2) ¼ Qr R
9
8

� �� �
¼ Qr � 7

8

� �
¼ � 7

8

y(3) ¼ Qr R � 79
64

� �� �
¼ Qr

49
64

� �
¼ 3

4

y(4) ¼ Qr R
77
64

� �� �
¼ Qr � 51

64

� �
¼ � 3

4

y(5) ¼ Qr R � 9
8

� �� �
¼ Qr

7
8

� �
¼ 7

8

y(6) ¼ Qr R
79
64

� �� �
¼ Qr � 49

64

� �
¼ � 3

4

y(7) ¼ Qr R � 77
64

� �� �
¼ Qr

51
64

� �
¼ 3

4

y(8) ¼ Qr R
9
8

� �� �
¼ Qr � 7

8

� �
¼ � 7

8

(3:74)

This is a large-scale oscillation with nearly full-scale amplitude.
There are several ways to prevent overflow oscillations in fixed-point filter realizations. The most

obvious is to scale the filter calculations so as to render overflow impossible. However, this may
unacceptably restrict the filter dynamic range. Another method is to force completed sums-of-products
to saturate at �1, rather than overflowing [18,19]. It is important to saturate only the completed sum,
since intermediate overflows in two’s complement arithmetic do not affect the accuracy of the final
result. Most fixed-point digital signal processors provide for automatic saturation of completed sums if
their saturation arithmetic feature is enabled. Yet another way to avoid overflow oscillations is to use a
filter structure for which any internal filter transient is guaranteed to decay to zero [20]. Such structures
are desirable anyway, since they tend to have low roundoff noise and be insensitive to coefficient
quantization [21].

3.8 Coefficient Quantization Error

Each filter structure has its own finite, generally nonuniform grids of realizable pole and zero locations when
the filter coefficients are quantized to a finite wordlength. In general the pole and zero locations desired in
filter do not correspond exactly to the realizable locations. The error in filter performance (usually measured
in terms of a frequency response error) resulting from the placement of the poles and zeros at the nonideal but
realizable locations is referred to as coefficient quantization error.

Consider the second-order filter with complex-conjugate poles

l ¼ re�ju

¼ lr � jli
¼ r cos(u)� jr sin(u) (3:75)
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and transfer function

H(z) ¼ 1
1� 2r cos(u)z�1 þ r2z�2

(3:76)

realized by the difference equation

y(n) ¼ 2r cos(u)y(n� 1)� r2y(n� 2)þ x(n) (3:77)

Figure 3.3 from [5] shows that quantizing the difference equation coefficients results in a nonuniform
grid of realizable pole locations in the z-plane. The grid is defined by the intersection of vertical lines
corresponding to quantization of 2lr and concentric circles corresponding to quantization of �r2. The
sparseness of realizable pole locations near Z¼�1 will result in a large coefficient quantization error for
poles in this region.

Figure 3.4 gives an alternative structure to Equation 3.77 for realizing the transfer function of Equation
3.76. Notice that quantizing the coefficients of this structure corresponds to quantizing lr and li. As
shown in Figure 3.5 from [5], this results in a uniform grid of realizable pole locations. Therefore, large
coefficient quantization errors are avoided for all pole locations.

It is well established that filter structures with low roundoff noise tend to be robust to coefficient
quantization, and visa versa [22–24]. For this reason, the uniform grid structure of Figure 3.4 is also
popular because of its low roundoff noise. Likewise, the low-noise realizations of [7–10] can be expected
to be relatively insensitive to coefficient quantization, and digital wave filters and lattice filters that are
derived from low-sensitivity analog structures tend to have not only low coefficient sensitivity, but also
low roundoff noise [25,26].
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FIGURE 3.3 Realizable pole locations for the difference equation of Equation 3.76.
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It is well known that in a high-order polynomial with clustered roots, the root location is a very
sensitive function of the polynomial coefficients. Therefore, filter poles and zeros can be much more
accurately controlled if higher order filters are realized by breaking them up into the parallel or cascade
connection of first- and second-order subfilters. One exception to this rule is the case of linear-phase FIR
filters in which the symmetry of the polynomial coefficients and the spacing of the filter zeros around the
unit circle usually permits an acceptable direct realization using the convolution summation.

y(n)

x(n)
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+
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λi

λi

λr

λr

FIGURE 3.4 Alternate realization structure.
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FIGURE 3.5 Realizable pole locations for the alternate realization structure.
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Given a filter structure it is necessary to assign the ideal pole and zero locations to the realizable
locations. This is generally done by simply rounding or truncating the filter coefficients to the available
number of bits, or by assigning the ideal pole and zero locations to the nearest realizable locations. A more
complicated alternative is to consider the original filter design problem as a problem in discrete optimiza-
tion, and choose the realizable pole and zero locations that give the best approximation to the desired filter
response [27–30].

3.9 Realization Considerations

Linear-phase FIR digital filters can generally be implemented with acceptable coefficient quantization
sensitivity using the direct convolution sum method. When implemented in this way on a digital signal
processor, fixed-point arithmetic is not only acceptable but may actually be preferable to floating-point
arithmetic. Virtually all fixed-point digital signal processors accumulate a sum of products in a double-
length accumulator. This means that only a single quantization is necessary to compute an output.
Floating-point arithmetic, on the other hand, requires a quantization after every multiply and after every
add in the convolution summation. With 32-bit floating-point arithmetic these quantizations introduce a
small enough error to be insignificant for many applications.

When realizing IIR filters, either a parallel or cascade connection of first- and second-order subfilters is
almost always preferable to a high-order direct-form realization. With the availability of very low-cost
floating-point digital signal processors, like the Texas Instruments TMS320C32, it is highly recom-
mended that floating-point arithmetic be used for IIR filters. Floating-point arithmetic simultaneously
eliminates most concerns regarding scaling, limit cycles, and overflow oscillations. Regardless of the
arithmetic employed, a low roundoff noise structure should be used for the second-order sections. Good
choices are given in [2] and [10]. Recall that realizations with low fixed-point roundoff noise also have
low floating-point roundoff noise. The use of a low roundoff noise structure for the second-order sections
also tends to give a realization with low coefficient quantization sensitivity. First-order sections are not as
critical in determining the roundoff noise and coefficient sensitivity of a realization, and so can generally
be implemented with a simple direct form structure.
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S AMPLING THEOREMS CAN BE TRACED to the original paper by Whittaker in 1915 on
interpolation. He proved the exactness of a method for interpolating between the samples from
a function. Nyquist then presented the sampling theory for sampled telephone signals in 1928

establishing for the first time the term ‘‘Nyquist frequency.’’ Shannon in 1948 and Kotel’nikov in
1933 wrote additional treatises on this topic [1–4].

Extensions from one-dimensional to multidimensional sampling can be traced to papers by Bracewell
in 1956, and to Miyakawa in 1959. Multidimensional Fourier analysis, however, can be traced back to
papers by Germain and Navier in the early eighteenth and nineteenth centuries [5–7].
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In this section, Chapter 4 presents a thorough discussion of the techniques that are currently used and
their underlying theory.

Of related interest is structure of the conversion process from the analog domain to the digital domain,
and Chapter 5 presents a thorough survey of the various architectures for analog-to-digital conversion.

Finally, the process of quantization of discrete samples is discussed in Chapter 6. This discussion
considers the accuracy issues arising due to quantization, in addition to other related topics.
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This chapter gives an overview of the most relevant facts of sampling theory, paying particular attention to
the multidimensional aspect of the problem. It is shown that sampling theory formulated in a multidi-
mensional setting provides insight to the supposedly simpler situation of one-dimensional sampling.

4.1 Introduction

The signals we encounter in the physical reality around us almost invariably have a continuous domain of
definition. We like to model a speech signal as continuous function of amplitudes, where the domain
of definition is a (finite) length interval of real numbers. A video signal is most naturally viewed as
continuous function of luminance (chrominance) values, where the domain of definition is some volume
in space-time.

In modern electronic systems we deal with many (in essence) continuous signals in a digital fashion.
This means that we do not deal with these signals directly, but only with sampled versions of it: we only
retain the values of these signals at a discrete set of points. Moreover, due to the inherently finite
precision arithmetic capabilities of digital systems, we only record an approximated (quantized) value at
every point of the sampling set. If we define sampling as the process of restricting a signal to a discrete set,
explicitly without quantization of the sampled values, we can describe the contribution of this chapter as
a study of the relation between continuous signals and their sampled versions.
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Many textbooks start this topic by only considering sampling in the one-dimensional case. Digres-
sions into the multidimensional case are usually made in later and more advanced sections. In this
chapter we will start from the outset with the multidimensional case. It will be argued that this is the
most natural setting, and that this approach will even lead to greater understanding of the one-
dimensional case.

I will assume that not every reader is familiar with the concept of a lattice. As lattices are the most
basic kind of sets onto which to sample signals, this chapter will start with a crash course on lattices in
Section 4.2. After this the real work starts in Section 4.3 with an overview of the sampling theory for
continuous functions. The central theme of this section is the intimate relationship between sampling
and the discrete space-time Fourier transform (DSFT). In Section 4.4 we consider simultaneous
sampling in both spatial and frequency domain. The central theme in this section is the relationship
with the discrete Fourier transform (DFT). We continue with a digression on cascaded sampling
(Section 4.5), and with some useful results on changing variables (Section 4.6). We end with an
application of sampling theory to HDTV-to-SDTV conversion. The proofs (or hints to it) of the stated
result can be found in the appendix.

We end this introduction with some conventions. We will refer to a signal as a function, defined on
some appropriate domain. As all of our functions are in principle multidimensional, we will lighten the
burden of notation by suppressing the multidimensional character of variables involved wherever
possible. In particular we will use f(x) to denote a function f(x1, . . . , xn) on some continuous domain
(say R

n). Similarly we will use f(k) to denote a function f(k1, . . . , kn) on some discrete domain (say Z
n).

By abuse of terminology we will refer to a function defined on a continuous domain as a continuous
function and to a function on discrete domain as discrete function.

4.2 Lattices

Although sampling of a function can in principle be done with respect to any set of points (nonuniform
sampling), the most common form of sampling is done with respect to sets of points which have a certain
algebraic structure and are known as lattices. They are the object of study in this section.

4.2.1 Definition

Formally, the definition of a lattice is given as

Definition 4.1: A (sub)lattice L of Cn (Rn, Zn) is a set of points satisfying that

1. There is a shortest nonzero element.
2. If l1, l2 2 L, then al1 þ bl2 2 L for all integers a and b.
3. L contains n linearly independent elements.

This definition may seem to make lattices rather abstract objects, but they can be made more tangible
by representing them by generating matrices. Namely, one can show that every lattice L contains a set of
linearly independent points {l1, . . . , ln} such that every other point l 2 L is an integer linear combin-
ation

Pn
i¼1 aili. Arranging such a set in a matrix L¼ [l1, . . . ,ln] yields a generating matrix L of L. It has

the property that every l 2 L can be written as l¼ Lk, where k 2 Z
n is an integer vector. At this point it

is important to note that there is no such thing as the generating matrix L of a lattice L. Defining a
unimodular matrix U as an integer matrix with jdet(U)j ¼ 1, every other generating matrix is of the form
LU, and every such matrix is a generating matrix. However, this also shows that the determinant of a
generating matrix is determined up to a sign.
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Definition 4.2: Let L be a lattice and let L be a generating matrix of L. Then the determinant of L is
defined by

det(L) ¼ jdet(L)j:

In case the dimension is 1 (n¼ 1), every lattice is given as all the integer multiples of a single scalar. This
scalar is unique up to a sign, and by convention one usually defines the positive scalar as the sampling
period T (for time):

LT ¼ {nT : n 2 Z} � C, R, Z: (4:1)

In case the dimension is 2 (n¼ 2) it is no longer possible to single out a natural candidate as the
generating matrix for a lattice. As an example consider the lattice L generated by the matrix (see also
Figure 4.1):

L1 ¼
ffiffiffi
3
p ffiffiffi

3
p

�1 1

� �
:

There is no reason to consider the matrix L1 as the generating matrix of the lattice L, and in fact the
matrix

L2 ¼
ffiffiffi
3
p

2
ffiffiffi
3
p

1 0

� �
:

is just as valid a generating matrix as L1.

x2-axis

x1-axis

II I

III

FIGURE 4.1 A hexagonal lattice in the continuous plane.
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4.2.2 Fundamental Domains and Cosets

Each lattice L can be used to partition its embedding space into so-called fundamental domains. The
importance of the concept of fundamental domains lies in their ability to define L-periodic functions,
i.e., functions f(x) for which f(x)¼ f(xþl) for every l 2 L. Knowing a L-periodic function f(x) on a
fundamental domain is sufficient to know the complete function. Periodic functions will emerge naturally
when we come to speak about sampling of continuous functions.

Let L � D be a lattice, where D is either a latticeM� R
n or the space Rn itself. Let L be a generating

matrix of L, and let P be an arbitrary subset of D. With every p 2 P we can associate a translated version
or coset pþ L of L. The set of cosets is referred to as the coset group of L with respect to D and is
denoted by the expression D=L. A fundamental domain is defined as a subset P � D which intersects
every coset in exactly one point.

Definition 4.3: The set P is called a fundamental domain of the lattice L in D if and only if

1. p 6¼ q implies pþL 6¼ qþL, and
2.
S

p2P pþ L ¼ D.
A fundamental domain is not a uniquely defined object. For example, the shaded areas in Figure 4.1 show
three possibilities for the choice of a fundamental domain. Although the shapes may differ, their volume
is defined by the lattice L.

THEOREM 4.1

Let P be a fundamental domain of the lattice L in D, and assume that P is measurable, i.e., that its volume
is defined.

1. If D ¼ R
n, then the volume of P is given by

vol(P) ¼ det(L):

2. If D ¼M, and if Q is a fundamental domain of L in R
n, then Q \M is a fundamental domain of

L inM.
3. If D ¼M, then the number of points in P is given by

#(P) ¼ det(L)=det(M):

This number is referred to as the index of L inM, and is denoted by the symbol i(L,M).

As a consequence of assertion 1 of this theorem, all the shaded areas in Figure 4.1, being fundamental
domains of the same hexagonal lattice, have a volume equal to 2

ffiffiffi
3
p

.

4.2.3 Reciprocal Lattices

For any lattice L there exists a reciprocal lattice L* as defined below. Reciprocal lattices appear in the
theory of Fourier transforms of sampled continuous functions (see Section 4.3).
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Definition 4.4: Let L be a lattice. Its reciprocal lattice L* is defined by

L* ¼ l* : hl*, li 2 Z8l 2 Lf g,

where hl*, li denotes the usual inner productPi li*li.

This notion of reciprocal lattice is made more tangible by the observation that the reciprocal lattice
of [L] is the lattice [L�t], where [M] denotes the lattice generated by a matrix M. In particular
det(M*) ¼ det(M)�1. For example, the reciprocal lattice of the lattice of Figure 4.1 is generated by
the matrix

1

2
ffiffiffi
3
p 1 1

� ffiffiffi
3
p ffiffiffi

3
p

� �
:

This lattice is very similar to the original lattice: it differs by a rotation by p=2, and a scaling factor
of 1=2

ffiffiffi
3
p

. In particular, the volume of a fundamental domain of L* is equal to 1=2
ffiffiffi
3
p

.
An important property of reciprocal lattices is that subset inclusions are reversed. To be precise, the

inclusionM� L holds if and only if L* �M*. Using some elementary math it follows that the coset
groups L=M andM*=L* have the same number of elements.

4.3 Sampling of Continuous Functions

In this section we will give the main results on the theory of sampled continuous functions. It will be
shown that there is a strong relationship between sampling in the spatial domain and periodizing in the
frequency domain. In order to state this result this section starts with a short overview of multidimen-
sional Fourier transforms. This allows us to formulate the main result (Theorem 4.3), which states very
informally that sampling in the spatial domain is equivalent to periodizing in the frequency domain.

4.3.1 The Continuous Space-Time Fourier Transform

Let f(x) be a nice* function defined on the continuous domain R
n. Let its continuous space-time Fourier

transform (CSFT)y F(n) be defined by

F(n) ¼ F(f )(n) ¼
ð
R

n

e�2pihx,nif (x)dx (4:2)

with inverse transform given by

F(n) ¼ F�1(f )(x) ¼
ð
R

n

e2pihx,niF(n)dn: (4:3)

* Nice means in this context that all sums, integrals, Fourier transforms, etc. involving the function exist and are finite.
y Contrary to the conventional wisdom, we choose to exclude the factor 2p from the frequency term v¼ 2pn. This has the
advantage that the Fourier transform is orthogonal, without any need for normalizing factors.
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Forgetting many technicalities, the CSFT has the following basic properties:

. The CSFT is an isometry, i.e., it preserves inner products:

h f , gi ¼ F ( f ),F (g)h i:
. The CSFT of the point-wise multiplication of two functions is the convolution of the two separate

CSFTs:

F (f � g) ¼ F (f ) � F (g):

A special class of functions* is the class of lattice combs (Figure 4.2 illustrates the lattice comb of the

quincunx lattice generated by the matrix
1 �1
1 1

� �
). If L is a lattice, the lattice comb

‘
L is a set of d

functions with support on L and is formally defined by

a
L

(x) ¼
X
l2L

dl(x): (4:4)

The following theorem states the most important facts about lattice combs.

THEOREM 4.2

With notations as above, we have the following properties:

a
L

(x) ¼ 1
det(L)

X
l*2L*

e�2pihx,l*i (4:5)

* Actually distributions.

x-axis

y-axis

FIGURE 4.2 Lattice comb for the quincunx lattice.
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F
a
L

 !
(n) ¼

X
l2L

e�2pihl,ni

¼ det(L*)
a
L*

(n): (4:6)

The last equation says that the CSFT of a lattice comb is the lattice comb of the reciprocal lattice, up to
a constant.

4.3.2 The Discrete Space-Time Fourier Transform

The CSFT is a functional on continuous functions. We also need a similar functional on (multidimen-
sional) sequences. This functional will be the DSFT. In this section, we will only state the definition.
The properties of this functional and its relation to the CSFT will be highlighted in the next section. So let
L be a lattice and let P* be a fundamental domain of the reciprocal lattice L*. Let ~f (x) ¼ SL(f )(x) be the
sampled version of f, and let ~F(n) ¼ PL*(F)(n) be the periodized version of F(n). Then we define
the forward and backward DSFT by

~F (~f )(n) ¼
X
x2L

e�2pihx,ni~f (x), (4:7)

and

~F�1(~F)(n) ¼ det(L)
ð
P*

e2pihx,ni~F(n)dn, (4:8)

respectively.
Note that the function ~F(~f )(n) is a L*-periodic function. This implies that the formula for the inverse

DSFT is independent of the choice of the fundamental domain P*.

4.3.3 Sampling and Periodizing

One of the most important issues in the sampling of functions concerns the relationship between the
CSFT of the original function and the DSFT of a sampled version. In this section, we will state the main
theorem (Theorem 4.3) of sampling theory.

Before continuing we need two definitions. If f(x) is a function and L � R
n is a lattice, sampling f(x)

on L is defined by

SL( f )(x) ¼ f (x) if x 2 L
0 if x =2L .

�
(4:9)

The above definition has to be read carefully: sampling a function f(x) on a lattice means that we modify
f(x) by putting all its values outside of the lattice to 0. It does not mean that we forget how the lattice is
embedded in the continuous domain. For example, when we sample a one-dimensional continuous
function f(x) on the set of even numbers, the downsampled function fs(k) is not defined by fs(k)¼ f(2k),
but by fs(k)¼ f(k) when k is even, and 0 otherwise.

Closely related to the sampling operator is the periodizing operator PL, which modifies a function f(x)
such that it becomes L-periodic. This operator is defined by

PL( f )(x) ¼ det(L)
X
l2L

f (x � l): (4:10)
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Clearly PL(f )(x) is L-periodic, i.e., PL(f )(x) ¼ PL(f )(x � l) for all l 2 L. With these tools at our
disposal we are now in a position to formulate the main theorem of sampling theory.

THEOREM 4.3

With definitions and notations as above, consider the following diagram:

f �!F F
#SL #nL*
~f �!~F ~F

The following assertions hold:

1. The above diagram commutes,* i.e., whichever way we take to go from top left to bottom right, the
result is the same. Informally this can be formulated as saying that first sampling and taking
the DSFT is the same as first taking the CSFT and then periodizing.

2.
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det(L)p

~F (and, therefore,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(L*)p

~F�1 ) is an isometry with respect to the inner products

h~f , ~giL ¼
X
l2L

~f y(l)~g(l)

and

h~F, ~GiP* ¼
ð
P*

~Fy(n)~G(n)dn,

respectively.

Proof 4:1 The proof relies heavily on the property of lattice combs and can be found in the appendix.

This theorem has many important consequences, the best known of which is the Shannon sampling
theorem. This theorem says that a function can be retrieved from a sampled version if the support of its
CSFT is contained within a fundamental domain of the reciprocal lattice. Given the above theorem this
result is immediate: we only need to verify that a function F(n) can be retrieved from PL*(F) by
restriction to a fundamental domain when F(n) has sufficiently restricted support.

THEOREM 4.4 (Shannon)

Let L be a lattice, and let f(x) be a continuous function with CSFT F(n). Let ~f ¼ SL(f ). The function f(x)
can be retrieved from ~f (l) if and only if the support of F(n) is contained in some fundamental domain P* of
the reciprocal lattice L*. In that case we can retrieve f(x) from ~f (l) with the formula

f (x) ¼
X
l2L

f (l)Int(x � l),

* Commuting diagrams are a common mathematical tool to describe that certain sequences of function applications are
equivalent.
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where

Int(x) ¼ det(L)
ð
P*

e2pihx,nidn:

Proof 4:2 We only need to prove the interpolation formula.

f (x) ¼
ð
P*

e2pihx,niF(n)dn

¼ det(L)
X
l2L

f (l)
ð
P*

e2pihx�l,nidn

¼
X
l2L

f (l)Int(x � l):

(4:11)

We end this section with an example showing all the aspects of Theorem 4.3.

Example 4.1

Let L � Z
2 be the quincunx sampling lattice generated by the matrix L ¼ 1

2
1 �1
1 1

� �
. Let

f (x1, x2) ¼ sin c(x1 � x2) sin c(x1 þ x2):

A simple computation shows that CSFT F(n1, n2) (of f(x1, x2) is given by

F(n1, n2) ¼ 1
2
XL(n1, n2),

where L is the set L ¼ (n1, n2) : jn1j þ jn2j � 1f g. Observing that L* is generated by
1 �1
1 1

� �
, we find

that the periodized function PL*(F) is constant with value 1.
Sampling f(x) on the quincunx lattice yields the function ~f (l):

~f (l1, l2) ¼ 1 if (l1, l2) ¼ (0, 0)

0 if (l1, l2) 6¼ (0, 0) .

�

It is now trivial to check that ~F (~f ) ¼ ~F , as predicted by Theorem 4.3. Moreover, as

k~fk22 ¼
X
l2L

d0(l)
2 ¼ 1

and

k~Fk22 ¼
ð
L

dn ¼ 1=2,

it follows that k ~Fk and k~fk differ by a factor of ffiffiffi
2
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det(L*)p ffiffiffi
2
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det(L*)p
, again as predicted by

Theorem 4.3.
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4.4 From Infinite Sequences to Finite Sequences

In the previous section we considered sampling in the spatial domain and saw that this was equivalent
to periodizing in the frequency domain. One obvious question now arises: what happens if we sample
the DSFT of a (spatially) sampled function? In this section we will answer this question and show that
sampling in both spatial and frequency domains simultaneously is closely related to properties of the DFT.

4.4.1 The Discrete Fourier Transform

The DFT is a frequency transform on finite sequences. In a multidimensional context the DFT is best
defined by assuming two lattices L andM,M� L � R

n. Let P be a fundamental domain of L inM,
and let P* be a fundamental domain ofM* in L* (recall that lattice inclusions invert when going over to
the reciprocal domain [Section 4.2]). Note that both P and P* have the same number points, viz.
#(P) ¼ #(P*) ¼ i(L*,M*) ¼ i(M, L). Let f̂ (p), p 2 P be a finite sequence over P. The DFT F̂ is now
defined as functional which maps sequences f̂ to sequences F̂ over P*. The formal definitions of F̂ and
F̂�1 are as follows.

Definition 4.5:

F̂ (f̂ )(p*) ¼ 1
det(M)

X
p2P

e�2pihp,p*i f̂ (p) (4:12)

F̂�1(F̂)(p) ¼ 1
det(L*)

X
p*2P*

e2pihp,p*iF̂(p*): (4:13)

It is obvious that the conventional one-dimensional DFT is a special case of the more general multidi-
mensional DFT defined above. The next example makes this more explicit.

Example 4.2

LetM� L � R be defined byM¼ Z for some positive integer p, and let L ¼ 1
pZ. One easily checks

that the set P and P* can be chosen as {0=p, . . . , (p� 1)=p} and {0, . . . , p� 1}, respectively. If xn and Xm are
the values of f̂ on n=p 2 P and of F̂ on m 2 P*, respectively, then the functionals F̂ and F̂�1 are defined
in the (xn, Xm) domain as

Xm ¼
Xp�1
n¼0

e�
2pinm

p xn , (4:14)

xn ¼ 1
p

Xp�1
m¼0

e
2pinm

p Xm: (4:15)

This is, of course, nothing else but the usual definition of the one-dimensional DFT on finite sequences of
length p.

The following example shows the general DFT at work in a two-dimensional setting.
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Example 4.3

(Example 4.1 continued) Continuing Example 4.1, we choose the lattice M¼ Z
2 as the periodizing

lattice. We can then choose

P ¼ {p0, p1} ¼ (0, 0),
1
2
,
1
2

� �� �

and

P* ¼ p0*, p1*f g ¼ (0, 0), (1, 0)f g:

The functional F̂ is then given by

X0 ¼ x0e
�2pihp0,p0*i þ x1e

�2pihp1 ,p0*i

¼ x0 þ x1

X1 ¼ x0e
�2pihp0,p1*i þ x1e

�2pihp1 ,p1*i

¼ x0 � x1,

and the functional F̂�1 by

x0 ¼ 1
2

X0e
�2pihp0, p0*i þ X1e

�2pihp0 , p1*i
	 


¼ 1
2
(X0 þ X1)

x1 ¼ 1
2

X0e
�2pihp1, p0*i þ X1e

�2pihp1 , p1*i
	 


¼ 1
2
(X0 � X1):

4.4.2 Combined Spatial and Frequency Sampling

We start with setting up the context of the problem. So let f(x) be a nice continuous function on R
n and

let M and L be two lattices such that M� L � R
n. Sampling f(x) on L and periodizing on M we

construct a function f̂ (x) that has support on L and isM-periodic. In formula:

f̂ (x) ¼ det(M)
P

m2M f (x � m) if x 2 L
0 if x =2 L

�

A similar definition can be given for the function F̂(n), which is obtained from the CSFT F(n) of f(x) by
periodizing on L* and sampling onM*.

One easily verifies that f̂ (x) is completely specified by its values on a (finite) fundamental domain P of
M in L. Similarly D̂(n) is completely specified by its values on a fundamental domain P* of L* inM*.
Now we are in a position to extend the commutative diagram of Theorem 4.3.
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THEOREM 4.5

With notations and definitions as above, consider the following extensions of the diagram of Theorem 4.3:

f �!F F
#SL #PL*
~f �!~F ~F
#PM #SM*

f̂ �!F̂ F̂

The following assertions hold:

1. The above diagram commutes
2. The functionals

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det(L)p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det(M)
p F̂ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(L*)p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det(M*)
p F̂�1 are isometries with respect to

the inner products

hf̂ , ĝiP ¼
X
p2P

f̂ y(p)ĝ(p)

and

hF̂, ĜiP* ¼
X
p*2P*

F̂y(p*)Ĝ(p*):

Proof 4:3 See appendix.

The theorem above says that sampling the Fourier transform of a sampled function amounts to
periodizing that sampled version. In this process only a finite number of data points in both the spatial
and the frequency domain are sufficient to specify the resulting functions. Moreover, the CSFT can be
pushed down to a DFT to provide for a one-to-one orthogonal correspondence between the two
domains.

We close this section with two examples.

Example 4.4

(Example 4.2 continued) The formulas for the DFT obtained in Example 4.2 are not orthonormal.
According to Theorem 4.5 above we have to multiply the forward transform withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(L)det(M)
p ¼ 1ffiffi

p
p and the backward transform with the inverse of this number to obtain orthonor-

mal versions of the DFT. This result in the following well-known formulas for the orthonormal one-
dimensional DFT.

Xm ¼ 1ffiffiffi
p
p

Xp�1
n¼0

e�
2pinm

p xn , (4:16)

xn ¼ 1ffiffiffi
p
p

Xp�1
m¼0

e
2pinm

p Xm: (4:17)
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Example 4.5

(Example 4.3 continued) With L,M, f (x), P and P* as in Example 4.3, we find that the periodized
sampled function f̂ is represented by the pair (1, 0), and that the periodized sampled CSFT F̂ of F is
represented by the pair (1, 1). Using the formulas for the DFT of Example 4.3 is now easy to verify that
F̂ {1, 0}ð Þ ¼ {1, 1} and F̂�1 {1, 1}ð Þ ¼ {1, 0}, as predicted by Theorem 4.5.

4.5 Lattice Chains

In the previous section we considered the sampling of continuous functions. In this sectionwe will consider
the sampling of discrete functions. The necessity of studying this topic comes from the fact that very often
the sampling of a continuous function f(x) is done in steps: f(x) is first sampled to a fine grid L1, and
subsequently sampled to a coarser grid L2, L2 � L1. Letting ~f (i) ¼ SLi (f ) and letting ~F(i) be the corre-
sponding DFST, a natural question is whether we can obtain ~F(2) directly from ~F(1), without having to go
back to CSFT of f(x). This question is addressed in the following theorem and answered affirmatively.

THEOREM 4.6

With notation as above, and letting P* be a fundamental domain of L1* in L2*, we have the following result:

~F(2)(n) ¼ 1
#(P*)

X
p*2P*

~F(1)(n� p*):

Proof 4:4 See appendix.

The above result has a natural interpretation. The function ~F(1) is by construction L1*-periodic.
The function ~F(2) has more symmetries as it is L2*-periodic. The above theorem can be phrased as saying
that ~F(2) is obtained from ~F(1) by periodizing (and thereby enlarging the set of symmetries) and averaging
(dividing by #(P*)). The following example shows an application of Theorem4.6 in the one-dimensional case.

Example 4.6

Let f(x)¼ sinc(x=2). Let L1 ¼ Z be the lattice of integers and let L2 ¼ 2Z be the lattice of even integers.
Let as before ~F(i)(x) denote the sampled versions of f(x). Then one easily computes that

~F(1)(n) ¼ 2
X
l*2Z

X �1=4;1=4½ �(n� l*),

~F(2)(n) ¼ 1,

where XA denotes the characteristic function of a set A.
Using Theorem 4.6 above we can also compute ~F(2)(n) directly from ~F(1)(n). We proceed as

follows. Computing the reciprocal lattices we find L1* ¼ Z and L2* ¼ 1
2Z. We find two shifted versions

ofL1* withinL2*, viz.L1* and 1
2þ L1*. Picking an arbitrary point in each coset, say 0 and 1

2 respectively, we find

~F(2)(n) ¼ 1
2

~F(1)(n)þ ~F(1) n� 1
2

� �� �
¼ 1:
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4.6 Change of Variables

Consider the case of a one-dimensional continuous function f(x). It is not always the case that f(x) has a
nice form, suitable for direct mathematical treatment. In such a situation a change of variables can
sometimes help out. If A is an invertible linear transformation on R

n, it might be more convenient to
work with the variable y¼Ax. Substituting x¼A�1y we formally define the change of variable functional
f(x)! f A(x) by

f A(x) ¼ f (A�1x):

A similar approach can be used for discrete functions. Instead of using a linear transform A on some
continuous domain, we need in this case an isomorphism A : L1 ! L2 between two lattices L1 and L2.
If ~F(k) is a discrete function on L1, a change of variables by A yields a discrete function on L2 defined by

~f A(k) ¼ ~f (A�1k):

A typical example for a change of variables on discrete functions is the following. Let the latticeL1 ¼ 2Z, let
L2 ¼ Z and defineA : L1 ! L2 by 2k! k. Given a function f(x) onR, downsampling it toL1 and changing
variables with A, yield a discrete function ~f (k) onZ defined by ~f (k)¼ f (2k). In many textbooks this function
~f (k) is referred to as the downsampled version of f(x), but our analysis shows that it is better to view the
discrete function ~f (k) as the result of two consecutive operations: downsampling and change of variables.

The following two theorems address the question of how the CSFT and DSFT behave under a change
of variables for the continuous and discrete case, respectively.

THEOREM 4.7

Let A be an invertible linear transform on R
n, and let f(x) be a function on R

n. Then the CSFT of fA(x) is
given by

F ( f A) ¼ det(A)j jF ( f )A�t :

Proof 4:5 See appendix.

THEOREM 4.8

Let A : L1 ! L2 be an isomorphism of lattices, and let ~f (k) be a function on L1. Then the DSFT of ~f A(k) is
given by

~F (~f A) ¼ ~F (~f )A�t :

Proof 4:6 See appendix.

Note that in the assertion of Theorem 4.7 a factor jdet(A)j is present, which is lacking in the assertion
of Theorem 4.8. The last theorem of this section addresses the situation in which a function is extended
by zero-padding to a larger domain.
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THEOREM 4.9

LetL, L � D be a lattice, whereD is either a latticeM or the ambient spaceRn. Let ~f (l) be a function onL.
Define the D-extension ~fD of ~f by

~fD(x) ¼ ~f (x) if x 2 L
0 otherwise.

�

Define F(n) by

F(n) ¼ F (~fD)(n) if D ¼ R
n

~F (~fD)(n) if D ¼M,

(

i.e., F(n) is the appropriate Fourier transform of ~fD. Then the equality F(n) ¼ ~F (~f )(n) holds.

Informally, the above theorem says that the Fourier transform of an extended function is equal to the
Fourier transform of the function itself, i.e., extending a function does not change the Fourier transform.
We will now apply the three theorems above in two examples.

Example 4.7

Let A :Zn! R
n be a nonsingular linear mapping, and let L ¼ [A] be the lattice generated by A. Let f(x)

be a continuous function on R
n, and let g¼ f A

�1
. Define a discrete function ~g(m) on Z

n by the rule*

~g(m) ¼ f (Am):

The question is how the Fourier transforms of f(x) and ~g(k) are related. To answer this question we define
~f (l) to be the sampled version SL(f )(l) of f(x). The following commutative diagram results:

(Rn , g) ����A�1
(Rn , f )

#SZ
n #SL

(Zn , ~g) ����A�1
(L, ~f )

Tracing the diagram from top right to bottom right to bottom left we find

~F (~g)(n) ¼ ~F (~f )
h iAt

(n)

¼ det(L*)
X
l*2L*

F (f )At (n� l*)
	 


¼ 1
det(A)

X
l*2L*

F(f )(A�tn� l*),

* This is a common situation when we have to sample a continuous function (on points of the form An) and store it in some
rectangular storage space (with addresses n).
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where we have used Theorem 4.8 and Theorem 4.3 in the first and second steps, respectively. Of course
we should find the same result tracing the diagram from top right to top left to bottom left:

~F (~g)(n) ¼
X
k2Zn

F (g)(n� k)

¼
X
k2Zn

F (f A�1 )(n� k)

¼ 1
det(A)

X
k2Zn

F (f )At (n� k)

¼ 1
det(A)

X
k2Zn

F (f )At (n� k)

¼ 1
det(A)

X
l2L*
F (f )(A�tn� l*),

where we have first applied Theorem 4.3, followed by an application of Theorem 4.8. As one sees, both
calculations end up with the same result.

Example 4.8

Let L1 and L2 be two lattices. Let A : L1 ! L2 be a nonsingular linear mapping, and let ~f be a function
on L1. Let L3 be the lattice generated by A, L3 ¼ [A] � L2. Define ~g on L2 by

~g(l2) ¼
~f (l1) if l2 ¼ Al1
0 otherwise.

�

The question is to find an expression for the DSFT of ~g. To this end we define ~h on L3 by ~h ¼ ~f A. The
following diagram results:

(L1, ~f ) ��!A (L3, ~h) ������!extension
(L2, ~g)

For the DSFT of ~g we find

~F (~g)(n) ¼ ~F (~h)(n)
¼ ~F (~f A)(n)
¼ ~F (~f )A�t (n)
¼ ~F (~f )(Atn),

where we have used Theorem 4.9 and Theorem 4.8 in the first and second step, respectively.

4.7 An Extended Example: HDTV-to-SDTV Conversion

This section will introduce an application of sampling theory as it occurs in the problem of interlaced
high definition television (HDTV) to interlaced standard definition television (SDTV) conversion. This
problem exists because an HDTV broadcast can at present only be viewed by a minority of people. Most
people can only view SDTV broadcast. As broadcasters like their programs to be viewed by as many
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customers as possible, they are interested in (preferably inexpensive) schemes which can convert HDTV
in SDTV. In this section we present an approach to this conversion problem as has been suggested in [1].

In order to keep the notational burden low, our television signal will be one-dimensional. This
leaves us with a spatial axis, referred to as the y-axis (y for vertical), and a time axis, referred to as
the t-axis.

An interlaced television signal is constructed by sampling a continuous luminance signal with at times
kT, but only even lines for even k and only the odd lines for odd k. Choosing T to be 1 in some unit of
time, and recalling that we assume one-dimensional images, we may model an interlaced HDTV signal as
a luminance signal sampled at the quincunx lattice L2 by the matrix

1 �1
1 1

� �
:

In order to prevent alias distortion, i.e., in order to prevent that frequencies overlap after sampling, the
continuous luminance signal has to be sufficiently band limited. An often-used pass band region is given
by the diamond in Figure 4.3c.

An SDTV interlaced signal has half the vertical resolution of the HDTV signal, but the same temporal
resolution, and we may model this as the sampling of the continuous luminance signal on the skew
quincunx lattice L1 generated by the matrix

fy

ft

fy

ft

(a) (b)

fy

L1*
L2*

I
III ft

(c)

II

II

I

I

I

FIGURE 4.3 HDTV-to-SDTV conversion in the frequency domain.
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1 �1
2 2

� �
:

Note that the lattice L1 is not a sublattice of the L2. This has the consequence that the extraction of an
SDTV signal from an HDTV signal is not simply a question of subsampling the HDTV signal;
interpolation is needed to compute the values of the luminance signal at the missing points. In the
frequency domain this is equivalent to restricting the pass band region of the HDTV signal to a smaller
pass band region, such that no alias occurs when the interpolated signal is sampled to the SDTV lattice.

Figure 4.3a gives a possible solution. The SDTV pass band region is chosen as the skew diamond
region within the HDTV pass band (the outer diamond). This solution has several disadvantages.
One disadvantage is the fact that the realization of this diamond pass band region can only be realized
by non-separable filters, and, therefore, that it is expensive. A second disadvantage is the temporal
attenuation at maximum temporal frequency, which may introduce visible artifacts for moving video.

As argued in [1], the best compromise between vertical resolution and temporal attenuation at
maximum temporal frequency is given by a pass band of the form as given in Figure 4.3b. This pass
band can even be realized cheaply.

Following [1] we note that the temporal information at maximum frequency (region I on the ft-axis in
Figure 4.3c) is repeated at maximal vertical frequency (region I on the fy-axis in Figure 4.3c). This is
simply a consequence of the fact that the DSFT of the HDTV signal is L2*-periodic. We can retain this
information by using an appropriately chosen vertical high pass filter. In a practical implementation this
implies that (after temporal low-pass filtering) we extract from the HDTV signal a base-band signal using
a vertical low-pass filter (the rectangle III in Figure 4.3c) and a temporal band using a vertical high-pass
filter. The temporal band is now modulated to position II in Figure 4.3c by multiplying the sample at
position (2k, t) with (�1)k.

The base band and the temporal band are now merged and sampled to the SDTV lattice. Due to this
last sampling operation, region II is repeated at its original position I in frequency space: this follows
immediately from computing the reciprocal SDTV quincunx lattice.

This proves (as first shown in [1]) that a high quality HDTV-to-SDTV conversion can be achieved
using only separable filters.

4.8 Conclusions

We have presented the basic facts of multidimensional sampling theory. Particular attention has been
paid to the interaction of the different kinds of Fourier transforms, the sampling operator, and the
periodizing operator. Every basic result is accompanied by one or more examples. An application of the
theory to a format conversion problem has been presented.

Appendix

4.A.1 Proof of Theorem 4.3

Proof 4:7 We first observe that

SL(f ) ¼ f �‘
L
,

P
L
(F) ¼ F *

‘
L*
:
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It follows immediately that F SL(f )½ � ¼ P
L*
F (f )½ �. To prove the first assertion of this theorem, it suffices

to verify that ~F (~f ) ¼ ~F :

~F(n) ¼ F (f �‘
L
)(n)

¼
ð
R

n

X
l2L

e�2pihx,nif (x)dl(x)dx

¼
X
l2L

e�2pihl,nif (l)

¼ ~F (~f ):

The second assertion of the theorem, viz. the isometry property of the DSFT, follows from

~F, ~G
� 

P* ¼
1

det(L)2
ð
P*

‘
L*
� F, ‘

L*
� G

� �
P*

¼ 1

det(L)2
ð
P*

X
l1*2L*

F(n� l1*)

0
@

1
A X

l1*2L*
G(n� l2*)

0
@

1
Adn

¼ 1

det(L)2
ð
R

n

F(n)
X
l*2L*

G(n� l*)

0
@

1
Adn

¼ 1

det(L)2 hF,
~Gi

¼ 1
det(L) h f , ~gi

¼ 1
det(L) h f , ~giL:

4.A.2 Proof of Theorem 4.5

Proof 4:8 Similar to the proof of Theorem 4.3, to prove the first assertion it suffices to show that
~F (f̂ ) ¼ F̂:

~F ( f̂ )(n) ¼
X
l2L

e�2pihl,ni f̂ (l)

¼
X
m2M

e�2pihm,ni
 ! X

p2P
e�2pihp,ni f̂ (p)

 !

¼ 1
det(M)

‘
L*
�
X
p2P

e�2pihp,ni f̂ (p)

 !

¼‘
L*
� ~F ( f̂ )(n):
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The isometry property of the DFT follows from

hf̂ , ĝiP ¼
X
p2P

f̂ y(p)ĝ(p)

¼ det(M)2
X
p2P

X
m12M

~f y(p� m1)

 ! X
m22M

~g(p� m2)

 !

¼ det(M)2
X
l2L

~f y(l)
X
m2M

~g(l� m)

 !

¼ det(M)h~f , ĝiL

¼ det(M)2 f ,
‘
L
� (‘
M

* g

� �

¼ det(M)
det(L) F,

‘
L*
*(
‘
M*
� G

* +

¼ det(M)
det(L) F,

‘
M*
� (‘

L*
*G

* +

¼ det(M)det(L)hF̂, ĜiP*

:

The last step in this derivation follows from reversing the other steps, replacing the spatial functions f and g
by their frequency domain counterparts F and G.

4.A.3 Proof of Theorem 4.6

Proof 4:9

~F(2)(n) ¼ 1
det(L2)

X
l2*2L2*

F n� l2*ð Þ

¼ 1
det(L2)

X
p*2P*

X
l1*2L1*

F n� p*� l1*ð Þ

¼ det(L1)
det(L2)

X
p*2P*

~F(1)(n� p*)

¼ 1
i(L2, L1)

X
p*2P*

~F(1)(n� p*)

¼ 1
#(P*)

X
p*2P*

~F(1)(n� p*):
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4.A.4 Proof of Theorem 4.7

Proof 4:10

F(f A)(n) ¼
ð
Rn

e�2pihx,nif A(x)dx

¼
ð
Rn

e�2pihx,nif (A�1x)dx

¼ det(A)j j
ð
R

n

e�2pihAy,nif (y)dy

¼ det(A)j j
ð
R

n

e�2pihy,A
tnif (y)dy

det(A)j jF(Atn)

det(A)j jFA�t (n):

4.A.5 Proof of Theorem 4.8

Proof 4:11

~F(~f A)(n) ¼
X
l22L2

e�2pi(l2,n)~f A(l2)

¼
X
l22L2

e�2pi(l2,n)~f (A�1l2)

¼
X
l12L1

e�2pi(Al1,n)~f (l1)

¼
X
l12L1

e�2pi(l1,A
tn)~f (l1)

¼ ~F (~f )A�t (n):

Glossary of Symbols and Expressions

Z
n n-dimensional integer space

R
n n-dimensional real space

C
n n-dimensional complex space

CSFT continuous space-time Fourier transform
DSFT discrete space-time Fourier transform
DFT discrete Fourier transform
L,M sampling lattice
l, m elements of lattice L,M
l*, m* element of reciprocal lattice L*,M*
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[L] lattice generated by matrix L
#(A) number of points of set A
vol(A) volume (measure) of set A
det(L) determinant of lattice L
i(M,L) index of latticeM with respect to lattice L
L=M coset group of latticeM with respect to lattice L
L* reciprocal lattice of L‘
L lattice comb

P fundamental domain
kak2 L2-norm of a
at Hermitian transpose of a
ha,biN inner products of a and b with respects to N -norm
ay complex conjugate of a
a � b point-wise multiplication
a * b convolution
f A(x) change of variables f(A�1x)
XA characteristic function of set A
F continuous space-time Fourier transform
~F discrete space-time Fourier transform
F̂ discrete Fourier transform
SL sampling operator
PL periodizing operator

sin c(x) sin(px)=px if x 6¼ 0
1 if x ¼ 0

�
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5.1 Introduction

Digital signal processing (DSP) methods fundamentally require that signals are quantized at discrete time
instances and represented as a sequence of words consisting of 1’s and 0’s. In nature, signals are usually
nonquantized and continuously varied with time. Natural signals such as air pressure waves as a result of
speech are converted by a transducer to a proportional analog electrical signal. Consequently, it is necessary
to perform a conversion of the analog electrical signal to a digital representation or vice versa if an analog
output is desired. The number of quantization levels used to represent the analog signal and the rate at
which it is sampled is a function of the desired accuracy, bandwidth that is required, and the cost of the
system. Figure 5.1 shows the basic elements of a DSP system. The analog signal is first converted to a
discrete time signal by a sample-and-hold (S=H) circuit. The output of the S=H is then applied to an analog-
to-digital (A=D) converter circuit where the sampled analog signal is converted to a digitally coded signal.
The digital signal is then applied to the DSP system where the desired DSP algorithm is performed.
Depending on the application, the output of the DSP system can be used directly in digital form or
converted back to an analog signal by a digital-to-analog (D=A) converter. A digital filtering application
may produce an analog signal as its output, whereas a speech recognition system may pass the digital
output of the DSP system to a computer system for further processing. This section will describe basic
converter terminology and a sample of common architectures for both conventional Nyquist rate
converters and oversampled delta–sigma converters.
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5.2 Fundamentals of A=D and D=A Conversions

The analog signal can be given as either a voltage signal or current signal, depending on the signal source.
Figure 5.2 shows the ideal transfer characteristics for a 3-bit A=D conversion. The output of the converter
is an n-bit digital code given as

D ¼ Asig

FS
¼ bn

2n
þ bn�1

2n�1
þ � � � þ b1

21
, (5:1)

where
Asig is the analog signal
FS is the analog full scale level
bn is a digital value of either 0 or 1

As shown in the figure, each digital code represents a quantized analog level. The width of the quantized
region is one least-significant bit (LSB) and the ideal response line passes through the center of each
quantized region. The converse D=A operation can be represented as viewing the digital code in Figure 5.2
as the input and the analog signal as the output. An n-bit D=A converter transfer equation is given as

Asig ¼ FS
bn
2n

þ bn�1

2n�1
þ � � � þ b1

21

� �
, (5:2)
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FIGURE 5.2 Ideal transfer characteristics for an A=D converter.
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where
Asig is the analog output signal
FS is the analog full scale level
bn is a binary coefficient

The resolution of a converter is defined as the smallest distinct change that can be resolved (produced)
at an analog input (output) for an A=D (D=A) converter. This can be expressed as

DAsig ¼ FS
2N

(5:3)

where DAsig is the smallest reproducible analog signal for an N-bit converter with full scale analog signal
of FS.

The accuracy of a converter, often referred to also as relative accuracy, is the worst-case error between
the actual and the ideal converter output after gain and offset errors are removed [1]. This can be
quantified as the number of equivalent bits of resolution or as a fraction of an LSB.

The conversion rate specifies the rate at which a digital code (analog signal) can be accurately
converted into an analog signal (digital code). Accuracy is often expressed as a function of conversion
rate and the two are closely linked. The conversion rate is often an underlying factor in choosing the
converter architecture. The speed and accuracy of analog components are a limiting factor. Sensitive
analog operations can either be done in parallel, at the expense of accuracy, or cyclicly reused to allow
high accuracy with lower conversion speeds.

5.2.1 Nonideal A=D and D=A Converters

Actual A=D and D=A converters exhibit deviations from the ideal characteristics shown in Figure 5.2.
Integration of a complete converter on a single monolithic circuit or as a macro within a very large scale
integration (VLSI) DSP system presents formidable design challenges. Converter architectures and
design trade-offs are most often dictated by the fabrication process and available device types. Device
parameters such as voltage threshold, physical dimensions, etc. vary across a semiconductor die. These
variations can manifest themselves into errors. The following terms are used to describe converter
nonideal behavior:

1. Offset error, described in Figure 5.3, is a d.c. error between the actual response with the ideal
response. This can usually be removed by trimming techniques.

2. Gain error is defined as an error in the slope of the transfer characteristic shown in Figure 5.4,
which can also usually be removed by trimming techniques.

3. Integral nonlinearity is the measure of worst-case deviation from an ideal line drawn between the
full scale analog signal and zero. This is shown in Figure 5.5 as a monotonic nonlinearity.

4. Differential nonlinearity is the measure of nonuniform step sizes between adjacent steps in a
converter. This is usually specified as a fraction of an LSB.

5. Monotonicity in a converter specifies that the output will increase with an increasing input. Certain
converter architectures can guarantee monotonicity for a specified number of bits of resolution.
A nonmonotonic transfer characteristic is detailed in Figure 5.6.

6. Settling time for D=A converters refers to the time taken from a change of the digital code to the
point at which the analog output settles within some tolerance around the final value.

7. Glitches can occur during changes in the output at major transitions, i.e., at 1 MSB, 1=2 MSB, or
1=4 MSB. During large changes, switching time delays between internal signal paths can cause a
spike in the output.
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The choice of converter architecture can greatly affect the relative weight of each of these errors. Data
converters are often designed for low cost implementation in standard digital processes, i.e., digital
CMOS, which often do not have well-controlled resistors or capacitors. Absolute values of these devices
can vary by as much as�20% under typical process tolerances. Post-fabrication trimming techniques
can be used to compensate for process variations, but at the expense of added cost and complexity to
the manufacturing process. As will be shown, various architectural techniques can be used to allow
high-speed or highly accurate data conversion with such variations of process parameters.

5.3 Digital-to-Analog Converter Architecture

The D=A converter, also known as a DAC, decodes a digital word into a discrete analog level. Depending
on the application, this can be either a voltage or current. Figure 5.7 shows a high-level block diagram of a
D=A converter. A binary word is latched and decoded and drives a set of switches that control a scaling
network. A basic analog scaling network can be based on voltage scaling, current scaling, or charge
scaling [1,2]. The scaling network scales the appropriate analog level from the analog reference circuit
and applies it to the output driver. A simple serial string of identical resistors between a reference voltage
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FIGURE 5.6 Nonmonotonic nonlinearity.
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FIGURE 5.7 Basic D=A converter block diagram.
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and ground can be used as a voltage scaling network. Switches can be used to tap voltages off the resistors
and apply them to the output driver. Current scaling approaches are based on switched scaled current
sources. Charge scaling is achieved by applying a reference voltage to a capacitor divider using scaled
capacitors where the total capacitance value is determined by the digital code [1]. Choice of the
architecture depends on the available components in the target technology, conversion rate, and
resolution. Detailed description of these trade-offs and designs can be found in the references [1–5].

5.4 Analog-to-Digital Converter Architectures

The A=D converter, also known as an ADC, encodes an analog signal into a digital word. Conventional
converters work by sampling the time varying analog signal at a sufficient rate to fully resolve the highest
frequency components. According to the sampling theorem, the minimum sampling rate is twice the
frequency of the highest frequency contained in the signal source. The sampling rate requirement thus
becomes the major deterministic factor in choosing a proper converter architecture. Certain architectures
exploit parallelism to achieve high-speed operation on the order of 100’s of MHz, and others which can
be used for high-accuracy 16-bit resolution for signals with maximum frequencies on the order of tens of
kilohertz.

5.4.1 Flash A=D

The flash A=D, also known as a parallel A=D, is the highest speed architecture for A=D conversion since
maximum parallelism is used. Figure 5.8 shows a block diagram of a 3-bit flash A=D converter. A flash
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FIGURE 5.8 A 3-bit flash A=D converter.
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converter requires 2n� 1 analog comparators, 2n� 1 reference voltages, and a digital encoder. The
reference voltages are required to be evenly spaced between 0.5 LSB above the most negative signal
and 1.5 LSB below the most positive signal and spaced 1 LSB apart. Each reference voltage is applied to
the negative input of a comparator and the analog signal voltage is applied simultaneously to all the
comparators. A thermometer code results at the output of the comparators which is converted to a digital
word by encoding logic. The speed of the converter is limited by the time delay through a comparator and
the encoding logic. This speed is gained at the expense of accuracy, which is limited by the ability to
generate evenly spaced reference voltages and the precision of the comparators. Each analog comparator
must be precisely matched in order to achieve acceptable performance at a given resolution. For these
reasons, flash A=D converters are typically used only for very high-speed low-resolution applications.

5.4.2 Successive Approximation A=D Converter

A successive approximation A=D converter is formed creating a feedback loop around a D=A converter.
Figure 5.9 shows a block diagram for an 8-bit successive approximation A=D. The operation of the
converter works by initializing the successive approximation register (SAR) to a value where all bits are
set to 0 except the MSB which is set to 1. This represents the mid-level value. The analog signal is applied
to an S=H circuit, and on the first clock cycle the DAC converts the digital code stored in the SAR into an
analog signal. The comparator is used to determine whether the analog signal is greater or less than the
mid level, and control logic determines whether to leave the MSB set to 1 or to change it back to 0. The
process is repeated on the next clock cycle, but instead the next MSB is tested. For an n-bit converter n
clock cycles are required to fully quantize each S=H signal. The speed of the successive approximation
converter is largely limited by the speed of the DAC and the time delay through the comparator. This
type of converter is widely used for medium speed and medium accuracy applications. The resolution is
limited by the DAC converter and the comparator.

5.4.3 Pipelined A=D Converter

A pipelined A=D converter achieves high-speed conversion and high accuracy at the expense of latency
in the conversion process. A pipelined A=D converter block diagram is shown in Figure 5.10. The
conversion process is broken into multiple stages where, at each stage, a partial conversion is done and
the converted bits are shifted down the pipeline in digital registers. Figure 5.11 shows the detail of a single
pipeline stage. The analog signal is applied to a S=H circuit and the output is applied to an n-bit flash
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FIGURE 5.9 An 8-bit successive approximation A=D converter.
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ADC where n is less then the total desired resolution. The outputs of the ADC are connected directly to a
DAC, and the output of the DAC is subtracted from the original analog signal stored in the S=H to
produce a residual signal. The residual signal is then amplified by 2n so that it will vary within the entire
full scale range of the next stage and is transferred on the next clock cycle. At this point, the first stage
begins conversion on the next analog sample. The maximum conversion rate is determined by the time
delay through a single stage. Pipelining allows high-resolution conversion without the need for many
comparators. An 8-bit converter can be ideally constructed with k¼ 4 stages with n¼ 2 bits of resolution
per stage, requiring only 12 total comparators. This can be contrasted with an 8-bit flash converter
requiring 255 comparators. Each pipeline stage adds an additional cycle of latency before the final code is
converted. Pipelined converters also accommodate digital correction schemes for errors generated in the
analog circuitry. Digital correction can be achieved by using higher resolution ADC and DAC circuits in
each stage than required so that errors in the preceding stage can be detected and corrected digitally [5].
Auto calibration can also be achieved by adding additional stages after the required stages to convert
errors in the DAC values and storing these digitally to be added to the final result [6].

5.4.4 Cyclic A=D Converter

Cyclic A=D converters, also known as algorithmic converters, trade off conversion speed for high
accuracy without the need for calibration or device trimming. Figure 5.12 shows a block diagram of a
cyclic A=D converter [5]. Here the same analog components are cyclicly reused for conversion of each bit
for each analog sample. The conversion process works by initially sampling the input signal by setting
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switch S1 appropriately. The sampled signal is then amplified by a factor of two and applied to a
comparator where it is compared to a reference level, Vref. If the voltage exceeds the reference level, a bit
value of 1 is produced and the reference voltage is subtracted from the amplified signal by control of
switch S2 to produce the residual voltage Ve. If the amplified signal is less than the reference voltage, Vref,
the comparator outputs a 0, and Ve represents the unchanged amplified signal. On the remaining cycles
for the sample, switch S1 changes so that the residual voltage Ve is applied to the S=H circuit. The cycle is
repeated for each remaining bit. Operation on the conversion process produces a serial stream of digital
bit values from output of the comparator. An n-bit converter requires n conversion cycles for each
sampled signal.

5.5 Delta–Sigma Oversampling Converter

The oversampling delta–sigma A=D converter was first proposed 30 years ago [7], while it only became
popular after the maturity of the VLSI digital technology. With the advancement of semiconductor
technology, an increasing portion of signal processing tasks have been shifted from the usual analog
domain to digital domain. For digital systems to interact with analog signal sources, such as voice, data,
and video, the role of A=D interface is essential. In voice data processing and communication, an accurate
digital form is often desired to represent the voice. Due to the large demand of these systems, the cost
must be kept at a minimum. All these requirements call upon a need to implement monolithic high-
resolution A=D interfaces in economical semiconductor technology. However, with the increasing
complexity of integration and a trend of reducing supply voltage, the accuracy of device components
and analog signal dynamic range deteriorate. It becomes more difficult to realize high resolution
conversions by conventional Nyquist rate converter architecture.

Compared to Nyquist rate converters, the oversampling converters use coarse analog components at
the front end and employ more DSP in the later stages. High-resolution conversions are achieved by
trading off speed and DSP complexity, both of which can be easily realized in modern VLSI technology.

The oversampling A=D converter and Nyquist rate converter are compared in Figure 5.13. A
nonoversampled A=D converter has an anti-aliasing lowpass filter in the front. The anti-aliasing filter
attenuates high-frequency components buried in the analog input and prevents them from being aliased
into the signal frequency band. Because the converter is sampled at the Nyquist rate, which is twice the
input signal bandwidth, the anti-aliasing filter’s transition band must be very narrow and its stopband
must have enough suppression of the out-of-band noise. This requirement makes the filter very complex
and adds to the complexity that a nonoversampled A=D already has.

In comparison, an oversampled delta–sigma A=D converter, as shown in Figure 5.13b, is sampled at a
higher rate than the input Nyquist rate. A simple first-order lowpass filter is sufficient to attenuate
the noise components at the sampling frequency region to avoid the noise aliasing. This is because only
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FIGURE 5.12 Block diagram of a cyclic A=D converter.
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the noise components close to the sampling frequency can be aliased back into the signal band. This
arrangement simplifies the design and implementation of the filter. The complexity of the A=D itself is
much simpler than the nonoversampled A=D converters, as we will see later. The only extra complexity in
the oversampled A=D converters is that more DSP is required after the A=D conversion. But this becomes
less and less an issue with the advancement of the VLSI technology. In the following sections, we will
explain the conversion principle and various architectures of the oversampling delta–sigma converter.

5.5.1 Delta–Sigma A=D Converter Architecture

5.5.1.1 Delta–Sigma Oversampling A=D Converter Principle

The structure of a first-order delta–sigma converter is shown in Figure 5.14. The input signal is sampled
at a frequency fs(T¼ 1=fs). A feedback signal from a 1-bit D=A converter is subtracted from the input and
the residue signal is accumulated by an integrator. The output of the integrator is quantized to generate a
1-bit digital stream. This digital output sets the sign of the feedback. If the digital output is, it feeds back
a large negative signal to subtract from the input signal. The net effect of the feedback loop is to keep the
output of the integrator small so that the output digits always track the amplitudes of the input signal.

The resolution of an A=D converter is determined by the quantization noise generated in the process.
Even though a delta-sigma converter only has an 1-bit quantizer, much higher resolution is achieved by
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FIGURE 5.13 (a) Nonoversampled A=D converter and (b) oversampled A=D converter.
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employing the noise shaping mechanism to move the noise out of the signal band and later blocking it
using a lowpass digital filter.

Quantization is a nonlinear process and the feedback mechanism makes the noise highly dependent on
the input signal spectrum. Rigorous treatment of this noise component in a delta-sigma converter can be
found in the literature [8]. Useful information can still be obtained by linearizing the quantization
process. The noise component is approximated by white additive noise uniformly distributed up to half
of the sampling frequency. This approximation is valid because over a long period of time, the input to
the quantizer will spread over a large number of values and appear to be quasi-random, so the noise
introduced is quasi-random as well. Similar to a nonoversampled A=D converter, the rms value of the
noise is e2rms ¼ D2

12, where D is the quantization step. When the quantizer is sampled at fs, the noise power
is sampled into a frequency band: 0� f< fs=2 and its spectral density is

Q( f ) ¼ ffiffiffi
2

p � erms, (5:4)

where f is normalized to f�s.
The delta–sigma converter can be generalized as shown in Figure 5.15. The forward path is modeled by

transfer function B(z) plus the noise, and the feedback path can be modeled by C(z). The system output
and input transfer function is governed by

Y(z) ¼ B(z) � X(z)þ Q
1þ B(z) � C(z) : (5:5)

To achieve high-resolution A=D conversion, the system needs to convert the input signal within a
specified frequency bandwidth and minimize the noise component in that band. One method is to pass
the signal component and block the noise component. This can be expressed as

Y(z) ¼ X(z)þ Hns(z) � Q, (5:6)

where the input X(z) passes through the system, but the quantization noise is modified by a noise-
shaping function Hns(z).

Comparing Equation 5.5 to Equation 5.6, to achieve the noise-shaping effect, the system in Figure 5.15
needs to have the following property:

C(z) ¼ 1� 1
B(z)

(5:7)

B(z) ¼ 1
Hns(z)

:

x(n) B(z)+
–

C(z)

Q y(n)

FIGURE 5.15 General feedback system.
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Now, we can see the delta–sigma A=D converter shown in Figure 5.14 as a noise-shaping data converter.
The transfer function of the integrator in the forward pass is 1

1�z�1; the D=A converter in the feedback
path is equivalent to a delay element and its transfer function is z�1. They satisfy the relation required by
a noise-shaping converter in Equation 5.7. Therefore, its noise-shaping function Hns(z) is

Hns(z) ¼ 1
B(z)

¼ 1� z�1, (5:8)

which is a highpass filtering function. The amplitude of its response is

jHns(z)j ¼ j1� z�1j ¼ 2 sin(pf ), (5:9)

where f is the normalized frequency with respect to fs. This function is plotted in Figure 5.16. As shown in
the figure, the noise is evenly distributed across the frequency, before applying the noise shaping
function. The noise power in the signal band is the area of a region highlighted by the grey color
underneath the flat line. After applying the noise-shaping function, the noise in the signal band is
suppressed to a much lower level and the total noise power left (dark gray region) is much smaller than
the original noise power. The high-frequency noise portion will be filtered by the digital filter. Therefore,
the signal-to-noise ratio (SNR) of the converter is greatly enhanced.

Quantitatively, the noise power left in the signal band is the integration of its spectrum up to signal
bandwidth fb as

N2 ¼
ðfb=fs
0

jHns(z)j2Q2
� �

df ¼ 2D2

3fs

ðfb=fs
0

sin(pf )½ �2df , (5:10)
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FIGURE 5.16 Plot of noise-shaping effect of the delta–sigma modulator comparing the noise power left within the
baseband fh. The noise (cross-hatched region) of a first-order modulator is much less than the noise before shaping
(shaded region). Noise from the second-order shaping is even less.

5-12 Digital Signal Processing Fundamentals



where Q2 is substituted for the noise spectral density in Equation 5.4. In a delta–sigma converter, the
signal bandwidth is significantly lower than the sampling frequency. The resulting integration is

N2
q ¼ 2p2D2

9
fb
fs

� �3

: (5:11)

For a sine wave input, the maximum signal amplitude is D
2 and its average power is D2

8 . This gives a peak
SNR as

S2

N2
¼ 9

16p2

fs
fb

� �3

: (5:12)

We can see that the peak SNR is only a function of the frequency ratio fs
fb
. The faster the converter is

sampled, the higher the resolution can be achieved. The expression in Equation 5.12 can be transformed
into

SNR ¼ 10 log10
S2

N2
¼ 20 log10

3ffiffiffi
2

p
p

� �
þ 9 log2 M[dB], (5:13)

where M is an important parameter called the oversampling ratio, defined as the ratio of the sampling
frequency over the Nyquist sampling frequency 2fb. From this expression, we can see that we can get 9 dB
of increase in SNR for every doubling of the sampling frequency. This corresponds to 1.5 bits. For
example, if M¼ 128, we have 11.5 bits more resolution than sampling at the Nyquist rate. This method
allows a high resolution A=D conversion by using only a 1-bit quantizer.

We can see that higher resolution is achieved by trading off the input signal bandwidth. In order to get
1.5 more bits, the bandwidth has to be cut by a half in this structure. To have a more favorable resolution
and bandwidth trade-off, we can go to higher order delta–sigma converters.

5.5.1.2 Higher Order Single-Stage Converters

In the first-order delta–sigma converter, the noise-shaping function is Hns(z)¼ 1� z�1. Higher order
converters can allow the noise-shaping function go up to Lth power, given as

Hns(z) ¼ 1� z�1
� �L

, (5:14)

where L is an integer >1. Thus, the magnitude of this noise-shaping function is

jHns(z)j ¼ 1� z�1
� �L��� ��� ¼ 2 sin(pf )½ �L: (5:15)

This function is also plotted in Figure 5.16 for L¼ 2. As seen in the figure, more noise from the signal
band is blocked than with the first-order function. Integrating Equation 5.14 over the signal band allows
calculation of the SNR of an Lth order delta–sigma converter as

S2

N2
¼ 3(2Lþ 1)

22Lþ2 � p2L
� fs

fb

� �2Lþ1

, (5:16)

which is equivalent to

SNR ¼ 20 log10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(2Lþ 1)=2

p
pL

 !
þ 3(2Lþ 1) log2 M[dB], (5:17)
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whereM is the oversampling ratio. For every doubling of the sampling frequency, the SNR is increased by
3(2Lþ 1) dB, i.e., Lþ 0.5 bits more resolution. For example, L¼ 2 adds 2.5 bits and L¼ 3 adds 3.5 bits of
resolution. Therefore, compared to the first-order system, by employing a higher order delta–sigma
converter architecture, the same resolution can be achieved with a lower sampling frequency, or a higher
input bandwidth can be allowed at the same resolution with the same sampling frequency. Figure 5.17
shows a plot of Equation 5.17 comparing resolution vs. oversampling ratio for different order delta–sigma
converters.

A second-order delta–sigma converter can be realized as shown in Figure 5.18 with two integrators.
Higher order converters can be similarly constructed. However, when the order of the converter is greater
than two, special care must be taken to insure the converter stability [9]. More zeroes are introduced in
the transfer function of the forward path to suppress the signal swing after the integrators.

Other methods can be used to improve the resolution of the delta–sigma converter. A first-order and a
second-order converter can be cascaded to achieve the same performance as a third-order converter, but
with better stability over the frequency range [10]. A multi-bit quantizer can also be used to replace the
1-bit quantizer in the architecture presented here [11]. This improves the resolution at the same sampling
speed. Interested readers are referred to reference articles.

In an oversampling converter, the digital decimation filter is also an integral part. Only after the
decimation filter is the resolution of the converter realized. The design of decimation filters are discussed
in other sections of this book and can also be found in the reference article by Candy [12].

30

20

10

0 1 2 4 8 16 32 64
Oversampling ratio

No shaping
First-order
Second-order

Re
so

lu
tio

n 
(b

its
)

128 256 512 1024

FIGURE 5.17 A plot of the resolution vs. oversampling ratio for different types of delta–sigma converters and
Nyquist sampling converter.
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FIGURE 5.18 Block diagram of a second-order delta–sigma modulator.
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6.1 Introduction

Signals are usually classified into four categories. A continuous time signal x(t) has the field of real
numbers R as its domain in that t can assume any real value. If the range of x(t) (values that x(t) can
assume) is also R, then x(t) is said to be a continuous time, continuous amplitude signal. If the range of
x(t) is the set of integers Z, then x(t) is said to be a continuous time, discrete amplitude signal. In contrast,
a discrete time signal x(n) has Z as its domain. A discrete time, continuous amplitude signal has R as its
range. A discrete time, discrete amplitude signal has Z as its range. Here, the focus is on discrete time
signals. Quantization is the process of approximating any discrete time, continuous amplitude signal into
one of a finite set of discrete time, continuous amplitude signals based on a particular distortion or
distance measure. This approximation is merely signal compression in that an infinite set of possible
signals is converted into a finite set. The next step of encoding maps the finite set of discrete time,
continuous amplitude signals into a finite set of discrete time, discrete amplitude signals.

A signal x(n) is quantized one block at a time in that p (almost always consecutive) samples are taken
as a vector x and approximated by a vector y. The signal or data vectors x of dimension p (derived from
x(n)) are in the vector space Rp over the field of real numbers R. Vector quantization is achieved by
mapping the infinite number of vectors in Rp to a finite set of vectors in Rp. There is an inherent
compression of the data vectors. This finite set of vectors in Rp is encoded into another finite set of
vectors in a vector space of dimension q over a finite field (a field consisting of a finite set of numbers).
For communication applications, the finite field is the binary field (0,1). Therefore, the original vector x is
converted or compressed into a bit stream either for transmission over a channel or for storage purposes.
This compression is necessary due to channel bandwidth or storage capacity constraints in a system.
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The purpose of this chapter is to describe the basic definition and properties of vector quantization,
introduce the practical aspects of design and implementation, and relate important issues. Note that two
excellent review articles [1,2] give much insight into the subject. The outline of the chapter is as follows.
The basic concepts are elaborated on in Section 6.2. Design algorithms for scalar and vector quantizers
are described in Section 6.3. A design example is also provided. The practical issues are discussed in
Section 6.4. The multistage and split manifestations of vector quantizers are described in Section 6.5.
In Section 6.6, two applications of vector quantization in speech processing are discussed.

6.2 Basic Definitions and Concepts

In this section, we elaborate on the definitions of a vector and scalar quantizer, discuss some commonly
used distance measures, and examine the optimality criteria for quantizer design.

6.2.1 Quantizer and Encoder Definitions

A quantizer,Q, is mathematically defined as a mapping [3]Q :Rp!C. This means that the p-dimensional
vectors in the vector space Rp are mapped into a finite collection C of vectors that are also in Rp. This
collectionC is called the codebook and the number of vectors in the codebook,N, is known as the codebook
size. The entries of the codebook are known as codewords or codevectors. If p¼ 1, we have a scalar
quantizer (SQ). If p> 1, we have a vector quantizer (VQ).

A quantizer is completely specified by p, C and a set of disjoint regions in Rp which dictate the actual
mapping. Suppose C has N entries y1, y2, . . . , yN. For each codevector, yi, there exists a region, Ri, such that
any input vector x 2 Ri gets mapped or quantized to yi. The region Ri is called a Voronoi region [3,4] and is
defined to be the set of all x 2 Rp that are quantized to yi. The properties of Voronoi regions are as follows:

1. Voronoi regions are convex subsets of Rp.
2.

SN
i¼1Ri ¼ Rp.

3. Ri \ Rj is the null set for i 6¼ j.

It is seen that the quantizer mapping is nonlinear and many to one and hence noninvertible.
Encoding the codevectors yi is important for communications. The encoder, E, is mathematically

defined as a mapping E :C!CB. Every vector yi 2 C is mapped into a vector ti 2 CB where ti belongs to a
vector space of dimension q¼ [log2 N] over the binary field (0, 1). The encoder mapping is one to one
and invertible. The size of CB is also N. As a simple example, suppose C contains four vectors of
dimension p, namely (y1, y2, y3, y4). The corresponding mapped vectors in CB are t1¼ [0 0], t2¼ [0 1],
t3¼ [1 0], and t4¼ [1 1]. The decoder D described by D :CB!C performs the inverse operation of
the encoder.

A block diagram of quantization and encoding for communications applications is shown in Figure 6.1.
Given that the final aim is to transmit and reproduce x, the two sources of error are due to quantization and
Cchannel. The quantization error is x� yi and is heavily dealt with in this chapter. The channel introduces
errors that transform ti into tj thereby reproducing yj instead of yi after decoding. Channel errors are
ignored for the purposes of this chapter.

X Quantizer Encoder Channel Decoder
yi ti tj yj

FIGURE 6.1 Block diagram of quantization and encoding for communication systems.
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6.2.2 Distortion Measure

A distortion or distance measure between two vectors x¼ [x1 x2 x3 � � � xp]T 2 Rp and y¼ [y1 y2 y3 � � � yp]T
2 Rp where the superscript T denotes transposition is symbolically given by d(x, y). Most distortion
measures satisfy three properties given by

1. Positivity: d(x, y) is a real number greater than or equal to zero with equality if and only if x¼ y
2. Symmetry: d(x, y)¼ d(y, x)
3. Triangle inequality: d(x, z)� d(x, y)þ d(y, z)

To qualify as a valid measure for quantizer design, only the property of positivity needs to be satisfied. The
choice of a distance measure is dictated by the specific application and computational considerations.
We continue by giving some examples of distortion measures.

Example 6.1: The Lr Distance

The Lr distance is given by

d(x, y) ¼
Xp
i¼1

jxi � yijr (6:1)

This is a computationally simple measure to evaluate. The three properties of positivity, symmetry, and
the triangle inequality are satisfied. When r¼ 2, the squared Euclidean distance emerges and is very often
used in quantizer design. When r¼ 1, we get the absolute distance. If r¼1, it can be shown that [2]

lim
r!1 d(x, y)1=r ¼ max

i
jxi � yij (6:2)

This is the maximum absolute distance taken over all vector components.

Example 6.2: The Weighted L2 Distance

The weighted L2 distance is given by

d(x, y) ¼ (x� y)TW(x� y) (6:3)

whereW is the matrix of weights. For positivity,Wmust be positive-definite. IfW is a constant matrix, the
three properties of positivity, symmetry, and the triangle inequality are satisfied. In some applications,
W is a function of x. In such cases, only the positivity of d(x, y) is guaranteed to hold. As a particular case,
if W is the inverse of the covariance matrix of x, we get the Mahalanobis distance [2]. Other examples of
weighting matrices will be given when we discuss the applications of quantization.

6.2.3 Optimality Criteria

There are two necessary conditions for a quantizer to be optimal [2,3]. As before, the codebook C has N
entries y1, y2, . . . , yN and each codevector yi is associated with a Voronoi region Ri. The first condition
known as the nearest neighbor rule states that a quantizer maps any input vector x to the codevector
closest to it. Mathematically speaking, x is mapped to yi if and only if d(x, yi)� d(x, yj)8j 6¼ i. This
enables us to more precisely define a Voronoi region as

Ri ¼ {x 2 Rp : d(x, yi) � d(x, yj)8j 6¼ i} (6:4)

Quantization of Discrete Time Signals 6-3



The second condition specifies the calculation of the codevector yi given a Voronoi region Ri. The
codevector yi is computed to minimize the average distortion in Ri which is denoted by Di where

Di ¼ E d(x, yi)j x 2 Ri
� �

(6:5)

6.3 Design Algorithms

Quantizer design algorithms are formulated to find the codewords and the Voronoi regions so as to
minimize the overall average distortion D given by

D ¼ E d(x, y)½ � (6:6)

If the probability density p(x) of the data x is known, the average distortion is [2,3]

D ¼
ð
d(x, y)p(x)dx (6:7)

¼
XN
i¼1

ð
Ri

d(x, yi)p(x)dx (6:8)

Note that the nearest neighbor rule has been used to get the final expression for D. If the probability
density is not known, an empirical estimate is obtained by computing many sampled data vectors. This is
called training data, or a training set, and is denoted by T¼ {x1, x2, x3, . . ., xM} whereM is the number of
vectors in the training set. In this case, the average distortion is

D ¼ 1
M

XM
k¼1

d(xk, y) (6:9)

¼ 1
M

XN
i¼1

X
xk2Ri

d(xk, yi) (6:10)

Again, the nearest neighbor rule has been used to get the final expression for D.

6.3.1 Lloyd–Max Quantizers

The Lloyd–Max method is used to design SQs and assumes that the probability density of the scalar data
p(x) is known [5,6]. Let the codewords be denoted by y1, y2, . . . , yN. For each codeword yi, the Voronoi
region is a continuous interval Ri¼ (vi, viþ1]. Note that v1¼�1 and vNþ1¼1. The average distortion is

D ¼
XN
i¼1

ðviþ1

vi

d(x, yi)p(x)dx (6:11)

Setting the partial derivatives of D with respect to vi and yi to zero gives the optimal Voronoi regions and
codewords.

In the particular case when d(x, yi)¼ (x� yi)
2, it can be shown that [5] the optimal solution is

vi ¼ yi þ yiþ1

2
(6:12)
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for 2� i�N and

yi ¼
Ð viþ1

vi
xp(x)dxÐ viþ1

vi
p(x)dx

(6:13)

for 1� i�N. The overall iterative algorithm is

1. Start with an initial codebook and compute the resulting average distortion.
2. Solve for vi.
3. Solve for yi.
4. Compute the resulting average distortion.
5. If the average distortion decreases by a small amount that is less than a given threshold, the design

terminates. Otherwise, go back to Step 2.

The extension of the Lloyd–Max algorithm for designing VQs has been considered [7]. One practical
difficulty is whether the multidimensional probability density function (pdf) p(x) is known or must be
estimated. Even if this is circumvented, finding the multidimensional shape of the convex Voronoi
regions is extremely difficult and practically impossible for dimensions >5 [7]. Therefore, the Lloyd–Max
approach cannot be extended to multidimensions and methods have been configured to design a VQ
from training data. We will now elaborate on one such algorithm.

6.3.2 Linde–Buzo–Gray Algorithm

The input to the Linde–Buzo–Gray (LBG) algorithm [7] is a training set T¼ {x1, x2, x3, . . . , xM} 2 Rp

having M vectors, a distance measure d(x, y), and the desired size of the codebook N. From these inputs,
the codewords yi are iteratively calculated. The probability density p(x) is not explicitly considered and
the training set serves as an empirical estimate of p(x). The Voronoi regions are now expressed as

Ri ¼ {xk 2 T : d(xk, yi) � d(xk, yj)8j 6¼ i} (6:14)

Once the vectors in Ri are known, the corresponding codevector yi is found to minimize the average
distortion in Ri as given by

Di ¼ 1
Mi

X
xk2Ri

d(xk, yi) (6:15)

where Mi is the number of vectors in Ri. In terms of Di, the overall average distortion D is

D ¼
XN
i¼1

Mi

M
Di (6:16)

Explicit expressions for yi depend on d(x, yi) and two examples are given. For the L1 distance,

yi ¼ median[xk 2 Ri] (6:17)

For the weighted L2 distance in which the matrix of weights W is constant,

yi ¼
1
Mi

X
xk2Ri

xk (6:18)
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which is merely the average of the training vectors in Ri. The overall methodology to get a codebook of
size N is

1. Start with an initial codebook and compute the resulting average distortion.
2. Find Ri.
3. Solve for yi.
4. Compute the resulting average distortion.
5. If the average distortion decreases by a small amount that is less than a given threshold, the design

terminates. Otherwise, go back to Step 2.

If N is a power of 2 (necessary for coding), a growing algorithm starting with a codebook of size 1 is
formulated as follows:

1. Find codebook of size 1.
2. Find initial codebook of double the size by doing a binary split of each codevector. For a binary

split, one codevector is split into two by small perturbations.
3. Invoke the methodology presented earlier of iteratively finding the Voronoi regions and codevec-

tors to get the optimal codebook.
4. If the codebook of the desired size is obtained, the design stops. Otherwise, go back to Step 2 in

which the codebook size is doubled.

Note that with the growing algorithm, a locally optimal codebook is obtained. Also, SQ design can also be
performed.

Here, we present a numerical example in which p¼ 2, M¼ 4, N¼ 2, T¼ {x1¼ [0 0], x2¼ [0 1],
x3¼ [1 0], x4¼ [1 1]}, and d(x, y)¼ (x� y)T (x� y). The codebook of size 1 is y1¼ [0.5 0.5]. We will
invoke the LBG algorithm twice, each time using a different binary split. For the first run,

1. Binary split: y1¼ [0.51 0.5] and y2¼ [0.49 0.5]
2. Iteration 1:

a. R1¼ {x3, x4} and R2¼ {x1, x2}
b. y1¼ [1 0.5] and y2¼ [0 0.5]
c. Average distortion: D¼ 0.25[(0.5)2þ (0.5)2þ (0.5)2þ (0.5)2]¼ 0.25

3. Iteration 2:
a. R1¼ {x3, x4} and R2¼ {x1, x2}
b. y1¼ [1 0.5] and y2¼ [0 0.5]
c. Average distortion: D¼ 0.25[(0.5)2þ (0.5)2þ (0.5)2þ (0.5)2]¼ 0.25

4. No change in average distortion, the design terminates

For the second run,

1. Binary split: y1¼ [0.5 0.51] and y2¼ [0.5 0.49]
2. Iteration 1:

a. R1¼ {x2, x4} and R2¼ {x1, x3}
b. y1¼ [0.5 1] and y2¼ [0.5 0]
c. Average distortion: D¼ 0.25[(0.5)2þ (0.5)2þ (0.5)2þ (0.5)2]¼ 0.25

3. Iteration 2:
a. R1¼ {x2, x4} and R2¼ {x1, x3}
b. y1¼ [0.5 1] and y2¼ [0.5 0]
c. Average distortion: D¼ 0.25[(0.5)2þ (0.5)2þ (0.5)2þ (0.5)2]¼ 0.25

4. No change in average distortion, the design terminates

The two codebooks are equally good locally optimal solutions that yield the same average distortion. The
initial condition as determined by the binary split influences the final solution.
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6.4 Practical Issues

When using quantizers in a real environment, there are many practical issues that must be considered to
make the operation feasible. First we enumerate the practical issues and then discuss them in more detail.
Note that the issues listed below are interrelated.

1. Parameter set
2. Distortion measure
3. Dimension
4. Codebook storage
5. Search complexity
6. Quantizer type
7. Robustness to different inputs
8. Gathering of training data

A parameter set and distortion measure are jointly configured to represent and compress information in
a meaningful manner that is highly relevant to the particular application. This concept is best illustrated
with an example. Consider linear predictive (LP) analysis [8] of speech that is performed by the
autocorrelation method. The resulting minimum phase nonrecursive filter

A(z) ¼ 1�
Xp
k¼1

akz
�k (6:19)

removes the near-sample redundancies in the speech. The filter 1=A(z) describes the spectral envelope of
the speech. The information regarding the spectral envelope as contained in the LP filter coefficients ak
must be compressed (quantized) and coded for transmission. This is done in predictive speech coders [9].
There are other parameter sets that have a one-to-one correspondence to the set ak. An equivalent
parameter set that can be interpreted in terms of the spectral envelope is desired. The line spectral
frequencies (LSFs) [10,11] have been found to be the most useful.

The distortion measure is significant for meaningful quantization of the information and must be
mathematically tractable. Continuing the above example, the LSFs must be quantized such that the
spectral distortion (SD) between the spectral envelopes they represent is minimized. Mathematical
tractability implies that the computation involved for (1) finding the codevectors given the Voronoi
regions (as part of the design procedure) and (2) quantizing an input vector with the least distortion
given a codebook is small. The L1, L2, and weighted L2 distortions are mathematically feasible. For
quantizing LSFs, the L2 and weighted L2 distortions are often used [12–14]. More details on LSF
quantization will be provided in a forthcoming section on applications. At this point, a general
description is provided just to illustrate the issues of selecting a parameter set and a distortion measure.

The issues of dimension, codebook storage, and search complexity are all related to computational
considerations. A higher dimension leads to an increase in the memory requirement for storing the
codebook and in the number of arithmetic operations for quantizing a vector given a codebook (search
complexity). The dimension is also very important in capturing the essence of the information to be
quantized. For example, if speech is sampled at 8 kHz, the spectral envelope consists of 3–4 formants
(vocal tract resonances) which must be adequately captured. By using LSFs, a dimension of 10–12 suffices
for capturing the formant information. Although a higher dimension leads to a better description of the
fine details of the spectral envelope, this detail is not crucial for speech coders. Moreover, this higher
dimension imposes more of a computational burden. The codebook storage requirement depends on the
codebook size N. Obviously, a smaller value of N imposes less of a memory requirement. Also for coding,
the number of bits to be transmitted should be minimized, thereby diminishing the memory require-
ment. The search complexity is directly related to the codebook size and dimension. However, it is also
influenced by the type of distortion measure.
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The type of quantizer (scalar or vector) is dictated by computational considerations and the robustness
issue (discussed later). Consider the case when a total of 12 bits are used for quantization, the dimension
is 6, and the L2 distance measure is utilized. For a VQ, there is one codebook consisting of 212¼ 4,096
codevectors each having 6 components. A total of 4,0963 6¼ 24,576 numbers need to be stored.
Computing the L2 distance between an input vector and one codevector requires 6 multiplications and
11 additions. Therefore, searching the entire codebook requires 63 4,096¼ 24,576 multiplications
and 113 4,096¼ 45,056 additions. For an SQ, there are 6 codebooks, one for each dimension. Each
codebook requires 2 bits or 22¼ 4 codewords. The overall codebook size is 43 6¼ 24. Hence, a total of
24 numbers needs to be stored. Consider the first component of an input vector. Four multiplications and
four additions are required to find the best codeword. Hence, for all 6 components, 24 multiplications
and 24 additions are needed to complete the search. The storage and search complexity are always much
less for an SQ.

The quantizer type is also closely related to the robustness issue. A quantizer is said to be robust to
different test input vectors if it can maintain the same performance for a large variety of inputs. The
performance of a quantizer is measured as the average distortion resulting from the quantization of a set
of test inputs. A VQ takes advantage of the multidimensional probability density of the data as
empirically estimated by the training set. An SQ does not consider the correlations among the vector
components as a separate design is performed for each component based on the probability density of
that component. For test data having a similar density to the training data, a VQ will outperform an SQ
given the same overall codebook size. However, for test data having a density that is different from that of
the training data, an SQ will outperform a VQ given the same overall codebook size. This is because an
SQ can accomplish a better coverage of a multidimensional space. Consider the example in Figure 6.2.
The vector space is of two dimensions (p¼ 2). The component x1 lies in the range 0 to x1(max) and x2 lies
between 0 and x2(max). The multidimensional pdf p(x1, x2) is shown as the region ABCD in Figure 6.2.
The training data will represent this pdf and can be used to design a vector and SQ of the same overall
codebook size. The VQ will perform better for test data vectors in the region ABCD. Due to the
individual ranges of the values of x1 and x2, the SQ will cover the larger space OKLM. Therefore, the
SQ will perform better for test data vectors in OKLM but outside ABCD. An SQ is more robust in that it
performs better for data with a density different from that of the training set. However, a VQ is preferable
if the test data is known to have a density that resembles that of the training set.

K

x2

C L

D

M
x1(max)

x2(max)

A

B

0
x1

Multidimensional pdf
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FIGURE 6.2 Example of a multidimensional probability density for explanation of the robustness issue.
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In practice, the true multidimensional pdf of the data is not known as the data may emanate from
many different conditions. For example, LSFs are obtained from speech material derived from many
environmental conditions (like different telephones and noise backgrounds). Although getting a training
set that is representative of all possible conditions gives the best estimate of the multidimensional pdf, it is
impossible to configure such a set in practice. A versatile training set contributes to the robustness of the
VQ but increases the time needed to accomplish the design.

6.5 Specific Manifestations

Thus far, we have considered the implementation of a VQ as being a one-step quantization of x. This is
known as full VQ and is definitely the optimal way to do quantization. However, in applications such as
LSF coding, quantizers between 25 and 30 bits are used. This leads to a prohibitive codebook size and
search complexity. Two suboptimal approaches are now described that use multiple codebooks to
alleviate the memory and search complexity requirements.

6.5.1 Multistage VQ

In multistage VQ consisting of R stages [3], there are R quantizers, Q1, Q2, . . . , QR. The corresponding
codebooks are denoted as C1, C2, . . . , CR. The sizes of these codebooks are N1, N2, . . . , NR. The overall
codebook size isN¼N1þN2þ � � � þNR. The entries of the ith codebookCi are y

(i)
1 , y(i)2 , . . . , y(i)Ni

. Figure 6.3
shows a block diagram of the entire system.

The procedure for multistage VQ is as follows. The input x is first quantized by Q1 to y(1)k . The
quantization error is e1 ¼ x�y(1)k , which is in turn quantized by Q2 to y(2)k . The quantization error at
the second stage is e2 ¼ e1�y(2)k . This error is quantized at the third stage. The process repeats and at the
Rth stage, eR�1 is quantized by QR to y(R)k such that the quantization error is eR. The original vector x is
quantized to y ¼ y(1)k þ y(2)k þ � � � þ y(R)k . The overall quantization error is x� y¼ eR.

The reduction in the memory requirement and search complexity is best illustrated by a simple
example. A full VQ of 30 bits will have one codebook of 230 codevectors (cannot be used in practice). An
equivalent multistage VQ of R¼ 3 stages will have three 10-bit codebooks C1, C2, and C3. The total
number of codevectors to be stored is 33 210, which is practically feasible. It follows that the search
complexity is also drastically reduced over that of a full VQ.

The simplest way to train a multistage VQ is to perform sequential training of the codebooks. We start
with a training set T¼ {x1, x2, x3, . . . , xM} 2 Rp to get C1. The entire set T is quantized by Q1 to get a
training set for the next stage. The codebook C2 is designed from this new training set. This procedure is
repeated so that all the R codebooks are designed. A joint design procedure for multistage VQ has been
recently developed in [15] but is outside the scope of this chapter.

x
yk

(1) yk
(2)

–– –
+

+

yk
(R)

e1 e2 eR–1
eRQ2 QRQ1

+ +
++

FIGURE 6.3 Multistage vector quantization.

Quantization of Discrete Time Signals 6-9



6.5.2 Split VQ

In split VQ [3], x¼ [x1 x2 x3 � � � xp]T 2 Rp is split or partitioned into R subvectors of smaller dimension as
x¼ [x(1) x(2) x(3) � � � x(R)]T. The ith subvector x(i) has dimension di. Therefore, p¼ d1þ d2þ � � � þ dR.
Specifically,

x(1) ¼ x1 x2 � � � xd1½ �T (6:20)

x(2) ¼ xd1þ1 xd1þ2 � � � xd1þd2½ �T (6:21)

x(3) ¼ xd1þd2þ1 xd1þd2þ2 � � � xd1þd2þd3½ �T (6:22)

and so forth.

There are R quantizers, one for each subvector. The subvectors x(i) are individually quantized to y(i)k so

that the full vector x is quantized to y ¼ y(1)k y(2)k y(3)k � � � y(R)k

h iT
2 Rp. The quantizers are designed using

the appropriate subvectors in the training set T. The extreme case of a split VQ is when R¼ p. Then,
d1¼ d2¼ � � � ¼ dp¼ 1 and we get an SQ.

The reduction in the memory requirement and search complexity is again illustrated by a similar
example as for multistage VQ. Suppose the dimension p¼ 10. A full VQ of 30 bits will have one
codebook of 230 codevectors. An equivalent split VQ of R¼ 3 splits uses subvectors of dimensions
d1¼ 3, d2¼ 3, and d3¼ 4. For each subvector, there will be a 10-bit codebook having 210 codevectors.

Finally, note that split VQ is feasible if the distortion measure is separable in that

d(x, y) ¼
XR
i¼1

d x(i), y(i)k

� �
(6:23)

This property is true for the Lr distance and for the weighted L2 distance if the matrix of weights W is
diagonal.

6.6 Applications

In this chapter, two applications of quantization are discussed. One is in the area of speech coding and
the other is in speaker identification. Both are based on LP analysis of speech [8] as performed by the
autocorrelation method. As mentioned earlier, the predictor coefficients, ak, describe a minimum phase
nonrecursive LP filter A(z) as given by Equation 6.19. We recall that the filter 1=A(z) describes the
spectral envelope of the speech, which in turn gives information about the formants.

6.6.1 Predictive Speech Coding

In predictive speech coders, the predictor coefficients (or a transformation thereof) must be quantized.
The main aim is to preserve the spectral envelope as described by 1=A(z) and, in particular, preserve the
formants. The coefficients ak are transformed into an LSF vector f. The LSFs are more clearly related to
the spectral envelope in that (1) the spectral sensitivity is local to a change in a particular frequency and
(2) the closeness of two adjacent LSFs indicates a formant.

Ideally, LSFs should be quantized to minimize the SD given by

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
B

ð
R

10 log Aq(e j2pf )
�� ��2= A(e j2pf )j j2

� �h i2
df

vuut (6:24)
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where
A(�) refers to the original LP filter
Aq(�) refers to the quantized LP filter
B is the bandwidth of interest
R is the frequency range of interest

The SD is not a mathematically tractable measure and is also not separable if split VQ is to be used.
A weighted L2 measure is used in whichW is diagonal and the ith diagonal element is w(i) is given by [14]:

w(i) ¼ 1
fi � fi�1

þ 1
fiþ1 � fi

(6:25)

where
f ¼ [ f1 f2 f3 � � � fp]T 2 Rp

f0 is taken to be zero
fpþ1 is taken to be the highest digital frequency (p or 0.5 if normalized)

Regarding this distance measure, note the following:

1. The LSFs are ordered ( fiþ1> fi) if and only if the LP filter A(z) is minimum phase. This guarantees
that w(i)> 0.

2. The weight w(i) is high if two adjacent LSFs are close to each other. Therefore, more weight is given
to regions in the spectrum having formants.

3. The weights are dependent on the input vector f. This makes the computation of the codevectors
using the LBG algorithm different from the case when the weights are constant. However, for
finding the codevector given a Voronoi region, the average of the training vectors in the region is
taken so that the ordering property is preserved.

4. Mathematical tractability and separability of the distance measure are obvious.

A quantizer can be designed from a training set of LSFs using the weighted L2 distance. Consider LSFs
obtained from speech that is lowpass filtered to 3400 Hz and sampled at 8 kHz. If there are additional
highpass or bandpass filtering effects, some of the LSFs tend to migrate [16]. Therefore, a VQ trained
solely on one filtering condition will not be robust to test data derived from other filtering conditions
[16]. The solution in [16] to robustize a VQ is to configure a training set consisting of two main
components. First, LSFs from different filtering conditions are gathered to provide a reasonable empirical
estimate of the multidimensional pdf. Second, a uniformly distributed set of vectors provides for coverage
of the multidimensional space (similar to what is accomplished by an SQ). Finally, multistage or split LSF
quantizers are used for practical feasibility [13,15,16].

6.6.2 Speaker Identification

Speaker recognition is the task of identifying a speaker by his or her voice. Systems performing speaker
recognition operate in different modes. A closed set mode is the situation of identifying a particular
speaker as one in a finite set of reference speakers [17]. In an open set system, a speaker is either identified as
belonging to a finite set or is deemed not to be a member of the set [17]. For speaker verification, the claim
of a speaker to be one in a finite set is either accepted or rejected [18]. Speaker recognition can either be
done as a text-dependent or text-independent task. The difference is that in the former case, the speaker is
constrained as to what must be said, while in the latter case no constraints are imposed. In this chapter, we
focus on the closed set, text-independent mode. The overall system will have three components, namely,
(1) LP analysis for parameterizing the spectral envelope, (2) feature extraction for ensuring speaker
discrimination, and (3) classifier for making a decision. The input to the system will be a speech signal.
The output will be a decision regarding the identity of the speaker.
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After LP analysis of speech is carried out, the LP predictor coefficients, ak, are converted into the LP
cepstrum. The cepstrum is a popular feature as it provides for good speaker discrimination. Also, the
cepstrum lends itself to the L2 or weighted L2 distance that is simple and yet reflective of the log SD
between two LP filters [19]. To achieve good speaker discrimination, the formants must be captured.
Hence, a dimension of 12 is usually used.

The cepstrum is used to develop a VQ classifier [20] as shown in Figure 6.4. For each speaker enrolled
in the system, a training set is established from utterances spoken by that speaker. From the training set, a
VQ codebook is designed that serves as a speaker model. The VQ codebook represents a portion of the
multidimensional space that is characteristic of the feature or cepstral vectors for a particular speaker.
Good discrimination is achieved if the codebooks show little or no overlap as illustrated in Figure 6.5 for

Feature
test vectors

Speaker M
VQ codebook

Accumulated
distance

Decision
Speaker
identity

Speaker 2
VQ codebook

Speaker 1
VQ codebook

Accumulated
distance

Accumulated
distance

FIGURE 6.4 A VQ-based classifier for speaker identification.

Speaker 2
codebook Speaker 1

codebook

Speaker 3
codebook

FIGURE 6.5 VQ codebooks for three speakers.
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the case of three speakers. Usually, a small codebook size of 64 or 128 codevectors is sufficient [21]. Even
if there are 50 speakers enrolled, the memory requirement is feasible for real-time applications. An SQ is
of no use because the correlations among the vector components are crucial for speaker discrimination.
For the same reason, multistage or split VQ is also of no use. Moreover, full VQ can easily be used given
the relatively smaller codebook size as compared to coding.

Given a random speech utterance, the testing procedure for identifying a speaker is as follows (see
Figure 6.4). First, the S test feature (cepstrum) vectors are computed. Consider the first vector. It is
quantized by the codebook for speaker 1 and the resulting minimum L2 or weighted L2 distance is
recorded. This quantization is done for all S vectors and the resulting minimum distances are accumu-
lated (added up) to get an overall score for speaker 1. In this manner, an overall score is computed for all
the speakers. The identified speaker is the one with the least overall score. Note that with the small
codebook sizes, the search complexity is practically feasible. In fact, the overall score for the different
speakers can be obtained in parallel. The performance measure for a speaker identification system is the
identification success rate, which is the number of test utterances for which the speaker is identified
correctly divided by the total number of test utterances.

The robustness issue is of great significance and emerges when the cepstral vectors derived from certain
test speech material have not been considered in the training phase. This phenomenon of a full VQ not
being robust to a variety of test inputs has been mentioned earlier and has been encountered in our
discussion on LSF coding. The use of different training and testing conditions degrades performance since
the components of the cepstrum vectors (such as LSFs) tend to migrate. Unlike LSF coding, appending the
training set with a uniformly distributed set of vectors to accomplish coverage of a large space will not work
as there will be much overlap among the codebooks of different speakers. The focus of the research is to
develop more robust features that show little variation as the speech material changes [22,23].

6.7 Summary

This chapter has presented a tutorial description of quantization. Starting from the basic definition and
properties of vector and scalar quantization, design algorithms are described. Many practical aspects of
design and implementation (such as distortion measure, memory, search complexity, and robustness) are
discussed. These practical aspects are interrelated. Two important applications of vector quantization in
speech processing are discussed in which these practical aspects play an important role.
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T HE FIELD OF DIGITAL SIGNAL PROCESSING grew rapidly and achieved its current
prominence primarily through the discovery of efficient algorithms for computing various
transforms (mainly the Fourier transforms) in the 1970s. In addition to fast Fourier transforms,

discrete cosine transforms have also gained importance owing to their performance being very close to
the statistically optimum Karhunen Loeve transform.
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Transforms, convolutions, and matrix-vector operations form the basic tools utilized by the signal
processing community, and this section reviews and presents the state of art in these areas of increasing
importance.

Chapter 7 presents a thorough discussion of this important transform. Chapter 8 presents an excellent
survey of filtering and convolution techniques.

One approach to understanding the time and space complexities of signal processing algorithms is
through the use of quantitative complexity theory, and Feig’s Chapter 9 applies quantitative measures to
the computation of transforms. Finally, Chapter 10 presents a comprehensive discussion of matrix
computations in signal processing.
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The publication of the Cooley–Tukey fast Fourier transform (CTFFT) algorithm in 1965 has opened a
new area in digital signal processing by reducing the order of complexity of some crucial computational
tasks such as Fourier transform and convolution from N2 to N log2 N, where N is the problem size. The

* Reprinted from Signal Processing, 19, 259–299, 1990 with kind permission from Elsevier Science-NL, Sara Burger-
Hartstraat 25, 1055 KV Amsterdam, the Netherlands.
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development of the major algorithms (CTFFT, split-radix fast Fourier transform [SRFFT], prime factor
algorithm [PFA], and Winograd fast Fourier transform [FFT]) is reviewed. Then, an attempt is made to
indicate the state of the art on the subject, showing the standing of research, open problems, and
implementations.

7.1 Introduction

Linear filtering and Fourier transforms are among the most fundamental operations in digital signal
processing. However, their wide use makes their computational requirements a heavy burden in most
applications. Direct computation of both convolution and discrete Fourier transform (DFT) requires on
the order ofN2 operations whereN is the filter length or the transform size. The breakthrough of the CTFFT
comes from the fact that it brings the complexity down to an order of N log2 N operations. Because of the
convolution property of the DFT, this result applies to the convolution as well. Therefore, FFT algorithms
have played a key role in the widespread use of digital signal processing in a variety of applications such as
telecommunications, medical electronics, seismic processing, radar or radio astronomy to name but a few.

Among the numerous further developments that followed Cooley and Tukey’s original contribution,
the FFT introduced in 1976 by Winograd [54] stands out for achieving a new theoretical reduction in the
order of the multiplicative complexity. Interestingly, the Winograd algorithm uses convolutions to
compute DFTs, an approach which is just the converse of the conventional method of computing
convolutions by means of DFTs. What might look like a paradox at first sight actually shows the deep
interrelationship that exists between convolutions and Fourier transforms.

Recently, the Cooley–Tukey type algorithms have emerged again, not only because implementations of
the Winograd algorithm have been disappointing, but also due to some recent developments leading to
the so-called split-radix algorithm [27]. Attractive features of this algorithm are both its low arithmetic
complexity and its relatively simple structure.

Both the introduction of digital signal processors and the availability of large scale integration has
influenced algorithm design. While in the 1960s and early 1970s, multiplication counts alone were taken
into account, it is now understood that the number of addition and memory accesses in software and the
communication costs in hardware are at least as important.

The purpose of this chapter is first to look back at 20 years of developments since the Cooley–Tukey
paper. Among the abundance of literature (a bibliography of more than 2500 titles has been published
[33]), we will try to highlight only the key ideas. Then, we will attempt to describe the state of the art on
the subject. It seems to be an appropriate time to do so, since on the one hand, the algorithms have now
reached a certain maturity, and on the other hand, theoretical results on complexity allow us to evaluate
how far we are from optimum solutions. Furthermore, on some issues, open questions will be indicated.

Let us point out that in this chapter we shall concentrate strictly on the computation of the DFT, and
not discuss applications. However, the tools that will be developed may be useful in other cases. For
example, the polynomial products explained in Section 7.5.1 can immediately be applied to the derivation
of fast running FIR algorithms [73,81].

The chapter is organized as follows.
Section 7.2 presents the history of the ideas on FFTs, from Gauss to the split-radix algorithm.
Section 7.3 shows the basic technique that underlies all algorithms, namely the divide and conquer

approach, showing that it always improves the performance of a Fourier transform algorithm.
Section 7.4 considers Fourier transforms with twiddle factors, that is, the classic Cooley–Tukey type

schemes and the split-radix algorithm. These twiddle factors are unavoidable when the transform length
is composite with non-coprime factors. When the factors are coprime, the divide and conquer scheme
can be made such that twiddle factors do not appear.

This is the basis of Section 7.5, which then presents Rader’s algorithm for Fourier transforms of prime
lengths, and Winograd’s method for computing convolutions. With these results established, Section 7.5
proceeds to describe both the PFA and the Winograd Fourier transform algorithm (WFTA).
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Section 7.6 presents a comprehensive and critical survey of the body of algorithms introduced thus far,
then shows the theoretical limits of the complexity of Fourier transforms, thus indicating the gaps that
are left between theory and practical algorithms.

Structural issues of various FFT algorithms are discussed in Section 7.7.
Section 7.8 treats some other cases of interest, like transforms on special sequences (real or symmetric)

and related transforms, while Section 7.9 is specifically devoted to the treatment of multidimensional
transforms.

Finally, Section 7.10 outlines some of the important issues of implementations. Considerations on
software for general purpose computers, digital signal processors, and vector processors are made. Then,
hardware implementations are addressed. Some of the open questions when implementing FFT algo-
rithms are indicated.

The presentation we have chosen here is constructive, with the aim of motivating the ‘‘tricks’’ that are
used. Sometimes, a shorter but ‘‘plug-in’’ like presentation could have been chosen, but we avoided it
because we desired to insist on the mechanisms underlying all these algorithms. We have also chosen to
avoid the use of some mathematical tools, such as tensor products (that are very useful when deriving
some of the FFT algorithms) in order to be more widely readable.

Note that concerning arithmetic complexities, all sections will refer to synthetic tables giving the
computational complexities of the various algorithms for which software is available. In a few cases,
slightly better figures can be obtained, and this will be indicated.

For more convenience, the references are separated between books and papers, the latter being further
classified corresponding to subject matters (one-dimensional [1-D] FFT algorithms, related ones, multi-
dimensional transforms and implementations).

7.2 A Historical Perspective

The development of the FFT will be surveyed below because, on the one hand, its history abounds in
interesting events, and on the other hand, the important steps correspond to parts of algorithms that will
be detailed later.

A first subsection describes the pre-Cooley–Tukey area, recalling that algorithms can get lost by lack of
use, or, more precisely, when they come too early to be of immediate practical use. The developments
following the Cooley–Tukey algorithm are then described up to the most recent solutions. Another
subsection is concerned with the steps that lead to the WFTA and to the PFA, and finally, an attempt is
made to briefly describe the current state of the art.

7.2.1 From Gauss to the CTFFT

While the publication of a fast algorithm for the DFT by Cooley and Tukey [25] in 1965 is certainly a
turning point in the literature on the subject, the divide and conquer approach itself dates back to Gauss
as noted in a well-documented analysis by Heideman et al. [34]. Nevertheless, Gauss’s work on FFTs in
the early nineteenth century (around 1805) remained largely unnoticed because it was only published in
Latin and this after his death.

Gauss used the divide and conquer approach in the same way as Cooley and Tukey have published it
later in order to evaluate trigonometric series, but his work predates even Fourier’s work on harmonic
analysis (1807)! Note that his algorithm is quite general, since it is explained for transforms on sequences
with lengths equal to any composite integer.

During the nineteenth century, efficient methods for evaluating Fourier series appeared independently
at least three times [33], but were restricted on lengths and number of resulting points. In 1903,
Runge derived an algorithm for lengths equal to powers of 2 which was generalized to powers of 3
as well and used in the 1940s. Runge’s work was thus quite well known, but nevertheless disappeared
after the war.
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Another important result useful in the most recent FFT algorithms is another type of divide and
conquer approach, where the initial problem of length N1 �N2 is divided into subproblems of lengths N1

and N2 without any additional operations, N1 and N2 being coprime.
This result dates back to the work of Good [32] who obtained this result by simple index mappings.

Nevertheless, the full implication of this result will only appear later, when efficient methods will be
derived for the evaluation of small, prime length DFTs. This mapping itself can be seen as an application
of the Chinese remainder theorem (CRT), which dates back to 100 years AD! [10–18].

Then, in 1965, appeared a brief article by Cooley and Tukey, entitled ‘‘An algorithm for the machine
calculation of complex Fourier series’’ [25], which reduces the order of the number of operations from N2

to N log2(N) for a length N¼ 2n DFT.
This turned out to be a milestone in the literature on fast transforms, and was credited [14,15] with the

tremendous increase of interest in digital signal processor (DSP) beginning in the 1970s. The algorithm is
suited for DFTs on any composite length, and is thus of the type that Gauss had derived almost 150 years
before. Note that all algorithms published in-between were more restrictive on the transform length [34].

Looking back at this brief history, one may wonder why all previous algorithms had disappeared or
remained unnoticed, whereas the Cooley–Tukey algorithm had such a tremendous success. A possible
explanation is that the growing interest in the theoretical aspects of digital signal processing was
motivated by technical improvements in semiconductor technology. And, of course, this was not a
one-way street.

The availability of reasonable computing power produced a situation where such an algorithm would
suddenly allow numerous new applications. Considering this history, one may wonder how many other
algorithms or ideas are just sleeping in some notebook or obscure publication.

The two types of divide and conquer approaches cited above produced two main classes of algorithms.
For the sake of clarity, we will now skip the chronological order and consider the evolution of each class
separately.

7.2.2 Development of the Twiddle Factor FFT

When the initial DFT is divided into sublengths which are not coprime, the divide and conquer approach
as proposed by Cooley and Tukey leads to auxiliary complex multiplications, initially named twiddle
factors, which cannot be avoided in this case.

While Cooley–Tukey’s algorithm is suited for any composite length, and explained in [25] in a general
form, the authors gave an example with N¼ 2n, thus deriving what is now called a radix-2 decimation in
time (DIT) algorithm (the input sequence is divided into decimated subsequences having different
phases). Later, it was often falsely assumed that the initial CTFFT was a DIT radix-2 algorithm only.

A number of subsequent papers presented refinements of the original algorithm, with the aim of
increasing its usefulness.

The following refinements were concerned:

. With the structure of the algorithm: it was emphasized that a dual approach leads to ‘‘decimation
in frequency’’ (DIF) algorithms.

. With the efficiency of the algorithm, measured in terms of arithmetic operations: Bergland showed
that higher radices, for example radix-8, could be more efficient [21].

. With the extension of the applicability of the algorithm: Bergland [60], again, showed that the FFT
could be specialized to real input data, and Singleton gave a mixed radix FFT suitable for arbitrary
composite lengths.

While these contributions all improved the initial algorithm in some sense (fewer operations and=or
easier implementations), actually no new idea was suggested.

Interestingly, in these very early papers, all the concerns guiding the recent work were already here:
arithmetic complexity, but also different structures and even real-data algorithms.
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In 1968, Yavne [58] presented a little-known paper that sets a record: his algorithm requires the least
known number of multiplications, as well as additions for length-2n FFTs, and this both for real and
complex input data. Note that this record still holds, at least for practical algorithms. The same number of
operations was obtained later on by other (simpler) algorithms, but due to Yavne’s cryptic style, few
researchers were able to use his ideas at the time of publication.

Since twiddle factors lead to most computations in classical FFTs, Rader and Brenner [44],
perhaps motivated by the appearance of the Winograd Fourier transform which possesses the
same characteristic, proposed an algorithm that replaces all complex multiplications by either real or
imaginary ones, thus substantially reducing the number of multiplications required by the algorithm.
This reduction in the number of multiplications was obtained at the cost of an increase in the number
of additions, and a greater sensitivity to roundoff noise. Hence, further developments of these
‘‘real factor’’ FFTs appeared in [24,42], reducing these problems. Bruun [22] also proposed an original
scheme particularly suited for real data. Note that these various schemes only work for radix-2
approaches.

It took more than 15 years to see again algorithms for length-2n FFTs that take as few operations as
Yavne’s algorithm. In 1984, four papers appeared or were submitted almost simultaneously [27,40,46,51]
and presented so-called ‘‘split-radix’’ algorithms. The basic idea is simply to use a different radix for the
even part of the transform (radix-2) and for the odd part (radix-4). The resulting algorithms have a
relatively simple structure and are well adapted to real and symmetric data while achieving the minimum
known number of operations for FFTs on power of 2 lengths.

7.2.3 FFTs without Twiddle Factors

While the divide and conquer approach used in the Cooley–Tukey algorithm can be understood as a
‘‘false’’ mono- to multidimensional mapping (this will be detailed later), Good’s mapping, which can be
used when the factors of the transform lengths are coprime, is a true mono- to multidimensional
mapping, thus having the advantage of not producing any twiddle factor.

Its drawback, at first sight, is that it requires efficiently computable DFTs on lengths that are
coprime: For example, a DFT of length 240 will be decomposed as 240¼ 16 � 3 � 5, and a DFT of length
1008 will be decomposed in a number of DFTs of lengths 16, 9, and 7. This method thus requires a set of
(relatively) small-length DFTs that seemed at first difficult to compute in less than N2

i operations. In
1968, however, Rader [43] showed how to map a DFT of length N, N prime, into a circular convolution
of length N� 1. However, the whole material to establish the new algorithms was not ready yet, and
it took Winograd’s work on complexity theory, in particular on the number of multiplications
required for computing polynomial products or convolutions [55] in order to use Good’s and Rader’s
results efficiently.

All these results were considered as curiosities when they were first published, but their combination,
first done by Winograd and then by Kolba and Parks [39] raised a lot of interest in that class of
algorithms. Their overall organization is as follows.

After mapping the DFT into a true multidimensional DFT by Good’s method and using the fast
convolution schemes in order to evaluate the prime length DFTs, a first algorithm makes use of the
intimate structure of these convolution schemes to obtain a nesting of the various multiplications. This
algorithm is known as the Winograd Fourier transform algorithm [54], an algorithm requiring the least
known number of multiplications among practical algorithms for moderate lengths DFTs. If the nesting
is not used, and the multidimensional DFT is performed by the row–column method, the resulting
algorithm is known as the prime factor algorithm [39], which, while using more multiplications, has less
additions and a better structure than the WFTA.

From the above explanations, one can see that these two algorithms, introduced in 1976 and 1977,
respectively, require more mathematics to be understood [19]. This is why it took some effort to translate
the theoretical results, especially concerning the WFTA, into actual computer code.
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It is even our opinion that what will remain mostly of the WFTA are the theoretical results, since
although a beautiful result in complexity theory, the WFTA did not meet its expectations once
implemented, thus leading to a more critical evaluation of what ‘‘complexity’’ meant in the context of
real life computers [41,108,109].

The result of this new look at complexity was an evaluation of the number of additions and data
transfers as well (and no longer only of multiplications). Furthermore, it turned out recently that the
theoretical knowledge brought by these approaches could give a new understanding of FFTs with twiddle
factors as well.

7.2.4 Multidimensional DFTs

Due to the large amount of computations they require, the multidimensional DFTs as such (with
common factors in the different dimensions, which was not the case in the multidimensional translation
of a mono-dimensional problem by PFA) were also carefully considered.

The two most interesting approaches are certainly the vector radix FFT (a direct approach to the
multidimensional problem in a Cooley–Tukey mood) proposed in 1975 by Rivard [91] and the polyno-
mial transform solution of Nussbaumer and Quandalle [87,88] in 1978.

Both algorithms substantially reduce the complexity over traditional row-column computational
schemes.

7.2.5 State of the Art

From a theoretical point of view, the complexity issue of the DFT has reached a certain maturity. Note
that Gauss, in his time, did not even count the number of operations necessary in his algorithm. In
particular, Winograd’s work on DFTs whose lengths have coprime factors both sets lower bounds (on the
number of multiplications) and gives algorithms to achieve these [35,55], although they are not always
practical ones. Similar work was done for length-2n DFTs, showing the linear multiplicative complexity
of the algorithm [28,35,105] but also the lack of practical algorithms achieving this minimum (due to the
tremendous increase in the number of additions [35]).

Considering implementations, the situation is of course more involved since many more parameters
have to be taken into account than just the number of operations.

Nevertheless, it seems that both the radix-4 and the split-radix algorithm are quite popular for lengths
which are powers of 2, while the PFA, thanks to its better structure and easier implementation, wins over
the WFTA for lengths having coprime factors.

Recently, however, new questions have come up because in software on the one hand, new processors
may require different solutions (vector processors, signal processors), and on the other hand, the advent
of VLSI for hardware implementations sets new constraints (desire for simple structures, high cost of
multiplications vs. additions).

7.3 Motivation (or Why Dividing Is Also Conquering)

This section is devoted to the method that underlies all fast algorithms for DFT, that is, the ‘‘divide and
conquer’’ approach.

The DFT is basically a matrix-vector product. Calling (x0, x1, . . . , xN�1)
T the vector of the input

samples,

(X0,X1, . . . ,XN�1)
T
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the vector of transform values, and WN the primitive N th root of unity (WN¼ e�j2p=N), the DFT can be
written as

X0(1)

X1(2)

X2(3)

..

.

XN�1

2
66666664

3
77777775
¼

1 1 1 1 � � � 1

1 WN W2
N W3

N � � � WN�1
N

1 W2
N W4

N W6
N � � � W2(N�1)

N

..

. ..
. ..

. ..
. ..

. ..
.

1 WN�1
N W2(N�1)

N � � � � � � W(N�1)(N�1)
N

2
66666664

3
77777775

x0
x1
x2
x3

..

.

xN�1

2
6666666664

3
7777777775
: (7:1)

The direct evaluation of the matrix-vector product in Equation 7.1 requires of the order of N2 complex
multiplications and additions (we assume here that all signals are complex for simplicity).

The idea of the ‘‘divide and conquer’’ approach is to map the original problem into several subpro-
blems in such a way that the following inequality is satisfied:

X
cost(subproblems)þ cost(mapping) < cost(original problem): (7:2)

But the real power of the method is that, often, the division can be applied recursively to the subproblems
as well, thus leading to a reduction of the order of complexity.

Specifically, let us have a careful look at the DFT transform in Equation 7.3 and its relationship with
the z-transform of the sequence {xn} as given in Equation 7.4.

Xk ¼
XN�1

i¼0

xiW
ik
N , k ¼ 0, . . . ,N � 1, (7:3)

x(z) ¼
XN�1

i¼0

xiz
�i: (7:4)

{Xk} and {xi} form a transform pair, and it is easily seen that Xk is the evaluation of X(z) at point
z ¼ W�k

N :

Xk ¼ X(z)z¼W�k
N
: (7:5)

Furthermore, due to the sampled nature of {xn}, {Xk} is periodic, and vice versa: since {Xk} is sampled,
{xn} must also be periodic.

From a physical point of view, this means that both sequences {xn} and {Xk} are repeated indefinitely
with period N. This has a number of consequences as far as fast algorithms are concerned.

All fast algorithms are based on a divide and conquer strategy; we have seen this in Section 7.2. But
how shall we divide the problem (with the purpose of conquering it)?

The most natural way is, of course, to consider subsets of the initial sequence, take the DFT of these
subsequences, and reconstruct the DFT of the initial sequence from these intermediate results.

Let Il, l¼ 0, . . . , r� 1 be the partition of {0, 1, . . . ,N� 1} defining the r different subsets of the input
sequence. Equation 7.4 can now be rewritten as

X(z) ¼
XN�1

i¼0

xiz
�i ¼

Xr�1

l¼0

X
i2I l

xiz
�i, (7:6)
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and, normalizing the powers of z with respect to some x0l in each subset Il,

X(z) ¼
Xr�1

l¼0

z�i0l
X
i2I l

xiz
�iþi0l : (7:7)

From the considerations above, we want the replacement of z by W�k
N in the innermost sum of

Equation 7.7 to define an element of the DFT of {xiji 2 Il}. Of course, this will be possible only if the
subset {xiji 2 Il}, possibly permuted, has been chosen in such a way that it has the same kind of
periodicity as the initial sequence. In what follows, we show that the three main classes of FFT algorithms
can all be casted into the form given by Equation 7.7.

. In some cases, the second sum will also involve elements having the same periodicity, hence will
define DFTs as well. This corresponds to the case of Good’s mapping: all the subsets Il, have the
same number of elements m¼N=r and (m, r)¼ 1.

. If this is not the case, Equation 7.7 will define one step of an FFT with twiddle factors:
when the subsets Il all have the same number of elements, Equation 7.7 defines one step of a
radix-r FFT.

. If r¼ 3, one of the subsets having N=2 elements, and the other ones having N=4 elements,
Equation 7.7 is the basis of a split-radix algorithm.

Furthermore, it is already possible to show from Equation 7.7 that the divide and conquer approach will
always improve the efficiency of the computation.

To make this evaluation easier, let us suppose that all subsets Il have the same number of elements, say
N1. If N¼N1 �N2, r¼N2, each of the innermost sums of Equation 7.7 can be computed with N2

1

multiplications, which gives a total of N2N2
1 , when taking into account the requirement that the sum

over i 2 II defines a DFT. The outer sum will need r¼N2 multiplications per output point, that is, N2 �N
for the whole sum.

Hence, the total number of multiplications needed to compute Equation 7.7 is

N2 � N þ N2 � N2
1 ¼ N1 � N2(N1 þ N2) < N2

1 � N2
2 if N1,N2 > 2, (7:8)

which shows clearly that the divide and conquer approach, as given in Equation 7.7, has reduced the
number of multiplications needed to compute the DFT.

Of course, when taking into account that, even if the outermost sum of Equation 7.7 is not already in
the form of a DFT, it can be rearranged into a DFT plus some so-called twiddle-factors, this mapping is
always even more favorable than is shown by Equation 7.8, especially for small N1, N2 (e.g., the length-2
DFT is simply a sum and difference).

Obviously, if N is highly composite, the division can be applied again to the subproblems, which results
in a number of operations generally several orders of magnitude better than the direct matrix-vector
product.

The important point in Equation 7.2 is that two costs appear explicitly in the divide and conquer
scheme: the cost of the mapping (which can be zero when looking at the number of operations only) and
the cost of the subproblems. Thus, different types of divide and conquer methods attempt to find various
balancing schemes between the mapping and the subproblem costs. In the radix-2 algorithm, for
example, the subproblems end up being quite trivial (only sum and differences), while the mapping
requires twiddle factors that lead to a large number of multiplications. On the contrary, in the PFA, the
mapping requires no arithmetic operation (only permutations), while the small DFTs that appear as
subproblems will lead to substantial costs since their lengths are coprime.
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7.4 FFTs with Twiddle Factors

The divide and conquer approach reintroduced by Cooley and Tukey [25] can be used for any composite
length N but has the specificity of always introducing twiddle factors. It turns out that when the factors of
N are not coprime (e.g., if N¼ 2n), these twiddle factors cannot be avoided at all. This section will be
devoted to the different algorithms in that class.

The difference between the various algorithms will consist in the fact that more or fewer of these
twiddle factors will turn out to be trivial multiplications, such as 1,�1, j, and� j.

7.4.1 The Cooley–Tukey Mapping

Let us assume that the length of the transform is composite: N¼N1 �N2.
As we have seen in Section 7.3, we want to partition {xi j i¼ 0, . . . ,N� 1} into different subsets

{xi j i2 Il} in such a way that the periodicities of the involved subsequences are compatible with the
periodicity of the input sequence, on the one hand, and allow to define DFTs of reduced lengths on
the other hand.

Hence, it is natural to consider decimated versions of the initial sequence:

In1 ¼ {n2N1 þ n1}, n1 ¼ 0, . . . ,N1 � 1, n2 ¼ 0, . . . ,N2 � 1, (7:9)

which, introduced in Equation 7.6, gives

X(z) ¼
XN1�1

n1¼0

XN2�1

n2¼0

xn2N1þn1z
�(n2N1þn1), (7:10)

and, after normalizing with respect to the first element of each subset,

X(z) ¼
XN1�1

n1¼0

z�n1
XN2�1

n2¼0

xn2N1þn1z
�n2N1 ,

Xk ¼ X(z)jz¼W�k
N

¼
XN1�1

n1¼0

Wn1k
N

XN2�1

n2¼0

xn2N1þn1W
n2N1k
N : (7:11)

Using the fact that

WiN1
N ¼ e�j2pN1i=N ¼ e�j2p=N2 ¼ Wi

N2
, (7:12)

Equation 7.11 can be rewritten as

Xk ¼
XN1�1

n1¼0

Wn1k
N

XN2�1

n2¼0

xn2N1þn1W
n2k
N2

: (7:13)

Equation 7.13 is now nearly in its final form, since the right-hand sum corresponds to N1 DFTs of length
N2, which allows the reduction of arithmetic complexity to be achieved by reiterating the process.
Nevertheless, the structure of the CTFFT is not fully given yet.
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Call Yn1, k the kth output of the n1th such DFT:

Yn1, k ¼
XN2�1

n2¼0

xn2N1þn1W
n2k
N2

: (7:14)

Note that in Yn1, k can be taken modulo N2, because

Wk
N2

¼ WN2þk 0
N2

¼ WN2
N2

�Wk 0
N2

¼ Wk 0
N2
: (7:15)

With this notation, Xk becomes

Xk ¼
XN1�1

n1¼0

Yn1, kW
n1k
N : (7:16)

At this point, we can notice that all the Xk for k’s being congruent modulo N2 are obtained from the same
group of N1 outputs of Yn1,k. Thus, we express k as

k ¼ k1N2 þ k2, k1 ¼ 0, . . . ,N1 � 1, k2 ¼ 0, . . . ,N2 � 1: (7:17)

Obviously, Yn1,k is equal to Yn1,k2 since k can be taken modulo N2 in this case (see Equations 7.12 and
7.15). Thus, we rewrite Equation 7.16 as

Xk1N2þk2 ¼
XN1�1

n1¼0

Yn1, k2W
n1(k1N2þk2)
N , (7:18)

which can be reduced, using Equation 7.12, to

Xk1N2þk2 ¼
XN1�1

n1¼0

Yn1, k2W
n1k2
N Wn1k1

N1
: (7:19)

Calling Y 0
n1, k2

the result of the first multiplication (by the twiddle factors) in Equation 7.19, we get

Y 0
n1, k2 ¼ Yn1, k2W

n1k2
N : (7:20)

We see that the values of Xk1N2þk2 are obtained from N2 DFTs of length N1 applied on Y 0
n1, k2

:

Xk1N2þk2 ¼
XN1�1

n1¼0

Y 0
n1, k2W

n1k1
N1

: (7:21)

We recapitulate the important steps that led to Equation 7.21. First, we evaluated N1 DFTs of length N2 in
Equation 7.14. Then, N multiplications by the twiddle factors were performed in Equation 7.20. Finally,
N2 DFTs of length N1 led to the final result (Equation 7.21).

A way of looking at the change of variables performed in Equations 7.9 and 7.17 is to say that the 1-D
vector xi has been mapped into a 2-D vector xn1,n2 having N1 lines and N2 columns. The computation of
the DFT is then divided into N1 DFTs on the lines of the vector xn1,n2, a point by point multiplication with
the twiddle factors and finally N2 DFTs on the columns of the preceding result.
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Until recently, this was the usual presentation of FFT algorithms, by the so-called ‘‘index mappings’’
[4,23]. In fact, Equations 7.9 and 7.17, taken together, are often referred to as the ‘‘Cooley–Tukey
mapping’’ or ‘‘common factor mapping.’’ However, the problem with the 2-D interpretation is that it
does not include all algorithms (like the split-radix algorithm that will be seen later). Thus, while this
interpretation helps the understanding of some of the algorithms, it hinders the comprehension of others.
In our presentation, we tried to enhance the role of the periodicities of the problem, which result from the
initial choice of the subsets.

Nevertheless, we illustrate pictorially a length-15 DFT using the 2-D view with N1¼ 3 and N2¼ 5
(see Figure 7.1), together with the Cooley–Tukey mapping in Figure 7.2, to allow a precise comparison
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FIGURE 7.1 2-D view of the length-15 CTFFT.
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FIGURE 7.2 Cooley–Tukey mapping: (a) N1¼ 3, N2¼ 5 and (b) N1¼ 5, N2¼ 3.
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with Good’s mapping that leads to the other class of FFTs: the FFTs without twiddle factors. Note that for
the case where N1 and N2 are coprime, the Good’s mapping will be more efficient as shown in the next
section, and thus this example is for illustration and comparison purpose only. Because of the twiddle
factors in Equation 7.20, one cannot interchange the order of DFTs once the input mapping has been
chosen. Thus, in Figure 7.2a, one has to begin with the DFTs on the rows of the matrix. Choosing N1¼ 5
and N2¼ 3 would lead to the matrix of Figure 7.2b, which is obviously different from just transposing the
matrix of Figure 7.2a. This shows again that the mapping does not lead to a true 2-D transform (in that
case, the order of row and column would not have any importance).

7.4.2 Radix-2 and Radix-4 Algorithms

The algorithms suited for lengths equal to powers of 2 (or 4) are quite popular since sequences of such
lengths are frequent in signal processing (they make full use of the addressing capabilities of computers
or DSP systems).

We assume first that N¼ 2n. Choosing N1¼ 2 and N2¼ 2n�1¼N =2 in Equations 7.9 and 7.10 divides
the input sequence into the sequence of even- and odd-numbered samples, which is the reason why this
approach is called ‘‘decimation in time’’. Both sequences are decimated versions, with different phases, of
the original sequence. Following Equation 7.17, the output consists of N =2 blocks of 2 values. Actually, in
this simple case, it is easy to rewrite Equations 7.14 and 7.21 exhaustively:

xK2 ¼
XN=2�1

n2¼0

x2n2W
n2k2
N=2 þWk2

N

XN=2�1

n2¼0

x2n2þ1W
n2k2
N=2 , (7:22a)

XN=2þk2 ¼
XN=2�1

n2¼0

x2n2W
n2k2
N=2 �Wk2

N

XN=2�1

n2¼0

x2n2þ1W
n2k2
N=2 : (7:22b)

Thus, Xm and XN=2þm are obtained by 2-point DFTs on the outputs of the length-N=2 DFTs of the even-
and odd-numbered sequences, one of which is weighted by twiddle factors. The structure made by a sum
and difference followed (or preceded) by a twiddle factor is generally called a ‘‘butterfly.’’ The DIT radix-2
algorithm is schematically shown in Figure 7.3.

Its implementation can now be done in several different ways. The most natural one is to reorder the
input data such that the samples of which the DFT has to be taken lie in subsequent locations. This
results in the bit-reversed input, in-order output DIT algorithm. Another possibility is to selectively
compute the DFTs over the input sequence (taking only the even- and odd-numbered samples), and
perform an in-place computation. The output will now be in bit-reversed order. Other implementation
schemes can lead to constant permutations between the stages (constant geometry algorithm [15]).

If we reverse the role of N1 and N2, we get the DIF version of the algorithm. Inserting N1¼N=2 and
N2¼ 2 into Equation 7.9, Equation 7.10 leads to (again from Equations 7.14 and 7.21)

X2k1 ¼
XN=2�1

n1¼0

Wn1k1
N=2 xn1 þ xN=2þn1

� �
, (7:23a)

X2k1þ1 ¼
XN=2�1

n1¼0

Wn1k1
N=2W

n1
N xn1 � xN=2þn1

� �
: (7:23b)

This first step of a DIF algorithm is represented in Figure 7.5a, while a schematic representation of the
full DIF algorithm is given in Figure 7.4. The duality between division in time and division in frequency is
obvious, since one can be obtained from the other by interchanging the role of {xi} and {Xk}.
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Let us now consider the computational complexity of the radix-2 algorithm (which is the same for
the DIF and DIT version because of the duality indicated above). From Equation 7.22 or 7.23, one sees
that a DFT of length N has been replaced by two DFTs of length N=2, and this at the cost of N=2 complex
multiplications as well as N complex additions. Iterating the scheme log2 N� 1 times in order to obtain
trivial transforms (of length 2) leads to the following order of magnitude of the number of operations:

OM[DFTradix-2] � N=2( log2 N � 1)

complex multiplications,
(7:24a)

OA[DFTradix-2] � N( log2 N � 1)

complex additions:
(7:24b)

A closer look at the twiddle factors will enable us to still reduce these numbers. For comparison purposes,
we will count the number of real operations that are required, provided that the multiplication of a
complex number x by Wi

N is done using three real multiplications and three real additions [12].
Furthermore, if i is a multiple of N=4, no arithmetic operation is required, and only two real multipli-
cations and additions are required if i is an odd multiple of N=8. Taking into account these simplifications
results in the following total number of operations [12]:

M[DFTradix-2] ¼ 3N=2 log2N � 5N þ 8, (7:25a)

A[DFTradix-2] ¼ 7N=2 log2N � 5N þ 8: (7:25b)

Nevertheless, it should be noticed that these numbers are obtained by the implementation of four
different butterflies (one general plus three special cases), which reduces the regularity of the programs.
An evaluation of the number of real operations for other number of special butterflies is given in [4],
together with the number of operations obtained with the usual 4-mult, 2-adds complex multiplication
algorithm.

Another case of interest appears when N is a power of 4. Taking N1¼ 4 and N2¼N=4, Equation 7.13
reduces the length-N DFT into 4 DFTs of length N=4, about 3N=4 multiplications by twiddle
factors, and N=4 DFTs of length 4. The interest of this case lies in the fact that the length-4 DFTs
do not cost any multiplication (only 16 real additions). Since there are log4N� 1 stages and the first
set of twiddle factors (corresponding to n1¼ 0 in Equation 7.20) is trivial, the number of complex
multiplications is about

OM[DFTradix-4] � 3N=4(log4 N � 1): (7:26)

Comparing Equation 7.26 to Equation 7.24a shows that the number of multiplications can be reduced
with this radix-4 approach by about a factor of 3=4. Actually, a detailed operation count using the
simplifications indicated above gives the following result [12]:

M[DFTradix-4] ¼ 9N=8 log2N � 43N=12þ 16=3, (7:27a)

A[DFTradix-4] ¼ 25N=8 log2N � 43N=12þ 16=3: (7:27b)

Nevertheless, these operation counts are obtained at the cost of using six different butterflies in the
programming of the FFT. Slight additional gains can be obtained when going to even higher radices (like
8 or 16) and using the best possible algorithms for the small DFTs. Since programs with a regular
structure are generally more compact, one often uses recursively the same decomposition at each stage,
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thus leading to full radix-2 or radix-4 programs, but when the length is not a power of the radix (e.g., 128
for a radix-4 algorithm), one can use smaller radices towards the end of the decomposition. A length-256
DFT could use two stages of radix-8 decomposition, and finish with one stage of radix-4. This approach
is called the ‘‘mixed-radix’’ approach [45] and achieves low arithmetic complexity while allowing flexible
transform length (e.g., not restricted to powers of 2), at the cost of a more involved implementation.

7.4.3 Split-Radix Algorithm

As already noted in Section 7.2, the lowest known number of bothmultiplications and additions for length-
2n algorithms was obtained as early as 1968 and was again achieved recently by new algorithms. Their
power was to show explicitly that the improvement over fixed- or mixed-radix algorithms can be obtained
by using a radix-2 and a radix-4 simultaneously on different parts of the transform. This allowed the
emergence of new compact and computationally efficient programs to compute the length-2n DFT.

Below, we will try to motivate (a posteriori!) the split-radix approach and give the derivation of the
algorithm as well as its computational complexity.

When looking at the DIF radix-2 algorithm given in Equation 7.23, one notices immediately that the
even indexed outputs X2k1 are obtained without any further multiplicative cost from the DFT of a length-
N=2 sequence, which is not so well-done in the radix-4 algorithm for example, since relative to that
length-N=2 sequence, the radix-4 behaves like a radix-2 algorithm. This lacks logical sense because it is
well known that the radix-4 is better than the radix-2 approach.

From that observation, one can derive a first rule: the even samples of a DIF decomposition X2k should
be computed separately from the other ones, with the same algorithm (recursively) as the DFT of the
original sequence (see [53] for more details).

However, as far as the odd indexed outputs X2kþ 1 are concerned, no general simple rule can be
established, except that a radix-4 will be more efficient than a radix-2, since it allows computation of the
samples through two N=4 DFTs instead of a single N=2 DFT for a radix-2, and this at the same
multiplicative cost, which will allow the cost of the recursions to grow more slowly. Tests showed that
computing the odd indexed output through radices higher than 4 was inefficient.

The first recursion of the corresponding ‘‘split-radix’’ algorithm (the radix is split in two parts) is
obtained by modifying Equation 7.23 accordingly: X

X2k1 ¼
XN=2�1

n1¼0

Wn1k1
N=2 xn1 þ xN=2þn1

� �
, (7:28a)

X4k1þ1 ¼
XN=4�1

n1¼0

Wn1k1
N=4W

n1
N xn1 � xN=2þn1

� �þ j xn1þN=4 � xn1þ3N=4

� �� �
, (7:28b)

X4k1þ3 ¼
XN=4�1

n1¼0

Wn1k1
N=4W

3n
N xn1 þ xN=2þn1

� �� j xn1þN=4 � xn1þ3N=4

� �� �
: (7:28c)

The above approach is a DIF SRFFT, and is compared in Figure 7.5 with the radix-2 and radix-4
algorithms. The corresponding DIT version, being dual, considers separately the subsets {x2i}, {x4iþ1},
and {x4iþ3} of the initial sequence.

Taking I0¼ {2i}, I1¼ {4iþ 1}, and I2¼ {4iþ 3} and normalizing with respect to the first element of the
set in Equation 7.7 leads to

Xk ¼
X
I0

x2iW
k(2i)
N þWk

N

X
I1

x4iþ1W
k(4iþ1)�k
N þW3k

N

X
I2

x4iþ3W
k(4iþ3)�3k
N , (7:29)
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which can be explicitly decomposed in order to make the redundancy between the computation of Xk,
XkþN=4, XkþN=2, and Xkþ3N=4 more apparent:

Xk ¼
XN=2�1

i¼0

x2iW
ik
N=2 þWk

N

XN=4�1

i¼0

x4iþ1W
ik
N=4 þW3k

N

XN=4�1

i¼0

x4iþ3W
ik
N=4, (7:30a)

Xk�n=4 ¼
XN=2�1

i¼0

x2iW
ik
N=2 þ jWk

N

XN=4�1

i¼0

x4iþ1W
ik
N=4 � jW3k

N

XN=4�1

i¼0

x4iþ3W
ik
N=4, (7:30b)

XkþN=2 ¼
XN=2�1

i¼0

x2iW
ik
N=2 �Wk

N

XN=4�1

i¼0

x4iþ1W
ik
N=4 �W3k

N

XN=4�1

i¼0

x4iþ3W
ik
N=4, (7:30c)

XKþ3N=4 ¼
XN=2�1

i¼0

x2iW
ik
N=2 � jWk

N

XN=4�1

i¼0

x4iþ1W
ik
N=4 þ jW3k

N

XN=4�1

i¼0

x4iþ3W
ik
N=4: (7:30d)

The resulting algorithms have the minimum known number of operations (multiplications plus add-
itions) as well as the minimum number of multiplications among practical algorithms for lengths which
are powers of 2. The number of operations can be checked as being equal to

M DFTsplit-radix
� � ¼ N log2 N � 3N þ 4 (7:31a)

A DFTsplit-radix
� � ¼ 3N log2 N � 3N þ 4 (7:31b)

These numbers of operations can be obtained with only four different building blocks (with a complexity
slightly lower than the one of a radix-4 butterfly), and are compared with the other algorithms in
Tables 7.1 and 7.2.
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FIGURE 7.5 Comparison of various DIF algorithms for the length-16 DFT: (a) radix-2, (b) radix-4, and (c) split-radix.
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Of course, due to the asymmetry in the decomposition, the structure of the algorithm is slightly more
involved than for fixed-radix algorithms. Nevertheless, the resulting programs remain fairly simple [113]
and can be highly optimized. Furthermore, this approach is well suited for applying FFTs on real data. It
allows an in-place, butterfly style implementation to be performed [65,77].

The power of this algorithm comes from the fact that it provides the lowest known number of
operations for computing length-2n FFTs, while being implemented with compact programs. We shall
see later that there are some arguments tending to show that it is actually the best possible compromise.

Note that the number of multiplications in Equation 7.31a is equal to the one obtained with the so-
called ‘‘real-factor’’ algorithms [24,44]. In that approach, a linear combination of the data, using
additions only, is made such that all twiddle factors are either pure real or pure imaginary. Thus, a

TABLE 7.1 Number of Nontrivial Real Multiplication for Various FFTs on Complex Data

N Radix-2 Radix-4 SRFFT PFA Winograd

16 24 20 20

30 100 68

32 88 68

60 200 136

64 264 208 196

120 460 276

128 712 516

240 1,100 632

256 1,800 1,392 1,284

504 2,524 1,572

512 4,360 3,076

1,008 5,804 3,548

1,024 10,248 7,856 7,172

2,048 23,560 16,388

2,520 17,660 9,492

TABLE 7.2 Number of Real Additions for Various FFTs on Complex Data

N Radix-2 Radix-4 SRFFT PFA Winograd

16 152 148 148

30 384 384

32 408 388

60 888 888

64 1,032 976 964

120 2,076 2,076

128 2,504 2,308

240 4,812 5,016

256 5,896 5,488 5,380

504 13,388 14,540

512 13,566 12,292

1,008 29,548 34,668

1,024 30,728 28,336 27,652

2,048 38,616 61,444

2,520 84,076 99,628
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multiplication of a complex number by a twiddle factor requires only two real multiplications. However,
the real factor algorithms are quite costly in terms of additions, and are numerically ill-conditioned
(division by small constants).

7.4.4 Remarks on FFTs with Twiddle Factors

The Cooley–Tukey mapping in Equations 7.9 and 7.17 is generally applicable, and actually the only
possible mapping when the factors on N are not coprime. While we have paid particular attention to the
case N¼ 2n, similar algorithms exist for N¼ pm (p an arbitrary prime). However, one of the elegances of
the length-2n algorithms comes from the fact that the small DFTs (lengths 2 and 4) are multiplication-
free, a fact that does not hold for other radices like 3 or 5, for instance. Note, however, that it is possible,
for radix-3, either to completely remove the multiplication inside the butterfly by a change of base [26], at
the cost of a few multiplications and additions, or to merge it with the twiddle factor [49] in the case
where the implementation is based on the 4-mult 2-add complex multiplication scheme. It was also
recently shown that, as soon as a radix p2 algorithm was more efficient than a radix-p algorithm, a split-
radix p=p2 was more efficient than both of them [53]. However, unlike the 2n case, efficient implemen-
tations for these pn split-radix algorithms have not yet been reported. More efficient mixed-radix
algorithms also remain to be found (initial results are given in [40]).

7.5 FFTs Based on Costless Mono-
to Multidimensional Mapping

The divide and conquer strategy, as explained in Section 7.3, has few requirements for feasibility: N needs
only to be composite, and the whole DFT is computed from DFTs on a number of points which is a
factor of N (this is required for the redundancy in the computation of Equation 7.11 to be apparent). This
requirement allows the expression of the innermost sum of Equation 7.11 as a DFT, provided that the
subsets I1, have been chosen in such a way that xi, i 2 I1, is periodic. But, when N factors into relatively
prime factors, say N¼N1 �N2, (N1, N2)¼ 1, a very simple property will allow a stronger requirement to
be fulfilled.

Starting from any point of the sequence xi, you can take as a first subset with compatible periodicity
either {xiþN1�n2jn2¼ 1, . . . , N2 �1} or, equivalently {xiþN2�n1jn1¼ 1, . . . , N1� 1}, and both subsets only
have one common point xi (by compatible, it is meant that the periodicity of the subsets divides the
periodicity of the set). This allows a rearrangement of the input (periodic) vector into a matrix with a
periodicity in both dimensions (rows and columns), both periodicities being compatible with the initial
one (see Figure 7.6).

7.5.1 Basic Tools

FFTs without twiddle factors are all based on the same mapping, which is explained in Section 7.5.1.1.
This mapping turns the original transform into sets of small DFTs, the lengths of which are coprime. It
is therefore necessary to find efficient ways of computing these short-length DFTs. Section 7.5.1.2
explains how to turn them into cyclic convolutions for which efficient algorithms are described in
Section 7.5.1.3.

7.5.1.1 The Mapping of Good

Performing the selection of subsets described in the introduction of Section 7.5 for any index i is
equivalent to writing i as

i ¼ hn1 � N2 þ n2 � N1iN , n1 ¼ 1, . . . ,N1 � 1, n2 ¼ 1, . . . ,N2 � 1, N ¼ N1N2, (7:32)
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and, since N1 and N2 are coprime, this mapping is easily seen to be one to one [32]. (It is obvious from the
right-hand side of Equation 7.32 that all congruences modulo N1 are obtained for a given congruence
modulo N2, and vice versa.)

This mapping is another arrangement of the ‘‘CRT’’ mapping, which can be explained as follows on
index k.

The CRT states that if we know the residue of some number k modulo two relatively prime numbers
N1 and N2, it is possible to reconstruct hkiN1N2

as follows:
Let hkiN1

¼ k1 and hkiN2
¼ k2. Then the value of k mod N(N¼N1 � N2) can be found by

k ¼ N1t1k2 þ N2t2k1h iN , (7:33)

t1 being the multiplicative inverse of N1 mod N2, that is ht1, N1iN2
¼ 1, and t2 the multiplicative inverse of

N2 mod N1 (these inverses always exist, since N1 and N2 are coprime: (N1, N2)¼ 1).
Taking into account these two mappings in the definition of the DFT equation (Equation 7.3) leads to

XN1t1k2þN2t2k1 ¼
XN1�1

n1¼0

XN2�1

n2¼0

xn1N2þn2N1W
(n1N2þN1n2)(N1t1k2þN2t2k1)
N , (7:34)

but

WN2
N ¼ WN1 (7:35)

and

WN2t2
N1

¼ W(N2t2)N1
N1

¼ WN1 , (7:36)

which implies

XN1t1k2þN2t2k1 ¼
XN1�1

n1¼0

XN2�1

n2¼0

xn1N2þn2N1W
n1k2
N1

Wn2k2
N2

, (7:37)
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FIGURE 7.6 Prime factor mapping for N¼ 15. (a) Good’s mapping and (b) CRT mapping.
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which, with

x0n1, n2 ¼ xn1N2þn2N1

and

X0
k1, k2 ¼ XN1t1k2þN2t2k1 ,

leads to a formulation of the initial DFT into a true bidimensional transform:

X0
k1k2 ¼

XN1�1

n1¼0

XN2�1

n2¼0

x0n1n2W
n1k1
N1

Wn2k2
N2

(7:38)

An illustration of the prime factor mapping is given in Figure 7.6a for the length N¼ 15¼ 3 � 5, and
Figure 7.6b provides the CRT mapping. Note that these mappings, which were provided for a factoriza-
tion of N into two coprime numbers, easily generalizes to more factors, and that reversing the roles of N1,
and N2 results in a transposition of the matrices of Figure 7.6.

7.5.1.2 DFT Computation as a Convolution

With the aid of Good’s mapping, the DFT computation is now reduced to that of a multidimensional
DFT, with the characteristic that the lengths along each dimension are coprime. Furthermore, supposing
that these lengths are small is quite reasonable, since Good’s mapping can provide a full multidimen-
sional factorization when N is highly composite.

The question is now to find the best way of computing this multidimensional DFT and these
small-length DFTs. A first step in that direction was obtained by Rader [43], who showed that a DFT
of prime length could be obtained as the result of a cyclic convolution: Let us rewrite Equation 7.1 for a
prime length N¼ 5:

X0

X1

X2

X3

X4

2
66666664

3
77777775
¼

1 1 1 1 1

1 W1
5 W2

5 W3
5 W4

5

1 W2
5 W4

5 W1
5 W3

5

1 W3
5 W1

5 W4
5 W2

5

1 W4
5 W3

5 W2
5 W1

5

2
66666664

3
77777775

x0

x1

x2

x3

x4

2
66666664

3
77777775
: (7:39)

Obviously, removing the first column and first row of the matrix will not change the problem, since they
do not involve any multiplication. Furthermore, careful examination of the remaining part of the matrix
shows that each column and each row involves every possible power ofW5, which is the first condition to
be met for this part of the DFT to become a cyclic convolution. Let us now permute the last two rows and
last two columns of the reduced matrix:

X0
1

X0
2

X0
4

X0
3

2
66664

3
77775 ¼

W1
5 W2

5 W4
5 W3

5

W2
5 W4

5 W3
5 W1

5

W4
5 W3

5 W1
5 W2

5

W3
5 W1

5 W2
5 W4

5

2
66664

3
77775

x1

x2

x4

x3

2
66664

3
77775: (7:40)

Equation 7.40 is then a cyclic correlation (or a convolution with the reversed sequence).
It turns out that this a general result.
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It is well known in number theory that the set of numbers lower than a prime p admits some primitive
elements g such that the successive powers of g modulo p generate all the elements of the set. In the
example above, p¼ 5 and g¼ 2, and we observe that

g0 ¼ 1, g1 ¼ 2, g2 ¼ 4, and g3 ¼ 8 ¼ 3 (mod 5):

The above result (Equation 7.40) is only the writing of the DFT in terms of the successive powers of Wg
p :

X0
k ¼

Xp�1

i¼1

xiW
ik
p , k ¼ 1, . . . , p� 1, (7:41)

hikip ¼ hiip � hkip
D E

p
¼ hguiip � hgnkp i

D E
p
,

X0
gni ¼

Xp�2

ui¼0

xgui � Wg
p

� �uiþni
, ni ¼ 0, . . . , p� 2,

(7:42)

and the length-p DFT turns out to be a length (p� 1) cyclic correlation:

X0
g

n o
¼ {xg} � Wg

p

n o
: (7:43)

7.5.1.3 Computation of the Cyclic Convolution

Of course Equation 7.42 has changed the problem, but it is not solved yet. And in fact, Rader’s result was
considered as a curiosity up to the moment when Winograd [55] obtained some new results on the
computation of cyclic convolution.

And, again, this was obtained by application of the CRT. In fact, the CRT, as explained in Equation
7.33, Equation 7.34 can be rewritten in the polynomial domain: if we know the residues of some
polynomial K(z) modulo two mutually prime polynomials

K(z)h iP1(z) ¼ K1(z),

K(z)h iP2(z) ¼ K2(z),
(P1(z), P2(z)) ¼ 1, (7:44)

we shall be able to obtain

K(z) mod P1(z) � P2(z) ¼ P(z)

by a procedure similar to that of Equation 7.33.
This fact will be used twice in order to obtain Winograd’s method of computing cyclic convolutions:
A first application of the CRT is the breaking of the cyclic convolution into a set of polynomial

products. For more convenience, let us first state Equation 7.43 in polynomial notation:

X0(z) ¼ x0(z) � w(z) mod (zp�1 � 1): (7:45)

Now, since p� 1 is not prime (it is at least even), zp�1 �1 can be factorized at least as

zp�1 � 1 ¼ (z(p�1)=2 þ 1)(z(p�1)=2 � 1), (7:46)
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and possibly further, depending on the value of p. These polynomial factors are known and named
cyclotomic polynomials wq(z). They provide the full factorization of any zN� 1:

zN � 1 ¼
Y
qjN

wq(z): (7:47)

A useful property of these cyclotomic polynomials is that the roots of wq(z) are all the q th primitive roots
of unity, hence degree {wq(z)}¼w(q), which is by definition the number of integers lower than q and
coprime with it. Namely, if wq¼ e�j2p=q, the roots of wq(z) are

�
Wr

qj(r, q) ¼ 1
	
.

As an example, for p¼ 5, zp�1 �1¼ z4 �1,

z4 � 1 ¼ w1(z) � w2(z) � w4(z)

¼ (z � 1)(z þ 1)(z2 þ 1):

The first use of the CRT to compute the cyclic convolution (Equation 7.45) is then as follows:
1. Compute

x0q(z) ¼ x0(z) mod wq(z),

w0
q(z) ¼ w(z) mod wq(z)

qjp� 1

2. Then obtain

X0
q(z) ¼ x0q(z) � w0

q(z) modwq(z)

3. Reconstruct X0(z) mod zp�1 �1 from the polynomials X0
q(z) using the CRT

Let us apply this procedure to our simple example:

x0(z) ¼ x1 þ x2z þ x4z
2 þ x3z

3,

w(z) ¼ W1
5 þW2

5z þW4
5z

2 þW3
5z

3:

Step 1:

w4(z) ¼ w(z) mod w4(z)

¼ W1
5 �W4

5

� �þ W2
5 �W3

5

� �
z,

w2(z) ¼ w(z) mod w2(z)

¼ W1
5 þW4

5 �W2
5 �W3

5

� �
,

w1(z) ¼ w(z) mod w1(z)

¼ W1
5 þW4

5 þW2
5 þW3

5

� �
[¼ �1],

x04(z) ¼ (x1 � x4)þ (x2 � x3)z,

x02(z) ¼ (x1 þ x4 � x2 � x3),

x01(z) ¼ (x1 þ x4 þ x2 þ x3):

Step 2:

X0
4(z) ¼ x04(z) � w4(z) mod w4(z),

X0
2(z) ¼ x02(z) � w2(z) mod w2(z),

X0
1(z) ¼ x01(z) � w1(z) mod w1(z):
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Step 3:

X0(z) ¼ X0
1(z)(1þ z)=2þ X0

2(z)(1� z)=2
� �
� (1þ z2)=2þ X0

4(z)(1� z2)=2:

Note that all the coefficients ofWq(z) are either real or purely imaginary. This is a general property due to
the symmetries of the successive powers of Wp.

The only missing tool needed to complete the procedure now is the algorithm to compute the
polynomial products modulo the cyclotomic factors. Of course, a straightforward polynomial product
followed by a reduction modulo wq(z) would be applicable, but a much more efficient algorithm can be
obtained by a second application of the CRT in the field of polynomials.

It is already well-known that knowing the values of an N th degree polynomial at Nþ 1 different
points can provide the value of the same polynomial anywhere else by Lagrange interpolation. The CRT
provides an analogous way of obtaining its coefficients.

Let us first recall the equation to be solved:

X0
q(z) ¼ x0q(z) � wq(z) modwq(z), (7:48)

with

deg wq(z) ¼ w(q):

Since wq(z) is irreducible, the CRT cannot be used directly. Instead, we choose to evaluate the product
X

00
q(z) ¼ x0q(z) � wq(z) modulo an auxiliary polynomial A(z) of degree greater than the degree of the

product. This auxiliary polynomial will be chosen to be fully factorizable. The CRT hence applies,
providing

X
00
q(z) ¼ x0q(z) � wq(z),

since the mod A(z) is totally artificial, and the reduction modulo wq(z) will be performed afterwards.
The procedure is then as follows:

Let us evaluate both x0q(z) and wq(z) modulo a number of different monomials of the form

(z � ai), i ¼ 1, . . . , 2w(q)� 1:

Then compute

X
00
q(ai) ¼ x0q(ai)wq(ai), i ¼ 1, . . . , 2w(q)� 1: (7:49)

The CRT then provides a way of obtaining

X
00
q(z) mod A(z), (7:50)

with

A(z) ¼
Y2w(q)�1

i¼1

(z � ai),
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which is equal to X
00
q(z) itself, since

deg X
00
q(z) ¼ 2w(q)� 2: (7:51)

Reduction of X
00
q(z) mod wz(z) will then provide the desired result.

In practical cases, the points {ai} will be chosen in such a way that the evaluation of w 0
q(ai) involves

only additions (i.e., ai¼ 0,�1, . . . ).
This limits the degree of the polynomials whose products can be computed by this method. Other

suboptimal methods exist [12], but are nevertheless based on the same kind of approach (the ‘‘dot products’’
(Equation 7.49) become polynomial products of lower degree, but the overall structure remains identical).

All this seems fairly complicated, but results in extremely efficient algorithms that have a low number
of operations. The full derivation of our example (p¼ 5) then provides the following algorithm:

5 point DFT:

u ¼ 2p=5

t1 ¼ x1 þ x4, t2 ¼ x2 þ x3 (reduction modulo z2 � 1),

t3 ¼ x1 � x4, t4 ¼ x3 � x2 (reduction modulo z2 þ 1),

t5 ¼ t1 þ t2 (reduction modulo z � 1),

t6 ¼ t1 � t2 (reduction modulo z þ 1),

m1 ¼ [( cos uþ cos 2u)=2]t5 X0
1(z) ¼ x01(z) � w1(z) mod w1(z)

� �
,

m2 ¼ [( cos u� cos 2u)=2]t6 X0
2(z) ¼ x02(z) � w2(z) mod w2(z)

� �
,

polynomial product modulo z2 þ 1 X0
4(z) ¼ x04(z) � w4(z) mod wu(z)

� �
,

m3 ¼ �j( sin u)(t3 þ t4),

m4 ¼ �j( sin uþ sin 2u)t4,

m5 ¼ j( sin u� sin 2u)t3,

s1 ¼ m3 �m4,

s2 ¼ m3 þm5

(reconstruction following Step 3, the 1=2 terms

have been included into the polynomial products),

s3 ¼ x0 þm1,

s4 ¼ s3 þm2,

s5 ¼ s3 �m2,

X0 ¼ x0 þ t5,

X1 ¼ s4 þ s1,

X2 ¼ s5 þ s2,

X3 ¼ s5 � s2,

X4 ¼ s4 � s1:

When applied to complex data, this algorithm requires 10 real multiplications and 34 real additions vs. 48
real multiplications and 88 real additions for a straightforward algorithm (matrix-vector product).

In matrix form, and slightly changed, this algorithm may be written as follows:

X0
0,X

0
1, . . . ,X

0
4

� �T¼ C � D � B � (x0, x1, . . . , x4)T, (7:52)

7-24 Digital Signal Processing Fundamentals



with

C ¼

1 0 0 0 0 0

1 1 1 1 �1 0

1 1 �1 1 0 1

1 1 �1 �1 0 �1

1 1 1 �1 1 0

2
66666664

3
77777775
,

D ¼ diag[1, ( cos uþ cos 2u)=2� 1, ( cos u� cos 2u)=2,� j sin u,

� j( sin uþ sin 2u), j( sin u� sin 2u)],

B ¼

1 1 1 1 1

0 1 1 1 1

0 1 �1 �1 1

0 1 �1 1 �1

0 0 �1 1 0

0 1 0 0 1

2
66666666664

3
77777777775
:

By construction, D is a diagonal matrix, where all multiplications are grouped, while C and B only
involve additions (they correspond to the reductions and reconstructions in the applications of
the CRT).

It is easily seen that this structure is a general property of the short-length DFTs based on CRT: all
multiplications are ‘‘nested’’ at the center of the algorithms. By construction, also, D has dimension Mp,
which is the number of multiplications required for computing the DFT, some of them being trivial (at
least one, needed for the computation of X0). In fact, using such a formulation, we have Mp� p. This
notation looks awkward, at first glance (why include trivial multiplications in the total number?), but
Section 7.5.3 will show that it is necessary in order to evaluate the number of multiplications in the
Winograd FFT.

It can also be proven that the methods explained in this section are essentially the only ways of
obtaining FFTs with the minimum number of multiplications. In fact, this gives the optimum structure,
mathematically speaking. These methods always provide a number of multiplications lower than twice
the length of the DFT:

MN1 < 2N1:

This shows the linear complexity of the DFT in this case.

7.5.2 Prime Factor Algorithms

Let us now come back to the initial problem of this section: the computation of the bidimensional
transform given in Equation 7.38 [95]. Rearranging the data in matrix form, of size N1 N2, and F1 (resp.
F2) denoting the Fourier matrix of size N1 (resp. N2) results in the following notation, often used in the
context of image processing:

X ¼ F1xF
T
2 : (7:53)

Performing the FFT algorithm separately along each dimension results in the so-called PFA.
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To summarize, PFA makes use of Good’s mapping (Section 7.5.1.1) to convert the length N1 � N2 1-D
DFT into a size N13N2 2-D DFT, and then computes this 2-D DFT in a row–column fashion, using the
most efficient algorithms along each dimension.

Of course, this applies recursively to more than two factors, the constraints being that they must be
mutually coprime. Nevertheless, this constraint implies the availability of a whole set of efficient small
DFTs (Ni¼ 2, 3, 4, 5, 7, 8, and 16 is already sufficient to provide a dense set of feasible lengths).

A graphical display of PFA for length N¼ 15 is given in Figure 7.7. Since there are N2 applications of
length N1 FFT and N1, applications of length N2 FFTs, the computational costs are as follows:

MN1N2 ¼ N1M2 þ N2M1,

AN1N2 ¼ N1A2 þ N2A1,
(7:54)

or, equivalently, the number of operations to be performed per output point is the sum of the individual
number of operations in each short algorithm: let mN and aN be these reduced numbers

mN1N2N3N4 ¼ mN1 þmN2 þmN3 þmN4 ,

aN1N2N3N4 ¼ aN1 þ aN2 þ aN3 þ aN4 :
(7:55)

An evaluation of these figures is provided in Tables 7.1 and 7.2.

7.5.3 Winograd’s Fourier Transform Algorithm

Winograd’s FFT [56] makes full use of all the tools explained in Section 7.5.1.
Good’s mapping is used to convert the length N1 � N2 1-D DFT into a length N13N2 2-D DFT, and

the intimate structure of the small-length algorithms is used to nest all the multiplications at the center of
the overall algorithm as follows.

Reporting Equation 7.52 into Equation 7.53 results in

X ¼ C1D1B1xB
T
2D2C

T
2 : (7:56)

Since C and B do not involve any multiplication, the matrix (B1xBT
2 ) is obtained by only adding properly

chosen input elements. The resulting matrix now has to be multiplied on the left and on the right by
diagonal matrices D1 and D2, of respective dimensions M1 and M2. Let M0

1 and M0
2 be the numbers of

trivial multiplications involved.

DFT
3

DFT
5

x10

x5

x0

x3

x6

x9

x12 X9

X4

X14
X8

X2
X11

X5

FIGURE 7.7 Schematic view of PFA for N¼ 15.
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Premultiplying by the diagonal matrix D1 multiplies each row by some constant, while postmultiplying
does it for each column. Merging both multiplications leads to a total number of

MN1N2 ¼ MN1 �MN2 (7:57)

out of which M0
N1

�M0
N2

are trivial.
Pre- and postmultiplying by C1 and CT

2 will then complete the algorithm.
A graphical display of WFTA for length N¼ 15 is given in Figure 7.8, which clearly shows that this

algorithm cannot be performed in place.
The number of additions is more intricate to obtain.
Let us consider the pictorial representation of Equation 7.56 as given in Figure 7.8.
Let C1 involve A1

1 additions (output additions) and B1 involve A1
2 additions (input additions). (Which

means that there exists an algorithm for multiplying C1 by some vector involving A1
1 additions. This is

different from the number of�1’s in the matrix—see the p¼ 5 example.)
Under these conditions, obtaining xB2 will cost A2

2 � N1 additions, B1(xBT
2 ) will cost A

2
1 �M2 additions,

C1(D1B1xBT
2 ) will cost A

1
1 �M2 additions and (C1D1B1xBT

2 )C2 will cost A1
2 � N1 additions, which gives a

total of

AN1N2 ¼ N1A2 þM2A1: (7:58)

This formula is not symmetric in N1 and N2. Hence, it is possible to interchange N1 and N2, which does
not change the number of multiplications. This is used to minimize the number of additions.

SinceM2�N2, it is clear that WFTA will always require at least as many additions as PFA, while it will
always need fewer multiplications, as long as optimum short length DFTs are used. The demonstration is
as follows.

Let

M1 ¼ N1 þ e1, M2 ¼ N2 þ e2,

MPFA ¼ N1M2 þ N2M1

¼ 2N1N2 þ N1e2 þ N2e1,

MWFTA ¼ M1 �M2

¼ N1N2 þ e1e2 þ N1e2 þ N2e1:

Input additions
N = 3

Input additions
N = 5

Pointwise
multiplication

Output additions
N = 5

Output additions
N = 3

X9
x12

x9

x6

x3

x0

x5

x10

X4

X14

X8

X2

X11

X5

FIGURE 7.8 Schematic view of WFTA for N¼ 15.
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Since e1 and e2 are strictly smaller than N1 and N2 in optimum short-length DFTs, we have, as a result,

MWFTA < MPFA:

Note that this result is not true if suboptimal short-length FFTs are used. The numbers of operations to
be performed per output point (to be compared with Equation 7.55) are as follows in the WFTA:

mN1N2 ¼ mN1 �MN2 , aN1N2 ¼ aN2 þmN2aN1 : (7:59)

These numbers are given in Tables 7.1 and 7.2.
Note that the number of additions in the WFTA was reduced later by Nussbaumer [12] with a scheme

called ‘‘split nesting,’’ leading to the algorithm with the least known number of operations (multiplica-
tionsþ additions).

7.5.4 Other Members of This Class

PFA and WFTA are seen to be both described by the following equation [38]:

X ¼ C1D1B1xB
T
2D2C

T
2 : (7:60)

Each of them is obtained by different ordering of the matrix products.

. The PFA multiplies (C1 D1 B1)x first, and then the result is postmultiplied by (BT
2D2CT

2 ).
. The WFTA starts with B1xBT

2 , then (D13D2), then C1 and finally CT
2 .

Nevertheless, these are not the only ways of obtaining X: C and B can be factorized as two matrices
each, to fully describe the way the algorithms are implemented. Taking this fact into account allows a
great number of different algorithms to be obtained. Johnson and Burrus [38] systematically investigated
this whole class of algorithms, obtaining interesting results, such as

. Some WFTA-type algorithms, with reduced number of additions

. Algorithms with lower number of multiplications than both PFA and WFTA in the case where the
short-length algorithms are not optimum

7.5.5 Remarks on FFTs without Twiddle Factors

It is easily seen that members of this class of algorithms differ fundamentally from FFTs with twiddle
factors.

Both classes of algorithms are based on a divide and conquer strategy, but the mapping used to
eliminate the twiddle factors introduced strong constraints on the type of lengths that were possible with
Good’s mapping.

Due to those constraints, the elaboration of efficient FFTs based on Good’s mapping required
considerable work on the structure of the short FFTs. This resulted in a better understanding of the
mathematical structure of the problem, and a better idea of what was feasible and what was not.

This new understanding has been applied to the study of FFTs with twiddle factors. In this study,
issues, such as optimality, distance (in cost) of the practical algorithms from the best possible ones, and
the structural properties of the algorithms, have been prominent in the recent evolution of the field of
algorithms.
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7.6 State of the Art

FFT algorithms have now reached a great maturity, at least in the 1-D case, and it is now possible to make
strong statements about what eventual improvements are feasible and what are not.

In fact, lower bounds on the number of multiplications necessary to compute a DFT of given length
can be obtained by using the techniques described in Section 7.5.1.

7.6.1 Multiplicative Complexity

Let us first consider the FFTs with lengths that are powers of two.
Winograd [57] was first able to obtain a lower bound on the number of complex multiplications

necessary to compute length 2n DFTs. This work was then refined in [28], which provided realizable
lower bounds, with the following multiplicative complexity:

mc[DFT2
n] ¼ 2nþ1 � 2n2 þ 4n� 8: (7:61)

This means that there will never exist any algorithm computing a length 2n DFT with a lower number of
nontrivial complex multiplications than the one in Equation 7.61.

Furthermore, since the demonstration is constructive [28], this optimum algorithm is known. Unfor-
tunately, it is of no practical use for lengths greater than 64 (it involves much too many additions).

The lower part of Figure 7.9 shows the variation of this lower bound and of the number of complex
multiplications required by some practical algorithms (radix-2, radix-4, and SRFT). It is clearly seen that
SRFFT follows this lower bound up to N¼ 64, and is fairly close for N¼ 128. Divergence is quite fast
afterwards.

It is also possible to obtain a realizable lower bound on the number of real multiplications [35,36]:

mr[DFT2
n] ¼ 2nþ2 � 2n2 � 2nþ 4: (7:62)
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FIGURE 7.9 Number of nontrivial real or complex multiplications per output point.
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The variation of this bound, together with that of the number of real multiplications required by some
practical algorithms is provided on the upper part of Figure 7.9. Once again, this realizable lower bound is
of no practical use above a certain limit. But, this time, the limit is much lower: SRFFT, together with
radix-4, meets the lower bound on the number of real multiplications up to N¼ 16, which is also the last
point where one can use an optimal polynomial product algorithm (modulo u2þ 1) which is
still practical. (N¼ 32 would require an optimal product modulo u4þ 1 that requires a large number
of additions.)

It was also shown [31,76] that all of the three following algorithms: optimum algorithm minimizing
complex multiplications, optimum algorithm minimizing real multiplications and SRFFT, had exactly
the same structure. They performed the decomposition into polynomial products exactly in the same
manner, and they differ only in the way the polynomial products are computed.

Another interesting remark is as follows: the same number of multiplications as in SRFFT could also
be obtained by so-called ‘‘real factor radix-2 FFTs’’ [24,42,44] (which were, on another respect,
somewhat numerically ill-conditioned and needed about 20% more additions). They were obtained by
making use of some computational trick to replace the complex twiddle factors by purely real or purely
imaginary ones. Now, the question is: Is it possible to do the same kind of thing with radix-4, or even
SRFFT? Such a result would provide algorithms with still fewer operations. The knowledge of the lower
bound tells us that it is impossible because, for some points (e.g., N¼ 16) this would produce an
algorithm with better performance than the lower bound. The challenge of eventually improving SRFFT
is now as follows.

Comparison of SRFFT with mc[DFT 2n] tells us that no algorithm using complex multiplications will
be able to improve significantly SRFFT for lengths less than 512. Furthermore, the trick allowing real
factor algorithms to be obtained cannot be applied to radices greater than 2 (or at least not in the same
manner).

The above discussion thus shows that there remain very few approaches (yet unknown) that could
eventually improve the best known length 2n FFT.

And what is the situation for FFTs based on Good’s mapping?
Realizable lower bounds are not so easily obtained. For a given length N¼Q

Ni, they involve a fairly
complicated number theoretic function [8], and simple analytical expressions cannot be obtained.
Nevertheless, programs can be written to compute mr{DFTNN}, and are given in [36]. Table 7.3 provides
numerical values for a number of lengths of interest.

Careful examination of Table 7.3 provides a number of interesting conclusions.
First, one can see that, for comparable lengths (since SRFFT and WFTA cannot exist for the same

lengths), a classification depending on the efficiency is as follows: WFTA always requires the
lowest number of multiplications, followed by PFA, and followed by SRFFT, all fixed- or mixed-
radix FFTs being next. Nevertheless, none of these algorithms attains the lower bound, except for very
small lengths.

Another remark is that the number of multiplications required by WFTA is always smaller than the
lower bound for the corresponding length that is a power of 2. This means, on the one hand, that
transform lengths for which Good’s mapping can be applied are well suited for a reduction in the number
of multiplications, and on the other hand, that they are very efficiently computed by WFTA, from this
point of view.

And this states the problem of the relative efficiencies of these algorithms: How close are they to their
respective lower bound?

The last column of Table 7.3 shows that the relative efficiency of SRFFT decreases almost linearly with
the length (it requires about twice the minimum number of multiplications for N¼ 2048), while the
relative efficiency of WFTA remains almost constant for all the lengths of interest (it would not be the
same result for much greater N). Lower bounds for Winograd-type lengths are also seen to be smaller
than for the corresponding power of 2 lengths.
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All these considerations result in the following conclusion: lengths for which Good’s mapping is
applicable allow a greater reduction of the number of multiplications (which is due directly to the
mathematical structure of the problem). And, furthermore, they allow a greater relative efficiency of the
actual algorithms vs. the lower bounds (and this is due indirectly to the mathematical structure).

7.6.2 Additive Complexity

Nevertheless, the situation is not the same as regards the number of additions.
Most of the work on optimality was concerned with the number of multiplications. Concerning the

number of additions, one can distinguish between additions due to the complex multiplications and the
ones due to the butterflies. For the case N¼ 2n, it was shown in [106,110] that the latter number, which is
achieved in actual algorithms, is also the optimum. Differences between the various algorithms is thus
only due to varying numbers of complex multiplications. As a conclusion, one can see that the only way
to decrease the number of additions is to decrease the number of true complex multiplications (which is
close to the lower bound).

Figure 7.10 gives the variation of the total number of operations (multiplications plus additions) for
these algorithms, showing that SRFFT has the lowest operation count. Furthermore, its more regular
structure results in faster implementations.

Note that all the numbers given here concern the initial versions of SRFFT, PFA, and WFTA, for
which FORTRAN programs are available. It is nevertheless possible to improve the number of additions
in WFTA by using the so-called split-nesting technique [12] (which is used in Figure 7.10), and the
number of multiplications of PFA by using small-length FFTs with scaled output [12], resulting in an
overall scaled DFT.

As a conclusion, one can realize that we now have practical algorithms (mainly WFTA and SRFFT)
that follow the mathematical structure of the problem of computing the DFT with the minimum number
of multiplications, as well as a knowledge of their degree of suboptimality.

TABLE 7.3 Practical Algorithms vs. Lower Bounds (Number of Nontrivial Real
Multiplications for FFTs on Real Data)

N SRFFT WFTA Lower Bound
SRFT

(Lower Bound)
WFTA

(Lower Bound)

16 20 20 1

30 68 56 1.21

32 68 64 1.06

60 136 112 1.21

64 196 168 1.16

120 276 240 1.15

128 516 396 1.3

240 632 548 1.15

256 1,284 876 1.47

504 1,572 1,320 1.19

512 3,076 1,864 1.64

1,008 3,548 2,844 1.25

1,024 7,172 3,872 1.85

2,048 16,388 7,876 2.08

2,520 9,492 7,440 1.27
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7.7 Structural Considerations

This section is devoted to some points that are important in the comparison of different FFT algorithms,
namely easy obtention of inverse FFT, in-place computation, regularity of the algorithm, quantization
noise, and parallelization, all of which are related to the structure of the algorithms.

7.7.1 Inverse FFT

FFTs are often used regardless of their ‘‘frequency’’ interpretation for computing FIR filtering in blocks,
which achieves a reduction in arithmetic complexity compared to the direct algorithm. In that case, the
forward FFT has to be followed, after pointwise multiplication of the result, by an inverse FFT. It is of course
possible to rewrite a program along the same lines as the forward one, or to reorder the outputs of a forward
FFT. A simpler way of computing an inverse FFT by using a forward FFT program is given (or reminded) in
[99], where it is shown that, if CALL FFT (XR, Xl, N) computes a forward FFT of the sequence {XR(i)þ jXI
(i)ji¼ 0, . . . ,N� 1}, CALL FFT(XI, XR,N) will compute an inverse FFT of the same sequence, whatever the
algorithm is. Thus, all FFT algorithms on complex data are equivalent in that sense.

7.7.2 In-Place Computation

Another point in the comparison of algorithms is the memory requirement: most algorithms (CTFFT,
SRFFT, and PFA) allow in-place computation (no auxiliary storage of size depending on N is necessary),
while WFTA does not. And this may be a drawback for WFTA when applied to rather large sequences.

CTFFT and SRFFT also allow rather compact programs [4,113], the size of which is independent of the
length of the FFT to be computed.

On the contrary, PFA and WFTA will require longer and longer programs when the upper limit on the
possible lengths is increased: an 8-module program (n¼ 2, 4, 8, 16, 3, 5, 7, and 9) allows obtaining a rather
dense set of lengths up to N¼ 5040 only. Longer transforms can only be obtained either by the use of rather
‘‘exotic’’modules that can be found in [37], or by some kind ofmixture betweenCTFFT (or SRFFT) and PFA.
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FIGURE 7.10 Total number of operations per output point for different algorithms.
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7.7.3 Regularity and Parallelism

Regularity has been discussed for nearly all algorithms when they were described. Let us recall here that
CTFFT is very regular (based on repetitive use of a few modules) and SRFFT follows (repetitive use of
very few modules in a slightly more involved manner). Then, PFA requires repetitive use (more intricate
than CTFFT) of more modules, and finally WFTA requires some combining of parts of these modules,
which means that, even if it has some regularity, this regularity is more hidden.

Let us point out also that the regularity of an algorithm cannot really be seen from its flowgraph. The
equations describing the algorithm, as given in Equation 7.13 or 7.38, do not fully define the implemen-
tations, which is partially done in the flowgraph. The reordering of the nodes of a flowgraph may provide
a more regular one. (The classical radix-2 and radix-4 CTFFT can be reordered into a constant geometry
algorithm. See also [30] for SRFFT.)

Parallelization of CTFFT and SRFFT is fairly easy, since the small modules are applied on sets of data
that are separable and contiguous, while it is slightly more difficult with PFA, where the data required by
each module are not in contiguous locations.

Finally, let us point out that mathematical tools such as tensor products can be used to work on
the structure of the FFT algorithms [50,101], since the structure of the algorithm reflects the mathematical
structure of the underlying problem.

7.7.4 Quantization Noise

Roundoff noise generated by finite precision operations inside the FFT algorithm is also of importance.
Of course, fixed point implementations of CTFFT for lengths 2n were studied first, and it was shown that
the error-to-signal ratio of the FFT process increases as

ffiffiffiffi
N

p
(which means 1=2 bit per stage) [117].

SRFFT and radix-4 algorithms were also reported to generate less roundoff than radix-2 [102].
Although the WFTA requires fewer multiplications than the CTFFT (hence has less noise sources),

it was soon recognized that proper scaling was difficult to include in the algorithm, and that the
resulting noise-to-signal ratio was higher. It is usually thought that two more bits are necessary for
representing data in the WFTA to give an error of the same order as CTFFT (at least for practical
lengths). A floating point analysis of PFA is provided in [104].

7.8 Particular Cases and Related Transforms

The previous sections have been devoted exclusively to the computation of the matrix-vector product
involving the Fourier matrix. In particular, no assumption has been made on the input or output
vector. In the following subsections, restrictions will be put on these vectors, showing how the
previously described algorithms can be applied when the input is, for example, real-valued, or when
only a part of the output is desired. Then, transforms closely related to the DFT will be discussed
as well.

7.8.1 DFT Algorithms for Real Data

Very often in applications, the vector to be transformed is made up of real data. The transformed vector
then has an Hermitian symmetry, that is,

XN�k ¼ Xk*, (7:63)

as can be seen from the definition of the DFT. Thus, X0 is real, and when N is even, XN=2 is real as well.
That is, the N input values map to 2 real and N=2� 1 complex conjugate values when N is even, or 1 real
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and (N� 1)=2 complex conjugate values when N is odd (which leaves the number of free variables
unchanged).

This redundancy in both input and output vectors can be exploited in the FFT algorithms in order to
reduce the complexity and storage by a factor of 2. That the complexity should be half can be shown by
the following argument. If one takes a real DFT of the real and imaginary parts of a complex vector
separately, then 2N additions are sufficient in order to obtain the result of the complex DFT [3].
Therefore, the goal is to obtain a real DFT that uses half as many multiplications and less than half as
many additions. If one could do better, then it would improve the complex FFT as well by the above
construction.

For example, take the DIF SRFFT algorithm (Equation 7.28). First, X2k requires a half-length DFT on
real data, and thus the algorithm can be reiterated. Then, because of the Hermitian symmetry property
(Equation 7.63),

X4kþ1 ¼ X4(N=4�k�1)þ3,* (7:64)

and therefore Equation 7.28c is redundant and only one DFT of size N=4 on complex data needs to be
evaluated for Equation 7.28b. Counting operations, this algorithm requires exactly half as many multi-
plications and slightly less than half as many additions as its complex counterpart, or [30]

M(R �DFT(2m)) ¼ 2n�1(n� 3)þ 2, (7:65)

A(R �DFT(2m)) ¼ 2n�1(3n� 5)þ 4: (7:66)

Thus, the goal for the real DFT stated earlier has been achieved. Similar algorithms have been developed
for radix-2 and radix-4 FFTs as well. Note that even if DIF algorithms are more easily explained, it turns
out that DIT ones have a better structure when applied to real data [29,65,77].

In the PFA case, one has to evaluate a multidimensional DFT on real input. Because the PFA is a row–
column algorithm, data become Hermitian after the first 1-D FFTs, hence an accounting has to be made
of the real and conjugate parts so as to divide the complexity by 2 [77]. Finally, in the WFTA case,
the input addition matrix and the diagonal matrix are real, and the output addition matrix has
complex conjugate rows, showing again the saving of 50% when the input is real. Note, however, that
these algorithms generally have a more involved structure than their complex counterparts (especially
in the PFA and WFTA cases). Some algorithms have been developed which are inherently ‘‘real,’’ like
the real-factor FFTs [22,44] or the FFCT algorithm [51], and do not require substantial changes for
real input.

A closely related question is how to transform (or actually back transform) data that possess
Hermitian symmetry. An actual algorithm is best derived by using the transposition principle: since
the Fourier transform is unitary, its inverse is equal to its Hermitian transpose, and the required
algorithm can be obtained simply by transposing the flowgraph of the forward transform (or by
transposing the matrix factorization of the algorithm). Simple graph theoretic arguments show that
both the multiplicative and additive complexities are exactly conserved.

Assume next that the input is real and that only the real (or imaginary) part of the output is desired.
This corresponds to what has been called a cosine (or sine) DFT, and obviously, a cosine and a sine
DFT on a real vector can be taken altogether at the cost of a single real DFT. When only a cosine DFT
has to be computed, it turns out that algorithms can be derived so that only half the complexity of a
real DFT (i.e., the quarter of a complex DFT) is required [30,52], and the same holds for the sine DFT
as well [52]. Note that the above two cases correspond to DFTs on real and symmetric (or antisym-
metric) vectors.

7-34 Digital Signal Processing Fundamentals



7.8.2 DFT Pruning

In practice, it may happen that only a small number of the DFT outputs are necessary, or that only a
few inputs are different from zero. Typical cases appear in spectral analysis, interpolation, and fast
convolution applications. Then, computing a full FFT algorithm can be wasteful, and advantage should
be taken of the inputs and outputs that can be discarded.

We will not discuss ‘‘approximate’’methods which are based on filtering and sampling rate changes [2]
but only consider ‘‘exact’’ methods. One such algorithm is due to Goertzel [68] which is based on the
complex resonator idea. It is very efficient if only a few outputs of the FFT are required. A direct approach
to the problem consists in pruning the flowgraph of the complete FFT so as to disregard redundant paths
(corresponding to zero inputs or unwanted outputs). As an inspection of a flowgraph quickly shows, the
achievable gains are not spectacular, mainly because of the fact that data communication is not local (since
all arithmetic improvements in the FFT over the DFT are achieved through data shuffling).

More complex methods are therefore necessary in order to achieve the gains one would expect. Such
methods lead to an order of N log2 K operations, where N is the transform size and K the number of
active inputs or outputs [48]. Reference [78] also provides a method combining Goertzel’s method with
shorter FFT algorithms. Note that the problems of input and output pruning are dual, and that algorithm
for one problem can be applied to the other by transposition.

7.8.3 Related Transforms

Two transforms which are intimately related to the DFT are the discrete Hartley transform (DHT)
[61,62] and the discrete cosine transform (DCT) [1,59]. The former has been proposed as an alternative
for the real DFT and the latter is widely used in image processing.

The DHT is defined by

Xk ¼
XN�1

n¼0

xn(cos(2pnk=N)þ sin (2pnk=N)) (7:67)

and is self-inverse, provided that X0 is further weighted by 1=
ffiffiffi
2

p
. Initial claims for the DHT were

. Improved arithmetic efficiency. This was soon recognized to be false, when compared to the real
DFT. The structures of both programs are very similar and their arithmetic complexities are
equivalent (DHTs actually require slightly more additions than real-valued FFTs).

. Self-inverse property. It has been explained above that the inverse real DFT on Hermitian data has
exactly the same complexity as the real DFT (by transposition). If the transposed algorithm is not
available, it can be found in [65] how to compute the inverse of a real DFT with a real DFT with
only a minor increase in additive complexity.

Therefore, there is no computational gain in using a DHT, and only a minor structural gain if an inverse
real DFT cannot be used.

The DCT, on the other hand, has found numerous applications in image and video processing. This
has led to the proposal of several fast algorithms for its computation [51,64,70,72]. The DCT is defined by

Xk ¼
XN�1

n¼0

xn cos (2p(2kþ 1)n=4N): (7:68)

A scale factor of 1=
ffiffiffi
2

p
for X0 has been left out in Equation 7.68, mainly because the above transform

appears as a subproblem in a length-4N real DFT [51]. From this, the multiplicative complexity of the
DCT can be related to that of the real DFT as [69]

m(DCT(N)) ¼ (m(real�DFT(4N))� m(real� DFT(2N)))=2: (7:69)
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Practical algorithms for the DCT depend, as expected, on the transform length.

. N odd: The DCT can be mapped through permutations and sign changes only into a same length
real DFT [69].

. N even: The DCT can be mapped into a same length real DFT plus N=2 rotations [51]. This is not
the optimal algorithm [69,100] but, however, a very practical one.

Other sinusoidal transforms [71], like the discrete sine transform, can be mapped into DCTs as well, with
permutations and sign changes only. The main point of this paragraph is that DHTs, DCTs, and other
related sinusoidal transforms can be mapped into DFTs, and therefore one can resort to the vast and
mature body of knowledge that exists for DFTs. It is worth noting that so far, for all sinusoidal transforms
that have been considered, a mapping into a DFT has always produced an algorithm that is at least as
efficient as any direct factorization. And if an improvement is ever achieved with a direct factorization,
then it could be used to improve the DFT as well. This is the main reason why establishing equivalences
between computational problems is fruitful, since it allows improvement of the whole class when any
member can be improved.

Figure 7.11 shows the various ways the different transforms are related: starting from any
transform with the best-known number of operations, you may obtain by following the appropriate
arrows the corresponding transform for which the minimum number of operations will be obtained
as well.

1. a Complex DFT 2n 2 real DFT’s 2n

þ2nþ1� 4 additions

b Real DFT 2n 1 real DFT 2n�1þ 1 complex DFT 2n�2

þ(3.2n�2� 4) multiplicationsþ (2nþ 3.2n�2� n) additions

2. a Real DFT 2n 1 real DFT 2n�1þ 2 DCT’s 2n�2

þ3.2n�1� 2 additions

b DCT 2n 1 real DFT 2n

þ(3.2n�1� 2) multiplicationsþ (3.2n�1� 3) additions

3. a Complex DFT 2n 1 odd DFT 2n�1þ 1 complex DFT 2n�1

þ2nþ1 additions

b Odd DFT 2n�1 2 complex DFT’s 2n�2

þ2(3.2n�2� 4) multiplicationsþ (2nþ 3.2n�1� 8) additions

4. a Real DFT 2n 1 DHT 2n

�2 additions

b DHT 2n 1 real DFT 2n

þ2 additions

5. Complex DFT 2n3 2n 3.2n�1 odd DFT 2n�1þ 1 complex DFT 2n�13 2n�1

þn � 2n additions
6. a Real DFT 2n 1 real symmetric DFT 2nþ 1 real antisymmetric DFT 2n

þ(6nþ 10) � 4n�1 additions

b Real symm DFT 2n 1 real symmetric DFT 2n�1þ 1 inverse real DFT

þ3(2n�3� 1)þ 1 multiplicationsþ (3n�4) � 2n�3þ 1 additions

FIGURE 7.11 (a) Consistency of the split-radix-based algorithms. Path showing the connections between
the various transforms.
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7.9 Multidimensional Transforms

We have already seen in Sections 7.4 and 7.5 that both types of divide and conquer strategies resulted in a
multidimensional transform with some particularities: in the case of the Cooley–Tukey mapping, some
‘‘twiddle factors’’ operations had to be performed between the treatment of both dimensions, while in the
Good’s mapping, the resulting array had dimensions that were coprime.

Here, we shall concentrate on true 2-D FFTs with the same size along each dimension (generalization
to more dimensions is usually straightforward).

Another characteristic of the 2-D case is the large memory size required to store the data. It is therefore
important to work in-place. As a consequence, in-place programs performing FFTs on real data are also
more important in the 2-D case, due to this memory size problem. Furthermore, the required memory is
often so large that the data are stored in mass memory and brought into core memory when required, by
rows or columns. Hence, an important parameter when evaluating 2-D FFT algorithms is the amount of
memory calls required for performing the algorithm.

The 2-D DFT to be computed is defined as follows:

Xk, r ¼
XN�1

i¼0

XN�1

j¼0

xi, jW
ikþjr
N , k, r ¼ 0, . . . ,N � 1: (7:70)

The methods for computing this transform are distributed in four classes: row-column algorithms,
vector-radix (VR) algorithms, nested algorithms, and polynomial transform algorithms. Among them,
only the VR and the polynomial transform were specifically designed for the 2-D case. We shall only give
the basic principles underlying these algorithms and refer to the literature for more details.

7.9.1 Row–Column Algorithms

Since the DFT is separable in each dimension, the 2-D transform given in Equation 7.70 can be
performed in two steps, as was explained for the PFA:

. First compute N FFTs on the columns of the data

. Then compute N FFTs on the rows of the intermediate result

RDFT

RSDFT

DHTODFT

PT (2D)
(b)

5

3

1

6A

2

4
ab ab

ab
a

b

a

b
DCTCDFT

FIGURE 7.11 (continued) (b) Consistency of the split-radix-based algorithms. Weighting of each connection in
terms of real operations.
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Nevertheless, when considering 2-D transforms, one should not forget that the size of the data becomes
huge quickly: a length 10243 1024 DFT requires 106 words of storage, and the matrix is therefore stored
in mass memory. But, in that case, accessing a single data is not more costly than reading the whole block
in which it is stored. An important parameter is then the number of memory accesses required for
computing the 2-D FFT.

This is why the row–column FFT is often performed as shown in Figure 7.12, by performing a matrix
transposition between the FFTs on the columns and the FFTs on the rows, in order to allow an access to
the data by blocks. Row–column algorithms are very easily implemented and only require efficient 1-D
FFTs, as described before, together with a matrix transposition algorithm (for which an efficient
algorithm [84] was proposed). Note, however, that the access problem tends to be reduced with the
availability of huge core memories.

7.9.2 Vector-Radix Algorithms

A computationally more efficient way of performing the 2-D FFT is a direct approach to the multidi-
mensional problem: the VR algorithm [85,91,92].

They can easily be understood through an example: the radix-2 DIT VRFFT.
This algorithm is based on the following decomposition:

Xk, r ¼
XN=2�1

i¼0

XN=2�1

j¼0

x2i, 2jW
ikþjr
N=2 þWk

N

XN=2�1

i¼0

XN=2�1

j¼0

x2iþ1, 2jW
ikþjr
N=2

þWr
N

XN=2�1

i¼0

XN=2�1

j¼0

x2i, 2jþ1W
ikþjr
N=2 þWkþr

N

XN=2�1

i¼0

XN=2�1

j¼0

x2iþ1, 2jþ1W
ikþjr
N=2 , (7:71)

and the redundancy in the computation of Xk,r, XkþN=2,r, Xk,rþN=2, and XkþN=2,rþN=2 leads to simplifica-
tions which allow reduction of the arithmetic complexity.

This is the same approach as was used in the CTFFTs, the decomposition being applied to both indices
altogether.

Of course, higher radix decompositions or split-radix decompositions are also feasible [86], the main
difference being that the vector-radix SRFFT, as derived in [86], although being more efficient than the
one in [90], is not the algorithm with the lowest arithmetic complexity in that class: For the 2-D case, the
best algorithm is not only a mixture of radices 2 and 4.

Figure 7.13 shows what kinds of decompositions are performed in the various algorithms. Due to the
fact that the VR algorithms are true generalizations of the Cooley–Tukey approach, it is easy to realize
that they will be obtained by repetitive use of small blocks of the same type (the ‘‘butterflies,’’ by
extension). Figure 7.14 provides the basic butterfly for a vector radix-2 FFT, as derived by Equation
7.71. It should be clear, also, from Figure 7.13 that the complexity of these butterflies increases very
quickly with the radix: a radix-2 butterfly involves 4 inputs (it is a 23 2 DFT followed by some ‘‘twiddle
factors’’), while VR4 and VSR butterflies involve 16 inputs.

1. Dim
DFT

Transpose
operator

1. Dim
DFT

Transpose
operator

(eventually)

FIGURE 7.12 Row–column implementation of the 2-D FFT.
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Note also that the only VR algorithms that have seriously been considered all apply to lengths that are
powers of 2, although other radices are of course feasible.

The number of read=write cycles of the whole set of data needed to perform the various FFTs of this
class, compared to the row–column algorithm, can be found in [86].

7.9.3 Nested Algorithms

They are based on the remark that the nesting property used in Winograd’s algorithm, as explained in
Section 7.5.3, is not bound to the fact that the lengths are coprime (this requirement was only needed for
Good’s mapping). Hence, if the length of the DFT allows the corresponding 1-D DFT to be of a nested
type (product of mutually prime factors), it is possible to nest further the multiplications, so that the
overall 2-D algorithm is also nested.

The number of multiplications thus obtained are very low (see Table 7.4), but the main problem deals
with memory requirements: WFTA is not performed in-place, and since all multiplications are nested,

(a) (b) (c)

FIGURE 7.13 Decomposition performed in various vector-radix algorithms: (a) VR2, (b) VR4, and (c) VSR.

Wr

Wk

Wk+r

–1 –1 * X (N/2 – k, N/2 – r) + jx (N/2 + k, N2 + r)

X (N/2 + k, r) + jx (N/2 – k, N – r)

* X (N – k, N/2 – r) + jx (k, N/2 + r)

X (k, r) + jx (N–k, N – r)X (k, r) + jx (N/2 – k, N/2 – r)

X (N/2 + k, r) + jx (N – k, N/2 –r)

X (k, N/2 + r) + jx (N/2 – k, N –r)

X (N/2 + k, N/2 + r) + jx (N – k, N –r)

–1

–1

FIGURE 7.14 General VR2 butterfly.

TABLE 7.4 Number of Nontrivial Real Multiplications per Output Point for Various 2-D
FFTs on Real Data

N3N (WFTA) N3N (Others) R.C. VR2 VR4 VSR WFTA PT

23 2 0 0 0 0

43 4 0 0 0 0 0

83 8 0.5 0.375 0.375 0.375

163 16 1.25 1.25 0.844 0.844 0.844

303 30 323 32 2.125 2.062 1.43 1.435 1.336

643 64 3.0625 3.094 2.109 2.02 1.834

1203 120 1283 128 4.031 4.172 2.655 1.4375 2.333

2403 240 2563 256 5.015 5.273 3.48 3.28 1.82 2.833

5043 504 5123 512 6.008 6.386 3.92 2.47 3.33

10083 1008 10243 1024 7.004 7.506 4.878 4.56 3.12 3.83
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it requires the availability of a number of memory locations equal to the number of multiplications
involved in the algorithms. For a length 1008 3 1008 FFT, this amounts to about 63 106 locations. This
restricts the practical usefulness of these algorithms to small- or medium-length DFTs.t

7.9.4 Polynomial Transform

Polynomial transforms were first proposed by Nussbaumer [74] for the computation of 2-D cyclic
convolutions. They can be seen as a generalization of Fourier transforms in the field of polynomials.
Working in the field of polynomials resulted in a simplification of the multiplications by the root of unity,
which was changed from a complex multiplication to a vector reordering. This powerful approach was
applied in [87,88] to the computation of 2-D DFTs as follows.

Let us consider the case where N¼ 2n, which is the most common case. The 2-D DFT of Equation 7.70
can be represented by the following three polynomial equations:

Xi(z) ¼
XN�1

j¼0

xi, j � zj, (7:72a)

�Xk(z) ¼
XN�1

i¼0

Xi(z)W
ik
N mod (zN � 1), (7:72b)

Xk, r ¼ Xk, r �Xk(z) mod z �Wr
N

� �
: (7:72c)

This set of equations can be interpreted as follows: Equation 7.72a writes each row of the data as a
polynomial, Equation 7.72b computes explicitly the DFTs on the columns, while Equation 7.72c
computes the DFTs on the rows as a polynomial reduction (it is merely the equivalent of Equation
7.5). Note that the modulo operation in Equation 7.72b is not necessary (no polynomial involved has a
degree greater than N), but it will allow a divide and conquer strategy on Equation 7.72c.

In fact, since (zN� 1)¼ (zN=2� 1)(zN=2þ 1), the set of two Equations 7.72b and 7.72c can be separated
into two cases, depending on the parity of r:

�X1
k (z) ¼

XN�1

i¼0

Xi(z)W
ik
N mod (zN=2 � 1), (7:73a)

Xk, 2r ¼ �X1
k (z)mod z �W2r

N

� �
, (7:73b)

�X2
k (z) ¼

XN�1

i¼0

Xi(z)W
ik
N mod (zN=2 þ 1), (7:74a)

Xk, 2rþ1 ¼ �X2
k (z)mod z �W2rþ1

N

� �
: (7:74b)

Equation 7.73 is still of the same type as the initial one, hence the same procedure as the one being
derived will apply. Let us now concentrate on Equation 7.74 which is now recognized to be the key aspect
of the problem.

Since (2rþ 1, N)¼ 1, the permutation (2rþ 1) � k(mod N) maps all values of k, and replacing k with
(2rþ 1) � k in Equation 7.73a will merely result in a reordering of the outputs:

�X2
k(2rþ1)(z) ¼

XN�1

i¼0

Xi(z)W
(2rþ1)ik
N mod (zN=2 þ 1), (7:75a)

Xk(2rþ1), 2rþ1 ¼ �X2
k(2rþ1)(z)mod z �W2rþ1

N

� �
, (7:75b)
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and, since z ¼ W2rþ1
N in Equation 7.75b, we can replace W2rþ1

N by z in Equation 7.75a:

�X2
k(2rþ1)(z) ¼

XN�1

i¼0

Xi(z)z
ik mod (ZN=2 þ 1), (7:76)

which is exactly a polynomial transform, as defined in [74]. This polynomial transform can be computed
using an FFT-type algorithm, without multiplications, and with only N2=2log2 N additions.

Xk,2rþ1 will now be obtained by application of Equation 7.75b. �X2(z) being computed mod (zN=2þ 1) is
of degree N=2� 1. For each k, Equation 7.75b will then correspond to the reduction of one polynomial
modulo the odd powers ofWN. From Equation 7.5, this is seen to be the computation of the odd outputs
of a length N DFT, which is sometimes called an odd DFT.

The terms Xk,2rþ1 are seen to be obtained by one reduction mod (zN=2þ 1) (Equation 7.74), one
polynomial transform of N terms mod ZN=2þ 1 (Equation 7.76), and N odd DFTs. This procedure is
then iterated on the terms X2kþ1,2r, by using exactly the same algorithm, the role of k and r being
interchanged.X2k,2r is exactly a lengthN=23N=2DFT, on which the same algorithm is recursively applied.

In the first version of the polynomial transform computation of the 2-D FFT, the odd DFT was
computed by a real-factor algorithm, resulting in an excess in the number of additions required.

As seen in Tables 7.4 and 7.5, where the number of multiplications and additions for the various 2-D
FFT algorithms are given, the polynomial transform approach results in the algorithm requiring the
lowest arithmetic complexity, when counting multiplications and additions altogether. The addition
counts given in Table 7.5 are updates of the previous ones, assuming that the odd DFTs are computed by
a split-radix algorithm.

Note that the same kind of performance was obtained by Auslander et al. [82,83] with a similar
approach which, while more sophisticated, gave a better insight on the mathematical structure of this
problem. Polynomial transforms were also applied to the computation of 2-D DCT [52,79].

7.9.5 Discussion

A number of conclusions can be stated by considering Tables 7.4 and 7.5, keeping the principles of the
various methods in mind.

VR2 is more complicated to implement than row–column algorithms, and requires more operations
for lengths greater than equal to 32. Therefore, it should not be considered. Note that this result holds
only because efficient and compact 1-D FFTs, such as SRFFT, have been developed.

The row–column algorithm is the one allowing the easiest implementation, while having a reasonable
arithmetic complexity. Furthermore, it is easily parallelized, and simplifications can be found for the
reorderings (bit reversal and matrix transposition [66]), allowing one of them to be free in nearly any

TABLE 7.5 Number of Real Additions per Output Point for Various 2-D FFTs on Real Data

N3N N3N (Others) R.C. VR2 VR4 VSR WFTA PT

23 2 2 2 2 2

43 4 3.25 3.25 3.25 3.25 3.25

83 8 5.56 5.43 5.43 5.43

163 16 8.26 8.14 7.86 7.86 7.86

323 32 11.13 11.06 10.43 12.98 10.34

643 64 14.06 14.09 13.11 13.02 12.83

1283 128 17.03 17.17 15.65 17.48 15.33

2563 256 20.01 20.27 18.48 17.67 22.79 17.83

5123 512 23.00 23.38 20.92 34.42 20.33

10243 1024 26.00 26.5 23.88 23.56 45.30 22.83
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kind of implementation. WFTA has a huge number of additions (twice the number required for the other
algorithms for N¼ 1024), requires huge memory, has a difficult implementation, but requires the least
multiplications. Nevertheless, we think that, in today’s implementations, this advantage will in general
not outweigh its drawbacks.

VSR is difficult to implement, and will certainly seldom defeat VR4, except in very special cases (huge
memory available and N very large).

VR4 is a good compromise between structural and arithmetic complexity. When row–column
algorithms are not fast enough, we think it is the next choice to be considered.

Polynomial transforms have the greatest possibilities: lowest arithmetic complexity, possibility of
in-place computation, but very little work was done on the best way of implementing them. It was
even reported to be slower than VR2 [103]. Nevertheless, it is our belief that looking for efficient
implementations of polynomial transform based FFTs is worth the trouble. The precise understanding
of the link between VR algorithms and polynomial transforms may be a useful guide for this work.

7.10 Implementation Issues

It is by now well recognized that there is a strong interaction between the algorithm and its implemen-
tation. For example, regularity, as discussed before, will only pay off if it is closely matched by the target
architecture. This is the reason why we will discuss in the sequel different types of implementations. Note
that very often, the difference in computational complexity between algorithms is not large enough to
differentiate between the efficiency of the algorithm and the quality of the implementation.

7.10.1 General Purpose Computers

FFT algorithms are built by repetitive use of basic building blocks. Hence, any improvement (even small)
in these building blocks will pay in the overall performance. In the Cooley–Tukey or the split-radix case,
the building blocks are small and thus easily optimizable, and the effect of improvements will be relatively
more important than in the PFA=WFTA case where the blocks are larger.

When monitoring the amount of time spent in various elementary ftoating point operations, it is
interesting to note that more time is spent in load=store operations than in actual arithmetic computa-
tions [30,107,109] (this is due to the fact that memory access times are comparable to ALU cycle times on
current machines). Therefore, the locality of the algorithm is of paramount importance. This is why the
PFA and WFTA do not meet the performance expected from their computational complexity only.

On another side, this drawback of PFA is compensated by the fact that only a few coefficients have to
be stored. On the contrary, classical FFTs must store a large table of sine and cosine values, calculate them
as needed, or update them with resulting roundoff errors.

Note that special automatic code generation techniques have been developed in order to produce
efficient code for often used programs like the FFT. They are based on a ‘‘de-looping’’ technique that
produces loop free code from a given piece of code [107]. While this can produce unreasonably large code
for large transforms, it can be applied successfully to sub-transforms as well.

7.10.2 Digital Signal Processors

DSPs strongly favor multiply=accumulate based algorithms. Unfortunately, this is not matched by any of
the fast FFT algorithms (where sums of products have been changed to fewer but less regular compu-
tations). Nevertheless, DSPs now take into account some of the FFT requirements, like modulo counters
and bit-reversed addressing. If the modulo counter is general, it will help the implementation of all FFT
algorithms, but it is often restricted to the CTFFT=SRFFT case only (modulo a power of 2) for which
efficient timings are provided on nearly all available machines by manufacturers, at least for small to
medium lengths.
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7.10.3 Vector Processor and Multiprocessor

Implementations of Fourier transforms on vectorized computers must deal with two interconnected
problems [93]. First, the vector (the size of data that can be processed at the maximal rate) has to be full
as often as possible. Then, the loading of the vector should be made from data available inside the cache
memory (as in general purpose computers) in order to save time. The usual hardware design parameters
will, in general, favor length-2m FFT implementations. For example, a radix-4 FFT was reported to be
efficiently realized on a commercial vector processor [93].

In the multiprocessor case, the performance will be dependent on the number and power of
the processing nodes but also strongly on the available interconnection network. Because the FFT
algorithms are deterministic, the resource allocation problem can be solved off-line. Typical configur-
ations include arithmetic units specialized for butterfly operations [98], arrays with attached shuffle
networks, and pipelines of arithmetic units with intermediate storage and reordering [17]. Obviously,
these schemes will often favor classical Cooley–Tukey algorithms because of their high regularity.
However, SRFFT or PFA implementations have not been reported yet, but could be promising in
high-speed applications.

7.10.4 VLSI

The discussion of partially dedicated multi-processors leads naturally to fully dedicated hardware
structures like the ones that can be realized in very large scale integration (VLSI) [9,11]. As a
measure of efficiency, both chip area (A) and time (T) between two successive DFT computations
(setup times are neglected since only throughput is of interest) are of importance. Asymptotic lower
bounds for the product A � T 2 have been reported for the FFT [116] and lead to

VAT2 (DFT(N)) ¼ N2 log2(N), (7:77)

that is, no circuit will achieve a better behavior than Equation 7.77 for large N. Interestingly, this lower
bound is achieved by several algorithms, notably the algorithms based on shuffle-exchange networks and
the ones based on square grids [96,114]. The trouble with these optimal schemes is that they outperform
more traditional ones, like the cascade connection with variable delay [98] (which is asymptotically
suboptimal), only for extremely large N’s and are therefore not relevant in practice [96].

Dedicated chips for the FFT computation are therefore often based on some traditional algorithmwhich
is then efficiently mapped into a layout. Examples include chips for image processing with small size DCTs
[115] as well as wafer scale integration for larger transforms. Note that the cost is dominated both by the
number of multiplications (which outweigh additions in VLSI) and the cost of communication. While the
former figure is available from traditional complexity theory, the latter one is not yet well studied and
depends strongly on the structure of the algorithm as discussed in Section 7.7. Also, dedicated arithmetic
units suited for the FFT problem have been devised, like the butterfly unit [98] or the CORDIC unit [94,97]
and contribute substantially to the quality of the overall design. But, similarly to the software case, the
realization of an efficient VLSI implementation is still more an art than a mere technique.

7.11 Conclusion

The purpose of this chapter has been threefold: a tutorial presentation of classic and recent results, a
review of the state of the art, and a statement of open problems and directions.

After a brief history of the FFT development, we have shown by simple arguments, that the
fundamental technique used in all FFT algorithms, namely the divide and conquer approach, will always
improve the computational efficiency.

Then, a tutorial presentation of all known FFT algorithms has been made. A simple notation, showing
how various algorithms perform various divisions of the input into periodic subsets, was used as the basis
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for a unified presentation of CTFFT, SRFFT, PFA, and Winograd FFT algorithms. From this chapter, it is
clear that Cooley–Tukey and split-radix algorithms are instances of one family of FFT algorithms,
namely FFTs with twiddle factors.

The other family is based on a divide and conquer scheme (Good’s mapping) which is costless
(computationally speaking). The necessary tools for computing the short-length FFTs which then appear
were derived constructively and led to the discussion of the PFA and of the WFTA.

These practical algorithms were then compared to the best possible ones, leading to an evaluation of
their suboptimality. Structural considerations and special cases were addressed next. In particular, it was
shown that recently proposed alternative transforms like the Hartley transform do not show any
advantage when compared to real-valued FFTs.

Special attention was then paid to multidimensional transforms, where several open problems remain.
Finally, implementation issues were outlined, indicating that most computational structures implicitly
favor classical algorithms. Therefore, there is room for improvements if one is able to develop architec-
tures that match more recent and powerful algorithms.
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Software
FORTRAN (or DSP) code can be found in the following references:

[7] contains a set of classical FFT algorithms.
[111] contains a prime factor FFT program.
[4] contains a set of classical programs and considerations on program optimization, as well as

TMS 32010 code.
[113] contains a compact split-radix Fortran program.
[29] contains a speed-optimized SRFFT.
[77] contains a set of real-valued FFTs with twiddle factors.
[65] contains a split-radix real-valued FFT, as well as a Hartley transform program.
[112] as well as [7] contain a Winograd Fourier transform Fortran program.
[66], [67], and [75] contain improved bit-reversal algorithms.
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8.1 Introduction

One of the first applications of the Cooley–Tukey fast Fourier transform (FFT) algorithm was to
implement convolution faster than the usual direct method [13,25,30]. Finite impulse response (FIR)
digital filters and convolution are defined by

y(n) ¼
XL�1

k¼0

h(k)x(n� k), (8:1)

where, for an FIR filter,
x(n) is a length-N sequence of numbers considered to be the input signal
h(n) is a length-L sequence of numbers considered to be the filter coefficients
y(n) is the filtered output
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Examination of this equation shows that the output signal y(n) must be a length-(Nþ L� 1) sequence of
numbers, and the direct calculation of this output requires NL multiplications and approximately NL
additions (actually, (N� 1)(L� 1)). If the signal and filter length are both length-N, we say the arithmetic
complexity is of order N2, O(N2). Our goal is to calculate this convolution or filtering faster than directly
implementing Equation 8.1. The most common way to achieve ‘‘fast convolution’’ is to section or block
the signal and use the FFT on these blocks to take advantage of the efficiency of the FFT. Clearly, one
disadvantage of this technique is an inherent delay of one block length.

Indeed, this approach is so common as to be almost synonymous with fast convolution. The problem
is to implement ongoing, noncyclic convolution with the finite-length, cyclic convolution that the FFT
gives. An answer was quickly found in a clever organization of piecing together blocks of data using what is
now called the overlap-add method and the overlap-save method. These two methods convolve length-L
blocks using one length-L FFT, L complex multiplications, and one length-L inverse FFT [22].

Later this was generalized to arbitrary length blocks or sections to give block convolution and
block recursion [5]. By allowing the block lengths to be even shorter than one word (bits and bytes!)
we come up with an interesting implementation called distributed arithmetic that requires no explicit
multiplications [7,34].

Another approach for improving the efficiency of convolution and recursion uses fast algorithms other
than the traditional FFT. One possibility is to use a transform based on number-theoretic roots of unity
rather than the usual complex roots of unity [17]. This gives rise to number-theoretic transforms that
require no multiplications and no trigonometric functions. Still another method applies Winograd’s fast
algorithms directly to convolution rather than through the Fourier transform. Finally, we remark that
some filters h(n) require fewer arithmetic operations because of their structure.

8.2 Overlap-Add and Overlap-Save Methods
for Fast Convolution

If one implements convolution by use of the FFT, then it is cyclic convolution that is obtained. In order to
use the FFT, zeros are appended to the signal or filter sequence until they are both the same length. If the
FFT of the signal x(n) is term-by-term multiplied by the FFT of the filter h(n), the result is the FFT of
the output y(n). However, the length of y(n) obtained by an inverse FFT is the same as the length of the
input. Because the DFT or FFT is a periodic transform, the convolution implemented using this FFT
approach is cyclic convolution, which means the output of Equation 8.1 is wrapped or aliased. The tail of
y(n) is added to it head—but that is not usually what is wanted for filtering or normal convolution and
correlation. This aliasing, the effects of cyclic convolution, can be overcome by appending zeros to both
x(n) and h(n) until their lengths are Nþ L� 1 and by then using the FFT. The part of the output that is
aliased is zero and the result of the cyclic convolution is exactly the same as noncyclic convolution. The
cost is taking the FFT of lengthened sequences—sequences for which about half the numbers are zero.
Now that we can do noncyclic convolution with the FFT, how do we account for the effects of sectioning
the input and output into blocks?

8.2.1 Overlap-Add

Because convolution is linear, the output of a long sequence can be calculated by simply summing the
outputs of each block of the input. What is complicated is that the output blocks are longer than the
input. This is dealt with by overlapping the tail of the output from the previous block with the beginning
of the output from the present block. In other words, if the block length is N and it is greater than the
filter length L, the output from the second block will overlap the tail of the output from the first block and
they will simply be added. Hence the name ‘‘overlap-add.’’ Figure 8.1 illustrates why the overlap-add
method works, for N¼ 10 and L¼ 5.

8-2 Digital Signal Processing Fundamentals



Combining the overlap-add organization with use of the FFT yields a very efficient algorithm for
calculating convolution that is faster than direct calculation for lengths above 20–50. This crossover point
depends on the computer being used and the overhead needed by use of the FFTs.

8.2.2 Overlap-Save

A slightly different organization of the above approach is also often used for high-speed convolution.
Rather than sectioning the input and then calculating the output from overlapped outputs from these
individual input blocks, we will section the output and then use whatever part of the input contributes to
that output block. In other words, to calculate the values in a particular output block, a section of length
Nþ L� 1 from the input will be needed. The strategy is to save the part of the first input block that
contributes to the second output block and use it in that calculation. It turns out that exactly the same
amount of arithmetic and storage are used by these two approaches. Because it is the input that is now
overlapped and, therefore, must be saved, this second approach is called overlap-save.

This method has also been called overlap-discard in [12] because, rather than adding the overlapping
output blocks, the overlapping portion of the output blocks are discarded. As illustrated in Figure 8.2,
both the head and the tail of the output blocks are discarded. It may appear in Figure 8.2 that an FFT

x y = h * x = y1 + y2 + . . .

y1 = h * x1x1

y2 = h * x2x2

y3 = h * x3x3

y4 = h * x4x4

0 10 20 30 40 0 10 20 30 40

FIGURE 8.1 Overlap-add algorithm. The sequence y(n) is the result of convolving x(n) with an FIR filter h(n) of
length 5. In this example, h(n)¼ 0.2 for n¼ 0, . . . , 4. The block length is 10, the overlap is 4. As illustrated in the
figure, x(n)¼ x1(n)þ x2(n)þ � � � and y(n)¼ y1(n)þ y2(n)þ � � �, where yi(n) is the result of convolving xi(n) with
the filter h(n).
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of length 18 is needed. However, with the use of the FFT (to get cyclic convolution), the head and the tail
overlap, so the FFT length is 14. (In practice, block lengths are generally chosen so that the FFT length
Nþ L� 1 is a power of 2.)

8.2.3 Use of the Overlap Methods

Because the efficiency of the FFT is O[N log(N)], the efficiency of the overlap methods for convolution
increases with length. To use the FFT for convolution will require one length-N forward FFT, N complex
multiplications, and one length-N inverse FFT. The FFT of the filter is done once and stored rather than
done repeatedly for each block. For short lengths, direct convolution will be more efficient. The exact
length of filter where the efficiency crossover occurs depends on the computer and software being used.

If it is determined that the FFT is potentially faster than direct convolution, the next question is what
block length to use. Here, there is a compromise between the improved efficiency of long FFTs and the
fact you are processing a lot of appended zeros that contribute nothing to the output. An empirical plot of
multiplication (and, perhaps, additions) per output point vs. block length will have a minimum that may
be several times the filter length. This is an important parameter that should be optimized for each

x

x1

x2

x3

x4

0 10 20 30 40 0 10 20 30 40

y = h * x

y1 = h * x1

y2 = h * x2

y3 = h * x3

y4 = h * x4

FIGURE 8.2 Overlap-save algorithm. The sequence y(n) is the result of convolving x(n) with an FIR filter h(n) of
length 5. In this example, h(n)¼ 0.2 for n¼ 0, . . . , 4. The block length is 10, the overlap is 4. As illustrated in the
figure, the sequence y(n) is obtained, block by block, from the appropriate block of yi(n), where yi(n) is the result of
convolving xi(n) with the filter h(n).
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implementation. Remember that this increased block length may improve efficiency but it adds a delay
and requires memory for storage.

8.3 Block Convolution

The operation of an FIR filter is described by a finite convolution as

y(n) ¼
XL�1

k¼0

h(k)x(n� k), (8:2)

where
x(n) is casual
h(n) is causal and of length L
the time index n goes from zero to infinity or some large value

With a change of index variables this becomes

y(n) ¼
Xn
k¼0

h(n� k)x(k), (8:3)

which can be expressed as a matrix operation by

y0
y1
y2
..
.

2
6664

3
7775 ¼

h0 0 0 � � � 0
h1 h0 0
h2 h1 h0
..
. ..

.

2
6664

3
7775

x0
x1
x2
..
.

2
6664

3
7775: (8:4)

The H matrix of impulse response values is partitioned into N square submatrices and the X and Y
vectors are partitioned into length-N blocks or sections. This is illustrated for N¼ 3 by

H0 ¼
h0 0 0
h1 h0 0
h2 h1 h0

2
4

3
5, H1 ¼

h3 h2 h1
h4 h3 h2
h5 h4 h3

2
4

3
5, etc: (8:5)

x0 ¼
x0
x1
x2

2
4

3
5, x1 ¼

x3
x4
x5

2
4

3
5, y

0
¼

y0
y1
y2

2
4

3
5, etc: (8:6)

Substituting these definitions into Equation 8.4 gives

y
0
y
1
y
2

..

.

2
66664

3
77775 ¼

H0 0 0 � � � 0

H1 H0 0

H2 H1 H0

..

. ..
.

2
66664

3
77775

x0
x1
x2

..

.

2
66664

3
77775 (8:7)

The general expression for the nth output block is

y
n
¼
Xn
k¼0

Hn�k xk, (8:8)
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which is a vector or block convolution. Since the matrix-vector multiplication within the block convo-
lution is itself a convolution, Equation 8.9 is a sort of convolution of convolutions and the finite length
matrix-vector multiplication can be carried out using the FFT or other fast convolution methods.

The equation for one output block can be written as the product

y
2
¼ H2 H1 H0½ �

x0
x1
x2

2
4

3
5 (8:9)

and the effects of one input block can be written

H0

H1

H2

2
4

3
5x1 ¼

y
0
y
1
y
2

2
4

3
5: (8:10)

These are generalized statements of overlap-add [11,30]. The block length can be longer, shorter, or equal
to the filter length.

8.3.1 Block Recursion

Although less well known, infinite impulse response (IIR) filters can be implemented with block
processing [5,6]. The block form of an IIR filter is developed in much the same way as the block
convolution implementation of the FIR filter. The general constant coefficient difference equation which
describes an IIR filter with recursive coefficients al, convolution coefficients bk, input signal x(n), and
output signal y(n) is given by

y(n) ¼
XN�1

l¼1

alyn�l þ
XM�1

k¼0

bkxn�k (8:11)

using both functional notation and subscripts, depending on which is easier and clearer. The impulse
response h(n) is

h(n) ¼
XN�1

l¼1

alh(n� l)þ
XM�1

k¼0

bkd(n� k), (8:12)

which, for N¼ 4, can be written in matrix operator form

1 0 0 � � � 0
a1 1 0
a2 a1 1
a3 a2 a1
0 a3 a2
..
. ..

.

2
66666664

3
77777775

h0
h1
h2
h3
h4
..
.

2
66666664

3
77777775
¼

b0
b1
b2
b3
0
..
.

2
6666664

3
7777775
:

In terms of smaller submatrices and blocks, this becomes

A0 0 0 � � � 0
A1 A0 0
0 A1 A0

..

. ..
.

2
6664

3
7775

h0
h1
h2
..
.

2
6664

3
7775 ¼

b0
b1
0
..
.

2
664

3
775 (8:13)
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for blocks of dimension two. From this formulation, a block recursive equation can be written that will
generate the impulse response block by block:

A0hn þ A1hn�1 ¼ 0 for n � 2 (8:14)

hn ¼ �A�1
0 A1hn�1 ¼ Khn�1 for n � 2 (8:15)

with

h1 ¼ �A�1
0 A1A

�1
0 b0 þ A�1

0 b1: (8:16)

Next, we develop the recursive formulation for a general input as described by the scalar difference
equation (Equation 8.12) and in matrix operator form by

1 0 0 � � � 0

a1 1 0

a2 a1 1

a3 a2 a1
0 a3 a2

..

. ..
.

2
666666664

3
777777775

y0
y1
y2
y3
y4

..

.

2
666666664

3
777777775
¼

b0 0 0 � � � 0

b1 b0 0

b2 b1 b0
0 b2 b1
0 0 b2

..

. ..
.

2
666666664

3
777777775

x0
x1
x2
x3
x4

..

.

2
666666664

3
777777775
, (8:17)

which, after substituting the definitions of the submatrices and assuming the block length is larger than
the order of the numerator or denominator, becomes

A0 0 0 � � � 0

A1 A0 0

0 A1 A0

..

. ..
.

2
66664

3
77775

y
0
y
1
y
2

..

.

2
66664

3
77775 ¼

B0 0 0 � � � 0

B1 B0 0

0 B1 B0

..

. ..
.

2
66664

3
77775

x0
x1
x2

..

.

2
66664

3
77775: (8:18)

From the partitioned rows of Equation 8.19, one can write the block recursive relation as

A0ynþ1
þ A1yn ¼ B0xnþ1 þ B1xn: (8:19)

Solving for ynþ1 gives

y
nþ1

¼ �A�1
0 A1yn þ A�1

0 B0xnþ1 þ A�1
0 B1xn (8:20)

ynþ1 ¼ Ky
n
þ H0xnþ1 þ ~H1xn, (8:21)

which is a first-order vector difference equation [5,6]. This is the fundamental block recursive algorithm
that implements the original scalar difference equation in Equation 8.12. It has several important
characteristics:

1. The block recursive formulation is similar to a state variable equation but the states are blocks or
sections of the output [6].

2. If the block length were shorter than the denominator, the vector difference equation would be
higher than first order. There would be a nonzero A2. If the block length were shorter than
the numerator, there would be a nonzero B2 and a higher order block convolution operation. If the
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block length were one, the order of the vector equation would be the same as the scalar equation.
They would be the same equation.

3. The actual arithmetic that goes into the calculation of the output is partly recursive and partly
convolution. The longer the block, the more the output is calculated by convolution, and the more
arithmetic is required.

4. There are several ways of using the FFT in the calculation of the various matrix products in Equation
8.20. Each has some arithmetic advantage for various forms and orders of the original equation. It is
also possible to implement some of the operations using rectangular transforms, number theoretic
transforms (NTTs), distributed arithmetic, or other efficient convolution algorithms [6,36].

8.4 Short- and Medium-Length Convolutions

For the cyclic convolution of short- (n� 10) and medium-length sequences (n� 100), special algorithms
are available. For short lengths, algorithms that require the minimum number of multiplications possible
have been developed by Winograd [8,17,35]. However, for longer lengths, Winograd’s algorithms, based
on his theory of multiplicative complexity, require a large number of additions and become cumbersome
to implement. Nesting algorithms, such as the Agarwal–Cooley and split-nesting algorithms, are methods
that combine short convolutions. By nesting Winograd’s short convolution algorithms, efficient medium-
length convolution algorithms can thereby be obtained.

In the following section, we give a matrix description of these algorithms and of the Toom–Cook
algorithm. Descriptions based on polynomials can be found in [4,8,19,21,24]. The presentation that
follows relies upon the notions of similarity transformations, companion matrices, and Kronecker
products. With them, the algorithms are described in a manner that brings out their structure and
differences. It is found that when companion matrices are used to describe cyclic convolution, the
algorithms block-diagonalize the cyclic shift matrix.

8.4.1 Toom–Cook Method

A basic technique in fast algorithms for convolution is interpolation: two polynomials are evaluated at
some common points, these values are multiplied, and by computing the polynomial interpolating these
products, the product of the two original polynomials is determined [4,19,21,31]. This interpolation
method is often called the Toom–Cook method and can be described by a bilinear form. Let n¼ 2,

X(s) ¼ x0 þ x1sþ x2s
2

H(s) ¼ h0 þ h1sþ h2s
2

Y(s) ¼ y0 þ y1sþ y2s
2 þ y3s

3 þ y4s
4:

The linear convolution of x and h can be represented by a matrix-vector product y¼Hx,

y0
y1
y2
y3
y4

2
66664

3
77775 ¼

h0
h1 h0
h2 h1 h0

h2 h1
h2

2
66664

3
77775

x0
x1
x2

2
4

3
5

or as a polynomial product Y(s)¼H(s)X(s). In the former case, the linear convolution matrix can be
written as h0H0þ h1H1þ h2H2 where the meaning of Hk is clear. In the later case, one obtains the
expression

y ¼ C{Ah � Ax}, (8:22)
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where * denotes point-by-point multiplication. The terms Ah and Ax are the values of H(s) and X(s) at
some points i1, . . . , i2n�1(n¼ 2). The point-by-point multiplication gives the values Y(i1), . . . ,Y(i2n�1).
The operation of C obtains the coefficients of Y(s) from its values at the point i1, . . . , i2n�1. Equation 8.22
is a bilinear form and it implies that

Hk ¼ C diag(Aek)A,

where ek is the kth standard basis vector. (Aek is the kth column of A). However, A and C do not need to be
Vandermonde matrices as suggested above. As long as A and C are matrices such thatHk¼C diag(Aek)A,
then the linear convolution of x and h is given by the bilinear form y¼C{Ah *Ax}. More generally, as
long as A, B, and C are matrices satisfying Hk¼C diag(Bek)A, then y¼C{Bh *Ax} computes the linear
convolution of h and x. For convenience, if C{Bh *Ax} computes the n point linear convolution of h and x
(both h and x are n point sequences), then we say ‘‘(A, B, C) describes a bilinear form for n point linear
convolution.’’

Example 8.1

(A, A, C ) describes a two-point linear convolution where

A ¼
1 0

1 1

0 1

2
4

3
5 and C ¼

1 0 0

0 1 0

�1 �1 1

2
4

3
5: (8:23)

8.4.2 Cyclic Convolution

The cyclic convolution of x and h can be represented by a matrix-vector product

y0
y1
y2

2
4

3
5 ¼

h0 h2 h1
h1 h0 h2
h2 h1 h0

2
4

3
5 x0

x1
x2

2
4

3
5

or as the remainder of a polynomial product after division by sn� 1, denoted by Y(s) ¼ H(s)X(s)h isn�1.
In the former case, the cyclic convolution matrix can be written as h0I þ h1S2 þ h2S22 where Sn is the
cyclic shift matrix,

Sn ¼

1

1

. .
.

1

2
6664

3
7775:

It will be useful to make a more general statement.
The companion matrix of a monic polynomial, M(s) ¼ m0 þm1sþ � � � þmn�1sn�1 þ sn is given by

CM ¼

�m0

1 �m1

. .
. ..

.

1 �mn�1

2
66664

3
77775:
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Its usefulness in the following discussion comes from the following relation, which permits a matrix
formulation of convolution:

Y(s) ¼ H(s)X(s)h iM(s) , y ¼
Xn�1

k¼0

hkC
k
M

 !
x, (8:24)

where
x, h, and y are the vectors of coefficients
CM is the companion matrix of M(s)

In Equation 8.24, y is the convolution of x and h with respect to M(s). In the case of cyclic convolution,
M(s)¼ sn�1 and Csn�1 is the cyclic shift matrix, Sn.

Similarity transformations can be used to interpret the action of some convolution algorithms.
If CM¼T�1QT for some matrix T(CM and Q are similar, denoted CM � Q), then Equation 8.24
becomes

y ¼ T�1
Xn�1

k¼0

hkQ
k

 !
Tx:

That is, by employing the similarity transformation given by T in this way, the action of Skn is replaced by
that of Qk. Many cyclic convolution algorithms can be understood, in part, by understanding the
manipulations made to Sn and the resulting new matrix Q. If the transformation T is to be useful, it
must satisfy two requirements: (1) Tx must be simple to compute and (2) Q must have some advanta-
geous structure. For example, by the convolution property of the DFT, the DFT matrix F diagonalizes Sn
and, therefore, it diagonalizes every circulant matrix. In this case, Tx can be computed by an FFT and the
structure of Q is the simplest possible: a diagonal.

8.4.3 Winograd Short Convolution Algorithm

The Winograd algorithm [35] can be described using the notation above. SupposeM(s) can be factored as
M(s)¼M1(s) M2(s) where M1(s) and M2(s) have no common roots, then CM � CM1 	 CM2ð Þ where 	
denotes the matrix direct sum. Using this similarity and recalling in Equation 8.24, the original
convolution can be decomposed into two disjoint convolutions. This is a statement of the Chinese
remainder theorem (CRT) for polynomials expressed in matrix notation. In the case of cyclic convolu-
tion, sn �1 can be written as the product of cyclotomic polynomials—polynomials whose coefficients are
small integers. Denoting the dth cyclotomic polynomial by Fd(s), one has sn � 1 ¼ PdjnFd(s). Therefore,
Sn can be transformed to a block diagonal matrix,

Sn �

CF1

CFd

. .
.

CFn

2
66664

3
77775 ¼ 	

djn
CFd

� �
: (8:25)

The symbol 	 denotes the matrix direct sum (diagonal concatenation). Each matrix on the diagonal is
the companion matrix of a cyclotomic polynomial.
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Example 8.2

s15 � 1 ¼ F1(s)F3(s)F5(s)F15(s)

¼ (s� 1)(s2 þ sþ 1)(s4 þ s3 þ s2 þ sþ 1)(s8 � s7 þ s5 � s4 þ s3 � sþ 1)

S15 ¼ T�1

1
�1

1 �1
�1

1 �1
1 �1

1 �1
�1

1 1
1

1 �1
1 1

1 �1
1

1 1

2
6666666666666666666666664

3
7777777777777777777777775

T : (8:26)

Each block represents a convolution with respect to a cyclotomic polynomial, or a ‘‘cyclotomic
convolution.’’ When n has several prime divisors the similarity transformation T becomes quite compli-
cated. However, when n is a prime power, the transformation is very structured, as described in [29].

As in the previous section, we can write a bilinear form for cyclotomic convolution. Let d be any
positive integer and let X(s) and H(s) be polynomials of degree w(d)� 1 where w(�) is the Euler totient
function. If A, B, and C are matrices satisfying (CFd )

k ¼ C diag(Bek )A for 0� k�w(d)� 1, then the
coefficients of Y(s) ¼ X (s)H(s)h iFd (s) are given by y ¼ C{Bh � Ax}. As above, for such A, B, and C, we say
‘‘(A, B, C) describes a bilinear form for Fd(s) convolution.’’

But since X (s)H(s)h iFd (s)
can be found by computing the product of X(s) and H(s) and reducing the

result, a cyclotomic convolution algorithm can always be derived by following a linear convolution
algorithm by the appropriate reduction operation: If G is the appropriate reduction matrix and if (A, B, C)
describes a bilinear form for a w(d) point linear convolution, then (A, B, GC) describes a bilinear form for
Fd(s) convolution. That is, y¼GC{Bh * Ax} computes the coefficients of X (s)H(s)h ifd (s)

.

Example 8.3

A bilinear form for F3(s) convolution is described by (A, A, GC) where A and C are given in Equation 8.23
and G is given by

G ¼ 1 0 �1
0 1 �1

� �
:

The Winograd short cyclic convolution algorithm decomposes the convolution into smaller (cyclo-
tomic) ones, and can be described as follows. If (Ad, Bd, Cd) describes a bilinear form forFd(s) convolution,
then a bilinear form for cyclic convolution is provided by

A ¼ 	djnAd
� �

T , B ¼ 	djnBd
� �

T , and C ¼ T�1 	djnCd
� �

:

The matrix T decomposes the problem into disjoint parts, and T�1 recombines the results.
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8.4.4 Agarwal–Cooley Algorithm

The Agarwal–Cooley [3] algorithm uses a similarity of another form. Namely, when n¼ n1n2, and
(n1, n2)¼ 1

Sn ¼ Pt Sn1 
 Sn2ð ÞP, (8:27)

where

 denotes the Kronecker product
P is a permutation matrix

The permutation is k ! hkin1 þ n1hkin2 . This converts a one-dimensional cyclic convolution of length n
into a two-dimensional one of length n1 along one dimension and length n2 along the second. Then an
n1-point and an n2-point cyclic convolution algorithm can be combined to obtain an n-point algorithm.

8.4.5 Split-Nesting Algorithm

The split-nesting algorithm [21] combines the structures of the Winograd and Agarwal–Cooley methods,
so that Sn is transformed to a block diagonal matrix as in Equation 8.25:

Sn � 	
djn
C(d): (8:28)

Here C(d) ¼ 
pjd,p2P CFHd (p)
, where Hd(p) is the highest power of p dividing d and P is the set of primes.

An example clarifies this decomposition.

Example 8.4

S45 ¼ PtR�1

1
CF3

CF9

CF5

CF3 
 CF5

CF9 
 CF5

2
6666664

3
7777775
RP, (8:29)

where
P is the same permutation matrix of Equation 8.27
R is a matrix described in [29]

In the split-nesting algorithm, each matrix along the diagonal represents a multidimensional cyclotomic
convolution rather than a one-dimensional one. To obtain a bilinear form for the split-nesting method,
bilinear forms for one-dimensional convolutions can be combined to obtain bilinear forms for multi-
dimensional cyclotomic convolution. This is readily explained by an example.

Example 8.5

A 45-point circular convolution algorithm:

y ¼ PtR�1C{BRPh � ARPx}, (8:30)
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where

A ¼ 	A3 	 A9 	 A5 	 (A3 
 A5)	 (A9 
 A5)

B ¼ 1	 B3 	 B9 	 B5 	 (B3 
 B5)	 (B9 
 B5)

C ¼ 1	 C3 	 C9 	 C5 	 (C3 
 C5)	 (C9 
 C5)

and where Api , Bpi , Cpi
� �

describes a bilinear form for Fpi (s) convolution.

Split-nesting (1) requires a simpler similarity transformation than the Winograd algorithm and (2)
decomposes cyclic convolution into several disjoint multidimensional convolutions. For these reasons,
for medium lengths, split-nesting can be more efficient than the Winograd convolution algorithm, even
though it does not achieve the minimum number of multiplications. An explicit matrix description of the
similarity transformation is provided in [29].

8.5 Multirate Methods for Running Convolution

While fast FIR filtering, based on block processing and the FFT, is computationally efficient, for real-time
processing it has three drawbacks: (1) a delay is incurred; (2) the multiply-accumulate (MAC) structure
of the convolutional sum, a command for which DSPs are optimized, is lost; and (3) extra memory and
communication (data transfer) time is needed. For real-time applications, this has motivated the
development of alternative methods for convolution that partially retain the FIR filtering structure
[18,33]. In the z-domain, the running convolution of x and h is described by a polynomial product

Y(z) ¼ H(z)X(z), (8:31)

where
X(z) and Y(z) are of infinite degree
H(z) is of finite degree

Let us write the polynomials as follows:

X(z) ¼ X0(z
2)þ z�1X1(z

2) (8:32)

Y(z) ¼ Y0(z
2)þ z�1Y1(z

2) (8:33)

H(z) ¼ H0(z
2)þ z�1H1(z

2), (8:34)

where

X0(z) ¼
X1
i¼0

x2iz
�i , X1(z) ¼

X1
i¼0

x2iþ1z
�i

and Y0, Y1,H0, andH1 are similarly defined. (These are known as polyphase components, although that is
not important here.)

The polynomial product (Equation 8.31) can then be written as

Y0(z
2)þ z�1Y1(z

2) ¼ H0(z
2)þ z�1H1(z

2)
� �

X0(z
2)þ z�1X1(z

2)
� �

(8:35)
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or in matrix form as

Y0

Y1

� �
¼ H0 z�2H1

H1 H0

� �
X0

X1

� �
, (8:36)

where Y0¼Y0(z
2), etc.

The general form of Equation 8.34 is given by

X(z) ¼
XN�1

k¼0

z�1Xk(z
N),

where

Xk(z) ¼
X
i

xNiþkz
�i

and similarly for H and Y. For clarity, N¼ 2 is used in this exposition.
Note that the right-hand side of Equation 8.35 is a product of two polynomials of degree N, where the

coefficients are themselves polynomials, either of finite degree (Hi), or of infinite degree (Xi). Accord-
ingly, the Toom–Cook algorithm described previously can be employed, in which case the sums and
products become polynomial sums and products. The essential key is that the polynomial products are
themselves equivalent to FIR filtering, with shorter filters.

A Toom–Cook algorithm for carrying out Equation 8.35 is given by

Y0

Y1

� �
¼ C A

H0

H1

� �
� A X0

X1

� �� 	
,

where

A ¼
1 0
1 1
0 1

2
4

3
5 and C ¼ 1 0 z�2

�1 1 �1

� �
:

This Toom–Cook algorithm yields the multirate filter bank structure shown in Figure 8.3. The outputs of
the two downsamplers, on the left side of the structure shown in the figure, are X0(z) and X1(z). The
outputs of the two upsamplers, on the right side of the structure, are Y0(z

2) and Y1(z
2). Note that the

three filters H0, H0þH1, and H1 operate at half the sampling rate. The right-most operation shown in
Figure 8.3 is not an arithmetic addition—it is a merging of the two sequences, Y0(z

2) and z�1Y1(z
2), by

2 ++

+++
–

–

2

2

2 z–1

z–1 z–1H1(z)

H0(z) +H1(z)

H0(z)

FIGURE 8.3 Filter structure based on a two-point convolution algorithm. Let H0 be the even coefficients of a filter
H, let H1 be the odd coefficients. The structure implements the filter H using three half-length filters, each running at
half rate of H.
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interleaving. The arithmetic overhead is one ‘‘input’’ addition and three ‘‘output’’ additions per two
samples; that is a total of two additions per sample.

If the original filter H(z) is of length L and operates at the rate fs, then the structure in Figure 8.3 is an
implementation of H(z) that employs three filters of length L=2, each operating at the rate 1

2 fs.
The convolutional sum for H(z), when implemented directly, requires L multiplications per output

point and L� 1 additions per output point. Per output point, the structure in Figure 8.3 requires 3
4 L

multiplications and 2þ 3
2 (L=2� 1) ¼ 3

4 Lþ 1
2 additions.

The decomposition can be repeatedly applied to each of the three filters; however, the benefit
diminishes for small L, and quantization errors may accumulate. Table 8.1 gives the number of
multiplications needed to implement a length 32 FIR filter, using various levels of decomposition.

Other short linear convolution algorithms can be obtained from existing ones by a technique known as
transposition. The transposed form of a short convolution algorithm has the same arithmetic complexity,
but in a different arrangement. It was observed in [18] that the transposed forms generally have more
input additions and fewer output additions. Consequently, the transposed forms should be more robust
to quantization noise.

Various short-length convolution algorithms that are appropriate for this approach are provided in
[18]. Also addressed is the issue of when to stop successive decompositions—and the problem of finding
the best way to combine small-length filters, depending on various criteria. In particular, it is noted that
DSPs generally perform an MAC operation in a single clock cycle, in which case a MAC should be
considered a single operation. It appears that this approach is amenable to (1) efficient multiprocessor
implementations due to their inherent parallelism and (2) efficient VLSI realization, since the imple-
mentation requires only local communication, instead of global exchange of data as in the case of FFT-
based algorithms.

In [33], the following is noted. The mapping of long convolutions into small, subsampled convolutions
is attractive in hardware (VLSI), software (signal processors), and multiprocessor implementations since
the basic building blocks remain convolutions which can be computed efficiently once small enough.

8.6 Convolution in Subbands

Maximally decimated perfect reconstruction filter banks have been used for a variety of applications
where processing in subbands is advantageous. Such filter banks can be regarded as generalizations of the
short-time Fourier transform, and it turns out that the convolution theorem can be extended to them
[23,32]. In other words, the convolution of two signals can be found by directly convolving the subband
signals and combining the results. In [23], both uniform and nonuniform decimation ratios are
considered for orthonormal and biorthonormal filter banks. In [32], the results of [23] are generalized.

TABLE 8.1 Computation of Running Convolution

Method Subsampling Delay Multiplications=Points

1 32-point FIR filter 1 0 32

3 16-point FIR filters 2 1 24

9 8-point FIR filters 4 3 18

27 4-point FIR filters 8 7 13.5

8.1 2-point FIR filters 16 15 10.125

243 1-point multiplications 32 31 7.59

Source: Vetterli, M., IEEE Trans. Acoust. Speech Signal Process., 36(5), 730, May 1988.
Note: Based on repeated application of two-point convolution structure in Figure 8.3.
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The advantage of this method is that the subband signals can be quantized based on the signal variance
in each subband and other perceptual considerations, as in traditional subband coding. Instead of
quantizing x(n) and then convolving with g(n), the subbands xk(n) and gk(n) are quantized, and the
results are added. When quantizing in the subbands, the subband energy distribution can be exploited
and bits can be allocated to subbands accordingly. For a fixed bit rate, this approach increases the
accuracy of the overall convolution—that is, this approach offers a coding gain.

In [23] an optimal bit allocation formula and the optimized coding gain is derived for orthogonal filter
banks. The contribution to coding gain comes partly from the nonuniformity of the signal spectrum and
partly from the nonuniformity of the filter spectrum. When the filter impulse response is taken to be the
unit impulse d(n), the formulas for the bit allocation and coding gain reduce to those for traditional
subband and transform coding.

The efficiency that is gained from subband convolution comes from the ability to use a fewer number
of bits to achieve a given level of accuracy. In addition, in [23], low sensitivity filter structures are derived
from the subband convolution theorem and examined.

8.7 Distributed Arithmetic

Rather than grouping the individual scalar data values in a discrete-time signal into blocks, the scalar
values can be partitioned into groups of bits. Because multiplication of integers, multiplication of
polynomials, and discrete-time convolution are the same operations, the bit-level description of multi-
plication can be mixed with the convolution of the signal processing. The resulting structure is called
distributed arithmetic [7,34].

8.7.1 Multiplication Is Convolution

To simplify the presentation, we will assume the data and coefficients to be positive integers with simple
binary coding and the problem of carrying will be omitted. Assume the product of two B-bit words is
desired

y ¼ ax, (8:37)

where

a ¼
XB�1

i¼0

ai2
i and x ¼

XB�1

i¼0

aj2
j (8:38)

with ai, xj 2 {0, 1}. This gives

y ¼
X
i

ai2
i
X
j

xj2
j, (8:39)

which, with a change of variables k¼ iþ j becomes

y ¼
X
k

X
i

aixk�i2
k: (8:40)

Using the binary description of y as

y ¼
X
k

yk2
k, (8:41)
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we have for the binary coefficients

yk ¼
X
i

aixk�i (8:42)

as a convolution of the binary coefficients for a and x. We see that multiplying two numbers is the same
as convolving their coefficient representation any base. Multiplication is convolution.

8.7.2 Convolution Is Two Dimensional

Consider the following convolution of number strings (FIR filtering)

y(n) ¼
X
‘

a(‘)x(n� ‘): (8:43)

Using the binary representation of the coefficients and data, we have

y(n) ¼
X
‘

X
i

ai(‘)2
i
X
j

xj(n� ‘)2j (8:44)

y(n) ¼
X
‘

X
i

X
i

ai(‘)xj(n� ‘)2iþj, (8:45)

which after changing variables, k¼ iþ j becomes

y(n) ¼
X
k

X
l

X
i

ai(l)xk�i(n� l)2k: (8:46)

A one-dimensional convolution of numbers is a two-dimensional convolution of the binary (or other
base) representations of the numbers.

8.7.3 Distributed Arithmetic by Table Lookup

The usual way that distributed arithmetic convolution is calculated does the arithmetic in a special
concentrated algorithm or piece of hardware. We are now going to reorder the very general description in
Equation 8.46 to allow some of the operations to be precomputed and stored in a lookup table. The
arithmetic will then be distributed with the convolution itself.

If Equation 8.46 is summed over the index i, we have

y(n) ¼
X
j

X
‘

a(‘)xj(n� ‘)2j: (8:47)

Each sum of ‘ convolves the word string a(n) with the bit string xj(n) to produce a partial product which
is then shifted and added by the sum over j to give y(n).

If Equation 8.47 is summed over ‘ to form a table which can be addressed by the binary numbers xj(n),
we have

y(n) ¼
X
j

f xj(n), xj(n� 1), . . .
� �

2j, (8:48)
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where

f xj(n), xj(n� 1), . . .
� � ¼X

‘

a(‘)xj(n� ‘): (8:49)

The numbers a(i) are the coefficients of the filter, which as usual is assumed to be fixed. Consider a filter
of length L. This function f( ) is a function of L binary variables and, therefore, takes on 2L possible values.
The function is determined by the filter, a(i). For example, if L¼ 3, the table (function values) would
contain eight values:

0, a(0), a(1), a(2), a(0)þ a(1)ð Þ, a(1)þ a(2)ð Þ, a(0)þ a(2)ð Þ, a(0)þ a(1)þ a(2)ð Þ (8:50)

and if the words were stored as B bits, they would require 2L B bits of memory.
There are extensions and modifications of this basic idea to allow a very flexible trade of memory for

logic. The idea is to precompute as much as possible, store it in a table, and fetch it when needed. The two
extremes of this are on one hand to compute all possible outputs and simply fetch them using the input
as an address. The other extreme is the usual system which simply stores the coefficients and computes
what is needed as needed.

This table lookup is illustrated in Figure 8.4 where the blocks represent 4-bit words, where the least
significant bit of each of the four most recent data words form the address for the table lookup from
memory. After 4-bit shifts and accumulates, the output word y(n) is available, using no multiplications.

Distributed arithmetic with table lookup can be used with FIR and IIR filters and can be arranged in
direct, transpose, cascade, parallel, etc. structures. It can be organized for serial or parallel calculations or
for combinations of the two. Because most microprocessors or DSP chips do not have appropriate
instructions or architectures for distributed arithmetic, it is best suited for special purpose VLSI design
and in those cases, it can be extremely fast.

An alternative realization of these ideas can be developed using a form of periodically time varying
system that is oversampled [10].

8.8 Fast Convolution by Number Theoretic Transforms

If one performs all calculations in a finite field or ring of integers rather than the usual infinite field of real
or complex numbers, a very efficient type of Fourier transform can be formulated that requires no
floating point operations—it supports exact convolution with finite precision arithmetic [1,2,17,26]. This
is particularly interesting because a digital computer is a finite machine and arithmetic over finite systems
fits it perfectly. In the following, all arithmetic operations are performed modulo for some integer M,
called the modulus. A bit of number theory can be found in [17,20,28].

x(n) x(n – 1) x(n – 2)
y(n)

Accumulator

f (.)

FIGURE 8.4 Distributed arithmetic by table lookup. In this example, a sequence x(n) is filtered with a length 3 FIR
filter. The wordlength for x(n) is 4 bits. The function f(.) is a function of three binary variables, and can be
implemented by table lookup. The bits of x(n) are shifted, bit by bit, through the input registers. Accordingly, the
bits of y(n) are shifted through the accumulator—after 4-bit shifts, a new output y(n) becomes available.
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8.8.1 Number Theoretic Transforms

Here we look at the conditions placed on a general linear transform in order for it to support cyclic
convolution. The form of a linear transformation of a length-N sequence of number is given by

X(k) ¼
XN�1

n¼0

t(n, k)x(n) mod M (8:51)

for k¼ 0, 1, . . . , (N� 1). The definition of cyclic convolution of two sequences in ZM is given by

y(n) ¼
XN�1

m¼0

x(m)h(n�m) mod M (8:52)

for n¼ 0, 1, . . . , (N� 1) where all indices are evaluated modulo N. We would like to find the properties of
the transformation such that it will support cyclic convolution. This means that if X(k), H(k), and Y(k)
are the transforms of x(n), h(n), and y(n) respectively, then

Y(k) ¼ X(k)H(k): (8:53)

The conditions are derived by taking the transform defined in Equation 8.1 of both sides of Equation 8.52
which gives the form for our general linear transform (Equation 8.51) as

X(k) ¼
XN�1

n¼0

ankx(n), (8:54)

where a is a root of order N, which means that N is the smallest integer such that aN¼ 1.

THEOREM 8.1

The transform (Equation 8.11) supports cyclic convolution if and only if a is a root of order N and N�1

mod M is defined.

This is discussed in [1,2]. This transform supports N-point cyclic convolution only if a particular
relationship between the modulus M and the data length N is satisfied. The following theorem describes
that relationship.

THEOREM 8.2

The transform (Equation 8.11) supports N-point cyclic convolution if and only if

NjO(M), (8:55)

where

O(M) ¼ gcd {p1 � 1, p2 � 1, . . . , pl � 1} (8:56)
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and the prime factorization of M is

M ¼ pr11 pr22 � � � prll : (8:57)

Equivalently, N must divide pi� 1 for every prime pi dividing M. This theorem is a more useful form of
Theorem 8.1. Notice that Nmax¼O(M).

One needs to find appropriate N, M, and a such that

. N should be appropriate for a fast algorithm and handle the desired sequence lengths.

. M should allow the desired dynamic range of the signals and should allow simple modular
arithmetic.

. a should allow a simple multiplication for ankx(n).

We see that if M is even, it has a factor of 2 and, therefore, O(M)¼Nmax¼ 1 which implies M should be
odd. If M is prime the O(M)¼M� 1 which is as large as could be expected in a field of M integers. For
M¼ 2k� 1, let k be a composite k¼ pq where p is prime. Then 2p� 1 divides 2pq� 1 and the maximum
possible length of the transform will be governed by the length possible for 2p� 1. Therefore, only the
prime k need be considered interesting. Numbers of this form are known as Mersenne numbers and have
been used by Rader [26]. For Mersenne number transforms, it can be shown that transforms of length at
least 2p exist and the corresponding a¼�2. Mersenne number transforms are not of as much interest
because 2p is not highly composite and, therefore, we do not have FFT-type algorithms.

For M¼ 2kþ 1 and k odd, 3 divides 2kþ 1 and the maximum possible transform length is 2. Thus, we
consider only even k. Let k¼ s2t, where s is an odd integer. Then 22

t
divides 2s2

t þ 1 and the length of the
possible transform will be governed by the length possible for 22

t þ 1. Therefore, integers of the form
M ¼ 22

t þ 1 are of interest. These numbers are known as Fermat numbers [26]. Fermat numbers are
prime for 0� t� 4 and are composite for all t� 5.

Since Fermat numbers up to F4 are prime, O(Ft)¼ 2b where b¼ 2t and t� 4, we can have a Fermat
number transform for any length N¼ 2m where m� b. For these Fermat primes the integer a¼ 3 is of
order N¼ 2b allowing the largest possible transform length. The integer a¼ 2 is of order N¼ 2b¼ 2tþ1.
Then all multiplications by powers of a are bit shifts—which is particularly attractive because in Equation
8.51, the data values are multiplied by powers of a.

Table 8.2 gives possible parameters for various Fermat number moduli. This table gives values of N for
the two most important values of a which are 2 and

ffiffiffi
2

p
. The second column gives the approximate

number of bits in the number representation. The third column gives the Fermat number modulus, the
fourth is the maximum convolution length for a¼ 2, the fifth is the maximum length for a ¼ ffiffiffi

2
p

, the
sixth is the maximum length for any a, and the seventh is the a for that maximum length. Remember
that the first two rows have a Fermat number modulus which is prime and the second two rows have a
composite Fermat number as modulus. Note the differences.

The NTT itself seems to be very difficult to interpret or use directly. It seems to be useful only as a
means for high-speed convolution where it has remarkable characteristics. The books, articles, and
presentations that discuss NTT and related topics are [4,17,21]. A recent book discusses NTT in a signal
processing context [14].

TABLE 8.2 Fermat Number Moduli

t B M¼ Ft N2 N ffiffi
2

p Nmax a for Nmax

3 8 28þ 1 16 32 256 3

4 16 216þ 1 32 64 65,536 3

5 32 232þ 1 64 128 128
ffiffiffi
2

p

6 64 264þ 1 128 256 256
ffiffiffi
2

p
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8.9 Polynomial-Based Methods

The use of polynomials in representing elements of a digital sequence and in representing the convolu-
tion operation has led to the development of a family of algorithms based on the fast polynomial
transform [4,16,21]. These algorithms are especially useful for two-dimensional convolution. The CRT
for polynomials, which is central to Winograd’s short convolution algorithm, is also conveniently
described in polynomial notation. An interesting approach combines the use of the polynomial-based
methods with the number theoretic approach to convolution (NTTs), wherein the elements of a sequence
are taken to lie in a finite field [9,15]. In [15] the CRT is extended to the case of a ring of polynomials with
coefficients from a finite ring of integers. It removes the limitations on both word length and sequence
length of NNTs and serves as a link between the two methods (CRT and NNT). The new result
so obtained, which specializes to both the NNTs and the CRT for polynomials, has been called the
AICE-CRT (the American-Indian-Chinese extension of the CRT). A complex version has also been
derived.

8.10 Special Low-Multiply Filter Structures

In the use of convolution for digital filtering, the convolution operation can be simplified, if the filter h(n)
is chosen appropriately.

Some filter structures are especially simple to implement. Some examples are

. A simple implementation of the recursive running sum is based on the factorizationPL�1
k¼0 z

k ¼ (zL þ 1)=(z � 1).
. If the transfer function H(z) of the filter possesses a root at z¼�1 of multiplicity K, the factor

(zþ 1)=2 can be extracted from the transfer function. The factor (zþ 1)=2 can be implemented
very simply.

. This idea is extended in prefiltering and IFIR filtering techniques—a filter is implemented as a
cascade of two filters: one with a crude response that is simple to implement, another that makes
up for it, but requires the usual implementation complexity. The overall response satisfies
specifications and can be implemented with reduced complexity.

. The maximally flat symmetric FIR filter can be implemented without multiplications using the De
Casteljau algorithm [27].

In summary, a filter can often be designed so that the convolution operation can be performed with less
computational complexity and=or at a faster rate. Much work has focused on methods that take into
account implementation complexity during the approximation phase of the filter design process (see
Chapter 11).
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9.1 Introduction

Complexity theory of computation attempts to determine how ‘‘inherently’’ difficult are certain tasks.
For example, how inherently complex is the task of computing an inner product of two vectors of
length N? Certainly one can compute the inner product

PN
j¼1xjyj by computing the N products xjyj and

then summing them. But can one compute this inner product with fewer than N multiplications? The
answer is no, but the proof of this assertion is no trivial matter. One first abstracts and defines the notions
of the algorithm and its components (such as addition and multiplication); then a theorem is proven that
any algorithm for computing a bilinear form which uses K multiplications can be transformed to a
quadratic algorithm (some algorithm of a very special form, which uses no divisions, and whose
multiplications only compute quadratic forms) which uses at most K multiplications [21]; and finally a
proof by induction on the length N of the summands in the inner product is made to obtain the lower
bound result [7,14,22,25]. We will not present the details here; we just want to let the reader know that
the process for even proving what seems to be an intuitive result is quite complex.

Consider next the more complex task of computing the product of an N point vector by an M3N
matrix. This corresponds to the task of computing M separate inner products of N-point vectors. It is
tempting to jump to the conclusion that this task requiresMNmultiplications. But we should not jump to
fast conclusions. First, the M inner products are separate, but not independent (the term is used loosely,
and not in any linear algebra sense). After all, the second factor in theM inner products is always the same.
It turns out [7,22,25] that, indeed, our intuition this time is correct again. And the proof is really not much
more difficult than the proof for the complexity result for inner products. In fact, once the general
machinery is built, the proof is a slight extension of the previous case. So far intuition proved accurate.

In complexity theory one learns early on to be skeptical of intuitions. An early surprising result in
complexity theory—and to date still one of its most remarkable—contradicts the intuitive guess that
computing the product of two 23 2 matrices requires 8 multiplications. Remarkably, Strassen [20] has
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shown that it can be done with 7 multiplications. His algorithm is very nonintuitive; I am not aware of
any good algebraic explanation for it except for the assertion that the mathematical identities which
define the algorithm indeed are valid. It can also be shown [16] that 7 is the minimum number of
multiplications required for the task.

The consequences of Strassen’s algorithm for general matrix multiplication tasks are profound.
The task of computing the product of two 43 4 matrices with real entries can be viewed as a task of
computing two 23 2 matrices whose entries are themselves 23 2 matrices. Each of the 7 multiplications
in Strassen’s algorithm now become matrix multiplications requiring 7 real multiplications plus a bunch
of additions; and each addition in Strassen’s algorithm becomes an addition of 23 2 matrices, which
can be done with 4 real additions. This process of obtaining algorithms for large problems, which are
built up of smaller ones in a structures manner, is called the ‘‘nesting’’ procedure [25]. It is a very
powerful tool in both complexity theory and algorithm design. It is a special form of recursion.

The set of N3N matrices form a noncommutative algebra. A branch of complexity theory called
‘‘multiplicative complexity theory’’ is quite well established for certain relatively few algebras, and wide
open for the rest. In this theory complexity is measured by the number of ‘‘essential multiplications.’’
Given an algebra over a field F, an algorithm is a sequence of arithmetic operations in the algebra.
A multiplication is called essential if neither factor is an element in F. If one of the factors in a
multiplication is an element in F, the operation is called a scaling.

Consider an algebra of dimension N over a field F, with basis b1, . . . , bN. An algorithm for computing
the product of two elements

PN
j¼1 fjbj and

PN
j¼1gjbj with fj, gj 2 F is called bilinear, if every multiplication

in the algorithm is of the form L1( f1, . . . , fN) * L2(g1, . . . , gN), where L1 and L2 are linear forms and * is the
product in the algebra, and it uses no divisions. Because none of the arithmetic operations in bilinear
algorithms rely on the commutative nature of the underlying field, these algorithms can be used to build
recursively via the nesting process algorithms for noncommutative algebras of increasingly large dimen-
sions, which are built from the smaller algebras via the tensor product. For example, the algebra of 43 4
matrices (over some field F; I will stop adding this necessary assumption, as it will be obvious from
content) is isomorphic to the tensor product of the algebra of 23 2 matrices with itself. Likewise, the
algebra of 163 16 matrices is isomorphic to the tensor product of the algebra of 43 4 matrices with
itself. And this proceeds to higher and higher dimensions.

Suppose we have a bilinear algorithm for computing the product in an algebra T1 of dimension D,
which uses M multiplications and A additions (including subtractions) and S scalings. The
algebra T2¼T1 � T1 has dimension D2. By the nesting procedure we can obtain an algorithm for
computing the product in T2 which uses M multiplications of elements in T1, A additions of elements in
T1, and S scalings of elements in T1. Each multiplication in T1 requires M multiplications, A additions,
and S scalings; each addition in T1 requires D additions; and each scaling in T1 requires D scalings.
Hence, the total computational requirements for this new algorithm is M2 multiplications, A(MþD)
additions, and S(MþD) scalings. If the nesting procedure is continued to yield an algorithm for the
product in the D4 dimensional algebra T4¼T2 � T2, then its computational requirements would be M4

multiplications, A(MþD)(M2þD2) additions, and S(MþD)(M2þD2) scalings. One more iteration
would yield an algorithm for the D8 dimensional algebra T8¼T4 � T4, which uses M8 multiplications,
A(MþD)(M2þD2)(M4þD4) additions, and S(MþD)(M2þD2)(M4þD4) scalings. The general pat-
tern should be apparent by now. We see that the growth of the number of operations (i.e., the high order
term) is governed by M and not by A or S. A major goal of complexity theory is the understanding of
computational requirements as problem sizes increase, and nesting is the natural way of building
algorithms for larger and larger problems. We see one reason why counting multiplications (as opposed
to all arithmetic operations) became so important in complexity theory. (Historically, in the early days
multiplications were indeed much more expensive than additions.)

Algebras of polynomials are important in signal processing; filtering can be viewed as poly-
nomial multiplications. The product of two polynomials of degrees d1 and d2 can be computed
with d1þ d2� 1 multiplications. Furthermore, it is rather easy to prove (a straightforward dimension
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argument) that this is the minimal number of multiplications necessary for this computation. Algorithms
which compute these products with these numbers of multiplications (so-called optimal algorithms) are
obtained using Lagrange interpolation techniques. For even moderate values of dj, they use inordinately
many additions and scalings. Indeed, they use (d1þ d2� 3)(d1þ d2� 2) additions, and a half as many
scalings. So these algorithms are not very practical, but they are of theoretical interest. Also of interest is
the asymptotic complexity of polynomial products. They can be computed by embedding them in cyclic
convolutions of sizes at most twice as long. Using FFT techniques, these can be achieved with order D log
D arithmetic operations, where D is the maximum of the degrees. With optimal algorithms, while the
number of (essential) multiplications is linear, the total number of operations is quadratic. If nesting is
used, then the asymptotic behavior of the number of multiplications is also quadratic.

Convolution algebras are derived from algebras of polynomials. Given a polynomial P(u) of degree D,
one can define an algebra of dimension D whose entries are all polynomials of degree less than D,
with addition defined in the standard way, and multiplication is modulo P(u). Such algebras are
called convolution algebras. For polynomials P(u)¼ uD� 1, the algebras are cyclic convolutions of
dimension D. For polynomials P(u)¼ uDþ 1, these algebras are called signed-cyclic convolutions.
The product of two polynomials modulo P(u) can be obtained from the product of the two polynomials
without any extra essential multiplications. Hence, if the degree of P(u) is D, then the product modulo
P(u) can be done with 2D� 1 multiplications. But can it be done with fewer multiplications?

Whereas complexity theory has huge gaps in almost all areas, it has triumphed in convolution
algebras. The minimum number of multiplications required to compute a product in an algebra is called
the multiplicative complexity of the algebra. The multiplicative complexity of convolution algebras
(over infinite fields) is completely determined [22]. If P(u) factors (over the base field; the role of
the field will be discussed in greater detail soon) to a product of k irreducible polynomials, then the
multiplicative complexity of the algebra is 2D� k. So if P(u) is irreducible, then the answer to the
question in the previous paragraph is no. Otherwise, it is yes.

The above complexity result for convolution algebras is a sharp bound. It is a lower bound in that
every algorithm for computing the product in the algebra requires at least 2D� k multiplications,
where k is the number of factors of the defining polynomial P(u). It is also an upper bound, in that
there are algorithms which actually achieve it. Let us factor P(u) ¼ PPj(u) into a product of irreducible
polynomials (here we see the role of the field; more about this soon). Then the convolution algebra
modulo P(u) is isomorphic to a direct sum of algebras modulo Pj(u); the isomorphism is via the
Chinese remainder theorem. The multiplicative complexity of the direct summands is 2dj� 1, where dj
are the degrees of Pj(u); these are sharp bounds. The algorithm for the algebra modulo P(u) is derived
from these smaller algorithms; because of the isomorphism, putting them all together requires no extra
multiplications. The proof that this is a lower bound, first given by Winograd [23], is quite complicated.

The above result is an example of a ‘‘direct sum theorem.’’ If an algebra is decomposable to a direct
sum of subalgebras, then clearly the multiplicative complexity of the algebra is less than or equal to the
sum of the multiplicative complexities of the summands. In some (relatively rare) circumstances equality
can be shown. The example of convolution algebras is such a case. The results for convolution algebras
are very strong. Winograd has shown that every minimal algorithm for computing products in a
convolution algebra is bilinear and is a direct sum algorithm. The latter means that the algorithm
actually computes a minimal algorithm for each direct summand and then combines these results
without any extra essential multiplications to yield the product in the algebra itself.

Things get interesting when we start considering algebras which are tensor products of convolution
algebras (these are called multidimensional convolution algebras). A simple example already is enligh-
tening. Consider the algebra C of polynomial multiplications modulo u2þ 1 over the rationals Q; this
algebra is called the Gaussian rationals. The polynomial u2þ 1 is irreducible over Q (the algebra is a
field), so by the previous result, its multiplicative complexity is 3. The nesting procedure would yield
an algorithm the product in C � C which uses 9 multiplications. But it can in fact be computed with
6 multiplications. The reason is due to an old theorem, probably due to Kroeneker (though I cannot find
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the original proof); the reference I like best is Adrian Albert’s book [1]. The theorem asserts that the
tensor product of fields is isomorphic to a direct sum of fields, and the proof of the theorem is actually a
construction of this isomorphism. For our example, the theorem yields that the tensor product C � C is
isomorphic to a direct sum of two copies of C. The product in C � C can, therefore, be computed by
computing separately the product in each of the two direct summands, each with 3 multiplications, and
the final result can be obtained without any more essential multiplications. The explicit isomorphism was
presented to the complexity theory community by Winograd [22]. Since the example is sufficiently
simple to work out, and the results so fundamental to much of our later discussions, we will present
it here explicitly.

Consider A, the polynomial ring modulo u2þ 1 over the Q. This is a field of dimension 2 over Q, and
it has the matrix representation (called its regular representation) given by

r(aþ bu) ¼ a �b
b a

� �
: (9:1)

While for all b 6¼ 0, the matrix above is not diagonalizable over Q, the field (algebra) is diagonalizable
over the complexes. Namely,

1 i
1 �i

� �
a �b
b a

� �
1 i
1 �i

� ��1

¼ aþ ib 0
0 a� ib

� �
: (9:2)

The elements 1 and i of A correspond (in the regular representation) in the tensor algebra A � A
to the matrices

r(1) ¼ 1 0
0 1

� �
(9:3)

and

r(i) ¼ 0 �1
1 0

� �
, (9:4)

respectively. Hence, the 43 4 matrix

R ¼ r(1) r(i)
r(1) r(�i)

� �
(9:5)

diagonalizes the algebra A � A. Explicitly, we can compute

1 0 0 �1(6)

0 1 1 0(7)

1 0 0 1(8)

0 1 �1 0

0
BBBBB@

1
CCCCCA

x0 �x1 �x2 �x3(9)

x1 x0 �x3 x2(10)

x2 �x3 x0 �x1(11)

x3 x2 x1 x0

0
BBBBB@

1
CCCCCA

1 0 0 �1(12)

0 1 1 0(13)

1 0 0 1(14)

0 1 �1 0

0
BBBBB@

1
CCCCCA ¼

y0 �y1 0 0(15)

y1 y0 0 0(16)

0 0 y2 �y2(17)

0 0 y3 y3

0
BBBBB@

1
CCCCCA,

(9:6)
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where y0 ¼ x0 � x3, y1 ¼ x1 þ x2, y2 ¼ x0 þ x3, and y3 ¼ x1 � x2. A simple way to derive this is by
setting X0 to be the top left 23 2 minor of the matrix with xj entries in the above equation, X1 to be its
bottom left 23 2 minor, and observing that

R
X0 �X1

X1 X0

� �
R�1 ¼ r(1)X0 þ r(i)X1

r(0)X0 � r(i)X1

� �
: (9:7)

The algorithmic implications are straightforward. The product in A � A can be computed with fewer
multiplications than the nesting process would yield. Straightforward extensions of the above construc-
tion yield recipes for obtaining minimal algorithms for products in algebras which are tensor products of
convolution algebras. The example also highlights the role of the base field. The complexity of A as an
algebra over Q is 3; the complexity of A as an algebra over the complexes is 2, as over the complexes this
algebra diagonalizes.

Historically, multiplicative complexity theory generalized in two ways (and in various combinations of
the two). The first addressed the question: What happens when one of the factors in the product is not an
arbitrary element but a fixed element not in the basefield? The second addressed: What is the complexity
of semi-direct systems—those in which several products are to be computed, and one factor is arbitrary
but fixed, while the others are arbitrary? Computing an arbitrary product in an n-dimensional algebra
can be thought of (via the regular representation) as computing a product of a matrix A(X) times a vector
Y, where the entries in the matrix A(X) are linear combinations of n indeterminates x1, . . . , xn and y is a
vector of n indeterminates y1, . . . , yn. When one factor is a fixed element in an extension field, the entries
in A(X) are now entries in some extension field of the basefield which may have algebraic relations.
For example, consider

G ¼ g(1, 8) �g(3, 8)

g(3, 8) g(1, 8)

� �
, (9:8)

where g(m, n)¼ cos(2pm=n). The complex numbers g(1, 8) and g(3, 8) are linearly independent over Q,
but they satisfy the algebraic relation g(1, 8)=g(3, 8) ¼ ffiffiffi

2
p

. This algebraic relation gives a relation of the
two numbers to the rationals, namely g(1, 8)2=g(3, 8)2¼ 2. Now this is not a linear relation; linear
independence over Q has complexity ramifications. But this algebraic relation also has algorithmic
ramifications. The linear independence implies that the multiplicative complexity of multiplying an
arbitrary vector by G is 3. But because of the algebraic relation, it is not true (as is the case for quadratic
extensions by indeterminates) that all minimal algorithms for this product are quadratic. A non-
quadratic minimal algorithm is given via the factorization

G ¼ g(1, 8) 0

0 g(1, 8)

� �
1 1� ffiffiffi

2
pffiffiffi

2
p � 1 1

� �
: (9:9)

As for computing the product of G and k distinct vectors, theory has it that the multiplicative
complexity is 3k [3]. In other words, a direct sum theorem holds for this case. This result, and its
generalization, due to Auslander and Winograd [3], is very deep; its proof is very complicated. But it
yields great rewards.

The multiplicative complexity of all DFTs and DCTs are established using this result. The key to
obtaining multiplicative complexity results for DFTs and DCTs is to find the appropriate block
diagonalizations that transform these linear operators to such direct sums, and then to invoke this
fundamental theorem. We will next cite this theorem, and then describe explicitly how we apply it to
DFTs and DCTs.
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FUNDAMENTAL THEOREM (Auslander–Winograd):

Let Pj be polynomials of degrees dj, respectively, over a field w. Let Fj denote polynomials of degree dj� 1
with complex coefficients (i.e., they are complex numbers). For nonnegative integers kj, let T(kj, Fj, Pj)
denote the task of computing kj products of arbitrary polynomials by Fj modulo Pj. Let

P
j T kj, Fj, Pj

� �
denote

the task of simultaneously computing all of these products. If the coefficients span a vector space of dimensionP
j dj over w, then the multiplicative complexity of

P
j T kj, Fj, Pj

� �
is
P

j kj 2dj � 1
� �

. In other words, if the
dimension assumption holds, then so does the direct sum theorem for this case.

Multiplicative complexity results for DFTs and DCTs assert that their computation is linear in the size
of the input. The measure is number of nonrational multiplications. More specifically, in all cases
(arbitrary input sizes, arbitrary dimensions), the number of nonrational multiplications necessary for
computing these transforms is always less than twice the size of the input. The exact numbers are
interesting, but more important is the algebraic structure of the transforms which lead to these numbers.
This is what will be emphasized in the remainder of this chapter. Some special cases will be discussed in
greater detail; general results will be reviewed rather briefly.

The following notation will be convenient. If A, B are matrices with real entries, and R, S are invertible
rational matrices such that A¼RBS, then we will say that A is rationally equivalent (or more plainly,
equivalent) to B and write A�B. The multiplicative complexity of A is the same as that of B.

9.2 One-Dimensional DFTs

We will build up the theory for the DFT in stages. The one-dimensional DFT on input size N is a linear
operator whose matrix is given by FN¼ (wjk), where w¼ e2pi=N, and j, k index the rows and columns of
the matrix, respectively. The first row and first column of FN have all entries equal to 1, so the
multiplicative complexity of FN are the same as that of its ‘‘core’’ CN, its minor comprising its last
N� 1 rows and N� 1 columns. The first results were for one-dimensional DFTs on input sizes which are
prime [24]. For p a prime integer, the set of integers between 0 and p� 1 form a cyclic group under
multiplication modulo p. It was shown by Rader [19] that there exist permutations of the rows and
columns of the core CN that bring it to the cyclic convolution wgjþk, where g is any generator of the cyclic
group described above. Using the decomposition for cyclic convolutions described above, we decompose
the core to a direct sum of convolutions modulo the irreducible factors of up�1� 1. This decomposition
into cyclotomic polynomials is well known [18]. There are t(p� 1) irreducible factors, where t(n) is the
number of positive divisors of the positive integer n. One direct summand is the 13 1 matrix corre-
sponding to the factor u� 1, and its entry is�1 (in particular, rational). Also, the coefficients of the other
polynomials comprising the direct summands are all linearly independent over Q, hence the fundamental
theorem (in its weakest form) applies. It yields that the multiplicative complexity of Fp for p a prime is
2p� t(p� 1)� 3.

Next is the case for N¼ pk where p is an odd prime and the integer k is greater than 1. The group of
units comprising those integers between 0 and p�1 which are relatively prime to p, and under
multiplication modulo p, is of order pk� pk�1. A Rader-like permutation [24] brings the sub-core,
whose rows and columns are indexed by the entries in this group of units, to a cyclic convolution. The
group of units, when multiplied by p, forms an orbit of order pk�1� pk�2 (p elements in the group of
units map to the same element in the orbit), and the Rader-like permutations induces a permutation on
the orbit, which yields cyclic convolutions of the sizes of the orbit. This proceeds until the final orbit of
size p� 1. These cyclic convolutions are decomposed via the Chinese remainder theorem, and (after
much cancellation and rearrangement) it can be shown that the core CN in this case reduces to k direct
summands, each of which is a semi-direct sum of j(p� 1)(pk�j� pk�j�1) dimensional convolutions
modulo irreducible polynomials, j¼ 1, 2, . . . , k. Also, the dimension of the coefficients of the polynomials
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is precisely
Pk

j¼1 (p� 1)(pk�j � pk�j�1). These are precisely the conditions sufficient to invoke the
fundamental theorem. This algebraic decomposition yields minimal algorithms. When one adds all
these up, the numerical result is that the multiplicative complexity for the DFT on pk points where p is
an odd prime and k a positive integer, is 2pk � k� 2� k2þk

2 t(p� 1).
The case of the one-dimensional DFT on N¼ 2n points is most familiar. In this case,

FN ¼ PN
FN=2

GN=2

� �
RN , (9:10)

where
PN is the permutation matrix which rearranges the output to even entries followed by odd entries
RN is a rational matrix for computing the so-called ‘‘butterfly additions’’
GN=2¼DN=2FN=2, where DN=2 is a diagonal matrix whose entries are the so-called ‘‘twiddle factors’’

This leads to the classical divide-and-conquer algorithm called the FFT. For our purposes, GN=2 is
equivalent to a direct sum of two polynomial products modulo u2

j

, j¼ 0, . . . , n� 3. It is routine to
proceed inductively, and then show that the hypothesis of the fundamental theorem are satisfied.
Without details, the final result is that the complexity of the DFT on N¼ 2n points is 2nþ1� n2� n� 2.
Again, the complexity is below 2N.

For the general one-dimensional DFT case, we start with the equivalence Fmn� Fm � Fn, whenever m
and n are relatively prime, and where � denotes the tensor product. If m and n are of the forms pk for
some prime p and positive integer k, then from above, both Fm and Fn are equivalent to direct sums of
polynomial products modulo irreducible polynomials. Applying the theorem of Kroeneker=Albert, which
states that the tensor product of algebraic extension fields is isomorphic to a direct sum of fields, we have
that Fmn is, therefore, equivalent to a direct sum of polynomial products modulo irreducible polynomials.
When one follows the construction suggested by the theorem and counts the dimensionality of the
coefficients, one can show that this direct sum system satisfies the hypothesis of the fundamental
theorem. This argument extends to the general one-dimensional case of FN where N ¼ Pj p

kj
j with pj

distinct primes.

9.3 Multidimensional DFTs

The k-dimensional DFT on N1, . . . , Nk points is equivalent to the tensor product FN1
� � � � � FNk

. Directly
from the theorem of Kroeneker=Albert, this is equivalent to a direct sum of polynomial products modulo
irreducible polynomials. It can be shown that this system satisfies the hypothesis of the fundamental
theorem so that complexity results can be directly invoked for the general multidimensional DFT. Details
can be found in [6]. More interesting than the general case are some special cases with unique properties.

The k-dimensional DFT on p, . . . , p points, where p is an odd prime, is quite remarkable. The core
of this transform is a cyclic convolution modulo up

k�1� 1. The core of the matrix corresponding to
Fp � � � � � Fp, which is the entire matrix minus its first row and column, can be brought into this large
cyclic convolution by a permutation derived from a generator of the group of units of the field with pk

elements. The details are in [4]. Even more remarkably, this large cyclic convolution is equivalent to a
direct sum of pþ 1 copies of the same cyclic convolution obtainable from the core of the one-
dimensional DFT on p points. In other words, the k-dimensional DFT on p, . . . , p points, where p is
an odd prime, is equivalent to a direct sum of pþ 1 copies of the one-dimensional DFT on p points.
In particular, its multiplicative complexity is (pþ 1)[2p� t(p� 1)� 3].

Another particularly interesting case is the k-dimensional DFT on N, . . . , N points, where N¼ 2k. This
transform is equivalent to the k-fold tensor product FN � � � � � FN, and we have seen above the recursive
decomposition of FN to a direct sum of FN=2 and GN=2. The semi-simple Abelian construction [5,9] yields
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that FN=2 � GN=2 is equivalent to N=2 copies of GN=2, and likewise that FN=2 � GN=2 is equivalent to N=2
copies of GN=2. Hence, FN and FN is equivalent to 3N=2 copies of GN=2 plus FN=2 � FN=2. This leads
recursively to a complete decomposition of the two-dimensional DFT to a direct sum of polynomial
products modulo irreducible polynomials (of the form u2

mþ 1 in this case). The extensions to arbitrary
dimensions are quite detailed but straightforward.

9.4 One-Dimensional DCTs

As in the case of DFTs, DCTs are also all equivalent to direct sums of polynomial multiplications modulo
irreducible polynomials and satisfy the hypothesis of the fundamental theorem. In fact, some instances
are easier to handle. A fast way to see the structure of the DCT is by relating it to the DFT. Let CN denote
the one-dimensional DCT on N points; recall we defined FN to be the one-dimensional DFT on N points.

It can be shown [15] that F4N is equivalent to a direct sum of two copies of CN plus one copy of F2N.
This is sufficient to yield complexity results for all one-dimensional DCTs. But for some special cases,
direct derivations are more revealing. For example, when N¼ 2k, CN is equivalent to a direct sum of
polynomial products modulo u2

jþ 1, for j¼ 1, . . . , k� 1. This is a much simpler form than the corre-
sponding one for the DFT on 2k points. It is then straightforward to check that this direct sum system
satisfies the hypothesis of the fundamental theorem, and then that the multiplicative complexity of C2k is
2kþ1� n� 2.

Another (not so) special case is when N is an odd integer. Then CN is equivalent to FN, from which
complexity results follow directly. Another useful result is that, as in the case of the DFT, Cpq is equivalent
to Cp � Cq where p and q are relatively prime [26]. We can then use the theorem of Kroeneker=Albert
[11] to build direct sum structures for DCTs of composites given direct sums of the various components.

9.5 Multidimensional DCTs

Here too, once the one-dimensional DCT structures are known, their extensions to multidimensions via
tensor products, utilizing the theorem of Kroeneker=Albert, is straightforward. This leads to the appro-
priate direct sum structures, proving that the coefficients satisfy the hypothesis of the fundamental
theorem does require some careful applications of elementary number theory. This is done in [11].

A most interesting special case is multidimensional DCT on input sizes which are powers of 2 in
each dimension. If the input is k dimensional with size 2j13 � � �3 2jk, and j1� ji, i¼ 2, . . . , k, then
the multidimensional DCT is equivalent to 2j23 � � �3 2jk copies of the one-dimensional DCT on
2j1 points [12]. This is a much more straightforward result than the corresponding one for multidimen-
sional DFTs.

9.6 Nonstandard Models and Problems

DCTs have become popular because of their role in compression. In such roles, the DCT is usually
followed by quantization. Therefore, in such applications, one need not actually compute the DCT but a
scaled version of it, and then absorb the scaling into the quantization step. For the one-dimensional case
this means that one can replace the computation of a product by C with a product by a matrix DC, where
D is diagonal. It turns out [2,10] that for propitious choices of D, the computation of the product by DC is
easier than that by C. The question naturally arises: What is the minimum number of steps required to
compute a product of the form DC, where D can be any diagonal matrix? Our ability to answer such a
question is very limited. All we can say today is that if we can compute a scaled DCT on N points with m
multiplications, then certainly we can compute a DCT on N multiplications with mþN points. Since we
know the complexity of DCTs, this gives a lower bound on the complexity of scaled DCTs. For example,
the one-dimensional DCT on 8 points (the most popular applied case) requires 12 multiplications.
(The reader may see the number 11 in the literature; this is for the case of the ‘‘unnormalized DCT’’ in
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which the DC component is scaled. The unnormalized DCT is not orthogonal.) Suppose a scaled DCT on
8 points can be done with m multiplications. Then 8þm� 12, or m� 4. An algorithm for the scaled
DCT on 8 points which uses 5 multiplications is known [2,10]. It is an open question whether one can
actually do it in 4 multiplications or not. Similarly, the two-dimensional DCT on 83 8 points can be
done with 54 multiplications [10,13], and theory says that at least 24 are needed [12]. The gap is very
wide, and I know of stronger results as of this writing.

Machines whose primitive operations are fused multiply-accumulate are becoming very popular,
especially in the higher end workstation arena. Here a single cycle can yield a result of the form abþ c
for arbitrary floating point numbers a, b, and c; we call such an operation a ‘‘mutiply=add.’’ Lower bounds
are obviously bounded below by lower bounds for number of multiplications and also for lower bounds
on number of additions. The latter is a wide open subject. A simple yet instructive example involves
multiplications of a 43 4 Hadamard matrix. It is well known that, in general, multiplication by an N3N
Hadamard matrix, where N is a power of 2, can be done with Nlog2N additions. Recently it was shown [8]
that the 43 4 case can be done with 7 multiply=add operations [8]. This result has not been extended,
and it may in fact be rather hard to extend except in most trivial (and uninteresting) ways.

Upper bounds of DFTs have been obtained. It was shown in [17] that a complex DFT on N¼ 2k points
can be done with 8

3Nk� 16
9 N þ 2� 2

9 (�1)k real multiply=adds. For real input, an upper bound of
4
3Nk� 17

9 N þ 3� 2
9 (�1)k real multiply=adds was given. These were later improved slightly using the

results of the Hadamard transform computation. Similar multidimensional results were also obtained.
In the past several years new, more powerful, processors have been introduced. Sun and HP have

incorporated new vector instructions. Intel has introduced its aggressive Intel’s MMX architecture. And
new multimedia signal processors from Philips, Samsung, and Chromatic are pushing similar designs
even more aggressively. These will lead to new models of computation. Astounding (though probably not
surprising) upper bounds will be announced; lower bounds are sure to continue to baffle.
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10.1 Introduction

This chapter presents two major approaches to fast matrix multiplication. We restrict our attention to
matrix multiplication, excluding matrix addition and matrix inversion, since matrix addition admits no
fast algorithm structure (save for the obvious parallelization), and matrix inversion (i.e., solution of large
linear systems of equations) is generally performed by iterative algorithms that require repeated matrix-
matrix or matrix-vector multiplications. Hence, matrix multiplication is the real problem of interest.

We present two major approaches to fast matrix multiplication. The first is the divide-and-conquer
strategy made possible by Strassen’s [1] remarkable reformulation of noncommutative 23 2 matrix
multiplication. We also present the APA (arbitrary precision approximation) algorithms, which improve
on Strassen’s result at the price of approximation, and a recent result that reformulates matrix multipli-
cation as convolution and applies number theoretic transforms (NTTs). The second approach is to use a
wavelet basis to sparsify the representation of Calderon–Zygmund operators as matrices. Since electro-
magnetic Green’s functions are Calderon–Zygmund operators, this has proven to be useful in solving
integral equations in electromagnetics. The sparsified matrix representation is used in an iterative
algorithm to solve the linear system of equations associated with the integral equations, greatly reducing
the computation. We also present some new insights that make the wavelet-induced sparsification seem
less mysterious.

10.2 Divide-and-Conquer Fast Matrix Multiplication

10.2.1 Strassen Algorithm

It is not obvious that there should be any way to perform matrix multiplication other than using
the definition of matrix multiplication, for which multiplying two N3N matrices requires N3
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multiplications and additions (N for each of the N2 elements of the resulting matrix). However, in 1969,
Strassen [1] made the remarkable observation that the product of two 23 2 matrices

a1,1 a1,2
a2,1 a2,2

� �
b1,1 b1,2
b2,1 b2,2

� �
¼ c1,1 c1,2

c2,1 c2,2

� �
(10:1)

may be computed using only seven multiplications (fewer than the obvious eight), as

m1 ¼ a1,2 � a2,2ð Þ b2,1 þ b2,2ð Þ; m3 ¼ a1,1 � a2,1ð Þ b1,1 þ b1,2ð Þ;
m2 ¼ a1,1 þ a2,2ð Þ b1,1 þ b2,2ð Þ;
m4 ¼ a1,1 þ a1,2ð Þb2,2; m7 ¼ a2,1 þ a2,2ð Þb1,1;
m5 ¼ a1,1 b1,2 � b2,2ð Þ; m6 ¼ a2,2 b2,1 � b1,1ð Þ;
c1,1 ¼ m1 þm2 �m4 þm6; c1,2 ¼ m4 þm5;

c2,2 ¼ m2 �m3 þm5 �m7; c2,1 ¼ m6 þm7

: (10:2)

A vital feature of Equation 10.2 is that it is noncommutative, i.e., it does not depend on the
commutative property of multiplication. This can be seen easily by noting that each of the mi are
the product of a linear combination of the elements of A by a linear combination of the elements of B,
in that order, so that it is never necessary to use, say a2,2b2,1¼ b2,1a2,2. We note there exist commutative
algorithms for 23 2 matrix multiplication that require even fewer operations, but they are of little
practical use.

The significance of noncommutativity is that the noncommutative algorithm (Equation 10.2) may be
applied as is to block matrices. That is, if the ai,j, bi,j, and ci,j in Equations 10.1 and 10.2 are replaced by
block matrices, Equation 10.2 is still true. Since matrix multiplication can be subdivided into block
submatrix operations (i.e., Equation 10.1 is still true if ai,j, bi,j, and ci, j are replaced by block matrices), this
immediately leads to a divide-and-conquer fast algorithm.

10.2.2 Divide-and-Conquer

To see this, consider the 2n3 2n matrix multiplication AB¼C, where A, B, and C are all 2n3 2n

matrices. Using the usual definition, this requires (2n)3¼ 8n multiplications and additions. But if A, B,
and C are subdivided into 2n�13 2n�1 blocks ai,j, bi,j, and ci,j, then AB¼C becomes Equation 10.1,
which can be implemented with Equation 10.2 since Equation 10.2 does not require the products of
subblocks of A and B to commute. Thus the 2n3 2n matrix multiplication AB¼C can actually be
implemented using only seven matrix multiplications of 2n�13 2n�1 subblocks of A and B. And these
subblock multiplications can in turn be broken down by using Equation 10.2 to implement them as
well. The end result is that the 2n3 2n matrix multiplication AB¼C can be implemented using only 7n

multiplications, instead of 8n.
The computational savings grow as the matrix size increases. For n¼ 5 (323 32 matrices) the savings

is about 50%. For n¼ 12 (40963 4096 matrices) the savings is about 80%. The savings as a fraction
can be made arbitrarily close to unity by taking sufficiently large matrices. Another way of looking at this
is to note that N3N matrix multiplication requires O N log2 7

� � ¼ O N2:807ð Þ < N3 multiplications using
Strassen.

Of course we are not limited to subdividing into 23 2¼ 4 subblocks. Fast noncommutative algorithms
for 33 3 matrix multiplication requiring only 23< 33¼ 27 multiplications were found by exhaustive
search in [2,3]; 23 is now known to be optimal. Repeatedly subdividing AB¼C into 33 3¼ 9 subblocks
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computes a 3n3 3n matrix multiplication in 23n< 27n multiplications; N3N matrix multiplication
requires O N log3 23

� � ¼ O N2:854ð Þ multiplications, so this is not quite as good as using Equation 10.2.
A fast noncommutative algorithm for 53 5 matrix multiplication requiring only 102< 53¼ 125
multiplications was found in [4]; this also seems to be optimal. Using this algorithm, N3N matrix
multiplication requires O N log5 102

� � ¼ O N2:874ð Þ multiplications, so this is even worse. Of course, the
idea is to write N¼ 2a3b5c for some a, b, c and subdivide into 23 2¼ 4 subblocks a times,
then subdivide into 33 3¼ 9 subblocks b times, etc. The total number of multiplications is then
7a23b102c< 8a27b125c¼N3.

Note that we have not mentioned additions. Readers familiar with nesting fast convolution algorithms
will know why; now we review why reducing multiplications is much more important than reducing
additions when nesting algorithms. The reason is that at each nesting stage (reversing the divide-and-
conquer to build up algorithms for multiplying large matrices from Equation 10.2), each scalar addition
is replaced by a matrix addition (which requires N2 additions for N3N matrices), and each scalar
multiplication is replaced by a matrix multiplication (which requires N3 multiplications and additions for
N3N matrices). Although we are reducing N3 to about N2.8, it is clear that each multiplication will
produce more multiplications and additions as we nest than each addition. So reducing the number of
multiplications from eight to seven in Equation 10.2 is well worth the extra additions incurred. In fact,
the number of additions is also O(N2.807).

The design of these base algorithms has been based on the theory of bilinear and trilinear forms. The
review paper [5] and book [6] of Pan are good introductions to this theory. We note that reducing the
exponent of N in N3N matrix multiplication is an area of active research. This exponent has been
reduced to below 2.5; a known lower bound is 2. However, the resulting algorithms are too complicated
to be useful.

10.2.3 Arbitrary Precision Approximation Algorithms

APA algorithms are noncommutative algorithms for 23 2 and 33 3 matrix multiplication that require
even fewer multiplications than the Strassen-type algorithms, but at the price of requiring longer
wordlengths. Proposed by Bini [7], the APA algorithm for multiplying two 23 2 matrices is this:

p1 ¼ a2,1 þ ea1,2ð Þ b2,1 þ eb1,2ð Þ;
p2 ¼ �a2,1 þ ea1,1ð Þ b1,1 þ eb1,2ð Þ;
p3 ¼ a2,2 � ea1,2ð Þ b2,1 þ eb2,2ð Þ;
p4 ¼ a2,1 b1,1 � b2,1ð Þ;
p5 ¼ a2,1 þ a2,2ð Þb2,1;
c1,1 ¼ p1 þ p2 þ p4ð Þ=e� e a1,1 þ a1,2ð Þb1,2;
c2,1 ¼ p4 þ p5;

c2,2 ¼ p1 þ p3 � p5ð Þ=e� ea1,2 b1,2 � b2,2ð Þ:

(10:3)

If we now let e ! 0, the second terms in Equation 10.3 become negligible next to the first terms, and so
they need not be computed. Hence, three of the four elements of C¼AB may be computed using only
five multiplications. c1,2 may be computed using a sixth multiplication, so that, in fact, two 23 2 matrices
may be multiplied to arbitrary accuracy using only six multiplications. The APA 33 3 matrix multipli-
cation algorithm requires 21 multiplications. Note that APA algorithms improve on the exact Strassen-
type algorithms (6< 7, 21< 23).
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The APA algorithms are often described as being numerically unstable, due to roundoff error as e! 0.
We believe that an electrical engineering perspective on these algorithms puts them in a light different
from that of the mathematical perspective. In fixed point implementation, the computation AB¼C can
be scaled to operations on integers, and the pi can be bounded. Then it is easy to set e a sufficiently small
(negative) power of two to ensure that the second terms in Equation 10.3 do not overlap the first terms,
provided that the wordlength is long enough. Thus, the reputation for instability is undeserved. However,
the requirement of large wordlengths to be multiplied seems also to have escaped notice; this may be a
more serious problem in some architectures.

The divide-and-conquer and resulting nesting of APA algorithms work the same way as for the
Strassen-type algorithms. N3N matrix multiplication using Equation 10.3 requires O N log2(6)

� � ¼
O N2:585ð Þ multiplications, which improves on the O(N2.807) multiplications using Equation 10.2. But
the wordlengths are longer.

A design methodology for fast matrix multiplication algorithms by grouping terms has been proposed
in a series of papers by Pan (see [5,6]). While this has proven quite fruitful, the methodology of grouping
terms becomes somewhat ad hoc.

10.2.4 Number Theoretic Transform Based Algorithms

An approach similar in flavor to the APA algorithms, but more flexible, has been taken recently in [8].
First, matrix multiplication is reformulated as a linear convolution, which can be implemented as the
multiplication of two polynomials using the z-transform. Second, the variable z is scaled, producing a
scaled convolution, which is then made cyclic. This aliases some quantities, but they are separated by
a power of the scaling factor. Third, the scaled convolution is computed using pseudo-NTTs. Finally,
the various components of the product matrix are read off of the convolution, using the fact that the
elements of the product matrix are bounded. This can be done without error if the scaling factor is
sufficiently large.

This approach yields algorithms that require the same number of multiplications or fewer as APA for
23 2 and 33 3 matrices. The multiplicands are again sums of scaled matrix elements as in APA.
However, the design methodology is quite simple and straightforward, and the reason why the fast
algorithm exists is now clear, unlike the APA algorithms. Also, the integer computations inherent in this
formulation make possible the engineering insights into APA noted above.

We reformulate the product of two N3N matrices as the linear convolution of a sequence of length
N2 and a sparse sequence of length N3�Nþ 1. This results in a sequence of length N3þN2�N, from
which elements of the product matrix may be obtained. For convenience, we write the linear convolution
as the product of two polynomials. This result (of [8]) seems to be new, although a similar result is briefly
noted in [3] (p. 197). Define

ai,j¼ aiþjN; bi,j¼ bN�1�iþjN; 0� i, j�N� 1

XN�1

i¼0

XN�1

j¼0

aiþjNx
iþjN

 ! XN�1

i¼0

XN�1

j¼0

bN�1�iþjNx
N(N�1�iþjN)

 !

¼
XN3þN2�N�1

i¼0

cix
i;

ci,j ¼ cN2�NþiþjN2 , 0 � i, j � N � 1:

(10:4)

Note that coefficients of all three polynomials are read off of the matrices A, B, and C column-by-column
(each column of B is reversed), and the result is noncommutative. For example, the 23 2 matrix
multiplication (Equation 10.1) becomes
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a1,1 þ a2,1x þ a1,2x
2 þ a2,2x

3
� �

b2,1 þ b1,1x
2 þ b2,2x

4 þ b1,2x
6

� �
¼ *þ *x þ c1,1x

2 þ c2,1x
3 þ *x4 þ *x5 þ c1,2x

6 þ c2,2x
7 þ *x8 þ *x9,

(10:5)

where * denotes an irrelevant quantity. In Equation 10.5, substitute x¼ sz and take the resultmod(z6� 1).
This gives

a1,1 þ a2,1sz þ a1,2s
2z2 þ a2,2s

3z3
� �

b2,1 þ b1,2s
6

� �þ b1,1s
2z2 þ b2,2s

4z4
� �

¼ *þ c1,2s
6

� �þ *sþ c2,2s
7

� �
z þ c1,1s

2 þ *s8
� �

z2

þ c2,1s
3 þ *s9

� �
z3 þ *z4 þ *z5; mod z6 � 1

� �
:

(10:6)

If ci,j
�� ��,j*j < s6, then the * and ci,j may be separated without error, since both are known to be integers. If s

is a power of 2, c0,1 may be obtained by discarding the 6log2s least significant bits in the binary
representation of *þ c0,1s

6. The polynomial multiplication mod(z6 �1) can be computed using NTTs
[9] using 6 multiplications. Hence, 23 2 matrix multiplication requires 6 multiplications. Similarly, 33 3
matrices may be multiplied using 21 multiplications. Note these are the same numbers required by the
APA algorithms, quantities multiplied are again sums of scaled matrix elements, and results are again
sums in which one quantity is partitioned from another quantity which is of no interest.

However, this approach is more flexible than the APA approach (see [8]). As an extreme case, setting
z¼ 1 in Equation 10.5 computes a 23 2 matrix multiplication using ONE (very long wordlength)
multiplication! For example, using s¼ 100

2 4
3 5

� �
9 8
7 6

� �
¼ 46 40

62 54

� �
(10:7)

becomes the single scalar multiplication

(5, 040, 302)(8, 000, 600, 090, 007) ¼ 40, 325, 440, 634, 862, 462, 114: (10:8)

This is useful in optical computing architectures for multiplying large numbers.

10.3 Wavelet-Based Matrix Sparsification

10.3.1 Overview

A common application of solving large linear systems of equations is the solution of integral equations
arising in, say, electromagnetics. The integral equation is transformed into a linear system of
equations using Galerkin’s method, so that entries in the matrix and vectors of knowns and unknowns
are coefficients of basis functions used to represent the continuous functions in the integral equation.
Intelligent selection of the basis functions results in a sparse (mostly zero entries) system matrix. The
sparse linear system of unknowns is then usually solved using an iterative algorithm, which is where the
sparseness becomes an advantage (iterative algorithms require repeated multiplication of the system
matrix by the current approximation to the vector of unknowns).

Recently, wavelets have been recognized as a good choice of basis function for a wide variety of
applications, especially in electromagnetics. This is true because in electromagnetics the kernel
of the integral equation is a two-dimensional (2-D) or three-dimensional (3-D) Green’s function for
the wave equation, and these are Calderon–Zygmund operators. Using wavelets as basis functions makes
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the matrix representation of the kernel drop off rapidly away from the main diagonal, more rapidly than
discretization of the integral equation would produce.

Here we quickly review the wavelet transform as a representation of continuous functions and
show how it sparsifies Calderon–Zygmund integral operators. We also provide some insight into why
this happens and present some alternatives that make the sparsification less mysterious. We present
our results in terms of continuous (integral) operators, rather than discrete matrices, since this is the
proper presentation for applications, and also since similar results can be obtained for the explicitly
discrete case.

10.3.2 Wavelet Transform

We will not attempt to present even an overview of the rich subject of wavelets. The reader is urged to
consult the many papers and textbooks (e.g., [10]) now being published on the subject. Instead, we
restrict our attention to aspects of wavelets essential to sparsification of matrix operator representations.
The wavelet transform of an L2 function f(x) is defined as

fi(n) ¼ 2i=2
ð1

�1
f (x)c 2ix � n

� �
dx, f (x) ¼

X
i

X
n

fi(n)c 2ix � n
� �

2i=2, (10:9)

where {c(2ix� n), i, n 2 Z} is a complete orthonormal basis for L2. That is, L2 (the space of square-
integrable functions) is spanned by dilations (scaling) and translations of a wavelet basis function c(x).
Constructing this c(x) is nontrivial, but has been done extensively in the literature.

Since the summations must be truncated to finite intervals in practice, we define the wavelet scaling
function w(x) whose translations on a given scale span the space spanned by the wavelet basis function
c(x) at all translations and at scales coarser than the given scale. Then we can write

f (x) ¼ 2I=2
X
n

cI(n)w 2Ix � n
� �þX1

i¼I

X
n

fi(n)c 2ix � n
� �

2i=2

c1(n) ¼ 2I=2
ð1

�1
f (x)w 2Ix � n

� �
dx:

(10:10)

So the projection cI(n) of f(x) on the scaling function w(x) at scale I replaces the projections fi(n) on the
basis function c(x) on scales coarser (smaller) than I. The scaling function w(x) is orthogonal to its
translations but (unlike the basis function c(x)) is not orthogonal between scales. Truncating the
summation at the upper end approximates f(x) at the resolution defined by the finest (largest) scale i;
this is somewhat analogous to truncating Fourier series expansions and neglecting high-frequency
components.

We also define the 2-D wavelet transform of f(x, y) as

fi,j(m, n) ¼ 2i=22j=2
ð1

�1

ð1
�1

f (x, y)c 2ix �m
� �

c 2jy � n
� �

dx dy

f (x, y) ¼
X
i,j,m,n

fi,j(m, n)c 2ix �m
� �

c 2jy � n
� �

2i=22i=2:

(10:11)
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However, it is more convenient to use the 2-D counterpart of Equation 10.10, which is

c1(m, n) ¼ 2I
ð1

�1

ð1
�1

f (x, y)w 2Ix �m
� �

w 2Iy � n
� �

dx dy

f 1i (m, n) ¼ 2i
ð1

�1

ð1
�1

f (x, y)w 2ix �m
� �

c 2iy � n
� �

dx dy

f 2i (m, n) ¼ 2i
ð1

�1

ð1
�1

f (x, y)c 2ix �m
� �

w 2iy � n
� �

dx dy

f 3i (m, n) ¼ 2i
ð1

�1

ð1
�1

f (x, y)c 2ix �m
� �

c 2iy � n
� �

dx dy

c1(m, n) ¼ 2I
ð1

�1

ð1
�1

f (x, y)w 2Ix �m
� �

w 2Iy � n
� �

dx dy

f 1i (m, n) ¼ 2i
ð1

�1

ð1
�1

f (x, y)w 2ix �m
� �

c 2iy � n
� �

dx dy

f 2i (m, n) ¼ 2i
ð1

�1

ð1
�1

f (x, y)c 2ix �m
� �

w 2iy � n
� �

dx dy

f 3i (m, n) ¼ 2i
ð1

�1

ð1
�1

f (x, y)c 2ix �m
� �

c 2iy � n
� �

dx dy

f (x, y) ¼
X
m,n

cI(m, n)w 2Ix �m
� �

w 2Iy � n
� �

2I

þ
X1
i¼I

X
m,n

f 1i (m, n)w 2ix �m
� �

c 2iy � n
� �

2i

þ
X1
i¼I

X
m,n

f 2i (m, n)c 2ix �m
� �

w 2iy � n
� �

2i

þ
X1
i¼I

X
m,n

f 3i (m, n)c 2ix �m
� �

c 2iy � n
� �

2i:

(10:12)

Once again the projection cI(m, n) on the scaling function at scale I replaces all projections on the basis
functions on scales coarser than M.

Some examples of wavelet scaling and basis functions:

Scaling Pulse B-Spline Sinc Softsinc Daubechies

Wavelet Haar Battle–Lemarie Paley–Littlewood Meyer Daubechies
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An important property of the wavelet basis function c(x) is that its first kmoments can be made zero, for
any integer k [10]:

ð1
�1

xic(x)dx ¼ 0, i ¼ 0, . . . , k (10:13)

10.3.3 Wavelet Representations of Integral Operators

We wish to use wavelets to sparsify the L2 integral operator K(x, y) in

g(x) ¼
ð1

�1
K(x, y)f (y)dy: (10:14)

A common situation: Equation 10.14 is an integral equation with known kernel K(x, y) and known g(x) in
which the goal is to compute an unknown function f(y). Often the kernel K(x, y) is the Green’s function
(spatial impulse response) relating observed wave field or signal g(x) to unknown source field or signal f(y).

For example, the Green’s function for Laplace’s equation in free space is

G(r) ¼ � 1
2p

log r (2-D),
1

4pr
(3-D), (10:15)

where r is the distance separating the points of source and observation. Now consider a line source in an
infinite 2-D homogeneous medium, with observations made along the same line. The observed field
strength g(x) at position x is

g(x) ¼ � 1
2p

ð1
�1

log jx � yj f (y)dy, (10:16)

where f(y) is the source strength at position y.
Using Galerkin’s method, we expand f(y) and g(x) as in Equation 10.9 and K(x, y) as in Equation 10.11.

Using the orthogonality of the basis functions yields

X
j

X
n

Ki,j(m, n)fj(n) ¼ gi(m): (10:17)

Expanding f(y) and g(x) as in Equation 10.10 and K(x, y) as in Equation 10.12 leads to another system of
equations which is difficult notationally to write out in general, but can clearly be done in individual
applications. We note here that the entries in the system matrix in this latter case can be rapidly
generated using the fast wavelet algorithm of Mallat (see [10]).

The point of using wavelets is as follows. K(x, y) is a Calderon–Zygmund operator if

qk

qxk
K(x, y)

�����
�����þ qk

qyk
K(x, y)

�����
����� � Ck

jx � yjkþ1 (10:18)

for some k� 1. Note in particular that the Green’s functions in Equation 10.15 are Calderon–Zygmund
operators. Then the representation in Equation 10.12 of K(x, y) has the property [11]
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jf 1i (m, n)j þ jf 2i (m, n)j þ jf 3i (m, n)j � Ck

1þ jm� njkþ1 , jm� nj > 2k (10:19)

if the wavelet basis function c(x) has its first k moments zero (Equation 10.13).
This means that using wavelets satisfying Equation 10.13 sparsifies the matrix representation of the

kernel K(x, y). For example, a direct discretization of the 3-D Green’s function in Equation 10.15 decays
as 1=j m� n j as one moves away from the main diagonal m¼ n in its matrix representation. However,
using wavelets, we can attain the much faster decay rate 1=(1þ j m� n jkþ1) far away from the main
diagonal. By neglecting matrix entries less than some threshold (typically 1% of the largest entry) a sparse
and mostly banded matrix is obtained. This greatly speeds up the following matrix computations:

1. Multiplication by the matrix for solving the forward problem of computing the response to a given
excitation (as in Equation 10.16).

2. Fast solution of the linear system of equations for solving the inverse problem of reconstructing the
source from a measured response (solving Equation 10.16 as an integral equation). This is typically
performed using an iterative algorithm such as conjugate gradient method. Sparsification is
essential for convergence in a reasonable time.

A typical sparsified matrix from an electromagnetics application is shown in Figure 6 of [12]. Battle–
Lemarie wavelet basis functions were used to sparsify the Galerkin method matrix in an integral equation
for planar dielectric millimeter-wave waveguides and a 1% threshold applied (see [12] for details). Note
that the matrix is not only sparse but (mostly) banded.

10.3.4 Heuristic Interpretation of Wavelet Sparsification

Why does this sparsification happen? Considerable insight can be gained using Equation 10.13. Let ĉ(v)
be the Fourier transform of the wavelet basis function c(x). Since the first k moments of c(x) are zero by
Equation 10.13 we can expand ĉ(v) in a power series around v¼ 0:

ĉ(v) � vk, jvj << 1: (10:20)

This shows that for small jvj taking the wavelet transform of f(x) is roughly equivalent to taking the kth
derivative of f(x). This can be confirmed that many wavelet basis functions bear a striking resemblance to
the impulse responses of regularized differentiators. Since K(x, y) is assumed a Calderon–Zygmund
operator, its kth derivatives in x and y drop off as 1=jx� yjkþ 1. Thus, it is not surprising that the wavelet
transform of K(x, y), which is roughly taking kth derivatives, should drop off as 1=jm� njkþ 1. Of course
there is more to it, but this is why it happens.

It is not surprising that K(x, y) can be sparsified by taking advantage of its derivatives being small. To
see a more direct way of accomplishing this, apply integration by parts to Equation 10.14 and take the
partial derivative with respect to x. This gives

dg(x)
dx

¼ �
ð1

�1

q
qx

q
qy

K(x, y)

� � ðy
�1

f (y0)dy0

0
@

1
Ady, (10:21)

which will likely sparsify a smooth K(x, y). Of course, higher derivatives can be used until a condition like
Equation 10.18 is reached. The operations of integrating f(y) and qkg

qxk (to get g(x)) k times can be
accomplished using nk<< n2 additions, so considerable savings can result. This is different from using
wavelets, but in the same spirit.
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D IGITAL FILTERING IS ONE OF THE MOST IMPORTANT FUNCTIONS in digital signal
processing, and this single chapter not only provides a thorough coverage of conventional topics
such as FIR (finite-duration impulse response) and IIR (infinite-duration impulse response)

filtering, it also presents material on designmethods and new research directions that have not been widely
available in the open literature.

Karam and McClellan present an ‘‘Introduction to Digital Filtering,’’ followed by Karam’s ‘‘Steps in
Filter Design.’’ A comprehensive coverage of FIR and IIR classical filter design follows in ‘‘FIR Design
Methods’’ by Selesnick, Burrus, Karam, and McClellan, and ‘‘IIR Design Methods’’ by Karam, Selesnick,
and Burrus, respectively. Unique to this chapter is the special discussion of ‘‘Software Tools’’ for filtering
by McClellan.

The various topics covered in this section are integrated together very well, ensuring a coherent and
authoritative coverage of the filtering area.
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11.1 Introduction

Digital filters are widely used in processing digital signals of many diverse applications, including
speech processing and data communications, image and video processing, sonar, radar, seismic and oil
exploration, and consumer electronics. One class of digital filters, the linear shift-invariant (LSI) type, are
the most frequently used because they are simple to analyze, design, and implement. This chapter treats
the LSI case only; other filter types, such as adaptive filters, require quite different design methodologies.

An LSI digital filter can be uniquely identified in the time=space domain by its impulse response h(n)
(where n is an integer index). Alternatively, the LSI digital filter can be uniquely characterized in the
frequency domain by its frequency response H(v) (where v is a real-valued frequency variable in
radians), which is also the discrete-time Fourier transform (DTFT) of the sequence h(n). LSI digital
filters are of two main types: finite-duration impulse response (FIR) filters for which the impulse response
h(n) is nonzero for only a finite number of samples, and infinite-duration impulse response (IIR) filters
for which h(n) has an infinite number of nonzero samples. In the FIR case, the samples of the sequence
h(n) are commonly referred to as the filter coefficients; for the IIR case, the filter coefficients include
feedback terms in a difference equation.

Digital filter design has been extensively addressed within the last 25 years. The design and realization
of digital filters involve a blend of theory, applications, and technologies. For most applications, it is
desirable to design frequency-selective filters which alter or pass unchanged different frequency com-
ponents. In this case, the desired design specifications are given in the frequency domain by specifying a
desired frequency response D( f ). Note that D( f ) is, in general, complex valued, consisting of a desired
magnitude response jD( f )j and a desired phase response ffD( f ). One of the most important problems is
the design of a highly frequency-selective filter with sharp cutoff edges (short transition bands). However,
ideal sharp edges correspond mathematically to discontinuities and cannot be realized in practice.
Therefore, the filter design problem consists in finding an implementable filter whose order is low and
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whose frequency response H( f ) best approximates the specified ideal magnitude and phase responses
which are given as the desired design specifications or constraints.

The design of digital filters is typically done by performing the following steps:

1. Convert the desired design constraints into precise specifications of the desired magnitude and
phase responses, designed filter type (FIR or IIR), filter order, error tolerance, or criteria

2. Approximate the design specifications (of Step 1) by finding the implementable FIR or IIR filter
such that the obtained filter frequency response best meets the design specs according to a
mathematical error criterion

3. Realize the filter using the digital technology most suitable for the considered application

While Step 2 is performed using mathematical optimization and approximation methods, Step 1 is highly
dependent on the application and the detail provided by the user. Step 3 depends on the technology or
software used to build the filter.

Nowadays, the optimization needed in Step 2 is usually done with computer software that implements
sophisticated numerical optimization routines. In addition, these design packages usually have a con-
venient graphical user interface to aid in the conversion of specs needed in Step 1. With such software, a
filter design can be carried out quickly so that many designs can be tried in the process of getting the best
filter. Since most filter design techniques involve the trade-off among competing parameters, the software
can also incorporate design rules that allow the user to predict the order needed for certain specs without
actually designing the filter, for example.

This chapter is organized as follows. Section 11.2 provides a discussion of Steps 1 and 3, including creating
the design specifications, selecting the filter type and order, specifying the error tolerances and criteria, and
realizing the designed filter. Step 2 is treated in Sections 11.3 and 11.4. Section 11.3 describes the classical FIR
and IIR design methods. Section 11.4 presents nonclassic and more recently developed design methods with
added efficiency and=or flexibility. Finally, Section 11.5 gives examples of some of the currently available
software design tools and describes the characteristics that a user can expect from such tools.

11.2 Steps in Filter Design

Lina J. Karam

The general filter design problem can be briefly stated as follows. Given some ideal frequency response,
D(v), find a realizable IIR or FIR digital filter whose frequency response, H(v), approximates D(v). The
realizable filter is found by optimizing some measure of the filter’s performance, for example, minimizing
the filter order (IIR) or the filter length (FIR), or minimizing the width of the transition bands, or
reducing the passband error and=or stopband error. Setting up the specifications for the general filter
design problem will define these parameters and show which trade-offs are possible.

11.2.1 Creating the Design Specifications

Since the frequency response of a digital filter is always periodic in the frequency variable v with a period
of 2p, the design specifications need only be specified for one period; usually, over the frequency region
[�p,p]. Furthermore, when the frequency response is conjugate-symmetric (i.e., D*(v)¼D(�v)), then
it is sufficient to specify the response only on the positive frequency interval [0,p]. The conjugate-
symmetric case is the most common, because it corresponds to filters with real coefficients.

The simplest case is that of an ideal lowpass digital filter with zero phase, whose frequency response
can be expressed as

D(v) ¼ 1, jvj < vc

0, vc < jvj < p,

�
(11:1)
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where vc is the cutoff frequency corresponding to the location of a sharp cutoff edge, as shown in
Figure 11.1a. In this case, the frequency response, D(v), is real-valued and, therefore, corresponds also to
the magnitude response of the filter (since the phase is zero). Ideal frequency responses of other
commonly used frequency-selective filters are shown in Figure 11.1.

These ideal filters have frequency responses with sharp cutoff edges (discontinuities) and cannot be
implemented directly. They must be approximated with a realizable system—the sharp cutoff edges need
to be replaced with transition bands in which the designed frequency response would change smoothly in
going from one band to the other. So, design templates need to be provided where the sharp cutoff edges
are replaced with nonzero width transition bands located around the ideal cutoff edges. A typical design
template for a lowpass filter is shown in Figure 11.2, where

0 ωc ω

H(ω) H(ω)

H(ω)H(ω)

π

0 ωc1 ωc2 ωπ

0 ωc ωπ

0 ωc1

(d)

(b)

(c)

(a)

ωc2 ωπ

FIGURE 11.1 Common ideal digital filter types: (a) ideal lowpass, (b) ideal highpass, (c) ideal bandpass, and
(d) ideal bandstop.

1

0.5

0

0 0.1 0.2
Normalized frequency

FIR filter specifications

Fstop =
Fpass =

ωs
2π

1 – δp

1 + δp

+δs

–δs

ωp
2π

Transition region

0.3 0.4 0.5

FIGURE 11.2 Design template for a lowpass filter.
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. vp is the passband cutoff frequency.

. vs is the stopband cutoff frequency. The cutoff frequency vc is usually taken to be midway between
the passband and stopband cutoff frequencies.

. The open interval (vp,vs) is the transition band of width Dvt¼vs�vp. In the common design
methods, no design specifications are given in the transition bands which are therefore commonly
known as ‘‘don’t care bands.’’ However, it is usually desirable to have the frequency response
change smoothly (i.e., no fluctuations or overshoots) in the transition bands; this requirement
might not be satisfied by a design method that places no design constraints on the frequency
response in the transition bands.

. dp is known as the passband ripple and is the maximum allowable error in the passband.

. ds is known as the stopband ripple and is the maximum allowable error in the stopband.

The objective of filter design then is to find a realizable FIR or IIR filter whose frequency response
H(v) approximates the specified design constraints given by the design template. Ideally, the filter design
process would make each of the following parameters as small as possible: dp, ds, Dvt, IIR filter order
(number of poles of H(z) which is a rational function), or FIR filter length (number of zeros of H(z)
which is a finite polynomial). Practically, the filter design process minimizes one of these parameters
while holding the others fixed.

Traditionally, many of the filters designed in practice are specified in terms of constraints on the
magnitude response and no constraints on the phase response other than those imposed implicitly by
stability and=or causality requirements (e.g., poles inside unit circle [U.C.] in the complex Z-plane for IIR,
and linear-phase for FIR [1]). More recently, design methods that include phase design specifications
have been presented [2–5]. In this latter case, two design templates must be provided, one for the
magnitude response and another for the (passband) phase response. An ideal phase response is most
likely a constant slope phase function:

ffD(v) ¼ �Mv:

The parameter M is equivalent to the desired delay of the filter (in samples). An error template for the
phase would be a tolerance about the desired phase, for example, df would denote the maximum
allowable phase ripple, so that we require

jffH(v)� ffD(v)j < df:

11.2.2 Specs Derived from Analog Filtering

Often, the desired design specifications are not given directly in the digital domain. Instead, an equivalent
analog filtering operation is desired but is to be performed using an embedded digital filter. Figure 11.3
shows a standard system for processing continuous-time (continuous-space) signals using a digital filter.

D/AA/D yc(t)xc(t)

TsTs

H(ω)

Ha(Ω)

FIGURE 11.3 Standard system for processing analog signals using a digital (discrete-time) filter.
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The analog input signal is first transformed into a digital signal through an analog-to-digital (A=D)
conversion operation; then, filtering is carried out using a digital filter; finally, the filtered digital output is
converted back to the analog domain using a digital-to-analog (D=A) converter. For this system, if the
sampling period Ts of the A=D and D=A converters is chosen appropriately to avoid aliasing of the input
spectrum, the overall system (consisting of the A=D converter, the digital filter, and the D=A converter)
behaves as an equivalent analog filter. In this case, the frequency response Ha(V) of the equivalent analog
filter is related to the frequency response H(v) of the digital filter through a simple linear scaling relation
between the digital frequency v and the analog frequency V. This linear scaling relation is given by

v ¼ VTs (11:2)

leading to the following expression of the analog Ha(V) in terms of the digital H(v):

Ha(V) ¼
H(VTs), jVj < p

Ts

0, jVj � p

Ts
:

8><
>: (11:3)

Equivalently, H(v) can also be expressed in terms of Ha(V) as follows:

H(v) ¼ Ha(v=Ts), jvj < p: (11:4)

A typical filter design problem corresponding to this system is to design the digital filter such that the
overall equivalent analog filter best approximates some ideal analog specifications. So, if we are given
the desired analog specifications of the overall analog system, these can be turned into specifications for the
desired digital filter by using Equation 11.4. Then, a digital filter H(v) can be designed to approximate
the derived desired digital specifications. Finally, the resulting analog frequency response of the overall
system can be found using Equation 11.3, for example, to compare with the ideal analog response.

11.2.3 Specifying an Error Measure

An error measure is needed to assess how much the designed filter H(v) deviates from the desired filter
D(v). Defining the pointwise error E(v) as

E(v) ¼ D(v)� H(v)½ �, (11:5)

we must reduce E(v) to a scalar error measure (also called an error norm). With a correctly chosen norm,
there are many possible optimization algorithms that will compute the best filter parameters to minimize
the chosen error norm. The following error norms are the most commonly used in filter design:

. Mean squared error (MSE) or L2 norm

E2 ¼ 1
2p

ð
B

E(v)j j2dv
2
4

3
5
1=2

(11:6)

. Lp norm which is a generalization of the L2 norm and where p is a nonzero integer

Ep ¼ 1
2p

ð
B

E(v)j jpdv
2
4

3
5
1=p

(11:7)
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. Chebyshev or L1 norm

E1 ¼ max
v2B

E(v)j j (11:8)

The Chebyshev error norm limits the worst case deviation from the ideal specifications.
In the above definitions, j�j denotes the complex error magnitude and B is the frequency region of

interest over which the error norm is to be minimized. The frequency subset B � [�p,p) is taken to be
the union of the desired passbands and stopbands.

A more selective control of the approximation accuracy can be achieved by introducing a weighting
function W(v) in Equation 11.5 as follows:

E(v) ¼ W(v) D(v)� H(v)½ �: (11:9)

The weighting function W(v) must be a real, strictly positive and continuous function on B. It can force a
better match over selected regions or frequency points relative to other regions in B. Alternatively, note
that Equation 11.5 reduces to Equation 11.9 if we replace D(v) withW(v)D(v) and H(v) withW(v)H(v).

11.2.4 Selecting the Filter Type and Order

As mentioned in Section 11.1, there are two main types of filters, namely FIR and IIR. These differ in
their characteristics and in the way they are designed. Since the design algorithm depends strongly
on the choice of IIR vs. FIR filter, the designer should make this decision as early as possible. Although
the desired frequency response specifications can be approximated with either type of filter, deciding which
of the two filter types to use depends onmany factors including the implementation hardware, as well as the
magnitude and phase characteristics of the resulting filter. To aid in this decision, the main characteristics
of FIR and IIR filters are discussed below.

11.2.4.1 FIR Characteristics

1. The impulse response h(n) has a finite length, i.e., h(n) is nonzero only for a finite range of
indices n. For a general N-length FIR system, h(n) 6¼ 0 only for N1 � n � N2¼ (N1þN� 1).
When N1� 0, the filter is also causal.

2. The FIR frequency response H(v) is a finite-degree polynomial in e jv of the form

H(v) ¼
XN2

n¼N1

h(n)(e jv)�n, (11:10)

where N1 and N2 are (negative or positive) integers corresponding to the indices of the first
and last samples of h(n), respectively. The N impulse response samples are the free parameters of
the design procedure. This form is general enough to represent noncausal filters such as zero-phase
filters.

3. Designing an FIR filter consists in finding the polynomial H(v) that best approximates the design
specifications. This is done by computing the ‘‘optimal’’ (relative to some criteria) impulse
response samples h(n)f gN2

n¼N1
, which correspond to the unknown coefficients of the polynomial

H(v). The impulse response length N is usually fixed, but it could also be considered as a
free parameter to be optimized. Procedures for designing FIR filters are given in Sections 11.3.1
and 11.4.1.

4. The filter transfer function, denoted byH(z), is the z-transform of h(n) and is useful for studying the
stability of the system. For FIR filters, H(z) is a finite-degree polynomial in the complex variable z
and is given by
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H(z) ¼ H(e jv)je jv¼z ¼
XN2

n¼N1

h(n)z�n: (11:11)

It follows that the function H(z) has no poles except possibly at 0 or1, i.e., it cannot be infinite for
any point z with 0< jzj<1. It has only zeros (points z at which H(z)¼ 0). Therefore, an FIR filter
is always stable.

5. FIR filters allow the design of causal linear-phase systems which are very important and widely
used in practice. In fact, in many signal processing applications, such as speech and image
processing, it is desirable to pass some portion of the signal frequency band with minimal
distortion. For that purpose, linear-phase systems are particularly desirable since the effect of the
linear-phase is a pure time delay. For a more detailed discussion of linear-phase systems, the reader
is referred to [1].

6. Because the impulse response is of finite length, FIR filters are realized using the convolution
operation [1] which can be implemented directly in the time=space domain, or in terms of the
FFT in the frequency domain. More details about the implementation will be given in Section 11.2.6.

7. Since FIR filters have no feedback loops, they are relatively insensitive to roundoff noise. Noise due
to coefficient quantization can be a problem for very long filters, but can be mitigated by avoiding
the direct-form structures, and using special structures such as the cascade form for implementa-
tion.

8. FIR filters with very long impulse responses (N	 500) might be required to meet certain design
specifications, for example, high accuracy and=or short transition bands. Longer filters lead to an
increased complexity for both design and implementation. They require significant computing
time to optimize all the parameters h(n), and also many operations per second in the actual filter
implementation.

9. The trade-off among the filter design parameters has been determined empirically for some types
of FIR designs. The following simple (approximate) formula shows the relationship among the
ripples, bandedges, and filter length (N) for one method, the Parks–McClellan (PM) algorithm
(Section 11.3.1.3):

(N � 1)Dv 	 �20 log10
ffiffiffiffiffiffiffiffiffi
dpds

p � 13

2:324
,

where Dv¼vs�vp is the transition width. This formula allows the designer to predict the value
of N that will be needed to satisfy specs given for {vp,vs, dp, ds}. Other design formulas are given in
Section 11.3.1.

11.2.4.2 IIR Characteristics

1. The impulse response h(n) has an infinite number of nonzero samples (infinite length). As an
example, for a general IIR filter, h(n) 6¼ 0 only for No � n � 1, where No is a nonnegative integer
(commonly, No is taken to be 0; in this case, the filter is said to be causal).

2. The frequency response H(v) is a rational function, i.e., a ratio of two finite-degree polynomials in
e jv of the form

H(v) ¼ B(v)
A(v)

¼ e�jvNo

PM
k¼0 bke

�jvkPN
k¼0 ake

�jvk
, (11:12)

where No is an integer constant. The order of an IIR filter is equal to N, which is the degree of
the denominator in Equation 11.12; usually the degree of the numerator M is no greater than N.
The order N also determines the number of previous output samples that need to be stored and
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then fed back to compute the current output sample. Therefore, IIR systems are also known as
feedback systems. The filter coefficients {bn} and {an} in Equation 11.12 correspond to the
unknown (free) parameters of the design.

3. Designing an IIR filter amounts to finding the rational function H(v) that best approximates the
design specifications. In the frequency domain, this is done by computing the ‘‘optimal’’ (relative
to some criteria) coefficients {bn} and {an} in Equation 11.12 for the rational function H(v). The
filter order N is usually fixed, but can also be considered as a free parameter to be optimized.
Procedures for designing IIR filters are given in Sections 11.3.2 and 11.4.2.

4. As mentioned previously in section on pages 11–16, the filter transfer function, denoted by H(z), is
the z-transform of h(n) and is useful for studying the stability of the system. In the context of
LSI filters, stability implies that a bounded input to the filter will always result in a bounded output.
For IIR filters, H(z) is a rational function in the complex variable z and is given by

H(z) ¼ H(e jv)je jv¼z ¼ z�No

PM
k¼0 bkz

�kPN
k¼0 akz

�k
: (11:13)

The roots of the denominator polynomial are poles of the function H(z), i.e., H(z) is infinite
at points z with 0 � jzj<1. Stability then requires that no poles lie on the U.C. (jzj ¼ 1) in the
z-plane. Causality and stability require that the poles lie inside the U.C. in the z-plane. So, it is
possible to obtain a resulting IIR filter that is unstable. Also, coefficient quantization noise might
severely affect the response of the filter and its stability by disturbing the poles locations and by
driving some of the poles closer to or onto the U.C.

5. It is not possible to design causal linear-phase IIR filters. The resulting IIR causal realizable filters
must have a nonlinear phase response. Forward-backward filtering can be used as an implemen-
tation to approximate a zero-phase response [1].

6. Because the impulse response is infinitely long, convolution can no longer be used to implement
the IIR filters. Instead, IIR filters are efficiently implemented using feedback difference equations as
described in Section 11.2.6.

7. The noise characteristics of an IIR filter can be a major consideration when doing an implemen-
tation, especially in fixed-point arithmetic. Coefficient quantization degrades the actual filter
response from that designed by high-precision software. More critical is roundoff noise sensitivity
which can be amplified by the feedback loops in the filter.

8. Compared to FIR filters, IIR filters can achieve the desired design specifications with a relatively
low order (as few as 4–6 poles). So, fewer unknown parameters need to be computed and stored,
which might lead to a lower design and implementation complexity. However, the phase response
of IIR filters is never linear, which leads to the use of all-pass filters to compensate the group delay,
and thus raises the order of the filter and the complexity of the design process.

9. IIR filters are commonly designed by using closed-form design formulas corresponding to classical
filter types. While for FIR filters the length-estimating formulas are only approximate, the order-
estimating formulas for IIR filters are exact since they are derived from the mathematical
properties of the classical prototypes. These formulas are very useful to obtain the IIR filter
order needed to satisfy the desired design specifications.

11.2.5 Designing the Filter

After the designed filter type (FIR or IIR) is specified, a suitable design procedure can be selected
depending on the chosen filter type. Popular design procedures are based on computing the unknown
filter parameters by optimizing one of the error criteria indicated in Section 11.2.3.

For FIR filters, the two main classical methods are the windowing method [1] and the PM (Remez)
algorithm [6]. The windowing method minimizes the MSE when a rectangular window (corresponding
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to pure truncation of the ideal impulse response) is used at the expense of possible large overshoots near
the bandedges and large ripples in the resulting frequency response. It is suboptimal when other general
windows are used. However, the edge overshoot, transition width, and ripple height can be controlled by
using different types of windows as described in section on pages 11–12. The PM (Remez) algorithm
minimizes the Chebyshev (L1) error norm resulting in optimal equiripple designs. However, the original
PM algorithm is restricted to the design of linear-phase filters with a symmetric magnitude response.
An extension of this algorithm that allows the design of optimal FIR filters with arbitrary magnitude and
phase specifications has been presented by Karam and McClellan in [2,3]. Linear-programming-based
[4,7] and Constrained least-square [8] optimization methods also have been presented to allow the
inclusion of additional important design constraints. These and other FIR design procedures are
described in Sections 11.3.2 and 11.4.1.

While the design of FIR filters is typically performed directly in the digital domain, IIR filters are
commonly designed by transforming the digital design specifications into analog design specifications
and performing the filter design in the analog domain. The resulting analog filter is then transformed into
a digital filter using a suitable transformation. One important classical IIR design method is the bilinear
transformation method. Digital-only IIR design methods have also been presented. A description of IIR
design procedures is given in Sections 11.3.2 and 11.4.2.

11.2.6 Realizing the Designed Filter

Realizing the designed digital filter corresponds to computing the output of the filter in response to any
given input. For LSI filters, this is simplified by the fact that the input and output signals are related
through a simple convolution operation in the time=space domain. If x(n) is the input, y(n) the
corresponding output, and h(n) the impulse response of the LSI filter, then this relation is given by

y(n) ¼ h(n) * x(n) ¼
XN2

k¼N1

h(k)x(n� k), (11:14)

where N1 and N2 are the indices of the first and last nonzero samples of h(n). In the frequency (Fourier
transform) domain, the convolution relation (Equation 11.14) corresponds to a multiplication of the
respective Fourier transforms:

Y(v) ¼ H(v)X(v), (11:15)

where X(v), H(v), and Y(v) are the DTFT of x(n), h(n), and y(n), respectively. The variable v in
Equation 11.15 is continuous and, therefore, Equation 11.15 cannot be implemented in practice. An
implementable version of Equation 11.15 is obtained by using the discrete Fourier transform (DFT),
which is a sampled version of the DTFT and which consists of samples of the DTFT evaluated at the
points v¼ (2pk=NDFT), k¼ 0, . . . , (N� 1). NDFT is the size of the DFT and corresponds to the number of
sample points within the period 2p. It is a known fact that the time=space digital signal can be exactly
recovered from its DFT if NDFT is chosen to be greater than or equal to the length of the time=space
signal. Using the DFT, Equation 11.15 becomes

Y(k) ¼ H(k)X(k), k ¼ 0, . . . ,NDFT (11:16)

where NDFT�max [length of x(n)þ length of h(n)� 1] in order to perform the pointwise multiplication.
The DFT can be computed very efficiently using the fast Fourier transform (FFT) algorithm.
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11.2.6.1 Realizing FIR Filters

For FIR filters, the impulse response has a finite length and, therefore, N1 and N2 in Equation 11.14 are
finite. Also, in this case, a finite-size DFT is sufficient to exactly represent h(n) [NDFT� (N2�N1þ 1)].
Consequently, for finite-length input signals x(n), Equation 11.14 or 11.16 can be directly used to realize
the designed FIR filter in software or hardware. Commonly, the FIR filter coefficients h(n) (or the DFT
values if Equation 11.16 is used) are quantized to the precision of the processor or chip, stored, and used
as in Equation 11.14 to realize the designed FIR filter. While for Equation 11.14 the storage can be fixed
to the size of h(n) and is independent of the input, the size of the DFTs in Equation 11.16 and, therefore,
the needed storage vary with the size of the input signal. To overcome this problem and to handle the
processing of large-size signals, block-based convolution (also known as sectioned or high-speed convo-
lution) is used where the input signal is divided into blocks (sections) of fixed equal size; then, the
convolution of each input block with h(n) is computed using Equation 11.16 with X(k) being, in this case,
the DFT of the considered block; the computed block convolutions are finally properly combined to lead
the final output y(n). Two popular ways of performing block convolutions are [1,9] (1) overlap-add and
(2) overlap-save.

11.2.6.2 Realizing IIR Filters

For IIR filters, the impulse response has infinite length and, therefore, the summation in Equation 11.14
involves an infinite number of terms (N1 and=or N2 infinite). This makes Equation 11.14 not suitable for
realizing IIR filters. Similarly, the direct realization of Equation 11.16 would require computing the
infinite-length DFT H(k), which is not possible. These problems are overcome by using feedback
difference equations to realize the designed IIR filters. In fact, using Equation 11.15 with H(v) replaced
by Equation 11.12, we get

Y(v) ¼ e�jvNo

PM
k¼0 bke

�jvkPN
k¼0 ake

�jvk
X(v): (11:17)

For simplicity and without loss of generality, assume No¼ 0; we can rewrite Equation 11.17 as

XN
k¼0

ake
�jvkY(v) ¼

XM
k¼0

bke
�jvkX(v): (11:18)

Taking the inverse DTFT of both sides of Equation 11.18 and noting that multiplication by e�jvk

corresponds to a shift by k in the time=space domain, we obtain the input–output relation of the system
in the time=space domain:

XN
k¼0

aky(n� k) ¼
XM
n¼0

bkx(n� k): (11:19)

The difference equation (Equation 11.19) can be rearranged leading a recursive (feedback) input–output
relation. For instance, in order to compute the right-sided output sequence y(n), for n� no (no integer
constant), Equation 11.19 can be rewritten as

y(n) ¼
XM
n¼0

bk
ao

x(n� k)�
XN
k¼1

ak
ao

y(n� k), (11:20)

where ao is commonly taken to be 1, without loss of generality, since it can be integrated into the parameters
bk and ak. Realizing Equation 11.20 requires that N initial output values, y(no� 1), . . . , y(no�N),
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be specified. For LSI filters, initial rest conditions are required: if the input x(n)¼ 0 for n< no, then set
y(n)¼ 0 for n< no.

For a left-sided output sequence, Equation 11.19 can be rearranged as follows:

y (n� N)|fflfflfflffl{zfflfflfflffl}
m

¼
XM
k¼0

bk
aN

x(n� k)�
XN�1

k¼0

ak
aN

y(n� k): (11:21)

So, Equation 11.21 can be used to compute y(m), m � no, by setting n¼mþN and specifying the
N initial values y(noþ 1), . . . , y(noþN).

The feedback difference Equations 11.20 and 11.21 are simple to implement in software or hardware.
The MATLAB1* software command y¼filter(b, a, x) implements Equation 11.20. In hardware, typical
DSP chips implement low-order filters (N¼ 1 or N¼ 2); the low-order filters can be combined together
(in cascade and=or parallel) to produce the desired higher order filters (see Section 11.5). To implement
the filter in hardware, the difference equations (or, equivalently, the rational frequency response) are
represented by structures, which are flow graphs describing the algorithm, that is to be implemented, in
terms of basic building blocks [1, Chapter 6]. The basic building blocks include adders, multipliers,
branch points, and delay elements.

11.2.6.3 Quantization: Finite Wordlength Effect

In the design step, the filter coefficients are usually computed with a very high precision. In practice, these
coefficients can be implemented with finite wordlength only. Since the design algorithm yields coeffi-
cients computed to the highest precision available (e.g., double-precision floating-point), the filter
coefficients must be quantized to the internal format of the DSP. In addition, fixed-point chips are
widely used since they generally provide higher processing speed at lower cost than do the floating point
systems. In the case of a fixed-point DSP, this quantization also requires scaling of the coefficients to a
predetermined maximum value. The quantization and=or truncation of the coefficients will generally
cause the frequency response of the implemented filter to deviate from the designed filter frequency
response. The deviation from the desired specifications will depend on the chosen filter type and on the
structure used to implement the filter. For IIR filters, the quantization of the coefficients might turn a
stable filter into an unstable one. Other effects are due to the fact that arithmetic operations performed on
finite wordlength numbers generally result in numbers with larger wordlengths, which then need to be
quantized or truncated to the allowable precision. Therefore, it is important to specify the required
minimum wordlength that can be tolerated. As indicated in Section 11.5, very few design algorithms
perform the optimization of quantized coefficients. Studies of the different wordlength effects have
resulted in ‘‘rules of thumb’’ for the design and realization of a system such that the desired properties
can be achieved with reduced errors and expense. A detailed study of the wordlength effects and the
characterization of the resulting errors can be found in Sections 6.7 through 6.10 of [1] and Sections 7.5
through 7.7 of [9].

11.3 Classical Filter Design Methods

The methods described in this section are magnitude-only approximation methods, i.e., the desired phase
response is assumed to be constant or linear and is not included in the design. These classical methods
mainly design frequency-selective filters with real-valued coefficients h(n).

Methods for the design of filters with general specifications [2,4,10] have been developed more recently
and are presented in Section 11.4.

* MATLAB is a registered trademark of the Mathworks, Inc.
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11.3.1 FIR Design Methods

Ivan W. Selesnick, C. Sidney Burrus, Lina J. Karam,
and James H. McClellan

The classical FIR design methods are mainly concerned with the design of linear-phase FIR filters with
real-valued coefficients h(n). These filters are of four possible types [1,11]. The properties of the four
types of linear-phase filters are summarized in Table 11.1 and illustrated in Figure 11.4.

TABLE 11.1 Summary of the Four Types of Linear-Phase FIR Filters

Odd Length (N) Even Length (N)

Even Symmetry Type I Type II

h(aþ n)¼ h(a� n) P1
2(N�1)

k¼0
a(k) cos(vk)

P12N
k¼1

b(k) cos v k� 1
2

� �� �
a ¼ N � 1

2 a(0) ¼ h N � 1
2

� �
zero at v¼p

b¼ 0 a(k) ¼ 2h N � 1
2 � k

� �
b(k) ¼ 2h N

2 � k
� �

cos 1
2v
� � P12N�1

k¼0
b(k) cos(vk)

Odd Symmetry Type III Type IV

h(aþ n)¼�h(a� n) P1
2(N�1)

k¼1
c(k) sin(vk)

P12
k¼1

d(k) sin v k� 1
2

� �� �
a ¼ N � 1

2 zeros at v¼ 0, p zero at v¼ 0

b ¼ p
2 c(k) ¼ 2h N � 1

2 � k
� �

d(k) ¼ 2h N
2 � k

� �
h N � 1

2

� � ¼ 0

sin(v)
Pa�1

k¼0
č(k) cos(vk) sin 1

2 (v)
P12N�1

k¼0
č(k) cos(vk)

Length is evenLength is odd

H(0) = H(0.5) = 0 H(0) = 0

H(0.5) = 0
Even

symmetry

Odd
symmetry

FIGURE 11.4 Examples of impulse responses corresponding to the four types of linear-phase filters. H( f ) is the
corresponding frequency response, where the normalized frequency variable f¼v=2p.
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11.3.1.1 Design by Windowing

The Fourier relationship between the impulse response and H(v) suggests that h(n) can be obtained via

h(n) ¼ 1
2p

ðp
�p

D(v)e jvndv, (11:22)

where D(v) is the desired frequency response. However, these Fourier series coefficients are usually
infinitely supported. The windowing technique proposes that the infinitely supported Fourier series be
truncated and multiplied by an appropriate function (a ‘‘window’’) to obtain an FIR filter. For the design
of odd length symmetric filters, it is appropriate that D(v) be a real-valued even function—then h(n) is
real and h(n)¼ h(�n). A casual filter is obtained by then shifting h(n).

11.3.1.1.1 Steps in Window Filter Design

1. Create the ideal impulse response, using the inverse DTFT to obtain hd[n]:

hd[n] ¼ 1
2p

ðp
�p

D(v)e jvndv,

where D(v) is the ideal frequency response. For example, D(v) might be the ideal LPF.
2. Note: If the length of the window is N, then the ‘‘ideal’’ frequency response must contain a linear

phase term. For example, the ideal LPF would be specified as

D(v) ¼ 1 � e�jv(N�1)=2 �vc � v � þ vc

0 vc � jvj < p:

(

This allows both even-length and odd-length filters to be designed.
3. Create the FIR filter coefficients by multiplying by the window:

h[n] ¼ w[n] � hd[n] n ¼ 0, 1, . . . ,N � 1:

4. In the frequency domain, this windowing operation results in a convolution of the ideal frequency
response with the Fourier transform of the window, W(v):

H(v) ¼ 1
2p

ðp
�p

D(u)W(v� u)du:

Note that this convolution is periodic with period 2p.
5. Transition Width: The result is that the ideal frequency response is smeared by the convolution, so

the actual frequency response has a smooth roll-off from the passband to the stopband.
6. Passband and Stopband Deviations: In addition, all windows have sidelobes in their Fourier

transforms, so the convolution gives rise to ripples in the frequency response of the FIR filter.

Examples of commonly used windows and their transforms are shown in Figure 11.5. Windowed filter
design examples are shown in Figure 11.6.
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11.3.1.1.2 Window Selection

Let D(v) be the response of an ideal lowpass filter with cutoff frequency vc, illustrated in Figure 11.7. The
Fourier series of D(v) are samples of the sinc function:

sinc(n) ¼
vc

p

sin(vcn)
vcn

n 6¼ 0

vc

p
n ¼ 0:

8><
>: (11:23)

Simple truncation of the sinc function samples is generally not found to be acceptable because the
frequency responses of filters so obtained have large errors near the cutoff frequency. Moreover, as the filter
length is increased, the size of this error does not diminish to zero (although the square error does). This is
known as Gibbs phenomenon. Figure 11.8 illustrates a filter obtained by truncating the sinc function.

To overcome this problem, the windowing technique obtains h(n) by multiplying the sinc function by
a ‘‘window’’ that is tapered near its endpoints:

h(n) ¼ w(n) � sinc(n): (11:24)
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FIGURE 11.5 Common windows and their Fourier transforms. The window length is N¼ 49. (a) Index (a),
(b) normalized frequency (sampling frequency¼ 1), (c) Index (a), and (d) normalized frequency (sampling
frequency¼ 1).
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FIGURE 11.6 Examples of windowed filter design. The window length is N¼ 49. (a) Index (a), (b) index (a),
(c) normalized frequency (sampling frequency¼ 1), and (d) normalized frequency (sampling frequency¼ 1).

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4
ω/π

Desired amplitude

0.6 0.8 1

FIGURE 11.7 Ideal lowpass filter, vc¼ 0.3p.
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The generalized cosine windows and the Bartlett (triangular) window are examples of well-known
windows. A useful window function has a frequency response that has a narrow mainlobe, a small
relative peak sidelobe height, and good sidelobe Roughly, the width of the mainlobe affects the width
of the transition band of H(v), while the relative height of the sidelobes affects the size of the ripples in
H(v). These cannot be made arbitrarily good at the same time. There is a trade-off between mainlobe
width and relative sidelobe height. Some windows, such as the Kaiser window [12], provide a parameter
that can be varied to control this trade-off.

One approach to window design computes the window sequence that has most of its energy in a given
frequency band, say [�B, B]. Specifically, the problem is formulated as follows. Find w(n) of specified
finite support that maximizes

l ¼
Ð B
�B W(v)j j2dvÐ p
�p W(v)j j2dv , (11:25)

where W(v) is the Fourier transform of w(n). The solution is a particular discrete prolate spheroidal
(DPS) sequence [13], The solution to this problem was traditionally found by finding the largest
eigenvector* of a matrix whose entries are samples of the sinc function [13]. However, that eigenvalue
problem is numerically ill conditioned—the eigenvalues cluster around to 0 and 1. Recently, an
alternative eigenvalue problem has become more widely known, that has exactly the same eigenvectors
as the first eigenvalue problem (but different eigenvalues), and is numerically well conditioned [14–16].
The well-conditioned eigenvalue problem is described by Av¼ uv where A is tridiagonal and has the
following form:

Ai, j ¼

1
2
i(N � i) j ¼ i� 1

N � 1
2

� i

	 
2

cosB j ¼ i

1
2
(iþ 1)(N � 1� i) j ¼ iþ 1

0 j j� ij > 1

8>>>>>>>>><
>>>>>>>>>:

(11:26)
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FIGURE 11.8 Lowpass filter obtained by sinc function truncation, vc¼ 0.3p.

* The eigenvector with the largest eigenvalue.
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for i, j¼ 0, . . . ,N� 1. Again, the eigenvector with the largest eigenvalue is the sought solution. The
advantage of A in Equation 11.26 over the first eigenvalue problem is twofold: (1) the eigenvalues of A in
Equation 11.26 are well spread (so that the computation of its eigenvectors is numerically well condi-
tioned) and (2) the matrix A in Equation 11.26 is tridiagonal, facilitating the computation of the largest
eigenvector via the power method.

By varying the bandwidth, B, a family of DPS windows is obtained. By design, these windows are
optimal in the sense of energy concentration. They have good mainlobe width and relative peak sidelobe
height characteristics. However, it turns out that the sidelobe roll-off of the DPS windows is relatively
poor, as noted in [16].

The Kaiser [12] and Saramäki [17,18] windows were originally developed in order to avoid the
numerically ill-conditioning of the first matrix eigenvalue problem described above. They approximate
the prolate spheroidal sequence, and do not require the solution to an eigenvalue problem. Kaiser’s
approximation to the prolate spheroidal window [12] is given by

w(n) ¼
I0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (n�M)2=M2

q	 

I0(b)

for n ¼ 0, 1, . . . ,N � 1, (11:27)

where
M ¼ 1

2 (N � 1)
b is an adjustable parameter
I0(x) is the modified zeroth-order Bessel function of the first kind

The window in Equation 11.27 is known as the Kaiser window of length N. For an odd-length window,
the midpointM is an integer. The parameter b controls the trade-off between the mainlobe width and the
peak sidelobe level—it should be chosen to lie between 0 and 10 for useful windows. High values of b
produce filters having high stopband attenuation, but wide transition widths. The relationship between b

and the ripple height in the stopband (or passband) is illustrated in Figure 11.9 and is given by

b ¼
0 ATT < 21

0:5842(ATT� 21)0:4 þ 0:07886(ATT� 21) 21 � ATT � 50

0:1102(ATT� 8:7) 50 < ATT,

8><
>: (11:28)

where ATT¼�20log10 ds is the ripple height in decibel.
For lowpass FIR filter design, the following design formula helps the designer to estimate the Kaiser

window length N in terms of the desired maximum passband and stopband error d,* and transition width
DF¼ (vp�vs)=2p:

N 	 �20 log10(d)� 7:95
14:357DF

þ 1: (11:29)

Examples of filter designs using the Kaiser window are shown in Figure 11.10.
A second approach to window design minimizes the relative peak sidelobe height. The solution is the

Dolph–Chebyshev window [17,19], all the sidelobes of which have equal height. Saramäki has described a
family of transitional windows that combine the optimality properties of the DPS window and the

* For Kaiser window designs, d¼ dp¼ ds.
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Dolph–Chebyshev window. He has found that the transitional window yields better results than both the
DPS window and the Dolph–Chebyshev window, in terms of attenuation vs. transition width [17].

An extensive list and analysis of windows is given in [19]. In addition, the use of nonsymmetric
windows for the design of fractional delay filters has been discussed in [20,21].
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11.3.1.1.3 Remarks
. The technique is conceptually and computationally simple.
. Using the window method, it is not possible to weight the passband and stopband differently.
. The ripple sizes in each band will be approximately the same. But requirements are often more

strict in the stopband.
. It is difficult to specify the bandedges and maximum ripple size precisely.
. The technique is not suitable for arbitrary desired responses.
. The use of windows for filter design is generally considered suboptimal because they do not solve a

clear optimization problem, but see [22].

11.3.1.2 Optimal Square Error Design

The formulation is as follows. Given a filter length N, a desired amplitude function D(v), and a
nonnegative function W(v), find the symmetric filter that minimizes the weighted integral square
error (or ‘‘L2 error’’), defined by

kE(v)k2 ¼
1
p

ðp
0

W(v) A(v)� D(v)½ �2dv
0
@

1
A

1
2

: (11:30)

For simplicity, symmetric odd-length filters* will be discussed here, in which case A(v) can be
written as

A(v) ¼ 1ffiffiffi
2

p a(0)þ
XM
n¼1

a(n) cos nv, (11:31)

where N¼ 2Mþ 1 and where the impulse response coefficients h(n) are related to the cosine coefficients
a(n) by

h(n) ¼

1
2
a(M � n) for 0 � n � M � 1

1ffiffiffi
2

p a(0) for n ¼ M

1
2
a(n�M) for M þ 1 � n � N � 1

0 otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

(11:32)

The nonstandard choice of 1ffiffi
2

p here simplifies the notation below.
The coefficients a¼ [a(0), . . . , a(M)]t are found by solving the linear system

Ra ¼ c, (11:33)

* To treat the four linear phase types together, see Equations 11.51 through 11.55 in the sequel. Then, kE(v)k2
becomes

�
1
p

Ð p
0

�W(v)[A(v)� �D(v)]2dv
�1

2, where �W(v)¼W(v)Q2(v) and �D(v)¼D(v)=Q2(v) A(v) is as in Equa-
tion 11.31.
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where the elements of the vector c are given by

c0 ¼
ffiffiffi
2

p

p

ðp
0

W(v)D(v)dv (11:34)

ck ¼ 2
p

ðp
0

W(v)D(v) cos kv dv, (11:35)

and the elements of the matrix R are given by

R0,0 ¼ 1
p

ðp
0

W(v)dv (11:36)

R0,k ¼ Rk,0 ¼
ffiffiffi
2

p

p

ðp
0

W(v) cos kv dv (11:37)

Rk,l ¼ Rl,k ¼ 2
p

ðp
0

W(v) cos kv cos lv dv (11:38)

for l, k¼ 1, . . . ,M. Often it is desirable that the coefficients satisfy some linear constraints, say Ga¼ b.
Then the solution, found with the use of Lagrange multipliers, is given by the linear system

R Gt

G 0

 �
a
m

 �
¼ c

b

 �
, (11:39)

the solution of which is easily verified to be given by

m ¼ (GR�1Gt)�1(GR�1c� b) a ¼ R�1(c� Gtm), (11:40)

where m are the Lagrange multipliers.
In the unweighted case (W(v)¼ 1) the solution is given by a simpler system:

IMþ1 Gt

G 0

 �
a
m

 �
¼ c

b

 �
: (11:41)

In Equation 11.41, IMþ1 is the (Mþ 1) by (Mþ 1) identity matrix. It is interesting to note that in the
unweighted case, the least square filter minimizes a worst case pointwise error in the time domain over a
set of bounded energy input signals [23].

In the unweighted case with no constraint, the solution becomes a¼ c. This is equivalent to truncation
of the Fourier series coefficients (the ‘‘rectangular window’’ method). This simple solution is due to the
orthogonality of the basis functions f 1ffiffi

2
p , cosv, cos 2v, . . .g when W(v)¼ 1. In general, whenever

the basis functions are orthogonal, then the solution takes this simple form.

11.3.1.2.1 Discrete Squares Error

When D(v) is simple, the integrals above can be found analytically. Otherwise, entries of R and b can be
found numerically.
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Define a dense uniform grid of frequencies over [0, p) as vi¼ ip=L for i¼ 0, . . . , L� 1 and for some
large L (say L	 10M). Let d be the vector given by di¼D(vi) and C be the L by Mþ 1 matrix of cosine
terms: Ci,0 ¼ 1ffiffi

2
p , Ci,k ¼ cos kvi for k¼ 1, . . . ,M. (C has many more rows than columns.) Let W be

the diagonal weighting matrix diag [W(vi)]. Then

R 	 2
Lp

CtWC c 	 2
Lp

CtWd: (11:42)

Using these numerical approximations for R and c is equivalent to minimizing the discrete squares error,

XL�1

i¼0

W(vi)(D(vi)� A(vi))
2 (11:43)

that approximates the integral square error. In this way, an FIR filter can be obtained easily, whose
response approximates an arbitrary D(v) with an arbitrary W(v). This makes the least squares error
approach very useful. It should be noted that the minimization of Equation 11.43 is most naturally
formulated as the least squares solution to an over-determined linear system of equations, an approach
described in [11]. The solution is the same, however.

11.3.1.2.2 Transition Regions

As an example, the least squares design of a length N¼ 2Mþ 1 symmetric lowpass filter according to the
desired response and weight functions

D(v) ¼ 1 v 2 [0,vp]

0 v 2 [vs,p]

�
W(v) ¼

Kp v 2 [0,vp]

0 v 2 [vp,vs]

Ks v 2 [vs,p]

8><
>: (11:44)

is developed. For this D(v) and W(v), the vector c in Equation 11.33 is given by

ck ¼ 2Kp sin (kvp)

kp
1 � k � M (11:45)

and the matrix R is given by

R ¼ T toeplitz(p, p)þ hankel(p, q)½ �T, (11:46)

where the matrix T is the identity matrix everywhere except for T0,0, which is 1ffiffi
2

p . The vectors p and q
are given by

p0 ¼ Kpvp þ Ks(p� vs)

p
(11:47)

pk ¼ Kp sin(kvp)� Ks sin(kvs)

kp
1 � k � M (11:48)

qk ¼ Kp sin((kþM)vp)� Ks sin((kþM)vs)

(kþM)p
0 � k � M: (11:49)

The matrix toeplitz (p,p) is a symmetric matrix with constant diagonals, the first row and column of which
is p. Thematrix hankel (p,q) is a symmetric matrix with constant anti-diagonals, the first column of which is
p, the last row ofwhich is q. The structure of thematrixRmakes possible the efficient solution ofRa¼ b [24].
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Because the error is weighted by zero in the transition band [vp,vs], the Gibbs phenomenon is eliminated:
the peak error diminishes to zero as the filter length is increased. Figure 11.11 illustrates an example.

11.3.1.2.3 Other Least Squares Approaches

Another approach modifies the discontinuous ideal lowpass response of Figure 11.7 so that a fractional
order spline is used to continuously connect the passband and stopband [25]. In this case, with uniform
error weighting, (1) a simple closed-form expression for the least squares error solution is available,
and (2) Gibbs phenomenon is eliminated. The use of spline transition regions also facilitates the design
of multiband filters by combining various lowpass filters [26]. In that case, a least squares error multi-
band filter can be obtained via closed-form expressions, where the transition region widths can be
independently specified.

Similar expressions can be derived for the even length filter and the odd symmetric filters. It should
also be noted that the least squares error approach is directly applicable to the design of nonsymmetric
FIR filters, complex-valued FIR filters, and two-dimensional (2-D) FIR filters.

In addition, another approach to filter design according to a square error criterion produces filters
known as eigenfilters [27]. This approach gives the filter coefficients as the largest eigenvalue of a matrix
that is readily constructed.

11.3.1.2.4 Remarks
. Optimal with respect to square error criterion
. Simple, non-iterative method
. Analytic solutions sometimes possible, otherwise solution is obtained via solution to linear system

of equations
. Allows the use of a frequency-dependent weighting function
. Suitable for arbitrary D(v) and W(v)
. Easy to include arbitrary linear constraints
. Does not allow direct control of maximum ripple size

11.3.1.3 Equiripple Optimal Chebyshev Filter Design

The minimization of the Chebyshev norm is useful because it permits the user to explicitly specify band-
edges and relative error sizes in each band. Furthermore, the designed equiripple FIR filters have the
smallest transition width among all FIR filters with the same deviation.
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FIGURE 11.11 Weighted least squares example: N¼ 41, vp¼ 0.25p, vs¼ 0.35p, and K¼ 4.
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Linear phase FIR filters that minimize a Chebyshev error criterion can be obtained with the Remez
exchange algorithm [28,29] or by linear programming techniques [30]. Both these methods are iterative
numerical procedures and are applicable to arbitrary desired frequency response amplitudes.

11.3.1.3.1 Remez Exchange (Parks–McClellan)

Parks and McClellan proposed the use of the Remez algorithm for FIR filter design and made programs
available [6,29,31]. Many texts describe the PM algorithm in detail [1,11].

11.3.1.3.2 Problem Formulation

Given a filter length, N, a desired (real-valued) amplitude function, D(v), and a nonnegative weighting
function, W(v), find the symmetric (or antisymmetric) filter that minimizes the weighted Chebyshev
error, defined by

kE(v)k1 ¼ max
v2B

W(v)(A(v)� D(v))j j, (11:50)

where B is a closed subset of [0,p]. Both D(v) and W(v) should be continuous over B. The solution to
this problem is called the best weighted Chebyshev approximation to D(v) over B.

To treat each of the four linear phase cases together, note that in each case, the amplitude A(v) can be
written as [32]

A(v) ¼ Q(v)P(v), (11:51)

where P(v) is a cosine polynomial (Table 11.1). By expressing A(v) in this way, the weighted error
function in each of the four cases can be written as

E(v) ¼ W(v) A(v)� D(v)½ � (11:52)

¼ W(v)Q(v) P(v)� D(v)
Q(v)

 �
: (11:53)

Therefore, an equivalent problem is the minimization of

kE(v)k1 ¼ max
v2B

�W(v) P(v)� �D(v)½ �j j, (11:54)

where

�W(v) ¼ W(v)Q(v), �D(v) ¼ D(v)
Q(v)

, P(v) ¼
Xr�1

k¼0

a(k) cos kv, (11:55)

and �B¼B� [endpoints where Q(v)¼ 0].
The Remez exchange algorithm, for computing the best Chebyshev solution, uses the alternation

theorem. This theorem characterizes the best Chebyshev solution.

11.3.1.3.3 Alternation Theorem

If P(v) is given by Equation 11.55, then a necessary and sufficient condition that P(v) be the unique
minimizer of Equation 11.54 is that there exist in �B at least rþ 1 extremal points v1, . . . ,vrþ1 (in order:
v1<v2< � � �<vrþ1), such that

E(vi) ¼ c � (�1)ikE(v)k1 for i ¼ 1, . . . , r þ 1, (11:56)

where c is either 1 or �1.
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The alternation theorem states that jE(v)j attains its maximum value at a minimum of rþ 1 points,
and that the weighted error function alternates sign on at least rþ 1 of those points. Consequently, the
weighted error functions of best Chebyshev solutions exhibit an equiripple behavior.

For lowpass filter design via the PM algorithm, the functions D(v) and W(v) in Equation 11.44 are
usually used. For lowpass filters so obtained, the deviations dp and ds satisfy the relation dp=ds¼Ks=Kp.
For example, consider the design of a real symmetric lowpass filter of length N¼ 41. Then Q(v)¼ 1 and
r¼ (Nþ 1)=2¼ 21. With the desired amplitude and weight function, Equation 11.44, with K¼ 4 and
vp¼ 0.25p, vs¼ 0.35p, the best Chebyshev solution and its weighted error function are illustrated in
Figure 11.12. The maximum errors in the passband and stopband are dp¼ 0.0178 and ds¼ 0.0714,
respectively. The circular marks in Figure 11.12c indicate the extremal points of the alternation theorem.

To elaborate on the alternation theorem, consider the design of a length 21 lowpass filter and a length
41 bandpass filter. Several optimal Chebyshev filters are illustrated in Figures 11.13 through 11.16. It can
be verified by inspection that each of the filters illustrated in Figures 11.13 through 11.16 is Chebyshev
optimal, by verifying that the alternation theorem is satisfied. In each case, a set of rþ 1 extremal points,
which satisfies the necessary and sufficient conditions of the alternation theorem, is indicated by circular
marks in Figures 11.13 through 11.16.
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FIGURE 11.12 Equiripple lowpass filter obtained via the PM algorithm: N¼ 41, vp¼ 0.25p, vs¼ 0.35p, and
dp=ds¼ 4.
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Several remarks regarding the weighted error function of a best Chebyshev solution are worth noting.

1. E(v) may have local minima and maxima in �B at which jE(v)j does not attain its maximum value.
See Figure 11.14.

2. jE(v)j may attain its maximum value at more than rþ 1 points in �B. See Figure 11.15.
3. If there exists in �B s ordered points v1, . . . , vs, with s> rþ 1, at which jE(vi)j ¼ kE(v)k1 (i.e.,

there are more than rþ 1 extremal points), then it is possible that E(vi)¼ E(viþ1) for some i. See
Figure 11.16. This is rare and, for lowpass filter design, impossible.

Figure 11.14 illustrates two filters that possess ‘‘scaled-extra ripples’’ (ripples of non-maximal size [30]).
Figure 11.15 illustrates two maximal ripple filters. Maximal ripple filters are a subset of optimal
Chebyshev filters that occur for special values of vp, vs, etc. (The first algorithms for equiripple filter
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FIGURE 11.13 PM example. (a) Lowpass: N¼ 21, vp¼ 0.3161p, and vs¼ 0.4444p. (b) Bandpass: N¼ 41,
v1¼ 0.2415p, v2¼ 0.3189p, v3¼ 0.6811p, and v4¼ 0.7585p.
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design produced only maximal ripple filters [33,34]). Figure 11.16 illustrates a filter that possesses two
scaled-extra ripples and one extra ripple of maximal size. These extra ripples have no bearing on the
alternation theorem. The set of rþ 1 points, indicated in Figure 11.16, is a set that satisfies the alternation
theorem; therefore, the filter is optimal in the Chebyshev sense.

11.3.1.3.4 Remez Algorithm

To understand the Remez exchange algorithm, first note that Equation 11.56 can be written as

Xr�1

k¼0

a(k) cos kvi � (�1)id
�W(vi)

¼ �D(vi) for i ¼ 1, . . . , r þ 1, (11:57)
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where d represents kE(v)k1, and consider the following. If the set of extremal points in the alter-
nation theorem were known in advance, then the solution could be found by solving the system of
Equation 11.57.

The system in Equation 11.57 represents an interpolation problem, which in matrix form becomes

1 cosv1 � � � cos (r� 1)v1 1= �W(v1)(37)

1 cosv2 � � � cos (r� 1)v2 �1= �W(v2)(38)

..

. ..
.
(39)

(40)

1 cosvrþ1 � � � cos (r� 1)vrþ1 (� 1)r= �W(vrþ1)(41)

2
66666664

3
77777775

a(0)(42)

a(1)(43)

..

.
(44)

a(r� 1)(45)

d

2
66666664

3
77777775
¼

�D(v1)(46)
�D(v2)(47)

..

.
(48)

(49)
�D(vrþ1)

2
66666664

3
77777775

(11:58)

to which there is a unique solution. Therefore, the problem becomes one of finding the correct set of
points over which to solve the interpolation problem in Equation 11.57.

The Remez exchange algorithm proceeds by iteratively

1. Solving the interpolation problem in Equation 11.58 over a specified set of rþ 1 points
(a reference set)

2. Updating the reference set (by an exchange procedure)

The initial reference set can be taken to be rþ 1 points uniformly spaced over �B. Convergence is achieved
when kE(v)k1� jdj< e, where e is a small number (such as 10�6) indicating the numerical accuracy
desired.

During the interpolation step, the solution to Equation 11.58 is facilitated by the use of a closed-form
solution for d and interpolation formulas [29].

After the interpolation step is performed, the reference set is updated as follows. The weighted error
function is computed, and a new reference set v1, . . . ,vrþ1 is found such that (1) the current weighted
error function E(v) alternates sign on the new reference set, (2) jE(vi)j � jdj for each point vi of the
new reference set, and (3) jE(vi)j> jdj for at least one point vi of the new reference set. Generally,
the new reference set is found by taking the set of local minima and maxima of E(v) that exceed the
current value of d, and taking a subset of this set that satisfies the alternation property. Figure 11.17
illustrates the operation of the PM algorithm.

11.3.1.3.5 Design Rules for Lowpass Filters

While the PM algorithm is applicable for the approximation of arbitrary responses D(v), the lowpass
case has received particular attention [12,35–37]. In the design of lowpass filters via the PM algorithm,
there are five parameters of interest: the filter length N, the passband and stopband edges vp and vs, and
the maximum error in the passband and stopband dp and ds. Their values are not independent—any four
determines the fifth. Formulas for predicting the required filter length for a given set of specifications
make this clear. Kaiser developed the following approximate relation for estimating the equiripple FIR
filter length for meeting the specifications:

N 	 �20 log10
ffiffiffiffiffiffiffiffiffi
dpds

p� �� 13

14:6DF
þ 1, (11:59)

where DF¼ (vs�vp)=(2p). Defining the filter attenuation ATT to be �20 log10 (
ffiffiffiffiffiffiffiffiffi
dpds

p
), and comparing

Equation 11.29 with Equation 11.59, it can be seen that the optimal Chebyshev design results in filters
with about 5 dB more attenuation than the windowed designed filters when the same specs are used for
the other design parameters (N and DF). Figure 11.18 compares window-based designs with Chebyshev
(PM)-based designs.
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Herrmann et al. gave a somewhat more accurate design formula for the optimal Chebyshev FIR filter
design [37]:

N 	 D1(dp, ds)� f (dp, ds)(DF)
2

DF
þ 1, (11:60)

where

D1(dp, ds) ¼ 0:005309 log210dp þ 0:07114 log10dp � 0:4761
� �

log10ds

� 0:00266 log210dp þ 0:5941 log10dp þ 0:4278
� �

,

f (dp, ds) ¼ 11:01217þ 0:51244( log10dp � log10ds): (11:61)

These formulas assume that ds< dp. If otherwise, then interchange dp and ds. Equation 11.60 is the one
used in the MATLAB implementation (remezord() function) as part of the MATLAB signal processing
toolbox.

To use the PM algorithm for lowpass filter design, the user specifies N,vp,vs, dp=ds. The PM algorithm
can be modified so that the user specifies other parameter sets [38]. For example, with one modification,
the user specifies N,vp, dp, ds; or similarly, N,vs, dp, ds. With a second modification, the user specifies N,
vp,vs, dp; or similarly, N,vp,vs, ds.

Note that Equation 11.59 states that the filter length N and the transition width DF are inversely
proportional. This is in contrast to the relation for maximally flat symmetric filters. For equiripple filters
with fixed dp and ds, DF diminishes like 1=N; while for maximally flat filters, DF diminishes like 1=

ffiffiffiffi
N

p
.

11.3.1.3.6 Remarks
. Optimal with respect to Chebyshev norm
. Explicit control of bandedges and relative ripple sizes
. Efficient algorithm, always converges
. Allows the use of a frequency-dependent weighting function
. Suitable for arbitrary D(v) and W(v)
. Does not allow arbitrary linear constraints

11.3.1.3.7 Summary of Optimal Chebyshev Linear Phase FIR Filter Design

1. The desired frequency response can be written as

D(v) ¼ A(v)e�j(avþb),

where a¼ (N� 1)=2 always, and b¼ 0 for filters with even symmetry. Since A(v) is a real-valued
function, the Chebyshev approximation is applied to A(v) and the linear phase comes for free.
However, the delay will be proportional to the designed filter length.

2. The mathematical theory of Chebyshev approximation is applied. In this type of optimization, the
maximum value of the error is minimized, as opposed to the error energy as in least squares.
Minimizing the maximum error is consistent with the desire to keep the passband and stopband
deviations as small as possible. (Recall that least squares suffers from the Gibbs effect). However,
minimization of the maximum error does not permit the use of derivatives to find the optimal
solution.

3. The alternation theorem gives the necessary and sufficient conditions for the optimum in terms of
equal-height ripples in the (weighted) error function.
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4. The Remez exchange algorithm will compute the optimal approximation by searching for the
locations of the peaks in the error function. This algorithm is iterative.

5. The inputs to the algorithm are the filter length N, the locations of the passband and stopband
cutoff frequencies vp and vs, and a weight function to weight the error in the passband and
stopband differently.

6. The Chebyshev approximation problem can also be reformulated as a linear program. This is
useful if additional linear design constraints need to be included.

7. Transition width is minimized among all FIR filters with the same deviations.
8. Passband and stopband deviations: The response is equiripple, it does not fall off away from the

transition region. Compared to the Kaiser window design, the optimal Chebyshev FIR design gives
about 5 dB more attenuation (where attenuation is given by �20 log10d and d is the stopband or
passband error) for the same specs on all other filter design parameters.

11.3.1.3.7.1 Linear Programming Often it is desirable that an FIR filter be designed to minimize the
Chebyshev error subject to linear constraints that the PM algorithm does not allow. An example
described by Rabiner and Gold includes time domain constraints—in that example [30], the oscillatory
behavior of the step response of a lowpass filter is included in the design formulation.

Another example comes from a communication application [39]—given h1(n), design h2(n) so that
h(n)¼ (h1 * h2)(n) is an Mth band filter (i.e., h(Mn)¼ 0 for all n 6¼ 0 and M 6¼ 0). Such constraints are
linear in h1(n). (In the special case that h1(n)¼ d(n), h2(n) is itself an Mth band filter, and is often used
for interpolation.)

Linear programming formulations of approximation problems (and optimization problems in general)
are very attractive because well-developed algorithms exist (namely the simplex algorithm and more
recently, interior point methods) for solving such problems. Although linear programming requires
significantly more computation than the methods described above, for many problems it is a very rapid
and viable technique [7]. Furthermore, this approach is very flexible—it allows arbitrary linear equality
and inequality constraints.

The problem of minimizing the weighted Chebyshev error W(v)[A(v)�D(v)] where A(v) is given
by Q(v)

Pr�1
k¼0 a(k) cos kv can be formulated as a linear program as follows:

minimize d (11:62)

subject to

A(v)� d

W(v)
� D(v) (11:63)

�A(v)� d

W(v)
� �D(v): (11:64)

The variables are a(0), . . . , a(r� 1) and d. The cost function and the constraints are linear functions of the
variables, hence the formulation is that of a linear program.

11.3.1.3.7.2 Remarks
. Optimal with respect to chosen criteria
. Easy to include arbitrary linear constraints
. Criteria limited to linear programming formulation
. High computational cost
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11.3.2 IIR Design Methods

Lina J. Karam, Ivan W. Selesnick, and C. Sidney Burrus

The objective in IIR filter design is to find a rational function H(v) (as in Equation 11.12) that
approximates the ideal specifications according to some design criteria.

The approximation of an arbitrary specified frequency response is more difficult for IIR filters than is
so for FIR filters. This is due to the nonlinear dependence of H(v) on the filter coefficients in the IIR case.
However, for the ideal lowpass response, there exist analytic techniques to directly obtain IIR filters.
These techniques are based on converting analog filters into IIR digital filters. One such popular IIR
design method is the bilinear transformation method [1,11]. Other types of frequency-selective filters
(shown in Figure 11.1) can be obtained from the designed lowpass prototype using additional frequency
transformations [1, Chapter 7].

Direct ‘‘discrete-time’’ iterative IIR design methods have also been proposed (see Section 11.4.2). While
these methods can be used to approximate general magnitude responses (i.e., not restricted to the design of
the standard frequency-selective filters), they are iterative and slower than the traditional ‘‘continuous-
time=space’’ based approaches that make use of simple and efficient closed-form design formulas.

11.3.2.1 Bilinear Transformation Method

The traditional IIR design approaches reduce the ‘‘discrete-time=space’’ (digital) filter design problem
into a ‘‘continuous-time=space’’ (analog) filter design problem, which can be solved using well-developed
and relatively simple design procedures based on closed-form design formulas. Then, a transformation is
used to map the designed analog filter into a digital filter meeting the desired specifications.

Let H(z) denote the transfer function of a digital filter (i.e., H(z) is the Z-transform of the filter impulse
response h(n)) and let Ha(s) denote the transfer function of an analog filter (i.e., Ha(s) is the Laplace
transform of the continuous-time filter impulse response h(t)). The bilinear transformation is a mapping
between the complex variables s and z and is given by

s ¼ K
1� z�1

1þ z�1

	 

, (11:65)

where K is a design parameter. Replacing s by Equation 11.65 in Ha(s), the analog filter with transfer
function Ha(s) can be converted into a digital filter whose transfer function is equal to

H(z) ¼ Ha(s)js¼K 1�z�1

1þz�1

� �: (11:66)

Alternatively, the mapping can be used to convert a digital filter into an analog filter by expressing z in
function of s.

Note that the analog frequency variable V corresponds to the imaginary part of s (i.e., s¼sþ jV),
while the digital frequency variable v (in radians) corresponds to the angle (phase) of z (i.e., z¼ re jv).
The bilinear transformation (Equation 11.65) was constructed such that it satisfies the following
important properties:

1. The left-half plane (LHP) of the s-plane maps into the inside of the U.C. in the z-plane. As a result,
a stable and causal analog filter will always result in a stable and causal digital filter.

2. The jV axis (imaginary axis) in the s-plane maps into the U.C. in the z-plane (i.e., z¼ e jv). This
results in a direct relationship between the continuous-time frequency V and the discrete-time
frequency v. Replacing z by e jv (U.C.) in Equation 11.65, we obtain the following relation:

V ¼ K tan(v=2) (11:67)
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or, equivalently,

v ¼ 2 arctan(V=K): (11:68)

The design parameter K can be used to map one specific frequency point in the analog domain to a
selected frequency point in the digital domain, and to control the location of the designed filter cutoff
frequency. Equations 11.67 and 11.68 are nonlinear, resulting in a warping of the frequency axis as the
filter frequency response is transformed from one domain to another. This follows from the fact that the
bilinear transformation maps (via Equations 11.67 or 11.68) the entire jV axis, i.e., �1 � V � 1, onto
one period �p � v � p (which corresponds to one revolution of the U.C. in the z-plane).

The bilinear transformation design procedure can be summarized as follows:

1. Transform the digital frequency domain specifications to the analog domain using Equation 11.67.
The frequency domain specs are given typically in terms of magnitude response specs as shown in
Figure 11.2. After the transformation, the digital magnitude response specs are converted into
specs on the analog magnitude response.

2. Design a stable and causal analog filter with transfer function Ha(s) such that jHa(s¼ jV)j
approximates the derived analog specs. This is typically done by using one of the classical
frequency-selective analog filters whose magnitude responses are given in terms of closed-form
formulas; the parameters in the closed-form formulas (e.g., needed analog filter order and analog
cutoff frequency) can then be computed to meet the desired analog specs. Typical analog
prototypes include Butterworth, Chebyshev, and elliptic filters; the characteristics of these filters
are discussed in section on pages 11–32. The closed-form formulas give only the magnitude
response jHa(jV)j of the analog filter and, therefore, do not uniquely specify the complete
frequency response (or corresponding transfer function) which also should include a phase
response. From all the filters having magnitude response jHa(jV)j, we need to select the filter
that is stable and, if needed, causal. Using the fact that the computed magnitude-squared response
jHa(jV)j2¼ jHa(s)j2, for s¼ jV, and that Ha(s)j j2¼ Ha(s)H


a (�s*), where s* denotes the complex
conjugate of s, the system function Ha(s) of the desired stable and causal filter is obtained by
selecting the poles of jHa(jV)j2 lying in the LHP of the s-plane [11].

3. Obtain the transfer function H(z) for the digital filter by applying the bilinear transformation
(Equation 11.65) to Ha(s). The design parameter K can be fixed or chosen to map one analog
frequency point V (e.g., the passband or stopband cutoff) into a desired digital frequency point v.

4. The frequency response H(v) of the resulting stable digital filter can be obtained from the transfer
function H(z) by replacing z by e jv, i.e.,

H(v) ¼ H(z)jz¼e jv : (11:69)

11.3.2.2 Classical IIR Filter Types

The four standard classical analog filter types are known as (1) Butterworth, (2) Chebyshev I, (3) Cheby-
shev II, and (4) elliptic [1,11]. The characteristics of these analog filters are described briefly below.

Digital versions of these filters are obtained via the bilinear transformation [1,11], and examples are
illustrated in Figure 11.19.

11.3.2.2.1 Butterworth

The magnitude-squared function of an Nth order Butterworth lowpass filter is given by

Ha(fV)j j2 ¼ 1

1þ (V=Vc)
2N , (11:70)

where Vc is the cutoff frequency.
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FIGURE 11.19 Classical IIR digital filters.
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The Butterworth filter is optimal according to a flatness criterion. For a specified filter order and cutoff
frequency, the magnitude response of the Butterworth filter is the solution that attains the maximum
number of derivatives equal to 0 at V¼ 0 and 1 (v¼ 0 and p for the digital filter). This magnitude
response is maximally flat in the passband (i.e., the first (2N� 1) derivatives of jHa( jV)j2 are zero at
V¼ 0), and it decreases monotonically in the passband and stopband. Note that jHa(V¼ 0)j ¼ 1 and
Ha(V ¼ Vc)j j ¼ 1=

ffiffiffi
2

p
, for all N. Also, as the filter order N increases, the transition width decreases,

yielding a sharper cutoff edge.
The Butterworth filter has the poorest frequency selectivity compared to the Chebyshev and elliptic

filters, but it is the simplest to design.

11.3.2.2.2 Chebyshev: Types I and II

If the filter specs are given in terms of passband and stopband ripples (as shown in Figure 11.2), then
these specs are exceeded for a Butterworth filter because of the monotonic behavior of the magnitude
response. The specs can be met more efficiently with a lower order filter if the error is distributed
uniformly over the passband or the stopband or (best) both. This can be accomplished by choosing an
approximating filter with an equiripple behavior.

The magnitude response of a Type I Chebyshev filter is equiripple in the passband and monotonic in
the stopband. The magnitude-squared response is given by

Ha(fV)j j2¼ 1
1þ e2T2

N (V=Vc)
, (11:71)

where
TN(x) is the Nth degree Chebyshev polynomial in x
e is a parameter specified by the allowable passband ripple
Vc is the filter cutoff frequency
N is the filter order

The Type I Chebyshev filter is optimal according to a Chebyshev criterion in the passband and a flatness
criterion in the stopband. For a specified filter order and passband edge, the magnitude response of this
filter attains the minimum Chebyshev error in the passband and the maximum number of vanishing
derivatives at V¼1 (v¼p for the digital filter).

Note that jHa(jV)j2 ripples between 1 and 1=(1þ e2) in the passband (0� jVj �Vc) since
0 � T2

N (x) � 1 for 0� x� 1. For x> 1, T2
N (x) increases monotonically; so, jHa(jV)j2 decreases mono-

tonically in the stopband (V>Vc).
From Equation 11.71, three parameters are required to specify the filter: e, Vc, and N. In a typical

design, e is specified by the allowable passband ripple dp by solving

1
1þ e2

¼ (1� dp)
2: (11:72)

Vc is specified by the desired passband cutoff frequency, and N is then chosen so that the stopband specs
are met.

A similar treatment can be made for Chebyshev II filters (also called inverse Chebyshev). The Type II
Chebyshev filter has a magnitude response that is monotonic in the passband and equiripple in the
stopband. It can be obtained from the Type I Chebyshev filter by replacing e2T2

N (V=Vc) in Equation
11.73 by e2T2

N (Vc=V)
� ��1

, resulting in the following magnitude-squared function:

Ha(fV)j j2¼ 1

1þ e2T2
N(Vc=V)½ ��1 : (11:73)
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For the Chebyshev II filter, the parameter e is determined by the allowable stopband ripple ds as follows:

e2

1þ e2
¼ (1� ds)

2: (11:74)

The order N is determined so that the passband specs are met.
The Chebyshev filter is so called because the Chebyshev polynomials are used in the formula.

11.3.2.2.3 Elliptic

The magnitude response of an elliptic filter is equiripple in both the passband and stopband. It is optimal
according to a weighted Chebyshev criterion. For a specified filter order and bandedges, the magnitude
response of the elliptic filter attains the minimum weighted Chebyshev error. In addition, for a given
order N, the transition width is minimized among all filters with the same passband and stopband
deviations.

The magnitude-squared response of an elliptic filter is given by

Ha(fV)j j2¼ 1
1þ e2E2

N(V)
, (11:75)

where EN(V) is a Jacobian elliptic function [11]. Elliptic filters are so called because elliptic functions are
used in the formula.

11.3.2.2.4 Remarks

Note that, for these four filter types, the approximation is in the magnitude and no phase approximation
is achieved. Also note that each of these filter types has a symmetric FIR counterpart.

The four types of IIR filters shown in Figure 11.19 are usually obtained from analog prototypes via the
bilinear transformation (BLT), as described in section on pages 11–30. The analog filter H(s) is designed
to approximate the ideal lowpass filter over the imaginary axis. The BLT maps the imaginary axis to the
U.C. jzj ¼ 1, and is given by the change of variables, s ¼ K

�
z�1
zþ1

�
. This mapping preserves the optimality

of the four classical filter types. Another method for obtaining IIR digital filters from analog prototypes is
the impulse-invariant method [11]. In this method, the impulse response of a digital filter is obtained by
sampling the continuous-time=space impulse response of the analog prototype. However, the impulse
invariance method usually results in aliasing distortion and is appropriate only for bandlimited filters.
For this reason, the bilinear transformation method is usually preferred.

Note that, for the four analog prototypes described above, the numerator degree of the designed digital
IIR filter equals the denominator degree.* For the design of digital IIR filters with unequal numerator and
denominator degree, analytic techniques are available only for special cases (see Section 11.4.2). For other
cases, iterative numerical methods are required.

Highpass, bandpass, and band-reject filters can also be obtained from analog prototypes (or from the
digital versions) by appropriate frequency transformations [11]. Those transformations are generally
useful only when the IIR filter has equal degree numerator and denominator, which is the case for the
digital versions of the classical analog prototypes.

A fifth IIR filter for which closed-form expressions are readily available is the all-pole filter that
possesses a maximally flat group delay at v¼ 0. In this case, no magnitude approximation is achieved.
It should be noted that this filter is not obtained directly from the analog equivalent, the Bessel filter
(the BLT does not preserve the maximally flat group delay characteristic). Instead, it can be derived
directly in the digital domain [40]. For a specified filter order and DC group delay, the group delay of

* Possibly, however, a single pole is located at z¼ 0, in which case their degrees differ by one.
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this filter attains the maximal number of vanishing derivatives at v¼ 0. The particularly simple formula
for H(z) is

H(z) ¼
PN

k¼0 akPN
k¼0 akz

�k
where ak ¼ (�1)k

N
k

	 

(2t)k

(2tþ N þ 1)k
, (11:76)

where
t is the DC group delay
the Pochhammer symbol (x)k denotes the rising factorial: (x)(xþ 1)(xþ 2) � � � (xþ k� 1).

An example is shown in Figure 11.20, where it is evident that the magnitude response makes a poor
lowpass filter. However, such a filter (1) can be cascaded with a symmetric FIR filter that improves the
magnitude without affecting its phase linearity [41], and (2) is useful for fractional delay allpass filters as
described in Section 11.4.2.2.

11.3.2.3 Comments and Generalizations

The design of IIR digital filters by transformation of classical analog prototypes is attractive because
formulas exist for these filters. Unfortunately, digital filters so obtained necessarily possess an equal
number of poles and zeros away from the origin. For some specifications, it is desired that the numerator
and denominator degrees not be restricted to be equal.

1 1

1.5

1

0.5

0

–0.5

–1

–1.5

–2
0 0.2 0.4 0.6 0.8 1

0.5

0

–0.5

–1

–1 –0.5 0
Real

0.5 1

0.8

0.6

M
ag

ni
tu

de

Im
ag

in
ar

y

Sa
m

pl
es

0.4

0.2

0
0 0.2 0.4

ω/π(a) (b)

(c) ω/π

Frequency reponse Pole–zero plot

Group delay

0.6 0.8 1

FIGURE 11.20 Maximally flat delay IIR filter: N¼ 6 and t¼ 1.2.

11-36 Digital Signal Processing Fundamentals



Several authors have addressed the design and the advantages of IIR filters with unequal numerator
and denominator degrees [42–48]. In [46,49], Saramäki finds that the classical elliptic and Chebyshev
filter types are seldom the best choice. In [42], Jackson improves the Martinez–Parks algorithm and notes
that, for equiripple filters, the use of just two poles ‘‘is often the most attractive compromise between
computational complexity and other performance measures of interest.’’

Generally, the design of recursive digital filters having unequal denominator and numerator degrees
requires the use of iterative numerical methods. However, for some special cases, formulas are available.
For example, a digital generalization of the classical Butterworth filter can be obtained with the formulas
given in [50]. Figure 11.21 illustrates an example. It is evident from the figure, that some zeros of the filter
contribute to the shaping of the passband. The zeros at z¼�1 produce a flat behavior at v¼p, while the
remaining zeros, together with the poles, produce a flat behavior at v¼ 0. The specified cutoff frequency
determines the way in which the zeros are split between the z¼�1 and the passband.

To illustrate the effect of various numerator and denominator degrees, examine a set of filters for which
(1) the sum of the numerator degree and the denominator degree is constant, say 20, and (2) the cutoff
frequency is constant, say vc¼ 0.6p. By varying the number of poles from 0 to 10 in steps of 2 (so that
the number of zeros is decreased from 20 to 10 in steps of 2), the filters shown in Figure 11.22 are obtained.
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Figure 11.22 also shows the negative reciprocal of the slope of the magnitude response at the cutoff
frequency—this indicates the width of the transition band. Notice that, for this example, as the number of
poles and zeros become more equal, the transition becomes sharper. It is interesting to note that the
improvement is greatest when the number of poles is increased from 0 to 2. When implementation issues
are taken into consideration, the filters with two or four poles appear to attain a good trade-off between
performance and implementation complexity.

11.4 Other Developments in Digital Filter Design

11.4.1 FIR Filter Design

Ivan W. Selesnick, C. Sidney Burrus, Lina J. Karam,
and James H. McClellan

11.4.1.1 Maximally Flat Real Symmetric FIR Filters

By requiring the derivatives of the amplitude function A(v) to satisfy derivative constraints at v¼ 0 and
v¼p, a lowpass filter is obtained having a very flat monotone response, see Figure 11.23. The resulting
design is very simple, efficient implementations of such filters exist [51,52], and the filters have
been found to be useful when used together [53] or in conjunction with other filters [54]. Such filters
preserve the input signal around v¼ 0 very well, and achieve very high attenuation in the stopband.

0
–0.1

0

0.1

0.2

0.3

0.4

10 20
n

Im
pu

lse
 re

sp
on

se

(a)
30 40 0

–0.2

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6
ω/π

ω/πA
m

pl
itu

de M
ag

ni
tu

de
 (d

B)

(b)
0.8 1

10.80.60.40.20–80

–60

–40

–20

0

–1

–1

–0.5

0

0.5

1

–0.5

2K

0 0.5 1
Real

Im
ag

in
ar

y

(c)
1.5 2

FIGURE 11.23 Maximally flat filter: N¼ 41 and K¼ 14.

11-38 Digital Signal Processing Fundamentals



The transition between the passband and stopband is wide, however. This design problem was intro-
duced by Herrmann [55] and is formulated as follows.

Given N¼ 2Mþ 1 and K (1 � K � M), find a symmetric filter of length N such that the amplitude
response, given by

A(v) ¼ h(M)þ 2
XM
n¼1

h(M � n) cos nv (11:77)

satisfies the following constraints:

1. A(v¼ 0)¼ 1

2. q2i

q2iv
A(v¼ 0)¼ 0 for i¼ 1, 2, . . . ,M�K

3. q2i

q2iv
A(v¼p)¼ 0 for i¼ 0, 1, . . . ,K� 1

The odd indexed derivatives of A(v) are automatically zero at v¼ 0, so they do not need to be specified.
The solution has the property that A(i)(v¼ 0)¼ 0 for i¼ 1, . . . , 2(M�K)þ 1 and A(i)(v¼p)¼ 0
for i¼ 1, . . . , 2K� 1. These equations are linear in the unknown filter coefficients; however, they are
ill-conditioned. Fortunately, the solution can be written in closed form in several ways [55,56].

It is convenient to use the transformation x ¼ 1
2 (1� cosv), then the solution can be written [55] as

A(x) ¼ (1� x)K
XM�K

n¼0

d(n)xn, (11:78)

where

d(n) ¼ K � 1þ n
n

	 

¼ (K � 1þ n)!

(K � 1)!n!
: (11:79)

The transfer function has 2K zeros at z¼�1, and these are the only stopband zeros. The zeros not
lying at z¼�1 can be found by computing the roots of

PM�K
n¼0 d(n)xn and mapping them back to the z

domain via z ¼ 1� 2x � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2x � 1)� 1:

p
This equation is understood by writing cos v as 1

2 (e
jv þ e�jv)

and, in turn, as 1
2 (z þ 1

z ).
For the special case 2K¼Mþ 1, the polynomial A(x) in Equation 11.78 has become famous for its role

in Daubechies’ construction of compactly supported orthogonal wavelets [57].
Given a desired cutoff frequency and transition width, design formulas have been found [55,58] that

give approximate values for N and K. In particular, Kaiser reported that the filter length is approximately
inversely proportional to the square of the transition width: M 	 ( p

vb�va
)2 where vb is that frequency at

which A(v)¼ 0.05 and va is that frequency at which A(v)¼ 0.95. Accordingly, halving the width of the
transition band requires increasing the filter length by roughly a factor of 4.

Because the filter has 2K zeros at z¼�1 the number of multiplications can be reduced by extracting
the factor ( 1þz�1

2 )2K as is indicated in Equation 11.78. (This factor can be implemented without
multiplications.) The large dynamic range of d(n) can be avoided by using the structure suggested by
Vaidyanathan [52] that uses the observation d(n) ¼ Kþn�1

n d(n� 1). A multiplierless implementation
based on the De Casteljau algorithm is described in [51].

The formulas above permit only an approximate specification of the cutoff frequency—the only
parameters the user controls is N and K. For N¼ 21, Figure 11.24 illustrates the filters obtained by letting
K¼ 5 and K¼ 6. Call them h1(n) and h2(n). To obtain a maximally flat symmetric filter having a
half-magnitude frequency* vo between those of h1 and h2, a weighted average of h1 and h2 can be

* The half-magnitude frequency vo is that frequency such that A(vo) ¼ 1
2.
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used [59,60]. The desired filter is h(n)¼ c � h1(n)þ (1� c) � h2(n) where c¼ [0.5�H2(vo)]=[H1(vo)�
H2(vo)]. For vo¼ 0.56p, the response of the new filter h(n) is shown as a dashed line in Figure 11.24.

Remarks

1. Extremely good at v¼ 0 and v¼p

2. Simple design
3. Efficient implementations
4. Smooth impulse response
5. Wide transition

11.4.1.2 Affine Filter Structure

It is frequently useful to employ the structure shown in Figure 11.25, the transfer function of which is

H(z) ¼ H1(z)H2(z)þ H3(z): (11:80)

In many cases, H2(z) and H3(z) are already known or determined, and it is desired that H1(z) be designed
so that the overall transfer function approximates a desired transfer function D(z) according to some
chosen criteria.
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Note that (1) if h1, h2, and h3 are each symmetric, (2) if h1 * h2 has the same type of symmetry as h3,
and (3) if h1 * h2 and h3 are of the same length, then the filter Equation 11.80 is itself symmetric. In this
case, designing H1(z) by minimizing either the weighted square error or the weighted Chebyshev error is
particularly straightforward. An equivalent problem is obtained as follows, having a modified desired
function and a modified weighting function.

Let the amplitudes of the filters be A1(v), A2(v), and A3(v), where A1(v)¼Q(v)P(v) and P(v) is a
cosine polynomial as in Table 11.1. Then A(v)¼Q(v)P(v)A2(v)þA3(v). First consider the design via
the Chebyshev norm:

kE(v)k1 ¼ maxv �W(v) P(v)� �D(v)½ �j j (11:81)

�W(v) ¼ W(v)Q(v)A2(v) �D(v) ¼ D(v)� A3(v)
Q(v)A2(v)

: (11:82)

The minimization of Equation 11.81 can be accomplished by the PM algorithm or by linear program-
ming if it is required that additional linear constraints be satisfied.

For the least squares error,

kE(v)k2 ¼
1
p

ðp
0

�W(v) P(v)� �D(v)½ �2dv
8<
:

9=
;

1
2

, (11:83)

where

�W(v) ¼ W(v) Q(v)A2(v)½ �2 and �D(v) ¼ D(v)� A3(v)

Q(v)A2(v)ð Þ2 : (11:84)

The minimization of Equation 11.83 can be accomplished by solving the linear system Equation 11.33, or
Equation 11.34 if it is required that additional linear constraints be satisfied.

In some design problems, the form of Equation 11.83 is useful because it describes a parameterization
(or constraint) where H1(z) represents the available degrees of freedom [61–63].

11.4.1.2.1 Prefilters

In addition, the design of filters having low implementation complexity often employs the structure in
Figure 11.25. One strategy is to choose transfer functions H2(z), H3(z), having very low implementation
complexity—such filters may have crude frequency responses, but they can often be implemented
without multipliers and few additions. H1(z) is then designed so that the overall transfer function
meets the specified requirements.

This approach, introduced in [64], is often called ‘‘prefiltering,’’ especially when H3(z)¼ 0. In this case,
H2(z) is the prefilter. Prefilters are filters having (1) very low implementation complexity, but (2)
imperfect frequency responses. In this case, H1(z) is sometimes called an equalizer. In [64], it is shown
that this approach provides benefits in (1) reduced computational complexity, (2) reduced sensitivity to
coefficient quantization, and (3) reduced roundoff noise. For narrowband filters, this approach gives a
particularly good reduction in implementation complexity.

One class of prefilters [64,65] is obtained by combining recursive running sum (RRS) building blocks.*
The RRS filter is simple to implement and has all its zeros equally spaced on the U.C. (except at z¼ 1).
Other prefilters are obtained from cyclotomic polynomials (CPs) [66]—all the roots of which lie on the

* Based on the factorization
PL�1

k¼0 z
k ¼ (zL � 1)=(z � 1), the RRS filter is a recursive implementation of the running sum.
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U.C. Because all the coefficients are simple small integers (the first 105 CPs have coefficients in {�1, 0, 1}),
CPs can be implemented as filters without requiring multipliers. In [67], it is shown that the problem
of designing prefilters from CPs can be formulated as an optimization problem with linear objective
functions by applying the logarithm to the transfer function of the CP prefilter. The design problem is then
solved in [67] by mixed integer linear programming.

11.4.1.2.2 IFIR Filters

Another useful structure has the transfer function H1(z
M)H2(z)[54]. The impulse response of H1(z

M) is
sparse, so arithmetic complexity is reduced. A time-domain interpretation emerges by considering the
convolution of h1(Mn) and h2(n) � h2(n) fills in, or interpolates, the gaps in h1(Mn). This structure is
particularly well suited for efficient implementations of narrow band lowpass filters. For other frequency
responses, the generalization is masking (see, e.g., [17]).

11.4.1.3 Nonsymmetric or Nonlinear Phase FIR Filter Design

Although the requirement that an FIR filter be real and symmetric simplifies the filter approximation
problem, it is sometimes more restrictive than is desirable. The following scenarios motivate the
consideration of nonsymmetric and=or nonlinear phase FIR filters:

1. In some cases, phase linearity is of little importance and it is more important that the delay be low.
Recall that the group delay of a symmetric filter is half its filter order. This delay is higher than
necessary. In other cases, exactly linear phase is not required, but some degree of phase linearity is
desired. It is then desirable to sacrifice exactly linear phase in exchange for delay reduction and=or
delay control. The desired constant delay can be specified by explicitly including the phase or
desired group delay as part of the design specifications as indicated in the following subsection on
optimal design of FIR filters. The resulting designed nearly linear-phase filter has a conjugate
symmetric frequency response and a real-valued, nonsymmetric, impulse response (see Section
11.4.1.4.5).

2. Sometimes it is required that H(v) approximate a desired nonsymmetric or nonlinear phase
frequency response D(v).* Examples include equalizer design [68], fractional delay filter design
[21], and seismic migration filter design [2].

In each case, the additional degrees of freedom that are made available by giving up symmetry or phase
linearity can be used to improve the phase and=or magnitude response.

Approaches to the design of nonsymmetric and=or nonlinear phase FIR filters fall roughly into at least
three categories:

1. General complex approximation (see Section 11.4.1.4). Given an arbitrary desired frequency
response D(v), the best Chebyshev, or least square, approximation is found. For the Chebyshev
criterion, the approximation is significantly more difficult in the general complex case than in the
real symmetric case. Recently, several algorithms have been presented for designing general filters
in the Chebyshev sense [2–5,69,141,143].

2. Design of minimum-phase filters by spectral factorization of square magnitude approximation
[70]. This is a very effective technique, and it can be used in conjunction with the maximally flat,
least square, and Chebyshev criterion.

3. The simultaneous approximation of magnitude and group delay. There is little theory to facilitate
the solution to this nonlinear problem, but see [71–75,142] and Section 11.4.1.6.

* Note that the frequency response of a filter can be symmetric with a nonlinear phase (e.g., seismic migration filters designed
in Section 11.4.1.4.5.3).
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11.4.1.4 Optimal Design of FIR Filters with Arbitrary Magnitude and Phase

As indicated before, the alternation theorem [76] is at the basis of the PM (second Remez exchange)
algorithm described in Section 11.3.1. Karam and McClellan recently extended the alternation theorem
from the real-only to the general complex case [2]. As a result, they derived an efficient multiple-
exchange algorithm [3,10] for the design of optimal FIR filters with arbitrary magnitude and phase
specifications approximated in the Chebyshev sense. Both causal and noncausal filters with complex or
real-valued impulse responses can be designed. In addition, the Karam–McClellan algorithm exactly
reduces to the classic PM (second Remez exchange) algorithm when real-only or imaginary-only filters
are designed and is, therefore, a true generalization of the classic Remez algorithm to the complex case.
A version of the Karam–McClellan algorithm (cremez) is currently available as part of the Signal
Processing Toolbox in MATLAB (Version 5).

11.4.1.4.1 Problem Formulation

The complex FIR filter design problem may be stated as follows. Let D(v) be the desired magnitude
and phase of the filter frequency response defined on a compact frequency subset B� [�p,p). D(v) is to
be approximated by an FIR filter having a frequency response H(v) and an impulse response hn,
n¼N1, . . . ,N2, of length N¼N2�N1þ 1. The filter design problem consists in finding the filter
coefficients {hn} that will minimize the Chebyshev error norm:

kE(v)k ¼ max
v2B

D(v)� H(v)j jf g, (11:85)

where

H(v) ¼
XN2

n¼N1

hne
�jvn: (11:86)

The error norm (Equation 11.85) can include a real, strictly positive, and continuous weighting function
W(v) on B by simply replacing D(v) with W(v)D(v) and H(v) with W(v)H(v).

Note that this formulation will handle both causal filters (N1� 0) and noncausal filters (N1< 0).
Although some authors [77] have reported an ill-conditioned behavior when using Equation 11.86, the
error (Equation 11.85) can be rewritten so that the problem is well posed by removing a linear phase term
due to N1. This new problem, with a guaranteed unique optimal solution, results by rewriting D(v) and
H(v) with respect to a linear phase term as

D(v) ¼ e�j N1þN2
2 vA(v) (11:87)

and

H(v) ¼ e�j N1þN2
2 vHnc(v): (11:88)

The linear phase e�j N1þN2
2 v does not affect the magnitude of the error (Equation 11.85); so the design

problem works with the following equivalent expression for the error magnitude:

E(v)j j ¼ A(v)� Hnc(v)j j: (11:89)
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The function Hnc(v) can be expressed as a linear combination of real basis functions satisfying the Haar
condition [2,78]:

Hnc(v) ¼

P(N�1)=2

k¼0
ak cos kvþ P(N�1)=2

k¼1
bk sin kv, N odd

P(N�2)=2

k¼0
ak cos kþ 1

2

	 

vþ bk sin kþ 1

2

	 

v

 �
, N even:

8>>>><
>>>>:

(11:90)

The Haar condition [76,79], which is satisfied by the cos() and sin() basis functions, guarantees that the
optimal solution is unique and that the set of extremal points of the optimal error function, Eo(v),
consists of at least nþ 1 points, where n is the number of approximating basis functions.

The parameters {ak,bk} in Equation 11.90 are the complex coefficients that need to be determined
such that Hnc(v) best approximates A(v). The filter coefficients {hn} can be very easily obtained from
{ak, bk} [78]. Usually, the number of approximating basis functions in Equation 11.90 is n¼N, but this
number is reduced by half when A(v) is symmetric (all {bk} are equal to 0), or antisymmetric (all {ak} are
equal to 0).

11.4.1.4.2 Design Algorithm

A main strategy in Chebyshev approximation is to work on sparse finite subsets, Bs, of the desired
frequency set B and relate the optimal error on Bs to the optimal error on B. The norm of the optimal
error on Bs will always be a lower bound to the error norm on B [79]. If kEsk denotes the optimal error
norm on the sparse set Bs, and kEok the optimal error norm on B, the design problem on B is solved by
finding the subset Bs on which kEsk is maximal and equal to its upper bound kEok. This could be done by
iteratively constructing new subsets Bs with monotonically increasing error norms kEsk. For that
purpose, two main issues must be addressed in developing the approximation algorithm:

1. Finding an efficient way to compute the best approximation Hs(v) on a given subset Bs of r points
(r� nþ 1).

2. Devising a simple strategy to construct a new subset Bs where the optimal error norm kEsk is
guaranteed to increase.

While in the real case it is sufficient to consider subsets containing r¼ nþ 1 points, the minimal subset
size r is not known a priori in the complex case. The fundamental theorem of complex Chebyshev
approximation tells us that r can take any value between nþ 1 and 2nþ 1. It is desirable, whenever
possible, to keep the size of the subsets, Bs, small since the computational complexity increases with the
size of Bs. The case where r¼ nþ 1 points is important because, in that case, it was shown [2] that the
best approximation on a subset of nþ 1 points can be simply computed by solving a linear system of
equations. So, the first issue is directly resolved.

In addition, by exploiting the alternation property* of the complex optimal error on Bs efficient multi-
point exchange rules can be derived and the second issue is easily resolved. These exchange rules were
derived in [2,78] resulting in the very efficient complex Remez algorithm which iteratively constructs best
approximations on subsets of nþ 1 points with monotonically increasing error norms kEsk.

The complex Remez algorithm terminates when finding the set Bs having the largest error norm
(kEsk¼ jdj) among all subsets consisting of exactly nþ 1 points. This complex Remez multiple-exchange
algorithm converges to the optimal Chebyshev solution on B when the optimal error Eo(v) satisfies an
alternating property [78]. Otherwise, the computed solution is optimal over a reduced set B0 � B. In this
latter case, the maximal error norm jdj over the sets of nþ 1 points is strictly less than, but usually very

* Alternation in the complex case corresponds to a phase shift of p when going from one extremal point to the next in
sequence.
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close to, the upper bound kEok. To compute the optimum over B, subsets consisting of more than nþ 1
(r> nþ 1) need to be considered. Such sets are constructed by the second stage of the new algorithm
presented in [3,10], starting with the solution generated by the initial complex Remez stage.

When r> nþ 1, both issues mentioned above are much harder to resolve. In particular, a simple
and efficient point-exchange strategy, where the size of Bs is kept minimal and constant, does not
seem possible when r> nþ 1. The approach in [3,10] is to use a second ascent stage for constructing a
sequence of best approximations on subsets of r points (r> nþ 1) with monotonically increasing
error norms (ascent strategy). The algorithm starts with the best approximation on subsets of nþ 1
points (minimum possible size) using the very efficient complex Remez algorithm [2] and then continues
constructing the sequence of best approximations with increasing error norms on subsets of Bs
more than nþ 1 points by means of a second stage. Since the continuous domain B is represented by
a dense set of discrete points, the proposed design algorithm must yield an approximation of maximum
norm in a finite number of iterations since there is a finite number of distinct subsets Bs containing
r(nþ 1 � r � 2nþ 1) points in the discrete set B.

A detailed block diagram of the design algorithm is shown in Figure 11.26. The two stages of the
new algorithm have the same basic ascent structure. They both consist of the two main steps shown in
Figure 11.26, and they only differ in the way these steps are implemented.

A detailed block diagram of the complex Remez stage (Stage 1) is also shown in Figure 11.27. Note
that when D(v) is real-valued, d will also be real and, therefore, the real phase-rotated error Er(v) is equal
to�E(v). In this case, the presented algorithm reduces to the PM algorithm as modified by McCallig [80]
for approximating general real-valued frequency responses in the Chebyshev sense. Moreover, for many
problems, the resulting initial approximation computed by the complex Remez method is the optimal
Chebyshev solution and, thus, the second stage of the algorithm does not need to execute. Even when the
resulting initial solution is not optimal, it has been observed that the computed deviation jdj is very close
to the optimal error norm kEok (its upper bound).

As indicated above, the second stage is invoked only when the complex Remez stage (Stage 1) results in
a subset optimal solution. In this case, the initial set Bs of Stage 2 is formed by taking the set of all local
maxima of the error corresponding to the final solution computed by Stage 1. The resulting Bs � B would
then contain r points, where nþ 1< r � 2nþ 1. The best approximation on the constructed subset, Bs, is
computed by means of a generalized descent method [10,78] suitably adapted for minimizing the
nondifferentiable Chebyshev error norm. The total number of ascent iterations is independent of the
method used for computing the best solution Hs(v) on Bs. Then, the new sets, Bs, are constructed by
locating and adding the new local maxima of the error on B to the current subset, Bs, and by removing
from Bs those points where the error magnitude is relatively small. So, the size of the constructed subsets
varies up and down. The algorithm terminates when all the extremal points of E(v) are in Bs.

It should be noted that each iteration of Stage 2 includes descent iterations, which we will refer to as
descent steps.* An observation in relation to the complexity of the two stages of the algorithm is in order.
The initial complex Remez stage is extremely efficient and does not produce any significant overhead.
However, one iteration of the second stage includes several descent steps, each one having higher
computational complexity than the initial complex Remez stage. For convenience, the term major
iterations will be used to refer to the iterations of the second stage. From the discussion above, it follows
that the initial complex Remez stage is comparable to one step in a major iteration and can thus be
regarded as an initialization step in the first major iteration.

An interesting analogy of the proposed two-stage algorithm with the first and second algorithms of
Remez can be made. It should be noted that both Remez algorithms can be used for solving real 1-D
Chebyshev approximation problems satisfying the Haar condition. The two real Remez algorithms
involve the solution of a sequence of discrete problems [81]: at each iteration, a finite discrete subset,
Bs, is defined and the best Chebyshev approximation is computed on Bs. In the second algorithm of

* The simplex method of linear programming could also be used for the descent steps.
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Remez, the successive subsets Bs contain exactly nþ 1 points: an initial subset of nþ 1 points is replaced
by nþ 1 local maxima of the current real error function. In the first algorithm of Remez, the initial point
set contains at least nþ 1 points, and these points are supplemented at each iteration by the global
maximum of the current approximation error. As shown in [2], the complex Remez stage (Stage 1) of the
new proposed algorithm is a generalization of the second Remez algorithm to the complex case and
reduces to it when real-valued or pure imaginary functions are approximated. On the other hand, the
second stage of the proposed algorithm can be compared to the first Remez algorithm in that the size of

Complex Remez General ascent

|δ|

Yes

Optimal error
alternates

Stage 1

Stage 1

Compute solution on
Bs = {ωi}, i =1, …, n + 1

Construct new Bs
such that ||Es||

Apply second Remez to
real phase-rotated error

A(ωi) – Hnc(ωi) = (–1)i+1δ
||Es|| = |δ|

Step 2

No

Done

Done|δ| = ||E||?

|δ| < ||E||
No alternation

No

End

Bs
 changed?

Yes

Step 1

Stage 2

Stage 2

Compute solution on
Bs of size r > n + 1

Generalized descent method
or simplex method

Step 1

Construct new Bs
such that ||Es||

Bs,new = Bs,old + {error maxima}
– {points with error < ||Es||}
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No

End

Bs
 changed?
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FIGURE 11.26 Block diagram of the Karam–McClellan design algorithm. jdj is the maximal optimal deviation on
the sets Bs consisting of nþ 1 points in B. kEk is the Chebyshev error norm on B.
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the constructed subsets Bs is variable and is greater than nþ 1, except at the initial iteration. A main
difference between the second stage and the first Remez algorithm is that the second stage is based on a
multiple-exchange strategy while the first algorithm of Remez is a single-exchange method.

11.4.1.4.3 Descent Steps

In what follows, we describe the generalized descent method and the simplex method which can be used
in Step 1 of Stage 2 to compute the optimal Chebyshev solution on the discrete set of points Bs. The
descent method presented in this section is based on the work of Demjanov–Malozemov [82,83] and
Wolfe [84], and is suitably adapted for minimizing the nondifferentiable Chebyshev error norm.

Let D(v) be the function that is to be approximated on Bs, and let Hs,0(v) be an initial approximation
given by the basis coefficient vector

c0 ¼ [c01, c02, . . . , c0n]
T (11:91)

Complex Remez
(Stage 1)

D(w): desired complex frequency response
b1(w), ..., bn(w): n cos(), sin() basis functions

W(w): positive weighting function
w in B compact set

Calculate the optimal (complex-valued) δ

Interpolate through n points to obtain H(w)

Use Er(w) with the classical Remez
multiple exchange algorithm to determine
the new set of candidate extremal points

Calculate error E(w) = W(w)[D(w) – H(w)]
and construct Er(w) = Re[E(w) e–jθδ]

Extremal points
changed True

True

False

False

End Stage 2

Optimal solution
on B

Optimal solution
on B́ = {w in B:
|E(w)|<=|δ|}

||E|| > |δ|

Initial guess of n +1 extremal points w1, … ,wn+1

FIGURE 11.27 Block diagram of the complex Remez (Stage 1) algorithm.

Digital Filtering 11-47



whose elements are the n (complex or real) coefficients associated with the cos() and=or sin() basis
functions {fi}

n
i¼0. The superscript T in Equation 11.91 refers to the transpose operation. The descent

method iteratively generates a sequence {ck} of basis coefficient vectors, {dk} of perturbation vectors,
and {tk} of positive scalars such that

ckþ1 ¼ ck þ tkdk (11:92)

and

kEs,kþ1(v)k � kEs,k(v)k for v 2 Bs, (11:93)

where Es,k(v) is the approximation error

Es,k(v) ¼ D(v)�Hs,k(v) ¼ D(v)�
Xn
i¼1

ckifi(v) (11:94)

and k is the iteration number. The perturbation vectors {dk} correspond to descent directions and {tk}
must be chosen so that kEk(v)k would significantly decrease at the next iteration. Once dk is chosen, a
line search method could be used to find the optimal tk for a maximum decrease of kEs, k(v)k along
the direction dk. Alternatively, a more efficient procedure for finding the best tk was presented in
[83, pp. 109–112]. Standard gradient techniques cannot be used in this case for generating the directions
{dk} since the Chebyshev error norm is a nondifferentiable function of the coefficient vector c.

With r denoting the number of points in Bs, the Chebyshev approximation problem can be reformu-
lated as the minimization of the function

f(c) ¼ max
i2(1, ..., r)

ei(c), (11:95)

where

ei(c) ¼ D(vi)�FT
i c

�� ��2 (11:96)

and

Fi ¼ f1(vi),f2(vi), . . . ,fn(vi)½ �T: (11:97)

Each ei(c) is a convex differentiable function with a complex gradient vector gi given by

gi ¼ qei(c)
qc

¼ �2�FiEi, (11:98)

where �Fi is the complex conjugate of Fi, and Ei ¼ D(vi)�FT
i c. Note that gi is a vector in the

n-dimensional complex space Zn which is isomorphic to the 2n-dimensional real Euclidean space R2n.
A point z¼ (z1, . . . , zn) 2 Zn, with complex coordinates zj¼ajþ jbj, corresponds to the point z¼
(a1, . . . ,an, b1, . . . ,bn) 2 R2n. In what follows, gi refers to the real vector in R2n.

For a given coefficient vector c, consider the set of extremal indices Ie(c) defined as

Ie(c) ¼ i 2 (1, . . . , r) : ei(c) ¼ w(c)f g: (11:99)
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In other words, Ie(c) contains every index i (corresponding to the ith point vi in Bs) for which E(v)
attains its maximum on Bs. Letting

G(c) ¼ gi : i 2 Ie(c)f g, (11:100)

consider the convex hull Gc(c) of G(c) �Gc(c) is a polyhedron in R2n and there is a unique point
gmin 2 Gc(c) having minimum Euclidean norm [85]. The following gradient characterization results
for w(c) [82,85]:

rw(c) ¼ gmin (11:101)

and �gmin is the direction of steepest descent at c. Note that rw(c) depends only on the set of extremal
points represented by Ie(c). So, the problem of finding the steepest descent direction reduces to the
problem of finding the point of smallest norm in the convex hull of a given finite point set. An algorithm
especially designed for that calculation has been presented by Wolfe [84]. The filter coefficient vector co
minimizes w(c), and therefore the approximation error norm kEsk, if and only if

rw(co) ¼ 0 (11:102)

or, equivalently (see Equation 11.98),

0 2 Gc(co): (11:103)

Using Equation 11.98, it can be shown that the optimality condition (Equation 11.103) reduces to the
Kolmogoroff optimality criterion for Chebyshev approximation [86, p. 21].

While a direct generalization of the steepest descent method does not in general lead to convergence
[82,85], successive approximation and conjugate subgradient methods based on Equation 11.101 have
been developed for minimizing nondifferentiable functions [83,85,87]. The descent method presented in
this section is based on the techniques presented in [83,84]. It is suitably adapted for solving the
Chebyshev approximation problem, which was reformulated as Equations 11.95 through 11.97, and,
consequently, for solving the filter design problem. Before describing the steps of the proposed descent
method, some new definitions are needed. Define

Ie;e(c) ¼ i 2 (1, . . . , r) :w(c)� ei(c) � ef g, e � 0 (11:104)

and

Ge(c) ¼ gi : i 2 Ie,e(c)f g: (11:105)

Also, let Gc,e(c) denote the convex hull of Ge(c) and gmin,e the point in Gc,e(c) nearest to the origin.
Clearly, Ie,0(c), Ie(c), G0(c)¼G(c), Gc,0(c)¼Gc(c), and gmin,0¼ gmin.

The basic steps of the descent algorithm can now be summarized as follows:

1. Set initial parameters. Fix two parameters e0> 0 and r0> 0, and take an initial approximation c0
on the desired set Bs, i.e., fs,0(x) ¼

Pn
i¼1 c0ifi(x). Suggested values for e0 and r0 are e0¼ 0.012 and

r0¼ 1.0. Since the passage from ck to ckþ1 (k¼ 0, 1, . . . ) is effected the same way, suppose that the
kth approximation ck is already computed.

2. Set current approximation and accuracy. Set c¼ ck, e¼ e0=2
k, and r¼ r0=2

k.
3. Compute the «-gradient, gmin,«. Find the point gmin,e of Gc,e(c) nearest to the origin using the

technique by Wolfe [84].
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4. Check accuracy of current approximation. If kgmin,ek� r, go to Step 8.
5. Compute the «-steepest descent direction dk:

dk ¼ � gmin,e

kgmin,ek : (11:106)

6. Determine the best step size tk. Consider the ray

c(t) ¼ cþ tdk (11:107)

and determine tk� 0 such that

w c(tk)½ � ¼ min
t�0

w c(t)½ �: (11:108)

7. Refine approximation accuracy. Set c¼ c(tk) and repeat from Step 3.
8. Compute generalized gradient, gmin. The technique by Wolfe [84] is used to find the point gmin of

Gc(ck) nearest to the origin (see also [83, Appendix IV]).
9. Check stopping criteria. If gmin �, then c is the vector of the coefficients of the best approximation

Hs(v) of the function D(v) on Bs¼ {vi : i¼ 1, . . . , r} and the algorithm terminates.
10. Update approximation and repeat with higher accuracy. The approximation ckþ1 is now

given by

ckþ1 ¼ c: (11:109)

Return to Step 2.
This successive approximation descent method is guaranteed to converge, as shown in [83].

11.4.1.4.4 Descent via the Simplex Method

Other general optimization techniques (e.g., the simplex method of linear programming [4,88]) can also
be used instead of the descent method in the second stage of the proposed algorithm. The advantage of
the linear-programming method over the generalized descent method is that additional linear constraints
can be incorporated into the design problem.

Using the real rotation theorem [11, p. 122],

jzj ¼ max
�p�u<p

Re{ze ju}, where z complex, (11:110)

the complex filter design problem on the frequency set Bs can be restated as the following linear
approximation problem: find the optimal length-N impulse response h* ¼ hN1 � � � hN2½ �* such that

d(h*) ¼ min
h

d(h), (11:111)

where

d(h) ¼ max
v2Bs

max
�p�u<p

Re E(v)e ju
� �� �

E(v) ¼ D(v)� H(v) (refer to Equation 11:86):
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This problem can, in turn, be formulated as a linear program by defining

u ¼ hrN1
, . . . , hrN2

, hiN1
, . . . , hiN1

, d
h i

k ¼ [0, . . . , 0, 0, . . . , 0, 1]

where hrn ¼ Re{hn}, hin ¼ Re{hn}, and d¼ ukT. The resulting linear program becomes

min
u

ukT (11:112)

subject to Re{E(v)e ju} � d, for all v 2 Bs and u 2 [�p,p]. Alternatively, the dual linear program can be
formulated and solved [4,88].

11.4.1.4.5 Design Examples

In the following design examples, the filter specifications are given in terms of the normalized
frequency f¼v=2p.

11.4.1.4.5.1 Low Delay Filters with Nearly Linear Phase In many signal processing applications, linear-
phase systems are particularly desirable because the effect of exact linear-phase is a perfect delay. While
exactly linear-phase causal filters exhibit a constant group delay, the delay they introduce is proportional
to the filter length N and is always equal to (N �1)=2. This delay may be unacceptably large, especially
when using filters having a high degree of selectivity (sharp cutoff edges). Furthermore, in real-time
applications (e.g., real-time speech and video processing), selective filters are required to have a constant
group delay that is as small as possible. Minimum-phase FIR filters cause less delay, but introduce phase
distortion which may have a severe effect on the shape of the processed signal. Chen and Parks [89]
observed that the desired group delay which gives the minimum error deviation can be smaller than that
of an exactly linear-phase filter of the same length.

Complex approximation can be used to design filters that have less delay than the exactly linear-phase
filter of the same length, and which have approximately a constant group delay in the passband. The
resulting complex filters are called ‘‘nearly linear-phase’’ and are obtained by defining the desired linear-
phase frequency response to be

D(v) ¼ e�jtiv, v 2 ith passband

0, v 2 stopbands

�
(11:113)

where ti is the desired group delay in the ith passband. Since the phase term is explicitly included in the
approximation problem, the desired delay is fixed (ti) and is not determined by the FIR filter length N.
Moreover, increasing N does not increase the group delay, but potentially leads to a better approximation
of the desired constant delay. The definition of D(v) should be conjugate symmetric. Then the frequency
response of the optimal Chebyshev filter approximating Equation 11.113 will also be conjugate symmet-
ric [79, p. 27] and, therefore, the approximating filter coefficients will be real-valued.

Figure 11.28 shows the properties of a reduced delay, length-32, FIR filter designed with the following
desired specifications:

Desired:D( f ) ¼ e�j(2pf )12:5 if 0 � j f j � 0:06

0 if 0:12 � j f j � 0:5

(

Weight:W( f ) ¼
1 if j f j � 0:06

10 if 0:12 � j f j � 0:5

(
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The term ‘‘reduced delay’’ refers to the fact that the desired group delay (t¼ 12.5) is set to be smaller than
(N� 1)=2¼ 15.5, which is the delay of an exactly linear-phase filter. The complex Remez stage of
the multiple-exchange algorithm converges to the optimal solution 11 in exchange steps. The resulting
optimal filter has a Chebyshev error norm kEoptk¼ jdj ¼ 0.0439. The FIR filter’s group delay
(Figure 11.28b) corresponds to the nearly linear-phase characteristic in the passband. Note that the optimal
error (Figure 11.28c) assumes its maximum value at Nþ 2 extremal points with an alternating phase shift
ofp. This alternation can be clearly seen from the plot of the real phase-rotated error Er( f ) in Figure 11.28c.

11.4.1.4.5.2 Real-Valued or Exactly Linear-Phase Filters The real-valued filter design problem corres-
ponds to the case where the function A(v), given by Equation 11.87, reduces to a real-valued function. In
this case, the initial complex Remez stage (Stage 1 described above) always converges to the unique
optimal solution of the desired function D(v) on the specified frequency bands B.

Figure 11.29 shows the characteristics of the exactly linear-phase filter corresponding to the nearly
linear-phase filter shown in Figure 11.28; i.e., the same design specifications were used except that the
delay is set to be equal to (N� 1)=2¼ 15.5 in the passband, because N¼ 32 in this example. The complex
Remez stage converged to the optimal solution in eight exchange steps. The resulting optimal filter has an
optimal error norm kEoptk¼ jdj ¼ 0.04956 which is larger than the corresponding reduced delay, nearly
linear-phase filter of Figure 11.28, which indicates that a nearly linear-phase filter not only can have less
group delay but also a reduced Chebyshev error norm. Note that although the phase specifications were
explicitly included as part of the approximation problem, the exactly linear-phase optimal solution was
obtained as expected.

11.4.1.4.5.3 Seismic Migration Filters The objective of seismic migration is to define the boundaries of
the earth layers [90, 91]. For this purpose, downward propagating waves are initiated by acoustic sources

–0.5

–0.5

0.0439

0.0439

–0.0439

–80

–60

–40

–20

0

0
Normalized frequency

M
ag

ni
tu

de
 (l

og
 sc

al
e)

0.5

0.5

–0.06
0

2

4

6

8

10

12

14

0.060

0

Normalized frequency

Deviation: 0.8717

G
ro

up
 d

el
ay

(b)(a)

Normalized frequency

34 extremals

(c)

FIGURE 11.28 Example 1—nearly linear-phase filter, N¼ 32: (a) FIR filter magnitude response in decibel, (b) FIR
filter (solid) and desired filter (dashed) passband group delays, and (c) magnitude of the weighted error (top) and real
phase-rotated weighted error (bottom).
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at the earth. Then the migration procedure starts with the wave field measured at the earth’s surface and
computes the wave field values at all desired depths. This extrapolation operation is performed using a
digital space-time filter whose frequency response approximates

D(kx ,v) ¼ DA
kx
Dx

,
v

Dt

	 

¼ exp j

Dz
Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

Dt2
v2

n2
� k2x

r( )
, (11:114)

where
kx is the spatial frequency
v is the temporal frequency

The extrapolation in depth is usually done for a fixed frequency vo and a fixed velocity vo. The process is
repeated for other frequency and velocity values using frequency- and velocity-dependentmigration filters.
Therefore, for a fixed ratiovo=vo,D(kx,vo)¼D(kx) is a 1-Dmigration filter with a cutoff frequency equal to
a¼ (Dx=Dt)(vo=vo). The objective of the migration filter design problem is to approximate the ideal
frequency response D(kx). Since D(kx) is a complex-valued even-symmetric function, it can be approxi-
mated by an N-length FIR digital filter whose frequency response is given by [92]

H(kx) ¼ ho þ 2
X(Nþ1)=2

n¼1

hn cos nkx , (11:115)
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where the filter coefficients hn are complex-valued. Note that, even if a symmetry constraint is not
imposed on the FIR filter, the resulting optimal filter will be even-symmetric when an odd-length filter
is used to approximate D(kx). This property follows directly from Chebyshev approximation theory
[79, p. 27]. The approximation of D(kx) needs mostly to be accurate in the region jkxj< jaj (passband)
which corresponds to the wavenumbers (kx) for which waves are propagating [90,93]. The evanescent
region jkxj> jaj (stopband) will contain little or no energy.

Figure 11.30 displays the properties of the optimal, length-31, seismic migration filter that approxi-
mates the following specifications:

Desired:D( f ) ¼ e j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2)2�(2pf )2

p
if j f j � 2 sin (75)=2p

0 if 2=2p � j f j � 0:5

(

Weight:W( f ) ¼
500 if j f j � 2 sin (75)=2p

1 if 2=2p � j f j � 0:5:

(

For this design example, the starting impulse response index is N1¼�15. The large passband weighting
is used to force an almost perfect match in the passband. In fact, for migration filters, the approximation
need only be accurate in the passband as long as the stopband magnitude deviation is not larger than
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unity [93, p. 361]. The optimal solution was obtained in five major iterations. Since D( f ) is symmetric
with respect to f¼ 0, the resulting optimal filter is also symmetric with an optimal error kEok ¼ 0.9755.
The lower bound jdj, which is computed by the complex Remez stage, is 0.9704.

11.4.1.5 Design of Minimum-Phase FIR Filters

A minimum-phase FIR lowpass filter whose magnitude response is optimal in the Chebyshev sense
is most conveniently designed by first designing a symmetric FIR filter [63,70]. By modifying an
equiripple symmetric filter, a new filter can be obtained, the amplitude of which is nonnegative. That
filter can then be spectrally factored to obtain a filter whose magnitude is equiripple. For example, see
Figure 11.31.

The top row in Figure 11.31 illustrates a filter h(n) obtained using the PM program. Let d1 and d2
denote the deviations from 1 and 0 in the passband and stopband, respectively. By adding d2 to h(15),
and then scaling h(n) appropriately, the filter illustrated in the second row of Figure 11.31 is obtained.
The amplitude response of that filter is nonnegative and the zeros of that filter lying on the U.C. are
double zeros. That being the case, that filter can be spectrally factored to obtain the filter shown in the
third row of Figure 11.31. The new nonsymmetric filter has a smaller delay, although its phase is
nonlinear. Note that the frequency response magnitude of the nonsymmetric filter is the square root of
that of the filter from which it was obtained. Denote the deviations from 1 and 0 in the passband and
stopband of the nonsymmetric filter by dp and ds. Then, the following relationship holds [63]:

d1 ¼ 4dp
2þ 2d2p � d2s

(11:116)

d2 ¼ d2s
2þ 2d2p � d2s

: (11:117)

Given specifications for dp and ds, Equations 11.116 and 11.117 give the appropriate values to guide the
design of the prototype symmetric FIR filter.

This method can also be used for the Chebyshev design of minimum-phase bandpass filters, as long as
the stopband error in each stopband is equally weighted. If this is not the case, then the Remez exchange
algorithm, used in the PM algorithm, can be modified so that it produces symmetric filters whose
amplitude functions are nonnegative. The appropriate modification is simple: the interpolation equations
in the Remez algorithm of the form A(vi)¼�d are to be replaced by interpolation equations of the form
A(vi)¼ 0. The resulting symmetric FIR filters can then be spectrally factored. This modification makes
possible the design of equiripple minimum-phase FIR bandpass filters where the stopband ripple in each
band does not have to be the same. If a least squares error criterion is used, then symmetric filters with
non-negative amplitudes can be obtained by using a constrained least squares method.

11.4.1.6 Delay Variation of Maximally Flat FIR Filters

Consider the problem of giving up exactly linear-phase for approximately linear-phase in return for a
smaller delay. This problem was also considered in section on pages 11–43 By subjecting the frequency
response magnitude and the group delay (individually) to differing numbers of flatness constraints, a
family of nonsymmetric lowpass maximally flat FIR filters is obtained [94]. This approach is appropriate
when

1. Exactly linear phase is not required
2. Some degree of phase linearity is desired
3. A maximally flat frequency response is desired

The resulting filters can be made to have approximately linear phase in the passband and a smaller group
delay at v¼ 0, in comparison to a symmetric filter of equal length.
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11.4.1.6.1 Problem Formulation

Let F(v) denote the square magnitude response: F(v)¼ jH (v)j2, let G(v) denote the group delay:
G(v) ¼ � q

qv ffH(v). Given the flatness parameters K, L, M, (with K> 0, M� 0, L � M), find N filter
coefficients h(0), . . . , h(N� 1) such that

1. N¼Kþ LþMþ 1
2. F(0)¼ 1
3. H(z) has a root at z¼�1 of order K
4. F(2i)(0)¼ 0 for i¼ 1, . . . ,M
5. G(2i)(0)¼ 0 for i¼ 1, . . . , L

The odd indexed derivatives of F (v) and G (v) are automatically zero at v¼ 0, so they do not need to be
specified. Linear-phase filters and minimum-phase filters result from the special cases L¼M and L¼ 0,
respectively.

This problem gives rise to nonlinear equations. Consequently, the existence of multiple solutions
should not be surprising and, indeed, that is true here. It is informative to construct a table indicating the
number of solutions as a function of K, L, andM. It turns out that the number of solutions is independent
of K. The number of solutions as a function of L and M is indicated in Table 11.2 for the first few L and
M. Many solutions have complex coefficients or possess frequency response magnitudes that are
unacceptable between 0 and p. For this reason, it is useful to tabulate the number of real solutions
possessing monotonic responses, as is done in Table 11.3. From Table 11.3, two distinct regions emerge.
Define two regions in the (L,M) plane. Define region I as all pairs (L,M) for which

TABLE 11.2 Total Number of Solutions

L

0 1 2 3 4 5 6 7

0 1

1 2 3

2 4 4 5

3 8 6 6 7

4 16 8 8 8 9

5 32 16 10 10 10 11

6 64 26 12 12 12 12 13

7 128 48 24 14 14 14 14 15

TABLE 11.3 Number of Real Monotonic Solutions, Not Counting Time-Reversals

L

M 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 1 1

3 2 1 1 1

4 2 1 1 1 1

5 4 2 1 1 1 1

6 4 2 1 1 1 1 1

7 8 4 2 1 1 1 1 1
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M � 1
2

� �
� L � M:

Define region II as all pairs (L,M) for which

0 � L � M � 1
2

� �
� 1:

See Table 11.4. It turns out that for (L,M) in region I, all the variables in the problem formulation,
except G(0), are linearly related and can be eliminated, yielding a polynomial in G(0); the details are given
in [94]. For region II, no similarly simple technique is yet available (except for L¼ 0).

11.4.1.6.2 Design Examples

Figures 11.32 and 11.33 illustrate four different FIR filters of length 13 for which Kþ LþM¼ 12. Each of
these filters has 6 zeros at z¼�1 (K¼ 6) and 6 zeros contributing to the flatness of the passband at z¼ 1
(LþM¼ 6). The four filters shown were obtained using the four values L¼ 0, 1, 2, 3.

When L¼ 3 and M¼ 3, the symmetric filter shown in Figure 11.32 is obtained. This filter is most
easily obtained using formulas for maximally flat symmetric filters [55]. When L¼ 0, M¼ 6, the
minimum-phase filter shown in Figure 11.33 is obtained. This filter is most easily obtained by spectrally
factoring a length 25 maximally flat symmetric filter. The other two filters shown (L¼ 2, M¼ 4, and
L¼ 1,M¼ 5) cannot be obtained using the formulas of Herrmann. They provide a compromise solution.

Observe that for the filters shown, the way in which the passband zeros are split between the interior of
the U.C. and its exterior is given by the values L and M.

It may be observed that the cutoff frequencies of the four filters in Figure 11.32 are unequal. This is to
be expected because the cutoff frequency (denoted vo) was not included in the problem formulation
above. In the problem formulation, both the cutoff frequency and the DC group delay can be only
indirectly controlled by specifying K, L, and M.

TABLE 11.4 Regions I and II

0

0

1

1

2

2

3

3

4

4

5

5

L

M

6

6

7

7

Region II

Region I

8

8

9

9

10

10

. . .

. . 
.

. . . . . .
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11.4.1.6.3 Continuously Tuning vo and G(0)

To understand the relationship between vo, G(0), and K, L, M, it is useful to consider vo and G(0) as
coordinates in a plane. Then each solution can be indicated by a point in the vo�G(0) plane. For N¼ 13,
those region I filters that are real and possess monotonic responses appear as the vertices in Figure 11.34.

To obtain filters of length 13 for which (vo, G(0)) lie within one of the sectors, two degrees of flatness
must be given up. (Then Kþ LþMþ 3¼N, in contrast to item 1 in the problem formulation above.)
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In this way arbitrary (noninteger) DC group delays and cutoff frequencies can be achieved exactly. This is
ideally suited for applications requiring fractional delay lowpass filters.

The flatness parameters of a point in the vo�G(0) plane are the (component-wise) minimum of the
flatness parameters of the vertices of the sector in which the point lies [94].

11.4.1.6.4 Reducing the Delay

To design a set of filters of length 13 for which vo¼ 0.636p and for which G(0) is varied from 3.5 to 6 in
increments of 0.5, Figure 11.34 is used to determine the appropriate flatness parameters—they are
tabulated in Table 11.5. The resulting responses are shown in Figure 11.35. It can be seen that
the delay can be reduced while maintaining relatively constant group delay around v¼ 0, with no
magnitude response degradation.

11.4.1.7 Combining Criteria in FIR Filter Design

Ivan W. Selesnick and C. Sidney Burrus

11.4.1.7.1 Savitzky–Golay Filters

The Savitzky–Golay filters are one example where two of the above described criteria are combined.
The two criteria that are combined in the Savitzky–Golay filter are (1) maximally flat behavior (section
on pages 11–38) and (2) least squares error (section on pages 11–18). Interestingly, the Savitzky–Golay

TABLE 11.5 Flatness Parameters for the Filters Shown in Figure 11.35

N vo=p G(0) K L M

3.5 3 2 5

4 3 2 5

4.5 4 2 4

13 0.636 5 3 3 4

5.5 3 3 4

6 4 3 3
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FIGURE 11.35 Length 13 filters obtained by giving up two degrees of flatness and by specifying that the cutoff
frequency be 0.636p, and that the specified DC group delay be varied from 3.5 to 6.
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filters illustrate an equivalence between digital lowpass filtering and the smoothing of noisy data by
polynomials [63,95,96]. As a consequence of this equivalence, Savitzky–Golay filters can be obtained
by two different derivations. Both derivations assume that a sequence x(n) is available, where x(n) is
composed of an unknown sequence of interest s(n), corrupted by an additive zero-mean white noise
sequence r(n): x(n)¼ s(n)þ r(n). The problem is the estimation of s(n) from x(n) in a way
that minimizes the distortion suffered by s(n). Two approaches yield the Savitzky–Golay filters: (1)
polynomial smoothing and (2) moment preserving maximal noise reduction.

11.4.1.7.2 Polynomial Smoothing

Suppose a set of N¼ 2Mþ 1 contiguous samples of x(n), centered around n0, can be well approximated
by a degree L polynomial in the least squares sense. Then an estimate of s(n0) is given by p(n0) where p(n)
is the degree L polynomial that minimizes

XM
k¼�M

p(no þ k)� x(no þ k)ð Þ2: (11:118)

It turns out that the estimate of s(n0) provided by p(n0) can be written as

p(n0) ¼ (h * x)(n0), (11:119)

where h(n) is the Savitzky–Golay filter of length N¼ 2Mþ 1 and smoothing parameter L. Therefore, the
smoothing of noisy data by polynomials is equivalent to lowpass FIR filtering. Assuming L is odd, with
L¼ 2Kþ 1, h(n) can be written [63] as

h(n) ¼
CK

1
n q2Kþ1

(n) n ¼ �1, . . . ,�M

CKq2Kþ1(0) n ¼ 0,

(
(11:120)

where

CK ¼ (�1)K
(2K þ 1)!

(K!)2
YK
k¼�K

1
2M þ 2kþ 1

(11:121)

and the polynomials ql are generated via the recurrence

q0(n) ¼ 1 q1(n) ¼ n (11:122)

qlþ1(n) ¼
2l þ 1
l þ 1

nql(n)� l(2M þ 1þ l)(2M þ 1� l)
4(l þ 1)

ql�1(n), (11:123)

ql(n) denotes the derivative of ql(n).
The impulse response (shifted so that it is casual) and frequency response amplitude of a length 41,

L¼ 13, Savitzky–Golay filter is shown in Figure 11.36. As is evident from the figure, Savitzky–Golay
filters have poor stopband attenuation—however, they are optimal according to the criteria by which they
are designed.
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11.4.1.7.3 Moment Preserving Maximal Noise Reduction

Consider again the problem of estimating s(n) from x(n) via FIR filtering.

y(n) ¼ (h1* x)(n) (11:124)

¼ (h1* s)(n)þ (h1* r)(n) (11:125)

¼ y1(n)þ er(n), (11:126)

where y1(n)¼ (h1* s)(n) and er(n)¼ (h1* r)(n). Consider designing h1(n) by minimizing the variance of
er(n), s2(n) ¼ E e2r (n)

� �
. Because s2(n) is proportional to kh1k22 ¼

PM
n¼�M h21(n), the filter minimizing

s2(n) is the zero filter, h1(n) � 0. However, the zero filter also eliminates s(n). A more useful approach
requires that h1(n) preserve the moments of s(n) up to a specified order L. Define the l th moment:

ml[s] ¼
XM
n¼�M

nls(n): (11:127)

The requirement that ml[y1]¼ml[s] for l¼ 0, . . . , L, is equivalent to the requirement that m0[h1]¼ 1 and
ml[h1]¼ 0 for l¼ 1, . . . , L. The filter h1(n) is then obtained by the problem formulation

minimizekh1k22 (11:128)

subject to

m0[h1] ¼ 1 (11:129)

ml[h1] ¼ 0 for l ¼ 1, . . . , L: (11:130)

As shown in [63,96], the solution h1(n) is the Savitzky–Golay filter (Equation 11.120).
It should be noted that the problem formulated in Equations 11.128 through 11.130 is equivalent

to the least squares approach, as described in section on pages 11–40: minimize Equation 11.30 with
D(v)¼ 0, W(v)¼ 1 subject to the constraints

A(v ¼ 0) ¼ 1 (11:131)

A(i)(v ¼ 0) ¼ 0 for i ¼ 1, . . . , L: (11:132)
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FIGURE 11.36 Savitzky–Golay filter, N¼ 41, L¼ 13, and K¼ 6: (a) impulse response and (b) magnitude response.
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(These derivative constraints can be expressed as Ga¼ b). As such, the solution to Equation 11.41 is the
Savitzky–Golay filter (Equation 11.120)—however, with the constraints in Equations 11.131 and 11.132,
the resulting linear system (Equation 11.41) is numerically ill-conditioned. Fortunately, the explicit
solution (Equation 11.120) eliminates the need to solve ill-conditioned equations.

11.4.1.7.4 Structure for Symmetric FIR Filter Having Flat Passband

Define the transfer function G(z)¼ z�M�H(z), where H(z) ¼ P2Mþ1
n¼0 h(n)z�n and h(n) is the length

N¼ 2Mþ 1 Savitzky–Golay filter in Equation 11.120, shifted so that it is casual, as in Figure 11.36.
The filter G(z) is a highpass filter that satisfies derivative constraints at v¼ 0. It follows that G(z)
possesses a zero at z¼ 1 of order 2Kþ 2, and so can be expressed as G(z) ¼ (�1)Kþ1( 1�z�1

2 )2Kþ2H1(z).
Accordingly,* the transfer function of a symmetric filter of length N¼ 2Mþ 1, satisfying Equations
11.131 and 11.132, can be written as

H(z) ¼ z�M � (�1)Kþ1 1� z�1

2

	 
2Kþ2

H1(z), (11:133)

whereH1(z) is a symmetric filter of length N� 2K� 2¼ 2(M�K)� 1. The amplitude response of H(z) is

A(v) ¼ 1� 1� cosv
2

	 
Kþ1

A1(v), (11:134)

where A1(v) is the amplitude response of H1(z). Equation 11.133 structurally imposes the desired
derivative constraints in Equations 11.131 and 11.132 with L¼ 2Kþ 1, and reduces the implementation
complexity by extracting the multiplierless factor ( 1�z�1

2 )2Kþ2. In addition, this structure possesses good
passband sensitivity properties with respect to coefficient quantization [97].

Equation 11.133 is a special case of the affine form 11.80. Accordingly, as discussed in section on pages
11–40, h1(n) in Equation 11.133 could be obtained by minimizing Equation 11.83, with suitably defined
�D(v) and �W(v). Although this is unnecessary for the design of Savitzky–Golay filters, it is useful for the
design of other symmetric filters for which A(v) is flat at v¼ 0, for example, the design of such filters in
the least squares sense with various W(v) and D(v), or the design of such filters according to the
Chebyshev norm.

Remarks

. Solution to two optimal smoothing techniques: (1) polynomial smoothing and (2) moment
preserving maximal noise reduction

. Explicit formulas for solution

. Excellent at v¼ 0

. Polynomial assumption for s(n)

. Poor stopband attenuation

11.4.1.7.5 Flat Passband, Chebyshev Stopband

The use of a filter having a very flat passband is desirable because it minimizes the distortion of low
frequency signals. However, in the removal of high frequency noise from a low frequency signal by
lowpass filtering, it is often desirable that the stopband attenuation be greater than that offered by a
Savitzky–Golay filter. One approach [98] minimizes the weighted Chebyshev error, subject to the
derivative constraints in Equations 11.131 and 11.132 imposed at v¼ 0. As discussed above, the form
of Equation 11.133 facilitates the design and implementation of such filters. To describe this approach

* Note that �1 1�z�1

2

� �2jz¼e jv ¼ e�jv 1�cosv
2

� �� 1 1�z�1

2

� �2 1�cosv
2

� �
.
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[97], let the desired amplitude and weight function be as in Equation 11.44. For the form of Equation
11.133, A2(v) and A3(v) in section on pages 11–40 are given by A2(v) ¼ � 1�cosv

2

� �K
and A3(v)¼ 1.

H1(z) can then be designed by minimizing Equation 11.81 via the PM algorithm. Passband monotonicity,
which is sometimes desired, can be ensured by setting Kp¼ 0 in Equation 11.44 [99]. Then the passband
is shaped by the derivative constraints at v¼ 0 that are structurally imposed by Equation 11.133.

Figure 11.37 illustrates a length 41 symmetric filter, whose passband is monotonic. The filter shown
was obtained with K¼ 6 and

D(v) ¼ 0 v 2 [vs,p] W(v) ¼ 0 v 2 [0,vs]

1 v 2 [vs,p]

�
, (11:135)

where vs¼ 0.3387p. Because W(v) is positive only in the stopband, vp is not part of the problem
formulation.

11.4.1.7.6 Bandpass Filters

To design bandpass filters having very flat passbands, one specifies a passband frequency, vp, where one
wishes to impose flatness constraints. The appropriate form is H(z)¼ z�(N �1)=2þH1(z)H2(z) with

H2(z) ¼ 1� 2( cosvp)z�1 þ z�2

4

	 
K

, (11:136)

where
N is odd
H1(z) is a filter whose impulse response is symmetric and of length N� 2K

The overall frequency response amplitude A(v) is given by

A(v) ¼ 1þ (�1)K
cosvp � cosv

2

� �K
A1(v): (11:137)

As above, H1(z) can be found via the PM algorithm. Monotonicity of the passband on either side of
vp can be ensured by weighting the passband by 0, and by taking K to be even. The filter of length 41
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FIGURE 11.37 Lowpass FIR filter designed via the minimization of stopband Chebyshev error subject to derivative
constraints at v¼ 0. (a) Impulse response and (b) magnitude response.
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illustrated in Figure 11.38 was obtained by minimizing the Chebyshev error with vp¼ 0.25p,
K¼ 8, and

D(v) ¼ 0 W(v) ¼
1 v 2 [0,v1]

0 v 2 [v1,v2]

1 v 2 [v2,p]

8<
: , (11:138)

where v1¼ 0.1104p and v2¼ 0.3889p.

11.4.1.7.7 Constrained Least Square

The constrained least square approach to filter design provides a compromise between the square error
and Chebyshev criteria. This approach produces least square error and best Chebyshev filters as special
cases, and is motivated by an observation made by Adams [100]. Least square filter design is based on
the assumption that the size of the peak error can be ignored. Likewise, filter design according to the
Chebyshev norm assumes the integral square error is irrelevant. In practice, however, both of these
criteria are often important. Furthermore, the peak error of a least square filter can be reduced with only a
slight increase in the square error. Similarly, the square error of an equiripple filter can be reduced with
only a slight increase in the Chebyshev error [8,100]. In Adams’ terminology, both equiripple filters and
least square filters are inefficient.

11.4.1.7.8 Problem Formulation

Suppose the following are given: the filter length N, the desired response D(v), a lower bound function
L(v), and an upper bound function U(v), where D(v), L(v), and U(v) satisfy

1. L(v) � D(v)
2. U(v)�D(v)
3. U(v)> L(v)

Find the filter of length N that minimizes

kEk22 ¼
1
p

ðp
0

W(v) A(v)� D(v)ð Þ2dv (11:139)
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FIGURE 11.38 Bandpass FIR filter designed via the minimization of stopband Chebyshev error subject to
derivative constraints at v¼ 0.25p. (a) Impulse response and (b) magnitude response.
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such that (1) the local maxima of A(v) do not exceed U(v) and (2) the local minima of A(v) do not fall
below L(v).

11.4.1.7.9 Design Examples

Figure 11.39 illustrates two length 41 filters obtained by minimizing Equation 11.139, subject to the
bound constraints, where

D(v) ¼ 1 v 2 [0,vc](64)

0 v 2 (vc,p]

�
(11:140)

W(v) ¼ 1 v 2 [0,vc](66)

20 v 2 (vc,p]

�
(11:141)

L(v) ¼ 1� dp v 2 [0,vc](68)

�ds v 2 (vc,p]

�
(11:142)

U(v) ¼ 1þ dp v 2 [0,vc](70)

ds v 2 (vc,p]

�
(11:143)

and where vc¼ 0.3p. For the filter on the left of the figure, dp¼ ds¼ 0.0178¼ 10�35=20; for the filter on
the right of the figure, dp¼ ds¼ 0.0032¼ 10�50=20. The extremal points of A(v) lie within the upper and
lower bound functions. Note that the filter on the right is an equiripple filter—it could have been
obtained with the PM algorithm, given the appropriate parameter values.

This approach is not a quadratic program (QP) because the domain of the constraints are not explicit.
Two observations regarding this formulation and example should be noted:

1. For a fixed length, the maximum ripple size can be made arbitrarily small. When the specified
values dp and ds are small enough, the solution is an equiripple filter. As the constraints are made
more strict, the transition width of the solution becomes wider. The width of the transition
automatically increases as appropriate.

2. As the example illustrates, it is not necessary to use a ‘‘don’t care’’ band, for example, it is not
necessary to exclude from the square error a region around the discontinuity of the ideal low-
pass filter. The problem formulation, however, does not preclude the use of a zero-weighted
transition band.
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FIGURE 11.39 Lowpass filter design via bound-constrained least squares. (a) d¼ 0.0178 (�35 dB) and (b)
d¼ 0.0032 (�50 dB).
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11.4.1.7.10 Quadratic Programming Approach

Some lowpass filter specifications require that A(v) lie within U(v) and L(v) for all v 2 [0,vp] [ [vs,p]
for given bandedges vp and vs. While the approach described above ensures that the local maxima and
minima of A(v) lie below U(v) and above L(v), respectively, it does not ensure that this is true at the
given bandedges vp and vs. This is because vp and vs are not generally extremal points of A(v). The
approach described above can be modified so that bandedge constraints are satisfied; however, it should
be recognized that in this case, a QP formulation is possible.

Adams formulates the constrained least square filter design problem as a QP and describes algorithms
for solving the relevant QP in [100,101]. The design of a lowpass filter, for example, can be formulated as
a QP as follows.

11.4.1.7.10.1 QP Formulation Suppose the following are given: the filter length, N, the bandedges, vp

and vs, and maximum allowable deviations, dp and ds. Find the filter that minimizes the square error:

kEk22 ¼
1
p

ðp
0

W(v) A(v)� D(v)½ �2dv (11:144)

such that

L(v) � A(v) � U(v) v 2 [0,vp] [ [vs,p], (11:145)

where

D(v) ¼ 1 v 2 [0,vp]

0 v 2 [vs,p]

�
(11:146)

W(v) ¼
Kp v 2 [0,vp]

0 v 2 [vp,vs]

Ks v 2 [vs,p]

8><
>: (11:147)

L(v) ¼ 1� dp v 2 [0,vp]

�ds v 2 [vs,p]

�
(11:148)

U(v) ¼ 1þ dp v 2 [0,vp]

ds v 2 [vs,p] .

�
(11:149)

This is a QP because the constraints are linear inequality constraints and the cost function is a quadratic
function of the variables. The QP formulation is useful because it is very general and flexible. For
example, it can be used for arbitrary D(v), W(v), and arbitrary constraint functions.

Note, however, that for a fixed filter length and a fixed dp and ds (each less than 0.5), it is not possible
to obtain an arbitrarily narrow transition band. Therefore, if the bandedges vp and vs are taken to be too
close together, then the QP has no solution. Similarly, for a fixed vp and vs, if dp and ds are taken too
small, then there is again no solution.

Remarks

. Compromise between square error and Chebyshev criterion.

. Two options: formulation without bandedge constraints or as a QP.

. QP allows (requires) bandedge constraints, but may have no solution.

. Formulation without bandedge constraints can satisfy arbitrarily strict bound constraints.

. QP is well formulated for arbitrary D(v) and W(v).

. QP is well formulated for the inclusion of arbitrary linear constraints.
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11.4.2 IIR Filter Design

Ivan W. Selesnick and C. Sidney Burrus

11.4.2.1 Numerical Methods for Magnitude-Only IIR Design

Numerical methods for magnitude only approximation for IIR filters generally proceed by constructing
a noncausal symmetric IIR filter whose amplitude response is nonnegative. Equivalently, a rational
function is found, the numerator and denominator of which are both symmetric polynomials of odd
degree, with two properties: (1) all zeros lying on the U.C. j z j ¼ 1 have even multiplicity and (2) no poles
lie on the U.C. A spectral factorization then yields a stable casual digital filter.

The differential correction algorithm for Chebyshev approximation by rational functions, and vari-
ations thereof, have been applied to IIR filter design [102–106]. This algorithm is guaranteed to converge
to an optimal solution, and is suitable for arbitrary desired magnitude responses. However, (1) it does not
utilize the characterization theorem (see [28] for a characterization theorem for rational Chebyshev
approximation), and (2) it proceeds by solving a sequence of (semi-infinite) linear programs. Therefore,
it can be slow and computationally intensive.

A Remez algorithm for rational Chebyshev approximation [28] is applicable to IIR filter design, but it
is not guaranteed to converge. Deczky’s numerical optimization program [107] is also applicable to this
problem, as are other optimization methods. It should be noted that general optimization methods can be
used for IIR filter design according to a variety of criteria, but the following aspects make it a challenge:
(1) initialization, (2) local optimal (nonglobal) solutions, and (3) ensuring the filter’s stability.

11.4.2.2 Allpass (Phase-Only) IIR Filter Design

An allpass filter is a filter with a frequency response H(v) for which jH(v)j ¼ 1 for all frequencies v. The
only FIR allpass filter is the trivial delay h(n)¼ d(n� k). IIR allpass filters, on the other hand, must have a
transfer function of the form

H(z) ¼ zNP(z�1)
P(z)

(11:150)

where P(z) is a degree N polynomial in z. The problem is the design of the polynomial P(z) so that the
phase, or group delay, of H(z) approximates a desired function. The form in Equation 11.150 structurally
imposes the allpass property of H(z).

The design of digital allpass filters has received much attention, for (1) low complexity structures with
low roundoff noise behavior are available for allpass filters [108,109] and (2) they are useful components
in a variety of applications. Indeed, while the traditional application of allpass filters is phase equalization
[68,107], their uses in fractional delay design [21], multirate filtering, filterbanks, notch filtering, recursive
phase splitters, and other applications have also been described [63,110]. Of particular recent interest has
been the design of frequency selective filters realizable as a parallel combination of two allpasses:

H(z) ¼ 1
2
A1(z)þ A2(z)½ �: (11:151)

It is interesting to note that digital filters, obtained from the classical analog (Butterworth, Chebyshev,
and elliptic) prototypes via the bilinear transformation, can be realized as allpass sums [109,111,112]. As
allpass sums, such filters can be realized with low complexity structures that are robust to finite precision
effects [109]. More importantly, the allpass sum is a generalization of the classical transfer functions that
is honored with a number of benefits. Certainly, examples have been given where the utility of allpass
sums is well illustrated [113,114]. Specifically, when some degree of phase linearity is desired, nonclassical
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filters of the form in Equation 11.151 can be designed that achieve superior results with respect to
implementation complexity, delay, and phase linearity.

The desired degree of phase linearity can, in fact, be structurally incorporated. If one of the allpass
branches in an allpass sum contains only delay elements, then the allpass sum exhibits approximately
linear phase in the passbands [115,116]. The frequency selectivity is then obtained by appropriately
designing the remaining allpass branch. Interestingly, by varying the number of delay elements used and
the degrees of A1(z) and A2(z), the phase linearity can be affected. Simultaneous approximation of the
phase and magnitude is a difficult problem in general, so the ability to structurally incorporate this aspect
of the approximation problem is most useful.

While general procedures for allpass design [117–122] are applicable to the design of frequency
selective allpass sums, several publications have addressed, in addition to the general problem, the details
specific to allpass sums [63,123–125]. Of particular interest are the recently described iterative Remez-like
exchange algorithms for the design of allpass filters and allpass sums according to the Chebyshev
criterion [113,114,126,127].

A simple procedure for obtaining a fractional delay allpass filter uses the maximally flat delay all-pole
filter (Equation 11.76). By using the denominator of that IIR filter for P(z) in Equation 11.150, a
fractional delay filter is obtained [21]. The group delay of the allpass filter is 2tþN where t is that of
the all-pole filter used and N is the filter order.

11.4.2.3 Magnitude and Phase Approximation

The optimal frequency domain design of an IIR filter where both the magnitude and the phase are
specified, is more difficult than the approximation of one alone. One of the difficulties lies in the choice of
the phase function. If the chosen phase function is inconsistent with a stable filter, then the best
approximation according to a chosen norm may be unstable. In that case, additional stability constraints
must be made explicit. Nevertheless, several numerical methods have been described for the approxi-
mation of both magnitude and phase. Let D(e jv) denote the complex valued desired frequency response.

The minimization of the weighed integral square error

ðp
0

W(v)
B(e jv)
A(e jv)

� D(e jv)

����
����
2

dv (11:152)

is a nonlinear optimization problem. If a good initial solution is known, and if the phase of D(ejv) is
chosen appropriately, then Newton’s method, or other optimization algorithms, can be successfully used
[107,128]. A modified minimization problem, that comes from the observation that B=A	D ! B	DA
is the minimization of the weighted equation error [11]:

ðp
0

W(v) B(e jv)� D(e jv)A(e jv)
�� ��2dv (11:153)

which is linear in the filter coefficients. There is a family of iterative methods [129] based on iteratively
minimizing the weighted equation error, or a variation thereof, with a weighting function that is
appropriately modified from one iteration to the next.

The minimization of the complex Chebyshev error has also been addressed by several authors. The
Ellacott–Williams algorithm for complex Chebyshev approximation by rational functions, and variations
thereof, have been applied to this problem [130]. This algorithm calls for the solution to a sequence of
complex polynomial Chebyshev problems, and is guaranteed to converge to a local minimum.
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11.4.2.3.1 Structure-Based Methods

Several approaches to the problem of magnitude and phase approximation, or magnitude and group
delay approximation, use a combination of filters. There are at least three such approaches.

1. One approach cascades (1) a magnitude optimal IIR filters and (2) an allpass filter [107]. The
allpass filter is designed to equalize the phase.

2. A second approach cascades (1) a phase optimal IIR filter and (2) a symmetric FIR filter [41]. The
FIR filter is designed to equalize the magnitude.

3. A third approach employs a parallel combination of allpass filters. Their phases can be designed so
that their combined frequency response is selective and has approximately linear phase [113].

11.4.2.4 Time-Domain Approximation

Another approach is based on knowledge of the time domain behavior of the filter sought. Prony’s method
[11] obtains filter coefficients of an IIR filter that has specified impulse response values h(0), . . . , h(K� 1),
where K is the total number of degrees of freedom in the filter coefficients. To obtain an IIR filter whose
impulse response approximates desired values d(0), . . . , d(L� 1), where L>K, an equation error approach
can be minimized, as above, by solving a linear system. The true square error, a nonlinear function of the
coefficients, can be minimized by iterative methods [131]. As above, initialization, local-minima, and
stability can make this problem difficult.

A more general problem is the requirement that the filter approximately reproduce other input-output
data. In those cases, where the sought filter is given only by input-output data, the problem is the
identification of the system. The problem of designing an IIR filter that reproduces observed input-
output data is an important modeling problem in system and control theory, some methods for which
can be used for filter design [129].

11.4.2.5 Model Order Reduction

Model order reduction (MOR) techniques, developed largely in the control theory literature, are generally
noniterative linear algebraic techniques. Given a transfer function, these techniques produce a second
transfer function of specified (lower) degree that approximates the given transfer function. Suppose
input–output data of an unknown system is available. One two-step modeling approach proceeds by first
constructing a high order model that well reproduces the observed input–output data and, second,
obtains a lower order model by reducing the order of the high-order model. Two common methods for
MOR are (1) balanced model truncation [132] and (2) optimal Hankel norm MOR [133]. These
methods, developed for both continuous and discrete time, produce stable models for which the
numerator and denominator degrees are equal.

MOR has been applied to filter design in [134–137]. One approach [134] begins with a high-order FIR
filter (obtained by any technique), and uses MOR to obtain a lower order IIR filter, that approximates the
FIR filter. As noted above, the phase of the FIR filter used can be important. MOR techniques can yield
different results when applied to minimum, maximum, and linear phase FIR filters [134].

11.5 Software Tools

James H. McClellan

Over the past 30 years, many design algorithms have been introduced for optimizing the characteristics
of frequency-selective digital filters. Most of these algorithms now rely on numerical optimization,
especially when the number of filter coefficients is large. Many sophisticated computer optimization
methods have been programmed and distributed for widespread use in the DSP engineering community.
Since it is challenging to learn the details of every one of these methods and to understand subtleties of
various methods, a designer must now rely on software packages that contain a subset of the available
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methods. With the proliferation of DSP boards for PCs, the manufacturers have been eager to place
design tools in the hands of their users so that the complete design process can be accomplished with one
piece of software. This software includes the filter design and optimization, followed by a filter imple-
mentation stage. The steps in the design process include

1. Filter specification via a graphical user interface.
2. Filter design via numerical optimization algorithms. This includes the order estimation stage

where the filter specifications are used to compute a predicted filter length (FIR) or number of
poles (IIR).

3. Coefficient formatting for the DSP board. Since the design algorithm yields coefficients computed to
the highest precision available (e.g., double-precision floating-point), the filter coefficients must be
quantized to the internal format of the DSP. In the extreme case of a fixed-point DSP, this
quantization also requires scaling of the coefficients to a predetermined maximum value.

4. Optimization of the quantized coefficients. Very few design algorithms perform this step. Given
the type of arithmetic in the DSP and the structure for the filter, search algorithms can be
programmed to find the best filter; however, it is easier to use some ‘‘rules of thumb’’ that are
based on approximations.

5. Downloading the coefficients. If the DSP board is attached to a host computer, then the filter
coefficients must be loaded to the DSP and the filtering program started.

11.5.1 Filter Design: Graphical User Interface

Operating systems and application programs based on windowing systems have interface building tools
that provide an easy way to unify many algorithms under one view. This view concentrates on the filter
specifications, so the designer can set up the problem once and then try many different approaches. If the
view is a graphical rendition of the tolerance scheme, then the designer can also see the difference
between the actual frequency response and the template. Buttons or menu choices can be given for all the
different algorithms and parameters available.

With such a graphical user interface (GUI), the human is placed in the filter design loop. It has always
been necessary for the human to be in the loop because filter design is the art of trading off many
competing objectives. The filter design programs will optimize a mathematical criterion such as min-
imum Lp error, but that result might not exactly meet all the expectations of the designer. For example,
trades between the length of an FIR implementation and the order of an IIR implementation can only
be done by designing the individual filters and then comparing the order vs. length in a proposed
implementation.

One implementation of the GUI approach to filter design can be found in a recent version of the
MATLAB software.* The screen shot in Figure 11.40 shows the GUI window presented by sptool, which
is the graphical tool for various signal processing operations, including filter design, in MATLAB version
5.0. In this case, the filter being designed is a length-23 FIR filter optimized for minimum Chebyshev
error via the PM method for FIR design. The filter order was estimated from the ripples and bandedges,
but in this case N is too small. The simultaneous graphical view of both the specifications and the actual
frequency response makes it clear that the designed filter does meet the desired specifications.

In the MATLAB GUI, the user interface contains two types of controls: display modes and filter design
specifications. The display mode buttons are located across the top of the window and are self-
explanatory. The filter design specification fields and menus are at the left side of the window. Figure
11.41 shows these in more detail. Previously, we listed the different parameters needed to define the filter
specifications: bandedges, ripple heights, etc. In the GUI, we see that each of these has an entry. The
available design methods come from the pop-up menu that is presently set to ‘‘elliptic’’ in Figure 11.41.

* The screen shots were made with permission of the Mathworks, Inc.
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The design method must be chosen from the list given in Figure 11.41. The shape of the desired
magnitude response must also be chosen from four types; in Figure 11.41, the type is set to ‘‘Bandpass,’’
but the other choices are given in the list ‘‘Desired Magnitude.’’ This elliptic bandpass filter is shown in
Figure 11.44.

FIGURE 11.40 Screen shot from the MATLAB filter design tool called sptool. The equiripple filter was designed by
the MATLAB function remez.

Design Methods
Equiripple (Remez)
Least-Square (FIR)

Elliptic

Desired Magnitude

Highpass

Bandstop
Bandpass

Lowpass

Chebyshev-2
Chebyshev-1
Butterworth

Kaiser Window Method

FIGURE 11.41 Pop-up menu choices for filter design options.
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11.5.1.1 Bandedges and Ripples

An open box is provided so the user can enter numerical values for the parameters that define the
boundaries of the tolerance scheme. In the bandpass case, four bandedges are needed, as well as the
desired ripple heights for the passband and the two stopbands. The bandedges are denoted by f1, f2, f3,
and f4 in Figure 11.41; the ripple heights (in decibel) by Rp and Rs. A value of Rs¼ 40 dB is taken to mean
40 dB of attenuation in both stopbands, i.e., j ds j � 0.01. For the elliptic filter design, the ripples cannot
be different in the two stopbands. The passband specification is the difference between the positive-going
ripples at 1 and the negative-going ripples at 1� dp:

Rp ¼ �20 log10(1� dp):

In the FIR case, the specification for Rp can be confusing because it is the total ripple which is the
difference between the positive-going ripples at 1þ dp and the negative-going ripples at 1� dp:

Rp ¼ 20 log10(1þ dp)� 20 log10(1� dp):

In Figure 11.42, the value 3 dB is the same as dp	 0.171. As the expanded view of the passband in Figure
11.42 shows, the ripples are not expected to be symmetric on a logarithmic scale. This expanded view for
the FIR filter from Figure 11.40 was obtained by pressing the Pass Band button at the top.

11.5.1.2 Graphical Manipulation of the Specification Template

With the graphical view of the filter specifications, it is possible to use a pointing device such as a
mouse to ‘‘grab’’ the specifications and move them around. This has the advantage that the relative
placement of bandedges can be visualized while the movement is taking place. In the MATLAB GUI, the
filter is quickly redesigned every time the mouse is released, so the user also gets immediate feedback on
how close the filter approximation can be to the new specification. Order estimation is also done
instantaneously, so the designer can develop some intuition concerning trade-offs such as transition
width vs. filter order.

FIGURE 11.42 Expanded view of the passband of the lowpass filter from Figure 11.40.
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11.5.1.3 Frequency Scaling

The field for Fs is useful when the filter specifications come from the ‘‘analog world’’, and are expressed in
hertz with the sampling frequency given separately. Then the sampling frequency can be specified, and
the horizontal axis is labeled and scaled in terms of Fs. Since the design is only carried out for 0 � v � p,
the highest frequency on the horizontal axis will be Fs=2. When Fs¼ 1, we say that the frequency is
normalized and the numbers on the horizontal axis can be interpreted as a percentage

11.5.1.4 Automatic Order Estimation

Perhaps the most important feature of a software filter design package is its use of design rules. Since the
design problem is always trying to trade off among the parameters of the specification, it is useful to be
able to predict what the result will be without actually carrying out the design. A typical design formula
involves the bandedges, the desired ripples and the filter order. For example, a simple approximate
formula [12,37] for FIR filters designed by the Remez exchange method is

N(vs � vp) ¼
�20 log10

ffiffiffiffiffiffiffiffiffi
dpds

p � 13

2:324
: (11:154)

Most often the desired filter is specified by {vp, vs, dp, ds}, so the design formula can be used to predict
the filter order. Since most algorithms must work with a fixed number of parameters (determined by N)
in doing optimization, this step is necessary before an iterative numerical optimization can be done.

The MATLAB GUI allows the user to turn on this order-estimating feature, so that an estimate of the
filter order is calculated automatically whenever the filter specifications change. In the case of the FIR
filters, the order-estimating formulae are only approximate—being derived from an empirical study of
the parameters taken over many different designs. In some cases, the length N obtained is not large
enough, and when the filter is designed it will fail to meet the desired specifications (see Figure 11.40).
On the other hand, the Kaiser window design in Figure 11.43 does meet the specifications, even though
its length (47) was also estimated from an approximate formula [12] similar to Equation 11.154.

FIGURE 11.43 Length-47 FIR filter designed by the Kaiser window method. The order was estimated to be 46, and
in this case the filter does meet the desired specifications.
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For the IIR case, however, the formulas are exact because they are derived from the mathematical
properties of the Chebyshev polynomials or elliptic functions that define the classical filter types.
Typically, the bandedges and the bilinear transformation define several simultaneous nonlinear equations
that must be satisfied, but these can be solved in succession to get an order N that is guaranteed to work.
The filter in Figure 11.44 shows the case where the order estimate was used for the bandpass design and
the filter meets the specifications; but in Figure 11.45 the filter order was set to 3, which gave a sixth-order
bandpass that fails to meet the specifications because its transition regions are too wide.

11.5.2 Filter Implementation

Another type of filter design tool ties in the filter’s implementation with the design. Many DSP board
vendors offer software products that perform filter design and then download the filter information to a
DSP to process the data stream. Representative of this type of design is the DFDP-4=plus software* shown
in the screen shots of Figures 11.46 through 11.51.

Similar to the MATLAB software, DFDP-4 can do the specification and design of the filter coefficients.
In fact, it possesses an even wider range of filter design methods that includes filter banks and other
special structures. It can design FIR filters based on the window method and the PM algorithm
(an example is shown in Figure 11.46). For the IIR problem, the classical filter types (Butterworth,
Chebyshev, and elliptic) are provided; Figure 11.47 shows an elliptic bandpass filter. In addition to the
standard lowpass, highpass, and bandpass filter shapes, DFDP-4 can also handle the multiband case as
well as filters with an arbitrary desired magnitude (as in Figure 11.51). When designing IIR filters, the
phase response presents a difficulty because it is not linear or close to linear. The screen shot in

FIGURE 11.44 Eight-pole elliptic bandpass filter. The order was calculated to be 4, but the filter exceeds the desired
specifications by quite a bit.

* DFDP is a trademark of Atlanta Signal Processors, Inc. The screen shots were made with permission of Atlanta Signal
Processors, Inc.
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FIGURE 11.45 Six-pole elliptic bandpass filter. The order was set at 3, which is too small to meet the desired
specifications.

FIGURE 11.46 Length-57 FIR filter designed by the PM method, using the ASPI DFDP-4=plus software.
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FIGURE 11.47 Eighth-order IIR bandpass elliptic filter designed using DFDP-4.

FIGURE 11.48 Code generation for an FIR filter using DFDP-4.
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FIGURE 11.49 Eighth-order IIR bandpass elliptic filter with quantized coefficients.

FIGURE 11.50 Eighth-order IIR bandpass elliptic filter, saving 16-bit coefficients.
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Figure 11.47 shows the phase response in the lower left-hand panel and the group delay in the upper
right-hand. The wide variation in the group delay, which is the derivative of the phase, indicates that the
phase is far from linear. DFDP-4 provides an algorithm to optimize the group delay, which is a useful
feature to compensate the phase response of an elliptic filter by using several allpass sections to flatten the
group delay.

In DFDP-4, the filter design stage is specified by entering the bandedges and the desired ripples in
dialog boxes until all the parameters are filled in for that type of design. Conflicts among the specifica-
tions can be resolved at this point before the design algorithm is invoked. For some designs such as the
arbitrary magnitude design, the specification can involve many parameters to properly define the desired
magnitude.

The filter design stage is followed by an implementation stage in which DFDP-4 produces the
appropriate filter coefficients for either a fixed-point or floating-point implementation, targeted to a
specific DSP microprocessor. The filter coefficients can be quantized over a range from 4 to 24 bits, as
shown in Figure 11.50. The filter’s frequency response would then be checked after quantization to
compare with the designed filter and the original specifications. In the FIR case, coefficient quantization
is the primary step needed prior to generating code for the DSP microprocessor, since the preferred
implementation on a DSP is direct form. Internal wordlength scaling is also needed if a fixed-point
implementation is being done. Once the wordlength is chosen, DFDP-4 will generate the entire assembly
language program needed for the TMS-320 processor used on the boards supported by ASPI. As shown
in Figure 11.48, there are a variety of supported processors, and even within a given processor family, the
user can choose options such as ‘‘time optimization,’’ ‘‘size optimization,’’ etc. In Figure 11.48, the choice
of ‘‘11’’ dictates a filter implementation on a TMS 320-C30, with ASM30 assembly language calls, and
size optimization. The filter coefficients are taken from the file called PMFIR.FLT, and the assembly code
is written to the file PMFIR.S31.

FIGURE 11.51 Arbitrary magnitude IIR filter.
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11.5.2.1 Cascade of Second-Order Sections

In the IIR case, the implementation is often done with a cascade of second-order sections. The numerator
and denominator of the transfer function H(z) must first be factored as

H(z) ¼ B(z)
A(z)

¼ G
QM

i¼1 (1� ziz�1)QN
i¼1 (1� piz�1)

, (11:155)

where pi and zi are the poles and zeros of the filter. In the screen shot of Figure 11.47 we see that the poles
and zeros of the eighth-order elliptic bandpass filter are displayed to the user. The second-order sections
are obtained by grouping together two poles and two zeros to create each second-order section; conjugate
pairs must be kept together if the filter coefficients are going to be real:

H(z) ¼ B(z)
A(z)

¼
YN=2

k¼1

b0k þ b1kz
�1 þ b2kz

�2

1þ a1kz�1 þ a2kz�2
: (11:156)

Each second-order factor defines a recursive difference equation with two feedback terms: a1k and a2k.
The product of all the sections is implemented as a cascade of the individual second-order feedback
filters. This implementation has the advantage that the overall filter response is relatively insensitive to
coefficient quantization and roundoff noise when compared to a direct form structure. Therefore, the
cascaded second-order sections provide a robust implementation, especially for IIR filters with poles very
close to the U.C.

Clearly, there are many different ways to pair the poles and zeros when defining the second-order
sections. Furthermore, there are many different orderings for the cascade, and each one will produce
different noise gains through the filter. Sections with a pole pair close to the U.C. will be extremely
narrowband with a very high gain at one frequency. The rules of thumb originally developed by Jackson
[138] give good orderings depending on the nature of the input signal—wideband vs. narrowband. This
choice can be seen in Figure 11.51 where the section ordering slot is set to NARROWBAND.

11.5.2.2 Scaling for Fixed-Point

A second consideration when ordering the second-order sections is the problem of scaling to avoid
overflow. This issue only arises when the IIR filter is targeted to a fixed-point DSP microprocessor. Since
the gain of individual sections may vary widely, the fixed-point data might overflow beyond the
maximum value allowed by the wordlength. To combat this problem, multipliers (or shifters that
multiply by a power of 2) can be inserted in-between the cascaded sections to guard against overflow.
However, dividing by two will shift bits off the lower end of the fixed-point word, thereby introducing
more roundoff noise. The value of the scaling factor can be approximated via a worst-case analysis that
prevents overflow entirely, or a mean square method that reduces the likelihood of overflow depending
on the input signal characteristics.

Proper treatment of the scaling problem requires that it be solved in conjunction with the ordering of
sections for minimal roundoff noise. Similar ‘‘rules of thumb’’ can be employed to get a good (if not
optimal) implementation that simultaneously addresses ordering, pole–zero pairing, and scaling [138].
The theoretical problem of optimizing the implementation for word length and noise performance is
rarely done because it is such a difficult problem, and not one for which an efficient solution has been
found. Thus, most software tools rely on approximations to perform the implementation and code-
generation steps quickly.

Once the transfer function is factored into second-order sections, the code-generation phase creates
the assembly language program that will actually execute in the DSP and downloads it to the DSP board.
Coefficient quantization is done as part of the assembly code generation. With the program loaded into
the DSP, tests on real-time data streams can be conducted.
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11.5.2.3 Comments and Summary

The two design tools presented here are representative of the capabilities that one should expect in a
state of the art filter design package. There are many software design products available and most of them
have similar characteristics, but may be more powerful in some respects, for example, more design
algorithm choices, different DSP microprocessor support, alternative display options, etc. A user can
choose a design tool with these criteria in mind, confident that the GUI will make it relatively easy to use
the powerful mathematical design algorithms without learning the idiosyncrasies of each method.
The uniform view of the GUI as managing the filter specifications should simplify the design process,
while allowing the best possible filters to be designed through trial and comparison.

One limiting aspect of the GUI filter design tool is that it can easily do magnitude approximation, but
only for the standard cases of bandpass and multiband filters. It is easy to envision, however, that the GUI
could support graphical user entry of the specifications by having the user draw the desired magnitude.
Then other magnitude shapes could be supported, as in DFDP-4. Another extension would be to provide
a graphical input for the desired phase response, or group delay, in addition to the magnitude specifi-
cation. Although a great majority of filter designs are done for the bandpass case, there has been a recent
surge of interest in having the flexibility to do simultaneous magnitude and phase approximation. With
the development of better general magnitude and phase design methods, the filter design packages now
offer this capability.
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S TATISTICAL SIGNAL PROCESSING DEALS WITH RANDOM SIGNALS, their acquisition,
their properties, their transformation by system operators, and their characterization in the time
and frequency domains. The goal is to extract pertinent information about the underlying

mechanisms that generate them or transform them. The area is grounded in the theories of signals
and systems, random variables and stochastic processes, detection and estimation, and mathematical
statistics. Random signals are temporal or spatial and can be derived from man-made (e.g., binary
communication signals) or natural (e.g., thermal noise in a sensory array) sources. They can be
continuous or discrete in their amplitude or index, but no exact expression describes their evolution.
Signals are often described statistically when the engineer has incomplete knowledge about their
description or origin. In these cases, statistical descriptors are used to characterize one’s degree of
knowledge (or ignorance) about the randomness. Especially interesting are those signals (e.g., stationary
and ergodic) that can be described using deterministic quantities computable from finite data records.
Applications of statistical signal processing algorithms to random signals are omnipresent in science and
engineering in such areas as speech, seismic, imaging, sonar, radar, sensor arrays, communications,
controls, manufacturing, atmospheric sciences, econometrics, and medicine, just to name a few. This
section deals with the fundamentals of statistical signal processing, including some interesting topics that
deviate from traditional assumptions. The focus is on discrete index random signals (i.e., time series) with
possibly continuous-valued amplitudes. The reason is twofold: measurements are often made in discrete
fashion (e.g., monthly temperature data) and continuously recorded signals (e.g., speech data) are often
sampled for parsimonious representation and efficient processing by computers.

Chapter 12 reviews definitions, characterization, and estimation problems entailing random signals.
The important notions outlined are stationarity, independence, ergodicity, and Gaussianity. The basic
operations involve correlations, spectral densities, and linear time-invariant transformations. Stationarity
reflects invariance of a signal’s statistical description with index shifts. Absence (or presence) of
relationships among samples of a signal at different points is conveyed by the notion of (in)dependence,
which provides information about the signal’s dynamical behavior and memory as it evolves in time or
space. Ergodicity allows computation of statistical descriptors from finite data records. In increasing
order of computational complexity, descriptors include the mean (or average) value of the signal, the
autocorrelation, and higher than second-order correlations which reflect relations among two or more
signal samples. Complete statistical characterization of random signals is provided by probability density
and distribution functions. Gaussianity describes probabilistically a particular distribution of signal
values which is characterized completely by its first- and second-order statistics. It is often encountered
in practice because, thanks to the central limit theorem, averaging a sufficient number of random signal
values (an operation often performed by, e.g., narrowband filtering) yields outputs which are (at least
approximately) distributed according to the Gaussian probability law. Frequency-domain statistical
descriptors inherit all the merits of deterministic Fourier transforms and can be computed efficiently
using the fast Fourier transform. The standard tool here is the power spectral density which describes
how average power (or signal variance) is distributed across frequencies; but polyspectral densities are
also important for capturing distributions of higher order signal moments across frequencies. Random
input signals passing through linear systems yield random outputs. Input–output auto- and cross-
correlations and spectra characterize not only the random signals themselves but also the transformation
induced by the underlying system.

Many random signals as well as systems with random inputs and outputs possess finite degrees of
freedom and can thus be modeled using finite parameters. Depending on a priori knowledge, one
estimates parameters from a given data record, treating them either as random or deterministic. Various
approaches become available by adopting different figures of merit (estimation criteria). Those outlined
in this chapter include the maximum likelihood, minimum variance, and least-squares criteria for
deterministic parameters. Random parameters are estimated using the maximum a posteriori and
Bayes criteria. Unbiasedness, consistency, and efficiency are important properties of estimators which,
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together with performance bounds and computational complexity, guide the engineer to select the proper
criterion and estimation algorithm.

While estimation algorithms seek values in the continuum of a parameter set, the need arises often
in signal processing to classify parameters or waveforms as one or another of prespecified classes.
Decision making with two classes is sought frequently in practice, including as a special case the simpler
problem of detecting the presence or absence of an information-bearing signal observed in noise. Such
signal detection and classification problems along with the associated theory and practice of hypotheses
testing are the subject of Chapter 13. The resulting strategies are designed to minimize the average
number of decision errors. Additional performance measures include receiver operating characteristics,
signal-to-noise ratios, probabilities of detection (or correct classification), false alarm (or misclassification)
rates, and likelihood ratios. Both temporal and spatiotemporal signals are considered, focusing on linear
single- and multivariate Gaussian models. Trade-offs include complexity versus optimality, off-line vs.
real-time processing, and separate vs. simultaneous detection and estimation for signal models containing
unknown parameters.

Parametric and nonparametric methods are described in Chapter 14 for the basic problem of spectral
estimation. Estimates of the power spectral density have been used over the last century and continue to
be of interest in numerous applications involving retrieval of hidden periodicities, signal modeling, and
time series analysis problems. Starting with the periodogram (normalized square magnitude of the data
Fourier transform), its modifications with smoothing windows, and moving on to the more recent
minimum variance and multiple window approaches, the nonparametric methods described here
constitute the first step used to characterize the spectral content of stationary stochastic signals. Factors
dictating the designer’s choice include computational complexity, bias-variance, and resolution trade-
offs. For data adequately described by a parametric model, such as the auto-regressive (AR), moving-
average (MA), or ARMA model, spectral analysis reduces to estimating the model parameters. Such a
data reduction step achieved by modeling offers parsimony and increases resolution and accuracy,
provided that the model and its order (number of parameters) fit well the available time series. Processes
containing harmonic tones (frequencies) have line spectra, and the task of estimating frequencies appears
in diverse applications in science and engineering. The methods presented here include both the
traditional periodogram as well as modern subspace approaches such as the MUSIC and its derivatives.

Estimation from discrete-time observations is the theme of Chapter 15. The unifying viewpoint treats
both parameter and waveform (or signal) estimation from the perspective of minimizing the averaged
square error between observations and input–output or state variable signal models. Starting from the
traditional linear least-squares formulation, the exposition includes weighted and recursive forms, their
properties, and optimality conditions for estimating deterministic parameters as well as their minimum
mean-square error and maximum a posteriori counterparts for estimating random parameters. Wave-
form estimation, on the other hand, includes not only input–output signals but also state space vectors in
linear and nonlinear state variable models. Prediction, smoothing, and the celebrated Kalman filtering
problems are outlined in this framework and relationships are highlighted with the Wiener filtering
formulation. Nonlinear least-squares and iterative minimization schemes are discussed for problems
where the desired parameters are nonlinearly related with the data. Nonlinear equations can often be
linearized, and the extended Kalman filter is described briefly for estimating nonlinear state variable
models. Minimizing the mean-square error criterion leads to the basic orthogonality principle which
appears in both parameter and waveform estimation problems. Generally speaking, the mean-square
error criterion possesses rather universal optimality when the underlying models are linear and the
random data involved are Gaussian distributed.

Before accessing applicability and optimality of estimation algorithms in real-life applications, models
need to be checked for linearity, and the random signals involved need to tested for Gaussianity and
stationarity. Performance bounds and parameter confidence intervals must also be derived in order to
evaluate the fit of the model. Finally, diagnostic tools for model falsification are needed to validate that
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the chosen model represents faithfully the underlying physical system. These important issues are
discussed in Chapter 16. Stationarity, Gaussianity, and linearity tests are presented in a hypothesis-
testing framework relying upon second-order and higher order statistics of the data. Tests are also
described for estimating the number of parameters (or degrees of freedom) necessary for parsimonious
modeling. Model validation is accomplished by checking for whiteness and independence of the error
processes formed by subtracting model data from measured data. Tests may declare signal or noise data
as non-Gaussian and=or nonstationary. The non-Gaussian models outlined here include the generalized
Gaussian, Middleton’s class, and the stable noise distribution models.

As for nonstationary signals and time-varying systems, detection and estimation tasks become more
challenging and solutions are not possible in the most general case. However, structured nonstationarities
such as those entailing periodic and almost periodic variations in their statistical descriptors are tractable.
The resulting random signals are called (almost) cyclostationary and their analysis is the theme of
Chapter 17. The exposition starts with motivation and background material including links between
cyclostationary signals and multivariate stationary processes, time-frequency representations, and multi-
rate operators. Examples of cyclostationary signals and cyclostationarity-inducing operations are also
described along with applications to signal processing and communication problems with emphasis on
signal separation and channel equalization.

Modern theoretical directions in the field appear toward non-Gaussian, nonstationary, and nonlinear
signal models. Advanced statistical signal processing tools (algorithms, software, and hardware) are of
interest in current applications such as manufacturing, biomedicine, multimedia services, and wireless
communications. Scientists and engineers will continue to search and exploit determinism in signals that
they create or encounter, and find it convenient to model, as random.

V-4 Digital Signal Processing Fundamentals



12
Overview of Statistical

Signal Processing

Charles W. Therrien
Naval Postgraduate School

12.1 Discrete Random Signals..................................................................12-1
Random Signals and Sequences . Characterization of Stationary
Random Signals

12.2 Linear Transformations ................................................................. 12-14
12.3 Representation of Signals as Random Vectors ..........................12-16

Statistical Description of Random Vectors . Moments . Linear
Transformations of Random Vectors . Gaussian Density Function

12.4 Fundamentals of Estimation..........................................................12-22
Estimation of Parameters . Estimation of Random
Variables . Linear Mean-Square Estimation

Bibliography ................................................................................................. 12-32

12.1 Discrete Random Signals

Many or most signals of interest in the real world cannot be written as an explicit mathematical formula.
These real signals representing speech, noise, music, data, etc., are often described by a probabilistic
model and statistical methods are used for their analysis. While the associated physical phenomena are
often continuous, the signals are usually sampled and processed digitally. This leads to the concept of a
discrete random signal or sequence.

12.1.1 Random Signals and Sequences

The following can be used as a working definition of a discrete random signal.

Definition 12.1: A discrete random signal is an indexed sequence x[n] such that, for any choice of the
index or independent variable, say n¼ no, x[no] is a random variable.

If the index n represents time, as is usually the case, any realization of the random sequence may be
referred to as a ‘‘time series.’’ The index could represent another quantity, however, such as the position
in a uniform linear array.

The underlying model that represents the random sequence is known as a random process or a
stochastic process. Figure 12.1 shows some examples of discrete random signals. The noise signal of
Figure 12.1a can take on any real value, while the binary data sequence of Figure 12.1b (in the absence of
noise) can take on only two discrete values (þ1 and �1). The examples in Figure 12.1c and d are
interesting because, while they satisfy the definition of a random signal, their evolution (in time) is
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known forever once a few values of the process are observed. In the case of the sinusoid, its amplitude
and=or phase may be random variables, but its future values can be determined from any two consecutive
values of the signal. In the case of a constant voltage, its value is a random variable, but any one sample of
the signal specifies the signal for all time. Such random signals are called predictable and form a set
of processes distinct from those such as in Figure 12.1a and b, which are said to be regular. Predictable
random processes can be predicted perfectly (i.e., with zero error) from a linear combination of past
values of the process.

x[n]

(a)

n

x[n]

(b)

n

x[n]

(c)

n

x[n]

(d)

n

FIGURE 12.1 Examples of discrete random signals: (a) sampled noise, (b) binary data, (c) random sinusoid, and
(d) constant random voltage. (From Therrien, C.W., Discrete Random Signals and Statistical Signal Processing,
Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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The fundamental statistical characterization of a random process is through the joint probability
distribution or joint density function of its samples. For purposes of this chapter, it is sufficient to
work with the density function, using impulses to formally represent any discrete probability values.*
To characterize the signal completely, it must be possible to form the joint density of any set of samples of
the process, as shown in Figure 12.2. If this density function is independent of where the samples are
taken in the process as long as the spacing is the same, then the process is said to be stationary in the
strict sense (see Figure 12.2). A formal definition follows.

Definition 12.2: A random process is stationary in the strict sense if and only if

fx n0½ �, x n1½ �, ..., x nL½ � ¼ fx n0þk½ �, x n1þk½ �, ..., x nLþk½ � (12:1)

for all choices of the ni, and all values of the integers k and L.

Some related ideas are the concepts of periodicity and cyclostationarity for random processes:

Definition 12.3: A random process is periodic if there exists an integer P such that

fx n0½ �, x n1½ �, ..., x nL½ � ¼ fx n0þk0P½ �, x n1þk1P½ �, ..., x nLþkLP½ � (12:2)

for all choices of the ni, for any set of integers ki, and for any value of L. If Equation 12.2 holds only for
equal values of the integers k0¼ k1¼ � � � ¼ kL¼ k, then the process is said to be cyclostationary in the
discrete-time sense.

* For example, the probability density for a sample of the binary random signal of Figure 21.1b taking on values of �1 would
be written as fx[n](x)¼ Pdc(x� 1)þ (1�P)dc(xþ 1), where P is the probability of a positive value (þ1) and dc(x) is the
‘‘continuous’’ impulse function defined by its action on any continuous function g(x): g(x) ¼ Ð1

�1 g(s)dc(x � s)ds. The
subscript c is added to distinguish it from the discrete impulse or unit sample function defined by d[n]¼ 1 for n¼ 0 and
zero otherwise.

0 1 2 4 6 7
8 n

5

fx[2]x[4]x[6]x[7] = fx[1]x[3]x[5]x[6]
 = fx[–1]x[1]x[3]x[4]
 =

x[n]

3–1

FIGURE 12.2 Stationary random process. Any set of samples with the same spacing has the same probability
density function. (From Therrien, C.W., Discrete Random Signals and Statistical Signal Processing, Prentice Hall, Inc.,
Upper Saddle River, NJ, 1992. With permission.)
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Periodic random processes usually have an explicit dependence on a sinusoid or complex exponential
(term of the form e jvn). This need not be true for cyclostationary processes.

There are three main cases that occur in signal processing where a complete statistical characterization
of the random signal is possible. These are as follows:

1. When the samples of the signal are independent. In that case, the joint density for any set of
samples can be written as a product of the density functions for the individual samples. If the
samples have mean zero, this type of process is known as a strictly white process.

2. When the conditional density for the samples fx[n]jx[n–1],x[n–2], . . . depends only on the previous sample
x[n� 1] (or on the previous p samples). This type of process is known as a Markov process (or a
pth-order Markov process).

3. When the samples of the process are jointly Gaussian. This is called a Gaussian random process
and occurs frequently in real life, for example, when the random sequence is a sampled version of
noise (see [1] for a more complete discussion).

In a great many cases, however, there is incomplete knowledge of the statistical distribution of the signals;
nevertheless, a very useful analysis can still be carried out using only certain statistical moments of
the signal.

12.1.1.1 Moments of Random Processes

For a real-valued sequence the first- and second-order moments are denoted by

M(1)
x [n] ¼def E{x[n]} (12:3)

and

M(2)
x [n; l] ¼def E{x[n]x[nþ l]} (12:4)

where E{�} denotes expectation. Notice that the first moment M(1)
x in general depends on the time n and

that the second moment M(2)
x expresses the correlation between a point in the random process at time n

and another point at time n0 ¼ nþ l. (Note that l may be positive or negative.)
In most modern electrical engineering treatments, the second moment is replaced by the autocorrela-

tion function, defined as

Rx[n; l] ¼def E{x[n]x[n� l]} (12:5)

so that Rx[n; l] ¼ M(2)
x [n; � l]. The notation [n; l] for the arguments of the autocorrelation function,

while not entirely standard, is useful in that it focuses on a particular time instant n and a point located at
position l relative to the first point (see Figure 12.3). The variable l is known as the lag. Moreover, certain
general properties of random processes are reflected in the autocorrelation function using the definition
of Equation 12.5 [2]:

1. For a stationary random process, Rx[n; l] is independent of n. (It depends only on the lag l.)
2. For a cyclostationary random process, Rx[n; l] is periodic in n (but not in l).
3. For a periodic random process, Rx[n; l] is periodic in both n and l.

These properties can usually be exploited to advantage in signal procession algorithms.
Higher-order moments, say of orders 3 and 4, are defined in a way analogous to Equations 12.3

and 12.4:

M(3)
x n; l1, l2½ � ¼def E x[n]x nþ l1½ �x nþ l2½ �f g (12:6)
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M(4)
x n; l1, l2, l3½ � ¼def E x[n]x nþ l1½ �x nþ l2½ �x nþ l3½ �f g (12:7)

More general moments can be represented by expressions such as

E xp0 [n]xp1 nþ l1½ � � � � xpL nþ lL½ �f g

for various selections of the powers pi, lags li, and number of terms Lþ 1. Moments are usually not
known a priori but must be estimated from data. In the case of a stationary random process, it is useful if
the moment computed from the signal average defined as

hxp0 [n]xp1 nþ l1½ � � � � xpL nþ lL½ �i ¼def lim
N!1

1
2N þ 1

XN
n¼�N

xp0 [n]xp1 nþ l1½ � � � � xpL nþ lL½ � (12:8)

satisfies the property

hxp0 [n]xp1 nþ l1½ � � � � xpL nþ lL½ �i ¼: E xp0 [n]xp1 nþ l1½ � � � � xpL nþ lL½ �f g (12:9)

where the notation ‘‘¼: ’’ means that the event

xp0 [n]xp1 nþ l1½ � � � � xpL nþ lL½ �h i ¼ E xp0 [n]xp1 nþ l1½ � � � � xpL nþ lL½ �f g

has probability 1. If Equation 12.9 is satisfied for all L; all choices of the spacings l1, l2, . . . , lL; and all
choices of the powers p0, p1, . . . , pL, then the process is said to be strictly ergodic. A random process that
satisfies only the condition

hx[n]i¼: E{x[n]} (12:10)

is said to be ‘‘ergodic in the mean’’ while one that satisfies

hx[n]x[nþ l]i¼: E{x[n]x[nþ l]} (12:11)

is said to be ‘‘ergodic in correlation.’’ These last two conditions are sufficient for many applications.
Ergodicity implies that statistical moments can be estimated from a single realization of a random

process, which is sometimes all that is available in a practical situation. A noise process such as that
depicted in Figure 12.1a is typically an ergodic process while the battery voltage depicted in Figure 12.1d

Rx[n; l ] = E{x[n]x[n – l ]}

l

n – l n

x

FIGURE 12.3 Illustration of correlation for a random process. (From Therrien, C.W., Discrete Random Signals and
Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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is not. (Averaging Figure 12.1d in time will produce only the value of the signal in the given realization,
not the mean of the distribution from which the random signal was drawn.)

12.1.1.2 Complex Random Signals

In some signal processing applications, the signals are complex-valued. Such signals have a real and
imaginary part and can be written as

x[n] ¼ xr[n]þ jxi[n] (12:12)

where xr and xi are two real-valued sequences. Strictly speaking, complex-valued random processes must
be characterized by joint probability density functions or joint moments between the two real-valued
components. In many cases, however, certain symmetries arise in the statistics that allow for a simplified
description using the signal and its complex conjugate. For example, the autocorrelation function for a
complex random process is defined as

Rx[n; l] ¼def E{x[n]x*[n� l]} (12:13)

It can be seen, by substituting Equation 12.12 in Equation 12.13 and expanding, that the sums of products
are present in the expectation and individual terms such as E xr[n]xr[n� l]f g or E xr[n]xi[n� l]f g are
not represented. In order to find these terms and thus completely characterize the second moments of the
complex random signal, it is necessary to know the additional complex quantity

R0
x[n; l] ¼def E{x[n]x[n� l]} (12:14)

which is defined without the conjugate. R0
x[n; l] is known as the complementary autocorrelation

function, the pseudo-autocorrelation function, or the relation function [3,4]. With this additional
information, the individual moments can be computed from expressions such as E xr[n]xr[n� l]f g ¼
1
2 Re Rx[n; l]þ R0

x[n; l]
� �

or E xr[n]xi[n� l]f g ¼ � 1
2 Im Rx[n; l]� R0

x[n; l]
� �

.
A special case occurs when R0

x[n; l] is identically zero. In this case, the random process is said to be
circular [5] (or proper in the context of complex Gaussian random processes [3,6]) and thus the
individual correlation terms can be derived from Rx[n; l] alone.

An alternate definition of circularity is that the second-order statistics of x[n] are invariant to a phase
shift (e jux[n] for any u) [4]. Stationary random processes always exhibit circularity; however, processes
that are nonstationary may or may not be circular. Traditional analyses of complex random processes
have either ignored the issue of circularity or assumed that E{x[n]x[n� l]} is zero. In cases where R0

x[n; l]
is not truly zero, however, the performance of signal processing algorithms can be enhanced by
acknowledging this lack of circularity and including it in the signal model. Further discussion for the
need to acknowledge circularity (or the lack thereof) in certain applications such as digital communica-
tions can be found in the literature (e.g., [3,7,8]).

The sections to follow focus on the case where the random processes are in fact stationary and develop
the methods that are commonly applied to such signals. Since stationary random signals are also circular,
any further discussion of circularity can be deferred to Section 12.3 on random vectors.

12.1.2 Characterization of Stationary Random Signals

12.1.2.1 Moments and Cumulants

It follows from Definition 12.1 that the moments of a stationary random process are independent of the
time index n. Thus, the mean is a constant and can be defined by

mx ¼def E{x[n]} (12:15)
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The autocorrelation function depends on only the time difference or lag l between the two signal samples
and can now be defined as

Rx[l] ¼def E x[n]x*[n� l]f g (12:16)

The autocovariance function is likewise defined as

Cx[l] ¼def E x[n]�mxð Þ x*[n� l]�mx*ð Þf g (12:17)

and satisfies the relation

Rx[l] ¼ Cx[l]þ mxj j2 (12:18)

If a random signal is not strictly stationary, but its mean is constant and its autocorrelation function
depends only on l (not n), then the process is called wide-sense stationary. Most often when the term
‘‘stationary’’ is used without further qualification, the term is intended to mean ‘‘wide-sense stationary.’’*
The specific values Rx[0]¼E{jx[n]j2} and Cx[0]¼E{jx[n]�mxj2} represent the power and the variance
of the signal, respectively.

An example of a seemingly trivial but fundamental autocorrelation function is that of a white
noise process. A white noise process is any process having mean zero and uncorrelated samples; that
is, Rx[l]¼ 0 for l 6¼ 0. A white noise process thus has correlation and covariance functions of the form

Rx[l] ¼ Cx[l] ¼ s2
od[l] (12:19)

where
d[l] is the unit sample function (discrete-time impulse)
s2
o is the variance of any sample of the process

Any sequence of zero-mean independently-distributed random variables forms a white noise process.
For example, a binary-valued sequence formed by assigning þ1 and �1 to the flips of a coin is white
noise. In electrical engineering applications, however, the noise may be Gaussian or follow some other
distribution. The term ‘‘white’’ applies in all of these cases as long as Equation 12.19 is satisfied.

The assumption of stationarity implies circularity of the random process (see Section 12.1.1). There-
fore, all necessary second-moment statistics can be derived from Equations 12.16 and 12.15 or Equations
12.17 and 12.15. In particular, if the signal is stationary and written as in Equation 12.12, then the
autocorrelation functions for the real and imaginary parts of the signal are equal and are given by

Rxr [l] ¼ Rxi [l] ¼ 1=2 Re Rx[l]ð Þ (12:20)

while the cross-correlation functions between the real and imaginary parts (see Equation 12.28 for
definition of cross-correlation) must satisfy

Rxrxi [l] ¼ �Rxixr [l] ¼ �1=2 Im Rx[l]ð Þ (12:21)

In defining autocorrelation and autocovariance for real-valued random processes, the complex
conjugate in Equations 12.16 and 12.17 can be safely ignored. The foregoing discussion should serve

* The abbreviation wss is also used frequently in the literature.
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to emphasize, however, that for complex random processes, the conjugate is essential. In fact if the
conjugate is dropped from the second term in Equation 12.16, then E {x[n]x[n� l]} is identically zero for
all values of l due to the circularity property of stationary random processes.

The autocorrelation (or autocovariance) function has two defining properties:

1. Conjugate symmetric:

Rx[l] ¼ Rx*[�l] (12:22)

2. Positive semidefinite:

X1
n1¼�1

X1
n0¼�1

a* n1½ �Rx n1 � n0½ �a n0½ � � 0

for any sequence a[n]

(12:23)

These properties follow easily from the definitions [1]. The second property can be shown to imply that

Rx[0] � jRx[l]j l 6¼ 0

Note, however, that this is a derived property and not a fundamental defining property for the correlation
function, that is, it is a necessary but not a sufficient condition.

Higher-order moments and cumulants are sometimes used in modern signal processing as well. The
third- and fourth-order moments for a stationary random process are usually written as

M(3)
x l1, l2½ � ¼ E x*[n]x nþ l1½ �x nþ l2½ �f g (12:24)

M(4)
x l1, l2, l3½ � ¼ E x*[n]x* nþ l1½ �x nþ l2½ �x nþ l3½ �f g (12:25)

while for a zero-mean random process the third- and fourth-order cumulants are given by

C(3)
x l1, l2½ � ¼ E x*[n]x nþ l1½ �x nþ l2½ �f g (12:26)

C(4)
x l1, l2, l3½ � ¼ E x*[n]x* nþ l1½ �x nþ l2½ �x nþ l3½ �f g

� C(2)
x l2½ �C(2)

x l3 � l1½ � � C(2)
x l3½ �C(2)

x l2 � l1½ �
(complex random process)

(12:27a)

C(4)
x l1, l2, l3½ � ¼ E x[n]x nþ l1½ �x nþ l2½ �x nþ l3½ �f g � C(2)

x l1½ �C(2)
x l3 � l2½ �

� C(2)
x l2½ �C(2)

x l3 � l1½ � � C(2)
x l3½ �C(2)

x l2 � l1½ �
(real random process)

(12:27b)

where C(2)
x [l] ¼ E x*[n]x[nþ l]f g is the second-order cumulant, identical (in this zero-mean case) to the

covariance function. It should be noted that unlike the second-order moments, the definition of these
statistics for a complex random process is not standard, so alternate definitions to Equations 12.24
through 12.27 with different placement of the complex conjugate may be encountered.

For most analyses, cumulants are preferred to moments because the cumulants of order 3 and higher
for a Gaussian process are identically zero. Thus, signal processing methods based on higher-order
cumulants have the advantage of being ‘‘blind’’ to any form of Gaussian noise.
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For real-valued signals, these higher-order cumulants have many regions of symmetry. The symmetry
regions for the third-order cumulant are shown in Figure 12.4. Symmetry regions for the third-order
cumulant of complex signals consist only of the half planes defined by C(3)

x l1, l2½ � ¼ C(3)
x l2, l1½ �.

Cross-moments between two or more random signals are also of utility. For two jointly stationary*
random signals x and y the cross-correlation and cross-covariance functions are defined by

Rxy[l] ¼ E{x[n]y*[n� l]} (12:28)

and

Cxy[l] ¼ E{(x[n]�mx)(y[n� l]�my)*} (12:29)

and satisfy the relation

Rxy[l] ¼ Cxy[l]þmxmy* (12:30)

These cross-moment functions have no particular properties except that Rxy[l] ¼ Ryx* [�l] and
Cxy[l] ¼ Cyx* [�l]. Higher-order cross-moments and cumulants can be defined in an analogous way to
Equations 12.24 through 12.27 and are also encountered in some applications.

12.1.2.2 Frequency and Transform Domain Characterization

Random signals can be characterized in the frequency domain as well as in the signal domain. The power
spectral density function is defined by the Fourier transform of the autocorrelation function

Sx(e
jv) ¼

X1
l¼�1

Rx[l]e
�jvl (12:31)

Cx
(3) [l2, l1]

Cx
(3) [l1, l2]

Cx
(3) [–l2, l1 – l2]

Cx
(3) [–l1, l2 – l1]

C x(3) [l 2–
l 1, 

– l 1]

l2

Cx
(3) [l1 – l2, – l2]

l1

FIGURE 12.4 Regions of symmetry for the third-order cumulant of real-valued signals. (FromTherrien, C.W.,Discrete
Random Signals and Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)

* Two signals are said to be jointly stationary (in the wide sense), if each of the signals is itself wide-sense stationary, and the
cross-correlation is a function of only the time difference, or lag, l.

Overview of Statistical Signal Processing 12-9



with inverse transform

Rx[l] ¼ 1
2p

ðp
�p

Sx(e
jv)e jvldv (12:32)

The name ‘‘power spectral density’’ comes from the fact that

average power ¼ E{jx[n]j2} ¼ Rx[0] ¼ 1
2p

ðp
�p

Sx(e
jv)dv

which follows directly from Equations 12.16 and 12.32. Since the power spectral density may contain
both continuous and discrete components (see Figure 12.5), its general form is

Sx(e
jv) ¼ S0x(e

jv)þ
X
i

2pPidc(e
jv � e jvi ) (12:33)

where S0x e jvð Þ represents the continuous part of the spectrum while the sum of weighted impulses
represents the discrete part or ‘‘lines’’ in the spectrum. Impulses or lines arise from periodic or almost
periodic random signals such as those of Figure 12.1c and d.

The two defining properties for the autocorrelation function (Equations 12.22 and 12.23) are mani-
fested as two corresponding properties of the power spectral density function, namely,

1. Sx(e
jv) is real.

2. Sx(e
jv) is nonnegative: Sx(e

jv)� 0.

In addition, for real-valued random signals, Sx(e
jv) is an even function of frequency.

The white noise process, introduced on page 7, has a power spectral density function that is a constant
Sx e jvð Þ ¼ s2

o. The term ‘‘white’’ refers to the fact that the spectrum, like that of ideal white light, is flat
and represents all frequencies in equal proportions.

The multidimensional Fourier transforms of the cumulants are also of considerable importance and
are referred to generically as cumulant spectra, higher-order spectra, or polyspectra. For the third- and
fourth-order cumulants, these higher-order spectra are called the bispectrum and trispectrum, respect-
ively, and are defined by

Bx v1, v2ð Þ ¼
X1

l1¼�1

X1
l2¼�1

C(3)
x l1, l2½ �e�j v1 l1þv2 l2ð Þ (12:34)

0

Sx(e jω)

–2π –π π 2π
ω

FIGURE 12.5 Typical power density spectrum for a complex random process showing continuous and discrete
components. (From Therrien, C.W., Discrete Random Signals and Statistical Signal Processing, Prentice Hall, Inc.,
Upper Saddle River, NJ, 1992. With permission.)
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and

Tx v1,v2,v3ð Þ ¼
X1

l1¼�1

X1
l2¼�1

X1
l3¼�1

C(4)
x l1, l2, l3½ �e�j v1 l1þv2l2þv3 l3ð Þ (12:35)

These quantities have many regions of symmetry. The regions of symmetry of the bispectrum of a real-
valued signal are shown in Figure 12.6. For a complex signal there is only symmetry between half planes.

Higher-order processes whose cumulants are proportional to the unit sample function and whose
higher-order spectra are therefore constant are sometimes called higher-order white noise processes.
For a ‘‘strictly white’’ process (see page 4), the cumulants of all orders are impulses and thus the
polyspectra of all orders are constant functions of frequency.

Cross-power spectral density functions are also defined as Fourier transforms of the corresponding
cross-correlation functions, for example,

Sxy(e
jv) ¼

X1
l¼�1

Rxy[l]e
�jvl (12:36)

Since the cross-correlation function has no particular properties, the cross-power spectral density
function will also have no distinctive properties; it is complex-valued in general. The cross-spectral
density evaluated at a particular point in frequency can be interpreted as a measure of the correlation that
exists between components of the two processes at the chosen frequency. The normalized cross-spectrum

Gxy(e
jv) ¼def Sxy(e jv)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sx(e jv)
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sy(e jv)
p (12:37)

is called the coherence function and its squared magnitude

Gxy(e
jv)

�� ��2¼ Sxy(e jv)
�� ��2

Sx(e jv)Sy(e jv)
(12:38)

ω1

ω2

B B

B

B

BB

BBB

BB B

FIGURE 12.6 Regions of symmetry for the bispectrum of a real-valued signal. (From Therrien, C.W., Discrete
Random Signals and Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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is called the magnitude-squared coherence (MSC). The MSC is often used instead of jSxy(e jv)j and has
the convenient property

0 � Gxy(e
jv)

�� ��2 � 1 (12:39)

Random signals can also be characterized in the z (transform) domain. In particular, the z-transform
of the autocorrelation and cross-correlation functions is needed in many analyses such as in the design of
filters for random signals. For the autocorrelation function, the quantity

Sx(z) ¼
X1
l¼�1

Rx[l]z
�l (12:40)

is known as the complex spectral density function. It has the basic symmetry property

Sx(z) ¼ Sx*(1=z*) (12:41)

and is real and nonnegative on the unit circle. For real-valued random processes, Equation 12.41 can be
expressed as

Sx(z) ¼ Sx(z
�1)

but expressing the property in this way sometimes hides the function’s true features. For a rational*
complex spectral density function, Equation 12.41 implies that for any root of the numerator or
denominator, say at location zo, there is a corresponding root at the conjugate reciprocal position,
1=zo*. This also implies that zeros on the unit circle occur in even multiplicities. (Poles are not allowed to
occur on the unit circle.) In addition, since a real-valued random process has real coefficients in the
polynomials that define Sx(z), the complex roots of such processes occur in conjugate pairs. Therefore, for
real-valued processes, poles or zeros, not on the real axis, occur in groups of four:

zo, 1=zo, zo*, and 1=zo*

The autocorrelation function can be obtained from the inverse transform

Rx[l] ¼ 1
2pj

þ
C

Sx(z)z
l�1dz (12:42)

which involves a contour integral in the region of convergence of the transform [1]. Because of the
symmetry, the region of convergence is always an annular region of the form

a < jzj < 1
a

and the integral can be evaluated using the method of residues [9].
The complex cross-spectral density function Sxy(z) and its inverse are defined by equations analogous

to Equations 12.40 and 12.42. Again, because the cross-correlation function has no special properties,
none are imparted to the complex cross-spectral density function.

* The term rational is used to describe functions of the form Sx(z)¼N(z)=D(z), where N(z) and D(z) are polynomials.
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A simple but useful real autocorrelation function has the exponential form*

Rx[l] ¼ s2rjlj (12:43)

This function and its corresponding power spectral density

Sx(e
jv) ¼ s2(1� r2)

1þ r2 � 2r cosv
(12:44)

are illustrated in Figure 12.7. The corresponding complex spectral density function can be expressed as

Sx(z) ¼ s2(1� r2)
�rz þ (1þ r2)� rz�1

(12:45)

This function has one pair of real axis poles at z¼ r and z¼ 1=r and the region of convergence lies
between the two poles.

* A complex version of this autocorrelation function can be found in [1].

Rx[l] = σ2ρ|l|

ρ > 0

–5 –4
(a)

–3 –2 –1 0 1 2 3 4 5
l

σ2

0π
2

π
2

σ2 1 – ρ
1 + ρ

π

Sx(e jω)

–π –
(b)

σ2
1 – ρ ρ > 0
1 + ρ

FIGURE 12.7 Real exponential autocorrelation function and corresponding power spectral density (r> 0):
(a) autocorrelation function and (b) power spectral density function. (From Therrien, C.W., Discrete Random Signals
and Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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12.2 Linear Transformations

A linear shift-invariant system can be represented in the signal domain by its impulse response sequence
h[n]. If a random process x[n] is applied to the linear system, the output y[n] is given by the convolution

y[n] ¼
X1
k¼�1

h[k]x[n� k] (12:46)

If x[n] is stationary, then y[n] will also be stationary [1]. Taking expectations on both sides of the
equation yields

E{y[n]} ¼
X1
k¼�1

h[k]E{x[n� k]}

or

my ¼ mx �
X1
k¼�1

h[k] (12:47)

The output autocorrelation function can be computed by the following steps. Multiplying Equation 12.46
on both sides by y*[n� l] and taking the expectation yields

E y[n]y*[n� l]f g ¼
X1
k¼�1

h[k]E x[n� k]y*[n� l]f g

or

Ry[l] ¼
X1
k¼�1

h[k]Rxy[l � k]

which will be written as

Ry[l] ¼ h[l] *Rxy[l] (12:48)

using ‘‘*’’ to denote convolution of the sequences. Multiplying Equation 12.46 by x*[n� l] and perform-
ing similar steps yields

Ryx[l] ¼ h[l] *Rx[l] (12:49)

Conjugating terms and noting that Rxy[l] ¼ Ryx* [�l] and Rx[l] ¼ Rx*[�l] permits Equation 12.49 to be
written as

Rxy[l] ¼ h*[�l] *Rx[l] (12:50)

Combining Equations 12.48 and 12.50 then yields

Ry[l] ¼ h[l] * h*[�l] *Rx[l] (12:51)
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Equation 12.51 shows that the output autocorrelation function is obtained as a double convolution of the
input autocorrelation function with the impulse response and the reversed conjugated impulse response.
It can easily be shown that the autocovariance and cross-covariance functions also satisfy the relations in
Equations 12.48 through 12.51.

By using the Fourier and z-transform relations and the last four equations it is easy to derive
expressions for the results of a linear transformation in the frequency and transform domains. The
complete set of relations is listed in Table 12.1; those for the output process are the ones most frequently
used and appear in the last row of the table.

As an example of the use of linear transformations, consider the simple first-order causal system
described by the difference equation

y[n] ¼ ry[n� 1]þ x[n]

with real parameter r. The system has an impulse response given by h[n]¼ rnu[n] where u[n] is the unit
step function, and a transfer function given by [17]

H(z) ¼ 1
1� rz�1

If the input is a white noise process with Sx(z) ¼ s2
o, and all signals are real, then the output complex

spectral density function is (see Table 12.1)

Sy(z) ¼ H(z)H(z�1)Sx(z) ¼ s2
o

(1� rz�1)(1� rz)

This is identical in form to Equation 12.45 with s2
o ¼ s2(1� r2). It follows that the autocorrelation

function and power spectral density function of the output also have the forms as in Equations 12.43 and
12.44. (This could be shown directly by applying the other relations in the table.) Thus, a process with
exponential autocorrelation function can be obtained by driving a first-order filter with white noise.

The higher-order moments and cumulants of the output of a linear system can also be computed from
the corresponding input quantities, although the formulas are more complicated. For the third- and
fourth-order cumulants the formulas are

C(3)
y l1, l2½ � ¼

X1
k0¼�1

X1
k1¼�1

X1
k2¼�1

C(3)
x l1 � k1 þ k0, l2 � k2 þ k0½ �h k2½ �h k1½ �h* k0½ � (12:52)

TABLE 12.1 Linear Transformation Relations

System Defined by y[n]¼ h[n] * x[n]

Ryx[l]¼ h[l] * Rx[l] Syx(e
jv)¼H(e jv)Sx(e

jv) Syx(z)¼H(z)Sx(z)

Rxy[l]¼ h*[�l] * Rx[l] Sxy(e
jv)¼H*(e jv)Sx(e

jv) Sxy(z)¼H*(1=z*)Sx(z)

Ry[l]¼ h[l] * Rxy[l] Sy(e
jv)¼H(e jv)Sxy(e

jv) Sy(z)¼H(z)Sxy(z)

Ry[l]¼ h[l] * h*[�l] * Rx[l] Sy(e
jv)¼ jH(e jv)j2Sx(ejv) Sy(z)¼H(z)H*(1=z*)Sx(z)

Source: Therrien, C.W., Discrete Random Signals and Statistical Signal Processing, Prentice
Hall, Inc., Upper Saddle River, NJ, 1992. With permission.
Note: For real h[n], H*(1=z*)¼H(z�1).
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and

C(4)
y l1, l2, l3½ � ¼

X1
k0¼�1

X1
k1¼�1

X1
k2¼�1

X1
k3¼�1

C(4)
x l1 � k1 þ k0, l2 � k2 þ k0, l3 � k3 þ k0½ �

� h k3½ �h k2½ �h* k1½ �h* k0½ � (12:53)

These formulas can be interpreted as a sequence of convolutions with the filter impulse response in
various directions (see [1]).

The corresponding frequency domain expressions are relatively simpler since they contain only
products of terms. The expressions for the bispectrum and trispectrum are

By(v1, v2) ¼ H*[ej v1þv2ð Þ]H(e jv1 )H(e jv2 )Bx(v1, v2) (12:54)

and

Ty(v1, v2, v3) ¼ H*[e j v1þv2þv3ð Þ]H*(e�jv(1)
)H(ejv2 )H(e jv3 )Tx(v1, v2, v3) (12:55)

Unlike the power spectral density function, these higher-order spectra are affected by the phase of the
linear system. For example, the phase of the output bispectrum is given by

ffBy(v1, v2) ¼ �ffH[e j v1þv2ð Þ]þ ffH(e jv1 )þ ffH(e jv2 )þ ffBx(v1, v2)

Using higher-order statistics it is possible to identify both the magnitude and phase of a linear system,
while with second-order statistics it is possible to identify only the magnitude.

12.3 Representation of Signals as Random Vectors

12.3.1 Statistical Description of Random Vectors

It is often useful to define a random vector x consisting of N consecutive values of a random signal as
shown in Figure 12.8. The joint density function of these N values is referred to as the probability density
function of the random vector and is written as fx(x). Consider the case of a real-valued signal first. If xo

denotes a particular value of the random vector

xo ¼

xo0
xo1

..

.

xoN�1

2
66664

3
77775

x[n]

0 1 N – 1
n

x =

. . .

x [0]
x [1]

x [N – 1]

...

FIGURE 12.8 Representation of a random sequence as a random vector. (From Therrien, C.W., Discrete Random
Signals and Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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and if small increments Dxi are taken in each of the components, the expression

fx(x
o)Dx0Dx1 � � �DxN�1

represents the probability that the signal (i.e., the random vector x) lies in a small region of the vector
space described by

xo0 < x[0] � xo0 þ Dx0, . . . , x
o
N�1 < x[N � 1] � xoN�1 þ DxN�1 (12:56)

For a complex-valued random signal, x has complex components and fx(x) represents the joint density
between the 2N real and imaginary parts of the components of x. Conditional and joint densities for
random vectors are defined in a corresponding way [1] and have interpretations that are analogous to
those for scalar random variables.

12.3.2 Moments

The first- and second-moment properties for random vectors are considerably important and are
represented as follows. The mean vector is defined by

mx ¼def E{x} ¼
m0

m1

..

.

mN�1

2
6664

3
7775 (12:57)

where mi¼E{x[i]} for i¼ 0, 1, . . . , N� 1. In the case of a stationary signal, all of the mi have the same
value (frequently zero).

The correlation matrix* is defined by

Rx ¼def E{xx*T} (12:58)

Note that this expression represents an outer product of vectors, not an inner product, so the result is an
N3N square matrix with the element in row i and column j given by E{x[i]x*[j]}. For a stationary
random process, E{x[i]x*[j]} is equal to Rx[i� j], so the matrix has the form

Rx ¼

Rx[0] Rx[�1] � � � Rx[�N þ 1]

Rx[1] Rx[0] . .
. ..

.

..

. . .
. . .

.
Rx[�1]

Rx[N � 1] � � � Rx[1] Rx[0]

2
66664

3
77775

The correlation matrix is Hermitian symmetric (Rx ¼ R*Tx ) and Toeplitz (all elements on each diagonal
are equal). The Hermitian symmetry property follows from the basic definition, Equation 12.58, and is
true for all correlation matrices; the Toeplitz property occurs only for correlation matrices of stationary
random processes.

The covariance matrix is defined as

Cx ¼ E{(x �mx)(x �mx)*
T} (12:59)

* Sometimes called the autocorrelation matrix.
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and satisfies the relation

Rx ¼ Cx þmxm*T
x (12:60)

The covariance matrix is thus the correlation matrix of the vector with the mean removed.
For nonstationary random processes, the mean vector and correlation matrix may not be sufficient to

describe the complete second-order statistics of a complex random vector [3,6,10]. In general, the relation
matrix* defined by

R0
x ¼def E{xxT} (12:61)

is also needed. If the random vector is derived from a random process exhibiting circularity, however,
then R0

x is identically zero and the random vector x is likewise said to be circular (or proper). In this case,
the correlation and cross-correlation matrices for the real and imaginary parts of the complex random
vector x are related to the real and imaginary parts of the correlation matrix as shown in Table 12.2.

The correlation and covariance matrices of any random vector are positive semidefinite, that is,

a*TRxa � 0

(and a*TCxa� 0) for any vector a. The correlation matrix for a regular random process is in fact strictly
positive definite (> rather than �), while that for a predictable random process is just positive
semidefinite, if the size is sufficiently large.

Cross-correlation and cross-covariance matrices for two random signals or two random vectors x and
y can also be defined as

Rxy ¼ E{xy*T} (12:62)

and

Cxy ¼ E (x �mx)(y �my)*
T� �

(12:63)

These matrices have no particular properties and are not even square if x and y have different sizes. They
exhibit a Toeplitz-like structure, however (all terms on the same diagonal are equal), if the two random
processes are jointly stationary.

12.3.3 Linear Transformation of Random Vectors

When a vector y is defined by a linear transformation

y ¼ Ax (12:64)

* Also called the complementary correlation matrix or pseudo-correlation matrix.

TABLE 12.2 Relations for the Complex Correlation Matrix
of a Circular (Proper) Random Vector

Complex correlation matrix Rx ¼ E{xx*T} ¼ 2RE
x þ j2Ro

x

Correlation matrices for components RE
x ¼ E xrx

T
r

� � ¼ E xix
T
i

� �
Ro
x ¼ �E xrx

T
i

� � ¼ E xix
T
r

� �
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the mean of y is given by E{y}¼AE{x} or

my ¼ Amx (12:65)

while the correlation matrix is given by E{yy*T}¼AE{xx*T}A*T or

Ry ¼ ARxA*
T (12:66)

From these last two equations and Equation 12.60, it can be shown that the covariance matrix transforms
in a similar manner, that is,

Cy ¼ ACxA*
T (12:67)

Transformations that result in random vectors with uncorrelated components are of special interest.
Strictly speaking, the term ‘‘uncorrelated’’ applies to the covariance matrix. That is, if a random vector
has uncorrelated components, its covariance matrix is diagonal. It is common practice, however, to
assume that the mean is zero and discuss the methods using the correlation matrix. If the mean is
nonzero, then the components are said to be orthogonal rather than uncorrelated.

Since correlation matrices are Hermitian symmetric and positive semidefinite, their eigenvalues are
nonnegative and eigenvectors are orthogonal (see, e.g., [11,12]). Any correlation matrix can therefore be
factored as

Rx ¼ ELE*T (12:68)

where
E is a unitary matrix (E*TE¼ I) whose columns are the eigenvectors
L is a diagonal matrix whose elements are the eigenvalues

Since the inverse of a unitary matrix is its Hermitian transpose, the last equation can be rewritten as

L ¼ E*TRxE

Comparing this with Equation 12.66 shows that if y is defined by

y ¼ E*Tx (12:69)

then Ry will be equal to L, a diagonal matrix. Since Ry is diagonal, the components of y are uncorrelated
(E{yiyj*} ¼ 0, i 6¼ j). Thus, one way to produce a vector with uncorrelated components is to apply the
eigenvector transformation (Equation 12.69).

Another way to produce a vector with uncorrelated components involves triangular decomposition of
the correlation matrix. Matrices that satisfy certain conditions of their principal minors [13] can be
factored into a product of a lower triangular and an upper triangular matrix. (This is called ‘‘LU’’
decomposition). Correlation matrices always satisfy the needed conditions, and since they are Hermitian
symmetric, they can be written as a unique product

Rx ¼ LDL*T (12:70)
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where
L is a lower triangular matrix with ones on the diagonal
D is a diagonal matrix

The product DL*T is the upper triangular matrix ‘‘U’’ in the LU decomposition.
Equation 12.70 can be rewritten as

D ¼ L�1Rx(L
�1)*T (12:71)

where it can be shown that L�1 is of the same form as L (i.e., lower triangular with ones on the diagonal).
From Equations 12.71 and 12.66, it can be recognized that D is the correlation matrix for a random
vector y defined by

y ¼ L�1x (12:72)

Since D is a diagonal matrix, the components of y are seen to be uncorrelated.
The two transformations Equations 12.69 and 12.72 correspond to two fundamentally different ways

of decorrelating a signal. The eigenvector transformation represents the signal in terms of an orthogonal
set of basis functions (the eigenvectors) and has important geometric interpretations (see Section 12.3.4
and [1, Chapter 2]). It is also the basis for modern subspace methods of spectrum analysis and array
processing. The transformation defined by the triangular decomposition has the advantage that it can be
implemented by a causal linear filter. Thus, it has important practical applications. It is the transform-
ation that naturally arises in the very important area of signal processing known as linear predictive
filtering [1].

12.3.4 Gaussian Density Function

One of the cases mentioned in Section 12.1.1 in which a complete statistical description of a random
process is possible is the Gaussian case. The form of the probability density function is slightly different
in the real and the complex cases.

12.3.4.1 Real Gaussian Density

When a random signal is Gaussian, the density function for the random vector x representing that signal
is specified in terms of just the mean vector and covariance matrix. For a real random signal this density
function has the form

fx(x) ¼ 1

(2p)
N
2 jCxj

1
2

e�
1
2(x�mx)

TC�1
x (x�mx)

(real random vector)

(12:73)

where N is the dimension of x.
The contours of the density function defined by

fx(x) ¼ constant (12:74)

are ellipsoids centered about the mean vector as shown in Figure 12.9 for a dimension N¼ 2. These are
known as concentration ellipsoids (because they represent regions where the data is concentrated) and
are useful in representing the signal from a geometric point of view. The orientation and eccentricity of
the ellipsoid depend on the correlation between the components of the random vector.
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To prove that the Gaussian density contours are ellipsoids, observe that the Equation 12.74, which
defines the contours, implies that the quadratic form in the exponent of Equation 12.73 satisfies the
condition

(x �mx)*
TC�1

x (x �mx) ¼ d2 (12:75)

where d is a positive real constant.* By using the eigenvector decomposition as in Equation 12.68, this
quadratic form can be rewritten as

(x �mx)*
TC�1

x (x �mx) ¼ (x �mx)*
T�E�L�1�E*T(x �mx)

¼ (y �my)*
T �L�1(y �my) ¼ d2

(12:76)

where y¼Ĕ*T x and ‘‘hats’’ have been added to the variables to indicate that they pertain to the
covariance matrix rather than the correlation matrix. Since �L�1 is diagonal, this last expression can be
written in expanded form as

jy0 �my0j2
�l0

þ jy1 �my1j2
�l1

þ � � � þ jyN�1 �myN�1j2
�lN�1

¼ d2 (12:77)

which is the equation of an N-dimensional ellipsoid with center at my. The transformation y¼Ĕ*Tx
represents a rotation of the coordinate system to one aligned with the eigenvectors, which are parallel to
the axes of the ellipsoid. The sizes of the axes are proportional to the square roots of the eigenvalues.

12.3.4.2 Complex Gaussian Density

For a complex random vector, the probability density function is really a joint density function for the
real and imaginary parts of the vector. If this joint density is expressed in terms of the vector and its
conjugate, it can be written (with some abuse of notation) as a product [6]

f 0(x, x*) ¼ fx(x) � f (x*jx) (12:78)

y1 x1 d    ̆     λ1 d    ̆     λ0

mx or my y0

x0

ĕ0
ĕ1

FIGURE 12.9 Typical contour of a Gaussian density function. (From Therrien, C.W., Discrete Random Signals and
Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)

* The parameter d is known as the Mahalanobis distance between the random vector x and the mean mx.
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The first term on the right is given by

fx(x) ¼ 1
pN Cxj j exp �(x �mx)*

TC�1
x (x �mx)

� 	
(complex random vector)

(12:79)

and is known as the complex Gaussian density function [1,14]. It involves only the mean and covariance
matrix and is the form most commonly found in the literature. This form is strictly correct, however, only
when the zero-mean relation function

C0
x ¼ E (x �mx)(x �mx)

T� �
is zero, that is, when the random vector satisfies circularity. The abuse of notation occurs in part because
fx(x) is not a true analytic function of a complex random variable unless it is written as a function of
both x and x*.

The second term in Equation 12.78 makes the expression for the Gaussian density function completely
general andmust be includedwhen the random vector does not satisfy circularity. This term has the form [6]

f (x*jx) ¼ 1

jI� G*TGj exp {�x*TG*TP�1Gx þ <[xTGT(P�1)*x]}

where

G ¼ C
0*T
x C�1

x

and

P ¼ Cx*� C
0*T
x C�1

x C0
x

When C0
x ¼ 0, f x*jxð Þ becomes equal to one so that f 0(x, x*)¼ fx(x). The term f(x*jx) can be thought of

as a conditional density function for x* given x (although again it is not a true analytic function). The
parameter G can be interpreted as a matrix of coefficients for estimating x* from x while P is the
corresponding error covariance matrix. Estimation is discussed further below.

12.4 Fundamentals of Estimation

Problems of statistical estimation deal with deriving values for quantities that cannot be observed or
measured directly from quantities that can be observed. These problems may deal with finding the
parameters for a model of a signal from direct measurements of that signal or for deducing one signal
from another (say a clean transmitted signal from a received noisy and distorted one). The former type of
problem is known as parameter estimation while the latter is called random variable estimation. Although
the two types of problems have much in common, it is convenient to consider them separately here.

12.4.1 Estimation of Parameters

12.4.1.1 Maximum Likelihood Estimation

The problem of parameter estimation begins with having observations of a random variable. The random
variable is described by a probability density function of some known form, but having one or more
parameters whose values are unknown. The problem is to determine values for the parameter or
parameters from observations of the random variable.
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In many cases, the observed random variable and the parameters are vector quantities. The density
function is thus denoted by

fx;u(x;u) (12:80)

where
x represents the observations
u is the parameter (or set of parameters) to be determined

The value of u determined by the estimation procedure is called an ‘‘estimate’’ of the parameter and is
denoted by û. (Estimates of parameters are conventionally denoted by putting a ‘‘hat’’ over the symbol.)

A particularly important estimate is the maximum likelihood estimate. For a given fixed set of
observations, say x¼ xo, the maximum likelihood estimate of the parameter is the value of u that
maximizes fx;u(x

o; u). This estimate of u will be denoted by ûml .
To see why this may be a good estimate and why it is called ‘‘maximum likelihood,’’ consider the

following simple example involving a scalar parameter. It is desired to estimate the meanm of a Gaussian
density function

fx;m(x;m) ¼ 1ffiffiffiffiffiffi
2p

p e�
(x�m)2

2

using a single observation xo. (The variance is assumed known and equal to one.) The density function is
depicted in Figure 12.10 for several proposed values of the mean. It is obvious that if the true value of the
mean were any of m1, m2, or m4, the given observation xo would be unlikely. The choice m3, however,
which places the peak of the density function at the location xo, makes the given observation most likely
(i.e., it maximizes the quantity fx;m(x

o; m)) and is therefore the maximum likelihood estimate.
When fx;u(x; u) of Equation 12.80 is viewed as a function of u rather than as a function of x, it is

known as the likelihood function. Thus, the maximum likelihood estimate of a parameter maximizes the
likelihood function. If the likelihood function is continuous, and the maximum does not occur at a
boundary, then the maximum likelihood estimate for a real scalar parameter u can be found through
either of the necessary conditions

qfx;u(x; u)
qu

����
u¼ûml

¼ 0 (12:81a)

q ln fx;u(x; u)
qu

����
u¼ûml

¼ 0 (12:81b)

m3m2m1

fx; m(x; m)

m4

x
xo

FIGURE 12.10 Maximum likelihood estimation of the mean. (From Therrien, C.W., Discrete Random Signals and
Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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These equations are sometimes referred to as the likelihood equation and the log likelihood equation,
respectively. Equation 12.81b follows from Equation 12.81a because the logarithm is a strict monoton-
ically increasing function; this form is convenient in many problems where the likelihood function
involves an exponential. For vector parameters u, the corresponding likelihood and log likelihood
equations involve setting the gradient or vector of derivatives with respect to all components of the
parameter to zero. (See [1] for procedures involving both real and complex vector parameters.)

12.4.1.2 Properties of Estimates

The maximum likelihood estimate for a parameter u can be written as

ûml(x) ¼ argmax fx;u(x; u) (12:82)

from which it is clear that the estimate is a function of the observations. Moreover, since the observation
vector x is a random vector, the estimate is itself a random variable and has a mean, covariance, density
function, and so on. Not all estimates are maximum likelihood estimates. For example, the estimate for
the mean of a Gaussian random signal, given by Equation 12.89, is a maximum likelihood estimate, while
the following estimate for the variance (where m̂x is given by Equation 12.89) is not:

ŝ2
x ¼

1
N

XN�1

n¼0

x[n]� m̂xð Þ2

All estimates are functions of the observations; however, it is useful to denote a general estimate by

ûN ¼ ûN (x)

where the subscript N denotes the number of observations (dimension of x), and examine its statistical
properties.

Among the properties of estimates that are most useful are the following:

1. An estimate ûN is unbiased if

E{ûN } ¼ u

Otherwise the estimate is biased with bias b(u) ¼ E{ûN }� u. An estimate is asymptotically
unbiased if

lim
N!1

E{ûN} ¼ u

2. An estimate ûN is consistent if

lim
N!1

Pr[jûN � uj < e] ¼ 1

for any arbitrarily small number e. The sequence of estimates {ûN} is then said to converge in
probability to the parameter u.

3. An estimate û is said to be efficient with respect to another estimate û0, if the difference of their
covariance matrices Cû0 � Cû is positive definite (written Cû0 > Cû). This implies that the variance
of every component of û must be smaller than the variance of the corresponding component of û0.
If ûN is unbiased and efficient with respect to ûN�1 for all N then ûN is a consistent estimate.
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The last statement needs a littlemore explanationwhich can best be given for the case of a scalar estimate. For
a scalar estimate property, (3) is a statement about its variance. The Tchebycheff inequality (see, e.g., [15])
states that

Pr[jûN � uj � e] � Var[ûN]
e2

Thus, if the variance of ûN decreases with N, the probability that jûN � uj � e approaches zero as N!1.
In other words, the probability that jûN � uj < e approaches one. This last property is illustrated in
Figure 12.11.

The variance of any unbiased estimate can be bounded with a powerful result known as the Cramér–
Rao inequality. For the case of a scalar parameter, the Cramér–Rao bound has the form

Var[û] � 1

E q ln fx;u(x; u)
qu


 �2
�  ¼ 1

�E q2 ln fx;u(x; u)
qu2

n o (12:83)

where equality occurs if and only if

û(x)� u ¼ K(u) � q ln fx;u(x; u)
qu

The two alternate expressions on the right-hand side are valid as long as the partial derivatives exist and
are absolutely integrable.

The general form of the Cramér–Rao bound for vector parameters is usually written as

Cû � J�1 (12:84)

Var[θ̂N]

(a) E{θ̂N} = θ

f θ̂
N

 (θ̂
N

)

θ̂N

1
N

f θ̂
N

΄(θ̂
N

΄)

N΄ > N

Var[θ̂N΄] 1
N΄

E{θ̂N΄} = θ(b)
θ̂N΄

FIGURE 12.11 Density function for an unbiased estimate whose variance decreases with N: (a) density function of
the estimate ûN and (b) density function of the estimate ûN 0 with N0 >N. (From Therrien, C.W., Discrete Random
Signals and Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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meaning that the difference matrix Cû � J�1 is positive semidefinite. The bounding matrix on the right-
hand side of Equation 12.84 is the inverse of the Fisher information matrix defined by

J(u) ¼ E s(x; u)sT(x; u)
� �

(12:85)

where s(x; u) is a vector whose ith component is the derivative of ln fx;u(x; u) with respect to ûi, the ith
component of u. Equation 12.84 implies that the variance of ûi is bounded by

Var ûi
� 	 � j(�1)

ii (12:86)

where j(�1)
ii is the ith diagonal element of the inverse Fisher information matrix. The bound, Equation

12.84, is satisfied with equality if and only if the estimate satisfies an equation of the form

û(x)� u ¼ K(u)s(x; u) (12:87)

In this case, K is uniquely defined by

K(u) ¼ J�1(u) (12:88)

(see [1]). An estimate satisfying the bound with equality is known as a minimum-variance estimate.
It can be shown that if an unbiased minimum variance estimate exists and the maximum likelihood
estimate does not occur at a boundary, then the maximum likelihood estimate is that minimum-variance
estimate.

An interpretation of the Cramér–Rao bound in terms of concentration ellipsoids is given in Figure 12.12.
If the deviation in the estimate is defined as

d(x; u) ¼def û(x)� u

then the bias of the estimate b(u) is the mean deviation (i.e., its expected value). The concentration ellipse
for the deviation, with covariance Cû, is shown in the figure. The minimum-deviation covariance of the
Cramér–Rao bound is represented by the smaller ellipse with covariance J�1. Geometrically the bound
states that the J�1 ellipsoid lies entirely within the Cû ellipsoid. In the best case (when û is the maximum
likelihood estimate), the two ellipsoids coincide.

(δ – b)T Cθ̂
–1(δ – b) = C

b(θ)

δ1

δ2

(δ – b)T J(δ – b) = C

FIGURE 12.12 Concentration ellipses for the deviation of the estimate of a vector parameter; geometric interpret-
ation of the Cramér–Rao bound. (From Therrien, C.W., Discrete Random Signals and Statistical Signal Processing,
Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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12.4.1.3 Estimates for Moments of Discrete Random Signals

Some of the most important parameters for random signals are their mean, autocorrelation (or auto-
covariance) functions, and perhaps higher-order statistics. Under conditions of stationarity and ergodi-
city, these parameters can be estimated from a given realization of the signal (see Section 12.1.1). Some
common forms of these estimates and some of their statistical properties are cited here.

Given N time samples of a random signal, an estimate for the mean can be formed as

m̂x ¼ 1
N

XN
n¼0

x[n] (12:89)

This estimate, known as the sample mean, is unbiased and efficient and therefore a consistent estimate.
An expression for the variance of the estimate is not difficult to derive in terms of the autocovariance
function for the process (see [1]).

The autocorrelation function is usually estimated by one of the two formulas

R̂x[l] ¼ 1
N � l

XN�1�l

n¼0

x[nþ l]x*[n], 0 � l < N (12:90)

or

R̂x[l] ¼ 1
N

XN�1�l

n¼0

x[nþ l]x*[n], 0 � l < N (12:91)

Values of the autocorrelation for negative lags are computed via the relation R̂x[�l] ¼ R̂x*[l]. Equa-
tion 12.90 generates an unbiased estimate, while Equation 12.91 is only asymptotically unbiased. Explicit
expressions for the variance of these estimates can be derived in the Gaussian case [1]; these expressions
have been found to be good approximations for non-Gaussian cases as well when l 	 N. Both estimates
are found to be efficient and therefore consistent, but Equation 12.90 has one serious defect: it cannot be
guaranteed to generate a positive semidefinite sequence. Therefore, Equation 12.91 is usually the
preferred estimate for the autocorrelation function.

Estimates for the cross-correlation function of two sequences x and y can be generated by substituting
y*[n] for x*[n] in either of the above two equations. The cross-correlation estimates have similar
statistical properties. Since the cross-correlation function is not symmetric, however, explicit values for
negative lags have to be computed by interchanging x and y in these equations and using the relation
R̂xy[�l] ¼ R̂yx* [l].

Estimates for higher-order moments and cumulants can be obtained by an analogous procedure. For
example, after removal of the mean, an estimate for the third-order cumulant is given by

Ĉ(3)
x l1, l2½ � ¼ 1

N

XnF
n¼nI

x*[n]x nþ l1½ �x nþ l2½ �

0 � l2 � l1 � N � 1

(12:92)

where

nI ¼ max 0, �l1, �l2ð Þ and nF ¼ min N � 1, N � 1� l1, N � 1� l2ð Þ

Estimates of the correlation matrix can be found by using Equation 12.91 and generating a corresponding
Toeplitz correlation matrix. It is not advisable to use Equation 12.90 in this procedure because of the
possibility of generating an estimate for the correlation matrix which is not positive semidefinite. In many
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applications, however, estimates for the correlation matrix are generated directly from products of
suitably arranged matrices of the data. These methods, such as the autocorrelation method, the covar-
iance method, and the modified covariance method, can be found in many references dealing with signal
modeling and statistical signal processing (e.g., [1]).

12.4.2 Estimation of Random Variables

The problems of filtering, prediction, and many others can be treated in the general context of random
variable estimation. A typical problem is illustrated in Figure 12.13, where the signal, treated as random
variable y, is to be estimated from related observations x1, x2, . . . , xN. The form of the estimate is

ŷ ¼ ŷ(x) ¼ f x1, x2, . . . , xNð Þ (12:93)

where the function f is nonlinear in general.
A framework for this problem is provided by the procedure known as Bayes estimation. Here one

seeks to minimize the risk defined by

R ¼ E{C(y, ŷ)} (12:94)

where C is a function known as the cost of the estimate which depends on both y and ŷ.
Two special cases for the cost function are shown in Figure 12.14. In both cases, the cost depends on

the difference y� ŷ, otherwise known as the error. In the case depicted by Figure 12.14a, the cost is a
quadratic function and the risk becomes equal to the mean-square error; while in case Figure 12.14b, the
cost of any error that is not less than an arbitrarily small amount e is uniform and equal to 1. It can be
shown that the optimal estimate in both of these cases depends only on the conditional density function
fyjx and is given by

ŷms(x) ¼
ð1

�1
yfyjx(yjx)dy (12:95)

Signal
y

x1

Estimate
y

… ŷ
x2

xN

FIGURE 12.13 Estimation of a random variable y from related observations x1, x2, . . . , xN. (From Therrien, C.W.,
Discrete Random Signals and Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With
permission.)
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for the mean-square case and

ŷMAP(x) ¼ argmax fyjx(yjx) (12:96)

for the uniform cost function. Notice that Equation 12.95 is the mean of the conditional density, while
Equation 12.96 is the maximum of the conditional density function. The latter is called the maximum a
posteriori (MAP) estimate because it maximizes the posterior density (i.e., the density after knowing the
observations).

In general, the mean-square and the MAP estimates are different nonlinear functions of the observa-
tions. The choice of estimates depends on the particular problem at hand. In the case of zero-mean jointly
Gaussian random variables, however, both estimates become identical and are linear functions of the
observations. This is particularly useful for signal processing applications since the estimates can be
implemented with linear filters. Signal processing considerations thus motivate finding an estimate that is
linear, regardless of the distribution of the random variables. Such a linear estimate can easily be found if
the mean-square error criterion is used. Further, the resulting estimate depends only upon second-
moment statistics of the signals. This topic, which is taken up below, is of fundamental importance to
most areas of modern statistical signal processing.

12.4.3 Linear Mean-Square Estimation

The problem to be addressed here is an estimation problem of the type depicted in Figure 12.13 where the
estimate is restricted to be of the form

ŷ ¼ a*Tx (12:97)

where
x is the vector of observations x1, x2, . . . , xN
a¼ [a1 a2 � � � aN]T is a vector of weighting coefficients chosen to minimize the mean-square error

E{ y � ŷj j2} (12:98)

C(y, ŷ)

|y – ŷ|2

|y – ŷ|

(a)

1

(b)

C(y, ŷ)

ε

|y – ŷ|

FIGURE 12.14 Cost functions for Bayes estimation: (a) mean-square and (b) uniform. (From Therrien, C.W.,Discrete
Random Signals and Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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If the mean of x and y are not zero, the mean-square error can be further reduced by using an estimate of
the form

ŷ ¼ a*Tx þ b

where it can be shown that the constant b should be chosen as b¼my� a*Tmx. Since this estimate is not
‘‘linear’’ in the strict mathematical sense, however, it is traditional to consider only the form represented
by Equation 12.97. To obtain the best estimate in practice, one should remove the mean of the variables
before considering the estimation problem. This is equivalent to using covariances instead of correlations
in the solution that appears below and then adding my back on to the resulting linear estimate.

The solution to the linear mean-square estimation problem is based on a key idea called the
orthogonality principle, which can be stated as follows:

THEOREM 1.1 (Orthogonality):

Let e¼ y� ŷ be the error in estimation. Then the weighting vector a minimizes the mean-square error
s2
e ¼ E{ y � ŷj j2} if a is chosen such that E{xie*}¼ 0, i¼ 1, 2, . . . , N. Further, the minimum mean-square

error is then given by s2
e ¼ E{ye*}.

The condition E{xie*}¼ 0 is known as orthogonality of the random variables e and xi. While the proof of
this theorem is not difficult, a geometric argument is perhaps more illuminating.

Let us consider the case for N¼ 2. If the random variables x1, x2, y, and e are thought of as ‘‘vectors’’ in
an abstract vector space,* then the linear form of the estimate

ŷ ¼ a1*x1 þ a2*x2

implies that ŷ lies in a plane defined by x1 and x2 (see Figure 12.15). The random variable represented by
the ‘‘vector’’ y is in general not restricted to this plane and the error e is the difference between the two
vectors, extending from the tip of ŷ to the tip of y. From the illustration, it is clear that the magnitude of
the error is minimized when e is made orthogonal to the plane. This is equivalent to requiring that e be
orthogonal to both x1 and x2, which is what the orthogonality principle states.

In order to define orthogonality in an abstract vector space, a suitable inner product between vectors is
needed. It can be shown that the operation E{xie*} satisfies the necessary conditions to serve as this
definition of inner product. With this form of inner product, it is also clear from Figure 12.15 that the
magnitude of the squared error s2

e ¼ E{jej2} is equal to the inner product E{ye*}.
The orthogonality principle can be used to easily derive the equations needed to find the linear mean-

square estimate. The theorem requires that

E{xe*} ¼ E{x(y � a*Tx)*} ¼ E{x(y*� x*Ta)} ¼ 0 (12:99)

* Hopefully readers will not be confused by the use of the word ‘‘vector’’ in a new context here. The term ‘‘vector’’ does not
refer to the array of observations x¼ [x1 x2 � � � xN]T. Rather the term is used to refer to objects in some abstract space, which
in this case are random variables. Mathematically, a vector space V is a set of elements u, v, . . . such that if u 2 V and v 2 V
then there is a unique element uþ v 2 V called the sum. Further if c is an element from an associated field such as the field
of real or complex numbers, then the scalar product c � u, with certain associative and distributive properties, is also an
element of V (see, e.g., [16]). Random variables with the associated field of complex numbers satisfy these conditions.
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Taking the expectation then yields

Rxa ¼ rxy (12:100)

where

Rx ¼ E{xx*T} (12:101)

is the correlation matrix of the observations and

rxy ¼ E{xy*} (12:102)

is the cross-correlation between the x and the random variable y to be estimated. The coefficients a to
produce the optimal estimate are thus obtained by solving the linear equations (Equation 12.100).

The minimum mean-square error follows directly from the second part of the theorem. That is,

s2
e ¼ E{ye*} ¼ E{y(y*� x*Ta)} ¼ s2

y � r*Txy a (12:103)

Note, as anticipated, the calculations in Equations 12.100 and 12.103 involve only second-moment
statistics.

12.4.3.1 Example

This section concludes with a simple example. Consider the estimation of a stationary random signal in
additive noise. The observations are given by

x[n] ¼ s[n]þ h[n]

where
s is the desired signal
h is the additive noise

If the signal and noise are uncorrelated and the signal and=or noise has mean zero, then the autocorrela-
tion function for the observations is given by

Rx[l] ¼ Rs[l]þ Rh[l] (12:104)

Plane defined by
x1 and x2ε

x1

ŷ = a1*x1 + a*2 x2

x2

y

FIGURE 12.15 Vector space interpretation of linear mean-square estimation. (From Therrien, C.W., Discrete
Random Signals and Statistical Signal Processing, Prentice Hall, Inc., Upper Saddle River, NJ, 1992. With permission.)
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where
Rs is the signal autocorrelation function
Rh is the noise autocorrelation function

The cross-correlation function for the signal and the observation sequence is given by

Rsx[l] ¼ E{s[n]x*[n� l]} ¼ Rs[l] (12:105)

Suppose the optimal estimator is to be implemented as a linear filter with finite length impulse response
h[0], h[1], . . . h[N� 1]. Then the estimate is generated by the expression

ŝ[n] ¼ h[0]x[n]þ h[1]x[n� 1]þ � � � þ h[N � 1]x[n� N þ 1]

which is of the form Equation 12.97. If the mean-square error E{je[n]j2} is to be minimized, where
e[n]¼ s[n]� ŝ[n], then this is a problem in linear mean-square estimation.

The correlation matrix and cross-correlation vector needed in Equation 12.100 are easily formulated
using the expressions for the corresponding autocorrelation functions. To illustrate, for the case N¼ 3
these equations take the form

Rx[0] Rx[�1] Rx[�2]

Rx[1] Rx[0] Rx[�1]

Rx[2] Rx[1] Rx[0]

2
64

3
75

h[0]

h[1]

h[2]

2
64

3
75 ¼

Rsx[0]

Rsx[1]

Rsx[2]

2
64

3
75 (12:106)

where Rx and Rsx are computed from Equations 12.104 and 12.105. Equation 12.103 for the mean-square
error becomes

s2
e ¼ Rs[0]�

XN�1

l¼0

h*[l]Rsx[l] (12:107)

Equation 12.106, which is a special form of Equation 12.100 for optimal filtering problems, is known as
the Wiener–Hopf equation. It appears in various forms for many important problems including those of
signal modeling and linear prediction.
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13.1 Introduction

Detection and classification arise in signal processing problems whenever a decision is to be made among
a finite number of hypotheses concerning an observed waveform. Signal detection algorithms decide
whether the waveform consists of ‘‘noise alone’’ or ‘‘signal masked by noise.’’ Signal classification
algorithms decide whether a detected signal belongs to one or another of the prespecified classes of
signals. The objective of signal detection and classification theory is to specify systematic strategies for
designing algorithms which minimize the average number of decision errors. This theory is grounded in
the mathematical discipline of statistical decision theory where detection and classification are respect-
ively called binary and M-ary hypothesis testing [1,2]. However, signal processing engineers must also
contend with the exceedingly large size of signal processing datasets, the absence of reliable and tractible
signal models, the associated requirement of fast algorithms, and the requirement for real time imbed-
ding of unsupervised algorithms into specialized software or hardware. While ad hoc statistical detection
algorithms were implemented by engineers before 1950, the systematic development of signal detection
theory was first undertaken by radar and radio engineers in the early 1950s [3,4].

This chapter provides a brief and limited overview of some of the theory and practice of signal
detection and classification. The focus will be on the Gaussian observation model. For more details and
examples see the last section of this chapter and the cited references.
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13.2 Signal Detection

Assume that for some physical measurement a sensor produces an output waveform x¼ {x(t) : t 2 [0, T]}
over a time interval [0, T]. Assume that the waveform may have been produced by ambient noise alone or
by an impinging signal of known form plus the noise. These two possibilities are called the null hypothesis
H and the alternative hypothesis K, respectively, and are commonly written in the compact notation:

H : x ¼ noise alone

K : x ¼ signalþ noise:

The hypotheses H and K are called simple hypotheses when the statistical distributions of x under H and
K involve no unknown parameters such as signal amplitude, signal phase, or noise power. When the
statistical distribution of x under a hypothesis depends on unknown (nuisance) parameters, the hypoth-
esis is called a composite hypothesis.

To decide between the null and alternative hypotheses, one might apply a high threshold to the sensor
output x and make a decision that the signal is present if and only if the threshold is exceeded at some
time within [0, T]. The engineer is then faced with practical question of where to set the threshold so as to
ensure that the number of decision errors is small. There are two types of errors possible: the error of
missing the signal (decide H under K [signal is present]) and the error of false alarm (decide K under H
[no signal is present]). There is always a compromise between choosing a high threshold to make the
average number of false alarms small versus choosing a low threshold to make the average number of
misses small. To quantify this compromise it becomes necessary to specify the statistical distribution of x
under each of the hypotheses H and K.

13.2.1 ROC Curve

Let the aforementioned threshold be denoted g. Define the K decision region RK ¼ {x : x(t) > g,
for somet 2 [0,T]}. This region is also called the critical region and simply specifies the conditions on
x for which the detector declares the signal to be present. Since the detectors make mutually exclusive
binary decisions the critical region completely specifies the operation of the detector. The probabilities of
false alarm and miss are functions of g given by PFA ¼ P RK jHð Þ and PM ¼ 1� P RK jKð Þ where
P(A jH) and P(A jK) denote the probabilities of arbitrary event A under hypothesis H and hypothesis K,
respectively. The probability of correct detection PD ¼ P RK jKð Þ is commonly called the power of the
detector and PFA is called the level of the detector.

The plot of the pair PFA¼ PFA(g) and PD¼PD(g) over the range of thresholds�1<g<1 produces a
curve called the receiver-operating characteristic (ROC) which completely describes the error rate of the
detector as a function of g (Figure 13.1). Good detectors have ROC curves which have desirable properties
such as concavity (negative curvature), monotone increase in PD as PFA increases, high slope of PD at the
point (PFA, PD)¼ (0, 0), etc. [5]. For the energy detection example shown in Figure 13.1 it is evident that
regardless of the actual energy s2 an increase in the rate of correct detections PD can be bought only at the
expense of increasing the rate of false alarms PFA. Simply stated, the job of the signal processing engineer is
to find ways to test betweenK andH, which push the ROC curve toward the upper left corner of Figure 13.1
where PD is high for low PFA: this is the regime of PD and PFA where reliable signal detection can occur.

13.2.2 Detector Design Strategies

When the signal waveform and the noise statistics are fully known, the hypotheses are simple and
an optimal detector exists which has a ROC curve that upper bounds the ROC of any other detector, i.e.,
it has the highest possible power PD for any fixed level PFA. This optimal detector is called the most
powerful (MP) test and is specified by the ubiquitous likelihood ratio test (LRT) described below. In the
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more common case where the signal and=or noise are described by unknown parameters, at least one
hypothesis is composite and a detector has different ROC curves for different values of the parameters (see
Figure 13.2). Unfortunately, there seldom exists a uniformlyMP detector whose ROC curves remain upper
bounds for the entire range of unknown parameters. Therefore, for composite hypotheses, other design
strategies must generally be adopted to ensure reliable detection performance. There are a wide range of
different strategies available including: Bayesian detection [5] and hypothesis testing [6], min–max
hypothesis testing [2], constant false alarm rate (CFAR) detection [7] and similar, unbiased hypothesis
testing [1], invariant hypothesis testing [8,9], sequential detection [10], simultaneous detection and
estimation [11], and nonparametric detection [12]. Detailed discussion of these strategies is outside of
the scope of this chapter. However, all of these strategies have a common link: their application produces
one form or another of the LRT.

13.2.3 Likelihood Ratio Test

Here, we introduce an unknown parameter u to simplify the upcoming discussion on composite
hypothesis testing. Define the probability density of the measurement x as f(x j u) where u belongs to a
parameter space Q. It is assumed that f(x j u) is a known function of x and u. We can now state the
detection problem as the problem of testing between

H : x � f (x j u), u 2 QH (13:1)

K : x � f (x j u), u 2 QK , (13:2)

where QH and QK are nonempty sets which partition the parameter space into two regions. Note it is
essential that QH and QK be disjoint (QH \ QK¼Ø) so as to remove any ambiguity on the decisions,
and exhaustive (QH [QK¼Q) to ensure that all states of nature inQ are accounted for. Let a detector be
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FIGURE 13.1 The ROC curve describes the trade-off between maximizing the power PD and minimizing the
probability of false alarm PFA of a test between two hypotheses H and K. Shown is the ROC curve of the LRT (energy
detector) which tests H : x¼ complex random variable with variance s2¼ 1 versus K : x¼ complex random variable
with variance s2¼ 5 (7 dB variance ratio).
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specified by a critical region RK . Then for any pair of parameters uH 2 QH and uK 2 QK , the level and
power of the detector can be computed by integrating the probability density f(x j u) over RK :

PFA ¼
ð

x2RK

f x j uHð Þdx (13:3)

and

PD ¼
ð

x2RK

f x j uKð Þdx: (13:4)

The hypotheses in Equations 13.1 and 13.2 are simple when Q¼ {uH, uK} consists of only two values and
QH¼ {uH} and QK¼ {uK} are point sets. For simple hypotheses, the Neyman–Pearson lemma [1] states
that there exists a MP test which maximizes PD subject to the constraint that PFA�a, where a is a
prespecified maximum level of false alarm. This test has the form of a threshold test known as the
likelihood ratio test:

L(x) ¼def f x j uKð Þ
f x j uHð Þ

K
>
<
H

h, (13:5)
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FIGURE 13.2 Eight members of the family of ROC curves for the LRT (energy detector) which testsH : x¼ complex
random variable with variance s2¼ 1 versus composite K : x¼ complex random variable with variance s2> 1.
ROC curves shown are indexed over a range [0 dB, 21 dB] of variance ratios in equal 3 dB increments. ROC curves
approach a step function as variance ratio increases.
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where h is a threshold which is determined by the constraint PFA¼a:

ð1
h

g l j uHð Þdl ¼ a: (13:6)

Here g(l j u) is the probability density function of the likelihood ratio statistic L(x). It must also be
mentioned that if the density g(l j uH) contains delta functions, a simple randomization [1] of the LRT
may be required to meet the false alarm constraint (Equation 13.6).

The test statistic L(x) is a measure of the strength of the evidence provided by x such that the
probability density f(x j uK) produces x as opposed to the probability density f(x j uH). Similarly,
the threshold h represents the detector designer’s prior level of ‘‘reasonable doubt’’ about the sufficiency
of the evidence—only above a level h is the evidence sufficient for rejecting H.

When u takes on more than two values at least one of the hypotheses (Equation 13.1 or 13.2) is
composite and the Neyman–Pearson lemma no longer applies. A popular but ad hoc alternative
which enjoys some asymptotic optimality properties is to implement the generalized likelihood ratio
test (GLRT):

Lg(x) ¼def maxuK2QK f x j uKð Þ
maxuH2QH f x j uHð Þ

K
>
<
H

h (13:7)

where, if possible, the threshold h is set to attain a specified level of PFA. The GLRT can be interpreted as
a LRT which is based on the most likely values of the unknown parameters uH and uK, i.e., the values
which maximize the likelihood functions f(x j uH) and f(x j uK), respectively (see next section).

13.3 Signal Classification

When, based on a noisy observed waveform x, one must decide among a number of possible signal
waveforms s1, . . . , sp, p> 1, we have a p-ary signal classification problem. Denoting f(x j ui) the density
function of x when signal si is present, the classification problem can be stated as the problem of testing
between the p hypotheses:

H1 : x � f x j u1ð Þ, u1 2 Q1

..

. ..
.

Hp : x � f x j up
� �

, up 2 Qp

whereQi is a space of unknowns which parameterize the signal si. As before, it is essential that the hypotheses
be disjoint, which ensures that f x j uið Þf gpi¼1 are distinct functions of x for all ui 2 Qi, i¼ 1, . . . , p, and that
they be exhaustive, which ensures that the true density of x is included in one of the hypotheses. Similar to the
case of detection, a classifier is specified by a partition of the space of observations x into p disjoint decision
regions RH1 , . . . ,RHp . Only p� 1 of these decision regions are needed to specify the operation of
the classifier. The performance of a signal classifier is characterized by its set of pmisclassification probabil-
ities PMl ¼ 1� P x 2 RH1 jH1ð Þ, . . . ,PMp ¼ P x 2 RHp jHp

� �
. Unlike in the case of detection, even for

simple hypotheses, where Qi¼ ui consists of a single point, i¼ 1, . . . , p, optimal p-ary classifiers that
uniformly minimize all PMi

s do not exist for p> 2. However, classifiers can be designed to minimize other
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weaker criteria such as average misclassification probability 1
p

Pp
i¼1PMi [5], worst-case misclassification

probability maxi PMi
[2], Bayes posterior misclassification probability [13], and others.

The maximum likelihood (ML) classifier is a popular classification technique which is closely related to
ML parameter estimation. This classifier is specified by the rule:

decide Hj if and only if maxuj2Qi
f x j uj
� � � max

k
max
uk2Qk

f x j ukð Þ, j ¼ 1, . . . , p: (13:8)

When the signal waveforms and noise statistics subsumed by the hypotheses H1, . . . ,Hp are fully known,
the ML classifier takes the simpler form:

decide Hj if and only if fj(x) � max
k

fk(x), j ¼ 1, . . . , p,

where fk denotes the known density function of x when the kth signal is present. For this simple case,
it can be shown that the ML classifier is an optimal decision rule which minimizes the total misclassifica-
tion error probability, as measured by the average 1

p

Pp
i¼1PMi . In some cases, a weighted average

1
p

Pp
i¼1biPMi is a more appropriate measure of total misclassification error, e.g., when bi is the prior

probability of Hi, i¼ 1, . . . , p,
Pp

i¼1bi ¼ 1. For this case, the optimal classifier is given by the maximum a
posteriori decision rule [5,13]:

decide Hj if and only if fj(x)bj � max
k

fk(x)bk, j ¼ 1, . . . , p:

13.4 Linear Multivariate Gaussian Model

Assume that X is an m3 n matrix of complex-valued Gaussian random variables which obeys the
following linear model [9,14]:

X ¼ ASBþW, (13:9)

where
A, S, and B are rectangular m3 q, q3 p, and p3 n complex matrices
W is an m3 n matrix whose n columns are i.i.d. zero-mean circular complex Gaussian vectors each
with positive definite covariance matrix Rw

We will assume that n�m. This model is very general and, as will be seen in subsequent sections, covers
many signal processing applications.

A few comments about random matrices are now in order. If Z is an m3 n random matrix, the mean,
E[Z], of Z is defined as the m3 n matrix of means of the elements of Z, and the covariance matrix is
defined as themn3mn covariance matrix of themn3 1 vector, vec[Z], formed by stacking columns of Z.
When the columns of Z are uncorrelated and each have the same m3m covariance matrix R, the
covariance of Z is block diagonal:

Cov[Z] ¼ R� In, (13:10)

where In is the n3 n identity matrix. For p3 qmatrix C and r3 smatrix D, the notation C � D denotes
the Kronecker product which is the following pr3 qs matrix:
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C�D ¼
C d11 C d12 . . . C d1s
C d21 C d22 . . . C d2s
..
. ..

. ..
. ..

.

C dr1 C dr2 . . . C drs

2
6664

3
7775: (13:11)

The density function of X has the form [14]

f (X; u) ¼ 1
pmn jRwjn exp �tr [X � ASB] [X � ASB]HR�1

w

� �� �
, (13:12)

where
jC j is the determinant
tr{D} is the trace of square matrices C and D

For convenience, we will use the shorthand notation

X � N mn ASB, Rw � Inð Þ,

which is to be read as X is distributed as an m3 n complex Gaussian random matrix with mean ASB,
and covariance Rw � In.

In the examples presented in the next section, several distributions associated with the complex
Gaussian distribution will be seen to govern the various test statistics. The complex noncentral
chi-square distribution with p degrees of freedom and vector of noncentrality parameters (r, d) plays
a very important role here. This is defined as the distribution of the random variable
x2(r, d) ¼def Pp

i¼1 di j zij2 þ r where the zis are independent univariate complex Gaussian random vari-
ables with zero mean and unit variance and where r is scalar and d is a (row) vector of positive scalars.
The complex noncentral chi-square distribution is closely related to the real noncentral chi-square
distribution with 2p degrees of freedom and noncentrality parameters (r, diag([d, d]) defined in [9].
The case of r¼ 0 and d¼ [1, . . . , 1] corresponds to the standard (central) complex chi-square distribu-
tion. For derivations and details on this and other related distributions see [14].

13.5 Temporal Signals in Gaussian Noise

Consider the time-sampled superposed signal model

x tið Þ ¼
Xp
j¼1

sjbj tið Þ þ w tið Þ, i ¼ 1, . . . , n,

where we interpret ti as time; but it could also be space or other domain. The temporal signal waveforms
bj ¼ bj t1ð Þ, . . . , bj tnð Þ� �T

, j ¼ 1, . . . , p are assumed to be linearly independent where p� n. The scalar sj
is a time-independent complex gain applied to the jth signal waveform. The noise w(t) is complex
Gaussian with zero mean and correlation function rw(t, t)¼E[w(t)w*(t)]. By concatenating the samples
into a column vector x ¼ x t1ð Þ, . . . , x tnð Þ½ �T, the above model is equivalent to

x ¼ Bsþ w, (13:13)

where B ¼ [b1, . . . , bp] and s ¼ [s1, . . . , sp]
T. Therefore, the density function (Equation 13.12) applies to

the transpose xT with Rw ¼ Cov(w),m ¼ q ¼ 1, and A¼ 1.
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13.5.1 Signal Detection: Known Gains

For known gain factors si, known signal waveforms bi, and known noise covariance Rw, the
LRT (Equation 13.5) is the MP signal detector for deciding between the simple hypotheses
H : x � N n 0, Rwð Þ versus K : x � N n Bs, Rwð Þ. The LRT has the form

L(x) ¼ exp �2 * Re xHR�1
w Bs

� �þ sHBHR�1
w Bs

� � K>
<
H

h: (13:14)

This test is equivalent to a linear detector with critical region RK ¼ {x:T(x) > g} where

T(x) ¼ Re xHR�1
w sc

� �
and sc ¼ Bs ¼Pp

j¼1sjbj is the observed compound signal component.
Under both hypotheses H and K, the test statistic T is Gaussian distributed with common variance but

different means. It is easily shown that the ROC curve is monotonically increasing in the detectability
index r ¼ sHc R

�1
w sc. It is interesting to note that when the noise is white, Rw¼s2In and the ROC curve

depends on the form of the signals only through the signal-to-noise ratio r ¼ ksck2
s2 . In this special case, the

linear detector can be written in the form of a correlator detector:

T(x) ¼ Re
Xn
i¼1

sc* tið Þx tið Þ
( ) K

>
<
H

g,

where sc(t) ¼
Pp

j¼1sjbj(t). When the sampling times ti are equispaced, e.g., ti¼ i, the correlator takes the
form of a matched filter:

T(x) ¼ Re
Xn
i¼1

h(n� i)x(i)

( ) K
>
<
H

g,

where h(i) ¼ sc*(�i). Block diagrams for the correlator and the matched filter implementations of the
LRT are shown in Figures 13.3 and 13.4.

T(x)
><

H

K

γRe
x(ti)

sc*(ti)

Σ
i=1

n

FIGURE 13.3 The correlator implementation of the MP LRT for signal component sc(ti) in additive Gaussian white
noise. For nonwhite noise, a prewhitening transformation must be performed on x(ti) and sc(ti) prior to implemen-
tation of correlator detector.
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13.5.2 Signal Detection: Unknown Gains

When the gains sj are unknown, the alternative hypothesis K is composite, the critical regionRK depends
on the true gains for p> 1, and no MP test for H : x � N n 0, Rwð Þ versus K : x � N n Bs, Rwð Þ exists.
However, the GLRT (Equation 13.7) can easily be derived by maximizing the likelihood ratio for known
gains (Equation 13.14) over s. Recalling from least-squares theory that mins (x � Bs)HR�1

w (x � Bs) ¼
xHR�1

w x � xHR�1
w B BHR�1

w B
� ��1

BHR�1
w x, the GLRT can be shown to take the form

Tg(x) ¼ xHR�1
w B BHR�1

w B
� ��1

BHR�1
w x

K
>
<
H

g:

A more intuitive form for the GLRT can be obtained by expressing Tg in terms of the prewhitened
observations ~x ¼ R

�1
2

w x and prewhitened signal waveform matrix ~B ¼ R
�1

2
w B, where R

�1
2

w is the right
Cholesky factor of R�1

w :

Tg(x) ¼ k~B ~BH~B
� ��1~BH~xk2: (13:15)

~B[~BH~B]�1~BH is the idempotent n3 nmatrix which projects onto column space of the prewhitened signal
waveform matrix ~B (whitened signal subspace). Thus, the GLRT decides that some linear combination of
the signal waveforms b1, . . . , bp is present only if the energy of the component of x lying in the whitened
signal subspace is sufficiently large.

Under the null hypothesis, the test statistic Tg is distributed as a complex central chi-square random
variable with p degrees of freedom, while under the alternative hypothesis Tg is a noncentral chi-square
with noncentrality parameter vector sHBHR�1

w Bs, 1
� �

. The ROC curve is indexed by the number of
signals p and the noncentrality parameter but is not expressible in the closed form for p> 1.

13.5.3 Signal Detection: Random Gains

In some cases, a random Gaussian model for the gains may be more appropriate than the unknown gain
model considered above. When the p-dimensional gain vector s is multivariate normal with zero mean
and p3 p covariance matrix Rs, the compound signal component sc¼Bs is an n-dimensional random
Gaussian vector with zero mean and rank p covariance matrix BRsB

H. A standard assumption is that the
gains and the additive noise are statistically independent. The detection problem can then be stated as

T(x) ><

H

K

γReh(i)
x(i)

FIGURE 13.4 The matched filter implementation of the MP LRT for signal component sc(i) in additive Gaussian
white noise. Matched filter impulse response is h(i) ¼ s*c (�i). For nonwhite noise, a prewhitening transformation
must be performed on x(i) and sc(i) prior to implementation of matched filter detector.
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testing the two simple hypotheses H : x � N n 0, Rwð Þ versus K : x � N n 0, BRsBH þ Rwð Þ. It can be
shown that the MP LRT has the form

T(x) ¼
Xp
i¼1

li
1þ li

� 	
j vi*R�1

2
w x



2
K
>
<
H

g, (13:16)

where lif gpi¼1 are the nonzero eigenvalues of the matrix R
�1

2
w BRsBHR

�H
2

w and vif gpi¼1 are the associated
eigenvectors. Under H, the test statistic T(x) is distributed as complex noncentral chi-square with p
degrees of freedom and noncentrality parameter vector (0, dH) where dH ¼ l1= 1þ l1ð Þ, . . . ,½ lp=

1þ lp
� ��. Under the alternative hypothesis, T is also distributed as noncentral complex chi-square,
however with noncentrality vector 0, dKð Þ where dK are the nonzero eigenvalues of BRsB

H. The ROC is
not available in closed form for p> 1.

13.5.4 Signal Detection: Single Signal

We obtain a unification of the GLRT for unknown gain and the LRT for random gain in the case of a
single impinging signal waveform: B ¼ b1, p ¼ 1. In this case, the test statistic Tg in Equation 13.15 and T
in Equation 13.16 reduce to the identical form and we get the same detector structure

j xHR�1
w b1



2
bH1 R

�1
w b1

K
>
<
H

h:

This establishes that the GLRT is uniformly MP over all values of the gain parameter s1 for p¼ 1. Note
that even though the form of the unknown parameter GLRT and the random parameter LRT are
identical for this case, their ROC curves and their thresholds g will be different since the underlying
observation models are not the same. When the noise is white, the test simply compares the magnitude
squared of the complex correlator output

Pn
i¼1b1* tið Þx tið Þ to a threshold g.

13.6 Spatiotemporal Signals

Consider the general spatiotemporal model

x tið Þ ¼
Xq
j¼1

aj
Xp
k¼1

sjkbk tið Þ þ w tið Þ, i ¼ 1, . . . , n:

This model applies to a wide range of applications in narrowband array processing and has been
thoroughly studied in the context of signal detection in [14]. The m-element vector x(ti) is a snapshot
at time ti of the m-element array response to p impinging signals arriving from q different directions. The
vector aj is a known steering vector which is the complex response of the array to signal energy arriving
from the jth direction. From this direction, the array receives the superposition

Pp
k¼1 sjkbk of p known as

time-varying signal waveforms bk ¼ bk t1ð Þ, . . . , bk tnð Þ½ �T, k ¼ 1, . . . , p. The presence of the superposition
accounts for both direct and multipath arrivals and allows for more signal sources than directions of
arrivals when p> q. The complex Gaussian noise vectors w(ti) are spatially correlated with spatial
covariance Cov[w(ti)]¼Rw, but are temporally uncorrelated Cov[w(ti), w(tj)]¼ 0, i 6¼ j.
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By arranging the n column vectors x tið Þf gni¼1 in an m3 n matrix X, we obtain the equivalent
matrix model

X ¼ ASBH þW,

where
S¼ (sij) is a q3 p matrix whose rows are vectors of signal gain factors for each different direction of

arrival
A¼ [a1, . . . , aq] is an m3 q matrix whose columns are steering vectors for different directions of
arrival

B¼ [b1, . . . , bp]
T is a p3 n matrix whose rows are different signal waveforms

To avoid singular detection, it is assumed that A is of rank q, q�m, and that B is of rank p, p� n.
We consider only a few applications of this model here. For many others see [14].

13.6.1 Detection: Known Gains and Known Spatial Covariance

First we assume that the gain matrix S and the spatial covariance Rw are known. This case is only relevant
when one knows the direct path and multipath geometry of the propagation medium (S), the spatial
distribution of the ambient (possibly coherent) noise (Rw), the q directions of the impinging superposed
signals (A), and the p signal waveforms (B). Here, the detection problem is stated in terms of the
simple hypotheses H : X � N nm 0, Rw � Inð Þ versus K : X � N nm ASB, Rw � Inð Þ. For this case, the
LRT (Equation 13.5) is the MP test and, using Equation 13.12, has the form

T(x) ¼ Re tr AHR�1
w XBHSH

� �� � K>
<
H

g:

Since the test statistic is Gaussian under H and K, the ROC curve is of similar form to the ROC for
detection of temporal signals with known gains.

Identifying the quantities ~X ¼ R
�1

2
w X and ~A ¼ R

�1
2

w A as the spatially whitened measurement matrix
and spatially whitened array response matrix, respectively, the test statistic T can be interpreted as a
multivariate spatiotemporal correlator detector. In particular, when there is only one signal impinging on
the array from a single direction, then p¼ q¼ 1, Ã¼ ã a column vector, B¼ bT a row vector, S¼ s a
complex scalar, and the test statistic becomes

T(x) ¼ Re ~aH �s ~X � t b* s*
� �

¼ Re s*
Xm
j¼1

~aj*
Xn
i¼1

b* tið Þ~xj tið Þ
( )

,

where the multiplication notation �s and �t are used to simply emphasize the respective matrix multipli-
cation operations (correlation) which occur over the spatial domain and the time domain. It can be
shown that the ROC curve monotonically increases in the detectability index r ¼ naHR�1

w a � ksbk2.

13.6.2 Detection: Unknown Gains and Unknown Spatial Covariance

By assuming the gain matrix S and Rw to be unknown, the detection problem becomes one of testing for
noise alone against noise plus p coherent signal waveforms, where the waveforms lie in the subspace
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formed by all linear combinations of the rows of B but are otherwise unknown. This gives a composite
null and alternative hypothesis for which the GLRT can be derived by maximizing the known gain
likelihood ratio over the gain matrix S. The result is the GLRT [14]:

Tg(x) ¼ jAH ^̂R
�1
K A j

jAHR̂�1
H A




K
>
<
H

g,

where
j � j denotes the determinant
R̂H ¼ 1

nXX
H is a sample estimate of the spatial covariance matrix using all of the snapshots

^̂RK ¼ 1
nX In � BH BBH½ ��1

B
h i

XH is the sample estimate using only those components of the snap-
shots lying outside of the row space of the signal waveform matrix B

To gain insight into the test statistic Tg, consider the asymptotic convergence of Tg as the number
of snapshots n goes to infinity. By the strong law, ^̂RK converges to the covariance matrix of X[In�
BH[BBH]�1B]. Since In�BH[BBH]�1B annihilates the signal component ASB, this covariance is the
same quantity R, R�Rw, under both H and K. On the other hand, R̂H converges to Rw under H, while it
converges to RwþASBBHSHAH under K. Hence, when strong signals are present, Tg tends to take on
very large values near the quantity ( jAHR�1A j )=( jAH[Rw þ ASBBHSHAH]�1AH j ) 	 1.

The distribution of Tg under H (K) can be derived in terms of the distribution of a sum of central
(noncentral) complex b random variables. See [14] for discussion of performance and algorithms for data
recursive computation of Tg. Generalizations of this GLRT exist which incorporate nonzero mean [14,15].

13.7 Signal Classification

Typical classification problems arising in signal processing are classifying an individual signal waveform
out of a set of possible linearly independent waveforms, classifying the presence of a particular set of
signals as opposed to other sets of signals, classifying among specific linear combinations of signals, and
classifying the number of signals present. The problem of classification of the number of signals, also
known as the order selection problem, is treated in the Section 16.3 of this book. While the spatiotem-
poral model could be treated in analogous fashion, for concreteness we focus on the case of the Gaussian
temporal signal model (Equation 13.13).

13.7.1 Classifying Individual Signals

Here, it is of interest to decide which one of the p-scaled signal waveforms s1b1, . . . , spbp is present in the
observations x¼ [x(t1), . . . , x(tn)]

T. Denote by Hk the hypothesis that x¼ skbkþw. Signal classification
can then be stated as the problem of testing between the following simple hypotheses:

H1 : x ¼ s1b1 þ w

..

. ..
.

Hp : x ¼ spbp þ w:

For known gain factors sk, known signal waveforms bk, and known noise covariance Rw, these hypotheses
are simple, the density function f x j sk, bkð Þ ¼ N n skbk, Rwð Þ under Hk involves no unknown parameters
and the ML classifier (Equation 13.8) reduces to the decision rule

decide Hj if and only if j ¼ argmink¼1,...,p(x � skbk)
HR�1

w (x � skbk): (13:17)
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Thus, the classifier chooses the most likely signal as that signal sjbj which has minimum normalized
distance from the observed waveform x. The classifier can also be interpreted as a minimum distance
classifier, which chooses the signal that minimizes the Euclidean distance k~x � sk~bkk between the
prewhitened signal ~bk ¼ R

�1
2

w bk and the prewhitened measurement ~x ¼ R
�1

2
w x.

Written in the minimum normalized distance form, the ML classifier appears to involve nonlinear
statistics. However, an obvious simplification of Equation 13.17 reveals that the ML classifier actually
only requires computing linear functions of x:

decide Hj if and only if j ¼ argmaxk¼1,...,p Re xHR�1
w bksk

� �� 1
2
j skj2bHk R�1

w bk

� �
:

Note that this linear reduction only occurs when the covariances Rw are identical under each Hk,
k¼ 1, . . . , p. In this case, the ML classifier can be implemented using prewhitening filters followed by a
bank of correlators or matched filters, an offset adjustment, and a maximum selector (Figure 13.5).

An additional simplification occurs when the noise is white, Rw¼ In, and all signal energies j skj2kbHk k2
are identical: the classifier chooses the most likely signal as that signal bj(ti)sj which is maximally
correlated with the measurement x:

decide Hj if and only if j ¼ argmaxk¼1,...,p Re sk
Xn
i¼1

bk* tið Þx tið Þ
 !( )

:

The decision regions RHk ¼ x: decide Hkf g induced by Equation 13.17 are piecewise linear regions,
known as Voronoi cells Vk, centered at each of the prewhitened signals sk~bk. The misclassification error
probabilities PMk ¼ 1� P x 2 RHk jHkð Þ ¼ 1� Ðx2Vk

f x jHkð Þdx must generally be computed by inte-
grating complex multivariate Gaussian densities f x jHkð Þ ¼ N n skbk, Rwð Þ over these regions. In the case
of orthogonal signals biR

�1
w bj ¼ 0, i 6¼ j, this integration reduces to a single integral of a univariate

N 1 rk, rkð Þ density function times the product of p� 1 univariate N 1 0, rið Þ cumulative distribution

x(ti)

d1

+Re

Re

sp* (ti)

s1* (ti)

+

dp

max jmax

i=1

n

Σ

i=1

n

Σ

FIGURE 13.5 The ML classifier for classifying presence of one of p signals sj tið Þ ¼def sjbj tið Þ, j ¼ 1, . . . , p, under
additive Gaussian white noise. dj ¼ � 1

2 jsjj2kbjk2 and jmax is index of correlator output which is maximum. For
nonwhite noise, a prewhitening transformation must be performed on x(ti) and the bj(ti)s prior to implementation of
ML classifier.
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functions, i¼ 1, . . . , p, i 6¼ k, where rk ¼ bHk R
�1
w bk. Even for this case, no general closed-form expressions

for PMk
are available. However, analytical lower bounds on PMk

and on average misclassification
probability 1

p

Pp
k¼1 PMk can be used to qualitatively assess classifier performance [13].

13.7.2 Classifying Presence of Multiple Signals

We conclude by treating the problem where the signal component of the observation is the linear
combination of one of J hypothesized subsets Sk, k ¼ 1, . . . , J , of the signal waveforms b1, . . . , bp.
Assume that the subset Sk contains pk signals and that the Sk, k ¼ 1, . . . , J , are disjoint, i.e., they do
not contain any signals in common. Define the n3 pk matrix Bk whose columns are formed from the
subset Sk. We can now state the classification problem as testing between the J composite hypotheses

H1 : x ¼ B1s1 þ w, s1 2 C
p1

..

. ..
.

HJ : x ¼ BJ sJ þ w, sJ 2 C
pJ

where sk is a column vector of pk unknown complex gains.
The density function under Hk, f x j sk, Bkð Þ ¼ N n Bksk, Rwð Þ, is a function of unknown parameters sk

and therefore the ML classifier (Equation 13.8) involves finding the largest among MLs
maxsk f x j sk, Bkð Þ, k ¼ 1, . . . , J . This yields the following form for the ML classifier:

decide Hj if and only if j ¼ argmink¼1,...,J x � Bkskð ÞHR�1
w x � Bkskð Þ,

where sk ¼ BH
k R

�1
w Bk

� ��1
BH
k R

�1
w x is the ML gain vector estimate. The decision regions are once again

piecewise linear but with Voronoi cells having centers at the least-squares estimates of the hypothesized
signal components Bksk, k ¼ 1, . . . , J .

Similar to the case of noncomposite hypotheses considered in the previous subsection, a simplification
of Equation 13.18 is possible:

decide Hj if and only if j ¼ argmaxk¼1,...,J x
HR�1

w Bk BH
k R

�1
w Bk

� ��1
BH
k R

�1
w x

Defining the prewhitened versions x ¼ R
�1

2
w x and ~Bk ¼ R

�1
2

w Bk of the observations and the kth signal
matrix, the ML classifier is seen to decide that the linear combination of the pj signals in Hj is present
when the length k~Bj[~BH

j
~Bj]

�1~BH
j �xk of the projection of x onto the jth signal space (colspan{~Bj}) is

greatest. This classifer can be implemented as a bank of p adaptive matched filters each matched to one of
the least-squares estimates ~Bksk, k ¼ 1, . . . , p, of the prewhitened signal component. Under any Hi, the
quantities xHR�1

w Bk[BH
k R

�1
w Bk]

�1R�1
w x, k ¼ 1, . . . , J , are distributed as complex noncentral chi-square

with pk degrees of freedom. For the special case of orthogonal prewhitened signals biR
�1
w bj ¼ 0, i 6¼ j,

these variables are also statistically independent and PMi
can be computed as a one-dimensional integral

of a univariate noncentral chi-square density times the product of J� 1 univariate noncentral chi-square
cumulative distribution functions.

13.8 Additional Reading

There are now many classic books that treat signal detection theory, including [5,7,8,16,17]. There are
many more that are relevant to signal detection, e.g., books that treat pattern recognition and machine
learning [18–20], multiuser detection [21], nonparametric inference [22], and robust statistics [23]. It is
of course not possible to give a comprehensive list here. Let it suffice to cite a few of this author’s favorite
recent books on detection theory. The classic text by Van Trees [5] has been recently updated [24] and it
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includes many additional applications and recent developments, including signal detection for arrays.
Another recent book is Levy’s textbook [25] which provides a comprehensive treatment of signal
detection with a chapter on Markov chain applications. The textbook [26] by Kay offers an excellent
and accessible treatment of detection theory oriented toward signal processing. Finally, many signal
detection problems, including the ones outlined in this chapter, can be put into the framework of
statistical inference in linear multivariate analysis. The book by Anderson [27] is the seminal reference
text in this area.
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14.1 Introduction

The main objective of spectrum estimation is the determination of the power spectral density (PSD) of a
random process. The PSD is a function that plays a fundamental role in the analysis of stationary random
processes in which it quantifies the distribution of total power as a function of frequency. The estimation
of the PSD is based on a set of observed data samples from the process. A necessary assumption is that
the random process is at least wide-sense stationary, that is, its first- and second-order statistics do not
change with time. The estimated PSD provides information about the structure of the random process
which can then be used for refined modeling, prediction, or filtering of the observed process.

Spectrum estimation has a long history with beginnings in ancient times [20]. The first significant
discoveries that laid the grounds for later developments, however, were made in the early years of the
eighteenth century. They include one of the most important advances in the history of mathematics,
Fourier’s theory. According to this theory, an arbitrary function can be represented by an infinite
summation of sine and cosine functions. Later came the Sturm–Liouville spectral theory of differential
equations, which was followed by the spectral representations in quantum and classical physics devel-
oped by John von Neuman and Norbert Wiener, respectively. The statistical theory of spectrum
estimation started practically in 1949 when Tukey introduced a numerical method for computation of
spectra from empirical data. A very important milestone for further development of the field was the
reinvention of the fast Fourier transform (FFT) in 1965, which is an efficient algorithm for computation
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of the discrete Fourier transform (DFT). Shortly thereafter came the work of John Burg, who proposed a
fundamentally new approach to spectrum estimation based on the principle of maximum entropy. In the
past three decades, his work was followed up by many researchers who have developed numerous new
spectrum estimation procedures and applied them to various physical processes from diverse scientific
fields. Today, spectrum estimation is a vital scientific discipline which plays a major role in many applied
sciences such as radar, speech processing, underwater acoustics, biomedical signal processing, sonar,
seismology, vibration analysis, control theory, and econometrics.

14.2 Important Notions and Definitions

14.2.1 Random Processes

The objects of interest of spectrum estimation are random processes. They represent time fluctuations of
a certain quantity which cannot be fully described by deterministic functions. The voltage waveform of a
speech signal, the bit stream of zeros and ones of a communication message, or the daily variations of the
stock market index are examples of random processes. Formally, a random process is defined as a
collection of random variables indexed by time. (The family of random variables may also be indexed by
a different variable, for example, space, but here we will consider only random time processes.) The index
set is infinite and may be continuous or discrete. If the index set is continuous, the random process is
known as a continuous-time random process, and if the set is discrete, it is known as a discrete-time
random process. The speech waveform is an example of a continuous random process and the sequence
of zeros and ones of a communication message, a discrete one. We shall focus only on discrete-time
processes where the index set is the set of integers.

A random process can be viewed as a collection of a possibly infinite number of functions, also called
realizations.We shall denote the collection of realizations by {~x[n]} and an observed realization of it by {x[n]}.
For a fixed n, {~x[n]} represents a random variable, also denoted as ~x[n], and x[n] is the nth sample of the
realization {x[n]}. If the samples x[n] are real, the randomprocess is real, and if they are complex, the random
process is complex. In the discussion to follow, we assume that {~x[n]} is a complex random process.

The random process {~x[n]} is fully described if for any set of time indices n1, n2, . . . , nm, the joint
probability density function of ~x[n1], ~x[n2], . . . , and ~x[nm] is given. If the statistical properties of the
process do not change with time, the random process is called stationary. This is always the case if for any
choice of random variables ~x[n1], ~x[n2], . . . , and ~x[nm], their joint probability density function is identical
to the joint probability density function of the random variables ~x[n1þ k], ~x[n2þ k], . . . , and ~x[nmþ k]
for any k. Then we call the random process strictly stationary. For example, if the samples of the random
process are independent and identically distributed random variables, it is straightforward to show that
the process is strictly stationary. Strict stationarity, however, is a very severe requirement and is relaxed
by introducing the concept of wide-sense stationarity. A random process is wide-sense stationary if the
following two conditions are met:

E(~x[n]) ¼ m (14:1)

and

r[n, nþ k] ¼ E(~x*[n]~x[nþ k])

¼ r[k] (14:2)

where
E(�) is the expectation operator
~x*[n] is the complex conjugate of ~x[n]
r[k] is the autocorrelation function of the process
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Thus, if the process is wide-sense stationary, its mean value m is constant over time, and the autocorrela-
tion function depends only on the lag k between the random variables. For example, if we consider the
random process

~x[n] ¼ a cos (2pf0nþ ~u), (14:3)

where the amplitude a and the frequency f0 are constants, and the phase ~u is a random variable that is
uniformly distributed over the interval (–p,p), one can show that

E(~x[n]) ¼ 0 (14:4)

and

r[n, nþ k] ¼ E(~x*[n]~x[nþ k])

¼ a2

2
cos (2pf0k): (14:5)

Thus, Equation 14.3 represents a wide-sense stationary random process.

14.2.2 Spectra of Deterministic Signals

Before we define the concept of spectrum of a random process, it will be useful to review the analogous
concept for deterministic signals, which are signals whose future values can be exactly determined
without any uncertainty. Besides their description in the time domain, the deterministic signals have a
very useful representation in terms of superposition of sinusoids with various frequencies, which is given
by the discrete-time Fourier transform (DTFT). If the observed signal is {g[n]} and it is not periodic, its
DTFT is the complex-valued function G( f ) defined by

G( f ) ¼
X1

n¼�1
g[n]e�j2pfn, (14:6)

where
j ¼ ffiffiffiffiffiffiffi�1

p
f is the normalized frequency, 0� f< 1
e j2pfn is the complex exponential given by

e j2pfn ¼ cos (2pfn)þ j sin (2pfn): (14:7)

The sum in Equation 14.6 converges uniformly to a continuous function of the frequency f if

X1
n¼�1

jg[n]j < 1: (14:8)

The signal {g[n]} can be determined from G( f ) by the inverse DTFT defined by

g[n] ¼
ð1
0

G( f )ej2pfndf , (14:9)
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which means that the signal {g[n]} can be represented in terms of complex exponentials whose
frequencies span the continuous interval [0, 1).

The complex function G( f) can be alternatively expressed as

G( f ) ¼ jG( f )jejf( f ), (14:10)

where
jG( f)j is called the amplitude spectrum of {g[n]}
f( f) the phase spectrum of {g[n]}.

For example, if the signal {g[n]} is given by

g[n] ¼ 1, n = 1
0, n 6= 1

�
(14:11)

then

G( f ) ¼ e�j2pf (14:12)

and the amplitude and phase spectra are

jG( f )j ¼ 1, 0 � f < 1

f( f ) ¼ �2pf , 0 � f < 1:
(14:13)

The total energy of the signal is given by

E ¼
X1

n¼�1
jg[n]j2 (14:14)

and according to Parseval’s theorem, it can also be obtained from the amplitude spectrum of the signal,
that is,

X1
n¼�1

jg[n]j2 ¼
ð1
0

jG( f )j2df : (14:15)

From Equation 14.15, we deduce that jG( f )j2 df is the contribution to the total energy of the signal from
the frequency band ( f, fþ df ). Therefore, we say that jG( f )j2 represents the energy density spectrum of
the signal {g[n]}.

When {g[n]} is periodic with period N, that is,

g(n) ¼ g(nþ N) (14:16)

for all n, and where N is the period of {g[n]}, we use the DFT to express {g[n]} in the frequency domain,
that is,

G( fk) ¼
XN�1

n¼0

g[n]e�j2pfkn, fk ¼ k
N
, k 2 {0, 1, . . . ,N � 1}: (14:17)
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Note that the frequency here takes values from a discrete set. The inverse DFT is defined by

g[n] ¼ 1
N

XN�1

k¼0

G( fk)e
j2pfkn, fk ¼ k

N
: (14:18)

Now Parseval’s relation becomes

XN�1

n¼0

jg[n]j2 ¼ 1
N

XN�1

k¼0

jG( fk)j2, fk ¼ k
N
, (14:19)

where the two sides are the total energy of the signal in one period. If we define the total power of the
discrete-time signal by

P ¼ 1
N

XN�1

n¼0

jg[n]j2, (14:20)

then from Equation 14.19

P ¼ 1
N2

XN�1

k¼0

G( fk)j j2, fk ¼ k
N
: (14:21)

Thus, G( fk)j j2=N2 is the contribution to the total power from the term with frequency fk, and so it
represents the power spectrum ‘‘density’’ of {g(n)} at that frequency. For example, if the periodic signal in
one period is defined by

g[n] ¼ 1, n ¼ 0
0, n ¼ 1, 2, . . . ,N � 1,

�
(14:22)

its PSD P( fk) is

P( fk) ¼ 1
N2

, fk ¼ k
N
, k 2 {0, 1, . . . ,N � 1}: (14:23)

Again, note that the PSD is defined for a discrete set of frequencies.
In summary, the spectra of deterministic aperiodic signals are energy densities defined on the

continuous set of frequencies Cf¼ [0, 1). On the other hand, the spectra of periodic signals are power
densities defined on the discrete set of frequencies Df¼ {0, 1=N, 2=N, . . . , (N� 1)=N}, where N is the
period of the signal.

14.2.3 Spectra of Random Processes

Suppose that we observe one realization of the random process {~x[n]}, {x[n]}. From the definition of the
DTFT and the assumption of wide-sense stationarity of {~x[n]}, it is obvious that we cannot use the DTFT
to obtain X( f ) from {x[n]} because Equation 14.8 does not hold when we replace g[n] by x[n]. And
indeed, if {x[n]} is a realization of a wide-sense stationary process, its energy is infinite. Its power,
however, is finite as was the case with the periodic signals. So if we observe {x[n]} from �N to N,
{x[n]}N�N , and assume that outside this interval the samples x[n] are equal to zero, we can find its
DTFT, XN( f ) from
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XN( f ) ¼
XN
n¼�N

x[n]e�j2pfn: (14:24)

Then according to Equation 14.15, XN ( f )j j2df represents the energy of the truncated realization that is
contributed by the components whose frequencies are between f and fþ df. The power due to these
components is given by

XN ( f )j j2df
2N þ 1

(14:25)

and jXN( f )j2=(2Nþ 1) can be interpreted as power density. If we let N ! 1, under suitable conditions
[17],

lim
N!1

XN( f )j j2
2N þ 1

(14:26)

is finite for all f, and this is then the PSD of {x[n]}. We would prefer to find, however, the PSD of {~x[n]},
which we define as

P( f ) ¼ lim
N!1

E
~XN ( f )

�� ��2
2N þ 1

( )
, (14:27)

where ~XN( f ) is the DTFT of {~x[n]}N�N . Clearly, P( f )df is interpreted as the average contribution to the
total power from the components of {~x[n]} whose frequencies are between f and fþ df.

There is a very important relationship between the PSD of a wide-sense stationary random process and
its autocorrelation function. By Wold’s theorem, which is the analog of Wiener–Khintchine theorem for
continuous-time random processes, the PSD in Equation 14.27 is the DTFT of the autocorrelation
function of the process [17], that is,

P( f ) ¼
X1
k¼�1

r[k]e�j2pfk, (14:28)

where r[k] is defined by Equation 14.2.
For all practical purposes, there are three different types of P( f ) [17]. If P( f ) is an absolutely

continuous function of f, the random process has a purely continuous spectrum. If P( f ) is identically
equal to zero for all f except for some frequencies f¼ fk, k¼ 1, 2, . . . , where it is infinite, the random
process has a line spectrum. In this case, a useful representation of the spectrum is given by the Dirac
d-functions,

P( f ) ¼
X
k

Pkd( f � fk), (14:29)

where Pk is the power associated with the kth line component. Finally, the spectrum of a random process
may be mixed, if it is a combination of a continuous and line spectra. Then P( f ) is a superposition of a
continuous function of the frequency f and d-functions.
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14.3 The Problem of Power Spectrum Estimation

The problem of power spectrum estimation can be stated as follows: Given a set of N samples {x[0],
x[1], . . . , x[N� 1]} of a realization of the random process {~x[n]}, denoted also by {x[n]}N�1

0 , estimate
the PSD of the random process, P( f ). Obviously this task amounts to estimation of a function and is
distinct from the typical problem in elementary statistics where the goal is to estimate a finite set
of parameters.

Spectrum estimation methods can be classified into two categories: nonparametric and parametric
[14,24]. The nonparametric approaches do not assume any specific parametric model for the PSD. They
are based solely on the estimate of the autocorrelation sequence of the random process from the observed
data. For the parametric approaches on the other hand, we first postulate a model for the process of
interest, where the model is described by a small number of parameters. Based on the model, the PSD of
the process can be expressed in terms of the model parameters. Then the PSD estimate is obtained by
substituting the estimated parameters of the model in the expression for the PSD. For example, if a
random process {~x[n]} can be modeled by

~x[n] ¼ a~x[n� 1]þ ~w[n], (14:30)

where a is an unknown parameter and {~w[n]} is a zero-mean wide-sense stationary random process
whose random variables are uncorrelated and with the same variance s2, it can be shown that the PSD of
{~x[n]} is

P( f ) ¼ s2

j1þ ae�j2pf j2 : (14:31)

Thus, to find P( f ) it is sufficient to estimate a and s2.
The performance of a PSD estimator is evaluated by several measures of goodness. One is the bias of

the estimator defined by

b( f ) ¼ E[P̂( f )]� P( f ), (14:32)

where P̂( f ) and P( f ) are the estimated and true PSD, respectively. If the bias b( f ) is identically equal to
zero for all f, the estimator is said to be unbiased, which means that on average it yields the true PSD.
Among the unbiased estimators, we search for the one that has minimal variability. The variability is
measured by the variance of the estimator

v( f ) ¼ E([P̂( f )� E[P( f )]]2): (14:33)

A measure that combines the bias and the variance is the relative mean-square error given by [17]

q( f ) ¼ y( f )þ b( f )2

P( f )
: (14:34)

The variability of a PSD estimator is also measured by the normalized variance [9]

c( f ) ¼ v( f )

E2[P̂( f )]
: (14:35)
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Finally, another important metric for comparison is the resolution of the PSD estimators. It corresponds
to the ability of the estimator to provide the fine details of the PSD of the random process. For example if
the PSD of the random process has two peaks at frequencies f1 and f2, then the resolution of the estimator
would be measured by the minimum separation of f1 and f2 for which the estimator still reproduces two
peaks at f1 and f2.

14.4 Nonparametric Spectrum Estimation

When the method for PSD estimation is not based on any assumptions about the generation of the
observed samples other than wide-sense stationarity, then it is termed a nonparametric estimator.
According to Equation 14.28, P( f ) can be obtained by first estimating the autocorrelation sequence
from the observed samples x[0], x[1], . . . , x[N� 1], and then applying the DTFT to these estimates. One
estimator of the autocorrelation is given by

r̂[k] ¼ 1
N

XN�1�k

n¼0

x*[n]x[nþ k], 0 � k � N � 1: (14:36)

The estimates of r̂[k] for �N< k< 0 are obtained from the identity

r̂[�k] ¼ r̂*[k] (14:37)

and those for j k j �N are set equal to zero. This estimator, although biased, has been preferred over
others. An important reason for favoring it is that it always yields nonnegative estimates of the PSD,
which is not the case with the unbiased estimator.

Many nonparametric estimators rely on using Equation 14.36 and then transform the obtained
autocorrelation sequence to estimate the PSD. Other nonparametric methods, however, operate directly
on the observed data.

14.4.1 Periodogram

The periodogram was introduced by Schuster in 1898 when he was searching for hidden periodicities
while studying sunspot data [22]. To find the periodogram of the data {x[n]}N�1

0 , first we determine the
autocorrelation sequence r[k] for �(N� 1)� k�N� 1 and then take the DTFT, that is,

P̂PER( f ) ¼
XN�1

k¼�Nþ1

r̂[k]e�j2pfk: (14:38)

It is more convenient to write the periodogram directly in terms of the observed samples x[n]. It is then
defined as

P̂PER( f ) ¼ 1
N

XN�1

n¼0

x[n]e�j2pfn

�����
�����
2

: (14:39)

Thus, the periodogram is proportional to the squared magnitude of the DTFT of the observed data. In
practice, the periodogram is calculated by applying the FFT, which computes it at a discrete set of
frequencies Df ¼ { fk : fk ¼ k=N , k ¼ 0, 1, 2, . . . , (N � 1)}. The periodogram is then expressed by

P̂PER( fk) ¼ 1
N

XN�1

n¼0

x[n]e�j2pkn=N

�����
�����
2

, fk 2 Df : (14:40)
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To allow for finer frequency spacing in the computed periodogram, we define a zero-padded sequence
according to

x 0[n] ¼ x[n], n ¼ 0, 1, . . . ,N � 1

0, n ¼ N ,N þ 1, . . . ,N 0:

�
(14:41)

Then we specify the new set of frequencies D 0
f ¼ { fk : fk ¼ k=N 0, k 2 {0, 1, 2, . . . , (N 0 � 1)}}, and obtain

P̂PER( fk) ¼ 1
N

XN�1

n¼0

x[n]e�j2pkn=N 0
�����

�����
2

, fk 2 D 0
f : (14:42)

A general property of good estimators is that they yield better estimates when the number of observed
data samples increases. Theoretically, if the number of data samples tends to infinity, the estimates should
converge to the true values of the estimated parameters. So, in the case of a PSD estimator, as we get more
and more data samples, it is desirable that the estimated PSD tends to the true value of the PSD. In other
words, if for finite number of data samples the estimator is biased, the bias should tend to zero as N!1
as should the variance of the estimate. If this is indeed the case, the estimator is called consistent.
Although the periodogram is asymptotically unbiased, it can be shown that it is not a consistent
estimator. For example, if {~x[n]} is real zero-mean white Gaussian noise, which is a process whose
random variables are independent, Gaussian, and identically distributed with variance s2, the variance of
P̂PER( f ) is equal to s4 regardless of the length N of the observed data sequence [14]. The performance
of the periodogram does not improve as N gets larger because as N increases, so does the number of
parameters that are estimated, P( f0), P( f1), . . . , P( fN�1). In general, for the variance of the periodogram
for frequencies not near 0 or �1=2 (0 or 1), we can write [14]

var(P̂PER) � P2( f ), (14:43)

where P( f ) is the true PSD.
Interesting insight can be gained if one writes the periodogram as follows:

P̂PER( f ) ¼ 1
N

XN�1

n¼0

x[n]e�j2pfn

�����
�����
2

¼ 1
N

X1
n¼�1

x[n]wR[n]e
�j2pfn

�����
�����
2

, (14:44)

where wR[n] is a rectangular window defined by

wR[n] ¼ 1, n 2 {0, 1, . . . ,N � 1}
0, otherwise:

�
(14:45)

Thus, we can regard the finite data record used for estimating the PSD as being obtained by multiplying
the whole realization of the random process by a rectangular window. Then it is not difficult to show that
the expected value of the periodogram is given by [9]

E{P̂PER( f )} ¼ 1
N

ð1
0

WR( f � j)j j2P(j)dj, (14:46)
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where WR( f) is the DTFT of the rectangular window. Hence, the mean value of the periodogram is a
smeared version of the true PSD. Since the implementation of the periodogram as defined in Equation
14.44 implies the use of a rectangular window, a question arises as to whether we could use a window of
different shape to reduce the variance of the periodogram. The answer is yes, and indeed many windows
have been proposed which weight the data samples in the middle of the observed segment more than
those toward the ends of the segment. Some frequently used alternatives to the rectangular window are
the windows of Bartlett, Hanning, Hamming, and Blackman. The magnitude of the DTFT of a window
provides two important characteristics about it. One is the width of the window’s mainlobe and the other
is the strength of its sidelobes. A narrow mainlobe allows for a better resolution, and low sidelobes
improve the smoothing of the estimated spectrum. Unfortunately, the narrower its mainlobe, the higher
the sidelobes, which is a typical trade-off in spectrum estimation. It turns out that the rectangular window
allows for the best resolution but has the largest sidelobes.

14.4.2 Bartlett Method

One approach to reduce the variance of the periodogram is to subdivide the observed data record into
K nonoverlapping segments, find the periodogram of each segment, and finally evaluate the average of
the so-obtained periodograms. This spectrum estimator, also known as the Bartlett’s estimator, has
variance that is smaller than the variance of the periodogram.

Suppose that the number of data samples N is equal to KL, where K is the number of segments and L is
their length. If the ith segment is denoted by {xi[n]}

L�1
0 , i ¼ 1, 2, . . . ,K , where

xi[n] ¼ x[nþ (i� 1)L], n 2 {0, 1, . . . , L� 1} (14:47)

and its periodogram by

P̂(i)
PER( f ) ¼

1
L

XL�1

n¼0

xi[n]e
�j2pfn

�����
�����
2

, (14:48)

then the Bartlett spectrum estimator is

P̂B( f ) ¼ 1
K

XK
i¼1

P̂(i)
PER( f ): (14:49)

This estimator is consistent and its variance compared to the variance of the periodogram is reduced by a
factor of K. This reduction, however, is paid by a decrease in resolution. The Bartlett estimator has a
resolution K times less than that of the periodogram. Thus, this estimator allows for a straightforward
trading of resolution for variance.

14.4.3 Welch Method

The Welch method is another estimator that exploits the periodogram. It is based on the same idea as
Bartlett’s approach of splitting the data into segments and finding the average of their periodograms. The
difference is that the segments are overlapped, where the overlaps are usually 50% or 75%, and the data
within a segment are windowed. Let the length of the segments be L, the ith segment be denoted again by
{xi[n]}

L�1
0 , and the offset of successive sequences be D samples. Then

N ¼ Lþ D(K � 1), (14:50)
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where
N is the total number of observed samples
K the total number of sequences.

Note that if there is no overlap, K¼N=L, and if there is 50% overlap, K¼ 2N=L� 1. The ith sequence is
defined by

xi[n] ¼ x[nþ (i� 1)D], n 2 {0, 1, . . . , L� 1}, (14:51)

where i¼ 1, 2, . . . ,K, and its periodogram by

P̂(i)
M ( f ) ¼ 1

L

XL�1

n¼0

w[n]xi[n]e
�j2pfn

�����
�����
2

: (14:52)

Here, P̂(i)
M ( f ) is the modified periodogram of the data because the samples x[n] are weighted by a

nonrectangular window w[n]. The Welch spectrum estimate is then given by

P̂B( f ) ¼ 1
K

XK
i¼1

P̂(i)
M ( f ): (14:53)

By permitting an overlap of sequences, we can form more segments than in the case of Bartlett’s method.
Also, if we keep the same number of segments, the overlap allows for longer segments. The increased
number of segments reduces the variance of the estimator, and the longer segments improve its resolution.
Thus, with the Welch method, we can trade reduction in variance for improvement in resolution in many
more ways than with the Bartlett method. It can be shown that if the overlap is 50%, the variance of the
Welch estimator is approximately 9=16 of the variance of the Bartlett estimator [9].

14.4.4 Blackman–Tukey Method

The periodogram can be expressed in terms of the estimated autocorrelation lags as

P̂PER( f ) ¼
XN�1

k¼�(N�1)

r̂[k]e�j2pfk, (14:54)

where

r̂[k] ¼
1
N

PN�1�k

n¼0
x*[n]x[nþ k], k ¼ 0, 1, . . . ,N � 1

r̂*[� k], k ¼ �(N � 1),� (N � 2), . . . ,�1:

8><
>: (14:55)

From Equations 14.54 and 14.55, we see that the estimated autocorrelation lags are given the same weight
in the periodogram regardless of the difference of their variances. From Equation 14.55, however, it is
obvious that the autocorrelations with smaller lags will be estimated more accurately than the ones with
lags close to N because of the different number of terms that are used in the summation. For example,
r̂[N� 1] has only the term x*[0]x[n� 1] compared to the N terms used in the computation of r̂[0].
Therefore, the large variance of the periodogram can be ascribed to the large weight given to the poor
autocorrelation estimates used in its evaluation.
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Blackman and Tukey proposed to weight the autocorrelation sequence so that the autocorrelations
with higher lags are weighted less [3]. Their estimator is given by

P̂BT( f ) ¼
XN�1

k¼�(N�1)

w[k]r̂[k]e�j2pfk, (14:56)

where the window w[k] is a real, nonnegative, symmetric, and nonincreasing sequence with jkj, that is,

1: 0 � w[k] � w[0] ¼ 1,

2: w[�k] ¼ w[k], and

3: w[k] ¼ 0, M < jkj,M � N � 1:

(14:57)

Note that the symmetry property of w[k] ensures that the spectrum is real.
The Blackman–Tukey estimator can be expressed in the frequency domain by the convolution

P̂BT( f ) ¼
ð1
0

W( f � j)P̂PER(j)dj: (14:58)

From Equation 14.58, we deduce that the window’s DTFT should satisfy

W( f ) � 0, f 2 (0, 1) (14:59)

so that the spectrum is guaranteed to be a nonnegative function, that is,

P̂BT( f ) � 0, 0 � f < 1: (14:60)

The bias, the variance, and the resolution of the Blackman–Tukey method depend on the applied
window. For example, if the window is triangular (Bartlett),

wB[k] ¼
M�jkj
M , jk j �M

0, otherwise

(
(14:61)

and if N � M � 1, the variance of the Blackman–Tukey estimator is [14]

var(P̂BT) � 2M
3N

P2( f ), (14:62)

where P( f ) is the true spectrum of the process. Compared to Equation 14.43, it is clear that the variance
of this estimator may be significantly smaller than the variance of the periodogram. However, as
M decreases, so does the resolution of the Blackman–Tukey estimator.

14.4.5 Minimum Variance Spectrum Estimator

The periodogram (Equation 14.44) can also be written as

P̂PER( f ) ¼ 1
N

eH( f )x
�� ��2

¼ N hH( f )x
�� ��2, (14:63)
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where e( f ) is an N3 1 vector defined by

e( f ) ¼ 1e j2pf e j4pf � � � e j2(N�1)pf
� �T

(14:64)

and h( f )¼ e( f )=N with superscript H denoting complex conjugate transpose. We could interpret
h( f ) as a filter’s finite impulse response (FIR). It is easy to show that h( f ) is a bandpass filter centered
at f with a bandwidth of approximately 1=N. Then starting with Equation 14.63, we can prove that
the value of the periodogram at frequency f can be obtained by squaring the magnitude of the filter
output at N� 1. Such filters exist for all the frequencies where the periodogram is evaluated, and they
all have the same bandwidth. Thus, the periodogram may be viewed as a bank of FIR filters with equal
bandwidths.

Capon proposed a spectrum estimator for processing large seismic arrays which, like the periodogram,
can be interpreted as a bank of filters [5]. The width of these filters, however, is data dependent and
optimized to minimize their response to components outside the band of interest. If the impulse response
of the filter centered at f0 is h( f0), then it is desired to minimize

r ¼
ð1
0

jH( f )j2P( f )df (14:65)

subject to the constraint

H( f0) ¼ 1, (14:66)

where H( f ) is the DTFT of h( f0). This is a constrained minimization problem, and the solution provides
the optimal impulse response. When the solutions are used to determine the PSD of the observed data,
we obtain the minimum variance (MV) spectrum estimator

P̂MV( f ) ¼ N

eH( f )R̂
�1
e( f )

, (14:67)

where R̂�1 is the inverse matrix of the N3N estimated autocorrelation matrix R̂ defined by

R̂ ¼
r̂[0] r̂[� 1] r̂[� 2] � � � r̂[� N þ 1]
r̂[1] r̂[0] r̂[� 1] � � � r̂[� N þ 2]
..
. ..

. ..
. ..

. ..
.

r̂[N � 1] r̂[N � 2] r̂[N � 3] � � � r̂[0]

2
6664

3
7775: (14:68)

The length of the FIR filter does not have to be N, especially if we want to avoid the use of the unreliable
estimates of r[k]. If the length of the filter’s response is p<N, then the vector e( f ), the autocorrelation
matrix R̂, and the spectrum estimate P̂MV( f ) are defined by Equations 14.64, 14.68, and 14.67, respect-
ively, with N replaced by p [14].

The MV estimator has better resolution than the periodogram and the Blackman–Tukey estimator.
The resolution and the variance of the MV estimator depend on the choice of the filter length p. If p is
large, the bandwidth of the filter is small, which allows for better resolution. A larger p, however, requires
more autocorrelation lags in the autocorrelation matrix R̂, which increases the variance of the estimated
spectrum. Again, we have a trade-off between resolution and variance.
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14.4.6 Multiwindow Spectrum Estimator

Many efforts have been made to improve the performance of the periodogram by multiplying the data
with a nonrectangular window. The introduction of such windows has been more or less ad hoc, although
they have been constructed to have narrow mainlobes and low sidelobes. By contrast, Thomson has
proposed a spectrum estimation method that also involves the use of windows but is derived from
fundamental principles. The method is based on the approximate solution of a Fredholm equation using
an eigenexpansion [25]. The method amounts to applying multiple windows to the data, where the
windows are discrete prolate spheroidal (Slepian) sequences. These sequences are orthogonal and their
Fourier transforms have the maximum energy concentration in a given bandwidth W.

The multiwindow (MW) spectrum estimator is given by [25]

P̂MW( f ) ¼ 1
m

Xm�1

i¼0

P̂i( f ), (14:69)

where the P̂i( f ) is the ith eigenspectrum defined by

P̂i( f ) ¼ 1
li

XN�1

n¼0

x[n]wi[n]e
�j2pfn

�����
�����
2

, (14:70)

where
wi[n] is the ith Slepian sequence
li the ith Slepian eigenvalue
W the analysis bandwidth.

The steps for obtaining P̂MW( f ) are [26] the following:

1. Selection of the analysis bandwidth W whose typical values are between 1.5=N and 20=N. The
number of windows m depends on the selected W, and is given by b2NWc, where bxc denotes the
largest integer less than or equal to x. The spectrum estimator has a resolution equal to W.

2. Evaluation of the m eigenspectra according to Equation 14.70, where the Slepian sequences and
eigenvalues satisfy

Cwi ¼ liwi, (14:71)

with the elements of the matrix C being given by

cmn ¼ sin (2pW(m� n))
p(m� n)

, m, n ¼ 1, 2, . . . ,N: (14:72)

In the evaluation of the eigenspectra, only the Slepian sequences that correspond to the m largest
eigenvalues of C are used.

3. Computation of the average spectrum according to Equation 14.69.

If the spectrum is mixed, that is, the observed data contain harmonics, the MWmethod uses a likelihood
ratio test to determine if harmonics are present. If the test shows that there is a harmonic around the
frequency f0, the spectrum is reshaped by adding an impulse at f0 followed by correction of the ‘‘local’’
spectrum for the inclusion of the impulse. For details, see [10,25,26].

The MW method is consistent, and its variance for fixed W tends to zero as 1=N when N ! 1. The
variance, however, as well as the bias and the resolution depend on the bandwidth W.
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14.5 Parametric Spectrum Estimation

A philosophically different approach to spectrum estimation of a random process is the parametric one,
which is based on the assumption that the process can be described by a parametric model. Based on the
model, the spectrum of the process can then be expressed in terms of the parameters of the model. The
approach thus consists of three steps: (1) selection of an appropriate parametric model (usually based on
a priori knowledge about the process), (2) estimation of the model parameters, and (3) computation of
the spectrum using the so-obtained parameters. In the literature, the parametric spectrum estimation
methods are known as high-resolution methods because they can achieve better resolution than the
nonparametric methods.

The most frequently used models in the literature are the autoregressive (AR), the moving average
(MA), the autoregressive moving average (ARMA), and the sum of harmonics (complex sinusoids)
embedded in noise. With the AR model, we assume that the observed data have been generated by a
system whose input–output difference equation is given by

x[n] ¼ �
Xp
k¼1

akx[n� k]þ e[n], (14:73)

where
x[n] is the observed output of the system
e[n] is the unobserved input of the system
ak’s are its coefficients.

The input e[n] is a zero-mean white noise process with unknown variance s2, and p is the order of the
system. This model is usually abbreviated as AR(p). The MA model is given by

x[n] ¼
Xq
k¼0

bke[n� k], (14:74)

where
bk’s denote the MA parameters
e[n] is a zero-mean white noise process with unknown variance s2

q is the order of the model.

The first MA coefficient b0 is set usually to be b0¼ 1, and the model is denoted by MA(q). The ARMA
model combines the AR and MA models and is described by

x[n] ¼ �
Xp
k¼1

akx[n� k]þ
Xq
k¼0

bke[n� k]: (14:75)

Since the AR and MA orders are p and q, respectively, the model in Equation 14.75 is referred to as
ARMA (p, q). Finally, the model of complex sinusoids in noise is

x[n] ¼
Xm
i¼1

Aie
j2pfin þ e[n], n ¼ 0, 1, . . . ,N � 1, (14:76)

where
m is the number of complex sinusoids
Ai and fi are the complex amplitude and frequency of the ith complex sinusoid, respectively
e[n] is a sample of a noise process, which is not necessarily white.
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Frequently, we assume that the samples e[n] are generated by a certain parametric probability
distribution whose parameters are unknown, or e[n] itself is modeled as an AR, MA, or ARMA
process.

14.5.1 Spectrum Estimation Based on Autoregressive Models

When the model of x[n] is AR(p), the PSD of the process is given by

PAR( f ) ¼ s2

1þPp
k¼1 ake

�j2pfk
�� ��2 : (14:77)

Thus, to find PAR( f ) we need the estimates of the AR coefficients ak and the noise variance s2.
If we multiply the two sides of Equation 14.73 by x*[n� k], k� 0, and take their expectations, we

obtain

E(x[n]x*[n� k]) ¼ �
Xp
l¼1

alE(x[n� l]x*[n� k])þ E(e[n]x*[n� k]) (14:78)

or

r[k] ¼
�Pp

l¼1
alr[k� l], k > 0

�Pp
l¼1

alr[k� l]þ s2, k ¼ 0.

8>>><
>>>:

(14:79)

The expressions in Equation 14.79 are known as the Yule–Walker equations. To estimate the p unknown
AR coefficients from Equation 14.79, we need at least p equations as well as the estimates of the
appropriate autocorrelations. The set of equations that requires the estimation of the minimum number
of correlation lags is

R̂a ¼ �r̂, (14:80)

where R̂ is the p3 p matrix:

R̂ ¼
r̂[0] r̂[�1] r̂[�2] � � � r̂[�pþ 1]
r̂[1] r̂[0] r̂[�1] � � � r̂[�pþ 2]

..

. ..
. ..

. ..
. ..

.

r̂[p� 1] r̂[p� 2] r̂[p� 3] � � � r̂[0]

2
6664

3
7775 (14:81)

and

r̂ ¼ [̂r[1]r̂[2] � � � r̂[p]]T: (14:82)

The parameters a are estimated by

â ¼ �R̂
�1
r̂ (14:83)

14-16 Digital Signal Processing Fundamentals



and the noise variance is found from

ŝ2 ¼ r̂[0]þ
Xp
k¼1

âkr̂
*
k [k]: (14:84)

The PSD estimate is obtained when â and ŝ2 are substituted in Equation 14.77. This approach for
estimating the AR parameters is known in the literature as the autocorrelation method.

Many other AR estimation procedures have been proposed including the maximum likelihood
method, the covariance method, and the Burg method [14]. Burg’s work in the late 1960s has a special
place in the history of spectrum estimation because it kindled the interest in this field. Burg showed that
the AR model provides an extrapolation of a known autocorrelation sequence r[k], j k j � p, for j k j
beyond p so that the spectrum corresponding to the extrapolated sequence is the flattest of all spectra
consistent with the 2pþ 1 known autocorrelations [4].

An important issue in finding the AR PSD is the order of the assumed AR model. There exist several
model-order selection procedures, but the most widely used are the Information Criterion A, also
known as Akaike information criterion (AIC), due to Akaike [1] and the Information Criterion B,
also known as Bayesian information criterion (BIC), also known as the minimum description length
(MDL) principle, of Rissanen [18] and Schwarz [23]. According to the AIC criterion, the best model is
the one that minimizes the function AIC(k) over k defined by

AIC(k) ¼ N log ŝ2
k þ 2k, (14:85)

where
k is the model order
ŝ2
k is the estimated noise variance of that model.

Similarly, the MDL criterion chooses the order which minimizes the function MDL(k) defined by

MDL(k) ¼ N log ŝ2
k þ k logN , (14:86)

where N is the number of observed data samples. It is important to emphasize that the MDL rule can be
derived if, as a criterion for model selection, we use the maximum a posteriori principle. It has been found
that the AIC is an inconsistent criterion, whereas the MDL rule is consistent. Consistency here means
that the probability of choosing the correct model order tends to one as N ! 1.

The AR-based spectrum estimation methods show very good performance if the processes are
narrowband and have sharp peaks in their spectra. Also, many good results have been reported when
they are applied to short data records.

14.5.2 Spectrum Estimation Based on Moving Average Models

The PSD of a moving average process is given by

PMA( f ) ¼ s2 1þ
Xq
k¼1

bke
�j2pfk

�����
�����
2

: (14:87)

It is not difficult to show that the r[k] s for j k j> q of an MA(q) process are identically equal to zero, and
that Equation 14.87 can be expressed also as

PMA( f ) ¼
Xq
k¼�q

r[k]e�j2pfk: (14:88)
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Thus, to find P̂MA( f ) it would be sufficient to estimate the autocorrelations r[k] and use the found
estimates in Equation 14.88. Obviously, this estimate would be identical to P̂BT( f ) when the applied
window is rectangular and of length 2qþ 1.

A different approach is to find the estimates of the unknown MA coefficients and s2 and use them in
Equation 14.87. The equations of the MA coefficients are nonlinear, which makes their estimation
difficult. Durbin has proposed an approximate procedure that is based on a high-order AR approxima-
tion of the MA process. First the data are modeled by an AR model of order L, where L � q. Its
coefficients are estimated from Equation 14.83 and ŝ2 according to Equation 14.84. Then the sequence 1,
â1, â2, . . . , âL, is fitted with an AR(q) model, whose parameters are also estimated using the autocorrela-
tion method. The estimated coefficients b̂1, b̂2, . . . , b̂q are subsequently substituted in Equation 14.87
together with ŝ2.

Good results with MA models are obtained when the PSD of the process is characterized by broad
peaks and sharp nulls. The MA models should not be used for processes with narrowband features.

14.5.3 Spectrum Estimation Based on Autoregressive
Moving Average Models

The PSD of a process that is represented by the ARMA model is given by

PARMA( f ) ¼ s2 1þPq
k¼1bke

�j2pfk
�� ��2
1þPp

k¼1ake
�j2pfk

�� ��2 : (14:89)

The ML estimates of the ARMA coefficients are difficult to obtain, so we usually resort to methods
that yield suboptimal estimates. For example, we can first estimate the AR coefficients based on the
following equation:

r̂[q] r̂[q� 1] � � � r̂[q� pþ 1]

r̂[qþ 1] r̂[q] � � � r̂[q� pþ 2]

..

. ..
. ..

. ..
.

r̂[M � 1] r̂[M � 2] � � � r̂[M � p]

2
666664

3
777775

a1

a2

..

.

ap

2
666664

3
777775þ

eqþ1

eqþ2

..

.

eM

2
666664

3
777775 ¼ �

r̂[qþ 1]

r̂[qþ 2]

..

.

r̂[M]

2
666664

3
777775 (14:90)

or

R̂aþ e ¼ �r̂, (14:91)

where the vector e models the errors in the Yule–Walker equations due to the estimation errors of
the autocorrelation lags, and M� pþ q. From Equation 14.91, we can find the least-squares estimates
of a by

â ¼ � R̂
H
R̂

� ��1
R̂
H
r̂: (14:92)

This procedure is known as the least-squares-modified Yule–Walker equation method. Once the AR
coefficients are estimated, we can filter the observed data

y[n] ¼ x[n]þ
Xp
k¼1

âkx[n� k] (14:93)
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and obtain a sequence that is approximately modeled by an MA(q) model. From the data y[n] we can
estimate the MA PSD by Equation 14.88 and obtain the PSD estimate of the data x[n]:

P̂ARMA( f ) ¼ P̂MA( f )

1þPp
k¼1âke

�j2pfk
�� ��2 (14:94)

or estimate the parameters b1, b2, . . . , bq and s2 by Durbin’s method, for example, and then use

P̂ARMA( f ) ¼ ŝ2
1þPq

k¼1b̂ke
�j2pfk

��� ���2
1þPp

k¼1âke
�j2pfk

�� ��2 : (14:95)

The ARMA model has an advantage over the AR and MA models because it can better fit spectra with
nulls and peaks. Its disadvantage is that it is more difficult to estimate its parameters than the parameters
of the AR and MA models.

14.5.4 Pisarenko Harmonic Decomposition Method

Let the observed data represent m complex sinusoids in noise, that is,

x[n] ¼
Xm
i¼1

Aie
j2pfin þ e[n], n ¼ 0, 1, . . . ,N � 1, (14:96)

where
fi is the frequency of the ith complex sinusoid
Ai is the complex amplitude of the ith sinusoid

Ai ¼ Aij jejfi , (14:97)

fi being a random phase of the ith complex sinusoid
e[n] is a sample of a zero-mean white noise process.

The PSD of the process is a sum of the continuous spectrum of the noise and a set of impulses with area
jAij2 at the frequencies fi, or

P( f ) ¼
Xm
i¼1

Aij j2d( f � fi)þ Pe( f ), (14:98)

where Pe( f ) is the PSD of the noise process.
Pisarenko studied the model in Equation 14.96 and found that the frequencies of the sinusoids can be

obtained from the eigenvector corresponding to the smallest eigenvalue of the autocorrelation matrix.
His method, known as Pisarenko harmonic decomposition (PHD), led to important insights and
stimulated further work which resulted in many new procedures known today as ‘‘signal and noise
subspace’’ methods.

When the noise {~e[n]} is zero-mean white with variance s2, the autocorrelation of {~x[n]} can be
written as

r[k] ¼
Xm
i¼1

Aij j2ej2pfik þ s2d[k] (14:99)
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or the autocorrelation matrix can be represented by

R ¼
Xm
i¼1

Aij j2eieHi þ s2I, (14:100)

where

ei ¼ [1e j2pfi e j4pfi e j2p(N�1)fi ]T (14:101)

and I is the identity matrix. It is seen that the autocorrelation matrix R is composed of the sum of signal
and noise autocorrelation matrices:

R ¼ Rs þ s2I, (14:102)

where

Rs ¼ EPEH (14:103)

for

E ¼ [e1 e2 � � � em] (14:104)

and P is a diagonal matrix:

P ¼ diag{ A1j j2, A2j j2, . . . , Amj j2}: (14:105)

If the matrix Rs is M3M, where M�m, its rank will be equal to the number of complex sinusoids m.
Another important representation of the autocorrelation matrix R is via its eigenvalues and eigenvectors,
that is,

R ¼
Xm
i¼1

(li þ s2)viv
H
i þ

XM
i¼mþ1

s2viv
H
i , (14:106)

where the lis, i¼ 1, 2, . . . ,m, are the nonzero eigenvalues of Rs. Let the eigenvalues of R be arranged in
decreasing order so that l1� l2� � � � �lM, and let vi be the eigenvector corresponding to li. The space
spanned by the eigenvectors vi, i¼ 1, 2, . . . ,m, is called the signal subspace, and the space spanned by
vi, i¼mþ 1,mþ 2, . . . ,M, the noise subspace. Since the set of eigenvectors are orthonormal, that is,

vHi vl ¼
1, i ¼ l
0, i 6¼ l

�
(14:107)

the two subspaces are orthogonal. In other words if s is in the signal subspace, and z is in the noise
subspace, then sHz¼ 0.

Now suppose that the matrix R is (mþ 1)3(mþ 1). Pisarenko observed that the noise variance
corresponds to the smallest eigenvalue of R and that the frequencies of the complex sinusoids can be
estimated by using the orthogonality of the signal and noise subspaces, that is,

eHi vmþ1 ¼ 0, i ¼ 1, 2, . . . ,m: (14:108)

14-20 Digital Signal Processing Fundamentals



We can estimate the fi s by forming the pseudospectrum

P̂PHD( f ) ¼ 1

eH( f )vmþ1j j2 , (14:109)

which should theoretically be infinite at the frequencies fi. In practice, however, the pseudospectrum does
not exhibit peaks exactly at these frequencies because R is not known and, instead, is estimated from
finite data records.

The PSD estimate in Equation 14.109 does not include information about the power of the noise and
the complex sinusoids. The powers, however, can easily be obtained by using Equation 14.98. First note
that Pe( f )¼s2 and ŝ2 ¼ lmþ1. Second, the frequencies fi are determined from the pseudospectrum
Equation 14.109, so it remains to find the powers of the complex sinusoids Pi¼ jAi j2. This can readily be
accomplished by using the set of m linear equations:

êH1 v1
�� ��2 êH2 v1

�� ��2 � � � êHmv1
�� ��2

êH1 v2
�� ��2 êH2 v2

�� ��2 � � � êHmv2
�� ��2

..

. ..
.
; ..

. ..
.

êH1 vm
�� ��2 êH2 vm

�� ��2 � � � êHmvm
�� ��2

2
66666664

3
77777775

P1

P2

..

.

Pm

2
66666664

3
77777775
¼

l1 � ŝ2

l2 � ŝ2

..

.

lm � ŝ2

2
66666664

3
77777775
, (14:110)

where

êi ¼ [1ej2pf̂i ej4pf̂i � � � ej2p(N�1)f̂i ]T: (14:111)

In summary, Pisarenko’s method consists of four steps:

1. Estimate the (mþ 1)3 (mþ 1) autocorrelation matrix R (provided it is known that the number of
complex sinusoids is m)

2. Evaluate the minimum eigenvalue lmþ1 and the eigenvectors of R̂
3. Set the white noise power to s2¼lmþ1, estimate the frequencies of the complex sinusoids from the

peak locations of P̂PHD( f) in Equation 14.109, and compute their powers from Equation 14.110
4. Substitute the estimated parameters in Equation 14.98

Pisarenko’s method is not used frequently in practice because its performance is much poorer than the
performance of some other signal and noise subspace-based methods developed later.

14.5.5 Multiple Signal Classification

A procedure very similar to Pisarenko’s is the MUltiple SIgnal Classification (MUSIC) method, which
was proposed in the late 1970s by Schmidt [21]. Suppose again that the process {~x[n]} is described by
m complex sinusoids in white noise. If we form an M3M autocorrelation matrix R, find its eigenvalues
and eigenvectors and rank them as before, then as mentioned in the previous subsection, its m
eigenvectors corresponding to the m largest eigenvalues span the signal subspace. Then, the remaining
eigenvectors span the noise subspace. According to MUSIC, we estimate the noise variance from the
M�m smallest eigenvalues of R̂

ŝ2 ¼ 1
M �m

XM
i¼mþ1

li (14:112)
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and the frequencies from the peak locations of the pseudospectrum

P̂MU( f ) ¼ 1PM
i¼mþ1 e( f )Hvi

�� ��2 : (14:113)

It should be noted that there are other ways of estimating the fis. Finally the powers of the complex
sinusoids are determined from Equation 14.110, and all the estimated parameters are substituted in
Equation 14.98.

MUSIC has better performance than Pisarenko’s method because of the introduced averaging via the
extra noise eigenvectors. The averaging reduces the statistical fluctuations present in Pisarenko’s pseu-
dospectrum, which arise due to the errors in estimating the autocorrelation matrix. These fluctuations
can further be reduced by applying the Eigenvector method [12], which is a modification of MUSIC and
whose pseudospectrum is given by

P̂EV( f ) ¼ 1PM
i¼mþ1

1
li
e( f )Hvi

��� ���2 : (14:114)

Pisarenko’s method, MUSIC, and its variants exploit the noise subspace to estimate the unknown
parameters of the random process. There are, however, approaches that estimate the unknown param-
eters from vectors that lie in the signal subspace. The main idea there is to form a reduced rank
autocorrelation matrix which is an estimate of the signal autocorrelation matrix. Since this estimate is
formed from the m principal eigenvectors and eigenvalues, the methods based on them are called
principal component spectrum estimation methods [9,14]. Once the signal autocorrelation matrix is
obtained, the frequencies of the complex sinusoids are found, followed by estimation of the remaining
unknown parameters of the model.

14.6 Further Developments

Spectrum estimation continues to attract the attention of many researchers. The answers to many
interesting questions are still unknown, and many problems still need better solutions. The field of
spectrum estimation is constantly enriched with new theoretical findings and a wide range of results
obtained from examinations of various physical processes. In addition, new concepts are being intro-
duced that provide tools for improved processing of the observed signals and allow for a better
understanding. Many new developments are driven by the need to solve specific problems that arise in
applications, such as in sonar and communications.

For example, one of these advances is the introduction of canonical autoregressive decomposition
[16]. The decomposition is a parametric approach for the estimation of mixed spectra where the
continuous part of the spectrum is modeled by an AR model. In [13], it is shown how to obtain
maximum likelihood frequency estimates for sinusoids in white Gaussian noise by using the mean
likelihood estimator, which is implemented by the concept of importance sampling. Another develop-
ment is related to Bayesian spectrum estimation. Jaynes has introduced it in [11] and some interesting
results for spectra of harmonics in white Gaussian noise have been reported in [8]. A Bayesian
spectrum estimate is based on

P̂BA( f ) ¼
ð
Q

P( f , u)f (uj{x[n]}N�1
0 )du, (14:115)
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where
P( f, u) is the theoretical parametric spectrum
u denotes the parameters of the process
Q is the parameter space
f (uj{x[n]}N�1

0 ) is the a posteriori probability density function of the process parameters.

Therefore, the Bayesian spectrum estimate is defined as the expected value of the theoretical spectrum
over the joint posterior density function of the model parameters. Typically, the closed form solutions
of the integral in Equation 14.115 cannot be obtained, and one has to rely on Monte Carlo-based
solutions that include use of Markov chain Monte Carlo sampling or the population Monte Carlo
method [6,19].

The processes that we have addressed here are wide-sense stationary. The stationarity assumption,
however, is often a mathematical abstraction and only an approximation in practice. Many physical
processes are actually nonstationary and their spectra change with time. In biomedicine, speech analysis,
and sonar, for example, it is typical to observe signals whose power during some time intervals is
concentrated at high frequencies and, shortly thereafter, at low or middle frequencies. In such cases, it
is desirable to describe the PSD of the process at every instant of time, which is possible if we assume that
the spectrum of the process changes smoothly over time. Such a description requires a combination of
the time- and frequency-domain concepts of signal processing into a single framework [7]. So there is an
important distinction between the PSD estimation methods discussed here and the time–frequency
representation approaches. The former provide the PSD of the process for all times, whereas the latter
yield the local PSDs at every instant of time. This area of research is well developed but still far from
complete. Although many theories have been proposed and developed, including evolutionary spectra
[17], the Wigner–Wille method [15], and the kernel choice approach [2], time-varying spectrum analysis
has remained a challenging and fascinating area of research.
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15.1 Introduction

Estimation is one of four modeling problems. The other three are representation (how something should
be modeled), measurement (which physical quantities should be measured and how they should be
measured), and validation (demonstrating confidence in the model). Estimation, which fits in between
the problems of measurement and validation, deals with the determination of those physical quantities
that cannot be measured from those that can be measured. We shall cover a wide range of estimation
techniques including weighted least squares, best linear unbiased, maximum-likelihood, mean-squared,
and maximum-a posteriori. These techniques are for parameter or state estimation or a combination of
the two, as applied to either linear or nonlinear models.

The discrete-time viewpoint is emphasized in this chapter because (1) much real data is collected in a
digitizedmanner, so it is in a form ready to be processed by discrete-time estimation algorithms and (2) the
mathematics associated with discrete-time estimation theory is simpler than with continuous-time
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estimation theory.We view (discrete-time) estimation theory as the extension of classical signal processing
to the design of discrete-time (digital) filters that process uncertain data in an optimal manner. Estimation
theory can, therefore, be viewed as a natural adjunct to digital signal processing theory. Mendel [12] is the
primary reference for all the material in this chapter.

Estimation algorithms process data and, as such, must be implemented on a digital computer. Our
computation philosophy is, whenever possible, leave it to the experts. Many of our chapter’s algorithms
can be used with MATLAB1 and appropriate toolboxes (MATLAB is a registered trademark of The
MathWorks, Inc.). See [12] for specific connections between MATLAB and toolbox M-files and the
algorithms of this chapter.

The main model that we shall direct our attention to is linear in the unknown parameters, namely

Z(k) ¼ H(k)uþ V(k): (15:1)

In this model, which we refer to as a ‘‘generic linear model,’’ Z(k) ¼ col(z(k), z(k� 1), . . . , z(k� N þ 1)),
which is N3 1, is called the measurement vector. Its elements are z( j)¼ h0( j)uþ n( j); u, which is n3 1, is
called the parameter vector, and contains the unknown deterministic or random parameters that will
be estimated using one or more of this chapter’s techniques; H(k), which is N3 n, is called the
observation matrix; and, V(k), which is N3 1, is called the measurement noise vector. By convention,
the argument ‘‘k’’ of Z(k), H(k), and V(k) denotes the fact that the last measurement used to construct
Equation 15.1 is the kth.

Examples of problems that can be cast into the form of the generic linear model are: identifying the
impulse response coefficients in the convolutional summation model for a linear time-invariant system
from noisy output measurements, identifying the coefficients of a linear time-invariant finite-difference
equation model for a dynamical system from noisy output measurements, function approximation, state
estimation, estimating parameters of a nonlinear model using a linearized version of that model, deconvo-
lution, and identifying the coefficients in a discretized Volterra series representation of a nonlinear system.

The following estimation notation is used throughout this chapter: û(k) denotes an estimate of u and
~u(k) denotes the error in estimation, i.e., ~u(k) ¼ u� û(k). The generic linear model is the starting point
for the derivation of many classical parameter estimation techniques, and the estimation model for Z(k)
is Ẑ(k) ¼ H(k)û(k). In the rest of this chapter we develop specific structures for û(k). These structures are
referred to as estimators. Estimates are obtained whenever data are processed by an estimator.

15.2 Least-Squares Estimation

The method of least squares dates back to Karl Gauss around 1795 and is the cornerstone for most
estimation theory. The weighted least-squares estimator (WLSE), ûWLS(k), is obtained by minimizing
the objective function J[û(k)] ¼ ~Z

0
(k)W(k)~Z(k), where (using Equation 15.1) ~Z(k) ¼ Z(k)� Ẑ(k) ¼

H(k)~u(k)þ V(k), and weighting matrix W(k) must be symmetric and positive definite. This weighting
matrix can be used to weight recent measurements more (or less) heavily than past measurements. If
W(k)¼ cI, so that all measurements are weighted the same, then weighted least-squares reduces to least
squares, in which case, we obtain ûLS(k). Setting dJ[û(k)]=dû(k) ¼ 0, we find that

ûWLS(k) ¼ [H0(k)W(k)H(k)]�1H0(k)W(k)Z(k) (15:2)

and, consequently,

ûLS(k) ¼ [H0(k)H(k)]�1H0(k)Z(k): (15:3)

Note, also, that J[ûWLS(k)� ¼ Z0(k)W(k)Z(k)� û0WLS(k)H
0(k)W(k)H(k)ûWLS(k).
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Matrix H0(k)W(k)H(k) must be nonsingular for its inverse in Equation 15.2 to exist. This is true
if W(k) is positive definite, as assumed, and H(k) is of maximum rank. We know that ûWLS(k)
minimizes J[ûWLS(k)] because d

2J[û(k)]=dû2(k) ¼ 2H0(k)W(k)H(k) > 0, since H0(k)W(k)H(k) is invert-
ible. Estimator ûWLS(k) processes the measurements Z(k) linearly; hence, it is referred to as a linear
estimator. In practice, we do not compute ûWLS(k) using Equation 15.2, because computing the inverse of
H0(k)W(k)H(k) is fraught with numerical difficulties. Instead, the so-called normal equations
[H0(k)W(k)H(k)]ûWLS(k) ¼ H0(k)W(k)Z(k) are solved using stable algorithms from numerical linear
algebra (e.g., [3] indicating that one approach to solving the normal equations is to convert the original
least squares problem into an equivalent, easy-to-solve problem using orthogonal transformations such
as Householder or Givens transformations). Note, also, that Equations 15.2 and 15.3 apply to the
estimation of either deterministic or random parameters, because nowhere in the derivation of ûWLS(k)
did we have to assume that u was or was not random. Finally, note that WLSEs may not be invariant
under changes of scale. One way to circumvent this difficulty is to use normalized data.

Least-squares estimates can also be computed using the singular-value decomposition (SVD) of matrix
H(k). This computation is valid for both the overdetermined (N< n) and underdetermined (N> n)
situations and for the situation whenH(k) may or may not be of full rank. The SVD of K3Mmatrix A is

U0AV ¼ S 0
0 0

� �
, (15:4)

where
U and V are unitary matrices
S ¼ diag(s1,s2, . . . ,sr),s1 � s2 � � � � � sr > 0, where the si’s are the singular values of A and r is

the rank of A

Let the SVD of H(k) be given by Equation 15.4. Even if H(k) is not of maximum rank, then

ûLS(k) ¼ V S
�1 0
0 0

� �
U0Z(k), (15:5)

where
S�1 ¼ diag s�1

1 s�1
2 , . . . ,s�1

r

� �
r is the rank of H(k)

Additionally, in the overdetermined case,

ûLS(k) ¼
Xr

i¼1

vi(k)
s2
i (k)

v0i(k)H
0(k)Z(k): (15:6)

Similar formulas exist for computing ûWLS(k).
Equations 15.2 and 15.3 are batch equations, because they process all of the measurements at one time.

These formulas can be made recursive in time by using simple vector and matrix partitioning techniques.
The information form of the recursive WLSE is

ûWLS(kþ 1) ¼ ûWLS(k)þ Kw(kþ 1)[z(kþ 1)� h0(kþ 1)ûWLS(k)], (15:7)

Kw(kþ 1) ¼ P(kþ 1)h(kþ 1)w(kþ 1), (15:8)

P�1(kþ 1) ¼ P�1(k)þ h(kþ 1)w(kþ 1)h0(kþ 1): (15:9)
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Equations 15.8 and 15.9 require the inversion of n3 n matrix P. If n is large, then this will be a costly
computation. Applying a matrix inversion lemma to Equation 15.9, one obtains the following alternative
covariance form of the recursive WLSE (Equation 15.7), and

Kw(kþ 1) ¼ P(k)h(kþ 1) h0(kþ 1)P(k)h(kþ 1)þ 1
w(kþ 1)

� ��1

, (15:10)

P(kþ 1) ¼ [I� Kw(kþ 1)h0(kþ 1)]P(k): (15:11)

Equations 15.7 through 15.9 or Equations 15.7, 15.10, and 15.11 are initialized by ûWLS(n) and P�1(n),
where P(n)¼ [H0(n)W(n)H(n)]�1, and are used for k¼ n, nþ 1, . . . ,N� 1.

Equation 15.7 can be expressed as

ûWLS(kþ 1) ¼ [I� Kw(kþ 1)h0(kþ 1)]ûWLS(k)þ Kw(kþ 1)z(kþ 1), (15:12)

which demonstrates that the recursiveWLSE is a time-varying digital filter that is excited by random inputs
(i.e., the measurements), one whose plant matrix [I�Kw(kþ 1)h0(kþ 1)] may itself be random because
Kw(kþ 1) and h(kþ 1) may be random, depending upon the specific application. The random natures of
these matrices make the analysis of this filter exceedingly difficult.

Two recursions are present in the recursive WLSEs. The first is the vector recursion for ûWLS given
by Equation 15.7. Clearly, ûWLS(kþ 1) cannot be computed from this expression until measurement
z(kþ 1) is available. The second is the matrix recursion for either P�1 given by Equation 15.9 or
P given by Equation 15.11. Observe that values for these matrices can be precomputed before
measurements are made. A digital computer implementation of Equations 15.7 through 15.9 is
P�1(kþ 1) ! P(kþ 1) ! Kw(kþ 1) ! ûWLS(kþ 1), whereas for Equations 15.7, 15.10, and 15.11, it
is P(k) ! Kw(kþ 1) ! ûWLS(kþ 1) ! P(kþ 1). Finally, the recursive WLSEs can even be used for
k¼ 0, 1, . . . ,N� 1. Often z(0)¼ 0, or there is no measurement made at k¼ 0, so that we can set z(0)¼ 0.
In this case we can set w(0)¼ 0, and the recursive WLSEs can be initialized by setting ûWLS(0) ¼ 0 and
P(0) to a diagonal matrix of very large numbers. This is very commonly done in practice. Fast fixed-order
recursive least-squares algorithms that are based on the Givens rotation [3] and can be implemented
using systolic arrays are described in [5] and the references therein.

15.3 Properties of Estimators

How do we know whether or not the results obtained from the WLSE, or for that matter any estimator,
are good? To answer this question, we must make use of the fact that all estimators represent trans-
formations of random data; hence, û(k) is itself random, so that its properties must be studied from a
statistical viewpoint. This fact and its consequences, which seem so obvious to us today, are due to the
eminent statistician R.A. Fischer.

It is common to distinguish between small-sample and large-sample properties of estimators. The term
‘‘sample’’ refers to the number of measurements used to obtain û, i.e., the dimension of Z. The phrase
‘‘small sample’’ means any number of measurements (e.g., 1, 2, 100, 104, or even an infinite number),
whereas the phrase ‘‘large sample’’means ‘‘an infinite number of measurements.’’ Large-sample properties
are also referred to as asymptotic properties. If an estimator possesses as small-sample property, it also
possesses the associated large-sample property; but the converse is not always true. Although large sample
means an infinite number of measurements, estimators begin to enjoy large-sample properties for much
fewer than an infinite number of measurements. How few usually depends on the dimension of u, n, the
memory of the estimators, and in general on the underlying, albeit unknown, probability density function.

15-4 Digital Signal Processing Fundamentals



A thorough study into û would mean determining its probability density function p(û). Usually, it is
too difficult to obtain p(û) for most estimators (unless û is multivariate Gaussian); thus, it is customary to
emphasize the first- and second-order statistics of û (or its associated error ~u ¼ u� û), the mean, and
the covariance.

Small-sample properties of an estimator are unbiasedness and efficiency. An estimator is unbiased if its
mean value is tracking the unknown parameter at every value of time, i.e., the mean value of the
estimation error is zero at every value of time. Dispersion about the mean is measured by error variance.
Efficiency is related to how small the error variance will be. Associated with efficiency is the very famous
Cramér–Rao inequality (Fisher information matrix, in the case of a vector of parameters) which places a
lower bound on the error variance, a bound that does not depend on a particular estimator.

Large-sample properties of an estimator are asymptotic unbiasedness, consistency, asymptotic normality,
and asymptotic efficiency. Asymptotic unbiasedness and efficiency are limiting forms of their small sample
counterparts, unbiasedness and efficiency. The importance of an estimator being asymptotically normal
(Gaussian) is that its entire probabilistic description is then known, and it can be entirely characterized just
by its asymptotic first- and second-order statistics. Consistency is a form of convergence of û(k) to u; it is
synonymous with convergence in probability. One of the reasons for the importance of consistency in
estimation theory is that any continuous function of a consistent estimator is itself a consistent estimator,
i.e., ‘‘consistency carries over.’’ It is also possible to examine other types of stochastic convergence for
estimators, such as mean-squared convergence and convergence with probability 1. A general carryover
property does not exist for these two types of convergence; it must be established case-by-case (e.g., [11]).

Generally speaking, it is very difficult to establish small sample or large sample properties for least-
squares estimators, except in the very special case when H(k) and V(k) are statistically independent.
While this condition is satisfied in the application of identifying an impulse response, it is violated in the
important application of identifying the coefficients in a finite difference equation, as well as in many
other important engineering applications. Many large sample properties of LSEs are determined by
establishing that the LSE is equivalent to another estimator for which it is known that the large sample
property holds true. We pursue this below.

Least-squares estimators require no assumptions about the statistical nature of the generic model.
Consequently, the formula for the WLSE is easy to derive. The price paid for not making assumptions
about the statistical nature of the generic linear model is great difficulty in establishing small or large
sample properties of the resulting estimator.

15.4 Best Linear Unbiased Estimation

Our second estimator is both unbiased and efficient by design, and is a linear function of measurements
Z(k). It is called a best linear unbiased estimator (BLUE), ûBLU(k). As in the derivation of the WLSE,
we begin with our generic linear model; but, now we make two assumptions about this model, namely:
(1) H(k) must be deterministic and (2) V(k) must be zero mean with positive definite known covariance
matrix R(k). The derivation of the BLUE is more complicated than the derivation of the WLSE because of
the design constraints; however, its performance analysis is much easier because we build good perform-
ance into its design.

We begin by assuming the following linear structure for ûBLU(k), ûBLU(k) ¼ F(k)Z(k). Matrix F(k) is
designed such that (1) ûBLU(k) is an unbiased estimator of u and (2) the error variance for each of the n
parameters is minimized. In this way, ûBLU(k) will be unbiased and efficient (within the class of linear
estimators) by design. The resulting BLUE estimator is

ûBLU(k) ¼ [H0(k)R�1(k)H(k)]H0(k)R�1(k)Z(k): (15:13)

A very remarkable connection exists between the BLUE and WLSE, namely, the BLUE of u is the special
case of the WLSE of u when W(k)¼R�1(k). Consequently, all results obtained in our section above for
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ûWLS(k) can be applied to ûBLU(k) by setting W(k)¼R�1(k). Matrix R�1(k) weights the contributions of
precise measurements heavily and deemphasizes the contributions of imprecise measurements. The best
linear unbiased estimation design technique has led to a weighting matrix that is quite sensible.

If H(k) is deterministic and R(k) ¼ s2
nI, then ûBLU(k) ¼ ûLS(k). This result, known as the Gauss–

Markov theorem, is important because we have connected two seemingly different estimators, one of
which, ûBLU(k), has the properties of unbiasedness and minimum variance by design; hence, in this case
ûLS(k) inherits these properties.

In a recursive WLSE, matrix P(k) has no special meaning. In a recursive BLUE (which is obtained by
substitutingW(k)¼R�1(k) into Equations 15.7 through 15.9, or Equations 15.7, 15.10, and 15.11), matrix
P(k) is the covariance matrix for the error between u and ûBLU(k), i.e., P(k) ¼ [H0(k)R�1(k)H(k)]�1 ¼
Cov[~uBLU(k)]. Hence, every time P(k) is calculated in the recursive BLUE, we obtain a quantitative
measure of how well we are estimating u.

Recall that we stated that WLSEs may change in numerical value under changes in scale. BLUEs are
invariant under changes in scale. This is accomplished automatically by settingW(k)¼R�1(k) in theWLSE.

The fact that H(k) must be deterministic severely limits the applicability of BLUEs in engineering
applications.

15.5 Maximum-Likelihood Estimation

Probability is associated with a forward experiment in which the probability model, p(Z(k)ju), is
specified, including values for the parameters, u, in that model (e.g., mean and variance in a Gaussian
density function), and data (i.e., realizations) are generated using this model. Likelihood, l(ujZ(k)), is
proportional to probability. In likelihood, the data is given as well as the nature of the probability model;
but the parameters of the probability model are not specified. They must be determined from the given
data. Likelihood is, therefore, associated with an inverse experiment.

The maximum-likelihood method is based on the relatively simple idea that different (statistical)
populations generate different samples and that any given sample (i.e., set of data) is more likely to have
come from some populations than from others.

In order to determine the maximum-likelihood estimate (MLE) of deterministic u, ûML, we need to
determine a formula for the likelihood function and then maximize that function. Because likelihood is
proportional to probability, we need to know the entire joint probability density function of the
measurements in order to determine a formula for the likelihood function. This, of course, is much
more information about Z(k) than was required in the derivation of the BLUE. In fact, it is the most
information that we can ever expect to know about the measurements. The price we pay for knowing so
much information about Z(k) is complexity in maximizing the likelihood function. Generally, math-
ematical programming must be used in order to determine ûML.

Maximum-likelihood estimates are very popular and widely used because they enjoy very good large
sample properties. They are consistent, asymptotically Gaussian with mean u and covariance matrix
1
N J

�1, in which J is the Fisher information matrix, and are asymptotically efficient. Functions of
maximum-likelihood estimates are themselves maximum-likelihood estimates, i.e., if g(u) is a vector
function mapping u into an interval in r-dimensional Euclidean space, then g(ûML) is a MLE of g(u). This
‘‘invariance’’ property is usually not enjoyed by WLSEs or BLUEs.

In one special case it is very easy to compute ûML, i.e., for our generic linear model in which H(k) is
deterministic and V(k) is Gaussian. In this case ûML ¼ ûBLU. These estimators are unbiased, because ûBLU
is unbiased; efficient (within the class of linear estimators), because ûBLU is efficient; consistent, because
ûML is consistent; and Gaussian, because they depend linearly on Z(k), which is Gaussian. If, in addition,
R(k) ¼ s2

nI, then ûML(k) ¼ ûBLU(k) ¼ ûLS(k), and these estimators are unbiased, efficient (within the
class of linear estimators), consistent, and Gaussian.

The method of maximum-likelihood is limited to deterministic parameters. In the case of random
parameters, we can still use the WLSE or the BLUE, or, if additional information is available, we can use
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either a mean-squared or maximum-a posteriori estimator, as described below. The former does not use
statistical information about the random parameters, whereas the latter does.

15.6 Mean-Squared Estimation of Random Parameters

Given measurements z(1), z(2), . . . , z(k), the mean-squared estimator (MSE) of random u, ûMS(k) ¼ f[z(i),
i ¼ 1, 2, . . . , k], minimizes the mean-squared error J[~uMS(k)] ¼ E{~u0MS(k)~uMS(k)}, where ~uMS(k) ¼
u� ûMS(k). The function f[z(i), i¼ 1, 2, . . . , k] may be nonlinear or linear. Its exact structure is determined
by minimizing J[~uMS(k)].

The solution to this mean-squared estimation problem, which is known as the fundamental theorem
of estimation theory, is

ûMS(k) ¼ E{ujZ(k)}: (15:14)

As it stands, Equation 15.14 is not terribly useful for computing ûMS(k). In general, we must first compute
p[ujZ(k)] and then perform the requisite number of integrations of up[ujZ(k)] to obtain ûMS(k). It is
useful to separate this computation into two major cases: (1) u and Z(k) are jointly Gaussian—the
Gaussian case, and (2) u and Z(k) are not jointly Gaussian—the non-Gaussian case.

When u and Z(k) are jointly Gaussian, the estimator that minimizes the mean-squared error is

ûMS(k) ¼ mu þ Puz(k)P
�1
z (k)[Z(k)�mz(k)], (15:15)

where
mu is the mean of u
mz(k) is the mean of Z(k)
Pz(k) is the covariance matrix of Z(k)
Puz(k) is the cross-covariance between u and Z(k)

Of course, to compute ûMS(k) using Equation 15.15, we must somehow know all of these statistics, and
we must be sure that u and Z(k) are jointly Gaussian. For the generic linear model, Z(k)¼H(k)uþV(k),
in which H(k) is deterministic, V(k) is Gaussian noise with known invertible covariance matrix R(k), u is
Gaussian with mean mu and covariance matrix Pu, and u and V(k) are statistically independent, then u

and Z(k) are jointly Gaussian, and Equation 15.15 becomes

ûMS(k) ¼ mu þ PuH
0(k)[H(k)PuH

0(k)þ R(k)]�1[Z(k)�H(k)mu], (15:16)

where error-covariance matrix PMS(k), which is associated with ûMS(k), is

PMS(k) ¼ Pu � PuH
0(k)[H(k)PuH

0(k)þ R(k)]�1H(k)Pu

¼ P�1
u þH0(k)R�1(k)H(k)

� ��1
: (15:17)

Using Equation 15.17 in Equation 15.16, ûMS(k) can be reexpressed as

ûMS(k) ¼ mu þ PMS(k)H
0(k)R�1(k)[Z(k)�H(k)mu]: (15:18)

Suppose u and Z(k) are not jointly Gaussian and that we know mu, mz(k), Pz(k), and Puz(k). In this case,
the estimator that is constrained to be an affine transformation of Z(k) and that minimizes the mean-
squared error is also given by Equation 15.15.

We now know the answer to the following important question: When is the linear (affine) mean-
squared estimator the same as the mean-squared estimator? The answer is when u and Z(k) are jointly
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Gaussian. If u and Z(k) are not jointly Gaussian, then ûMS(k) ¼ E{ujZ(k)}, which, in general, is a
nonlinear function of measurements Z(k), i.e., it is a nonlinear estimator.

Associated with mean-squared estimation theory is the orthogonality principle: Suppose f[Z(k)] is any
function of the data Z(k); then the error in the mean-squared estimator is orthogonal to f[Z(k)] in the
sense that E{[u� ûMS(k)]f

0[Z(k)]} ¼ 0. A frequently encountered special case of this occurs when
f[Z(k)] ¼ ûMS(k), in which case E{~uMS(k)~uMS(k)} ¼ 0.

When u and Z(k) are jointly Gaussian, ûMS(k) in Equation 15.15 has the following properties: (1) it is
unbiased; (2) each of its components has the smallest error variance; (3) it is a ‘‘linear’’ (affine) estimator;
(4) it is unique; and (5) both ûMS(k) and ~uMS(k) are multivariate Gaussian, which means that these
quantities are completely characterized by their first- and second-order statistics. Tremendous simplifi-
cations occur when u and Z(k) are jointly Gaussian!

Many of the results presented in this section are applicable to objective functions other than the mean-
squared objective function. See the supplementary material at the end of Lesson 13 in [12] for discussions
on a wide number of objective functions that lead to E{ujZ(k)} as the optimal estimator of u, as well as
discussions on a full-blown nonlinear estimator of u.

There is a connection between the BLUE and the MSE. The connection requires a slightly different
BLUE, one that incorporates the a priori statistical information about random u. To do this, we treat mu

as an additional measurement that is augmented to Z(k). The additional measurement equation is
obtained by adding and subtracting u in the identitymu¼mu, i.e.,mu¼ uþ (mu� u). Quantity (mu� u)
is now treated as zero-mean measurement noise with covariance Pu. The augmented linear model is

Z(k)
mu

� �
¼ H(k)

I

� �
uþ V(k)

mu � u

� �
: (15:19)

Let the BLUE estimator for this augmented model be denoted ûaBLU(k). Then it is always true that
ûMS(k) ¼ ûaBLU(k). Note that the weighted least-squares objective function that is associated with
ûaBLU(k) is Ja[û

a(k)] ¼ [mu � ûa(k)]0P�1
u [mu � ûa(k)]þ ~Z

0
(k)R�1(k)~Z(k).

15.7 Maximum A Posteriori Estimation of Random Parameters

Maximum a posteriori (MAP) estimation is also known as Bayesian estimation. Recall Bayes’s rule:
p[ujZ(k)]¼ p[Z(k)ju]p(u)=p[Z(k)] in which density function p[ujZ(k)] is known as the a posteriori (or
posterior) conditional density function, and p(u) is the prior density function for u. Observe that
p[ujZ(k)] is related to likelihood function l{ujZ(k)}, because l{ujZ(k)} / p[Z(k)ju]. Additionally, because
p[Z(k)] does not depend on u, p[ujZ(k)] / p[Z(k)ju]p(u). In MAP estimation, values of u are found that
maximize p[Z(k)ju]p(u). Obtaining a MAP estimate involves specifying both p[Z(k)ju] and p(u) and
finding the value of u that maximizes p[ujZ(k)]. It is the knowledge of the a priori probability model for u,
p(u), that distinguishes the problem formulation for MAP estimation from MS estimation.

If u1, u2, . . . , un are uniformly distributed, then p[ujZ(k)] / p[Z(k)ju], and the MAP estimator of u
equals the ML estimator of u. Generally, MAP estimates are quite different from ML estimates. For
example, the invariance property of MLEs usually does not carry over to MAP estimates. One reason for
this can be seen from the formula p[ujZ(k)] / p[Z(k)ju]p(u). Suppose, for example, that f¼ g(u) and we
want to determine f̂MAP by first computing ûMAP. Because p(u) depends on the Jacobian matrix of
g�1(f), f̂MAP 6¼ g(ûMAP). Usually ûMAP and ûML(k) are asymptotically identical to one another since in
the large sample case the knowledge of the observations tends to swamp the knowledge of the prior
distribution [10].

Generally speaking, optimization must be used to compute ûMAP(k). In the special but important case,
when Z(k) and u are jointly Gaussian, then ûMAP(k) ¼ ûMS(k). This result is true regardless of the nature
of the model relating u to Z(k). Of course, in order to use it, we must first establish that Z(k) and u are
jointly Gaussian. Except for the generic linear model, this is very difficult to do.
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When H(k) is deterministic, V(k) is white Gaussian noise with known covariance matrix R(k), and u

is multivariate Gaussian with known mean mu and covariance Pu, ûMAP(k) ¼ ûaBLU(k); hence, for
the generic linear Gaussian model, MS, MAP, and BLUE estimates of u are all the same, i.e.,
ûMS(k) ¼ ûaBLU(k) ¼ ûMAP(k).

15.8 The Basic State-Variable Model

In the rest of this chapter we shall describe a variety of mean-squared state estimators for a linear,
(possibly) time-varying, discrete-time, dynamical system, which we refer to as the basic state-variable
model. This system is characterized by n3 1 state vector x(k) and m3 1 measurement vector z(k), and is

x(kþ 1) ¼ F(kþ 1, k)x(k)þ G(kþ 1, k)w(k)þC(kþ 1, k)u(k) (15:20)

z(kþ 1) ¼ H(kþ 1)x(kþ 1)þ v(kþ 1), (15:21)

where k¼ 0, 1, . . . . In this model w(k) and v(k) are p3 1 and m3 1 mutually uncorrelated (possibly
nonstationary) jointly Gaussian white noise sequences, i.e., E{w(i)w0(j)} ¼ Q(i)dij,E{v(i)v0(j)} ¼ R(i)dij
and E{w(i)v0(j)} ¼ S ¼ 0, for all i and j. Covariance matrix Q(i) is positive semi-definite and R(i) is
positive definite (so that R�1(i) exists). Additionally, u(k) is an l3 1 vector of known system inputs, and
initial state vector x(0) is multivariate Gaussian, with mean mx(0) and covariance Px(0), and x(0) is not
correlated with w(k) and v(k). The dimensions of matrices F, G,C, H, Q, and R are n3 n, n3 p, n3 l,
m3 n, p3 p, andm3m, respectively. The double arguments in matrices F, G, andCmay not always be
necessary, in which case we replace (kþ 1, k) by k.

Disturbance w(k) is often used to model disturbance forces acting on the system, errors in modeling
the system, or errors due to actuators in the translation of the known input, u(k), into physical signals.
Vector v(k) is often used to model errors in measurements made by sensing instruments, or unavoidable
disturbances that act directly on the sensors.

Not all systems are described by this basic model. In general, w(k) and v(k) may be correlated, some
measurements may be made so accurate that, for all practical purposes, they are ‘‘perfect’’ (i.e., no
measurement noise is associated with them), and either w(k) or v(k), or both, may be nonzero mean or
colored noise processes. How to handle these situations is described in Lesson 22 of [12].

When x(0) and {w(k), k¼ 0, 1, . . . } are jointly Gaussian, then {x(k), k¼ 0, 1, . . . } is a Gauss–Markov
sequence. Note that if x(0) and w(k) are individually Gaussian and statistically independent, they will be
jointly Gaussian. Consequently, the mean and covariance of the state vector completely characterize it.
Let mx(k) denote the mean of x(k). For our basic state-variable model, mx(k) can be computed from the
vector recursive equation

mx(kþ 1) ¼ F(kþ 1, k)mx(k)þC(kþ 1, k)u(k), (15:22)

where k¼ 0, 1, . . . , and mx(0) initializes Equation 15.22. Let Px(k) denote the covariance matrix of x(k).
For our basic state-variable model, Px(k) can be computed from the matrix recursive equation

Px(kþ 1) ¼ F(kþ 1, k)Px(k)F
0(kþ 1, k)þ G(kþ 1, k)Q(k)G0(kþ 1, k), (15:23)

where k¼ 0, 1, . . . , and Px(0) initializes Equation 15.23. Equations 15.22 and 15.23 are easily pro-
grammed for a digital computer.

For our basic state-variable model, when x(0), w(k), and v(k) are jointly Gaussian, then {z(k),
k¼ 1, 2, . . . } is Gaussian, and

mz(kþ 1) ¼ H(kþ 1)mx(kþ 1) (15:24)
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and

Pz(kþ 1) ¼ H(kþ 1)Px(kþ 1)H0(kþ 1)þ R(kþ 1), (15:25)

where mx(kþ 1) and Px(kþ 1) are computed from Equations 15.22 and 15.23, respectively.
For our basic state-variable model to be stationary, it must be time-invariant, and the probability

density functions of w(k) and v(k) must be the same for all values of time. Because w(k) and v(k) are zero-
mean and Gaussian, this means that Q(k) must equal the constant matrix Q and R(k) must equal the
constant matrix R. Additionally, either x(0)¼ orF(k, 0)x(0)� 0 when k> k0; in both cases x(k) will be in
its steady-state regime, so stationarity is possible.

If the basic state-variable model is time-invariant and stationary and if F is associated with
an asymptotically stable system (i.e., one whose poles all lie within the unit circle), then [1] matrix
Px(k) reaches a limiting (steady-state) solution �Px and �Px is the solution of the following steady-
state version of Equation 15.23: �Px¼F�PxF0 þGQG0. This equation is called a discrete-time Lyapunov
equation.

15.9 State Estimation for the Basic State-Variable Model

Prediction, filtering, and smoothing are three types of mean-squared state estimation that have been
developed since 1959. A predicted estimate of a state vector x(k) uses measurements which occur earlier
than tk and a model to make the transition from the last time point, say tj, at which a measurement is
available, to tk. The success of prediction depends on the quality of the model. In state estimation we use
the state equation model. Without a model, prediction is dubious at best.

A recursive mean-squared state filter is called a Kalman filter, because it was developed by Kalman
around 1959 [9]. Although it was originally developed within a community of control theorists, and is
regarded as the most widely used result of so-called ‘‘modern control theory,’’ it is no longer viewed as a
control theory result. It is a result within estimation theory; consequently, we now prefer to view it as a
signal processing result. A filtered estimate of state vector x(k) uses all of the measurements up to and
including the one made at time tk.

A smoothed estimate of state vector x(k) not only uses measurements which occur earlier than tk plus
the one at tk, but also uses measurements to the right of tk. Consequently, smoothing can never be carried
out in real time, because we have to collect ‘‘future’’ measurements before we can compute a smoothed
estimate. If we don’t look too far into the future, then smoothing can be performed subject to a delay of
LT seconds, where T is our data sampling time and L is a fixed positive integer that describes how many
sample points to the right of tk are to be used in smoothing.

Depending upon how many future measurements are used and how they are used, it is possible
to create three types of smoother: (1) the fixed-interval smoother, x̂(kjN), k¼ 0, 1, . . . ,N� 1, where N
is a fixed positive integer; (2) the fixed-point smoother, x̂(kjj), j¼ kþ 1, kþ 2, . . . , where k is a
fixed positive integer; and (3) the fixed-lag smoother, x̂(kjkþ L), k¼ 0, 1, . . . , where L is a fixed
positive integer.

15.9.1 Prediction

A single-stage predicted estimate of x(k) is denoted x̂(kjk� 1). It is the mean-squared estimate of x(k)
that uses all the measurements up to and including the one made at time tk�1; hence, a single-stage
predicted estimate looks exactly one time point into the future. This estimate is needed by the Kalman
filter. From the fundamental theorem of estimation theory, we know that x̂(kjk� 1)¼E{x(k)jZ(k� 1)}
where Z(k� 1)¼ col(z(1), z(2), . . . , z(k� 1)), from which it follows that

x̂(kjk� 1) ¼ F(k, k� 1)x̂(k� 1jk� 1)þC(k, k� 1)u(k� 1), (15:26)
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where k¼ 1, 2, . . . . Observe that x̂(kjk� 1) depends on the filtered estimate x̂(k� 1jk� 1) of the preceding
state vector x(k� 1). Therefore, Equation 15.26 cannot be used until we provide the Kalman filter.

Let P(kjk� 1) denote the error-covariance matrix that is associated with x̂(kjk� 1), i.e.,

P(kjk� 1) ¼ E{[~x(kjk� 1)�m~x(kjk� 1)][~x(kjk� 1)�m~x(kjk� 1)]0},

where ~x(kjk� 1)¼ x(k)�x̂(kjk� 1). Additionally, let P(k� 1jk� 1) denote the error-covariance matrix
that is associated with x̂(k� 1jk� 1), i.e.,

P(k� 1jk� 1) ¼ E{[~x(k� 1jk� 1)�m~x(k� 1jk� 1)][~x(k� 1jk� 1)�m~x(k� 1jk� 1)]0},

where ~x(k� 1jk� 1)¼ x(k� 1)� x̂(k� 1jk� 1). Then

P(kjk� 1) ¼ F(k, k� 1)P(k� 1jk� 1)F0(k, k� 1)þ G(k, k� 1)Q(k� 1)G0(k, k� 1), (15:27)

where k¼ 1, 2, . . . .
Observe, from Equations 15.26 and 15.27, that x̂(0j0) and P(0j0) initialize the single-stage predictor

and its error covariance, where x̂(0j0)¼mx(0) and P(0j0)¼P(0).
A more general state predictor is possible, one that looks further than just one step. See Lesson 16 of

[12] for its details.
The single-stage predicted estimate of z(kþ 1), ẑ(kþ 1jk), is given by ẑ(kþ 1jk)¼H(kþ 1)x̂(kþ 1jk).

The error between z(kþ 1) and ẑ(kþ 1jk) is ~z(kþ 1jk); ~z(kþ 1jk) is called the innovations process (or
prediction error process, or measurement residual process), and this process plays a very important role
in mean-squared filtering and smoothing. The following representations of the innovations process
~z(kþ 1jk) are equivalent:

~z(kþ 1jk) ¼ z(kþ 1)� ẑ(kþ 1jk) ¼ z(kþ 1)�H(kþ 1)x̂(kþ 1jk)
¼ H(kþ 1)~x(kþ 1jk)þ v(kþ 1): (15:28)

The innovations is a zero-mean Gaussian white noise sequence, with

E{~z(kþ 1jk)~z0(kþ 1jk)} ¼ H(kþ 1)P(kþ 1jk)H0(kþ 1)þ R(kþ 1): (15:29)

The paper by Kailath [7] gives an excellent historical perspective of estimation theory and includes a very
good historical account of the innovations process.

15.9.2 Filtering (Kalman Filter)

The Kalman filter (KF) and its later extensions to nonlinear problems represent the most widely applied
by-product of modern control theory. We begin by presenting the KF, which is the mean-squared filtered
estimator of x(kþ 1), x̂(kþ 1jkþ 1), in predictor-corrector format:

x̂(kþ 1jkþ 1) ¼ x̂(kþ 1jk)þ K(kþ 1)~z(kþ 1jk) (15:30)

for k¼ 0, 1, . . . , where x̂(0j0)¼mx(0) and ~z(kþ 1jk) is the innovations sequence in Equation 15.28 (use
the second equality to implement the KF). Kalman gain matrix K(kþ 1) is n3m, and is specified by the
set of relations:

K(kþ 1) ¼ P(kþ 1jk)H0(kþ 1)[H(kþ 1)P(kþ 1jk)H0(kþ 1)þ R(kþ 1)]�1, (15:31)
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P(kþ 1jk) ¼ F(kþ 1, k)P(kjk)F0(kþ 1, k)þ G(kþ 1, k)Q(k)G0(kþ 1, k), (15:32)

and

P(kþ 1jkþ 1) ¼ [I� K(kþ 1)H(kþ 1)]P(kþ 1jk) (15:33)

for k¼ 0, 1, . . . , where I is the n3 n identity matrix, and P(0j0)¼Px(0).
The KF involves feedback and contains within its structure a model of the plant. The feedback

nature of the KF manifests itself in two different ways: in the calculation of x̂(kþ 1jkþ 1) and also in
the calculation of the matrix of gains, K(kþ 1). Observe, also from Equations 15.26 and 15.32, that the
predictor equations, which compute x̂(kþ 1jk) and P(kþ 1jk), use information only from the state
equation, whereas the corrector equations, which compute K(kþ 1), x̂(kþ 1jkþ 1), and P(kþ 1jkþ 1),
use information only from the measurement equation. Once the gain is computed, then Equation 15.30
represents a time-varying recursive digital filter. This is seen more clearly when Equations 15.26 and
15.28 are substituted into Equation 15.30. The resulting equation can be rewritten as

x̂(kþ 1jkþ 1) ¼ [I� K(kþ 1)H(kþ 1)]F(kþ 1, k)x̂(kjk)þ K(kþ 1)z(kþ 1)

þ [I� K(kþ 1)H(kþ 1)]C(kþ 1, k)u(k) (15:34)

for k¼ 0, 1, . . . . This is a state equation for state vector x̂, whose time-varying plant matrix is [I� K
(kþ 1)H(kþ 1)]F(kþ 1, k). Equation 15.34 is time-varying even if our basic state-variable model is
time-invariant and stationary, because gain matrix K(kþ 1) is still time-varying in that case. It is possible,
however, for K(kþ 1) to reach a limiting value (i.e., steady-state value, �K), in which case Equation 15.34
reduces to a recursive constant coefficient filter. Equation 15.34 is in recursive filter form, in that it relates
the filtered estimate of x(kþ 1), x̂(kþ 1jkþ 1), to the filtered estimate of x(k), x̂(kjk). Using substitutions
similar to those in the derivation of Equation 15.34, we can also obtain the following recursive predictor
form of the KF:

x̂(kþ 1jk) ¼ F(kþ 1, k)[I� K(k)H(k)]x̂(kjk� 1)

þF(kþ 1, k)K(k)z(k)þC(kþ 1, k)u(k): (15:35)

Observe that in Equation 15.35 the predicted estimate of x(kþ 1), x̂(kþ 1jk), is related to the predicted
estimate of x(k), x̂(kjk� 1), and that the time-varying plant matrix in Equation 15.35 is different from the
time-varying plant matrix in Equation 15.34.

Embedded within the recursive KF is another set of recursive Equations 15.31 through 15.33. Because
P(0j0) initializes these calculations, these equations must be ordered as follows: P(kjk) ! P(kþ 1jk) !
K(kþ 1) ! P(kþ 1jkþ 1) !, etc. By combining these equations, it is possible to get a matrix equation
for P(kþ 1jk) as a function of P(kjk� 1) or a similar equation for P(kþ 1jkþ 1) as a function of P(kjk).
These equations are nonlinear and are known as matrix Riccati equations.

A measure of recursive predictor performance is provided by matrix P(kþ 1jk), and a measure of
recursive filter performance is provided by matrix P(kþ 1jkþ 1). These covariances can be calculated
prior to any processing of real data, using Equations 15.31 through 15.33. These calculations are often
referred to as a performance analysis, and P(kþ 1jkþ 1) 6¼ P(kþ 1jk). It is indeed interesting that the KF
utilizes a measure of its mean-squared error during its real-time operation.

Because of the equivalence between mean-squared, BLUE, and WLS filtered estimates of our state
vector x(k) in the Gaussian case, we must realize that the KF equations are just a recursive solution to a
system of normal equations. Other implementations of the KF that solve the normal equations using
stable algorithms from numerical linear algebra (see, e.g., [2]) and involve orthogonal transformations
have better numerical properties than Equations 15.30 through 15.33 (see, e.g., [4]).
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A recursive BLUE of a random parameter vector u can be obtained from the KF equations by setting
x(k) ¼ u,F(kþ 1, k) ¼ I,G(kþ 1, k) ¼ 0,C(kþ 1, k) ¼ 0, and Q(k)¼ 0. Under these conditions we
see that w(k)¼ 0 for all k, and x(kþ 1)¼ x(k), which means, of course, that x(k) is a vector of constants, u.
The KF equations reduce to û(kþ 1jkþ 1) ¼ û(kjk)þ K(kþ 1)[z(kþ 1)�H(kþ 1)û(kjk)], P(kþ 1jk)¼
P(kjk),K(k þ 1) ¼ P(kjk)H0(k þ 1)[H(k þ 1)P(kjk)H0(k þ 1) þ R(k þ 1)]�1, and P(k þ 1jk þ 1) ¼
[I� K(kþ 1)H(kþ 1)]P(kjk). Note that it is no longer necessary to distinguish between filtered and
predicted quantities, because û(kþ 1jk) ¼ û(kjk) and P(kþ 1jk)¼P(kjk); hence, the notation û(kjk) can
be simplified to û(k), for example, which is consistent with our earlier notation for the estimate of a vector
of constant parameters.

A divergence phenomenon may occur when either the process noise or measurement noise or both are
too small. In these cases the Kalman filter may lock onto wrong values for the state, but believes them to
the true values; i.e., it ‘‘learns’’ the wrong state too well. A number of different remedies have been
proposed for controlling divergence effects, including: (1) adding fictitious process noise, (2) finite-
memory filtering, and (3) fading memory filtering. Fading memory filtering seems to be the most
successful and popular way to control divergence effects. See [6] or [12] for discussions about these
remedies.

For time-invariant and stationary systems, if limk!1P(kþ 1jk)¼Pp exists, then limk!1K(k)¼ �K and
the Kalman filter becomes a constant coefficient filter. Because P(kþ 1jk) and P(kjk) are intimately
related, then if Pp exists, limk!1P(kjk)¼Pf also exists. If the basic state-variable model is time-invariant,
stationary, and asymptotically stable, then (a) for any nonnegative symmetric initial condition P(0j�1),
we have limk!1P(kþ 1jk)¼Pp with Pp independent of P(0j�1) and satisfying the following steady-state
algebraic matrix Riccati equation,

Pp ¼ FPp I�H0(HPpH
0 þ R)�1HPp]F

0 þ GQG0�
(15:36)

and (b) the eigenvalues of the steady-state KF, l[F� �KHF], all lie within the unit circle, so that the filter
is asymptotically stable, i.e., jl[F� �KHF]j< 1. If the basic state-variable model is time-invariant and
stationary, but is not necessarily asymptotically stable (e.g., it may have a pole on the unit circle), the
points (a) and (b) still hold as long as the basic state-variable model is completely stabilizable and
detectable (e.g., [8]). To design a steady-state KF: (1) given (F, G, C, H, Q, R), compute Pp, the positive
definite solution of Equation 15.36; (2) compute �K, as �K¼PpH0(HPpH0 þR)�1; and (3) use �K in

x̂(kþ 1jkþ 1) ¼ Fx̂(kjk)þCu(k)þ K~z(kþ 1jk)
¼ (I� KH)Fx̂(kjk)þ Kz(kþ 1)þ (I� KH)Cu(k): (15:37)

Equation 15.37 is a steady-state filter state equation. The main advantage of the steady-state filter is a
drastic reduction in online computations.

15.9.3 Smoothing

Although there are three types of smoothers, the most useful one for digital signal processing is the fixed-
interval smoother, hence, we only discuss it here. The fixed-interval smoother is x̂(kjN), k¼ 0, 1, . . . ,
N� 1, where N is a fixed positive integer. The situation here is as follows: with an experiment completed,
we have measurements available over the fixed interval 1� k�N. For each time point within this interval
we wish to obtain the optimal estimate of the state vector x(k), which is based on all the available
measurement data {z(j), j¼ 1, 2, . . . ,N}. Fixed-interval smoothing is very useful in signal processing
situations, where the processing is done after all the data are collected. It cannot be carried out online
during an experiment like filtering can. Because all the available data are used, we cannot hope to do
better (by other forms of smoothing) than by fixed-interval smoothing.
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A mean-squared fixed-interval smoothed estimate of x(k), x̂(kjN), is

x̂(kjN) ¼ x̂(kjk� 1)þ P(kjk� 1)r(kjN), (15:38)

where k¼N� 1,N� 2, . . . , 1, and n3 1 vector r satisfies the backward-recursive equation

r( jjN) ¼ F0
p( jþ 1, j)r( jþ 1jN)þH0( j)[H( j)P( jjj� 1)H0( j)þ R( j)]�1~z( jj j� 1), (15:39)

where Fp(kþ 1, k)¼F(kþ 1, k)[I�K(k)H(k)] and j¼N,N� 1, . . . , 1, and r(Nþ 1jN)¼ 0. The smooth-
ing error-covariance matrix, P(kjN), is

P(kjN) ¼ P(kjk� 1)� P(kjk� 1)S(kjN)P(kjk� 1), (15:40)

where k¼N� 1,N� 2, . . . , 1, and n3 n matrix S( jjN), which is the covariance matrix of r( jjN), satisfies
the backward-recursive equation

S( jjN) ¼ F0
p( jþ 1, j)S( jþ 1jN)Fp( jþ 1, j)

þH0( j)[H( j)P( jj j� 1)H0( j)þ R( j)]�1H( j), (15:41)

where j¼N,N� 1, . . . , 1, and S(Nþ1jN)¼ 0. Observe that fixed-interval smoothing involves a forward
pass over the data, using a KF, and then a backward pass over the innovations, using Equation 15.39.
The smoothing error-covariance matrix, P(kjN), can be precomputed; but, it is not used during the
computation of x̂(kjN). This is quite different than the active use of the filtering error-covariance matrix
in the KF.

An important application for fixed-interval smoothing is deconvolution. Consider the single-input
single-output system:

z(k) ¼
Xk

i¼1

m(i)h(k� i)þ n(k), k ¼ 1, 2, . . . ,N , (15:42)

where
m(j) is the system’s input, which is assumed to be white, and not necessarily Gaussian
h(j) is the system’s impulse response

Deconvolution is the signal-processing procedure for removing the effects of h(j) and n(j) from the
measurements so that we are left with an estimate of m(j). In order to obtain a fixed-interval smoothed
estimate of m(j), we must first convert Equation 15.42 into an equivalent state-variable model. The single-
channel state-variable model x(kþ 1)¼Fx(k)þ gm(k) and z(k)¼ h0x(k)þ n(k) is equivalent to Equation
15.42 when x(0)¼ 0, m(0)¼ 0, h(0)¼ 0, and h(l)¼ h0Fl�ig(l¼ 1, 2, . . . ). A two-pass fixed-interval
smoother for m(k) is m̂(kjN) ¼ q(k)g0r(kþ 1jN) where k¼N� 1, N� 2, . . . , 1. The smoothing error
variance, s2

m(kjN), is s2
m(kjN) ¼ q(k)� q(k)g0 S(kþ 1jN)gq(k). In these formulas r(k jN) are computed

using Equations 15.39 and 15.41, respectively, and E{m2(k)}¼ q(k).

15.10 Digital Wiener Filtering

The steady-state KF is a recursive digital filter with filter coefficients equal to hf(j), j¼ 0, 1, . . . . Quite often
hf( j)� 0 for j� J, so that the transfer function of this filter, Hf(z), can be truncated, i.e., Hf(z)� hf(0)þ
hf(1)z

�1þ � � � þ hf( J)z
�J. The truncated steady-state, KF can then be implemented as a finite-impulse
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response (FIR) digital filter. There is, however, a more direct way for designing a FIR minimum mean-
squared error filter, i.e., a digital Wiener filter (WF).

Consider the scalar measurement case, in which measurement z(k) is to be processed by a digital filter
F(z), whose coefficients, f(0), f(1), . . . , f(h), are obtained by minimizing the mean-squared error I(f)¼
E{[d(k)� y(k)]2}¼E{e2(k)}, where y(k) ¼ f (k) * z(k) ¼

Pn
i¼0 f (i)z(k� i) and d(k) is a desired filter

output signal. Using calculus, it is straightforward to show that the filter coefficients that minimize I(f)
satisfy the following discrete-time Wiener–Hopf equations:

Xh
i¼0

f (i)fzz(i� j) ¼ fzd(j), j ¼ 0, 1, . . . ,h, (15:43)

where
fzd(i)¼E{d(k)z(k� i)}
fzz(i�m)¼E{z(k� i)z(k�m)}

Observe that Equation 15.43 are a system of normal equations and can be solved in many different ways,
including the Levinson algorithm. The minimum mean-squared error, I * (f), in general, approaches a
nonzero limiting value which is often reached for modest values of filter length h.

To relate this FIR WF to the truncated steady-state KF, we must first assume a signal-plus-noise model
for z(k), because a KF uses a system model, i.e., z(k)¼ s(k)þ n(k)¼ h(k) *w(k)þ n(k), where h(k) is the
IR of a linear time-invariant system and, as in our basic state-variable model, w(k) and n(k) are mutually
uncorrelated (stationary) white noise sequences with variances q and r, respectively. We must also specify
an explicit form for ‘‘desired signal’’ d(k). We shall require that d(k)¼ s(k)¼ h(k) *w(k), which means
that we want the output of the FIR digital WF to be as close as possible to signal s(k). The resulting
Wiener–Hopf equations are

Xh
i¼0

f (i)
q
r
fhh( j� i)þ d( j� i)

h i
¼ q

r
fhh( j), j ¼ 0, 1, . . . ,h, (15:44)

where fhh(i) ¼
P1

l¼0 h(l)h(l þ i). The truncated steady-state KF is a FIR digital WF. For a detailed
comparison of Kalman and Wiener filters, see Lesson 19 of [12].

To obtain a digital Wiener deconvolution filter, we assume that filter F(z) is an infinite impulse
response (IIR) filter, with coefficients {f(j), j¼ 0,�1 , �2, . . . }; d(k)¼m(k) where m(k) is a white noise
sequence and m(k) and n(k) are stationary and uncorrelated. In this case, Equation 15.43 becomes

X1
i¼�1

f (i)fzz(i� j) ¼ fzm( j) ¼ qh(�j), j ¼ 0,�1,�2, . . . : (15:45)

This system of equations cannot be solved as a linear system of equations, because there are a doubly
infinite number of them. Instead, we take the discrete-time Fourier transform of Equation 15.45, i.e.,
F(v)Fzz(v)¼ qH * (v), but, from Equation 15.42, Fzz(v)¼ qjH(v)j2þ r; hence,

F(v) ¼ qH * (v)

qjH(v)j2 þ r
: (15:46)

The inverse Fourier transform of Equation 15.46, or spectral factorization, gives { f( j), j¼ 0,
�1,�2, . . . }.
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15.11 Linear Prediction in DSP and Kalman Filtering

A well-studied problem in digital signal processing (e.g., [5]), is the linear prediction problem, in which
the structure of the predictor is fixed ahead of time to be a linear transformation of the data. The
‘‘forward’’ linear prediction problem is to predict a future value of stationary discrete-time random
sequence {y(k), k¼ 1, 2, . . . } using a set of past samples of the sequence. Let ŷ(k) denote the predicted
value of y(k) that uses M past measurements, i.e.,

ŷ(k) ¼
XM
i¼1

aM, iy(k� i): (15:47)

The forward prediction error filter (PEF) coefficients, aM,1, . . . , aM,M, are chosen so that either the mean-
squared or least-squared forward prediction error (FPE), fM(k), is minimized, where fM(k)¼ y(k)� ŷ(k).
Note that in this filter design problem the length of the filter, M, is treated as a design variable, which
is why the PEF coefficients are augmented byM. Note, also, that the PEF coefficients do not depend on tk;
i.e., the PEF is a constant coefficient predictor, whereas our mean-squared state-predictor and filter are
time-varying digital filters.

Predictor ŷ(k) uses a finite window of past measurements: y(k� 1), y(k� 2), . . . , y(k�M). This
window of measurements is different for different values of tk. This use of measurements is quite
different than our use of the measurements in state prediction, filtering, and smoothing. The latter are
based on an expanding memory, whereas the former is based on a fixed memory.

Digital signal-processing specialists have invented a related type of linear prediction named backward
linear prediction in which the objective is to predict a past value of a stationary discrete-time random
sequence using a set of future values of the sequence. Of course, backward linear prediction is not
prediction at all; it is smoothing. But the term backward linear prediction is firmly entrenched in the DSP
literature. Both forward and backward PEFs have a filter architecture associated with them that is known
as a tapped delay line. Remarkably, when the two filter design problems are considered simultaneously,
their solutions can be shown to be coupled, and the resulting architecture is called a lattice. The lattice
filter is doubly recursive in both time, k, and filter order, M. The tapped delay line is only recursive in
time. Changing its filter length leads to a completely new set of filter coefficients. Adding another stage to
the lattice filter does not affect the earlier filter coefficients. Consequently, the lattice filter is a very
powerful architecture. No such lattice architecture is known for mean-squared state estimators.

In a second approach to the design of the FPE coefficients, the constraint that the FPE coefficients are
constant is transformed into the state equations:

aM,1(kþ 1) ¼ aM,1(k), aM,2(kþ 1) ¼ aM,2(k), . . . , aM,M(kþ 1) ¼ aM,M(k):

Equation 15.47 then plays the role of the observation equation in our basic state-variable model, and is
one in which the observation matrix is time-varying. The resulting mean-squared error design is then
referred to as the Kalman filter solution for the PEF coefficients. Of course, we saw above that this
solution is a very special case of the KF, the BLUE. In yet a third approach, the PEF coefficients are
modeled as

aM, 1(kþ 1) ¼ aM, 1(k)þ w1(k), aM, 2(kþ 1)

¼ aM, 2(k)þ w2(k), . . . , aM,M(kþ 1) ¼ aM,M(k)þ wM(k),

where wi(k) are white noises with variances qi. Equation 15.47 again plays the role of the measurement
equation in our basic state-variable model and is one in which the observation matrix is time-varying.
The resulting mean-squared error design is now a full-blown KF.
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15.12 Iterated Least Squares

Iterated least squares (ILS) is a procedure for estimating parameters in a nonlinear model. Because it can
be viewed as the basis for the extended KF, which is described in the next section, we describe ILS briefly
here. To keep things simple, we describe ILS for the scalar parameter model z(k)¼ f(u, k)þ n(k) where
k¼ 1, 2, . . . ,N. ILS is basically a four-step procedure:

1. Linearize f(u, k) about a nominal value of u, u*. Doing this, we obtain the perturbation measure-
ment equation

dz(k) ¼ Fu(k; u*)duþ n(k), k ¼ 1, 2, . . . ,N (15:48)

where dz(k)¼ z(k)� z*(k)¼ z(k)� f(u*, k), du¼ u� u*, and Fu(k; u*)¼ qf(u, k)=quju¼u*.
2. Concatenate Equation 15.48 for the N values of k and compute d̂uWLS(N) using Equation 15.2.
3. Solve the equation d̂uWLS(N) ¼ ûWLS(N)� u* for ûWLS(N), i.e., ûWLS(N) ¼ u*þ d̂uWLS(N).
4. Replace u* with ûWLS(N) and return to Step 1.

Iterate through these steps until convergence occurs. Let ûiWLS(N) and ûiþ1
WLS(N) denote estimates of u

obtained at iterations i and iþ 1, respectively. Convergence of the ILS method occurs when
ûiþ1
WLS(N)� ûiWLS(N)

�� �� < e where e is a prespecified small positive number.
Observe from this four-step procedure that ILS uses the estimate obtained from the linearized

model to generate the nominal value of u about which the nonlinear model is relinearized. Additionally,
in each complete cycle of this procedure, we use both the nonlinear and linearized models. The nonlinear
model is used to compute z*(k) and subsequently dz(k). The notions of relinearizing about a filter output
and using both the nonlinear and linearized models are also at the very heart of the extended KF.

15.13 Extended Kalman Filter

Many real-world systems are continuous-time in nature and are also nonlinear. The extended Kalman
filter (EKF) is the heuristic, but very widely used, application of the KF to estimation of the state vector
for the following nonlinear dynamical system:

_x(t) ¼ f[x(t),u(t), i]þ G(t)w(t) (15:49)

z(t) ¼ h[x(t), u(t), t]þ v(t) t ¼ ti, i ¼ 1, 2, . . . : (15:50)

In this model measurement, Equation 15.50 is treated as a discrete-time equation, whereas state Equation
15.49 is treated as a continuous-time equation; _x(t) is short for dx(t)=dt; both f and h are continuous and
continuously differentiable with respect to all elements of x and u; w(t) is a zero-mean continuous-time
white noise process, with E{w(t)w0(t)} ¼ Q(t)d(t � t); v(ti) is a discrete-time zero-mean white noise
sequence, with E{v(ti)v0(tj)} ¼ R(ti)dij; and w(t) and v(ti) are mutually uncorrelated at all t¼ ti, i.e.,
E{w(t)v0(ti)} ¼ 0 for t¼ ti, i¼ 1, 2, . . . .

In order to apply the KF to Equations 15.49 and 15.50, we must linearize and discretize these equations.
Linearization is done about a nominal input u*(t) and nominal trajectory x*(t), whose choices we discuss
below. If we are given a nominal input u*(t), then x*(t) satisfies the nonlinear differential equation:

_x*(t) ¼ f[x*(t), u*(t), t] (15:51)

and associated with x*(t) and u*(t) is the following nominal measurement, z*(t), where

z*(t) ¼ h[x*(t), u*(t), t] t ¼ ti, i ¼ 1, 2, . . . (15:52)
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Equations 15.51 and 15.52 are referred to as the nominal systemmodel. Letting dx(t) ¼ x(t)� x*(t), du(t) ¼
u(t)� u*(t), and dz(t) ¼ z(t)� z*(t), we have the following linear perturbation state-variable model:

d _x(t) ¼ Fx[x*(t),u*(t), t]dx(t)þ Fu[x*(t),u*(t), t]du(t)þ G(t)w(t) (15:53)

dz(t) ¼ Hx[x*(t),u*(t), t]dx(t)þHu[x*(t),u*(t), t]du(t)þ v(t),

dz(t) ¼ Hx[x*(t),u*(t), t]dx(t)þHu[x*(t),u*(t), t]du(t)þ v(t), t ¼ ti, i ¼ 1, 2, . . . , (15:54)

where Fx[x*(t),u*(t), t], for example, is the following time-varying Jacobian matrix:

Fx[x*(t), u*(t), t] ¼
qf1=qx1* � � � qf1=qxn*

..

. . .
. ..

.

qfn=qx1* � � � qfn=qxn*

0
B@

1
CA (15:55)

in which qfi=qxj* ¼ qfi[x(t), u(t), t]=qxj(t)jx(t)¼x*(t), u(t)¼u*(t).
Starting with Equations 15.53 and 15.54, we obtain the following discretized perturbation state variable

model:

dx(kþ 1) ¼ F(kþ 1, k;*)dx(k)þC(kþ 1, k;*)du(k)þ wd(k) (15:56)

dz(kþ 1) ¼ Hx(kþ 1;*)dx(kþ 1)þHu(kþ 1;*)du(kþ 1)þ v(kþ 1), (15:57)

where the notation F(kþ 1, k;*), for example, denotes the fact that this matrix depends on x*(t) and u*(t).
In Equation 15.56, F(kþ 1, k;*)¼F(tkþ1, tk;*), where

_F(t, t;*) ¼ Fx[x*(t), u*(t), t]F(t, t;*), F(t, t;*) ¼ I: (15:58)

Additionally,

C(kþ 1, k;*) ¼
ðtkþ1

tk

F(tkþ1, t;*)Fu[x*(t), u*(t), t]dt (15:59)

and wd(k) is a zero-mean noise sequence that is statistically equivalent to
Ð tkþ1

tk
F(tkþ1, t)G(t)w(t)dt;

hence, its covariance matrix, Qd(kþ 1, k), is

E{wd(k)w
0
d(k)} ¼ Qd(kþ 1, k) ¼

ðtkþ1

tk

F(tkþ1, t)G(t)Q(t)G
0(t)F0(tkþ1, t)dt: (15:60)

Great simplifications of the calculations in Equations 15.58 through 15.60 occur if F(t), B(t), G(t), and
Q(t) are approximately constant during the time interval t 2 [tk, tkþ1], i.e., if F(t)� Fk, B(t)�Bk,
G(t)�Gk, and Q(t)�Qk for t 2 [tk, tkþ1]. In this case, F(kþ 1, k) ¼ eFkT ,C(kþ 1, k) � BkT ¼ C(k),
and Qd(kþ 1, k) � GkQkG

0
kT ¼ Qd(k) where T¼ tkþ1� tk.

Suppose x*(t) is given a priori; then we can compute predicted, filtered, or smoothed estimates of dx(k)
by applying all of our previously derived state estimators to the discretized perturbation state-variable
model in Equations 15.56 and 15.57. We can precompute x*(t) by solving the nominal differential
equation (Equation 15.51). The KF associated with using a precomputed x*(t) is known as a relinearized
KF. A relinearized KF usually gives poor results, because it relies on an open-loop strategy for choosing
x*(t). When x*(t) is precomputed, there is no way of forcing x*(t) to remain close to x(t), and this must be
done or else the perturbation state-variable model is invalid.
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The relinearized KF is based only on the discretized perturbation state-variable model. It does not use
the nonlinear nature of the original system in an active manner. The EKF relinearizes the nonlinear
system about each new estimate as it becomes available, i.e., at k¼ 0, the system is linearized about x̂(0j0).
Once z(1) is processed by the EKF so that x̂(1j1) is obtained, the system is linearized about x̂(1j1). By
‘‘linearize about x̂(1j1),’’ we mean x̂(1j1) is used to calculate all the quantities needed to make the
transition from x̂(1j1) to x̂(2j1) and subsequently x̂(2j2). The purpose of relinearizing about the filter’s
output is to use a better reference trajectory for x*(t). Doing this, dx¼ x� x̂ will be held as small as
possible, so that our linearization assumptions are less likely to be violated than in the case of the
relinearized KF.

The EKF is available only in predictor–corrector format [6]. Its prediction equation is obtained by
integrating the nominal differential equation for x*(t) from tk to tkþ1. Its correction equation is obtained
by applying the KF to the discretized perturbation state-variable model. The equations for the EKF are

x̂(kþ 1jk) ¼ x̂(kjk)þ
ðtkþ1

tk

f[x̂(tjtk),u*(t), t]dt, (15:61)

which must be evaluated by numerical integration formulas that are initialized by f[x̂(tkjtk), u*(tk), tk],

x̂(kþ 1jkþ 1) ¼ x̂(kþ 1jk)þ K(kþ 1;*)

{z(kþ 1)� h[x̂(kþ 1jk), u*(kþ 1), kþ 1]

�Hu(kþ 1;*)du(kþ 1)} (15:62)

K(kþ 1;*) ¼ P(kþ 1jk;*)H0
x(kþ 1;*)

[Hx(kþ 1;*)P(kþ 1jk;*)H0
x(kþ 1;*)þ R(kþ 1)]�1 (15:63)

P(kþ 1jk;*) ¼ F(kþ 1, k;*)P(kjk;*)F0(kþ 1, k;*)þQd(kþ 1, k;*) (15:64)

P(kþ 1jkþ 1;*) ¼ [I� K(kþ 1;*)Hx(kþ 1;*)]P(kþ 1jk;*): (15:65)

In these equations, K(kþ 1;*), P(kþ 1jk;*), and P(kþ 1jkþ 1;*) depend on the nominal x*(t) that results
from prediction, x̂(kþ 1jk). For a complete flowchart of the EKF, see Figure 24.2 in [12].

The EKF is very widely used; however, it does not provide an optimal estimate of x(k). The optimal
mean-squared estimate of x(k) is still E{x(k)jZ(k)}, regardless of the linear or nonlinear nature of the
system’s model. The EKF is a first-order approximation of E{x(k)jZ(k)} that sometimes works quite well,
but cannot be guaranteed to always work well. No convergence results are known for the EKF; hence, the
EKF must be viewed as an ad hoc filter. Alternatives to the EKF, which are based on nonlinear filtering,
are quite complicated and are rarely used.

The EKF is designed toworkwell as long as dx(k) is ‘‘small.’’The iterated EKF [6] is designed to keep dx(k)
as small as possible. The iterated EKF differs from the EKF in that it iterates the correction equation L times
until kx̂L(kþ 1jkþ 1)� x̂L�1(kþ 1jkþ 1)k � e. Corrector 1 computes K(kþ 1;*), P(kþ 1jk;*), and
P(kþ 1jkþ 1;*) using x*¼ x̂(kþ 1jk); corrector 2 computes these quantities using x*¼ x̂1(kþ 1jkþ 1);
corrector 3 computes these quantities using x*¼ x̂2(kþ 1jkþ 1); etc. Often, just adding one additional
corrector (i.e., L¼ 2) leads to substantially better results for x̂(kþ 1jkþ 1) than are obtained using the EKF.
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Further Information

Recent articles about estimation theory appear in many journals, including the following engineering
journals: AIAA J., Automatica, IEEE Transactions on Aerospace and Electronic Systems, IEEE Transac-
tions on Automatic Control, IEEE Transactions on Information Theory, IEEE Transactions on Signal
Processing, International Journal of Adaptive Control and Signal Processing, and International Journal of
Control and Signal Processing. Nonengineering journals that also publish articles about estimation theory
include Annals of the Institute of Statistical Mathematics, Annals of Mathematical Statistics, Annals of
Statistics, Bulletin of the International Statistical Institute, and Sankhya.

Some engineering conferences that continue to have sessions devoted to aspects of estimation theory
include American Automatic Control Conference, IEEE Conference on Decision and Control, IEEE
International Conference on Acoustics, Speech and Signal Processing, IFAC International Congress, and
some IFAC Workshops.

MATLAB toolboxes that implement some of the algorithms described in this chapter are Control
Systems, Optimization, and System Identification. See [12], at the end of each lesson, for descriptions of
which M-files in these toolboxes are appropriate. Additionally, [12] lists six estimation algorithm M-files
that do not appear in any MathWorks toolboxes or in MATLAB. They are rwlse, a recursive least-squares
algorithm; kf, a recursive KF; kp, a recursive Kalman predictor; sof, a recursive suboptimal filter in which
the gain matrix must be prespecified; sop, a recursive suboptimal predictor in which the gain matrix must
be prespecified; and fis, a fixed-interval smoother.
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16.1 Introduction

Linear parametric models of stationary random processes, whether signal or noise, have been found to be
useful in a wide variety of signal processing tasks such as signal detection, estimation, filtering, and
classification, and in a wide variety of applications such as digital communications, automatic control,
radar and sonar, and other engineering disciplines and sciences. A general representation of a linear
discrete-time stationary signal x(t) is given by

x(t) ¼
X1
i¼0

h(i)e(t � i), (16:1)

where
{e(t)} is a zero-mean, i.i.d. (independent and identically distributed) random sequence with finite
variance

{h(i), i� 0} is the impulse response of the linear system such that
P1

i¼�1h2(i) < 1

Much effort has been expended on developing approaches to linear model fitting given a single
measurement record of the signal (or noisy signal) [1,2]. Parsimonious parametric models such as AR
(autoregressive), MA (moving average), ARMA or state-space, as opposed to impulse response modeling,
have been popular together with the assumption of Gaussianity of the data.

Define

H(q) ¼
X1
i¼0

h(i)q�i, (16:2)
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where q�1 is the backward shift operator (i.e., q�1x(t)¼ x(t� 1), etc.). If q is replaced with the complex
variable z, then H(z) is the Z-transform of {h(i)}, i.e., it is the system transfer function. Using Equation
16.2, Equation 16.1 may be rewritten as

x(t) ¼ H(q)e(t): (16:3)

Fitting linear models to the measurement record requires estimation of H(q), or equivalently of
{h(i)} (without observing {e(t)}). Typically H(q) is parameterized by a finite number of parameters,
say by the parameter vector u(M) of dimension M. For instance, an AR model representation of order
M means that

HAR(q; u
(M)) ¼ 1

1þPM
i¼1aiq

�i
, u(M) ¼ (a1, a2, . . . , aM)

T: (16:4)

This reduces the number of estimated parameters from a ‘‘large’’ number to M.
In this section several aspects of fitting models such as Equation 16.1 through 16.3 to the given

measurement record are considered. These aspects are (see also Figure 16.1)

Given record

Stationary?
(Section 16.2.3)

Gaussian?
(Section 16.2.1)

Fit models
using SOS

Linear?
(Section 16.2.2)

Fit models
using HOS

Select model order, refine
and validate (Sections 16.3.1 and 16.3.2)

Confindence bounds
(Section 16.3.3)

Yes

Yes

Yes

No

FIGURE 16.1 Section outline (SOS, second-order statistics and HOS, higher order statistics).
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. Is the model of the type (Equation 16.1) appropriate to the given record? This requires testing for
linearity and stationarity of the data.

. Linear Gaussian models have long been dominant both for signals as well as for noise processes.
Assumption of Gaussianity allows implementation of statistically efficient parameter estimators
such as maximum likelihood estimators. A Gaussian process is completely characterized by its
second-order statistics (autocorrelation function or, equivalently, its power spectral density). Since
the power spectrum of {x(t)} of Equation 16.1 is given by

Sxx(v) ¼ s2
e jH(e jv)j2, s2

e ¼ E{e2(t)}: (16:5)

. One cannot determine the phase of H(e jv) independent of jH(e jv)j. Determination of the true
phase characteristic is crucial in several applications such as blind equalization of digital commu-
nications channels. Use of higher order statistics allows one to uniquely identify non-minimum-
phase parametric models. Higher order cumulants of Gaussian processes vanish, hence, if the data
are stationary Gaussian, a minimum-phase (or maximum-phase) model is the ‘‘best’’ that one can
estimate. Therefore, another aspect considered in this section is testing for non-Gaussianity of the
given record.

. If the data are Gaussian, one may fit models based solely upon the second-order statistics of the
data—else use of higher order statistics in addition to or in lieu of the second-order statistics is
indicated, particularly if the phase of the linear system is crucial. In either case, one typically fits a
model H(q; u(M)) by estimating the M unknown parameters through optimization of some cost
function. In practice (the model order), M is unknown and its choice has a significant impact on
the quality of the fitted model. In this section another aspect of the model-fitting problem
considered is that of order selection.

. Having fitted a model H(q; u(M)), one would also like to know how good are the estimated
parameters? Typically this is expressed in terms of error bounds or confidence intervals on the
fitted parameters and on the corresponding model transfer function.

. Having fitted a model, a final step is that of model falsification. Is the fitted model an appropriate
representation of the underlying system? This is referred to variously as model validation, model
verification, or model diagnostics.

. Finally, various models of univariate noise pdf (probability density function) are discussed to
complete the discussion of model fitting.

16.2 Gaussianity, Linearity, and Stationarity Tests

Given a zero-mean, stationary random sequence {x(t)}, its third-order cumulant function Cxxx(i, k) is
given by [12]

Cxxx(i, k):¼ E{x(t þ i)x(t þ k)x(t)}: (16:6)

Its bispectrum Bxxx(v1, v2) is defined as [12]

Bxxx(v1,v2) ¼
X1
i¼�1

X1
k¼�1

Cxxx(i, k)e
�j(v1iþv2k): (16:7)
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Similarly, its fourth-order cumulant function Cxxxx(i, k, l) is given by [12]

Cxxxx(i, k, l): ¼ E{x(t)x(t þ i)x(t þ k)x(t þ l)}

� E{x(t)x(t þ i)}E{x(t þ k)x(t þ l)}

� E{x(t)x(t þ i)}E{x(t þ l)x(t þ i)}

� E{x(t)x(t þ l)}E{x(t þ k)x(t þ i)}: (16:8)

Its trispectrum is defined as [12]

Txxxx(v1,v2,v3):¼
X1
i¼�1

X1
k¼�1

X1
l¼�1

Cxxxx(i, k, l)e
�j(v1iþv2kþv3 l): (16:9)

If {x(t)} obeys Equation 16.1, then [12]

Bxxx(v1,v2) ¼ g3eH(e jv1 )H(e jv2 )H* e j(v1þv2)
� �

(16:10)

and

Txxxx(v1,v2,v3) ¼ g4eH(e jv1 )H(e jv2 )H(e jv3 )H* e j(v1þv2þv3)
� �

, (16:11)

where

g3e ¼ Ceee(0, 0, 0) and g4e ¼ Ceeee(0, 0, 0, 0): (16:12)

For Gaussian processes, Bxxx(v1, v2) � 0 and Txxxx(v1,v2,v3) � 0; equivalently, Cxxx(i, k) � 0 and
Cxxxx(i, k, l) � 0. This forms a basis for testing Gaussianity of a given measurement record. When {x(t)} is
linear (i.e., it obeys Equation 16.1), then using Equations 16.5 and 16.10,

Bxxx(v1,v2)j j2
Sxx(v1)Sxx(v1)Sxx(v1 þ v2)

¼ g3e
s6
e
¼ constant 8v1,v2, (16:13)

and using Equations 16.5 and 16.11,

Txxxx(v1,v2,v3)j j2
Sxx(v1)Sxx(v1)Sxx(v3)Sxx(v1 þ v2 þ v3)

¼ g4e
s8
e
¼ constant 8v1,v2,v3: (16:14)

The above two relations form a basis for testing linearity of a given measurement record. How the tests
are implemented depends upon the statistics of the estimators of the higher order cumulant spectra as
well as that of the power spectra of the given record.

16.2.1 Gaussianity Tests

Suppose that the given zero-mean measurement record is of length N denoted by {x(t), t¼ 1, 2, . . . ,N}.
Suppose that the given sample sequence of length N is divided into K nonoverlapping segments each of
size NB samples so that N¼KNB. Let X

(i)(v) denote the discrete Fourier transform of the ith block
{x[tþ (i� 1)NB], 1� t�NB} (i¼ 1, 2, . . . ,K) given by

X(i)(vm) ¼
XNB�1

l¼0

x[l þ 1þ (i� 1)NB]e
�jvml , (16:15)
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where

vm ¼ 2p
NB

m, m ¼ 0, 1, . . . ,NB � 1: (16:16)

Denote the estimate of the bispectrum Bxxx(vm,vn) at bifrequency vm ¼ 2p
NB

m,vn ¼ 2p
NB

n
� �

as
B̂xxx(m, n), given by averaging over K blocks

B̂xxx(m, n) ¼ 1
K

XK
i¼1

1
NB

X(i)(vm)X
(i)(vn)[X

(i)(vm þ vn)]*

� �
, (16:17)

where X* denotes the complex conjugate of X. A principal domain of B̂xxx(m, n) is the triangular grid

D ¼ (m, n)j0 � m � NB

2
, 0 � n � m, 2mþ n � NB

� �
: (16:18)

Values of B̂xxx(m, n) outside D can be inferred from that in D.
Select a coarse frequency grid (m, n) in the principal domain D as follows. Let d denote the

distance between two adjacent coarse frequency pairs such that d¼ 2rþ 1 with r a positive integer. Set

n0¼ 2þ r and n¼ n0, n0þ d, . . . , n0þ (Ln� 1)dwhere L�n ¼
NB
3b c�1

d

� 	
. For a given n, setm0,�n ¼ NB��n

2


 �� r,

�m ¼ �m�n ¼ m0,�n, m0,�n � d, . . . , m0,�n � (L�m,�n � 1)d where L�m,�n ¼ m0,�n�(�nþrþ1)
d

j k
þ 1. Let P denote the

number of points on the coarse frequency grid as defined above so that P ¼ PL�n
�n¼1L�m,�n. Suppose that

(m,n) is a coarse point, then select a fine grid (m,nnk) and (mmi,nnk) consisting of

m�mi ¼ �mþ i, jij � _r, n�nk ¼ �nþ k, jkj � r, (16:19)

for some integer r> 0 such that (2rþ 1)2> P; see also Figure 16.2. Order the L(¼ (2rþ 1)2) estimates
B̂xxx(mmi, nnk) on the fine grid around the bifrequency pair (m, n) into an L-vector, which after relabeling,
may be denoted as nml, l¼ 1, 2, . . . , L, m¼ 1, 2, . . . , P, where m indexes the coarse grid and l indexes the
fine grid. Define P-vectors

�Ci ¼ (n1i, n2i, . . . , nPi)
T (i ¼ 1, 2, . . . , L): (16:20)

0
0

NB
3

n

NB
3

NB
2

m

FIGURE 16.2 Coarse and fine grids in the principal domain.
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Consider the estimates

M ¼ 1
L

XL
i¼1

Ci and S ¼ 1
L

XL
i¼1

(Ci �M)(Ci �M)H: (16:21)

Define

FG ¼ 2(L� P)
2P

M HS
�1
M: (16:22)

If {x(t)} is Gaussian, then FG is distributed as a central F (Fisher) with (2P, 2(L� P)) degrees of freedom.
A statistical test for testing Gaussianity of {x(t)} is to declare it to be a non-Gaussian sequence if FG>Ta
where Ta is selected to achieve a fixed probability of false alarm a(¼Pr{FG>Ta} with FG distributed as a
central F with (2P, 2(L�P)) degrees of freedom). If FG�Ta, then either {x(t)} is Gaussian or it has zero
bispectrum.

The above test is patterned after [3]. It treats the bispectral estimates on the ‘‘fine’’ bifrequency grid as
a ‘‘data set’’ from a multivariable Gaussian distribution with unknown covariance matrix. Hinich [4] has
simplified the test of [3] by using the known asymptotic expression for the covariance matrix involved,
and his test is based upon x2 distributions. Notice that FG�Ta does not necessarily imply that {x(t)} is
Gaussian; it may result from that fact that {x(t)} is non-Gaussian with zero bispectrum. Therefore, a next
logical step would be to test for vanishing trispectrum of the record. This has been done in [14] using the
approach of [4]; extensions of [3] are too complicated. Computationally simpler tests using ‘‘integrated
polyspectrum’’ of the data have been proposed in [6]. The integrated polyspectrum (bispectrum or
trispectrum) is computed as cross-power spectrum and it is zero for Gaussian processes. Alternatively,
one may test if Cxxx(i, k) � 0 and Cxxxx(i, k, l) � 0. This has been done in [8].

Other tests that do not rely on higher order cumulant spectra of the record may be found in [13].

16.2.2 Linearity Tests

Denote the estimate of the power spectral density Sxx(vm) of {x(t)} at frequency vm ¼ 2p
NB

m as Ŝxx(m)
given by

Ŝxx(m) ¼ 1
K

XK
i¼1

1
NB

X(i)(vm) X
(i)(vm)

� �*� �
: (16:23)

Consider

ĝx(m, n) ¼ jB̂xxx(m, n)j2
Ŝxx(m)Ŝxx(n)Ŝxx(mþ n)

: (16:24)

It turns out that ĝx(m, n) is a consistent estimator of the left side of Equation 16.13, and it is
asymptotically distributed as a Gaussian random variable, independent at distinct bifrequencies in the
interior of D. These properties have been used by Subba Rao and Gabr [3] to design a test of linearity.

Construct a coarse grid and a fine grid of bifrequencies inD as before. Order the L estimates ĝx(mmi, nnk)
on the fine grid around the bifrequency pair (m, n) into an L -vector, which after relabeling, may be denoted
as bml, l¼ 1, 2, . . . , L, m¼ 1, 2, . . . , P, where m indexes the coarse grid and l indexes the fine grid. Define
P-vectors

Ci ¼ (b1i, b2i, . . . , bPi)
T, (i ¼ 1, 2, . . . , L): (16:25)
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Consider the estimates

M ¼ 1
L

XL
i¼1

Ci and
X

¼ 1
L

XL
i¼1

(Ci �M)(Ci �M)T: (16:26)

Define a (P� 1)3 P matrix B whose ij th element Bij is given by Bij¼ 1 if i¼ j;¼�1 if j¼ iþ 1;¼ 0
otherwise. Define

FL ¼ L� P þ 1
P � 1

(BM)T B
X

BT
� ��1

BM: (16:27)

If {x(t)} is linear, then FL is distributed as a central F with (P� 1, L� Pþ 1) degrees of freedom. A
statistical test for testing linearity of {x(t)} is to declare it to be a nonlinear sequence if FL>Ta where Ta is
selected to achieve a fixed probability of false alarm a(¼Pr{FL>Ta} with FL distributed as a central F
with (P� 1, L� Pþ 1) degrees of freedom). If FL�Ta, then either {x(t)} is linear or it has zero
bispectrum.

The above test is patterned after [3]. Hinich [4] has ‘‘simplified’’ the test of [3]. Notice that FL�Ta
does not necessarily imply that {x(t)} is nonlinear; it may result from that fact that {x(t)} is non-Gaussian
with zero bispectrum. Therefore, a next logical step would be to test if Equation 16.14 holds true. This has
been done in [14] using the approach of [4]; extensions of [3] are too complicated. The approaches of [3]
and [4] will fail if the data are noisy. A modification to [3] is presented in [7] when additive Gaussian
noise is present. Finally, other tests that do not rely on higher order cumulant spectra of the record may
be found in [13].

16.2.3 Stationarity Tests

Various methods exist for testing whether a given measurement record may be regarded as a sample
sequence of a stationary random sequence. A crude yet effective way to test for stationarity is to divide the
record into several (at least two) nonoverlapping segments and then test for equivalency (or compati-
bility) of certain statistical properties (mean, mean-square value, power spectrum, etc.) computed from
these segments. More sophisticated tests that do not require a priori segmentation of the record are also
available.

Consider a record of length N divided into two nonoverlapping segments each of length N=2. Let
KNB¼N=2 and use the estimators such as Equation 16.23 to obtain the estimator Ŝ(l)xx(m) of the power
spectrum S(l)xx(vm) of the l�th segment (l¼ 1, 2), where vm is given by Equation 16.16. Consider the test
statistic

Y ¼ 2
NB � 2

ffiffiffiffi
K
2

r XNB2 �1

m¼1

ln Ŝ(1)xx (m)� ln Ŝ(2)xx (m)
� �

: (16:28)

Then, asymptotically Y is distributed as zero-mean, unit variance Gaussian if {x(t)} is stationary.
Therefore, if jYj>Ta, then {x(t)} is declared to be nonstationary where the threshold Ta is chosen to
achieve a false-alarm probability of a(¼Pr{jYj>Ta} with Y distributed as zero-mean, unit variance
Gaussian). If jY j�Ta, then {x(t)} is declared to be stationary. Notice that similar tests based upon higher
order cumulant spectra can also be devised.

The above test is patterned after [10]. More sophisticated tests involving two model comparisons as
above but without prior segmentation of the record are available in [11] and references therein. A test
utilizing evolutionary power spectrum may be found in [9].
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16.3 Order Selection, Model Validation,
and Confidence Intervals

As noted earlier, one typically fits a model H(q; u(M)) to the given data by estimating the M unknown
parameters through optimization of some cost function. A fundamental difficulty here is the choice ofM.
There are two basic philosophical approaches to this problem: one consists of an iterative process of
model fitting and diagnostic checking (model validation), and the other utilizes a more ‘‘objective’’
approach of optimizing a cost w.r.t. M (in addition to u(M)).

16.3.1 Order Selection

Let fu(M) (X) denote the pdf of X¼ [x(1), x(2), . . . , x(N)]T parameterized by the parameter vector u(M) of
dimensionM. A popular approach to model order selection in the context of linear Gaussian models is to
compute the Akaike information criterion (AIC)

AIC(M) ¼ �2 ln fû(M) (X)þ 2M, (16:29)

where û(M) maximizes fu(M) (X) given the measurement record X. Let M denote an upper bound on the
true model order. Then the minimum AIC estimate, the selected model order, is given by the minimizer
of AIC(M) over M¼ 1, 2, . . . ,M. Clearly one needs to solve the problem of maximization of ln fu(M) (X)
w.r.t. u(M) for each value of M¼ 1, 2, . . . ,M. The second term on the right side of Equation 16.29
penalizes overparametrization.

Rissanen’s minimum description length (MDL) criterion is given by

MDL(M) ¼ �2 ln fû(M) (X)þM lnN: (16:30)

It is known that if {x(t)} is a Gaussian AR model, then AIC is an inconsistent estimator of the model
order whereas MDL is consistent, i.e., MDL picks the correct model order with probability one as the data
length tends to infinity, whereas there is a nonzero probability that AIC will not. Several other variations
of these criteria exist [15].

Although the derivation of these order selection criteria is based upon Gaussian distribution, they have
frequently been used for non-Gaussian processes with success provided attention is confined to the use of
second-order statistics of the data. They may fail if one fits models using higher order statistics.

16.3.2 Model Validation

Model validation involves testing to see if the fitted model is an appropriate representation of the
underlying (true) system. It involves devising appropriate statistical tools to test the validity of the
assumptions made in obtaining the fitted model. It is also known as model falsification, model verifica-
tion, or diagnostic checking. It can also be used as a tool for model order selection. It is an essential part
of any model fitting methodology.

Suppose that {x(t)} obeys Equation 16.1. Suppose that the fitted model corresponding to the estimated
parameter û(M) is H(q; û(M)). Assuming that the true model H(q) is invertible, in the ideal case one should
get e(t)¼H�1(q)x(t) where {e(t)} is zero-mean, i.i.d. (or at least white when using second-order
statistics). Hence, if the fitted model H(q; û(M)) is a valid description of the underlying true system, one
expects e0(t)¼H�1(q; û(M))x(t) to be zero-mean, i.i.d. One of the diagnostic checks then is to test for
whiteness or independence of the inverse filtered data (or the residuals or linear innovations, in case
second-order statistics are used). If the fitted model is unable to ‘‘adequately’’ capture the underlying true
system, one expects {e0(t)} to deviate from i.i.d. distribution. This is one of the most widely used and
useful diagnostic checks for model validation.
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A test for second-order whiteness of {e0(t)} is as follows [15]. Construct the estimates of the covariance
function as

r̂e(t) ¼ N�1
XN�t

t¼1

e0(t þ t)e0(t) (t � 0): (16:31)

Consider the test statistic

R ¼ N
r̂2e (0)

Xm
i¼1

r̂2e (i), (16:32)

where m is some a priori choice of the maximum lag for whiteness testing. If {e0(t)} is zero-
mean white, then R is distributed as x2(m) (x2 with m degrees of freedom). A statistical test for testing
whiteness of {e0(t)} is to declare it to be a nonwhite sequence (hence invalidate the model) if R>Ta where
Ta is selected to achieve a fixed probability of false alarm a(¼ Pr{R>Ta} with R distributed as x2(m)). If
R�Ta, then {e0(t)} is second-order white, hence the model is validated.

The above procedure only tests for second-order whiteness. In order to test for higher order whiteness,
one needs to examine either the higher order cumulant functions or the higher order cumulant spectra
(or the integrated polyspectra) of the inverse-filtered data. A statistical test using bispectrum is available
in [5]. It is particularly useful if the model fitting is carried out using higher order statistics. If {e0(t)} is
third-order white, then its bispectrum is a constant for all bifrequencies. Let B̂e0e0e0(m, n) denote the
estimate of the bispectrum Be0e0e0(vm,vn) mimicking Equation 16.17. Construct a coarse grid and a fine
grid of bifrequencies in D as before. Order the L estimates B̂e0e0e0(mmi, nnk) on the fine grid around the
bifrequency pair (m, n) into an L-vector, which after relabeling may be denoted as mml, l¼ 1, 2, . . . , L,
m¼ 1, 2, . . . , P, where m indexes the coarse grid and l indexes the fine grid. Define P-vectors

~Ci ¼ (m1i,m2i, . . . ,mPi)
T, (i ¼ 1, 2, . . . , L): (16:33)

Consider the estimates

~M ¼ 1
L

XL
i¼1

~Ci and ~S ¼ 1
L

XL
i¼1

( ~Ci � ~M)( ~Ci � ~M)H: (16:34)

Define a (P� 1)3 P matrix B whose ij th element Bij is given by Bij¼ 1 if i¼ j;¼�1 if j¼ iþ 1;¼ 0
otherwise. Define

FW ¼ 2(L� P þ 1)
2P � 2

(B ~M)H(B~SBT)�1B ~M: (16:35)

If {e0(t)} is third-order white, then FW is distributed as a central F with (2P� 2, 2(L�Pþ 1)) degrees of
freedom. A statistical test for testing third-order whiteness of {e0(t)} is to declare it to be a nonwhite
sequence if FW>Ta where Ta is selected to achieve a fixed probability of false alarm a (¼Pr{FW>Ta}
with FW distributed as a central F with (2P� 2, 2(L� Pþ 1)) degrees of freedom). If FW�Ta, then either
{e0(t)} is third-order white or it has zero bispectrum.

The above model validation test can be used for model order selection. Fix an upper bound on the
model orders. For every admissible model order, fit a linear model and test its validity. From among the
validated models, select the ‘‘smallest’’ order as the correct order. It is easy to see that this procedure will
work only so long as the various candidate orders are nested. Further details may be found in [5] and [15].
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16.3.3 Confidence Intervals

Having settled upon a model order estimate M, let û(M)
N be the parameter estimator obtained by

minimizing a cost function VN[u
(M)], given a record of length N, such that V1 (u):¼ limN!1VN(u)

exists. For instance, using the notation of the section on order selection, one may take
VN [u(M)] ¼ �N�1 ln fu(M) (X). How reliable are these estimates? An assessment of this is provided by
confidence intervals.

Under some general technical conditions, it usually follows that asymptotically (i.e., for large N),ffiffiffiffi
N

p
û(M)
N � u0

h i
is distributed as a Gaussian random vector with zero-mean and covariance matrix P

where u0 denotes the true value of u
(M). A general expression for P is given by [15]

P ¼ V
00
1(u0)

h i�1
P1 V

00
1(u0)

h i�1
, (16:36)

where

P1 ¼ lim
N!1

E NV
0T
N (u0)V

0
N (u0)

n o
(16:37)

and V0 (a row vector) and V00 (a square matrix) denote the gradient and the Hessian, respectively, of V.
The above result can be used to evaluate the reliability of the parameter estimator. It follows from the

above results that

hN ¼ N û(M)
N � u0

h iT
P�1 û(M)

N � u0

h i
(16:38)

is asymptotically x2(M). Define x2a(M) via Pr{y > x2a(M)} ¼ a where y is distributed as x2(M). For
instance, x20:05 ¼ 9:49 so that Pr{hN> 9.49}¼ 0.05. The ellipsoid hN � x2a(M) then defines the 95%
confidence ellipsoid for the estimate û(M)

N . It implies that u0 will lie with probability 0.95 in this ellipsoid
around û(M)

N .
In practice obtaining expression for P is not easy; it requires knowledge of u0. Typically, one replaces

u0 with û(M)
N . If a closed-form expression for P is not available, it may be approximated by a sample

average [16].

16.4 Noise Modeling

As for signal models, Gaussian modeling of noise processes has long been dominant. Typically the central
limit theorem is invoked to justify this assumption; thermal noise is indeed Gaussian. Another reason is
analytical tractability when the Gaussian assumption is made. Nevertheless, non-Gaussian noise occurs
often in practice. For instance, underwater acoustic noise, low-frequency atmospheric noise, radar clutter
noise, and urban and man-made radio-frequency noise all are highly non-Gaussian [17]. All these types of
noise are impulsive in character, i.e., the noise produces large-magnitude observations more often than
predicted by a Gaussian model. This fact has led to development of several models of univariate non-
Gaussian noise pdf, all of which have their tails decay at rates lower than the rate of decay of theGaussian pdf
tails. Also, the proposedmodels are parameterized in such away as to includeGaussian pdf as a special case.

16.4.1 Generalized Gaussian Noise

A generalized Gaussian pdf is characterized by two constants, variance s2 and an exponential decay-rate
parameter k> 0. It is symmetric and unimodal, given by [17]

16-10 Digital Signal Processing Fundamentals



fk(x) ¼ k
2A(k)G(1=k)

e�[jxj=A(k)]k , (16:39)

where

A(k) ¼ s2 G(1=k)
G(3=k)

 �1=2
(16:40)

and G is the gamma function:

G(a):¼
ð1
0

xa�1e�xdx: (16:41)

When k¼ 2, Equation 16.39 reduces to a Gaussian pdf. For k< 2, the tails of fk decay at a lower rate than
for the Gaussian case f2. The value k¼ 1 leads to the Laplace density (two-sided exponential). It is known
that generalized Gaussian density with k around 0.5 can be used to model certain impulsive atmospheric
noise [17].

16.4.2 Middleton Class A Noise

Unlike most of the other noise models, the Middleton class A mode is based upon physical modeling
considerations rather than an empirical fit to observed data. It is a canonical model based upon the
assumption that the noise bandwidth is comparable to, or less than, that of the receiver. The observed
noise process is assumed to have two independent components:

X(t) ¼ XG(t)þ XP(t), (16:42)

where
XG(t) is a stationary background Gaussian noise component
XP(t) is the impulsive component

The component XP(t) is represented by

XP(t) ¼
X
i

Ui(t, u), (16:43)

where
Ui denotes the ith waveform from an interfering source
u represents a set of random parameters that describe the scale and structure of the waveform

The arrival time of these independent impulsive events at the receiver is assumed to be Poisson
distributed. Under these and some additional assumptions, the class A pdf for the normalized instant-
aneous amplitude of noise is given by

fA(x) ¼ e�A
X1
m¼0

Am

m!
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

m

p e�x2=(2s2
m), (16:44)
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where

s2
m ¼ (m=A)þ G0

1þ G0 : (16:45)

The parameter A, called the impulsive index, determines how impulsive noise is: a small value of A
implies highly impulsive interference (although A¼ 0 degenerates into purely Gaussian X(t)). The
parameter G0 is the ratio of power in the Gaussian component of the noise to the power in the Poisson
mechanism interference. The term in Equation 16.44 corresponding to m¼ 0 represents the background
component of the noise with no impulsive waveform present, whereas the higher order terms represent
the occurrence of m impulsive events overlapping simultaneously at the receiver input.

The class A model has been found to provide very good fits to a variety of noise and interference
measurements [17].

16.4.3 Stable Noise Distribution

This is another useful noise distribution model which has a drawback that its variance may not be finite.
It is most conveniently described by its characteristic function. A stable univariate pdf has characteristic
function w(t) of the form [18]

w(t) ¼ exp { jat � gjtja [1þ jbsgn(t)v(t,a)]}, (16:46)

where

v(t,a) ¼ tan (ap=2) for a 6¼ 1(47)
(2=p) log (jtj) for a ¼ 1

�
(16:47)

sgn(t) ¼
1 for t > 0(49)
0 for t ¼ 0(50)

�1 for t < 0

(
(16:48)

and

�1 < a < 1, g > 0, 0 < a � 2, �1 � b � 1: (16:49)

A stable distribution is completely determined by four parameters: location parameter a, the scale
parameter g, the index of skewness b, and the characteristic exponent a. A stable distribution with
characteristic exponent a is called alpha-stable.

The characteristic exponent a is a shape parameter and it measures the ‘‘thickness’’ of the tails of the
pdf. A small value of a implies longer tails. When a¼ 2, the corresponding stable distribution is
Gaussian. When a¼ 1 and b¼ 0, then the corresponding stable distribution is Cauchy.

Inverse Fourier transform of w(t) yields the pdf and, therefore, the pdf of noise. No closed-form
solution exists in general for the two; however, power series expansion of the pdf is available—details may
be found in [18] and references therein.

16.5 Concluding Remarks

In this chapter, several fundamental aspects of fitting linear time-invariant parametric (rational transfer
function) models to a given measurement record were considered. Before a linear model is fitted, one
needs to test for stationarity, linearity, and Gaussianity of the given data. Statistical test for these
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properties were discussed in Section 16.2. After a model is fitted, one needs to validate the model and
assess the reliability of the fitted model parameters. This aspect was discussed in Section 16.3.
A cautionary note is appropriate at this point. All of the tests and procedures discussed in this chapter
are based upon asymptotic considerations (as record length tends to 1). In practice, this implies that
sufficiently long record length should be available, particularly when higher order statistics are exploited.
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17.1 Introduction

Processes encountered in statistical signal processing, communications, and time series analysis applica-
tions are often assumed stationary. The plethora of available algorithms testifies to the need for
processing and spectral analysis of stationary signals (see, e.g., [42]). Due to the varying nature of
physical phenomena and certain man-made operations, however, time-invariance and the related notion
of stationarity are often violated in practice. Hence, study of time-varying systems and nonstationary
processes is well motivated.

Research in nonstationary signals and time-varying systems has led both to the development of adaptive
algorithms and to several elegant tools, including short-time (or running) Fourier transforms, time-
frequency representations such as the Wigner–Ville (a member of Cohen’s class of distributions), Loeve’s
and Karhunen’s expansions (leading to the notion of evolutionary spectra), and time-scale representations
based on wavelet expansions (see [37,45] and references therein). Adaptive algorithms derived from
stationary models assume slow variations in the underlying system. On the other hand, time-frequency
and time-scale representations promise applicability to general nonstationarities and provide useful visual
cues for preprocessing. When it comes to nonstationary signal analysis and estimation in the presence of
noise, however, they assume availability of multiple independent realizations.

In fact, it is impossible to perform spectral analysis, detection, and estimation tasks on signals
involving generally unknown nonstationarities, when only a single data record is available. For instance,
consider extracting a deterministic signal s(n) observed in stationary noise v(n), using regression
techniques based on nonstationary data x(n)¼ s(n)þ v(n), n¼ 0, 1, . . . ,N� 1. Unless s(n) is finitely
parameterized by a dus � 1 vector us (with dus < N), the problem is ill-posed because adding a new
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datum, say x(n0), adds a new unknown, s(n0), to be determined. Thus, only structured nonstationarities
can be handled when rapid variations are present; and only for classes of finitely parameterized
nonstationary processes can reliable statistical descriptors be computed using a single time series. One
such class is that of (wide-sense) cyclostationary (CS) processes which are characterized by the period-
icity they exhibit in their mean, correlation, or spectral descriptors.

An overview of CS signal analysis and applications are the main goals of this section. Periodicity is
omnipresent in physical as well as manmade processes, and CS signals occur in various real life problems
entailing phenomena and operations of repetitive nature: communications [15], geophysical and atmos-
pheric sciences (hydrology [66], oceanography [14], meteorology [35], and climatology [4]), rotating
machinery [43], econometrics [50], and biological systems [48].

In 1961, Gladysev [34] introduced key representations of CS time series, while in 1969, Hurd’s
thesis [38] offered an excellent introduction to continuous time CS processes. Since 1975 [22], Gardner
and coworkers have contributed to the theory of continuous-time CS signals, and especially their
applications to communications engineering. Gardner [15] adopts a ‘‘non-probabilistic’’ viewpoint of
CS (see [19] for an overview and also [36] and [18] for comments on this approach). Responding to a
recent interest in digital periodically varying systems and CS time series, the exposition here is prob-
abilistic and focuses on discrete-time signals and systems, with emphasis on their second-order statistical
characterization and their applications to signal processing and communications.

The material in the remaining sections is organized as follows: Section 17.2 provides definitions,
properties, and representations of CS processes, along with their relations with stationary and general
classes of nonstationary processes. Testing a time series for CS and retrieval of possibly hidden cycles
along with single record estimation of cyclic statistics are the subjects of Section 17.3. Typical signal
classes and operations inducing CS are delineated in Section 17.4 to motivate the key uses and selected
applications described in Section 17.5. Finally, Section 17.6 concludes and presents trade-offs, topics not
covered, and future directions.

17.2 Definitions, Properties, Representations

Let x(n) be a discrete-index random process (i.e., a time series) with mean mx(n):¼E{x(n)} and
covariance cxx(n; t):¼E{[x(n)�mx(n)][x(nþ t)�mx(nþ t)]}. For x(n) complex valued, let also
�cxx(n; t):¼ cxx*(n; t), where * denotes complex conjugation, and n, t are in the set of integers �Z.

Definition 17.1: Process x(n) is (wide-sense) CS iff there exists an integer P such that mx(n)¼
mx(nþ lP), cxx(n; t)¼ cxx(nþ lP; t), or �cxx(n; t)¼�cxx(nþ lP; t), 8n, l 2 �Z. The smallest of all such P’s is
called the period. Being periodic, they all accept Fourier series expansions over complex harmonic cycles
with the set of cycles defined as Ac

xx:¼ {ak ¼ 2pk=P, k ¼ 0, . . . , P � 1}; e.g., cxx(n; t) and its Fourier
coefficients called cyclic correlations are related by

cxx(n; t) ¼
XP�1

k¼0

Cxx
2p
P

k; t

� �
e j

2p
P kn $FS Cxx

2p
P

k; t

� �
¼ 1

P

XP�1

n¼0

cxx(n; t)e
�j2pP kn: (17:1)

Strict sense CS, or periodic (non)stationarity, can also be defined in terms of probability distributions
or density functions when these functions vary periodically (in n). But the focus in engineering is
on periodically and almost periodically correlated* time series, since real data are often zero-mean,
correlated, and with unknown distributions. Almost periodicity is very common in discrete-time

* The term ‘‘cyclostationarity’’ is due to Bennet [3]. CS processes in economics and atmospheric sciences are also referred to
as seasonal time series [50].
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because sampling a continuous-time periodic process will rarely yield a discrete-time periodic signal;
e.g., sampling cos (vct þ u) every Ts seconds results in cos (vcnTs þ u) for which an integer period exists
only if vcTs¼ 2p=P. Because 2p=(vcTs) is ‘‘almost an integer’’ period, such signals accept generalized
(or limiting) Fourier expansions (see also Equation 17.2 and [9] for rigorous definitions of almost
periodic functions).

Definition 17.2: Process x(n) is (wide-sense) almost cyclostationary (ACS) iff its mean and
correlation(s) are almost periodic sequences. For x(n) zero-mean and real, the time-varying and cyclic
correlations are defined as the generalized Fourier series pair:

cxx(n; t) ¼
X

ak2Ac
xx

Cxx(ak; t)e
jakn $FS Cxx(ak; t) ¼ lim

N!1
1
N

XN�1

n¼0

cxx(n; t)e
�jakn: (17:2)

The set of cycles, Ac
xx(t):¼ {ak :Cxx(ak; t) 6¼ 0,� p < ak � p}, must be countable and the limit is

assumed to exist at least in the mean-square sense [9, Theorem 1.15].

Definition 17.2 and Equation 17.2 for ACS, subsume CS Definition 17.1 and Equation 17.1. Note that
the latter require integer period and a finite set of cycles. In the a-domain, ACS signals exhibit lines but
not necessarily at harmonically related cycles. The following example will illustrate the cyclic quantities
defined thus far:

Example 17.1: Harmonic in Multiplicative and Additive Noise

Let

x(n) ¼ s(n) cos (v0n)þ v(n), (17:3)

where s(n) and v(n) are assumed real, stationary, and mutually independent. Such signals appear when
communicating through flat-fading channels, and with weather radar or sonar returns when, in addition
to sensor noise v(n), backscattering, target scintillation, or fluctuating propagation media give rise to
random amplitude variations modeled by s(n) [32]. We will consider two cases:

Case 1: ms 6¼ 0. The mean in Equation 17.3 is mx (n) ¼ ms cos (v0n)þ mv , and the cyclic mean is

Cx (a):¼ lim
N!1

1
N

XN�1

n¼0

mx (n)e
�jan ¼ ms

2
[d(a� v0)þ d(aþ v0)]þ mvd(a), (17:4)

where in Equation 17.4 we used the definition of Kronecker’s delta:

lim
N!1

1
N

XN�1

n¼0

e jan ¼ d(a):¼ 1 a ¼ 0

0 else

�
: (17:5)

Signal x(n) in Equation 17.3 is thus (first-order) CS with set of cycles Acx ¼ {� v0, 0}. If XN(v):¼PN�1
n¼0 x(n) exp (�jvn), then from Equation 17.4 we find Cx(a)¼ limN!1N�1 E{XN(a)}; thus, the cyclic

mean can be interpreted as an averaged DFT and v0 can be retrieved by picking the peak of jXN(v)j
for v 6¼ 0.
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Case 2: ms¼ 0. From Equation 17.3 we find the correlation cxx (n; t) ¼ css(t)[ cos(2v0nþ v0t)þ
cos (v0t)]=2þ cv v (t). Because cxx(n; t) is periodic in n, x(n) is (second-order) CS with cyclic correlation
(cf. Equations 17.2 and 17.5):

Cxx (a; t) ¼ css(t)
4

d(aþ 2v0)e
jv0t þ d(a� 2v0)e

�jv0t
� �

þ css(t)
2

cos (v0t)þ cvv (t)

� �
d(a): (17:6)

The set of cycles is Acxx (t) ¼ {�2v0, 0} provided that css(t) 6¼ 0 and cvv(t) 6¼ 0. The set Acxx (t) is lag-
dependent in the sense that some cycles may disappear while others may appear for different t’s.
To illustrate the t-dependence, let s(n) be an MA process of order q. Clearly, css(t)¼ 0 for jtj> q, and thus
Acxx (t) ¼ {0} for jtj> q.

The CS process in Equation 17.3 is just one example of signals involving products and sums of
stationary processes such as s(n) with (almost) periodic deterministic sequences d(n), or CS processes
x(n). For such signals, the following properties are useful:

Property 17.1: Finite sums and products of ACS signals are ACS. If xi(n) is CS with period Pi , then for
li constants, y1(n):¼

PI1
i¼1lixi(n) and y2(n):¼

QI2
i¼1lixi(n) are also CS. Unless cycle cancellations occur

among xi(n) components, the period of y1(n) and y2(n) equals the least common multiple of the Pi’s.
Similarly, finite sums and products of stationary processes with deterministic (almost) periodic signals are
also ACS processes.

As examples of random-deterministic mixtures, consider

x1(n) ¼ s(n)þ d(n) and x2(n) ¼ s(n)d(n), (17:7)

where
s(n) is zero-mean stationary
d(n) is deterministic (almost) periodic with Fourier series coefficients D(a)

Time-varying correlations are, respectively,

cx1x1 (n; t) ¼ css(t)þ d(n)d(nþ t) and cx2x2 (n; t) ¼ css(t)d(n)d(nþ t): (17:8)

Both are (almost) periodic in n, with cyclic correlations

Cx1x1 (a; t) ¼ css(t)d(a)þ D2(a; t) and Cx2x2 (a; t) ¼ css(t)D2(a; t), (17:9)

where D2(a; t) ¼
P

b D(b)D(a� b) exp[j(a� b)t], since the Fourier series coefficients of the product
d(n)d(nþ t) are given by the convolution of each component’s coefficients in the a-domain. To reiterate
the dependence on t, notice that if d(n) is a periodic �1 sequence, then cx2x2 (n; 0) ¼ css(0)d2(n) ¼ css(0),
and hence periodicity disappears at t¼ 0.

ACS signals appear often in nature with the underlying periodicity hidden, unknown, or inaccessible.
In contrast, CS signals are often man-made and arise as a result of, e.g., oversampling (by a known integer
factor P) digital communication signals, or by sampling a spatial waveform with P antennas (see also
Section 17.4).
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Both CS and ACS definitions could also be given in terms of the Fourier transforms (t ! v) of
cxx(n; t) and Cxx(a; t), namely the time-varying and the cyclic spectra which we denote by Sxx(n;v) and
Sxx(a;v). Suppose cxx(n; t) and Cxx(a; t) are absolutely summable w.r.t. t for all n in �Z and ak in Ac

xx(t).
We can then define and relate time-varying and cyclic spectra as follows:

Sxx(n;v):¼
X1
t¼�1

cxx(n; t)e
�jvt ¼

X
ak2As

xx

Sxx(ak;v)e
jakn (17:10)

Sxx(ak;v):¼
X1
t¼�1

Cxx(ak; t)e
�jvt ¼ lim

N!1
1
N

XN�1

n¼0

Sxx(n;v)e
�jakn: (17:11)

Absolute summability w.r.t. t implies vanishing memory as the lag separation increases, and many real-
life signals satisfy these so-called mixing conditions [5, Chapter 2]. Power signals are not absolutely
summable, but it is possible to define cyclic spectra equivalently (for real-valued x(n)) as

Sxx(ak;v):¼ lim
N!1

1
N
E{XN (v)XN (ak � v)}, XN (v):¼

XN�1

n¼0

x(n)e�jvn: (17:12)

If x(n) is complex ACS, then one also needs �Sxx(ak;v):¼ limN!1N�1E{X�
N(�v) XN(ak � v)}. Both Sxx

and �Sxx reveal presence of spectral correlation. This must be contrasted to stationary processes whose
spectral components, XN(v1), XN(v2) are known to be asymptotically uncorrelated unless jv1�v2j ¼ 0
(mod 2p) [5, Chapter 4]. Specifically, we have from Equation 17.12 the following property:

Property 17.2: If x(n) is ACS or CS, the N-point Fourier transform XN (v1) is correlated with XN(v2)
for jv1�v2j ¼ak(mod 2p), and ak 2 As

xx .

Before dwelling further on spectral characterization of ACS processes, it is useful to note the diversity
of tools available for processing. Stationary signals are analyzed with time-invariant (TI) correlations
(lag-domain analysis), or with power spectral densities (frequency-domain analysis). However, CS, ACS,
and generally nonstationary signals entail four variables: (n, t,a,v):¼ (time, lag, cycle, frequency).
Grouping two variables at a time, four domains of analysis become available and their relationship is
summarized in Figure 17.1. Note that pairs (n; t) $ (a; t), or (n;v) $ (a;v), have t or v fixed and are
Fourier series pairs; whereas (n; t) $ (n;v), or (a; t) $ (a;v), have n or a fixed and are related by
Fourier transforms.

Further insight on the links between stationary and CS processes is gained through the uniform shift
(or phase) randomization concept. Let x(n) be CS with period P, and define y(n):¼ x(nþ u), where u is
uniformly distributed in [0, P) and independent of x(n). With cyy(n; t):¼ Eu{Ex[x(nþ u)x(nþ tþ u)]},
we find

cyy(n; t) ¼ 1
p

Xp�1

p¼0

cxx(p; t):¼ Cxx(0; t):¼ cyy(t), (17:13)

where the first equality follows because u is uniform and the second uses the CS definition in Equation 17.1.
Noting that cyy is not a function of n, we have established (see also [15,38]).

Property 17.3: A CS process x(n) can be mapped to a stationary process y(n) using a shift u, uniformly
distributed over its period, and the transformation y(n):¼ x(nþ u).
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Such a mapping is often used with harmonic signals; e.g., x(n)¼A exp[j(2pn=Pþ u)]þ v(n) is
according to Property 17.2 a CS signal, but can be stationarized by uniform phase randomization. An
alternative trick for stationarizing signals which involve complex harmonics is conjugation. Indeed,
cxx�(n; t) ¼ A2 exp (�j2pt=P)þ cvv(t) is not a function of n—but why deal with CS or ACS processes if
conjugation or phase randomization can render them stationary?

Revisiting Case 2 of Example 17.1 offers a partial answer when the goal is to estimate the frequency v0.
Phase randomization of x(n) in Equation 17.3 leads to a stationary y(n) with correlation found by
substituting a¼ 0 in Equation 17.6. This leads to cyy(t) ¼ (1=2)css(t) cos (v0t)þ cvv(t), and shows that if
s(n) has multiple spectral peaks, or if s(n) is broadband, then multiple peaks or smearing of the spectral
peak hamper estimation of v0 (in fact, it is impossible to estimate v0 from the spectrum of y(n) if s(n) is
white). In contrast, picking the peak of Cxx(a; t) in Equation 17.6 yields v0, provided that v0 2 (0,p) so
that spectral folding is prevented [32]. Equation 17.13 provides a more general answer. Phase random-
ization restricts a CS process only to one cycle, namely a¼ 0. In other words, the cyclic correlation
Cxx(a; t) contains the ‘‘stationarized correlation’’ Cxx(0; t) and additional information in cycles a 6¼ 0.

Since CS and ACS processes form a superset of stationary ones, it is useful to know how a stationary
process can be viewed as a CS process. Note that if x(n) is stationary, then cxx(n; t)¼ cxx(t) and on using
Equations 17.2 and 17.5, we find

Cxx(a; t) ¼ cxx(t) lim
N!1

1
N

XN�1

n¼0

e�jan

" #
¼ cxx(t)d(a): (17:14)

Intuitively, Equation 17.14 is justified if we think that stationarity reflects ‘‘zero time-variation’’ in the
correlation cxx(t). Formally, Equation 17.14 implies

Property 17.4: Stationary processes can be viewed as ACS or CS with cyclic correlation Cxx(a; t)¼
cxx(t)d(a).

Separation of information bearing ACS signals from stationary ones (e.g., noise) is desired in many
applications and can be achieved based on Property 17.4 by excluding the cycle a¼ 0.

Next, it is of interest to view CS signals as special cases of general nonstationary processes
with two-dimensional (2D) correlation rxx(n1, n2):¼ E{x(n1)x(n2)}, and 2D spectral densities

FS

FS
n α

FT

FT

Sxx (α; ω)

Sxx (n; ω)

cxx (n; τ)

Cxx (α; τ)

n ατ ω

τ ω

FIGURE 17.1 Four domains for analyzing CS signals.
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Sxx(v1,v2):¼ FT[rxx(n1, n2)] that are assumed to exist.* Two questions arise: What are the implications
of periodicity in the (v1,v2) plane and how does the cyclic spectra in Equations 17.10 through 17.12
relate to Sxx(v1,v2)? The answers are summarized in Figure 17.2, which illustrates that the support of CS
processes in the (v1,v2) plane consists of 2P� 1 parallel lines (with unity slope) intersecting the axes at
equidistant points 2p=P far apart from each other. More specifically, we have [34]:

Property 17.5: A CS process with period P is a special case of a nonstationary (harmonizable) process
with 2D spectral density given by

Sxx(v1,v2) ¼
XP�1

k¼�(P�1)

Sxx
2p
P

k;v1

� �
dD v2 � v1 þ 2p

P
k

� �
, (17:15)

where dD denotes the delta of Dirac.

For stationary processes, only the k¼ 0 term survives in Equation 17.15 and we obtain
Sxx(v1,v2) ¼ Sxx(0;v1)dD(v2 � v1); i.e., the spectral mass is concentrated on the diagonal of Figure 17.2.
The well-structured spectral support for CS processes will be used to test for presence of CS and estimate the
period P. Furthermore, the superposition of lines parallel to the diagonal hints toward representing CS
processes as a superposition of stationary processes. Next we will examine two such representations
introduced by Gladysev [34] (see also [22,38,49,56]).

We can uniquely write n0¼ nPþ i and express x(n0)¼ x(nPþ i), where the remainder i takes values
0,1, . . . , P� 1. For each i, define the subprocess xi(n):¼ x(nPþ i). In multirate processing, the P3 1 vector
x(n):¼ [x0(n) . . . xP�1(n)]0 constitutes the so-called polyphase decomposition of x(n) [51, Chapter 12].
As shown in Figure 17.3, each xi(n) is formed by downsampling an advanced copy of x(n).

On the other hand, combining upsampled and delayed xi(n)’s, we can synthesize the CS process as

x(n) ¼
XP�1

i¼0

X
l

xi(l)d(n� i� lP): (17:16)

* Nonstationary processes with Fouriers transformable 2D correlations are called harmonizable processes.

2π

ω2

ω1

ω2 = ω1 + 2π

ω2 = ω1

P

ω2 = ω1 – 2π 2π
P

FIGURE 17.2 Support of 2D spectrum Sxx(v1,v2) for CS processes.
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We maintain that subprocesses {xi(n)}
P�1
i¼0 are (jointly) stationary, and thus x(n) is vector stationary.

Suppose for simplicity that E{x(n)}¼ 0, and start with E{xi1 (n)xi2 (nþ t)} ¼ E{x(nP þ i1)x(nPþ
tP þ i2)}:¼ cxx(i1 þ nP; i2 � i1 þ tP). Because x(n) is CS, we can drop nP and cxx becomes independent
of n establishing that xi1 (n), xi2 (n), are (jointly) stationary with correlation:

cxi1 xi2 (t) ¼ cxx(i1; i2 � i1 þ tP) , i1, i2 2 [0,P � 1]: (17:17)

Using Equation 17.17, it can be shown that auto- and cross-spectra of xi1 (n), xi2 (n), can be expressed in
terms of the cyclic spectra of x(n) as [56]

Sxi1 xi2 (v) ¼
1
P

XP�1

k1¼0

XP�1

k2¼0

Sxx
2p
P

k1;
v� 2pk2

P

� �
e j[(

v�2pk2
P )(i2�i1)þ2p

P k1i1]: (17:18)

To invert Equation 17.18, we Fourier transform Equation 17.16 and use Equation 17.12 to obtain (for
x(n) real):

Sxx
2p
P

k;v

� �
¼

XP�1

i1¼0

XP�1

i2¼0

Sxi1 xi2 (v)e
jv(i2�i1)e�j2pP ki2 : (17:19)

Based on Equations 17.16 through 17.19, we infer that CS signals with period P can be analyzed as
stationary P3 1 multichannel processes and vice versa. In summary, we have

Representation 17.1: (Decimated Components)

CS process x(n) can be represented as a P-variate stationary multichannel process x(n) with components
xi(n)¼ x(nPþ i), i¼ 0, 1, . . . , P� 1. Cyclic spectra and stationary auto- and cross-spectra are related as in
Equations 17.18 and 17.19.

An alternative means of decomposing a CS process into stationary components is by splitting the
(�p, p] spectral support of XN(v) into bands each of width 2p=P [22]. As shown in Figure 17.4, this can
be accomplished by passing modulated copies of x(n) through an ideal low-pass filter H0(v) with spectral
support (�p=P,p=P].The resulting subprocesses �xm(n) can be shifted up in frequency and recombined to
synthesize the CS process as x(n) ¼ PP�1

m¼0 �xm(n) exp (�j2pmn=P). Within each band, frequencies are

x(n) x(nP) = x0(n)

x(nP + 1) = x1(n)
z–1

z–1z

z

z

x(nP + P – 1) = xP–1(n)
x(n + P – 1)

x(n + 1)
P

P

(a) (b)

+P

P

P

P x(n)

... ... ... ... ... ...

FIGURE 17.3 Representation 17.1: (a) analysis and (b) synthesis.
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separated by less than 2p=P and according to Property 17.2, there is no correlation between spectral
components �Xm,N(v1) and �Xm,N(v2); hence, �xm(n) components are stationary with auto- and cross-
spectra having nonzero support over�p=P<v<p=P. They are related with the cyclic spectra as follows:

S�xm1�xm2
(v) ¼ Sxx

2p
P

(m1 �m2); vþ 2p
P

m1

� �
, jvj < p

P
: (17:20)

Equation 17.20 suggests that CS signal analysis is linked with stationary subband processing.

Representation 17.2: (Subband Components)

CS process x(n) can be represented as a superposition of P stationary narrowband subprocesses according to
x(n) ¼ PP�1

m¼0 �xm(n) exp (�j2pmn=P). Auto- and cross-spectra of �xm(n) can be found from the cyclic
spectra of x(n) as in Equation 17.20.

Because ideal low-pass filters cannot be designed, the subband decomposition seems less practical.
However, using Representation 17.1 and exploiting results from uniform DFT filter banks, it is possible
using FIR low-pass filters to obtain stationary subband components (see, e.g., [51, Chapter 12]). We will
not pursue this approach further, but Representation 17.1 will be used next for estimating time-varying
correlations of CS processes based on a single data record.

17.3 Estimation, Time-Frequency Links, and Testing

The time-varying and cyclic quantities introduced in Equations 17.1, 17.2, and 17.10 through 17.12 entail
ideal expectations (i.e., ensemble averages) and unless reliable estimators can be devised from finite
(and often noisy) data records, their usefulness in practice is questionable. For stationary processes with

x(n) H0(ω)

ω
–π/P π/P0

H0(ω)

ω
–π/P π/P0

H0(ω)

ω
–π/P π/P0

x1(n)

x0(n)

xP–1(n)

exp(–j2πn/P)exp(–j2πn/P)

exp[j2πn(P – 1)/P](a)

... ... ... ... ...

(b) exp[–j2πn(P – 1)/P]

x(n)
× +

×

×

× +

FIGURE 17.4 Representation 17.2: (a) analysis and (b) synthesis.
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(at least asymptotically) vanishing memory,* sample correlations and spectral density estimators con-
verge to their ensembles as the record length N ! 1. Constructing reliable (i.e., consistent) estimators
for nonstationary processes, however, is challenging and generally impossible. Indeed, capturing time-
variations calls for short observation windows, whereas variance reduction demands long records for
sample averages to converge to their ensembles.

Fortunately,ACS andCS signals belong to the class of processeswith ‘‘well-structured’’ time-variations that
under suitable mixing conditions allow consistent single record estimators. The key is to note that although
cxx(n; t) and Sxx(n;v) are time-varying, they are expressed in terms of cyclic quantities, Cxx(ak; t) and
Sxx(ak;v), which are TI. Indeed, in Equations 17.2 and 17.10, time-variation is assigned to the Fourier basis.

17.3.1 Estimating Cyclic Statistics

First we will consider ACS processes with known cycles ak. Simpler estimators for CS processes and cycle
estimation methods will be discussed later in this section. If x(n) has nonzero mean, we estimate the
cyclic mean as in Example 17.1 using the normalized DFT: Ĉxx(ak) ¼ N�1 PN�1

n¼0 x(n) exp (�jakn). If
the set of cycles is finite, we estimate the time-varying mean as ĉxx(n) ¼

P
ak
Ĉxx(ak) exp (jakn). Similarly,

for zero-mean ACS processes we estimate first cyclic and then time-varying correlations using

Ĉxx(ak; t) ¼ 1
N

XN�1

n¼0

x(n)x(nþ t)e�jakn and

Ĉxx(ak; t) ¼ 1
N

XN�1

n¼0

x(n)x(nþ t)e�jakn:

(17:21)

Note that Ĉxx can be computed efficiently using the FFT of the product x(n)x(nþ t).
For cyclic spectral estimation, two options are available: (1) smoothed cyclic periodograms and (2)

smoothed cyclic correlograms. The first is motivated by Equation 17.12 and smoothes the cyclic period-
ogram, Ixx(a;v):¼ N�1 XN(v)XN (a�v), using a frequency-domain windowW(v). The second follows
Equation 17.2 and Fourier transforms Ĉxx(a; t) after smoothing it by a lag-window w(t) with support
t 2[�M,M]. Either one of the resulting estimates

Ŝ(i)xx(a;v) ¼
1
N

XN�1

n¼0

W v� 2p
N

n

� �
Ixx a;

2p
N

n

� �
or

Ŝ(ii)xx (a;v) ¼
XM

t ¼�M

w(t)Ĉxx(a; t)e
�jvt

(17:22)

can be used to obtain time-varying spectral estimates; e.g., using Ŝ(i)xx(a;v), we estimate Sxx(n;v) as

Ŝ(i)xx(n;v) ¼
X

ak2As
xx

Ŝ(i)xx(ak;v)e
jakn: (17:23)

Estimates of Equations 17.21 through 17.23 apply to ACS (and hence CS) processes with a finite number
of known cycles, and rely on the following steps: (1) estimate the TI (or ‘‘stationary’’) quantities by
dropping limits and expectations from the corresponding cyclic definitions, and (2) use the cyclic
estimates to obtain time-varying estimates relying on the Fourier synthesis (Equations 17.2 and 17.10).
Selection of the windows in Equation 17.22, variance expressions, consistency, and asymptotic normality

* Well-separated samples of such processes are asymptotically independent. Sufficient(so-called mixing) conditions include
absolute summability of cumulants and are satisfied by many real-life signals (see [5] and [12, Chapter 2]).
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of the estimators in Equations 17.21 through 17.23 under mixing conditions can be found in
[11,12,24,39] and references therein.

When x(n) is CS with known integer period P, estimation of time-varying correlations and spectra
becomes easier. Recall that thanks to Representations 17.1 and 17.2, not only cxx(n; t) and Sxx(n;v), but
the process x(n) itself can be analyzed into P stationary components. Starting with Equation 17.16, it can
be shown that cxx(i; t) ¼ cxixiþt

(0), where i¼ 0, 1, . . . , P� 1 and subscript iþ t is understood mod(P).
Because the subprocesses xi(n) and xiþt(n) are stationary, their cross-covariances can be estimated
consistently using sample averaging; hence, the time-varying correlation can be estimated as

ĉxx(i; t) ¼ ĉxixiþt
(0) ¼ 1

[N=P]

X[N=P]�1

n¼0

x(nP þ i)x(nP þ iþ t), (17:24)

where the integer part [N=P] denotes the number of samples per subprocess xi(n), and the last equality
follows from the definition of xi(n) in Representation 17.1. Similarly, the time-varying periodogram can
be estimated using Ixx(n;v) ¼ P�1 PP�1

k¼0 XP(v)XP(2pk=P � v) exp (�j2pkn=P), and then smoothed to
obtain a consistent estimate of Sxx(n;v).

17.3.2 Links with Time-Frequency Representations

Consistency (and hence reliability) of single record estimates is a notable difference between CS and
time-frequency signal analyses. Short-time Fourier transforms, the Wigner–Ville, and derivative repre-
sentations are valuable exploratory (and especially graphical) tools for analyzing nonstationary signals.
They promise applicability on general nonstationarities, but unless slow variations are present and
multiple independent data records are available, their usefulness in estimation tasks is rather limited.
In contrast, ACS analysis deals with a specific type of structured variation, namely (almost) periodicity,
but allows for rapid variations and consistent single record sample estimates. Intuitively speaking, CS
provides within a single record, multiple periods that can be viewed as ‘‘multiple realizations.’’ Interest-
ingly, for ACS processes there is a close relationship between the normalized asymmetric ambiguity
function A(a; t) [37], and the sample cyclic correlation in Equation 17.21:

NĈxx(a; t) ¼ A(a; t):¼
XN�1

n¼0

x(n)x(nþ t)e�jan: (17:25)

Similarly, one may associate the Wigner–Ville with the time-varying periodogram Ixx(n;v) ¼PN�1
t¼�(N�1) x(n)x(nþ t) exp (�jvt). In fact, the aforementioned equivalences and the consistency results

of [12] establish that ambiguity and Wigner–Ville processing of ACS signals is reliable even when only a
single data record is available. The following example uses a chirp signal to stress this point and shows
how some of our sample estimates can be extended to complex processes.

Example 17.2: Chirp in Multiplicative and Additive Noise

Consider x(n)¼ s(n)exp( jv0n
2)þ v(n), where s(n) and v(n) are zero mean, stationary, and mutually

independent; cxx(n; t) is nonperiodic for almost every v0, and hence x(n) is not (second-order) ACS.
Even when E{s(n)} 6¼ 0, E{x(n)} is also nonperiodic, implying that x(n) is not first-order ACS either. However,

~cxx� (n; t): ¼ cxx� (nþ t; �2t):¼ E{x(nþ t)x*(n� t)}

¼ css(2t) exp (j4v0tn)þ cvv� (2t) (17:26)
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exhibits (almost) periodicity and its cyclic correlation is given by ~Cxx�(a; t) ¼ css(t)d(a� 4v0t)þ
cvv�(2t)d(a). Assuming css(t) 6¼ 0, the latter allows evaluation of v0 by picking the peak of the sample
cyclic correlation magnitude evaluated at, e.g., t¼ 1, as follows:

v̂0 ¼ � 1
4
arg maxa6¼0j~̂Cxx�(a; 1)j,

~̂Cxx� a; tð Þ ¼ 1
N

XN�1

n¼0

x nþ tð Þx� n� tð Þe�jan:
(17:27)

The ~̂Cxx�(a; t) estimate in Equation 17.27 is nothing but the symmetric ambiguity function. Because x(n)

is ACS, ~̂Cxx� can be shown to be consistent. This provides yet one more reason for the success of time-
frequency representations with chirp signals. Interestingly, Equation 17.27 shows that exploitation of CS
allows not only for additive noise tolerance (by avoiding the a¼ 0 cycle in Equation 17.27), but also permits
parameter estimation of chirps modulated by stationary multiplicative noise s(n).

17.3.3 Testing for CS

In certain applications involving man-made (e.g., communication) signals, presence of CS and know-
ledge of the cycles is assured by design (e.g., baud rates or oversampling factors). In other cases, however,
only a time series {x(n)}N�1

n¼0 is given and two questions arise: How does one detect CS, and if x(n) is
confirmed to be CS of a certain order, how does one estimate the cycles present? The former is addressed
by testing hypotheses of nonzero Ĉx(ak), Ĉxx(ak; t) or Ŝxx(ak;v) over a fine cycle-frequency grid obtained
by sufficient zero-padding prior to taking the FFT.

Specifically, to test whether x(n) exhibits CS in {Ĉxx(a; tl)}
L
l¼1 for at least one lag, we form the (2Lþ 1)3 1

vector ĉxx(a):¼ [Ĉ
R
xx(a; t1) � � � Ĉ

R
xx(a; tL); Ĉ

I
xx(a; t1) � � � Ĉ

I
xx(a; tL)]

0 where superscript R(I) denotes real
(imaginary) part. Similarly, we define the ensemble vector cxx(a) and the error exx(a):¼ ĉxx(a)� cxx(a).
For N large, it is known that

ffiffiffiffi
N

p
exx(a) is Gaussian with pdf N(0,Sc). An estimate

P̂
c of the asymptotic

covariance can be computed from the data [12]. If a is not a cycle for all {tl}
L
l¼1, then cxx(a) � 0,

exx(a)¼ ĉxx(a) will have zero mean, and D̂2c(a):¼ ĉ0xx(a)Ŝ
y
c(a)ĉxx(a) will be central chi-square. For a

given false-alarm rate, we find from x2 tables a threshold G and test [10]

H0 : D̂
c
xx(a) 	 G ) a 2 Ac

xx vs: H1 : D̂
c
xx(a) < G ) a =2Ac

xx: (17:28)

Alternate 2D contour plots revealing presence of spectral correlation rely on Equation 17.15 and more
specifically on its normalized version (coherence or correlation coefficient) estimated as [40]

rxx(v1,v2):¼
1
M

PM�1
m¼0 XN v1 þ 2pm

M


 �
X�
N v2 þ 2pm

M


 ��� ��2
1
M

PM�1
m¼0 XN v1 þ 2pm

M


 ��� ��2 1
M

PM�1
m¼0 XN v2 þ 2pm

M


 ��� ��2 : (17:29)

Plots of rxx(v1,v2) with the empirical thresholds discussed in [40] are valuable tools not only for cycle
detection and estimation of CS signals but even for general nonstationary processes exhibiting partial
(e.g., ‘‘transient’’ lag- or frequency-dependent) CS.

Example 17.3: CS Test

Consider x(n)¼ s1(n)cos(pn=8)þ s2(n)cos(pn=4) with s1(n), s2(n), and v(n) zero-mean, Gaussian, and
mutually independent. To test for CS and retrieve the possible periods present, N¼ 2048 samples
were generated; s1(n) and s2(n) were simulated as AR(1) with variances s2

s1 ¼ s2
s2 ¼ 2, while v(n) was
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white with variance s2
v ¼ 0:1. Figure 17.5a shows jĈxx(a; 0)j peaking at a¼�2(p=8),�2(p=4), 0 as

expected, while Figure 17.5b depicts rxx(v1,v2) computed as in Equation 17.29 with M¼ 64. The parallel
lines in Figure 17.5b are seen at jv1�v2j ¼ 0,p=8,p=4 revealing the periods present.

One can easily verify from Equation 17.11 that Cxx (a; 0) ¼ (2p)�1 Ð p
�p Sxx (a;v)dv. It also follows from

Equation 17.15 that Sxx(a;v)¼ Sxx(v1¼v,v2¼v�a); thus, Cxx (a; 0) ¼ (2p)�1 Ð p
�pSxx (v,v� a)dv, and

for each a, we can view Figure 17.5a as the (normalized) integral (or projection) of Figure 17.5b along
each parallel line [40]. Although jĈxx(a; 0)j is simpler to compute using the FFT of x2(n), rxx(v1,v2) is
generally more informative.

Because CS is lag-dependent, as an alternative to rxx(v1,v2) one can also plot jĈxx(a; t)j or jŜxx(a;v)j
for all t or v. Figures 17.6 and 17.7 show perspective and contour plots of jĈxx(a; t)j for t 2[�31, 31] and
jŜxx(a;v)j for v 2(�p,p], respectively. Both sets exhibit planes (lines) parallel to the t -axis and v-axis,
respectively, at cycles a¼�2(p=8),�2(p=4), 0, as expected.
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FIGURE 17.5 (a) Cyclic cross-correlation Cxx(a; 0) and (b) coherence rxx(v1,v2) (Example 17.3).
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17.4 CS Signals and CS-Inducing Operations

We have already seen in Examples 17.1 and 17.2 that amplitude or index transformations of repetitive
nature give rise to one class of CS signals. A second category consists of outputs of repetitive (e.g.,
periodically varying) systems excited by CS or even stationary inputs. Finally, it is possible to have CS
emerging in the output due to the data acquisition process (e.g., multiple sensors or fractional sampling).

17.4.1 Amplitude Modulation

General examples in this class include signals x1(n) and x2(n) of Equation 17.7 or their combinations
as described by Property 17.1. More specifically, we will focus on communication signals where
random (often i.i.d.) information data w(n) are D=A converted with symbol period T0, to obtain the
process wc(t) ¼

P
l w(l)dD(t � lT0), which is CS in the continuous variable t. The continuous-time signal

wc(t) is subsequently pulse shaped by the transmit filter h(tr)c (t), modulated with the carrier exp(jvct),
and transmitted over the linear time-invariant (LTI) channel h(ch)c (t). On reception, the carrier is removed
and the data are passed through the receive filter h(rec)c (t) to suppress stationary additive noise. Defining the
composite channel hc(t):¼ h(tr)c *h(ch)c *h(rec)c (t), the continuous time received signal at the baseband is

rc(t) ¼ e jvect
X
l

w(l)hc(t � lT0 � e)þ vc(t), (17:30)

where
e 2 (0,T0) is the propagation delay
vec denotes the frequency error between transmit and receive carriers
vc(t) is AWGN

Signal rc(t) is CS due to (1) the periodic carrier offset e jvect and (2) the CS of wc(t). However,
(2) disappears in discrete-time if one samples at the symbol rate because r(n):¼ rc(nT0) becomes

r(n) ¼ e jvenx(n)þ v(n), x(n):¼
X
l

w(l)h(n� l), n 2 [0,N � 1], (17:31)

with ve:¼ vecT0, h(n):¼ hc(nT0� e), and v(n):¼ vc(nT0).
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FIGURE 17.7 Cycle detection and estimation (Example 17.3): 3D and contour plots of Ŝxx(a;v).
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If ve¼ 0, x(n) (and thus v(n)) is stationary, whereas ve 6¼ 0 renders r(n) similar to the ACS signal
in Example 17.1. When w(n) is zero-mean, i.i.d., complex symmetric, we have E{w(n)} � 0, and
E{w(n)w(nþ t)} � 0; thus, the cyclic mean and correlations cannot be used to retrieve ve. However,
peak-picking the cyclic fourth-order correlation (Fourier coefficients of r4(n)) yields 4ve uniquely,
provided ve<p=4. If E{w4(n)} � 0, higher powers can be used to estimate and recover ve.

Having estimated ve, we form exp(�jven)r(n) in order to demodulate the signal in Equation 17.31.
Traditionally, CS is removed from the discrete-time information signal, although it may be useful for
other purposes (e.g., blind channel estimation) to retain CS at the baseband signal x(n). This can be
accomplished by multiplying w(n) with a P-periodic sequence p(n) prior to pulse shaping. The noise-free
signal in this case is x(n) ¼ P

l p(l)w(l) h(n� l), and has correlation �cxx(n; t) ¼ s2
w

P
l p(n� l)j j2

h(l)h*(l þ t), which is periodic with period P. Cyclic correlations and spectra are given by [27]

�Cxx(a; t) ¼ s2
wP2(a)

X
l

h(l)h*(l þ t)e�jal ,

�Sxx(a;v) ¼ s2
wP2(a)H*(�v)H(a� v),

(17:32)

where P2(a):¼ P�1
PP�1

m¼0 p(m)j j2 exp (�jam) and H(v):¼ PL
l¼0 h(l) exp (�jvl). As we will see later in

this section, CS can also be introduced at the transmitter using multirate operations, or at the receiver by
fractional sampling. With a CS input, the channel h(n) can be identified using noisy output samples only
[27,64,65]—an important step toward blind equalization of (e.g., multipath) communication channels.

If p(n)¼ 1 for n 2[0, P1) (mod P) and p(n)¼ 0 for n 2 [P1, P), the CS signal x(n)¼ p(n)s(n)þ v(n) can
be used to model systematically missing observations. Periodically, the stationary signal s(n) is observed
in noise v(n) for P1 samples and disappears for the next P�P1 data. Using Cxx(a; t)¼ P2(a; t)css(t), the
period P (and thus P2(a;t)) can be determined. Subsequently, css(t) can be retrieved and used for
parametric or nonparametric spectral analysis of s(n); see [31] and references therein.

17.4.2 Time Index Modulation

Suppose that a random CS signal s(n) is delayed by D samples and received in zero-mean stationary
noise v(n) as x(n)¼ s(n�D)þ v(n). With s(n) independent of v(n), the cyclic correlation is Cxx(a; t)¼
Css(a; t)exp(jaD)þ d(a)cvv(t) and the delay manifests itself as a phase of a complex exponential. But
even when s(n) models a narrowband deterministic signal, the delay appears in the exponent since
s[n�D(n)]
 s(n)exp[jD(n)] [53]. Time-delay estimation of CS signals appears frequently in sonar and
radar for range estimation where D(n)¼ nn and n denotes velocity of propagation. D(n) is also used to
model Doppler effects that appear when relative motion is present. Note that with time-varying (e.g.,
accelerating) motion, we have D(n)¼gn2 and CS appears in the complex correlation as explained in
Example 17.2.

Polynomial delays are one form of time scale transformations. Another one is d(n)¼lnþ p(n), where
l is a constant and p(n) is periodic with period P (e.g., [38]). For stationary s(n), signal x(n)¼ s[d(n)] is
CS because cxx (nþ lP; t)¼ css[d(nþ lPþ t)� d(nþ lP)]¼ css[ltþ p(n)� p(nþ t)]¼ cxx(n; t). A special
case is the familiar FM model with d(n) ¼ vcnþ h sin (v0n) where h here denotes the modulation index.
The signal and its periodically varying correlation are given by

x(n) ¼ A cos[v0nþ h sin(v0n)þ f],

cxx(n; t) ¼ A2

2
cos v0tþ h sin(v0(nþ t))� h sin(v0n)½ �:

(17:33)

In addition to communications, frequency modulated signals appear in sonar and radar when rotating
and vibrating objects (e.g., propellers or helicopter blades) induce periodic variations in the phase of
incident narrowband waveforms [2,67].
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Delays and scale modulations also appear in 2D signals. Consider an image frame at time n with the
scene displaced relative to time n¼ 0 by [dx(n), dy(n)]; in spatial and Fourier coordinates, we have [8]

f (x, y; n) ¼ f0(x � dx(n), y � dy(n)),

F(vx ,vy ; n) ¼ F0(vx ,vy)e
�jvxdx(n)e�jvydy(n):

(17:34)

Images of moving objects having time-varying velocities can be modeled using polynomial dis-
placement_s, whereas trigonometric [dx(n), dy(n)] can be adopted when the motion is circular, or when
the imaging sensor (e.g., camera) is vibrating. In either case, F(vx,vy; n) is CS and thus cyclic statistics
can be used for motion estimation and compensation [8].

17.4.3 Fractional Sampling and Multivariate=Multirate Processing

Let ve¼ 0 and suppose we oversample (i.e., fractionally sample) Equation 17.30 by a factor P. With
x(n):¼ rc(nT0=P), we obtain (see also Figure 17.8)

x(n) ¼
X
l

w(l)h(n� lP)þ v(n), (17:35)

where now h(n):¼ hc(nT0=P� e) and v(n):¼ vc(nT0=P). Figure 17.8 shows the continuous-time model
and the multirate discrete time equivalent of Equation 17.35. With P¼ 1, Equation 17.35 reduces to the
stationary part of r(n) in Equation 17.31, but with P> 1, x(n) in Equation 17.35 is CS with correlation
cxx(n; t) ¼ s2

w

P
l h(n� lP)h�(nþ t� lP)þ s2

vd(t), which can be verified to be periodic with period
equal to the oversampling factor P [25,29,61]. Cyclic correlations and cyclic spectra are given, respect-
ively, by

�Cxx
2p
P

k; t

� �
¼ s2

w

P

X
l

h(l)h*(l þ t)e�j2pP kl þ s2
vd(k)d(t), (17:36)

�Sxx
2p
P

k;v

� �
¼ s2

w

P
H*(�v)H

2p
P

k� v

� �
þ s2

vd(k): (17:37)

wc(t) = Σl w(l)δ(t – lTs)
hc(t)

vc(t)

(a) t =
nTs
P

x(n)

(b)

v(n)

h(n)Pw(n) x(n)

FIGURE 17.8 (a) Fractionally sampled communications model and (b) multirate equivalent.
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Although similar, the order of the FIR channel h in Equation 17.35 is, due to oversampling, P times larger
than that of Equation 17.31. Cyclic spectra in Equations 17.32 and 17.37 carry phase information about
the underlying H, which is not the case with spectra of stationary processes (P¼ 1). Interestingly,
Equations 17.35 can be used also to model spread spectrum and direct sequence code-division multiple
access data if h(n) includes also the code [63,64]. Relying on �Sxx in Equation 17.37, it is possible to
identify h(n) based only on output data—a task traditionally accomplished using higher than second-
order statistics (see, e.g., [52]). By avoiding k¼ 0 in Equation 17.36 or 17.37, the resulting cyclic statistics
offer a high SNR domain for blind processing in the presence of stationary additive noise of arbitrary
color and distribution (cf. Property 17.4).

Oversampling by P> 1 also allows for estimating the synchronization parameters vl and e in Equation
17.31 [33,54]. Finally, fractional sampling induces CS in 2D, linear system outputs [28], as well as in
outputs of Volterra-type nonlinear systems [30]. In all these cases, relying on Representation 17.1 we can
view the CS output x(n) as a P3 1 vector output of a multichannel system. Let us focus on 1D linear
channels and evaluate Equation 17.35 at nPþ i to obtain the multivariate model

x(nP þ i):¼ xi(n) ¼
X
l

w (l)hi(n� l)þ vi(n), i ¼ 0, 1, . . . ,P � 1, (17:38)

where hi(n):¼ h(nPþ i) denotes the polyphase decomposition (decimated components) of the channel
h(n). Figure 17.9 shows how the single-input single-output multirate model of Figure 17.8 can be thought
of as a single-input P-output multichannel system. The converse interpretation is equally interesting
because it illustrates another CS-inducing operation.

Suppose P sensors (e.g., antennas or cameras) are deployed to receive data from a singe source w(n)
propagating through P channels {hi(n)}

P�1
i¼0 . Using Equation 17.16, we can combine the corresponding

sensor data {xi(n)}
P�1
i¼0 given by Equation 17.38, in order to create a single channel CS process x(n),

identical to the one in Equation 17.35. There is a common feature between fractional sampling and
multisensor (i.e., spatial) sampling: they both introduce strict CS with known period P.

Strict CS is also induced by multirate operators such as upsamplers in synthesis filterbanks, one branch
of which corresponds to the multirate diagram of Figure 17.8b. We infer that outputs of synthesis filter
banks are, in general, CS processes (see also [57]). Analysis filter banks, on the other hand, produce CS
outputs when their inputs are also CS, but not if their inputs are stationary. Indeed, downsampling does
not affect stationarity, and in contrast to upsamplers, downsamplers do not induce CS. Downsamplers
can remove CS (as verified by Figure 17.3) and from this point of view, analysis banks can undo CS
effects induced by synthesis banks.

w(n)

h0(n)

hP–1(n) xP–1(n)

vP–1(n)

... ... ...

v0(n)

x0(n)

FIGURE 17.9 Multichannel stationary equivalent model of a scalar CS process.
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17.4.4 Periodically Varying Systems

Thus far we have dealt with CS signals passing through TI systems. Here we will focus on (almost)
periodically time-varying (APTV) systems and input–output relationships such as x(n)¼Slh(n; l)w(n� l).
Because h(n; l) is APTV, followingDefinition 17.2 it accepts a (generalized) Fourier series expansion h(n; l)¼
SbH(b; l)exp(jbn). Coefficients H(b; l) are TI, and together with their Fourier transform are given by

H(b; l): ¼ FS[h(n; l)] ¼ lim
N!1

1
N

XN�1

n¼0

h(n; l)e�jbn,

H(b;v): ¼ FT[H(b; l)] ¼
X
l

H(b; l)e�jvl:

(17:39)

In practice, h(n; l) has finite bandwidth and the set of system cycles is finite; i.e., b 2 {b1, . . . ,bQ}. Such a
finite parametrization could appear, e.g., with FIR multipath channels entailing path variations due to
Doppler effects present with mobile communicators [62]. Note that when the cycles b are available,
knowledge of h(n; l) is equivalent to knowing H(b; l) or H(b;v) in Equation 17.39.

The output correlation of an LTI system is given by

�cxx(n; t) ¼
X
l1,l2

h(n; l1) h*(nþ t; l2)�cww(n� l1; tþ l1 � l2): (17:40)

Equation 17.40 shows that if w(n) is ACS, then x(n) is also ACS, regardless of whether h is APTV or TI.
More important, if h is APTV, then x(n) is ACS even when w(n) is stationary; i.e., APTV systems are
CS inducing operators. Similar observations apply to the input–output cross-correlation �cxw(n; t):¼
E{x(n)w*(nþ t)}, which is given by

�cxw(n; t) ¼
X
l

h(n; l)�cxw(n� l; l þ t): (17:41)

If the n-dependence is dropped from Equations 17.40 and 17.41, one recovers the well-known auto- and
cross-correlation expressions of stationary processes passing through LTI systems. Relying on definitions
of Equations 17.2, 17.11, and 17.37, the auto- and cross-cyclic correlations and cyclic spectra can be
found as

�Cxx(a; t)� 3mm ¼ �3mm
X
l1,l2

X
b1,b2

H(b1; l1)H*(b2; l2)e
�j(a�b1þb2)l1 e�jb2t

� �Cww(a� b1 þ b2; tþ l1 � l2), (17:42)

�Cxw(a; t) ¼
X
b

X
l

H(b; l)e�j(a�b)l�Cww(a� b; l þ t), (17:43)

�Sxx(a;v) ¼
X
b1,b2

H(b1;aþ b2 � b1 � v)H*(b2;� v)�Sww(a� b1 þ b2;v), (17:44)

�Sxw(a;v) ¼
X
b

H(b;a� b� v) �Sww(a� b;v): (17:45)

Simpler expressions are obtained as special cases of Equations 17.42 through 17.45 when w(n) is
stationary; e.g., cyclic auto- and cross-spectra reduce to

�Sxx(a;v) ¼ �Sww(v)
X
b

H(b;� v)H*(a� b;� v),

�Sxw(a;v) ¼ �Sww(v) H(a;� v):
(17:46)
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If w(n) is i.i.d. with variance s2
w, then H(a;v) can be easily found from Equation 17.46 as �Sxw(a;�v)=s2

w.
APTV systems and the four domains of characterizing them, namely h(n; l),H(b; l), H(b;v), andH(n;v),
offer diversity similar to that exhibited by ACS statistics. Furthermore, with finite cycles {bq}

Q
q¼1, the input–

output relation can be rewritten as

x(n) ¼
XQ
q¼1

xq(n) ¼
XQ
q¼1

X
l

H(bq; l)w(n� l)

" #
ejbqn: (17:47)

Figure 17.10 depicts Equation 17.47 and illustrates that periodically varying systems can be modeled as a
superposition of TI systems weighted by the bases. If separation of the {xq(n)}

Q
q¼1 components is possible,

identification and equalization of APTV channels can be accomplished using approaches for multichan-
nel TI systems. In [44], separation is achieved based on fractional sampling or multiple antennas.

17.5 Application Areas

CS signals appear in various applications, but here we will deal with problems where CS is exploited for
signal extraction, modeling, and system identification. The tools common to all applications are cyclic
(cross-)correlations, cyclic (cross-)spectra, or multivariate stationary correlations and spectra which
result from the multichannel equivalent stationary processes (recall Representations 17.1 and 17.2, and
Section 17.4.3). Because these tools are TI, the resulting approaches follow the lines of similar methods
developed for applications involving stationary signals.

As a general rule for problems entailing CS signals, one can either map the scalar CS signal model to a
multichannel stationary process, or work in the TI domain of cyclic statistics and follow techniques
similar to those developed for stationary signals and TI systems. CS signal analysis exploits two extra
features not available with scalar stationary signal processing, namely (1) ability to separate signals on the
basis of their cycles and (2) diversity offered by means of cycles. Of course, the cycles must be known or
estimated as we discussed in Section 17.3.

Suppose x(n)¼ s(n)þ v(n), where s(n) and v(n) are generally CS, and let a be a cycle which is not in
Ac
ss(t) \ Ac

vv(t). It then follows for their cyclic correlations and spectra that

Cxx(a; t) ¼
Css(a; t) if a 2 Ac

ss(t)

Cvv(a; t) if a 2 Ac
vv(t)

(
,

Sxx(a;v) ¼
Sss(a;v) if a 2 As

ss(v)

Svv(a;v) if a 2 As
vv(v)

(
:

(17:48)

ejβ1n

ejβQn

x1(n)

xQ(n)

x(n)

H (β1; l)

H (βQ; l)

w(n) ... ... ...
FIGURE 17.10 Multichannel model of a periodically varying system.
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In words, Equation 17.48 says that signals s(n) and v(n) can be separated in the cyclic correlation or the
cyclic spectral domains provided that they possess at least one non-common cycle. This important
property applies to more than two components and is not available with stationary signals because they
all have only one cycle, namely a¼ 0, which they share.

More significantly, if s(n) models a CS information bearing signal and v(n) denotes stationary noise,
then working in cyclic domains allows for theoretical elimination of the noise, provided that the a¼ 0
cycle is avoided (see also Property 17.4); i.e.,

Cxx(a; t) ¼ Css(a; t) and Sxx(a;v) ¼ Sss(a;v), for a 6¼ 0: (17:49)

In practice, noise affects the estimators’ variance so that Equations 17.48 and 17.49 hold approximately
for sufficiently long data records. Notwithstanding, Equations 17.48 and 17.49, and SNR improvement in
cyclic domains hold true irrespective of the color and distribution of the CS signals or the stationary noise
involved.

Example 17.4: Separation Based on Cycles

Consider the mixture of two modulated signals in noise: x(n)¼ s1(n)exp[ j(v1nþw1)]þ s2(n)exp[ j(v2nþ
w2)]þ v(n), where s1(n), s2(n), and v(n) are Gaussian zero-mean stationary and mutually uncorrelated. Let
s1(n) be MA (3) with parameters [1, 0.2, 0.3, 0.5] and variance s2

1 ¼ 1:38, s2(n) be AR (1) with parameters
[1,� 0.5] and variance s2

2 ¼ 2, and noise v(n) be MA(1) (i.e., colored) with parameters [1, 0.5] and variance
s2
v ¼ 1:25. Frequencies and phases are (v1,w1)¼ (�0.5, 0.6), (v2,w2)¼ (1, 1.8), and N¼ 2048 samples are

used to compute the correlogram estimates Ŝs1s1 (v), Ŝs2s2 (v), and Ŝvv(v) shown in Figure17.11a through c;
Ĉxx(a; 0) is plotted in Figure 17.11d and Ŝxx(a;v) is depicted in Figure 17.12. The cyclic correlation and cyclic
spectrum of x(n) are, respectively

Cxx (a; t) ¼ cs1s1 (t)e
j(v1tþw1)d(a� 2v1)

þ cs2s2 (t)e
j(v2tþw2)d(a� 2v2)þ cvv (t)d(a), (17:50)
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Sxx (a;v) ¼ Ss1s1 (v� v1)e
j2w1d(a� 2v1)

þ Ss2s2 (v� v2)e
j2w2d(a� 2v2)þ Svv (v)d(a): (17:51)

As predicted by Equation 17.50, jCxx (a; 0)j ¼ s2
s1d(a� 2v1)þ s2

s2d(a� 2v2)þ s2
vd(a), which explains

the two peaks emerging in Figure 17.11d at twice the modulating frequencies (2v1, 2v2)¼ (�1, 2). The
third peak at a¼ 0 is due to the stationary noise which can be thought of as being ‘‘modulated’’ by
exp( jv3n) with v3¼ 0. Clearly, 2v̂1 , 2v̂2 , ŝ

2
s1 , ŝ

2
s2 , and ŝ2

v can be found from Figure 17.11d, while the
phases at the peaks of Ĉxx(a; 0) will yield ŵi ¼ s�2

si arg[Ĉxx (2v̂i ; 0)]=2, i¼ 1, 2. In addition, the correlations of
si(n) can be retrieved as ĉsi si (t) ¼ exp [�j(v̂itþ 2ŵi)]Ĉxx (2v̂i ; t), i ¼ 1, 2.

Separation based on cycles is illustrated in Figure 17.12, where three distinct slices emerge along the
a-axis, each positioned at {ai ¼ 2vi}3i¼1, representing the profiles of Ŝs1s1 (v), Ŝs2s2 (v), and Ŝvv(v) shown
also in Figure 17.11a through c.

In the ensuing example, we will demonstrate how the diversity offered by fractional sampling or by
multiple sensors can be exploited for identification of FIR systems when the input is not available. Such a
blind scenario appears when estimation and equalization of, e.g., communication channels is to be
accomplished without training inputs. Bandwidth efficiency and ability to cope with changing multipath
environments provide the motivating reasons for blind processing, while fractional sampling or multiple
antennas justify the use of cyclic statistics as discussed in Section 17.4.3.

Example 17.5: Diversity for Channel Estimation

Suppose we sample the output of the receiver’s filter every T0=2 seconds, to obtain x(n) samples obeying
Equation 17.35 with P¼ 2 (see also Figure 17.8). In the absence of noise, the spectrum of x(n) will be
XN(v)¼H(v)WN(2v). We wish to obtain H(v) based only on XN(v) (blind scenario). Note that WN(2v)¼
WN[2(v� 2pk=2)] for any integer k. Considering k¼ 1, we can eliminate the input spectrumWN(2v) from
XN(v) and XN(v�p), and arrive at [25]

H(v)XN(v� p) ¼ H(v� p)XN(v): (17:52)

With H(v) being FIR, the cross-relation (Equation 17.52) has turned the output-only identification
problem into an input–output problem. The input is XN(v�p)¼ FT[(�1)nx(n)], the output is XN(v),
and the pole-zero system is H(v)=H(v�p). If the Z-transform H(z) has no zeros on a circle, separated by
p, there is no pole-zero cancellation and H(v) can be identified uniquely [61], using standard realization
(e.g., Padé) methods [42].
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FIGURE 17.12 Cyclic spectrum of x(n) in Example 17.4.
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Alternatively, with P¼ 2, we can map Equation 17.52 to its one-input two-output TI equivalent model
obeying Equation 17.38 with P¼ 2. In the absence of noise, the output spectra are Xi(v)¼Hi(v)W(v),
i¼ 0, 1, from which W(v) can be eliminated to arrive at a similar cross-relation [69]:

H0(v)X1(v) ¼ H1(v)X0(v): (17:53)

When oversampling by P¼ 2, x0(n)[h0(n)] correspond to the even samples of x(n)[h(n)], whereas x1[n]
[h1(n)] to the odd ones. Once again, H0(v) and H1(v) can be uniquely recovered using input–output
realization methods, provided that they have no common zeros so that cancellations do not occur in
Equation 17.53. The desired channel h(n) can be recovered by interleaving h0(n) with h1(n).

As explained in Section 17.4.3, oversampling is not the only means of diversity. Even with symbol rate
sampling, if multiple (here two) antennas receive a common source through different channels, then
Xi(v)¼Hi(v) W(v), i¼ 0, 1, and thus Equation 17.53 is still applicable.

Interestingly, both Equations 17.52 and 17.53 neither restrict the input to be white (or even random)
nor do they assume the channel to be minimum phase as univariate stationary spectral factorization
approaches require for blind estimation [52]. The diversity (or overdeterminacy) offered by Equation
17.35 or 17.38 guarantees identifiability provided that no cancellations occur in Equation 17.52 or 17.53
and W(v) is nonzero for as many frequencies as the number of channel taps to be estimated [69].
Subspace and least-squares methods are also possible for blind channel estimation and useful when
noise is present [25,47,60,69].

In the sequel, we will show how cycle-based separation and diversity can be exploited in selected
applications.

17.5.1 CS Signal Extraction

In our first application, a mixture of CS sources with distinct cycles will be recovered using samples
collected by an array of sensors.

Application 17.1: Array Processing

Suppose Ns CS source signals {sl(n)}
Ns
l¼1 are received by Nx sensors {xm(n)}

Nx
m¼1 in the presence of undesired

sources of interference {im(n)}
Nx
m¼1 and stationary noise {vm(n)}

Nx
m¼1. The mth sensor samples are

xm(n) ¼
PNs

l¼1 rlsl(n� Dlm)þ im(n)þ vm(n), where rl denotes complex gain and Dlm the delay experi-
enced by the l th source arriving at them th sensor relative to the first sensor which is taken as the reference.
For uniformly spaced linear arrays Dlm¼ (m� 1)d sin ul=n, where d stands for the sensor spacing, n is the
propagation velocity, and ul denotes the angle of arrival of the lth source. Assuming that the sl(n) s have a
nonzero cycle a not shared by the undesired interferences, we wish to estimate u:¼ [u1 � � � uNs ] and
subsequently use it to design beamformers that null out the interferences and suppress noise.

For mutually uncorrelated {sl(n), im(n), vm(n)}, the time-delay property in Section 17.4.2 yields [68]

�Cxmxm (a; t) ¼
XNs

l¼1

�Cslsl (a; t)e
�jaDlm þ �Cimim(a; t)þ �Cww(t)d(a): (17:54)

Choosing a nonzero a not in the interference set of cycles Ac
imim (t) and collecting {�Cxmxm }

Nx
m¼1 in an Nx3 1

vector, we arrive at �cxm(a; t)¼A(a; u)css(a; t), where the Nx3Ns matrix A(u) is the so-called array
manifold containing the propagation parameters. In [68], Nt lags are used to form the Nx3Nt cyclic
correlation matrix
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�Cxx(a):¼ [�cxx(a; t1) � � ��cxx(a; tNt
)]0 ¼ A(a; u)�Css(a),

�Css(a):¼ [�css(a; t1) � � ��css(a; tNt
)]0:

(17:55)

Standard subspace methods can be employed to recover u from Equation 17.55. It is worth noting that
cycle-based separation of desired from undesired signals and noise is possible for both narrowband and
broadband sources [68] (see also [16] for the narrowband case).

With the propagation parameters available, spatiotemporal filtering based on �Cxx(al; t) is capable of
isolating the source sl(n) if al 2 Ac

slsl
(t) and al =2Ac�

sksk
for k 6¼ l. Thus, in addition to interference and noise

suppression, cyclic beamformers increase resolution by exploiting known separating cycles. In fact, even
sources arriving from the same direction can be separated provided that not all of their cycles are
common (see [1,6,16,58] for detailed algorithms).

In our next application, the desired CS d(n) we wish to extract from noisy data x(n) is known, or at
least its (cross-) correlation with x(n) is available.

Application 17.2: Cyclic Wiener Filtering

In a number of real life problems, CS data x(n) carry information about a desired CS signal d(n) which
may not be available, but the cross-correlation �cdx(n; t) is known or can be estimated otherwise. With
reference to Figure 17.13, we seek a linear (generally time-varying) filter f(n; k) whose output,
d̂(n) ¼ P

k f (n; k) x(n� k), will come close to the desired d(n) in terms of minimizing s2
e (n) ¼

E{ e(n)j j2}:¼ E{jd(n)� d̂(n)j2}. Because both x(n) and d(n) are CS with period P, for d̂(n) to also be
CS, filter f(n;k) must be periodically varying with period P; i.e., f(n; k) is equivalent to P TI filters
{f (n; k)}P�1

n¼0 and accepts a Fourier series expansion with coefficients F(a;k) defined as in Equation
17.39. Note that e(n) is also CS and E{je(n)j2} should be minimized for n¼ 0, 1, . . . , P� 1.

Solving the minimization problem for each n, we arrive at time-varying normal equations

X
k

f (n; k)�cxx(n� k; k� t) ¼ �cdx(n;� t) , n ¼ 0, 1, . . . ,P � 1, (17:56)

where �cxx can be estimated consistently from the data as discussed in Section 17.3, and similarly for �cdx if
d(n) is available. Note that with sample estimates, Equation 17.56 could have been reached as a result
of minimizing the least-squares error (cf. Equation 17.24): ŝ2

e (n) ¼ [P=N]
P[N=P]�1

i¼0 e(iP þ n)j j2.
For each n 2 [0, P� 1], FIR filters of order Kn can be obtained by concatenating equations such as
Equation 17.56 for more than Kn lags t. As with TI Wiener filters, noncausal and IIR designs are possible
for each n in the frequency-domain, F(n;v), using nonparametric estimates of the time-varying (cross-)
spectra. Depending on d(n), APTV (FIR or IIR) filters can thus be constructed for filtering, prediction,
and interpolation or smoothing of CS processes.

CS f(n; τ)
d̂(n)

d(n)
CS

–

+ + e(n)
x(n)

FIGURE 17.13 Cyclic Wiener filtering.
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In Section 17.4.4, we viewed the periodically varying scalar f(n; k) as a TI multichannel filter. Consider
the polyphase stationary components di(n), ei(n), and

d̂i(n):¼ d(nP þ i) ¼
X
k

f (nP þ i; k)x(nP þ i� k) ¼
X
k

f (i; k)x(nP þ i� k): (17:57)

Equation 17.57 allows us to cast the scalar processing in Figure 17.13 as the filterbank of Figure 17.14.
Because s2

ei ¼ E e(i)j j2, for i¼ 0, 1, . . . , P� 1, and di(n), d̂i(n), and ei(n) are stationary, solving for the
periodic Wiener filter f(n; k) is equivalent to solving for the P TI Wiener filters f(i; k) in Figure 17.14.
Using the multirate (Noble) identity (e.g., [51, Chapter 12]), one can move the downsamplers before the
Wiener filters which now have transfer functions G(i;v)¼ F(i;v=P). Such an interchange corresponds to
feeding a TI P3 1 vector Wiener filter g(k): ¼ [g(0; k) � � � g(P� 1; k)]0, with input the P3 1 polyphase
component vector x(n):¼ [x(nP)x(nPþ 1) . . . x(nPþP� 1)]0.

An alternative multichannel interpretation is obtained based on the Fourier series expansion
f (n; k) ¼ P

aF(a; k) exp (jan). The resulting Wiener processing allows also for APTV filters, which is
particularly useful when d(n), x(n), and thus d̂(n), e(n) are ACS processes. Substituting the expansion in
the filter output and multiplying by exp(iak)exp(�iak)¼ 1, we find [22]

d̂(n) ¼
X
a

X
k

F(a; k)e jak
� �

x(n� k)e ja(n�k)
� � ¼ X

a

X
k

~F(a; k)~x(n� k)

" #
, (17:58)

x(n)

x(n + P – 1)
f (P – 1; n)

f (0 ; n) P
d0(n) –

+
e0(n)

eP–1(n)

–
+

dP–1(n)

d̂P–1(n)

d̂0(n)
d̂(n)

...............

z–1

z–1

P

PP

z

z

FIGURE 17.14 Multichannel-multirate equivalent of cyclic Wiener filtering.
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FIGURE 17.15 Multichannel-modulation equivalent of cyclic Wiener filtering.
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where ~F(~x) are the modulated versions of F(x) shown in the square brackets. For CS processes with
period P, the sum over a in Equation 17.58 has finite terms {ai ¼ 2pi=P}P�1

i¼0 and shows that scalar cyclic
Wiener filtering is equivalent to a superposition of P TI Wiener filters with inputs ~xi(n) formed by
modulating x(n) with the Fourier bases {exp j(ain)}

P�1
i¼1 (see also Figure 17.15).

17.5.2 Identification and Modeling

The need to identify TI and APTV systems (or their inverses for equalization) appears in many
applications where input–output or output-only CS data are available. Our first problem in this class
deals with identifying pure delay TI systems, h(n)¼ d(n�D), given CS input–output signals observed in
correlated noise.

Application 17.3: Time-Delay Estimation

We wish to estimate the relative delay D of a CS signal s(n) given data from a pair of sensors

x(n) ¼ s(n)þ vx(n) and y(n) ¼ s(n� D)þ vy(n): (17:59)

Signal s(n) is assumed uncorrelated with vx(n) and vy(n), but the noises at both sensors are allowed to be
colored and correlated with unknown (cross-)spectral characteristics. The time-varying cross-correlation
yields the delay (see also [7] and [70] for additional methods relying on cyclic spectra). In addition to
suppressing stationary correlated noise, cyclic statistics can also cope with interferences present at both
sensors as we show in the following example.

Example 17.6: Time-Delay Estimation

Consider x(n)¼w(n) exp{ j[�0.5(n)þ 0.6]}þ i(n)exp[ j(nþ 1.8)]þ vx(n), and y(n)¼w(n�D) exp{ j[�0.5(n�D)
þ 0.6]}þ i(n�D) exp[ j(n�Dþ 1.8)]þ vy(n), with D¼ 20, vx(n) white, vy(n)¼ vx * h(n), h(0)¼ h(10)¼ 0.8
and h(n)¼ 0 for n 6¼ 0,10.

The magnitude of Ĉxy(a; t) is computed as in Equation 17.21 with N¼ 2048 samples and is depicted
in Figure 17.16 (3D and contour plots). It peaks at the correct delay D¼ 20 at cycles a¼ 2(�0.5)¼�1
(due to the signal) and a¼ 2(þ1)¼ 2 (due to the interference). The additional peak at delay 10 occurs
at cycle a¼ 0 and reveals the memory introduced in the correlation of vy(n) due to h(n).

Relying on Equation 17.46, input–output cyclic statistics allow for identification of TI systems, but in
certain applications estimation of h(n) or its inverse (call it g(n)) is sought based on output data only. In
Application 17.2, we outlined two approaches capable of estimating FIR channels blindly in the absence
of noise, even when the input w(n) is not white. If w(n) is white, it follows easily from Equation 17.36 that
�Cxx for two cycles k1, k2 satisfies [25]

XL

l¼0

�Cxx
2p
P
k1; tþ l

� �
� e j2pP (k2�k1)l�Cxx

2p
P
k2; tþ l

� �� �
h(l) ¼ 0, k1 6¼ k2 6¼ 0: (17:60)

The matrix equation that results from Equation 17.60 for different t’s can be solved to obtain {h(l)}Ll¼0
within a scale (assuming that the matrix involved is full rank), even when stationary colored noise is
present. To fix the scale, we either set h(0)¼ 1, or

PL
l¼0 h(l)j j2¼ 1. Having estimated h(l), one could find

the cross-correlation �cxw(n; t) via Equation 17.35 and use it in Equation 17.56 to obtain FIR minimum
mean-square error (MMSE; i.e., Wiener) equalizers for recovering the desired input d(n)¼w(n). However,
as we will see next, it is possible to construct blind equalizers directly from the data bypassing the
channel estimation step.
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Application 17.4: Blind Channel Equalization

Our setup is described in Figure 17.8 and the available data satisfy Equation 17.35 with h(n) causal of
order L. With reference to Figure 17.17, we seek a K th order equalizer, {g(d)(n)}Kn¼0, parameterized by the
delay d, such that E{jw(n� d)� ŵ(n)j2} is minimized. Expressing ŵ(n) as ŵ(n) ¼ P

k g
(d)(k)x(nP � k),

and using the whiteness of w(n) and the independence between w(n) and v(n), we arrive at

XK
k¼0

g(d)(k)�cxx(�k; k�m) ¼ s2
w h*(dP �m)

¼ 0, for d ¼ 0, m > 0: (17:61)

Equation 17.61 can be solved for the equalizer coefficients in batch or adaptive forms using recursive
least-squares or the computationally simpler LMS algorithm suitably modified to compute the cyclic
correlation statistics [29]. It turns out that using {g(0)(k)}Kk¼0 one can find {g(d)(k)}Kk¼0 for d 2[1, LþK],
which is important because, in practice, nonzero delay equalizers often achieve lower MSE [29].

Another interesting feature of the overall system in Figure 17.17 is that in the absence of noise (v(n)� 0),
the FIR equalizer {g(d)(n)}Kk¼0 can equalize the FIR channel h(n) perfectly in the zero-forcing (ZF) sense:PK

k¼0 g
(d)(k)h(nP � k) ¼ d(n� d), provided that: (1) the channel H(z) has no equispaced zeros on a

circle with each zero separated from the next by 2p=P and (2) the equalizer has order satisfying K	 L=
(P� 1)� 1. Such a ZF equalizer can be found from the solution of Equation 17.61 provided that conditions
(1) and (2) are satisfied. The equalizer obtained is unique when (2) is satisfied as equality, or when the
minimum norm solution is adopted [29]. Recall that with symbol rate sampling (P¼ 1), FIR-ZF equalizers
are impossible because the inverse of an FIR H(z) is always the IIR G(z):¼ 1=H(z). Further with P¼ 1,
FIR-MMSE (i.e., Wiener) equalizers cannot be ZF. In [29], it is also shown that under conditions (1) and
(2), it is possible to have FIR hybrid MMSE-ZF equalizers.
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FIGURE 17.16 Cyclic cross-correlation for time-delay estimation.
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FIGURE 17.17 Cyclic (or multirate) channel-equalizer model.
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The FIR channel–FIR equalizer feature can be seen also from the multichannel viewpoint
which applies after the CS data x(n) are mapped to the stationary components {xi(n)}

P�1
i¼0 , or

when P sensors collect symbol rate samples as in Equation 17.38. With reference to Figure 17.18, the
channel-equalizer transfer functions satisfy, in the absence of noise, the so-called Bezout’s identity:PP�1

i¼0 Hi(z)G
(d)
i (z) ¼ z�d , which is analogous to the condition encountered with perfect reconstruction

filterbanks. Given the Lth-order FIR analysis bank (Hi), existence and uniqueness of the Kth-order FIR
synthesis filters (Gi) is guaranteed when (1) {Hi(z)}

P�1
i¼0 have no common zeros and (2) K	 L=(P� 1)� 1.

Next, we illustrate how the blind MMSE equalizer of Equation 17.61 can be used to mitigate inter-symbol
interference (ISI) introduced by a two-ray multipath channel.

Example 17.7: Direct Blind Equalization

We generated 16-QAM symbols and passed them through a seventh-order FIR channel obtained by
sampling at a rate T0=2 the continuous-time channel hc(t)¼ exp(�j2p0.15)rc(t� 0.25T0, 0.35)þ 0.8 exp
(�j2p0.6)rc(t� T0, 0.35), where rc(t, 0.35) denotes the raised cosine pulse with roll-off factor 0.35
[53, p. 546]. We estimated the time-varying correlations as in Equation 17.24 and solved Equation
17.61 for the equalizer of order K¼ 6 and d¼ 0. At SNR¼ 25 dB, Figure 17.19 shows the received and
equalized constellations illustrating the ability of the blind equalizer to remove ISI.

In our final application, we will be concerned with parameter estimation of APTV systems.
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FIGURE 17.18 Multivariate channel-equalizer model.
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Application 5: Parametric APTV Modeling

Seasonal (e.g., atmospheric) time series are often modeled as the CS output of a linear APTV system
h(n; l) with i.i.d. input w(n). Suppose that x(n) obeys an autoregressive [AR(pn)] model with coefficients
a(n; l) which are periodic in n with period Pl. The time series x(n) and its correlation cxx(n; t) obey the
following periodically varying AR recursions:

x(n)þ
Xpn
l¼1

a(n; l)x(n� l) ¼ w(n),

cxx(n; t)þ
Xpn
l¼1

a(n; l)cxx(n� l; l � t) ¼ s2
w(n)d(t):

(17:62)

The ‘‘periodic normal equations’’ in Equation 17.62 can be solved for each n to estimate the a(n; l)
parameters. Relying on Representation 17.1, [49] showed how PTV-AR modeling algorithms can be used
to estimate multivariate AR coefficient matrices. Usage of single channel cyclic (instead of multivariate)
statistics for parametric modeling of multichannel stationary time series was motivated on the basis of
potential computational savings; see [49] for details and also [55] for cyclic lattice structures. Maximum
likelihood estimation of periodic ARMA (PARMA) models is reported in [66]. PARMA modeling is
important for seasonal time series encountered in meteorology, climatology [41], and stratospheric ozone
data analysis [4]. Linear methods for estimating periodic MA coefficients along with important TV-MA
parameter identifiability issues can be found in [13] using higher than second-order cyclic statistics.

When both input and output CS data are available, it is possible to identify linear PTV systems h(n; l),
even in the presence of correlated stationary input and output noise. Taking advantage of nonzero cycles
present in the input and=or the system, one employs auto- and cross-cyclic spectra to identify H(b;v),
the cyclic spectrum of h(n; l), relying on Equation 17.45 or 17.46, when w(n) is stationary.

If the underlying system is TI (e.g., a frequency selective communications channel or a dispersive delay
medium), a closed-form solution is possible in the frequency domain. With b¼ 0, Equation 17.45 yields
H(v)¼�Sxw(a;v)=�Sww(a;v), where a 2 Ac

ww (see also [17]). For Lth-order FIR system identification a
parametric approach in the lag-domain may be preferred because it avoids the trade-offs involved in
choosing windows for nonparametric cyclic spectral estimates. One simply solves the following system of
linear equations formed by cyclic (cross-) correlations [26]

XL
l¼0

h(l)�Cww(a; t� l) ¼ �Cxw(a; t) (17:63)

using batch or adaptive algorithms. If desired, pole-zero models can then be fit in the estimated ĥ(n)
using Padé or Hankel methods. Estimation of TI systems with correlated input–output disturbances is
important not only for open-loop identification but also when feedback is present. Therefore, cyclic
approaches are also of interest for identification of closed-loop systems [26].

17.6 Concluding Remarks

CS processes constitute the most common class of nonstationary signals encountered in engineering and
time series applications. CS appears in signals and systems exhibiting repetitive variations and allows for
separation of components on the basis of their cycles. The diversity offered by such a structured variation
can be exploited for suppression of stationary noise with unknown spectral characteristics and for blind
parameter estimation using a single data record. Variance of finite sample estimates is affected by noise
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and increases when the cycles are unknown and have to be estimated prior to applying cyclic signal
processing algorithms.

Although our discussion focused on linear systems and second-order statistical descriptors, CS appears
also with nonlinear systems and certain signals exhibit periodicity in their higher than second-order
statistics. The latter are especially useful because in both cases the underlying processes are non-Gaussian
and second-order analysis cannot characterize them completely. CS in nonlinear time series of the
Volterra-type is exploited in [21,30,46], whereas sample estimation issues and motivating applications
of higher order CS can be found in [11,12,23,59] and references therein.

Topics of current interest and future trends include algorithms for nonlinear signal processing,
theoretical performance evaluation, and analysis of CS point processes. As far as applications, exploit-
ation of CS is expected to further improve algorithms in manufacturing problems involving vibrating
and rotating components, and will continue to contribute in the design of single- and multiuser
digital communication systems especially in the presence of fading and time-varying multipath
environments.
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A FILTER IS, IN ITS MOST BASIC SENSE, a device that enhances and=or rejects certain
components of a signal. To adapt is to change one’s characteristics according to some know-
ledge about one’s environment. Taken together, these two terms suggest the goal of an adaptive

filter: to alter its selectivity based on the specific characteristics of the signals that are being processed.
In digital signal processing, the term ‘‘adaptive filters’’ refers to a particular set of computational

structures and methods for processing digital signals. While many of the most popular techniques used in
adaptive filters have been developed and refined within the past forty years, the field of adaptive filters is
part of the larger field of optimization theory that has a history dating back to the scientific work of both
Galileo and Gauss in the eighteenth and nineteenth centuries. Modern developments in adaptive filters
began in the 1930s and 1940s with the efforts of Kolmogorov, Wiener, and Levinson to formulate and
solve linear estimation tasks. For those who desire an overview of many of the structures, algorithms,
analyses, and applications of adaptive filters, the seven chapters in this section provide an excellent
introduction to several prominent topics in the field.

Chapter 18 presents an overview of adaptive filters, describing many of the applications for which these
systems are used today. This chapter considers basic adaptive filtering concepts while providing an intro-
duction to the popular least-mean-square (LMS) adaptive filter that is often used in these applications.

Chapters 19 and 20 focus on the design of the LMS adaptive filter from two different viewpoints. In the
former chapter, the behavior of the LMS adaptive filter is analyzed within a statistical framework that has
proven to be quite useful for establishing initial choices of the parameter values of this system. The latter
chapter studies the behavior of the LMS adaptive filter from a deterministic viewpoint, showing why this
system behaves robustly even when modeling errors and finite-precision calculation errors continually
perturb the state of this adaptive filter.

Chapter 21 presents the techniques used in another popular class of adaptive systems collectively
known as recursive least-squares adaptive filters. Focusing on the numerical methods that are typically
employed in the implementations of these systems, the chapter provides a detailed summary of both
conventional and ‘‘fast’’ computational methods for these high-performance systems.

Transform domain adaptive filtering is discussed in Chapter 22. Using the frequency-domain and fast
convolution techniques described in this chapter, it is possible both to reduce the computational
complexity and to increase the performance of LMS adaptive filters when implemented in block form.

The first five chapters of this section focus almost exclusively on adaptive structures of a finite-impulse
response form. In Chapter 23, the subtle performance issues surrounding methods for adaptive infinite-
impulse-response (IIR) filters are carefully described. The most recent technical results concerning the
convergence behavior and stability of each major adaptive IIR algorithm class is provided in an easy-
to-follow format.

Finally, Chapter 24 presents an important emerging application area for adaptive filters: blind
equalization. This section indicates how an adaptive filter can be adjusted to produce a desirable
input=output characteristic without having an example desired output signal on which to be trained.

While adaptive filters have had a long history, new adaptive filter structures and algorithms are
continually being developed. In fact, the range of adaptive filtering algorithms and applications is so
great that no one paper, chapter, section, or even book can fully cover the field. Those who desire more
information on the topics presented in this section should consult works within the extensive reference
lists that appear at the end of each chapter.
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18.1 What Is an Adaptive Filter?

An adaptive filter is a computational device that attempts to model the relationship between two signals in
real time in an iterative manner. Adaptive filters are often realized either as a set of program instructions
running on an arithmetical processing device such as a microprocessor or DSP chip, or as a set of logic
operations implemented in a field-programmable gate array or in a semi-custom or custom VLSI integrated
circuit. However, ignoring any errors introduced by numerical precision effects in these implementations, the
fundamental operation of an adaptive filter can be characterized independently of the specific physical
realization that it takes. For this reason, we shall focus on the mathematical forms of adaptive filters as
opposed to their specific realizations in software or hardware. Descriptions of adaptive filters as implemented
on DSP chips and on a dedicated integrated circuit can be found in [1–3] and [4], respectively.

An adaptive filter is defined by four aspects:

1. The signals being processed by the filter
2. The structure that defines how the output signal of the filter is computed from its input signal
3. The parameters within this structure that can be iteratively changed to alter the filter’s input–

output relationship
4. The adaptive algorithm that describes how the parameters are adjusted from one time instant to

the next

By choosing a particular adaptive filter structure, one specifies the number and type of parameters that
can be adjusted. The adaptive algorithm used to update the parameter values of the system can take on a
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myriad of forms and is often derived as a form of optimization procedure that minimizes an error
criterion that is useful for the task at hand.

In this section, we present the general adaptive filtering problem and introduce the mathematical
notation for representing the form and operation of the adaptive filter. We then discuss several
different structures that have been proven to be useful in practical applications. We provide an overview
of the many and varied applications in which adaptive filters have been successfully used. Finally, we
give a simple derivation of the least-mean-square (LMS) algorithm, which is perhaps the most
popular method for adjusting the coefficients of an adaptive filter, and we discuss some of this algorithm’s
properties.

As for the mathematical notation used throughout this section, all quantities are assumed to be
real-valued. Scalar and vector quantities shall be indicated by lowercase (e.g., x) and uppercase-bold
(e.g., X) letters, respectively. We represent scalar and vector sequences or signals as x(n) and X(n),
respectively, where n denotes the discrete time or discrete spatial index, depending on the application.
Matrices and indices of vector and matrix elements shall be understood through the context of
the discussion.

18.2 Adaptive Filtering Problem

Figure 18.1 shows a block diagram in which a sample from a digital input signal x(n) is fed into a device,
called an adaptive filter, that computes a corresponding output signal sample y(n) at time n. For the
moment, the structure of the adaptive filter is not important, except for the fact that it contains adjustable
parameters whose values affect how y(n) is computed. The output signal is compared to a second signal
d(n), called the desired response signal, by subtracting the two samples at time n. This difference signal,
given by

e(n) ¼ d(n)� y(n), (18:1)

is known as the error signal. The error signal is fed into a procedure which alters or adapts the parameters
of the filter from time n to time (nþ 1) in a well-defined manner. This process of adaptation is
represented by the oblique arrow that pierces the adaptive filter block in the figure. As the time index
n is incremented, it is hoped that the output of the adaptive filter becomes a better and better match to
the desired response signal through this adaptation process, such that the magnitude of e(n) decreases
over time. In this context, what is meant by ‘‘better’’ is specified by the form of the adaptive algorithm
used to adjust the parameters of the adaptive filter.

In the adaptive filtering task, adaptation refers to the method by which the parameters of the system
are changed from time index n to time index (nþ 1). The number and types of parameters within this
system depend on the computational structure chosen for the system. We now discuss different filter
structures that have been proven useful for adaptive filtering tasks.

Adaptive
filter

y(n) d(n)x(n)

e(n)

Σ
+

–

FIGURE 18.1 The general adaptive filtering problem.

18-2 Digital Signal Processing Fundamentals



18.3 Filter Structures

In general, any system with a finite number of parameters that affect how y(n) is computed from x(n)
could be used for the adaptive filter in Figure 18.1. Define the parameter or coefficient vector W(n) as

W(n) ¼ [w0(n)w1(n) � � � wL�1(n)]
T, (18:2)

where {wi(n)}, 0 � i � L� 1, are the L parameters of the system at time n. With this definition, we could
define a general input-output relationship for the adaptive filter as

y(n) ¼ f (W(n), y(n� 1), y(n� 2), &, y(n� N), x(n), x(n� 1), &, x(n�M þ 1)), (18:3)

where
f (�) represents any well-defined linear or nonlinear function
M and N are positive integers

Implicit in this definition is the fact that the filter is causal, such that future values of x(n) are not needed
to compute y(n). While noncausal filters can be handled in practice by suitably buffering or storing the
input signal samples, we do not consider this possibility.

Although Equation 18.3 is the most general description of an adaptive filter structure, we are interested
in determining the best linear relationship between the input and desired response signals for many
problems. This relationship typically takes the form of a finite-impulse-response (FIR) or infinite-
impulse-response (IIR) filter. Figure 18.2 shows the structure of a direct-form FIR filter, also known as
a tapped-delay-line or transversal filter, where z�1 denotes the unit delay element and each wi(n) is a
multiplicative gain within the system. In this case, the parameters in W(n) correspond to the impulse
response values of the filter at time n. We can write the output signal y(n) as

y(n) ¼
XL�1

i¼0

wi(n)x(n� i) (18:4)

¼ WT(n)X(n), (18:5)

where
X(n) ¼ [x(n) x(n� 1) � � � x(n� Lþ 1)]T denotes the input signal vector
superscript T denotes vector transpose

Note that this system requires L multiplies and L� 1 adds to implement, and these computations are
easily performed by a processor or circuit so long as L is not too large and the sampling period for the
signals is not too short. It also requires a total of 2L memory locations to store the L input signal samples
and the L coefficient values, respectively.

x(n)

w0(n) w1(n)

Σ Σ Σ

w2(n)

y(n)

wL–1(n)

. . .

. . .

. . .

x(n – 1) x(n – 2) x(n – L + 1)
z–1 z–1z–1

FIGURE 18.2 Structure of an FIR filter.
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The structure of a direct-form IIR filter is shown in Figure 18.3. In this case, the output of the system
can be represented mathematically as

y(n) ¼
XN
i¼1

ai(n)y(n� i)þ
XN
j¼0

bj(n)x(n� j), (18:6)

although the block diagram does not explicitly represent this system in such a fashion.* We could easily
write Equation 18.6 using vector notation as

y(n) ¼ WT(n)U(n), (18:7)

where the (2N þ 1)-dimensional vectors W(n) and U(n) are defined as

W(n) ¼ [a1(n)a2(n) � � � aN (n)b0(n)b1(n) � � � bN(n)]T (18:8)

U(n) ¼ [y(n� 1)y(n� 2) � � � y(n� N)x(n)x(n� 1) � � � x(n� N)]T, (18:9)

respectively. Thus, for purposes of computing the output signal y(n), the IIR structure involves a fixed
number of multiplies, adds, and memory locations not unlike the direct-form FIR structure.

A third structure that has proven useful for adaptive filtering tasks is the lattice filter. A lattice filter is
an FIR structure that employs L� 1 stages of preprocessing to compute a set of auxiliary signals
{bi(n)}, 0 � i � L� 1 known as backward prediction errors. These signals have the special property
that they are uncorrelated, and they represent the elements of X(n) through a linear transformation.
Thus, the backward prediction errors can be used in place of the delayed input signals in a structure
similar to that in Figure 18.2, and the uncorrelated nature of the prediction errors can provide improved

x(n)
b0(n)

b1(n)

z–1

z–1

bN (n)

y(n)

aN (n)

a1(n)

Σ

Σ

Σ

Σ

...

...

...

FIGURE 18.3 Structure of an IIR filter.

* The difference between the direct form II or canonical form structure shown in Figure 18.3 and the direct form I
implementation of this system as described by Equation 18.6 is discussed in [5].
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convergence performance of the adaptive filter coefficients with the proper choice of algorithm. Details of
the lattice structure and its capabilities are discussed in [6].

A critical issue in the choice of an adaptive filter’s structure is its computational complexity. Since
the operation of the adaptive filter typically occurs in real time, all of the calculations for the system
must occur during one sample time. The structures described above are all useful because y(n) can
be computed in a finite amount of time using simple arithmetical operations and finite amounts
of memory.

In addition to the linear structures above, one could consider nonlinear systems for which the
principle of superposition does not hold when the parameter values are fixed. Such systems are useful
when the relationship between d(n) and x(n) is not linear in nature. Two such classes of systems are the
Volterra and bilinear filter classes that compute y(n) based on polynomial representations of the input and
past output signals. Algorithms for adapting the coefficients of these types of filters are discussed in [7].
In addition, many of the nonlinear models developed in the field of neural networks, such as the multilayer
perceptron, fit the general form of Equation 18.3, and many of the algorithms used for adjusting the
parameters of neural networks are related to the algorithms used for FIR and IIR adaptive filters. For a
discussion of neural networks in an engineering context, the reader is referred to [8].

18.4 Task of an Adaptive Filter

When considering the adaptive filter problem as illustrated in Figure 18.1 for the first time, a reader is likely
to ask, ‘‘If we already have the desired response signal, what is the point of trying to match it using an
adaptive filter?’’ In fact, the concept of ‘‘matching’’ y(n) to d(n) with some system obscures the subtlety of
the adaptive filtering task. Consider the following issues that pertain to many adaptive filtering problems:

. In practice, the quantity of interest is not always d(n). Our desire may be to represent in y(n) a
certain component of d(n) that is contained in x(n), or it may be to isolate a component of d(n)
within the error e(n) that is not contained in x(n). Alternatively, we may be solely interested in the
values of the parameters in W(n) and have no concern about x(n), y(n), or d(n) themselves.
Practical examples of each of these scenarios are provided later in this chapter.

. There are situations in which d(n) is not available at all times. In such situations, adaptation typically
occurs only when d(n) is available. When d(n) is unavailable, we typically use our most-recent
parameter estimates to compute y(n) in an attempt to estimate the desired response signal d(n).

. There are real-world situations in which d(n) is never available. In such cases, one can use
additional information about the characteristics of a ‘‘hypothetical’’ d(n), such as its predicted
statistical behavior or amplitude characteristics, to form suitable estimates of d(n) from the signals
available to the adaptive filter. Such methods are collectively called blind adaptation algorithms.
The fact that such schemes even work is a tribute both to the ingenuity of the developers of the
algorithms and to the technological maturity of the adaptive filtering field.

It should also be recognized that the relationship between x(n) and d(n) can vary with time. In such
situations, the adaptive filter attempts to alter its parameter values to follow the changes in this relationship
as ‘‘encoded’’ by the two sequences x(n) and d(n). This behavior is commonly referred to as tracking.

18.5 Applications of Adaptive Filters

Perhaps the most important driving forces behind the developments in adaptive filters throughout their
history have been the wide range of applications in which such systems can be used. We now discuss the
forms of these applications in terms of more-general problem classes that describe the assumed
relationship between d(n) and x(n). Our discussion illustrates the key issues in selecting an adaptive
filter for a particular task. Extensive details concerning the specific issues and problems associated with
each problem genre can be found in the references at the end of this chapter.
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18.5.1 System Identification

Consider Figure 18.4, which shows the general problem of system identification. In this diagram, the
system enclosed by dashed lines is a ‘‘black box,’’ meaning that the quantities inside are not observable
from the outside. Inside this box is (1) an unknown system which represents a general input–output
relationship and (2) the signal h(n), called the observation noise signal because it corrupts the observa-
tions of the signal at the output of the unknown system.

Let d̂(n) represent the output of the unknown system with x(n) as its input. Then, the desired response
signal in this model is

d(n) ¼ d̂(n)þ h(n): (18:10)

Here, the task of the adaptive filter is to accurately represent the signal d̂(n) at its output. If y(n) ¼ d̂(n),
then the adaptive filter has accurately modeled or identified the portion of the unknown system that is
driven by x(n).

Since the model typically chosen for the adaptive filter is a linear filter, the practical goal of the
adaptive filter is to determine the best linear model that describes the input–output relationship of
the unknown system. Such a procedure makes the most sense when the unknown system is also a linear
model of the same structure as the adaptive filter, as it is possible that y(n) ¼ d̂(n) for some set of
adaptive filter parameters. For ease of discussion, let the unknown system and the adaptive filter both be
FIR filters, such that

d(n) ¼ WT
opt(n)X(n)þ h(n), (18:11)

where Wopt(n) is an optimum set of filter coefficients for the unknown system at time n. In this problem
formulation, the ideal adaptation procedure would adjustW(n) such thatW(n) ¼ Wopt(n) as n ! 1. In
practice, the adaptive filter can only adjust W(n) such that y(n) closely approximates d̂(n) over time.

The system identification task is at the heart of numerous adaptive filtering applications. We list
several of these applications here.

18.5.1.1 Channel Identification

In communication systems, useful information is transmitted from one point to another across a medium
such as an electrical wire, an optical fiber, or a wireless radio link. Nonidealities of the transmission
medium or channel distort the fidelity of the transmitted signals, making the deciphering of the received

x(n) e(n)d(n)

y(n)

Σ Σ
Unknown

system

Adaptive
filter

η(n)

d(n)

+

–
+

+

ˆ

FIGURE 18.4 System identification.
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information difficult. In cases where the effects of the distortion can be modeled as a linear filter, the
resulting ‘‘smearing’’ of the transmitted symbols is known as inter-symbol interference (ISI). In such
cases, an adaptive filter can be used to model the effects of the channel ISI for purposes of deciphering the
received information in an optimal manner. In this problem scenario, the transmitter sends to the
receiver a sample sequence x(n) that is known to both the transmitter and receiver. The receiver then
attempts to model the received signal d(n) using an adaptive filter whose input is the known transmitted
sequence x(n). After a suitable period of adaptation, the parameters of the adaptive filter in W(n) are
fixed and then used in a procedure to decode future signals transmitted across the channel.

Channel identification is typically employed when the fidelity of the transmitted channel is severely
compromised or when simpler techniques for sequence detection cannot be used. Techniques for
detecting digital signals in communication systems can be found in [9].

18.5.1.2 Plant Identification

In many control tasks, knowledge of the transfer function of a linear plant is required by the physical
controller so that a suitable control signal can be calculated and applied. In such cases, we can
characterize the transfer function of the plant by exciting it with a known signal x(n) and then attempting
to match the output of the plant d(n) with a linear adaptive filter. After a suitable period of adaptation,
the system has been adequately modeled, and the resulting adaptive filter coefficients inW(n) can be used
in a control scheme to enable the overall closed-loop system to behave in the desired manner.

In certain scenarios, continuous updates of the plant transfer function estimate provided by W(n) are
needed to allow the controller to function properly. A discussion of these adaptive control schemes and
the subtle issues in their use is given in [10,11].

18.5.1.3 Echo Cancellation for Long-Distance Transmission

In voice communication across telephone networks, the existence of junction boxes called hybrids near
either end of the network link hampers the ability of the system to cleanly transmit voice signals. Each
hybrid allows voices that are transmitted via separate lines or channels across a long-distance network to
be carried locally on a single telephone line, thus lowering the wiring costs of the local network. However,
when small impedance mismatches between the long distance lines and the hybrid junctions occur, these
hybrids can reflect the transmitted signals back to their sources, and the long transmission times of the
long-distance network—about 0.3 s for a trans-oceanic call via a satellite link—turn these reflections into
a noticeable echo that makes the understanding of conversation difficult for both callers. The traditional
solution to this problem prior to the advent of the adaptive filtering solution was to introduce significant
loss into the long-distance network so that echoes would decay to an acceptable level before they became
perceptible to the callers. Unfortunately, this solution also reduces the transmission quality of the
telephone link and makes the task of connecting long distance calls more difficult.

An adaptive filter can be used to cancel the echoes caused by the hybrids in this situation. Adaptive
filters are employed at each of the two hybrids within the network. The input x(n) to each adaptive filter
is the speech signal being received prior to the hybrid junction, and the desired response signal d(n) is the
signal being sent out from the hybrid across the long-distance connection. The adaptive filter attempts to
model the transmission characteristics of the hybrid junction as well as any echoes that appear across the
long-distance portion of the network. When the system is properly designed, the error signal e(n) consists
almost totally of the local talker’s speech signal, which is then transmitted over the network. Such systems
were first proposed in the mid-1960s [12] and are commonly used today. For more details on this
application, see [13,14].

18.5.1.4 Acoustic Echo Cancellation

A related problem to echo cancellation for telephone transmission systems is that of acoustic echo
cancellation for conference-style speakerphones. When using a speakerphone, a caller would like to turn
up the amplifier gains of both the microphone and the audio loudspeaker in order to transmit and hear
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the voice signals more clearly. However, the feedback path from the device’s loudspeaker to its input
microphone causes a distinctive howling sound if these gains are too high. In this case, the culprit is the
room’s response to the voice signal being broadcast by the speaker; in effect, the room acts as an
extremely poor hybrid junction, in analogy with the echo cancellation task discussed previously. A
simple solution to this problem is to only allow one person to speak at a time, a form of operation called
half-duplex transmission. However, studies have indicated that half-duplex transmission causes problems
with normal conversations, as people typically overlap their phrases with others when conversing.

To maintain full-duplex transmission, an acoustic echo canceller is employed in the speakerphone to
model the acoustic transmission path from the speaker to the microphone. The input signal x(n) to the
acoustic echo canceller is the signal being sent to the speaker, and the desired response signal d(n) is
measured at the microphone on the device. Adaptation of the system occurs continually throughout a
telephone call to model any physical changes in the room acoustics. Such devices are readily available
in the marketplace today. In addition, similar technology can and is used to remove the echo that occurs
through the combined radio=room=telephone transmission path when one places a call to a radio
or television talk show. Details of the acoustic echo cancellation problem can be found in [14].

18.5.1.5 Adaptive Noise Canceling

When collecting measurements of certain signals or processes, physical constraints often limit our ability to
cleanlymeasure the quantities of interest. Typically, a signal of interest is linearlymixedwith other extraneous
noises in the measurement process, and these extraneous noises introduce unacceptable errors in the
measurements. However, if a linearly related reference version of any one of the extraneous noises can
be cleanly sensed at some other physical location in the system, an adaptive filter can be used to determine the
relationship between the noise reference x(n) and the component of this noise that is contained in the
measured signal d(n). After adaptively subtracting out this component, what remains in e(n) is the signal of
interest. If several extraneous noises corrupt the measurement of interest, several adaptive filters can be used
in parallel as long as suitable noise reference signals are available within the system.

Adaptive noise canceling has been used for several applications. One of the first was a medical
application that enabled the electroencephalogram (EEG) of the fetal heartbeat of an unborn child
to be cleanly extracted from the much-stronger interfering EEG of the maternal heartbeat signal. Details
of this application as well as several others are described in the seminal paper by Widrow and his
colleagues [15].

18.5.2 Inverse Modeling

We now consider the general problem of inverse modeling, as shown in Figure 18.5. In this diagram, a
source signal s(n) is fed into an unknown system that produces the input signal x(n) for the adaptive
filter. The output of the adaptive filter is subtracted from a desired response signal that is a delayed
version of the source signal, such that

Delay

Unknown
system

Adaptive
filter

y(n)

d(n)

e(n)++
+

– ΣΣ
s(n)

η(n)

x(n)

FIGURE 18.5 Inverse modeling.
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d(n) ¼ s(n� D), (18:12)

where D is a positive integer value. The goal of the adaptive filter is to adjust its characteristics such that
the output signal is an accurate representation of the delayed source signal.

The inverse modeling task characterizes several adaptive filtering applications, two of which are now
described.

18.5.2.1 Channel Equalization

Channel equalization is an alternative to the technique of channel identification described previously
for the decoding of transmitted signals across nonideal communication channels. In both cases, the
transmitter sends a sequence s(n) that is known to both the transmitter and receiver. However,
in equalization, the received signal is used as the input signal x(n) to an adaptive filter, which
adjusts its characteristics so that its output closely matches a delayed version s(n� D) of the known
transmitted signal. After a suitable adaptation period, the coefficients of the system either are fixed
and used to decode future transmitted messages or are adapted using a crude estimate of the desired
response signal that is computed from y(n). This latter mode of operation is known as decision-
directed adaptation.

Channel equalization was one of the first applications of adaptive filters and is described in the
pioneering work of Lucky [16]. Today, it remains as one of the most popular uses of an adaptive filter.
Practically every computer telephone modem transmitting at rates of 9600 baud (bits per second) or
greater contains an adaptive equalizer. Adaptive equalization is also useful for wireless communication
systems. Qureshi [17] provides a tutorial on adaptive equalization. A related problem to equalization is
deconvolution, a problem that appears in the context of geophysical exploration [18]. Equalization is
closely related to linear prediction, a topic that we shall discuss shortly.

18.5.2.2 Inverse Plant Modeling

In many control tasks, the frequency and phase characteristics of the plant hamper the convergence
behavior and stability of the control system. We can use a system of the form in Figure 18.5 to
compensate for the nonideal characteristics of the plant and as a method for adaptive control. In this
case, the signal s(n) is sent at the output of the controller, and the signal x(n) is the signal measured at the
output of the plant. The coefficients of the adaptive filter are then adjusted so that the cascade of the plant
and adaptive filter can be nearly represented by the pure delay z�D. Details of the adaptive algorithms as
applied to control tasks in this fashion can be found in [11].

18.5.3 Linear Prediction

A third type of adaptive filtering task is shown in Figure 18.6. In this system, the input signal x(n) is
derived from the desired response signal as

x(n) ¼ d(n� D), (18:13)

ΣAdaptive
filterDelayd(n) x(n) y(n)

d(n)

e(n)
+

–

FIGURE 18.6 Linear prediction.
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where D is an integer value of delay. In effect, the input signal serves as the desired response signal,
and for this reason it is always j � x(nþ D) at time n is desired, a copy of the adaptive filter whose input
is the current sample x(n) can be employed to compute this quantity. However, linear prediction has
a number of uses besides the obvious application of forecasting future events, as described in the
following two applications.

18.5.3.1 Linear Predictive Coding

When transmitting digitized versions of real-world signals such as speech or images, the temporal
correlation of the signals is a form of redundancy that can be exploited to code the waveform in a
smaller number of bits than are needed for its original representation. In these cases, a linear predictor
can be used to model the signal correlations for a short block of data in such a way as to reduce the
number of bits needed to represent the signal waveform. Then, essential information about the signal
model is transmitted along with the coefficients of the adaptive filter for the given data block. Once
received, the signal is synthesized using the filter coefficients and the additional signal information
provided for the given block of data.

When applied to speech signals, this method of signal encoding enables the transmission of under-
standable speech at only 2.4 kb=s, although the reconstructed speech has a distinctly synthetic quality.
Predictive coding can be combined with a quantizer to enable higher quality speech encoding at higher
data rates using an adaptive differential pulse-code modulation scheme. In both of these methods, the
lattice filter structure plays an important role because of the way in which it parameterizes the physical
nature of the vocal tract. Details about the role of the lattice filter in the linear prediction task can be
found in [19].

18.5.3.2 Adaptive Line Enhancement

In some situations, the desired response signal d(n) consists of a sum of a broadband signal and a nearly
periodic signal, and it is desired to separate these two signals without specific knowledge about the signals
(such as the fundamental frequency of the periodic component).

In these situations, an adaptive filter configured as in Figure 18.6 can be used. For this application, the
delay D is chosen to be large enough such that the broadband component in x(n) is uncorrelated with
the broadband component in x(n� D). In this case, the broadband signal cannot be removed by the
adaptive filter through its operation, and it remains in the error signal e(n) after a suitable period
of adaptation. The adaptive filter’s output y(n) converges to the narrowband component, which is
easily predicted given past samples. The name line enhancement arises because periodic signals are
characterized by lines in their frequency spectra, and these spectral lines are enhanced at the output of the
adaptive filter.

For a discussion of the adaptive line enhancement task using LMS adaptive filters, the reader is
referred to [20].

18.5.4 Feedforward Control

Another problem area combines elements of both the inverse modeling and system identification tasks
and typifies the types of problems encountered in the area of adaptive control known as feedforward
control. Figure 18.7 shows the block diagram for this system, in which the output of the adaptive filter
passes through a plant before it is subtracted from the desired response to form the error signal. The plant
hampers the operation of the adaptive filter by changing the amplitude and phase characteristics of the
adaptive filter’s output signal as represented in e(n). Thus, knowledge of the plant is generally required in
order to adapt the parameters of the filter properly.

An application that fits this particular problem formulation is active noise control, in which unwanted
sound energy propagates in air or a fluid into a physical region in space. In such cases, an electroacoustic
system employing microphones, speakers, and one or more adaptive filters can be used to create a
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secondary sound field that interferes with the unwanted sound, reducing its level in the region via
destructive interference. Similar techniques can be used to reduce vibrations in solid media. Details of
useful algorithms for the active noise and vibration control tasks can be found in [21,22].

18.6 Gradient-Based Adaptive Algorithms

An adaptive algorithm is a procedure for adjusting the parameters of an adaptive filter to minimize a cost
function chosen for the task at hand. In this section, we describe the general form of many adaptive FIR
filtering algorithms and present a simple derivation of the LMS adaptive algorithm. In our discussion, we
only consider an adaptive FIR filter structure, such that the output signal y(n) is given by Equation 18.5.
Such systems are currently more popular than adaptive IIR filters because (1) the input–output stability of
the FIR filter structure is guaranteed for any set of fixed coefficients, and (2) the algorithms for adjusting the
coefficients of FIR filters are more simple in general than those for adjusting the coefficients of IIR filters.

18.6.1 General Form of Adaptive FIR Algorithms

The general form of an adaptive FIR filtering algorithm is

W(nþ 1) ¼ W(n)þ m(n)G(e(n),X(n),F(n)), (18:14)

where
G(�) is a particular vector-valued nonlinear function
m(n) is a step size parameter
e(n) and X(n) are the error signal and input signal vector, respectively
F(n) is a vector of states that store pertinent information about the characteristics of the input and
error signals and=or the coefficients at previous time instants

In the simplest algorithms, F(n) is not used, and the only information needed to adjust the coefficients at
time n are the error signal, input signal vector, and step size.

The step size is so called because it determines the magnitude of the change or ‘‘step’’ that is taken by
the algorithm in iteratively determining a useful coefficient vector. Much research effort has been spent
characterizing the role that m(n) plays in the performance of adaptive filters in terms of the statistical or
frequency characteristics of the input and desired response signals. Often, success or failure of an
adaptive filtering application depends on how the value of m(n) is chosen or calculated to obtain the
best performance from the adaptive filter. The issue of choosing m(n) for both stable and accurate
convergence of the LMS adaptive filter is addressed in Chapter 19.

x(n) Adaptive
filter Plant

Unknown
system

η(n)

+
+

+y(n)

d(n)

e(n)
Σ

Σ
d(n)

–

ˆ

FIGURE 18.7 Feedforward control.
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18.6.2 Mean-Squared Error Cost Function

The form of G(�) in Equation 18.14 depends on the cost function chosen for the given adaptive filtering
task. We now consider one particular cost function that yields a popular adaptive algorithm.

Define the mean-squared error (MSE) cost function as

JMSE(n) ¼ 1
2

ð1
�1

e2(n)pn(e(n))de(n) (18:15)

¼ 1
2
E{e2(n)}, (18:16)

where
pn(e) represents the probability density function of the error at time n
E{�} is shorthand for the expectation integral on the right-hand side of Equation 18.15

The MSE cost function is useful for adaptive FIR filters because

. JMSE(n) has a well-defined minimum with respect to the parameters in W(n).

. The coefficient values obtained at this minimum are the ones that minimize the power in the error
signal e(n), indicating that y(n) has approached d(n).

. JMSE(n) is a smooth function of each of the parameters in W(n), such that it is differentiable with
respect to each of the parameters in W(n).

The third point is important in that it enables us to determine both the optimum coefficient values given
knowledge of the statistics of d(n) and x(n) as well as a simple iterative procedure for adjusting the
parameters of an FIR filter.

18.6.3 Wiener Solution

For the FIR filter structure, the coefficient values in W(n) that minimize JMSE(n) are well-defined if the
statistics of the input and desired response signals are known. The formulation of this problem for
continuous-time signals and the resulting solution was first derived by Wiener [23]. Hence, this optimum
coefficient vector WMSE(n) is often called the Wiener solution to the adaptive filtering problem. The
extension of Wiener’s analysis to the discrete-time case is attributed to Levinson [24].

To determine WMSE(n), we note that the function JMSE(n) in Equation 18.16 is quadratic in the
parameters {wi(n)}, and the function is also differentiable. Thus, we can use a result from optimization
theory that states that the derivatives of a smooth cost function with respect to each of the parameters is
zero at a minimizing point on the cost function error surface. Thus, WMSE(n) can be found from the
solution to the system of equations

qJMSE(n)
qwi(n)

¼ 0, 0 � i � L� 1: (18:17)

Taking derivatives of JMSE(n) in Equation 18.16 and noting that e(n) and y(n) are given by Equations 18.1
and 18.5, respectively, we obtain

qJMSE(n)
qwi(n)

¼ E e(n)
qe(n)
qwi(n)

� �
(18:18)

¼ �E e(n)
qy(n)
qwi(n)

� �
(18:19)
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¼ �E{e(n)x(n� i)} (18:20)

¼ � E{d(n)x(n� i)}�
XL�1

j¼0

E{x(n� i)x(n� j)}wj(n)

 !
, (18:21)

where we have used the definitions of e(n) and of y(n) for the FIR filter structure in Equations 18.1 and
18.5, respectively, to expand the last result in Equation 18.21.

By defining the matrix RXX(n) and vector PdX(n) as

RXX ¼ E{X(n)XT(n)} and PdX(n) ¼ E{d(n)X(n)}, (18:22)

respectively, we can combine Equations 18.17 and 18.21 to obtain the system of equations in vector
form as

RXX(n)WMSE(n)� PdX(n) ¼ 0, (18:23)

where 0 is the zero vector. Thus, so long as the matrix RXX(n) is invertible, the optimumWiener solution
vector for this problem is

WMSE(n) ¼ R�1
XX(n)PdX(n): (18:24)

18.6.4 The Method of Steepest Descent

The method of steepest descent is a celebrated optimization procedure for minimizing the value of a cost
function J(n) with respect to a set of adjustable parameters W(n). This procedure adjusts each parameter
of the system according to

wi(nþ 1) ¼ wi(n)� m(n)
qJ(n)
qwi(n)

: (18:25)

In other words, the ith parameter of the system is altered according to the derivative of the cost function
with respect to the ith parameter. Collecting these equations in vector form, we have

W(nþ 1) ¼ W(n)� m(n)
qJ(n)
qW(n)

, (18:26)

where qJ(n)=qW(n) is a vector of derivatives qJ(n)=qwi(n).
For an FIR adaptive filter that minimizes the MSE cost function, we can use the result in Equation

18.21 to explicitly give the form of the steepest descent procedure in this problem. Substituting these
results into Equation 18.25 yields the update equation for W(n) as

W(nþ 1) ¼ W(n)þ m(n)[PdX(n)� RXX(n)W(n)]: (18:27)

However, this steepest descent procedure depends on the statistical quantities E{d(n)x(n� i)} and
E{x(n� i)x(n� j)} contained in PdX(n) and RXX(n), respectively. In practice, we only have measure-
ments of both d(n) and x(n) to be used within the adaptation procedure. While suitable estimates of the
statistical quantities needed for Equation 18.27 could be determined from the signals x(n) and d(n), we
instead develop an approximate version of the method of steepest descent that depends on the signal
values themselves. This procedure is known as the LMS algorithm.
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18.6.5 LMS Algorithm

The cost function J(n) chosen for the steepest descent algorithm of Equation 18.25 determines the
coefficient solution obtained by the adaptive filter. If the MSE cost function in Equation 18.16 is chosen,
the resulting algorithm depends on the statistics of x(n) and d(n) because of the expectation operation
that defines this cost function. Since we typically only have measurements of d(n) and of x(n) available to
us, we substitute an alternative cost function that depends only on these measurements. One such cost
function is the least-squares cost function given by

JLS(n) ¼
Xn
k¼0

a(k)(d(k)�WT(n)X(k))2, (18:28)

where a(n) is a suitable weighting sequence for the terms within the summation. This cost function,
however, is complicated by the fact that it requires numerous computations to calculate its value as well
as its derivatives with respect to each wi(n), although efficient recursive methods for its minimization can
be developed. See Chapter 21 for more details on these methods.

Alternatively, we can propose the simplified cost function JLMS(n) given by

JLMS(n) ¼ 1
2
e2(n): (18:29)

This cost function can be thought of as an instantaneous estimate of the MSE cost function, as
JMSE(n) ¼ E{JLMS(n)}. Although it might not appear to be useful, the resulting algorithm obtained
when JLMS(n) is used for J(n) in Equation 18.25 is extremely useful for practical applications. Taking
derivatives of JLMS(n) with respect to the elements of W(n) and substituting the result into Equation
18.25, we obtain the LMS adaptive algorithm given by

W(nþ 1) ¼ W(n)þ m(n)e(n)X(n): (18:30)

Note that this algorithm is of the general form in Equation 18.14. It also requires only multiplications and
additions to implement. In fact, the number and type of operations needed for the LMS algorithm is
nearly the same as that of the FIR filter structure with fixed coefficient values, which is one of the reasons
for the algorithm’s popularity.

The behavior of the LMS algorithm has been widely studied, and numerous results concerning its
adaptation characteristics under different situations have been developed. For discussions of some of
these results, the reader is referred to Chapters 19 and 20. For now, we indicate its useful behavior by
noting that the solution obtained by the LMS algorithm near its convergent point is related to the Wiener
solution. In fact, analyses of the LMS algorithm under certain statistical assumptions about the input and
desired response signals show that

lim
n!1E{W(n)} ¼ WMSE, (18:31)

when the Wiener solution WMSE(n) is a fixed vector. Moreover, the average behavior of the LMS
algorithm is quite similar to that of the steepest descent algorithm in Equation 18.27 that depends
explicitly on the statistics of the input and desired response signals. In effect, the iterative nature of the
LMS coefficient updates is a form of time-averaging that smoothes the errors in the instantaneous
gradient calculations to obtain a more reasonable estimate of the true gradient.
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18.6.6 Other Stochastic Gradient Algorithms

The LMS algorithm is but one of an entire family of algorithms that are based on instantaneous
approximations to steepest descent procedures. Such algorithms are known as stochastic gradient
algorithms because they use a stochastic version of the gradient of a particular cost function’s error
surface to adjust the parameters of the filter. As an example, we consider the cost function

JSA(n) ¼ e(n)j j, (18:32)

where �j j denotes absolute value. Like JLMS(n), this cost function also has a unique minimum at e(n) ¼ 0,
and it is differentiable everywhere except at e(n) ¼ 0. Moreover, it is the instantaneous value of the mean
absolute error cost function JMAE(n) ¼ E{JSA(n)}. Taking derivatives of JSA(n) with respect to the
coefficients {wi(n)} and substituting the results into Equation 18.25 yields the sign error algorithm as*

W(nþ 1) ¼ W(n)þ m(n)sgn[e(n)]X(n), (18:33)

where

sgn(e) ¼
( 1 if e > 0

0 if e ¼ 0
�1 if e < 0:

(18:34)

This algorithm is also of the general form in Equation 18.14.
The sign error algorithm is a useful adaptive filtering procedure because the terms sgn[e(n)]x(n� i)

can be computed easily in dedicated digital hardware. Its convergence properties differ from those of the
LMS algorithm, however. Discussions of this and other algorithms based on non-MSE criteria can be
found in [25].

18.6.7 Finite-Precision Effects and Other Implementation Issues

In all digital hardware and software implementations of the LMS algorithm in Equation 18.30, the
quantities e(n), d(n), and {x(n� i)} are represented by finite-precision quantities with a certain number
of bits. Small numerical errors are introduced in each of the calculations within the coefficient updates in
these situations. The effects of these numerical errors are usually less severe in systems that employ
floating-point arithmetic, in which all numerical values are represented by both a mantissa and exponent,
as compared to systems that employ fixed-point arithmetic, in which a mantissa-only numerical
representation is used. The effects of the numerical errors introduced in these cases can be characterized,
see [26] for a discussion of these issues.

While knowledge of the numerical effects of finite-precision arithmetic are necessary for obtaining the
best performance from the LMS adaptive filter, it can be generally stated that the LMS adaptive filter
performs robustly in the presence of these numerical errors. In fact, the apparent robustness of the LMS
adaptive filter has led to the development of approximate implementations of Equation 18.30 that are
more easily implemented in dedicated hardware. The general form of these implementations is

wi(nþ 1) ¼ wi(n)þ m(n)g1[e(n)]g2[x(n� i)], (18:35)

where g1(�) and g2(�) are odd-symmetric nonlinearities that are chosen to simplify the implementation
of the system. Some of the algorithms described by Equation 18.35 include the sign-data {g1(e) ¼ e,

* Here, we have specified qjej=qe¼ 0 for e¼ 0, although the derivative of this function does not exist at this point.
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g2(x) ¼ sgn(x)}, sign-sign or zero-forcing {g1(e) ¼ sgn(e), g2(x) ¼ sgn(x)}, and power-of-two quantized
algorithms, as well as the sign error algorithm introduced previously. A presentation and comparative
analysis of the performance of many of these algorithms can be found in [27].

18.6.8 System Identification Example

We now illustrate the actual behavior of the LMS adaptive filter through a system identification example in
which the impulse response of a small audio loudspeaker in a room is estimated. A Gaussian-distributed
signal with a flat frequency spectrum over the usable frequency range of the loudspeaker is generated and
sent through an audio amplifier to the loudspeaker. This same Gaussian signal is sent to a 16-bit analog-to-
digital (A=D) converter which samples it at an 8 kHz rate. The sound produced by the loudspeaker
propagates to a microphone located several feet away from the loudspeaker, where it is collected and
digitized by a second A=D converter also sampling at an 8 kHz rate. Both signals are stored to a computer
file for subsequent processing and analysis. The goal of the analysis is to determine the combined impulse
response of the loudspeaker=room=microphone sound propagation path. Such information is useful if the
loudspeaker and microphone are to be used in the active noise control task described previously, and the
general task also resembles that of acoustic echo cancellation for speakerphones.

We process these signals using a computer program that implements the LMS adaptive filter within the
MATLAB1* signal manipulation environment. In this case, we have normalized the powers of both the
Gaussian input signal and desired response signal collected at the microphone to unity, and we have
highpass-filtered the microphone signal using a filter with transfer function H(z) ¼ (1� z�1)=
(1� 0:95z�1) to remove any DC offset in this signal. For this task, we have chosen an L ¼ 100-coefficient
FIR filter adapted using the LMS algorithm in Equation 18.30 with a fixed step size ofm ¼ 0:0005 to obtain
an accurate estimate of the impulse response of the loudspeaker and room. Figure 18.8 shows the

* MATLAB is a registered trademark of The MathWorks, Inc., Newton, Massachusetts.
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FIGURE 18.8 Convergence of the error signal in the loudspeaker identification experiment.
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convergence of the error signal in this situation. After about 4000 samples (0.5 s), the error signal has been
reduced to a power that is about 1=15 (�12 dB) below that of the microphone signal, indicating that the
filter has converged. Figure 18.9 shows the coefficients of the adaptive filter at iteration n ¼ 10,000.
The impulse response of the loudspeaker=room=microphone path consists of a large pulse corresponding
to the direct sound propagation path as well as numerous smaller pulses caused by reflections of sounds off
walls and other surfaces in the room.

18.7 Conclusions

In this section, we have presented an overview of adaptive filters, emphasizing the applications and basic
algorithms that have already proven themselves to be useful in practice. Despite the many contributions
in the field, research efforts in adaptive filters continue at a strong pace, and it is likely that new
applications for adaptive filters will be developed in the future. To keep abreast of these advances, the
reader is urged to consult journals such as the IEEE Transactions on Signal Processing as well as the
proceedings of yearly conferences and workshops in the signal processing and related fields.
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19.1 Introduction

In adaptive filtering, the least-mean-square (LMS) adaptive filter [1] is the most popular and widely used
adaptive system, appearing in numerous commercial and scientific applications. The LMS adaptive filter
is described by the equations

W(nþ 1) ¼ W(n)þ m(n)e(n)X(n) (19:1)

e(n) ¼ d(n)�WT(n)X(n), (19:2)

where
W(n)¼ [w0(n) w1(n) � � � wL�1(n)]

T is the coefficient vector
X(n)¼ [x(n) x(n� 1) � � � x(n� Lþ 1)]T is the input signal vector
d(n) is the desired signal
e(n) is the error signal
m(n) is the step size
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There are three main reasons why the LMS adaptive filter is so popular. First, it is relatively easy to
implement in software and hardware due to its computational simplicity and efficient use of memory.
Second, it performs robustly in the presence of numerical errors caused by finite-precision arithmetic.
Third, its behavior has been analytically characterized to the point where a user can easily set up the system
to obtain adequate performance with only limited knowledge about the input and desired response signals.

Our goal in this chapter is to provide a detailed performance analysis of the LMS adaptive filter so that
the user of this system understands how the choice of the step size m(n) and filter length L affect the
performance of the system through the natures of the input and desired response signals x(n) and d(n),
respectively. The organization of this chapter is as follows. We first discuss why analytically character-
izing the behavior of the LMS adaptive filter is important from a practical point of view. We then present
particular signal models and assumptions that make such analyses tractable. We summarize the analyt-
ical results that can be obtained from these models and assumptions, and we discuss the implications of
these results for different practical situations. Finally, to overcome some of the limitations of the LMS
adaptive filter’s behavior, we describe simple extensions of this system that are suggested by the analytical
results. In all of our discussions, we assume that the reader is familiar with the adaptive filtering task and
the LMS adaptive filter as described in Chapter 18.

19.2 Characterizing the Performance of Adaptive Filters

There are two practical methods for characterizing the behavior of an adaptive filter. The simplest
method of all to understand is simulation. In simulation, a set of input and desired response signals are
either collected from a physical environment or are generated from a mathematical or statistical model of
the physical environment. These signals are then processed by a software program that implements the
particular adaptive filter under evaluation. By trial-and-error, important design parameters, such as the
step size m(n) and filter length L, are selected based on the observed behavior of the system when
operating on these example signals. Once these parameters are selected, they are used in an adaptive filter
implementation to process additional signals as they are obtained from the physical environment. In the
case of a real-time adaptive filter implementation, the design parameters obtained from simulation are
encoded within the real-time system to allow it to process signals as they are continuously collected.

While straightforward, simulation has two drawbacks that make it a poor sole choice for characterizing
the behavior of an adaptive filter:

. Selecting design parameters via simulation alone is an iterative and time-consuming process.
Without any other knowledge of the adaptive filter’s behavior, the number of trials needed to
select the best combination of design parameters is daunting, even for systems as simple as the
LMS adaptive filter.

. The amount of data needed to accurately characterize the behavior of the adaptive filter for all cases
of interest may be large. If real-world signal measurements are used, it may be difficult or costly to
collect and store the large amounts of data needed for simulation characterizations. Moreover,
once this data is collected or generated, it must be processed by the software program that
implements the adaptive filter, which can be time-consuming as well.

For these reasons, we are motivated to develop an analysis of the adaptive filter under study. In such an
analysis, the input and desired response signals x(n) and d(n) are characterized by certain properties that
govern the forms of these signals for the application of interest. Often, these properties are statistical in
nature, such as the means of the signals or the correlation between two signals at different time instants.
An analytical description of the adaptive filter’s behavior is then developed that is based on these signal
properties. Once this analytical description is obtained, the design parameters are selected to obtain the
best performance of the system as predicted by the analysis. What is considered ‘‘best performance’’ for
the adaptive filter can often be specified directly within the analysis, without the need for iterative
calculations or extensive simulations.
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Usually, both analysis and simulation are employed to select design parameters for adaptive filters, as
the simulation results provide a check on the accuracy of the signal models and assumptions that are used
within the analysis procedure.

19.3 Analytical Models, Assumptions, and Definitions

The type of analysis that we employ has a long-standing history in the field of adaptive filters [2–6].
Our analysis uses statistical models for the input and desired response signals, such that any collection
of samples from the signals x(n) and d(n) have well-defined joint probability density functions
(p.d.f.s). With this model, we can study the average behavior of functions of the coefficients W(n) at
each time instant, where ‘‘average’’ implies taking a statistical expectation over the ensemble of possible
coefficient values. For example, the mean value of the i th coefficient wi(n) is defined as

E{wi(n)} ¼
ð1

�1
w pwi (w, n)dw, (19:3)

where pwi (w, n) is the probability distribution of the ith coefficient at time n. The mean value of the
coefficient vector at time n is defined as

E{W(n)} ¼ [E{w0(n)} E{w1(n)} � � � E{wL�1(n)}]
T:

While it is usually difficult to evaluate expectations such as Equation 19.3 directly, we can employ
several simplifying assumptions and approximations that enable the formation of evolution equations
that describe the behavior of quantities such as E{W(n)} from one time instant to the next. In this
way, we can predict the evolutionary behavior of the LMS adaptive filter on average. More importantly,
we can study certain characteristics of this behavior, such as the stability of the coefficient updates,
the speed of convergence of the system, and the estimation accuracy of the filter in steady-state.
Because of their role in the analyses that follow, we now describe these simplifying assumptions
and approximations.

19.3.1 System Identification Model for the Desired Response Signal

For our analysis, we assume that the desired response signal is generated from the input signal as

d(n) ¼ WT
optX(n)þ h(n), (19:4)

where
Wopt¼ [w0, opt w1, opt � � � wL�1, opt]

T is a vector of optimum FIR filter coefficients
h(n) is a noise signal that is independent of the input signal

Such a model for d(n) is realistic for several important adaptive filtering tasks. For example, in echo
cancellation for telephone networks, the optimum coefficient vector Wopt contains the impulse response
of the echo path caused by the impedance mismatches at hybrid junctions within the network, and
the noise h(n) is the near-end source signal [7]. The model is also appropriate in system identification
and modeling tasks such as plant identification for adaptive control [8] and channel modeling
for communication systems [9]. Moreover, most of the results obtained from this model are inde-
pendent of the specific impulse response values within Wopt, so that general conclusions can be
readily drawn.
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19.3.2 Statistical Models for the Input Signal

Given the desired response signal model in Equation 19.4, we now consider useful and appropriate
statistical models for the input signal x(n). Here, we are motivated by two typically conflicting concerns:
(1) the need for signal models that are realistic for several practical situations and (2) the tractability of
the analyses that the models allow. We consider two input signal models that have proven useful for
predicting the behavior of the LMS adaptive filter.

19.3.2.1 Independent and Identically Distributed Random Processes

In digital communication tasks, an adaptive filter can be used to identify the dispersive characteristics
of the unknown channel for purposes of decoding future transmitted sequences [9]. In this application,
the transmitted signal is a bit sequence that is usually zero mean with a small number of amplitude
levels. For example, a nonreturn-to-zero binary signal takes on the values of �1 with equal probability at
each time instant. Moreover, due to the nature of the encoding of the transmitted signal in many cases,
any set of L samples of the signal can be assumed to be independent and identically distributed (i.i.d.).
For an i.i.d. random process, the p.d.f. of the samples {x(n1), x(n2), . . . , x(nL)} for any choices of ni such
that ni 6¼ nj is

pX(x(n1), x(n2), . . . , x(nL)) ¼ px[x(n1)] px[x(n2)] � � � px[x(nL)], (19:5)

where px(�) and pX(�) are the univariate and L-variate probability densities of the associated random
variables, respectively.

Zero-mean and statistically independent random variables are also uncorrelated, such that

E{x(ni)x(nj)} ¼ 0 (19:6)

for ni 6¼ nj, although uncorrelated random variables are not necessarily statistically independent. The
input signal model in Equation 19.5 is useful for analyzing the behavior of the LMS adaptive filter, as it
allows a particularly simple analysis of this system.

19.3.2.2 Spherically Invariant Random Processes

In acoustic echo cancellation for speakerphones, an adaptive filter can be used to electronically isolate the
speaker and microphone so that the amplifier gains within the system can be increased [10]. In this
application, the input signal to the adaptive filter consists of samples of bandlimited speech. It has
been shown in experiments that samples of a bandlimited speech signal taken over a short time period
(e.g., 5ms) have so-called ‘‘spherically invariant’’ statistical properties. Spherically invariant random
processes (SIRPs) are characterized by multivariate p.d.f.s that depend on a quadratic form of their
arguments, given by XT(n)R�1

XXX(n), where

RXX ¼ E{X(n)XT(n)} (19:7)

is the L-dimensional input signal autocorrelation matrix of the stationary signal x(n). The best-known
representative of this class of stationary stochastic processes is the jointly Gaussian random process for
which the joint p.d.f. of the elements of X(n) is

pX(x(n), . . . , x(n� Lþ 1)) ¼ [(2p)L det(RXX)]
�1=2 exp � 1

2
XT(n)R�1

XXX(n)

� �
, (19:8)

where det(RXX) is the determinant of the matrix RXX. More generally, SIRPs can be described by a
weighted mixture of Gaussian processes as
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pX(x(n), . . . , x(n� Lþ 1)

¼
ð1
0

((2p uj j)Ldet(�RXX))
�1=2 � ps(u) exp � 1

2u2
XT (n)�R�1

XXX(n)

� �
du, (19:9)

where �RXX is the autocorrelation matrix of a zero-mean, unit-variance jointly Gaussian random process.
In Equation 19.9, the p.d.f. ps(u) is a weighting function for the value of u that scales the standard
deviation of this process. In other words, any single realization of a SIRP is a Gaussian random process
with an autocorrelation matrix u2�RXX. Each realization, however, will have a different variance u2.

As described, the above SIRP model does not accurately depict the statistical nature of a speech signal.
The variance of a speech signal varies widely from phoneme (vowel) to fricative (consonant) utterances,
and this burst-like behavior is uncharacteristic of Gaussian signals. The statistics of such behavior can be
accurately modeled if a slowly varying value for the random variable u in Equation 19.9 is allowed. Figure
19.1 depicts the differences between a nearly SIRP and an SIRP. In this system, either the random variable
u or a sample from the slowly varying random process u(n) is created and used to scale the magnitude of
a sample from an uncorrelated Gaussian random process. Depending on the position of the switch, either
an SIRP (upper position) or a nearly SIRP (lower position) is created. The linear filter F(z) is then used to
produce the desired autocorrelation function of the SIRP. So long as the value of u(n) changes slowly over
time, RXX for the signal x(n) as produced from this system is approximately the same as would be
obtained if the value of u(n) were fixed, except for the amplitude scaling provided by the value of u(n).

The random process u(n) can be generated by filtering a zero-mean uncorrelated Gaussian process with
a narrow-bandwidth lowpass filter. With this choice, the system generates samples from the so-called K0

p.d.f., also known as the MacDonald function or degenerated Bessel function of the second kind [11]. This
density is a reasonable match to that of typical speech sequences, although it does not necessarily generate
sequences that sound like speech. Given a short-length speech sequence from a particular speaker, one can
also determine the proper ps(u) needed to generate u(n) as well as the form of the filter F(z) from estimates
of the amplitude and correlation statistics of the speech sequence, respectively.

In addition to adaptive filtering, SIRPs are also useful for characterizing the performance of vector
quantizers for speech coding. Details about the properties of SIRPs can be found in [12].

SIRP

Nearly SIRP

x(n)
×

F
Uncorrelated

Gaussian
process

Random
process

Random
variable

u

u(n)

FIGURE 19.1 Generation of SIRPs and nearly SIRPs.
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19.3.3 Independence Assumptions

In the LMS adaptive filter, the coefficient vector W(n) is a complex function of the current and past
samples of the input and desired response signals. This fact would appear to foil any attempts to develop
equations that describe the evolutionary behavior of the filter coefficients from one time instant to
the next. One way to resolve this problem is to make further statistical assumptions about the nature of
the input and the desired response signals. We now describe a set of assumptions that have proven to be
useful for predicting the behaviors of many types of adaptive filters.

Elements of the vector X(n) are statistically independent of the elements of the vector X(m) if m 6¼ n.
In addition, samples from the noise signal h(n) are i.i.d. and independent of the input vector sequence
X(k) for all k and n.

A careful study of the structure of the input signal vector indicates that the independence assumptions
are never true, as the vector X(n) shares elements with X(n�m) if jmj< L and thus cannot be
independent of X(n�m) in this case. Moreover, h(n) is not guaranteed to be independent from sample
to sample. Even so, numerous analyses and simulations have indicated that these assumptions lead to a
reasonably accurate characterization of the behavior of the LMS and other adaptive filter algorithms for
small step size values, even in situations where the assumptions are grossly violated. In addition, analyses
using the independence assumptions enable a simple characterization of the LMS adaptive filter’s
behavior and provide reasonable guidelines for selecting the filter length L and step size m(n) to obtain
good performance from the system.

It has been shown that the independence assumptions lead to a first-order-in-m(n) approximation to a
more accurate description of the LMS adaptive filter’s behavior [13]. For this reason, the analytical results
obtained from these assumptions are not particularly accurate when the step size is near the stability
limits for adaptation. It is possible to derive an exact statistical analysis of the LMS adaptive filter that
does not use the independence assumptions [14], although the exact analysis is quite complex for
adaptive filters with more than a few coefficients. From the results in [14], it appears that the analysis
obtained from the independence assumptions is most inaccurate for large step sizes and for input signals
that exhibit a high degree of statistical correlation.

19.3.4 Useful Definitions

In our analysis, we define the minimum mean-squared error (MSE) solution as the coefficient vector
W(n) that minimizes the MSE criterion given by

j(n) ¼ E{e2(n)}: (19:10)

Since j(n) is a function of W(n), it can be viewed as an error surface with a minimum that occurs at the
minimum MSE solution. It can be shown for the desired response signal model in Equation 19.4 that
the minimum MSE solution is Wopt and can be equivalently defined as

Wopt ¼ R�1
XXPdX , (19:11)

where
RXX is as defined in Equation 19.7
PdX¼E{d(n)X(n)} is the cross-correlation of d(n) and X(n)

When W(n)¼Wopt, the value of the minimum MSE is given by

jmin ¼ s2
h, (19:12)
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where s2
h is the power of the signal h(n).

We define the coefficient error vector V(n)¼ [v0(n) � � � vL�1(n)]
T as

V(n) ¼ W(n)�Wopt, (19:13)

such that V(n) represents the errors in the estimates of the optimum coefficients at time n. Our study
of the LMS algorithm focuses on the statistical characteristics of the coefficient error vector. In
particular, we can characterize the approximate evolution of the coefficient error correlation matrix
K(n), defined as

K(n) ¼ E{V(n)VT(n)}: (19:14)

Another quantity that characterizes the performance of the LMS adaptive filter is the excess mean-
squared error (excess MSE), defined as

jex(n) ¼ j(n)� jmin

¼ j(n)� s2
h, (19:15)

where j(n) is as defined in Equation 19.10. The excess MSE is the power of the additional error in the
filter output due to the errors in the filter coefficients. An equivalent measure of the excess MSE in
steady-state is the misadjustment, defined as

M ¼ lim
n!1

jex(n)
s2
h

, (19:16)

such that the quantity (1þM)s2
h denotes the total MSE in steady-state.

Under the independence assumptions, it can be shown that the excess MSE at any time instant is
related to K(n) as

jex(n) ¼ tr[RXXK(n)], (19:17)

where the trace tr[�] of a matrix is the sum of its diagonal values.

19.4 Analysis of the LMS Adaptive Filter

We now analyze the behavior of the LMS adaptive filter using the assumptions and definitions that we
have provided. For the first portion of our analysis, we characterize the mean behavior of the filter
coefficients of the LMS algorithm in Equations 19.1 and 19.2. Then, we provide a mean-square analysis of
the system that characterizes the natures of K(n), jex(n), and M in Equations 19.14 through 19.16,
respectively.

19.4.1 Mean Analysis

By substituting the definition of d(n) from the desired response signal model in Equation 19.4 into the
coefficient updates in Equations 19.1 and 19.2, we can express the LMS algorithm in terms of the
coefficient error vector in Equation 19.13 as

V(nþ 1) ¼ V(n)� m(n)X(n)XT(n)V(n)þ m(n)h(n)X(n): (19:18)
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We take expectations of both sides of Equation 19.18, which yields

E{V(nþ 1)} ¼ E{V(n)}� m(n)E{X(n)XT(n)V(n)}þ m(n)E{h(n)X(n)}, (19:19)

in which we have assumed that m(n) does not depend on X(n), d(n), or W(n).
In many practical cases of interest, either the input signal x(n) and=or the noise signal h(n) is zero-

mean, such that the last term in Equation 19.19 is zero. Moreover, under the independence assumptions,
it can be shown that V(n) is approximately independent of X(n), and thus the second expectation on the
right-hand side of Equation 19.19 is approximately given by

E{X(n)XT(n)V(n)} � E{X(n)XT(n)}E{V(n)}

¼ RXXE{V(n)}: (19:20)

Combining these results with Equation 19.19, we obtain

E{V(nþ 1)} ¼ (I� m(n)RXX)E{V(n)}: (19:21)

The simple expression in Equation 19.21 describes the evolutionary behavior of the mean values of the
errors in the LMS adaptive filter coefficients. Moreover, if the step size m(n) is constant, then we can write
Equation 19.21 as

E{V(n)} ¼ (I� mRXX)
nE{V(0)}: (19:22)

To further simplify this matrix equation, note thatRXX can be described by its eigenvalue decomposition as

RXX ¼ QLQT, (19:23)

where
Q is a matrix of the eigenvectors of RXX

L is a diagonal matrix of the eigenvalues {l0, l1, . . . , lL�1} of RXX, which are all real valued because of
the symmetry of RXX

Through some simple manipulations of Equation 19.22, we can express the (iþ 1)th element of
E{W(n)} as

E{wi(n)} ¼ wi, opt þ
XL�1

j¼0

qij(1� mlj)
nE{~vj(0)}, (19:24)

where
qij is the (iþ 1, jþ 1)th element of the eigenvector matrix Q
~vj(n) is the ( jþ 1)th element of the rotated coefficient error vector defined as

~V(n) ¼ QTV(n): (19:25)

From Equations 19.21 and 19.24, we can state several results concerning the mean behaviors of the LMS
adaptive filter coefficients:

. The mean behavior of the LMS adaptive filter as predicted by Equation 19.21 is identical to that of
the method of steepest descent for this adaptive filtering task. Discussed in Chapter 18, the method
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of steepest descent is an iterative optimization procedure that requires precise knowledge of
the statistics of x(n) and d(n) to operate. That the LMS adaptive filter’s average behavior is similar
to that of steepest descent was recognized in one of the earliest publications of the LMS adaptive
filter [1].

. The mean value of any LMS adaptive filter coefficient at any time instant consists of the sum of the
optimal coefficient value and a weighted sum of exponentially converging and=or diverging terms.
These error terms depend on the elements of the eigenvector matrix Q, the eigenvalues of RXX, and
the mean E{V(0)} of the initial coefficient error vector.

. If all of the eigenvalues {lj} of RXX are strictly positive and

0 < m <
2
lj

(19:26)

for all 0< j< L� 1, then the means of the filter coefficients converge exponentially to their
optimum values. This result can be found directly from Equation 19.24 by noting that the quantity
(1�mlj)

n ! 0 as n ! 1 if j1�mlj j< 1.
. The speeds of convergence of the means of the coefficient values depend on the eigenvalues li and

the step size m. In particular, we can define the time constant tj of the jth term within the
summation on the right-hand side of Equation 19.24 as the approximate number of iterations it
takes for this term to reach (1=e)th its initial value. For step sizes in the range 0<m � 1=lmax

where lmax is the maximum eigenvalue of RXX, this time constant is

tj ¼ � 1
ln (1� mlj)

� 1
mlj

: (19:27)

Thus, faster convergence is obtained as the step size is increased. However, for step size values greater
than 1=lmax, the speeds of convergence can actually decrease. Moreover, the convergence of the system is
limited by its mean-squared behavior, as we shall indicate shortly.

19.4.1.1 An Example

Consider the behavior of an L¼ 2-coefficient LMS adaptive filter in which x(n) and d(n) are generated as

x(n) ¼ 0:5x(n� 1)þ
ffiffiffi
3

p

2
z(n) (19:28)

d(n) ¼ x(n)þ 0:5x(n� 1)þ h(n) , (19:29)

where z(n) and h(n) are zero-mean uncorrelated jointly Gaussian signals with variances of 1 and 0.01,
respectively. It is straightforward to show for these signal statistics that

Wopt ¼ 1
0:5

� �
and RXX ¼ 1 0:5

0:5 1

� �
: (19:30)

Figure 19.2a depicts the behavior of the mean analysis equation in Equation 19.24 for these signal
statistics, where m(n)¼ 0.08 and W(0)¼ [4� 0.5]T. Each circle on this plot corresponds to the value of
E{W(n)} for a particular time instant. Shown on this {w0,w1} plot are the coefficient error axes {v0, v1},
the rotated coefficient error axes {~v0,~v1}, and the contours of the excess MSE error surface jex as a
function of w0 and w1 for values in the set {0.1, 0.2, 0.5, 1, 2, 5, 10, 20}. Starting from the initial coefficient
vector W(0), E{W(n)} converge toward Wopt by reducing the components of the mean coefficient error
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vector E{V(n)} along the rotated coefficient error axes {~v0,~v1} according to the exponential weighting
factors (1�ml0)

n and (1�ml1)
n in Equation 19.24.

For comparison, Figure 19.2b shows five different simulation runs of an LMS adaptive filter operating
on Gaussian signals generated according to Equations 19.28 and 19.29, where m(n)¼ 0.08 and W(0)¼
[4� 0.5]T in each case. Although any single simulation run of the adaptive filter shows a considerably
more erratic convergence path than that predicted by Equation 19.24, one observes that the average of
these coefficient trajectories roughly follows the same path as that of the analysis.

19.4.2 Mean-Square Analysis

Although Equation 19.24 characterizes the mean behavior of the LMS adaptive filter, it does not indicate
the nature of the fluctuations of the filter coefficients about their mean values, as indicated by the actual
behavior of the LMS adaptive filter in Figure 19.2b. The magnitudes of these fluctuations can be
accurately characterized through a mean-square analysis of the LMS adaptive filter. Because the coeffi-
cient error correlation matrix K(n) as defined in Equation 19.14 is the basis for our mean-square analysis,
we outline methods for determining an evolution equation for this matrix. Then, we derive the forms of
this evolution equation for both the i.i.d. and SIRP input signal models described previously, and we
summarize the resulting expressions for the steady-state values of the misadjustment and excess MSE in
Equations 19.16 and 19.17, respectively, for these different signal types. Finally, several conclusions
regarding the mean-square behavior of the LMS adaptive filter are drawn.

19.4.2.1 Evolution of the Coefficient Error Correlation Matrix

To derive an evolution equation for K(n), we post-multiply both sides of Equation 19.18 by their
respective transposes, which gives

V(nþ 1)VT(nþ 1) ¼ (I� m(n)X(n)XT(n))V(n)VT(n)(I� m(n)X(n)XT(n))

þ m2(n)h2(n)X(n)XT(n)

þ m(n)h(n)(I� m(n)X(n)XT(n))V(n)XT(n)

þ m(n)h(n)X(n)VT(n)(I� m(n)X(n)XT(n)): (19:31)
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FIGURE 19.2 Comparison of the predicted and actual performances of the LMS adaptive filter in the two-
coefficient example: (a) the behavior predicted by the mean analysis and (b) the actual LMS adaptive filter behavior
for five different simulation runs.
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Taking expectations of both sides of Equation 19.31, we note that h(n) is zero mean and independent of
both X(n) and V(n) from our models and assumptions, and thus the expectations of the third and fourth
terms on the right-hand side of Equation 19.31 are zero. Moreover, by using the independence
assumptions, it can be shown that

E{X(n)XT(n)V(n)VT(n)} � E{X(n)XT(n)}E{V(n)VT(n)}

¼ RXXK(n): (19:32)

Thus, we obtain from Equation 19.31 the expression

K(nþ 1) ¼ K(n)� m(n)[RXXK(n)þ K(n)RXX]

þ m2(n)E{X(n)XT(n)K(n)X(n)XT(n)}þ m2(n)s2
hRXX , (19:33)

where s2
h is as defined in Equation 19.12.

At this point, the analysis can be simplified depending on how the third term on the right-hand side of
Equation 19.33 is evaluated according to the signal models and assumptions.

19.4.2.1.1 Analysis for SIRP Input Signals

In this case, the value of E{X(n)XT(n)K(n)X(n)XT(n)} can be expressed as

E{X(n)XT(n)K(n)X(n)XT(n)} ¼ m(2, 2)
z [2RXXK(n)RXX þ RXXtr{RXXK(n)}], (19:34)

where the moment term m(2, 2)
z is given by

m(2, 2)
z ¼ E{z2i (n)z

2
j (n)} (19:35)

for any 0� i 6¼ j� (L� 1) and

zi(n) ¼ l
1=2
i

XL�1

l¼0

qlix(n� l): (19:36)

If x(n) is a Gaussian random process, then m(2, 2)
z ¼ 1, and it can be shown that m(2, 2)

z 	 1 for SIRPs in
general. For more details on these results, see [15].

19.4.2.1.2 Analysis for I.I.D. Input Signals

In this case, we can express the (i, j) th element of the matrix E{X(n)XT(n)K(n)X(n)XT(n)} as

[E{X(n)XT(n)K(n)X(n)XT(n)}]i, j ¼
2s4

x[K(n)]i, j, if i 6¼ j

s4
x g[K(n)]i, j þ

PL
m¼1,m 6¼i

[K(n)]m,m

 !
, if i ¼ j ,

8><
>: (19:37)

where [K(n)]i, j is the (i, j) th element of K(n),

s2
x ¼ E{x2(n)}, and g ¼ E{x4(n)}

s4
x

, (19:38)

respectively. For details, see [5].
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19.4.2.1.3 Zeroth-Order Approximation Near Convergence

For small step sizes, it can be shown that the elements of K(n) are approximately proportional to both the
step size and the noise variance s2

h in steady-state. Thus, the magnitudes of the elements in the third term
on the right-hand side of Equation 19.33 are about a factor of m(n) smaller than those of any other terms
in this equation at convergence. Such a result suggests that we could set

m2(n)E{X(n)XT(n)K(n)X(n)XT(n)} � 0 (19:39)

in the steady-state analysis of Equation 19.33 without perturbing the analytical results too much. If this
approximation is valid, then the form of Equation 19.33 no longer depends on the form of the amplitude
statistics of x(n), as in the case of the mean analysis.

19.4.2.2 Excess MSE, Mean-Square Stability, and Misadjustment

Given the results in Equations 19.34 through 19.39, we can use the evolution equation for K(n) in
Equation 19.33 to explore the mean-square behavior of the LMS adaptive filter in several ways:

. By studying the structure of Equation 19.33 for different signal types, we can determine conditions
on the step size m(n) to guarantee the stability of the mean-square analysis equation.

. By setting K(nþ 1)¼K(n) and fixing the value of m(n), we can solve for the steady-state value of
K(n) at convergence, thereby obtaining a measure of the fluctuations of the coefficients about their
optimum solutions.

. Given a value for V(0), we can write a computer program to simulate the behavior of this equation
for different signal statistics and step size sequences.

Moreover, once the matrix sequence K(n) is known, we can obtain the values of the excess MSE and
misadjustment from K(n) by employing the relations in Equations 19.16 and 19.17, respectively.

Table 19.1 summarizes many of the analytical results that can be obtained from a careful study of
Equation 19.33. Shown in the table are the conditions on the step size m(n)¼m to guarantee stability,
sufficient stability conditions on the step size that can be easily calculated, and the misadjustment in
steady-state for the three different methods of evaluating E{X(n)XT(n)K(n)X(n)XT(n)} in Equations
19.34 through 19.39. In the table, the quantity C is defined as

C ¼
XL�1

i¼0

li

1� mm(2, 2)
z li

: (19:40)

From these results and others that can be obtained from Equation 19.33, we can infer several facts
about the mean-square performance of the LMS adaptive filter:

. The value of the excess MSE at time n consists of the sum of the steady-state excess MSE, given by
Ms2

h, and a weighted sum of L exponentially converging and=or diverging terms. Similar to the
mean analysis case, these additional terms depend on the elements of the eigenvector matrix Q, the

TABLE 19.1 Summary of MSE Analysis Results

Assumption MSE Stability Conditions Sufficient Conditions Misadjustment

I.I.D. input 0 < m < 2
(L�1þg)s2

x
0 < m < 2

(L�1þg)s2
x

M ¼ ms2
xL

2�ms2
x(L�1þg)

SIRP input 0 < m < 2
m(2,2)

z lmax
and mm(2,2)

z C < 2 0 < m < 2
3Lm(2,2)

z s2
x

M ¼ mC
2�mm(2,2)

z C

Approximation 0 < m < 1
lmax

0 < m < 1
Ls2

x
M ¼ ms2

xC
2
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eigenvalues of RXX, the eigenvalues of K(0), and the values of m(2,2)
z or g for the SIRP or i.i.d. input

signal models, respectively.
. For all input signal types, approximate conditions on the fixed step size value to guarantee

convergence of the evolution equations for K(n) are of the form

0 < m <
K
Ls2

x
, (19:41)

where s2
x is the input signal power and where the constant K depends weakly on the nature of the

input signal statistics and not on the magnitude of the input signal. All of the sufficient stability
bounds on m as shown in Table 19.1 can be put in the form of Equation 19.26. Because of the
inaccuracies within the analysis that are caused by the independence assumptions, however, the
actual step size chosen for stability of the LMS adaptive filter should be somewhat smaller than
these values, and step sizes in the range 0 < m(n) < 0:1=(Ls2

x) are often chosen in practice.
. The misadjustment of the LMS adaptive filter increases as the filter length L and step size m are

increased. Thus, a larger step size causes larger fluctuations of the filter coefficients about their
optimum solutions in steady-state.

19.5 Performance Issues

When using the LMS adaptive filter, one must select the filter length L and the step size m(n) to obtain
the desired performance from the system. In this section, we explore the issues affecting the choices
of these parameters using the analytical results for LMS adaptive filter’s behavior derived in the
last section.

19.5.1 Basic Criteria for Performance

The performance of the LMS adaptive filter can be characterized in three important ways: the adequacy
of the FIR filter model, the speed of convergence of the system, and the misadjustment in steady-state.

19.5.1.1 Adequacy of the FIR Model

The LMS adaptive filter relies on the linearity of the FIR filter model to accurately characterize the
relationship between the input and desired response signals. When the relationship between x(n) and
d(n) deviates from the linear one given in Equation 19.4, then the performance of the overall system
suffers. In general, it is possible to use a nonlinear model in place of the adaptive FIR filter model
considered here. Possible nonlinear models include polynomial-based filters such as Volterra and bilinear
filters [16] as well as neural network structures [17].

Another source of model inaccuracy is the finite impulse response length of the adaptive FIR filter.
It is typically necessary to tune both the length of the filter L and the relative delay between the input
and desired response signals so that the input signal values not contained in X(n) are largely
uncorrelated with the desired response signal sample d(n). However, such a situation may be impossible
to achieve when the relationship between x(n) and d(n) is of an infinite-impulse response (IIR) nature.
Adaptive IIR filters can be considered for these situations, although the stability and performance
behaviors of these systems are much more difficult to characterize. Adaptive IIR filters are discussed
in Chapter 23.

19.5.1.2 Speed of Convergence

The rate at which the coefficients approach their optimum values is called the speed of convergence. As
the analytical results show, there exists no one quantity that characterizes the speed of convergence, as it
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depends on the initial coefficient values, the amplitude and correlation statistics of the signals, the filter
length L, and the step size m(n). However, we can make several qualitative statements relating the speed
of convergence to both the step size and the filter length. All of these results assume that the desired
response signal model in Equation 19.4 is reasonable and that the errors in the filter coefficients are
uniformly distributed across the coefficients on average.

. The speed of convergence increases as the value of the step size is increased, up to step sizes near
one-half the maximum value required for stable operation of the system. This result can be
obtained from a careful analysis of Equation 19.33 for different input signal types and correlation
statistics. Moreover, by simulating the behavior of Equations 19.33 and 19.34 for typical signal
scenarios, it is observed that the speed of convergence of the excess MSE actually decreases for
large enough step size values. For i.i.d. input signals, the fixed step size providing fastest conver-
gence of the excess MSE is exactly one-half the MSE step size bound as given in Table 19.1 for this
type of input signal.

. The speed of convergence decreases as the length of the filter is increased. The reasons for this
behavior are twofold. First, if the input signal is correlated, the condition number of RXX, defined
as the ratio of the largest and smallest eigenvalues of this matrix, generally increases as L is
increased for typical real-world input signals. A larger condition number for RXX makes it more
difficult to choose a good step size to obtain fast convergence of all of the elements of either
E{V(n)} or K(n). Such an effect can be seen in Equation 19.24, as a larger condition number leads
to a larger disparity in the values of (1�mlj) for different j. Second, in the MSE analysis equation
of Equation 19.33, the overall magnitude of the expectation term E{X(n)XT(n)K(n)X(n)XT(n)} is
larger for larger L, due to the fact that the scalar quantity XT(n)K(n)X(n) within this expectation
increases as the size of the filter is increased. Since this quantity is always positive, it limits the
amount that the excess MSE can be decreased at each iteration, and it reduces the maximum step
size that is allowed for mean-square convergence as L is increased.

. The maximum possible speed of convergence is limited by the largest step size that can be chosen
for stability for moderately correlated input signals. In practice, the actual step size needed for
stability of the LMS adaptive filter is smaller than one-half the maximum values given in Table 19.1
when the input signal is moderately correlated. This effect is due to the actual statistical relation-
ships between the current coefficient vector W(n) and the signals X(n) and d(n), relationships that
are neglected via the independence assumptions. Since the convergence speed increases as m is
increased over this allowable step size range, the maximum stable step size provides a practical
limit on the speed of convergence of the system.

. The speed of convergence depends on the desired level of accuracy that is to be obtained by the
adaptive filter. Generally speaking, the speed of convergence of the system decreases as the
desired level of misadjustment is decreased. This result is due to the fact that the behavior of
the system is dominated by the slower converging modes of the system as the length of adaptation
time is increased. Thus, if the desired level of misadjustment is low, the speed of convergence is
dominated by the slower-converging modes, thus limiting the overall convergence speed of
the system.

19.5.1.3 Misadjustment

The misadjustment, defined in Equation 19.16, is the additional fraction of MSE in the filter output above
the minimum MSE value s2

h caused by a nonzero adaptation speed. We can draw the following two
conclusions regarding this quantity:

. The misadjustment increases as the step size is increased.

. The misadjustment increases as the filter length is increased.

Both results can be proven by direct study of the analytical results for M in Table 19.1.
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19.5.2 Identifying Stationary Systems

We now evaluate the basic criteria for performance to provide qualitative guidance as to how to choose
m and L to identify a stationary system.

19.5.2.1 Choice of Filter Length

We have seen that as the filter length L is increased, the speed of convergence of the LMS adaptive filter
decreases, and the misadjustment in steady-state increases. Therefore, the filter length should be chosen
as short as possible but long enough to adequately model the unknown system, as too short a filter model
leads to poor modeling performance. In general, there exists an optimal length L for a given m that exactly
balances the penalty for a finite-length filter model with the increase in misadjustment caused by a longer
filter length, although the calculation of such a model order requires more information than is typically
available in practice. Modeling criteria, such as Akaike’s information criterion [18] and minimum
description length [19] could be used in this situation.

19.5.2.2 Choice of Step Size

We have seen that the speed of convergence increases as the step size is increased, up to values that are
roughly within a factor of 1=2 of the step size stability limits. Thus, if fast convergence is desired, one
should choose a large step size according to the limits in Table 19.1. However, we also observe that the
misadjustment increases as the step size is increased. Therefore, if highly accurate estimates of the filter
coefficients are desired, a small step size should be chosen. This classical trade-off in convergence speed
vs. the level of error in steady state dominates the issue of step size selection in many estimation schemes.

If the user knows that the relationship between x(n) and d(n) is linear and time-invariant, then one
possible solution to the above trade-off is to choose a large step size initially to obtain fast convergence,
and then switch to a smaller step size to obtain a more accurate estimate of Wopt near convergence. The
point to switch to a smaller step size is roughly when the excess MSE becomes a small fraction (
1=10th)
of the minimum MSE of the filter. This method of gearshifting, as it is commonly known, is part of a
larger class of time-varying step size methods that we shall explore shortly.

Although we have discussed qualitative criteria by which to choose a fixed step size, it is possible to
define specific performance criteria by which to choose m. For one study of this problem for i.i.d. input
signals, see [20].

19.5.3 Tracking Time-Varying Systems

Since the LMS adaptive filter continually adjusts its coefficients to approximately minimize the MSE
criterion, it can adjust to changes in the relationship between x(n) and d(n). This behavior is commonly
referred to as tracking. In such situations, it clearly is not desirable to reduce the step size to an extremely
small value in steady-state, as the LMS adaptive filter would not be able to follow any changes in the
relationship between x(n) and d(n).

To illustrate the issues involved, consider the desired response signal model given by

d(n) ¼ WT
opt(n)X(n)þ h(n) , (19:42)

where the optimum coefficient vector Wopt(n) varies with time according to

Wopt(nþ 1) ¼ Wopt(n)þM(n) , (19:43)

and {M(n)} is a sequence of vectors whose elements are all i.i.d. This nonstationary model is similar to
others used in other tracking analyses of the LMS adaptive filter [4,21]; it also enables a simple analysis
that is similar to the stationary system identification model discussed earlier.
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Applying the independence assumptions, we can analyze the behavior of the LMS adaptive filter for
this desired response signal model. For brevity, we only summarize the results of an approximate analysis
in which terms of the form m2E{X(n)XT(n)K(n)X(n)XT(n)} are neglected in the MSE behavioral
equations [4]. The misadjustment of the system in steady-state is

Mnon ¼ L
2

ms2
x þ

s2
m

ms2
h

 !
, (19:44)

where s2
m is the power in any one element of M(n). Details of a more-accurate tracking analysis can be

found in [21].
In this case, the misadjustment is the sum of two terms. The first term is the same as that for the

stationary case and is proportional to m. The second term is the lag error and is due to the fact that the
LMS coefficients follow or ‘‘lag’’ behind the optimum coefficient values. The lag error is proportional to
the speed of variation of the unknown system through s2

m and is inversely proportional to the step size,
such that its value increases as the step size is decreased.

In general, there exists an optimum fixed step size that minimizes the misadjustment in steady-state
for an LMS adaptive filter that is tracking changes inWopt(n). For the approximate analysis used to derive
Equation 19.44, the resulting step size is

mopt ¼
sm

shsx
: (19:45)

As the value of s2
m increases, the level of nonstationarity increases such that a larger step size is required

to accurately track changes in the unknown system. Similar conclusions can be drawn from other
analyses of the LMS adaptive filter in tracking situations [22].

19.6 Selecting Time-Varying Step Sizes

The analyses of the previous sections enable one to choose a fixed step size m for the LMS adaptive
filter to meet the system’s performance requirements when the general characteristics of the input and
desired response signals are known. In practice, the exact statistics of x(n) and d(n) are unknown or
vary with time. A time-varying step size m(n), if properly computed, can provide stable, robust,
and accurate convergence behavior for the LMS adaptive filter in these situations. In this section, we
consider useful online procedures for computing m(n) in the LMS adaptive filter to meet these perform-
ance requirements.

19.6.1 Normalized Step Sizes

For the LMS adaptive filter to be useful, it must operate in a stable manner so that its coefficient values do
not diverge. From the stability results in Table 19.1 and the generalized expression for these stability
bounds in Equation 19.41, the upper bound for the step size is inversely proportional to the input signal
power s2

x in general. In practice, the input signal power is unknown or varies with time. Moreover, if one
were to choose a small fixed step size value to satisfy these stability bounds for the largest anticipated
input signal power value, then the convergence speed of the system would be unnecessarily slow during
periods when the input signal power is small.

These concerns can be addressed by calculating a normalized step size m(n) as

m(n) ¼ �m

dþ Lŝ2
x(n)

, (19:46)
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wherecs2
x(n) is an estimate of the input signal power

�m is a constant somewhat smaller than the value of K required for system stability in Equation 19.41
d is a small constant to avoid a divide-by-zero should cs2

x(n) approach zero

To estimate the input signal power, a lowpass filter can be applied to the sequence x2(n) to track its
changing envelope. Typical estimators include

. Exponentially weighted estimate:

cs2
x(n) ¼ (1� c)cs2

x(n� 1)þ cx2(n) (19:47)

. Sliding-window estimate:

cs2
x(n) ¼

1
N

XN�1

i¼0

x2(n� i) (19:48)

where the parameters c, 0< c � 1, and N,N	 L, control the effective memories of the two estimators,
respectively.

19.6.1.1 Normalized LMS Adaptive Filter

By choosing a sliding window estimate of length N¼ L, the LMS adaptive filter with m(n) in Equation
19.46 becomes

W(nþ 1) ¼ W(n)þ �me(n)
p(n)

X(n) (19:49)

p(n) ¼ dþ kX(n)k2 , (19:50)

where kX(n)k2 is the L2-norm of the input signal vector. The value of p(n) can be updated recursively as

p(n) ¼ p(n� 1)þ x2(n)� x2(n� L), (19:51)

where p(0)¼ d and x(n)¼ 0 for n� 0. The adaptive filter in Equation 19.49 is known as the
normalized LMS (NLMS) adaptive filter. It has two special properties that make it useful for adaptive
filtering tasks:

. The NLMS adaptive filter is guaranteed to converge for any value of �m in the range

0 < �m < 2, (19:52)

regardless of the statistics of the input signal. Thus, selecting the value of �m for stable behavior of
this system is much easier than selecting m for the LMS adaptive filter.

. With the proper choice of �m, the NLMS adaptive filter can often converge faster than the LMS
adaptive filter. In fact, for noiseless system identification tasks in which h(n) in Equation 19.4 is
zero, one can obtain Wopt(n)¼Wopt after L iterations of Equation 19.49 for �m¼ 1. Moreover, for
SIRP input signals, the NLMS adaptive filter provides more uniform convergence of the filter
coefficients, making the selection of �m an easier proposition than the selection of m for the LMS
adaptive filter.

A discussion of these and other results on the NLMS adaptive filter can be found in [15,23–25].
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19.6.2 Adaptive and Matrix Step Sizes

In addition to stability, the step size controls both the speed of convergence and the misadjustment of the
LMS adaptive filter through the statistics of the input and desired response signals. In situations where
the statistics of x(n) and=or d(n) are changing, the value of m(n) that provides the best performance from
the system can change as well. In these situations, it is natural to consider m(n) as an adaptive parameter
to be optimized along with the coefficient vector W(n) within the system. While it may seem novel, the
idea of computing an adaptive step size has a long history in the field of adaptive filters [2]. Numerous
such techniques have been proposed in the scientific literature. One such method uses a stochastic
gradient procedure to adjust the value of m(n) to iteratively minimize the MSE within the LMS adaptive
filter. A derivation and performance analysis of this algorithm is given in [26].

In some applications, the task at hand suggests a particular strategy for adjusting the step size m(n) to
obtain the best performance from an LMS adaptive filter. For example, in echo cancellation for telephone
networks, the signal-to-noise ratio of d(n) falls to extremely low values when the near-end talker signal is
present, making accurate adaptation during these periods difficult. Such systems typically employ
double-talk detectors, in which estimates of the statistical characteristics of x(n), d(n), and=or e(n) are
used to raise and lower the value of m(n) in an appropriate manner. A discussion of this problem and a
method for its solution are given in [27].

While our discussion of the LMS adaptive filter has assumed a single step size value for each of the
filter coefficients, it is possible to select L different step sizes mi(n) for each of the L coefficient updates
within the LMS adaptive filter. To select fixed values for each mi(n)¼mi, these matrix step size methods
require prior knowledge about the statistics of x(n) and d(n) and=or the approximate values ofWopt. It is
possible, however, to adapt each mi(n) according to a suitable performance criterion to obtain improved
convergence behavior from the overall system. A particularly simple adaptive method for calculating
matrix step sizes is provided in [28].

19.6.3 Other Time-Varying Step Size Methods

In situations where the statistics of x(n) and d(n) do not change with time, choosing a variable step size
sequence m(n) is still desirable, as one can decrease the misadjustment over time to obtain an accurate
estimate of the optimum coefficient vector Wopt. Such methods have been derived and characterized in a
branch of statistical analysis known as stochastic approximation [29]. Using this formalism, it is possible
to prove under certain assumptions on x(n) and d(n) that the value of W(n) for the LMS adaptive filter
converges to Wopt as n ! 1 if m(n) satisfies

X1
n¼0

jm(n)j ! 1 and
X1
n¼0

m2(n) < 1 , (19:53)

respectively. One step size function satisfying these constraints is

m(n) ¼ m(0)
nþ 1

, (19:54)

where m(0) is an initial step size parameter. The gearshifting method described in Section 19.5.2 can be
seen as a simple heuristic approximation to Equation 19.54. Moreover, one can derive an optimum step
size sequence mopt(n) that minimizes the excess MSE at each iteration under certain situations, and the
limiting form of the resulting step size values for stationary signals are directly related to Equation 19.54
as well [24].
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19.7 Other Analyses of the LMS Adaptive Filter

While the analytical techniques employed in this section are useful for selecting design parameters for the
LMS adaptive filter, they are but one method for characterizing the behavior of this system. Other forms
of analyses can be used to determine other characteristics of this system, such as the p.d.f.s of the adaptive
filter coefficients [30] and the probability of large excursions in the adaptive filter coefficients for different
types of input signals [31]. In addition, much research effort has focused on characterizing the stability of
the system without extensive assumptions about the signals being processed. One example of such an
analysis is given in [32]. Other methods for analyzing the LMS adaptive filter include the method of
ordinary differential equations [33], the stochastic approximation methods described previously [29],
computer-assisted symbolic derivation methods [14], and averaging techniques that are particularly
useful for deterministic signals [34].

19.8 Analysis of Other Adaptive Filters

Because of the difficulties in performing multiplications in the first digital hardware implementations of
adaptive filters, many of these systems employed nonlinearities in the coefficient update terms to simplify
their hardware requirements. An example of one such algorithm is the sign-error adaptive filter, in which
the coefficient update is

W(nþ 1) ¼ W(n)þ m(n)sgn(e(n))X(n) , (19:55)

where the value of sgn[e(n)] is either 1 or �1 depending on whether e(n) is positive or negative,
respectively. If m(n) is chosen as a power of 2, this algorithm only requires a comparison and bit shift
per coefficient to implement in hardware. Other algorithms employing nonlinearities of the input signal
vector X(n) in the updates are also useful [35].

Many of the analysis techniques developed for the LMS adaptive filter can be applied to algorithms with
nonlinearities in the coefficient updates, although such methods require additional assumptions to obtain
accurate results. For presentations of two such analyses, see [36,37]. It should be noted that the perform-
ance characteristics and stability properties of these nonlinearly modified versions of the LMS adaptive
filter can be quite different from those of the LMS adaptive filter. For example, the sign-error adaptive filter
in Equation 19.55 is guaranteed to converge for any fixed positive step size value under fairly loose
assumptions on x(n) and d(n) [38].

19.9 Conclusions

In summary, we have described a statistical analysis of the LMS adaptive filter, and through this analysis,
suggestions for selecting the design parameters for this system have been provided. While useful,
analytical studies of the LMS adaptive filter are but one part of the system design process. As in all
design problems, sound engineering judgment, careful analytical studies, computer simulations, and
extensive real-world evaluations and testing should be combined when developing an adaptive filtering
solution to any particular task.
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Adaptive filters are systems that adjust themselves to a changing environment. They are designed to meet
certain performance specifications and are expected to perform reasonably well under the operating
conditions for which they have been designed. In practice, however, factors that may have been ignored or
overlooked in the design phase of the system can affect the performance of the adaptive scheme that has been
chosen for the system. Such factors include unmodeled dynamics, modeling errors, measurement noise, and
quantization errors, among others, and their effect on the performance of an adaptive filter could be critical to
the proposed application. Moreover, technological advancements in digital circuit and VLSI design have
spurred an increase in the range of new adaptive filtering applications in fields ranging from biomedical
engineering to wireless communications. For these new areas, it is increasingly important to design adaptive
schemes that are tolerant to unknown or nontraditional factors and effects. The aim of this chapter is to
explore and determine the robustness properties of some classical adaptive schemes. Our presentation is
meant as an introduction to these issues, and many of the relevant details of specific topics discussed in this
section, and alternative points of view, can be found in the references at the end of the chapter.

20.1 Motivation and Example

A classical application of adaptive filtering is that of system identification. The basic problem formulation
is depicted in Figure 20.1, where z�1 denotes the unit-time delay operator. The diagram contains two
system blocks: one representing the unknown plant or system and the other containing a time-variant
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tapped-delay-line or finite-impulse-response (FIR) filter structure. The unknown plant represents an
arbitrary relationship between its input and output. This block might implement a pole-zero transfer
function, an all-pole or autoregressive transfer function, a fixed or time-varying FIR system, a nonlinear
mapping, or some other complex system. In any case, it is desired to determine an FIR model for the
unknown system of a predetermined impulse response lengthM, and whose coefficients at time i� 1 are
denoted by {w1, i�1,w2, i�1, . . . ,wM, i�1}. The unknown system and the FIR filter are excited by the same
input sequence {u(i)}, where the time origin is at i ¼ 0.

If we collect the FIR coefficients into a column vector, say wi�1 ¼ col{w1, i�1,w2, i�1, . . . ,wM, i�1}, and
define the state vector of the FIR model at time i as ui ¼ col{u(i), u(i� 1), . . . , u(i�M þ 1)}, then the
output of the FIR filter at time i is the inner product uTi wi�1. In principle, this inner product should be
compared with the output y(i) of the unknown plant in order to determine whether or not the FIR output
is a good enough approximation for the output of the plant and, therefore, whether or not the current
coefficient vector wi�1 should be updated.

In general, however, we do not have direct access to the uncorrupted output y(i) of the plant but rather
to a noisy measurement of it, say d(i) ¼ y(i)þ v(i). The purpose of an adaptive scheme is to employ the
output error sequence {e(i) ¼ d(i)� uTi wi�1}, which measures how far d(i) is from uTi wi�1, in order to
update the entries of wi�1 and provide a better model, say wi, for the unknown system. That is, the
purpose of the adaptive filter is to employ the available data at time i, {d(i),wi�1,ui}, in order to update
the coefficient vector wi�1 into a presumably better estimate vector wi.

In this sense, we may regard the adaptive filter as a recursive estimator that tries to come up with
a coefficient vector w that ‘‘best’’ matches the observed data {d(i)} in the sense that, for all i,
d(i) � uTi w þ v(i) to good accuracy. The successive wi provide estimates for the unknown and desired w.

20.2 Adaptive Filter Structure

We may reformulate the above adaptive problem in mathematical terms as follows. Let {ui} be a
sequence of regression vectors and let w be an unknown column vector to be estimated or identified.
Given noisy measurements {d(i)} that are assumed to be related to uTi w via an additive noise model of
the form

d(i) ¼ uTi w þ v(i), (20:1)

u (i) Unknown plant y(i)

v (i)

d (i)

e (i)

–

z–1z–1z–1

w1,i–1 w2,i–1 w3,i–1 wM,i–1

FIGURE 20.1 A system identification example.

20-2 Digital Signal Processing Fundamentals



we wish to employ the given data {d(i), ui} in order to provide recursive estimates for w at successive time
instants, say {w0,w1,w2, . . . }. We refer to these estimates as weight estimates since they provide
estimates for the coefficients or weights of the tapped-delay model.

Most adaptive schemes perform this task in a recursive manner that fits into the following general
description: starting with an initial guess for w, say w�1, iterate according to the learning rule

new weight
estimate

� �
¼ old weight

estimate

� �
þ correction

term

� �
,

where the correction term is usually a function of {d(i),ui, old weight estimate}. More compactly, we
may write wi ¼ wi�1 þ f [d(i),ui,wi�1], where wi denotes an estimate for w at time i and f denotes a
function of the data {d(i),ui,wi�1} or of previous values of the data, as in the case where only a filtered
version of the error signal d(i)� uTi wi�1 is available. In this context, the well-known least-mean-square
(LMS) algorithm has the form

wi ¼ wi�1 þ m � ui � [d(i)� uTi � wi�1], (20:2)

where m is known as the step-size parameter.

20.3 Performance and Robustness Issues

The performance of an adaptive scheme can be studied from many different points of view. One
distinctive methodology that has attracted considerable attention in the adaptive filtering literature
is based on stochastic considerations that have become known as the independence assumptions.
In this context, certain statistical assumptions are made on the natures of the noise signal {v(i)} and
of the regression vectors {ui}, and conclusions are derived regarding the steady-state behavior of the
adaptive filter.

The discussion in this chapter avoids statistical considerations and develops the analysis in a purely
deterministic framework that is convenient when prior statistical information is unavailable or when
the independence assumptions are unreasonable. The conclusions discussed herein highlight certain
features of the adaptive algorithms that hold regardless of any statistical considerations in an adaptive
filtering task.

Returning to the data model in Equation 20.1, we see that it assumes the existence of an unknown
weight vector w that describes, along with the regression vectors {ui}, the uncorrupted data {y(i)}. This
assumption may or may not hold.

For example, if the unknown plant in the system identification scenario of Figure 20.1 is itself an FIR
system of length M, then there exists an unknown weight vector w that satisfies Equation 20.1. In this
case, the successive estimates provided by the adaptive filter attempt to identify the unknown weight
vector of the plant.

If, on the other hand, the unknown plant of Figure 20.1 is an autoregressive model of the simple form

1
1� cz�1

¼ 1þ cz�1 þ c2z�2 þ c3z�3 þ � � � ,

where cj j < 1, then an infinitely long tapped-delay line is necessary to justify a model of the form
Equation 20.1. In this case, the first term in the linear regression model Equation 20.1 for a finite order M
cannot describe the uncorrupted data {y(i)} exactly, and thus modeling errors are inevitable. Such modeling
errors can naturally be included in the noise term v(i). Thus, we shall use the term v(i) in Equation 20.1 to
account not only for measurement noise but also for modeling errors, unmodeled dynamics, quantization
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effects, and other kind of disturbances within the system. In many cases, the performance of the adaptive
filter depends on how these unknown disturbances affect the weight estimates.

A second source of error in the adaptive system is due to the initial guess w�1 for the weight vector.
Due to the iterative nature of our chosen adaptive scheme, it is expected that this initial weight vector
plays less of a role in the steady-state performance of the adaptive filter. However, for a finite number of
iterations of the adaptive algorithm, both the noise term v(i) and the initial weight error vector (w � w�1)
are disturbances that affect the performance of the adaptive scheme, particularly since the system
designer often has little control over them.

The purpose of a robust adaptive filter design, then, is to develop a recursive estimator that minimizes
in some well-defined sense the effect of any unknown disturbances on the performance of the filter. For
this purpose, we first need to quantify or measure the effect of the disturbances. We address this concern
in the following sections.

20.4 Error and Energy Measures

Assuming that the model Equation 20.1 is reasonable, two error quantities come to mind. The first one
measures how far the weight estimate wi�1 provided by the adaptive filter is from the true weight vector
w that we are trying to identify. We refer to this quantity as the weight error at time (i� 1), and we
denote it by ~wi�1 ¼ w � wi�1. The second type of error measures how far the estimate uTi wi�1 is from the
uncorrupted output term uTi w. We shall call this the a priori estimation error, and we denote it by
ea(i) ¼ uTi ~wi�1. Similarly, we define an a posteriori estimation error as ep(i) ¼ uTi ~wi. Comparing with the
definition of the a priori error, the a posteriori error employs the most recent weight error vector.

Ideally, one would like to make the estimation errors {~wi, ea(i)} or {~wi, ep(i)} as small as possible. This
objective is hindered by the presence of the disturbances {~w�1, v(i)}. For this reason, an adaptive filter is
said to be robust if the effects of the disturbances {~w�1, v(i)} on the resulting estimation errors {~wi, ea(i)}
or {~wi, ep(i)} is small in a well-defined sense. To this end, we can employ one of several measures to
denote how ‘‘small’’ these effects are. For our discussion, a quantity known as the energy of a signal will
be used to quantify these effects. The energy of a sequence x(i) of length N is measured by
Ex ¼

PN�1
i¼0 x(i)j j2. A finite energy sequence is one for which Ex < 1 as N ! 1. Likewise, a finite

power sequence is one for which

Px ¼ lim
N!1

1
N

XN�1

i¼0

��x(i)��2
 !

< 1:

20.5 Robust Adaptive Filtering

We can now quantify what we mean by robustness in the adaptive filtering context. Let A denote any
adaptive filter that operates causally on the input data {d(i), ui}. A causal adaptive scheme produces a
weight vector estimate at time i that depends only on the data available up to and including time i. This
adaptive scheme receives as input the data {d(i), ui} and provides as output the weight vector estimates
{wi}. Based on these estimates, we introduce one or more estimation error quantities such as the pair
{~wi�1, ea(i)} defined above. Even though these quantities are not explicitly available because w is
unknown, they are of interest to us as their magnitudes determine how well or how poorly a candidate
adaptive filtering scheme might perform.

Figure 20.2 indicates the relationship between {d(i), ui} to {~wi�1, ea(i)} in block diagram form. This
schematic representation indicates that an adaptive filter A operates on {d(i), ui} and that its performance
relies on the sizes of the error quantities {~wi�1, ea(i)}, which could be replaced by the error quantities
{~wi, ep(i)} if desired. This representation explicitly denotes the quantities {~w�1, v(i)} as disturbances to the
adaptive scheme.
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In order to measure the effect of the disturbances on the performance of an adaptive scheme, it will be
helpful to determine the explicit relationship between the disturbances and the estimation errors that is
provided by the adaptive filter. For example, we would like to knowwhat effect the noise terms and the initial
weight error guess {~w�1, v(i)} would have on the resulting a priori estimation errors and the finalweight error,
{ea(i), ~wN }, for a given adaptive scheme. Knowing such a relationship, we can then quantify the robustness of
the adaptive scheme by determining the degree to which disturbances affect the size of the estimation errors.

We now illustrate how this disturbances-to-estimation-errors relationship can be determined by
considering the LMS algorithm in Equation 20.2. Since d(i)� uTi wi�1 ¼ ea(i)þ v(i), we can subtract w
from both sides of Equation 20.2 to obtain the weight-error update equation

~wi ¼ ~wi�1 � m � ui � [ea(i)þ v(i)]: (20:3)

Assume that we run N steps of the LMS recursion starting with an initial guess ~w�1. This operation
generates the weight error estimates {~w0, ~w1, . . . , ~wN } and the a priori estimation errors {ea(0), . . . , ea(N)}.

Define the following two column vectors:

dist ¼ col
1ffiffiffiffi
m

p ~w�1, v(0), v(1), . . . , v(N)

� �
, error ¼ col ea(0), ea(1), . . . , ea(N),

1ffiffiffiffi
m

p ~wN

� �
:

The vector dist contains the disturbances that affect the performance of the adaptive filter. The initial weight
error vector is scaled by m�1=2 for convenience. Likewise, the vector error contains the a priori estimation
errors and the final weight error vector which has also been scaled bym�1=2. The weight error update relation
in Equation 20.3 allows us to relate the entries of both vectors in a straightforward manner. For example,

ea(0) ¼ uT0 ~w�1 ¼ ffiffiffiffi
m

p
uT0

� 	 1ffiffiffiffi
m

p ~w�1

� �
,

which shows how the first entry of error relates to the first entry of dist. Similarly, for ea(1) ¼ uT1 ~w0,
we obtain

ea(1) ¼ ffiffiffiffi
m

p
uT1 I � mu0u

T
0


 �� 	 1ffiffiffiffi
m

p ~w�1 � muT1u0
� 	

v(0),

{v(i)}

{d(i)}

{ui}

Adaptive
A

algorithm

w–1

{wi–1}

{ea(i)}

~

~

FIGURE 20.2 Input–output map of a generic adaptive scheme.
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which relates ea(1) to the first two entries of the vector dist. Continuing in this manner, we can relate
ea(2) to the first three entries of dist, ea(3) to the first four entries of dist, and so on.

In general, we can compactly express this relationship as

ea(0)
ea(1)
..
.

ea(N)
1ffiffiffi
m

p ~wN

2
666664

3
777775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
error

¼

�
� � O

..

. . .
.

� � � � � �

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T

1ffiffiffi
m

p ~w�1

v(0)
v(1)
..
.

v(N)

2
666664

3
777775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
dist

,

where the symbol � is used to denote the entries of the lower triangular mapping T relating dist to error.
The specific values of the entries of T are not of interest for now, although we have indicated how the
expressions for these � terms can be found. However, the causal nature of the adaptive algorithm
requires that T be of lower triangular form.

Given the above relationship, our objective is to quantify the effect of the disturbances on the
estimation errors. Let Ed and Ee denote the energies of the vectors dist and error, respectively, such that

Ee ¼ 1
m
k~wNk2 þ

XN
i¼0

ea(i)j j2 and Ed ¼ 1
m
k~w�1k2 þ

XN
i¼0

v(i)j j2,

where k�k denotes the Euclidean norm of a vector. We shall say that the LMS adaptive algorithm is
robust with level g if a relation of the form

Ee
Ed

�g2, (20:4)

holds for some positive g and for any nonzero, finite-energy disturbance vector dist. In other words, no
matter what the disturbances {~w�1, v(i)} are, the energy of the resulting estimation errors will never
exceed g2 times the energy of the associated disturbances.

The form of the mapping T affects the value of g in Equation 20.4 for any particular algorithm. To
see this result, recall that for any finite-dimensional matrix A, its maximum singular value, denoted
by �s(A), is defined by �s(A) ¼ maxx 6¼0

kAxk
kxk . Hence, the square of the maximum singular value,

�s2(A), measures the maximum energy gain from the vector x to the resulting vector Ax. Therefore,
if a relation of the form Equation 20.4 should hold for any nonzero disturbance vector dist, then it
means that

max
dist6¼0

kTdistk
kdistk � g:

Consequently, the maximum singular value of T must be bounded by g. This imposes a condition on the
allowable values for g; its smallest value cannot be smaller than the maximum singular value of the
resulting T .

Ideally, we would like the value of g in Equation 20.4 to be as small as possible. In particular, an
algorithm for which the value of g is 1 would guarantee that the estimation error energy will never exceed
the disturbance energy, no matter what the natures of the disturbances are! Such an algorithm would
possess a good degree of robustness since it would guarantee that the disturbance energy will never be
unnecessarily magnified.
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Before continuing our study, we ask and answer the obvious questions that arise at this point:

. What is the smallest possible value for g for the LMS algorithm? It turns out for the LMS algorithm
that, under certain conditions on the step-size parameter, the smallest possible value for g is 1.
Thus, ee � ed for the LMS algorithm.

. Does there exist any other causal adaptive algorithm that would result in a value for g in Equation
20.4 that is smaller than 1? It can be argued that no such algorithm exists for the model Equation
20.1 and criterion Equation 20.4.

In other words, the LMS algorithm is in fact the most robust adaptive algorithm in the sense defined by
Equation 20.4. This result provides a rigorous basis for the excellent robustness properties that the LMS
algorithm, and several of its variants, have shown in practical situations. The references at the end of the
chapter provide an overview of the published works that have established these conclusions. Here, we only
motivate them fromfirst principles. In so doing, we shall also discuss other results (and tools) that can be used
in order to impose certain robustness and convergence properties on other classes of adaptive schemes.

20.6 Energy Bounds and Passivity Relations

Consider the LMS recursion in Equation 20.2, with a time-varying step-size m(i) for purposes of
generality, as given by

wi ¼ wi�1 þ m(i) � ui � [d(i)� uTi � wi�1] : (20:5)

Subtracting the optimal coefficient vector w from both sides and squaring the resulting expressions,
we obtain

k~wik2¼ k~wi�1 � m(i) � ui � [ea(i)þ v(i)]k2 :

Expanding the right-hand side of this relationship and rearranging terms leads to the equality

k~wik2 �k~wi�1k2 þm(i) � jea(i)j2 � m(i) � jv(i)j2 ¼ m(i) � jea(i)þ v(i)j2 � [m(i) � kuik2 �1]:

The right-hand side in the above equality is the product of three terms. Two of these terms, m(i) and
ea(i)þ v(i)j j2, are nonnegative, whereas the term (m(i) � kuik2 � 1) can be positive, negative, or zero
depending on the relative magnitudes of m(i) and kuik2. If we define �m(i) as (assuming nonzero
regression vectors):

�m(i) ¼ kuik�2 , (20:6)

then the following relations hold:

k~wik2 þm(i) ea(i)j j2
k~wi�1k2 þm(i) v(i)j j2

� 1 for 0 < m(i) < �m(i)
¼ 1 for m(i) ¼ �m(i)
� 1 for m(i) > �m(i).

8<
:

The result for 0 < m(i) � �m(i) has a nice interpretation. It states that, no matter what the value of v(i) is
and no matter how far wi�1 is from w, the sum of the two energies k~wik2 þm(i) � ea(i)j j2 will always be
smaller than or equal to the sum of the two disturbance energies k~wi�1k2 þm(i) � v(i)j j2. This relationship
is a statement of the passivity of the algorithm locally in time, as it holds for every time instant. Similar
relationships can be developed in terms of the a posteriori estimation error.
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Since this relationship holds for each time instant i, it also holds over an interval of time such that

k~wNk2 þ PN
i¼0 �ea(i)j j2

k~w�1k2 þ
PN

i¼0 �v(i)j j2 � 1, (20:7)

where we have introduced the normalized a priori residuals and noise signals

�ea(i) ¼
ffiffiffiffiffiffiffiffi
m(i)

p
ea(i) and �v(i) ¼

ffiffiffiffiffiffiffiffi
m(i)

p
v(i),

respectively. Equation 20.7 states that the lower-triangular matrix that maps the normalized noise signals
{�v(i)}Ni¼0 and the initial uncertainty ~w�1 to the normalized a priori residuals {�ea(i)}

N
i¼0 and the final weight

error ~wN has a maximum singular value that is less than one. Thus, it is a contraction mapping for
0 < m(i) � �m(i). For the special case of a constant step-size m, this is the same mapping T that we
introduced earlier Equation 20.4.

In the above derivation, we have assumed for simplicity of presentation that the denominators of
all expressions are nonzero. We can avoid this restriction by working with differences rather than ratios.
Let DN(w�1, v(�)) denote the difference between the numerator and the denominator of Equation 20.7,
such that

DN (w�1, v(�)) ¼ k~wNk2 þ
XN
i¼0

�ea(i)j j2
( )

� k~w�1k2 þ
XN
i¼0

�v(i)j j2
( )

: (20:8)

Then, a similar argument that produced Equation 20.7 can be used to show that for any {w�1, v(�)},

DN (w�1, v(�)) � 0: (20:9)

20.7 Min–Max Optimality of Adaptive Gradient Algorithms

The property in Equation 20.7 or 20.9 is valid for any initial guess w�1 and for any noise sequence v(�), so
long as the m(i) are properly bounded by �m(i). One might then wonder whether the bound in Equation
20.7 is tight or not. In other words, are there choices {w�1, v(�)} for which the ratio in Equation 20.7 can
be made arbitrarily close to one or DN in Equation 20.9 arbitrarily close to zero? We now show that there
are. We can rewrite the gradient recursion of Equation 20.5 in the equivalent form

wi ¼ wi�1 þ m(i) � ui � [ea(i)þ v(i)]: (20:10)

Envision a noise sequence v(i) that satisfies v(i) ¼ �ea(i) at each time instant i. Such a sequence may
seem unrealistic but is entirely within the realm of our unrestricted model of the unknown disturbances.
In this case, the above gradient recursion trivializes to wi ¼ wi�1 for all i, thus leading to wN ¼ w�1.
Thus, DN in Equation 20.8 will be zero for this particular experiment. Therefore,

max
{w�1, v(�)}

{DN (w�1, v(�))} ¼ 0 :

We now consider the following question: How does the gradient recursion in Equation 20.5 compare
with other possible causal recursive algorithms for the update of the weight estimate? Let A denote any
given causal algorithm. Suppose that we initialize algorithm A with w�1 ¼ w, and suppose the noise
sequence is given by v(i) ¼ �ea(i) for 0 � i � N . Then, we have

XN
i¼0

�v(i)j j2 ¼
XN
i¼0

�ea(i)j j2 � k~wNk2 þ
XN
i¼0

�ea(i)j j2,
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no matter what the value of ~wN is. This particular choice of initial guess (w�1 ¼ w) and noise sequence
{v(�)} will always result in a nonnegative value of DN in Equation 20.8, implying for any causal algorithm
A that

max
{w�1, v(�)}

{DN w�1, v(�)ð Þ} � 0:

For the gradient recursion in Equation 20.5, the maximum has to be exactly zero because the global
property Equation 20.9 provided us with an inequality in the other direction. Therefore, the algorithm in
Equation 20.5 solves the following optimization problem:

min
Algorithm

max
{w�1, v(�)}

DN w�1, v(�)ð Þ
� �

,

and the optimal value is equal to zero. More details and justification can be found in the references at the
end of this chapter, especially connections with so-called H1 estimation theory.

As explained before, DN measures the difference between the output energy and the input energy of
the algorithm mapping T . The gradient algorithm in Equation 20.5 minimizes the maximum possible
difference between these two energies over all disturbances with finite energy. In other words, it
minimizes the effect that the worst-possible input disturbances can have on the resulting estimation-
error energy.

20.8 Comparison of LMS and RLS Algorithms

To illustrate the ideas in our discussion, we compare the robustness performance of two classical
algorithms: the LMS algorithm Equation 20.2 and the recursive least-squares (RLS) algorithm. More
details on the example given below can be found in the reference section at the end of the chapter.

Consider the data model in Equation 20.1 where ui is a scalar that randomly assumes the values þ1
and �1 with equal probability. Let w ¼ 0:25, and let v(i) be an uncorrelated Gaussian noise sequence
with unit variance. We first employ the LMS recursion in Equation 20.2 and compute the initial 150
estimates wi, starting with w�1 ¼ 0 and using m ¼ 0:97. Note that m satisfies the requirement
m � 1=kuik2¼ 1 for all i. We then evaluate the entries of the resulting mapping T , now denoted by
T lms, that we defined in Equation 20.4. We then compute the corresponding T rls for the RLS algorithm
for these signals, which for this special data model can be expressed as

wiþ1 ¼ wi þ piui
1þ pi

[d(i)� uTi wi�1], piþ1 ¼ pi
1þ pi

:

The initial condition chosen for pi is p0 ¼ m ¼ 0:97.
Figure 20.3 shows a plot of the 150 singular values of the resulting mappings T lms and T rls. As

predicted from our analysis, the singular values of T lms, indicated by an almost horizontal line at unity,
are all bounded by one, whereas the maximum singular value of T rls is approximately 1:65. This result
indicates that the LMS algorithm is indeed more robust than the RLS algorithm, as is predicted by the
earlier analysis.

Observe, however, that most of the singular values of T rls are considerably smaller than one, whereas the
singular values of T lms are clustered around one. This has an interesting interpretation that we explain as
follows. An N � N-dimensional matrix A has N singular values {si} that are equal to the positive square-
roots of the eigenvalues of AAT. For each si, there exists a unit-norm vector xi such that the energy gain
from xi to Axi is equal to s2

i , i.e., si ¼ kAxik=kxik. The vector xi can be chosen as the ith right singular
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vector of A. Now, recall that T lms and T rls are finite-dimensional matrices that map a disturbance vector
dist to the estimation-errors vector error. Considering the plot of the singular values of T rls, we see that if
the disturbance vector dist happens to lie in the range space of the right singular vectors associated with the
smaller singular values in this plot, then its effect will be significantly attenuated. This fact indicates that
while the performance of the LMS algorithm guards against worst-case disturbances, the RLS algorithm is
likely to have a better performance than the LMS algorithm on average, as is well known.

20.9 Time-Domain Feedback Analysis

Robust adaptive filters are designed to induce contractive mappings between sequences of numbers. This
fact also has important implications on the convergence performance of a robust adaptive scheme. In the
remaining sections of this chapter, we discuss the combined issues of robustness and convergence from a
deterministic standpoint. In particular, the following issues are discussed:

. We show that each step of the update equation of the gradient algorithm in Equation 20.5 can be
described in terms of an elementary section that possesses a useful feedback structure.

. The feedback structure provides insights into the robust and convergence performance of the
adaptive scheme. This is achieved by studying the energy flow through a cascade of elementary
sections and by invoking a useful tool from system theory known as the small gain theorem.

. The feedback analysis extends to more general update relations. The example considered here is
filtered-error LMS algorithm, although the methodology can be extended to other structures such
as perceptrons. Details can be found in the references at the end of this chapter.

20.9.1 Time-Domain Analysis

From the update equation in Equation 20.5, ~wi satisfies

~wi ¼ ~wi�1 � m(i) � ui � [ea(i)þ v(i)]: (20:11)
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1

0.8
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0 50

Index of singular values

RLS (*) and LMS (o)

100 150

FIGURE 20.3 Singular value plot.
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If we multiply both sides of Equation 20.11 by uTi from the left, we obtain the following relation among
{ep(i), ea(i), v(i)}:

ep(i) ¼ 1� m(i)
�m(i)

� �
ea(i)� m(i)

�m(i)
v(i), (20:12)

where �m(i) is given by Equation 20.6. Using Equations 20.12 and 20.5 can be rewritten in the equivalent
form

wi ¼ wi�1 þ �m(i) � ui � [ea(i)� ep(i)],

¼ wi�1 þ �m(i) � ui � [ea(i)þ r(i)], (20:13)

where we have defined the signal r(i) ¼ �ep(i) for convenience. The expression Equation 20.13 shows
that Equation 20.5 can be rewritten in terms of a new step-size �m(i) and a modified ‘‘noise’’ term r(i).

Therefore, if we follow arguments similar to those prior to Equation 20.6, we readily conclude that for
algorithm Equation 20.5 the following equality holds for all {m(i), v(i)}:

k~wik2 þ �m(i) ea(i)j j2
k~wi�1k2 þ �m(i) r(i)j j2 ¼ 1: (20:14)

This relation establishes a lossless map (denoted by T i) from the signals {~wi�1,
ffiffiffiffiffiffiffiffi
�m(i)

p
r(i)} to the signals

{~wi,
_ffiffiffiffiffiffiffiffi
�m(i)

p
ea(i)}. Correspondingly, using Equation 20.12, the map from the original weighted disturbanceffiffiffiffiffiffiffiffi

�m(i)
p

v(i) to the weighted estimation error signal
ffiffiffiffiffiffiffiffi
�m(i)

p
ea(i) can be expressed in terms of the feedback

structure shown in Figure 20.4.
The feedback description provides useful insights into the behavior of the adaptive scheme. Because

the map T i in the feedforward path is lossless or energy-preserving, the design and analysis effort can be
concentrated on the terms contained in the feedback path. This feedback block controls

. How much energy is fed back into the input of each section and whether energy magnification or
demagnification may occur (i.e., stability)

. How sensitive the estimation error is to noise and disturbances (i.e., robustness)

. How fast the estimation error energy decays (i.e., convergence rate)

1 – μ(i)/μ(i)

z–1

–

wi–1 wi

μ(i)
μ(i)

||   || = 1μ(i) v(i) μ(i)r(i) μ(i) ea(i)

~~

i

FIGURE 20.4 A time-variant lossless mapping with gain feedback for gradient algorithms. (From Rupp, M. and
Sayed, A.H., IEEE Trans. Signal Process., 44(6), 1428, June 1996.)

Robustness Issues in Adaptive Filtering 20-11



20.9.2 l2–Stability and the Small Gain Condition

We start by reconsidering the robustness issue. Recall that if the step-sizes m(i) are chosen such that
m(i) � �m(i), then robustness is guaranteed in that the ratio of the energies of the signals in Equation 20.7
will be bounded by one.

The condition on m(i) can be relaxed at the expense of guaranteeing energy ratios that are bounded by
some other positive number, say

Weighted estimation error energy
Weighted disturbance energy

� g2, (20:15)

for some constant g to be determined. This is still a desirable property because it means that the
disturbance energy will be, at most, scaled by a factor of g. This fact can in turn lead to useful
convergence conclusions, as argued later.

In order to guarantee robustness conditions according to Equation 20.15, for some g, we rely on the
observation that feedback configurations of the form shown in Figure 20.4 can be analyzed using a tool
known in system theory as the small gain theorem. In loose terms, this theorem states that the stability of
a feedback configuration such as that in Figure 20.4 is guaranteed if the product of the norms of the
feedforward and the feedback mappings are strictly bounded by one. Since the feedforward mapping T i

has a norm (or maximum singular value) of one, the norm of the feedback map needs to be strictly
bounded by one for stability of this system.

To illustrate these concepts more fully, consider the feedback structure in Figure 20.5 that has a lossless
mapping T in its feedforward path and an arbitrary mapping F in its feedback path. The input=output
signals of interest are denoted by {x, y, r, v, e}. In this system, the signals x, v play the role of the
disturbances.

The losslessness of the feedforward path implies conservation of energy such that

yk2 þ kek2 ¼ kxk2 þ krk2:
Consequently, kek � kxk þ krk. On the other hand, the triangle inequality of norms implies that

krk � kvk þ kFk � kek,

where the notation kFk denotes the maximum singular value of the mapping F . Provided that the small
gain condition kFk < 1 is satisfied, we have

kek � 1
1� kFk � [kxk þ kvk]: (20:16)

Thus, a contractive F guarantees a robust map from {x, v} to {e} with a robustness level that
is determined by the factor 1=(1� kFk). In this case, we shall say that the map from {x, v} to {e} is
l2–stable.

rv

x y

e

= = 1||||y
e

x
r .

r = v +  e

FIGURE 20.5 A feedback structure.
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A plot of the factor 1=(1� kFk ), as a function of kFk, is shown in Figure 20.6. It can be seen that the
smaller the value of kFk:

. The smaller the effect of {x, v} on {e}

. The smaller the upper bound on kek
Moreover, we shall argue that smaller values of kFk are associated with faster convergence. Therefore,
controlling the norm of F , is important for both the robustness and convergence performance of an
adaptive algorithm. In most cases, the feedback filter F will depend on several quantities, such as the
step-sizes {m(i)} and the data vectors {ui} (as in Figure 20.4). It may also depend on error filters and on
regression filters that appear in more general adaptive schemes.

Referring to Figure 20.4, define

h(N) ¼ max
0�i�N

1� m(i)
�m(i)

����
���� and j(N) ¼ max

0�i�N

m(i)
�m(i)

:

where
h(N) is the maximum absolute value of the gain of the feedback loop over the interval of time
0 � i � N

j(N) is the maximum value of the scaling factor m(i)=�m(i) at the input of the feedback interconnection

In this context, the small gain condition requires that h(N) < 1. This condition is equivalent to choosing
the step-size parameter m(i) such that 0 < m(i) < 2�m(i). Under this condition, the general relation
Equation 20.16 can be used to deduce either of the following two relationships:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼0

�m(i) ea(i)j j2
vuut � 1

1� h(N)
k~w�1kþ j(N)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼0

�m(i)jv(i)j2
vuut

2
4

3
5 (20:17)

or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼0

m(i) ea(i)j j2
vuut � j1=2(N)

1� h(N)
k~w�1kþ j1=2(N)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼0

m(i) v(i)j j2
vuut

2
4

3
5: (20:18)

1
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1
1 – ||            ||

||         ||

FIGURE 20.6 Plot of the l2-gain.
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Note that in either case the upper bound on m(i) is now 2�m(i) and the robustness level is essentially
determined by

1
1� h(N)

or
j1=2(N)
1� h(N)

,

depending on how the estimation errors {ea(i)} and the noise terms {v(i)} are normalized (by m(�)
or �m(�)).

20.9.3 Energy Propagation in the Feedback Cascade

By studying the energy flow in the feedback interconnection of Figure 20.4, we can also obtain some
physical insights into the convergence behavior of the gradient recursion Equation 20.5.

Assume that m(i) ¼ �m(i), such that the feedback loop of Figure 20.4 is disconnected. In this situation,
there is no energy flowing back into the lower input of the lossless section from its lower output ea(�). The
losslessness of the feedforward path then implies that

Ew(i) ¼ Ew(i� 1)þ Ev(i)� Ee(i),

where we have defined the energy terms

Ee(i) ¼ �m(i) ea(i)j j2, Ev(i) ¼ �m(i) v(i)j j2, and Ew(i) ¼ k~wik2 :

In the noiseless case where v(i) ¼ 0, the above expression implies that the weight-error energy is a
nonincreasing function of time, i.e., Ew(i) � Ew(i� 1).

However, what happens if m(i) 6¼ �m(i)? In this case, the feedback path is active and the convergence
speed will be affected because the rate of decrease in the energy of the estimation error will change.
Indeed, for m(i) 6¼ �m(i) we obtain for Ev(i) ¼ 0

Ew(i) ¼ Ew(i� 1)� 1� 1� m(i)
�m(i)

����
����
2

 !
Ee(i),

where, due to the small gain condition, the coefficient multiplying Ee(i) can be seen to be smaller than 1.
Loosely speaking, this energy argument indicates for v(i) ¼ 0 that the smaller the maximum

singular value of feedback block F, for a generic feedback interconnection of the form shown in Figure 20.5,
the faster the convergence of the algorithm will be, since less energy is fed back to the input of
each section.

20.9.4 A Deterministic Convergence Analysis

The energy argument can be pursued in order to provide sufficient deterministic conditions for the
convergence of the weight estimates wi to the true weight vector w. The argument follows as a
consequence of the energy relations (or robustness bounds) Equations 20.17 and 20.18, which essentially
establishes that the adaptive gradient algorithm Equation 20.5 maps a finite-energy sequence to another
finite-energy sequence.

To clarify this point, we define the quantities

h ¼ sup
i

1� m(i)
�m(i)

����
���� and j ¼ sup

i

m(i)
�m(i)

� �
,
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and note that if the step-size parameter m(i) is chosen such that m(i)kuik2 is uniformly bounded by 2,
then we guarantee j < 2 and h < 1. We further note that it follows from the weight-error update relation
Equation 20.11 that ~wi satisfies

~wi ¼ ~wi�1 � �uTi [�ea(i)þ �v(i)], (20:19)

where we have defined �ui ¼
ffiffiffiffiffiffiffiffi
m(i)

p
ui (likewise for �ea(i),�v(i)). The following conclusions can now be

established under the stated conditions:

. Finite noise energy condition. We assume that the normalized sequence {�v(�) ¼ ffiffiffiffiffiffiffiffi
m(i)

p
v(i)} has

finite energy, i.e.,

X1
i¼0

m(i) v(i)j j2< 1: (20:20)

This in turn implies that �v(i) ! 0 as i ! 1 (but not necessarily v(i) ! 0). If the initial weight-
error vector is finite, k~w�1k< 1, then condition Equation 20.20 along with the energy bound
Equation 20.18 (as N ! 1) allows us to conclude that

P1
i¼0 m(i) ea(i)j j2 < 1. Consequently,

limi!1 �ea(i) ! 0 (but not necessarily ea(i) ! 0).
. Persistent excitation condition. We also assume that the normalized vectors {�ui} are persistently

exciting. By this we mean that there exists a finite integer L � M such that the smallest singular
value of

col{�uTi , �u
T
iþ1, . . . , �u

T
iþL}

is uniformly bounded from below by a positive quantity for sufficiently large i. The persistence of
excitation condition can be used to further conclude from �ea(i) ! 0 that limi!1wi ¼ w.

The above statements can also be used to clarify the behavior of the adaptive algorithm Equation 20.5 in
the presence of finite-power (rather than finite-energy) normalized noise sequences {�v(�)}, i.e., for v(�)
satisfying

lim
N!1

1
N

XN�1

i¼0

m(i) v(i)j j2 ¼ Pv < 1:

For this purpose, we divide both sides of Equation 20.18 by
ffiffiffiffi
N

p
and take the limit as N ! 1 to conclude

that

lim
N!1

1
N

XN�1

i¼0

m(i) ea(i)j j2 � j2Pv
(1� h)2

:

In other words, a bounded noise power leads to a bounded estimation error power.

20.10 Filtered-Error Gradient Algorithms

The feedback analysis of the former sections can be extended to gradient algorithms that employ filtered
versions of the error signal d(i)� uTi wi�1. Such algorithms are useful in applications such as active noise
and vibration control and in adaptive IIR filters, where a filtered error signal is more easily observed or
measured. Figure 20.7 depicts the context of this problem. The symbol F denotes the filter that operates
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on e(i). For our discussion, we assume that F is a finite-impulse response filter of order MF , such that the
z-transform of its impulse response is F(z) ¼PMF�1

j¼0 fjz�j.
For purposes of discussion, we focus on one particular form of adaptive update known as the filtered-

error LMS algorithm:

wi ¼ wi�1 þ m(i) � ui � F[d(i)� uTi wi�1]: (20:21)

Comparing Equation 20.21 with Equation 20.5, the only difference between the two updates is the filter F
that acts on the error d(i)� uTi wi�1.

Following the discussion that led to Equation 20.13, it can be verified that Equation 20.21 is equivalent
to the following update:

wi ¼ wi�1 þ �m(i) � ui � [ea(i)þ r(i)], (20:22)

where �m(i) ¼ 1=kuik2, ea(i) ¼ uTi ~wi�1, and r(i) is defined as

�m(i)r(i) ¼ m(i)F[v(i)]� �m(i)ea(i)þ m(i)F[ea(i)]: (20:23)

Expression 20.22 is of the same form as Equation 20.13, which implies that the following relation
also holds:

k~wik2 þ �m(i) ea(i)j j2
k~wi�1k2 þ �m(i) r(i)j j2 ¼ 1: (20:24)

This establishes that the map T i from the signals {~wi�1,
ffiffiffiffiffiffiffiffi
�m(i)

p
r(i)} to the signals {~wi,

ffiffiffiffi
�m

p
(i)ea(i)}

is lossless. Moreover, the map from the original disturbance
ffiffiffiffiffiffiffiffiffi
�m(�)p

v(�) to the signal
ffiffiffiffiffiffiffiffiffi
�m(�)p

ea(�) can
be expressed in terms of a feedback structure, as shown in Figure 20.8. We remark that the
notation 1� m(i)ffiffiffiffiffiffi

�m(i)
p F[�] 1ffiffiffiffiffiffi

�m(i)
p should be interpreted as follows. We first divide

ffiffiffiffiffiffiffiffi
�m(i)

p
ea(i) by

ffiffiffiffiffiffiffiffi
�m(i)

p
before filtering it by the filter F and then scaling the result by m(i)=

ffiffiffiffiffiffiffiffi
�m(i)

p
. Similarly, the term

ffiffiffiffiffiffiffiffi
�m(i)

p
v(i)

is first divided by
ffiffiffiffiffiffiffiffi
�m(i)

p
, then filtered by F, and is finally scaled by m(i)=

ffiffiffiffiffiffiffiffi
�m(i)

p
.

The feedback path now contains a dynamic system. The small gain theorem dictates that this system
will be robust if the feedback path is a contractive system. For the special case of the projection filtered-
error LMS algorithm that employs the step-size m(i) ¼ a�m(i),a > 0,

wi ¼ wi�1 þ a
ui

kuik2 F[d(i)� uTi wi�1], (20:25)

uT
i w

wi–1

–

v(i)
e (i) F[e(i)]

F

FIGURE 20.7 Structure of filtered-error gradient algorithms. (From Rupp, M. and Sayed, A.H., IEEE Trans. Signal
Process., 44(6), 1428, June 1996.)
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the small-gain condition implies that the following matrix should be strictly contractive:

PN ¼

1� af0 O

�a

ffiffiffiffiffiffiffi
�m(1)

pffiffiffiffiffiffiffi
�m(0)

p f1 1� af0

�a

ffiffiffiffiffiffiffi
�m(2)

pffiffiffiffiffiffiffi
�m(0)

p f2 �a

ffiffiffiffiffiffiffi
�m(2)

pffiffiffiffiffiffiffi
�m(1)

p f1 1� af0

..

. . .
.

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Here, the { fi} are the coefficients of the FIR filter F. Since, in practice, the lengthMF of this filter is usually
much smaller than the length of the regression vector ui, the energy of the input sequence ui does not
change very rapidly over the filter length MF , such that

�m(i) � � � � � �m(i�MF):

In this case, PN becomes

PN � I� aFN , (20:26)

where FN is the lower triangular Toeplitz matrix that describes the convolution of the filter F on an input
sequence. This is generally a banded matrix sinceMF � M, as shown below for the special case ofMF ¼ 3,

FN ¼

f0
f1 f0
f2 f1 f0

f2 f1 f0
. .
. . .

. . .
.

2
666664

3
777775:

In this case, the strict contractivity of (I� aFN ) can be guaranteed by choosing the step-size parameter a
such that

max
V

1� aF(e jV)
�� �� < 1, (20:27)

1 –
μ(i)

μ(i)

μ(i)
F[.]

1

1
μ(i)

wiwi–1

–

||          || = 1

μ(i)
F[.] μ(i) r (i)

μ(i)ea(i)μ(i)
μ(i) v(i)

~ ~

 i

FIGURE 20.8 Filtered-error LMS algorithm as a time-variant lossless mapping with dynamic feedback. (From
Rupp, M. and Sayed, A.H., IEEE Trans. Signal Process., 44(6), 1428, June 1996.)
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where F(z) is the transfer function of the error filter. For better convergence performance, we may choose
a by solving the min–max problem

min
a

max
V

1� aF(ejV)
�� ��: (20:28)

If the resulting minimum is less than one, then the corresponding optimum value of a will result in faster
convergence, and it will also guarantee the robustness of the scheme.

We now illustrate these concepts via a simulation example. The error-path filter for this example is

F(z) ¼ 1� 1:2z�1 þ 0:72z�2:

We use an FIR filter adapted by the algorithm in Equation 20.25, where the input signal to the adaptive
filter consists of a single sinusoid of frequency V0 ¼ 1:2=p. In this case, if we assume that the a priori
error signal is dominated by the frequency component V0, we can solve for the optimum a via the
simpler expression (cf. Equation 20.28) mina 1� aF ejV0

� 	�� ��. The resulting optimum value of a is

aopt ¼ Real
1

F(e�jV0 )

� �
:

This step size provides the fastest convergence speed. In addition, the stability limits for a can be shown
to be 0 < a < 2aopt using a similar procedure.

Figure 20.9 shows three convergence curves of the average squared error Av[ e(i)j j2] ¼ 1
50

P50
j¼1 ej(i)
�� ��2,

as determined from 50 simulation runs of the projection filtered-error LMS algorithm for the choices
a ¼ 0:085,a ¼ 0:15, and a ¼ 0:18, respectively. In this case, we have generated an input sequence of the
form u(i) ¼ sin (1:2iþ w) for each simulation run, where w is uniformly chosen from the interval
[�p,p] to obtain smoother learning curves after averaging, and theM ¼ 10 coefficients of the unknown
system were all set to unity. Moreover, the additive noise v(i) corrupting the signal d(i) is uncorrelated
Gaussian-distributed with a level that is�40 dB below that of the input signal power. The optimal step-size
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FIGURE 20.9 Convergence behavior for FELMS algorithm with sinusoidal input sequence and various step-sizes:
(a) a ¼ 0:085, (b) a ¼ 0:15, and (c) a ¼ 0:18. (From Rupp, M. and Sayed, A.H., IEEE Trans. Signal Process., 44(6),
1428, June 1996.)
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aopt in this case can be calculated to be aopt ¼ 0:085 and the stability bounds for the system are
0 < a < 0:17. As expected, choosing a ¼ 0:085 provides the fastest convergence speed for this situation.
We also see that for values of a greater than 2aopt, the error of the system diverges.

20.11 Concluding Remarks

The intent of this chapter was to highlight certain robustness and convergence issues that arise in the
study of adaptive algorithms in the presence of uncertain data. More details, extensions, and related
discussions can be found in several of the references indicated in the reference section. The references are
not intended to be complete but rather indicative of the work in the different areas. More complete lists
can be found in several of the textbooks mentioned herein.

Detailed discussions on the different forms of adaptive algorithms and their potential applications can
be found in [1–4]. The fundamentals of robust or H1 design, both in filtering and control applications,
can be found in [5–10]. The small gain analysis is a standard tool in linear and nonlinear system theory.
More advanced and detailed treatments can be found in [11,12].

The LMS algorithm usually has been presented in the literature as an instantaneous-gradient-based
approximation for the steepest descent algorithm. Its robustness properties, and the interesting obser-
vation that it is in fact the exact solution of a min-max (or H1) optimization problem, have been first
noted in [13].

Also, more details on the example comparing the performance of LMS and RLS can be found in the
above reference. Extensions of the discussion to the backpropagation algorithm for neural network
training, and other related results in adaptive filtering and H1 estimation and control can be found in
[14–16].

Extensions of the feedback analysis to perceptron training in neural network can be found in [17]. A
Cauchy-Schwarz argument that further highlights the robustness property of adaptive gradient algo-
rithms, along with other local energy bounds, are given in [4,18]. The time-domain feedback and small
gain analyses of adaptive filters, along with extensions to nonlinear settings and connections with Gauss-
Newton updates and H1

filters, are discussed in [19–21]. Discussions of the singular value decompos-
ition and its properties can be found in [22].
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The central problem in estimation is to recover, to good accuracy, a set of unobservable parameters from
corrupted data. Several optimization criteria have been used for estimation purposes over the years, but
the most important, at least in the sense of having had the most applications, are criteria that are based on
quadratic cost functions. The most striking among these is the linear least-squares criterion, which was
perhaps first developed by Gauss (ca. 1795) in his work on celestial mechanics. Since then, it has enjoyed
widespread popularity in many diverse areas as a result of its attractive computational and statistical
properties. Among these attractive properties, the most notable are the facts that least-squares solutions:

. Can be explicitly evaluated in closed forms

. Can be recursively updated as more input data are made available

. Are maximum likelihood (ML) estimators in the presence of Gaussian measurement noise
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The aim of this chapter is to provide an overview of adaptive filtering algorithms that result when the
least-squares criterion is adopted. Over the last several years, a wide variety of algorithms in this class has
been derived. They all basically fall into the following main groups (or variations thereof): recursive least-
squares (RLS) algorithms and the corresponding fast versions (known as FTF [fast transversal filter] and
FAEST [fast a posteriori error sequential technique]), QR and inverse QR algorithms, least-squares lattice
(LSL), and QR decomposition-based least-squares lattice (QRD-LSL) algorithms.

Table 21.1 lists these different variants and classifies them into order-recursive and fixed-order algo-
rithms. The acronyms and terminology are not important at this stage and will be explained as the
discussion proceeds. Also, the notation O(M) is used to indicate that each iteration of an algorithm
requires of the order of M floating point operations (additions and multiplications). In this sense, some
algorithms are fast (requiring only O(M)), while others are slow (requiring O(M2)). The value ofM is the
filter order that will be introduced in due time.

It is practically impossible to list here all the relevant references and all the major contributors to the
rich field of adaptive RLS filtering. The reader is referred to some of the textbooks listed at the end of this
chapter for more comprehensive treatments and bibliographies.

Here we wish to stress that, apart from introducing the reader to the fundamentals of RLS filtering, one
of our goals in this exposition is to present the different versions of the RLS algorithm in computationally
convenient so-called array forms. In these forms, an algorithm is described as a sequence of elementary
operations on arrays of numbers. Usually, a prearray of numbers has to be triangularized by a rotation, or
a sequence of elementary rotations, in order to yield a postarray of numbers. The quantities needed to
form the next prearray can then be read off from the entries of the postarray, and the procedure can be
repeated. The explicit forms of the rotation matrices are not needed in most cases.

Such array descriptions are more truly algorithms in the sense that they operate on sets of numbers
and provide other sets of numbers, with no explicit equations involved. The rotations themselves can be
implemented in a variety of well-known ways: as a sequence of elementary circular or hyperbolic
rotations, in square-root- and=or division-free forms, as Householder transformations, etc. These may
differ in computational complexity, numerical behavior, and ease of hardware (VLSI) implementation.
But, if preferred, explicit expressions for the rotation matrices can also be written down, thus leading to
explicit sets of equations in contrast to the array forms.

For this reason, and although the different RLS algorithms that we consider here have already been
derived in many different ways in earlier places in the literature, the derivation and presentation in this
chapter are intended to provide an alternative unifying exposition that we hope will help a reader get a
deeper appreciation of this class of adaptive algorithms.

Notation
We use small boldface letters to denote column vectors (e.g., w) and capital boldface letters to denote
matrices (e.g., A). The symbol In denotes the identity matrix of size n� n, while 0 denotes a zero column.
The superscript T denotes transposition. This chapter deals with real-valued data. The case of complex-
valued data is essentially identical and is treated in many of the references at the end of this chapter.

TABLE 21.1 Most Common RLS Adaptive Schemes

Adaptive Algorithm Order Recursive Fixed Order Cost per Iteration

RLS x O(M2)

QR and Inverse QR x O(M2)

FTF and FAEST x O(M)

LSL x O(M)

QRD-LSL x O(M)
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Square-Root Factors
A symmetric positive-definite matrix A is one that satisfies A ¼ AT and xTAx > 0 for all nonzero column
vectors x. Any such matrix admits a factorization (also known as eigen-decomposition) of the form
A ¼ USUT, where U is an orthogonal matrix, namely a square matrix that satisfies UUT ¼ UTU ¼ I,
and S is a diagonal matrix with real positive entries. In particular, note that AU ¼ US, which shows that
the columns of U are the right eigenvectors of A and the entries of S are the corresponding eigenvalues.

Note also that we can write A ¼ US1=2(S1=2)TUT, where S1=2 is a diagonal matrix whose entries are
(positive) square-roots of the diagonal entries of S. Since S

1=2 is diagonal, (S1=2)T ¼ S
1=2. If we

introduce the matrix notation A1=2 ¼ US1=2, then we can alternatively write A ¼ (A1=2)(A1=2)T.
This can be regarded as a square-root factorization of the positive-definite matrix A. Here, the notation
A1=2 is used to denote one such square-root factor, namely the one constructed from the eigen-
decomposition of A.

Note, however, that square-root factors are not unique. For example, we may multiply the diagonal
entries of S1=2 by �1s and obtain a new square-root factor for S and, consequently, a new square-root
factor for A.

Also, given any square-root factor A1=2, and any orthogonal matrix Q (satisfying QQT ¼ I) we can
define a new square-root factor for A as A1=2Q since

(A1=2Q)(A1=2Q)T ¼ A1=2(QQT)(A1=2)T ¼ A:

Hence, square factors are highly nonunique. We shall employ the notation A1=2 to denote any such
square-root factor. They can be made unique, for example, by insisting that the factors be symmetric or
that they be triangular (with positive diagonal elements). In most applications, the triangular form is
preferred. For convenience, we also write

(A1=2)T ¼ AT=2, (A1=2)�1 ¼ A�1=2, and (A�1=2)T ¼ A�T=2:

Thus, note the expressions A ¼ A1=2AT=2 and A�1 ¼ A�T=2A�1=2:

21.1 Array Algorithms

The array form is so important that it will be worthwhile to explain its generic form here.
An array algorithm is described via rotation operations on a prearray of numbers, chosen to obtain a

certain zero pattern in a postarray. Schematically, we write

x x x x
x x x x
x x x x
x x x x

2
664

3
775Q ¼

x 0 0 0
x x 0 0
x x x 0
x x x x

2
664

3
775,

where Q is any rotation matrix that triangularizes the prearray. In general, Q is required to be a
J-orthogonal matrix in the sense that it should satisfy the normalization QJQT ¼ J, where J is a given
signature matrix with�1s on the diagonal and zeros elsewhere. The orthogonal case corresponds to J ¼ I
since then QQT ¼ I.

A rotation Q that transforms a prearray to triangular form can be achieved in a variety of ways: by
using a sequence of elementary Givens and hyperbolic rotations, Householder transformations, or
square-root-free versions of such rotations. Here we only explain the elementary forms. The other
choices are discussed in some of the references at the end of this chapter.
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21.1.1 Elementary Circular Rotations

An elementary 2� 2 orthogonal rotation Q (also known as Givens or circular rotation) takes a row
vector a b½ � and rotates it to lie along the basis vector 1 0½ �. More precisely, it performs the
transformation

a b½ �Q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ jbj2

q
0

h i
: (21:1)

The quantity �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ jbj2

q
that appears on the right-hand side is consistent with the fact that the

prearray, a b½ �, and the postarray, �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ jbj2

q
0

h i
, must have equal Euclidean norms (since an

orthogonal transformation preserves the Euclidean norm of a vector).
An expression for Q is given by

Q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p 1 �r
r 1

� �
, where r ¼ b

a
, a 6¼ 0: (21:2)

In the trivial case a ¼ 0 we simply choose Q as the permutation matrix,

Q ¼ 0 1
1 0

� �
:

The orthogonal rotation (Equation 21.2) can also be expressed in the alternative form:

Q ¼ c �s
s c

� �
,

where the so-called cosine and sine parameters, c and s, respectively, are defined by

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p and s ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p :

The name circular rotation for Q is justified by its effect on a vector; it rotates the vector along the
circle of equation x2 þ y2 ¼ jaj2 þ jbj2, by an angle u that is determined by the inverse of the above
cosine and=or sine parameters, u ¼ tan�1r, in order to align it with the basis vector 1 0½ �. The trivial
case a ¼ 0 corresponds to a 90� rotation in an appropriate clockwise (if b � 0) or counterclockwise
(if b < 0) direction.

21.1.2 Elementary Hyperbolic Rotations

An elementary 2� 2 hyperbolic rotationQ takes a row vector a b½ � and rotates it to lie either along the
basis vector 1 0½ � (if jaj > jbj) or along the basis vector 0 1½ � (if jaj < jbj). More precisely, it
performs either of the transformations:

a b½ �Q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 � jbj2

q
0

h i
if jaj > jbj, (21:3)

a b½ �Q ¼ 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj2 � jaj2

qh i
if jaj < jbj: (21:4)
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The quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(jaj2 � jbj2)

q
that appears on the right-hand side of the above expressions is consistent

with the fact that the prearray, a b½ �, and the postarrays must have equal hyperbolic ‘‘norms.’’ By the
hyperbolic ‘‘norm’’ of a row vector xT we mean the indefinite quantity xTJx, which can be positive
or negative. Here,

J ¼ 1 0
0 �1

� �
¼ (1��1) :

An expression for a hyperbolic rotation Q that achieves Equation 21.3 or 21.4 is given by

Q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p 1 �r
�r 1

� �
, (21:5)

where

r ¼
b
a

when a 6¼ 0 and jaj > jbj
a
b

when b 6¼ 0 and jbj > jaj .

8>><
>>:

The hyperbolic rotation (Equation 21.5) can also be expressed in the alternative form:

Q ¼ ch �sh
�sh ch

� �
,

where the so-called hyperbolic cosine and sine parameters, ch and sh, respectively, are defined by

ch ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p and sh ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p :

The name hyperbolic rotation for Q is again justified by its effect on a vector; it rotates the original vector
along the hyperbola of equation x2 � y2 ¼ jaj2 � jbj2, by an angle u determined by the inverse of the
above hyperbolic cosine and=or sine parameters, u ¼ tanh�1 [r], in order to align it with the appropriate
basis vector. Note also that the special case jaj ¼ jbj corresponds to a row vector a b½ � with zero
hyperbolic norm since jaj2 � jbj2 ¼ 0. It is then easy to see that there does not exist a hyperbolic rotation
that will rotate the vector to lie along the direction of one basis vector or the other.

21.1.3 Square-Root-Free and Householder Transformations

We remark that the above expressions for the circular and hyperbolic rotations involve square-root
operations. In many situations, it may be desirable to avoid the computation of square-roots because it is
usually expensive. For this and other reasons, square-root- and division-free versions of the above
elementary rotations have been developed and constitute an attractive alternative.

Therefore one could use orthogonal or J-orthogonal Householder reflections (for given J) to simul-
taneously annihilate several entries in a row, for example, to transform x x x x½ � directly to the
form x0 0 0 0½ �. Combinations of rotations and reflections can also be used.

We omit the details here but the idea is clear. There are many different ways in which a prearray of
numbers can be rotated into a postarray of numbers.
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21.1.4 A Numerical Example

Assume we are given a 2� 3 prearray A,

A ¼ 0:875 0:15 1:0
0:675 0:35 0:5

� �
, (21:6)

and wish to triangularize it via a sequence of elementary circular rotations, i.e., reduce A to the form

AQ ¼ x 0 0
x x 0

� �
: (21:7)

This can be obtained, among several different possibilities, as follows. We start by annihilating the (1, 3)
entry of the prearray in Equation 21.6 by pivoting with its (1, 1) entry. According to Equation 21.2, the
orthogonal transformation Q1 that achieves this result is given by

Q1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r21

p 1 �r1
r1 1

� �
¼ 0:6585 �0:7526(9)

0:7526 0:6585

� �
, where r1 ¼

1
0:875

:

Applying Q1 to the prearray in Equation 21.6 leads to (recall that we are only operating on the first and
third columns, leaving the second column unchanged)

0:875 0:15 1
0:675 0:35 0:5

� � 0:6585 0 �0:7526
0 1 0

0:7526 0 0:6585

2
4

3
5 ¼ 1:3288 0:1500 0:0000

0:8208 0:3500 �0:1788

� �
: (21:8)

We now annihilate the (1, 2) entry of the resulting matrix in the above equation by pivoting with its (1, 1)
entry. This requires that we choose

Q2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r22

p 1 �r2
r2 1

� �
¼ 0:9937 �0:1122(12)

0:1122 0:9937

� �
, where r2 ¼

0:1500
1:3288

: (21:9)

Applying Q2 to the matrix on the right-hand side of Equation 21.8 leads to (now we leave the third
column unchanged)

1:3288 0:1500 0:0000
0:8208 0:3500 0:1788

� � 0:9937 �0:1122 0
0:1122 0:9937 0

0 0 1

2
4

3
5 ¼ 1:3373 0:0000 0:0000

0:8549 0:2557 0:1788

� �
: (21:10)

We finally annihilate the (2, 3) entry of the resulting matrix in Equation 21.10 by pivoting with its (2, 2)
entry. In principle this requires that we choose

Q3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r23

p 1 �r3
r3 1

� �
¼ 0:8195 0:5731(16)

�0:5731 0:8195

� �
, where r3 ¼

0:1788
�0:2557

, (21:11)

and apply it to the matrix on the right-hand side of Equation 21.10, which would then lead to

1:3373 0:0000 0:0000
0:8549 �0:2557 0:1788

� � 1 0 0
0 0:8195 0:5731
0 �0:5731 0:8195

2
4

3
5 ¼ 1:3373 0:0000 0:0000

0:8549 �0:3120 0:0000

� �
: (21:12)
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Alternatively, this last step could have been implemented without explicitly forming Q3. We simply
replace the row vector �0:2557 0:1788½ �, which contains the (2, 2) and (2, 3) entries of the prearray in
Equation 21.12, by the row vector [�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�0:2557)2 þ (0:1788)2

p
0:0000 ], which is equal to

�0:3120 0:0000½ �. We choose the positive sign in order to conform with our earlier convention that
the diagonal entries of triangular square-root factors are taken to be positive. The resulting postarray is
therefore

1:3373 0:0000 0:0000
0:8549 0:3120 0:0000

� �
: (21:13)

We have exhibited a sequence of elementary orthogonal transformations that triangularizes the prearray
of numbers in Equation 21.6. The combined effect of the sequence of transformations {Q1, Q2, Q3}
corresponds to the orthogonal rotation Q required in Equation 21.7. However, note that we do not need
to know or to form Q ¼ Q1Q2Q3.

It will become clear throughout our discussion that the different adaptive RLS schemes can be
described in array forms, where the necessary operations are elementary rotations as described above.
Such array descriptions lend themselves rather directly to parallelizable and modular implementations.
Indeed, once a rotation matrix is chosen, then all the rows of the prearray undergo the same rotation
transformation and can thus be processed in parallel. Returning to the above example, where we started
with the prearray A, we see that once the first rotation is determined, both rows of A are then
transformed by it, and can thus be processed in parallel, and by the same functional (rotation) block,
to obtain the desired postarray. The same remark holds for prearrays with multiple rows.

21.2 Least-Squares Problem

Now that we have explained the generic form of an array algorithm, we return to the main topic of this
chapter and formulate the least-squares problem and its regularized version. Once this is done, we shall
then proceed to describe the different variants of the RLS solution in compact array forms.

Let w denote a column vector of n unknown parameters that we wish to estimate, and consider a set
of (N þ 1) noisy measurements {d(i)} that are assumed to be linearly related to w via the additive
noise model

d( j) ¼ uTj w þ v( j),

where the {uj} are given column vectors. The (N þ 1) measurements can be grouped together into a
single matrix expression:

d(0)

d(1)

..

.

d(N)

2
666664

3
777775

|fflfflfflfflffl{zfflfflfflfflffl}
d

¼

uT0
uT1

..

.

uTN

2
666664

3
777775

|fflfflffl{zfflfflffl}
A

w þ

v(0)

v(1)

..

.

v(N)

2
666664

3
777775

|fflfflfflfflffl{zfflfflfflfflffl}
v

,

or, more compactly, d ¼ Aw þ v. Because of the noise component v, the observed vector d does not lie in
the column space of the matrix A. The objective of the least-squares problem is to determine the vector
in the column space of A that is closest to d in the least-squares sense.
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More specifically, any vector in the range space of A can be expressed as a linear combination of its
columns, say Aŵ for some ŵ. It is therefore desired to determine the particular ŵ that minimizes the
distance between d and Aŵ,

min
w

d� Awk k2: (21:14)

The resulting ŵ is called the least-squares solution and it provides an estimate for the unknown w. The
term Aŵ is called the linear least-squares estimate of d.

The solution to Equation 21.14 always exists and it follows from a simple geometric argument.
The orthogonal projection of d onto the column span of A yields a vector d̂ that is the closest to d in
the least-squares sense. This is because the resulting error vector (d� d̂) will be orthogonal to the column
span of A.

In other words, the closest element d̂ to d must satisfy the orthogonality condition:

AT(d� d̂) ¼ 0:

That is, and replacing d̂ by Aŵ, the corresponding ŵ must satisfy

ATAŵ ¼ ATd:

These equations always have a solution ŵ. But while a solution ŵ may or may not be unique (depending
on whether A is or is not full rank), the resulting estimate d̂ ¼ Aŵ is always unique no matter which
solution ŵ we pick. This is obvious from the geometric argument because the orthogonal projection of d
onto the span of A is unique.

If A is assumed to be a tall full rank matrix then ATA is invertible and we can write

ŵ ¼ (ATA)�1ATd: (21:15)

21.2.1 Geometric Interpretation

The quantity Aŵ provides an estimate for d; it corresponds to the vector in the column span of A that is
closest in Euclidean norm to the given d. In other words,

d̂ ¼ A(ATA)�1AT 	 d ¼D PA 	 d,

where PA denotes the projector onto the range space of A. Figure 21.1 is a schematic representation of
this geometric construction, where R(A) denotes the column span of A.

d

d
R(A)ˆ

FIGURE 21.1 Geometric interpretation of the least-squares solution.

21-8 Digital Signal Processing Fundamentals



21.2.2 Statistical Interpretation

The least-squares solution also admits an important statistical interpretation. For this purpose, assume that
the noise vector v is a realization of a vector-valued random variable that is normally distributed with zero
mean and identity covariance matrix, written v
N[0, I]. In this case, the observation vector d will be a
realization of a vector-valued random variable that is also normally distributed with mean Aw and
covariance matrix equal to the identity I. This is because the random vectors are related via the additive
model d ¼ Aw þ v. The probability density function of the observation process d is then given by

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)(Nþ1)

p 	 exp � 1
2
(d� Aw)T(d� Aw)

� �
: (21:16)

It follows, in this case, that the least-squares estimator ŵ is also the ML estimator because it maximizes
the probability density function over w, given an observation vector d.

21.3 Regularized Least-Squares Problem

A more general optimization criterion that is often used instead of Equation 21.14 is the following:

min
w

(w � �w)TP�1
0 (w � �w)þ d� Awk k2� �

: (21:17)

This is still a quadratic cost function in the unknown vector w, but it includes the additional term

(w � �w)TP�1
0 (w � �w),

where
P0 is a given positive-definite (weighting) matrix
�w is also a given vector

Choosing P0 ¼ 1 	 I leads us back to the original expression (Equation 21.14).
A motivation for Equation 21.17 is that the freedom in choosingP0 allows us to incorporate additional

a priori knowledge into the statement of the problem. Indeed, different choices for P0 would indicate
how confident we are about the closeness of the unknown w to the given vector �w.

Assume, for example, that we set P0 ¼ e 	 I, where e is a very small positive number. Then the first
term in the cost function (Equation 21.17) becomes dominant. It is then not hard to see that, in this case,
the cost will be minimized if we choose the estimate ŵ close enough to �w in order to annihilate the effect
of the first term. In simple words, a ‘‘small’’ P0 reflects a high confidence that �w is a good and close
enough guess for w. On the other hand, a ‘‘large’’ P0 indicates a high degree of uncertainty in the initial
guess �w.

One way of solving the regularized optimization problem (Equation 21.17) is to reduce it to the
standard least-squares problem (Equation 21.20). This can be achieved by introducing the change of
variables w0 ¼ w � �w and d0 ¼ d� A�w. Then Equation 21.14 becomes

min
w0

(w0)TP�1
0 w0 þ d0 � Aw0k k2

h i
,

which can be further rewritten in the equivalent form

min
w0

0
d0

� �
� P

�1=2
0
A

� �
w0

����
����
2

:
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This is now of the same form as our earlier minimization problem (Equation 21.14), with the observation
vector d in Equation 21.14 replaced by

0
d0

� �
,

and the matrix A in Equation 21.14 replaced by

P
�1=2
0

A

" #
:

21.3.1 Geometric Interpretation

The orthogonality condition can now be used, leading to the equation

P
�1=2
0

A

" #T
0

d0

� �
� P

�1=2
0

A

" #
w0

 !
¼ 0,

which can be solved for the optimal estimate ŵ,

ŵ ¼ �w þ P�1
0 þ ATA

� ��1
AT[d� A�w]: (21:18)

Comparing with Equation 21.15, we see that instead of requiring the invertibility of ATA, we now require
the invertibility of the matrix P�1

0 þ ATA
� �

. This is yet another reason in favor of the modified criterion
in Equation 21.17 because it allows us to relax the full rank condition on A.

The solution of Equation 21.18 can also be reexpressed as the solution of the following linear system of
equations:

P�1
0 þ ATA

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

F

(ŵ � �w) ¼ AT[d� A�w]|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
s

, (21:19)

where we have denoted, for convenience, the coefficient matrix by F and the right-hand side by s.
Moreover, it further follows that the value of Equation 21.17 at the minimizing solution in Equation

21.18, denoted by Emin, is given by either of the following two expressions:

Emin ¼ d� A�wk k2�sT(ŵ � �w)

¼ (d� A�w)T[Iþ AP0A
T]�1(d� A�w): (21:20)

Expressions in Equations 21.19 and 21.20 are often rewritten into the so-called normal equations:

d� A�wk k2 sT

s F

� �
1

�(ŵ � �w)

� �
¼ Emin

0

� �
: (21:21)

The results of this section are summarized in Table 21.2.
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21.3.2 Statistical Interpretation

A statistical interpretation for the regularized problem can be obtained as follows. Given two vector-
valued zero-mean random variables w and d, the minimum-variance unbiased (MVU) estimator of w
given an observation of d is ŵ ¼ E(wjd), the conditional expectation of w given d. If the random
variables (w, d) are jointly Gaussian, then the MVU estimator for w given d can be shown to collapse to

ŵ ¼ (EwdT)(EddT)�1d: (21:22)

Therefore, if (w, d) are further linearly related, say

d ¼ Aw þ v, where v 
 N(0, I) and w 
 N(0,P0) (21:23)

with a zero-mean noise vector v that is uncorrelated with w (EwvT ¼ 0), then the expressions for (EwdT)
and (EddT) can be evaluated as

EwdT ¼ Ew(Aw þ v)T ¼ P0A
T and EddT ¼ AP0A

T þ I:

This shows that Equation 21.22 evaluates to

ŵ ¼ P0A
T Iþ AP0A

T
	 
�1

d: (21:24)

By invoking the useful matrix inversion formula (for arbitrary matrices of appropriate dimensions and
invertible E and C):

(Eþ BCD)�1 ¼ E�1 � E�1B(DE�1Bþ C�1)�1DE�1,

we can rewrite Equation 21.24 in the equivalent form

ŵ ¼ P�1
0 þ ATA

	 
�1
ATd: (21:25)

This expression coincides with the regularized solution (Equation 21.24) for �w ¼ 0 (the case �w 6¼ 0
follows from similar arguments by assuming a nonzero mean random variable w).

Therefore, the regularized least-squares solution is the MVU estimate of w given observations d that
are corrupted by additive Gaussian noise as in Equation 21.23.

TABLE 21.2 Linear Least-Squares Estimation

Optimization=Problem Solution

{w, d}

minw d� Awk k2 ŵ ¼ (ATA)�1ATd

A full rank

{w, d, w, P0}

minw (w � ŵ)TP�1
0 (w � ŵ)þ d� Awk k2� �

ŵ ¼ �w þ P�1
0 þ ATA

� ��1
AT [d� A�w]

P0 positive-definite Minimum value¼ (d� A�w)T Iþ AP0AT
	 
�1

(d� A�w)
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21.4 Recursive Least-Squares Problem

The RLS formulation deals with the problem of updating the solution ŵ of a least-squares problem
(regularized or not) when new data are added to the matrix A and to the vector d. This is in contrast to
determining afresh the least-squares solution of the new problem. The distinction will become clear as we
proceed in our discussions. In this section, we formulate the RLS problem as it arises in the context of
adaptive filtering.

Consider a sequence of (N þ 1) scalar data points, {d( j)}Nj¼0, also known as reference or desired signals,
and a sequence of (N þ 1) row vectors {uTj }

N
j¼0, also known as input signals. Each input vector uTj is a

1�M row vector whose individual entries we denote by {uk( j)}
M
k¼1, viz.,

uTj ¼ u1( j) u2( j) 	 	 	 uM( j)½ �: (21:26)

The entries of uj can be regarded as the values of M input channels at time j : channels 1 through M.
Consider also a known column vector �w and a positive-definite weighting matrix P0. The objective is

to determine anM � 1 column vector w, also known as the weight vector, so as to minimize the weighted
error sum:

E(N) ¼ (w � �w)T l�(Nþ1)P0
� ��1

(w � �w)þ
XN
j¼0

lN�j d( j)� uTj w
��� ���2, (21:27)

where l is a positive scalar that is less than or equal to one (usually 0 � l � 1). It is often called the
forgetting factor since past data is exponentially weighted less than the more recent data. The special case
l ¼ 1 is known as the growing memory case, since, as the length N of the data grows, the effect of past
data is not attenuated. In contrast, the exponentially decaying memory case (l < 1) is more suitable for
time-variant environments.

Also, and in principle, the factor l�(Nþ1) that multiplies P0 in the error-sum expression (Equation
21.27) can be incorporated into the weightingmatrixP0. But it is left explicit for convenience of exposition.

We further denote the individual entries of the column vector w by {w( j)}Mj¼1,

w ¼ col{w(1),w(2), . . . ,w(M)}:

A schematic description of the problem is shown in Figure 21.2. At each time instant j, the inputs of the
M channels are linearly combined via the coefficients of the weight vector and the resulting signal is
compared with the desired signal d( j). This results in a residual error e( j) ¼ d( j)� uTj w, for every j, and
the objective is to find a weight vector w in order to minimize the (exponentially weighted and
regularized) squared-sum of the residual errors over an interval of time, say from j ¼ 0 up to j ¼ N .

The linear combiner is said to be of order M since it is determined by M coefficients {w( j)}Mj¼1.

w(1) w(2) w(M)

d(j)

e(j)

–

uM(j)u2(j)u1(j) . . .

. . .

FIGURE 21.2 A linear combiner.
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21.4.1 Reducing to the Regularized Form

The expression for the weighted error-sum (Equation 21.27) is a special case of the regularized cost
function (Equation 21.17). To clarify this, we introduce the residual vector eN , the reference vector dN ,
the data matrix AN , and a diagonal weighting matrix LN :

eN ¼

d(0)

d(1)

d(2)

..

.

d(N)

2
66666664

3
77777775

|fflfflfflfflffl{zfflfflfflfflffl}
dN

�

u1(0) u2(0) . . . uM(0)

u1(1) u2(1) . . . uM(1)

u1(2) u2(2) . . . uM(2)

..

. ..
. ..

. ..
.

u1(N) u2(N) . . . uM(N)

2
66666664

3
77777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AN

w,

L
1=2
N ¼

l
1
2

h iN
l

1
2

h iN�1

. .
.

l
1
2

h i2
1

2
66666666664

3
77777777775
:

We now use a subscript N to indicate that the above quantities are determined by data that is available up
to time N .

With these definitions, we can write E(N) in the equivalent form:

E(N) ¼ (w � �w)T l�(Nþ1)P0
� ��1

(w � �w)þ L
1=2
N eN

��� ���2,
which is a special case of Equation 21.17 with

L
1=2
N dN and L

1=2
N AN (21:28)

replacing

dN and AN , (21:29)

respectively, and with l�(Nþ1)P0 replacing P0.
We therefore conclude from Equation 21.19 that the optimal solution ŵ of Equation 21.27 is given by

(ŵ � �w) ¼ F�1
N sN , (21:30)

where we have introduced

FN ¼ l(Nþ1)P�1
0 þ AT

NLNAN
� �

, (21:31)

sN ¼ AT
NLN [dN � AN �w]: (21:32)

The coefficient matrix FN is clearly symmetric and positive-definite.
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21.4.2 Time Updates

It is straightforward to verify that FN and sN so defined satisfy simple time-update relations, viz.,

FNþ1 ¼ lFN þ uNþ1u
T
Nþ1, (21:33)

sNþ1 ¼ lsN þ uNþ1 d(N þ 1)� uTNþ1 �w
� �

, (21:34)

with initial conditions F�1 ¼ P�1
0 and s�1 ¼ 0. Note that FNþ1 and lFN differ only by a rank-one

matrix.
The solution ŵ obtained by solving Equation 21.30 is the optimal weight estimate based on the

available data from time i ¼ 0 up to time i ¼ N . We shall denote it from now on by wN ,

FN (wN � �w) ¼ sN :

The subscript N in wN indicates that the data up to, and including, time N were used. This is to
differentiate it from the estimate obtained by using a different number of data points.

This notational change is necessary because the main objective of the RLS problem is to show how to
update the estimate wN , which is based on the data up to time N , to the estimate wNþ1, which is based on
the data up to time (N þ 1), without the need to solve afresh a new set of linear equations of the form

FNþ1(wNþ1 � �w) ¼ sNþ1:

Such a recursive update of the weight estimate should be possible since the coefficient matrices lFN and
FNþ1 of the associated linear systems differ only by a rank-one matrix. In fact, a wide variety of
algorithms has been devised for this end and our purpose in this chapter is to provide an overview of
the different schemes.

Before describing these different variants, we note in passing that it follows from Equation 21.20 that
we can express the minimum value of E(N) in the form

Emin(N) ¼ L
1=2
N (dN � AN �w)

��� ���2� sTN(wN � �w): (21:35)

21.5 RLS Algorithm

The first recursive solution that we consider is the famed RLS algorithm, usually referred to as the RLS
algorithm. It can be derived as follows.

Let wi�1 be the solution of an optimization problem of the form as Equation 21.27 that uses input data
up to time (i� 1) (i.e., for N ¼ (i� 1)). Likewise, let wi be the solution of the same optimization problem
but with input data up to time i [N ¼ i].

The RLS algorithm provides a recursive procedure that computes wi from wi�1. A classical derivation
follows by noting from Equation 21.30 that the new solution wi should satisfy

wi � �w ¼ F�1
i si ¼ lFi�1 þ uiu

T
i

� ��1
lsi�1 þ ui d(i)� uTi �w

� �	 

,

where we have also used the time-updates for {Fi, si}.
Introduce the quantities

Pi ¼ F�1
i and gi ¼ F�1

i ui: (21:36)
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Expanding the inverse of [lFi�1 þ uiuTi ] by using the matrix inversion formula (stated after Equation
21.24), and grouping terms, leads after some straightforward algebra to the RLS procedure:

. Initial conditions: w�1 ¼ �w and P�1 ¼ P0.

. Repeat for i � 0:

wi ¼ wi�1 þ gi d(i)� uTi wi�1
� �

, (21:37)

gi ¼
l�1Pi�1ui

1þ l�1uTi Pi�1ui
, (21:38)

Pi ¼ l�1 Pi�1 � giu
T
i Pi�1

� �
: (21:39)

. The computational complexity of the algorithm is O(M2) per iteration.

21.5.1 Estimation Errors and the Conversion Factor

With the RLS problem we associate two residuals at each time instant i: the a priori estimation error ea(i),
defined by

ea(i) ¼ d(i)� uTi wi�1,

and the a posteriori estimation error ep(i), defined by

ep(i) ¼ d(i)� uTi wi:

Comparing the expressions for ea(i) and ep(i), we see that the latter employs the most recent weight-
vector estimate.

If we replace wi in the definition for ep(i) by its update expression (Equation 21.37), say

ep(i) ¼ d(i)� uTi wi�1 þ gi d(i)� uTi wi�1
� �� 

,

some straightforward algebra will show that we can relate ep(i) and ea(i) via a factor g(i) known as the
conversion factor:

ep(i) ¼ g(i)ea(i),

where g(i) is equal to

g(i) ¼ 1

1þ l�1uTi Pi�1ui
¼ 1� uTi Piui: (21:40)

That is, the a posteriori error is a scaled version of the a priori error. The scaling factor g(i) is defined in
terms of {ui,Pi�1} or {ui,Pi}. Note that 0 � g(i) � 1.

Note further that the expression for g(i) appears in the definition of the so-called gain vector gi in
Equation 21.38 and, hence, we can alternatively rewrite Equations 21.38 and 21.39 in the forms

gi ¼ l�1g(i)Pi�1ui, (21:41)

Pi ¼ l�1Pi�1 � g�1(i)gig
T
i : (21:42)
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21.5.2 Update of the Minimum Cost

Let Emin(i) denote the value of the minimum cost of the optimization problem (Equation 21.27) with data
up to time i. It is given by an expression of the form as Equation 21.35 with N replaced by i,

Emin(i) ¼
Xi
j¼0

li�jd( j)� uTj �w
2

" #
� sTi (wi � �w):

Using the RLS update (Equation 21.37) for wi in terms of wi�1, as well as the time-update (Equation
21.34) for si in terms of si�1, we can derive the following time-update for the minimum cost:

Emin(i) ¼ lEmin(i� 1)þ ep(i)ea(i), (21:43)

where Emin(i� 1) denotes the value of the minimum cost of the same optimization problem (Equation
21.27) but with data up to time (i� 1).

21.6 RLS Algorithms in Array Forms

As mentioned in the introduction, we intend to stress the array formulations of the RLS solution due to
their intrinsic advantages:

. They are easy to implement as a sequence of elementary rotations on arrays of numbers.

. They are modular and parallelizable.

. They have better numerical properties than the classical RLS description.

21.6.1 Motivation

Note from Equation 21.39 that the RLS solution propagates the variable Pi as the difference of two
quantities. This variable should be positive-definite. But due to roundoff errors, however, the update
(Equation 21.39) may not guarantee the positive-definiteness of Pi at all times i. This problem can be
ameliorated by using the so-called array formulations. These alternative forms propagate square-root
factors of either Pi or P�1

i , namely, P1=2
i or P�1=2

i , rather than Pi itself. By squaring P
1=2
i , for example, we

can always recover a matrix Pi that is more likely to be positive-definite than the matrix obtained via
Equation 21.39,

Pi ¼ P1=2
i PT=2

i :

21.6.2 A Very Useful Lemma

The derivation of the array variants of the RLS algorithm relies on a very useful matrix result that
encounters applications in many other scenarios as well. For this reason, we not only state the result but
also provide one simple proof.

LEMMA 21.1

Given two n�m(n � m) matrices A and B, then AAT ¼ BBT if, and only if, there exists an m�m
orthogonal matrix Q (QQT ¼ Im) such that A ¼ BQ.
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Proof 21:1 One implication is immediate. If there exists an orthogonal matrixQ such that A ¼ BQ then

AAT ¼ (BQ)(BQ)T ¼ B(QQT)BT ¼ BBT:

One proof for the converse implication follows by invoking the singular value decompositions of the
matrices A and B,

A ¼ UA[SA 0 ]VT
A,

B ¼ UB[SB 0 ]VT
B ,

where
UA and UB are n� n orthogonal matrices
VA and VB are m�m orthogonal matrices
SA and SB are n� n diagonal matrices with nonnegative (ordered) entries.

The squares of the diagonal entries of SA(SB) are the eigenvalues of AAT(BBT). Moreover, UA(UB) are
constructed from an orthonormal basis for the right eigenvectors of AAT(BBT).

Hence, it follows from the identity AAT ¼ BBT that we have SA ¼ SB and we can choose UA ¼ UB.
Let Q ¼ VBVT

A. We then obtain QQT ¼ Im and BQ ¼ A.

21.6.3 Inverse QR Algorithm

We now employ the above result to derive an array form of the RLS algorithm that is known as the
inverse QR algorithm.

Let P1=2
i�1 denote a (preferably lower triangular) square-root factor of Pi�1, i.e., any matrix that satisfies

Pi�1 ¼ P1=2
i�1 P

T=2
i�1 :

(The triangular square-root factor of a symmetric positive-definite matrix is also known as the Cholesky
factor.)

Now note that the RLS recursions (Equations 21.38 and 21.39) can be expressed in factored form as
follows:

1
1ffiffiffi
l

p uTi P
1=2
i�1

0
1ffiffiffi
l

p P1=2
i�1

2
6664

3
7775

1 0T

1ffiffiffi
l

p PT=2
i�1ui

1ffiffiffi
l

p PT=2
i�1

2
4

3
5

¼
g�1=2(i) 0T

gig
�1=2(i) P1=2

i

" #
g�1=2(i) gTi g

�1=2(i)

0 PT=2
i

" #
:

To verify that this is indeed the case, we simply multiply the factors and compare terms on both sides of
the equality.

The point to note is that the above equality fits nicely into the statement of the previous lemma by taking

A ¼
1

1ffiffiffi
l

p uTi P
1=2
i�1

0
1ffiffiffi
l

p P1=2
i�1

2
664

3
775 (21:44)
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and

B ¼ g�1=2(i) 0T

gig
�1=2(i) P1=2

i

" #
: (21:45)

We therefore conclude that there should exist an orthogonal matrix Qi that relates the arrays A and B in
the form

1
1ffiffiffi
l

p uTi P
1=2
i�1

0
1ffiffiffi
l

p P1=2
i�1

2
664

3
775Qi ¼ g�1=2(i) 0T

gig
�1=2(i) P1=2

i

" #
:

That is, there should exist an orthogonal Qi that transforms the prearray A into the postarray B.
Note that the prearray contains quantities that are available at step i, namely {ui,P

1=2
i�1}, while the

postarray provides the (normalized) gain vector gig
�1=2(i), which is needed to update the weight-vector

estimate wi�1 into wi, as well as the square-root factor of the variable Pi, which is needed to form the
prearray for the next iteration.

But how do we determineQi? The answer highlights a remarkable property of array algorithms. We do
not really need to know or determine Qi explicitly!

To clarify this point, we first remark from the expressions in Equations 21.44 and 21.45 for the pre-
and postarrays that Qi is an orthogonal matrix that takes an array of numbers of the form (assuming a
vector ui of dimension M ¼ 3)

1 x x x
0 x 0 0
0 x x 0
0 x x x

2
664

3
775 (21:46)

and transforms it to the form

x 0 0 0
x x 0 0
x x x 0
x x x x

2
664

3
775: (21:47)

That is, Qi annihilates all the entries of the top row of the prearray (except for the left-most entry).
Now assume we form the prearray A in Equation 21.44 and choose any Qi (say as a sequence of

elementary rotations) so as to reduce A to the triangular form (Equation 21.47), i.e., in order to annihilate
the desired entries in the top row.

Let us denote the resulting entries of the postarray arbitrarily as

1
1ffiffiffi
l

p uTi P
1=2
i�1

0
1ffiffiffi
l

p P1=2
i�1

2
664

3
775Qi ¼ a 0T

b C

� �
, (21:48)

where {a, b, C} are quantities that we wish to identify (a is a scalar, b is a column vector, and C is a lower
triangular matrix). The claim is that by constructing Qi in this way (i.e., by simply requiring that it
achieves the desired zero pattern in the postarray), the resulting quantities {a, b, C} will be meaningful
and can in fact be identified with the quantities in the postarray B.
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To verify that the quantities {a, b, C} can indeed be identified with {g�1=2(i), gig
�1=2(i), P1=2

i }, we
proceed by squaring both sides of Equation 21.48,

1
1ffiffiffi
l

p uTi P
1=2
i�1

0
1ffiffiffi
l

p P1=2
i�1

2
664

3
775QiQ

T
i|fflffl{zfflffl}

I

1 0
1ffiffiffi
l

p PT=2
i�1ui

1ffiffiffi
l

p PT=2
i�1

2
4

3
5 ¼ a 0T

b C

� �
a bT

0 CT

" #
,

and comparing terms on both sides of the equality to get the identities:

a2 ¼ 1þ l�1uTi Pi�1ui ¼ g�1(i),

ba ¼ l�1Pi�1ui ¼ gig
�1(i),

CCT ¼ l�1Pi�1 � bbT ¼ l�1Pi�1 � g�1(i)gig
T
i :

Hence, as desired, we can make the identifications

a ¼ g�1=2(i), b ¼ gig
�1=2(i), and C ¼ P1=2

i :

In summary, we have established the validity of an array alternative to the RLS algorithm, known as the
inverse QR algorithm (also as square-root RLS). It is listed in Table 21.3. The recursions are known as inverse
QR since they propagate P1=2

i , which is a square-root factor of the inverse of the coefficient matrix Fi.

21.6.4 QR Algorithm

The RLS recursion (Equation 21.39) and the inverse QR recursion of Table 21.3 propagate the variable Pi

or a square-root factor of it. The starting condition for both algorithms is therefore dependent on the
weighting matrix P0 or its square-root factor P

1=2
0 .

This situation becomes inconvenient when the initial condition P0 assumes relatively large values, say
P0 ¼ sI with s  1. A particular instance arises, for example, when we take s ! 1 in which case the
regularized least-squares problem (Equation 21.33) reduces to a standard least-squares problem of the form

min
w

E(N) ¼
XN
j¼0

lN�j d( j)� uTj w
��� ���2

" #
: (21:49)

TABLE 21.3 Inverse QR Algorithm

Initialization: Start with w�1 ¼ �w and P1=2
�1 ¼ P

1=2
0 .

. Repeat for each time instant i� 0:

1 1ffiffi
l

p uTi P
1=2
i�1

0 1ffiffi
l

p P1=2
i�1

2
4

3
5Qi ¼ g�1=2(i) 0T

gig
�1=2(i) P1=2

i

" #
,

where Qi is any orthogonal rotation that produces the zero pattern in the postarray.

The weight-vector estimate is updated via

wi ¼ wi�1 þ gi
g�1=2(i)

� �
1

g�1=2(i)

� ��1

[d(i)� uTi wi�1],

where the quantities {g�1=2(i), gig
�1=2(i)} are read from the entries of the postarray.

The computational cost is O(M2) per iteration.
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For such problems, it is preferable to propagate the inverse of the variable Pi rather than Pi itself. Recall
that the inverse of Pi is Fi since we have defined earlier Pi ¼ F�1

i .
The QR algorithm is a recursive procedure that propagates a square-root factor of Fi. Its validity can

be verified in much the same way as we did for the inverse QR algorithm. We form a prearray of numbers
and then choose a sequence of rotations that induces a desired zero pattern in the postarray. Then by
squaring and comparing terms on both sides of an equality we can identify the resulting entries of the
postarray as meaningful quantities in the RLS context. For this reason, we shall be brief and only
highlight the main points.

Let F1=2
i�1 denote a square-root factor (preferably lower triangular) of Fi�1, Fi�1 ¼ F

1=2
i�1 F

T=2
i�1 , and

define, for notational convenience, the quantity

qi�1 ¼ F
T=2
i�1 wi�1: (21:50)

At time (i� 1), we form the prearray of numbers

A ¼

ffiffiffi
l

p
F

1=2
i�1 uiffiffiffi

l
p

qTi�1 d(i)

0T 1

2
664

3
775,

whose entries have the following pattern (shown for M ¼ 3):

A ¼

x 0 0 x
x x 0 x
x x x x
x x x x
0 0 0 1

2
66664

3
77775:

Now implement an orthogonal transformation Qi that reduces A to the form

B ¼

x 0 0 0
x x 0 0
x x x 0
x x x x
x x x x

2
66664

3
77775 ¼

C 0

bT a

hT f

2
64

3
75,

where the quantities {C, b, h, a, f } need to be identified. By comparing terms on both sides of the equality

ffiffiffi
l

p
F

1=2
i�1 uiffiffiffi

l
p

qTi�1 d(i)

0T 1

2
64

3
75QiQ

T
i|fflffl{zfflffl}

I

ffiffiffi
l

p
F

1=2
i�1 uiffiffiffi

l
p

qTi�1 d(i)

0T 1

2
64

3
75
T

¼
C 0

bT a

hT f

2
64

3
75

C 0

bT a

hT f

2
64

3
75
T

,

we can make the identifications:

C ¼ F
1=2
i , bT ¼ qTi , hT ¼ uTi F

�T=2
i ,

a ¼ ea(i)g
1=2(i), and f ¼ g1=2(i),

where ea(i) ¼ d(i)� uTi wi�1 is the a priori estimation error. This derivation establishes the so-called QR
algorithm (listed in Table 21.4).
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The QR solution determines the weight-vector estimate wi by solving a triangular linear system of
equations, for example, via back-substitution. A major drawback of a back-substitution step is that it
involves serial operations and, therefore, does not lend itself to a fully parallelizable implementation.

An alternative procedure for computing the estimate wi can be obtained by appending one more block
row to the arrays of the QR algorithm, leading to the equations:

ffiffiffi
l

p
F

1=2
i�1 uiffiffiffi

l
p

qTi�1 d(i)

0T 1
1ffiffi
l

p F
�T=2
i�1 0

2
666664

3
777775Qi ¼

F
1=2
i 0

qTi ea(i)g1=2(i)

uTi F
�T=2
i g1=2(i)

F
�T=2
i �gig

�1=2(i)

2
666664

3
777775: (21:51)

In this case, the last row of the postarray provides the gain vector gi that can be used to update the
weight-vector estimate as follows:

wi ¼ wi�1 þ gi
g1=2(i)

� �
ea(i)g

1=2(i)
h i

:

Note, however, that the pre- and postarrays now propagate both F
1=2
i and its inverse, which may lead to

numerical difficulties.

21.7 Fast Transversal Algorithms

The earlier RLS solutions require O(M2) floating point operations per iteration, whereM is the size of the
input vector ui:

uTi ¼ u1(i) u2(i) 	 	 	 uM(i)½ �:

It often happens in practice that the entries of ui are time-shifted versions of each other. More explicitly,
if we denote the value of the first entry of ui by u(i) (instead of u1(i)), then ui will have the form

uTi ¼ u(i) u(i� 1) 	 	 	 u(i�M þ 1)½ �: (21:52)

TABLE 21.4 QR Algorithm

Initialization: Start with w�1 ¼ �w, F1=2
�1 ¼ P

�T=2
0 , q�1 ¼ P

�1=2
0 �w:

. Repeat for each time instant i� 0:ffiffiffiffiffiffiffiffiffiffiffiffi
lF

1=2
i�1

q
uTiffiffiffiffiffiffiffiffiffiffiffi

lqTi�1

p
d(i)

0T 1

2
664

3
775Qi ¼

F
1=2
i 0

qTi ea(i)g1=2(i)

uTi F
�T=2
i g1=2(i)

2
664

3
775,

where Qi is any orthogonal rotation that produces the zero pattern in the postarray.

The weight-vector estimate can be obtained by solving the triangular linear systems
of equations:

F
T=2
i wi ¼ qi ,

where the quantities {F1=2
i , qi} are available from the entries of the postarray.

The computational complexity is still O(M2) per iteration.
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This has the pictorial representation shown in Figure 21.3. The term z�1 represents a unit-time delay.
The structure that takes u( j) as an input and provides the inner product

PM
k¼1 u( jþ 1� k)w(k) as an

output is known as a transversal or FIR (finite-impulse response) filter.
The shift structure in ui can be exploited in order to derive fast variants to the RLS solution that would

requireO(M) operations per iteration rather thanO(M2). This can be achieved by showing that, in this case,
the M �M variables Pi that are needed in the RLS recursion (Equation 21.39) exhibit certain matrix
structure that allowsus to replace theRLS recursionsbyanalternative set of recursions thatwenowmotivate.

21.7.1 Prewindowed Case

We first assume that no input data are available prior to and including time i ¼ 0. That is, u(i) ¼ 0 for
i � 0. In this case, the values at time 0 of the variables {ui, gi, g(i), Pi} become

u0 ¼ 0, g0 ¼ 0, g(0) ¼ 1, and P0 ¼ l�1P�1 ¼ l�1P0:

It then follows that the following equality holds:

P0 0

0T 0

� �
� 0 0T

0 P�1

� �
¼ l�1P0 0

0T 0

� �
� 0 0T

0 P0

� �

Note that we have embedded P0 and P�1 into larger matrices (of size (M þ 1)� (M þ 1) each) by adding
one zero row and one zero column. This embedding will allow us to suggest a suitable choice for the initial
weighting matrix P0 in order to enforce a low-rank difference matrix on the right-hand side of the above
expression. In so doing, we guarantee that (P0 � 0) can be obtained from (0� P�1) via a low rank update.

Strikingly enough, the argument will further show that because of the shift structure in the input
vectors ui, if this low-rank property holds for the initial time instant then it also holds for the successive
time instants! Consequently, the successive matrices (Pi � 0) will also be low-rank modifications of
earlier matrices (0� Pi�1).

In this way, a fast procedure for updating the Pi can be developed by replacing the propagation of Pi via
Equation 21.39 by a recursion that instead propagates the low-rank factors that generate thePi.Wewill verify
that this procedure also allows us to update the weight-vector estimates rapidly (in O(M) operations).

21.7.2 Low-Rank Property

Assume we choose P0 in the special diagonal form

P0 ¼ d 	 diag{l2, l3, . . . ,lMþ1}, (21:53)

d(j)

e(j)

–

u(j)

w(1) w(2) w(M)

z–1 z–1 z–1. . .

. . .

FIGURE 21.3 A linear combiner with shift structure in the input channels.
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where d is a positive quantity (usually much larger than one, d  1). In this case, we are led to a rank-two
difference of the form

l�1P0 0

0T 0

� �
� 0 0T

0 P0

� �
¼ d 	 l 	

1

0

�lM

2
4

3
5,

which can be factored as

P0 0

0T 0

� �
� 0 0T

0 P�1

� �
¼ l 	 �L0S0 �LT0 , (21:54)

where �L0 is (M þ 1)� 2 and S0 is a 2� 2 signature matrix that are given by

�L0 ¼
ffiffiffi
d

p
	

1 0
0 0
0 l

M
2

2
4

3
5 and S0 ¼ 1 0

0 �1

� �
:

21.7.3 Fast Array Algorithm

We now argue by induction, and by using the shift property of the input vectors ui, that if the low-rank
property holds at a certain time instant i, say

Pi 0
0T 0

� �
� 0 0T

0 Pi�1

� �
¼ l 	 �LiSi �LTi , (21:55)

then three important facts hold:

. The low-rank property also holds at time iþ 1, say

Piþ1 0
0T 0

� �
� 0 0T

0 Pi

� �
¼ l 	 �Liþ1Siþ1�L

T
iþ1:

. There exists an array algorithm that updates �Li to �Liþ1. Moreover, the algorithm also provides the
gain vector gi that is needed to update the weight-vector estimate in the RLS solution.

. The signature matrices {Si, Siþ1} are equal! That is, all successive low-rank differences have the
same signature matrix as the initial difference and, hence,

Si ¼ S0 ¼ 1 0
0 �1

� �
for all i:

To verify these claims, consider Equation 21.55 and form the prearray

A ¼
g�1=2(i) u(iþ 1) uTi

� �
�Li

0

gig
�1=2(i)

� �
�Li

2
64

3
75:
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For M ¼ 3, the prearray has the following generic form (recall that �Li is (M þ 1)� 2):

A ¼

x x x
0 x x
x x x
x x x
x x x

2
66664

3
77775:

Now let Qi be a matrix that satisfies

Qi

1
1

�1

2
4

3
5QT

i ¼
1

1
�1

2
4

3
5 ¼ 1

Si

� �
,

and such that it transforms A into the form

B ¼

x 0 0
x x x
x x x
x x x
x x x

2
66664

3
77775 ¼ a 0T

b C

� �
:

That is, Qi annihilates two entries in the top row of the prearray. This can be achieved by employing a
circular rotation that pivots with the left-most entry of the first row and annihilates its second entry. We
then employ a hyperbolic rotation that pivots again with the left-most entry and annihilates the last entry
of the top row.

The unknown entries {a, b, C} can be identified by resorting to the same technique that we employed
earlier during the derivation of the QR and inverse QR algorithms. By comparing entries on both sides of
the equality

A
1

Si

� �
AT ¼ a 0T

b C

� �
1

Si

� �
a 0T

b C

� �T
,

we obtain several equalities. For example, by equating the (1, 1) entries, we obtain the following relation:

g�1(i)þ u(iþ 1) uTi

�
�LiSi�L

T
i

u(iþ 1)
ui

� �
¼ a2:

�
(21:56)

By using Equation 21.55 for �LiSi�Li and by noting that we can rewrite the vector u(iþ 1) uTi
� �

in two
equivalent forms (due to its shift structure):

u(iþ 1) uTi
� � ¼ uTiþ1 u(i�M þ 1)

� �
, (21:57)

we readily conclude that Equation 21.56 collapses to

g�1(i)þ l�1uTiþ1Piuiþ1 � l�1uTi Pi�1ui ¼ a2:

But g�1(i) ¼ 1þ l�1uTi Pi�1ui. Therefore,

a2 ¼ 1þ l�1uTiþ1Piuiþ1 ¼ g�1(iþ 1),

which shows that we can identify a as

a ¼ g�1=2(iþ 1):
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A similar argument allows us to identify b. By comparing the (2, 1) entries we obtain

ab ¼ 0
gig

�1(i)

� �
þ �LiSi�L

T
i

u(iþ 1)
ui

� �
: (21:58)

Again, by Equation 21.55 for �LiSi�LTi , Equation 21.57 for the vector u(iþ 1) uTi
� �

, and by noting from
the definition of gi that

0

gig
�1(i)

� �
¼ 0

l�1Pi�1ui

� �
,

we obtain

b ¼ giþ1g
�1=2(iþ 1)
0

� �
:

Finally, for the last term C we compare the (2, 2) entries to obtain

CSiC
T ¼ Piþ1 0

0T 0

" #
� 0 0T

0 Pi

" #
:

The difference on the right-hand side is by definition l�Liþ1Siþ1�LTiþ1. This shows that we can make the
identifications

C ¼
ffiffiffi
l

p
	 �Liþ1 and Siþ1 ¼ Si:

In summary, we have established the validity of the array algorithm shown in Table 21.5, which
minimizes the cost function (Equation 21.27) in the prewindowed case and for the special choice of
P0 in Equation 21.53.

Note that this fast procedure computes the required gain vectors gi without explicitly evaluating the
matrices Pi. Instead, the low-rank factors �Li are propagated, which explains the lower computational
requirements.

TABLE 21.5 Fast Array Algorithm

Input: Prewindowed data {d(j), u(j)} for j � 1 and P0 as in Equation 21.53 in the cost (Equation 21.27).

Initialization: Set

w�1 ¼ �w, g�1=2(0) ¼ 1,

Lo ¼
ffiffiffi
d

p
:

1 0
0 0
0 lM

2

2
4

3
5, and S0 ¼ 1 0

0 �1

� �
:

Repeat for each time instant i� 0:

g�1=2(i) u(iþ 1) uTi
� �

�Li

0

gig
�1=2(i)

" #
�Li

2
664

3
775Qi ¼

g�1=2(iþ 1) 0T

giþ1g
�1=2(iþ 1)

0

" # ffiffiffi
l

p
�Li�1

2
664

3
775,

where Qi is any (1� S0)-orthogonal matrix that produces the zero pattern in the postarray, and �Li is a
two-column matrix.

The weight-vector estimate is updated via

wi ¼ wi�1 þ gi
g1=2(i)

� �
g�1=2(i)
h i�1

d(i)� uTi wi�1
� �

:

The computational cost is O(M) per iteration.
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21.7.4 Fast Transversal Filter

The fast algorithm of the last section is an array version of fast RLS algorithms known as FTF and
FAEST. In contrast to the above array description, where the transformation Qi that updates the data
from time i to time (iþ 1) is left implicit, the FTF and FAEST algorithms involve explicit sets of
equations.

The derivation of these explicit sets of equations can be motivated as follows. Note that the factoriza-
tion in Equation 21.54 is highly nonunique. What is special about Equation 21.54 (and also Equation
21.55) is that we have forced S0 to be a signature matrix, i.e., a matrix with �1s on its diagonal. More
generally, we can allow for different factorizations with an S0 that is not restricted to be a signature
matrix. Different choices lead to different sets of equations.

More explicitly, assume we factor the difference matrix in Equation 21.55 as

Pi 0

0T 0

� �
� 0 0T

0 Pi�1

� �
¼ l 	 LiMiL

T
i , (21:59)

where
Li is an (M þ 1)� 2 matrix
Mi is a 2� 2 matrix that is not restricted to be a signature matrix

(We already know from the earlier array-based argument that this difference is always low-rank.)
Given the factorization (Equation 21.59), it is easy to verify that two successive gain vectors satisfy the

following relation:

giþ1g
�1(iþ 1)

0

� �
¼ 0

gig
�1(i)

� �
þ LiMiL

T
i

u(iþ 1)

ui

� �
:

This is identical to Equation 21.58 except that Si is replaced by Mi and �Li is replaced by Li. The fast array
algorithm of the previous section provides one possibility for enforcing this relation and, hence, of
updating gi to giþ1 via updates of �Li.

The FTF and FAEST algorithms follow by employing one such alternative factorization, where the two
columns of the factor Li turn out to be related to the solution of two fundamental problems in adaptive
filter theory: the so-called forward and backward prediction problems. Moreover, theMi factor turns out
to be diagonal with entries equal to the so-called forward and backward minimum prediction energies.
An explicit derivation of the FTF equations can be pursued along these lines. We omit the details and
continue to focus on the square-root formulation. We now proceed to discuss order-recursive adaptive
filters within this framework.

21.8 Order-Recursive Filters

The RLS algorithms that were derived in the previous sections are all fixed-order solutions of Equation
21.27 in the sense that they recursively evaluate successive weight estimates wi that correspond to a fixed-
order combiner of order M. This form of computing the minimizing solution wN is not convenient from
an order-recursive point of view. In other words, assume we pose a new optimization problem of the
same form as Equation 21.27 but where the vectors {w,uj} are now of order (M þ 1) rather than M.
How do the weight estimates of this new higher-dimensional problem relate to the weight estimates of
the lower dimensional problem?
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Before addressing this issue any further, it is apparent at this stage that we need to introduce a
notational modification in order to keep track of the proper sizes of the variables. Indeed, from now on,
we shall explicitly indicate the size of a variable by employing an additional subscript. For example, we
shall write {wM , uM,j} instead of {w,uj} to denote vectors of size M.

Returning to the point raised in the previous paragraph, let wMþ1,N denote the optimal solution of the
new optimization problem (with (M þ 1) – dimensional vectors {wMþ1, uMþ1,j}. The adaptive algorithms
of the previous sections give an explicit recursive (time-update) relation between wM,N and wM,N�1. But
they do not provide a recursive (order-update) relation between wM,N and wMþ1,N .

There is an alternative to the FIR implementation of Figure 21.3 that allows us to easily carry over the
information from previous computations for the order M filter. This is the so-called lattice filter.

From now on we assume, for simplicity of presentation, that the weighting matrix P0 in Equation
21.27 is very large, i.e., P0 ! 1I. This assumption reduces Equation 21.27 to a standard least-squares
formulation:

min
wM

XN
j¼0

lN�i d( j)� uTM,jwM

��� ���2
" #

: (21:60)

The order-recursive filters of this section deal with this kind of minimization.
Now suppose that our interest in solving Equation 21.60 is not to explicitly determine the weight

estimate wM,N , but rather to determine estimates for the reference signals {d( 	 )}, say

dM(N) ¼ uTM,NwM,N ¼ estimate of d(N) of order M:

Likewise, for the higher order problem,

dMþ1(N) ¼ uTMþ1,NwMþ1,N ¼ estimate of d(N) of order M þ 1:

The resulting estimation errors will be denoted by

eM(N) ¼ d(N)� dM(N) and eMþ1(N) ¼ d(N)� dMþ1(N):

The lattice solution allows us to update eM(N) to eMþ1(N) without explicitly computing the weight
estimates wM,N and wMþ1,N .

The discussion that follows relies heavily on the orthogonality property of least-squares solutions and,
therefore, serves as a good illustration of the power and significance of this property. It will further
motivate the introduction of the forward and backward prediction problems.

21.8.1 Joint Process Estimation

For the sake of illustration, and without loss of generality, the discussion in this section assumes
particular values for M and l, say M ¼ 3 and l ¼ 1. These assumptions simplify the exposition without
affecting the general conclusions. In particular, a nonunity l can always be incorporated into the
discussion by properly normalizing the vectors involved in the derivation (cf. Equations 21.28 and
21.29) and we will do so later. We continue to assume prewindowed data (i.e., the data are zero for
time instants i � 0).
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To begin with, assume we solve the following problem (as suggested by Equation 21.60): minimize
over w3 the cost function

0
d(1)
d(2)
..
.

d(N)

2
666664

3
777775

|fflfflfflfflffl{zfflfflfflfflffl}
dN

�

0 0 0
u(1) 0 0
u(2) u(1) 0
..
. ..

. ..
.

u(N) u(N � 1) u(N � 2)

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A3,N

w3(1)
w3(2)
w3(3)

2
4

3
5

|fflfflfflfflffl{zfflfflfflfflffl}
w3

����������������

����������������

2

(21:61)

where
dN denotes the vector of desired signals up to time N
A3,N denotes a three-column matrix of input data {u(	)}, also up to time N

The optimal solution is denoted byw3,N . The subscriptN indicates that it is an estimate based on the data
u(	) up to timeN . Determiningw3,N corresponds to determining the entries of a three-dimensional weight
vector so as to approximate the column vector dN by the linear combination A3,Nw3,N in the least-squares
sense (Equation 21.61). We thus say that expression in Equation 21.61 defines a third-order estimator
for the reference sequence {d( 	 )}. The resulting a posteriori estimation error vector is denoted by

e3,N ¼ dN � A3,Nw3,N ,

where, for example, the last entry of e3,N is given by

e3(N) ¼ d(N)� uT3,Nw3,N ,

and it denotes the a posteriori estimation error in estimating d(N) from a linear combination of the three
most recent inputs.

We already know from the orthogonality property of least-squares solutions that the a posteriori
residual vector e3,N has to be orthogonal to the data matrix A3,N , viz.,

AT
3,Ne3,N ¼ 0:

We also know that the optimal solution w3,N provides an estimate vector A3,Nw3,N that is the closest
element in the column space of A3,N to the column vector dN .

Now assume that we wish to solve the next higher order problem, viz., of order M ¼ 4: minimize over
w4 the cost function

dN � A4,Nw4k k2, (21:62)

where

A4,N ¼

0 0 0 0
u(1) 0 0 0
u(2) u(1) 0 0
..
. ..

. ..
. ..

.

u(N � 1) u(N � 2) u(N � 3) u(N � 4)
u(N) u(N � 1) u(N � 2) u(N � 3)

2
66666664

3
77777775

and w4 ¼

w4(1)

w4(2)

w4(3)

w4(4)

2
6664

3
7775:
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This statement is very close to Equation 21.61 except for an extra column in the data matrix A4,N : the
first three columns of A4,N coincide with those of A3,N , while the last column of A4,N contains the extra
new data that are needed for a fourth-order estimator. More specifically, A3,N and A4,N are related as
follows:

A4,N ¼

0
0
0

A3,N
..
.

u(N � 4)
u(N � 3)

2
6666664

3
7777775
: (21:63)

The problem in Equation 21.62 requires us to linearly combine the four columns of A4,N in order to
compute the fourth-order estimates of {0, d(1), d(2), . . . , d(N)}. In other words, it requires us to
determine the closest element in the column space of A4,N to the same column vector dN .

We already know what is the closest element to dN in the column space of A3,N , which is a submatrix
of A4,N . This suggests that we should try to decompose the column space of A4,N into two orthogonal
subspaces, viz.,

Range(A4,N ) ¼ Range(A3,N)� Range(m), (21:64)

where m is a column vector that is orthogonal to A3,N , AT
3,Nm ¼ 0. The notation Range(A3,N )�

Range(m) also means that every element in the column space of A4,N can be expressed as a linear
combination of the columns of A3,N and of m.

The desired decomposition motivates the backward prediction problem.

21.8.2 Backward Prediction Error Vectors

We continue to assume l ¼ 1 and M ¼ 3, and we note that the required decomposition can be
accomplished by projecting the last column of A4,N onto the column space of its first three columns
(i.e., onto the column space of A3,N) and keeping the residual vector as the desired vector m. This is
nothing but a Gram–Schmidt orthogonalization step and it is equivalent to the following minimization
problem: minimize over wb

3

0
0
0
..
.

u(N � 4)
u(N � 3)

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Last column

of A4,N

� A3,N

wb
3(1)

wb
3(2)

wb
3(3)

2
64

3
75

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
wb
3

��������������������

��������������������

2

: (21:65)

This is also a special case of Equation 21.60 where we have replaced the sequence

{0, d(1), . . . , d(N)}
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by the sequence

{0, 0, 0, . . . , u(N � 4), u(N � 3)}:

We denote the optimal solution by wb
3,N . The subscript N indicates that it is an estimate based on

the data u( 	 ) up to time N . Determining wb
3,N corresponds to determining the entries of a three-

dimensional weight vector so as to approximate the last column of A4,N by a linear combination of the
columns of A3,N , viz., A3,Nwb

3,N , in the least-squares sense.
Note that the entries in every row of the data matrix A3,N are the three ‘‘future’’ values corresponding

to the entry in the last column of A4,N . Hence, the last element of the above linear combination serves as a
backward prediction of u(N � 3) in terms of {u(N), u(N � 1), u(N � 2)}. A similar remark holds for the
other entries. The superscript b stands for backward.

We thus say that the expression of Equation 21.65 defines a third-order backward prediction problem.
The resulting a posteriori backward prediction error vector is denoted by

b3,N ¼

0
0
0
..
.

u(N � 4)
u(N � 3)

2
6666664

3
7777775
� A3,Nw

b
3,N :

In particular, the last entry of b3,N is defined as the a posteriori backward prediction error in estimating
u(N � 3) from a linear combination of the future three inputs. It is denoted by b3(N) and is given by

b3(N) ¼ u(N � 3)� uT3,Nw
b
3,N : (21:66)

We further know, from the orthogonality property of least-squares solutions, that the a posteriori
backward residual vector b3,N has to be orthogonal to the data matrix A3,N , AT

3,Nb3,N ¼ 0, which therefore
implies that it can be taken as the m column that we mentioned earlier, viz., we can write

Range(A4,N ) ¼ Range(A3,N)� Range(b3,N ): (21:67)

Our original motivation for introducing the a posteriori backward residual vector b3,N was the desire to
solve the fourth-order problem in Equation 21.62, not afresh, but in a way so as to exploit the solution of
lower order, thus leading to an order-recursive algorithm.

Assume now that we have available the estimation error vectors e3,N and b3,N , which are both
orthogonal to A3,N . Knowing that b3,N leads to an orthogonal decomposition of the column space of
A4,N as in Equation 21.67, then updating e3,N into a fourth-order a posteriori residual vector e4,N , which
has to be orthogonal to A4,N , simply corresponds to projecting the vector e3,N onto the vector b3,N . More
explicitly, it corresponds to determining a scalar coefficient k3 that solves the optimization problem

min
k3

e3,N � k3b3,Nk k2: (21:68)

This is a standard least-squares problem and its optimal solution is denoted by

k3(N) ¼ 1

bT3,Nb3,N
bT3,Ne3,N : (21:69)
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We now know how to update e3,N into e4,N by projecting e3,N onto b3,N . In order to be able to proceed
with this order update procedure, we still need to know how to order-update the backward residual
vector. That is, we need to know how to go from b3,N to b4,N .

21.8.3 Forward Prediction Error Vectors

We continue to assume l ¼ 1 and M ¼ 3. The order-update of the backward residual vector motivates
us to introduce the forward prediction problem: minimize over wf

3 the cost function

u(1)

u(2)

u(3)

..

.

u(N þ 1)

2
66666664

3
77777775
� A3,N

wf
3(1)

wf
3(2)

wf
3(3)

2
64

3
75

|fflfflfflfflffl{zfflfflfflfflffl}
wf
3

�������������

�������������

2

: (21:70)

We denote the optimal solution by wf
3,Nþ1. The subscript indicates that it is an estimate based on the

data u( 	 ) up to time N þ 1. Determining wf
3,Nþ1 corresponds to determining the entries of a three-

dimensional weight vector so as to approximate the column vector

u(1)

u(2)

u(3)

..

.

u(N þ 1)

2
66666664

3
77777775

by a linear combination of the columns of A3,N , viz., A3,Nwf
3,Nþ1.

Note that the entries of the successive rows of the data matrix A3,N are the past three inputs relative to
the corresponding entries of the column vector. Hence, the last element of the linear combination
A3,Nwf

3,Nþ1 serves as a forward prediction of u(N þ 1) in terms of {u(N), u(N � 1), u(N � 2)}. A similar
remark holds for the other entries. The superscript f stands for forward.

We thus say that the expression of Equation 21.70 defines a third-order forward prediction problem.
The resulting a posteriori forward prediction error vector is denoted by

f3,Nþ1 ¼

u(1)
u(2)
u(3)
..
.

u(N þ 1)

2
666664

3
777775� A3,Nw

f
3,Nþ1:

In particular, the last entry of f3,Nþ1 is defined as the a posteriori forward prediction error in
estimating u(N þ 1) from a linear combination of the past three inputs. It is denoted by f3(N þ 1) and
is given by

f3(N þ 1) ¼ u(N þ 1)� u3,Nw
f
3,Nþ1: (21:71)
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Now assume that we wish to solve the next-higher order problem, viz., of orderM ¼ 4: minimize over wf
4

the cost function

u(1)

u(2)

u(3)

..

.

u(N þ 1)

2
66666664

3
77777775
� A4,N

wf
4(1)

wf
4(2)

wf
4(3)

wf
4(4)

2
6664

3
7775

�������������

�������������

2

: (21:72)

We again observe that this statement is very close to Equation 21.70 except for an extra column in the
data matrix A4,N , in precisely the same way as happened with e4,N and b3,N . We can therefore obtain
f4,Nþ1 by projecting f3,Nþ1 onto b3,N and taking the residual vector as f4,Nþ1,

min
kf3

f3,Nþ1 � kf3b3,N
�� ��2: (21:73)

This is also a standard least-squares problem and we denote its optimal solution by kf3(N þ 1),

kf3(N þ 1) ¼ bT3,N f3,Nþ1

bT3,Nb3,N
, (21:74)

with

f4,Nþ1 ¼ f3,Nþ1 � kf3(N þ 1)b3,N : (21:75)

Similarly, the backward residual vector b3,N can be updated to b4,Nþ1 by projecting b3,N onto f3,Nþ1,

min
kb3

b3,N � kb3f3,Nþ1

�� ��2, (21:76)

and we get, after denoting the optimal solution by kb3(N þ 1),

b4,Nþ1 ¼ b3,N � kb3(N þ 1)f3,Nþ1, (21:77)

where

kb3(N þ 1) ¼ fT3,Nþ1b3,N

fT3,Nþ1f3,Nþ1
: (21:78)

Note the change in the time index as we move from b3,N to b4,Nþ1. This is because b4,Nþ1 is obtained by
projecting b3,N onto f3,Nþ1, which corresponds to the following definition for b4,Nþ1,

b4,Nþ1 ¼

0

0

0

..

.

u(N � 4)

u(N � 3)

2
6666666664

3
7777777775
� A4,Nþ1

wb
4,Nþ1(1)

wb
4,Nþ1(2)

wb
4,Nþ1(3)

wb
4,Nþ1(4)

2
66664

3
77775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
wb
4,Nþ1

:
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Finally, in view of Equation 21.69, the joint process estimation problem involves a recursion of the
form

e4,N ¼ e3,N � k3(N)b3,N , (21:79)

where

k3(N) ¼ bT3,Ne3,N
bT3,Nb3,N

: (21:80)

21.8.4 A Nonunity Forgetting Factor

For a general filter order M and for a nonunity l, an extension of the above arguments would show that
the prediction vectors can be updated as follows:

fMþ1,Nþ1 ¼ fM,Nþ1 � kfM(N þ 1)bM,N ,

bMþ1,Nþ1 ¼ bM,N � kbM(N þ 1)fM,Nþ1,

eMþ1,N ¼ eM,N � kM(N)bM,N ,

kfM(N þ 1) ¼ bTM,NLN fM,Nþ1

bTM,NLNbM,N
,

kbM(N þ 1) ¼ fTM,Nþ1LNbM,N

fTM,Nþ1LN fM,Nþ1
,

kM(N) ¼ bTM,NLNeM,N

bTM,NLNbM,N
,

where LN ¼ diag{lN , lN�1, . . . , l, 1}:
For completeness, we also include the defining relations for the a priori and a posteriori prediction

errors:

bM(N) ¼ u(N �M)� uTM,Nw
b
M,N�1,

bM(N) ¼ u(N �M)� uTM,Nw
b
M,N ,

aM(N þ 1) ¼ u(N þ 1)� uTM,Nw
f
M,N ,

fM(N þ 1) ¼ u(N þ 1)� uTM,Nw
f
M,Nþ1:

Using the definition of Equation 21.40 for a conversion factor in a least-squares formulation, it is easy to
see that the same factor converts the a priori prediction errors to the corresponding a posteriori
prediction errors. This factor will be denoted by gM(N).

Table 21.6 summarizes, for ease of reference, the definitions and relations that have been introduced
thus far. In particular, the last two lines of the table also provide time-update relations for the minimum
costs of the forward and backward prediction problems. These costs are denoted by jfM(N þ 1) and
jbM(N) and they are equal to the quantities fTM,Nþ1LN fM,Nþ1 and bTM,NLNbM,N that appear in the
denominators of some of the earlier expressions. The last two relations of Table 21.6 use the result in
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Equation 21.43 to express the minimum costs in terms of the so-called angle-normalized prediction
errors:

�fM(N þ 1) ¼ aM(N þ 1)g1=2M (N), (21:81)

�bM(N) ¼ bM(N)g1=2M (N): (21:82)

We can derive, in different ways, similar update relations for the inner product terms

DM(N þ 1) ¼ fTM,Nþ1LNbM,N ,

rM(N) ¼ bTM,NLNeM,N :

One possibility is to note, after some algebra and using the orthogonality principle, that the following
relation holds:

DM(N þ 1) ¼ 1 �(wf
M,N )

T 0
� �

FMþ2,Nþ1

0
�wb

M,N
1

2
4

3
5,

where

FMþ2,Nþ1 ¼
XNþ1

j¼0

lNþ1�juMþ2,ju
T
Mþ2,j

If we now invoke the time-update expression

FMþ2,Nþ1 ¼ lFMþ2,N þ uTMþ2,Nþ1uMþ2,Nþ1,

we conclude that DM(N þ 1) satisfies the time-update formula:

DM(N þ 1) ¼ lDM(N)þ aM(N þ 1)bM(N)

¼ lDM(N)þ fM(N þ 1)bM(N)
gM(N)

:

TABLE 21.6 Useful Relations for the Prediction Problems

Variable Definition or Relation

A priori forward error aM(N þ 1) ¼ u(N þ 1)� uTM,Nw
f
M,N�1

A priori backward error bM(N) ¼ u(N �M)� uTM,Nw
b
M,N�1

A posteriori forward error fM(N þ 1) ¼ u(N þ 1)� uTM,Nw
f
M,N

A posteriori backward error bM(N) ¼ u(N �M)� uTM,Nw
b
M,N

Forward error by conversion fM(N þ 1) ¼ aM(N þ 1)gM(N)

Backward error by conversion bM(N) ¼ bM(N)gM(N)

Gain vector gM,N ¼ F�1
M,NuM,N

Conversion factor gM(N) ¼ 1� uTM,NF
�1
M,NuM,N

Minimum forward-prediction error energy jfM(N þ 1) ¼ ljfM(N)þ �fM(N þ 1)
�� ��2

Minimum backward-prediction error energy jbM(N þ 1) ¼ ljbM(N)þ �bM(N þ 1)
�� ��2
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A similar argument for rM(N) shows that it satisfies the time-update relation:

rM(N) ¼ lrM(N � 1)þ eM(N)bM(N)
gM(N)

:

Finally, the orthogonality principle can again be invoked to derive order-update (rather than time-
update) relations for jfM(N þ 1) and jbM(N). Indeed, using fTMþ1,Nþ1LNbM,N ¼ 0, we obtain

jfMþ1(N þ 1) ¼ fTMþ1,Nþ1LN fMþ1,Nþ1 ¼ fTMþ1,Nþ1LN fM,Nþ1

¼ jfM(N þ 1)� DM(N þ 1)k k2
jbM(N)

:

Likewise,

jbMþ1(N þ 1) ¼ jbM(N)� DM(N þ 1)k k2
jfM(N þ 1)

:

Table 21.7 summarizes the order-update relations derived thus far.

21.8.5 QRD-LSL Filter

There are many variants of adaptive lattice algorithms. In this section we present one such variant in
square-root form. Most, if not all, other alternatives can be obtained as special cases. Some alternatives
propagate the a posteriori prediction errors {fM(N þ 1), bM(N)}, while others employ the a priori
prediction errors {aM(N þ 1), bM(N)}. The QRD-LSL algorithm we present here is invariant to the
particular choice of a posteriori or a priori errors because it propagates the angle-normalized prediction
errors that we introduced earlier in Equations 21.81 and 21.82, viz.,

�f M(iþ 1) ¼ aM(iþ 1)g1=2M (i) ¼ [u(iþ 1)� uTM,iw
f
M,i]g

1=2
M (i),

�bM(i) ¼ bM(i)g
1=2
M (i) ¼ [u(i�M)� uTM,iw

b
M,i�1]g

1=2
M (i):

TABLE 21.7 Order-Update Relations

DM(N þ 1) ¼ lDM(N)þ fM (Nþ1)bM (N)
gM (N)

rM(N) ¼ lrM(N � 1)þ eM (N)bM (N)
gM (N)

jfM(N þ 1) ¼ ljfM(N)þ fM (Nþ1)j j2
gM (N)

jbM(N) ¼ ljbM(N � 1)þ jbM (N)j2
gM (N)

kfM(N þ 1) ¼ DM(N þ 1)=jbM(N)

kbM(N þ 1) ¼ DM(N þ 1)=jfM(N þ 1)

kM(N) ¼ rM(N)=jbM(N)

fMþ1(N þ 1) ¼ fM(N þ 1)� kfM(N þ 1)bM(N)

bMþ1(N þ 1) ¼ bM(N)� kbM(N þ 1)fM(N þ 1)

eMþ1(N) ¼ eM(N)� kM(N)bM(N)

jfMþ1(N þ 1) ¼ jfM(N þ 1)� DM (Nþ1)j j2
jbM (N)

jbMþ1(N þ 1) ¼ jbM(N) � DM (Nþ1)j j2
jfM (Nþ1)
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The QRD-LSL algorithm can be motivated as follows. Assume we form the following two vectors of
angle-normalized prediction errors:

�fM,Nþ1 ¼

�fM(1)
�fM(2)

..

.

�fM(N þ 1)

2
66664

3
77775 and �bM,N ¼

�bM(0)
�bM(1)

..

.

�bM(N)

2
66664

3
77775: (21:83)

We then conclude from the time-updates in Table 21.6 for jfM(N þ 1) and jbM(N) that jfM(N þ 1) and
jbM(N) are the (weighted) squared Euclidean norms of the angle normalized vectors �fM(N þ 1)
and �bM(N), respectively. That is, jfM(N þ 1) ¼ �fTM,Nþ1LN

�fM,Nþ1 and jbM(N) ¼ �bTM,NLN
�bM,N . Likewise,

it follows from the time-update for DM(N þ 1) that it is equal to the inner product of the angle
normalized vectors:

DM(N þ 1) ¼ �bTM,NLN
�fM,Nþ1: (21:84)

Consequently, the coefficients kfM(N þ 1) and kbM(N þ 1) are also equal to the ratios of the inner product
of the angle normalized vectors to their energies. But recall that kfM(N þ 1) is the coefficient we need in
order to project fM,Nþ1 onto bM,N . This means that we can alternatively evaluate the same coefficient by
posing the problem of projecting �fM,Nþ1 onto �bM,N . In a similar fashion, kbM(N þ 1) can be evaluated
alternatively by projecting �bM,N onto �fM,Nþ1. (The inner products and projections are to be understood
here to include the additional weighting by LN .)

We are therefore reduced to two simple projection problems that involve projecting a vector onto
another vector (with exponential weighting). But these are special cases of standard least-squares
problems. In particular, recall that the QR solution of Table 21.4 solves the problem of projecting a
given vector dN onto the range space of a data matrix AN (whose rows are uTj ).

In a similar fashion, we can write down the QR solution that would solve the problem of projecting
�fM,Nþ1 onto �bM,N . For this purpose, we introduce the scalar variables qfM(N þ 1) and qbM(N þ 1) (recall
the earlier notation in Equation 21.50):

qbM(N þ 1) ¼ DM(N þ 1)

j
b=2
M (N)

and qfM(N þ 1) ¼ DM(N þ 1)

j
f=2
M (N þ 1)

: (21:85)

The QR array that updates the forward prediction errors can now be obtained as follows. Form the 3� 2
prearray (this is a special case of the QR array of Table 21.4):

A ¼

ffiffiffi
l

p
j
b=2
M (N � 1) �bM(N)ffiffiffi
l

p
qbM(N) �fM(N þ 1)

0 1

2
64

3
75

and choose an orthogonal rotation Qb
M,N that reduces it to the form

AQb
M,N ¼

x 0
a b
y c

2
4

3
5:
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That is, it annihilates the second entry in the top row of the prearray. The scalar quantities {a, b, c, x, y}
can be identified, as before, by squaring and comparing entries of the resulting equality. This step allows
us to make the following identifications very immediately:

x ¼ j
b=2
M (N),

a ¼ qbM(N þ 1),

y ¼ �bM(N)j�b=2
M (N),

bc ¼ g
�1=2
M (N)fMþ1(N þ 1),

b2 ¼ �fMþ1(N þ 1)
�� ��2,

where for the last equality we used the following relation that follows immediately from the last two lines
of Table 21.7:

qbM(N þ 1)2 þ �f Mþ1(N þ 1)2 ¼ lqbM(N)2 þ �f M(N þ 1)2:

Therefore, b2c2 ¼ gMþ1(N)
gM(N) j�f Mþ1(N þ 1)j2 and we can make the identifications:

c ¼ g
1=2
Mþ1(N)

g
1=2
M (N)

and b ¼ �f Mþ1(N þ 1):

A similar argument leads to an array equation for the update of the backward errors. In summary, we
obtain the QRD-LSL algorithm (listed in Table 21.8) for the update of the angle-normalized forward and
backward prediction errors with prewindowed data that correspond to the minimization problem:

min
wM

XN
j¼0

lN�jjd( j)� uTM,jwMj2:

TABLE 21.8 QRD-LSL Algorithm

Input: Prewindowed data {d(j), u(j)} for j � 1.

Initialization: For each M ¼ 0, 1, 2, . . . , Mmax set

j
f=2
M (0) ¼ 0, jb=2M (�1) ¼ 0, and qbM(0) ¼ 0 ¼ qfM(0):

. For each time instant N � 0 do

g0(N) ¼ 1, �f0(N) ¼ u(N), and �b0(N) ¼ u(N):

. For each M ¼ 0, 1, 2, . . . , Mmax � 1 doffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ljb=2(N � 1)

q
�bM(N)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lqbM(N)
q

�fM(N þ 1)

0 g
1=2
M (N)

2
66664

3
77775Qb

M,N ¼
j
b=2
M (N) 0

qbM(N þ 1) �fMþ1(N þ 1)

bM(N)j�b=2
M (N) g

1=2
Mþ1(N)

2
664

3
775,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lj

f=2
M (N)

q
�fM(N þ 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lqM(N)
p

�bM(N)

2
4

3
5Qf

M,Nþ1 ¼
j
f=2
M (N þ 1) 0

qfM(N þ 1) �bMþ1(N þ 1)

" #
:

The orthogonal matrices Qb
M,N and Qf

M,Nþ1 are chosen so as to annihilate the (1, 2) entries in the
corresponding postarrays.
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The recursions of the table can be shown to collapse, by squaring and comparing terms on both sides of
the resulting equality, to several lattice forms that are available in the literature. We forgo the details here.

21.8.6 Filtering or Joint Process Array

We now return to the estimation of the sequence {d( 	 )}. We argued earlier that if we are given the
backward residual vector bM,N and the estimation residual vector eM,N , then the higher order estimation
residual vector eMþ1,N can be obtained by projecting eM,N onto bM,N and using the corresponding residual
vector as eMþ1,N .

Arguments similar to what we have done in the previous section will readily show that the array for the
joint process estimation problem is the following: define the angle-normalized residual

�eM(i) ¼ eM(i)g
�1=2
M (i) ¼ [d(i)� uTM,iwM,i]g

�1=2
M (i),

as well as the scalar quantity

qdM(N) ¼ rM(N)

j
b=2
M (N)

:

Then the array for the filtering process is what is shown in Table 21.9. Note that it uses precisely the same
rotation as the first array in the QRD-LSL algorithm. Hence, the second line in the above array can be
included as one more line in the first array of QRD-LSL, thus completing the algorithm to also include
the joint-process estimation part.

21.9 Concluding Remarks

The intent of this chapter was to provide an overview of the fundamentals of RLS estimation, with
emphasis on array formulations of the varied algorithms (slow or fast) that are available for this purpose.
More details and related discussion can be found in several of the references indicated in this section. The
references are not intended to be complete but rather indicative of the work in the different areas. More
complete lists can be found in several of the textbooks mentioned herein.

Detailed discussions on the different forms of RLS adaptive algorithms and their potential applications
can be found in [1–7]. The array formulation that we emphasized in this chapter is motivated by the

TABLE 21.9 Array for Joint Process Estimation

Input: Prewindowed data {d(j), u(j)} for j � 1.

Initialization: For each M ¼ 0, 1, 2, . . . ,Mmax set

j
b=2
M (�1) ¼ 0, qdM(�1) ¼ 0, and qbM(0) ¼ 0

. For each time instant N � 0 do

g0(N) ¼ 1, �e0(N) ¼ d(N), and �b0(N) ¼ u(N):

. For each M ¼ 0, 1, 2, . . . , Mmax � 1 doffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lj

b=2
M (N � 1)

q
�bM(N)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lqdM(N � 1)
q

�eM(N)

2
64

3
75Qb

M,N ¼ j
b=2
M (N) 0

qdM(N) �eMþ1(N)

" #
,

where the orthogonal matrix Qb
M,N is the same as in the QRD-LSL

algorithm.
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state-space approach developed in [8]. This reference also clarifies the connections between adaptive RLS
filtering and Kalman filter theory and treats other forms of lattice filters.

A detailed discussion of the square-root formulation in the context of Kalman filtering can be found in [9].
Further motivation, and earlier discussion, on lattice algorithms can be found in several places in the
literature [10–12]. The fast fixed-order RLS algorithms (FTF and FAEST) were independently derived in
[13,14]. These algorithms, however, suffer from numerical instability problems. Some variables that are
supposed to remain positive or bounded by one may lose this property due to roundoff errors. A treatment
of these issues appears in [15].

More discussion on the QRD-LSL filter, including alternative derivations that are based on the QR
decomposition of certain data matrices, can be found in [16–19]. More discussion and examples of
elementary and square-root-free rotations and householder transformations can be found in [20–23].
Fast fixed-order adaptive algorithms that consider different choices of the initial weighting matrix P0,
and also the case of data that is not necessarily prewindowed, can be found in [24]. Gauss’ original
exposition of the least-squares criterion can be found in [25].
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One of the earliest works on transform domain adaptive filtering (TDAF) was published in 1978 by
Dentino et al. [1], in which the concept of adaptive filtering in the frequency domain was proposed. Many
publications have since appeared that further develop the theory and expand the current understanding
of the performance characteristics for this class of adaptive filters. In addition to the discrete Fourier
transform (DFT), other orthogonal transforms such as the discrete cosine transform (DCT) and the
Walsh Hadamard transform (WHT) can also be used effectively as a means to improve the LMS
algorithm without adding too much computational complexity. For this reason, the general term
transform domain adaptive filtering is used in the following discussion to mean that the input signal is
preprocessed by decomposing the input vector into orthogonal components, which are in turn used as
inputs to a parallel bank of simpler adaptive subfilters. With an orthogonal transformation, the adapta-
tion takes place in the transform domain, as it is possible to show that the adjustable parameters are
indeed related to an equivalent set of time domain filter coefficients by means of the same transformation
that is used for the real-time processing [2–5].

A direct form finite impulse response (FIR) digital filter structure is shown in Figure 22.1. The direct
form requires N � 1 delays, N multiplications, and N � 1 additions for each output sample that is
produced. The amount of hardware (as well as power) required to implement the direct form structure
depends on the degree of hardware multiplexing that can be utilized within the speed demands of the
application. A fully parallel implementation consisting of N delay registers, N multipliers, and a tree of
two-input adders would be needed for very high-frequency applications. At the opposite end of the
performance spectrum, a sequential implementation consisting of a length N delay line and a single time
multiplexed multiplier and accumulation adder would provide the cheapest (and slowest) implementa-
tion. This latter structure would be characteristic of a filter that is implemented in software on one of the
many commercially available DSP chips [6–9].
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Regardless of the hardware complexity that results from a particular implementation, the computa-
tional complexity of the filter is determined by the requirements of the algorithm and, as such, remains
invariant with respect to different hardware structures. In particular, the computational complexity of
the direct form FIR filter is O[N], since N multiplications and (N � 1) additions must be performed at
each iteration. When designing an adaptive filter it is reasonable to seek an adaptive algorithm whose
order of complexity is no greater than the order of complexity of the basic filter structure itself. This goal
is achieved by the LMS algorithm, which is the major contributing factor to the enormous success of that
algorithm. Extending this principle for two-dimensional (2-D ) adaptive filters implies that desirable 2-D
adaptive algorithms have an order of complexity of O[N2], since a 2-D FIR direct form filter has O[N2]
complexity inherent in its basic structure [10,11].

The transform domain adaptive filter (TDAF) is a generalization of the LMS FIR structure, in which
a linear transformation is performed on the input signal and each transformed ‘‘channel’’ is power
normalized to improve the convergence rate of the adaptation process. The linear transform is
characterized throughout the following discussions as a sliding window operator that consists of
a transformation matrix multiplying an input vector [4]. At each iteration the input vector includes
one new input sample x(n), and N � 1 past input samples x(n� k), k ¼ 1, . . . ,N � 1. As the
window slides forward sample by sample, filtered outputs are produced continuously at each value of
the index n.

Since the input transformation is represented by a matrix-vector product, it might appear that the
computational complexity of the transform domain filter is at least O[N2]. However, many trans-
formations can be implemented with fast algorithms that have complexities less than O[N2].
For example, the DFT can be implemented by the FFT algorithm, resulting in a complexity of
O[N log2 N] per iteration. Some transformations can be implemented recursively in a bank of parallel
filters, resulting in a net complexity of O[N] per iteration. The main point to be made here is that the
complexity of the transform domain filter typically falls between O[N] and O[N2], with the actual
complexity depending on the specific algorithm that is used to compute the sliding window transform
operator [3].

22.1 LMS Adaptive Filter Theory

The LMS algorithm is derived as an approximation to the steepest descent optimization strategy. The fact
that the field of adaptive signal processing is based on elementary principles from optimization theory
suggests that more advanced adaptive algorithms can be developed by incorporating other results from
the field of optimization. This point of view recurs throughout this discussion, as concepts are borrowed
from the field of optimization and modified for adaptive filtering as appropriate. In particular, one of the
borrowed ideas that appears later is the quasi-Newton optimization strategy. It will be shown that TDAF

x(n – N + 1)

+

x(n)

x(n – 1)

d(n)

e(n)

w0

w1

wN–1

Σ
y(n)

–

+

FIGURE 22.1 Direct-form adaptive filter structure.
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algorithms are closely related to quasi-Newton algorithms, but have computational complexity that is
closer to the simple requirements of the LMS algorithm.

For a length N FIR filter with the input expressed as a column vector

x(n) ¼ [x(n), x(n� 1), . . . , x(n� N þ 1)]T,

the filter output y(n) is easily expressed as

y(n) ¼ wT(n)x(n), (22:1)

where w(n) ¼ [w0(n),w1(n), . . . ,wN�1(n)]
T is the time-varying vector of filter coefficients (tap weights)

the superscript T denotes vector transpose.
The output error is formed as the difference between the filter output and a training signal d(n), i.e.,

e(n) ¼ d(n)� y(n). Strategies for obtaining an appropriate d(n) vary from one application to another.
In many cases, the availability of a suitable training signal determines whether an adaptive filtering
solution will be successful in a particular application. The ideal cost function is defined by the mean-
squared error (MSE) criterion, E je(n)j2� �

. The LMS algorithm is derived by approximating the ideal cost
function by the instantaneous squared error, resulting in JLMS(n) ¼ je(n)j2. While the LMS seems to
make a rather crude approximation at the very beginning, the approximation results in an unbiased
estimator. In many applications, the LMS algorithm is quite robust and is able to converge rapidly to a
small neighborhood of the optimum Wiener solution [6].

The steepest descent optimization strategy is given by

w(nþ 1) ¼ w(n)� mrE e2j j½ �(n), (22:2)

where rE e2j j½ �(n) is the gradient of the cost function with respect to the coefficient vector w(n). When the
gradient is formed using the LMS cost function JLMS(n) ¼ je(n)j2, the conventional LMS results:

w(nþ 1) ¼ w(n)þ me(n)x(n),

e(n) ¼ d(n)� y(n), and

y(n) ¼ x(n)Tw(n):

(22:3)

(Note: Many sources include a ‘‘2’’ before the m factor in Equation 22.3 because this factor arises during
the derivation of Equation 22.3 from Equation 22.2. In this discussion, we assume this factor is absorbed
into m, and so it will not appear explicitly.) Since the LMS algorithm is treated in considerable detail
in other sections of this book, we will not present any further derivation or analysis of it here. However,
the following observations will be useful when other algorithms are compared to the LMS as a baseline
design [6–9].

1. Assume that all of the signals and filter variables are real-valued. The filter itself requires N
multiplications and N � 1 additions to produce y(n) at each value of n. The coefficient update
algorithm requires 2N multiplications and N additions, resulting in a total computational burden
of 3Nmultiplications and 2N � 1 additions per iteration. Since N is generally much larger than the
factor of three, the order of complexity of the LMS algorithm is O[N].

2. The cost function given for the LMS algorithm is a simplified form of the one used for the RLS
algorithm. This implies that the LMS algorithm is a simplified version of the RLS algorithm, where
averages are replaced by single instantaneous terms.

3. The (power normalized) LMS algorithm is also a simplified form of the TDAF which results by
setting the transform matrix equal to the identity matrix.
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4. The LMS algorithm is also a simplified form of the Gauss–Newton optimization strategy which
introduces second-order statistics (the input autocorrelation function) to accelerate the rate of
convergence. In order to obtain the LMS algorithm from the Gauss–Newton algorithm, two
approximations must be made: (i) The gradient must be approximated by the instantaneous
error squared, and (ii) the inverse of the input autocorrelation matrix must be crudely approxi-
mated by the identity matrix.

These observations suggest that many of the seemingly distinct adaptive filtering algorithms that appear
scattered about in the literature are indeed closely related, and can be considered to be members of a
family whose hereditary characteristics have their origins in Gauss–Newton optimization theory [12,13].
The different members of this family inherit their individual characteristics from approximations that
are made on the pure Gauss–Newton algorithm at various stages of their derivations. However, after the
individual derivations are complete and each algorithm is packaged in its own algorithmic form, the
algorithms look considerably different from one another. Unless a conscious effort is made to reveal their
commonality, the fact that they have evolved from common roots may be entirely obscured.

The convergence behavior of the LMS algorithm, as applied to a direct form FIR filter structure, is
controlled by the autocorrelation matrix Rx of the input process, where

Rx � E[x*(n)xT(n)]: (22:4)

(The * in Equation 22.4 denotes complex conjugate to account for the general case of complex input
signals, although throughout most of the following discussions it will be assumed that x(n) and d(n) are
both real-valued signals.) The autocorrelation matrix Rx is usually positive definite, which is one of the
conditions necessary to guarantee convergence to the Wiener solution. Another necessary condition for
convergence is 0 < m < 1=lmax, where lmax is the largest eigenvalue of Rx . It is also well established that
the convergence of this algorithm is directly related to the eigenvalue spread of Rx . The eigenvalue spread
is measured by the condition number of Rx , defined as k ¼ lmax=lmin, where lmin is the minimum
eigenvalue of Rx . Ideal conditioning occurs when k ¼ 1 (white noise); as this ratio increases, slower
convergence results. The eigenvalue spread (condition number) depends on the spectral distribution of
the input signal and can be shown to be related to the maximum and minimum values of the input power
spectrum. From this line of reasoning it becomes clear that white noise is the ideal input signal for rapidly
training an LMS adaptive filter. The adaptive process becomes slower and requires more computation for
input signals that are more severely colored [7].

Convergence properties are reflected in the geometry of the MSE surface, which is simply the mean-
squared output error E[je(n)j2] expressed as a function of the N adaptive filter coefficients in (N þ 1)-
space. An expression for the error surface of the direct form filter is

J(z) � E je(n)j2� � ¼ Jmin þ z*TRxz, (22:5)

with Rx defined in Equation 22.4 and z � w � wopt, where wopt is the vector of optimum filter
coefficients in the sense of minimizing the MSE (wopt is known as the Wiener solution). An example
of an error surface for a simple 2-tap filter is shown in Figure 22.2. In this example, x(n) was specified to
be a colored noise input signal with an autocorrelation matrix

Rx ¼ 1:0 0:9
0:9 1:0

� �
:

Figure 22.2 shows three equal-error contours on the 3-D surface. The term z*TRxz in Equation 22.2 is
a quadratic form that describes the bowl shape of the FIR error surface. When Rx is positive definite,
the equal-error contours of the surface are hyperellipses (N-dimensional ellipses) centered at the origin of
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the coefficient parameter space. Furthermore, the principle axes of these hyperellipses are the eigenvec-
tors of Rx , and their lengths are proportional to the eigenvalues of Rx . Since the convergence rate of the
LMS algorithm is inversely related to the ratio of the maximum to the minimum eigenvalues of Rx , large
eccentricity of the equal-error contours implies slow convergence of the adaptive system. In the case of an
ideal white noise input, Rx has a single eigenvalue of multiplicity N, so that the equal-error contours are
hyperspheres [14].

22.2 Orthogonalization and Power Normalization

The TDAF structure is shown in Figure 22.3. The input x(n) and desired signal d(n) are assumed
to be zero mean and jointly stationary. The input to the filter is a vector of N current and past input
samples, defined in the previous section and denoted as x(n). This vector is processed by a unitary
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FIGURE 22.2 Example of an error surface for a simple 2-tap filter.
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FIGURE 22.3 TDAF structure.
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transform, such as the DFT. Once the filter order N is fixed, the transform is simply an N � N matrix T,
which is in general complex, with orthonormal rows. The transformed outputs form a vector v(n) that is
given by

v(n) ¼ v0(n), v1(n), . . . , vN�1(n)½ �T¼ Tx(n): (22:6)

With an adaptive tap vector defined as

W(n) ¼ W0(n),W1(n), . . . ,WN�1(n)½ �*T, (22:7)

the filter output is given by

y(n) ¼ WT(n)v(n) ¼ WT(n)Tx(n): (22:8)

The instantaneous output error

e(n) ¼ d(n)� y(n) (22:9)

is then used to update the adaptive filter taps using a modified form of the LMS algorithm [11]:

W(nþ 1) ¼ W(n)þ me(n)L�2v*(n)

L2 � diag s2
0,s

2
1, . . . ,s

2
N�1

� �
,

(22:10)

where s2
i ¼ E vi(n)j j2� �

:

As before, the superscript asterisk in Equation 22.10 indicates complex conjugation to account
for the most general case in which the transform is complex. Also, the use of the uppercase co-
efficient vector in Equation 22.10 denotes that W(n) is a transform domain variable. The power
estimates s2

i can be developed online by computing an exponentially weighted average of past samples
according to

s2
i (n) ¼ as2

i (n� 1)þ vi(n)j j2, 0 < a < 1: (22:11)

If s2
i becomes too small due to an insufficient amount of energy in the ith channel, the update

mechanism becomes ill-conditioned due to a very large effective step size. In some cases the process
will become unstable and register overflow will cause the adaptation to catastrophically fail. So the
algorithm given by Equation 22.10 should have the update mechanism disabled for the ith orthogonal
channel, if s2

i falls below a critical threshold.
Alternatively, the transform domain algorithm may be stabilized by adding small positive constants e

to the diagonal elements of L2, resulting in

L̂2 ¼ L2 þ eI: (22:12)

Then L̂2 is used in the place of L2 in Equation 22.10. For most input signals s2
i � e, the inclusion

of the stabilization factors is transparent to the performance of the algorithm. However, whenever
s2
i � e, the stabilization terms begin to have a significant effect. Within this operating region, the

power in the channels will not be uniformly normalized and the convergence rate of the filter will
begin to degrade but catastrophic failure will be avoided.
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The motivation for using the TDAF adaptive system instead of a simpler LMS- based system is to
achieve rapid convergence of the filter’s coefficients when the input signal is not white, while maintaining
a reasonably low computational complexity requirement. In the following section, this convergence rate
improvement of the TDAF will be explained geometrically.

22.3 Convergence of the Transform Domain Adaptive Filter

In this section, the convergence rate improvement of the TDAF is described in terms of the MSE surface.
From Equations 22.4 and 22.6, it is found that Rv ¼ T*RxTT, so that for the transform structure without
power normalization Equation 22.5 becomes

J(z) ¼ E
�
e(n)j j2� ¼ Jmin þ z*T[T*RxT

T]z: (22:13)

The difference between Equations 22.5 and 22.13 is the presence of T in the quadratic term of Equation
22.13. When T is a unitary matrix, its presence in Equation 22.13 gives a rotation and/or a reflection of
the surface. The eccentricity of the surface is unaffected by the transform, so the convergence rate of the
system is unchanged by the transformation alone.

However, the signal power levels at the adaptive coefficients are changed by the transformation.
Consider the intersection of the equal-error contours with the rotated axes: letting z ¼ [0 � � � zi � � � 0]T,
with zi in the ith position, Equation 22.13 becomes

J(z)� Jmin ¼ T*RxT
T

� �
iz
2
i � s2

i z
2
i : (22:14)

If the equal-error contours are hyperspheres (the ideal case), then for a fixed value of the error J(n),
Equation 22.14 must give jzij ¼ jzjj for all i and j, since all points on a hypersphere are equidistant from
the origin. When the filter input is not white, this will not hold in general. But, since the power levels s2

i

are easily estimated, the rotated axes can be scaled to have this property. Let L�1ẑ ¼ z, where L is defined
in Equation 22.10. Then the error surface of the TDAF, with transform T and including power
normalization, is given by

J(ẑ) ¼ Jmin þ ẑ*T L�1T*RxT
TL�1� �

ẑ: (22:15)

The main diagonal entries of L�1T*RxTTL�1 are all equal to one, so Equation 22.14 becomes
J(z)� Jmin ¼ ẑ2i , which has the property described above.

Thus, the action of the TDAF system is to rotate the axes of the filter coefficient space using a unitary
rotation matrix T, and then to scale these axes so that the error surface contours become approximately
hyperspherical at the points where they can be easily observed, i.e., the points of intersection with the new
(rotated) axes. Usually this scaling reduces the eccentricity of the error surface contours and results in
faster convergence.

Transform domain processing can now be added to the previous example, as illustrated in Figures 22.4
and 22.5. The error surface shown in Figure 22.4 was created by using the following (arbitrary)
transform:

T ¼ 0:866 0:500
0:500 0:866

� �
,

on the error surface shown in Figure 22.2, which produces clockwise rotation of the ellipsoidal contours
so that the major and minor axes more closely align with the coordinate axes than they did without
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the transform. Power normalization was then applied using the normalization matrix L�1 as shown in
Figure 22.5, which represents the transformed and power-normalized error surface. Note that the
elliptical contours after transform domain processing are nearly circular in shape, and in fact they
would have been perfectly circular if the rotation of Figure 22.4 had brought the contours into precise
alignment with the coordinate axes. Perfect alignment did not occur in this example because T was not
able to perfectly diagonalize the input autocorrelation matrix for this particular x(n). Since T is a fixed

T =
0.886 0.5

–0.5 0.886

–10 10

–10

10

TRxTT =
1.779 0.45

0.45 0.221

FIGURE 22.4 Error surface for the TDAF with transform T.
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FIGURE 22.5 Error surface with transform and power normalization.
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transform in the TDAF structure, it clearly cannot properly diagonalize Rx for an arbitrary x(n); hence,
the surface rotation (orthogonalization) will be less than perfect for most input signals. It should be noted
here that a well-known conventional algorithm called recursive least squares (RLS) is known to achieve
near optimum convergence rates by forming an estimate of R�1

x , the inverse of the autocorrelation
matrix. This type of algorithm automatically adjusts to whiten any input signal, and it also varies over
time if the input signal is a nonstationary process. Unfortunately, the computation required for the RLS
algorithm is large and not easily implemented in real time within the resource limitations of many
practical applications. The RLS algorithm falls into the general class of quasi-Newton optimization
techniques, which are thoroughly treated in numerous places throughout the literature.

There are two different ways to interpret the mechanism that brings about improved convergence rates
achieved through transform domain processing [13]. The first point of view considers the combined
operations of orthogonalization and power normalization to be the effective transformation L�1T, an
interpretation that is implied by Equation 22.15. This line of thinking leads to an understanding of the
transformed error surfaces as illustrated by the example in Figures 22.4 and 22.5 and leads to the logical
conclusion that the faster convergence rate is due to the conventional LMS algorithm operating on
an improved error surface that has been rendered more properly oriented and more symmetrical via the
transformation. While this point of view is useful in understanding the principles of transform domain
processing, it is not generally implementable from a practical point of view. This is because for an
arbitrary input signal, the power normalization factors that constitute the L�1 part of the input
transformation are not known a priori, and must be estimated after T is used to decompose the input
signal into orthogonal channels.

The second point of view interprets the transform domain equations as operating on the transformed
error surface (without power normalization) with a modified LMS algorithm where the step sizes are
adjusted differently in the various channels according to m(n) ¼ mL�1, where m(n) ¼ diag[mi(n)] is a
diagonal matrix that contains the step size for the ith channel at location (i, i). The dependence of the
mi(n)s on the iteration (time) index n acknowledges that the steps sizes are a function of the power
normalization factors, which are updated in real time as part of the online algorithm. This suggests
that the TDAF should be able to track nonstationary input statistics within the limited abilities of the
transformation T to orthogonalize the input and within the accuracy limits of the power normalization
factors. Furthermore, when the input signal is white, all of the s2

i s are identical and each is equal to the
power in the input signal. In this case, the TDAF with power normalization becomes the conventional-
normalized LMS algorithm.

It is straightforward to showmathematically that the above two points of view are indeed compatible [11].
Let v̂(n) � L�1Tx(n) ¼ L�1v(n) and let the filter tap vector be denoted Ŵ(n) when the matrix L�1T
is treated as the effective transformation. For the resulting filter to have the same response as the filter in
Figure 22.3, we must have

v*T(n)W ¼ y(n) ¼ v̂*TŴ ¼ v*T(n)L�1Ŵ, 8v(n), (22:16)

which implies that W ¼ L�1Ŵ. If the tap vector ŵ is updated using the LMS algorithm, then

W(nþ 1) ¼ L�1Ŵ(nþ 1) ¼ L�1[Ŵ(n)þ me(n)v̂*(n)]

¼ L�1Ŵ(n)þ me(n)L�1v̂*(n)

¼ W(n)þ me(n)L�2v*(n), (22:17)

which is precisely the algorithm in Equation 22.10. This analysis demonstrates that the two interpret-
ations are consistent, and they are, in fact, alternate ways to explain the fundamentals of transform
domain processing.
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22.4 Discussion and Examples

It is clear from the above development that the power estimates s2
i are the optimum scale factors, as

opposed to jsij or some other statistic. Also, it is significant to note that no convergence rate improve-
ment can be realized without power normalization. This is the same conclusion that was reached in [7]
where the frequency domain LMS algorithm was analyzed with a constant convergence factor. From the
error surface description of the TDAF’s operation, it is seen that an optimal transform rotates the axes of
the hyperellipsoidal equal-error contours into alignment with the coordinate axes. The prescribed power
normalization scheme then gives the ideal hyperspherical contours, and the convergence rate becomes
the same as if the input were white. The optimal transform is composed of the orthonormal eigenvectors
of the input autocorrelation matrix and is known in the literature as the Karhunen–Loe’ve transform
(KLT). The KLT is signal dependent and usually cannot be easily computed in real time. Note that real-
valued signals have real-valued KLTs, suggesting the use of real transforms in the TDAF (in contrast to
complex transforms such as the DFT).

Since the optimal transform for the TDAF is signal dependent, a universally optimal fixed parameter
transform can never be found. It is also clear that once the filter order has been chosen, any unitary
matrix of correct dimensions is a possible choice for the transform; there is no need to restrict attention
to classes of known transforms. In fact, if a prototype input power spectrum is available, its KLT can be
constructed and used. One factor that must be considered in choosing a transform for real-time
applications is computational complexity. In this respect, real transforms are superior to complex ones,
transforms with fast algorithms are superior to those without, and transforms whose elements are all
powers-of-2 are attractive since only additions and shifts are needed to compute them. Throughout the
literature the DFT, the DCT, and the WHT have received considerable attention as possible candidates
for use in the TDAF [14]. In spite of the fact that the DFT is a complex transform and not computa-
tionally optimal from that point of view, it is often used in practice because of the availability of efficient
FFT algorithms.

Figure 22.6 shows learning characteristics for computer-generated TDAF examples using six differ-
ent orthogonal transforms to decorrelate the input signal. The examples presented are for system
identification experiments, where the desired signal was derived by passing the input through an 8-tap
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FIGURE 22.6 Comparison of (smoothed) learning curves for five different transforms operating on a colored noise
input signal with condition number 681.
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FIR filter, which serves as the model system to be identified. Computer-generated white pseudo-noise,
uncorrelated with the input signal, was added to the output of the model system, creating a �100 dB
noise floor. The filter inputs were generated by filtering white pseudo-noise with a 32-tap linear phase
FIR noise-coloring filter to produce an input autocorrelation eigenvalue ratio of 681. Experiments were
then performed using the DFT, the DCT, the WHT, discrete Hartley transform, and a specially
designed computationally efficient ‘‘power-of-2’’ (PO2) transform, as listed in Figure 22.6. The eigen-
value ratios that result from transform processing with each of these transforms are reduced relative to
the identity-transform case; the PO2 transform with power normalization reduces the input condition
number from 681 to 128, resulting in the most effective transform for this particular input coloring.
All of the transforms used in this experiment are able to reduce the input condition number and greatly
improve convergence rates, although some transforms are seen to be more effective than others for the
coloring chosen for these examples.

22.5 Quasi-Newton Adaptive Algorithms

The dependence of the adaptive system’s convergence rate on the input power spectrum can be reduced
by using second-order statistics via the Gauss–Newton method [12,15]. The Gauss–Newton algorithm
is well known in the field of optimization as one of the basic accelerated search techniques. In recent
years it has also appeared in various forms in publications on adaptive filtering. In this section a
brief introduction to quasi-Newton adaptive filtering methods is presented. When the quasi-Newton
concept is integrated into the LMS algorithm, the resulting adaptive strategy is closely related to
the TDAF, but where the transform is computed online as an approximation to the Hessian acceler-
ation matrix. For FIR structures it turns out that the Hessian is equivalent to the input autocorrelation
matrix inverse, and therefore the quasi-Newton LMS algorithm effectively implements a transform
that adjusts to the statistics of the input signal and is capable of tracking slowly varying nonstationary
input signals.

The basic Gauss–Newton coefficient update algorithm for an FIR adaptive filter is given by

w(nþ 1) ¼ w(n)� mH(n)rE[e2](n), (22:18)

where
H(n) is the Hessian matrix
rE[e2](n) is the gradient of the cost function at iteration n

For an FIR adaptive filter with a stationary input the Hessian is equal to R�1
x . If the gradient is estimated

with the instantaneous error squared, as in the LMS algorithm, the result is

w(nþ 1) ¼ w(n)þ me(n)R̂
�1
x (n)x(n), (22:19)

where R̂
�1
x (n) is an estimate of R�1

x that varies as a function of the index n. Equation 22.19 characterizes
the quasi-Newton LMS algorithm. Note that Equation 22.18 is the starting point for the development of
many practical adaptive algorithms that can be obtained by making approximations to one or both of the
Hessian and the gradient. Therefore, we typically refer to all such algorithms derived from Equation
22.18 as the family of quasi-Newton algorithms.

The autocorrelation estimate R̂x(n) is constructed from data received up to time step n. It must then be
inverted for use in Equation 22.19. This is in general an O[N3] operation, which must be performed for
every iteration of the algorithm. However, the use of certain autocorrelation estimators allows more
economical matrix inversion techniques to be applied. Using this approach, the conventional sequential
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regression algorithm [6] and the RLS algorithm [16] achieve quasi-Newton implementations with a
computational requirement of only O[N2].

The RLS algorithm is probably the best-known member of the class of quasi-Newton algorithms [7].
The drawback that has prevented its widespread use in real-time signal processing is its O[N2] compu-
tational requirement, which is still too high for many applications (and is an order of magnitude higher
than the order of complexity of the FIR filter itself). This problem appeared to have been solved by the
formulation of O[N] versions of the RLS algorithm. Unfortunately, many of these more efficient forms of
the RLS tend to be numerically ill-conditioned. They are often unstable in finite precision implementa-
tions, especially in low signal-to-noise applications or where the input signal is highly colored. This
behavior is caused by the accumulation of finite precision errors in internal variables of the algorithm
and is essentially the same source of numerical instability that occurs in the standard O[N2] RLS
algorithm, although the problem is greater in the O[N] case since these algorithms typically have a
larger number of coupled internal recursions. Considerable work has been reported in the literature to
stabilize O[N2] RLS algorithm and produce a numerically robust O[N] RLS algorithm.

22.5.1 Fast Quasi-Newton Algorithm

The quasi-Newton algorithms discussed above achieve reduced computation through the use of particu-
lar autocorrelation estimators which lend themselves to efficient matrix inversion techniques. This
section reviews a particular quasi-Newton algorithm that was developed to provide a numerically robust
O[N] algorithm [12]. This particular 1-D algorithm is discussed here simply as a representative algorithm
from the quasi-Newton class; numerous variations of the Newton optimization strategy are reported in
various places throughout the adaptive filtering literature. The fast quasi-Newton (FQN) algorithm
described below has also been extended successfully to 2-D FIR adaptive filters [11].

To derive the O[N] FQN algorithm, an autocorrelation matrix estimate is used which permits the
use of more robust and efficient computation techniques. Assuming stationarity, the autocorrelation
matrix Rx has a high degree of structure; it is symmetric and Toeplitz, and thus has only N free
parameters, the elements of the first row. This structure can be imposed on the autocorrelation estimate,
since this incorporates prior knowledge of the autocorrelation into the estimation process. The estima-
tion problem then becomes that of estimating the N autocorrelation lags ri, i ¼ 0, . . . ,N � 1, which
comprise the first row of Rx . The autocorrelation estimate is also required to be positive definite to ensure
the stability of the adaptive update process.

A standard positive semidefinite autocorrelation lag estimator for a block of data is given by

r̂i ¼ 1
M þ 1

XM
k¼i

x(k� i)x(k), (22:20)

where
x(k), k ¼ 0, . . . ,M, is a block of real data samples
i ranges from 0 to M

However, the preferred form of the estimation equation for use in an adaptive system, from an
implementation standpoint, is an exponentially weighted recursion. Thus, Equation 22.20 must be
expressed in an exponentially weighted recursive form, without destroying its positive semidefiniteness
property. Consider the form of the sum in Equation 22.20: it is the (deterministic) correlation of the data
sequence x(k), k ¼ 0, . . . ,M, with itself. Thus, r̂i, i ¼ 0, . . . ,M is the deterministic autocorrelation
sequence of the sequence x(k). (Note that r̂i must also be defined for i ¼ �M, . . . , �1, according to
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the requirement that r̂i ¼ r̂�i.) In fact, the deterministic autocorrelation for any sequence is positive
semidefinite. The goal of exponential weighting, in a general sense, is to weight recent data most
heavily and forget old data by using progressively smaller weighting factors. To construct an exponen-
tially weighted, positive definite autocorrelation estimate, we must weight the data first, then form
its deterministic autocorrelation to guarantee positive semidefiniteness. At time step n, the available
data are x(k), k ¼ 0, . . . , n. If these samples are exponentially weighted using

ffiffiffi
a

p
, the result is

a(n�k)=2x(k), k ¼ 0, . . . , n. Using Equation 22.20 and assuming n > N � 1, the result becomes

r̂i(n) ¼
Xn
k¼i

[a(n�kþi)=2x(k� i)][a(n�k)=2x(k)]

¼ a
Xn�1

k¼i

a(n�1�k)ai=2x(k� i)x(k)þ ai=2x(n� i)x(n)

¼ ar̂i(n� 1)þ ai=2x(n� i)x(n) for i ¼ 0, . . . ,N � 1: (22:21)

A normalization term is omitted in Equation 22.21, and initialization is ignored. With regard to the latter
point, the simplest way to consistently generate r̂i(n) for 0 	 n 	 N � 1 is to assume that x(n) ¼ 0 for
n < 0, set r̂i(�1) ¼ 0 for all i, and then use the above recursion. A small positive constant d may be
added to r̂0(n) to ensure positive definiteness of the estimated autocorrelation matrix.

With this choice of an autocorrelation matrix estimate, a quasi-Newton algorithm is determined.
Thus, the FQN algorithm is given by Equations 22.19 and 22.21, where R̂x(n) � Rx is understood to
be the Toeplitz symmetric matrix whose first row consists of the autocorrelation lag estimates
r̂i(n), i ¼ 0, . . . ,N � 1, generated by Equation 22.21. Because R̂x(n) is Toeplitz, its inverse can be
obtained using the Levinson recursion, leading to an O[N] implementation of this algorithm. The step
size m for the FQN algorithm is given by

1
2
m�1 ¼ eþ xT(n)R̂�1

x (n� 1)x(n): (22:22)

This step size is used in other quasi-Newton algorithms [2], and seems nearly optimal. The parameter e is
intended to be small relative to the average value of xT(n)R̂�1

x (n� 1)x(n). Then the normalization term
omitted from Equation 22.21, which is a function of a but not of i, cancels out of the coefficient update,
since R�1

x (n) appears in both the numerator and the denominator. Thus, the normalization can be safely
ignored.

22.5.2 Examples

The previous examples are used again here to compare the performance of the FQN algorithm
with the RLS, which provides a baseline for performance comparisons. The RLS examples are
shown in Figure 22.7a for different values of the exponential forgetting factor a, and the FQN examples
are shown in Figure 22.7b. Note that the FQN algorithm is somewhat slower to converge due to the
fact that the autocorrelation inverse matrix is updated only once every eight samples. In compari-
son the RLS algorithm converges more quickly, but has a computational complexity of O[N2] as
compared to a complexity of O[N] for the FQN algorithm. But, more important, note that the
convergence rate of the FQN algorithm is much faster than any of the transform domain examples
shown previously.
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22.6 2-D Transform Domain Adaptive Filter

Many successful 1-D FIR algorithms have been extended to 2-D filters [10,11,17]. Transform domain
adaptive algorithms are also well suited to 2-D signal processing. Orthogonal transforms with power
normalization can be used to accelerate the convergence of an adaptive filter in the presence of a colored
input signal.

The 2-D TDAF structure is shown in Figure 22.8 with the corresponding (possibly complex) LMS
algorithm given as

wkþ1(m1,m2) ¼ wk(m1,m2)þ me(n1, n2)L
�2
u uk*(n1, n2), (22:23)
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FIGURE 22.7 Comparison of the RLS and FQN performance. Simulated learning curves for (a) the RLS algorithm
and (b) the FQN algorithm.
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where uk(n1, n2) is the column-ordered vector formed by premultiplying the input column-ordered
vector xk(n1, n2) by the 2-D unitary transform T, i.e.,

uk(n1, n2) ¼ Txk(n1, n2): (22:24)

Channel normalization results from including L2
u ¼ diag[s2

u(0, 0) s2
u(1, 1) � � � s2

u(N ,N) ] in Equa-
tion 22.23 where s2

u(n1, n2) � E[ju(n1, n2)j2].
Ideally, the KLT is used to achieve optimal convergence, but this requires a priori knowledge of the

input statistical properties. The KLT corresponding to the input autocorrelation matrix Rx is constructed
using as rows of T the orthonormal eigenvectors of Rx . Therefore, with unitary QH

x ¼ [q1, . . . , qM2 ] and
Lx ¼ diag l1, . . . , lM2½ � (M ¼ N þ 1 for convenience), the unitary similarity transformation is
Rx ¼ Q�1

x LxQx, and the KLT is given by T ¼ Qx . However, since the statistical properties of the input
process are usually unknown and time varying, the KLT cannot be implemented in practice. Researchers
have found that many fixed transforms do provide good orthogonalization for a wide class of input
signals. Those include the DFT or FFT, the DCT, and the WHT. For example, the DFT provides only
approximate channel decorrelation since it is well known that a ‘‘sliding’’ DFT implements a parallel
bank of overlapping band-pass filters with center frequencies evenly distributed over the interval [0, 2p].
Furthermore, the DFT (or FFT) is hampered by the fact that it requires complex arithmetic. It is still a
very effective method of orthogonalization which we compare here to the 2-D FQN algorithm.

The convergence plots in Figure 22.9 show the comparison between the 2-D FQN, the 2-D TDAF
(with the DFT), and the simple 2-D LMS with the same fourth-order low-pass coloring filter. The
adaptive filter is second order, and the 2-D FQN algorithm, as expected, outperforms the 2-D TDAF. The
2-D FQN algorithm is effectively attempting to estimate the KLT online so that, while not able to
perfectly orthogonalize the training signal, it does offer improved convergence over that of the fixed
transform algorithm. Similar results appear in Figure 22.10 with the same coloring filter and a fourth-
order adaptive filter.
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FIGURE 22.8 2-D TDAF structure.
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22.7 Fault-Tolerant Transform Domain Adaptive Filters

Reducing feature sizes and lowering supply voltages have been popular approaches to enable high-speed
low-power complex systems to be built on a single chip. But technology scaling has also led to more
problems with increased vulnerability to particle hits and noise effects, high operating temperatures,
and process variations making these circuits more susceptible to transient errors and fixed hardware
(‘‘stuck-at’’) faults [18,19]. When adaptive systems such as echo cancellers, channel equalizers, noise
cancellers, and LPC data compressors are implemented in nanoscale VLSI circuits, there is a concern
about how such systems will perform in the presence of both transient and permanent errors.

Adaptive systems adjust their parameters to minimize a specified error criterion under normal
operating conditions. Fixed errors or hardware faults will prevent the system from minimizing the
error criterion, but at the same time the system will adapt the parameters such that the best possible
solution is reached under constraints imposed by the fault conditions. In adaptive fault-tolerant (AFT)
filter structures the inherent adaptive property is used to compensate for failures in correctly adjusting
the adaptive coefficients. This mechanism can be used with specially designed structures whose redun-
dant coefficients have the ability to compensate for failures of other coefficients.

AFT concepts were originally developed for FIR adaptive filters using vector space concepts [20].
Consider a 3-tap direct form FIR adaptive filter that has the following tap weight vector:

W(n) ¼ w0(n)
1
0
0

2
4

3
5þ w1(n)

0
1
0

2
4

3
5þ w2(n)

0
0
1

2
4

3
5: (22:25)

If one of the adaptive coefficients incurs a ‘‘stuck-at’’ fault that prevents it from updating, the other taps
cannot compensate for the failure. However, by adding a fourth adaptive tap, whose input is the sum of
the signals driving the original taps, an effective length N ¼ 3 adaptive filter is achieved with an impulse
response given by

W(n) ¼ w0(n)
1
0
0

2
4

3
5þ w1(n)

0
1
0

2
4

3
5þ w2(n)

0
0
1

2
4

3
5þ w3(n)

1
1
1

2
4

3
5, (22:26)

where ~wj(n) ¼ wj(n)þ w3(n), for j ¼ 0, 1, 2. The presence of the additional adaptively weighted column
makes it possible for the remaining three adaptively weighted columns to match any Wiener solution
when any one of the four coefficients incurs a stuck-at fault condition.

Most AFT filter structures are based on adding extra coefficients and using the adaptive algorithm to
automatically compensate for failures in the adaptive coefficients to adjust properly. An AFT adaptive
filter architecture with R redundant coefficients, where R is greater than or equal to one, is able to achieve
the fault-free minimum MSE despite the occurrence of R coefficient failures. All the coefficients work
together to match the Wiener solution, and when a subset of the coefficients fails, the remaining
functional coefficients continue to operate normally until the Wiener solution is again achieved.

A more general form of a fault-tolerant adaptive filter is based on the TDAF structure [20]. For the
transform domain fault-tolerant adaptive filter (TDFTAF) structure, the transformed data vector V(n) is

V(n) ¼ TMXe(n) (22:27)

where
Xe(n) is X(n) zero-padded with R zeros
TM is a M �M unitary transform matrix, where M ¼ Lþ R
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The structure is characterized by the following relationships:

Xe(n) ¼ X(n) 0 0 � � � 0½ �T (22:28)

V(n) ¼ TMXe(n) (22:29)

y(n) ¼ W(n)TV(n), (22:30)

where
Xe(n) is a length M vector
W(n) is the vector of M adaptive coefficients

If the power-normalized LMS algorithm is used to update the coefficients of the TDAF, then the relevant
equations are

e(n) ¼ d(n)� y(n) (22:31)

W(nþ 1) ¼ W(n)þ e(n)~mV(n), (22:32)

where ~m is a diagonal matrix of time-varying step size parameters that results from online power
normalization.

As an example of the performance of the FFT-based TDFTAF, a 10th-order TDFTAF with two
redundant taps was implemented in system identification mode with a white noise input signal. Since the
unknown system was a 10th-order FIR filter, the noise floor of the adaptive system is a result of finite
machine precision. In this example, a fault occurs at iteration 750, where tap weight 5 becomes ‘‘stuck’’
at zero. The resulting error curve is generated by averaging over 100 independent runs and is presented in
Figure 22.11. From this figure it is clearly seen that before the fault occurs, the error converges rapidly to
the noise floor in about 650 iterations. The occurrence of the fault causes the error to jump to a large
value after which it converges back to the same noise floor at a somewhat reduced rate.

The capability of adaptive fault tolerance also applies to cases of single and multiple stuck-at bit errors
occurring in one or more of the adaptive filter coefficients for fixed-point number representation [21].
In an over-parameterized adaptive filter with a large number of equivalent MSE solutions, the occurrence
of a single stuck-at bit error reduces the number of available solutions, although multiple minimum MSE
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FIGURE 22.11 Convergence plot for the FFT-based TDFTAF being driven with white noise having N ¼ 10 and
R ¼ 2. The fault occurs in Tap 5 at Iteration 750.

22-18 Digital Signal Processing Fundamentals



solutions still exist. Examples of fixed single bit faults (fixed-point number representation) in a DFT-
based TDAF are shown in Figure 22.12. Figure 22.12a shows the case where no hardware redundancy is
included, so the single stuck-at bit error in a transform domain coefficient results in catastrophic failure
of the adaptive algorithm (no re-convergence occurs after the fault occurs). Figure 22.12b shows a similar
experiment where a single coefficient redundancy was included in the design based on the TDFTAF
structure described previously. In the single bit error case the filter relearns through proper coefficient
adjustments and the adaptive filter regains its pre-failure performance after experiencing a period of
transient response. It has been shown that the principles of AFT can also overcome arbitrary patterns
of stuck-at bit errors in adaptive filters implemented with floating-point binary codes [22].

When a transform domain FTAF operates on real-valued input and desired signals, the complex
arithmetic required by the DFT matrix is generally considered a disadvantage in this application.
However, the introduction of complex tap weights leads to additional free parameters if the coefficient
updates are based only on the real part of the output error e[n]. In [23] it was shown that an FFT-based
transform domain FTAF (FFT-TDAF) algorithm operating on real-valued signals does not provide full
fault tolerance, although it can provide a high degree of fault coverage without introducing extra
redundant hardware through zero padding. In particular it has been shown that the fault conditions
not covered are when multiple errors occur in either the real parts or imaginary parts of the transform
domain coefficients that are conjugate pairs. However, when the filter operates on real-valued signals the
complex arithmetic provides extensive fault-tolerant capabilities that may be useful for achieving fault-
tolerant performance in highly scaled low-power VLSI realizations where permanent faults are becoming
an increasing concern.
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fault in the most significant bit of the real part of the first coefficient w1(n) (fixed point).
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Consider the situation where x(n) and d(n) are real-valued, but the filter is treated as producing
complex outputs, y(n) ¼ yR(n)þ jyI(n), where yR(n) and yI(n) denote the real and imaginary parts of the
filter output. Then the minimum MSE using the complex output error can be expressed as follows:

e(n)j j2 ¼ d(n)� yR(n)½ �2þ yI(n)
2

and

min
wT

f e(n)j j2g ¼ min
wT

d(n)� yR(n)½ �2� �þmin
wT

y2I (n)
� �

: (22:33)

Since the desired signal is real, the minimization operation in Equation 22.23 will result in

min
w

y2I (n)
� � ¼ 0, (22:34)

thereby imposing additional constraints on W(n). This implies that there are N (even) adjustable
parameters N

2

	
real parameters and N

2 imaginary parametersÞ in the frequency domain that uniquely
specify the N real coefficients in the time domain. However, if only the real part of e(n) is used in the
minimization of Equation 22.33, then the constraint of Equation 22.34 is relaxed. In this case there are
more than N parameters in the frequency domain to define the N real-valued tap weights in the time
domain, and hence there is an inherent over parameterization introduced by minimizing only the real
part of e(n).

To demonstrate this concept, two examples are presented below to demonstrate the fault-tolerant
behavior of the FFT-FTAF when used without zero padding to minimize the real part of the output error
in a system identification application. The unknown system that is identified in this example is a 64-tap
FIR low-pass filter with real-valued coefficients. The training signal used was a Gaussian white noise with
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FIGURE 22.13 Fault in tap (W1R[n]þ jW1I[n]).
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unit variance and the noise floor was set at �80 dB relative to the training signal. An error in the weight
update computation for the kth tap weight, Wk(n), results in an incorrect value for that coefficient.
Hence, the fault condition is simulated by setting the erroneous filter coefficient to an arbitrary random
value at the 3000th iteration, chosen so that the filter has reached the Wiener solution prior to the
occurrence of the error. The final mean-square error curve was obtained by computing an ensemble
average over 50 trials and time averaging the results over a window of length 10.

The results are shown in Figures 22.13 and 22.14. Figure 22.13 shows the case when a fixed fault occurs
in the second transform domain tap (W1R(n)þ jW1I(n)) of the filter. The filter is abruptly reinitialized by
the fault but then converges to the correct solution. An extreme case of fixed faults occurring in 31 of the
64 total coefficients is shown in Figure 22.14. In this case, the faults were introduced in the 2nd to the
32nd taps (W1R(n)þ jW1I(n), . . . ,W31R(n)þ jW31I(n)). Since none of these taps are conjugates of each
other, this case falls within the error coverage of the algorithm FFT-TDAF and the filter reconverges to
the correct solution.

The analysis presented in [22] has determined that an N-tap filter with real coefficients (N even) can
recover from up to N/2 hard faults as long as the faults do not occur in transform domain tap weights
that are real-valued or simultaneously in both the real or the imaginary parts of conjugate symmetric
positions in the transform domain. Furthermore, for each redundant tap that is added in the transform
domain via zero padding in the time domain, additional fault tolerance is achieved for either the real-
valued tap weights or one of the conjugate pairs in the complex frequency domain. The result is that full
fault tolerance can be achieved by zero padding the input vector with N/2 zeros in the time domain,
resulting in the addition of N/2 redundant coefficients in the transform domain.
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23.1 Introduction

In comparison with adaptive finite impulse response (FIR) filters, adaptive infinite impulse response (IIR)
filters offer the potential to implement an adaptive filter meeting desired performance levels, as measured
by mean-square error, for example, with much less computational complexity. This advantage stems
from the enhanced modeling capabilities provided by the pole=zero transfer function of the IIR structure,
compared to the ‘‘all-zero’’ form of the FIR structure.

However, adapting an IIR filter brings with it a number of challenges in obtaining stable and optimal
behavior of the algorithms used to adjust the filter parameters. Since the 1970s, there has been much
active research focused on adaptive IIR filters, but many of these challenges to date have not been
completely resolved. As a consequence, adaptive IIR filters are not found in commercial practice in
anywhere near the frequency that adaptive FIR filters are. Nonetheless, recent advances in adaptive IIR
filter research have provided new results and insights into the behavior of several methods for adapting
the filter parameters, and new algorithms have been proposed that address some of the problems and
open issues in these systems. Hence, this class of adaptive filter continues to maintain promise as a
potentially effective and efficient adaptive filtering option.

In this section, we provide an up-to-date overview of the different approaches to the adaptive IIR
filtering problem. Due to the extensive literature on the subject, many readers may wish to peruse several
earlier general treatments of the topic. Johnson’s 1984 [11] and Shynk’s 1989 papers [23] are still current
in the sense that a number of open issues cited therein remain open today. More recently, Regalia’s 1995
book [19] provides a comprehensive view of the subject.
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23.1.1 System Identification Framework for Adaptive IIR Filtering

The spread of issues associated with adaptive IIR filters is most easily understood if one adopts a system
identification perspective to the filtering problem. To this end, consider the diagram presented in Figure
23.1. Available to the adaptive filter are two external signals: the input signal x(n) and the desired output
signal d(n). The adaptive filtering problem is to adjust the parameters of the filter acting on x(n) so that
its output y(n) approximates d(n). From the system identification perspective, the task at hand is to
adjust the parameters of the filter generating y(n) from x(n) in Figure 23.1 so that the filtering operation
itself matches in some sense the system generating d(n) from x(n). These two viewpoints are closely
related because if the systems are the same, then their outputs will be close. However, by adopting the
convention that there is a system generating d(n) from x(n), clearer insights into the behavior and design
of adaptive algorithms are obtained. This insight is useful even if the ‘‘system’’ generating d(n) from x(n)
has only a statistical and not a physical basis in reality.

The standard adaptive IIR filter is described by

y(n)þa1(n)y(n�1)þ ��� þ aN(n)y(n�N)¼ b0(n)x(n)þb1(n)x(n�1)þ ��� þbM(n)x(n�M) , (23:1)

or equivalently

(1þ a1(n)q
�1 þ � � � þ aN (n)q

�N )y(n) ¼ (b0(n)þ b1(n)q
�1 þ � � � þ bM(n)q

�M)x(n) : (23:2)

As is shown in Figure 23.1, Equation 23.2 may be written in shorthand as

y(n) ¼ B(q�1, n)
A(q�1, n)

x(n), (23:3)

where B(q�1, n) and A(q�1, n) are the time-dependent polynomials in the delay operator q�1 appearing in
Equation 23.2. The parameters that are updated by the adaptive algorithm are the coefficients of these
polynomials. Note that the polynomial A(q�1, n) is constrained to be monic, such that a0(n) ¼ 1.

x(n)

yu(n)

v (n)

ys(n)

ym(n)

Hu (q–1)

Hm (q–1) =
Bopt(q–1)

B(q–1, n)
A(q–1, n)

A(q–1, n)
Aopt(q–1)

y(n)

eo(n)

ee(n)

d (n)
+

–

++

FIGURE 23.1 System identification configuration of the adaptive IIR filter.
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We adopt a rather more general description for the unknown system, assuming that d(n) is generated
from the input signal x(n) via some linear time-invariant system H(q�1), with the addition of a noise
signal v(n) to reflect components in d(n) that are independent of x(n). We further break down H(q�1)
into a transfer function Hm(q�1) that is explicitly modeled by the adaptive filter, and a transfer function
Hu(q�1) that is unmodeled. In this way, we view d(n) as a sum of three components: the signal ym(n) that
is modeled by the adaptive filter, the signal yu(n) that is unmodeled but that depends on the input signal,
and the signal v(n) that is independent of the input. Hence,

d(n) ¼ ym(n)þ yu(n)þ v(n) (23:4)

¼ ys(n)þ v(n), (23:5)

where ys(n) ¼ ym(n)þ yu(n). The modeled component of the system output is viewed as

ym(n) ¼ Bopt(q�1)

Aopt(q�1)
x(n), (23:6)

with Bopt(q�1) ¼PM
i¼0 bi, optq

�i and Aopt(q�1) ¼ 1þPN
i¼i ai, optq

�i. Note that Equation 23.6 has the
same form as Equation 23.3. The parameters {ai, opt} and {bi, opt} are considered to be the optimal values
for the adaptive filter parameters, in a manner that we describe shortly.

Figure 23.1 shows two error signals: ee(n), termed the equation error, and eo(n), termed the output
error. The parameters of the adaptive filter are usually adjusted so as to minimize some positive function
of one or the other of these error signals. However, the figure of merit for judging adaptive filter
performance that we will apply throughout this section is the mean-square output error E{e2o(n)}. In
most adaptive filtering applications, the desired signal, d(n), is available only during a ‘‘training phase’’ in
which the filter parameters are adapted. At the conclusion of the training phase, the filter will be operated
to produce the output signal y(n) as shown in the figure, with the difference between the filter output y(n)
and the (now unmeasurable) system output d(n) the error. Thus, we adopt the convention that {ai, opt}
and {bi, opt} are defined such that when ai(n) � ai, opt and bi(n) � bi, opt, E{e2o(n)} is minimized, with
Aopt(q�1) constrained to be stable.

At this point it is convenient to set down some notation and terminology. Define the regressor vectors

Ue(n) ¼ [x(n) � � � x(n�M)� d(n� 1)� � � � � d(n� N)]T, (23:7)

Uo(n) ¼ [x(n) � � � x(n�M)� y(n� 1)� � � � � y(n� N)]T, (23:8)

Um(n) ¼ [x(n) � � � x(n�M)� ym(n� 1)� � � � � ym(n� N)]T: (23:9)

These vectors are the equation error regressor, output error regressor, and modeled system regressor
vectors, respectively. Define a noise regressor vector

V(n) ¼ [0 � � � 0� v(n� 1)� � � � � v(n� N)]T (23:10)

with M þ 1 leading zeros corresponding to the x(n� i) values in the preceding regressors. Furthermore,
define the parameter vectors

W(n) ¼ [b0(n)b1(n) � � � bM(n)a1(n) � � � aN (n)]T, (23:11)

Wopt ¼ [b0, optb1, opt � � � bM, opta1, opt � � � aN , opt]
T, (23:12)
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~W(n) ¼ Wopt �W(n), (23:13)

W1 ¼ lim
n!1

E{W(n)}: (23:14)

We will have occasion to use W to refer to the adaptive filter parameter vector when the parameters are
considered to be held at fixed values. With this notation, we may for instance write ym(n) ¼ UT

m(n)Wopt

and y(n) ¼ UT
o (n)W(n).

The situation in which yu(n) � 0 is referred to as the sufficient order case. The situation in which
yu(n) 6� 0 is termed the undermodeled case.

23.1.2 Algorithms and Performance Issues

A number of different algorithms for the adaptation of the parameter vector W(n) in Equation 23.11
have been suggested. These may be characterized with respect to the form of the error criterion employed
by the algorithm. Each algorithm attempts to drive to zero either the equation error, the output error, or
some combination or hybrid of these two error criteria. Major algorithm classes that we consider for the
equation error approach include the standard least-squares (LS) and least mean-square (LMS) algo-
rithms, which parallel the algorithms used in adaptive FIR filtering. For equation error methods, we also
examine the instrumental variables (IV) algorithm, as well as algorithms that constrain the parameters in
the denominator of the adaptive filter’s transfer function to improve estimation properties. In the output
error class, we examine gradient algorithms and hyperstability-based algorithms. Within the equation
and output error hybrid algorithm class, we focus predominantly on the Steiglitz–McBride (SM)
algorithm, though there are several algorithms that are more straightforward combinations of equation
and output error approaches.

In general, we desire that the adaptive filtering algorithm adjusts the parameter vector Wn so that it
converges to Wopt, the parameters that minimize the mean-square output error. The major issues for
adaptive IIR filtering on which we will focus herein are

1. Conditions for the stability and convergence of the algorithm used to adapt W(n)
2. Asymptotic value of the adapted parameter vector W1, and its relationship to Wopt.

This latter issue relates to the minimum mean-square error achievable by the algorithm, as noted above.
Other issues of importance include the convergence speed of the algorithm, its ability to track time
variations of the ‘‘true’’ parameter values, and numerical properties, but these will receive less attention
here. Of these, convergence speed is of particular concern to practitioners, especially as adaptive IIR
filters tend to converge at a far slower rate than their FIR counterparts. However, we emphasize the
stability and nature of convergence over the speed because if the algorithm fails to converge or converges
to an undesirable solution, the rate at which it does so is of less concern. Furthermore, convergence
speed is difficult to characterize for adaptive IIR filters due to a number of factors, including complicated
dependencies on algorithm initializations, input signal characteristics, and the relationship between
x(n) and d(n).

23.1.3 Some Preliminaries

Unless otherwise indicated, we assume in our discussion that all signals in Figure 23.1 are stationary, zero
mean, random signals with finite variance. In particular, the properties we ascribe to the various
algorithms are stated with this assumption and are presumed to be valid. Results that are based on a
deterministic framework are similar to those developed here; see [1] for an example.

We shall also make use of the following definitions.
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Definition 23.1: A (scalar) signal is persistently exciting (PE) of order L if, with

X(n) ¼ [x(n) � � � x(n� Lþ 1)]T, (23:15)

there exist a and b satisfying 0 < a < b < 1 such that aI < E{X(n)XT(n)} < bI. The (vector) signal
X(n) is then also said to be PE.

If x(n) contains at least L=2 distinct sinusoidal components, then x(n) is PE of order L. Any random
signal x(n) whose power spectrum is nonzero over a interval of nonzero width will be PE for any value
of L in Equation 23.15. Such is the case, for example, if x(n) is uncorrelated or if x(n) is modeled as an
AR, MA, or ARMA process driven by uncorrelated noise. PE conditions are required of all adaptive
algorithms to ensure good behavior because if there is inadequate excitation to provide information to
the algorithm, convergence of the adapted parameters estimates will not necessary follow [22].

Definition 23.2: A transfer function H(q�1) is said to be strictly positive real (SPR) if H(q�1) is
stable and the real part of its frequency response is positive at all frequencies.

An SPR condition will be required to ensure convergence for a few of the algorithms that we discuss.
Note that such a condition cannot be guaranteed in practice when H(q�1) is an unknown transfer
function, or when H(q�1) depends on an unknown transfer function.

23.2 Equation Error Approach

To motivate the equation error approach, consider again Figure 23.1. Suppose that y(n) in the figure were
actually equal to d(n). Then the system relationship A(q�1, n)y(n) ¼ B(q�1, n)x(n) would imply that
A(q�1, n)d(n) ¼ B(q�1, n)x(n). But of course this last equation does not hold exactly, and we term its
error the ‘‘equation error’’ ee(n). Hence, we define

ee(n) ¼ A(q�1, n)d(n)� B(q�1, n)x(n): (23:16)

Using the notation developed in Equations 23.7 through 23.14, we find that

ee(n) ¼ d(n)� UT
e (n)W(n): (23:17)

Equation error methods for adaptive IIR filtering typically adjust W(n) so as to minimize the mean-
squared error (MSE) JMSE(n) ¼ E{e2e(n)}, where E{�} denotes statistical expectation, or the exponentially
weighted LS error JLS(n) ¼

Pn
k¼0 ln�ke2e(k).

23.2.1 LMS and LS Equation Error Algorithms

The equation error ee(n) of Equation 23.17 is the difference between d(n) and a prediction of d(n)
given by UT

e (n)W(n). Noting that UT
e (n) does not depend on W(n), we see that equation error adaptive

IIR filtering is a type of linear prediction, and in particular the form of the prediction is identical
to that arising in adaptive FIR filtering. One would suspect that many adaptive FIR filter algorithms
would then apply directly to adaptive IIR filters with an equation error criterion, and this is in fact
the case.

Two adaptive algorithms applicable to equation error adaptive IIR filtering are the LMS algorithm
given by

W(nþ 1) ¼ W(n)þ m(n)Ue(n)ee(n): (23:18)
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and the recursive least-squares (RLS) algorithm given by

W(nþ 1) ¼ W(n)þ P(n)Ue(n)ee(n), (23:19)

P(n) ¼ 1
l

P(n� 1)� P(n� 1)Ue(n)UT
e (n)P(n� 1)

lþ UT
e (n)P(n� 1)Ue(n)

� �
, (23:20)

where the above expression for P(n) is a recursive implementation of

P(n) ¼
Xn
k¼0

ln�kUe(k)U
T
e (k)

 !�1

: (23:21)

Some typical choices for m(n) in Equation 23.18 are m(n) � m0, a constant, or m(n) ¼ �m=

eþ UT
e (n)Ue(n)

� �
, a normalized step size. For convergence of the gradient algorithm in Equation

23.18, m0 is chosen in the range 0 < m0 < 1= (M þ 1)s2
x þ Ns2

d

� �
, where s2

x ¼ E{x2(n)} and
s2
d ¼ E{d2(n)}. Typically, values of m0 in the range 0 < m0 < 0:1= (M þ 1)s2

x þ Ns2
d

� �
are chosen.

With the normalized step size, we require 0 < �m < 2 and e > 0 for stability, with typical choices of
�m ¼ 0:1 and e ¼ 0:001. In Equation 23.20, we require that l satisfy 0 < l � 1, with l typically close to
or equal to one, and we initialize P(0) ¼ gI with g a large, positive number. These results are analogous
to the FIR filter cases considered in the earlier sections of this chapter.

These algorithms possess nice convergence properties, as we now discuss.

Property 23.1: Given that x is PE of order N þM þ 1, under Equation 23.18 and under Equations
23.19 and 23.20, with algorithm parameters chosen to satisfy the conditions noted above, then E{W(n)}
converges to a value W1 minimizing JMSE(n) and JLS(n), respectively, as n ! 1.

This property is desirable in that global convergence to parameter values optimal for the equation
error cost function is guaranteed, just as with adaptive FIR filters. The convergence result holds whether
the filter is operating in the sufficient order case or the undermodeled case. This is an important
advantage of the equation error approach over other approaches. The reader is referred to Chapters 19
through 21 for further details on the convergence behaviors of these algorithms and their variations. As
in the FIR case, the eigenvalues of the matrix R ¼ E{Ue(n)UT

e (n)} determine the rates of convergence for
the LMS algorithm. A large eigenvalue disparity in R engenders slow convergence in the LMS algorithm
and ill-conditioning, with the attendant numerical instabilities, in the RLS algorithm. For adaptive IIR
filters, compared to the FIR case, the presence of d(n) in Ue(n) tends to increase the eigenvalue disparity,
so that slower convergence is typically observed for these algorithms.

Of importance is the value of the convergence points for the LMS and RLS algorithms with respect
to the modeling assumptions of the system identification configuration of Figure 23.1. For simplicity,
let us first assume that the adaptive filter is capable of modeling the unknown system exactly; that
is, Hu(q�1) ¼ 0. One may readily show that the parameter vector W that minimizes the mean-
square equation error (or equivalently the asymptotic LS equation error, given ergodic stationary
signals) is

W ¼ E{Ue(n)U
T
e (n)}

�1E{Ue(n)d(n)}

¼ (E{Um(n)U
T
m(n)}þ E{V(n)VT(n)})�1 (23:22)

¼ (E{Um(n)ym(n)}þ E{V(n)v(n)}): (23:23)
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Clearly, if v(n) � 0, the W so obtained must equal Wopt, so that we have

Wopt ¼ E{Um(n)U
T
m(n)}

�1E{Um(n)ym(n)}: (23:24)

By comparing Equations 23.23 and 23.24, we can easily see that when v(n) 6� 0,W 6¼ Wopt. That is, the
parameter estimates provided by Equations 23.18 through 23.20 are, in general, biased from the desired
values, even when the noise term v(n) is uncorrelated.

What effect on adaptive filter performance does this bias impose? Since the parameters that minimize
the mean-square equation error are not the same as Wopt, the values that minimize the mean-square
output error, the adaptive filter performance will not be optimal. Situations can arise in which this bias is
severe, with correspondingly significant degradation of performance.

Furthermore, a critical issue with regard to the parameter bias is the input–output stability of the
resulting IIR filter. Because the equation error is formed as A(q�1)d(n)� B(q�1)x(n), a difference of two
FIR filtered signals, there are no built in constraints to keep the roots of A(q�1) within the unit circle in
the complex plane. Clearly, if an unstable polynomial results from the adaptation, then the filter output
y(n) can grow unboundedly in operational mode, so that the adaptive filter fails. An example of such a
situation is given in [25]. An important feature of this example is that the adaptive filter is capable of
precisely modeling the unknown system, and that interactions of the noise process within the algorithm
are all that is needed to destabilize the resulting model.

Nonetheless, under certain operating conditions, this kind of instability can be shown not to occur, as
described in the following.

Property 23.2: [18] Consider the adaptive filter depicted in Figure 23.1, where y(n) is given by
Equation 23.2. If x(n) is an autoregressive process of order no more than N, and v(n) is independent of
x(n) and of finite variance, then the adaptive filter parameters minimizing the mean-square equation error
E{e2e(n)} are such that A(q�1) is stable.

For instance, if x(n) is an uncorrelated signal, then the convergence point of the equation error
algorithms corresponds to a stable filter.

To summarize, for LMS and RLS adaptation in an equation error setting, we have guaranteed global
convergence, but bias in the presence of additive noise even in the exact modeling case, and an estimated
model guaranteed to be stable only under a limited set of conditions.

23.2.2 Instrumental Variable Algorithms

A number of different approaches to adaptive IIR filtering have been proposed with the intention of
mitigating the undesirable biased properties of the LMS- and RLS-based equation error adaptive IIR
filters. One such approach, still within the equation error context, is the IV method. Observe that the bias
problem illustrated above stems from the presence of v(n) in both Ue(n) and in ee(n) in the update terms
in Equations 23.18 and 23.19, so that second-order terms in v(n) then appear in Equation 23.23. This
simultaneous presence creates, in expectation, a nonzero, noise-dependent driving term to the adapta-
tion. The IV algorithm approach addresses this by replacing Ue(n) in these algorithms with a vector
Uiv(n) of IV that are independent of v(n). If Uiv(n) remains correlated with Um(n), the noiseless
regressor, convergence to unbiased filter parameters is possible.

The IV algorithm is given by

W(nþ 1) ¼ W(n)þ m(n)Piv(n)Uiv(n)ee(n): (23:25)
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Piv(n) ¼ 1
l(n)

Piv(n� 1)� Piv(n� 1)Uiv(n)UT
e (n)Piv(n� 1)

[l(n)=m(n)]þ UT
e (n)Piv(n� 1)Uiv(n)

� �
: (23:26)

with l(n) ¼ 1� m(n). Common choices for l(n) are to set l(n) � l0, a fixed constant in the range
0 < l < 1 and usually chosen in the range between 0.9 and 0.99, or to choose m(n) ¼ 1=n and
l(n) ¼ 1� m(n). As with RLS methods, P(0) ¼ gI with g a large, positive number. The vector Uiv(n)
is typically chosen as

Uiv(n) ¼ [x(n) � � � x(n�M)� z(n� 1)� � � � � z(n� N)]T (23:27)

with either

z(n) ¼ �x(n�M) or z(n) ¼
�B(q�1)
�A(q�1)

x(n) : (23:28)

In the first case, Uiv(n) is then simply an extended regressor in the input x(n), while the second choice
may be viewed as a regressor parallel to Um(n), with z(n) playing the role of ym(n). For this choice, one
may think of �A(q�1) and �B(q�1) as fixed filters chosen to approximate Aopt(q�1) and Bopt(q�1), but the
exact choice of �A(q�1) and �B(q�1) is not critical to the qualitative behavior of the algorithm. In both
cases, note that Uiv(n) is independent of v(n), since d(n) is not employed in its construction.

The convergence of this algorithm is described by the following property, derived in [15].

Property 23.3: In the sufficient order case with x(n) PE of order at least N þM þ 1, the IV algorithm
in Equations 23.25 and 23.26 with Uiv(n) chosen according to Equations 23.27 or 23.28 causes E{W(n)} to
converge to W1 ¼ Wopt.

There are a few additional technical conditions an Aopt(q�1),Bopt(q�1), �A(q�1), and �B(q�1) that are
required for the property to hold. These conditions will be satisfied in almost all circumstances; for
details, the reader is referred to [15]. This convergence property demonstrates that the IV algorithm does
in fact achieve unbiased parameter estimates in the sufficient order case.

In the undermodeled case, little has been said regarding the behavior and performance of the IV
algorithm. A convergence point W1 must satisfy E{Uiv(n)� [d(n)UT

e (n)W1]} ¼ 0, but no character-
ization of such points exists if N and M are not of sufficient order. Furthermore, it is possible for the IV
algorithm to converge to a point such that 1=A(q�1) is unstable [9].

Notice that Equations 23.25 and 23.26 are similar in form to the RLS algorithm. One may postulate an
‘‘LMS-style’’ IV algorithm as

W(nþ 1) ¼ W(n)þ m(n)Uiv(n)ee(n), (23:29)

which is computationally much simpler than the ‘‘RLS-style’’ IV algorithm of Equations 23.25 and 23.26.
However, the guarantee of convergence of the algorithm to Wopt in the sufficient order case for the RLS-
style algorithm is now complicated by an additional requirement on Uiv(n) for convergence of the
algorithm in Equation 23.29. In particular, all eigenvalues of

Riv ¼ E{Uiv(n)U
T
e (n)} (23:30)

must lie strictly in the right half of the complex plane. Since the properties of Ue(n) depend on the
unknown relationship between x(n) and d(n), one is generally unable to guarantee a priori satisfaction of
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such conditions. This situation has parallels with the stability-theory approach to output error algo-
rithms, as discussed later in this section.

Summarizing the IV algorithm properties, we have that in the sufficient order case, the RLS-style IV
algorithm is guaranteed to converge to unbiased parameter values. However, an understanding and
characterization of its behavior in the undermodeled case is yet incomplete, and the IV algorithm may
produce unstable filters.

23.2.3 Equation Error Algorithms with Unit Norm Constraints

A different approach to mitigating the parameter bias in equation error methods arises as follows.
Consider modifying the equation error of Equation 23.17 to

ee(n) ¼ a0(n)d(n)� UT
e (n)W(n): (23:31)

In terms of the expression in Equation 23.16, this change corresponds to redefining the adaptive filter’s
denominator polynomial to be

A(q�1, n) ¼ a0(n)þ a1(n)q
�1 þ � � � þ aN (n)q

�N , (23:32)

and allowing for adaptation of the new parameter a0(n). One can view the equation error algorithms that
we have already discussed as adapting the coefficients of this version of A(q�1, n), but with a monic
constraint that imposes a0(n) ¼ 1. Recently, several algorithms have been proposed that consider instead
equation error methods with a unit norm constraint. In these schemes, one adapts W(n) and a0(n)
subject to the constraint

XN
i¼0

a2i (n) ¼ 1: (23:33)

Note that if A(q�1, n) is defined as in Equation 23.32, then ee(n) as constructed in Figure 23.1 is in fact the
error ee(n) given in Equation 23.31.

The effect on the parameter bias stemming from this change from a monic to a unit norm constraint is
as follows.

Property 23.4: [18] Consider the adaptive filter in Figure 23.1 with A(q�1, n) given by Equation 23.32,
with v(n) an uncorrelated signal and with Hu(q�1) ¼ 0 (the sufficient order case). Then the parameter
values W and a0 that minimize E{e2e(n)} subject to the unit norm constraint (Equation 23.33) satisfy
W=a0 ¼ Wopt.

That is, the parameter estimates are unbiased in the sufficient order case with uncorrelated output
noise. Note that normalizing the coefficients inW by a0 recovers the monic character of the denominator
for Wopt:

B(q�1)
A(q�1)

¼ b0 þ b1q�1 þ � � � þ bMq�M

a0 þ a1q�1 þ � � � þ aNq�N
(23:34)

¼ (b0=a0)þ (b1=a0)q�1 þ � � � þ (bM=a0)q�M

1þ (a1=a0)q�1 þ � � � þ (aN=a0)q�N
: (23:35)

In the undermodeled case, we have the following.
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Property 23.5: [18] Consider the adaptive filter in Figure 23.1 with A(q�1, n) given by Equation 23.32.
If x(n) is an autoregressive process of order no more than N, and v(n) is independent of x(n) and of finite
variance, then the parameter values W and a0 that minimize E{e2e(n)} subject to the unit norm constraint
(Equation 23.33) are such that A(q�1) is stable. Furthermore, at those minimizing parameter values, if x(n)
is an uncorrelated input, then

E{e2e(n)} � s2
Nþ1 þ s2

v , (23:36)

where sNþ1 is the (N þ 1)th Hankel singular value of H(z).

Notice that Property 23.5 is similar to Property 23.2, except that we have the added bonus of a bound
on the mean-square equation error in terms of the Hankel singular values of H(q�1). Note that the
(N þ 1)th Hankel singular value of H(q�1) is related to the achievable modeling error in an Nth order,
reduced order approximation to H(q�1) (see [19] for details). This bound thus indicates that the optimal
unit norm constrained equation error filter will in fact do about as well as can be expected with an Nth
order filter. However, this adaptive filter will suffer, just as with the equation error approaches with the
monic constraint on the denominator, from a possibly unstable denominator if the input x(n) is not an
autoregressive process.

An adaptive algorithm for minimizing the mean-square equation error subject to the unit norm
constraint can be found in [4]. The algorithm of [4] is formulated as a recursive total LS algorithm using a
two-channel, fast transversal filter implementation. The connection between total LS and the unit norm
constrained equation error adaptive filter implies that the correlation matrices that are embedded within
the adaptive algorithm will be more poorly conditioned than the correlation matrices arising in the RLS
algorithm. Consequently, convergence will be slower for the unit norm constrained approach than in the
standard, monic constraint approach.

More recently, several new algorithms that generalize the above approach to confer unbiasedness in
the presence of correlated output noises v(n) have been proposed [5]. These algorithms require know-
ledge of the statistics of v(n), though versions of the algorithms in which these statistics are estimated on-
line are also presented in [5]. However, little is known about the transient behaviors or the local stabilities
of these adaptive algorithms, particularly in the undermodeled case.

In conclusion, minimizing the equation error cost function with a unit norm constraint on the auto-
regressive parameter vector provides bias-free estimates in the sufficient order case and a bias level similar to
the standard equation error methods in the undermodeled case. Adaptive algorithms for constrained
equation error minimization are under development, and their convergence properties are largely unknown.

23.3 Output Error Approach

We have already noted that the error of merit for adaptive IIR filters is the output error eo(n). We now
describe a class of algorithms that explicitly uses the output error in the parameter updates. We
distinguish between two categories within this class: those algorithms that directly attempt to minimize
the LS or mean-square output error, and those formulated using stability theory to enforce convergence
to the ‘‘true’’ system parameters. This class of algorithms has the advantage of eliminating the parameter
bias that occurs in the equation error approach. However, as we will see, the price paid is that
convergence of the algorithms becomes more complicated, and unlike in the equation error methods,
global convergence to the desired parameter values is no longer guaranteed.

Critical to the formulation of these output error algorithms is an understanding of the relationship of
W(n) to eo(n). With reference to Figure 23.1, we have

eo(n) ¼ d(n)� B(q�1, n)
A(q�1, n)

x(n): (23:37)
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Using the notation in Equations 23.7 through 23.14 and following a standard derivation, [19] shows that

ym(n)� y(n) ¼ 1
Aopt(q�1)

h
UT

o (n) ~W(n)
i
, (23:38)

so that

eo(n) ¼ 1
Aopt(q�1)

h
UT

o (n) ~W(n)
i
þ yu(n)þ v(n): (23:39)

The expression in Equation 23.39 makes clear two characteristics of eo(n). First, eo(n) separates the error
due to the modeled component, which is the term based on ~W(n), from the error due to the unmodeled
effects in d(n), that is yu(n)þ v(n). Neither yu(n) nor v(n) appear in the term based on ~W(n). Second,
eo(n) is nonlinear in W(n), since Uo(n) depends on W(n). The first feature leads to the desirable
unbiasedness characteristic of output error methods, while the second is a source of difficulty for defining
globally convergent algorithms.

23.3.1 Gradient-Descent Algorithms

An output error-based gradient-descent algorithm may be defined as follows. Set

xf (n) ¼ 1
A(q�1, n)

x(n), yf (n) ¼ 1
A(q�1, n)

y(n), (23:40)

and define

Uof (n) ¼ [xf (n) � � � xf (n�M)� yf (n� 1)� � � � � yf (n� N)]T: (23:41)

Then

W(nþ 1) ¼ W(n)þ m(n)Uof (n)eo(n) (23:42)

defines an approximate stochastic-gradient (SG) algorithm for adapting the parameter vector W(n). The
direction of the update term in Equation 23.42 is opposite to the gradient of eo(n) with respect to W(n),
assuming that the parameter vector W(n) varies slowly in time. To see how a gradient descent results in
this algorithm, note that the output error may be written as

eo(n) ¼ d(n)� y(n) (23:43)

¼ d(n)�
XM
i¼0

bi(n)x(n� i)þ
XN
i¼1

ai(n)y(n� i) (23:44)

so that

qeo(n)
qbi(n)

¼ �x(n� i)þ
XN
i¼1

ai(n)
qy(n� 1)
qbi(n)

: (23:45)

Noting that qeo(n)=qbi(n) ¼ �qy(n)=qbi(n), and assuming that the parameter bi(n) varies slowly enough
so that
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qe(n� i)
qbi(n)

� qe(n� i)
qbi(n� i)

, (23:46)

Equation 23.45 becomes

qe(n)
qbi(n)

� �x(n� i)�
XN
i¼1

ai(n)
qe(n� i)
qbi(n� i)

: (23:47)

This equation can be rearranged to

qe(n� i)
qbi(n)

� �A(q�1, n)x(n� i) ¼ �xf (n� i): (23:48)

The relation

qe(n� i)
qai(n)

� A(q�1, n)y(n� i) ¼ yf (n� i) (23:49)

may be found in a similar fashion. Since the gradient descent algorithm is

bi(nþ 1) ¼ bi(n)� m

2
qe2o(n)
qbi(n)

(23:50)

� bi(n)þ mxf (n� i)eo(n) (23:51)

ai(nþ 1) ¼ ai(n)� m

2
qe2o(n)
qai(n)

(23:52)

� bi(n)� myf (n� i)eo(n), (23:53)

Equation 23.42 follows.
The step size m(n) is typically chosen either as a constant m0, or normalized by Uof (n) as

m(n) ¼ �m

1þ �mUT
of (n)Uof (n)

: (23:54)

Due to the nonlinear relationship between the parameters and the output error, selection of values for
m(n) is less straightforward than in the equation error case. Roughly speaking, one would like that
0 < m(n) � 1=UT

of (n)Uof (n), or more conservatively, m(n) ¼ 0:1=UT
of (n)Uof (n). This suggests setting

m0 ¼ 0:1=E{UT
of (n)Uof (n)}, given an estimate of the expected value, or �m at about the same value. The

behavior of the algorithm using the normalized step size of Equation 23.54 is in general less sensitive to
variations in �m than is the unnormalized version with respect to choice of m0.

Another alternative to Equation 23.42 is the Gauss–Newton (GN) algorithm given by

W(nþ 1) ¼ W(n)þ m(n)P(n)Uof (n)eo(n), (23:55)

P(n) ¼ 1
l(n)

P(n� 1)� P(n� 1)Uof (n)UT
of (n)P(n� 1)

[l(n)=m(n)]þ UT
of (n)P(n� 1)Uof (n)

� �
, (23:56)

while setting l(n) ¼ 1� m(n), and P(0) ¼ gI just as for the IV algorithm. Most frequently l(n) is chosen
as a constant in the range between 0.9 and 0.99. Another choice is to set m(n) ¼ 1=n, a decreasing
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adaptation gain, but when m(n) tends to zero, one loses adaptability. The GN algorithm is a descent
strategy utilizing approximate second order information, with the matrix P(n) being an approximation of
the inverse of the Hessian of eo(n) with respect toW(n). Note the similarity of Equations 23.55 and 23.56
to Equations 23.19 and 23.20. In fact, replacing Uof (n) in the GN algorithm with Ue(n), replacing eo(n)
with ee(n), and setting m(n) ¼ (1� l)=(1� ln), one recovers the RLS algorithm, though the interpret-
ation of P(n) in this form is slightly different. As n gets large, the choice of constant l and m ¼ 1� l

approximates RLS (with 0 < l < 1).
Precise convergence analyses of these two algorithms are quite involved and rely on a number of technical

assumptions. Analyses fall into two categories. One approach treats the step sizem(n) in Equation 23.42 and
in Equations 23.55 and 23.56 as a quantity that tends to zero, satisfying the following properties:

(1) m(n) ! 0, (2) lim
L!1

XL
n¼0

m(n) ! 1, and (3) lim
L!1

XL
n¼0

m2(n) < 1; (23:57)

for instance m(n) ¼ 1=n, as noted above. The ODE analysis of [15] applies in this situation. Assuming a
decreasing step size is a necessary technicality to enable convergence of the adapted parameters to their
optimum values in a random environment. The second approach allows m to remain as a fixed, but small,
step size, as in [3]. The results describe the probabilistic behavior of W(n) over finite intervals of time,
with the extent of the interval increasing and the degree of variability of W(n) decreasing as the fixed
value of m becomes smaller.

However, in both cases, the conclusions are essentially the same. The behavior of these algorithms with
small enough step size m is to follow gradient descent of the mean-square output error E{e2o(n)}. We should
note that a technical requirement for the analyses to remain valid is that signals within the adaptive filter
remain bounded, and to insure this the stability for the polynomial A(q�1, n) must be maintained to ensure
this requirement. Therefore, at each iterationof the gradient descent algorithm, onemust check the stability of
A(q�1, n) and, if it is unstable, prevent the update of the ai(nþ 1) values inW(nþ 1), or projectW(nþ 1)
back into the set of parameter vector values whose corresponding A(q�1, n) polynomial is stable [11,15]. For
direct-form adaptive filters, this stability check can be computationally burdensome, but it is necessary as the
algorithm often fails to converge without its implementation, especially ifAopt(q�1) has roots near to the unit
circle. Imposing a stability check at each iteration of the algorithm guarantees the following result.

Property 23.6: For the SG or GN algorithm with decreasing m(n) satisfying Equation 23.57, W(n)
converges to a value locally minimizing the mean-square output error or locks up on a point on the stability
boundary where W represents a marginally stable filter. For the SG or GN algorithm with constant m that
is small enough, W(n) remains close in probability to a trajectory approaching a value locally minimizing
the mean-square output error.

This property indicates that the value of W(n) found by these algorithms does in practice approach a
local minimum of the mean-square output error surface. A stronger analytic statement of this expected
convergence is unfortunately not possible, and in fact, the probability of large deviations of the algorithms
from a minimum point becomes large with time with constant m. As a practical matter, however, one can
expect the parameter vector to approach and stay near a minimizing parameter value using these methods.

More problematic, however, is whether effective convergence to a global minimum is achieved. A
thorough treatment of this issue appears in [16] and [26], with conclusions as follows:

Property 23.7: In the sufficient order case (yu � 0) with an uncorrelated input x(n), all minima of
E{e2o(n)} are global minima.
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The same conclusion holds if x(n) is generated as an ARMA process, given satisfaction of certain
conditions on the orders of the adaptive filter, the unknown system, and the system generating x(n); see
[26] for details. However, in the undermodeled case (yu(n) 6� 0), it is possible for the system to converge
to a local but not global minimum. Several examples of this are presented in [16]. Since the insufficient
order case will likely be the one encountered in practice, the possibility of convergence to a local but not
global minimum will always exist with these gradient descent output error algorithms. It is possible that
these local minima will provide a level of mean-square output error much greater than that obtained at
the global minimum, so serious performance degradation may result. However, any such minimum must
correspond to a stable parametrization of the adaptive filter, in contrast with the equation error methods
for which there is no such guarantee in the most general of circumstances.

We have the following summary. The output error gradient descent algorithms converge to a stable
filter parametrization that locally minimizes the mean-square output error. These algorithms are
unbiased, and reach a global minimum, when yu(n) � 0, but when the true system has been under-
modeled, convergence to a local but not global minimum is likely.

23.3.2 Output Error Algorithms Based on Stability Theory

One of the first adaptive IIR filters to be proposed employs the parameter update

W(nþ 1) ¼ W(n)þ m(n)Uo(n)eo(n): (23:58)

This algorithm, often referred to as a pseudolinear regression, Landau’s algorithm, or Feintuch’s algorithm,
was proposed as an alternative to the gradient descent algorithm of Equation 23.42. This algorithm is
similar in form to Equation 23.18, save that the regressor vector and error signal of the output error
formulation appear in place of their equation error counterparts. In essence, the update in Equation 23.58
ignores the nonlinear dependence of eo(n) on W(n), and takes the form of an algorithm for a linear
regression, hence the label ‘‘pseudolinear’’ regression. One advantage of Equation 23.58 over the algorithm
in Equation 23.42 is that the former is computationally simpler as it avoids the filtering operations
necessary to generate Equation 23.40. An additional requirement is needed for stability of the algorithm,
however, as we now discuss.

The algorithm of Equation 23.58 is one possibility among a broad range of algorithms studied in [21],
given by

W(nþ 1) ¼ W(n)þ m(n)F(q�1, n)[Uo(n)]G(q
�1, n)[eo(n)], (23:59)

where F(q�1, n) and G(q�1, n) are possibly time-varying filters, and where F(q�1, n) acting on the vector
Uo(n) denotes an element-by-element filtering operation. We can see that setting F(q�1) ¼ G(q�1) ¼ 1
yields Equation 23.58. The convergence of these algorithms has been studied using the theory of
hyperstability and the theory of averaging [1]. For this reason, we classify this family as ‘‘stability theory
based’’ approaches to adaptive IIR filtering. The method behind Equation 23.59 can be understood by
considering the algorithm subclass represented by

W(nþ 1) ¼ W(n)þ m(n)Uo(n)G(q
�1)[eo(n)], (23:60)

which is known as the simplified hyperstable adaptive recursive filter or SHARF algorithm [12]. A GN-
like alternative is

W(nþ 1) ¼ W(n)þ m(n)P(n)Uo(n)G(q
�1)[eo(n)] , (23:61)
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P(n) ¼ 1
l(n)

P(n� 1)� P(n� 1)Uo(n)UT
o (n)P(n� 1)

[l(n)=m(n)]þ UT
o (n)P(n� 1)Uo(n)

� �
: (23:62)

with again l(n) ¼ 1� m(n). Choice of m(n), l(n), and P(0) are similar to those for other algorithms.
The averaging analyses applied in [21] to Equations 23.60 through 23.62 obtain the following

convergence results, with reference to Definitions 23.3 and 23.15 in the Introduction.

Property 23.8: If G(q�1)=Aopt(q�1) is SPR and Um(n) is a bounded, PE vector sequence,* then when
yu(n) ¼ v(n) ¼ 0, there exists a m0 such that 0 < m < m0 implies that Equation 23.60 is locally
exponentially stable about W ¼ Wopt. It also follows that nonzero, but small, yu(n) and v(n) result in a
bounded perturbation ofW fromWopt. If the SPR condition is strengthened to [G(q�1)=Aopt(q�1)]� (1=2)
being SPR, then the results apply to Equations 23.61 and 23.62 with m constant and small enough.

The essence of the analysis is to describe the average behavior of the parameter error ~W(n) under
Equation 23.60 by

~Wavg(nþ 1) ¼ (I � mR) ~Wavg(n)þ mj1(n)þ m2j2(n): (23:63)

In Equation 23.63, the signal j1(n) is a term dependent on yu(n) and v(n), the signal j2(n) represents the
approximation error made in linearizing and averaging the update, and the matrix R is given by

R ¼ avg Um(n)
G(q�1)
Aopt(q�1)

[Um(n)]

� �T
( )

: (23:64)

The SPR and PE conditions imply that the eigenvalues of R all have positive real part, so that m may then
be chosen small enough so that the eigenvalues of I � mR are all less than one in magnitude. Then
~Wavg(nþ 1) ¼ (I � mR) ~Wavg(n) is exponentially stable, and Property 23.8 follows. The exponential
stability of Equation 23.63 is the property that allows the algorithm to behave robustly in the presence
of a number of effects, including that the undermodeling [1].

The above convergence result is local in nature and is the best that can be stated for this class of
algorithms in the general case. In the variation proposed for system identification by Landau and
interpreted for adaptive filters by Johnson [10], a stronger statement of convergence can be made in
the exact modeling case when yu(n) is zero and assuming that v(n) ¼ 0. In that situation, given
satisfaction of the SPR and PE conditions, W(n) can be shown to converge to Wopt. For nonzero v(n),
analyses with a vanishing step size m(n) ! 1 have established this convergence, again assuming exact
modeling, even in the presence of a correlated noise term v(n) [20]. One advantage on this convergence
result in comparison to the exact modeling convergence result for the gradient algorithm (Equation
23.42) is that the PE condition on the input is less restrictive than the conditions that enable global
convergence of the gradient algorithm. Nonetheless, in the undermodeled case, convergence is local in
nature, and although the robustness conferred by the local, exponential stability to some extent mitigates
this problem, it represents a drawback to the practical application of these techniques.

A further drawback of this technique is the SPR condition that G(q�1)=Aopt(q�1) must satisfy. The
polynomial Aopt(q�1) is of course unknown to the adaptive filter designer, presenting difficulties in
the selection of G(q�1) to ensure that G(q�1)=Aopt(q�1) is SPR. Recent research into choices of filters
G(q�1) that render G(q�1)=Aopt(q�1) SPR for all Aopt(q�1) within a set of filters, a form of ‘‘robust SPR’’

* The PE condition applies to Um(n), rather than Uo(n), since this an analysis local to W¼Wopt, where Uo(n)¼Um(n).
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result, has begun to address this issue [2], but the problem of selecting G(q�1) has not yet been
completely resolved.

To summarize, for the SHARF algorithm and its cousins, we have convergence to unbiased parameter
values guaranteed in the sufficient order case when there is adequate excitation and an SPR condition
is satisfied. Satisfaction of the SPR condition cannot be guaranteed without a priori knowledge of
the optimal filter, however. In the undermodeled case, no general results can be stated, but as long as
the unmodeled component of the optimal filter is small in some sense, the exponential convergence in the
sufficient order case implies stable behavior in this situation. Filter order selection to make the unmo-
deled component small again requires a priori knowledge about the optimal filter.

23.4 Equation-Error=Output-Error Hybrids

We have seen that equation error methods enjoy global convergence of their parameters, but suffer from
parameter estimation bias, while output error methods enjoy unbiased parameter estimates while
suffering from difficulties in their convergence properties. A number of algorithms have been proposed
that in a sense strive to combine the best of both of these approaches. The most important of these is the
SM algorithm, which we consider in detail below. Several other algorithms in this class work by using
convex combinations of terms in the equation error and output error parameter updates. Two such
algorithms include the bias remedy LMS algorithm of [14] and the composite regressor algorithm of [13].
We will not consider these algorithms here; for details, see [13] and [14].

23.4.1 Steiglitz–McBride Family of Algorithms

The SM algorithm is adapted from an off-line system identification method that iteratively minimizes the
squared equation error criterion using prefiltered data. The prefiltering operations are based on the
results of the previous iteration in such a way that the algorithm bears a close relationship to an output
error approach.

A clear understanding of the algorithm in an adaptive filtering context is best obtained by first
considering the original off-line method. Given a finite record of input and output sequences x(n) and
d(n), one first forms the equation error according to Equation 23.16. The parameters of A(q�1) and
B(q�1) minimizing the LS criterion for this error are then found, and the minimizing polynomials are
labeled as A(0)(q�1) and B(0)(q�1). The SM method then proceeds iteratively by minimizing the LS
criterion for

e(i)e (n) ¼ A(q�1)d(i)f (n)� B(q�1)x(i)f (n) (23:65)

to find A(i)(q�1) and B(i)(q�1), where

d(i)f (n) ¼ 1
A(i�1)(q�1)

d(n) and x(i)f (n) ¼ 1
A(i�1)(q�1)

x(n): (23:66)

Notice that at each iteration, we find A(i)(q�1) and B(i)(q�1) through equation error minimization, for
which we have globally convergent methods as discussed previously.

Let A(1)(q�1) and B(1)(q�1) denote the polynomials obtained at a convergence point of this algo-
rithm. Then minimizing the LS criterion applied to

e(1)
e (n) ¼ A(q�1)

1
A(1)(q�1)

d(n)� B(q�1)
1

A(1)(q�1)
x(n) (23:67)
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results again in A(q�1) ¼ A(1)(q�1) and B(q�1) ¼ B(1)(q�1) by virtue of this solution being a conver-
gence point, and the error signal at this minimizing choice of parameters is

e(1)
e (n) ¼ d(n)� B(1)(q�1)

A(1)(q�1)
x(n): (23:68)

Comparing Equation 23.68 to Equation 23.37, we see that at a convergence point of the SM algorithm,
e(1)
e (n) ¼ eo(n), thereby drawing the connection between equation error and output error approaches in
the SM approach.* Because of this connection, one expects that the parameter bias problem is mitigated,
and in fact this is the case, as demonstrated by the following property.

Property 23.9: [27] If yu(n) � 0 and v(n) is white noise, then with x(n) PE of order at least
N þM þ 1,B(q�1) ¼ Bopt(q�1) and A(q�1) ¼ Aopt(q�1) is the only convergence point of the SM
algorithm, and this point is locally stable.

The local stability implies that if the initial denominator estimate A(0)(q�1) is close enough to
Aopt(q�1), then the algorithm converges to the unbiased solution in the uncorrelated noise case.

The on-line variation of the SM algorithm useful for adaptive filtering applications is given as follows.
Set xf (n) as in Equation 23.40 and set

df (n) ¼ 1
A(q�1, nþ 1)

d(n): (23:69)

The (nþ 1) index in the above filter is reasonable as only past df (n) samples shall appear in the
parameter updates at time n. Then by defining the SM regressor vector as

Uef (n) ¼ [xf (n) � � � xf (n�M)� df (n� 1)� � � � � df (n� N)]T, (23:70)

the algorithm is

W(nþ 1) ¼ W(n)þ m(n)Uef (n)eo(n) : (23:71)

Alternatively, we may employ the GN-style version given by

W(nþ 1) ¼ W(n)þ m(n)Pef (n)Uef (n)eo(n), (23:72)

Pef (n) ¼ 1
l(n)

Pef (n� 1)� Pef (n� 1)Uef (n)UT
ef (n)Pef (n� 1)

[l(n)=m(n)]þ UT
ef (n)Pef (n� 1)Uef (n)

� �
, (23:73)

with l(n),m(n), and P(0) chosen in the same fashion as with the IV and GN algorithms. For these
algorithms, the signal eo(n) is the output error, constructed as shown in Figure 23.1, a reflection of the
connection of the SM and output error approaches noted above. Also, note that Uef (n) is a filtered
version of the equation error regressor Ue(n), but with the time index of the filtering operation of
Equation 23.69 set to nþ 1 rather than n, reflecting the derivation of the algorithm from the iterative off-
line procedure. This form of the algorithm is only one of several variations; see [8] or [19] for others.

* Realize, however, that minimizing the square of e(1)
o (n) in Equation 23.67 is not equivalent to minimizing the squared

output error, and in general these two approaches can result in different values for A(q�1) and B(q�1).
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Assuming that one monitors and maintains the stability of the adapted polynomial A(q�1, n), in order
that the signals xf (n) and df (n) remain bounded, this algorithm has the following properties [19].

Property 23.10: [6] In the sufficient order case where yu(n) � 0 and with v(n) an uncorrelated noise
sequence and x(n) PE of order at least N þM þ 1, the online SM algorithm converges to W1 ¼ Wopt or
locks up on the stability boundary.

Property 23.11: [19] In the sufficient order case where yu(n) � 0 with v(n) a correlated sequence, and
in the undermodeled case where yu(n) 6� 0, the existence of convergence points W1 of the online
SM algorithm is not guaranteed, and if these convergence points exist, they are generally biased away
from Wopt.

Property 23.12: [19] In the undermodeled case with the order of the adaptive filter numerator and
denominator both equal to N, and with x(n) an uncorrelated sequence, then at the convergence points of
the online SM algorithm, if they exist,

E{e2o(n)} � s2
Nþ1 þ

maxv Sv(ejv)� s2
v

s2
u

þ s2
v , (23:74)

where
sNþ1 is the (N þ 1)th Hankel singular value of H(z) ¼ Hm(z)þ Hu(z)
Sv(ejv) is the power spectral density function of v(n)

Note that in the off-line version for either the sufficient order case with correlated v(n) or the
undermodeled case, the SM algorithm can possibly converge to a set of parameters yielding an unstable
filter. The stability check and projection steps noted above will prevent such convergence in the online
version, contributing in part to the possibility of non-convergence.

The pessimistic nature of Properties 23.11 and 23.12 with regard to existence of convergence points is
somewhat unfair in the following sense. In practice, one finds that in most circumstances the SM
algorithm does converge, and furthermore that the convergence point is close to the minimum of the
mean-square output error surface [7]. Property 23.12 quantifies this closeness. The (N þ 1)th Hankel
singular value of a transfer function is an upper bound for the minimum mean-square output error of an
Nth order transfer function approximation [19]. Hence, one sees that W1 under the SM algorithm is
guaranteed to remain close in this sense to Wopt, and this fact remains true regardless of the existence or
relative values of local minima on the mean-square output error surface.

The second term in Equation 23.74 describes the effect of the noise term. The fact that
maxv Sv(ejv) ¼ s2

v for uncorrelated v(n) shows the disappearance of noise effects in that case. For
strongly correlated v(n), the effect of this noise term will increase, as the adaptive filter attempts to
model the noise as well as the unknown system, and of course this effect is reduced as the signal-to-noise
ratio of d(n) is increased. One sees, then, that with strongly correlated noise, the SM algorithm may
produce a significantly biased solution W1.

To summarize, given adequate excitation, the SM algorithm in the sufficient order case converges to
unbiased parameter values when the noise v(n) is uncorrelated, and generally converges to biased
parameter values when v(n) is correlated. The SM algorithm is not guaranteed to converge in the
undermodeled case and, furthermore, if it converges, there is no general guarantee of stability of the
resulting filter. However, a bound of the modeling error in these instances quantifies what can be
considered as the good performance of the algorithm when it converges.
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23.5 Alternate Parametrizations

Thus far we have couched our discussion of adaptive IIR filters in terms of a direct-form implementation
of the system. Direct-form implementations suffer from poor finite precision effects both in terms of
coefficient quantization and round-off effects in their computations. Furthermore, in output error
adaptive IIR filtering, one must check the stability of the adaptive filter’s denominator polynomial at
each iteration. In direct-form implementations, this stability check is cumbersome and computationally
expensive to implement. For these reasons, adaptive IIR filters implemented in alternative realizations
such as parallel-form, cascade-form, and lattice-form have been proposed. For these structures, a stability
check is easily implemented.

The SG and GN algorithms of Equations 23.42, 23.55, and 23.56, respectively, are easily adapted for
many of the alternate parametrizations. The resulting updates are

W(nþ 1) ¼ W(n)þ m(n)Ualt(n)eo(n) (23:75)

and

W(nþ 1) ¼ W(n)þ m(n)P(n)Ualt(n)eo(n) (23:76)

P(n) ¼ 1
l(n)

P(n� 1)� P(n� 1)Ualt(n)UT
alt(n)P(n� 1)

[l(n)=m(n)]þ UT
alt(n)P(n� 1)Ualt(n)

� �
, (23:77)

respectively, where all signal definitions parallel those for the direct-form algorithms, save that Ualt(n)
equals the gradient of the filter output with respect to the adapted parameters. Note that Uof (n) in
Equations 23.42, 23.55, and 23.56 is such a gradient for the direct-form implementation. The output
gradient Uof (n) for the direct-form was constructed as shown in Equations 23.40 and 23.41. For alternate
parametrizations, these output gradients may be constructed as described in [29]. In [29], the imple-
mentation for a two-multiplier lattice adaptive IIR filter is shown, but the methodology is applicable to
cascade and parallel implementations, resulting for instance in the same algorithm for the parallel-form
filter that appears in [24]. We should note that the complexity of the output gradient generation may be
an issue; however, implementations for parallel and cascade realizations exist where this complexity is
equivalent to that of the direct form. The lattice implementation of [29] presents a sizable computational
burden in gradient generation, but the normalized lattice of [17] (see below) can be implemented with the
same complexity as the direct form.

The convergence results we have noted for previous output error approaches for the most part apply as
well for these alternate realizations. Differences in these results for cascade- and parallel-form filters stem
from the fact that permutations of some of the filter parameters yield equivalent filter transfer functions,
but these differences do not affect the convergence results. In general, gradient algorithms for alternate
implementations appear to converge more slowly than their direct-form counterparts; however, the
reasons for this difference in convergence speed are poorly understood.

Algorithms other than the gradient approach have not been extensively explored for the alternate
parametrizations. There may be fundamental limitations in this regard. For direct-form implementations,
the signals of the unknown system corresponding to internal states of the adaptive filter are available
through the delayed outputs d(n� i), and it is these signals that are used in the equation error-based
algorithms. However, the analogous signals for alternate implementations are unavailable, and so
equation error methods, as well as the SM approach, are a challenge to even devise, let alone implement.
Stability theory-based approaches are difficult to formulate, and the results of [28] indicate that simple
algorithms of the form of Equation 23.60 would not be stable in a wide set of operating conditions.

One promising alternate structure is the normalized lattice of [17]. The normalized structure is by
nature stable, and hence no stability check is necessary in the adaptive algorithm. Furthermore, a clever
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implementation of the output gradient calculation keeps the computational burden of the SG and GN
algorithms for this normalized lattice comparable to direct-form implementations.

Convergence rates for this structure appear to be comparable to the direct-form structure as well [19].
While we have noted that SM approaches are, in general, infeasible for alternate parametrizations, it is in
fact possible to implement an SM algorithm for the normalized lattice through use of an invertibility
property held by stages of the lattice [17]. The convergence results we have noted for SM apply as well to
the normalized lattice implementation.

We summarize as follows. Alternate parametrizations of adaptive IIR filters enable the stability of the
adaptive system to be easily checked. Convergence results for gradient-based algorithms typically apply
to these alternate structures. However, the complexities of the gradient calculations can be large for
certain systems, and GN approaches appear to be difficult to implement and stabilize for these systems.

23.6 Conclusions

Adaptive IIR filtering remains an open area of research. The preceding survey has examined a number of
different approaches to algorithm design within this field. We have considered equation error algorithm
designs, including the well-known LMS and RLS algorithms, but also the IV approach and the more
recent equation error algorithms with a unit-norm constraint. Output error algorithm designs that we
have treated are gradient descent methods and methods based on stability theory. Somewhere in between
these two categories is the SM approach to adaptive IIR filtering.

Each of these approaches has certain advantages but also disadvantages. We have evaluated each
approach in terms of convergence conditions and also with regard to the nature of the filter parameters to
which the algorithm converges. We have taken special interest in whether the algorithm converges to or
is biased away from the optimal filter parameters, both in the presence of undermodeling and also
measurement noise effects, and a further concern has been the stability of the resulting filter. We have
placed less emphasis on convergence speed, as this issue is highly dependent on the particular environ-
ment in which the filter is to operate.

Unfortunately, no one algorithm possesses satisfactory properties in all of these regards. Therefore,
the choice of algorithm in a given applicationwill depend onwhich property ismost critical in the application
setting. Meanwhile, research seeking improvement in adaptive IIR filtering algorithms continues.
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24.1 Introduction

One of the earliest and most successful applications of adaptive filters is adaptive channel equalization in
digital communication systems. Using the standard least mean square (LMS) algorithm, an adaptive
equalizer is a finite impulse response (FIR) filter whose desired reference signal is a known training
sequence sent by the transmitter over the unknown channel. The reliance of an adaptive channel
equalizer on a training sequence requires that the transmitter cooperates by (often periodically) resending
the training sequence, lowering the effective data rate of the communication link.

In many high-data-rate bandlimited digital communication systems, the transmission of a training
sequence is either impractical or very costly in terms of data throughput. Conventional LMS adaptive
filters depending on the use of training sequences cannot be used. For this reason, blind adaptive channel
equalization algorithms that do not rely on training signals have been developed. Using these ‘‘blind’’
algorithms, individual receivers can begin self-adaptation without transmitter assistance. This ability of
blind startup also enables a blind equalizer to self-recover from system breakdowns. This self-recovery
ability is critical in broadcast and multicast systems where channel variation often occurs.
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In this chapter, we provide an introduction to the basics of blind adaptive equalization. We describe
commonly used blind algorithms, highlight important issues regarding convergence properties of various
blind equalizers, outline common initialization tactics, present several open problems, and discuss recent
advances in this field.

24.2 Channel Equalization in QAM Data
Communication Systems

In data communication, digital signals are transmitted by the sender through an analog channel to the
receiver. Nonideal analog media such as telephone cables and radio channels typically distort the
transmitted signal.

The problem of blind channel equalization can be described using the simple system diagram shown in
Figure 24.1. The complex baseband model for a typical QAM (quadrature amplitude modulated) data
communication system consists of an unknown linear time-invariant (LTI) channel h(t) which represents
all the interconnections between the transmitter and the receiver at baseband. The matched filter is
also included in the LTI channel model. The baseband-equivalent transmitter generates a sequence
of complex-valued random input data {a(n)}, each element of which belongs to a complex alphabet A
(or constellation) of QAM symbols. The data sequence {a(n)} is sent through a baseband-equivalent
complex LTI channel whose output x(t) is observed by the receiver. The function of the receiver is to
estimate the original data {a(n)} from the received signal x(t).

For a causal and complex-valued LTI communication channel with impulse response h(t), the
input=output relationship of the QAM system can be written as

x(t) ¼
X1

n¼�1
a(n)h(t � nT þ t0)þ w(t), a(n) 2 A, (24:1)

where T is the symbol (or baud) period. Typically the channel noise w(t) is assumed to be stationary,
Gaussian, and independent of the channel input a(n).

In typical communication systems, the matched filter output of the channel is sampled at the known
symbol rate 1=T assuming perfect timing recovery. For our model, the sampled channel output

x(nT) ¼
X1
k¼�1

a(k)h(nT � kT þ t0)þ w(nT) (24:2)

is a discrete time stationary process. Equation 24.2 relates the channel input to the sampled matched filter
output. Using the notations

x(n)¼D x(nT), w(n)¼D w(nT), and h(n)¼D h(nT þ t0), (24:3)

Input

Σ∞
n=–∞ a(n)δ(t – nT + t0) a(n)h(t – nT + t0) + w(t)LTI channel

h(t)

Output

x(t) = Σ∞
n=–∞

FIGURE 24.1 Baseband representation of a QAM data communication system.
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the relationship in Equation 24.2 can be written as

x(n) ¼
X1
k¼�1

a(k)h(n� k)þ w(n): (24:4)

When the channel is nonideal, its impulse response h(n) is nonzero for n 6¼ 0. Consequently, undesirable
signal distortion is introduced as the channel output x(n) depends on multiple symbols in {a(n)}. This
phenomenon, known as intersymbol interference (ISI), can severely corrupt the transmitted signal. ISI is
usually caused by limited channel bandwidth, multipath, and channel fading in digital communication
systems. A simple memoryless decision device acting on x(n) may not be able to recover the original data
sequence under strong ISI. Channel equalization has proven to be an effective means of significant ISI
removal. A comprehensive tutorial on nonblind adaptive channel equalization by Qureshi [1] contains
detailed discussions on various aspects of channel equalization.

Figure 24.2 shows the combined communication system with adaptive equalization. In this system, the
equalizer G(z,W) is a linear FIR filter with parameter vectorW designed to remove the distortion caused
by channel ISI. The goal of the equalizer is to generate an output signal y(n) that can be quantized to yield
a reliable estimate of the channel input data as

â(n) ¼ Q(y(n)) ¼ a(n� d), (24:5)

where d is a constant integer delay. Typically any constant but finite amount of delay introduced by the
combined channel and equalizer is acceptable in communication systems.

The basic task of equalizing a linear channel can be translated to that task of identifying the equivalent
discrete channel, defined in z-transform notation as

H(z) ¼
X1
k¼0

h(k)z�k: (24:6)

With this notation, the channel output becomes

x(n) ¼ H(z)a(n)þ w(n), (24:7)

where
H(z)a(n) denotes linear filtering of the sequence a(n) by the channel and
w(n) is a white (for a root-raised-cosine matched filter [1]) stationary noise with constant power
spectrum N0.

a(n) Channel
h(t)

w(t)

x(t) x(n)

t = nT
Equalizer
G(z, W)

Adaptive
algorithm

Σ
y(n) Quantizer

Q(.)
â(n)

FIGURE 24.2 Adaptive blind equalization system.
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Once the channel has been identified, the equalizer can be constructed according to the minimum mean
square error (MMSE) criterion between the desired signal a(n� d) and the output y(n) as

GMMSE(z, W) ¼ H*(z�1)z�d

H(z)H*(z�1)þ N0
, (24:8)

where * denotes complex conjugate. Alternatively, if the zero-forcing (ZF) criterion is employed, then the
optimum ZF equalizer is

GZF(z, W) ¼ z�d

H(z)
, (24:9)

which causes the combined channel-equalizer response to become a purely d-sample delay with zero
ISI. ZF equalizers tend to perform poorly when the channel noise is significant and when the channels
H(z) have zeros near the unit circle.

Both the MMSE equalizer (Equation 24.8) and the ZF equalizer (Equation 24.9) are of a general
infinite impulse response (IIR) form. However, adaptive linear equalizers are usually implemented as FIR
filters due to the difficulties inherent in adapting IIR filters. Adaptation is then based on a well-defined
criterion such as the MMSE between the ideal IIR and truncated FIR impulse responses or the MMSE
between the training signal and the equalizer output.

24.3 Decision-Directed Adaptive Channel Equalizer

Adaptive channel equalization was first developed by Lucky [2] for telephone channels. Figure 24.3
depicts the traditional adaptive equalizer. The equalizer begins adaptation with the assistance of a known
training sequence initially transmitted over the channel. Since the training signal is known, standard
gradient-based adaptive algorithms such as the LMS algorithm can be used to adjust the equalizer
coefficients to minimize the mean square error (MSE) between the equalizer output and the training
sequence. It is assumed that the equalizer coefficients are sufficiently close to their optimum values and
that much of the ISI is removed by the end of the training period. Once the channel input sequence {a(n)}
can be accurately recovered from the equalizer output through a memoryless decision device such as a
quantizer, the system is switched to the decision-directed mode whereby the adaptive equalizer obtains
its reference signal from the decision output.

Channel input
ak LTI channel

h(t)
xk zk âk–δ

Quantizer

Training sequence

Adaptive
algorithm

Equalizer
filter

+–
Σ

FIGURE 24.3 Decision-directed channel equalization algorithm.
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One can construct a blind equalizer by employing decision-directed adaptation without a training
sequence. The algorithm minimizes the MSE between the quantizer output

â(n� d) ¼ Q(y(n)) (24:10)

and the equalizer output y(n). Naturally, the performance of the decision-directed algorithm depends on
the accuracy of the estimate Q[y(n)] for the true symbol a(n� d). Undesirable convergence to a local
minimum with severe residual ISI can occur in this situation such that Q[y(n)] and a(n� d) differ
sufficiently often. Thus, the challenge of blind equalization lies in the design of special adaptive algorithms
that eliminate the need for training without compromising the desired convergence to near the optimum
MMSE or ZF equalizer coefficients.

24.4 Basic Facts on Blind Adaptive Equalization

In blind equalization, the desired signal or input to the channel is unknown to the receiver, except for its
probabilistic or statistical properties over some known alphabetA. As both the channel h(n) and its input
a(n) are unknown, the objective of blind equalization is to recover the unknown input sequence based
solely on its probabilistic and statistical properties.

The first comprehensive analytical study of the blind equalization problemwas presented by Benveniste,
Goursat, and Ruget in 1980 [3]. In fact, the very term ‘‘blind equalization’’ can be attributed to
Benveniste and Goursat from the title of their 1984 paper [4]. The seminal paper of Benveniste et al. [3]
established the connection between the task of blind equalization and the use of higher order statistics
(HOS) of the channel output. Through rigorous analysis, they generalized the original Sato algorithm [5]
into a class of algorithms based on non-MSE cost functions. More importantly, the convergence properties
of the proposed algorithms were carefully investigated.

Based on the work of [3], the following facts about blind equalization are generally noted:

1. Second order statistics of x(n) alone only provide the magnitude information of the linear channel
and are insufficient for blind equalization of a mixed phase channel H(z) containing zeros inside
and outside the unit circle in the z-plane.

2. A mixed phase linear channel H(z) cannot be identified from its outputs when the input signal is
i.i.d. Gaussian, since only second order statistical information is available.

3. Although the exact inverse of a nonminimum phase channel is unstable, a truncated anticausal
expansion can be delayed by d to allow a causal approximation to a ZF equalizer.

4. ZF equalizers cannot be implemented for channels H(z) with zeros on the unit circle.
5. The symmetry of QAM constellations A � C causes an inherent phase ambiguity in the estimate of

the channel input sequence or the unknown channel when input to the channel is uniformly distri-
buted over A. This phase ambiguity can be overcome by differential encoding of the channel input.

Due to the absence of a training signal, it is important to exploit various available information about the
input symbol and the channel output to improve the quality of blind equalization. Usually, the following
information is available to the receiver for blind equalization:

. The power spectral density of the channel output signal x(t), which contains information on the
magnitude of the channel transfer function

. The HOS of the T-sampled channel output {x(kT)}, which contains information on the phase of
the channel transfer function

. Cyclostationary second order statistics and HOS of the channel output signal x(t), which contain
additional phase information of the channel

. The finite channel input alphabet, which can be used to design quantizers or decision devices with
memory to improve the reliability of the channel input estimate
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Naturally in some cases, these information sources are not necessarily independent as they contain
overlapping information. Efficient and effective blind equalization schemes are more likely to be designed
when all useful information is exploited at the receiver. We now describe various algorithms for blind
channel identification and equalization.

24.5 Adaptive Algorithms and Notations

There are basically two different approaches to the problem of blind equalization. The stochastic gradient
descent (SGD) approach iteratively minimizes a chosen cost function over all possible choices of the
equalizer coefficients, while the statistical approach uses sufficient stationary statistics collected over a
block of received data for channel identification or equalization. The latter approach often exploits HOS
or cyclostationary statistical information directly. In this discussion, we focus on the adaptive online
equalization methods employing the gradient descent approach, as these methods are most closely related
to other topics in this chapter. Consequently, the design of special, non-MSE cost functions that
implicitly exploits the HOS of the channel output is the key issue in our methods and discussions.

For reasons of practicality and ease of adaptation, a linear channel equalizer is typically implemented
as an FIR filter G(z, W). Denote the equalizer parameter vector as

W¼D [w0 w1 � � � wm ]T, m < 1:

In addition, define the received signal vector as

X(n)¼D [x(n) x(n� 1) � � � x(n�m) ]T: (24:11)

The output signal of the linear equalizer is thus

y(n) ¼ WTX(n)

¼ G(z,W){x(n)}, (24:12)

where we have defined the equalizer transfer function as

G(z, W) ¼
Xm
i¼0

wiz
�i: (24:13)

All the ISI is removed by a ZF equalizer if

H(z)G(z, W) ¼ gz�d, g 6¼ 0 (24:14)

such that the noiseless equalizer output becomes y(n)¼ ga(n� d), where g is a complex-valued scaling
factor. Hence, a ZF equalizer attempts to achieve the inverse of the channel transfer function with a
possible gain difference g and=or a constant time delay d.

Denoting the parameter vector of the equalizer at sample instant n as W(n), the conventional LMS
adaptive equalizer employing a training sequence is given by

W(nþ 1) ¼ W(n)þ m[a(n� d)� y(n)]X*(n), (24:15)

where
* denotes complex conjugates
m is a small positive stepsize
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Naturally, this algorithm requires that the channel input a(n� d) be available. The equalizer iteratively
minimizes the MSE cost function

E jenj2
� � ¼ E ja(n� d)� y(n)j2� �

:

If the MSE is so small after training that the equalizer output y(n) is a close estimate of the true channel
input a(n� d), then Q[y(n)] can replace a(n� d) in a decision-directed algorithm that continues to track
modest time-variations in the channel dynamics [1].

In blind equalization, the channel input a(n� d) is unavailable, and thus different minimization
criteria are explored. The crudest blind equalization algorithm is the decision-directed scheme that
updates the adaptive equalizer coefficients as

W(nþ 1) ¼ W(n)þ m[Q[y(n)]� y(n)]X*(n): (24:16)

The performance of the decision-directed algorithm depends on how close W(n) is to its optimum
setting Wopt under the MMSE or the ZF criterion. The closer W(n) is to Wopt, the smaller the ISI is and
the more accurate the estimate Q[y(n)] is to a(n� d). Consequently, the algorithm in Equation 24.16 is
likely to converge to Wopt if W(n) is initially close to Wopt. The validity of this intuitive argument
is shown analytically in [6,7]. On the other hand,W(n) can also converge to parameter values that do not
remove sufficient ISI from certain initial parameter values W(0), as Q[y(n)] 6¼ a(n� d) sufficiently often
in some cases [6,7].

The ability of the equalizer to achieve the desired convergence result when it is initialized with
sufficiently small ISI accounts for the key role that the decision-directed algorithm plays in channel
equalization. In the system of Figure 24.3, the training session is designed to help W(n) converge to a
parameter vector such thatmost of the ISI has been removed, fromwhich adaptation can be switched to the
decision-directed mode. Without direct training, a blind equalization algorithm is therefore used to
provide a good initialization for the decision-directed equalizer because of the decision-directed equalizer’s
poor convergence behavior under high ISI.

24.6 Mean Cost Functions and Associated Algorithms

Under the ZF criterion, the objective of the blind equalizer is to adjustW(n) such that Equation 24.14 can
be achieved using a suitable rule of self-adaptation. We now describe the general methodology of blind
adaptation and introduce several popular algorithms.

Unless otherwise stated, we focus on the blind equalization of pulse-amplitude modulation (PAM)
signals, in which the input symbol is uniformly distributed over the following M levels,

{�(M � 1)d,�(M � 3)d, . . . , �3d,�d}, M even: (24:17)

We study this particular case because (1) algorithms are often defined only for real signals when first
developed [3,5], and (2) the extension to complex (QAM) systems is generally straightforward [4].

Blind adaptive equalization algorithms are often designed by minimizing special non-MSE cost
functions that do not involve the use of the original input a(n) but still reflect the current level of ISI
in the equalizer output. Define the mean cost function as

J(W)¼D E{C(y(n))}, (24:18)

where C(�) is a scalar function of its argument. The mean cost function J(W) should be specified such
that its minimum point W corresponds to a minimum ISI or MSE condition. Because of the symmetric
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distribution of a(n) over A in Equation 24.17, the function C should be even (C(�x)¼C(x)), so that
both y(n)¼ a(n� d) and y(n)¼�a(n� d) are desired objectives or global minima of the mean cost
function.

Using Equation 24.18, the SGD minimization algorithm is easily derived as [3]

W(nþ 1) ¼ W(n)� m
q

qW(n)
C[y(n)]

¼ W(n)� mC0(XT(n)W(n))X*(n): (24:19)

Define the first derivative of C as

c(x)¼D C0(x) ¼ q
qx

C(x):

The resulting blind equalization algorithm can then be written as

W(nþ 1) ¼ W(n)� mc(XT(n)W(n))X*(n): (24:20)

Hence, a blind equalizer can either be defined by its cost functionC(x), or equivalently, by the derivative
c(x) of its cost function, which is also called the error function since it replaces the prediction error in the
LMS algorithm. Correspondingly, we have the following relationship:

Minima of the mean cost J(W) , Stable equilibria of the algorithm in Equation 24:20:

The design of the blind equalizer thus translates into the selection of the functionC (or c) such that local
minima of J(W), or equivalently, the locally stable equilibria of the algorithm (Equation 24.20) corres-
pond to a significant removal of ISI in the equalizer output.

24.6.1 Sato Algorithm

The first blind equalizer for multilevel PAM signals was introduced by Sato [5] and is defined by the error
function

c1[y(n)] ¼ y(n)� R1sgn(y(n)), (24:21)

where

R1 ¼D Eja(n)j2
Eja(n)j :

Clearly, the Sato algorithm effectively replaces a(n� d) with R1sgn[y(n)], known as the slicer output. The
multilevel PAM signal is viewed as an equivalent binary input signal in this case, so that the error
function often has the same sign for adaptation as the LMS error y(n)� a(n� d).

24.6.2 BGR Extensions of Sato Algorithm

The Sato algorithm was extended by Benveniste, Goursat, and Ruget [3] who introduced a class of error
functions given by

cb[y(n)] ¼ ~c(y(n))� Rbsgn(y(n)), (24:22)

24-8 Digital Signal Processing Fundamentals



where

Rb ¼D E{~c[a(n)]a(n)}
Eja(n)j : (24:23)

Here, ~c(x) is an odd and twice differentiable function satisfying

~c00(x) � 0, 8x � 0: (24:24)

The use of the function ~c generalizes the linear function ~c(x) ¼ x in the Sato algorithm. The class of
algorithms satisfying Equations 24.22 and 24.24 are called BGR algorithms. They are individually
represented by the explicit specification of the ~c function, as with the Sato algorithm.

The generalization of these algorithms to complex signals (QAM) and complex equalizer parameters
is straightforward by separating signals into their real and the imaginary as

cb[y(n)] ¼ ~c{Re[y(n)]}� Rbsgn{Re[y(n)]}þ j(~c{Im[y(n)]}� Rbsgn{Im[y(n)] ): (24:25)

24.6.3 Constant Modulus or Godard Algorithms

Integrating the Sato error function c1(x) shows that the Sato algorithm has an equivalent cost function

C1[y(n)] ¼ 1
2
(jy(n)j � R1)

2:

This cost function was generalized by Godard into another class of algorithms that are specified by the
cost functions [8]

Cq[y(n)] ¼ 1
2q

jy(n)jq � Rq
� �2

, q ¼ 1, 2, . . . , (24:26)

where Rq ¼D Eja(n)j2q
Eja(n)jq :

This class of Godard algorithms is indexed by the positive integer q. Using the SGD approach, the
Godard algorithms given by

W(nþ 1) ¼ W(n)� m jX(n)HW(n)jq � Rq
� �jX(n)TW(n)jq�2X(n)TW(n)X*(n): (24:27)

The Godard algorithm for the case q ¼ 2 was independently developed as the ‘‘constant modulus
algorithm’’ (CMA) by Treichler and co-workers [9] using the philosophy of property restoral.
For channel input signal that has a constant modulus ja(n)j2 ¼ R2, the CMA equalizer penalizes
output samples y(n) that do not have the desired constant modulus characteristics. The modulus
error is simply

e(n) ¼ jy(n)j2 � R2,

and the squaring of this error yields the constant modulus cost function that is the identical to the
Godard cost function.
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This modulus restoral concept has a particular advantage in that it allows the equalizer to be adapted
independent of carrier recovery. A carrier frequency offset of Df causes a possible phase rotation of the
equalizer output so that

y(n) ¼ jy(n)j exp[ j(2pDfnþ w(n))]:

Because the CMA cost function is insensitive to the phase of y(n), the equalizer parameter adaptation can
occur independently and simultaneously with the operation of the carrier recovery system. This property
also allows CMA to be applied to analog modulation signals with constant amplitude such as those using
frequency or phase modulation [9].

24.6.4 Stop-and-Go Algorithms

Given the standard form of the blind equalization algorithm in Equation 24.20, it is apparent that the
convergence characteristics of these algorithms are largely determined by the sign of the error signal
c[y(n)]. In order for the coefficients of a blind equalizer to converge to the vicinity of the optimumMMSE
solution as observed through LMS adaptation, the sign of its error signal should agree with the sign of the
LMS prediction error y(n)� a(n� d) most of the time. Slow convergence or convergence of the param-
eters to local minima of the cost function J(W) that do not provide proper equalization can occur if the
signs of these two errors differ sufficiently often. In order to improve the convergence properties of blind
equalizers, the so-called stop-and-go methodology was proposed by Picchi et al. [10]. We now describe its
simple concept.

The idea behind the stop-and-go algorithms is to allow adaptation ‘‘to go’’ only when the error function
is more likely to have the correct sign for the gradient descent direction. Since there are several criteria
for blind equalization, one can expect a more accurate descent direction when more than one of the
existing algorithms provide the same sign of the error function. When the error signs differ for a particular
output sample, parameter adaptation is ‘‘stopped.’’Consider two algorithms with error functionsc1(y) and
c2(y). We can devise the following stop-and-go algorithm:

W(kþ 1) ¼ W(k)� mc1[y(n)]X*(n), if sgn[c1(y(n))] ¼ sgn[c2(y(n))];

W(k), if sgn[c1(y(n))] 6¼ sgn[c2(y(n))]:

�
(24:28)

In their work, Picchi and Prati combined only the Sato and the decision-directed algorithms with faster
convergence results through the corresponding error function

c[y(n)] ¼ 1
2
{y(n)� Q[y(n)]}þ 1

2
jy(n)� Q[y(n)]jsgn{y(n)� R1sgn[y(n)]}:

However, given the number of existing algorithms, the stop-and-go methodology can include many
different combinations of error functions. One that combines Sato and Godard algorithms was tested
by Hatzinakos [11].

24.6.5 Shalvi and Weinstein Algorithms

Unlike previously introduced algorithms, the methods of Shalvi–Weinstein [12] are based on HOS of the
equalizer output. Define the kurtosis of the equalizer output signal y(n) as

Ky ¼D Ejy(n)4j � 2E2jy(n)2j � jE[y(n)2]j2: (24:29)
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The Shalvi–Weinstein algorithm maximizes jKyj subject to the constant power constraint Ejy(n)j2 ¼
Eja(n)2j. Define cn as the combined channel-equalizer impulse response given by

cn ¼
Xm
k¼0

hkwn�k, �1 < n < 1: (24:30)

Using the fact that a(n) is i.i.d., it can be shown [13] that

Ejy(n)2j ¼ Eja(n)2j
X1
i¼�1

jcij2 (24:31)

Ky ¼ Ka

X
jcnj4, (24:32)

where Ka is the kurtosis of the channel input, a quantity that is nonzero for most QAM and PAM signals.
Hence, the Shalvi–Weinstein equalizer is equivalent to the following criterion:

maximize
X1

n¼�1
jcnj4 subject to

X1
n¼�1

jcnj2 ¼ 1: (24:33)

It can be shown [14] that there is a one-to-one correspondence between the minima of the cost
function surface searched by this algorithm and those of the Godard algorithm with q ¼ 2. However,
the methods of adaptation given in [12] can exhibit convergence characteristics different from those of
the CMA.

24.6.6 Summary

Over the years, there have been many attempts to derive new algorithms and equalization methods that
are more reliable and faster than the existing methods. Nonetheless, the algorithms presented above are
still the most commonly used methods in blind equalization due to their computational simplicity and
practical effectiveness. In particular, CMA has proven to be useful not only in blind equalization but also
in blind array signal processing systems. Because it does not rely on the accuracy of the decision device
output nor the knowledge of the channel input signal constellation, CMA is a versatile algorithm that can
be used not only for digital communication signals but also for analog signals that do not conform to a
finite constellation alphabet.

As a practical example, consider a QAM system in which the channel impulse response is shown in
Figure 24.4a. This sampled composite channel response results from a continuous time system in which
the transmitter and receiver filters both have identical root-raised cosine frequency response with the
roll-off factor of 0.13, while the channel between the two filters is nonideal with several nondominant
multipaths. The channel input signal is generated from a rectangular 64-QAM constellation as shown in
Figure 24.4b. The channel output points are shown in Figure 24.4c. The channel output signal clearly has
significant ISI such that a simple quantizer based on the nearest neighbor principle is likely to make many
decision errors. We use a CMA equalizer with 25 parameter taps. The equalizer input is normalized by its
power and a stepsize m ¼ 10�3 is used in the CMA adaptation. After 20,000 iterations, the final equalizer
output after parameter convergence is shown in Figure 24.4d. The tighter clustering of the equalizer
output shows that the decision error rate will be very low so that the equalizer can be switched to the
decision-directed or decision-feedback algorithm mode at this point.
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24.7 Initialization and Convergence of Blind Equalizers

The success and effectiveness of a QAM blind equalization algorithm clearly hinges on its convergence
behavior in practical QAM systems with distortive channels. A desired globally convergent algorithm
should only produce stable equilibria that are close to the optimum MMSE or ZF equalizer coefficients.
If an equalization algorithm has local equilibria, then the initial equalizer parameter values are critical in
determining the final values of parameters at convergence. Due to the analytical difficulty in locating and
characterizing these local minima, most analytical studies of blind equalizers focus on the noiseless
environment. For noiseless channels, the optimum MMSE and ZF equalizers are identical. The goal
in the noiseless system is to remove sufficient ISI so that the open eye condition or errorless decision
output, given by

Q[y(n)] ¼ a(n� d),

holds.
Although the problem of blind equalization has been studied for over two decades, useful convergence

analyses of most blind adaptive algorithms have proven to be difficult to perform. While some recent
analytical results have helped to characterize the behavior of several popular algorithms, the overall
knowledge of the behaviors of most known effective algorithms is still quite limited. Consequently,
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practical implementations of blind equalizers still employ heuristic measures to improve their conver-
gence characteristics. We summarize several issues regarding the convergence and initialization of blind
equalizers in this subsection.

24.7.1 A Common Analysis Approach

Although many readers may be surprised by the apparent lack of convergence proofs for most blind
equalization algorithms, a closer look at the cost functions for these algorithms shows the analytical
difficulty of the problem. Specifically, the stable stationary points of the blind algorithm in Equation
24.20 correspond to the local minima of the mean cost function

J(W) ¼ E C
Xm
i¼0

wix(n� i)

 !( )
: (24:34)

The convergence of the adaptive algorithm is thus determined by the geometry of the error function J(W)
over the equalizer parameters {wi}. An analysis of the convergence of the algorithm in terms of its
parameters {wi} is difficult because the statistical characterization of the channel output signal x(n) is
highly dependent on the channel impulse response. For this reason, most blind equalization algorithms
have initially been presented with only simulation results and without a rigorous convergence analysis.

Faced with this difficulty, several researchers have studied the global behavior of the equalizer in the
combined parameter space ci of Equation 24.30 since

J(W) ¼ E C
X1
i¼�1

wix(n� i)

 !( )
¼ E C

X1
i¼�1

cia(n� i)

 !( )
: (24:35)

Because the probabilistic information of the signal a(n) is completely known, the convergence analysis of
the ci parameters tends to be much simpler than that of the equalizer parameters wi. The following
convergence results are known from these analyses:

. For channel input signals with uniform or sub-Gaussian probability distributions, Sato and BGR
algorithms are globally convergent under zero channel noise. The corresponding cost functions
only have global minima at parameter settings that result in zero ISI [3].

. For uniform and discrete PAM channel input distributions, undesirable local minima of the Sato
and the BGR algorithms exist that do not satisfy the open-eye condition [6,7,15].

. For uniform and discrete PAM (or QAM) channel input distributions, the Godard algorithm with
q ¼ 2 (CMA) and the Shalvi–Weinstein algorithm have no local minima under zero channel noise.
Only global minima exist at parameter settings that result in zero ISI [12,16]. In other words, all
minima satisfy the ZF condition

c2n ¼
1, n ¼ d
0, n 6¼ d.

�
(24:36)

24.7.2 Local Convergence of Blind Equalizers

In order for the convergence analysis of the ci parameters to be valid for the wi parameters, a one-to-one
linear mapping must exist between the two parameter spaces. A cost function of two variables will still
have the same number of minima, maxima, and saddle points after a linear one-to-one coordinate
change. On the other hand, a mapping that is not one-to-one can turn a nonstationary or saddle point
into a local minimum.
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If a one-to-one linear mapping exists between the two parameter spaces {wi} and {ci}, then a stationary
point for the equalizer coefficients wi must correspond to a stationary point in the ci parameters.
Consequently, the convergence properties in the ci parameter space will be equivalent to those in the
wi parameter space. However, ci ¼

Pm
k¼0hkwi�k does not provide a one-to-one mapping. The linear

mapping is one-to-one if and only if ci ¼
P1

k¼�1hkwi�k, i.e., the equalizer coefficients wi must exist
for �1 < i < 1.

In this case, the equalizer parameter vector W needs to be doubly infinite. Hence, unless the equalizer
has an infinite number of parameters and is infinitely noncausal, the convergence behavior of the ci
parameters do not completely characterize the behavior of the finite-length equalizer [17].

Undesirable local convergence of the Godard algorithm to a high ISI equalizer was initially thought
to be impossible due to some overzealous interpretations of the global convergence results in the
combined ci space [16]. The local convergence of the Godard (q ¼ 2) algorithm or CMA is accurately
analyzed by Ding et al. [18], where it is shown that even for noiseless channels whose ISI can be
completely eliminated by an FIR equalizer, there can be local convergence of this equalizer to undesirable
minima of the cost surface. Furthermore, these equilibria still remain under moderate channel noise.
Based on the convergence similarity between the Godard algorithm and the Shalvi–Weinstein algorithm,
the local convergence of the Shalvi–Weinstein algorithm to undesirable minima is established in [14].
Using a similar method, Sato and BGR algorithms have also been seen to have additional local minima
previously undetected in the combined parameter space [15].

The proof that existing blind equalization algorithms previously thought to be robust can converge
to poor solutions demonstrates that rigorous convergence analyses of blind equalizers must be based on
the actual equalizer coefficients. Moreover, the undesirable local convergence behavior of existing
algorithms indicates the importance of algorithm parameter initialization, which can avoid these local
convergent points.

24.7.3 Initialization Issues

In [19], it is shown that local minima of a CMA equalizer cost surface tend to exist near MMSE
parameter settings if the delay d is chosen to be too short or too long. In other words, convergence to
local minima is more likely to occur when the equalizer has large tap weights concentrated near either
end of the finite equalizer coefficient vector. This type of lopsided parameter weight distribution was also
suggested in [16] as being indicative of a local convergence phenomenon. To avoid local convergence to a
lopsided tap weight vector, Foschini [16] introduced a tap-centering initialization strategy that requires
the gravity center of the equalizer coefficient vector be centered through periodic tap-shifting. A more
recent result [14] shows that, by over-parameterization and tap-centering, the Godard algorithm or CMA
can effectively reduce the probability of local convergence. This tap-centering method has also been
proposed for the Shalvi–Weinstein algorithm [20].

In practice, the tap-centering initialization approach has become an integral part of most blind
equalization algorithms. Although a thorough analysis of its effect has not been shown, most reported
successful uses of blind equalization algorithms typically rely on tap-centering or center-spike initializa-
tion scheme [17]. Although special channels exist that can foil the successful convergence of Sato and
BGR algorithms using tap-centering, such channels are atypical [15]. Hence, unless global convergence of
the equalizer can be proven, tap-centering is commonly recommended for most blind equalizers.

24.8 Globally Convergent Equalizers

24.8.1 Linearly Constrained Equalizer with Convex Cost

Without a proof of global convergence and a thorough analysis on initialization of existing equalization
methods, one can design new and possibly better blind algorithms that can proven to always result in the
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global minimization of ISI. Here we present one strategy based on highly specialized convex cost
functions coupled with a constrained equalizer parameterization designed to avoid ill-convergence.

Recall that the goal of blind equalization is to remove ISI so that the equalizer output is

y(n) ¼ ga(n� d), g 6¼ 0: (24:37)

Blind equalization of PAM systems without gain recovery has been proposed in [21]. The idea is to fix the
center tap w0 as a nonzero constant in order to prevent equalizer to the trivial minimum with all zero
coefficient values in a convex cost function. For QAM input, a nontrivial extension is shown here.

For the particular equalizer design, assume that the input QAM constellation is square, which
resembles the constellation in Figure 24.4b. The cost function to be minimized is

J(W)¼D max jRe(y(n))j ¼ max jIm(y(n))j: (24:38)

The convexity of J(W) with respect to the equalizer coefficient vector W follows from the triangle
inequality under the assumption that all input sequences are possible. We constrain the equalizer
coefficients W(n) with the following linear constraint:

Re(w0)þ Im(w0) ¼ 1, (24:39)

where w0 is the center tap. Due to the linearity of this constraint, the convexity of the cost function
(Equation 24.38) with respect to both the real and imaginary parts of the equalizer coefficients is
maintained, and global convergence is therefore assured.

Because of its convexity, this cost function is unimodal with a unique global minimum for almost all
channels. It can then be shown [22] that a doubly infinite noncausal equalizer under the linear constraint
is globally convergent to the condition in [37].

The linear constraint in Equation 24.39 can be changed to any weighted linear combination of the two
terms in Equation 24.39. More general linear constraints on the equalizer coefficients can also be
employed [23]. This fact is particularly important for preserving the global convergence property when
causal finite-length equalizers are used. This behavior is a direct consequence of convexity, since
restricting most of the equalizer taps to zero values as in FIR is a form of linear constraint. Convexity
also ensures that one can approximate arbitrarily closely the performance of the ideal nonimplementable
double infinite noncausal equalizer with a finite length FIR equalizer. These facts are important since
many of the limitations illustrated earlier for convergence analyses of other equalizers can be overcome in
this case.

For an actual implementation of this algorithm, a gradient descent method can be derived by using
an lp-norm cost function to approximate Equation 24.38 as

J(W) � EjRe(zk)jp, (24:40)

where p is a large integer. As the cost function in Equation 24.40 is strictly convex, linear constraints such
as truncation preserve convexity. Simulation examples of this algorithm can be found in [22,24].

24.8.2 Fractionally Spaced Blind Equalizers

A so-called fractionally spaced equalizer (FSE) is obtained from the system in Figure 24.2 if the channel
output is sampled at a rate faster than the baud or symbol rate 1=T . Recent work on the blind FSE has
been motivated by several new results on nonadaptive blind equalization based on second order
cyclostationary statistics. In addition to the first noted work by Tong et al. [25], new nonadaptive
algorithms are also presented in [26–29]. Here we only focus on the adaptive framework.
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Let p be an integer such that the sampling interval be D ¼ T=p. As long as the channel bandwidth
is greater than the minimum 1=(2T), sampling at higher than 1=T can retain channel diversity as
shown here.

Let the sequence of sampled channel output be

x(kD) ¼
X1
n¼0

a(n)h(kD� npDþ t0)þ w(kD): (24:41)

For notational simplicity, the oversampled channel output x(kD) can be divided into p linearly inde-
pendent subsequences:

x(i)(n)¼D x[(npþ i)D] ¼ x(nT þ iD), i ¼ 1, . . . , p: (24:42)

Define K as the effective channel length based on

h(i)0 6¼ 0, for some 1 � i � p

h(i)K 6¼ 0, for some 1 � i � p:
(24:43)

By denoting the sub-channel transfer function as

Hi(z) ¼
XK
k¼0

h(i)k z�k where h(i)k ¼D h(kT þ iDþ t0), (24:44)

the p subsequences can be written as

x(i)(n) ¼ Hi(z)a(n)þ w(nT þ iD), i ¼ 1, . . . , p: (24:45)

Thus, these p subsequences can be viewed as stationary outputs of p discrete FIR channels with
a common input sequence a(n) as shown in Figure 24.5. Naturally, they can also represent physical
sub-channels in multisensor receivers.

The vector representation of the FSE is shown in Figure 24.5. One equalizer filter is provided for each
subsequence x(i)(n). In fact, the actual equalizer is a vector of filters

Gi(z) ¼
Xm
k¼0

wi,kz
�k, i ¼ 1, . . . , p: (24:46)

The p filter outputs {y(n)(i)} are summed to form the stationary equalizer output

y(n) ¼ WTX(n), (24:47)

where

W¼D w1,0 � � � w1,m � � � wp,0 � � � wp,m
� �T

:

X(n)¼D x(n)(1) � � � x(n�m)(1) � � � x(n)(p) � � � x(n�m)(p)
� �T

:

Given the equalizer output and parameter vector, any T-sampled blind equalization adaptive algorithm
can be applied to the FSE via SGD techniques.

24-16 Digital Signal Processing Fundamentals



Since their first use, adaptive blind equalizers have often been implemented as FSEs. When training
data are available, FSEs have the known advantage of suppressing timing phase sensitivity [30]. In fact, a
blind FSE has another important advantage: there exists a one-to-one mapping between the combined
parameter space and the equalizer parameter space, as shown in [31], under the following length and zero
conditions:

. The equalizer length satisfies (mþ 1) � K .

. The p discrete sub-channels {Hi(z)} do not share any common zeros.

Note that for T-sampled equalizers, only one (p ¼ 1) sub-channel exists and all zeros are common zeros,
and, thus, the length and zero conditions cannot be satisfied. In most practical implementations, p is
either 2 or 3. So long as the above conditions hold, the convergence behaviors of blind adaptive FSEs can
be characterized completely in the combined parameter space. Based on the work of [12,16], for QAM
channel inputs, there do not exist any algorithm-dependent stable equilibria other than the desired global
minima [36] for FSEs driven by the Godard (q ¼ 2) algorithm (CMA) and the Shalvi–Weinstein
algorithms. Thus, the Godard and the Shalvi–Weinstein algorithms are globally convergent for FSEs
satisfying these conditions [31].

Notice that global convergence of the Godard FSE is only proven for noiseless channels under the
no-common zero condition. There have been recent advances in analyzing the performance of blind
equalizers in the presence of Gaussian noise and the existence of common sub-channel zeros. While all
possible delays of [36] are global minima for noiseless channels, the locations and effects of minima vary
when channel noises are present. An analysis by Zeng and Tong shows that for noisy channels, CMA
equalizer parameters have minima near the MMSE equilibria [32].

The effects of noise and common zeros was also studied by Fijalkow et al. [33,34], providing further
indications of the robustness of CMA when implemented as an FSE.

24.9 Concluding Remarks

Adaptive channel equalization and blind equalization are among the most successful applications of
adaptive filtering. We have introduced the basic concept of blind equalization along with some of the
most commonly used blind equalization algorithms. Without the aid of training signals, the key challenge

an

H1(z)

H2(z)

Hp(z)

x(2)(n)

x(p)(n) Gp(z)

G2(z)

G1(z)

Equalizer

y(n)
Slicer+ â(n)

Algorithm

x(1)(n)

FIGURE 24.5 Vector representation for an FSE.
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of blind adaptive equalizers lies in the design of special cost functions whose minimization is consistent
with the goal of ISI removal. We have also summarized key results on the convergence of blind
equalizers. The idea of constrained minimization of a convex cost function to assure global convergence
of the blind equalizer was described. Finally, the blind adaptation in FSEs and multichannel receivers was
shown to possess useful convergence properties.

It is important to note that the problem of blind equalization has not been completely solved by any
means. In addition to the fact that the convergence behaviors of most algorithms are still unknown, the
rates of convergence of typical algorithms such as CMA is quite slow, often needing thousands of
iterations to achieve acceptable output. The difficulty of the convergence analysis and the slow rate of
convergence of these algorithms have prompted many efforts to modify blind error functions to obtain
faster and better algorithms. Furthermore, nonadaptive algorithms that explicitly exploit HOS [35–38]
and second order cyclostationary statistics [25–29] appear to be quite efficient in exploiting small amount
of channel output data. A detailed discussion of these methods is beyond the scope of this chapter.
Interested readers may refer to two collected works edited by Haykin [24] and Gardner [39] and the
references therein.

References

1. Qureshi, S.U.H., Adaptive equalization, Proc. IEEE, 73:1349–1387, Sept. 1985.
2. Lucky, R.W., Techniques for adaptive equalization of digital communication systems, Bell Syst.

Tech. J., 45:255–286, Feb. 1966.
3. Benveniste, A., Goursat, M., and Ruget, G., Robust identification of a nonminimum phase system,

IEEE Trans. Autom. Control, AC-25:385–399, June 1980.
4. Benveniste, A. and Goursat, M., Blind equalizers, IEEE Trans. Commn., 32:871–882, Aug. 1982.
5. Sato, Y., A method of self-recovering equalization for multi-level amplitude modulation,

IEEE Trans. Commn., COM-23:679–682, June 1975.
6. Macchi, O. and Eweda, E., Convergence analysis of self-adaptive equalizers, IEEE Trans. Inf.

Theory, IT-30:162–176, Mar. 1984.
7. Mazo, J.E., Analysis of decision-directed equalizer convergence, Bell Syst. Tech. J., 59:1857–1876,

Dec. 1980.
8. Godard, D.N., Self-recovering equalization and carrier tracking in two-dimensional data commu-

nication systems, IEEE Trans. Commn., COM-28:1867–1875, 1980.
9. Treichler, J.R. and Agee, B.G., A new approach to multipath correction of constant modulus

signals, IEEE Trans. Acoust. Speech Signal Process., ASSP-31:349–372, 1983.
10. Picchi, G. and Prati, G., Blind equalization and carrier recovery using a ‘‘stop-and-go’’ decision-

directed algorithm, IEEE Trans. Commn., COM-35: 877–887, Sept. 1987.
11. Hatzinakos, D., Blind equalization using stop-and-go criterion adaptation rules, Opt. Eng.,

31:1181–1198, June 1992.
12. Shalvi, O. and Weinstein, E., New criteria for blind deconvolution of nonminimum phase systems

(channels), IEEE Trans. Inf. Theory, IT-36:312–321, Mar. 1990.
13. Brillinger, D.R. and Rosenblatt, M., Computation and interpretation of k-th order spectra, in

Spectral Analysis of Time Series, B. Harris (Ed.), Wiley, New York, 1967.
14. Li, Y. and Ding, Z., Convergence analysis of finite length blind adaptive equalizers, IEEE Trans.

Signal Process., 43:2120–2129, Sept. 1995.
15. Ding, Z., Kennedy, R.A., Anderson, B.D.O., and Johnson, C.R., Jr., Local convergence of the

Sato blind equalizer and generalizations under practical constraints, IEEE Trans. Inf. Theory,
IT-39:129–144, Jan. 1993.

16. Foschini, G.J., Equalization without altering or detect data, AT&T Tech. J., 64:1885–1911, Oct. 1985.
17. Ding, Z., Kennedy, R.A., and Johnson, C.R., Jr., On the (non)existence of undesirable equilibria of

Godard blind equalizer, IEEE Trans. Signal Process., 40:2425–2432, Oct. 1992.

24-18 Digital Signal Processing Fundamentals



18. Ding, Z., Kennedy, R.A., Anderson, B.D.O., and Johnson, C.R., Jr., Ill-convergence of Godard blind
equalizers in data communications, IEEE Trans. Commn., 39:1313–1328, Sept. 1991.

19. Minardi, M.J. and Ingram, M.A., Finding misconvergence in blind equalizers and new variance
constraint cost functions to mitigate the problem, Proceedings of 1996 International Conference on
Acoustics, Speech, and Signal Processing, Atlanta, GA, May 7–10, 1996, Vol. 3, pp. 1723–1726.

20. Tugnait, J.K., Shalvi, O., and Weinstein, E., Comments on new criteria for blind deconvolution of
nonminimum phase systems (channels), IEEE Trans. Inf. Theory, IT-38:210–213, Jan. 1992.

21. Rupprecht, W.T., Adaptive equalization of binary NRZ-signals by means of peak value minimiza-
tion, in Proceedings of 7th Europe Conference on Circuit Theory and Design, Prague, Czech
Republic, 1985, pp. 352–355.

22. Kennedy, R.A. and Ding, Z., Blind adaptive equalizers for QAM communication systems based on
convex cost functions, Opt. Eng., 31:1189–1199, June 1992.

23. Yamazaki, K. and Kennedy, R.A., Reformulation of linearly constrained adaptation and its appli-
cation to blind equalization, IEEE Trans. Signal Process., SP-42:1837–1841, 1994.

24. Haykin, S. (Ed.), Blind Deconvolution, Prentice-Hall, Englewood Cliffs, NJ, 1994.
25. Tong, L., Xu, G., and Kailath, T., Blind channel identification and equalization based on second-

order statistics: A time-domain approach, IEEE Trans. Inf. Theory, IT-40:340–349, Mar. 1994.
26. Moulines, E. et al., Subspace methods for the blind identification of multichannel FIR filters,

Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Adelaide,
Australia, 1994, Vol. 4, pp. 573–576.

27. Li, Y. and Ding, Z., ARMA system identification based on second order cyclostationarity,
IEEE Trans. Signal Process., 42(12):3483–3493, Dec. 1994.

28. Meriam, K.A., Duhamel, P., Gesbert, D., Loubaton, P., Mayrarague, S., Moulines, E., and Slock, D.,
Prediction error methods for time-domain blind identification of multichannel FIR filters,
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Detroit,
MI, May 9–12, 1995, Vol. 3, pp. 1968–1971.

29. Hua, Y., Fast maximum likelihood for blind identification of multiple FIR channels, IEEE Trans.
Signal Process., SP-44:661–672, Mar. 1996.

30. Gitlin, R.D. and Weinstein, S.B., Fractionally spaced equalization: An improved digital transversal
equalizer, Bell Syst. Tech. J., 60:275–296, 1981.

31. Li, Y. and Ding, Z., Global convergence of fractionally spaced Godard adaptive equalizers,
IEEE Trans. Signal Process., SP-44:818–826, Apr. 1996.

32. Zeng, H. and Tong, L., On the performance of CMA in the presence of noise, Proceedings of the
Conference on Information Sciences and Systems, Princeton, NJ, Mar. 1996.

33. Fijalkow, I., Treichler, J.R., and Johnson, C.R., Jr., Fractionally spaced blind equalization: Loss of
channel diversity, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, Detroit. MI, May 9–12, 1995, Vol. 3, pp. 1988–1991.

34. Touzni, A., Fijalkow, I., and Treichler, J.R., Fractionally spaced CMA under channel noise,
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta,
GA, May 7–10, 1996, Vol. 5, pp. 2674–2677.

35. Tugnait, J.K., Identification of linear stochastic systems via second and fourth-order cumulant
matching, IEEE Trans. Inf. Theory, IT-33:393–407, May 1987.

36. Giannakis, G.B. and Mendel, J.M., Identification of nonminimum phase systems using via higher
order statistics, IEEE Trans. Acoust. Speech Signal Process., ASSP-37:360–377, 1989.

37. Hatzinakos, D. and Nikias, C.L., Blind equalization using a tricepstrum based algorithm,
IEEE Trans. Commn., 39:669–682, May 1991.

38. Shalvi, O. and Weinstein, E., Super-exponential methods for blind deconvolution, IEEE Trans. Inf.
Theory, IT-39:504–519, Mar. 1993.

39. Gardner, W.A. (Ed.), Cyclostationarity in Communications and Signal Processing, IEEE Press,
New York, 1994.

Adaptive Filters for Blind Equalization 24-19





VII
Inverse Problems
and Signal
Reconstruction
Richard J. Mammone
Rutgers University

25 Signal Recovery from Partial Information Christine Podilchuk .................................... 25-1
Introduction . Formulation of the Signal Recovery Problem . Least Squares Solutions .

Signal Recovery using Projection onto Convex Sets . Row-Based Methods . Block-Based
Methods . Image Restoration Using POCS . References

26 Algorithms for Computed Tomography Gabor T. Herman .......................................... 26-1
Introduction . Reconstruction Problem . Transform Methods . Filtered
Backprojection . Linogram Method . Series Expansion Methods . Algebraic
Reconstruction Techniques . Expectation Maximization . Comparison of the Performance
of Algorithms . Further Reading . References

27 Robust Speech Processing as an Inverse Problem Richard J. Mammone
and Xiaoyu Zhang ........................................................................................................................ 27-1
Introduction . Speech Production and Spectrum-Related Parameterization .

Template-Based Speech Processing . Robust Speech Processing . Affine Transform .

Transformation of Predictor Coefficients . Affine Transform of Cepstral Coefficients .

Parameters of Affine Transform . Correspondence of Cepstral Vectors . References

28 Inverse Problems, Statistical Mechanics, and Simulated Annealing
K. Venkatesh Prasad .................................................................................................................... 28-1
Background . Inverse Problems in DSP . Analogies with Statistical Mechanics .

Simulated Annealing Procedure . Further Reading . References

29 Image Recovery Using the EM Algorithm Jun Zhang and Aggelos K. Katsaggelos ..... 29-1
Introduction . EM Algorithm . Some Fundamental Problems . Applications .

Experimental Results . Summary and Conclusion . References

30 Inverse Problems in Array Processing Kevin R. Farrell .................................................. 30-1
Introduction . Background Theory . Narrowband Arrays . Broadband Arrays .

Inverse Formulations for Array Processing . Simulation Results . Summary . References

VII-1



31 Channel Equalization as a Regularized Inverse Problem John F. Doherty ................ 31-1
Introduction . Discrete-Time Intersymbol Interference Channel Model . Channel
Equalization Filtering . Regularization . Discrete-Time Adaptive Filtering .

Numerical Results . Conclusion . References

32 Inverse Problems in Microphone Arrays A.C. Surendran .............................................. 32-1
Introduction: Dereverberation Using Microphone Arrays . Simple Delay-and-Sum
Beamformers . Matched Filtering . Diophantine Inverse Filtering Using the Multiple
Input–Output Model . Results . Summary . References

33 Synthetic Aperture Radar Algorithms Clay Stewart and Vic Larson ........................... 33-1
Introduction . Image Formation . SAR Image Enhancement . Automatic Object
Detection and Classification in SAR Imagery . References

34 Iterative Image Restoration Algorithms Aggelos K. Katsaggelos ................................... 34-1
Introduction . Iterative Recovery Algorithms . Spatially Invariant Degradation .

Matrix-Vector Formulation . Matrix-Vector and Discrete Frequency Representations .

Convergence . Use of Constraints . Class of Higher Order Iterative Algorithms .

Other Forms of F(x) . Discussion . References

T HERE ARE MANY SITUATIONS WHERE A DESIRED SIGNAL cannot be measured directly.
The measurement might be degraded by physical limitations of the signal source and=or by the
measurement device itself. The acquired signal is thus a transformation of the desired signal. The

inversion of such transformations is the subject of this section. In the following chapters we will review
several inverse problems and various methods of implementation of the inversion or recovery process.
The methods differ in the ability to deal with the specific limitations present in each application. For
example, the a priori constraint of nonnegativity is important for image recovery, but not so for adaptive
array processing. The goal of the following chapters is to present the basic approaches of inversion and
signal recovery. Each chapter focuses on a particular application area and describes the appropriate
methods for that area.

Chapter 25 reviews the basic problem of signal recovery. The idea of projection onto convex sets
(POCs) is introduced as an elegant solution to the signal recovery problem. The inclusion of linear and
nonlinear constraints is addressed. The POCs method is shown to be a subset of the set theoretic
approach to signal estimation. The application of image of restoration is described in detail.

Chapter 26 presents methods to reconstruct the interiors of objects from data collected based on
transmitted or emitted radiation. The problem occurs in a wide range of application areas. The computer
algorithms used for achieving the reconstructions are discussed. The basic techniques of image recon-
struction from projections are classified into ‘‘Transform Methods’’ (including ‘‘Filtered Backprojection’’
and the ‘‘Linogram Methods’’) and ‘‘Series Expansion Methods’’ (including, in particular, the ‘‘Algebraic
Reconstruction Techniques’’ and the method of ‘‘Expectation Maximization’’). In addition, a performance
comparison of the various algorithms for computed tomography is given.

The performance of speech and speaker recognition systems is significantly affected by the acoustic
environment. The background noise level, the filtering effects introduced by the microphone and the
communication channel dramatically affect the performance of recognition systems. It is therefore
critical that these speech recognition systems capable of detecting the ambient acoustic environment
continue and inverse their effects from the speech signal. This is the inverse problem in robust speech
processing that will be addressed in Chapter 27. A general approach to solving this inverse problem is
presented based on an affine transform model in the cepstrum domain.

In Chapter 28, a computational approach to 3-D (three-dimensional) coordinate restoration is
presented. The problem is to obtain high-resolution coordinates of 3-D volume-elements (voxels) from
observations of their corresponding 2-D picture-elements (pixels). The problem is posed as a combina-
torial optimization problem and borrowing from our understanding of statistical mechanics, we show
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how to adapt the tool of simulated annealing to solve this problem. This method is highly amenable to
parallel and distributed processing.

In Chapter 29, the image recovery=reconstruction problem is formulated as a maximum-likelihood
problem in which the image is recovered by maximizing an appropriately defined likelihood function.
These likelihood functions are often highly nonlinear and when some of the variables involved are not
directly observable, they can only be specified in integral form (i.e., averaging over the ‘‘hidden
variables’’). The expectation-maximization algorithm is revised and applied to some typical image
recovery problems. Examples include image restoration using the Markov random field model and single
and multiple channel image restoration with blur identification.

Array processing uses multiple sensors to improve signal reception by reducing the effects of
interfering signals that originate from different spatial locations. Array processing algorithms are
generally implemented via narrowband and broadband arrays, both of which are discussed in Chapter
30. Two classical approaches, namely sidelobe canceler and Frost beam formers, are reviewed. These
algorithms are formulated as an inverse problem and an iterative approach for solving the resulting
inverse problem is provided.

In Chapter 31 the relationship between communication channel equalization and the inversion of a
linear system of equations is examined. A regularized method of inversion is an inversion process in
which the noise dominated modes of the restored signal are attenuated. Channel equalization is the
process that reduces the effects of a band-limited channel at the receiver of a communication system. A
regularized method of channel equalization is presented in this section. Although there are many ways
to accomplish this, the method presented uses linear and adaptive filters, which makes the transition to
matrix inversion possible.

The response of an acoustic enclosure is, in general, a non-minimum phase function and hence not
invertible. In Chapter 32, we discuss techniques using microphone arrays that attempt to recover speech
signals degraded by the filtering effect of acoustic enclosures by either approximately or exactly ‘‘inverting’’
the room response. The aim of such systems is to force the impulse response of the overall system,
after de-reverberation, to be an impulse function. Beamforming and matched-filtering techniques (that
approximate this ideal case) and the Diophantine inverse filtering method (a technique that provides an
exact inverse) are discussed in detail.

A synthetic aperture radar (SAR) is a radar sensor that provides azimuth resolution superior to that
achievable with its real beam by synthesizing a long aperture by platform motion. Chapter 33 presents an
overview of the basics of SAR phenomenology and the associated algorithms that are used to form the
radar image and to enhance it. The chapter begins with an overview of SAR applications, historical
development, fundamental phenomenology, and a survey of modern SAR systems. It also presents
examples of SAR imagery. This is followed by a discussion of the basic principles of SAR image formation
that begins with side looking radar, progresses to unfocused SAR, and finishes with focused SAR.
A discussion of SAR image enhancement techniques, such as the polarimetric whitening filters, follows.
Finally, a brief discussion of automatic target detection and classification techniques is offered.

In Chapter 34, a class of iterative restoration algorithms is presented. Such algorithms provide
solutions to the problem of recovering an original signal or image from a noisy and blurred observation
of it. This situation is encountered in a number of important applications, ranging from the restoration of
images obtained by the Hubble space telescope to the restoration of compressed images. The successive
approximation methods form the basis of the material presented in this section.

The sample of applications and methods described in this chapter are meant to be representative of the
large volume of work performed in this field. There is no claim of completeness, any omissions of
significant contributors or other errors are solely the responsibility of the section editor, and all
praiseworthy contributions are due solely to the chapter authors.
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25.1 Introduction

Signal recovery has been an active area of research for applications in many different scientific disciplines.
A central reason for exploring the feasibility of signal recovery is due to the limitations imposed by a
physical device on the amount of data one can record. For example, for diffraction-limited systems, the
finite aperture size of the lens constrains the amount of frequency information that can be captured. The
image degradation is due to attenuation of high frequency components resulting in a loss of details and
other high frequency information. In other words, the finite aperture size of the lens acts like a lowpass
filter on the input data. In some cases, the quality of the recorded image data can be improved by building
a more costly recording device but many times the required condition for acceptable data quality is
physically unrealizable or too costly. Other times signal recovery may be necessary is for the recording of
a unique event that cannot be reproduced under more ideal recording conditions.

Some of the earliest work on signal recovery includes the work by Sondhi [1] and Slepian [2] on
recovering images from motion blur and Helstrom [3] on least squares restoration. A sampling of some
of the signal recovery algorithms applied to different types of problems can be found in [4–21]. Further
reading includes the other sections in this book, Chapter 15 of Digital Signal Processing: Video, Speech,
Audio, and Associated Standards, and the extended list of references provided by all the authors.

The simple signal degradation model described in the next section turns out to be a useful represen-
tation for many different problems encountered in practice. Some examples that can be formulated using
the general signal recovery paradigm include image restoration, image reconstruction, spectral estima-
tion, and filter design. We distinguish between image restoration, which pertains to image recovery based
on a measured distorted version of the original image, and image reconstruction, which refers most
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commonly to medical imaging where the image is reconstructed from a set of indirect measurements,
usually projections. For many of the signal recovery applications, it is desirable to extrapolate a signal
outside of a known interval. Extrapolating a signal in the spatial or temporal domain could result in
improved spectral resolution and applies to such problems as power spectrum estimation, radio astron-
omy, radar target detection, and geophysical exploration. The dual problem, extrapolating the signal in
the frequency domain, also known as superresolution, results in improved spatial or temporal resolution
and is desirable in many image restoration problems. As will be shown later, the standard inverse filtering
techniques are not able to resolve the signal estimate beyond the diffraction limit imposed by the physical
measuring device.

The observed signal is degraded from the original signal by both the measuring device as well as
external conditions. Besides the measured, distorted output signal we may have some additional
information about the following: the measuring system and external conditions, such as noise, as well
as some a priori knowledge about the desired signal to be restored or reconstructed. In order to produce a
good estimate of the original signal, we should take advantage of all the available information.

Although the data recovery algorithms described here apply in general to any data type, we derive
most of the techniques based on two-dimensional input data for image processing applications. For most
cases, it is straightforward to adapt the algorithms to other data types. Examples of data recovery
techniques for different inputs are illustrated in the other sections in this book as well as Chapter 15
of Digital Signal Processing: Video, Speech, Audio, and Associated Standards for image restoration. The
material in this section requires some basic knowledge of linear algebra as found in [22].

Section 25.2 presents the signal degradation model and formulates the signal recovery problem. The
early attempts of signal recovery based on inverse filtering are presented in Section 25.3. The concept of
projection onto convex sets (POCS) described in Section 25.4 allows us to introduce a priori knowledge
about the original signal in the form of linear as well as nonlinear constraints into the recovery algorithm.
Convex set theoretic formulations allow us to design recovery algorithms that are extremely flexible
and powerful. Sections 25.5 and 25.6 present some basic POCS-based algorithms and Section 25.7
presents a POCS-based algorithm for image restoration as well as some results. The sample algorithms
presented here are not meant to be exhaustive and the reader is encouraged to read the other sections in
this chapter as well as the references for more details.

25.2 Formulation of the Signal Recovery Problem

Signal recovery can be viewed as an estimation process in which operations are performed on an
observed signal in order to estimate the ideal signal that would be observed if no degradation was
present. In order to design a signal recovery system effectively, it is necessary to characterize the
degradation effects of the physical measuring system. The basic idea is to model the signal degradation
effects as accurately as possible and perform operations to undo the degradations and obtain a restored
signal. When the degradation cannot be modeled sufficiently, even the best recovery algorithms will not
yield satisfactory results. For many applications, the degradation system is assumed to be linear and can
be modeled as a Fredholm integral equation of the first kind expressed as

g(x) ¼
ð1

�1
h(x; a)f (a)daþ n(x): (25:1)

This is the general case for a one-dimensional signal where f and g are the original and measured signals,
respectively, n represents noise, and h(x; a) is the impulse response or the response of the measuring
system to an impulse at coordinate a.* A block diagram illustrating the general one-dimensional signal

* This corresponds to the case of a shift-varying impulse response.
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degradation system is shown in Figure 25.1. For image processing applications, we modify this equation
to the two-dimensional case, that is,

g(x, y) ¼
ðþ1

�1

ðþ1

�1
h(x, y; a, b)f (a, b)dadbþ n(x, y): (25:2)

The degradation operator h is commonly referred to as a point spread function (PSF) in imaging
applications because in optics, h is the measured response of an imaging system to a point of light.

The Fourier transform of the PSF h(x, y) denoted as H (wx ,wy) is known as the optical transfer
function (OTF) and can be expressed as

H(wx ,wy) ¼
ÐÐ1

�1 h(x, y) exp (�i(wxx þ wyy))dxdyÐÐ1
�1 h(x, y)dxdy

: (25:3)

The absolute value of the OTF is known as the modulation transfer function. A commonly used optical
image formation system is a circular thin lens. The recovery problem is considered ill-posed when a small
change in the observed image, g, results in a large change in the solution, f. Most signal recovery problems
in practice are ill-posed.

The continuous version of the degradation system for two-dimensional signals formulated in Equation
25.2 can be expressed in discrete form by replacing the continuous arguments with arrays of samples in
two dimensions, that is,

g(i, j) ¼
X
m

X
n

h(i, j;m, n)f (m, n)þ n(i, j): (25:4)

It is convenient for image recovery purposes to represent the discrete formulation given in Equation 25.4
as a system of linear equations expressed as

g ¼ Hf þ n, (25:5)

where
g, f, and n are the lexicographic row-stacked versions of the discretized versions of g, f, and n in
Equation 25.4

H is the degradation matrix composed of the PSF

This section presents an overview of some of the techniques proposed to estimate f when the recovery
problem can be modeled by Equation 25.5. If there is no external noise or measurement error and the set
of equations is consistent, Equation 25.5 reduces to

g ¼ Hf : (25:6)

Original signal
f(x) Measuring device

h(x; a)

Noise
n(x)

Degraded signal
g(x)

+

FIGURE 25.1 Block diagram of the signal recovery problem.
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It is usually not the case that a practical system can be described by Equation 25.6. In this section, we will
focus on recovery algorithms where an estimate of the distortion operation represented by the matrix H
is known. For recovery problems where both the desired signal, f, and the degradation operator, H, are
unknown, refer to other chapters in this book.

For most systems, the degradation matrix H is highly structured and quite sparse. The additive noise
term due to measurement errors and external and internal noise sources is represented by the vector n.
At first glance, the solution to the signal recovery problem seems to be straightforward—find the inverse
of the matrix H to solve for the unknown vector f. It turns out that the solution is not so simple because
in practice the degradation operator is usually ill-conditioned or rank-deficient and the problem of
inconsistencies or noise must be addressed. Other problems that may arise include computational
complexity due to extremely large problem dimensions especially for image processing applications.
The algorithms described here try to address these issues for the general signal recovery problem
described by Equation 25.5.

25.2.1 Prolate Spheroidal Wavefunctions

We introduce the problem of signal recovery by examining a one-dimensional, linear, time-invariant
system that can be expressed as

g(x) ¼
ðþT

�T

f (a)h(x � a)da, (25:7)

where
g(x) is the observed signal
f (a) is the desired signal of finite support on the interval (�T ,þT)
h(x) denotes the degradation operator

Assuming that the degradation operator in this case is an ideal lowpass filter, h can be described
mathematically as

h(x) ¼ sin(x)
x

: (25:8)

For this particular case, it is possible to solve for the exact signal f (x) with prolate spheroidal wavefunc-
tions [23]. The key to successfully solving for f lies in the fact that prolate spheroidal wavefunctions are
the eigenfunctions of the integral equation expressed by Equation 25.7 with Equation 25.8 as the
degradation operator. This relationship is expressed as

ðþT

�T

cn(a)
sin (x � a)

x � a
da ¼ lncn(x), n ¼ 0, 1, 2, . . . , (25:9)

where
cn(x) are the prolate spheroidal wavefunctions
ln are the corresponding eigenvalues

A critical feature of prolate spheroidal wavefunctions is that they are complete orthogonal bases in the
interval (�1,þ1) as well as the interval (�T ,þT), that is,
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ðþ1

�1
cn(x)cm(x)dx ¼ 1, if n ¼ m,

0, if n 6¼ m,

�
(25:10)

and

ðþT

�T

cn(x)cm(x)dx ¼ ln, if n ¼ m,

0, if n 6¼ m:

�
(25:11)

This allows the functions g(x) and f (x) to be expressed as the series expansion:

g(x) ¼
X1
n¼0

cncn(x), (25:12)

f (x) ¼
X1
n¼0

dncLn(x), (25:13)

where cLn(x) are the prolate spheroidal functions truncated to the interval (�T , T). The coefficients
cn and dn are given by

cn ¼
ð1

�1
g(x)cn(x)dx (25:14)

and

dn ¼ 1
ln

ðT
�T

f (x)cn(x)dx: (25:15)

If we substitute the series expansions given by Equations 25.12 and 25.13 into Equation 25.7, we get

g(x) ¼
X1
n¼0

cncn(x)

¼
ðþT

�T

X1
n¼0

dncLn(a)

" #
h(x � a)da (25:16)

¼
X1
n¼0

dn

ðþT

�T

cn(a)h(x � a)da

2
4

3
5: (25:17)

Combining this result with Equation 25.9,

X1
n¼0

cncn(x) ¼
X1
n¼0

lndncn(x), (25:18)
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where

cn ¼ lndn, (25:19)

and

dn ¼ cn
ln

: (25:20)

We get an exact solution for the unknown signal f (x) by substituting Equation 25.20 into Equation 25.13,
that is,

f (x) ¼
X1
n¼0

cn
ln

cLn(x): (25:21)

Therefore, in theory, it is possible to obtain the exact image f (x) from the diffraction-limited image, g (x),
using prolate spheroidal wavefunctions. The difficulties of signal recovery become more apparent when
we examine the simple diffraction-limited case in relation to prolate spheroidal wavefunctions as
described in Equation 25.21. The finite aperture size of a diffraction-limited system translates to
eigenvalues ln which exhibit a unit-step response; that is, the several largest eigenvalues are approxi-
mately one followed by a succession of eigenvalues that rapidly fall off to zero. The solution given by
Equation 25.21 will be extremely sensitive to noise for small eigenvalues ln. Therefore, for the general
problem represented in vector space by Equation 25.5, the degradation operator H is ill-conditioned or
rank-deficient due to the small or zero-valued eigenvalues, and a simple inverse operation will not yield
satisfactory results. Many algorithms have been proposed to find a compromise between exact deblurring
and noise amplification. These techniques include Wiener filtering and pseudoinverse filtering. We begin
our overview of signal recovery techniques by examining some of the methods that fall under the
category of optimization-based approaches.

25.3 Least Squares Solutions

The earliest attempts toward signal recovery are based on the concept of inverting the degradation
operator to restore the desired signal. Because in practical applications the system will often be ill-
conditioned, several problems can arise. Specifically, high detail signal information may be masked by
observation noise, or a small amount of observation noise may lead to an estimate that contains very
large false high frequency components. Another potential problem with such an approach is that for a
rank-deficient degradation operator, the zero-valued eigenvalues cannot be inverted. Therefore, the
general inverse filtering approach will not be able to resolve the desired signal beyond the diffraction
limit imposed by the measuring device. In other words, referring to the vector–space description, the data
that has been nulled out by the zero-valued eigenvalues cannot be recovered.

25.3.1 Wiener Filtering

Wiener filtering combines inverse filtering with a priori statistical knowledge about the noise and
unknown signal [24] in order to deal with the problems associated with an ill-conditioned system.

The impulse response of the restoration filter is chosen to minimize the mean square error (mse) as
defined by

ef ¼ Ef(f � f̂)2g (25:22)
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where
f̂ denotes the estimate of the ideal signal f
Ef�g denotes the expected value

The Wiener filter estimate is expressed as

H�1
W ¼ RffHT

HRffHT þ Rnn
(25:23)

where Rff and Rnn are the covariance matrices of f and n, respectively, and f and n are assumed to be
uncorrelated; that is,

Rff ¼ EfffTg, (25:24)

Rnn ¼ EfnnTg, (25:25)

and

Rfn ¼ 0: (25:26)

The superscript T in the above equations denotes transpose. The Wiener filter can also be expressed in
the Fourier domain as

H�1
W ¼ H*Sff

Hj j2Sff þ Snn
(25:27)

where
S denotes the power spectral density
the superscript * denotes the complex conjugate
H denotes the Fourier transform of H

Note that when the noise power is zero, the Wiener filter reduces to the inverse filter; that is,

H�1
W ¼ H�1: (25:28)

The Wiener filter approach for signal recovery assumes that the power spectra are known for the input
signal and the noise. Also, this approach assumes that finding a least squares solution that optimizes
Equation 25.22 is meaningful. For the case of image processing, it has been shown, specifically in the
context of image compression, that the mse does not predict subjective image quality [25]. Many signal
processing algorithms are based on the least squares paradigm because the solutions are tractable and, in
practice, such approaches have produced some useful results. However, in order to define a more
meaningful optimization metric in the design of image processing algorithms, we need to incorporate
a human visual model into the algorithm design. In the area of image coding, several coding schemes
based on perceptual criteria have been shown to produce improved results over schemes based on
maximizing signal-to-noise ratio (SNR) or minimizing mse [25]. Likewise, the Wiener filtering approach
will not necessarily produce an estimate that maximizes perceived image or signal quality. Another
limitation of the Wiener filter approach is that the solution will not necessarily be consistent with any
a priori knowledge about the desired signal characteristics. In addition, the Wiener filter approach does
not resolve the desired signal beyond the diffraction limit imposed by the measuring system. For more
details on Wiener filtering and the various applications, see other chapters in this book.
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25.3.2 Pseudoinverse Solution

The Wiener filters attempt to minimize the noise amplification obtained in a direct inverse by providing a
taper determined by the statistics of the signal and noise process under consideration. In practice, the
power spectra of the noise and desired signal might not be known. Here we present what is commonly
referred to as the generalized inverse solution. This will be the framework for some of the signal recovery
algorithms described later.

The pseudoinverse solution is an optimization approach that seeks to minimize the least squares error
as given by

en ¼ nTn ¼ (g�Hf)T(g�Hf): (25:29)

The least squares solution is not unique when the rank of the M � N matrix H is r < N � M. In other
words, there are many solutions that satisfy Equation 25.29. However, the Moore–Penrose generalized
inverse or pseudoinverse [26] does provide a unique least squares solution based on determining the least
squares solution with minimum norm. For a consistent set of equations as described in Equation 25.6, a
solution is sought that minimizes the least squares estimation error; that is,

ef ¼ (f � f̂)T(f � f̂)

¼ trf(f � f̂)(f � f̂)Tg, (25:30)

where
f is the desired signal vector
f̂ is the estimate
tr �f g denotes the trace [22]

The generalized inverse provides an optimum solution that minimizes the estimation error for a
consistent set of equations. Thus, the generalized inverse provides an optimum solution for both the
consistent and inconsistent set of equations as defined by the performance functions ef and en,
respectively. The generalized inverse solution satisfies the normal equations

HTg ¼ HTHf : (25:31)

The generalized inverse solution, also known as the Moore–Penrose generalized inverse, pseudoinverse,
or least squares solution with minimum norm is defined as

fy ¼ (HTH)�1HTg ¼ Hyg, (25:32)

where
the dagger y denotes the pseudoinverse
the rank of H is r ¼ N � M

For the case of an inconsistent set of equations as described in Equation 25.5, the pseudoinverse
solution becomes

fy ¼ Hyg ¼ HyHf þHyn, (25:33)

where fy is the minimum norm, least squares solution. If the set of equations are overdetermined with
rank r ¼ N < M, HyH becomes an identity matrix of size N denoted as IN and the pseudoinverse
solution reduces to
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fy ¼ f þHyn
¼ f þ Df : (25:34)

A straightforward result from linear algebra is the bound on the relative error:

Dfk k
fk k Hy�� ����H�� nk k

gk k , (25:35)

where the product Hy�� ����H�� is the condition number ofH. This quantity determines the relative error in
the estimate in terms of the ratio of the vector norm of the noise to the vector norm of the observed
image. The condition number of H is defined as

CH ¼ Hy�� ����H�� ¼ s1

sN
(25:36)

where s1 and sN denote the largest and smallest singular values of the matrix H, respectively. The larger
the condition number, the greater the sensitivity to noise perturbations. A matrix with a large condition
number, typically greater than 100, results in an ill-conditioned system.

The pseudoinverse solution is best described by diagonalizing the degradation matrix H using singular
value decomposition (SVD) [22]. SVD provides a way to diagonalize any arbitraryM � N matrix. In this
case, we wish to diagonalize H; that is,

H ¼ USVT (25:37)

where
U is a unitary matrix composed of the orthonormal eigenvectors of HTH
V is a unitary matrix composed of the orthonormal eigenvectors of HHT

S is a diagonal matrix composed of the singular values of H

The number of nonzero diagonal terms denotes the rank of H. The degradation matrix can be expressed
in series form as

H ¼
Xr
i¼1

siuiv
T
i (25:38)

where
ui and vi are the ith columns of U and V, respectively
r is the rank of H

From Equations 25.37 and 25.38, the pseudoinverse of H becomes as

Hy ¼ VSyUT ¼
Xr
i¼1

s�1
i viu

T
i : (25:39)

Therefore, from Equation 25.39, the pseudoinverse solution can be expressed as

fy ¼ Hyg ¼ VSyUTg (25:40)
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or

fy ¼
Xr
i¼1

s�1
i viu

T
i g ¼

Xr
i¼1

s�1
i uTi g
� �

vi: (25:41)

The series form of the pseudoinverse solution using SVD allows us to solve for the pseudoinverse solution
using a sequential restoration algorithm expressed as

fy(kþ1) ¼ fy(k) þ s�1
k uTk g
� �

vk: (25:42)

The iterative approach for finding the pseudoinverse solution is advantageous when dealing with ill-
conditioned systems and noise corrupted data. The iterative form can be terminated before the inversion of
small singular values resulting in an unstable estimate. This technique becomes quite easy to implement for
the case of a circulant degradation matrix H, where the unitary matrices in Equation 25.37 reduce to the
discrete Fourier transform.

25.3.3 Regularization Techniques

Smoothing and regularization techniques [27–29] have been proposed in an attempt to overcome the
problems associated with inverting ill-conditioned degradation operators for signal recovery. These
methods attempt to force smoothness on the solution of a least squares error problem. The problem
can be formulated in two different ways. One way of formulating the problem is

minimize:

f̂TSf̂ (25:43)

subject to:

(g�Hf̂)TW(g�Hf̂) ¼ e (25:44)

where
S represents a smoothing matrix
W is an error weighting matrix
e is a residual scalar estimation error

The error weighting matrix can be chosen as W ¼ R�1
nn . The smoothing matrix is typically composed of

the first or second order difference. For this case, we wish to find the stationary point of the Lagrangian
expression:

F(f̂ , l) ¼ f̂TSf̂ þ l[(g�Hf̂)TW(g�Hf̂)� e]: (25:45)

The solution is found by taking derivatives with respect to f and l and setting them equal to zero. The
solution for a nonsingular overdetermined set of equations becomes

f̂ ¼ HTWHþ 1
l
S

� ��1

HTWg, (25:46)

where l is chosen to satisfy the compromise between residual error and smoothness in the estimate.
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Alternately, this problem can be formulated as

minimize:

(g�Hf̂)TW(g�Hf̂) (25:47)

subject to:

f̂TSf̂ ¼ d (25:48)

where d represents a fixed degree of smoothness. The Lagrangean expression for this formulation
becomes

G(f̂ ,g) ¼ (g�Hf̂ÞTW(g�Hf̂)T þ g(f̂TSf̂ � d) (25:49)

and the solution for a nonsingular overdetermined set of equations becomes

f̂ ¼ (HTWHþ gS)�1HTWg: (25:50)

Note that for the two problem formulations, the results as given by Equations 25.46 and 25.50 are
identical if g ¼ 1=l. The shortcomings of such a regularization technique is that the smoothing function
S must be estimated and either the degree of smoothness, d, or the degree of error, e, must be known to
determine g or l.

Constrained restoration techniques have also been developed [30] to overcome the problem of an ill-
conditioned system. Linear equality constraints and linear inequality constraints have been enforced to
yield one-step solutions similar to those described in this section. All the techniques described thus far
attempt to overcome the problem of noise corrupted data and ill-conditioned systems by forcing some
sort of taper on the inverse of the degradation operator. The sampling of algorithms discussed thus far
fall under the category of optimization techniques where the objective function to be minimized is the
least squares error. Recovery algorithms that fall under the category of optimization-based algorithms
include maximum likelihood (ML), maximum a posteriori (MAP), and maximum entropy methods [17].

We now introduce the concept of POCS, which will be the framework for a much broader and more
powerful class of signal recovery algorithms.

25.4 Signal Recovery using Projection onto Convex Sets

A broad set of recovery algorithms has been proposed to conform to the general framework introduced
by the theory of POCS [31]. The POCS framework enables one to define an iterative recovery algorithm
that can incorporate a number of linear as well as nonlinear constraints that satisfy certain properties.
The more a priori information about the desired signal that one can incorporate into the algorithm, the
more effective the algorithm becomes. In [21], POCS is presented as a particular example of a much
broader class of algorithms described as set theoretic estimation. The author distinguishes between two
basic approaches to a signal estimation or recovery problem: optimization-based approaches and set
theoretic approaches. The effectiveness of optimization-based approaches is highly dependent on defin-
ing a valid optimization criterion that, in practice, is usually determined by computational tractability
rather than how well it models the problem. The optimization-based approaches seek a unique solution
based on some predefined optimization criterion. The optimization-based approaches include the least
squares techniques of the previous section as well as ML, MAP, and maximum entropy techniques.
Set theoretic estimation is based on the concept of finding a feasible solution, that is, a solution that is
consistent with all the available a priori information. Unlike the optimization-based approaches which
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seek to find one optimum solution, the set theoretic approaches usually determine one of many possible
feasible solutions. Many problems in signal recovery can be approached using the set theoretic paradigm.
POCS has been one of the most extensively studied set theoretic approaches in the literature due to its
convergence properties and flexibility to handle a wide range of signal characteristics. We limit our
discussion here to POCS-based algorithms. The more general case of signal estimation using nonconvex
as well as convex sets is covered in [21]. The rest of this section will focus on defining the POCS
framework and describing several useful algorithms that fall into this general category.

25.4.1 POCS Framework

A projection operator onto a closed convex set is an example of a nonlinear mapping that is easily
analyzed and contains some very useful properties. Such projection operators minimize error distance
and are non-expansive. These are two very important properties of ordinary linear orthogonal projec-
tions onto closed linear manifolds (CLMs). The benefit of using POCS for signal restoration is that one
can incorporate nonlinear constraints of a certain type into the POCS framework. Linear image
restoration algorithms cannot take advantage of a priori information based on nonlinear constraints.

The method of POCS depends on the set of solutions that satisfies a priori characteristics of the desired
signal to lie in a well-defined closed convex set. For such properties, f is restricted to lie in the region
defined by the intersection of all the convex sets, that is,

f 2 C0 ¼ \l
i¼1Ci: (25:51)

Here Ci denotes the ith closed convex set corresponding to the ith property of f, Ci 2 S, and i 2 I . The
unknown signal f can be restored by using the corresponding projection operators Pi onto each convex
set Ci. A property of closed convex sets is that a projection of a point onto the convex set is unique. This
is known as the unique-nearest-neighbor property. The general form of the POCS-based recovery
algorithm is expressed as

f (kþ1) ¼ Pik f
(k) (25:52)

where
k denotes the iteration
ik denotes a sequence of indices in I

A common technique for iterating through the projections is referred to as cyclic control where the
projections are applied in a cyclic manner, that is, ik ¼ k(modulo l)þ 1. A geometric interpretation of the
POCS algorithm for the simple case of two convex sets is illustrated in Figure 25.2. The original POCS
formulation is further generalized by introducing a relaxation parameter expressed as

f (kþ1) ¼ f (k) þ lk Pik(f
(k))� f (k)

� �
, 0 < lk < 2 (25:53)

where lk denotes the relaxation parameter. If lk < 1, the algorithm is said to be underrelaxed and
if lk > 1, the algorithm is overrelaxed. Refer to [31] for further details on the convergence properties
of POCS.

Common constraints that apply to many different signals in practice and whose solution space obeys
the properties of convex sets are described in [10]. Some examples from [10] include frequency limits,
spatial/temporal bounds, nonnegativity, sparseness, intensity or energy bounds, and partial knowledge of
the spectral or spatial/temporal components. For further details on commonly used convex sets, see [10].
Most of the commonly used constraints for different signal processing applications fall under the
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category of convex sets which provide weak convergence. However, in practice, most of the POCS
algorithms provide strong convergence.

Many of the commonly used iterative signal restoration techniques are specific examples of the POCS
algorithm. The Kaczmarz algorithm [32], Landweber’s iteration [33], and the method of alternating
projections [9] are all POCS-based algorithms. It is worth noting that the image restoration technique
developed independently by Gerchberg and Saxton [4] and Papoulis [5] are also versions of POCS. The
algorithm developed by Gerchberg addressed phase retrieval from two images and Papoulis addressed
superresolution by iterative methods. The Gerchberg–Papoulis (GP) algorithm is based on applying
constraints on the estimate in the signal space and the Fourier space in an iterative fashion until the
estimate converges to a solution. For the image restoration problem, the high frequency components of
the image are extrapolated by imposing the finite extent of the object in the spatial domain and by
imposing the known low frequency components in the frequency domain. The dual problem involves
spectral estimation where the signal is extrapolated in the time or spatial domain. The algorithm consists
of imposing the known part of the signal in the time domain and imposing a finite bandwidth constraint
in the frequency domain. The GP algorithm assumes a space-invariant (or time-invariant) degradation
operator.

We now present several signal recovery algorithms that conform to the POCS paradigm which are
broadly classified under two categories: row-based and block-based algorithms.

25.5 Row-Based Methods

As early as 1937, Kaczmarz [32] developed an iterative projection technique to solve the inverse problem
for a linear set of equations as given by Equation 25.5. The algorithm takes the following form:

f (kþ1) ¼ f (k) þ lk
gik � (hik , f

(k))

hikk k2 hik , (25:54)

where
the relaxation parameter lk is bound by 0 � lk � 2
h represents a row of the matrix H
ik denotes a sequence of indices corresponding to a row in H

f 4

f 3

f 2

f 0

C1

C2

f 1

FIGURE 25.2 Geometric interpretation of POCS.
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gi represents the ith element of the vector g
( � , � ) is the standard inner product between two vectors
k denotes the iteration
�k k denotes the Euclidean or L2 norm of a vector defined as

gk k ¼
XN
i¼1

g2i

 !1=2

: (25:55)

Kaczmarz proved that Equation 25.54 converges to the unique solution when the relaxation parameter is
unity and H represents a square, nonsingular matrix, that is, H possesses an inverse and under certain
conditions, the solution will converge to the minimum norm least squares or pseudoinverse solution. For
further reading on the Kaczmarz algorithm and conditions for convergence, see [7,8,34,35].

In general, the order in which one performs the Kaczmarz algorithm on the M existing equations can
differ. Cyclic control, where the algorithm iterates through the equations in a periodic fashion is
described as ik ¼ k(moduloM)þ 1 where M is the number of rows in H. Almost cyclic control exists
when M sequential iterations of the Kaczmarz algorithm yield exactly one operation per equation in any
order. Remotest set control exists when one performs the operations on the most distant equation first;
most distant in the sense that the projection onto the hyperplane represented by the equation is the
furthest away. The measure of distance is determined by the norm. This type of control is seldomly used
since it requires a measurement dependent on all the equations.

The method of Kaczmarz for l ¼ 1:0, can be expressed geometrically as follows. Given f (k) and the
hyperplane Hik ¼ ff 2 Rnj(hik , f) ¼ gikg, f (kþ1) is the orthogonal projection of f (k) onto Hik . This is
illustrated in Figure 25.3. Note that by changing the relaxation parameter, the next iterate can be a
point anywhere along the line segment connecting the previous iterate and its orthogonal reflection with
respect to the hyperplane.

The technique of Kaczmarz to solve for a set of linear equations has been rediscovered over the years
for many different applications where the general problem formulation can be expressed as Equation 25.5.
For this reason, the Kaczmarz algorithm appears as the algebraic reconstruction technique in the field
of medical imaging for computerized tomography [7], as well as the Widrow–Hoff least mean
squares algorithm [36] for channel equalization, echo cancellation, system identification, and adaptive
array processing.

f (1)

f (0)

f (2)
H2

H1

H3

f (3)

FIGURE 25.3 Geometric interpretation of the Kaczmarz algorithm.
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For the case of solving linear inequalities where Equation 25.5 is replaced with

Hf � g, (25:56)

a method very similar to Kaczmarz’s algorithm is developed by Agmon [37] and Motzkin and
Schoenberg [38],

f (kþ1) ¼ f (k) þ c(k)hik

c(k) ¼ min 0, lk
gik � hik , f

(k)� �
hikk k2

 !
:

(25:57)

Once again, the relaxation parameter is defined on the interval 0 � lk � 2. The method of solving linear
inequalities by Agmon and Motzkin and Schoenberg is mathematically identical to the perceptron
convergence theorem from the theory of learning machines (see [39]).

25.6 Block-Based Methods

A generalization of the Kaczmarz algorithm introduced in the previous section has been suggested by
Eggermont [35] which can be described as a block, iterative algorithm. Recall the set of linear equations
given by Equation 25.5 where the dimensions of the problem are redefined so that H 2 RLM�N , f 2 RN ,
and g 2 RLM . In order to describe the generalization of the Kaczmarz algorithm, the matrix H is
partitioned into M blocks of length L:

H ¼

hT1
hT2

..

.

hTLM

0
BBBB@

1
CCCCA ¼

H1

H2

..

.

HM

0
BBBB@

1
CCCCA (25:58)

and g is partitioned as

g ¼

g1
g2

..

.

gLM

0
BBBB@

1
CCCCA ¼

G1

G2

..

.

GM

0
BBBB@

1
CCCCA, (25:59)

where
Gi, i ¼ 1, 2, . . . ,M, is a vector of length L
the subblocks Hi are of dimension L� N

The generalized group-iterative variation of the Kaczmarz algorithm is expressed as

f (kþ1) ¼ f (k) þHT
ik
Sk Gik �Hik f

(k)� 	
(25:60)

where f (0) 2 RN . Eggermont gives details of convergence as well as conditions for convergence to the
pseudoinverse solution [35].

A further generalization of Kaczmarz’s algorithm led Eggermont [35] to the following form of the
general block Kaczmarz algorithm:

f (kþ1) ¼ f (k) þHy
ikLk Gik �Hik x

(k)
� 	

, (25:61)
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where once again Hy
ik denotes the Moore–Penrose inverse of Hik ,Lk is the L� L relaxation matrix, and

cyclic control is defined as ik ¼ k(moduloM)þ 1.
When the block size L given in Equation 25.60 is equal to the number of equations M, the

algorithm becomes identical to Landweber’s iteration [33] for solving Fredholm equations of the first
kind; that is,

f (kþ1) ¼ f (k) þHTSk(g�Hf (k)): (25:62)

The resulting Landweber iteration becomes

f (kþ1) ¼ HTgþ (I�HTH)f (k): (25:63)

Another interesting approach that is similar to the generalized block-Kaczmarz algorithm, with the
block size L equal to the number of equations M, is the method of alternating orthogonal projections
described by Youla [9] where alternating orthogonal projections are made onto CLMs.

The row-based and block-based algorithms described here correspond to a POCS framework where
the only a priori information incorporated into the algorithm is the original problem formulation as
described by Equation 25.5. At times, the only information we may have is the original measurement
g and an estimate of the degradation operator H and these algorithms are suited for such applications.
However, for most applications, other a priori information is known about the desired signal and an
effective algorithm should utilize this information.

We now describe a POCS-based algorithm suited for the problem of image restoration where
additional a priori signal information is incorporated into the algorithm.

25.7 Image Restoration Using POCS

Here we describe an image recovery algorithm [18,40] that is based on the POCS framework and show
some image restoration results [19,20]. The list of references includes other examples of POCS-based
recovery algorithms.

The least squares minimum norm or pseudoinverse solution can be formulated as

fy ¼ HyHf ¼ VLVTf , (25:64)

where
the dagger y denotes the pseudoinverse
V is the unitary matrix found in the diagonalization of H
L is the following diagonal matrix whose first r diagonal terms are equal to one

L ¼

11 0 . . .

0 12 0

. .
.

1r
0

0
BBBBBB@

1
CCCCCCA

(25:65)

By defining

P ¼ VLVT, (25:66)
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the orthogonal complement to the operator P is given by the projection operator

Q ¼ I� P ¼ VLCVT, (25:67)

where

LC ¼

0 . . .
..
. . .

.

1
1rþ1

. .
.

0
BBBBB@

1
CCCCCA: (25:68)

The diagonal matrix LC contains ones in the last N � r diagonal positions and zeros elsewhere. The
superscript C denotes the complement.

Any arbitrary vector f can be decomposed as follows:

f ¼ Pf þQf , (25:69)

where the projection operator P projects f onto the range space of the degradation matrix HTH and
the orthogonal projection operator Q projects f onto the null-space of the degradation matrix HTH. The
component Pf will be referred to as the ‘‘in-band’’ term and the component Qf will be referred to as the
‘‘out-of-band’’ term.

In general, the least squares family of solutions to the image restoration problem can be stated as

f ¼ f in-band þ fout-of-band

¼ fy þ Krþ1vrþ1 þ Krþ2vrþ2 þ � � � þ KNvN : (25:70)

The vectors vi correspond to the eigenvectors of fs2
rþ1,s

2
rþ2, . . . ,s

2
Ng for HTH; they are the eigenvectors

associated with zero valued eigenvalues. The out-of-band solution Krþ1vrþ1 þ � � � þ KNvN must satisfy

Hfout-of-band ¼ 0: (25:71)

Adding the terms fKrþ1vrþ1,Krþ2vrþ2, . . . ,KNvNg to the pseudoinverse solution fy does not change the
L2 norm of the error since

nk k ¼ g�Hfk k
¼ kg�H(fy þ Krþ1vrþ1 þ � � � þ KNvN )k
¼ kg�Hfy �HKrþ1vrþ1 � � � � �HKNvNk
¼ kg�Hfyk (25:72)

which is the least squares error. The terms HKrþ1vrþ1, . . . ,HKNvN are all equal to zero because the
vectors vrþ1, . . . , vN are in the null-space of H. Therefore, any linear combination of vi in the null-space
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of H can be added to the pseudoinverse solution without affecting the least squares cost function. The
pseudoinverse solution, fy, provides the unique least squares estimate with minimum norm:

min fLSk k ¼ fy
�� ��, (25:73)

where fLS denotes the least squares solution. In practice, it is unlikely that the desired solution is required
to possess the minimum norm out of all feasible solutions so that fy is not necessarily the optimum
solution. The image restoration algorithm described here provides a framework that allows a priori
information in the form of signal constraints to be incorporated into the algorithm in order to obtain a
better estimate than the least squares minimum norm solution fy. The constraint operator will be
represented by C and can incorporate a variety of linear and nonlinear a priori signal characteristics as
long as they obey the properties of convex set theory. In the case of image restoration, the constraint
operator C includes nonnegativity which can be described by

(Cþf)i ¼
fi fi � 0

0 fi < 0:

�
(25:74)

Concatenating the vectors vi in Equation 25.70 yields

f ¼ fy þ VLCK, (25:75)

where

K ¼

K1

K2

..

.

KN

0
BBBB@

1
CCCCA (25:76)

and

VLC ¼ v1 v2 � � � vNð Þ

0
. .
.

1rþ1

. .
.

1N

0
BBBBB@

1
CCCCCA (25:77)

We would like to find the solution to the unknown vector K in Equation 25.75. A reasonable approach is
to start with the constrained pseudoinverse solution and solve for K in a least squares manner; that is,

minimize:

Cþfy � fy þ VLCK

 ��� �� (25:78)

subject to:

Cþfy ¼ fy þ VLCK: (25:79)
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The least squares solution becomes

Cþfy � fy ¼ VLCK

K ¼ LCVT Cþfy � fy
� �

:
(25:80)

Since LCVTfy ¼ 0, we get

K ¼ LCVTCþfy: (25:81)

Substituting Equation 25.81 into Equation 25.79 yields

Cþfy ¼ fy þQCþf
y þ e, (25:82)

where e denotes a residual vector. The process of enforcing the overall least squares solution and solving
for the out-of-band component to fit the constraints can be implemented in an iterative fashion. The
resulting recursion is

Cþf (k) ¼ fy þQCþf
(k) þ e(k): (25:83)

By defining

f (kþ1) � Cþf (k) � e(k), (25:84)

the final iterative algorithm becomes

f (0) ¼ fy

f (kþ1) ¼ fy þQCþf
(k), k ¼ 0, 1, 2, . . . :

(25:85)

Note that the recursion yields the least squares solution while enforcing the a priori constraints through
the out-of-band signal component. It is apparent that such an approach will yield a better estimate for the
unknown signal f than the minimum norm least squares solution fy. Note that this algorithm can easily
be generalized to other problems by replacing the non-negativity constraint Cþ with the signal appro-
priate constraints. In the case when fy satisfies all the constraints exactly, the solution to iterative
algorithm reduces to the pseudoinverse solution. For more details on this algorithm, convergence issues,
and stopping criterion, refer to [18,20,40]. By looking at this algorithmic framework from the set
theoretic viewpoint described in [21], the original set of solutions is given by all the solutions that satisfy
the least squares error criterion. The addition of a priori signal constraints attempts to reduce the feasible
set of solutions and to provide a better estimate than the pseudoinverse solution.

Finally, we would like to show some image restoration results based on the method described in
[19,20]. The technique is a modification of the Kaczmarz method described here using the theory of
POCS. Original, degraded, restored images using the original Kaczmarz algorithm and the restored
images using the modified algorithm based on the POCS framework are shown in Figure 25.4. Similarly,
we show the original, degraded, and restored images in the frequency domain in Figure 25.5. The details
of the algorithm are found in [19].
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(a) (b)

(c) (d)

FIGURE 25.4 (a) Original image, (b) degraded image at 25 dB SNR, (c) restored image using Kaczmarz iterations,
and (d) restored image using the modified Kaczmarz algorithm in a POCS framework. (Courtesy of IEEE: Kuo, S.S.
and Mammone, R.J., IEEE Trans. Signal Process., 40, 159, 1992.)

(a) (b)

(c)

FIGURE 25.5 Spatial frequency response of the (a) original image, (b) degraded image, and (c) restored image using
the new algorithm. (Courtesy of IEEE: Kuo, S.S. and Mammone, R.J., IEEE Trans. Signal Process., 40, 159, 1992.)
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26.1 Introduction

Computed tomography (CT) is the process of reconstructing the interiors of objects from data collected
based on transmitted or emitted radiation. The problem occurs in a wide range of application areas. Here,
we discuss the computer algorithms used for achieving the reconstructions.

26.2 Reconstruction Problem

We want to solve the following general problem. There is a three-dimensional structure whose internal
composition is unknown to us. We subject this structure to some kind of radiation, either by transmitting
the radiation through the structure or by introducing the emitter of the radiation into the structure. We
measure the radiation transmitted through, or emitted from, the structure at a number of points. CT is
the process of obtaining from these measurements the distribution of the physical parameter(s) inside the
structure that have an effect on the measurements. The problem occurs in a wide range of areas, such as
x-ray CT, emission tomography, photon migration imaging, and electron microscopic reconstruction
(see, e.g., [1,2]). All of these are inverse problems of various sorts (see, e.g., [3]).

Where it is not otherwise stated, we will be discussing the special reconstruction problem of estimating
a function of two variables from estimates of its line integrals. As it is quite reasonable for any
application, we will assume that the domain of the function is contained in a finite region of the plane.
In what follows, we will introduce all the needed notation and terminology; in most cases, these agree
with those used in [1].

Suppose f is a function of the two polar variables r and w. Let [Rf ](‘, u) denote the line integral
of f along the line that is at a distance ‘ from the origin and makes an angle u with the vertical axis.
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We refer to this operator R as the Radon transform (it has also been referred to in the literature as
the x-ray transform).

The input data to a reconstruction algorithm are estimates (based on physical measurements) of the
values of [Rf ](‘, u) for a finite number of pairs (‘, u); its output is an estimate, in some sense, of f. More
precisely, suppose that the estimates of [Rf ](‘, u) are known for I pairs: (‘i, ui), 1 � i � I. We use y to
denote the I-dimensional column vector (called the measurement vector) whose ith component, yi, is the
available estimate of [Rf ](‘i, ui). The task of a reconstruction algorithm is

given the data y, estimate the function f :

Following [1], reconstruction algorithms are characterized either as transform methods or as series
expansion methods. In the following subsections, we discuss the underlying ideas of these two
approaches and give detailed descriptions of two algorithms from each category.

26.3 Transform Methods

The Radon transform has an inverse, R�1, defined as follows. For a function p of ‘ and u,

R�1p
� �

(r,w) ¼ 1
2p2

ðp
0

ð1
�1

1
rcos(u� w)� ‘

p1(‘, u)d‘du, (26:1)

where p1(‘, u) denotes the partial derivative of p with respect to its first variable ‘. (Note that it is
intrinsically assumed in this definition that p is sufficiently smooth for the existence of the integral in
Equation 26.1). It is known [1] that for any function f that satisfies some physically reasonable conditions
(such as continuity and boundedness) we have, for all points (r,w),

R�1Rf
� �

(r,w) ¼ f (r,w): (26:2)

Transform methods are numerical procedures that estimate values of the double integral on the right-
hand side of Equation 26.1 from given values of p(‘i, ui), for 1 � i � I. We now discuss two such
methods: the widely adopted filtered backprojection (FBP) algorithm and the more recently developed
linogram method.

26.4 Filtered Backprojection

In this algorithm, the right-hand side of Equation 26.1 is approximated by a two-step process (for
derivational details see [1] or, in a more general context, [3]). First, for fixed values of u, convolutions
defined by

p*Y q½ �(‘0, u) ¼
ð1

�1
p(‘, u)q ‘0 � ‘, uð Þd‘ (26:3)

are carried out, using a convolving function q (of one variable) whose exact choice will have an important
influence on the appearance of the final image. Second, our estimate f * of f is obtained by backprojection
as follows:

f *(r,w) ¼
ðp
0

p*Y q½ � rcos(u� w), uð Þdu: (26:4)
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To make explicit the implementation of this for a given measurement vector, let us assume that the data
function p is known at points (nd,mD), �N � n � N , 0 � m � M � 1, and MD ¼ p. Let us further
assume that the function f is to be estimated at points (rj,wj), 1 � j � J . The computer algorithm operates
as follows.

A sequence f0, . . . , fM�1, fM of estimates is produced; the last of these is the output of the algorithm.
First we define

f0(rj,wj) ¼ 0, (26:5)

for 1 � j � J . Then, for each value of m, 0 � m � M � 1, we produce the (mþ 1)th estimate from the
mth estimate by a two-step process:

1. For �N � n0 � N , calculate

pc n0d,mDð Þ ¼ d
XN
n¼�N

p nd,mDð Þq (n0 � n)d½ ], (26:6)

using the measured values of p(nd,mD) and precalculated values (same for all m) of q (n0 � n)d½ ].
This is a discretization of Equation 26.3.

2. For 1 � j � J , we set

fmþ1
�
rj,wj

� ¼ fm
�
rj,wj

�þ Dpc
�
rj cos

�
mD� wj

�
,mD

�
: (26:7)

This is a discretization of Equation 26.4. To do it, we need to interpolate the first variable of pc from
the values calculated in Equation 26.6 to obtain the values needed in Equation 26.7. In practice, once
fmþ1(rj,wj) has been calculated, fm(rj,wj) is no longer needed and the computer can reuse the same
memory location for f0(rj,wj), . . . , fM�1(rj,wj), fM(rj,wj).

In a complete execution of the algorithm, the uses of Equation 26.6 requireM(2N þ 1) multiplications
and additions, while all the uses of Equation 26.7 require MJ interpolations and additions. Since J is
typically of the order of N2 and N itself in typical applications is between 100 and 1000, we see that
the cost of backprojection is likely to be much more computationally demanding than the cost of
convolution. In any case, reconstruction of a typical 512� 512 cross-section from data collected by a
typical x-ray CT device is not a challenge to the state-of-the art computational capabilities; it is routinely
done in the order of a second or so and can be done, using a pipeline architecture, in a fraction of
a second [4].

26.5 Linogram Method

The basic result that justifies this method is the well-known projection theorem that says that ‘‘taking
the two-dimensional Fourier transform is the same as taking the Radon transform and then applying
the Fourier transform with respect to the first variable’’ [1]. The method was first proposed in [5] and the
reason for the name of the method can be found there. The basic reason for proposing this method is
its speed of execution and we return to this below. In the description that follows, we use the approach
of [6]. That paper deals with the fully three-dimensional problem; here, we simplify it to the two-
dimensional case.

For the linogram approach, we assume that the data were collected in a special way (i.e., at points
whose locations will be precisely specified below); if they were collected otherwise, we need to interpolate
prior to reconstruction. If the function is to be estimated at an array of points with rectangular
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coordinates f(id, jd)j, �N � i � N , �N � j � Ng (this array is assumed to cover the object to be
reconstructed), then the data function p needs to be known at points

ndm, umð ), �2N � 1 � n � 2N þ 1, �2N � 1 � m � 2N þ 1 (26:8)

and at points

ndm,
p

2
þ um

� �
, �2N � 1 � n � 2N þ 1, �2N � 1 � m � 2N þ 1, (26:9)

where

um ¼ tan�1 2m
4N þ 3

and dm ¼ dcosum: (26:10)

The linogram method produces from such data estimates of the function values at the desired points
using a multistage procedure. We now list these stages, but first point out two facts. One is that the most
expensive computation that needs to be used in any of the stages is the taking of discrete Fourier
transforms (DFTs), which can always be implemented (possibly after some padding by zeros) very
efficiently by the use of the fast Fourier transform (FFT). The other is that the output of any stage
produces estimates of function values at exactly those points where they are needed for the discrete
computations of the next stage; there is never any need to interpolate between stages. It is these two facts
that indicate why the linogram method is both computationally efficient and accurate. (From the point of
view of this book, these facts justify the choice of sampling points in Equations 26.8 through 26.10;
a geometrical interpretation is given in [7].)

1. Fourier transforming of the data—For each value of the second variable, we take the DFT of the
data with respect to the first variable in Equations 26.8 and 26.9. By the projection theorem, this
provides us with estimates of the two-dimensional Fourier transform F of the object at points (in a
rectangular coordinate system)

k
(4N þ 3)d0

,
k

(4N þ 3)d
tan um

� 	
, �2N � 1 � k � 2N þ 1, �2N � 1 � m � 2N þ 1 (26:11)

and at points (also in a rectangular coordinate system)

k
(4N þ 3)d

tan
p

2
þ um

� �
,

k
(4N þ 3)d

� 	
, �2N � 1 � k � 2N þ 1, �2N � 1 � m � 2N þ 1:

(26:12)

2. Windowing—At this point wemay suppress those frequencies that we suspect to be noise-dominated
by multiplying with a window function (corresponding to the convolving function in FBP).

3. Separating into two functions—The sampled Fourier transform F of the object to be reconstructed
is written as the sum of two functions, G and H. G has the same values as F at all the points
specified in Equation 26.11 except at the origin and is zero-valued at all other points. H has the
same values as F at all the points specified in Equation 26.12 except at the origin and is zero-valued
at all other points. Clearly, except at the origin, F ¼ Gþ H. The idea is that by first taking the two-
dimensional inverse Fourier transforms of G and H separately and then adding the results, we get
an estimate (except for a DC term that has to be estimated separately, see [6]) of f. We only follow
what needs to be done with G; the situation with H is analogous.
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4. Chirp z-transforming in the second variable—Note that the way the um was selected implies that if
we fix k, then the sampling in the second variable of Equation 26.11 is uniform. Furthermore, we
know that the value of G is zero outside the sampled region. Hence, for each fixed k,
0 < jkj � 2N þ 1, we can use the chirp z-transform to estimate the inverse DFT in the second
variable at points

k
(4N þ 3)d

, jd

� 	
, �2N � 1 � k � 2N þ 1, �N � j � N: (26:13)

The chirp z-transform can be implemented using three FFTs, see [7].
5. Inverse transforming in the first variable—The inverse Fourier transform of G can now be

estimated at the required points by taking, for every fixed j, the inverse DFT in the first variable
of the values at the points of Equation 26.13.

26.6 Series Expansion Methods

This approach assumes that the function, f, to be reconstructed can be approximated by a linear
combination of a finite set of known and fixed basis functions,

f (r,w) �
XJ
j¼1

xjbj(r,w), (26:14)

and that our task is to estimate the unknowns, xj. If we assume that the measurements depend linearly on
the object to be reconstructed (certainly true in the special case of line integrals) and that we know (at
least approximately) what the measurements would be if the object to be reconstructed was one of the
basis functions (we use ri, j to denote the value of the ith measurement of the jth basis function), then we
can conclude [1] that the ith of our measurements of f is approximately

XJ
j¼1

ri, jxj: (26:15)

Our problem is then to estimate xj from the measured approximations (for 1 � i � I) to Equation 26.15.
The estimate can often be selected as one that satisfies some optimization criterion.

To simplify the notation, the image is represented by a J-dimensional image vector x (with compon-
ents xj) and the data form an I-dimensional measurement vector y. There is an assumed projection
matrix R (with entries ri, j). We let ri denote the transpose of the ith row of R (1 � i � I), and so the inner
product hri, xi is the same as the expression in Equation 26.15. Then y is approximately Rx and there may
be further information that x belongs to a subset C of RJ , the space of J-dimensional real-valued vectors.
In this formulation R, C, and y are known and x is to be estimated. Substituting the estimated values of xj
into Equation 26.14 will then provide us with an estimate of the function f.

The simplest way of selecting the basis functions is by subdividing the plane into pixels (or space into
voxels) and choosing basis functions whose value is 1 inside a specific pixel (or voxel) and is 0 everywhere
else. However, there are other choices that may be preferable; for example, [8] uses spherically symmetric
basis functions that are not only spatially limited, but also can be chosen to be very smooth. The
smoothness of the basis functions then results in smoothness of the reconstructions, while the spherical
symmetry allows easy calculation of the ri, j. It has been demonstrated [9] that, for the case of fully three-
dimensional positron emission tomography (PET) reconstruction, such basis functions indeed lead to
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statistically significant improvements in the task-oriented performance of series expansion reconstruction
methods.

In many situations only a small proportion of ri, j is nonzero. (For example, if the basis functions are
based on voxels in a 200� 200� 100 array and the measurements are approximate line integrals, then
the percent of nonzero ri, j is less than 0.01, since a typical line will intersect fewer than 400 voxels.) This
makes certain types of iterative methods for estimating the xj surprisingly efficient. This is because one
can make use of a subroutine that, for any i, returns a list of those js for which ri, j is not zero, together
with the values of the ri, j [1,10]. We now discuss two such iterative approaches: the so-called algebraic
reconstruction techniques (ART) and the use of expectation maximization (EM).

26.7 Algebraic Reconstruction Techniques

The basic version of ART operates as follows [1]. The method cycles through the measurements
repeatedly, considering only one measurement at a time. Only those xj are updated for which the
corresponding ri, j for the currently considered measurement i is nonzero and the change made to xj is
proportional to ri, j. The factor of proportionality is adjusted so that if Equation 26.15 is evaluated for the
resulting xj, then it will match exactly the ith measurement. Other variants will use a block of
measurements in one iterative step and will update the xj in different ways to ensure that the iterative
process converges according to a chosen estimation criterion.

Here we discuss only one specific optimization criterion and the associated algorithm. (Others can be
found, for example, in [1]). Our task is to find the x in RJ that minimizes

r2 y � Rxk k2þ x � mxk k2 (26:16)

( �k k indicates the usual Euclidean norm), for a given constant scalar r (called the regularization
parameter) and a given constant vector mx .

The algorithm makes use of an I-dimensional vector u of additional variables, one for each measure-
ment. First we define u(0) to be the I-dimensional zero vector and x(0) to be the J-dimensional zero vector.
Then, for k � 0, we set

u(kþ1) ¼ u(k) þ c(k)eik ,

x(kþ1) ¼ x(k) þ rc(k)rik ,
(26:17)

where ei is an I-dimensional vector whose ith component is 1 with all other components being 0 and

c(k) ¼ l(k)
r yik � rik , x

(k)

 �� �� u(k)ik

1þ r2 rikk k2 , (26:18)

with ik ¼ [k(modI)þ 1].

THEOREM 26.1

(see [1] for a proof ). Let y be any measurement vector, r be any real number, and mx be any element of RJ .
Then for any real numbers l(k) satisfying

0 < e1 � l(k) � e2 < 2, (26:19)
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the sequence x(0), x(1), x(2), . . . determined by the algorithm given above converges to the unique vector x
that minimizes Equation 26.16.

The implementation of this algorithm is hardly more complicated than that of basic ART, which is
described at the beginning of this section. We need an additional sequence of I-dimensional vectors
u(k), but in the kth iterative step only one component of u(k) is needed or altered. Since the iks are
defined in a cyclic order, the components of the vector u(k) (just as the components of the measurement
vector y) can be sequentially accessed. (The exact choice of this—often referred to as the data access
ordering—is very important for fast initial convergence; it is described in [11]. The underlying principle
is that in any subsequence of steps, we wish to have the individual actions to be as independent as
possible.) We also use, for every integer k � 0, a positive real number l(k). (These are the so-called
relaxation parameters. They are free parameters of the algorithm and in practice need to be
optimized [11].) The ris are usually not stored at all, but the location and size of their nonzero
elements are calculated as and when needed. Hence, the algorithm described by Equations 26.17 and
26.18 shares the storage-efficient nature of basic ART and its computational requirements are essen-
tially the same. Assuming, as is reasonable, that the number of nonzero ri, j is of the same order as N,
we see that the cost of cycling through the data once using ART is of the order NJ, which is
approximately the same as the cost of reconstructing using FBP. (That this is indeed so is confirmed
by the timings reported in [12].) An important thing to note about Theorem 26.1 is that there are no
restrictions of consistency in its statement. Hence, the algorithm of Equations 26.17 and 26.18 will
converge to the minimizer of Equation 26.16—the so-called regularized least-squares solution—using
the real data collected in any application.

26.8 Expectation Maximization

We may wish to find x such that it maximizes the likelihood of observing the actual measurements, based
on the assumption that the ith measurement comes from a Poisson distribution whose mean is given by
Equation 26.15. An iterative method to do exactly that, based on the so-called EM approach, was
proposed in [13]. Here, we discuss a variant of this approach that was designed for a somewhat more
complicated optimization criterion [14], which enforces smoothness of the results where the original
maximum likelihood criterion may result in noisy images.

Let RJ
þ denote those elements of RJ in which all components are non-negative. Our task is to find the x

in RJ
þ that minimizes

XI
i¼1

ri, xh i � yi ln ri, xh i½ � þ g

2
xTSx, (26:20)

where the J � J matrix S (with entries denoted by sj, u) is a modified smoothing matrix [1], which has the
following property. (This definition is only applicable if we use pixels to define the basis functions.) Let N
denote the set of indexes corresponding to pixels that are not on the border of the digitization. Each such
pixel has eight neighbors, let Nj denote the indexes of the pixels associated with the neighbors of the pixel
indexed by j. Then,

xTSx ¼
X
j2N

xj � 1
8

X
k2Nj

xk

0
@

1
A
2

: (26:21)
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Consider the following rules for obtaining x(kþ1) from x(k):

p(k)j ¼
PI
i¼1

ri, j

9gsj, j
� x(k)j þ 1

9sj, j

XJ
u¼1

sj, ux
(k)
u ,

(26:22)

q(k)j ¼ x(k)j

9gsj, j

XI
i¼1

ri, jyi
ri, x(k)h i , (26:23)

x(kþ1)
j ¼ 1

2
�p(k)j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(k)j

� �2
þ 4q(k)j

r !
: (26:24)

Since the first term of Equation 26.22 can be precalculated, the execution of Equation 26.22 requires
essentially no more effort than multiplying x(k) with the modified smoothing matrix. As explained in [1],
there is a very efficient way of doing this. The execution of Equation 26.23 requires approximately the
same effort as cycling once through the data set using ART (see Equation 26.18). Algorithmic details of
efficient computations of Equation 26.23 appeared in [15]. Clearly, the execution of Equation 26.24
requires a trivial amount of computing. Thus, we see that one iterative step of the EM algorithm of
Equations 26.22 through 26.24 requires, in total, approximately the same computing effort as cycling
through the data set once with ART, which costs about the same as a complete reconstruction by FBP.
A basic difference between the ART method and the EM method is that the former updates its estimate
based on one measurement at a time, while the latter deals with all measurements simultaneously.

THEOREM 26.2

(see [14] for a proof). For any x(0) with only positive components, the sequence x(0), x(1), x(2), . . . generated
by the algorithm of Equations 26.22 through 26.24 converges to the minimizer of Equation 26.20 in RJ

þ.

26.9 Comparison of the Performance of Algorithms

We have discussed four very different-looking algorithms and the literature is full of many others, only
some of which are surveyed in books such as [1]. Many of the algorithms are available in general purpose
image reconstruction software packages, such as SNARK09 [10]. The novice faced with a problem of
reconstruction is justified in being puzzled as to which algorithm to use. Unfortunately, there is no
generally valid answer: the right choice may very well be dependent on the area of application and the
instrument used for gathering the data. Here, we make only some general comments regarding the four
approaches discussed above, followed by some discussion of the methodologies that are available for
comparative evaluation of reconstruction algorithms for a particular application.

Concerning the two transform methods we have discussed, the linogram method is faster than FBP
(essentially an N2 logN method, rather than an N3 method as is the FBP) and, when the data are
collected according to the geometry expressed by Equations 26.8 and 26.9, the linogram method is likely
to be more accurate because it requires no interpolations. However, data are not normally collected this
way and the need for an initial interpolation together with the more complicated-looking expressions
that need to be implemented for the linogram method may indeed steer some users toward FBP, in spite
of its extra computational requirements.

Advantages of series expansion methods over transform methods are their flexibility (no special
relationship needs to be assumed between the object to be reconstructed and the measurements taken,
such as that the latter are uniform samples of the Radon transform of the former) and the ability to
control the type of solution we want by specifying the exact sense in which the image vector is to be
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estimated from the measurement vector (see Equations 26.16 and 26.20). The major disadvantage is that
it is computationally more intensive to find these precise estimators than to numerically evaluate
Equation 26.1. Also, if the model (the basis functions, the projection matrix, and the estimation criterion)
is not well chosen, then the resulting estimate may be inferior to that provided by a transform method.
The recent literature has demonstrated that usually there are models that make the efficacy of a
reconstruction provided by a series expansion method at least as good as that provided by a transform
method. To avoid the problem of computational expense, one usually stops the iterative process involved
in the optimization long before the method has converged to the mathematically specified estimator.
Practical experience indicates that this can be done very efficaciously. For example, as reported in [12],
in the area of fully three-dimensional PET, the reconstruction times for FBP are slightly longer
than for cycling through the data just once with a version of ART using spherically symmetric basis
functions and the accuracy of FBP is significantly worse than what is obtained by this very early iterate
produced by ART.

Since the iterative process is, in practice, stopped early, in evaluating the efficacy of the result of a series
expansion method one should look at the actual outputs rather than the ideal mathematical optimizer.
Reported experiences comparing an optimized version of ART with an optimized version of EM [9,11]
indicate that the former can obtain as good or better reconstructions as the latter, but at a fraction of the
computational cost. This computational advantage appears to be due to not trying to make use of all the
measurements in each iterative step.

The proliferation of image reconstruction algorithms imposes a need to evaluate the relative perform-
ance of these algorithms and understand the relationship between their attributes (free parameters) and
their performance. In a specific application of an algorithm, choices have to be made regarding its
parameters (such as the basis functions, the optimization criterion, constraints, relaxation, etc.). Such
choices affect the performance of the algorithm and there is a need for an efficient and objective
evaluation procedure that enables us to select the best variant of an algorithm for a particular task and
compare the efficacy of different algorithms for that task.

An approach to evaluating an algorithm is to first start with a specification of the task for which the
image is to be used and then define a figure of merit (FOM) that determines quantitatively how helpful
the image is, and hence the reconstruction algorithm, for performing that task. In the numerical observer
approach [1,11,16,17], a task-specific FOM is computed for each image. Based on the FOMs for all the
images produced by two different techniques, we can calculate the statistical significance at which we can
reject the null hypothesis that the methods are equally helpful for solving a particular task in favor of the
alternative hypothesis that the method with the higher average FOM is more helpful for solving that task.
Different imaging techniques can then be rank-ordered on the basis of their average FOMs. It is strongly
advised that a reconstruction algorithm should not be selected based on the appearance of a few sample
reconstructions, but rather on a study carried out along the lines indicated above.

In addition to the efficacy of images produced by the various algorithms, one should also be aware
of the computational possibilities that exist for executing them. A survey from this point of view can be
found in [2].

26.10 Further Reading

A good understanding of some of the important recent developments in the field of algorithms for CT
can be obtained by studying the books [1,18–21] that were published between 2001 and 2009.
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27.1 Introduction

This section addresses the inverse problem in robust speech processing. A problem that speaker and
speech recognition systems regularly encounter in the commercialized applications is the dramatic
degradation of performance due to the mismatch of the training and operating environments. The
mismatch generally results from the diversity of the operating environments. For applications over the
telephone network, the operating environments may vary from offices and laboratories to household
places and airports. The problem becomes worse when speech is transmitted over the wireless network.
Here the system experiences cross-channel interferences in addition to the channel and noise degrad-
ations that exist in the regular telephone network. The key issue in robust speech processing is to obtain
good performance regardless of the mismatch in the environmental conditions. The inverse problem in
this sense refers to the process of modeling the mismatch in the form of a transformation and resolving it
via an inverse transformation. In this section, we introduce the method of modeling the mismatch as an
affine transformation.

Before getting into the details of the inverse problem in robust speech processing, we would like to give
a brief review of the mechanism of speech production, as well as the retrieval of useful information from
the speech for the recognition purposes.
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27.2 Speech Production and Spectrum-Related Parameterization

The speech signal consists of time-varying acoustic waveforms produced as a result of acoustical
excitation of the vocal tract. It is nonstationary in that the vocal tract configuration changes over time.
A time-varying digital filter is generally used to describe the vocal tract characteristics. The steady-state
system function of the filter is of the form [1,2]:

S(z) ¼ G

1�Pp
i¼1 aiz�i

¼ GQp
i¼1 1� ziz�1ð Þ , (27:1)

where
p is the order of the system
zi denote the poles of the transfer function

The time domain representation of this filter is

s(n) ¼
Xp
i¼1

ais(n� i)þ Gu(n): (27:2)

The speech sample s(n) is predicted as a linear combination of previous p samples plus the excitation
Gu(n), where G is the gain factor. The factor G is generally ignored in the recognition-type tasks to allow
for robustness to variations in the energy of speech signals. This speech production model is often
referred to as the linear prediction (LP) model, or the autoregressive model, and the coefficients ai are
called the predictor coefficients.

The cepstrum of the speech signal s(n) is defined as

c(n) ¼
ðp
�p

log S(e jv)
�� ��e jvn dv

2p
: (27:3)

It is simply the inverse Fourier transform of the logarithm of the magnitude of the Fourier transform
S(e jv) of the signal s(n).

From the definition of cepstrum in Equation 27.3, we have

Xn¼1

n¼�1
c(n)e�jvn ¼ log S(e jv)

�� �� ¼ log
1

1�Pp
n¼1 ane�jvn

����
����: (27:4)

If we differentiate both sides of the equation with respect to v and equate the coefficients of like powers
of e jv, the following recursion is obtained:

c(n) ¼
logG n ¼ 0

a(n)þ 1
n

Pn�1

i¼1
ic(i)a(n� i) n > 0 .

8<
: (27:5)

The cepstral coefficients can be calculated using the recursion once the predictor coefficients are solved.
The zeroth order cepstral coefficient is generally ignored in speech and speaker recognition due to its
sensitivity to the gain factor, G.
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An alternative solution for the cepstral coefficients is given by

c(n) ¼ 1
q

Xp
i¼1

zni : (27:6)

It is obtained by equating the terms of like powers of z�1 in the following equation:

Xn¼1

n¼�1
c(n)z�n ¼ log

1Qp
n¼1 1� znz�1ð Þ ¼ �

Xp
i¼1

log 1� znz
�1

� �
, (27:7)

where the logarithm terms can be written as a power series expansion given as

log 1� znz
�1

� � ¼X1
k¼1

1
k
zknz

�k: (27:8)

There are two standard methods of solving for the predictor coefficients, ai, namely, the autocorrelation
method and the covariance method [3–6]. Both approaches are based on minimizing the mean square
value of the estimation error e(n) as given by

e(n) ¼ s(n)�
Xp
i¼1

ais(n� i): (27:9)

The two methods differ with respect to the details of numerical implementation. The autocorrelation
method assumes that the speech samples are zero outside the processing interval of N samples. This
results in a nonzero prediction error, e(n), outside the interval. The covariance method fixes the interval
over which the prediction error is computed and has no constraints on the sample values outside the
interval. The autocorrelation method is computationally simpler than the covariance approach and
assures a stable system where all poles of the transfer function lie within the unit circle. A brief
description of the autocorrelation method is given as follows.

The autocorrelation of the signal s(n) is defined as

rs(k) ¼
XN�1�k

n¼0

s(n)s(nþ k) ¼ s(n)� s(�n), (27:10)

where
N is the number of samples in the sequence s(n)
the sign � denotes the convolution operation

The definition of autocorrelation implies that rs(k) is an even function. The predictor coefficients ai can
therefore be obtained by solving the following set of equations:

rs(0) rs(1) � � � rs(p� 1)
rs(1) rs(0) � � � rs(p� 2)

..

. ..
. . .

. ..
.

rs(p� 1) rs(p� 2) � � � rs(0)

0
BBB@

1
CCCA

a1
..
.

ap

0
B@

1
CA ¼

rs(1)
..
.

rs(p)

0
B@

1
CA:
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Denoting the p� p Toeplitz autocorrelation matrix on the left-hand side by Rs, the predictor coefficient
vector by a, and the autocorrelation coefficients by rs, we have

Rsa ¼ rs: (27:11)

The solution for the predictor coefficient vector a can be solved by the inverse relation

a ¼ R�1
s rs:

This equation will be used throughout the analysis in the rest of this article. Since the matrix Rs is
Toeplitz, a computationally efficient algorithm known as Levinson–Durbin recursion can be used to
solve for a [3].

27.3 Template-Based Speech Processing

The template-based matching algorithms for speech processing are generally conducted using the
similarity of the vocal tract characteristics inhabited in the spectrum of a particular speech sound.
There are two types of speech sounds, namely, voiced and unvoiced sounds. Figure 27.1 shows the
speech waveforms, the spectra, and the spectral envelopes of the voiced and the unvoiced sounds. Voiced
sounds such as the vowel /a/ and the nasal sound /n/ are produced by the passage of a quasi-periodic air
wave through the vocal tract that creates resonances in the speech waveforms known as formants.
The quasi-periodic air wave is generated as a result of the vibration of the vocal cord. The fundamental
frequency of the vibration is known as the pitch. In the case of generating fricative sounds such as /sh/,
the vocal tract is excited by random noise, resulting in speech waveforms exhibiting no periodicity, as can
be seen in Figure 27.1. Therefore, the spectral envelopes of voiced sounds constantly exhibit the pitch as
well as three to five formants when the sampling rate is 8 kHz, whereas the spectral envelopes of the
unvoiced sounds reveal no pitch and formant characteristics. In addition, the formants of different voiced
sounds differ with respect to the shape and the location of the center frequencies of the formants. This is
due to the unique shape of the vocal tract formed to produce a particular sound. Thus, different sounds
can be distinguished based on attributes of the spectral envelope.

The cepstral distance given by

d ¼
X1

n¼�1
c(n)� c0(n)½ �2 (27:12)

is one of the metrics for measuring the similarity of two spectra envelopes. The reason is as follows. From
the definition of cepstrum, we have

X1
n¼1

c(n)� c0(n)½ �e jvn ¼ log jS(e jv)j � log jS0(e jv)j

¼ log
jS(e jv)j
jS0(e jv)j : (27:13)

The Fourier transform of the difference between a pair of cepstra is equal to the difference between the
corresponding spectra pair. By applying the Parseval’s theorem, the cepstral distance can be related to
the log spectral distance as

d ¼
X1
n¼1

c(n)� c0(n)½ �2¼
ðp
�p

log jS(e jv)j � log jS0(e jv)j� �2 dv
2p

: (27:14)
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The cepstral distance is usually approximated by the distance between the first few lower order cepstral
coefficients, the reason being that the magnitude of the high order cepstral coefficients is small and has a
negligible contribution to the cepstral distance.

27.4 Robust Speech Processing

Robust speech processing attempts to maintain the performance of speaker and speech recognition
system when variations in the operating environment are encountered. This can be accomplished if
the similarity in vocal tract structures of the same sound can be recovered under adverse conditions.
Figure 27.2 illustrates how the deterministic channel and random noise contaminate a speech signal
during the recording and transmission of the signal.

First of all, at the front end of the speech acquisition system, additive background noise N1(v) from
the speaking environment distorts the speech waveform. Adverse background conditions are also found
to put stress on the speech production system and change the characteristics of the vocal tract. It is
equivalent to performing a linear filtering of the speech. This problem will be addressed in another
chapter and will not be discussed here.

After being sampled and quantized, the speech samples corrupted by the background noise N1(v)
are then passed through the transmission channel such as a telephone network to get to the receiver’s
site. The transmission channel generally involves two types of degradation sources: the deterministic and
convolutional filter with the transfer functionH(v), and the additive noise denoted by N2(v) in Figure 27.2.

The signal observed at the output of the system is, therefore,

Y(v) ¼ H(v) X(v)þ N1(v)½ � þ N2(v): (27:15)

The spectrum of the output signal is corrupted by both additive and multiplicative interferences. The
multiplicative interference due to the linear channelH(v) is sometimes referred to as themultiplicative noise.

The various sources of degradation cause distortions of the predictor coefficients and the cepstral
coefficients. Figure 27.4 shows the change of spatial clustering of the cepstral coefficients due to interfer-
ences of the linear channel, white noise, and the composite effect of both linear channel and white noise.

. When the speech is interfered by a linear bandpass channel, the frequency response of which is
shown in Figure 27.3, a translation of the cepstral clusters is observed, as shown in Figure 27.4b.

Matching
algorithm

Recognition

N2́(ω)N1́(ω)

N1(ω) N2(ω)

H(ω)

H(ω)

Transmission
channel

Transmission
channel

<Testing>

<Training>

+

+

+

+

FIGURE 27.2 Speech acquisition system.

27-6 Digital Signal Processing Fundamentals



100

10–1

10–2

10–3
0 200 400 600

Frequency (Hz) (sampling rate: 8 kHz)(a) (b)

Frequency response of continental U.S. mid-voice
channel (CMV) Gaussian noise of 15 dB SNR

800 1000 1200 0
–800

–600

–400

–200

0

200

400

600

800

1000

50 100 150
Samples

200 250

FIGURE 27.3 Simulated environmental interference: (a) medium voiced channel and (b) Gaussian white noise.
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FIGURE 27.4 Spatial distribution of cepstral coefficients under various conditions, ‘‘*’’ for the sound /a/, ‘‘o’’ for the
sound /n/, and ‘‘þ’’ for the sound /sh/: (a) cepstrum of the clean speech; (b) cepstrum of signals filtered by continental
U.S. mid-voice channel (CMV); (c) cepstrum of signals with 15 dB SNR, the noise type is additive white Gaussian
(AWG); and (d) cepstrum of speech corrupted by both CMV channel and AWG noise of 15 dB SNR.
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. When the speech is corrupted by Gaussian white noise of 15 dB SNR, a shrinkage of the cepstral
vectors results. This is shown in Figure 27.4c, where it can be seen that the cepstral clusters move
toward the origin.

. When the speech is degraded by both the linear channel and Gaussian white noise, the cepstral
vectors are translated and scaled simultaneously.

There are three underlying thoughts behind the various solutions to robust speech processing.
The first is to recover the speech signal from the noisy observation by removing an estimate of the noise
from the signal. This is also known as the speech enhancement approach. Methods that are executed in the
speech sample domain include noise suppression [7] and noise masking [8]. Other speech enhancement
methods are carried out in the feature domain, for example, cepstral mean subtraction (CMS) and pole-
filtered CMS. In this category, the key to the problem is to find feature sets that are invariant* to the
changes of transmission channel and environmental noise. Liftered cepstrum [9] and the adaptive
component weighted cepstrum [10] are examples of the feature enhancement approach. A third category
consists of methods for matching the testing features with the models after adaptation of environmental
conditions [11–14]. In this case, the presence of noise in the training and testing environments are
tolerable as long as an adaptation algorithm can be found to match the conditions. The adaptations can
be performed in either of the following two directions, i.e., adapt the training data to the testing
environment, or adapt the testing data to the environment.

The focus of the following discussion will be on viewing the robust speech processing as an inverse
problem. We utilize the fact that both deterministic and nondeterministic noise introduce a sound-
dependent linear transformation of the predictor coefficients of speech. This can be approximated by an
affine transformation in the cepstrum domain. The mismatch can, therefore, be resolved by solving for
the inverse affine transformation of the cepstral coefficients.

27.5 Affine Transform

An affine transform y of a vector x is defined as

y ¼ Ax þ b, for b 6¼ 0: (27:16)

The matrix, A, represents the linear transformation of the vector, x, and b is a nonzero vector
representing the translation of the vector. Note that the addition of the vector b to the equation causes
the transform to become nonlinear.

The singular value decomposition (SVD) of the matrix, A, can be used to gain some insight into the
geometry of an affine transform, i.e.,

y ¼ USVTx þ b, (27:17)

where
U and VT are unitary matrices
S is a diagonal matrix

The geometric interpretation is thus seen to be that x is rotated by unitary matrix VT, rescaled by the
diagonal matrix S, rotated again by the unitary matrix U, and finally translated by the vector b.

* In practice, it is difficult to find a set of features invariant to the environmental changes. The robust features currently used
are mostly less sensitive to environmental changes.
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27.6 Transformation of Predictor Coefficients

It will be proved in this section that the contamination of a speech signal by a stationary convolutional
channel and random white noise is equivalent to a signal dependent linear transformation of the
predictor coefficients. The conclusion drawn here will be used in the next section to show that the effect
of environmental interference is equivalent to an affine transform in the cepstrum domain.

27.6.1 Deterministic Convolutional Channel as a Linear Transform

When a sample sequence is passed through a convolutional channel of impulse response h(n), the filtered
signal s0(n) obtained at the output of the channel is

s0(n) ¼ h(n)� s(n): (27:18)

If the power spectra of the signals s(n) and s0(n) are denoted Ss(v), and Ss0 (v), respectively, then

Ss0 (v) ¼ jH(v)j2Ss(v): (27:19)

Therefore, in the time domain,

rs0 (k) ¼ [h(n)� h(�n)]� rs(k) ¼ rh(k)� rs(k), (27:20)

where rs(k) and rs0 (k) are the autocorrelation of the input and output signals. The autocorrelation of the
impulse response h(n) is denoted rh(k) and by definition,

rh(k) ¼ h(n)� h(�n): (27:21)

If the impulse response h(n) is assumed to be zero outside the interval [0, p� 1], then

rh(k) ¼ 0 for jkj > p� 1: (27:22)

Equation 27.20 can therefore be rewritten in matrix form as

rs0(0)(23)

rs0(1)(24)

..

.
(25)

rs0(p� 1)

0
BBBBBB@

1
CCCCCCA

¼

rh(0) rh(1) rh(2) � � � rh(p� 1)(26)

rh(1) rh(0) rh(1) � � � rh(p� 2)(27)

..

. ..
. . .

. ..
.
(28)

rh(p� 1) rh(p� 2) rh(p� 3) � � � rh(0)

0
BBBBBB@

1
CCCCCCA

rs(0)(29)

rs(1)(30)

..

.
(31)

rs(p� 1)

0
BBBBBB@

1
CCCCCCA

¼Rh1rs: (27:23)

Rh1 refers to the autocorrelation matrix of the impulse response of the channel on the right-hand side of
the above equation.
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The autocorrelation matrix Rs0 of the filtered signal s0(n) is then

Rs0 ¼

rs0 (0) rs0 (1) rs0 (2) � � � rs0 (p� 1)(33)

rs0 (1) rs0 (0) rs0 (1) � � � rs0 (p� 2)(34)

..

. ..
. . .

. ..
.
(35)

rs0 (p� 1) rs0 (p� 2) rs0 (p� 3) � � � rs0 (0)

0
BBBBBB@

1
CCCCCCA

¼

rh(0) rh(1) rh(2) � � � rh(p� 1)(36)

rh(1) rh(0) rh(1) � � � rh(p� 2)(37)

..

. ..
. . .

. ..
.
(38)

rh(p� 1) rh(p� 2) rh(p� 3) � � � rh(0)

0
BBBBBB@

1
CCCCCCA

�

rs(0) rs(1) rs(2) � � � rs(p� 1)(39)

rs(1) rs(0) rs(1) � � � rs(p� 2)(40)

..

. ..
. . .

. ..
.
(41)

rs(p� 1) rs(p� 2) rs(p� 3) � � � rs(0)

0
BBBBBB@

1
CCCCCCA

¼Rh1Rs: (27:24)

Also, the autocorrelation vector rs0 of the filtered signal s0(n) is

rs0 ¼

rs0 (1)(43)

rs0 (2)(44)

..

.
(45)

rs0 (p)(46)

0
BBBBBB@

1
CCCCCCA

¼

rh(1) rh(0) rh(1) � � � rh(p� 2)(47)

rh(2) rh(1) rh(0) � � � rh(p� 3)(48)

..

. ..
. . .

. ..
.
(49)

rh(p) rh(p� 1) rh(p� 2) � � � rh(1)

0
BBBBBB@

1
CCCCCCA

rs(1)(50)

rs(2)(51)

..

.
(52)

rs(p)

0
BBBBBB@

1
CCCCCCA

¼Rh2rs, (27:25)

where Rh2 denotes the matrix on the right-hand side.
The predictor coefficients of the output signal s0(n) is thus given by

as0 ¼ R�1
s0 rs0 ¼ (Rh1Rs)

�1 � (Rh2rs) ¼ R�1
s R�1

h1 Rh2
� �

Rsa: (27:26)

Therefore, the predictor coefficients of a speech signal filtered by a convolutional channel can be obtained
via taking a linear transformation of the predictor coefficients of the input speech signal. Note that the
transformation in Equation 27.26 is sound dependent, as the estimates of the autocorrelation matrices
assume stationary.
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27.6.2 Additive Noise as a Linear Transform

The random noise arising from the background and the fluctuation of the transmission channel is
generally assumed to be additive white noise (AWN). The resulted noisy observation of the original
speech signal is given by

s0(n) ¼ s(n)þ e(n), (27:27)

where

E[e(n)] ¼ 0 and E[e2(n)] ¼ s2 (27:28)

and s0(n) results from the original speech signal s(n) being corrupted by the noise e(n).
The autocorrelation of the corrupted speech signal s0(n) is

rs0 (k) ¼ [s(n)þ e(n)]� [s(�n)þ e(�n)] ¼ rs(k)þ rse(k)þ res(k)þ re(k), (27:29)

where
rs(k) and re(k) denote the autocorrelation of the signal s(n) and the noise e(n), respectively
rse(k) and res(k) represent the cross-correlation of s(n) and e(n)

Since

re(k) ¼ E
XN�1�k

m¼0

e(m)e(mþ k)

" #
¼ s2 k ¼ 0(58)

0 otherwise,

(

rse(k) ¼ E
XN�1�k

m¼0

s(m)e(mþ k)

" #
¼
XN�1�k

m¼0

s(m)E[e(mþ k)] ¼ 0, and

res(k) ¼ E
XN�1�k

m¼0

e(m)s(mþ k)

" #
¼
XN�1�k

m¼0

s(mþ k)E[e(m)] ¼ 0,

(27:30)

the autocorrelation of the signal s0(n) presented in Equation 27.29 becomes

rs0 (k) ¼
rs(k)þ s2 k ¼ 0

rs(k) otherwise:

�
(27:31)

Hence, the predictor coefficients as given by Equation 27.11 are

a0 ¼ R�1
s0 rs0

¼

rs(0)þ s2 rs(1) rs(2) � � � rs(p� 1)(61)

rs(1) rs(0)þ s2 rs(1) � � � rs(p� 2)(62)

..

. ..
. . .

. ..
.
(63)

rs(p� 1) rs(p� 2) rs(p� 3) � � � rs(0)þ s

0
BBBBB@

1
CCCCCA

�1 rs(1)(64)

rs(2)(65)

..

.
(66)

rs(p)

0
BBBBB@

1
CCCCCA

¼ Rs þ s2I
� ��1

rs ¼ Rs þ s2I
� ��1

Rsa: (27:32)
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It can be seen from Equation 27.32 that the addition of AWN to the speech is also equivalent to taking
a linear transformation of the predictor coefficients. The linear transformation depends on the
autocorrelation of the speech and thus in a spectrum-based model, all the spectrally similar predictors
will be mapped by a similar linear transform.

The SVD will gain us some insight into what the transformation in Equation 27.32 actually does.
Assume that the Toeplitz autocorrelation matrix of the original speech signal Rs is decomposed as

Rs ¼ ULUT, (27:33)

where
U is a unitary matrix
L is a diagonal matrix whose diagonal elements are the eigenvalues of the matrix Rs

Then the autocorrelation matrix of the noise-corrupted signal is

Rs
0 ¼ Rs þ s2I ¼ U(Lþ s2I)UT: (27:34)

Therefore, Equation 27.32 can be rewritten as

a0 ¼ U Lþ s2I
� �

UT
� ��1

(ULUT)a ¼ U Lþ s2I
� ��1

L
h i

UT

¼ U

l21
l21 þ s2

(70)

l22
l22 þ s2

(71)

. .
.

(72)
l2n

l2n þ s2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
UT: (27:35)

From the above equation we can see that the norm of the predictor coefficients is reduced when the
speech is perturbed by white noise.

27.7 Affine Transform of Cepstral Coefficients

Most speaker and speech recognition systems use a spectrum-based similarity measure to group the
vectors, which are normally the LP cepstrum vectors. Thus, we shall investigate the spectrum as to
whether or not the cepstral vectors are affinely mapped.

Consider the cepstrum of a speech signal as defined by

cn ¼ Z�1 log
1

A(z)

� 	
, (27:36)

where 1
A(z) ¼ 1

1�
Pp

i¼1
aiz�i

is the transfer function of the linear predictive system. Taking the first-order

partial derivative of cn with respect to ai yields
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qcn
qai

¼
qZ�1 log 1

1�
Pp

i¼1
aiz�i


 �� 	
qai

(27:37)

¼ Z�1
q log 1

1�
Pp

i¼1
aiz�i


 �
qai

2
664

3
775 (27:38)

¼ �h(n� i), (27:39)

where h(n� i) is the nth impulse response delayed by i taps. Therefore, if c is the vector of the first p
cepstral coefficients of the clean speech s(n), then

dc ¼ Hda, (27:40)

where

H ¼ �

h(0) 0 � � � 0

h(1) h(0) � � � 0

..

. ..
. . .

. ..
.

h(p� 1) h(p� 2) � � � h(0)

0
BBBB@

1
CCCCA: (27:41)

Note that the impulse response matrix H would be the same for a group of spectrally similar cepstral
vectors. The relationship between a degradation in the predictor coefficients and the corresponding
degradation in the cepstral coefficients is given by Equation 27.40. A degraded set of spectrally similar
vectors would undergo the transformation

dc0 ¼ H0da0, (27:42)

where
c0 and a0 are the degraded cepstrum and predictor coefficients, respectively
H0 is a lower triangular matrix corresponding to the impulse response of the test signal

Since the predictor coefficients satisfy the linear relation a0 ¼ Aa, as shown in Equations 27.26 and 27.32,
differentiating both sides of the equation yields

da0 ¼ Ada: (27:43)

If we integrate the above three equations, we have

dc0

dc
¼ dc0

da0


 �
da0

da


 �
da
dc


 �
¼ H0AH�1: (27:44)

The degraded cepstrum is then given by

c0 ¼ H0AH�1cþ bc (27:45)

In order to draw the conclusion that there exists an affine transform for the cepstral coefficients, all the
variables on the right-hand side of the above equation must be expressed as an explicit function of
the training data. However, this is not the case for the matrix H0 in the equation. Since H0 consists of the
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impulse response of the prediction model of the test data h0(n), we need to represent the impulse
response as a function of the training data.

Consider the cases of channel interferences and noise corruption, respectively.

. Assume the training data is of the form

s(n) ¼ hch1(n)� hsig(n)� e(n) ¼ hch1(n)� s0(n), (27:46)

where
e(n) represents the innovation sequence
hsig(n) is the impulse response of the all-pole model of the vocal tract
hch1(n) is the impulse response of the transmission channel

The convolution of the innovation sequence with the impulse response of the vocal tract yields the
clean speech signal s0(n), the convolution of which with the transmission channel generates the
observed sequence s(n).

Similarly, the test data is

s0(n) ¼ hch2(n)� hsig(n)� e(n) ¼ hch2(n)� s0(n), (27:47)

where hch2(n) is the impulse response of the transmission channel in the operating environment. In
practice, the all-pole model is applied to the observation sequence involving channel interference
rather than the clean speech signal. The estimated impulse response of the observed signal h0(n) is
actually given by

h0(n) ¼ hch2(n)� hsig(n): (27:48)

The matrix H0 can therefore be written as

H0 ¼

h0(0) 0 � � � 0(87)

h0(1) h0(0) � � � 0(88)

..

. ..
. . .

. ..
.
(89)

h0(p� 1) h0(p� 2) � � � h0(0)

0
BBBBBB@

1
CCCCCCA

¼

hch2(0) 0 � � � 0(90)

hch2(1) hch2(0) � � � 0(91)

..

. ..
. . .

. ..
.
(92)

hch2(p� 1) hch2(p� 2) � � � hch2(0)

0
BBBBBB@

1
CCCCCCA

hsig(0) 0 � � � 0(93)

hsig(1) hsig(0) � � � 0(94)

..

. ..
. . .

. ..
.
(95)

hsig(p� 1) hsig(p� 2) � � � hsig(0)

0
BBBBBB@

1
CCCCCCA

(27:49)

. When the speech is corrupted by additive noise, the autocorrelation matrix Rs
0 can also be written as

Rs
0 ¼ H0H0T: (27:50)

Equating the right-hand side of Equations 27.34 and 27.50 yields

H0 ¼ U Lþ s2I
� �1=2

: (27:51)

where H0 is an explicit function of the training data and the noise.
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At this point, we can conclude that the cepstrum coefficients are affinely mapped by mismatches in the
noise and channel conditions. Note again that the parameters of the affine mapping are spectrally
dependent.

27.8 Parameters of Affine Transform

Assume the knowledge of the correspondence between the set of training cepstral vectors
fci ¼ (ci1, ci2, . . . , ciq)

Tji ¼ 1, 2, . . . ,Ng and the set of testing cepstral vectors fci0 ¼ (ci10 , ci20 , . . . , ciq0 )T

ji ¼ 1, 2, . . . ,Ng. Here N is the number of vectors in the vector set and q is the order of the cepstral
coefficients. The affine transform holds for the corresponding vectors ci and ci0 in the following way:

ci
0T ¼ Aci

T þ b

+
ci10 (99)

..

.
(100)

ciq0

0
BBB@

1
CCCA ¼

a11 � � � a1q(101)

..

. . .
. ..

.
(102)

aq1 � � � aqq

0
BBB@

1
CCCA

ci1(103)

..

.
(104)

ciq

0
BBB@

1
CCCAþ

b1(105)

..

.
(106)

bq

0
BBB@

1
CCCA, for i ¼ 1, 2, . . . ,N:

(27:52)

The entries faijg and fbjg can be solved in the row by row order since for the jth row of the matrix, i.e.,
(aj1,aj2, . . . ,ajq), there exists a set of equations given by

c1j0 (108)

..

.
(109)

cNj0

0
BB@

1
CCA ¼

c11 � � � c1q 1(110)

..

. . .
. ..

. ..
.
(111)

cN1 � � � cNq 1

0
BB@

1
CCA

aj1(112)

..

.
(113)

ajq(114)

bj

0
BBBB@

1
CCCCA, for j ¼ 1, 2, . . . , q: (27:53)

Denoting the vector on the left-hand side of the above equation by gj
0, the matrix and the vector on the

right-hand side by G and aj, respectively, we have

gj
0 ¼ Gaj: (27:54)

The least squares solution to the above systems of equation is

aj ¼

PN
i¼1

ciciT
PN
i¼1

ci(117)

PN
i¼1

ci


 �T

N

0
BBB@

1
CCCA
�1

� c1 � � � cN(118)

1 � � � 1


 �
gj

0 for j ¼ 1, . . . , q, (27:55)

where

XN
i¼1

cici
T ¼

XN
i¼1

ci1(120)

ci2(121)

..

.
(122)

ciq

0
BBBB@

1
CCCCA ci1, ci2, . . . , ciq
� �

, for i ¼ 1, . . . ,N , (27:56)

is the summation of a series of matrices.
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The testing vectors can then be adapted to the model by an inverse affine transformation of the form

ĉ ¼ A�1(c0 � b) (27:57)

or vice versa. The adaptation removes the mismatch of environmental conditions due to channel and
noise variability.

In the case that the matrix A is diagonal, i.e.,

A ¼
a11

. .
.

aqq

0
B@

1
CA, (27:58)

the solutions of aij in Equation 27.55 can be simplified as

ajj ¼
PN

i¼1 gij
0 gij �

PN
i¼1 gij

0 PN
i¼1 gij

� .
NPN

i¼1 g
2
ij �

PN
i¼1 gij

� 2.
N

¼ E[gj
0,gj]� E[gj

0]E[gj]

E[gj,gj]� E2[gj] ¼ Cov[gj0 ,gj]
Var[gj ,gj]

(27:59)

and

bj ¼ 1
N

XN
i¼1

gij
0 � ajj

XN
i¼1

gij

 !
¼ E[gj

0]� ajjE[gj]: (27:60)

where
E �½ � is the expected value operator
Var �½ � and Cov �½ � represent the variance and covariance operators, respectively

As can be seen from Equation 27.60, the diagonal entries ajj are the weighted covariance of the model
and the testing vector, and the value of bj is equal to the weighted difference between the mean of the
training vectors and that of the testing vectors. There are three cases of interest:

1. If the training and operating conditions are matched, then

E[gj
0] ¼ E[gj] and Cov[gj

0,gj] ¼ Var[gj, gj]: (27:61)

Therefore,

ajj ¼ 1 and bj ¼ 0, for j ¼ 1, 2, . . . , q ) ĉ ¼ c0: (27:62)

No adaptation is necessary in this case.
2. If the operating environment differs from the training environment due to convolutional distor-

tions, then all the testing vectors are translated by a constant amount as given by

ci
0 ¼ ci þ c0, (27:63)

and

E[gj
0] ¼ E[gj]þ c0 and Cov[gj

0,gj] ¼ Var[gj,gj]: (27:64)
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Therefore,

ajj ¼ 1 and bj ¼ c0j , for j ¼ 1, 2, . . . , q ) ĉ ¼ c0 � bc: (27:65)

This is equivalent to the method of CMS [6].
3. If the mismatch is caused by both channel and random noise, the testing vector is translated as well

as shrunk. The shrinkage is measured by ajj and the translation by bj. The smaller the covariance of
the model and the testing data, the greater the scaling of the testing vectors by noise.

The affine matching is similar to matching the z scores of the training and testing cepstral
vectors. The z score of a set of vectors, ci, is defined as

zci ¼
ci � mc

sc
, (27:66)

where
mc is the mean of the vectors, ci
sc is the variance

Thus, we could form

zci0 ¼ sc0
ci � mc

sc

� 	
þ mc0 : (27:67)

In the above analysis, we show that the cepstrum domain distortions due to channel and noise
interference can be modeled as an affine transformation. The parameters of the affine transformation
can be optimally estimated using the least squares method which yields the general result given by
Equation 27.55. In the special case of a similarity transform, we get the result given by Equation 27.60.

27.9 Correspondence of Cepstral Vectors

While solving for the affine transform parameters, A and b, we assume to have a priori knowledge of the
correspondence between the cepstral vectors. A straightforward solution to finding the correspondence
is to align the sound units in a speech utterance in terms of the time stamp of the sounds. However, this is
generally not realizable in practice due to variations in the content of speech, the identity of a speaker, as
well as the rate of speaking. For example, in a speaker recognition system, the text of the testing speech
may not be the same as that of the training speech, resulting in a sequence of sounds in a completely
different order than the training sequence. Furthermore, even if the text of the speech is the same, the
speaking rate may change over time as well as speakers. The time stamp of a particular sound is still not
sufficient for lining up corresponding sounds. A valuable solution to the correspondence problem [11] is
to use the expectation-maximization (EM) algorithm, also known as the Baum–Welch algorithm [15].

The EM algorithm approaches the optimal solution to a system by repeating the procedure of (1)
estimating a set of prespecified system parameters and (2) optimizing the system solution based on these
parameters. The step of estimating the parameters is known as the expectation step, and the step of
optimizing the solution is the maximization step. The second step is usually realized via the maximum-
likelihood method.

With the EM algorithm, the parameters of the affine transform in Equation 27.52 can be solved at the
same time as the correspondence of the cepstral vectors are found. The method can be stated as follows.

. Expectation
Solve for the parameters fA, bg using Equation 27.55. The vector correspondence is found based
on the optimization results obtained in the maximization step.
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Maximization
Compute the a posteriori probability P(cATCj jci) and find the optimal matching by maximizing the
a posteriori probability. This can be formulated as

k ¼ argmaxiP cATCj jci
� 

, for all j: (27:68)

Here, cATCi represents the affine-transformed cepstrum that can be obtained by

cATCi ¼ A�1(ci
0 � bc) (27:69)

Therefore, we have a set of vector pairs denoted by (ck,cj0).

The definition of the a posteriori probability is dependent on the models employed by the classifier. In
general, for the VQ-based classifiers, the a posteriori likelihood probability is defined as a Gaussian given by

P cATCj jci
� 

¼ 1ffiffiffi
2

p
pS1=2

exp
1
2

cATCj � ci
� T

S
�1 cATCj � ci
� � 	

, (27:70)

where S is the variance matrix. If we assume that every cepstral coefficient has a unit variance, namely,
S ¼ I, where I is the identity matrix, then the maximization of the likelihood probability is equivalent
to finding the cepstral vector in the VQ codebook that has minimum Euclidean distance to the affine-
transformed vector cATCj .
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28.1 Background

The focus of this chapter is on inverse problems—what they are, where they manifest themselves in the
realm of digital signal processing (DSP), and how they might be ‘‘solved.’’* Inverse problems deal with
estimating hidden causes, such as a set of transmitted symbols ftg, given observable effects such as a set
of received symbols frgand a system (H) responsible for mapping ftg into frg. Inverse problems are
succinctly stated using vector-space notation and take the form of estimating t 2 RM , given

r ¼ Ht, (28:1)

where r 2 RN and H 2 RM�N and R denotes the space of real numbers whose dimensions are specified
in the superscript(s). Such problems call for the inversion of H, an operation which may or may not be
numerically possible. We will shortly address these issues, but we should note here for completeness that
these problems contrast with direct problems—where r is to be directly (without matrix inversion)
estimated, given H and t.

28.2 Inverse Problems in DSP

Inverse problems manifest themselves in a broad range of DSP applications in fields as diverse as digital
astronomy, electronic communications, geophysics [2], medicine [3], and oceanography. The core of all
these problems takes the form shown in Equation 28.1. This, in fact, is the discrete version of the

* The quotes are used to stress that unique deterministic solutions might not exist for such problems and the observed effects
might not continuously track the underlying causes. Formally speaking, this is a result of such problems of being ill-posed
in the sense of Hadmard [1]. What is typically sought is an optimal solution, such as a minimum norm=minimum energy
solution.
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Fredholm integral equation of the first kind for which, by definition,* the limits of integration are fixed
and the unknown function f appears only inside the integral. To motivate our discussion, we will describe
an application-specific problem, and in the process introduce some of the notations and concepts to be
used in the later sections. The inverse problem in the field of electronic communications has to do with
estimating t, given r which is often received with noise, commonly modeled to be additive white Gaussian
(AWG) in nature. The communication system and the transmission channel are typically stochastically
characterizable and are represented by a linear system matrix (H). The problem, therefore, is to solve for t
in the system of linear equations:

r ¼ Htþ n, (28:2)

where vector n denotes AWG noise. Two tempting solutions might come to mind: if matrix H is
invertible, i.e., H�1 exists, then why not solve for t as

t ¼ H�1(r� n), (28:3)

or else why not compute a minimum-norm solution such as the pseudoinverse solution:

t ¼ Hy(r� n), (28:4)

where Hy is referred to as the pseudoinverse [5] of H and is defined to be [H0H]�1H0, where H0 denotes
the transpose ofH. There are several reasons why neither solution (Equation 28.3 or 28.4) might be viable.
One reason is that the dimensions of the system might be extremely large, placing a greater computational
load than might be affordable. Another reason is thatH is often numerically ill-conditioned, implying that
inversions or pseudoinversions might not be reliable even if otherwise reliable numerical inversion
procedures, such as Gaussian elimination or singular value decomposition [6,19], were to be employed.
Furthermore, even if preconditioning [6] were possible on the system of linear equations r ¼ Htþ n,
resulting in a numerical improvement of the coefficients of H, there is one even more overbearing hurdle
that has often to be dealt with, and this has to do with the fact that such problems are frequently ill-posed.
In practical terms,y this means that small changes in the inputs might result in arbitrarily large changes in
outputs. For all these reasons the most tempting solution-approaches are often ruled out. As we describe
in the next section, inverse problems may be recast as combinatorial optimization problems. We will then
show how combinatorial optimization problems may be solved using a powerful tool called simulated
annealing [7] that has evolved from our understanding of statistical mechanics [8] and the simulation of
the annealing (cooling) behavior of physical matter [9].

28.3 Analogies with Statistical Mechanics

Understanding the analogies of inverse problems in DSP to problems in statistical mechanics is
valuable to us because we can then draw upon the analytical and computational tools developed over
the past century to solve inverse problems in the field of statistical mechanics [8]. The broad analogy is
that just as the received symbols r in Equation 28.1 are the observed effects of hidden underlying causes
(the transmitted symbols t)—the measured temperature and state (solid, liquid, or gaseous) of physical
matter are the effects of underlying causes such as the momenta and velocities of the particles that
compose the matter. A more specific analogy comes from the reasoning that if the inverse problem

* There exist two classes of integral equations ([4], p. 865): (1) if the limits of integration are fixed, the equations are referred
to as Fredholm integral equations and (2) if one of the limits is a variable, the equations are referred to as Volterra integral
equations. Further, if the unknown function appears only inside the integral, the equation is called ‘‘first kind,’’ but if it
appears both inside and outside the integral, the equation is called ‘‘second kind.’’
y For a more complete description see [1].
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were to be treated as a combinatorial optimization problem, where each candidate solution is one
possible configuration (or combination of the scalar elements of t), then we could use the criterion
developed by Metropolis et al. [9] for physical systems to select the optimal configuration. The
Metropolis criterion is based on the assumption that candidate configurations have probabilistic
distributions of the form originally described by Gibbs [8] to guarantee statistical equilibrium of
ensembles of systems. In order to apply Metropolis’ selection criterion, we must make one final
analogy: we need to treat the combinatorial optimization problem as if it were the outcome of an
imaginary physical system in which matter has been brought to boil. When such a physical system is
gradually cooled (a process referred to as annealing) then, provided the cooling rate is neither too fast
nor too slow, the system will eventually solidify into a minimum energy configuration. As depicted in
Figure 28.1 to solve inverse problems we first recast the problem as a combinatorial optimization
problem and then solve this recasted problem using simulated annealing—a procedure that numerically
mimics the annealing of physical systems. In this section we will describe the basic principles of
combinatorial optimization, Metropolis’ criterion to select or discard potential configurations, and the
origins of Gibbs’ distribution. We will outline the simulated annealing algorithm in the following
section and will follow that with examples of implementation and applications.

28.3.1 Combinatorial Optimization

The optimal solution to the inverse problem (Equation 28.1), as explained above, amounts to estimating
vector t. Under the assumptions enumerated below, the inverse problem can be recast as a combinatorial
problem whose solution then yields the desired optimal solution to the inverse problem. The assumptions
required are

1. Each (scalar) element t(i), 1 � i � M, of t 2 RM can take on only a finite set of finite values. That
is �1 < tj(i) <1; 8i and j, where tj(i) denotes the jth possible value that the ith element of t can
take, and j is a finite valued index j � J i <1; 8i. Ji denotes the number of possible values the ith
element of t can take.

Inverse problems

Combinatorial
optimization

problems

Simulated annealing
of nonphysical systems

Inverse-problem
solutions

d

c

circa 1982

Simulated annealing
of physical systems

Statistical mechanics
problems

Metropolis’ criterion
circa 1953

Gibbs’ distribution
circa 1902

b

a

FIGURE 28.1 The direct path (a! d) to solving the inverse problem is often not viable since it relies on the
inversion of a system matrix. An optimal solution, however, may be obtained by an indirect path (a! b! c! d)
which involves recasting the inverse problem as an equivalent combinatorial optimization problem and then solving
this problem using simulated annealing.
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2. Let each combination of M scalar values t(i) of t be referred to as a candidate vector or a feasible
configuration tk, where the index k � K <1. Associated with each candidate vector tk we must
have a quantifiable measure of error, cost, or energy (Ek).

Given the above assumptions, the combinatorial form of the inverse problem may be stated as: out of K
possible candidate vectors tk, 1 � k � K , search for the vector tkopt with the lowest error Ekopt . Although
easily stated, the time and computational efficiency with which the solution is obtained hinges on at least
two significant factors—the design of the error-function and the choice of the search strategy. The error-
function (Ek) must provide a quantifiable measure of dissimilarity or distance, between a feasible
configuration (tk) and the true (but unknown) configuration (ttrue), i.e.,

E(tk)¼D d(tk � ttrue), (28:5)

where d denotes a distance function. The goal of the combinatorial optimization problem is to
efficiently search through the combinatorial space and stop at the optimal, minimum-error (Eopt),
configuration—tkopt :

Eopt ¼ E(tkopt ) ¼ d � E(tk), 8k 6¼ kopt, (28:6)

where kopt denotes the value of index k associated with the optimal configuration. In the ideal case, when
d ¼ 0, from Equation 28.5, we have that tkopt¼ ttrue. In practice, however, owing to a combination of
factors such as noise (Equation 28.2), or the system (Equation 28.1) being underdetermined,
Eopt ¼ d > 0, implying that tkopt 6¼ ttrue, but that tkopt is the best possible solution given what is known
about the problem and its solutions. In general the error-function must satisfy the requirements of a
distance function or metric (adapted from [10], p. 237):

E(tk) ¼ 0 <¼> tk ¼ ttrue, (28:7a)

E(tk) ¼ E(�tk)¼D d(ttrue � tk), (28:7b)

E(tk) � E(�tj)þ d(tk � tj), (28:7c)

where Equation 28.7a follows from Equation 28.5, and where, like k, index j is defined in the range (1,K)
and K <1. Equation 28.7a stated that if the error is zero, tk is the true configuration. The implication of
Equation 28.7b is that error is a function of the absolute value of the distance of a configuration from the
true configuration. Equation 28.7c implies that the triangle inequality law holds.

In designing the error-function, one can classify the sources of error into two distinct categories: The
first category of error, denoted by Esignal

k , provides a measure of error (or distance) between the observed
signal (rk) and the estimated signal (r̂k)—computed for the current configuration tk using Equation 28.1.
The second category, denoted by Econstraints

k , accounts for the price to be ‘‘paid’’ when an estimated
solution deviates from the constraints we would want to impose on them based on our understanding of
the physical world. The physical world, for instance, might suggest that each element of the signal is very
probably positive valued. In this case, a negative valued estimate of a signal element will result in an
error-value that is proportionate to the magnitude of the signal negativity. This constraint is popularly
known as the nonnegativity constraint. Another constraint might arise from the assumption that the
solution is expected to be smooth [11]:

t̂
0
Ŝt ¼ dsmooth, (28:8)
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where
S is a smoothing matrix
dsmooth is the degree of smoothness of the signal

The error-function, therefore, takes the following form:

Ek ¼D Esignal
k þ Econstraints

k where,

Ek
signal ¼D krk � r̂k k2 where

r̂k ¼ H � tk , and

Econstraints
k ¼D

X
c2C

ac � Ecð Þ,

(28:9)

where
Econstraints represents the total error from all other factors or constraints that might be imposed on the
solution
fCg represents the set of constraint indices
ac and Ec represent the weight and the error-function, respectively, associated with cth constraint

28.3.2 Metropolis Criterion

The core task in solving the combinatorial optimization described above is to search for a configuration tk
for which the error-function EK is a minimum. Standard gradient descent methods [6,12,13] would have
been the natural choice had the Ek been a function with just one minimum (or maximum) value, but this
function typically has multiple minimas (or maximas)—gradient descent methods would tend to get
locked into a local minimum. The simulated annealing procedure (Figure 28.2—discussed in the next

=* SIMULATED ANNEALING *=
=* Set initial conditions: *=
=* Temperature: Tinitial¼T0 *=
=* Configuration t0¼ tinitial *=
=* Minimum-cost configuration topt¼ t0 *=
while(stopping criterion is not satisfied){
while(configuration is not in equilibrium){
Perturb(tk! tkþ1);
ComputeErrorDifference(DEkþ1¼ Ekþ1�Ek);
if DEkþ1� 0 then accept else

if exp � DEkþ1
T

� �
> random (0, 1] then accept;

if (accept) then {
Update(Eopt Ekþ1); =* remember the lowest error value *=
Update(topt tkþ1)=* remember the lowest error config. *=
} end =* when equilibrium is reached *=;

Cool(T Tk)
k¼ kþ 1

}end =* when stopping criterion is satisfied *=
return(); =* the global minimum-error configuration *=

FIGURE 28.2 The outline of the annealing algorithm.
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section), suggested by Metropolis et al. [9] for the problem of finding stable configurations of interacting
atoms and adapted for combinatorial optimization by Kirkpatrick [7], provides a scheme to traverse the
surface of the Ek, get out of local minimas, and eventually cool into a global minimum. The contribution
of Metropolis et al., commonly referred to in the literature as Metropolis’ criterion, is based on the
assumption that the difference in the error of two consecutive feasible configurations (denoted as
DE ¼D Ekþ1 � Ek) takes the form of Gibbs’ distribution (Equation 28.11). The criterion states that even
if a configuration were to result in increased error, i.e., DE > 0, one can select the new configuration if

random � e
�DE
kT , (28:10)

where
random denotes a random number drawn from a uniform distribution in the range (0, 1)
T denotes the temperature of the physical system

28.3.3 Gibbs’ Distribution

At the turn of the twentieth century, Gibbs [8], building upon the work of Clausius, Maxwell, and
Boltzmann in statistical mechanics, proposed the probability distribution P:

P ¼ e
c�e
Q , (28:11)

where
c and Q were constants
e denoted the free energy in a system

This distribution was crafted to satisfy the condition of statistical equilibrium ([8], p. 32) for ensembles of
(thermodynamical) systems:

X dP
dP1

_pi þ
dP
dq1

_qi

� �
¼ 0, (28:12)

where pi and qi represented the generalized momentum and velocity, respectively, of the ith degree of
freedom. The negative sign on e in Equation 28.11 was required to satisfy the condition

ð
. . .

ð
|fflffl{zfflffl}
all phases

Pdp1 � � � dqn ¼ 1: (28:13)

28.4 Simulated Annealing Procedure

The simulated annealing algorithm as outlined in Figure 28.2 mimics the annealing (or controlled
cooling) of an imaginary physical system. The unknown parameters are treated like particles in a physical
system. An initial configuration tinitial is chosen along with an initial (‘‘boiling’’) temperature value
(Tinitial). The choice of Tinitial is made so as to ensure that a vast majority, say 90%, of configurations
are acceptable even if they result in a negative DEk. The initial configuration is perturbed, either by using
a random number generator or by sequential selection, to create a second configuration, and DE2 is
computed. The Metropolis criterion is applied to decide whether or not to accept the new configuration.
After equilibrium is reached, i.e., after jDE2j � dequilib, where dequilib is a small heuristically chosen
threshold, the temperature is lowered according to a cooling schedule and the process is repeated until
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a preselected frozen temperature is reached. Several different cooling schedules have been proposed in
the literature ([18], p. 59). In one popular schedule [18,19] each subsequent temperature Tkþ1 is less than
the current temperature Tk, by a fixed percentage of Tk, i.e., Tkþ1 ¼ bkTk, where bk is typically in the
range of 0.8 to unity. Based on the behavior of physical systems which attain minimum (free) energy (or
global minimum) states when they freeze at the end of an annealing process, the assumption underlying
the simulated annealing procedure is that the topt that is finally attained is also globally minimum.

The results of applying the simulated annealing procedure to the problems of three-dimensional signal
restoration [14] is shown in Figure 28.3. In this problem, a defocused image, vector r, of an opaque
eight-step staircase object was provided along with the space-varying point-spread-function matrix (H),
and a well-focused image. The unknown vector t represented the intensities of the volume elements
(voxels) with the visible voxels taking on positive values and hidden voxels having a value of zero. The
vector t was lexicographically indexed so that by knowing which elements of t were positive, one could
reconstruct the three-dimensional structure. Using simulated annealing, and constraints (opacity, non-
negativity of intensity, smoothness of intensity and depth, and tight bounds on the voxel intensity values
obtained from the well-focused image), the original object was reconstructed.

Defining Terms
In the following definitions, as in the preceding discussion, t 2 RM , r 2 RN , and H 2 RM�N .

Combinatorial Optimization: The process of selecting the optimal (lowest cost) configuration from a
large space of candidate or feasible configurations.

Configuration: Any vector t is a configuration. The term is used in the combinatorial optimization
literature.

Cost=energy=error function: The terms cost, energy, or error function are frequently used interchange-
ably in the literature. Cost function is often used in the optimization literature to represent the mapping
of a candidate vector into a (scalar) functional whose value is indicative of the optimality of the candidate
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FIGURE 28.3 Three-dimensional signal recovery using simulated annealing. The staircase object shown corre-
sponding to era 17 is recovered from a defocused image by testing a number of feasible configurations and applying
the Metropolis criterion to a simulated annealing procedure.

Inverse Problems, Statistical Mechanics, and Simulated Annealing 28-7



vector. Energy function is frequently used in electronic communication theory as a pseudonym for the L2
norm or root-mean-square value of a vector. Error function is typically used to measure a mismatch
between an estimated (vector) and its expected value. For purposes of this discussion we use the terms
cost, energy, and error function interchangeably.

Gibbs’ distribution: The distribution (in reality a probability density function [pdf]) in which the h the
index of probability (P) is a linear function of energy, i.e., h ¼ logP ¼ c�e

Q , where c and Q are constants
and e represents energy, giving the familiar pdf:

P ¼ e
c�e
Q , (28:14)

Inverse problem: Given matrix H and vector r, find t that satisfies r ¼ Ht.

Metropolis’ criterion: The criterion first suggested by Metropolis et al. [9] to decide whether or not to
accept a configuration that results in an increased error, when trying to search for minimum error
configurations in a combinatorial optimization problem.

Minimum-norm: The norm between two vectors is a (scalar) measure of distance (such as the L1, L2) (or
Euclidean), L1 norms or the Mahalanobis distance ([10], p. 24), or the Manhattan metric [7]) between
them.Minimum-norm, unless otherwise noted, implies minimumEuclidean (L2) norm (denoted by k � k):

min
among all t

k Ht� r k : (28:15)

Pseudoinverse: Let topt be the unique minimum norm vector, therefore,

k Htopt � r k¼ min
among all t

k Ht� r k : (28:16)

The pseudoinverse of matrix H denoted by Hy 2RN�M is the matrix mapping all r into its corres-
ponding topt.

Statistical mechanics: That branch of mechanics in which the problem is to find the statistical
distribution of the parameters of ensembles (large numbers) of systems (each differing not just infini-
tesimally, but embracing every possible combination of the parameters) at a desired instant in time, given
those distributions at the present time. Maxwell, according to Gibbs [8], coined the term ‘‘statistical
mechanics.’’ This field owes its origin to the desire to explain the laws of thermodynamics as stated by
Gibbs ([8], p. viii): ‘‘The laws of thermodynamics, as empirically determined, express the approximate
and probable behavior of systems of a great number of particles, or, more precisely, they express the laws
of mechanics for such systems as they appear to beings who have not the fineness of perception to enable
them to appreciate quantities of the order of magnitude of those which relate to single particles, and who
cannot repeat their experiments often enough to obtain any but the most probable results.’’

Further Reading
. Inverse problems: The classic by Tikhonov [15] provides a good introduction to the subject matter.

For a description of inverse problems related to synthetic aperture radar application see [16].
. Statistical mechanics: Gibbs’ [8] work is historical treasure.
. Vector spaces and optimization: The books by Leunberger [12] and Gill and Murray [13] provide a

broad introductory foundation.
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. Simulated annealing: Two recent books by van Laarhoven and Aarts [17] and Aarts and Korst [18]
contain a comprehensive coverage of the theory and application of simulated annealing. A useful
simulated annealing algorithm, along with tips for numerical implementation and random number
generation, can be found in Numerical Recipes in C [19]. An alternative simulated annealing
procedure (in which the temperature T is kept constant) can be found in the widely cited work of
Geman and Geman [20], applied to image restoration.
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29.1 Introduction

Image recovery constitutes a significant portion of the inverse problems in image processing. Here,
by image recovery we refer to two classes of problems, image restoration and image reconstruction. In
image restoration, an estimate of the original image is obtained from a blurred and noise-corrupted image.
In image reconstruction, an image is generated from measurements of various physical quantities, such as
x-ray energy in CT and photon counts in single photon emission tomography and positron emission
tomography. Image restoration has been used to restore pictures in remote sensing, astronomy, medical
imaging, art history studies, e.g., see [1], and more recently, it has been used to remove picture artifacts due
to image compression, e.g., see [2] and [3]. While primarily used in biomedical imaging [4], image
reconstruction has also found applications in materials studies [5].

Due to the inherent randomness in the scene and imaging process, images and noise are often best
modeled as multidimensional random processes called random fields. Consequently, image recovery
becomes the problem of statistical inference. This amounts to estimating certain unknown parameters of
a probability density function (pdf) or calculating the expectations of certain random fields from the
observed image or data. Recently, the maximum-likelihood estimate (MLE) has begun to play a central
role in image recovery and led to a number of advances [6,8]. The most significant advantage of the MLE
over traditional techniques, such as the Wiener filtering, is perhaps that it can work more autonomously.
For example, it can be used to restore an image with unknown blur and noise level by estimating them
and the original image simultaneously [8,9]. The traditional Wiener filter and other least mean square
error techniques, on the other hand, would require the knowledge of the blur and noise level.

29-1



In the MLE, the likelihood function is the pdf evaluated at an observed data sample conditioned
on the parameters of interest, e.g., blur filter coefficients and noise level, and the MLE seeks the
parameters that maximize the likelihood function, i.e., best explain the observed data. Besides being
intuitively appealing, the MLE also has several good asymptotic (large sample) properties [10] such as
consistency (the estimate converges to the true parameters as the sample size increases). However, for
many nontrivial image recovery problems, the direct evaluation of the MLE can be difficult, if not
impossible. This difficulty is due to the fact that likelihood functions are usually highly nonlinear and
often cannot be written in closed forms (e.g., they are often integrals of some other pdfs). While the
former case would prevent analytic solutions, the latter case could make any numerical procedure
impractical.

The EM algorithm, proposed by Dempster, Laird, and Rubin in 1977 [11], is a powerful iterative
technique for overcoming these difficulties. Here, EM stands for expectation maximization. The
basic idea behind this approach is to introduce an auxiliary function (along with some auxiliary
variables) such that it has similar behavior to the likelihood function but is much easier to maximize.
By similar behavior, we mean that when the auxiliary function increases, the likelihood function also
increases. Intuitively, this is somewhat similar to the use of auxiliary lines for the proofs in elementary
geometry.

The EM algorithm was first used by Shepp and Verdi [7] in 1982 in emission tomography (medical
imaging). It was first used by Katsaggelos and Lay [8] and Lagendijk et al. [9] for simultaneous image
restoration and blur identification around 1989. The work of using the EM algorithm in image recovery
has since flourished with impressive results. A recent search on the Compendex database with key words
‘‘EM’’ and ‘‘image’’ turned up more than 60 journal and conference papers, published over the two and a
half year period from January 1993 to June 1995.

Despite these successes, however, some fundamental problems in the application of the EM algorithm
to image recovery remain. One is convergence. It has been noted that the estimates often do not converge,
converge rather slowly, or converge to unsatisfactory solutions (e.g., spiky images) [12,13]. Another
problem is that, for some popular image models such as Markov random fields (MRFs), the conditional
expectation in the E-step of the EM algorithm can often be difficult to calculate [14]. Finally, the EM
algorithm is rather general in that the choice of auxiliary variables and the auxiliary function is not
unique. Is it possible that one choice is better than another with respect to convergence and expectation
calculations [17]?

The purpose of this chapter is to demonstrate the application of the EM algorithm in some typical
image recovery problems and survey the latest research work that addresses some of the fundamental
problems described above. The chapter is organized as follows. In Section 29.2, the EM algorithm is
reviewed and demonstrated through a simple example. In Section 29.3, recent work in convergence,
expectation calculation, and the selection of auxiliary functions is discussed. In Section 29.4, more
complicated applications are demonstrated, followed by a summary in Section 29.5. Most of the examples
in this chapter are related to image restoration. This choice is motivated by two considerations—the
mathematical formulations for image reconstruction are often similar to that of image restoration and a
good account on image reconstruction is available in Snyder and Miller [6].

29.2 EM Algorithm

Let the observed image or data in an image recovery problem be denoted by y. Suppose that y can be
modeled as a collection of random variables defined over a lattice S with y ¼ fyi, i 2 Sg. For example,
S could be a square lattice of N2 sites. Suppose that the pdf of y is py(yju), where u is a set of parameters.
In this chapter, p( � ) is a general symbol for pdf and the subscript will be omitted whenever there is no
confusion. For example, when y and x are two different random fields, their pdfs are represented as p(y)
and p(x), respectively.
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29.2.1 The Algorithm

Under statistical formulations, image recovery often amounts to seeking an estimate of u, denoted by û,
from an observed y. The MLE approach is to find ûML such that

ûML ¼ argmax
u

p(yju) ¼ argmax
u

log p(yju), (29:1)

where p(yju), as a function of u, is called the likelihood. As described previously, a direct solution of
Equation 29.1 can be difficult to obtain for many applications. The EM algorithm attempts to overcome
this problem by introducing an auxiliary random field x with pdf p(xju). Here, x is somewhat ‘‘more
informative’’ [17] than y in that it is related to y by a many-to-one mapping:

y ¼ H(x): (29:2)

That is, y can be regarded as a partial observation of x, or incomplete data, with x being the complete data.
The EM algorithm attempts to obtain the incomplete data MLE of Equation 29.1 through an iterative

procedure. Starting with an initial estimate u0, each iteration k consists of two steps:

. E-step: Compute the conditional expectation* hlog p(xju)jy, uki. This leads to a function of u,
denoted by Q(ujuk), which is the auxiliary function mentioned previously.

. M-step: Find ukþ1 from

ukþ1 ¼ argmax
u

Q(ujuk): (29:3)

It has been shown that the EM algorithm is monotonic [11], i.e., log p(yjuk) � log p(yjukþ1). It has also
been shown that undermild regularity conditions, such as that the true umust lie in the interior of a compact
set and that the likelihood functions involved must have continuous derivatives, the estimate of u from the
EMalgorithm converges, at least to a local maxima of p(yju) [20,21]. Finally, the EMalgorithm extends easily
to the case in which theMLE is used along with a penalty or a prior on u. For example, suppose that q(u) is a
penalty to be minimized. Then, the M-step is modified to maximizing Q(ujuk)� q(u) with respect to u.

29.2.2 Example: A Simple MRF

As an illustration of the EM algorithm, we consider a simple image restoration example. Let S be a
two-dimensional (2D) square lattice. Suppose that the observed image y and the original image
u ¼ fui, i 2 Sg are related through

y ¼ uþ w, (29:4)

where w ¼ fui, i 2 Sg is an i.i.d. additive zero-mean white Gaussian noise with variance s2. Suppose that
u is modeled as a random field with an exponential or Gibbs pdf

p(u) ¼ Z�1e�bE(u), (29:5)

where E(u) is an energy function with

E(u) ¼ 1
2

X
i

X
j2Ni

f(ui, uj) (29:6)

* In this chapter, we use h�i rather than E[ � ] to represent expectations since E is used to denote energy functions of the MRF.
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and Z is a normalization factor

Z ¼
X
u

e�bE(u) (29:7)

called the partition function whose evaluation generally involves all possible realizations of u. In the
energy function, Ni is a set of neighbors of i (e.g., the nearest four neighbors) and f( � , � ) is a nonlinear
function called the clique function. The model for u is a simple but nontrivial case of the MRF [22,23]
which, due to its versatility in modeling spatial interactions, has emerged as a powerful model for various
image processing and computer vision applications [24].

A restoration that is optimal in the sense of minimum mean square error is

û ¼ hujyi ¼
ð
up(ujy)du: (29:8)

If parameters b and s2 are known, the above expectation can be computed, at least approximately (see
Section 29.3.1 for details). To estimate the parameters, now denoted by u ¼ (b,s2), one could use the
MLE. Since u and w are independent,

p(yju) ¼
ð
pu(vju)pw(y � vju)dv ¼ (pu*pw)(yju), (29:9)

where * denotes convolution, and we have used some subscripts to avoid ambiguity. Notice that the
integration involved in the convolution generally does not have a closed-form expression. Furthermore, for
most types of clique functions, Z is a function of b and its evaluation is exponentially complex. Hence,
direct MLE does not seem possible.

To try with the EM algorithm, we first need to select the complete data. A natural choice here, e.g.,
is to let

x ¼ (u,w) (29:10)

y ¼ H(x) ¼ H(u,w) ¼ uþ w: (29:11)

Clearly, many different x can lead to the same y. Since u and w are independent, p(xju) can be found
easily as

p(xju) ¼ p(u)p(w): (29:12)

However, as the reader can verify, one encounters difficulty in the derivation of p(xjy, uk) which is needed
for the conditional expectation of the E-step. Another choice is to let

x ¼ (u, y) (29:13)

y ¼ H(u, y) ¼ y: (29:14)

The log likelihood of the complete data is

log p(xju) ¼ log p(y,uju)
¼ log p(yju, u)p(uju)

¼ c�
X
i

(yi � ui)
2

2s2
� logZ(b)� b

2

X
i

X
j2Ni

f(ui, uj), (29:15)
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where c is a constant. From this we see that in the E-step, we only need to calculate three types of terms,
huii, hu2i i, and hf(ui, uj)i. Here, the expectations are all conditioned on y and uk. To compute these
expectations, one needs the conditional pdf p(ujy, uk) which is, from Bayes’ formula,

p(ujy, uk) ¼ p(yju, uk)p(ujuk)
p(yjuk)

¼ [2ps2]�kSk=2e�
P

i
(yi�ui)

2=2(s2)kZ�1e�bkE(u)[p(yjuk)]�1: (29:16)

Here, the superscript k denotes the kth iteration rather than the kth power. Combining all the constants
and terms in the exponentials, the above equation becomes that of a Gibbs distribution:

p(ujy, uk) ¼ Z�1
1 (uk)e�E1(ujy,uk), (29:17)

where the energy function is

E1(ujy, uk) ¼
X
i

(yi � ui)
2

2(s2)k
þ bk

2

X
j2Ni

f(ui, uj)

" #
: (29:18)

Even with this, the computation of the conditional expectation in the E-step can still be a difficult
problem due to the coupling of the ui and uj in E1. This is one of the fundamental problems of the EM
algorithm that will be addressed in Section 29.3. For the moment, we assume that the E-step can be
performed successfully with

Q(ujuk) ¼ hlog p(xju)jy, uki

¼ c�
X
i

h(yi � xi)
2ik

2s2
� logZ(b)� b

2

X
i

X
j2Ni

hf(ui, uj)ik, (29:19)

where h�ik is an abbreviation for h�jy, uki. In the M-step, the update for u can be found easily by setting

q
qs2

Q(ujuk) ¼ 0,
q
qb

Q(ujuk) ¼ 0: (29:20)

From the first of these,

(s2)kþ1 ¼ kSk�1
X
i

h(yi � ui)
2ik: (29:21)

The solution of the second equation, on the other hand, is generally difficult due to the well-known
difficulties of evaluating the partition function Z(b) (see also Equation 29.7) which needs to be dealt with
via specialized approximations [22,25]. However, as demonstrated by Bouman and Sauer [26], some
simple yet important cases exist in which the solution is straightforward. For example, when
f(ui, uj) ¼ (ui � uj)

2, Z(b) can be written as

Z(b) ¼
ð
e
�b

2

P
i

P
j2Ni

(ui�uj)
2

du

¼ b�kSk=2
ð
e
�1

2

P
i

P
j2Ni

(vi�vj)
2

dv ¼ b�kSk=2Z(1): (29:22)
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Here, we have used a change of variable, vi ¼
ffiffiffiffiffiffiffi
bui

p
. Now, the update of b can be found easily as

bkþ1 ¼ kSk�1
X
i

X
j2Ni

h(ui � uj)
2ik: (29:23)

This simple technique applies to a wider class of clique functions characterized by f(ui, uj) ¼ jui � ujjr
with any r> 0 [26].

29.3 Some Fundamental Problems

As is in many other areas of signal processing, the power and versatility of the EM algorithm has been
demonstrated in a large number of diverse image recovery applications. Previous work, however, has also
revealed some of its weaknesses. For example, the conditional expectation of the E-step can be difficult to
calculate analytically and too time-consuming to compute numerically, as is in the MRF example in the
previous section. To a lesser extent, similar remarks can be made to the M-step. Since the EM algorithm
is iterative, convergence can often be a problem. For example, it can be very slow. In some applications,
e.g., emission tomography, it could converge to the wrong result—the reconstructed image gets spikier as
the number of iterations increases [12,13]. While some of these problems, such as slow convergence, are
common to many numerical algorithms, most of their causes are inherent to the EM algorithm [17,19].

In previous work, the EM algorithm has mostly been applied in a ‘‘natural fashion’’ (e.g., in terms of
selecting incomplete and complete data sets) and the problems mentioned above were dealt with on an
ad hoc basis with mixed results. Recently, however, there has been interest in seeking more fundamental
solutions [14,19]. In this section, we briefly describe the solutions to two major problems related to the
EM algorithm, namely, the conditional expectation computation in the E-step when the data is modeled
as MRFs and fundamental ways of improving convergence.

29.3.1 Conditional Expectation Calculations

When the complete data is an MRF, the conditional expectation of the E-step of the EM algorithm can
be difficult to perform. For instance, consider the simple MRF in Section 29.2, where it amounts
to calculating huii, hu2i i, and hf(ui, uj)i and the expectations are taken with respect to p(ujy, uk) of
Equation 29.17. For example, we have

huii ¼ Z�1
1

ð
uie

�E1(u)du: (29:24)

Here, for the sake of simplicity, we have omitted the superscript k and the parameters, and this is done in
the rest of this section whenever there is no confusion. Since the variables ui and uj are coupled in the
energy function for all i and j that are neighbors, the pdf and Z1 cannot be factored into simpler terms,
and the integration is exponentially complex, i.e., it involves all possible realizations of u. Hence, some
approximation scheme has to be used. One of these is the Monte Carlo simulation. For example, Gibbs
samplers [23] and Metropolis techniques [27] have been used to generate samples according to p(ujy, uk)
[26,28]. A disadvantage of these is that, generally, hundreds of samples of u are needed and if the image
size is large, this can be computation intensive. Another technique is based on the mean field theory
(MFT) of statistical mechanics [25]. This has the advantage of being computationally inexpensive while
providing satisfactory results in many practical applications. In this section, we will outline the essentials
of this technique.

Let u be an MRF with pdf

p(u) ¼ Z�1e�bE(u): (29:25)
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For the sake of simplicity, we assume that the energy function is of the form

E(u) ¼
X
i

hi(ui)þ 1
2

X
j2Ni

f(ui, uj)

" #
, (29:26)

where hi( � ) and f( � , � ) are some suitable, and possibly nonlinear, functions. The MFT attempts to
derive a pdf pMF(u) that is an approximation to p(u) and can be factored like an independent pdf.

The MFT used previously can be divided into two classes: the local mean field energy (LMFE) and the
ones based on the Gibbs–Bogoliubov–Feynman (GBF) inequality. The LMFE scheme is based on the idea
that when calculating the mean of the MRF at a given site, the influence of the random variables at other
sites can be approximated by the influence of their means. Hence, if we want to calculate the mean of ui, a
local energy function can be constructed by collecting all the terms in Equation 29.26 that are related to ui
and replacing the uj’s by their mean. Hence, for this energy function we have

EMF
i (ui) ¼ hi(ui)þ

X
i2Ni

f(ui,huji) (29:27)

pMF
i (ui) ¼ Z�1

i e�bEMF
i (ui) (29:28)

pMF(u) ¼
Y
i

pMF
i (ui): (29:29)

Using this mean field pdf, the expectation of ui and its functions can be found easily.
Again we use the MRF example from Section 29.2.2 as an illustration. Its energy function is Equation

29.18 and for the sake of simplicity, we assume that f(ui, uj) ¼ jui � ujj2. By the LMFE scheme,

EMF
i ¼ (yi � ui)

2

2s2
þ

X
j2Ni

b(ui � huji)2 (29:30)

which is the energy of a Gaussian. Hence, the mean can be found easily by completing the square in
Equation 29.30 with

huii ¼
yi=s2 þ 2b

P
j2Ni

huji
1=s2 þ 2bkNik : (29:31)

When f( � , � ) is some general nonlinear function, numerical integration might be needed. However,
compared to Equation 29.24 such integrals are all with respect to one or two variables and are easy to
compute.

Compared to the physically motivated scheme above, the GBF is an optimization approach. Suppose
that p0(u) is a pdf which we want to use to approximate another pdf, p(u). According to information
theory, e.g., see [29], the directed-divergence between p0 and p is defined as

D(p0kp) ¼ hlog p0(u)� log p(u)i0, (29:32)

where the subscript 0 indicates that the expectation is taken with respect to p0, and it satisfies

D(p0kp) � 0 (29:33)
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with equality holds if and only if p0 ¼ p. When the pdfs are Gibbs distributions, with energy functions E0
and E and partition functions Z0 and Z, respectively, the inequality becomes

logZ � logZ0 � bhE � E0i0 ¼ logZ0 � bhDEi0, (29:34)

which is known as the GBF inequality.
Let p0 be a parametric Gibbs pdf with a set of parameters v to be determined. Then, one can obtain an

optimal p0 by maximizing the right-hand side of Equation 29.34. As an illustration, consider again the
MRF example in Section 29.2 with the energy function (Equation 29.18) and a quadratic clique function,
as we did for the LMFE scheme. To use the GBF, let the energy function of p0 be defined as

E0(u) ¼
X
i

(ui �mi)
2

2v2i
, (29:35)

where fmi, v2i , i 2 Sg ¼ v is the set of parameters to be determined in the maximization of the GBF.
Since this is the energy for an independent Gaussian, Z0 is just

Z0 ¼
Y
i

ffiffiffiffiffiffiffiffiffiffi
2pv2i

q
: (29:36)

The parameters of p0 can be obtained by finding an expression for the right-hand side of the GBF
inequality, letting its partial derivatives (with respect to the parametersmi and v2i ) be zero, and solving for
the parameters. Through a somewhat lengthy but straightforward derivation, one can find that [30]

mi ¼
yi=s2 þ 2b

P
j2Ni

huji
1=s2 þ 2bkNik : (29:37)

Since mi ¼ huii, the GBF produces the same result as the LMEF. This, however, is an exception rather
than the rule [30] and it is due to the quadratic structures of both energy functions.

We end this section with several remarks. First, compared to the LMFE, the GBF scheme is an
optimization scheme, hence more desirable. However, if the energy function of the original pdf is highly
nonlinear, the GBF could require the solution of a difficult nonlinear equation in many variables (see,
e.g., [30]). The LMFE, though not optimal, can always be implemented relatively easily. Secondly, while
the MFT techniques are significantly more computation efficient than the Monte Carlo techniques and
provide good results in many applications, no proof exists as yet that the conditional mean computed by
the MFT will converge to the true conditional mean. Finally, the performance of the mean field
approximations may be improved by using ‘‘high-order’’ models. For example, one simple scheme is
to consider LMFEs with a pair of neighboring variables [25,31]. For the energy function in Equation 29.26,
e.g., the ‘‘second-order’’ LMFE is

EMF
i,j (ui, uj) ¼ hi(ui)þ hi(uj)þ b

X
i02Ni

f(ui,hui0 i)þ b
X
j 0 2Nj

f(uj,huj0 i) (29:38)

and

PMF(ui, uj) ¼ Z�1
MFe

�bEMF
i,j (ui ,uj), (29:39)

PMF(ui) ¼
ð
pMF

ui, uj
�

)duj: (29:40)
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Notice that Equation 29.40 is not the same as Equation 29.28 in that the fluctuation of uj is taken into
consideration.

29.3.2 Convergence Problem

Research on the EM algorithm-based image recovery has so far suggested two causes for the convergence
problems mentioned previously. The first is whether the random field models used adequately capture
the characteristics and constraints of the underlying physical phenomenon. For example, in emission
tomography the original EM procedure of Shepp and Verdi tends to produce spikier and spikier images
as the number of iteration increases [13]. It was found later that this is due to the assumption that
the densities of the radioactive material at different spatial locations are independent. Consequently,
various smoothness constraints (density dependence between neighboring locations) have been intro-
duced as penalty functions or priors and the problem has been greatly reduced. Another example is in
blind image restoration. It has been found that in order for the EM algorithm to produce reasonable
estimate of the blur, various constraints need to be imposed. For instance, symmetry conditions and good
initial guesses (e.g., a lowpass filter) are used in [8,9]. Since the blur tends to have a smooth impulse
response, orthonormal expansion (e.g., the DCT) has also been used to reduce (compress) the number of
parameters in its representation [15].

The second factor that can be quite influential to the convergence of the EM algorithm, noticed earlier
by Feder and Weinstein [16], is how the complete data is selected. In their work [18], Fessler and Hero
found that for some EM procedures, it is possible to significantly increase the convergence rate by
properly defining the complete data. Their idea is based on the observation that the EM algorithm, which
is essentially a MLE procedure, often converges faster if the parameters are estimated sequentially in
small groups rather than simultaneously. Suppose, e.g., that 100 parameters are to be estimated. It is
much better to estimate, in each EM cycle, the first 10 while holding the next 90 constant, then estimate
the next 10 holding the remaining 80 and the newly updated 10 parameters constant, and so on. This
type of algorithm is called the SAGE (space alternating generalized EM) algorithm.

We illustrate this idea through a simple example used by Fessler and Hero [18]. Consider a simple
image recovery problem, modeled as

y ¼ A1u1 þ A2u2 þ n, (29:41)

where
column u1 and u2 represent two original images or two data sources
A1 and A2 are two blur functions represented as matrices
n is an additive white Gaussian noise source

In this model, the observed image y is the noise-corrupted combination of two blurred images (or data
sources). A natural choice for the complete data is to view n as the combination of two smaller noise
sources, each associated with one original image, i.e.,

x ¼ A1u1 þ n1,A2u2 þ n2½ ]0, (29:42)

where
n1 and n2 are i.i.d additive white Gaussian noise vectors with covariance matrix s2

2 I0 denotes transpose

The incomplete data y can be obtained from x by

y ¼ [I, I]x: (29:43)
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Notice that this is a Gaussian problem in that both x and y are Gaussian and they are jointly Gaussian
as well. From the properties of jointly Gaussian random variables [32], the EM cycle can be found
relatively straightforwardly as

ukþ1
1 ¼ uk1 þ (A0

1A1)
�1A0

1ê=2s
2 (29:44)

ukþ1
2 ¼ uk2 þ (A0

2A2)
�1A0

2ê=2s
2, (29:45)

where

ê ¼ y � A1u
k
1 � A2u

k
2

� �
=s2: (29:46)

The SAGE algorithm for this simple problem is obtained by defining two smaller ‘‘complete data sets’’:

x1 ¼ A1u1 þ n and x2 ¼ A2u2 þ n: (29:47)

Notice that now the noise n is associated ‘‘totally’’ with each smaller complete data set. The incomplete
data y can be obtained from both x1 and x2, e.g.,

y ¼ x1 þ A2u2: (29:48)

The SAGE algorithm amounts to two sequential and ‘‘smaller’’ EM algorithms. Specifically, correspond-
ing to each classical EM cycle (Equations 29.44 through 29.46), the first SAGE cycle is a classical EM
cycle with x1 PMF(ui, uj) ¼ Z�1

MFe
�bEMF

i, j (ui ,uj), as the complete data and u1 as the parameter set to be
updated. The second SAGE cycle is a classical EM cycle with x2 as the complete data and u2 as the
parameter set to be updated. The new update of u1 is also used. The specific algorithm is

ukþ1
1 ¼ uk1 þ (A0

1A1)
�1A0

1ê1=2s
2 (29:49)

ukþ1
2 ¼ uk2 þ (A0

2A2)
�1A0

2ê2=2s
2, (29:50)

where

ê1 ¼ y � A1u
k
1 � A2u

k
2

� �
=s2 (29:51)

ê2 ¼ y � A1u
kþ1
1 � A2u

k
2

� �
=s2: (29:52)

We end this subsection with several remarks. First, for a wide class of random field models including the
simple one above, Fessler and Hero have shown that the SAGE converges significantly faster than the
classical EM [17]. In some applications, e.g., tomography, an acceleration of 5–10 times may be achieved.
Secondly, just as for the EM algorithm, various constraints on the parameters are often needed and can
be imposed easily as penalty functions in the SAGE algorithm. Finally, notice that in Equation 29.41, the
original images are treated as parameters (with constraints) rather than as random variables with their
own pdfs. It would be of interest to investigate a Bayesian counterpart of the SAGE algorithm.

29.4 Applications

In this section, we describe the application of the EM algorithm to the simultaneous identification of the
blur and image model and the restoration of single and multichannel images.
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29.4.1 Single Channel Blur Identification and Image Restoration

Most of the work on restoration in the literature was done under the assumption that the blurring process
(usually modeled as a linear space-invariant [LSI] system and specified by its point spread function
[PSF]) is exactly known (for recent reviews of the restoration work in the literature see [8,33]). However,
this may not be the case in practice since usually we do not have enough knowledge about the mechanism
of the degradation process. Therefore, the estimation of the parameters that characterize the degradation
operator needs to be based on the available noisy and blurred data.

29.4.1.1 Problem Formulation

The observed image y(i, j) is modeled as the output of a 2D LSI system with PSF fd(p, q)g. In the
following we will use (i, j) to denote a location on the lattice S, instead of a single subscript. The output of
the LSI system is corrupted by additive zero-mean Gaussian noise v(i, j) with covariance matrix Lv ,
which is uncorrelated with the original image u(i, j). That is, the observed image y(i, j) is expressed as

y(i, j) ¼
X

(p,q)2SD
d(p, q)u(i� p, j� q)þ v(i, j), (29:53)

where SD is the finite support region of the distortion filter. We assume that the arrays y(i, j), u(i, j), and
v(i, j) are of size N � N . By stacking them into N2 � 1 vectors, Equation 29.53 can be rewritten in
matrix=vector form as [35]

y ¼ Duþ v, (29:54)

where D is an N2 � N2 matrix.
The vector u is modeled as a zero-mean Gaussian random field. Its pdf is equal to

p(u) ¼ j2pLUj�1=2 exp
�1
2

uHLU
�1u

� �
, (29:55)

where
LU is the covariance matrix of u
superscript H denotes the Hermitian (i.e., conjugate transpose) of a matrix and a vector
j � j denotes the determinant of a matrix

A special case of this representation is when u(i, j) is described by an autoregressive (AR) model. Then
LU can be parameterized in terms of the AR coefficients and the covariance of the driving noise [38,57].

Equation 29.53 can be written in the continuous frequency domain according to the convolution
theorem. Since the discrete Fourier transform (DFT) will be used in implementing convolution, we
assume that Equation 29.53 represents circular convolution (2D sequences can be padded with zeros in
such a way that the result of the linear convolution equals that of the circular convolution, or the
observed image can be preprocessed around its boundaries so that Equation 29.53 is consistent with the
circular convolution of fd(p, q)g with fu(p, q)g [36]). Matrix D then becomes block circulant [35].

29.4.1.2 Maximum Likelihood Parameter Identification

The assumed image and blur models are specified in terms of the deterministic parameters
u ¼ fLU,LV,Dg. Since u and v are uncorrelated, the observed image y is also Gaussian with pdf equal to

p(y=u) ¼ j2p DLUD
H þ LV

� �j�1=2

� exp
�1
2

yT DLUD
H þ LV

� ��1
y

� �
, (29:56)
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where the inverse of the matrix (DLUDH þ LV) is assumed to be defined since covariance matrices are
symmetric positive definite.

Taking the logarithm of Equation 29.56 and disregarding constant additive and multiplicative
terms, the maximization of the log-likelihood function becomes the minimization of the function L(u),
given by

L(u) ¼ log DLUD
H þ LV

�� ��þ yT DLUD
H þ LV

� ��1
y

h i
: (29:57)

By studying the function L(u) it is clear that if no structure is imposed on the matrices D, LU, and LV,
the number of unknowns involved is very large. With so many unknowns and only one observation
(i.e., y), the ML identification problem becomes unmanageable. Furthermore, the estimate of fd(p, q)g
is not unique, because the ML approach to image and blur identification uses only second-order
statistics of the blurred image, since all pdfs are assumed to be Gaussian. More specifically, the second-
order statistics of the blurred image do not contain information about the phase of the blur, which,
therefore, is in general undetermined. In order to restrict the set of solutions and hopefully obtain a
unique solution, additional information about the unknown parameters needs to be incorporated into
the solution process.

The structure we are imposing on LU and LV results from the commonly used assumptions in the
field of image restoration [35]. First we assume that the additive noise v is white, with variance s2

v , i.e.,

LV ¼ s2
VI: (29:58)

Further we assume that the random process u is stationary which results in LU being a block Toeplitz
matrix [35]. A block Toeplitz matrix is asymptotically equivalent to a block circulant matrix as the
dimension of the matrix becomes large [37]. For average size images, the dimensions of LU are large
indeed; therefore, the block circulant approximation is a valid one. Associated with LU are the 2D
sequences flU(p, q)g. The matrix D in Equation 29.54 was also assumed to be block circulant. Block
circulant matrices can be diagonalized with a transformation matrix constructed from discrete Fourier
kernels [35]. The diagonal matrices corresponding to LU and D are denoted respectively by QU and QD.
They have as elements the raster scanned 2D DFT values of the 2D sequences flU(p, q)g and fd(p, q)g,
denoted respectively by SU(m, n) and D(m, n).

Due to the above assumptions Equation 29.57 can be written in the frequency domain as

L(u) ¼
XN�1

m¼0

XN�1

n¼0

log jD(m, n)j2SU(m, n)þ s2
V

� 	þ jY(m, n)j2
jD(m, n)j2SU(m, n)þ s2

V

( )
, (29:59)

where Y(m, n) is the 2D DFT of y(i, j). Equation 29.59 more clearly demonstrates the already mentioned
nonuniqueness of the ML blur solution, since only the magnitude of D(m, n) appears in L(u). If the blur
is zero-phase, as is the case with D modeling atmospheric turbulence with long exposure times and
mild defocussing (fd(p, q)g is 2D Gaussian in this case), then a unique solution may be obtained.
Nonuniqueness of the estimation of fd(p, q)g can in general be avoided by enforcing the solution to
satisfy a set of constraints. Most PSFs of practical interest can be assumed to be symmetric, i.e.,
d(p, q) ¼ d(�p,�q). In this case the phase of the DFT of fd(p, q)g is zero or �p. Unfortunately,
uniqueness of the ML solution is not always established by the symmetry assumption, due primarily to
the phase ambiguity. Therefore, additional constraints may alleviate this ambiguity. Such additional
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constraints are the following: (1) The PSF coefficients are nonnegative, (2) the support SD is finite,
and (3) the blurring mechanism preserves energy [35], which results in

X
(i,j)2SD

d(i, j) ¼ 1: (29:60)

29.4.1.3 EM Iterations for the ML Estimation of u

The next step to be taken in implementing the EM algorithm is the determination of the mapping H in
Equation 29.2. Clearly Equation 29.54 can be rewritten as

y ¼ 0 I½ ]
u
y


 �
¼ D I½ � u

v


 �
¼ I I½ ]

Du
v


 �
, (29:61)

where 0 and I represent the N2 � N2 zero and identity matrices, respectively. Therefore, according to
Equation 29.61, there are three candidates for representing the complete data x, namely, fu, yg, fu, vg,
and fDu, vg. All three cases are analyzed in the following. However, as it will be shown, only the choice of
fu, yg as the complete data fully justifies the term ‘‘complete data’’, since it results in the simultaneous
identification of all unknown parameters and the restoration of the image.

For the case when H in Equation 29.2 is linear, as are the cases represented by Equation 29.61, and the
data y is modeled as a zero-mean Gaussian process, as is the case under consideration expressed by
Equation 29.56, the following general result holds for all three choices of the complete data [38,39,57].

The E-step of the algorithm results in the computation of Q(u=uk) ¼ constant � F(u=uk) where

F(u=uk) ¼ log jLXj þ tr L�1
X Ck

Xjy
� 

¼ log jLXj þ tr L�1
X Lk

Xjy
� 

þ m(k)H
Xjy L

�1
X mk

Xjy , (29:62)

where LX is the covariance of the complete data x which is also a zero-mean Gaussian process,

Ck
Xjy ¼ hxxHjy; uki ¼ Lk

Xjy þ mk
Xjym

(k)H
Xjy ,

mk
Xjy ¼ hxjy; uki ¼ LXYL

�1
Y y ¼ LXH

H HLH
XH

� ��1
y,

(29:63)

and

LXjy ¼ (x � mXjy)(x � mXjy)
Hjy; uk

D E
¼ LX � LXYL

�1
Y LYX

¼ LX � LXH
H HLXH

H
� ��1

HLX: (29:64)

The M-step of the algorithm is described by the following equation

u(kþ1) ¼ arg min
fug

F(u=uk)

� �
: (29:65)

In our formulation of the identification=restoration problem the original image is not one of the
unknown parameters in the set u. However, as it will be shown in the next section, the restored image
will be obtained in the E-step of the iterative algorithm.
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29.4.1.3.1 fu, yg as the Complete Data (CD uy Algorithm)

Choosing the original and observed images as the complete data, we obtain H ¼ [0I] and x ¼ [uHyH]H.
The covariance matrix of x takes the form

Lx ¼ hxxHi ¼ LU LUDH

DLU DLUDH þ LV


 �
, (29:66)

and its inverse is equal to [40]

L�1
X ¼ L�1

U þDHL�1
V D �DHL�1

V

�L�1
V D L�1

V

" #
: (29:67)

Substituting Equations 29.66 and 29.67 into Equations 29.62 through 29.64, we obtain

F(u=uk) ¼ log jLUj þ log jLVj þ tr L�1
U þDHL�1

V D
� �

Lk
Ujy

n o
þ m(k)H

Ujy L�1
U þDHL�1

V D
� �

mk
Ujy

� 2yHL�1
V Dmk

Ujy þ yHL�1
V y, (29:68)

where

mk
Ujy ¼ Lk

U D(k)H DkLk
U D(k)H þ Lk

V

� �1
y (29:69)

and

Lk
Ujy ¼ Lk

U � Lk
UD

(k)H DkLk
UD

(k)H þ Lk
V

� �1
DkLk

U: (29:70)

Due to the constraints on the unknown parameters described in the subsection Equation 29.62 can be
written in the discrete frequency domain as follows:

F(u=uk) ¼N2 logs2
V

þ 1
s2
V

XN�1

m¼0

XN�1

n¼0

jD(m, n)j2 SkUjy(m, n)þ 1
N2

Mk
Ujy(m, n)

��� ���2� ��

þ 1
N2

jY(m, n)j2 � 2Re Y*(m, n)D(m, n)Mk
Ujy(m, n)

h i� �

þ
XN�1

m¼0

XN�1

n¼0

log SU(m, n)þ 1
SU(m, n)

SkUjy(m, n)þ 1
N2

Mk
Ujy(m, n)

��� ���2� �� �
, (29:71)

where

Mk
Ujy(m, n) ¼ D(k)*(m, n)SkU(m, n)

jDk(m, n)j2SkU(m, n)þ s
2(p)
V

Y(m, n), (29:72)
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SkUjy(m, n) ¼ SkU(m, n)s2(k)
V

jDk(m, n)j2SkU(m, n)þ s2(k)
V

: (29:73)

In Equation 29.71, Y(m, n) is the 2D DFT of the observed image y(i, j) and Mk
Ujy(m, n) is the 2D DFT of

the unstacked vector mk
Ujy into an N � N array. Taking the partial derivatives of F(u=uk) with respect to

SU(m, n) and D(m, n) and setting them equal to zero, we obtain the solutions that minimize F(u=uk),
which represent S(kþ1)

U (m, n) and D(kþ1)(m, n). They are equal to

S(kþ1)
U (m, n) ¼ SkUjy(m, n)þ 1

N2
Mk

Ujy(m, n)
��� ���2, (29:74)

D(kþ1)(m, n) ¼ 1
N2

Y(m, n)M(k)*
Ujy (m, n)

SkUjy(m, n)þ 1
N2 Mk

Ujy(m, n)
��� ���2 , (29:75)

where Mk
Ujy(m, n) and SkUjy(m, n) are computed by Equations 29.72 and 29.73. Substituting Equation

29.75 into Equation 29.71 and then minimizing F(u=uk) with respect to s2
V, we obtain

s2(kþ1)
V ¼ 1

N2

XN�1

m¼0

XN�1

n¼0

jD(kþ1)(m, n)j2 SkUjy(m, n)þ 1
N2

Mk
Ujy(m, n)

��� ���2� ��

þ 1
N2

jY(m, n)j2 � 2Re Y*(m, n)D(kþ1)(m, n)Mk
Ujy(m, n)

h i� �
: (29:76)

According to Equation 29.72 the restored image (i.e., Mk
Ujy(m, n)) is the output of a Wiener filter, based

on the available estimate of u, with the observed image as input.

29.4.1.3.2 fu, vg as the Complete Data (CD uv Algorithm)

The second choice of the complete data is x ¼ [uHvH]H, therefore, H ¼ [DI]. Following similar steps as
in the previous case it has been shown that the equations for evaluating the spectrum of the original
image are the same as in the previous case, i.e., Equations 29.72 through 29.74 hold true. The other two
unknowns, i.e., the variance of the additive noise and the DFT of the PSF are given by

s2(kþ1)
V ¼ 1

N2

XN�1

m¼0

XN�1

n¼0

SkVjy(m, n)þ 1
N

Mk
Vjy(m, n)

��� ���2� �
, (29:77)

where

Mk
Vjy(m, n) ¼ s2(k)

V

jDk(m, n)j2SkU(m, n)þ s2(k)
V

Y(m, n), (29:78)

SkVjy(m, n) ¼ jDk(m, n)j2SkU(m, n)s2(k)
V

jDk(m, n)j2SkU(m, n)þ s2(k)
V

, (29:79)

and

jDk(m, n)j2 ¼
1
N2 jY(m, n)j2 � s2(k)

V

SkU(m, n)
, if 1

N2 jY(m, n)j2 > s2(k)
V

0, otherwise:

8><
>: (29:80)

Image Recovery Using the EM Algorithm 29-15



From Equation 29.80 we observe that only the magnitude of Dk(m, n) is available, as was mentioned
earlier. A similar observation can be made for Equation 29.75, according to which the phase of D(m, n) is
equal to the phase of D0(m, n).

In deriving the above expressions the set of unknown parameters u was divided into two sets
u1 ¼ fLU,LVg and u2 ¼ fDg. F(u1=uk) was then minimized with respect to u1, resulting in Equations
29.74 and 29.77. The likelihood function in Equation 29.59 was then minimized directly with respect
to D(m, n) assuming knowledge of uk1, resulting in Equation 29.80. The effect of mixing the optimization
procedure into the EM algorithm has not been completely analyzed theoretically. That is, the conver-
gence properties of the EM algorithm do not necessarily hold, although the application of the resulting
equations increases the likelihood function. Based on the experimental results, the algorithm derived in
this section always converges to a stationary point. Furthermore, the results are comparable to the ones
obtained with the CDuy algorithm.

29.4.1.3.3 fDx, vg as the Complete Data (CD Dx,v Algorithm)

The third choice of the complete data is x ¼ [(Du)H, vH]H. In this case, D and x cannot be estimated
separately, since various combinations of D and u can result in the same Du. The two quantities D and u
are lumped into one quantity t ¼ Du.

Following similar steps as in the two previous cases it has been shown [38,39,57] that the variance of
the additive noise is computed according to Equation 29.77, while the spectrum of the noise-free but
blurred image t by the iterations

S(kþ1)
T (m, n) ¼ SkTjy(m, n)þ 1

N2
Mk

Tjy(m, n)
��� ���2, (29:81)

where

Mk
Tjy(m, n) ¼ SkT(m, n)

SkT(m, n)þ s2(k)
V

Y(m, n) (29:82)

and

SkTjy(m, n) ¼ SkT(m, n)� S(k)2T (m, n)

SkT(m, n)þ s2(k)
V

Y(m, n): (29:83)

29.4.1.4 Iterative Wiener Filtering

In this subsection, we deviate somewhat from the original formulation of the identification problem by
assuming that the blur function is known. The problem at hand then is the restoration of the noisy-blurred
image. Although there are a great number of approaches that can be followed in this case, the Wiener
filtering approach represents a commonly used choice. However, in Wiener filtering knowledge of the
power spectrum of the original image (SU) and the additive noise (SV) is required. A standard assumption
is that of ergodicity, i.e., ensemble averages are equal to spatial averages. Even in this case, the estimation of
the power spectrum of the original image has to be based on the observed noisy-blurred image, since the
original image is not available. Assuming that the noise is white, its variance s2

v needs also to be estimated
from the observed image. Approaches, according to which the power spectrum of the original image is
computed from images with similar statistical properties, have been suggested in the literature [35].
However, a reasonable idea is to successively use the Wiener-restored image as an improved prototype
for updating the unknown SU and s2

V. This idea is precisely implemented by the CD uy algorithm.
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More specifically, now that the blur function is known, Equation 29.75 is removed from the EM
iterations. Thus, Equations 29.74 and 29.76 are used to estimate SU and s2

V, respectively, while Equation
29.72 is used to compute the Wiener-filtered image. The starting point SU0 for the Wiener iteration can
be chosen to be equal to

S0U(m, n) ¼ ŜY(m, n), (29:84)

where ŜY(m, n) is an estimate of the power spectral density of the observed image. The value of s2(0)
V can

be determined from flat regions in the observed image, since this represents a commonly used approach
for estimating the noise variance.

29.4.2 Multichannel Image Identification and Restoration

29.4.2.1 Introduction

We use the term multichannel images to define the multiple image planes (channels) which are typically
obtained by an imaging system that measures the same scene using multiple sensors. Multichannel images
exhibit strong between-channel correlations. Representative examples are multispectral images [41],
microwave radiometric images [42], and image sequences [43]. In the first case such images are acquired
for remote sensing and facilities=military surveillance applications. The channels are the different
frequency bands (color images represent a special case of great interest). In the last case the channels are
the different time frames after motion compensation. More recent applications of multichannel filtering
theory include the processing of the wavelet decomposed single-channel image [44] and the reconstruction
of a high resolution image from multiple low-resolution images [45–48].

Although the problem of single channel image restoration has been thoroughly researched, significantly
less work has been done on the problem of multichannel restoration. The multichannel formulation of
the restoration problem is necessary when cross-channel degradations exist. It can be useful, however, in
the case when only within-channel degradations exist, since cross-correlation terms are exploited to
achieve better restoration results [49,50]. The cross-channel degradationsmay come in the form of channel
crosstalks, leakage in detectors, and spectral blurs [51]. Work on restoring multichannel images is reported
in [42,49–55], when the within- and cross-channel (where applicable) blurs are known.

29.4.3 Problem Formulation

The degradation process is modeled again as [35]

y ¼ Duþ v, (29:85)

where y,u, and v are the observed (noisy and degraded) image, the original undistorted image, and the
noise process, respectively, all of which have been lexicographically ordered, and D the resulting
degradation matrix. The noise process is assumed to be white Gaussian, independent of u.

Let P be the number of channels, each of size N � N . If ui, i ¼ 0, 1, . . . , P � 1, represents the
ith channel. Then using the ordering of [56], the multichannel image u can be represented in vector
form as

u ¼ u1(0)u2(0) � � � uP(0)u1(1) � � � uP(1) � � � u1(N2 � 1) � � � uP(N2 � 1)
� 	T

: (29:86)

Defining y and v similar to that of Equation 29.86, we can now use the degradation model of Equation
29.85, recognizing that y, u, and v are of size PN2 � 1, and D is of size PN2 � PN2.
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Assuming that the distortion system is linear shift invariant, D is a PN2 � PN2 matrix of the form

D ¼
D(0) D(1) :: D(N2 � 1)

D(N2 � 1) D(0) :: D(N2 � 2)
..
. ..

.
:: ..

.

D(1) D(2) :: D(0)

2
6664

3
7775, (29:87)

where the P � P sub-matrices (subblocks) have the form

D(m) ¼
D11(m) D12(m) :: D1P(m)
D21(m) D22(m) :: D2P(m)

..

. ..
.

:: ..
.

DP1(m) DP2(m) :: DPP(m)

2
6664

3
7775, 0 � m � N2 � 1: (29:88)

Note that Dii(m) represents the intrachannel blur, while Dij(m), i 6¼ j represents the interchannel blur.
The matrix D in Equation 29.87 is circulant at the block level. However, for D to be block-circulant, each
of its subblocks D(m) also needs to be circulant, which, in general, is not the case. Matrices of this form
are called semiblock circulant (SBC) matrices [56]. The singular values of such matrices can be found
with the use of the DFT kernels. Equation 29.85 can therefore be written in the vector DFT domain [56].

Similarly, the covariance matrix of the original signal, LU, and the covariance matrix of the noise
process, LV, are also SBC (assuming u and v are stationary). Note that LU is not block-circulant because
there is no justification to assume stationarity between channels (i.e., LUiUj (m) ¼ E[ui(m)uj(m)*] is not
equal to LUiþpUjþp (m) ¼ E[uiþp(m)ujþp(m)*] [50], where LUiUj (m) is the (i, j)th submatrix of LU).
However, LU and LV are SBC because ui and vi are assumed to be stationary within each channel.

29.4.4 E-Step

We follow here similar steps to the ones presented in the previous section. We choose [uHyH]H as the
complete data. Since the matrices LU, LV, and D, are assumed to be SBC, the E-step requires the
evaluation of

F u; uk
�

) ¼
XN�1

m¼0

XN�1

n¼0

J(m, n), (29:89)

where

J(m, n) ¼ log jQU(m, n)j þ log jQV(m, n)j þ tr
nh

Q�1
U (m, n)

þQH
D(m, n)Q�1

V (m, n)QD(m, n)
i
Qk
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The derivation of Equation 29.90 is presented in detail in [48,57,58]. Equation 29.89 is the corresponding
equation to Equation 29.71 for the multichannel case.

In Equation 29.90, QU(m, n) is the (m, n)th component matrix of QU, which is related to LU by a
similarity transformation using 2D discrete Fourier kernels [56,57]. To be more specific, for P ¼ 3, the
matrix,

QU(m, n) ¼
S11(m, n) S12(m, n) S13(m, n)

S21(m, n) S22(m, n) S23(m, n)

S31(m, n) S32(m, n) S33(m, n)

2
64

3
75, (29:91)

consists of all the (m, n)th component of the power and cross-power spectra of the original color
image (without loss of generality in the subsequent discussion three-channel examples will be used). It
is worthwhile noting here that the power spectra Sii(m, n), i ¼ 1, 2, and 3, which are the diagonal
entries of QU(m, n), are real-valued, while the cross power spectra (the off-diagonal entries) are
complex. This illustrates one of the main differences between working with multichannel images as
opposed to single-channel images. In addition to each frequency component being a P � P matrix
versus a scalar quantity for the single-channel case, the cross power spectra is complex versus being
real for the single-channel case. Similarly, the (m, n)th component of the inverse of the noise spectrum
matrix is given by

QV
�1(m, n) ¼

z11(m, n) z12(m, n) z13(m, n)

z21(m, n) z22(m, n) z23(m, n)

z31(m, n) z32(m, n) z33(m, n)

2
64

3
75: (29:92)

One simplifying assumption that we can make about Equation 29.92 is that the noise is white within
channels and zero across channels. This results in QV(m, n) being the same diagonal matrix for all (m, n).

QD(m, n) in Equation 29.90 is equal to

QD(m, n) ¼
D11(m, n) D12(m, n) D13(m, n)

D21(m, n) D22(m, n) D23(m, n)

D31(m, n) D32(m, n) D33(m, n)

2
64

3
75, (29:93)

where
Dij(m, n) is the within-channel (i ¼ j) or cross-channel (i 6¼ j) frequency response of the blur system
Y(m, n) is the (m, n)th component of the DFT of the observed image
Qk

Ujy(m, n) and Mk
Ujy(m, n) are the (m, n)th frequency component matrix and vector of the multi-

channel counterparts of LUjy and mUjy , respectively, computed by

Qk
Ujy(m, n) ¼Qk

U(m, n)�Qk
U(m, n)Q(k)H

D (m, n) Qk
V(m, n)

h

þQk
D(m, n)Qk

U(m, n)Q(k)H
D (m, n)

i�1
Qk

D(m, n)Qk
U(m, n) (29:94)

and

Mk
Ujy(m, n) ¼Qk

U(m, n)Q(k)H
D (m, n) Qk

V(m, n)
h

þQk
D(m, n)Qk

U(m, n)Q(k)H
D (m, n)

i�1
Y(m, n): (29:95)
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29.4.5 M-Step

The M-step requires the minimization of J(m, n) with respect to QU(m, n), QV(m, n), and QD(m, n). The
resulting solutions become Q(kþ1)

U (m, n), Q(kþ1)
V (m, n) and Q(kþ1)

D (m, n), respectively.
The minimization of J(m, n) with respect to QU is straightforward, since QU is decoupled from

QV(m, n) and QD. An equation similar to Equation 29.74 results. The minimization of J(m, n) with
respect to QD is not as straightforward; QD is coupled with QV. Therefore, in order to minimize J(m, n)
with respect to QD, QV must be solved first in terms of QD, substituted back into Equation 29.90, and
then minimized with respect to QD.

It is shown in [48,58] that two conditions must be met in order to obtain explicit equations for the
blur. First, the noise spectrum matrix, QV(m, n), must be a diagonal matrix, which is frequently
encountered in practice. Second, all of the blurs must be symmetric, so that there is no phase when
working in the discrete frequency domain. The first condition arises from the fact that QV(m, n) and
QD(m, n) are coupled. The second condition arises from the Cauchy–Riemann theorem, and must be
satisfied in order to guarantee the existence of a derivative at every point.

With these conditions, the iterations for D(m, n) and sV(m, n) are derived in [48,58], which are similar
respectively to Equations 29.75 and 29.76. Special cases are also analyzed in [48,58], when the number of
unknowns is reduced. For example, if QD is known, the multichannel Wiener filter results.

29.5 Experimental Results

The effectiveness of both the single channel and multi-channel restoration and identification algorithms is
demonstrated experimentally. The red, green, and blue (RGB) channels of the original Lena image used for
this experiment are shown in Figure 29.1. A 5� 5 truncated Gaussian blur is used for each channel and
Gaussian white noise is added resulting in a blurred signal-to-noise ratio (SNR) of 20 dB. The degraded
channels are shown in Figure 29.2. Three different experiments were performed with the available

FIGURE 29.1 Original RGB Lena.

FIGURE 29.2 Degraded RGB Lena, intrachannel blurs only, 20 dB SNR.
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degraded data. The single-channel algorithm of Equations 29.74 through 29.76 was first run for each of the
RGB channels independently. The restored images are shown in Figure 29.3. The corresponding multi-
channel algorithm was then run, resulting in the restored channels shown in Figure 29.4. Finally the
multichannel Wiener filter was also run, in demonstrating the upper bound of the algorithm’s perform-
ance, since the blurs are now exactly known. The resulting restored images are shown in Figure 29.5. The
improvement in SNR for the three experiments and for each channel is shown in Table 29.1. According to
this table, the performance of the algorithm increases from the first to the last experiment. This is to be
expected, since in considering the multichannel algorithm over the single channel algorithm the correl-
ation between channels is taken into account, which brings additional information into the problem.

A photographically blurred image is shown next in Figure 29.6. The restorations of it by the CD_uy
and CD_uv algorithms are shown, respectively, in Figures 29.7 and 29.8.

FIGURE 29.3 Restored RGB by the decoupled single channel EM algorithm.

FIGURE 29.4 Restored RGB Lena by the multichannel EM algorithm.

FIGURE 29.5 Restored RGB Lena by the iterative multichannel Wiener algorithm.
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TABLE 29.1 Improvement in SNR (in dB)

h Decoupled EM Multichannel EM Wiener

Red 1.5573 2.1020 2.3420

Green 1.3814 2.0086 2.3181

Blue 1.1520 1.5148 1.8337

FIGURE 29.6 Photographically blurred image.

FIGURE 29.7 Restored image by the CD_uy algorithm.
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29.5.1 Comments on the Choice of Initial Conditions

The likelihood function which is optimized is highly nonlinear and a number of local minima exist.
Although the incorporation of the various constraints, discussed earlier, restricts the set of possible
solutions, a number of local minima still exist. Therefore, the final result depends on the initial
conditions. Based on our experience in implementing the EM iterations of the previous sections for
the single-channel and the multi-channel image restoration cases, the following comments and obser-
vations are in order.

It was observed experimentally that the final results are quite insensitive to variations in the values of
the noise variance(s) and the original image power spectra. An estimate of the noise variances from flat
regions of the noisy and blurred images were used as initial condition. It was observed that using initial
estimates of the noise variances larger than the actual ones produced good final results.

The final results are quite sensitive, however, to variations in the values of the PSF. Knowledge of the
support of the PSF is quite important. In [38] after convergence of the EM algorithm the estimate of the
PSF was truncated, normalized, and used as an initial condition in restarting another iteration cycle.

29.6 Summary and Conclusion

In this chapter, we have described and illustrated how the EM algorithm can be used in image recovery
problems. The basic approach can be summarized by the following steps:

1. Select a statistical model for the observed data and formulate the image recovery problem as an
MLE problem.

2. If the likelihood function is difficult to optimize directly, the EM algorithm can be used by properly
selecting the complete data.

3. Constraints on the parameters or image to be estimated, proper initial conditions, and multiple
complete data spaces can be considered to improve the uniqueness and convergence of the
estimates.

4. Derive the equations for the E-step and M-step.

We end this chapter with several remarks. We want to emphasize again that the EM algorithm only
guarantees convergence to a local optimum. Therefore, the initial conditions are quite critical, as is also

FIGURE 29.8 Restored image by the CD_uv algorithm.
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discussed in the previous section. Depending on the number of the unknown parameters, one could consider
evaluating in a systematic fashion the likelihood function directly at a number of points and use as initial
condition the point which results in the largest value of the likelihood function. Improved results can be
obtained potentially if the number of the unknown parameters is reduced by parameterizing the unknown
functions. For example, separable and nonseparable exponential covariance models are used in [46–48], and
anARmodel in [38,57] tomodel the original image, and parameterized blurmodels are discussed in [38].We
want to mention also that the EM algorithm can be implemented in different domains. For example, it is
implemented in both spatial and frequency domains, respectively, in Sections 29.3 and 29.4. Other domains
are also possible by applying proper transforms, e.g., the wavelet transform [59].
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30.1 Introduction

Signal reception has numerous applications in communications, radar, sonar, and geoscience among
others. However, the adverse effects of noise in these applications limit their utility. Hence, the quest for
new and improved noise removal techniques is an ongoing research topic of great importance in a vast
number of applications of signal reception.

When certain characteristics of noise are known, their effects can be compensated. For example, if the
noise is known to have certain spectral characteristics, then a finite impulse response (FIR) or infinite
impulse response filter can be designed to suppress the noise frequencies. Similarly, if the statistics of the
noise are known, then a Weiner filter can be used to alleviate its effects. Finally, if the noise is spatially
separated from the desired signal, then multisensor arrays can be used for noise suppression. This last
case is discussed in this article.

A multisensor array consists of a set of transducers, i.e., antennas, microphones, hydrophones, seismo-
meters, geophones, etc. that are arranged in a pattern which can take advantage of the spatial location of
signals. A two-element television antenna provides a good example. To improve signal reception and=or
mitigate the effects of a noise source, the antenna pattern is manually adjusted to steer a low gain component
of the antenna pattern toward the noise source. Multisensor arrays typically achieve this adjustment through
the use of an array processing algorithm. Most applications of multisensor arrays involve a fixed pattern of
transducers, such as a linear array. Antenna pattern adjustments aremade by applying weights to the outputs
of each transducer. If the noise arrives from a specific non-changing spatial location, then the weights will be
fixed. Otherwise, if the noise arrives from random, changing locations then the weights must be adaptive.
So, in a military communications application where a communications channel is subject to jamming from
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random spatial locations, an adaptive array processing algorithm would be the appropriate solution.
Commercial applications of microphone arrays include teleconferencing [6] and hearing aids [9].

There are several methods for obtaining the weight update equations in array processing. Most of these
are derived from statistically based formulations. The resulting optimal weight vector is then generally
expressed in terms of the input autocorrelation matrix. An alternative formulation is to express the array
processing problem as a linear system of equations to which iterative matrix inversion techniques can be
applied. The matrix inverse formulation will be the focus of this article.

The following section provides a background overview of wave propagation, spatial sampling, and
spatial filtering. Next, narrowband and broadband beamforming arrays are described along with the
standard algorithms used for these implementations. The narrowband and broadband algorithms are
then reformulated in terms of an inverse problem and an iterative technique for solving this system of
equations is provided. Finally, several examples are given along with a summary.

30.2 Background Theory

Array processing uses information regarding the spatial locations of signals to aid in interference
suppression and signal enhancement. The spatial locations of signals may be determined by the
wavefronts that are emanated by the signal sources. Some background theory regarding wave propaga-
tion and spatial frequency is necessary to fully understand the interference suppression techniques used
within array processing. The following subsections provide this background material.

30.2.1 Wave Propagation

An adaptive array consists of a number of sensors typically configured in a linear pattern that utilizes the
spatial characteristics of signals to improve the reception of a desired signal and=or cancellation of
undesired signals. The analysis used in this chapter assumes that a linear array is being used, which
corresponds to the sensors being configured along a line. Signals may be spatially characterized by their
angle of arrival with respect to the array. The angle of arrival of a signal is defined as the angle between
the propagation path of the signal and the perpendicular of the array. Consider the wavefront emanating
from a point source as is illustrated in Figure 30.1. Here, the angle of arrival is shown as u.

Sensor

Point
source

d
θ

Sensor

Sensor

Sensor

Sensor

FIGURE 30.1 Propagating wavefront.
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Note in Figure 30.1 that wavefronts emanating from a point source may be characterized by plane
waves (i.e., the locus of constant phase form straight lines) when originating from the far field or
Fraunhofer, region. The far field approximation is valid for signals that satisfy the following condition:

s � D2

l
, (30:1)

where s is the distance between the signal and the array, l is the wavelength of the signal, and D is the
length of the array. Wavefronts that originate closer than D2=l are considered to be from the near field or
Fresnel, region. Wavefronts originating from the near field exhibit a convex shape when striking the array
sensors. These wavefronts do not create linear phase shifts between consecutive sensors. However, the
curvature of the wavefront allows algorithms to determine point source location in addition to direction
of arrival [1]. The remainder of this article assumes that all wavefronts arrive from the far field region.

30.2.2 Spatial Sampling

In Figure 30.1 it can be seen that the signal waveform experiences a time delay between crossing each
sensor, assuming that it does not arrive perpendicular to the array. The time delay, t, of the waveform
striking the first and then second sensors in Figure 30.1 may be calculated as

t ¼ d
c
sin u, (30:2)

where
d is the sensor spacing
c is the speed of propagation of the given waveform for a particular medium (i.e., 3� 108 m=s for
electromagnetic waves through air, 1:5� 103 m=s for sound waves through water, etc.)

u is the angle of arrival of the wavefront

This time delay corresponds to a shift in phase of the signal as observed by each sensor. The phase shift,
f, or electrical angle observed at each sensor due to the angle of arrival of the wavefront may be found as

f ¼ 2pd
lo

sin u ¼ vod
c

sin u: (30:3)

Here, lo is the wavelength of the signal at frequency fo as defined by

lo ¼ c
fo
: (30:4)

Hence, a signal x(k) that crosses the sensor array and exhibits a phase shift f between uniformly spaced,
consecutive sensors can be characterized by the vector x(k), where

x(k) ¼ x(k)

1
e�jf

e�2jf

..

.

e�j(K�1)f

2
666664

3
777775: (30:5)

Uniform sensor spacing is assumed throughout the remainder of this article.
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30.2.3 Spatial Frequency

The angle of arrival of a wavefront defines a quantity known as the spatial frequency. Adaptive arrays use
information regarding the spatial frequency to suppress undesired signals that originate from different
locations than that of the target signal. The spatial frequency is determined from the periodicity that is
observed across an array of sensors due to the phase shift of a signal arriving at some angle of arrival.

Signals that arrive perpendicular to the array (known as boresight) create identical waveforms at each
sensor. The spatial frequency of such signals is zero. Signals that do not arrive perpendicular to the array
will not create waveforms that are identical at each sensor assuming that there is no spatial aliasing due to
insufficiently spaced sensors. In general, as the angle increases, so does the spatial frequency. It can also
be deduced that retaining signals having an angle of arrival equal to zero degrees while suppressing
signals from other directions is equivalent to low pass filtering the spatial frequency. This provides the
motivation for conventional or fixed-weight beamforming techniques. Here, the sensor values can be
computed via a windowing technique, such as a rectangular, Hamming, etc. to yield a fixed suppression
of non-boresight signals. However, adaptive techniques can locate the specific spatial frequency of an
interfering signal and position a null in that exact location to achieve greater suppression.

There are two types of beamforming, namely conventional, or ‘‘fixed weight,’’ beamforming and
adaptive beamforming. A conventional beamformer can be designed using windowing and FIR filter
theory. They utilize fixed weights and are appropriate in applications where the spatial locations of noise
sources are known and are not changing. Adaptive beamformers make no such assumptions regarding
the locations of the signal sources. The weights are adapted to accommodate the changing signal
environment.

Arrays that have a visible region of �90� to þ90� (i.e., the azimuth range for signal reception) require
that the sensor spacing satisfy the relation

d � l

2
: (30:6)

The above relation for sensor spacing is analogous to the Nyquist sampling rate for frequency domain
analysis. For example, consider a signal that exhibits exactly one period between consecutive sensors. In
this case, the output of each sensor would be equivalent, giving the false impression that the signal arrives
normal to the array. In terms of the antenna pattern, insufficient sensor spacing results in grating lobes.
Grating lobes are lobes other than the main lobe that appear in the visible region and can amplify
undesired directional signals.

The spatial frequency characteristics of signals enable numerous enhancement opportunities via array
processing algorithms. Array processing algorithms are typically realized through the implementation of
narrowband or broadband arrays. These two arrays are discussed in the following sections.

30.3 Narrowband Arrays

Narrowband adaptive arrays are used in applications where signals can be characterized by a single
frequency and thus occupy a relatively narrow bandwidth. A signal whose envelope does not change
during the time their wavefront is incident on the transducers is considered to be narrowband. A
narrowband adaptive array consists of an array of sensors followed by a set of adjustable gains, or
weights. The outputs of the weighted sensors are summed to produce the array output. A narrowband
array is shown in Figure 30.2.

The input vector x(k) consists of the sum of the desired signal s(k) and noise n(k) vectors and is
defined as

x(k) ¼ s(k)þ n(k), (30:7)
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where k denotes the time instant of the input vector. The noise vector n(k) will generally consist of
thermal noise and directional interference. At each time instant, the input vector is multiplied with the
weight vector to obtain the array output, which is given as

y(k) ¼ xT(k)w, x, w 2 CK , (30:8)

where CK is the complex space of dimension K. The array output is then passed to the signal processor
which uses the previous value of the output and current values of the inputs to determine the adjustment
to make to the weights. The weights are then adjusted and multiplied with the new input vector to obtain
the next output. The output feedback loop allows the weights to be adjusted adaptively, thus accommo-
dating nonstationary environments.

In Equation 30.8, it is desired to find a weight vector that will allow the output y to approximately
equal the true target signal. For the derivation of the weight update equations, it is necessary to know
what a priori information is being assumed. One form of a priori information could be the spatial
location of the target signal, also known as the ‘‘look-direction.’’ For example, many array processing
algorithms assume that the target signal arrives normal to the array, or else a steering vector is used to
make it appear as such. Another form of a priori information is to use a signal at the receiving end that is
correlated with the input signal, i.e., a pilot signal. Each of these criteria will be considered in the
following subsections.

30.3.1 Look-Direction Constraint

One of the first narrowband array algorithms was proposed by Applebaum [2]. This algorithm is known
as the sidelobe canceler and assumes that the direction of the target signal is known. The algorithm does
not attempt to maximize the signal gain, but instead adjusts the sidelobes so that interfering signals
coincide with the nulls of the antenna pattern. This concept is illustrated in Figure 30.3.

Applebaum derived the weight update equation via maximization of the signal to interference plus
thermal noise ratio (SINR). As derived in [2], this optimization results in the optimal weight vector as
given by Equation 30.9:

wopt ¼ mR�1
xx t, (30:9)

Interfering
signal

Target
signal

Interfering
signal

X1

X2

XK

W1

W2 Σ

WeightsSensors

Y

WK

FIGURE 30.2 Narrowband array.
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where
Rxx is the covariance matrix of the input
m is a constant related to the signal gain
t is a steering vector that corresponds to the angle of arrival of the desired signal

This steering vector is equivalent to the phase shift vector of Equation 30.5. Note that if the angle of
arrival of the desired signal is zero, then the t vector will simply contain ones.

A discretized implementation of the Applebaum algorithm appears as follows:

w( jþ1) ¼ w( j ) þ a wq � w( j )
�

)� bx(k)y(k), (30:10)

where
wq represents the quiescent weight vector (i.e., when no interference is present)
the superscript j refers to the iteration
a is a gain parameter for the steering vector
b is a gain parameter controlling the adaptation rate and variance about the steady state solution

30.3.2 Pilot Signal Constraint

Another form of a priori information is to use a pilot signal that is correlated with the target signal. This
results in a beamforming algorithm that will concentrate on maintaining a beam directed toward the
target signal, as opposed to, or in addition to, positioning the nulls as in the case of the sidelobe canceler.
One such adaptive beamforming algorithm was proposed by Widrow [20,21]. The resulting weight
update equation is based on minimizing the quantity [y(k)� p(k)]2 where p(k) is the pilot signal. The
resulting weight update equation is

w( jþ1) ¼ w( j ) þ me(k)x(k): (30:11)

This corresponds to the least means square (LMS) algorithm, where e is the current error, namely
[y(k)� p(k)], and m is a scaling factor.

30.4 Broadband Arrays

Narrowband arrays rely on the assumption that wavefronts normal to the array will create identical
waveforms at each sensor and wavefronts arriving at angles not normal to the array will create a linear
phase shift at each sensor. Signals that occupy a large bandwidth and do not arrive normal to the array

Interference 1

Interference 2

FIGURE 30.3 Sidelobe canceling.
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violate this assumption since the phase shift is a function of fo and varying frequency will cause a varying
phase shift. Broadband signals that arrive normal to the array will not be subject to frequency dependent
phase shifts at each sensor as will broadband signals that do not arrive normal to the array. This is
attributed to the coherent summation of the target signal at each sensor where the phase shift will be a
uniform random variable with zero mean. A modified array structure, however, is necessary to compen-
sate the interference waveform inconsistencies that are caused by variations about the center frequency.
This can be achieved by having the weight for a sensor being a function of frequency, i.e., a FIR filter,
instead of just being a scalar constant as in the narrowband case. Broadband adaptive arrays consist of an
array of sensors followed by tapped delay lines, which is the major implementation difference between a
broadband and narrowband array. A broadband array is shown in Figure 30.4.

Consider the transfer functions for a given sensor of the narrowband and broadband arrays, shown by

Hnarrow(w) ¼ w1 (30:12)

and

Hbroad(w) ¼ w1 þ w2e
�jwT þ w3e

�2jwT þ � � � þ wJe
�j( J�1)wT : (30:13)

The narrowband transfer function has only a single weight that is constant with frequency. However, the
broadband transfer function, which is actually a Fourier series expansion, is frequency dependent and
allows for choosing a weight vector that may compensate phase variations due to signal bandwidth. This
property of tapped delay lines provides the necessary flexibility for processing broadband signals. Note
that typically four or five taps will be sufficient to compensate most bandwidth variances [14].

The broadband array shown in Figure 30.4 obtains values at each sensor and then propagates these
values through the array at each time interval. Therefore, if the values x1 through xK are input at time
instant one, then at time instant two, xKþ1 through x2K will have the values previously held by x1 through
xK , x2Kþ1 through x3K will have the values previously held by xKþ1 through x2K , etc. Also, at each time
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FIGURE 30.4 Broadband array.
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instant, a scalar value y will be calculated as the inner product of the input vector x and the weight vector w.
This array output is calculated as

y(k) ¼ xT(k)w, x,w 2 CJK , (30:14)

where CJK is the complex space of dimension JK.
Although not shown in Figure 30.4, a signal processor exists as in the narrowband array, which uses

the previous output and current inputs to determine the adjustments to make to the weight vector w. The
output signal y will approach the value of the desired signal as the interfering signals are canceled until it
converges to the desired signal in the least squares sense.

Broadband arrays have been analyzed by Widrow [21], Griffiths [10,12], and Frost [7]. Widrow [21]
proposed a LMS algorithm that minimizes the square of the difference between the observed output and
the expected output, which was estimated with a pilot signal. This approach assumes that the angle of
arrival and a pilot signal are available a priori. Griffiths [10] proposed a LMS algorithm that assumes
knowledge of the cross-correlation matrix between the input and output data instead of the pilot signal.
This method assumes that the angle of arrival and second order signal statistics are known a priori. The
methods proposed by Widrow and Griffiths are forms of unconstrained optimization. Frost [7] proposed
a LMS algorithm that assumes a priori knowledge of the angle of arrival and the frequency band of
interest. The Frost algorithm utilizes a constrained optimization technique, which Griffiths later derived
an unconstrained formulation that utilizes the same constraints [12]. The Frost algorithm will be the
focus of this section.

The Frost algorithm implements the look-direction and frequency response constraints as follows. For
the broadband array shown in Figure 30.4, a target signal waveform propagating normal to the array, or
steered to appear as such, will create identical waveforms at each sensor. Since the taps in each column,
i.e., w1 through wK , see the same signal, this array may be collapsed to a single sensor FIR filter. Hence, to
constrain the frequency range of the target signal, one just has to constrain the sum of the taps for each
column to be equal to the corresponding tap in a FIR filter having J taps and the desired frequency
response for the target signal.

These look-direction and frequency response constraints can be implemented by the following
optimization problem:

minimize: wTRxxw (30:15)

subject to: CTw ¼ h, (30:16)

where
Rxx is the covariance matrix of the received signals
h is the vector of FIR filter coefficients defining the desired frequency response
CT is the constraint matrix given by

CT ¼
11 � � � 1 00 � � � 0 � � � 00 � � � 0
00 � � � 0 11 � � � 1 � � � 00 � � � 0
..
.

00 � � � 0 00 � � � 0 � � � 11 � � � 1

2
664

3
775:

The number of rows in CT is equal to the number of taps of the array and the number of ones in each row
is equal to the number of sensors. The optimal weight vector wopt will minimize the output power of the
noise sources subject to the constraint that the sum of each column vector of weights is equal to a
coefficient of a FIR filter defining the desired impulse response of the array.
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The Frost algorithm [7] is a constrained LMS method derived by solving Equations 30.15 and 30.16 via
Lagrange Multipliers to obtain an expression for the optimum weight vector, Frost [7] derived the
constrained LMS algorithm for broadband array processing using Lagrange multipliers. The function to
be minimized may be defined as

H(w) ¼ 1
2
wTRxxw þ lT(CTw � h), (30:17)

where
l is a Lagrange multiplier
F is a vector representative of the desired frequency response

Minimizing the function H(w) with respect to w will obtain the following optimal weight vector:

wopt ¼ R�1
xx C CTR�1

xx C
�

)�1h: (30:18)

An iterative implementation of this algorithm was implemented via the following equations:

w( jþ1) ¼ P w( j ) � mRxxw
( j )

� �þ C(CTC)�1h, (30:19)

where m is a step size parameter and

P ¼ I� C(CTC)�1CT

w(0) ¼ C(CTC)�1h,

where I is the identity matrix and

h ¼ [ h1 h2 � � � hj ]:

30.5 Inverse Formulations for Array Processing

The array processing algorithms discussed thus far have all been derived through statistical analysis
and=or adaptive filtering techniques. An alternative approach is to view the constraints as equations that
can be expressed in a matrix-vector format. This allows for a simple formulation of array processing
algorithms to which additional constraints can be easily incorporated. Additionally, this formulation
allows for efficient iterative matrix inversion techniques that can be used to adapt the weights in real time.

30.5.1 Narrowband Arrays

Two algorithms were discussed for narrowband arrays, namely, the sidelobe canceler and pilot signal
algorithms. We will consider the sidelobe canceler algorithm here. The derivation of the sidelobe canceler
is based on the optimization of the SINR and yields an expression for the optimum weight vector as a
function of the input autocorrelation matrix. We will use the same constraints as the sidelobe canceler to
yield a set of linear equations that can be put in a matrix vector format.

Consider the narrowband array description provided in Section 30.3. In Equation 30.7, s(k) is the
vector representing the desired signal whose wavefront is normal to the array and n(k) is the sum of the
interfering signals arriving from different directions. A weight vector is desired that will allow the signal
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vector s(k) to pass through the array undistorted while nulling any contribution of the noise vector n(k).
An optimal weight vector wopt that satisfies these conditions is represented by

wT
opts(k) ¼ s(k) (30:20)

and

wT
optn(k) ¼ 0, (30:21)

where s(k) is the scalar value of the desired signal. Since the sidelobe canceler does not have access to s(k),
an alternative approach must be taken to implement the condition of Equation 30.20. One method for
finding this constraint is to minimize the expectation of the output power [7]. This expectation can be
approximated by the quantity y2, where y ¼ xT(k)w. Minimizing y2 subject to the look-direction
constraint will tend to cancel the noise vector while maintaining the signal vector. This criteria can be
represented by the linear equation:

xT(k)w ¼ 0: (30:22)

Note that Equation 30.22 implies that the weight vector be orthogonal to the composite input vector as
opposed to just the noise component. However, the look-direction constraint imposed by the following
equation will maintain the desired signal

[ 1 1 � � � 1 ]w ¼ 1: (30:23)

This equation satisfies the look-direction constraint that a signal arriving perpendicular to the array will
have unity gain in the output.

The constraints imposed by Equations 30.22 and 30.23 can be expressed in a matrix-vector form as
follows:

x1(k) x2(k) � � � xK (k)
1 1 � � � 1

� �
w ¼ 0

1

� �
(30:24)

or, equivalently,

Aw ¼ b:

30.5.2 Broadband Arrays

The broadband array considered in this section will utilize the constraints considered by Frost [7],
namely the look-direction and frequency range of the target signal. The linear equations that represent
the Frost algorithm are similar to those used for the narrowband formulation derived in the previous
section. Once again, the minimization of the cost function in Equation 30.15 can be achieved by Equation
30.22, assuming that the target signal arrives normal to the array. The constraint for the desired
frequency response in the look direction can also be implemented in a similar fashion to that of the
narrowband array in Equation 30.23. Instead of constraining the sum of the weights to be one, as in the
narrowband array, the broadband array implementation will constrain the sum of each column of
weights to be equal to a corresponding tap value in a FIR filter with the desired frequency response for
the target signal.
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Hence, the broadband array problem represented by Equations 30.15 and 30.16 can be expressed as a
linear system of equations by creating a matrix that has the cost function given by Equation 30.15
augmented with the linear constraint equations given by Equation 30.16. The problem can now be
expressed as

x1 � � � xK � � � x( J�1)Kþ1 � � � xJK
1 � � � 1 � � � 0 � � � 0
0 � � � 0 � � � 0 � � � 0
..
.

0 � � � 0 � � � 1 � � � 1

2
66664

3
77775

w1

w2

..

.

wJK

2
6664

3
7775 ¼

0
h1
..
.

hJ

2
6664

3
7775,

or

Aw ¼ h0, (30:25)

where h0 is the vector of FIR filter coefficients augmented with a zero.

30.5.3 Row-Action Projection Method

The matrix-vector formulation for the narrowband beamforming problem, as represented in Equation
30.24 or the broadband array problem formulated in Equation 30.25 can now be expressed as an inverse
problem. For example, ifA is n� n and rank[Ajb] ¼ rank[A], then a unique solution forw can be found as

w ¼ A�1b: (30:26)

If instead, A is m� n, then a least squares solution can be implemented as

w ¼ (ATA)�1ATb: (30:27)

Another solution can be obtained by using the Moore–Penrose generalized inverse, or pseudo-inverse, of
A via

wy ¼ Ayb, (30:28)

where Ay and wy represent the pseudo-inverse of A and the pseudo-inverse solution for w, respectively.
These methods all provide an immediate solution for the weight vector, w, however, at the expense

of requiring a matrix inversion along with any instabilities that may be apparent if the matrix is
ill-conditioned. A more convenient approach to solve for the weights is to use an iterative approach.
The method that we shall use here is known as the row-action projection (RAP) algorithm. The RAP
algorithm is an iterative technique for solving a system of linear equations. The RAP method has found
numerous applications in digital signal processing [16] and is applied here to adaptive beamforming.

The RAP method for iteratively solving the system in Equation 30.24 is given by the update equation:

w( jþ1) ¼ w( j ) þ m
ei

kaik
aTi
kaik , (30:29)

where ei is the error term for the ith row defined as:

ei ¼ bi � aiw
(k): (30:30)
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In Equations 30.29 and 30.30, the superscript j denotes the iteration, the subscript i refers to the row
number of the matrix or vector, and m is a gain parameter, which is known to be stable for values
between zero and two. The choice of m is important for performance characteristics and has the
tradeoff that a large m will provide faster convergence, while a small m will provide greater accuracy.
Also, note that choosing m between one and two may, in some instances, prevent convergence to the
LMS solution.

The RAP method operates by creating orthogonal projections in the space defined by the data matrix
A in Equation 30.24. A graphical representation of the RAP algorithm, as applied to a three sensor
beamforming array, is illustrated in Figure 30.5.

In Figure 30.5, the target signal subspace consists of the plane represented by the look-direction
constraint, namely w1 þ w2 þ w3 ¼ 1. The input signal subspace, given by w1x1(k)þ w2x2(k)þ
w3x3(k) ¼ 0, will consist of a different plane for each discrete time index k. The RAP method first
creates an orthogonal projection to the input subspace (i.e., satisfying wTx(k) ¼ 0). A projection is then
made to the target signal subspace. This procedure will be repeated for the next input subspace, etc.
Intuitively, this procedure will find a solution as ‘‘orthogonal as possible’’ to the different input subspaces,
which lies in the target signal subspace. Since the RAP method consists of only row operations, it is
convenient for parallel implementations. This technique, described by Equations 30.24, 30.29, and 30.30,
comprises the RAP method for array processing.

30.6 Simulation Results

Several simulations were performed to compare the inverse formulation of the array processing problem
to the more traditional adaptive filtering approaches. These simulations compare the inverse formulation
to the sidelobe canceler implementation of the narrowband array and to the Frost implementation of the
broadband array.
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(0,0,1)
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FIGURE 30.5 Orthogonal projections in weight space.
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30.6.1 Narrowband Results

The sidelobe canceler application is evaluated with both the Applebaum algorithm and the inverse
formulation. Both arrays are simulated for a nine-sensor narrowband array. The RAP algorithm for the
inverse formulation uses a gain value of m ¼ 0:001 and the Applebaum array uses values of a ¼ 0:25 and
b ¼ 0:01. The signal environment for the scenario consists of unit amplitude tones whose spectral and
spatial characteristics are summarized by Table 30.1. The input spectrum of the narrowband scenario is
shown in Figure 30.6. The input and output spectrums for the inverse formulation and Applebaum
algorithm are shown in Figures 30.6 through 30.8. The inverse formulation and Applebaum algorithms
demonstrate similar performance for this example.

30.6.2 Broadband Results

The broadband array application is also evaluated with both the inverse formulation and Frost algorithm.
The algorithms are both evaluated for a broadband array that consists of nine sensors, each followed by
five taps. The signal environment used for the scenario consists of several signals of varying spectral and
spatial characteristics as summarized by Table 30.2.

TABLE 30.1 Input Scenario for Narrowband
Experiment

Signal Angle (degree) Frequency (KHz)

Target signal 0 2.0

Interference 1 28 3.0

Interference 2 41 1.0

Interference 3 72 4.0
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FIGURE 30.6 Narrowband input spectrum.
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Narrowband output spectrum—Inverse array
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FIGURE 30.7 Output spectrum for inverse formulation.

TABLE 30.2 Input Scenario for Broadband Experiment

Signal Angle (degree) Frequency (KHz)

Target signal 0 3.0

Interference 1 27 1.5

Interference 2 41 4.0
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FIGURE 30.8 Output spectrum for Applebaum array.
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The RAP algorithm used for the inverse has a gain value m ¼ 0:5 and the Frost algorithm uses the gain
value m ¼ 0:05. The h vector specifies a low pass frequency response with a passband up to 4 KHz. The
input and output signal spectrums are shown in Figures 30.9 through 30.11. The inverse formulation and
Frost algorithms again demonstrate similar performance.

The broadband array processing algorithms are also evaluated for a microphone array application [5].
The simulation uses a microphone array with nine equispaced transducers each followed by 13 taps.
The microphone spacing is chosen as 4.3 cm and the sampling rate for the speech signals is 16 KHz.
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FIGURE 30.9 Broadband input spectrum.
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FIGURE 30.10 Output spectrum for inverse array.
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The h vector contains coefficients for a low pass FIR filter designed with a Hamming window for a
passband of 0–4 KHz. The signal environment consists of two speech signals. The target signal arrives
normal to the array. The interfering signal is applied to the array at uniformly spaced angles ranging from
�90� to þ90� in unit increments. The interference power is 2.6 dB greater than the desired signal. The
resulting interference suppression observed in the array output is illustrated in Figure 30.12. The
maximum interference suppression (i.e., for interference arriving at �90�) is 11.0 dB for the RAP
method and 11.2 dB for the Frost method.
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30.7 Summary

This chapter has formulated the array processing problem as an inverse problem. Inverse formulations
for both narrowband and broadband arrays were discussed. Specifically, the sidelobe canceler algorithm
for narrowband array processing and Frost algorithm for broadband array processing were analyzed. The
inverse formulations provide a flexible, intuitive implementation of the constraints that are used by each
algorithm. The inverse formulations were then solved through use of the RAP method. The RAP method
is a simple technique for creating orthogonal projections within a space defined by a set of hyperplanes.
The RAP method can easily be applied to unconstrained and constrained optimization problems whose
solution lies in a convex set (i.e., no local maxima or minima). Many array processing algorithms fall into
this category and it has been shown that the RAP method is a viable solution for this application. Since
the RAP method only involves row operations, it is also more convenient for parallel processing
implementations such as systolic arrays [15].

These algorithms have also been simulated for both narrowband and broadband implementations. The
narrowband simulation consisted of a set of tones arriving at different spatial locations. The broadband
array was evaluated for a simulation of several signals with differing spatial locations and bandwidths, in
addition to a speech enhancement application. For all scenarios, the inverse formulations were found to
perform comparable to the traditional approaches.
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31.1 Introduction

In this chapter we examine the problem of communication channel equalization and how it relates to the
inversion of a linear system of equations. Channel equalization is the process by which the effect of a
band-limited channel may be diminished, that is, equalized, at the sink of a communication system.
Although there are many ways to accomplish this, we will concentrate on linear filters and adaptive
filters. It is through the linear filter approach that the analogy to matrix inversion is possible. Regularized
inversion refers to a process in which noise dominated modes of the observed signal are attenuated.

31.2 Discrete-Time Intersymbol Interference Channel Model

Intersymbol interference (ISI) is a phenomenon observed by the equalizer caused by frequency distortion
of the transmitted signal. This distortion is usually caused by the frequency selective characteristics of the
transmission medium. However, it can also be due to deliberate time dispersion of the transmitted pulse
to affect realizable implementations of the transmit filter. In any case, the purpose of the equalizer is to
remove deleterious effects of the ISI on symbol detection. The ISI generation mechanism is described
next with a description of equalization techniques to follow. The information transmitted by a digital
communication system is comprised of a set of discrete symbols. Likewise, the ultimate form of the
received information is cast into a discrete form. However, the intermediate components of the digital
communications system operate with continuous waveforms which carry the information. The major
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portions of the communications link are the transmitter pulse shaping filter, the modulator, the channel,
the demodulator, and the receiver filter. It will be advantageous to transform the continuous part of the
communication system into an equivalent discrete time channel description for simulation purposes.
The discrete formulation should be transparent to both the information source and the equalizer when
evaluating performance. The equivalent discrete time channel model is attained by combining the transmit
filter, p(t), the channel filter, g(t), and the receive filter, w(t), into a single continuous filter, that is,

h(t) ¼ w(t) * g(t) * p(t) (31:1)

Refer to Figure 31.1. The effect of the sampler preceding the decision device is to discretize the aggregate
filter.

The equivalent discrete time channel as a means to simulate the performance of digital communica-
tions systems was advanced by Proakis [1] and has found subsequent use throughout the communi-
cations literature [2,3].

It has been shown that a bandpass transmitted pulse train has an equivalent low-pass
representation [1]:

s(t) ¼
X1
n¼0

Anp(t � nT) (31:2)

where
{An} is the information bearing symbol set
p(t) is the equivalent low-pass transmit pulse waveform
T is the symbol rate

The observed signal at the input of the receiver is

r(t) ¼
X1
n¼0

An

ðþ1

�1
p(t � nT)g(t � nT � t)dtþ n(t) (31:3)

where g(t) is the equivalent low-pass bandlimited impulse response of the channel and the channel noise,
n(t), is modeled as white Gaussian noise. The optimum receiver filter, w(t), is the matched filter which is
designed to give maximum correlation with the received pulse [4]. The output of the receiver filter, that
is, the signal seen by the sampler, can be written as

x(t) ¼
X1
n¼0

Anh(t � nT)þ n(t) (31:4)

h(t) ¼
ðþ1

�1

ðþ1

�1
p(t � nT)g(t � nT � l)dl

2
4

3
5w(t � t)dt (31:5)

p(t)
Pulse filter

ΣAn δ(t – nT) g(t)
Channel filter

w(t)
Receive filter

x(t)s(t) r(t)

n(t)

Σ

FIGURE 31.1 The signal flow block diagram for the equivalent channel description. The equalizer observes x(nT),
a sampled version of the receive filter output x(t).
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n(t) ¼
ðþ1

�1
n(t)w(t � t)dt (31:6)

where
h(t) is the response of the receiver filter to the received pulse, representing the overall impulse
response between the transmitter and the sampler

n(t) ¼ Ðþ1
�1 n(t)w(t � t)dt is a filtered version of the channel noise

The input to the equalizer is a sampled version of Equation 31.4, that is, sampling at times t ¼ kT
produces

x(kT) ¼
X1
n¼0

Anh(kt � nT)þ n(kT) (31:7)

as the input to the discrete time equalizer. By normalizing with respect to the sampling interval and
rearranging terms, Equation 31.7 becomes

xk ¼ h0Ak|ffl{zffl}
desired symbol

þ
X1
n¼0
n6¼k

Anhk�n

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ISI

þ nk (31:8)

31.3 Channel Equalization Filtering

31.3.1 Matrix Formulation of the Equalization Problem

The task of finding the optimum linear equalizer coefficients can be described by casting the problem into
a system of linear equations,

~d1
~d2

..

.

~dL

2
66664

3
77775 ¼

xT1
xT2

..

.

xTL

2
66664

3
77775cþ

e1
e2

..

.

eL

2
66664

3
77775 (31:9)

xk ¼ [xkþN�1, . . . , xk�1]
T (31:10)

where the superscript T denotes the transpose operation. The received sample at time k is xk, which
consists of the channel output corrupted by additive noise. The elements of the N � 1 vector ck are the
coefficients of the equalizer filter at time k. The equalizer is said to be in decision directed mode when ~dk
is taken as the output of the nonlinear decision device. The equalizer is in training, or reference directed,
mode when ~dk is explicitly made identical to the transmitted sequence Ak. In either case, ek is the error
between the desired equalizer output, ~dk, and the actual equalizer output, xTk c. We will assume that
~dk ¼ AkþN , then the notation in Equation 31.9 can be written in the compact form,

d ¼ Xc þ e (31:11)

by defining d ¼ ~d1, . . . , ~dL
h iT

and by making the obvious associations with Equation 31.9. Note that the
parameter L determines the number of rows of the time varying matrix X. Therefore, choosing L is
analogous to choosing an observation interval for the estimation of the filter coefficients.
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31.4 Regularization

We seek a solution for the filter coefficients of the form c ¼ Yd, where Y is in some sense an inverse of
the data matrix X. The least squares solution requires that

Y ¼ [XTX]�1XT (31:12)

where X# ¼D [XTX]�1XT represents the Moore–Penrose (M–P) inverse of X. If one or more of the
eigenvalues of the matrix XTX is zero, then the M–P inverse does not exist.

To investigate the behavior of the inverse, we will decompose the data matrix into the form
X ¼ XS þ XN, where XS is the signal component and XN is the noise component. Generally, the noise
data matrix is full rank and the signal data matrix may be nearly rank deficient from the spectral nulls in
the transmission channel. This is illustrated by examining the smallest eigenvalue of XT

SXS

lmin ¼ SR min þ O(N�k) (31:13)

where
SR is the continuous power spectral density (PSD) of the received data xk
SRmin is the minimum value of the PSD
k is the number of nonvanishing derivatives of SR at SRmin

N is the equalizer filter length

Any spectral loss in the signal caused by the channel is directly translated into a corresponding decrease
in the minimum eigenvalue of the received signal. If lmin becomes small, but nonzero, the data
correlation matrix XTX becomes ill-conditioned and its inversion becomes sensitive to the noise. The
sensitivity is expressed in the quantity

d¼D k~c � ck
kck � s2

n

lmin
þ O s4

n

� �
(31:14)

where the noiseless least squares filter coefficient vector solution, c, has been perturbed by adding a white
noise to the data with variance s2

n � 1, to produce the least squares solution c. Substituting Equation
31.13 into Equation 31.14 yields

d � s2
n

SRmin þ O(N�k)
þ O s4

n

� � � s2
n

SRmin
(31:15)

The relation in Equation 31.15 is an indicator of the potential numerical problems in solving for the
equalizer filter coefficients when the data is spectrally deficient.

We see that direct inversion of the data matrix is not recommendable when the channel has severe
spectral nulls. This situation is equivalent to stating that the original estimation problem d ¼ Xc is ill-
posed. That is, the equalizer is asked to reproduce components of the channel input that are unobservable
at the channel output or are obscured by noise. Thus, it is reasonable to ascertain the modes of the input
dominated by noise and give them little weight, relative to the signal dominated components, when
solving for the equalizer filter coefficients. This process of weighting is called regularization.

Regularization can be described by relying on a generalization of the M–P inverse that depends on the
singular value decomposition (SVD) of the data matrix

X ¼ USVT (31:16)
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where
U is an L� N unitary matrix
V is an N � N unitary matrix
S ¼ diag(s1,s2, . . . ,sN ) is a diagonal matrix of singular values where si � 0, s1 > s2 > � � � > sN

It is assumed in Equation 31.16 that L > N , which is typical in the equalization problem.
We define the generalized pseudo-inverse of X as

Xy ¼ VS
yUT (31:17)

where Sy ¼ diag s
y
1,s

y
2, . . . ,s

y
N

� �
and

sy
i ¼ s�1

i si 6¼ 0
0 si ¼ 0

�
(31:18)

The M–P inverse can be reformulated using the SVD as follows:

X# ¼ [VS2VT]�1VSUT ¼ VS�1UT (31:19)

Upon examination of Equations 31.17 and 31.19, we note that X# ¼ Xy only if all the singular values of X
are nonzero, si 6¼ 0. Another item to note is that VS2VT is the eigenvalue decomposition of XTX, which
implies that the eigenvalues of XTX are the squares of the singular values of X.

The generalized pseudo-inverse in Equation 31.17 provides an eigenvalue spectral weighting given by
Equation 31.18, which differs from the M–P inverse only when one or more of the eigenvalues of XTX are
identically zero. However, this form of regularization is rather restrictive since complete annihilation of
the spectral components is rarely encountered in practice. A more likely condition for the eigenvalues of
XTX is that a small band of signal eigenmodes are much smaller in magnitude than the corresponding
noise modes. Direct inversion of these eigenmodes, although well-defined mathematically, leads to
noise enhancement at the equalizer output and to noise sensitivity in the filter coefficient solution.
An alternative to the generalized pseudo-inverse is to use a regularized inverse wherein the eigenmodes
are weighted prior to inversion [5]. This approach leads to a trade-off between the noise immunity
of the equalizer filter weights and the signal fidelity at the equalizer filter output. To demonstrate this
trade-off, let

cDXyd (31:20)

be the least squares solution. Let the regularized inverse be Yn such that limn!1Yn ¼ Xy. The regular-
ized estimate for an observation perturbed by a random noise vector, n, is

cn ¼ Yn(dCn) (31:21)

The effects of the regularized inverse and the noise vector are indicated by

kcn � ck ¼ kYnnþ (Yn � Xy)dk � kYnnk þ kYn � Xykkdk (31:22)

The term kYnnk is the part of the coefficient error due to the noise and is likely to increase as n ! 1.
The term kYn � Xy k represents the contribution due to the regularization error in approximating the
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pseudo-inverse. This error tends to zero as n ! 1. The trade-off between noise attenuation and
regularization error is evident upon inspection of Equation 31.22, which also points out an idiosyncratic
property of the regularization process. At first, the equalizer output error tends to decrease, due to
decreasing regularization error, kYn � Xy k. Then, as n increases further, the output error is likely to
increase due to the noise amplification component, kYnnk. This behavior leads to the question regarding
the best choice for the parameter n. A widely accepted procedure is to use the discrepancy principle,
which states that n should satisfy

kXcn0 � (dCn)k¼knk (31:23)

Letting n > n0 usually results in noise amplification at the equalizer output.

31.5 Discrete-Time Adaptive Filtering

We will next examine three adaptive algorithms in terms of their regularization properties in deriving the
equalizer filter. These algorithms are the normalized least mean squares (NLMS) algorithm, the recursive
least squares (RLS) algorithm, and the block-iterative NLMS (BINLMS) algorithm. These algorithms are
representative of the wider class of adaptive algorithms of which they belong.

31.5.1 Adaptive Algorithm Recapitulation

31.5.1.1 NLMS

The NLMS algorithm update is given by

cn ¼ cn�1 þ m dn � xTncn�1
� � xn

kxn k2 (31:24)

for n ¼ 1, . . . , L. This is rewritten as

cn ¼ I � m
xnxTn
kxn k2

� 	
cn�1 þ m

dnxn
kxn k2 (31:25)

Define Pn ¼D I � mxnxTn=kxn k2
� �

and pn ¼D mdnxn=kxn k2, then Equation 31.25 becomes

cL ¼ Qc0 þ q (31:26)

where

QDPLPL�1 � � �P1 (31:27)

and

q ¼ [PL � � �P2]p1 þ [PL � � �P3]p2 þ � � � þ PLpL�1 þ pL (31:28)

31.5.1.2 BINLMS

The BINLMS algorithm relies on observing the entire block of filter vectors xn, 1 � n � L, in Equation
31.9. The BINLMS update procedure is

cnþ1 ¼ cn þ m dj � xTj cn
� � xj

kxj k2 (31:29)
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where j ¼ nmod L. The update in Equation 31.29 is related to the NLMS update by considering Equation
31.26. That is, Equation 31.29 is equivalent to

cnL ¼ Qc(n�1)L þ q (31:30)

where L updates of Equation 31.29 are compacted into a single update in Equation 31.30. Note that
only L updates are possible using Equation 31.24 compared to an arbitrary number of updates in
Equation 31.29.

31.5.1.3 RLS

The update procedure for the RLS algorithm is

gn ¼
l�1Yn�1xn

1þ l�1xTnYn�1xn
(31:31)

en ¼ dn � cTn�1xn (31:32)

cn ¼ cn�1 þ engn (31:33)

Yn ¼ l�1 Yn�1 � gnx
T
nYn�1


 �
(31:34)

where
gn is called the gain vector
Yn is the estimate of XT

nXn

 ��1

using the matrix inversion lemma
xn represents the first n rows of X in Equation 31.9

The forgetting factor 0 < l � 1 allows the RLS algorithm to weight more recent samples providing a
tracking capability for time-varying channels. The matrix inversion recursion is initialized with
Y0 ¼ d�1I, where 0 < d � 1. The initialization constant transforms the data correlation matrix into

XT
nLnXn þ lndI (31:35)

where Ln ¼ diag(1, l, . . . ,ln�1).

31.5.2 Regularization Properties of Adaptive Algorithms

In this section we examine how each of the adaptive algorithms achieve regularization of the equalizer
filter solution. We begin with the BINLMS and will subsequently take the NLMS as a special case. The
BINLMS update of Equation 31.30 is equivalent to

cl ¼ Qcl�1 þ q (31:36)

where an increment in l is equivalent to L increments of n in Equation 31.29. The recursion in Equation
31.36 is also equivalent to

cl ¼ Bld (31:37)

where liml!1 Bl ¼ Xy. Let ŝk,l represent the singular values of Bl , then the relationship among the
singular values of Bl and the singular values of X is [6]
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ŝk,l ¼
1
sk

1� 1� m
N s

2
k

� �lþ1
h i

, sk 6¼ 0

0, sk ¼ 0

(
(31:38)

The regularization property of the BINLMS depends on both m and l. Since the step size parameter m is
chosen to guarantee convergence, that is, 0 < 1� m

Ns
2
1

� �
< 1, the regularization is primarily controlled by

the iteration index l. The regularization behavior of the BINLMS given by Equation 31.38 is that the signal
dominant modes are inverted first, followed by the weaker noise dominant modes, as the index l increases.

The regularization behavior of the NLMS algorithm is directly derived from the BINLMS by setting
l ¼ 1 in Equation 31.38. We see that the only control over the regularization for the NLMS algorithm is
to decrease the step size m. However, this leads to a potentially undesirable reduction in the convergence
rate of the adaptive equalizer filter.

The RLS algorithm weighting of the singular values is derived upon inspection of Equation 31.35. The
RLS equalizer filter coefficient estimate is

cLS ¼ XTLLX þ lLdI

 ��1

XT L
1=2
L

� �T
d (31:39)

Let ŝLS,k represent the singular values of the effective inverse used in the RLS algorithm, then

ŝLS,k ¼
ffiffiffiffiffi
lk

p
sk

lks
2
k þ lLd

(31:40)

There are several points to note about Equation 31.40. In the absence of the forgetting factor, l ¼ 1, and
the initialization constant, d ¼ 0, the RLS algorithm provides the exact inverse of the singular values, as
expected. The constant d prevents the dominator of Equation 31.40 from getting too small. However, this
regularization is lost if lL ! 0, which is the case when the observation interval L becomes large.

The behavior of the regularization functions (Equations 31.38 and 31.40) is illustrated in Figure 31.2.
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FIGURE 31.2 The regularization functions of the NLMS, BINLMS, and RLS algorithms.
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31.6 Numerical Results

A numerical example of the regularization characteristics of the adaptive equalization algorithms
discussed is now presented. A data matrix X X is constructed with dimensions L ¼ 50 and N ¼ 11,
which has the singular value matrix S ¼ diag(1:0, 0:9, . . . , 0:1, 0:0). The step size m ¼ 0:2 is chosen.
Since the RLS algorithm computes an estimate of [XTX]�1, it is sensitive to the eigenvalues of XTX.
A graph similar to Figure 31.2 is produced with the exception that the eigenvalue inverses of XTX are
plotted for the RLS algorithm. These results are shown in Figure 31.3 using the eigenvalues of X given by
s2
i ¼ [1� (i� 1)=10]2 for 1 � i � 10 and s2

11 ¼ 0. The RLS algorithm exhibits large dynamic range in
the eigenvalue inverse using the matrix inversion lemma, which may lead to unstable operation of the
adaptive equalizer filter.

31.7 Conclusion

A short introduction to the basic concepts of regularization analysis are presented in this chapter. Some
further development in the application of this analysis to decision-feedback equalization may be found
in [6]. The choice of which adaptive algorithm to use is application-dependent and each one comes with
its associated advantages and disadvantages. The LMS-type algorithms are low-complexity solutions that
have relatively slow convergence. The RLS-type algorithms have much faster convergence but are
typically plagued by stability problems associated with error propagation and unregularized matrix
inversion. Circumventing these stability problems tends to lead to more complex algorithm implemen-
tation. The BINLMS algorithm is a trade-off between the convergence speed of the RLS-type algorithms
and the stability of the LMS-type algorithms. A disadvantage of the BINLMS algorithm is that instant-
aneous throughput may be high due to the block-processing required.
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FIGURE 31.3 The regularization behavior of the NLMS, BINLMS, and the RLS adaptive algorithms is shown. The
BINLMS curves represent block iterations of 5, 10, 15, and 20. The RLS algorithm uses l ¼ 1:0 and l ¼ 0:96.
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32.1 Introduction: Dereverberation Using
Microphone Arrays

An acoustic enclosure usually reduces the intelligibility of the speech transmitted through it because the
transmission path is not ideal. Apart from the direct signal from the source, the sound is also reflected off
one or more surfaces (usually walls) before reaching the receiver. The resulting signal can be viewed as the
output of a convolution in the time domain of the speech signal and the room impulse response. This
phenomenon affects the quality of the transmitted sound in important applications such as teleconferen-
cing, cellular telephony, and automatic voice activated systems (speaker and speech recognizers). Room
reverberation can be perceptually separated into two broad classes. Early room echoes are manifested as
irregularities or ‘‘ripples’’ in the amplitude spectrum. This effect dominates in small rooms, typically
offices. Long-term reverberation is typically exhibited as an echo ‘‘tail’’ following the direct sound [1].

If the transfer function G(z) of the system is known, it might be possible to remove the deleterious
multi-path effects by inverse filtering the output using a filter H(z) where

H(z) ¼ 1
G(z)

: (32:1)

Typically G(z) is the transform of the impulse response of the room g(n). In general, the transfer
function of a reverberant environment is a non-minimum phase function, i.e., all the zeros of the
function do not necessarily lie inside jzj ¼ 1. A minimum phase function has a stable causal inverse,
while the inverse of a non-minimum phase function is acausal and, in general, infinite in length.
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In general, G(z) can be expressed as a product of a minimum-phase function and a non-minimum
phase function:

G(z) ¼ Gmin(z) � Gmax(z): (32:2)

Many approaches have been proposed for dereverberating signals. The aim of all the compensation
schemes is to bring the impulse response of the system after dereverberation as close as possible to an
impulse function. Homomorphic filtering techniques were used to estimate the minimum phase part of
G(z) [2,3]. In [2], the minimum phase component was estimated by zeroing out the cepstrum for
negative frequencies. Then the output signal was filtered by the inverse of the minimum phase transfer
function. But this technique still did not remove the reverberation contributed by the maximum-phase
part of the room response. In [3], the inverse of the maximum-phase part was also estimated from the
delayed and truncated version of the acausal inverse. But, the delay can be inordinate and care must
be taken to avoid temporal aliasing.

An alternate approach to dereverberation is to calculate, in some form, the least squares estimate of the
inverse of the transmission path, i.e., calculate the least squares solution of the equation

h(n)*g(n) ¼ d(n), (32:3)

where
d(n) is the impulse function

* denotes convolution

Assuming that the system can be modeled by an FIR filter, Equation 32.3 can be expressed in matrix
form as

g(0)
g(1) g(0)

..

.
g(1) � � � 0

g(m) ..
. � � � g(0)

0 g(m) � � � g(1)

0 0 � � � ..
.

g(m)

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

h(0)
h(1)
..
.

h(i)

0
BBB@

1
CCCA ¼

1
0
..
.

0

0
BB@

1
CCA, (32:4)

or

GH ¼ D, (32:5)

where D is the unity matrix and G, H, and D are matrices of appropriate dimensions as shown in
Equation 32.4. The least squares method finds an approximate solution given by

Ĥ(z) ¼ (GTG)�1GTD: (32:6)

Thus, the error vector can be written as

e ¼ [D� GĤ]

¼ [I� G(GTG)�1GT]D

¼ ED,
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where E¼ [I�G (GT G)�1GT]. The mean square error or the energy in the error vector is

ek k2 ¼ EDk k2 � jEj Dk k2 �
lmax

lmin
Dk k2, (32:7)

where
jEj is the norm of E
lmax and lmin are the maximum and minimum eigenvalues of E

The ratio between the maximum and minimum eigenvalues is called the condition number of a matrix
and it specifies the noise amplification of the inversion process [4].

Typically, the operation is done on the full-band signal. Sub-band approaches have been proposed in
[5–8]. All these approaches use a single microphone.

The amplitude spectrum of the room response has ‘‘ripples’’ which produce pronounced notches in
the signal output spectrum. As the location of the microphone in the room changes, the room response
for the same source changes and, as a result, the position of the notches in the amplitude spectrum varies.
This property was used to advantage in [1]. In this method, multiple microphones were located in the
room. Then, the output of each microphone was divided into multiple bands of equal bandwidth. For
each band, by choosing the microphone whose output has the maximum energy, the ripples were
reduced. In [9], the signals from all the microphones in each band were first co-phased, and then
weighted by a gain calculated from a normalized cross-correlation function calculated based on the
outputs of different microphones. Since the reverberation tails are uncorrelated, the cross-correlation-
based gain turned off the tail of the signal. These techniques have had modest success in combating
reverberation.

In recent years, great progress has been made in the quality, availability, and cost of high performance
microphones. Fast digital signal processors that permit complex algorithms to operate in real time have
been developed. These advances have enabled the use of large microphone arrays that deploy more
sophisticated algorithms for dereverberation. Figure 32.1 shows a generic microphone array system
which can ‘‘invert’’ the room acoustics. Different choices of Hi(z) lead to different algorithms, each
with their own advantages and disadvantages. In this report, we shall discuss single and multiple
beamforming, matched filtering, and Diophantine inverse filtering through multiple input–output
(MINT) modeling. In all cases we assume that the source location and the room configuration or,
alternatively, the Gi(z)’s are known.

s(n)

Gi(z)

…

HN(z)

Hi(z)

H2(z)

H1(z)
y(n)

+

FIGURE 32.1 Modeling a room with a microphone array as a multiple output FIR system.
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32.2 Simple Delay-and-Sum Beamformers

Arrays that form a single beam directed toward the source of the sound have been designed and built
[11]. In these simple delay-and-sum beamformers, the processing filter has the impulse response

hi(n) ¼ d(n� ni), (32:8)

where ni¼ di=c, di is the distance of the ith microphone from the source and c is the speed of sound in air.
Sound propagation in the room can be modeled by a set of successive reflections off the surfaces
(typically the walls) [10]. Figure 32.2 illustrates the impulse response of a single beamformer. The
delay at the output of each microphone coheres the sound that arrives at the microphone directly
from the source. It can be seen from Figure 32.2 that in the resulting response, the strength of the
coherent pulse is N and there are N(K� 1) distributed pulses. So, ideally, the signal-to-reverberant noise
ratio (SRNR; measured as the ratio of undistorted signal power to reverberant noise power) is N2=N
(K� 1) [13]. In a highly reverberant room, as the number of images K increases toward infinity, the
signal-to-noise ratio (SNR) improvement, N=K� 1, falls to zero.

The single-beamforming system reported in [11] can automatically determine the direction of the
source and rapidly steer the array. But, as the beam is steered away from the broadside, the system
exhibits a reduction in spatial discrimination because the beam pattern broadens [12]. Further,

Single beam

Sensor signals

Direct
path

h1(t)

h2(t)

hN(t)
0 Time

Output of single
beam for impulse

source on axis of beam
N

(K – 1)N

1.0

Reflection
#1

Reflection
#(K – 1)

. . .

. . .

. . .

. . .

. . .

. . .

.
.

.
.

.
.

.
.

.

. . .

FIGURE 32.2 A single beamformer. (From Flanagan, J.L., Surendran, A.C., and Jan, E.-E., Speech Commn.,
13, 207, 1993. With permission.)
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beamwidth varies with frequency, so an array has an approximate ‘‘useful bandwidth’’ given by the upper
and lower frequencies [12]:

fupper ¼ c
dj cosf� cosf0jmax

, (32:9)

and

flower ¼ fupper
N

, (32:10)

where
c is the speed of sound in air
N is the number of sensors in the array
d is the sensor spacing
f0 is the steering angle measured with respect to the axis of the array
f is the direction of the source

For example, consider an array with seven microphones and a sensor spacing of 6.5 cm. Further,
suppose the desired range of steering is �308 from broadside. Then, jcos f� cos f0jmax¼ 1.5 and hence
fupper� 3500 Hz and flower� 500 Hz. So, to cover the bandwidth of speech, say from 250 Hz to 7 kHz,
three harmonically nested arrays of spacing 3.25, 6.5, and 13 cm can be used. Further, the beamwidth also
depends on the frequency of the signal as well as the steering direction. If the beam is steered to an angle
f0, then the direction of the source for which the beam response falls to half its power is [12]

f3dB ¼ cos�1 cosf0 � 2:8
Nvd

� �
, (32:11)

where v¼ 2pf and f is the frequency of the signal.
Equation 32.11 shows that the smaller the array, the wider the beam. Since most of the energy of a typical

room interfering noise lies at lower frequencies, it would be advantageous to build arrays that have higher
directivity (smaller beamwidth) at lower frequencies. This, combined with the fact that the array spacing is
larger for lower frequency bands, gives yet another reason to harmonically nest arrays (see Figure 32.3).

Array for mid-frequency
range

Array for high-frequency
range

Array for low-frequency
range

FIGURE 32.3 Harmonically nested array that covers three frequency ranges.
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Just as linear one-dimensional arrays display significant fattening of the beams when steered toward
the axis of the array, two-dimensional arrays exhibit widening of the beams when steered at angles acute
to the plane of the array. Three-dimensional microphone arrays can be constructed [13] that have
essentially a constant beamwidth over 4p steradians. Multiple beamforming using three-dimensional
arrays of sensors not only provides selectivity in azimuth and elevation but also selectivity in the direction
of the beam, i.e., it provides range selectivity.

The performance of single beamformers can degrade severely in the presence of other interfering noise
sources, especially if they fall in the direction of the sidelobes. This problem can be mitigated using
adaptive arrays. Adaptive arrays are briefly discussed in the next section.

32.2.1 A Brief Look at Adaptive Arrays

Adaptive signal processing techniques can be used to form a beam at the desired source while
simultaneously forming a null in the direction of the interfering noise source. Such arrays are called
‘‘adaptive arrays.’’ Though adaptive arrays are not effective under conditions of severe reverberation, they
are included here because problems in adaptive arrays can be formulated as inverse problems. Hence, we
shall discuss adaptive arrays briefly without providing a quantitative analysis of them. Broadband arrays
have been analyzed in [14–19]. In all these methods, the direction of arrival of the signal is assumed to be
known.

Let the array have N sensors and M delay taps per sensor. If X(k)¼ [x1(k) � � � xi(k) � � � xNM(k)]T (see
Figure 32.4) is the set of signals observed at the tap points, then X(k)¼ S(k)þN(k), where S(k) is the
contribution of the desired signal at the tap points and N(k) is the contribution of the unknown
interfering noise. The inputs to the sensors, x(jMþ1) (k), j¼ 0, . . . , (N� 1), are the noisy versions of
g(k), the actual signal at the source. Now, the filter output y(k)¼WTX(k), where WT¼ [w11, . . . ,w1M,
w21, . . . ,w2M, . . . ,wN1, . . . ,wNM] is the set of weights at the tap points. The goal of the system is to
make the output y(k) as close as possible to the source g(k). One way of doing this is to minimize the
error E{[g(k)� y(k)]2}. The weight W* that achieves this least mean square (LMS) error is also called
the Weiner filter, and is given by

W* ¼ R�1
XXCgX , (32:12)

Sensor 1
x1(k)

x[(N–1)M+1](k) x[(N–1)M+2](k) xNM(k)

x2(k) x3(k) xM(k)
z–1

w11 w12

wN1 wN2 wNM

w1M Adaptive weights

Filter
output

y(k)+

+++

+++

z–1 z–1

z–1 z–1 z–1Sensor N

.
.

.

FIGURE 32.4 General form of an adaptive filter.
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where
RXX is the autocorrelation of X(k)
CgX is the set of cross-correlations between g(k) and each element of X(k)

If g(k) and N(k) are uncorrelated, then

CgX ¼ E{g(k)X(k)} ¼ E{g(k)S(k)}þ E{g(k)N(k)}

¼ E{g(k)S(k)}

and

RXX ¼ E{X(k)XT(k)} ¼ E{[S(k)þ N(k)] [S(k)þ N(k)]T}

¼ RSS þ RNN ,

where RSS and RNN are the autocorrelation matrices for the signal and noise.
Usually RNN is not known. In such cases, the exact inverse cannot be calculated and an iterative

approach to update the weights is needed. In Widrow’s approach [15], a known pilot-signal g(k) is
injected into the array. Then, the weights are updated using the Widrow–Hopf algorithm that increments
the weight vector in the direction of the negative gradient of the error:

Wkþ1 ¼ Wk þ m[g(k)� y(k)]X(k),

where
Wkþ1 is the weight vector after the kth update
m is the step size

Griffiths’ method also uses the LMS approach, but minimizes the mean square error based on the
autocorrelation and the cross-correlation values between the input and the output, rather than the signals
themselves. Since the mean square error can be written as

E{[g(k)� y(k)]2} ¼ Rgg � 2CT
gSW þWTRXXW,

where
Rgg is the auto-correlation matrix of g(k)
CgS is the set of cross-correlation matrix between g(k) and each element of S(k)
the weight update can also be done by

Wkþ1 ¼ Wk þ m[CgS � RXXW
k] (32:13)

¼ Wk þ m[CgS � X(k)XT(k)Wk] (32:14)

¼ Wk þ m[CgS � y(k)X(k)]: (32:15)

In the above methods, significant distortion is observed in the primary beam due to null-steering.
Constrained LMS techniques which place constraints on the performance of the main lobe can be
used to reduce distortion [18,19]. By specifying the broadband response and the array beam characteristics
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as constraints, more robust beams can be formed. The problem now can be formulated as
an optimization technique that minimizes the output power of the system. Given that the output
power is

E{y2(k)} ¼ E{WTX(k)XT(k)W} ¼ WTRXXW

¼ WTRSSW þWTRNNW,

if W can be chosen such that WT RNNW¼ 0, the noise can be eliminated. It was proposed [18] that once
the array is steered toward the source with appropriate delays, minimizing the output power is equivalent
to removing directional interference, since in-phase signals add coherently. In an accurately steered array,
the wavefronts arriving from the direction of steering generate identical signals at each sensor. Hence, the
array may be collapsed to a single sensor implementation which is equivalent to an FIR filter [18], i.e., the
columns of the broadband array sum to an FIR filter. Additional constraints can be placed on this FIR
filter. If the weights of the filters can be written as a matrix:

Ŵ ¼
w11 w12 . . . w1M

..

. ..
. ..

. ..
.

wN1 wN2 . . . wNM

0
B@

1
CA,

then it can be specified that
PN

i¼1wij ¼ fj, j ¼ 1, . . . ,M, where fj, j¼ 1, . . . ,M are the taps of an FIR filter
that provides the desired filter response. Hence, using this method, directional interference can be
suppressed by minimizing the output power and spectral interference can be suppressed by constraining
the columns of the weight coefficients.

Thus, the problem can be formulated as

minimize: WTRXXW (32:16)

subject to: CTW ¼ F, (32:17)

where F is the desired FIR filter and

C ¼
1 0 0 . . . 0
0 1 0 . . . 0

..

.

0 0 0 . . . 1

1 0 0 . . . 0 . . . 1 0 0 . . . 0
0 1 0 . . . 0 . . . 0 1 0 . . . 0

..

. ..
. ..

.

0 0 0 . . . 1 . . . 0 0 0 . . . 1

0
BB@

1
CCA: (32:18)

C has M rows with NM entries on each row. The first row of C in Equation 32.18 has ones in positions
1, (Mþ 1), . . . , (N� 1) *Mþ 1; the second row has ones in positions 2, (Mþ 2), . . . , (N� 1) *Mþ 2, etc.
Equation 32.17 can be solved using Lagrange multipliers [18]. This optimization problem can alterna-
tively be posed as an inverse problem.

32.2.2 Constrained Adaptive Beamforming Formulated
as an Inverse Problem

Using a similar cost function and the same constraint, the system can be formulated as an inverse
problem [19]. The function to be optimized, WTRXXW¼ 0, can be approximated by XTW¼ 0. This,
combined with the constraint in Equation 32.17, is written as
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x1 . . . xM . . . x(N�1)*Mþ1 . . . xN*M
1 . . . 0 . . . 1 . . . 0

..

. ..
. ..

.

0 . . . 1 . . . 0 . . . 1

0
BBB@

1
CCCA*

w11

..

.

w1M

..

.

wN1

..

.

wNM

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

0

f1

..

.

fM

0
BBBB@

1
CCCCA, (32:19)

AW ¼ F: (32:20)

This equation can be solved with any technique that can invert a matrix. There are several problems in
solving Equation 32.20. In general, the equation can be inconsistent. In addition, the system is rank
deficient. Further, traditional methods used to solve Equation 32.20 are not robust to errors such as
round-off errors in digital computers, measurement inaccuracies, and noise corruption. In the least
squares solution (Equation 32.6), the noise amplification is dictated by the condition number of the error
matrix, i.e., the ratio of the highest and the lowest eigenvalues of E. In the extreme case when lmin¼ 0, the
system is rank-deficient. In such cases, the pseudo-inverse solution can be used.

Any matrix A can be written using the singular value decomposition as

A ¼ UDVT,

where

D ¼
s1 0 . . . 0
0 s2 . . . 0
..
. ..

. . .
. ..

.

0 0 . . . sN

0
BBB@

1
CCCA,

then,

A�1 ¼ VD�1UT,

where

D�1 ¼

1
s1

0 � � � 0

0 1
s2

� � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1
sN

0
BBBBB@

1
CCCCCA:

s2
i , i ¼ 1, . . .N are the eigenvalues of AAT. The matrices U and V are made up of the eigenvectors of AAT

and ATA, respectively.
Extending this definition to rank-deficient matrices, the pseudo-inverse can be written as

Ay ¼ VDyUT,
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where

Dy ¼

1
s1

0 � � � 0

0 1
s2

� � � 0

0 0 � � � 1
sr

� � �
0

0

0
BBBBBB@

1
CCCCCCA
,

where r is the rank of the matrix A.
The rank-deficient system has infinite number of solutions. The pseudo-inverse solution can be shown

to be the least squares solution with minimum energy. It can also be viewed as the projection of the least
squares solution in the range space of A. An iterative technique called the row action projection (RAP)
algorithm [4,19] can be used to solve Equation 32.20.

32.2.2.1 Row Action Projection

An effective way to find a solution for Equation 32.20 is to use the RAPmethod [4], which has been shown
to be effective in providing a fast and stable solution to a system of simultaneous equations. Traditional
least squares methods need a block of data to calculate the estimate. Most of these methods demand a lot of
memory and processing power. RAP operates on only one row at a time, which makes it a useful sample-
by-samplemethod in adaptive signal processing. Further, thematrixA in Equation 32.20 is a sparse matrix.
RAP has been shown to be effective in solving systems with sparse matrices [4].

For a given system of equations,

a01w1 þ a02w2 þ � � � þ a0,NMwNM ¼ f0
a11w1 þ a12w2 þ � � � þ a1,NMwNM ¼ f1

..

.

aM1w1 þ aM2w2 þ � � � þ aM,NMwNM ¼ fM ,

each equation can be viewed as a ‘‘hyperplane’’ in NM dimensional space. If a unique solution exists, then
it is at the point of intersection of all the hyperplanes. If the equations are inconsistent or ill-defined, then
the solution set is a region in space.

The RAP method defines an iterative method to arrive at a point in the solution set and is as
follows: Starting from an initial guess W0, the algorithm iterates over all the equations by repeatedly
projecting the solution on the hyperplanes represented by the equations. At step iþ 1 the weight vector
is updated as

Wiþ1 ¼ Wi þ l
ei

ap
�� ��2 ap, (32:21)

where ap is the pth row of A, l is the step size, and

ei ¼ fp � aTpW
i (32:22)

is the error at the ith iteration. At the ith iteration, we use the pth row, where p¼ i mod (Mþ 1), i.e., we
cycle over all the equations.

The RAP method is a special case of the projection onto convex sets algorithm. The geometrical
interpretation of the above algorithm is given in Figure 32.5. Each equation is modeled as a hyperplane in
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the solution space. Here, in the figure, it is shown as a line. The initial guess is projected onto the
first hyperplane to obtain the second guess. This point is again projected onto the next hyperplane to get
the third guess. It can be shown that by repeated projection on to the hyperplanes, the point converges
to the solution [4]. l (0�l� 1) is called the relaxation parameter. It dictates how far we should
proceed along the direction of the estimate. It is also a measure of confidence in the estimate, i.e., if
the measurements are noisy, then usually l is given a small value; if the values are relatively less
noisy, then a larger value of l can be used to speed up convergence. The algorithm is guaranteed to
converge to the actual solution (if it exists). If a solution does not exist, then the ‘‘guess’’ is guaranteed
to converge to the pseudo-inverse solution. The pseudo-inverse solution is the least squares solution
which minimizes the energy in the solution vector. The RAP method provides stable estimates at each
iteration. Since the method uses only one row at a time, the system can be made adaptive, i.e., as the
source moves around in the room, the system response can be varied. For a detailed discussion of
adaptive arrays, the reader is referred to [20].

32.2.3 Multiple Beamforming

In a highly reverberant environment, many images of the sound source fall along the bore of the beam of
a single beamformer. Hence, delay-and-sum single beamformers have limited success in combating
reverberation [13]. As shown earlier, the SNR improvement is poor under severe reverberation. Instead
of forming a single beam on the source, many beams can be formed, each directed toward the source and
its major images [13]. This is called multiple beamforming. In a multiple beamformer (Figure 32.6), the

SRNR is (BN)2

BN(K�1) ¼ BN
(K�1). As B, the number of beams, approaches K, the number of images, the SNR

approaches N, or the number of microphones. Multiple beamforming, when B¼K, can be shown to be
equivalent to matched filtering.

32.3 Matched Filtering

Matched filtering techniques can be applied to microphone arrays for dereverberation. In this technique,
each microphone output is filtered by a causal approximation of the time reverse of the impulse response
to that microphone [13]. Thus, if gi(n) is the impulse response to microphone i, then

hi(n) ¼ gi(n0 � n) (32:23)

x0 h1

h2

h3

x1

x4
x2

x3

FIGURE 32.5 Geometrical interpretation of RAP.
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and

Hi(z) ¼ z�n0Gi
1
z

� �
: (32:24)

Since it is desirable for the delay n0 to be suitably small, the time-reversed response is typically truncated.
But careful choice of n0 leads to a good compromise between delay of the system and high SNR.
The matched filter can also be viewed as a special case of a multiple beamformer, when a beam is directed
at every image, and when the output of the ith microphone contributing to the beam directed to the jth
image is weighted by 1

dij
, where dij is the distance of the ith microphone from the jth image. Figure 32.7
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FIGURE 32.6 A multiple beamformer. (From Flanagan, J.L., Surendran, A.C., and Jan, E.-E., Speech Commn., 13,
207, 1993. With permission.)
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shows the principle of a matched filter. The SNR analysis of a matched filter is similar to the multiple
beamformer when B¼K.

Thus, for a source s(n) located at the focal point, the output of the system is

o(n) ¼ s(n)*
XN
i¼1

gi(n)*gi(n0 � n)

( )
, (32:25)

and the output for a source away from the focus is

o(t) ¼ s(t)*
XN
i¼1

g 0i (n)*gi(n0 � n)

( )
, (32:26)
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FIGURE 32.7 Principle of a matched filter. (From Flanagan, J.L., Surendran, A.C., and Jan, E.-E., Speech Commn.,
13, 207, 1993. With permission.)

Inverse Problems in Microphone Arrays 32-13



where g 0i (n) is the impulse response for a source located away from the focus. So, additional to mitigating
reverberation, matched filters provide volume selectivity, i.e., a focal volume of retrieval, which depends
on the spatial correlation of the impulse responses gi(n). Using microphone arrays instead of a single
microphone provides not only a smoother frequency response [22], but also a higher SNR improvement,
which, even in the worst case, asymptotically approaches N, the number of sensors used [13]. Since each
individual matched filter seeks to smooth out the spectral minima due to other matched filters, it is
desirable that the matched filters at each microphone be as different as possible. This is a motivation to
use a random distribution of sensors [22].

The aim of the matched filter is to maximize the power of the output of the array for a source located
at the focus and minimize the power of off-focus sources. This is an important property, which we shall
contrast with the exact inverse discussed in the next section.

The power of matched filtering in mitigating reverberation and suppressing interfering noise is
demonstrated through examples in Section 32.5. Figure 32.11 shows the response of a matched filter
system. It is clear that the matched filter response is similar to, but cannot be exactly, an ideal impulse,
i.e., it cannot provide an exact inverse to the room transfer function. Next, we discuss a method that can
provide an exact inverse to the room transfer function.

32.4 Diophantine Inverse Filtering Using the Multiple
Input–Output Model

Miyoshi and Kaneda [23] proposed a novel method to find the exact inverse of a point in a room by using
multiple inputs and outputs, each input–output pair modeled by an FIR system. For example, a two-
input single-output system is described by the two speaker-to-single-microphone responses, G1(z) and
G2(z). The inputs need to be pre-processed by the two FIR filters, H1(z) and H2(z), such that

H1(z)G1(z)þ H2(Z)G2(Z) ¼ 1: (32:27)

This is a Diophantine equation which has an infinite number of solutions. That is, if H1(z) and H2(z)
satisfy Equation 32.27, then

H0
1 ¼ H1(z)þ G2(z)K(z) (32:28)

H0
2 ¼ H2(z)� G1(z)K(z), (32:29)

where K(z) is an arbitrary polynomial, is also a solution for Equation 32.27. But, if G1(z) and G2(z) do not
have common zeros in the z-plane, and if the orders of H1(z) and H2(z) are less than that of G2(z) and
G1(z), respectively, by Euclid’s theorem, a unique solution is guaranteed to exist [23,24].

The above system can be used with a microphone array for dereverberation (Figure 32.1). The problem
is to find Hi(z), i¼ 1, 2, . . . , N such that

G1(z)H1(z)þ G2(z)H2(z)þ � � � þ GN (z)HN(z) ¼ 1: (32:30)

As the number of microphones in the array increases, the chances that all the Gi(z)’s share a common
zero in the z-plane diminishes. This assures that the multiple microphone system yields a unique and
exact solution.

In time domain, the previous expression can be written as

d(k) ¼ g1(k)*h1(k)þ � � � þ gN(k)*hN (k), (32:31)
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where N is the number of microphones. Now,
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.

0

0
BB@

1
CCA, (32:32)

(G1 � � �GN )

H1

..

.

HN

0
B@

1
CA ¼ D: (32:33)

Thus,

H1

..

.

HN

0
B@

1
CA ¼ (G1 � � �GN )

�1D: (32:34)

The RAP algorithm described in Section 32.2.2.1 is an effective method to solve Equation 32.34. In the
MINT modeling, even if the different Gi(z)’s share a common zero, RAP can provide a stable inverse.
Even if the data are ‘‘noisy,’’ or if the system is ill-conditioned, the algorithm is guaranteed to converge.
From computer simulations, it can be shown that the solution converges very fast (see Figure 32.8).
Hence, the system can adapt to the varying conditions without having to recalculate the FIR filters.

Figure 32.8 shows the rate of convergence of the RAP algorithm when the number of microphones in
the array is varied. The results suggest that increasing the number of microphones used in the array
increases the speed of convergence and also provides more accurate results.

32.5 Results

In this section, computer simulations are presented to demonstrate the effect of matched filtering and the
Diophantine inverse filtering method. A room (203 163 5 m in size) was simulated using the image
model [10]. The source was located at (14, 9.5, 1.7) m. Fifth order images were assumed and wall
reflectivity was assumed to be a¼ 0.1. Sensor spacing was considered to be 40 cm. A large spacing
between sensors was chosen to make the impulse responses as dissimilar as possible.

The SNR of the output was calculated using the formula:

SNR(dB) ¼ 10 log10

P
s(n)2P

(y(n)� s(n))2
, (32:35)

where
s(n) is the input speech signal
y(n) is the output speech signal

The two signals are sufficiently staggered to account for the delay in the processing.
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The SNRs were calculated as follows:

No. of mics SNR(dB)

2 15

3 27

4 37

For comparison, the SNR gains of a single beamforming, multiple beamforming, and matched filter linear
arrays using five microphones are presented below. The multiple beamformer has one beam directed at
each image of the source.

Method SNR(dB)

Single beamformer �1

Multiple beamformer 11

Matched filter 13

Figure 32.9 shows the impulse response of the room using an unsteered array system consisting of four
microphones. Figures 32.10 and 32.11 are the system responses of a single beamformer and the matched
filter. The matched filter system response is a much better approximation of an ideal impulse than the
single beamformer. But the tail of the response is still significant compared to the exact inverse system
(Figure 32.12) whose final response is very close to an ideal impulse.
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FIGURE 32.8 Rate of convergence of RAP for calculating the exact inverse filters.
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For obtaining the same SNR gain, the exact inverse requires a lesser number of microphones than
either the matched filter or the multiple beamformer. The Diophantine inverse filtering method does not
suffer from the effects of spatial aliasing that may affect traditional beamformers using periodically
spaced microphones. Finding the exact inverse is also more computationally intensive than matched
filtering or multiple beamforming.

FIGURE 32.9 Impulse response of a room (images up to fifth order are used).

FIGURE 32.10 Response of a single beamformer for a source located on the axis.
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FIGURE 32.11 Response of a matched filtering system for a source located at the focus.

FIGURE 32.12 Response of the Diophantine inverse filtering system (the delay involved is not shown).
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32.5.1 Speaker Identification

A simple speaker identification experiment was done to test the acoustic fidelity of the exact inverse
system. The dimensions of the simulated room, the location of the source and the other conditions was
assumed to be identical to the experiment reported in the previous section. A part of the TIMIT database
with 38 speakers, all from the New England area, was used. Five sentences were used for training and five
were used for testing. Twelve cepstral vectors were used and a learning vector quantizer was used for
identification [25].

Testing data

Training data CLS (%) One mic (%) Array output (%)

Speaker identification accuracy for the exact inverse system:

CLS 91.6 36.3 90

Array output — — 92.6

Speaker identification accuracy for the exact inverse system when an interfering
Gaussian noise source at 15 dB signal-to-competing-noise ratio is present:

CLS 91.6 14.2 9.5

Array output — — 49

The identification accuracy when trained and tested on clean speech recorded through a close talking
microphone (CLS) was 91.6%. The performance dropped to 36.3% when the same system was tested on a
single microphone located at the center of the array. Once the Diophantine inverse filtering was used to
clean up the speech, the performance jumped back to 90%. The identification accuracy when the system
was trained and tested on the Diophantine inverse filtered output was 92.6%.

But the performance was poor even in the presence of modest interference. When a Gaussian noise
source at 15 dB signal-to-competing-noise ratio levels was introduced at (3.0, 5.0, 1.0) m, the perform-
ance on the output of the exact inverse filtering system (9.5%) was worse than the single microphone
(14.2%). Under matched training and testing conditions, the performance of the exact inverse system was
significantly lower (49%).

Recently, speaker identification results were reported on the output of a matched-filtered system [26].
The room dimensions and conditions were similar to the ones in this report and the data sets used for
training and testing were the same. The performance under matched conditions for close talking
microphone was 94.7% and for the matched filtered output was 88.4%. In the presence of an
interfering source producing Gaussian noise at 15 dB signal-to-competing-noise ratio levels, the per-
formance when trained on close talking microphone and tested on the matched filtered output was 80%;
the performance when trained and tested on the matched filtered output in the presence of noise was
approximately 88% [26].

From these results, it is clear that though the exact inverse filtering outperforms the matched filter
under clean conditions, it performs significantly poorer when there are interfering noise sources. This can
be attributed to the fact that the exact inverse system attempts to maximize the SRNR for a source at
the focus. Though it maximizes the SRNR for a source at the focus and lowers the SRNR for any source
located away from the focus, it does not guarantee that the contribution of interfering source to the
output power will also be lowered. Figure 32.13 shows the impulse response of the exact inverse system
for the location of the interfering noise source. It is clear that the SNR of the source at this location would
be poor (the effective response does not look like an ideal impulse). But the signal is effectively amplified.
On the other hand, the matched filter maximizes the output power for a source located at the focus and
minimizes the output power for all other sources thus providing lower SNR ratio improvement, but
higher levels of spatial discrimination.
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32.6 Summary

Microphone arrays can be successfully used in ‘‘inverting’’ room acoustics. A simple single beamformer is
not effective in combating room reverberation, especially in the presence of interfering noise sources.
Adaptive algorithms that project a null in the direction of the interferer can be used, but they introduce
significant distortion in the main signal. Constrained adaptive arrays mitigate this problem but they are of
limited capability in severely reverberant environments. Processing algorithms such as multiple beam-
forming and matched filtering, combined with three-dimensional array of sensors, though only providing
an approximation to the inverse, give robust dereverberant systems that provide selectivity in a spatial
volume and thus immunity from interfering noise sources. An exact inverse using Diophantine inverse
filtering using theMINTmodel can be found. Though thismethod provides a higher SNR for a source at the
focus, it does not provide immunity from noise interference that the matched filtering can offer. Speaker
identification results are provided that substantiate the performance analysis of these systems.
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33.1 Introduction

A synthetic aperture radar (SAR) is a radar sensor that provides azimuth resolution superior to that
achievable with its real beam by synthesizing a long aperture using platform motion. The geometry for
the production of the SAR image is shown in Figure 33.1. The SAR is used to generate an electromagnetic
map of the surface of the earth from an airborne or spaceborne platform. This electromagnetic map of
the surface contains information that can be used to distinguish different types of objects that make
up the surface. The sensor is called an SAR because a synthetic aperture is used to achieve the narrow
beamwidth necessary to get a high cross-range resolution. In SAR imagery the two dimensions are range
(perpendicular to the sensor) and cross-range (parallel to the sensor). The range resolution is achieved
using a high bandwidth pulsed waveform. The cross-range resolution is achieved by making use of the
forward motion of the radar platform to synthesize a long aperture giving a narrow beamwidth and high
cross-range resolution. The pulse returns collected along this synthetic aperture are coherently combined
to create the high cross-range resolution image. A SAR sensor is advantageous compared to an optical
sensor because it can operate day and night through clouds, fog, and rain, as well as at very long ranges.
At very low nominal operating frequencies, less than 1 GHz, the radar even penetrates foliage and can
image objects below the tree canopy. The resolution of a SAR ground map is also not fundamentally
limited by the range from the sensor to the ground. If a given resolution is desired at a longer range, the
synthetic aperture can simply be made longer to achieve the desired cross-range resolution.

A SAR image may contain ‘‘speckle’’ or coherent noise because it results from coherent processing of the
data. This speckle noise is a common characteristic of high frequency SAR imagery and reducing speckle, or
building algorithms that minimize speckle, is a major part of processing SAR imagery beyond the image
formation stage. Traditional techniques averaged the intensity of adjacent pixels, resulting in a smoother
but lower resolution image. Advanced SAR sensors can collect multiple polarimetric and=or frequency
channels where each channel contains unique information about the surface. Recent systems have also used
elevation angle diversity to produce three-dimensional (3-D) SAR images using interferometric techniques.
In all of these techniques, some sort of averaging is employed to reduce the speckle.

33-1



The largest consumers of SAR sensors and products are the defense and intelligence communities.
These communities use SAR to locate and target relocatable and fixed objects. Manmade objects,
especially ones with sharp corners, have very bright signals in SAR imagery, making these objects
particularly easy to locate with a SAR sensor. A technology similar to SAR is inverse synthetic aperture
radar (ISAR) which employs motion of the platform to image the target in cross-range. The ISAR data
can be collected from a fixed radar platform since the target motion creates the viewing angle diversity
necessary to achieve a given cross-range resolution. ISAR systems have been used to image ships, aircraft,
and ground vehicles.

In addition to the defense and intelligence applications of SAR, there are several commercial remote
sensing applications. Because a SAR sensor can operate day and night and in all weather, it provides the
ability to collect data at regular intervals uninterrupted by natural influences. This stable source of
ground mapping information is invaluable in tracking agriculture and other natural resources. SAR
sensors have also been used to track oil spills (oil-coated water has a different backscatter than natural
water), image underground rock formations (at some frequencies the radar will penetrate some soils),
track ice conditions in the Arctic, and collect digital terrain elevation data.

Radar is an abbreviation for RAdio Detection And Ranging. Radar was developed in the 1930s and
1940s to detect and track ships and aircraft. These surveillance and tracking radars were designed so that
a target was contained in a single resolution cell. The size of the resolution cell was a critical design
parameter. Smaller resolution cells allowed one to determine the location of a target more accurately and
increased the target-to-clutter ratio, improving the ability to detect a target. In the 1950s it was observed
that one could map the ground (an extended target that takes up more than one resolution cell) by
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FIGURE 33.1 SAR imaging geometry.
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mounting the radar on the side of an aircraft and building a surface map from the radar returns. High
range resolution was achieved by using a short pulse or high bandwidth waveform. The cross-range
resolution was limited by the size of the antenna, with the cross-range resolution roughly proportional to
R=La where R is the range from the sensor to the ground and La is the length of the antenna. The physical
length of the antenna was constrained, limiting the resolution. In 1951, Carl Wiley of the Goodyear
Aircraft Corporation noted that the reflections from two fixed targets in the antenna beam, but at
different angular positions relative to the velocity vector of the platform, could be resolved by frequency
analysis of the along track (or cross-range) signal spectrum. Wiley simply observed that each target had
different Doppler characteristics because of its relative position to the radar platform and that one could
exploit the Doppler to separate the targets. The Doppler effect is, of course, the change in frequency of a
signal transmitted or received from a moving platform discovered by Christian J. Doppler in 1853:

fd ¼ n=l

where
fd is the Doppler shift
n is the radial velocity between the radar and target
l is the radar wavelength

While the Doppler effect had been used in radar processing before the 1950s to separate moving targets
from stationary ground clutter, Wiley’s contribution was to discover that with a side looking airborne
radar (SLAR), Doppler could be used to improve the cross-range spatial resolution of the radar. Other
early work on SAR was done independently of Wiley at the University of Illinois and the University of
Michigan during the 1950s. The first demonstration of SAR mapping was done in 1953 by the University
of Illinois by performing frequency analysis of data collected by a radar operating at a 3 cm wavelength
from a C-46 aircraft. Much work has been accomplished perfecting SAR hardware and processing
algorithms since the first demonstration. For a much more detailed description of the history of SAR
including the development of focused SAR, phase compensation techniques, calibration techniques, and
autofocus, see the recent book by Curlander and McDonough [1].

Before offering a brief description of some processing approaches for forming, enhancing, and
interpreting SAR imagery, we give two examples of existing SAR systems and their applications. The
first system is the Shuttle Imaging Radar (SIR) developed by the NASA Jet Propulsion Laboratory (JPL)
and flown on several space shuttle missions. This system was designed for nonmilitary collection of
geographic data. The second example is the Advanced Detection Technology Sensor (ADTS) built by the
Loral Corporation for the MIT Lincoln Laboratory. The ADTS sensor was designed to demonstrate
the capability of a SAR to detect and classify military targets. Table 33.1 contains the basic parameters for
the ADTS and SIR SAR systems along with details on several other SAR systems.

Figure 33.2 shows an example image formed from data collected by the SIR SAR. The JPL engineers
describe this image as follows:

This is a radar image of Mount Rainier in Washington state . . . This image was acquired by the
Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C=X-SAR) aboard
the space shuttle Endeavor on its 20th orbit on October 1, 1994. The area shown in the image is
approximately 59 kilometers by 60 kilometers (36.5 miles by 37 miles). North is toward the top left
of the image, which was composed by assigning red and green colors to the L-band, horizontally
transmitted and vertically received, and the L-band, horizontally transmitted and vertically
received. Blue indicates the C-band, horizontally transmitted and vertically received. In addition
to highlighting topographic slopes facing the space shuttle, SIR-C records rugged areas as brighter
and smooth areas as darker. The scene was illuminated by the shuttle’s radar from the northwest so
that northwest-facing slopes are brighter and southeast-facing slopes are dark. Forested regions are
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pale green in color; clear cuts and bare ground are bluish or purple; ice is dark green and white.
The round cone at the center of the image is the 14,435-foot (4,399-meter) active volcano, Mount
Rainier. On the lower slopes is a zone of rock ridges and rubble (purple to reddish) above
coniferous forests (in yellow=green). The western boundary of Mount Rainier National Park is
seen as a transition from protected, old-growth forest to heavily logged private land, a mosaic of
recent clear cuts (bright purple=blue) and partially regrown timber plantations (pale blue).

TABLE 33.1 Example SAR Systems

Platform Bands Polarization
Resolution

(m)
Swath
Width Interferometry

JPL AIRSAR C, L, P-Full 4 10–18 km Cross track L, C

Along track L, C

SIR-C=X-SAR C, L-Full, X-VV 303 30 15–90 Multi-pass

ERIM IFSARE X-HH 2.53 0.8 10 km Cross track

ERIM DCS X-Full <1 1 km Cross track

MIT LL ADTS Ka (33 GHz)-Full 0.33 400 m Multi-pass

NORDEN G11 Ku-VV 1, 3 5 km 3 Along track

3 Cross track

Phase centers

SRI UWB 100–300 MHz, 13 1 400–600 m None

FOLPEN 2 200–400 MHz,

300–500 MHz,

HH

LORAL UHF 500–800 MHz 0.63 0.6 280 m None

MSAR Full

NAWC P-3 C, L, X-Full 1.53 0.7 5 km Along track X, C

NAWC P-3 600 MHz-Full tunable over
200–900 MHz

0.333 0.66 930 km None

Tier IIþ UAV SAR X 1 and 0.3 10 km None

FIGURE 33.2 SAR image of Mt. Rainier in Washington State taken from shuttle imaging radar.
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Figure 33.3 is an example image collected by the ADTS system. The ADTS system operates at a
nominal frequency of 33 GHz and collects fully polarimetric, 1 ft resolution data. This image was formed
using the polarimetric whitening filter (PWF) combination of three polarimetric channels to reduce the
speckle noise. The output of the PWF is an estimate of radar backscatter intensity. The image displayed in
Figure 33.3 is based on a false color map which maps low intensity to black followed by green, yellow, and
finally white. The color map simply gives the noncolor radar sensor output false colors that make the low
intensity shadows look black, the grass look green, the trees look yellow, and bright objects look white.
This sample image was collected near Stockbridge, New York, and is of a house with an above ground
swimming pool and several junked cars in the backyard. The radar is at the top of the image looking
down at a 208 depression angle. The scene contains large areas of grass or crops and some foliage. Note
the bright returns from the manmade objects, including the circular aboveground swimming pool, and
strong corner reflector scattering from some of the cars in the backyard. Also note the relatively strong
return from the foliage canopy. At this frequency the radar does not penetrate the foliage canopy. Note
the shadows behind the trees where there is no radar illumination.

In this chapter on SAR algorithms, we give a brief introduction to the image formation process in
Section 33.2. We review a few simple algorithms for reducing speckle noise in SAR imagery and
automatic detection of manmade objects in Section 33.3. We review a few simple automatic object
classification algorithms for SAR imagery in Section 33.4. This brief introduction to SAR only contains a
few example algorithms. In the section ‘‘Further Reading,’’ we recommend some starting points for
further reading on SAR algorithms, and discuss several open issues under current research in the SAR
community.

33.2 Image Formation

In this section, we discuss some basic principles of SAR image formation. For more detailed information
about SAR image formation, the reader is directed to the references given at the end of this chapter. One
fundamental scenario under which SAR data is collected is shown in Figure 33.1. An aircraft flies in a
straight path at a constant velocity and collects radar data at a boresight of 908. In practice it is impossible
for an aircraft to fly in a perfectly straight line at a constant velocity (at least within a wavelength), so
motion (phase) compensation of the received radar signal is needed to account for aircraft perturbations.

FIGURE 33.3 SAR image near Stockbridge, New York, collected by the ADTS.
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The radar on the aircraft transmits a short pulsed waveform or uses frequency modulation to achieve
high range resolution imaging of the surface. The pulses collected from several positions along
the trajectory of the aircraft are coherently combined to synthesize a long synthetic aperture in order to
achieve a high cross-range resolution on the surface. In this section, we first discuss SLAR where only range
processing is performed. Next, we discuss unfocused SAR where both range and cross-range processing
are executed. Finally, we discuss focused SAR where ‘‘focusing’’ is performed in addition to range and cross-
range processing to achieve the highest resolution and best image quality. At the end of this section we
briefly mention several other important SAR image formation topics such as phase compensation,
clutter-lock, autofocus, spotlight SAR, and ISAR. The details of these topics can be found in [1–3].

33.2.1 Side-Looking Airborne Radar

SLAR is the earliest radar system for remote surveillance of a surface. These radar systems could only
perform range processing to form the 2-D reflectivity map of the surface, so the cross-range resolution is
limited by the real antenna beamwidth. These SLAR systems typically operated at high frequencies
(microwave or millimeter-wave) to maximize the cross-range resolution. We cover SLAR systems
because SLAR performs the same range processing as SAR, and the limitations of a SLAR motivate the
need for SAR processing.

The resolution of a SLAR system is limited by the radar pulse width in the range dimension, and the
beamwidth and slant range in the cross-range dimension:

dr ¼ cT=2 cosh

dcr ¼ Rl=La

where
l=La represents the approximate 3 dB beamwidth of the antenna
dr is the range resolution
dcr is the cross-range resolution
c is the speed of wave propagation
T is the compressed pulse width
h is the angle between the radar beam and the surface
R is the slant range to the surface
l is the wavelength
La is the length of the antenna

The goal is to design the SLAR with a narrow beamwidth, short slant range, and a short pulsewidth to
achieve high resolution. In practice, the pulsewidth of the radar is limited by hardware constraints and
the amount of ‘‘energy on target’’ required to get sufficient signal-to-noise ratio to obtain a good image.
To achieve a high range resolution without a short pulse, frequency modulation can be used to synthesize
an effectively short pulse. This process of generating a narrow synthetic pulsewidth is called pulse
compression. The approach is to introduce a modulation on the transmitted pulse, and then pass the
received signal through a filter matched to the transmit signal modulation. The most common transmit
waveforms used for pulse compression are linear FM (or chirp) and phase coded. Some radars use a
digital version of linear FM called a stepped frequency waveform.

We illustrate pulse compression with the ideal application of the linear FM waveform. The square
pulse is modulated by a linear FM signal, and the resulting transmit signal is

s(t) ¼ cos v
y
0 � 1

2m
y2

� �
j y j � T=2

0 j y j > T=2

(
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where the bandwidth (frequency deviation) introduced by the linear FM is

Df ¼ Tm=2p

If this transmit pulse is perfectly reflected from a stationary point target, range losses are ignored, and we
shift in time to remove the two-way delay; the received signal is exactly the same as the transmitted
signal. The matched filter response for the transmitted signal is

h(t) ¼ 2m
p

� �1=2

cos v
y
0 þ

1
2
my2

� �

The output of the received signal applied to the matched filter is

C(y) ¼ mT2

2p

� �1=2 sin (mTy=2)
(mTy=2)

Re e j v
y
0þ1

2m
y2þp=4ð Þh i

This output has a mainlobe that has a 4 dB beamwidth of 1=Df. The resulting compressed pulse can be
significantly narrower than the width of the transmitted pulse with a pulse compression ratio of TDf. The
range resolution of the radar has been increased by this pulse compression factor and is now given by

dr � c=2Df cosh

Note that the range resolution in the ideal case is now completely independent of the physical width of
the transmitted pulse. Performing range compression against real radar targets that Doppler shift the
frequency of the receive signal introduces ambiguities resulting in additional signal processing issues that
must be addressed. There is a trade-off between the ability of a radar waveform to resolve a target in
range and frequency. The performance of a waveform in range-frequency space is given by its ambiguity.
The ambiguity function is the output of the matched filter for the signal for which it is matched and for
frequency shifted versions of that signal. The references contain a much more detailed description of
ambiguity functions and radar waveform design.

Using pulse compression, a SLAR system can achieve a very high range resolution on the order of 1 ft
or less, but the cross-range resolution of the SLAR is limited by the physical beamwidth of the antenna,
the operating frequency, and the slant range. This cross-range resolution limitation of SLAR motivates
the use of a synthetic array antenna to increase the cross-range resolution.

33.2.2 Unfocused Synthetic Aperture Radar

Figure 33.1 provides a good geometric description of SAR. As with SLAR, the radar platform moves along
a straight line collecting radar data from the surface. The SAR system goes one step further than SLAR by
coherently combining pulses collected along the flight path to synthesize a long synthetic array. The
beamwidth of this synthetic aperture is significantly narrower than the physical beamwidth (real beam)
of the real antenna. The ideal synthetic beamwidth of this synthetic aperture is

uB ¼ l=2Lu

The factor of two results from the two-way propagation from the moving platform. The unfocused SAR
can be implemented by performing FFT processing in the cross-range dimension for the samples in each
range bin. This is simply the conventional beamformer for an array antenna. The difference between SAR
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and real beam radar is that the aperture samples that comprise the SAR are collected at different times by
a moving platform. There are several design constraints on a SAR system, including

. The speed of the platform and pulse repetition rate (PRF) of the radar must be mutually selected so
that the sample points of the synthetic array are separated by less than l=2 to avoid grating lobes.

. The PRF must be selected so that the swath width is unambiguously sampled.

. A point on the ground must be visible to the radar real beam across the entire length of the synthetic
array. This limits the size of the real beam antenna. This constraint leads to the observation that
with SAR, the smaller the real-beam antenna, the better the resolution, whereas with SLAR the
larger the real-beam antenna, the better the resolution.

. The SAR assumes that a ground target has an isotropic signal across the collection angle of the
radar platform as it flies along the synthetic array.

The resolution of the unfocused SAR is limited because the slant range to a scatterer at a fixed location on
the surface changes along the synthetic aperture. If we limit the synthetic aperture to a length so that the
range from every array point in the aperture to a fixed surface location differs by less than l=8, then the
cross-range resolution of the unfocused SAR is limited to

dcr ¼
ffiffiffiffiffiffiffiffiffiffiffi
Rl=2

p

33.2.3 Focused Synthetic Aperture Radar

The cross-range limitation of an unfocused SAR can be removed by focusing the data, as in optics.
The focusing procedure for the SAR involves adjusting the phase of the received signal for every
range sample in the image so that all of the points processed in cross-range through the synthetic
beamformer appear to be at the same range. The phase error at each range sample used to form the SAR
image is

Df ¼ 2p
l

d2n
R

� �
[radiar]

where
dn is the cross-range distance from the beam center
R is the slant range to the point on the ground from the beam center
l is the wavelength

The range samples can be focused before cross-range processing by removing this phase error from the
phase history data. Note that each data point has a different phase correction based on the along-track
position of the sensor and the point’s range from the sensor.

When focusing is performed, the resulting SAR image resolution is independent of the slant range
between the sensor and ground. This can be shown as follows:

dcr ¼ Rus

where us � l

2Le
and Le � Rl

La
therefore, dcr � La=2

The effective beamwidth of the synthetic aperture is approximately l=2Le where the factor of two
comes from the two-way propagation of the energy (the exact effective beamwidth depends on the
synthetic array taper used to control sidelobes). The length of the effective aperture (Le) is limited by the
fact that a given scatterer on the surface must be in the mainbeam of the real radar beam for every
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position along the synthetic aperture. The result is that the resolution of the SAR when the data is focused
is approximately La=2.

SAR processing can also be developed by considering the Doppler of the radar signal from the surface
as first done by Wiley in 1951. When the real beamwidth of the SAR is small, a point on the surface has
an approximately linearly decreasing Doppler frequency as it passes through the main beam of the real
SAR beamwidth. This time varying Doppler frequency has been shown to be approximately

fd(t) ¼ 2n2jt � t0j
lR

where
n is the velocity of the platform
t0 is the time that the point scatterer is in the center of the main beam

The change in Doppler frequency as the point passes through the main beam is 2n2Td=lR, and Td is the
time that the point is in the main beam. As with linear FM pulse compression, covered in Section 33.2.1,
this Doppler signal can be processed through a filter to produce a higher cross-range resolution signal
which is limited by the size of the real aperture just as with the synthetic antenna interpretation
(dcr¼ La=2). In a modern SAR system, typically both pulse compression (synthetic range processing)
and a synthetic aperture (synthetic cross-range processing) are employed. In most cases, these trans-
formations are separable where the range processing is referred to as ‘‘fast time’’ processing and the
cross-range processing is referred to as ‘‘slow-time’’ processing.

A modern SAR system requires several additional signal processing algorithms to achieve high reso-
lution imagery. In practice, the platform does not fly a straight and level path, so the phase of the raw
receive signal must be adjusted to account for aircraft perturbations, a procedure called motion compen-
sation. In addition, since it is difficult to exactly estimate the platform parameters necessary to focus the
SAR image, an autofocus algorithm is used. This algorithm derives the platform parameters from the raw
SAR data to focus the imagery. There is also an interpolation algorithm that converts from polar to
rectangular formats for the imagery display. Most modern SAR systems form imagery digitally using either
an FFT or a bank of matched filters. Typically, a SAR will operate in either a stripmap or spotlight mode. In
the stripmap mode, the SAR antenna is typically pointed perpendicular to the flight path (although it may
be squinted slightly to one side). A stripmap SAR keeps its antenna position fixed and collects SAR imagery
along a swath to one side of the platform. A spotlight SAR canmove its antenna to point at a position on the
ground for a longer period of time (thus actually achieving cross-range resolutions even greater than
the aperture length over two). Many SAR systems support both stripmap and spotlight modes, using the
stripmap mode to cover large areas of the surface in a slightly lower resolution mode, and spotlight modes
to perform very high resolution imaging of areas of high interest.

33.3 SAR Image Enhancement

In this section we review a few techniques for removing speckle noise from SAR imagery. Removing the
speckle can make it easier to extract information from SAR imagery and improves the visual quality.

Coherent noise or speckle can be a major distortion in high resolution, high frequency SAR imagery.
The speckle is caused when the intensity of a resolution cell results from the coherent combination
of many wavefronts resulting from randomly oriented clutter surfaces within a resolution cell.
These wavefronts can combine constructively or destructively resulting in intensity variations across
the image. When the number of wavefronts approaches infinity (i.e., large resolution cell collected by a
high frequency radar) the Rayleigh clutter model can be used to represent the speckle under the right
statistical assumptions. When the number of wavefronts is less than infinity, the K-distribution and other
product models do a better job of theoretically and empirically modeling the clutter.
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When the combination of the radar system design and clutter properties results in images that
contain large amounts of speckle, it is desirable to perform additional processing to reduce the
speckle. One approach for speckle reduction is to noncoherently spatially average adjacent resolution
cells, sacrificing resolution for the speckle reduction. This spatial averaging can be performed as a part
of the image formation analogous to the Bartlett method of spectral estimation. Another approach
for reducing speckle is to average across polarimetric channels if multiple polarimetric channels
are available.

The PWF reduces the speckle content while preserving the image resolution. The PWF was derived
by Novak et al. [5] as a quadratic filter that minimizes a specific speckle metric (defined as the ratio of
the clutter standard deviation to its mean). The PWF first whitens the polarimetric data with respect
to the clutter’s polarimetric covariance, and then noncoherently averages across the polarimetric
channels. This whitening filter essentially diagonalizes the covariance matrix of the complex backscatter
vector [HH, HV, VV]T, such that the resulting new linear polarization basis [HH0, HV0, VV0]T has equal
power in each component, where

HH0

HV 0

VV 0

2
64

3
75 ¼

HH

HVffiffiffi
e

p

VV � r*
ffiffiffi
g

p
HHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g(1� jrj2)
q

2
666666666664

3
777777777775

(33:1)

where

e ¼ E(jHVj2)
E(jHHj2) , g ¼ E(jWj2)

E(jHHj2) , r ¼ E(HH �W*)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(jHHj2) � E(jWj2)

q (33:2)

The polarization scattering matrix (using a linear-polarization basis) can then be expressed as

X
¼ sHH

d 1 0 r
ffiffiffi
g

p ee
j 0 e 0 j
b r*

ffiffiffi
g

p
0 g c

(33:3)

The pixel intensity (power) is then derived through noncoherent averaging of the power in each of the
new polarization components:

Y ¼ jHHj2 þ HVffiffiffi
e

p
����

����
2

þ W � r*
ffiffiffi
g

p
HHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g(1� jpj2)
q

�������
�������
2

(33:4)

yielding a minimal speckle image at the original image resolution. Novak et al. [5] have shown that on
the ADTS SAR data, the PWF reduces the clutter standard deviation by 2.0–2.7 dB compared with the
standard deviation of single-polarimetric-channel data. The PWF has a dramatic effect on the visual quality
of the SAR imagery and the performance of automatic detection and classification algorithms applied to
SAR images. The PWF does not take into account the effect of the speckle reduction operation on target
signals. It only minimizes the clutter. There has been recent work on polarimetric speckle reduction
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filters that both reduce the clutter speckle while preserving the target signal. Figure 33.4 shows the three
polarimetric channels and the resulting PWF image for an ADTS SAR chip of a target-like object.

33.4 Automatic Object Detection and Classification
in SAR Imagery

SAR algorithmic tasks of high interest to the defense and intelligence communities include automatic
target detection and recognition (ATD=R). Since SAR imagery has very different target and clutter
characteristics as compared with visual and infrared imagery, uniquely designed ATD=R algorithms
are required for SAR data. In this section, we describe a few basic ATD=R algorithms that have been
developed for high resolution, high frequency SAR imagery (10 GHz or above) [6–8].

Performing target detection and classification against remote sensing imagery and, in particular, SAR
imagery is very different from the classical pattern recognition problem. In the classical pattern
recognition problem, we have models defining N classes, and the goal is to design a classifier to separate
sensor data into one of the N classes. In SAR target classification, the imagery contains regions of diffuse
clutter which can be represented to some degree by models, but the imagery also contains a possibly
uncountable set of target-like discrete unknown and unmodelable objects. The goal is to reject both the

(a) HH VV

HV PWF

(b)

(c) (d)

FIGURE 33.4 Polarimetric processing of SAR data to reduce speckle.
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diffuse clutter and the unknown discrete objects and to classify the target objects. This need to handle
the unknown object means that the classifier must have the unknown class as a possible outcome of the
classifier. Since the unknown class cannot be modeled, most SAR ATR systems solve the problem by
employing a distance metric to compare the sensor data with models for each target of interest, and if the
distance is too great, the data is classified as an unknown object.

Another design issue for a SAR ATD=R system is the need to process hundreds of square kilometers of
data in near real-time to be of practical benefit. One widely used approach for solving this computational
problem is to use a simple focus-of-attention or pre-detection algorithm to reject most of the diffuse
clutter and pass only regions of interest (ROIs), including all of the targets. These ROIs are then
processed through a set of computationally more complicated classifiers which classify objects in the
ROIs as one of the targets or as an unknown object.

In high frequency SAR imagery most target signatures have extremely bright peaks caused by
physical corners on the target. One effective pre-detection technique involves applying a single pixel
detector to find the bright pixels caused by corner reflectors on the targets. Since the background clutter
power is unknown and varies across the image, we cannot simply use a thresholding operation to find
these bright pixels. One approach for handling the unknown clutter power is to estimate it from clutter
samples surrounding a test pixel. This approach for target detection is referred to as a constant false
alarm rate (CFAR) detector because with the proper clutter and target models, it can be shown that the
output of the detector has a CFAR in the presence of unknown clutter parameters. Figure 33.5 depicts
one design for a CFAR template. The clutter parameters are estimated using the auxiliary samples along a
box with a test sample in the center. This test sample may or may not be on a target. The size of the box
containing the auxiliary samples is sized so that the auxiliary samples do not overlap a target when the
test sample is on the target. We also need to keep the size of the box containing the auxiliary samples as
small as possible, so that we get a good local estimate of the clutter parameters. With these design
constraints, a good choice for the CFAR template is just over twice the maximum dimension of the
targets of interest.

Auxiliary samples

Test sample(s)

Target

FIGURE 33.5 CFAR template.
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One of these CFAR algorithms, first developed by Goldstein [9], is referred to as the two-parameter
CFAR or the log-t test:

log x � 1
N

PN
i¼1 log yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�1

PN
i¼1 log yi � 1

N

PN
i¼1 log yi

� 	2q
H1

>
t

<
H0

where
x is the test sample
y1, . . . , yN are the auxiliary samples

This test is performed for every pixel in the SAR scene and the output is thresholded with the threshold
t. When N is large, the test statistic is approximately Gaussian if the SAR data is log normally
distributed. In this case, Gaussian statistics can be used to determine the threshold for a given
probability of false alarm. In practice, it is much more accurate to determine the threshold with a set
of training data. This is primarily a corner reflector detector, and the output will almost always get
more than one detection per target. In practice, a simple clustering algorithm can be used based on the
size of the targets and the expected spacing of targets to get one detection per target and reduce the
number of false alarms which are usually also clustered. The two-parameter CFAR test is one example of
a simple SAR target detector. Researchers have also developed more sophisticated ordered statistic
detectors, multi-polarimetric channel detectors, and feature-based discriminators to get improved SAR
target detector performance [6–8].

This simple pre-detector gets a large number of false alarms (hundreds per square kilometer in single
polarimetric channel, 1 ft resolution imagery) [5]. In order to further reduce the false alarm rate and
classify the targets, further processing is necessary on the output of the pre-detector. One widely used
approach for performing this classification operation is to apply a linear filter bank classifier to the
ROIs identified by the pre-detector. Researchers have developed a large number of approaches for
designing these linear filter bank classifiers including spatial matched filters [7], synthetic discriminant
functions [7], and vector quantization=learning vector quantization [8]. The simplest approach is to
build the spatial matched filters by breaking the target into angle subclasses, and averaging the training
signatures in a given angle subclass to represent that subclass. In practice, the templates must be
normalized because the absolute energy of a given target signature is unknown. The exact location of a
target in the ROI is also unknown, so the matched filter must be applied for every possible spatial
position of the target. This is performed more efficiently in the frequency domain as follows:

rij ¼ max FFT�1 FFT(tij) � FFT(x)*

 �� 

where
x is an ROI
tij is the spatial matched filter representing the ith target and the jth angle subclass of that target.

The rij is computed for every angle subclass of every target, and the maximum represents the estimate of
the correct target and angle subclass. The output can be thresholded to reject false alarms. In practice the
level of the threshold is determined by testing on both target and false alarm data.
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In this section, we have reviewed a few basic concepts in SAR ATD=R. For a much more detailed
treatment of this topic, consult the references and the recommended further reading given below.

Further Reading and Open Research Issues
A very brief overview of SAR with a few example algorithms is given here. The items in the reference list
give a more detailed treatment of the topics covered in this chapter. SAR is a very active research topic.
Articles on SAR algorithms are regularly published in many journals and conferences, including

. Journals: IEEE Transactions on Aerospace and Electronic Systems, IEEE Transactions on Geoscience
and Remote Sensing, IEEE Transactions on Antennas and Propagation, IEEE Transactions on Signal
Processing, and IEEE Transactions on Image Processing.

. Conferences: IEEE National Radar Conference, IEEE International Radar Conference, and the
International Society for Optical Engineering (SPIE) has held several SAR conferences.

There are numerous open areas of research on SAR signal processing algorithms including

. Still developing an understanding of the utility and applications of multi-polarimetric, multi-
frequency, and 3-D SAR

. Performance=robustness of model-based image formation not completely understood

. Performance=robustness of different detection, discrimination, and classification algorithms given
radar, clutter, and target parameters not completely understood

. No fundamental theoretical understanding of performance limitations given radar, clutter, and
target parameters (i.e., no Shannon theory)
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34.1 Introduction

In this chapter we consider a class of iterative restoration algorithms. If y is the observed noisy and
blurred signal, D the operator describing the degradation system, x the input to the system, and n the
noise added to the output signal, the input–output relation is described by [3,51]

y ¼ Dx þ n: (34:1)

Henceforth, boldface lowercase letters represent vectors and boldface uppercase letters represent a
general operator or a matrix. The problem, therefore, to be solved is the inverse problem of recovering
x from knowledge of y, D, and n. Although the presentation will refer to and apply to signals of any
dimensionality, the restoration of grayscale images is the main application of interest.

There are numerous imaging applications which are described by Equation 34.1 [3,5,23,36,52]. D, for
example, might represent a model of the turbulent atmosphere in astronomical observations with
ground-based telescopes, or a model of the degradation introduced by an out-of-focus imaging device.
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Dmight also represent the quantization performed on a signal, or a transformation of it, for reducing the
number of bits required to represent the signal (compression application).

The success in solving any recovery problem depends on the amount of the available prior information.
This information refers to properties of the original signal, the degradation system (which is in general
only partially known), and the noise process. Such prior information can, for example, be represented by
the fact that the original signal is a sample of a stochastic field, or that the signal is ‘‘smooth,’’ or that the
signal takes only nonnegative values. Besides defining the amount of prior information, the ease of
incorporating it into the recovery algorithm is equally critical.

After the degradation model is established, the next step is the formulation of a solution approach.
This might involve the stochastic modeling of the input signal (and the noise), the determination of the
model parameters, and the formulation of a criterion to be optimized. Alternatively it might involve the
formulation of a functional to be optimized subject to constraints imposed by the prior information. In
the simplest possible case, the degradation equation defines directly the solution approach. For example,
if D is a square invertible matrix, and the noise is ignored in Equation 34.1, x¼D�1y is the desired
unique solution. In most cases, however, the solution of Equation 34.1 represents an ill-posed problem
[56]. Application of regularization theory transforms it to a well-posed problem which provides mean-
ingful solutions to the original problem.

There are a large number of approaches providing solutions to the image restoration problem. For
recent reviews of such approaches refer, for example, to [5,23]. The intention of this chapter is to
concentrate only on a specific type of iterative algorithm, the successive approximation algorithm, and its
application to the signal and image restoration problem. The basic form of such an algorithm is presented
and analyzed first in detail to introduce the reader to the topic and address the issues involved. More
advanced forms of the algorithm are presented in subsequent sections.

34.2 Iterative Recovery Algorithms

Iterative algorithms form an important part of optimization theory and numerical analysis. They date
back at least to the Gauss years, but they also represent a topic of active research. A large part of any
textbook on optimization theory or numerical analysis deals with iterative optimization techniques or
algorithms [43,44]. In this chapter we review certain iterative algorithms which have been applied to
solving specific signal recovery problems in the last 15–20 years. We will briefly present some of the more
basic algorithms and also review some of the recent advances.

A very comprehensive paper describing the various signal processing inverse problems which can be
solved by the successive approximations iterative algorithm is the paper by Schafer et al. [49]. The basic
idea behind such an algorithm is that the solution to the problem of recovering a signal which satisfies
certain constraints from its degraded observation can be found by the alternate implementation of the
degradation and the constraint operator. Problems reported in [49] which can be solved with such an
iterative algorithm are the phase-only recovery problem, the magnitude-only recovery problem, the
bandlimited extrapolation problem, the image restoration problem, and the filter design problem [10].
Reviews of iterative restoration algorithms are also presented in [7,22]. There are certain advantages
associated with iterative restoration techniques, such as [22,49] (1) there is no need to determine or
implement the inverse of an operator, (2) knowledge about the solution can be incorporated into the
restoration process in a relatively straightforward manner, (3) the solution process can be monitored as it
progresses, and (4) the partially restored signal can be utilized in determining unknown parameters
pertaining to the solution.

In the following we first present the development and analysis of two simple iterative restoration
algorithms. Such algorithms are based on a simpler degradation model, when the degradation is linear
and spatially invariant, and the noise is ignored. The description of such algorithms is intended to provide a
good understanding of the various issues involved in dealing with iterative algorithms. We then proceed to
work with the matrix-vector representation of the degradation model and the iterative algorithms. The
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degradation systems described now are linear but not necessarily spatially invariant. The relation between
the matrix-vector and scalar representation of the degradation equation and the iterative solution is also
presented. Various forms of regularized solutions and the resulting iterations are briefly presented. As it
will become clear, the basic iteration is the basis for any of the iterations to be presented.

34.3 Spatially Invariant Degradation

34.3.1 Degradation Model

Let us consider the following degradation model

y(i, j) ¼ d(i, j)*x(i, j), (34:2)

where
y(i, j) and x(i, j) represent, respectively, the observed degraded and original image, d(i, j) the impulse

response of the degradation system
* denotes two-dimensional (2D) convolution

We rewrite Equation 34.2 as follows:

F[x(i, j)] ¼ y(i, j)� d(i, j)*x(i, j) ¼ 0: (34:3)

The restoration problem, therefore, of finding an estimate of x(i, j) given y(i, j) and d(i, j) becomes the
problem of finding a root of F[x(i, j)]¼ 0.

34.3.2 Basic Iterative Restoration Algorithm

The following identity holds for any value of the parameter b:

x(i, j) ¼ x(i, j)þ bF[x(i, j)]: (34:4)

Equation 34.4 forms the basis of the successive approximation iteration by interpreting x(i, j) on the left-
hand side as the solution at the current iteration step and x(i, j) on the right-hand side as the solution at
the previous iteration step. That is,

x0(i, j) ¼ 0

xkþ1(i, j) ¼ xk(i, j)þ bF[xk(i, j)]

¼ by(i, j)þ [d(i, j)� bd(i, j)]*xk(i, j), (34:5)

where
d(i, j) denotes the discrete delta function
b is the relaxation parameter which controls the convergence as well as the rate of convergence of the

iteration

Iteration in Equation 34.5 is the basis of a large number of iterative recovery algorithms, some of which
will be presented in the subsequent sections [1,14,17,31,33,38]. This is the reason it will be analyzed
in quite some detail. What differentiates the various iterative algorithms is the form of the function
F[x(i, j)]. Perhaps the earliest reference to iteration in Equation 34.5 was by Van Cittert [61] in the 1930s.
In this case the gain b was equal to one. Jansson et al. [17] modified the Van Cittert algorithm by
replacing b with a relaxation parameter that depends on the signal. Also Kawata et al. [31,33] used
Equation 34.5 for image restoration with a fixed or a varying parameter b.
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34.3.3 Convergence

Clearly if a root of F[x(i, j)] exists, this root is a fixed point of iteration in Equation 34.5, that is xkþ1

(i, j)¼ xk(i, j). It is not guaranteed, however, that iteration in Equation 34.5 will converge even if
Equation 34.3 has one or more solutions. Let us, therefore, examine under what conditions (sufficient
conditions) iteration in Equation 34.5 converges. Let us first rewrite it in the discrete frequency domain,
by taking the 2D discrete Fourier transform (DFT) of both sides. It should be mentioned here that the
arrays involved in iteration in Equation 34.5 are appropriately padded with zeros so that the result of 2D
circular convolution equals the result of 2D linear convolution in Equation 34.2. The required padding by
zeros determines the size of the 2D DFT. Iteration in Equation 34.5 then becomes

X0(u, v) ¼ 0

Xkþ1(u, v) ¼ bY(u, v)þ [1� bD(u, v)]Xk(u, v),
(34:6)

where Xk(u, v), Y(u, v), and D(u, v) represent the 2D DFT of xk(i, j), y(i, j), and d(i, j), respectively, and
(u, v) the discrete 2D frequency lattice. We express next Xk(u, v) in terms of X0(u, v). Clearly,

X1(u, v) ¼ bY(u, v)

X2(u, v) ¼ bY(u, v)þ [1� bD(u, v)]bY(u, v)

¼
X1
‘¼0

[1� bD(u, v)]‘bY(u, v)

..

.

Xk(u, v) ¼
Xk�1

‘¼0

[1� bD(u, u)]‘bY(u, v)

¼ 1� [1� bD(u, v)]k

1� [1� bD(u, v)]
bY(u, v)

¼ {1� [1� bD(u, v)]k}X(u, v) (34:7)

if D(u, v) 6¼ 0. For D(u, v)¼ 0,

Xk(u, v) ¼ k � bY(u, v) ¼ 0, (34:8)

since Y(u, v)¼ 0 at the discrete frequencies (u, v) for which D(u, v)¼ 0. Clearly, from Equation 34.7 if

j1� bD(u, v)j < 1, (34:9)

then

lim
k!1

Xk(u, v) ¼ X(u, v): (34:10)

Having a closer look at the sufficient condition for convergence, Equation 34.9, it can be rewritten as

j1� bRe{D(u, v)}� bIm{D(u, v)}j2 < 1

) [1� bRe{D(u, v)}]2 < 1: (34:11)

Inequality Equation 34.11 defines the region inside a circle of radius 1=b centered at c¼ (1=b, 0) in the
(Re{D(u, v)}, Im{D(u, v)}) domain, as shown in Figure 34.1. From this figure it is clear that the left
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half-plane is not included in the region of convergence. That is, even though by decreasing b the size of
the region of convergence increases, if the real part of D(u, v) is negative, the sufficient condition for
convergence cannot be satisfied. Therefore, for the class of degradations that this is the case, such as the
degradation due to motion, iteration in Equation 34.5 is not guaranteed to converge.

The following form of Equation 34.11 results when Im{D(u, v)}¼ 0, which means that d(i, j) is
symmetric

0 < b <
2

Dmax(u, v)
, (34:12)

where Dmax(u, v) denotes the maximum value of D(u, v) over all frequencies (u, v). If we now also take
into account that d(i, j) is typically normalized, that is,

P
i, j d(i, j) ¼ 1, and represents a low pass

degradation, then D(0, 0)¼Dmax(u, v)¼ 1. In this case Equation 34.11 becomes

0 < b < 2: (34:13)

From the above analysis, when the sufficient condition for convergence is satisfied, the iteration
converges to the original signal. This is also the inverse solution obtained directly from the degradation
equation. That is, by rewriting Equation 34.2 in the discrete frequency domain

Y(u, v) ¼ D(u, v) � X(u, v), (34:14)

we obtain, for D(u, v) 6¼ 0,

X(u, v) ¼ Y(u, v)
D(u, v)

: (34:15)

An important point to be made here is that, unlike the iterative solution, the inverse solution Equation
34.15 can be obtained without imposing any requirements on D(u, v). That is, even if Equation 34.2 or
34.14 has a unique solution, that is, D(u, v) 6¼ 0 for all (u, v), iteration in Equation 34.5 may not
converge if the sufficient condition for convergence is not satisfied. It is not, therefore, the appropriate
iteration to solve the problem. Actually iteration in Equation 34.5 may not offer any advantages over

0
c

Re{D(u, v)}

Im{D(u, v)}

FIGURE 34.1 Geometric interpretation of the sufficient condition for convergence of the basic iteration, where
c¼ (1=b, 0).
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the direct implementation of the inverse filter of Equation 34.15 if no other features of the iterative
algorithms are used, as will be explained later. The only possible advantage of iteration in Equation 34.5
over Equation 34.15 is that the noise amplification in the restored image can be controlled by
terminating the iteration before convergence, which represents another form of regularization.
The effect of noise on the quality of the restoration has been studied experimentally in [47]. An
iteration which will converge to the inverse solution of Equation 34.2 for any d(i, j) is described in
the next section.

34.3.4 Reblurring

The degradation Equation 34.2 can be modified so that the successive approximations iteration converges
for a larger class of degradations. That is, the observed data y(i, j) are first filtered (reblurred) by a system
with impulse response d* (�i, �j), where * denotes complex conjugation [32]. The degradation Equation
34.2, therefore, becomes

~y(i, j) ¼ y(i, j) * d*(�i,�j) ¼ d*(�i,�j) * d(i, j) * x(i, j)

¼ ~d(i, j) * x(i, j): (34:16)

If we follow the same steps as in the previous section substituting y(i, j) by ~y(i, j) and d(i, j) by ~d(i, j) the
iteration providing a solution to Equation 34.16 becomes

x0(i, j) ¼ 0

xkþ1(i, j) ¼ xk(i, j)þ bd*(�i,�j) * [y(i, j)� d(i, j) * xk(i, j)]

¼ bd*(�i,�j) * y(i, j)þ [d(i, j)� bd*(�i,�j) * d(i, j)] * xk(i, j): (34:17)

Now, the sufficient condition for convergence, corresponding to condition in Equation 34.9, becomes

j1� bjD(u, v)j2j < 1 (34:18)

which can be always satisfied for

0 < b <
2

maxu, vjD(u, v)j2
: (34:19)

The presentation so far has followed a rather simple and intuitive path, hopefully demonstrating some
of the issues involved in developing and implementing an iterative algorithm. We move next to the
matrix-vector formulation of the degradation process and the restoration iteration. We borrow results
from numerical analysis in obtaining the convergence results of the previous section but also more
general results.

34.4 Matrix-Vector Formulation

What became clear from the previous sections is that in applying the successive approximations iteration
the restoration problem to be solved is brought first into the form of finding the root of a function (see
Equation 34.3). In other words, a solution to the restoration problem is sought which satisfies

F(x) ¼ 0, (34:20)
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where
x 2 RN is the vector representation of the signal resulting from the stacking or ordering of the
original signal

F(x) represents a nonlinear in general function

The row-by-row from left-to-right stacking of an image x(i, j) is typically referred to as lexicographic
ordering.

Then the successive approximations iteration which might provide us with a solution to Equation
34.20 is given by

x0 ¼ 0

xkþ1 ¼ xk þ bF(xk)

¼ C(xk): (34:21)

Clearly if x* is a solution to F(x) ¼ 0, that is, F(x*) ¼ 0, then x* is also a fixed point to the above
iteration since xkþ1 ¼ xk ¼ x*. However, as was discussed in the previous section, even if x* is the
unique solution to Equation 34.20, this does not imply that iteration in Equation 34.21 will converge.
This again underlines the importance of convergence when dealing with iterative algorithms. The
form iteration in Equation 34.21 takes for various forms of the function F(x) will be examined in
the following sections.

34.4.1 Basic Iteration

From the degradation Equation 34.1, the simplest possible form F(x) can take, when the noise is
ignored, is

F(x) ¼ y �Dx: (34:22)

Then Equation 34.21 becomes

x0 ¼ 0

xkþ1 ¼ xk þ b(y � Dxk)

¼ by þ (I� bD)xk
¼ by þ G1xk, (34:23)

where I is the identity operator.

34.4.2 Least-Squares Iteration

A least-squares approach can be followed in solving Equation 34.1. That is, a solution is sought which
minimizes

M(x) ¼ ky �Dxk2: (34:24)

A necessary condition for M(x) to have a minimum is that its gradient with respect to x is equal to zero,
which results in the normal equations

DTDx ¼ DTy (34:25)
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or

F(x) ¼ DT(y � Dx) ¼ 0, (34:26)

where superscript T denotes the transpose of a matrix or vector. Application of iteration in Equation
34.21 then results in

x0 ¼ 0

xkþ1 ¼ xk þ bDT(y � Dxk)

¼ bDTy þ (I� bDTD)xk

¼ bDTy þ G2xk: (34:27)

It is mentioned here that the matrix-vector representation of an iteration does not necessarily
determine the way the iteration is implemented. In other words, the pointwise version of the iteration
may be more efficient from the implementation point of view than the matrix-vector form of the
iteration.

34.5 Matrix-Vector and Discrete Frequency Representations

When Equations 34.22 and 34.26 are obtained from Equation 34.2, the resulting iterations in Equations
34.23 and 34.27 should be identical to iterations in Equations 34.5 and 34.17, respectively, and their
frequency domain counterparts. This issue, of representing a matrix-vector equation in the discrete
frequency domain, is addressed next.

Any matrix can be diagonalized using its singular value decomposition. Finding, in general, the
singular values of a matrix with no special structure is a formidable task, given also the size of the
matrices involved in image restoration. For example, for a 2563 256 image, D is of size 64 K3 64 K. The
situation is simplified, however, if the degradation model of Equation 34.2, which represents a special
case of the degradation model of Equation 34.1, is applicable. In this case, the degradation matrix D is
block circulant [3]. This implies that the singular values of D are the DFT values of d(i, j), and the
eigenvectors are the complex exponential basis functions of the DFT. In matrix form, this relationship
can be expressed by

D ¼ W ~DW
�1
, (34:28)

where
~D is a diagonal matrix with entries the DFT values of d(i, j)
W is the matrix formed by the eigenvectors of D

The product W�1z, where z is any vector, provides us with a vector which is formed by lexicographically
ordering the DFT values of z(i, j), the unstacked version of z. Substituting D from Equation 34.28
into iteration in Equation 34.23 and premultiplying both sides by W�1, iteration in Equation 34.5
results. The same way iteration in Equation 34.17 results from iteration in Equation 34.27. In this case,
reblurring, as was named when initially proposed, is nothing else than the least squares solution to
the inverse problem. In general, if in a matrix-vector equation all matrices involved are block circulant,
a 2D discrete frequency domain equivalent expression can be obtained. Clearly, a matrix-vector repre-
sentation encompasses a considerably larger class of degradations than the linear spatially invariant
degradation.

34-8 Digital Signal Processing Fundamentals



34.6 Convergence

In dealing with iterative algorithms, their convergence as well as their rate of convergence are very
important issues. Some general convergence results will be presented in this section. These results will be
presented for general operators, but also equivalent representations in the discrete frequency domain can
be obtained if all matrices involved are block circulant.

The contraction mapping theorem usually serves as a basis for establishing convergence of iterative
algorithms. According to it, iteration in Equation 34.21 converges to a unique fixed point x*, that is, a
point such that C(x*)¼ x* for any initial vector if the operator or transformation C(x) is a contraction.
This means that for any two vectors z1 and z2 in the domain of C(x) the following relation holds:

kC(z1)�C(z2)k� h kz1 � z2 k , (34:29)

where
h is strictly less than one
k�k denotes any norm

It is mentioned here that condition in Equation 34.29 is norm dependent, that is, a mapping may be
contractive according to one norm, but not according to another.

34.6.1 Basic Iteration

For iteration in Equation 34.23 the sufficient condition for convergence in Equation 34.29 results in

kI� bDk < 1, or kG1k < 1: (34:30)

If the l2 norm is used, then condition in Equation 34.30 is equivalent to the requirement that

max
i

jsi(G1)j < 1, (34:31)

where jsi(G1)j is the absolute value of the ith singular value of G1 [54].
The necessary and sufficient condition for iteration in Equation 34.23 to converge to a unique fixed

point is that

max
i

jli(G1)j < 1, or max
i

j1� bli(D)j < 1, (34:32)

where jli(A)j represents the magnitude of the ith eigenvalue of the matrix A. Clearly for a symmetric
matrix D conditions in Equations 34.30 and 34.32 are equivalent. Conditions in Equations 34.29 through
34.32 are used in defining the range of values of b for which convergence of iteration in Equation 34.23 is
guaranteed.

Of special interest is the case when matrix D is singular (D has at least one zero eigenvalue), since it
represents a number of typical distortions of interest (e.g., distortions due to motion, defocusing, etc.).
Then there is no value of b for which conditions in Equation 34.31 or 34.32 are satisfied. In this case G1 is
a nonexpansive mapping (h in Equation 34.29 is equal to one). Such a mapping may have any number
of fixed points (zero to infinitely many). However, a very useful result is obtained if we further restrict
the properties of D (this results in no loss of generality, as it will become clear in the following sections).
That is, if D is a symmetric, semi-positive definite matrix (all its eigenvalues are nonnegative), then
according to Bialy’s theorem [6], iteration in Equation 34.23 will converge to the minimum
norm solution of Equation 34.1, if this solution exists, plus the projection of x0 onto the null space of
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D for 0<b< 2 � kDk�1. The theorem provides us with the means of incorporating information about the
original signal into the final solution with the use of the initial condition.

Clearly, when D is block circulant the conditions for convergence shown above can be written in the
discrete frequency domain. More specifically, conditions in Equations 34.31 and 34.9 are identical in
this case.

34.6.2 Iteration with Reblurring

The convergence results presented above also holds for iteration in Equation 34.27, by replacing G1 by G2

in Equations 34.30 through 34.32. If DTD is singular, according to Bialy’s theorem, iteration in Equation
34.27 will converge to the minimum norm least-squares solution of Equation 34.1, denoted by xþ, for
0<b< 2 � kDk�2, since DTy is in the range of DTD.

The rate of convergence of iteration in Equation 34.27 is linear. If we denote by Dþ the generalized
inverse of D, that is, xþ¼Dþy, then the rate of convergence of Equation 34.27 is described by the
relation [24]

kxk � xþk
kxþk � ckþ1, (34:33)

where

c ¼ max {j1� bkDk2j, j1� bkDþk�2j}: (34:34)

The expression for c in Equation 34.34 will also be used in Section 34.8, where higher order iterative
algorithms are presented.

34.7 Use of Constraints

Iterative signal restoration algorithms regained popularity in the 1970s due to the realization that
improved solutions can be obtained by incorporating prior knowledge about the solution into the
restoration process. For example, we may know in advance that x is bandlimited or space-limited, or
we may know on physical grounds that x can only have nonnegative values. A convenient way of
expressing such prior knowledge is to define a constraint operator C, such that

x ¼ Cx, (34:35)

if and only if x satisfies the constraint. In general, C represents the concatenation of constraint operators.
With the use of constraints, iteration in Equation 34.21 becomes [49]

x0 ¼ 0,

xk ¼ Cxk,

xkþ1 ¼ C(~xk):

(34:36)

The already mentioned recent popularity of constrained iterative restoration algorithms is also due to the
fact that solutions to a number of recovery problems, such as the bandlimited extrapolation problem [48,49]
and the reconstruction from phase or magnitude problem [49,57], were provided with the use of algorithms
of the form of Equation 34.36 by appropriately describing the distortion and constraint operators.
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These operators are defined in the discrete spatial or frequency domains. A review of the problems which
can be solved by an algorithm of the form of Equation 34.36 is presented by Schafer et al. [49].

The contraction mapping theorem can again be used as a basis for establishing convergence of
constrained iterative algorithms. The resulting sufficient condition for convergence is that at least one
of the operators C and C is contractive while the other is nonexpansive. Usually it is harder to prove
convergence and determine the convergence rate of the constrained iterative algorithm, taking also into
account that some of the constraint operators are nonlinear, such as the positivity constraint operator.

34.7.1 Method of Projecting onto Convex Sets

The method of projecting onto convex sets (POCS) describes an alternative approach in incorporating
prior knowledge about the solution into the restoration process. It reappears in the engineering literature
in the early 1980s [64], and since then it has been successfully applied to the solution of different
restoration problems (e.g., from the reconstruction from phase or magnitude [52] to the removal of
blocking artifacts [62,63]). According to the method of POCS the incorporation of prior knowledge into
the solution can be interpreted as the restriction of the solution to be a member of a closed convex set that
is defined as the set of vectors which satisfy a particular property. If the constraint sets have a nonempty
intersection, then a solution that belongs to the intersection set can be found by the method of POCS.
Indeed, any solution in the intersection set is consistent with the a priori constraints and, therefore, it is a
feasible solution.

More specifically, let Q1,Q2, . . . ,Qm be closed convex sets in a finite dimensional vector space, with P1,
P2, . . . ,Pm their respective projectors. Then, the iterative procedure,

xkþ1 ¼ P1P2 � � �Pmxk, (34:37)

converges to a vector which belongs to the intersection of the sets Qi, i¼ 1, 2, . . . ,m, for any starting
vector x0. It is interesting to note that the resulting set intersection is also a closed convex set.

Clearly, the application of a projection operator P and the constraint C, discussed in the previous
section, express the same idea. Projection operators represent nonexpansive mappings.

34.8 Class of Higher Order Iterative Algorithms

One of the drawbacks of the iterative algorithms presented in the previous sections is their linear rate of
convergence. In [24] a unified approach is presented in obtaining a class of iterative algorithms with
different rates of convergence, based on a representation of the generalized inverse of a matrix. That is,
the algorithm,

x0 ¼ bDTy

D0 ¼ bDTD

Vkþ1 ¼
Xp�1

i¼0

(I� Dk)
i

Dkþ1 ¼ VkDk

xkþ1 ¼ Vkxk,

(34:38)

converges to the minimum norm least squares solution of Equation 34.1, with n ¼ 0. If iteration in
Equation 34.38 is thought of as corresponding to iteration in Equation 34.27, then an iteration similar
to Equation 34.38 which corresponds to iteration in Equation 34.23 has also been derived [24, 41].
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Algorithm in Equation 34.38 exhibits a pth order of convergence. That is, the following relation
holds [24]:

kxk � xþk
kxþk � c p

k
, (34:39)

where the convergence factor c is described by Equation 34.34.
It is observed that the matrix sequences {Vk} and Dk can be computed in advance or off-line.

When D is block circulant, substantial computational savings result with the use of iteration in
Equation 34.38 over the linear algorithms. Questions dealing with the best order p of algorithm
in Equation 34.38 to be used in a given application, as well as comparisons of the trade-off between
speed of computation and computational load, are addressed in [24]. One of the drawbacks of the
higher order algorithms is that the application of constraints may lead to erroneous results. Combined
adaptive or nonadaptive linear and higher order algorithms have been proposed in overcoming this
difficulty [11,24].

34.9 Other Forms of F(x)

34.9.1 Ill-Posed Problems and Regularization Theory

The two most basic forms of the function F(x) have only been considered so far. These two forms are
represented by Equations 34.22 and 34.26, and are meaningful when the noise in Equation 34.1 is not
taken into account. Without ignoring the noise, however, the solution of Equation 34.1 represents an
ill-posed problem. If the image formation process is modeled in a continuous infinite dimensional space,
D becomes an integral operator and Equation 34.1 becomes a Fredholm integral equation of the first
kind. Then the solution of Equation 34.1 is almost always an ill-posed problem [42,45,59,60]. This means
that the unique least-squares solution of minimal norm of Equation 34.1 does not depend continuously
on the data, or that a bounded perturbation (noise) in the data results in an unbounded perturbation in
the solution, or that the generalized inverse of D is unbounded [42]. The integral operator D has a
countably infinite number of singular values that can be ordered with their limit approaching zero [42].
Since the finite dimensional discrete problem of image restoration results from the discretization of an
ill-posed continuous problem, the matrix D has (in addition to possibly a number of zero singular values)
a cluster of very small singular values. Clearly, the finer the discretization (the larger the size of D) the
closer the limit of the singular values is approximated. Therefore, although the finite dimensional inverse
problem is well posed in the least-squares sense [42], the ill-posedness of the continuous problem
translates into an ill-conditioned matrix D.

A regularization method replaces an ill-posed problem by a well-posed problem, whose solution is an
acceptable approximation to the solution of the given ill-posed problem [39,56]. In general, regulariza-
tion methods aim at providing solutions which preserve the fidelity to the data but also satisfy our prior
knowledge about certain properties of the solution. A class of regularization methods associates both the
class of admissible solutions and the observation noise with random processes [12]. Another class of
regularization methods regards the solution as a deterministic quantity. We give examples of this second
class of regularization methods in the following.

34.9.2 Constrained Minimization Regularization Approaches

Most regularization approaches transform the original inverse problem into a constrained optimization
problem. That is, a functional needs to be optimized with respect to the original image and possibly other
parameters. By using the necessary condition for optimality, the gradient of the functional with respect to
the original image is set equal to zero, therefore determining the mathematical form of F(x).
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The successive approximations iteration becomes in this case a gradient method with a fixed step
(determined by b). We briefly mention next the general form of some of the commonly used functionals.

34.9.2.1 Set Theoretic Formulation

With this approach the problem of solving Equation 34.1 is replaced by the problem of searching for
vectors x which belong to both sets [22,28,30]

kDx � yk � e (34:40)

and

kCxk � E, (34:41)

where
e is an estimate on the data accuracy (noise norm)
E is a prescribed constant
C is a high-pass operator

Inequality in Equation 34.41 constrains the energy of the signal at high frequencies, therefore requiring
that the restored signal is smooth. On the other hand, inequality in Equation 34.40 requires that the
fidelity to the available data is preserved.

Inequalities in Equations 34.40 and 34.41 can be respectively rewritten as [22,30]

(x � xþ)T
DTD
e2

(x � xþ) � 1 (34:42)

and

xT
CTC
E2

x � 1, (34:43)

where xþ¼Dþy. That is, each of them represents an N-dimensional ellipsoid, where N is the dimen-
sionality of the vectors involved. The intersection of the two ellipsoids (assuming it is not empty) is also a
convex set but not an ellipsoid. The center of one of the ellipsoids which bounds the intersection can
be chosen as the solution to the problem [50]. Clearly, even if the intersection is not empty, the center of
the bounding ellipsoid may not belong to the intersection, and, therefore, a posterior test is required. The
equation the center of one of the bounding ellipsoids is satisfying is given by [22,30]

F(x) ¼ (DTDþ aCTC)x � DTy ¼ 0, (34:44)

where a, the regularization parameter, is equal to (e=E)2.

34.9.2.2 Projection onto Convex Sets Approach

Iteration in Equation 34.37 can also be applied in finding a solution which belongs to both ellipsoids in
Equations 34.42 and 34.43. The respective projections P1x and P2x are defined by [22]

P1x ¼ x þ l1(Iþ l1D
TD)�1DT(y � Dx) (34:45)

P2x ¼ [I� l2(Iþ l2C
TC)�1CTC]x, (34:46)

where l1 and l2 need to be chosen so that conditions in Equations 34.42 and 34.43 are satisfied,
respectively. Clearly, a number of other projection operators can be used in Equation 34.37 which
force the signal to exhibit certain known a priori properties expressed by convex sets.
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34.9.2.3 Functional Minimization Approach

The determination of the value of the regularization parameter is a critical issue in regularized restor-
ation. A number of approaches for determining its value are presented in [13]. If only one of the
parameters e or E in Equations 34.40 and 34.41 is known, a constrained least-squares formulation can
be followed [9,15]. With it, the size of one of the ellipsoids is minimized, subject to the constraint that the
solution belongs to the surface of the other ellipsoid (the one defined by the known parameter).
Following the Lagrangian approach, which transforms the constrained optimization problem into an
unconstrained one, the following functional is minimized

M(a, x) ¼ kDx � yk2 þ akCxk2: (34:47)

The necessary condition for a minimum is that the gradient of M(a, x) is equal to zero. That is, in
this case

F(x) ¼ rxM(a, x) ¼ (DTDþ aCTC)x �DTy, (34:48)

which is identical to Equation 34.44, with the only difference that a now is not known, but needs to be
determined.

34.9.2.4 Spatially Adaptive Iteration

Spatially adaptive image restoration is the next natural step in improving the quality of the restored
images. There are various ways to argue the introduction of spatial adaptivity, the most commonly used
ones being the nonhomogeneity or nonstationarity of the image field and the properties of the human
visual system. In either case, the functional to be minimized takes the form [21,29,34]

M(a, x) ¼ kDx � yk2W1
þ akCxk2W2

, (34:49)

in which case

F(x) ¼ rxM(a, x) ¼ (DTWT
1W1Dþ aCTWT

2W2C)x � DTW1y: (34:50)

The choice of the diagonal weighting matrices W1 and W2 can be justified in various ways. In [16, 21,
22, 29] both matrices are determined by the noise visibility matrix V [2,46]. That is, W1¼VTV and
W2¼ I�VTV. The entries of V take values between 0 and 1. They are equal to 0 at the edges (noise is not
visible), equal to 1 at the flat regions (noise is visible), and take values in between at the regions with
moderate spatial activity. A study of the mapping between the level of spatial activity and the values of the
visibility function appears in [11]. The weighting matrices can also be defined by considering the
relationship of the restoration approach presented here to the MAP restoration approach [26]. Then,
the weighting matrices W1 and W2 contain information about the nonstationarity and=or the nonwhite-
ness of the high-pass filtered image and noise, respectively.

34.9.2.5 Robust Functionals

Robust functionals can be employed for the representation of both the noise and the signal statistics.
They allow for the efficient suppression of a wide variety of noise processes and permit the reconstruction
of sharper edges than their quadratic counterparts. In a robust set-theoretic setup a solution is sought by
minimizing [65]

M(a, x) ¼ Rn(y � Dx)þ aRx(Cx): (34:51)
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where Rn() and Rx() are referred to as the residual and stabilizing functionals, respectively, and they
are defined in terms of their kernel functions. The derivative of the kernel function is called the influence
function.

F(x) in this case equals the gradient of M(a, x) in Equation 34.51. A large number of robust
functionals have been proposed in the literature. The properties of potential functions to be used in
robust Bayesian estimation are listed in [35]. A robust maximum absolute entropy and a robust
minimum absolute-information functionals are introduced in [65]. Clearly since the functionals Rn()
and Rx() are typically nonlinear and may not be convex, the convergence analysis of iteration in Equation
34.21 or 34.36 is considerably more complicated.

34.9.3 Iteration Adaptive Image Restoration Algorithms

As it has become clear by now there are various pieces of information needed by any regularization
algorithms in determining the unknown parameters. In the context of deterministic regularization, the
most commonly needed parameter is the regularization parameter. Its determination depends on the
noise statistics and the properties of the image. With the set theoretic regularization approach, it is
required that the original image is smooth, in which case a bound on the energy of the high-pass filtered
image is needed. This bound is proportional to the variance of the image in a stochastic context. In
addition, knowledge of the noise variance is also required. In a MAP framework such parameters are
called hyperparameters [8,40]. Clearly, such parameters are not typically available and need to be
estimated from the available noisy and blurred data. Various techniques for estimating the regularization
parameter are discussed, for example, in [13].

In the following we briefly describe a new paradigm we have introduced in the context of
iterative image restoration algorithms [18–20,25,26]. According to it, the required information by
the deterministic regularization approach is updated at each restoration step, based on the partially
restored image.

34.9.3.1 Spatially Adaptive Algorithm

For the spatially adaptive algorithm we mentioned above, the proposed general form of the weighted
smoothing functional whose minimization will result in a restored image is written as

Mw(lw(x), x) ¼ ky �Dxk2A(x) þ lw(x)kCxk2B(x)
¼ knk2A(x) þ lw(x)kCxk2B(x), (34:52)

where the weighting matrices A(x) and B(x), both functions of the original image, are used to incorporate
noise and image characteristics into the restoration process, respectively. The regularization parameter,
also a function of x, is defined in such a way as to make the smoothing functional in Equation 34.52
convex with a unique global minimizer.

One of the lw(x) we have proposed is given by

lw(x) ¼
ky �Dxk2A(x)

(1=g)� kCxk2B(x)
, (34:53)

where the parameter g is determined from the convergence and convexity analyses.
The main objective with this approach is to employ an iterative algorithm to estimate the regulariza-

tion parameter and the proper weighting matrices at the same time with the restored image. The available
estimate of the restored image at each iteration step will be used for determining the value of the
regularization parameter. That is, the regularization parameter is defined as a function of the original
image (and eventually in practice of an estimate of it). Of great importance is the form of this functional,
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so that the smoothing functional to be minimized preserves its convexity and exhibits a global minimizer.
lw(x) maps a vector x onto the positive real line. Its purpose is as before to control the relative
contribution of the error term ky � Dxk2A(x), which enforces ‘‘faithfulness’’ to the data, and the stabilizing
functional kCxk2B(x), which enforces smoothness on the solution. Its dependency, however, on the original
image, as well as the available data, is explicitly utilized. This dependency on the other hand is implicitly
utilized in the constrained least-squares approach, according to which the minimization of Mw(lw(x),x)
and the determination of the regularization parameter lw(x) are completely separate steps. The desired
properties of lw(x) and Mw(lw(x),x) are analyzed in [20]. The relationship of the resulting forms to the
hierarchical Bayesian approach toward image restoration and estimation of the regularization parameters
is explored in [40].

In this case, therefore, F(x)¼rxMw(lw(x),x). The successive approximations iteration after some
simplifications takes the form [20,30]

xkþ1 ¼ xk þ {DTA(xk)y � [DTA(xk)Dþ lw(xk)C
TB(xk)C]xk}: (34:54)

The information required in defining the regularization parameter and the weights for introducing the
spatial adaptivity are defined based on the available information about the restored image at the kth
iteration step. Clearly for all this to make sense the convergence of iteration in Equation 34.54 has to be
guaranteed. Furthermore, convergence to a unique fixed point, which removes the dependency of the
final result on the initial conditions, is also desired. These issues are addressed in detail in [20,30]. A
major advantage of the proposed algorithm is that the convexity of the smoothing functional and the
convergence of the resulting algorithm are guaranteed regardless of the choice of the weighting matrices.
Another advantage of this algorithm is that the proposed adaptive algorithm simultaneously determines
the regularization parameter and the desirable weighting matrices based on the restored image at each
iteration step and restores the image, without any prior knowledge.

34.9.3.2 Frequency Adaptive Algorithm

Adaptivity is now introduced into the restoration process by using a constant smoothness constraint, but
by assigning a different regularization parameter at each discrete frequency location. We can now
‘‘fine-tune’’ the regularization of each frequency component, thereby achieving improved results and at
the same time speeding up the convergence of the iterative algorithm. The regularization parameters are
evaluated simultaneously with the restored image based on the partially restored image.

In this algorithm, the following two ellipsoids QEx and QEx=y are used

QEx ¼ {xjkCxkR � ER} (34:55)

and

QEx=y ¼ {xjky � DxkP � eP}, (34:56)

where P and R are both block-circulant weighting matrices. Then a solution which belongs to the
intersection of QEx and QEx=y is given by

(DTPTPDþ lCTRTRC)x ¼ DTPTPy, (34:57)

where l¼ (eP=ER)
2. Let us define PTP¼B, R¼PC, and lCTC¼A. Then Equation 34.57 can be

written as

B(DTDþ ACTC)x ¼ BDTy, (34:58)
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since all matrices are block circulant and they therefore commute. The regularization matrix A is defined
based on the set theoretic regularization as

A ¼ ky � Dxk2(kCxk2Iþ D)�1, (34:59)

where D is a block-circulant matrix used to ensure convergence. B plays the role of the ‘‘shaping’’ matrix
[53] for maximizing the speed of convergence at every frequency component as well as for compensating
for the near-singular frequency components [19].

With the above formulation, therefore,

F(x) ¼ B[(DTDþ ACTC)x � DTy], (34:60)

and the successive approximations iteration in Equation 34.21 becomes

xkþ1 ¼ xk þ B[DTy � (DTDþ AkC
TC)xk], (34:61)

where Ak ¼ ky �Dxkk2(kCxkk2Iþ Dk)
�1. It is mentioned here that iteration in Equation 34.61 can also

be derived from the regularized equation

(DTDþ ACTC)x ¼ DTy, (34:62)

using the generalized Landweber’s iteration [53]. Since all matrices in iteration in Equation 34.61 are
block-circulant, the iteration can be written in the discrete frequency domain as

Xkþ1(p) ¼ Xk(p)þ b(p) D*(p)Y(p)� jD(p)j2 þ lk(p)jC(p)j2
� �

Xk(p)
h i

, (34:63)

where
�
p¼ (p1, p2), 0� p1�N� 1, 0� p2�N� 1,Xkþ1(

�
p) and Y(

�
p) represent the 2D DFT of the

unstacked image estimate xkþ1, and the noisy-blurred image y and D(
�
p), C(

�
p), b(

�
p), and lk (

�
p) represent

2D DFTs of the 2D sequences which form the block-circulant matrices D, C, B, and Ak, respectively.
Since Dk is block-circulant lk(

�
p) is given by

lk(p) ¼
P

m jY(m)� D(m)Xk(m)j2P
n jC(n)Xk(n)j2 þ dk(p)

, (34:64)

where dk(
�
p) is the 2D DFT of the sequence which forms Dk.

The allowable range of each regularization and control parameter and the convergence analysis of the
iterative algorithm are developed in detail in [19]. It is shown that the algorithm has more than two fixed
points. The first fixed point is the inverse or generalized inverse solution of Equation 34.58. The second type
of fixed points are regularized approximations to the original image. Since there is more than one solution to
iteration in Equation 34.63, the determination of the initial condition becomes important. It has been verified
experimentally [19] that if a ‘‘smooth’’ image is used for X0(

�
p) almost identical fixed points result independ-

ently ofX0. The use of spectral filtering functions [53] is also incorporated into the iteration, as shown in [19].

34.10 Discussion

In this chapter we briefly described the application of the successive approximations-based class
of iterative algorithms to the problem of restoring a noisy and blurred signal. We analyzed in some
detail the simpler forms of the algorithm, while making reference to work which deals with more
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complicated forms of the algorithms. There are obviously a number of algorithms and issues pertaining
to such algorithms which have not been addressed at all. For example, iterative algorithms with a varying
relaxation parameter b, such as the steepest descent and conjugate gradient methods, can be applied to
the image restoration problem [4,37]. The number of iterations also represents a means for regularizing
the restoration problem [55,58]. Iterative algorithms which depend on more than one previous restor-
ation steps (multistep algorithms) have also been considered, primarily for implementation reasons [27].

It is the hope and the expectation of the author that the material presented will form a good
introduction to the topic for engineers or graduate students who would like to work in this area.
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A N IMPORTANT PROBLEM IN SIGNAL PROCESSING is the choice of how to represent a
signal. It is for this reason that importance is attached to the choice of bases for the linear
expansion of signals. That is, given a discrete-time signal x(n) how to find ai(n) and bi(n) such

that we can write

x(n) ¼
X
i

< x(n), ai(n) > bi(n): (VIII:1)
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If bi(n)¼ ai(n), then Equation VIII.1 is the familiar orthonormal basis expansion formula [1]. Otherwise,
the bi(n) are a set of biorthogonal functions with the property

< bj(n), ai(n) >¼ di�j:

The function d is defined such that di�j¼ 0, unless i¼ j, in which case d0¼ 1. We shall consider cases
where the summation in Equation VIII.1 is infinite, but restrict our attention to the case where it is finite for
the moment; that is, where we have a finite number N of data samples, and so the space is finite
dimensional.

We next set up the basic notation used throughout the chapter. Assume that we are operating in CN,
and that we have N basis vectors, the minimum number to span the space. Since the transform is linear,
it can be written as a matrix. That is, if the ai* are the rows of a matrix A, then

A � x ¼

< x(n), a0(n) >
< x(n), a1(n) >

..

.

< x(n), aN�2(n) >
< x(n), aN�1(n) >

2
666664

3
777775 (VIII:2)

and if bi are the columns of B then

x ¼ B � A � x: (VIII:3)

Clearly B¼A�1; if B¼A* then A is unitary, bi(n)¼ ai(n) and we have that Equation VIII.1 is the
orthonormal basis expansion.

Clearly the construction of bases is not difficult: any nonsingular N3N matrix will do for this space.
Similarly, to get an orthonormal basis we need merely take the rows of any unitary N3N matrix, for
example the identity IN. There are many reasons for desiring to carry out such an expansion. Much as
Taylor or Fourier series are used in mathematics to simplify solutions to certain problems, the underlying
goal is that a cleverly chosen expansion may make a given signal processing task simpler.

A major application is signal compression, where we wish to quantize the input signal in order to
transmit it with as few bits as possible, while minimizing the distortion introduced. If the input vector
comprises samples of a real signal, then the samples are probably highly correlated, and the identity basis
(where the ith vector contains 1 in the ith position and is zero elsewhere) with scalar quantization will
end up using many of its bits to transmit information which does not vary much from sample to sample.
If we can choose a matrix A such that the elements of A � x are much less correlated than those of x, then
the job of efficient quantization becomes a great deal simpler [2]. In fact, the Karhunen–Loève transform,
which produces uncorrelated coefficients, is known to be optimal in a mean squared error sense [2].

Since in Equation VIII.1 the signal is written as a superposition of the basis sequences bi(n), we can say
that if bi(n) has most of its energy concentrated around time n¼ n0, then the coefficient< x(n), ai(n)>
measures to some degree the concentration of x(n) at time n¼ n0. Equally, taking the discrete Fourier
transform of Equation VIII.1,

X(k) ¼
X
i

< x(n), ai(n) > Bi(k):

Thus, if Bi(k) has most of its energy concentrated about frequency k¼ k0, then< x(n), ai(n)>measures
to some degree the concentration of X(k) at k¼ k0. This basis function is mostly localized about the point
(n0, k0) in the discrete-time discrete-frequency plane. Similarly, for each of the basis functions bi(n) we
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can find the area of the discrete-time discrete-frequency plane where most of their energy lies. All of the
basis functions together will effectively cover the plane, because if any part were not covered there would
be a ‘‘hole’’ in the basis, and we would not be able to completely represent all sequences in the space.
Similarly the localization areas, or tiles, corresponding to distinct basis functions should not overlap by
too much, since this would represent a redundancy in the system.

Choosing a basis can then be loosely thought of as choosing some tiling of the discrete-time discrete-
frequency plane. For example, Figure VIII.1 shows the tiling corresponding to various orthonormal bases
in C64. The horizontal axis represents discrete-time, and the vertical axis discrete-frequency. Naturally,
each of the diagrams contains 64 tiles, since this is the number of vectors required for a basis, and each
tile can be thought of as containing 64 points out of the total of 642 in this discrete-time discrete-
frequency plane. The first is the identity basis, which has narrow vertical strips as tiles, since the basis
sequences d(nþ k) are perfectly localized in time, but have energy spread equally at all discrete
frequencies. That is, the tile is one discrete-time point wide and 64 discrete-frequency points long. The
second, shown in Figure VIII.1b, corresponds to the discrete Fourier transform basis vectors ej2pin=N;
these of course are perfectly localized at the frequencies i¼ 0, 1, . . . , N � 1, but have equal energy at all
times (i.e., 64 points wide, one point long). Figure VIII.1c shows the tiling corresponding to a discrete

(a)

(c)

(b)

(d)

FIGURE VIII.1 Examples of tilings of the discrete-time discrete-frequency plane; time is the horizontal axis,
frequency the vertical: (a) identity transform, (b) discrete Fourier transform, (c) finite length discrete wavelet
transform, and (d) arbitrary finite length transform.
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orthogonal wavelet transform (or logarithmic subband coder) operating over a finite length signal.
Figure VIII.1d shows the tiling corresponding to a discrete orthogonal wavelet packet transform
operating over a finite length signal, with arbitrary splits in time and frequency; construction of such
schemes is discussed in Section 35.1 of Chapter 35. In Figure VIII.1c and d, the tiles have varying shapes
but still contain 64 points each.

It should be emphasized that the localization of the energy of a basis function to the area covered by
one of the tiles is only approximate. In practice, of course, we will always deal with real signals, and in
general we will restrict the basis functions to be real also. When this is so, B*¼BT and the basis is
orthonormal provided ATA¼ I¼AAT. Of the bases shown in Figure VIII.1 only the discrete Fourier
transform will be excluded with this restriction. One can, however, consider a real transform which has
many properties in common with the DFT, for example the discrete Hartley transform [3].

While the above description was given in terms of finite-dimensional signal spaces, the interpretation
of the linear transform as a matrix operation, and the tiling approach remains essentially unchanged in
the case of infinite length discrete-time signals. In fact, for bases with the structure we desire, construc-
tion in the infinite-dimensional case is easier than in the finite-dimensional case. The modifications
necessary for the transition from RN to l2(R) are that an infinite number of basis functions is required
instead of N, the matrices A and B become doubly infinite, and the tilings are in the discrete-time
continuous-frequency plane (the time axis ranges over Z, the frequency axis goes from 0 to p, assuming
real signals).

Good decorrelation is one of the important factors in the construction of bases. If this were the only
requirement, we would always use the Karhunen–Loève transform, which is an orthogonal data-dependent
transform which produces uncorrelated samples. This is not used in practice, because estimating the
coefficients of the matrix A can be very difficult. Very significant also, however, is the complexity of
calculating the coefficients of the transform using Equation VIII.2, and of putting the signal back together
using Equation VIII.3. In general, for example, using the basis functions for RN, evaluating each of the
matrix multiplications in Equations VIII.2 and VIII.3 will require O(N2) floating point operations, unless
the matrices have some special structure. If, however, A is sparse, or can be factored into matrices that are
sparse, then the complexity required can be dramatically reduced. This is the case, for example, with the
discrete Fourier transform, where there is an efficientO(N logN) algorithm to do the computations, which
has been responsible for its popularity in practice. This will also be the case with the transforms that we
consider, A and B will always have special structure to allow efficient implementation.
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35.1 Filter Banks and Wavelets

The methods of designing bases that we will employ draw on ideas first used in the construction of
multirate filter banks. The idea of such systems is to take an input system and split it into subsequences
using banks of filters. This simplest case involves splitting into just two parts using a structure such as
that shown in Figure 35.1. This technique has a long history of use in the area of subband coding: first of
speech [1,2] and more recently of images [3,4]. In fact, the most successful image coding schemes are
based on filter bank expansions [5–7]. Recent texts on the subject are [8–10]. We will consider only the
two-channel case in this section. If X̂(z) ¼ X(z), then the filter bank has the perfect reconstruction
property.

It is easily shown that the output X̂(z) of the overall analysis=synthesis system is given by

X̂(z) ¼ 1
2
[G0(z) G1(z)]

H0(z) H0(�z)(1)

H1(z) H1(�z)

" #
X(z)(2)

X(�z)

" #

¼ 1
2
[H0(z)G0(z)þ H1(z)G1(z)]X(z)

þ 1
2
[H0(�z)G0(z)þ H1(�z)G1(z)]X(�z): (35:1)

Call the above 2� 2 matrix Hm(z). This gives that the unique choice for the synthesis filters is

G0(z)

G1(z)

" #
¼ H0(z) H0(�z)

H1(z) H1(�z)

" #�1

� 2

0

" #

¼ 2
Dm(z)

H1(�z)

�H0(�z)

" #
, (35:2)

where Dm(z) ¼ detHm(z).
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If we observe that Dm(z) ¼ �Dm(�z) and define P(z) ¼ 2 � H0(z)H1(�z)=Dm(z) ¼ H0(z)G0(z), it
follows from Equation 35.2 that G1(z)H1(z) ¼ 2 � H1(z)H0(�z)=Dm(�z) ¼ P(�z). We can then write
that the necessary and sufficient condition for perfect reconstruction of Equation 35.1 is

P(z)þ P(�z) ¼ 2: (35:3)

Since this condition plays an important role in what follows, we will refer to any function having this
property as valid. The implication of this property is that all but one of the even-indexed coefficients of
P(z) are zero. That is

P(z)þ P(�z) ¼
X
n

[p(n)z�n þ p(n)(�z)�n]

¼
X
n

2 � p(2n)z�(2nþ1):

For this to satisfy Equation 35.3 requires p(2n) ¼ dn; thus, one of the polyphase components of P(z) must
be the unit sample. By polyphase components we mean the set of even-indexed samples, and the set of
the odd-indexed samples. Such a function is illustrated in Figure 35.2a.

Constructing such a function is not difficult. In general, however, we will wish to impose additional
constraints on the filter banks. So, P(z) will have to satisfy other constraints in addition to Equation 35.3.

H1(z)

H0(z)

x(n)

2 2

2

y0 = H0x

G0(z)
G0H0x

G1H1x

+ x(n)

G1(z)

y1 = H1x

2

FIGURE 35.1 Maximally decimated two-channel multirate filter bank.

H0(z)G1(z)

H0(z)G0(z)

(a) 0

0
(b)

…

……

…

FIGURE 35.2 Zeros of the correlation functions: (a) autocorrelation H0(�z)H0(z�1) and (b) cross-correlation
H0(�z)H1(z�1).
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Observe that as a consequence of Equation 35.2 G0(z)H1(z), that is, the cross-correlation of g1(n) and
the time-reversed filter h0(�n), and G1(z)H0(z), the cross-correlation of g1(n) and h0(�n), have only
odd-indexed coefficients, just as for the function in Figure 35.2b, that is,

< g0(n), h1(2k� n) >¼ 0, (35:4)

< g1(n), h0(2k� n) >¼ 0 (35:5)

(note the time reversal in the inner product). Define now the matrix H0 as

H0 ¼ . .
.

..

. ..
. ..

. ..
. ..

. ..
. ..

.

h0(L� 1) h0(L� 2) � � � � � � h0(0) 0 0

0 0 h0(L� 1) � � � h0(2) h0(1) h0(0)

..

. ..
. ..

. ..
. ..

. ..
. ..

.

. .
.

2
6666664

3
7777775
, (35:6)

which has as its kth row the elements of the sequence h0(2k� n). Pre-multiplying by H0 corresponds to
filtering by H0(z) followed by subsampling by a factor of 2. Also define

GT
0 ¼ . .

.

..

. ..
. ..

. ..
. ..

. ..
. ..

.

g0(0) g0(1) � � � � � � g0(L� 1) 0 0

0 0 g0(0) � � � g0(L� 3) g0(L� 2) g0(L� 1)

..

. ..
. ..

. ..
. ..

. ..
. ..

.

. .
.

2
6666664

3
7777775
, (35:7)

so G0 has as its kth column the elements of the sequence g0(n� 2k). Define H1 by replacing the
coefficients of h0(n) with those of h1(n) in Equation 35.6 and G1 by replacing the coefficients of g0(n)
with those of g1(n) in Equation 35.7.

We find that Equation 35.4 gives that all rows of H1 are orthogonal to all columns of G0. Similarly we
find, from Equation 35.5, that all of the columns of G1 are orthogonal to the rows of H0. So, in matrix
notation,

H0G1 ¼ 0 ¼ H1G0: (35:8)

Now P(z) ¼ G0(z)H0(z) ¼ z�1H0(z)H1(�z) and P(�z) ¼ G1(z)H1(z) are both valid and have the
form given in Figure 35.2a. Hence, the impulse responses of gi(n) and hi(n) are orthogonal with respect
to even shifts

< gi(n), hi(2l � n) >¼ dl: (35:9)

In operator notation,

H0G0 ¼ I ¼ H1G1: (35:10)

Since we have a perfect reconstruction system we get

G0H0 þ G1H1 ¼ I: (35:11)

Of course Equation 35.11 indicates that no nonzero vector can lie in the column null-spaces of both
G0 and G1. Note that Equation 35.10 implies that G0H0 and G1H1 are each projections
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(since GiHiGiHi ¼ GiHi). They project onto subspaces which are not, in general, orthogonal (since the
operators are not self-adjoint). Because of Equations 35.4, 35.5, and 35.9 the analysis=synthesis system is
termed biorthogonal. If we interleave the rows of H0 and H1, much as was done in the orthogonal case,
and form again a block Toeplitz matrix:

A ¼ . .
.

..

. ..
. ..

. ..
. ..

. ..
. ..

.

h0(L� 1) h0(L� 2) � � � � � � h0(0) 0 0

h1(L� 1) h1(L� 2) � � � � � � h1(0) 0 0

0 0 h0(L� 1) � � � h0(2) h0(1) h0(0)

0 0 h1(L� 1) � � � h1(2) h1(1) h1(0)

..

. ..
. ..

. ..
. ..

. ..
. ..

.

. .
.

2
66666666664

3
77777777775
, (35:12)

we find that the rows of A form a basis for l2(Z). If we form B by interleaving the columns of G0 and G1,
we find

B � A ¼ I:

In the special case where we have a unitary solution, one finds G0 ¼ HT
0 and G1 ¼ HT

1 , and Equation 35.8
gives that we have projections onto subspaces which are mutually orthogonal. The system then simplifies
to the orthogonal case, where B ¼ A�1 ¼ AT.

A point that we wish to emphasize is that in the conditions for perfect reconstruction, Equations 35.2
and 35.3, the filters H0(z) and G0(z) are related via their product P(z). It is the choice of the function P(z)
and the factorization taken that determines the properties of the filter bank. We conclude the introduc-
tion with a proposition that sums up the foregoing.

PROPOSITION 35.1

To design a two-channel perfect reconstruction filter bank, it is necessary and sufficient to find a P(z)
satisfying Equation 35.3, factor it P(z) ¼ G0(z)H0(z) and assign the filters as given in Equation 35.2.

35.1.1 Deriving Continuous-Time Bases from Discrete-Time Ones

We have seen that the construction of bases from discrete-time signals can be accomplished easily by
using a perfect reconstruction filter bank as the basic building block. This gives us bases that have a
certain structure, and for which the analysis and synthesis can be efficiently performed. The design of
bases for continuous-time signals appears more difficult. However, it works out that we can mimic many
of the ideas used in the discrete-time case, when we go about the construction of continuous-time bases.

In fact, there is a very close correspondence between the discrete-time bases generated by two-channel
filter banks, and dyadic wavelet bases. These are continuous-time bases formed by the stretches and
translates of a single function, where the stretches are integer powers of 2:

cjk(x) ¼ 2�j=2c(2�jx � k), j, k, 2 Z
n o

(35:13)

This relation has been thoroughly explored in [11,12].
To be precise, a basis of the form in Equation 35.13 necessarily implies the existence of an underlying

two-channel filter bank. Conversely, a two-channel filter bank can be used to generate a basis as in
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Equation 35.13 provided that the lowpass filter H0(z) is regular. It is not our intention to go into the
details of this connection, but the generation of wavelets from filter banks goes briefly as follows.

Considering the logarithmic tree of discrete-time filters in Figure 35.3, one notices that the lower
branch is a cascade of filters H0(z) followed by subsampling by 2. It is easily shown [12] that the cascade
of i blocks of filtering operations, followed by subsampling by 2, is equivalent to a filter H(i)

0 (z) with
z-transform

H(i)
0 (z) ¼

Yi�1

l¼0

H0(z
2l ), i ¼ 1, 2 . . . , (35:14)

followed by subsampling by 2i. We define H(0)
0 (z) ¼ 1 to initialize the recursion. Now, in addition to the

discrete-time filter, consider the function f (i)(x) which is piecewise constant on intervals of length 1=2i,
and equal to

f (i)(x) ¼ 2i=2h(i)0 (n), n=2i � x < (nþ 1)=2i: (35:15)

Note that the normalization by 2i=2 ensures that if
P

[h(i)0 (n)]2 ¼ 1 then
Ð
[f (i)(x)]2dx ¼ 1 as well. Also,

it can be checked that kh(i)0 k2 ¼ 1 when kh(i�1)
0 k2 ¼ 1. The relation between the sequence H(i)

0 (z) and the
function f (i)(x) is clarified in Figure 35.3, where the first three iterations of each is shown for the simple
case of a filter of length 4.

f (2)(x)

f (1)(x) 1.5

1

0.5

0

–0.5
0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

1.5

1

0.5

0

–0.5

1.5

1

0.5

0

–0.5

f (3)(x)

h(2)(n)

h(1)(n)

h(3)(n)

FIGURE 35.3 Iterations of the discrete-time filter (Equation 35.14) and the continuous-time function (Equation
35.15) for the case of a length 4 filterH0(z). The length of the filterH(i)

0 (z) increases without bound, while the function
f (i)(x) actually has bounded support.
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We are going to use the sequence of functions f (i)(x) to converge to the scaling function f(x) of a
wavelet basis. Hence, a fundamental question is to find out whether and to what the function f (i)(x)
converges as i ! 1. First assume that the filter H0(z) has a zero at the half sampling frequency, or
H0(e jp) ¼ 0. This together with the fact that the filter impulse response is orthogonal to its even
translates is equivalent to

P
h0(n) ¼ H0(1) ¼

ffiffiffi
2

p
. Define M0(z) ¼ 1=

ffiffiffi
2

p �H0(z), that is M0(1) ¼ 1.
Now factor M0(z) into its roots at p (there is at least one by assumption) and a remainder polynomial
K(z), in the following way:

M0(z) ¼ [(1þ z�1)=2]NK(z):

Note that K(1) ¼ 1 from the definitions. Now call B the supremum of jK(z)j on the unit circle:

B ¼ sup
v2[0,2p]

jK(e jv)j:

Then the following result from [11] holds:

PROPOSITION 35.2

If B < 2N�1 and

X1
n¼�1

jk(n)j2jnje < 1, for some e > 0, (35:16)

then the piecewise constant function f (i)(x) defined in Equation 35.15 converges pointwise to a continu-
ous function f (1)(x).

This is a sufficient condition to ensure pointwise convergence to a continuous function, and can be
used as a simple test. We shall refer to any filter for which the infinite product converges as regular.

If we indeed have convergence, then we define

f (1)(x) ¼ f(x)

as the analysis scaling function, and

c(x) ¼ 2�1=2
X

h1(n)f(2x � n), (35:17)

as the analysis wavelet. It can be shown that if the filters h0(n) and h1(n) are from a perfect reconstruction
filter bank, then Equation 35.13 indeed forms a continuous-time basis.

In a similar way we examine the cascade of i blocks of the synthesis filter g0(n):

G(i)
0 (z) ¼

Yi�1

l¼0

G0(z
2l ), i ¼ 1, 2, . . . : (35:18)

Again, define G(0)
0 (z) ¼ 1 to initialize the recursion, and normalize G0(1) ¼ 1. From this define a function

which is piecewise constant on intervals of length 1=2i:

�f (i)(x) ¼ 2i=2 � g(i)0 (�n), n=2i � x < (nþ 1)=2i: (35:19)
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We call the limit �f (1)(x), if it exists, �f(x) the synthesis scaling function, and we find

�f(x) ¼ 21=2
XL�1

n¼0

g0(�n)�f(2x � n) (35:20)

�c(x) ¼ 21=2
XL�1

n¼0

g1(�n)�f(2x � n): (35:21)

The biorthogonality properties of the analysis and synthesis continuous-time functions follow from the
corresponding properties of the discrete-time ones. That is, Equation 35.9 leads to

< �f(x), f(x � k) > ¼ dk (35:22)

and

< �c(x), c(x � k) > ¼ dk: (35:23)

Similarly

< �f(x), c(x � k) > ¼ 0 and (35:24)

< �c(x), f(x � k) > ¼ 0 (35:25)

come from Equations 35.4 and 35.5, respectively.
We have shown that the conditions for perfect reconstruction on the filter coefficients lead to

functions that have the biorthogonality properties as shown above. Orthogonality across scales is also
easily verified:

< �c(2jx), c(2ix � k) > ¼ di�jdk:

Thus, the set {c(2jx), �c(2ix � k), i, j, and k 2 Z} is biorthogonal. That it is complete can be verified as in
the orthogonal case [13]. Hence, any function from L2(R) can be written as

f (x) ¼
X
j

X
l

< f (x), 2�j=2c(2jx � l) > 2�j=2�c(2jx � l):

Note that c(x) and �c(x) play interchangeable roles.

35.1.2 Two-Channel Filter Banks and Wavelets

We have seen that the design of discrete-time bases is not difficult: using two-channel filter banks as the
basic building block they can be easily derived. We also know that, using Equations 35.15 and 35.19, we
can generate continuous-time bases quite easily as well. If we were just interested in the construction of
bases, with no further requirements, we could stop here. However, for applications such as compression,
we will often be interested in other properties of the basis functions, for example, whether or not they
have any symmetry or finite support, and whether or not the basis is an orthonormal one. We examine
these three structural properties for the remainder of this section. Chapter 37 deals with the design of the
filters. Chapter 37 deals with time-varying filter banks, where the filters used, or the tree structure
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employing them, varies over time. Chapter 38 deals with the case of lapped transforms, a very important
class of multirate filter banks that have achieved considerable success.

From the filter bank point of view, the properties we are most interested in are the following:

. Orthogonality:

< h0(n), h0(nþ 2k) > ¼ dk ¼< h1(n), h1(nþ 2k) > , (35:26)

< h0(n), h1(nþ 2k) > ¼ 0: (35:27)

. Linear phase: H0(z), H1(z), G0(z), and G1(z) are all linear phase filters.

. Finite support: H0(z), H1(z), G0(z), and G1(z) are all FIR filters.

The reason for our interest is twofold. First, these properties are possibly of value in perfect reconstruction
filter banks used in subband coding schemes. For example, orthogonality implies that the quantization
noise in the two channels will be independent; linear phase is possibly of interest in very low bit-rate coding
of images, and FIR filters have the advantage of having very simple low-complexity implementations.
Second, these properties are carried over to the wavelets that are generated. So, if we design a filter bank
with a certain set of properties, then the continuous-time basis that it generates will also have these
properties.

PROPOSITION 35.3

If the filters belong to an orthogonal filter bank, we shall have

< f(x), f(x þ k) >¼ dk ¼ < c(x), c(x þ k) > ,

< f(x), c(x þ k) > ¼ 0:

Proof 35:1 From the definition in Equation 35.15, f (0)(x) is just the indicator function on the interval
[0, 1); so we immediately get orthogonality at the 0th level, that is, < f (0)(x � l), f (0)(x � k) > ¼ dkl . Now
we assume orthogonality at the ith level:

< f (i)(x � l), f (i)(x � k) > ¼ dkl , (35:28)

and prove that this implies orthogonality at the (iþ 1)th level:

< f (iþ1)(x � l), f (iþ1)(x � k) > ¼ 2
X
n

X
m

h0(n)h0(m)

< f (i)(2x � 2l � n), f (i)(2x � 2k�m) >
dnþ2l�2k�m

2
¼

X
n

h0(n)h0(nþ 2l � 2k)

¼ dkl:

Hence, by induction Equation 35.28 holds for all i. So in the limit i ! 1,

< f(x � l), f(x � k) > ¼ dkl: (35:29)

The orthogonal case gives considerable simplification, both in the discrete-time and continuous-
time cases.
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PROPOSITION 35.4

If the filters belong to an FIR filter bank, then f(x), c(x), �f(x), and �c(x) will have support on some finite
interval.

Proof 35:2 The filters H(i)
0 (z) and G(i)

0 (z) defined in Equation 35.14 have respective
lengths (2i � 1)(La � 1)þ 1 and (2i � 1)(Ls � 1)þ 1 where La and Ls are the lengths of H0(z) and
G0(z). Hence, f (i)(x) in Equation 35.15 is supported on the interval [0, La � 1) and f (i)(x) on the
interval [0, Ls � 1). This holds 8 i; hence, in the limit i ! 1 this gives the support of the scaling
functions f(x) and �f(x). That c(x) and �c(x) have bounded support follow from Equation 35.20
and 35.21.

PROPOSITION 35.5

If the filters belong to a linear phase filter bank, then f(x), c(x), �f(x), and �c(x) will be symmetric or
antisymmetric.

Proof 35:3 The filter H(i)
0 (z) will have linear phase if H0(z) does. If H(i)

0 (z) has length
(2i � 1)(La � 1)þ 1, the point of symmetry is (2i � 1)(La � 1)=2 which need not be an integer. The
point of symmetry for f (i)(x) will then be [(2i � 1)(La � 1)þ 1]=2iþ1 or [(2i � 1)(La � 1)þ 2]=2iþ1.
In either case, by taking the limit i ! 1 we find that f(x) is symmetric about the point (La � 1)=2 and
similarly for the other cases.

Thus having established the relation between wavelets and filter banks we can examine the structure of
filter banks in detail, and afterward use them to generate wavelets as described above. It should be
emphasized that we are speaking of the two-channel, one-dimensional case. Multidimensional filter
banks are a large subject in their own right [8,10].

35.1.3 Structure of Two-Channel Filter Banks

We saw already that it is the choice of the function P(z) and the factorization taken that determines the
properties of the filter bank. In terms of P(z), we give necessary and sufficient conditions for the three
properties mentioned above:

. Orthogonality: P(z) is an autocorrelation, and H0(z) and G0(z) are its spectral factors.

. Linear phase: P(z) is linear phase, and H0(z) and G0(z) are its linear phase factors.

. Finite support: P(z) is FIR, and H0(z) and G0(z) are its FIR factors.

Obviously the factorization is not unique in any of the cases above. The FIR case has been examined in
detail in [11,12,14–16] and the linear phase case in [12,15,17]. In the rest of this chapter we will present
new results on the orthogonal case, but we shall also review the solutions that explicitly satisfy
simultaneous constraints.

PROPOSITION 35.6

To have an orthogonal filter bank it is necessary and sufficient that P(z) be an autocorrelation, and that
H0(z) and G0(z) be its spectral factors.
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PROPOSITION 35.7

To have a linear phase filter bank it is necessary and sufficient that P(z) be a linear phase, and that H0(z)
and G0(z) be its linear phase factors.

PROPOSITION 35.8

To have an FIR filter bank it is necessary and sufficient that P(z) be FIR, and that H0(z) and G0(z) be its
FIR factors.

Proofs can be found in [18]. Having seen that the design problem can be considered in terms of P(z)
and its factorizations, we consider the three conditions of interest from this point of view.

35.1.3.1 Orthogonality

In the case where the filter bank is to be orthogonal, we can obtain a complete constructive character-
ization of the solutions, as given by the following theorem, taken from [18].

THEOREM 35.1

All orthogonal rational two channel filter banks can be formed as follows:

1. Choosing an arbitrary polynomial R(z), form

P(z) ¼ 2R(z)R(z�1)
R(z)R(z�1)þ R(�z)R(�z�1)

2. Factor as P(z) ¼ H(z)H(z�1)
3. Form the filter H0(z) ¼ A0(z)H(z), where A0(z) is an arbitrary allpass
4. Choose H1(z) ¼ z2k�1H0(�z�1)A1(z2), where A1(z) is again an arbitrary allpass
5. Choose G0(z) ¼ H0(z�1) and G1(z) ¼ �H1(z�1)

For a proof, see [18,19].

Example 35.1

Take R(z) ¼ (1þ z�1)N as above and N ¼ 7. It works out that in this case there is a closed-form
factorization for the filters:

P(z) ¼ (1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1)z7

14z6 þ 364z4 þ 2002z2 þ 3432þ 2002z�2 þ 364z�4 þ 14z�6

¼ E(z)E(z�1)
K (z)K (z�1)

,

where

E(z)
K (z)

¼ (1þ 7z�1 þ 21z�2 þ 35z�3 þ 35z�4 þ 21z�5 þ 7z�6 þ z�7)ffiffiffi
2

p
(1þ 21z�2 þ 35z�4 þ 7z�6)

:
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Note that we have used the following shorthand notation to list the coefficients of a causal FIR
sequence:

XN�1

n¼0

anz
�n ¼ (a0, a1, a2, . . . , aN�1):

So, using the description of the filters in Theorem 35.1, with the simplest case A0(z) ¼ A1(z) ¼ 1 and
k ¼ 0 we find

H0(z) ¼ (1þ 7z�1 þ 21z�2 þ 35z�3 þ 35z�4 þ 21z�5 þ 7z�6 þ z�7)ffiffiffi
2

p
(1þ 21z�2 þ 35z�4 þ 7z�6)

H1(z) ¼ z�1 (1� 7z1 þ 21z2 � 35z3 þ 35z4 � 21z5 þ 7z6 � z7)ffiffiffi
2

p
(1þ 21z2 þ 35z4 þ 7z6)

G0(z) ¼ H0(z
�1)

G1(z) ¼ H1(z
�1)

In the notation of Proposition 35.2, B ¼ 8 < 26 so that for this choice of H0(z) the left-hand side of
Equation 35.15 converges to a continuous function. The wavelet, scaling function, and their spectra are
shown in Figure 35.4.
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FIGURE 35.4 Example of Butterworth orthogonal wavelet, here N ¼ 7, and the closed-form factorization has been
used: (a) wavelet, (b) spectrum of the wavelet, (c) scaling function, and (d) spectrum of the scaling function.
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35.1.3.2 Finite Impulse Response and Symmetric Solutions

In the case where the filters are to be FIR, we merely require that P(z) be FIR; it is trivially easy to design
one. Similarly to have symmetric filters, we merely force P(z) to be symmetric. Obviously any symmetric
P(z) which is FIR and satisfies Equation 35.3 can be used to give symmetric FIR filters. We would like, in
addition, that the lowpass filters are regular, so that we get symmetric bounded support continuous-time
basis functions.

One strategy would be to design a P(z) with the desired properties and then factor to find the filters.
Alternatively, we can choose one of the factors, and then find the other necessary to make the product
P(z) satisfy Equation 35.3. We will use this approach and, to ensure regularity, choose one factor to be
(1þ z�1)2N . This can be done by solving a linear system of equations (see Figure 35.5) [12].

Example 35.2

If we choose N ¼ 3 we must find the complement to (1þ z�1)6; so we solve the 33 3 system found by
imposing the constraints on the coefficients of the odd powers of z�1 of

P(z) ¼ k0 þ k1z
�1 þ k2z

�2 þ k1z
�3 þ k0z

�4
� �
� 1þ 6z�1 þ 15z�2 þ 20z�3 þ 15z�4 þ 6z�5 þ z�6
� � � z5:
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FIGURE 35.5 Biorthogonal wavelets generated by filters of length 18 given in [12]: (a) analysis wavelet function
c(x), (b) spectrum of analysis wavelet, (c) synthesis wavelet function c(x), and (d) spectrum of synthesis wavelet.
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So we solve

6 1 0
20 16 6
12 30 20

0
@

1
A k0

k1
k2

0
@

1
A ¼

0
0
1

0
@

1
A,

giving k6 ¼ (3=2,�9, 19)=128.
In general, therefore, we solve the system:

F2N � k2N ¼ e2N , (35:30)

where
F2N is the N � N matrix
k2N ¼ (k0, . . . , k(k�1))
e2N is the length k vector (0, 0, . . . , 1)

Having found the coefficients of K2N(z), we factor it into linear phase components and then regroup
these factors of K2N(z) and the 2N zeros at z ¼ �1 to form two filters: H0(z) and H1(�z), both of which are
to be regular.

35.1.4 Putting the Pieces Together

An important consideration that is often encountered in the design of wavelets, or of the filter banks that
generate them, is the necessity of satisfying competing design constraints. This makes it necessary to
clearly understand whether desired properties are mutually exclusive.

AB

AC BC

A B C
(Haar solution)

Closed-form
factorization

C: Symmetry:
P(z) linear phase

Perfect reconstruction:
P(z) + P(–z) = 2

Rational P(z), Real coefficients

B: Orthogonal:
P(z) is autocorr

A: Bounded support:
P(z) is FIR

FIGURE 35.6 Two-channel perfect reconstruction filter banks. The Venn diagram illustrates which competing
constraints can be simultaneously satisfied. The sets A, B, and C contain FIR, orthogonal, and linear phase solutions,
respectively. Solutions in the intersection A \ B are examined in [11,14,23,24], those in the intersection A \ C are
detailed in [12,13,15,17,25], and solutions in B \ C are constructed in [18]. The intersection A \ B \ C contains only
trivial solutions.
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Perfect reconstruction solutions, with the constraint that P(z) be rational with real coefficients, must
satisfy Equation 35.3. Such general solutions, which do not necessarily have additional properties, were
given in [14].

The solutions of set A, where all of the filters involved are FIR, were studied in [14,15]. Set B contains
all orthogonal solutions, and has been the main focus of this chapter. A complete characterization of this
set was given in Theorem 35.1. A very different characterization, based on lattice structures, is given in
[20]. Particular cases of orthogonal solutions were also given in [21]. Set C contains the solutions where
all filters are linear phase, first examined in [15].

The earliest examples of perfect reconstruction solutions [22,23] were orthogonal and FIR; that is, they
were in A \ B. A constructive parametrization of A \ B was given in [24]. The construction and
characterization of examples which converge to wavelets was first done in [11]. Filter banks with FIR
linear phase filters (i.e., A \ C) were first given in [15], and also studied in terms of lattices in [17,25].
The construction of wavelet examples is given in [12,13]. Filter banks, which are linear phase and
orthogonal, were constructed in [18].

That there exist only trivial solutions which are linear phase, orthogonal and FIR is indicated by the
intersection A \ B \ C; the only solutions are two tap filters [11,12,26].

It warrants emphasis that Figure 35.6 illustrates the filter bank solutions; if the filters are regular,
then they will lead to wavelets. Of the dyadic wavelet bases known to the authors, the only ones based on
filters where P(z) is not rational are those of Meyer [27], and the only ones where the filter coefficients
are complex are those of Lawton [28]. For the case of the Battle–Lemarié wavelets, while the
filters themselves are not rational, the P(z) function is; hence, the filters would belong to B \ C in
the figure.
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The interest in digital filter banks has grown dramatically over the last few years. Owing to the trend
toward lower cost, higher speed microprocessors, digital solutions are becoming attractive for a wide
variety of applications. Filter banks allow signals to be decomposed into subbands, often facilitating more
efficient and effective processing. They are particularly visible in the areas of image compression, speech
coding, and image analysis.

The desired characteristics of a subband decomposition will naturally vary from application to
application. Moreover, within any given application, there are a myriad of issues to consider. First, one
might consider whether to use FIR or IIR filters. IIR designs can offer computational advantages, while
FIR designs can offer greater flexibility in filter characteristics. In this chapter we focus exclusively on FIR
design. Second, one might identify the time-frequency or space-frequency representation that is most
appropriate. Uniform decompositions and octave-band decompositions are particularly popular at
present. At the next level, characteristics of the analysis filters should be defined. This involves imposing
specifications on the analysis filter passband deviations, transition bands, and stopband deviations.
Alternately or in addition, time domain characteristics may be imposed, such as limits on the step
response ripples, and degree of regularity.

One can consider similar constraints for the synthesis filters. For coding applications, the character-
istics of the synthesis filters often have a dominant effect on the subjective quality of the output. Finally,
one should consider analysis-synthesis characteristics. That is, one has flexibility to specify the overall
behavior of the system. In most cases, one views having exact reconstruction as being ideal. Occasionally,
however, it may be possible to trade some small loss in reconstruction quality for significant gains in
computation, speed, or cost. In addition to specifying the quality of reconstruction, it is generally possible
to control the overall delay of the system from end to end. In some applications, such as two-way speech
and video coding, latency represents a source of quality degradation. Thus, having explicit control over
the analysis-synthesis delay can lead to improvement in quality.

The intelligent design of applications-specific filter banks involves first identifying the relevant
parameters and optimizing the system with respect to them. As is typical, the filter bank analysis and
reconstruction equations lead to complex tradeoffs among complexity, system delay, filter quality, filter
length, and quality of performance. This chapter is devoted to presenting an introduction to filter bank
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design. Filter bank design has reached a state of maturity in many regards. To cover all of the important
contributions in any level of detail would be impossible in a single chapter. However, it is possible to gain
some insight and appreciation for general design strategies germane to this topic. In addition to
discussing design methodologies for linear analysis-synthesis systems, we also consider the design of a
couple of new nonlinear classes of filter banks that are currently receiving attention in the literature.
This discussion along with the referenced articles should provide a convenient introduction to the design
of many useful filter banks.

36.1 Filter Bank Equations

A broad class of linear filter banks can be represented by the block diagram shown in Figure 36.1. This
is a linear time-varying system that decomposes the input into M-subbands, each one of which is
decimated by a factor of R. When R ¼ M, the system is said to be critically sampled or maximally
decimated. Maximally decimated systems are generally the ones of choice because they can be informa-
tion preserving, and are not data expansive.

The simplest filter bank of this class is the two-band system, an example of which is shown in
Figure 36.2. Here, there are only two analysis filters: H0(z), a lowpass filter, and H1(z), a highpass filter.
Similarly, there are two synthesis filters: a lowpass G0(z), and a highpass G1(z). Let us consider this two-
band filter bank first. In the process, we will develop a design methodology that can be extended to the
more complex problem of M-band systems.

Examining the two-band filter bank in Figure 36.2, we see that the input x[n] is lowpass and highpass
filtered, resulting in v0[n] and v1[n]. These signals are then downsampled by a factor of two, leading to
the analysis section outputs, y0[n] and y1[n]. The downsampling operation is time varying, which implies
a non-trivial relationship between vk[n] and yk[n] (where k ¼ 0, 1). In general, downsampling a signal
vk[n] by an integer factor R is described in the time domain by the equation

yk[n] ¼ vk[Rn]:

x[n]

H0(z)

H1(z)

HM–1(z) vM–1[n]

v1[n]

v0[n]

sM–1[n]

s1[n]
x̂[n]

s0[n]
y0[n]

y1[n]

yM–1[n]

...

R

R

R

R

R

R G0(z)

G1(z)

GM–1(z)

FIGURE 36.1 Multi-band analysis-synthesis filter bank.

x[n]

v1[n]

v0[n]

y1[n]

y0[n]

s1[n]
G1(z)

G0(z)

H1(z)

Analysis section Synthesis section

H0(z) 2

2 2

2
x̂[n]

s0[n]

FIGURE 36.2 Two-band analysis-synthesis filter bank.
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In the frequency domain, this relationship is given by

Yk(e
jv) ¼ 1

R

XR�1

r¼0

Vk e j
v
Rþ

2pr
R

� �� �
:

The equivalent equation in the z-domain is

Yk(z) ¼ 1
R

XR�1

r¼0

Vk Wr
Rz

1
R

� �
,

where Wr
R ¼ e�j2prR .

In the synthesis section, the subband signals y0[n] and y1[n] are upsampled to give s0[n] and s1[n].
They are then filtered by the lowpass and highpass filters, G0(z) and G1(z), respectively, before being
summed together. The upsampling operation (for an arbitrary positive integer R) can be defined by

sk[n] ¼ yk[n=R] for n ¼ 0,�R,�2R,�3R, . . .
0 otherwise

�

in the time domain, and

Sk(e
jv) ¼ Yk(e

jRv) and Sk(z) ¼ Yk(z
R)

in the frequency and z domains, respectively.
Using the expressions for the downsampling and upsampling operations, we can describe the two-

band filter bank in terms of z-domain equations. The outputs after analysis filtering are

Vk(z) ¼ Hk(z)X(z), k ¼ 0, 1:

After decimation and recognizing that W1
2 ¼ �1, we obtain

Yk(z) ¼ 1
2

Hk

�
z
1
2

�
X
�
z
1
2

�
þ Hk

�
�z

1
2

�
X
�
�z

1
2

�h i
, k ¼ 0, 1: (36:1)

Thus, Equation 36.1 defines completely the input–output relationship for the analysis section in the
z-domain.

In the synthesis section, the subbands are upsampled giving

Sk(z) ¼ Yk(z
2), k ¼ 0,1:

This implies that

Sk(z) ¼ 1
2
(Hk(z)X(z)þ Hk(�z)X(�z)), k ¼ 0,1:

Passing Sk(z) through the synthesis filters and then summing yields the reconstructed output

X̂(z) ¼ 1
2
G0(z)[H0(z)X(z)þ H0(�z)X(�z)]

þ 1
2
G1(z)[H1(z)X(z)þ H1(�z)X(�z)]: (36:2)
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For virtually any application for which one can conceive, the synthesis filters should allow the input to be
reconstructed exactly or with a minimal amount of distortion. In other words, ideally we want

X̂(z) ¼ z�n0X(z),

where n0 is the integer system delay. An intuitive approach to handing this problem is to use the
AC-matrix formulation, which we introduce next.

36.1.1 AC Matrix

The aliasing component matrix (or AC matrix) represents a simple and intuitive idea originally
introduced in [6] for handling analysis and reconstruction. The analysis-synthesis (Equation 36.2) for
the two-band case can be expressed as

X̂(z) ¼ 1
2
[H0(z)G0(z)þ H1(z)G1(z)]X(z)

þ 1
2
[H0(�z)G0(z)þ H1(�z)G1(z)]X(�z):

The idea of the AC matrix is to represent the equations in matrix form. For the two-band system, this
results in

X̂(z) ¼ 1
2
[X(z), X(�z)]

H0(z) H1(z)
H0(�z) H1(�z)

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AC matrix

G0(z)
G1(z)

	 

,

where the AC matrix is as shown above. The AC matrix is so designated because it contains the analysis
filters and all the associated aliasing components. Exact reconstruction is then obtained when

H0(z) H1(z)
H0(�z) H1(�z)

	 

G0(z)
G1(z)

	 

¼ T(z)

0

	 

,

where T(z) is required to be the scaled integer delay 2z�n0 . The term T(z) is the transfer function of the
overall system. The zero term below T(z) determines the amount of aliasing present in the reconstructed
signal. Because this term is zero, all aliasing is explicitly removed.

With the equations expressed in matrix form, we can solve for the synthesis filters, which yields

G0(z)
G1(z)

	 

¼ 1

H0(z)H1(�z)� H0(�z)H1(z)
H1(�z) �H1(z)
�H0(�z) H0(z)

	 

T(z)
0

	 

: (36:3)

Often for a variety of reasons, we would like both the analysis and synthesis filters to be FIR. This means
the determinant of the AC matrix should be a constant delay. The earliest solution to the FIR filter bank
problem was presented by Croisier et al. in 1976 [18]. Their solution was to let

H1(z) ¼ H0(�z)

and

G0(z) ¼ H0(z)

G1(z) ¼ �H0(�z):
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This is the quadrature mirror filter (QMF) solution. From Equation 36.3, it can be seen that this solution
cancels all the aliasing and results in a system transfer function

T(z) ¼ H0(z)H1(�z)� H0(�z)H1(z):

As it turns out, with careful design T(z) can be made to be close to a constant delay. However, some
amount of distortion will always be present. In 1980, Johnston designed a set of optimized QMFs which
are now widely used. The coefficient values may be found in several sources [16,17,19].

Interestingly, Equation 36.3 implies that exact reconstruction is possible by forcing the AC-matrix
determinant to be a constant delay. The design of such exact reconstruction filters is discussed in the
next section.

36.1.2 Spectral Factorization

The question at hand is how do we determine H0(z) and H1(z) such that T(z) is an integer delay z�n0 .
A solution to this problem was introduced in 1984 [7], based on the observation that H0(z)H1(�z) is a
lowpass filter (which we denote F0(z)) and H0(�z)H1(z) is its corresponding frequency shifted highpass
filter. A unity transfer function can be constructed by forcing F0(z) and F0(�z) to be complementary half-
band lowpass and highpass filters. Many fine techniques are available for the design of half-band lowpass
filters, such as the Parks–McClellan algorithm, Kaiser window design, Hamming window design, the
eigenfilter method, and others. Zero-phase half-band filters have the property that zeros occur in the impulse
response at n ¼ �2, �4, �6, etc. An illustration is shown in Figure 36.3. Once designed, F0(z) can be
factored into two lowpass filters, H0(z) and H1(�z). The design procedure can be summarized as follows:

1. First design a (2N � 1)-tap half-band lowpass filter, using the Parks–McClellan algorithm, for
example. This can be done by constraining the passband and stopband cutoff frequencies to be
vp ¼ p� vs, and using equal passband and stopband error weightings. The resulting filter will
have equal passband and stopband ripples, that is, dp ¼ ds ¼ d.

2. Add the value d to the f [0] (center) tap value. This forces F(ejv) � 0 for all v.
3. Spectrally factor F(z) into two lowpass filters,H0(z) andH1(�z). Generally the best way to factor F(z)

is such that H1(�z) ¼ H0(z�1). Note that the factorization will not be unique and the roots should
be split so that if a particular root is assigned to H0(z), its reciprocal should be given to H0(z�1).

The result of the above procedure is that H0(z) will be a power complementary, even length, FIR filter
that will form the basis for a perfect reconstruction filter bank. Note that since H1(z) is just a time-
reversed, spectrally shifted version of H0(z),

H0(e
jv)

�� �� ¼ H1(�e jv)
�� ��:

2 4 6 8

n

FIGURE 36.3 Example of a zero-phase half-band lowpass filter.

Filter Bank Design 36-5



Smith and Barnwell designed and published a set of optimal exact reconstruction filters [1]. The
filter coefficients for H0(z) are given in Table 36.1. The analysis and synthesis filters are obtained from
H0(z) by

G0(z) ¼ H0(z
�1)

G1(z) ¼ H0(�z)

H1(z) ¼ H0(�z�1):

A complete discussion of this approach can be found in many references [1,6,7,25,27,28].
For the M-channel case shown in Figure 36.1, where the bands are assumed to be maximally

decimated, the same AC-matrix approach can be employed, leading to the equations

TABLE 36.1 CQF (Smith–Barnwell) Filter Bank Coefficients with 40 dB Attenuation

32-Tap Filter 16-Tap Filter 8-Tap Filter

8.494372478233170D�03 2.193598203004352D�02 3.489755821785150D�02

�9.617816873474045D�05 1.578616497663704D�03 �1.098301946252854D�02

�8.795047132402801D�03 �6.025449102875281D�02 �6.286453934951963D�02

7.087795490845020D�04 �1.189065962053910D�02 0.223907720892568Dþ00

1.220420156035413D�02 0.137537915636625Dþ00 0.556856993531445Dþ00

�1.762639314795336D�03 5.745450056390939D�02 0.357976304997285Dþ00

�1.558455903573829D�02 �0.321670296165893Dþ00 �2.390027056113145D�02

4.082855675060479D�03 �0.528720271545339Dþ00 �7.594096379188282D�02

1.765222024089335D�02 �0.295779674500919Dþ00

�8.385219782884901D�03 2.043110845170894D�04

�1.674761388473688D�02 2.906699709446796D�02

1.823906210869841D�02 �3.533486088708146D�02

5.781735813341397D�03 �6.821045322743358D�03

�4.692674090907675D�02 2.606678468264118D�02

5.725005445073179D�02 1.033363491944126D�03

0.354522945953839Dþ00 �1.435930957477529D�02

0.504811839124518Dþ00

0.264955363281817Dþ00

�8.329095161140063D�02

�0.139108747584926Dþ00

3.314036080659188D�02

9.035938422033127D�02

�1.468791729134721D�02

�6.103335886707139D�02

6.606122638753900D�03

4.051555088035685D�02

�2.631418173168537D�03

�2.592580476149722D�02

9.319532350192227D�04

1.535638959916169D�02

�1.196832693326184D�04

�1.057032258472372D�02
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X̂(z) ¼ 1
M

X(z), . . . ,X zWM�1
M

� � �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

xT

�

H0(z) � � � HM�1(z)

H0 zW1
M

� � � � � HM�1 zW1
M

� �
..
. ..

.

H0 zWM�1
M

� � � � � HM�1 zWM�1
M

� �

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

G0(z)

G1(z)

..

.

GM�1(z)

2
66664

3
77775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
g

,

where WM ¼ e�j2pM . This can be rewritten compactly as

X̂(z)
1
M

xT(z)H(z)g(z),

where
x is the input vector
g is the synthesis filter vector
H is the AC matrix

However, the AC-matrix determinant for systems with M > 2 is typically too intricate for the spectral
factorization approach outlined above. An effective approach for handling the design of M-band systems
was introduced by Vaidyanathan in [30]. It is based on a lattice implementation structure and is
discussed next.

36.1.3 Lattice Implementations

In addition to the direct form structures shown in Figures 36.1 and 36.2, filter banks can be implemented
using lattice structures. For simplicity, consider the two-band case first. An example of a lattice structure
for a two-band analysis system is shown in Figure 36.4. It is composed of a cascade of crisscross
elements, each of which has a set of coefficients associated with it. Conveniently, each section, which
we denote Rm, can be described by a matrix. For the two-band lattice, these matrices have the form

Rm ¼ 1 rm
�rm 1

	 

:

Interspersed between the coefficient matrices are delay matrices, L(z), having the form

L(z) ¼ 1 0
0 z�1

	 

:

x[n]

z–1 2

2
r1

–r1

r2

–r2

r3

y0 [n]

y1[n]

–r3

z–1 z–1

FIGURE 36.4 Flow graph of a two-band lattice structure with three stages.
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It can be shown [27] that lattice filters can represent a wide class of exact reconstruction filter banks. Two
points regarding lattice filter banks are particularly noteworthy. First, the lattice structure provides an
efficient form of implementation. Moreover, the synthesis filter bank is directly related to the analysis
bank, since each matrix in the analysis cascade is invertible. Consequently, the synthesis bank consists of
the cascade of inverse section matrices. Second, the structure also provides a convenient way to design the
filter bank. Each lattice coefficient can be optimized using standard minimization routines to minimize a
passband–stopband error cost function for the filters. This approach to design can be used for two-band
as well as M-band filter banks [5,27,28].

36.1.4 Time-Domain Design

One of the most flexible design approaches is the time domain formulation proposed by Nayebi et al.
[3,8]. This formulation has enabled the discovery of previously unknown classes of filter banks, such as
low and variable delay systems [12], time-varying filter banks [4], and block decimation systems [9]. It is
attractive because it enables the design of virtually all linear filter banks. The idea underlying this
approach is that the conditions for exact reconstruction can be expressed in the time domain in a
convenient matrix form. Let us explore this approach in the context of an M-band filter bank. Because of
the decimation operations, the overall M-band analysis-synthesis system is periodically time-varying.
Thus, we can view an arbitrary maximally decimated M-band system as having M linear time invariant
transfer functions associated with it. One can think of the problem as trying to devise M subsampled
systems, each one of which exactly reconstructs. This is equivalent to saying that for each impulse input,
d[n� i], to the analysis-synthesis system, that impulse should appear at the system output at time
n ¼ iþ n0, where i ¼ 0, 1, 2, . . . , M � 1 and n0 is the system delay.

This amounts to setting up an overconstrained linear system AS ¼ B, where the matrix A is created
using the analysis filter coefficients, the matrix B is the desired response of zeros except at the appropriate
delay points (i.e., d[n� n0]), and S is a matrix containing synthesis filter coefficients. Particular
linear combinations of analysis and synthesis filter coefficients occur at different points in time for
different input impulses. The idea is to make A, S, and B such that they describe completely allM transfer
functions that comprise the periodically time-varying system.

The matrix A is a matrix of filter coefficients and zeros that effectively describe the decimated
convolution operations inherent in the filter bank. For convenience, we express the analysis coefficients
as a matrix h, where

h ¼

h0[0] h1[0] � � � hM�1[0]

h0[1] h1[1] � � � hM�1[1]

..

. ..
. ..

. ..
.

h0[N � 1] h1[N � 1] � � � hM�1[N � 1]

2
66664

3
77775:

The zeros are represented by anM �M matrix of zeros, denoted OM. With these terms, we can write the
(2N �M)� N matrix A:

A ¼

[h[n]] OM � � � OM

OM [h[n]] � � � ..
.

..

. ..
. ..

.
OM

OM OM � � � [h[n]]

2
666664

3
777775:
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The synthesis filters S can be expressed most conveniently in terms of the M �M matrix

Qi ¼

g0[i] g0[iþ 1] � � � g0[iþM � 1]

g1[i] g1[iþ 1] � � � g1[iþM � 1]

..

. ..
. ..

. ..
.

gM�1[i] gM�1[iþ 1] � � � gM�1[iþM � 1]

2
66664

3
77775,

where i ¼ 0, 1, . . . , L� 1 and N is assumed to be equal to LM. The synthesis matrix S is then given by

S ¼

Q0

QM

..

.

QiM

..

.

Q(L�1)M

2
6666666664

3
7777777775
:

Finally, to achieve exact reconstruction we want the impulse responses associated with each of the M
constituent transfer functions in the periodically time-varying system to be an impulse. Therefore, B is a
matrix of zero-element column vectors, each with a single ‘‘one’’ at the location of the particular transfer
function group delay. More specifically, the matrix has the form

B ¼

OM

OM

..

.

JM

..

.

OM

OM

2
6666666666664

3
7777777777775
,

where JM is the M �M antidiagonal identity matrix

JM ¼

0 � � � 0 1

0 � � � 1 0

..

. ..
. ..

. ..
.

1 � � � 0 0

2
6664

3
7775:

It is important to mention here that the location of JM within the matrix B is a system design issue. The
case shown here, where it is centered within B, corresponds to an overall system delay of N � 1. This is
the natural case for systems with N-tap filters. There are many fine points associated with these time
domain conditions. For a complete discussion, the reader is referred to [3].

With the reconstruction equations in place, we now turn our attention to the design of the filters. The
problem here is that this is an over-constrained system. The matrix A is of size (2N �M)� N . If we
think of the synthesis filter coefficients as the parameters to be solved for, we find M(2N �M) equations
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and MN unknowns. Clearly, the best we can hope for is to determine B in an approximate sense.
Using least-squares approximation, we let

S ¼ (ATA)�1B:

Here, it is assumed that (ATA)�1 exists. This is not automatically the case. However, if reasonable
lowpass and highpass filters are used as an initial starting point, there is rarely a problem.

This solution gives the best synthesis filter set for a particular analysis set and system delay N� 1. The
resulting matrix AS ¼ B̂ will be close to B but not equal to it in general. The next step in the design is to
allow the analysis filter coefficients to vary in an optimization routine to reduce the Frobenius matrix
norm, kB̂� Bk2F. The locally optimal solution will be

S ¼ (ATA)�1B, such that kB̂� Bk2F is minimized:

Any number of routines may be used to find this minimum. A simple gradient search that updates the
analysis filter coefficients will suffice in most cases. Note that, as written, there are no constraints on the
analysis filters other than that they provide an invertible ATA matrix. One can easily start imposing
constraints relevant to system quality. Most often we find it appropriate to include constraints on the
frequency domain characteristics of the individual analysis filters. This can be done conveniently by
creating a cost function comprised of the passband and stopband filter errors. For example, in the two-
band case, inclusion of such filter frequency constraints gives rise to the overall error function:

e ¼ kB̂� Bk2F þ
ðpp

0

1� H1(e
jv)

�� ��2dvþ
ðp
ps

H0(e
jv)

�� ��2dv:

This reduces the overall system error of the filter bank while at the same time reducing the stopband
errors in analysis filters. Other options in constructing the error function can address control over the
step response of the filters, the width of the transition bands, and whether an l2 norm or an l1 norm is
used as an optimality criterion.

By properly weighting the reconstruction and frequency response terms in the error function, exact
reconstruction can be obtained, if such a solution exists. If an exact reconstruction solution does not exist,
the design algorithm will find the locally optimal solution subject to the specified constraints.

36.1.4.1 Functionality of the Design Formulation

One of the distinct advantages of the time-domain design method is its flexibility. The discussion above
assumed that the system delay was N � 1 where N is the filter length. For the time-domain formulation,
the amount of overall system delay can be thought of as an input to the design algorithm. In other words,
one can pre-specify the desired system delay and then find the locally optimal set of analysis and
synthesis filters that reduce the cost function while maintaining the specified delay. Control over the
system delay is given by the position of JM in the matrix B. Placing JM at or near the top of B lowers
the system delay while positioning it at or near the bottom increases the system delay. One consideration
here is the effect on filter bank quality. Experiments have shown that as the delay moves toward the
extremes, the impact of the overconstrained equations is more severe. One is forced to either tolerate
poorer frequency response characteristics or perhaps allow a little distortion in the reconstruction.

The cost function allows for an infinite variety of systems to be designed. The algorithm will converge
to a filter set that optimizes the cost function as it is given. This provides the freedom to tradeoff among
reconstruction error, frequency domain characteristics, and time domain characteristics. To aid in
finding a particular locally optimal solution, the cost function can be allowed to be ‘‘adaptive.’’ If exact
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reconstruction is desired, a heavy weighting may be placed on the reconstruction term in the cost
function initially, until that term goes to zero. Then the cost function can be adjusted with new
weightings that address reducing the error associated with the remaining distortion components.

This time domain formulation has been used to design an unprecedented variety of filter banks,
including the first block decimation systems, the first time-varying systems, the first low delay systems,
cosine modulated filter banks, nonuniform band filter banks, and many others [3,4,9–11]. One of the
most important in this list is cosine modulated filter banks because they can be implemented very
efficiently by using FFT-class algorithms. Cosine modulated filter banks may be designed in a variety of
ways. Excellent discussions on this topic are given by Malvar [20,24], Vaidyanathan [21,27], Vetterli [23],
and many others.

Linear filter banks have proven to be effective in many applications. Perhaps their most widespread use
is in the area of coding. Subband coders for speech audio, image, and video signals tend to work very well.
However, at low bit rates, distortions can be detected. Thus, there is interest in designing filter banks that
are less prone to producing annoying distortions in these cases. Other nonlinear classes of filter banks can
be considered that display different forms of distortion at low bit rates. In the remainder of this chapter,
we discuss the design of two nonlinear filter banks that are presently being studied.

36.2 Finite Field Filter Banks

A new and interesting variant of the classical analysis-synthesis system can be achieved by imposing the
explicit constraint that the discrete amplitude range of the subbands is confined. For conventional
filter banks, we assume the input signal has a finite number of amplitude values. For instance, in the
case of subband image coding, the input will typically contain 8 bits or 256 amplitude levels. However,
the subband outputs may contain millions of possible amplitude values. For a coding application, we can
think of the input as having a small alphabet (e.g., 256 unique values), and the analysis filter output
as having a large alphabet (millions). Conceivably, one might be able to improve coding performance in
some situations by designing a filter bank that constrains the output alphabet to be small. With this as
motivation, we consider the problem of designing exact reconstruction filter banks with this constraint,
an idea originally introduced by Vaidyanathan [37].

To begin our discussion, consider an input image with an alphabet size N (e.g., 256 gray levels).
The output is expanded to an alphabet size of M � N after subband filtering. The value of M is governed
by the length and coefficient values of the filter.M can be very large. The design task of interest here is to
construct a filter bank whereM is very small, ideally unity. In other words, we are constraining the system
to operate in a finite field of our choosing, for example, GF(N). In order to meet this finite field condition,
an operational change is needed. Specifically, the finite field filter bank should operate in an integer field.
Consequently, the filters used should be perfect reconstruction filters with integer coefficients. This
modification makes it possible to perform wrap-around arithmetic. Wrap-around arithmetic restricts
outputs to a finite field by performing all operation modulo N.

The design of a finite field filter bank is relatively simple. The image is passed through analysis filters
using wrap-around arithmetic. This means that every operation is either modulo-N addition or modulo-
N multiplication. Hence, the subband outputs will have an integer alphabet of size N. To reconstruct, the
image is passed through the synthesis filters using the same wrap-around arithmetic within the same
finite integer field. The bands are then combined using modulo-N addition. As it turns out, the resulting
signal will not match the original. However, the signal can be corrected by applying a mapping based on
the gain of the filter banks,M, and the dynamic range, N. Let us assume that the input is an image with N0

discrete levels, and that all operations have been performed modulo N. Each value of the output image is
found in set B and can be mapped into set A, where

A ¼ {0, 1, 2, . . . ,N 0 � 1} and B ¼ [(M � A)]N :
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The resulting output image x̂ will be, under certain conditions, an exact reconstruction of the
input image x.

There are two conditions that must be satisfied in order to obtain exact reconstruction. First, the
subband output alphabet size N must be equal to or greater than the input alphabet size N0. This is a
necessary condition in order to unambiguously resolve all values of the input. Second, the system gain M
is constrained in relation to the subband output size N. The system gain is governed by the analysis and
synthesis filters in the following way:

M ¼
X
n

jh0[n]j �
X
n

jg0[n]j
 !

þ
X
n

jh1[n]j �
X
n

jg1[n]j
 !

,

where
h0[n] and h1[n] are the analysis filters
g0[n] and g1[n] are the synthesis filters

The relation betweenM and N is crucial in obtaining perfect reconstruction. These two numbers must be
relatively prime. That is, M and N can have no common factors. For example, if M is two, any odd value
of N would be valid. Ideally, we might want N ¼ N 0. However, to satisfy the last condition M is
determined by the system and N is adjusted slightly up from N0. It is typically easier to adjust N.

To illustrate the differences in outputs obtained from conventional and finite field filter banks,
consider the following comparison. For a conventional two-band system with two-tap Haar analysis
filters, an input of

x ¼ 0, 0, 0, 4, 2, 3, 0, 1, 2, 0, 0, . . .

will yield the outputs

y0 ¼ 0, 4, 5, 1, 2, . . .

y1 ¼ 0, 4, 1, 1,�2, . . . :

However, for the equivalent finite field system (like the one shown in Figure 36.5), the outputs are
noticeably different. For the finite field case, all operations are performed modulo N. Thus, for the same
input the outputs produced are

y0 ¼ 0, 4, 0, 1, 2, . . .

y1 ¼ 0, 4, 1, 1, 3, . . . :

H1

H0

x0

x1

x

2

2

2

y1

y0 x̂0

x̂p Post-
mapping

+

x̂1

2

G0

G1

FIGURE 36.5 Block diagram of a two-band finite field filter bank.
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Notice that the alphabet here is confined to the integers 0, 1, 2, 3, and 4 because we have set N ¼ 5.
For the reconstruction, the outputs shown in the figure will be

x̂0 ¼ 0, 4, 4, 0, 0, 1, 1, 2, 2, . . .

x̂1 ¼ 0, 1, 4, 4, 1, 4, 1, 2, 3, . . . :

Adding these together, modulo N gives

x̂p ¼ 0, 0, 3, 4, 1, 0, 2, 4, 0, . . . :

Now unscrambling them in the post-mapping step shown in the figure gives

x̂ ¼ 0, 0, 4, 2, 3, 0, 1, 2, 0, . . . ¼ x:

It is interesting to compare the analysis section outputs of finite field and conventional filter banks
for the two-band case. The lower band output of a conventional filter bank has a dynamic range that is
usually much greater than the dynamic range of the input. The values in the lower band tend to have a
Gaussian distribution over the range. By constraining the alphabet size, the first-order entropy can be
reduced. The amount of the reduction depends on the size of M. The higher band in the conventional
filter bank has a dynamic range that might be larger than N; however, the values are clustered around
zero. When modulo operations are performed, the negative values go to a high value so not much
overlap is obtained. Therefore, the alphabet constraint has little or no affect on the higher bands.
The finite field filter bank reduces the overall first-order entropy because the entropy is reduced in
the lower band. The degree by which the entropy is reduced is greatly dependent on the image and the
filter gains.

How do finite field filter banks affect input images with different dynamic ranges? This effect is
dependent on the same two components that have previously been discussed, the system gainM, and the
subband output sizeN. Let us assume the subband output range N is set equal to the input image rangeN 0.
Now we can examine the effects of different system gains given N. For example, if the image is binary
(N ¼ 2), the system gain must be odd. Examining the decomposition of such an image, we can see that it
appears very noisy. This is because the dynamic range of the system is small and the gain is large. The image
is essentially wrapping around on itself so many times it is difficult to observe the original image in the
bands. In a case whereN > 2, a filter with a smaller gain ismore realizable. For example, ifN ¼ 255, we can
choose a system gain of 2. In this decomposition (Figure 36.6), the lower band image is not what we are
accustomed to observing in a conventional decomposition. This case does have a lower first-order entropy
than its conventional counterpart.

Finite field filter banks are still in their early phases of study. As a result of the constraints, filter quality
is limited. Thus, the net gains achievable in an application could be favorable or unfavorable. One must
pay careful attention to the subband output size, filter length, and coefficient values during the design of
the filter bank. Nonetheless, it seems that finite field filter banks are potentially attractive in some
applications.

36.3 Nonlinear Filter Banks

One of the driving forces for research in filter banks is image coding for low bit rate applications.
Presently, subband image coders represent the best approach known for image compression. As with any
coder, at low rates distortions occur. Subband coders based on conventional linear filter banks suffer
from ringing effects due to the Gibbs phenomenon. These ringing effects occur around edges or high
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contrast regions. One way to eliminate ringing is to use nonlinear filter banks. There are pros and cons
regarding the utility of nonlinear filter banks. However, the design of the systems is rather new and
interesting.

Nonlinear filter banks can be constructed within a general two-band framework. A nonlinear filter
may be placed in the highpass analysis and in the lowpass synthesis block of the systems. The condition
for exact reconstruction will be discussed later. What type of nonlinear filter is an open question.
While there are many candidates, the constraints of the overall system restrict the design of filters
in terms of type and degrees of freedom in optimization. The most widely used nonlinear filter is the
rank-order filter. In this discussion, we consider rank-order filters, more specifically, median filters.
The performance of such filters is determined by the rank used and the region of support. The popular
N-point median filter has a rank of (N þ 1)=2, where N is assumed to be odd. Egger et al. [31] suggested a
simple two-band nonlinear filter bank that upholds the exact reconstruction property. The lowpass
channel consists of direct downsampling, while the highpass channel involves a median filter (differen-
cing) operation to achieve a highpass representation for the other channel. Because straight down-
sampling and median filtering are involve, there is an inherent finite field constraining property built in
to the system. Although these features seem attractive, the system is severely limited by its lack of filtering
power. Most notably, the lowpass channel has massive aliasing since no filtering is performed. For many
applications, aliasing of this type is not desirable. This problem can be addressed somewhat by using the
modified filter bank introduced by Florencio and Schafer [32]. In the two-band system of Florencio

FIGURE 36.6 A four-level octave band decomposition using finite field filter banks.
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and Schafer shown in Figure 36.7, each channel can be expressed as a filtered combination of the input.
This structure can be recognized as a classical polyphase implementation for a two-band filter bank.
Here, however, we allow the polyphase filters fij and gij to be nonlinear filters. Thus,

y0[n] ¼ f00(x0[n])þ f01(x1[n])

y1[n] ¼ f10(x0[n])þ f11(x1[n]),

where fij(�) are the linear or nonlinear polyphase analysis filters. To reconstruct the signal, the output can
be expressed as a filtered combination of the channels,

x̂0 ¼ g00(y0)þ g01(y1)

x̂1 ¼ g10(y0)þ g11(y1),

where gij(�) are the linear or nonlinear polyphase synthesis filters. The perfect reconstruction conditions
are based on these different classes or structures. The Type I structure consists of f00(�) ¼ f11(�) ¼ I
(identity), and either f10(�) ¼ 0 or f01(�) ¼ 0. The other is any causal transformation. To obtain
perfect reconstruction, g00(�) ¼ g11(�) ¼ I, g10(�) ¼ f10(�), and g01(�) ¼ �f01(�). The Type II structure con-
sists of f10(�) ¼ f01(�) ¼ 0 and both f00(�) and f11(�) being invertible functions. To obtain perfect recon-
struction g01(�) ¼ g10(�) ¼ 0, g00(�) ¼ f �1

00 (�), and g11(�) ¼ f �1
11 (�). The Type III structure consists of

f10(�) ¼ f01(�) ¼ I and f00(�) ¼ f11(�) ¼ 0. To obtain perfect reconstruction, g01(�) ¼ g10(�) ¼ I and
g00(�) ¼ g11(�) ¼ 0.

Similar to linear filter banks, this nonlinear filter bank achieves an overall reduction in first-order
entropy. Since perfect reconstruction is achieved in the two-band decomposition, perfect reconstruction
can be maintained when used in tree structured systems for compression applications. After quantiza-
tion, coding, and reconstruction, different features will be affected in different ways. The main
advantage of nonlinear filtering is that the edges associated with high contrast features are preserved
well, and no ‘‘ringing’’ occurs. However, because of the nature of the sampling in the lower band,
texture regions are distorted. Using cascaded sections is a way to help preserve the texture. As it turns
out, sections can be cascaded in a way that preserves exact reconstruction. For example, let the first
stage of the filter contain f01(�) ¼ 0, with f10(�) being a four-point median f01(�) being a four-point
median filter with a 0.5 gain (to maintain the dynamic range of the input). The resulting two bands
are similar to the bands of the comparable linear case but have the advantages of a nonlinear system.

f00(·)

f10(·)

f01(·)
z–1

z–1

2

2

2

2

f11(·)

g00(·)

g10(·)

g01(·)

g11(·) + +

+

+

+

y1

y0

Analysis bank Synthesis bank

x̂0

x̂1

x0x

x1
x̂

FIGURE 36.7 A two-band polyphase nonlinear filter bank.
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Most notably, the lower band of the nonlinear case has a reduction in higher frequencies, very similar
to the linear case. These differences are illustrated in Figure 36.8 for a four-band decomposition of an
image. A conventional QMF decomposition is shown in Figure 36.8a. Next to it in Figure 36.8b and c
are the nonlinear decompositions obtained using the Egger and Li approach, and the two-stage
approach of Florencio and Schafer, respectively. All show similarities. However, more energy is
contained in the high frequency subbands of the nonlinear results. In comparing carefully the two
nonlinear results, we can observe that the two-stage approach of Florencio and Schafer has less aliasing
in the lowest band and more closely follows the linear result. The difference image between the two
nonlinear results is given in Figure 36.8d.

It is clear that there are many possibilities for constructing nonlinear filter banks. What is less obvious
at this point is the impact of these systems in practical situations. Given that development related to these
filter banks is only in the formative stages, only time will tell. Regardless of whether conventional or
nonlinear filter banks are ultimately employed, the variety of design options and design techniques offer
many useful solutions to engineering problems. More in-depth discussions on applications can be found
in the references.

(a) (b)

(c) (d)

FIGURE 36.8 Comparison of outputs from one linear and three nonlinear filter banks: (a) a four-band linear
decomposition using four-tap QMFs, (b) a four-band nonlinear decomposition using the method of Egger and Li,
(c) a four-band nonlinear decomposition using the two-stage method of Florencio and Schafer, and (d) the residual
image obtained from subtracting the nonlinear decomposition result in (b) from the result in (c).
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37.1 Introduction

Time-frequency representations (TFR) combine the time-domain and frequency-domain representations
into a single framework to obtain the notion of time-frequency. TFR offer the time localization vs.
frequency localization trade-off between two extreme cases of time-domain and frequency-domain
representations. The short-time Fourier transform (STFT) [1–5] and the Gabor transform [6] are the
classical examples of linear time-frequency transforms which use time-shifted and frequency-shifted
basis functions.

In conventional time-frequency transforms, the underlying basis functions are fixed in time and define
a specific tiling of the time-frequency plane. The term time-frequency tile of a particular basis function is
meant to designate the region in the plane that contains most of that function’s energy. The STFT and the
wavelet transform are just two of many possible tilings of the time-frequency plane. These two are
illustrated in Figure 37.1a and b, respectively. In these figures, the rectangular representation for a tile is
purely symbolic, since no function can have compact support in both time and frequency. Other arbitrary
tilings of the time-frequency plane are possible such as the example shown in Figure 37.1c. In the discrete
domain, linear time-frequency transforms can be implemented in the form of filter bank structures.

It is well known that the time-frequency energy distribution of signals often changes with time.
Thus, in this sense, the conventional linear time-frequency transform paradigm is fundamentally
mismatched to many signals of interest. A more flexible and accurate approach is obtained if the basis
functions of the transform are allowed to adapt to the signal properties. An example of such a time-
varying tiling is shown in Figure 37.1d. In this scenario, the time-frequency tiling of the transform can be
changed from good frequency localization to good time localization and vice versa. Time-varying filter
banks provide such flexible and adaptive time-frequency tilings.

The concept of time varying (or adaptive) filter banks was originally introduced in [7] by Nayebi et al.
The ideas underlying their method were later developed and extended to a more general case in which it
was also shown that the number of frequency bands could also be made adaptive [8–11]. De Queiroz and
Rao [12] reported time-varying extended lapped transforms and Herley et al. [13–15] introduced another
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time-domain approach for designing time-varying lossless filter banks. Arrowood and Smith [16]
demonstrated a method for switching between filter banks using lattice structures. In [17], the authors
presented yet another formulation for designing time-varying filter banks using a different factorization
of the paraunitary transform. Chen and Vaidyanathan [18] reported a noncausal approach to time-
varying filter banks by using time-reversed filters. Phoong and Vaidyanathan [19] studied time-varying
paraunitary filter banks using polyphase approach. In [11,20–22], the post filtering technique for
designing time-varying filter bank was reported. The design of multidimensional time-varying filter
bank was addressed in [23,24]. In this chapter, we introduce the notion of the time-varying filter banks
and briefly discuss some design methods.

37.2 Analysis of Time-Varying Filter Banks

Time-varying filter banks are analysis-synthesis systems in which the analysis filters, the synthesis filters,
the number of bands, the decimation rates, and the frequency coverage of the bands are changed (in part
or in total) in time, as is shown in Figure 37.2. By carefully adapting the analysis section to the temporal
properties of the input signal, better performance can be achieved in processing the signal. In the absence
of processing errors, the reconstructed output x̂(n) should closely approximate a delayed version of
the original signal x(n). When x̂(n�D)¼ x(n) for some integer constant, D, then we say that the filter
bank is perfectly reconstructing (PR). The intent of the design is to choose the time-varying analysis and
synthesis filters along with the time-varying down=up samplers so that the system requirements are
met subject to the constraint that the analysis-synthesis filter bank be PR at all times.
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FIGURE 37.1 The time-frequency tiling for different time-frequency transforms: (a) the STFT, (b) the wavelet
transform, (c) an example of general tiling, and (d) an example of the time-varying tiling.
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One general method for analysis of time-varying filter banks is the time-domain formulation reported
in [10,22]. In this method, the time-varying impulse response of the entire filter bank is derived in terms
of the analysis and synthesis filter coefficients.

Figure 37.3 shows the diagram of a time-varying filter bank. In this figure, the filter bank is divided
into three stages: the analysis filters, the down=up samplers, and the synthesis filters. The signals x(n) and
x̂(n) are the filter bank input and output at time n, respectively. The outputs of the analysis filters are
shown by v(n)¼ [v0(n), v1(n), . . . , vM(n)�1(n)]

T, where vi(n) is the output of the ith analysis filter at
time n. The outputs of the down=up samplers at time n are called w(n)¼ [w0(n),w1(n), . . . ,wM(n)�1(n)]

T.
The input=output relation of the analysis filters can be expressed by

v(n) ¼ P(n)xN(n): (37:1)

where
P(n) is an M(n)3N(n) matrix whose mth row is comprised of the coefficients of the mth analysis
filter at time n

xN(n) is the input vector of length N(n) at time n:

xN(n) ¼ [x(n), x(n� 1), x(n� 2), . . . , x(n� N(n)þ 1)]T: (37:2)

The input=output function of down=up samplers can be expressed in the form

w(n) ¼ L(n)v(n), (37:3)

where L(n) is a diagonal matrix of sizeM(n)3M(n). The mth diagonal element of L(n), at time n, is 1 if
the input and output of the mth down=up sampler are identical, otherwise it is zero.
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FIGURE 37.2 The time-varying filter bank structure with time-varying filters and time-dependent down=up
samplers.
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To write the input=output relationship of the synthesis filters, Q(n) is defined as

Q(n) ¼

g0(n, 0) g0(n, 1) g0(n, 2) . . . g0(n,N(n)� 1)

g1(n, 0) g1(n, 1) g1(n, 2) . . . g1(n,N(n)� 1)

g2(n, 0) g2(n, 1) g2(n, 2) . . . g2(n,N(n)� 1)

..

. ..
. ..

. ..
. ..

.

gM(n)�1(n, 0) gM(n)�1(n, 1) gM(n)�1(n, 2) . . . gM(n)�1(n, N(n)� 1)

2
6666666664

3
7777777775

¼ q0(n) q1(n) q2(n) . . . qN(n)�1(n)
� �

, (37:4)

where
qi(n)¼ [g0(n, i), g1(n, i), g2(n, i), . . . , gM(n)�1(n, i)]

T is a vector of length M(n)
gi(n, j) denotes the jth coefficient of the ith synthesis filter

At time n, the mth synthesis filter is convolved with vector [wm(n),wm(n� 1), . . . ,wm[n�N(n)þ 1]]T

and all outputs are added together. Using Equation 37.4, the output of the filter bank at time n can be
written as

x̂(n) ¼
XN(n)�1

i¼0

qTi (n)w(n� i): (37:5)

If s(n) and ŵ(n) are defined as

s(n) ¼ qT0 (n), q
T
1 (n), q

T
2 , . . . , q

T
N(n)�1(n)

h iT
(37:6)

ŵ(n) ¼ [wT(n),wT(n� 1),wT(n� 2), . . . ,wT[n� N(n)þ 1]]T, (37:7)

then Equation 37.5 can be written in the form of one inner product:

x̂(n) ¼ sT(n)ŵ(n), (37:8)

where s(n) and ŵ(n) are vectors of length N(n)M(n). Using Equations 37.1, 37.3, 37.7, and 37.8, the
input=output function of the filter bank can be written as

x̂(n) ¼ sT(n)

L(n)P(n)xN(n)

L(n� 1)P(n� 1)xN (n� 1)

L(n� 2)P(n� 2)xN (n� 2)

..

.

L(n� N(n)þ 1)P(n� N(n)þ 1)xN (n� N(n)þ 1)

2
66666664

3
77777775
: (37:9)

As the last N(n)� 1 elements of vector xN(n� i) are identical to the first N(n)� 1 elements of vector
xN(n� i� 1), the latter equation can be expressed by
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x̂(n) ¼ sT(n)

[ L(n)P(n) ]O . . . . . . . . . . . . . . . ::O

O[ L(n� 1)P(n� 1) ]O . . . . . . . . . . . . . . . . . . :O

OO[ L(n� 2)P(n� 2) ]O . . . . . . . . . . . . . . . . . . . . . ::O

. .
.

O. . . . . . . . . . . . . . . . . . . . . . . .O{L[n� N(n)þ 1]P[n� N(n)þ 1]}

2
6666666664

3
7777777775

�

x(n)

x(n� 1)

x(n� 2)

..

.

x[n� 2N(n)þ 1]

2
6666666664

3
7777777775
, (37:10)

where O is the zero column vector with length M(n). Thus, the input=output function of a time-varying
filter bank can be expressed in the form of

x̂(n) ¼ zT(n)xI(n), (37:11)

where
xI(n)¼ [x(n), x(n� 1), . . . , x(n� Iþ 1)]T

I(n)¼ 2N(n)� 1
z(n) is the time-varying impulse response vector of the filter bank at time n:

z(n) ¼ A(n)s(n): (37:12)

The matrix A(n) is the [2N(n)� 1]3 [N(n)M(n)] matrix

A(n) ¼

P(n)T L(n)

� �
OT OT

OT

P(n� 1)T L(n� 1)

� �
..
.

OT OT . .
.

OT

..

. ..
.

P[n� N(n)þ 1]T L[n� N(n)þ 1]

� �
OT OT

2
666666666664

3
777777777775
:

(37:13)

For a perfect reconstruction filter bank with a delay of D, it is necessary and sufficient that all elements
but the (Dþ 1)th in z(n) be equal to zero at all times. The (Dþ 1)th entry of z(n) must be equal to one. If
the ideal impulse response is b(n), the filter bank is PR if and only if

A(n)s(n) ¼ b(n) for all n: (37:14)
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37.3 Direct Switching of Filter Banks

Changing from one arbitrary filter bank to another independently designed filter bank without using any
intermediate filters is called direct switching. Direct switching is the simplest switching scheme and does
not require additional steps in switching between two filter banks. But such switching will result in a
substantial amount of reconstruction distortion during the transition period. This is because during the
transition, none of the synthesis filters satisfies the exact reconstruction conditions. Figure 37.4 shows an
example of a direct switching filter bank. Figure 37.5 shows the time-varying impulse response of
the above system around the transition periods. In this figure, z(n, m) is the response of the system at
time n to the unit input at time m. For a PR system, z(n, m) has a height of 1 along the diagonal and 0
everywhere else in the (m, n)-plane. As is shown, the time-varying filter bank is PR before and after but
not during the transition periods. In this case, each switching operation generates a distortion with an
eight-sample duration. One way to reduce the distortion is to switch the synthesis filters with
an appropriate delay with respect to the analysis switching time. This delay may reduce the output
distortion, but it can not eliminate it.

37.4 Time-Varying Filter Bank Design Techniques

The basic time-varying filter bank design methods are summarized in Table 37.1. These techniques can
be divided into two major approaches which are briefly described in the following sections.

37.4.1 Approach I: Intermediate Analysis-Synthesis

In the first approach, both analysis and synthesis filters are allowed to change during the transition period
to maintain perfect reconstruction. We refer to this approach as the intermediate analysis-synthesis (IAS)
approach.

In [16], the authors have chosen to start with the lattice implementation of time-invariant two-band
filter banks, originally proposed by Vaidyanathan [25] for time-invariant case. Consider the lattice
structure shown in Figure 37.6. Figure 37.6a represents a lossless two-band analysis filter bank, consisting
of Jþ 1 lattice stages. The corresponding synthesis filter bank is shown in Figure 37.6b. As is shown,
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FIGURE 37.4 Block diagram of a time-varying analysis=synthesis filter bank that switches between a two- and
three-band decomposition.
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for each stage in the analysis filter bank, there exists a corresponding stage in the synthesis filter bank
with similar, but inverse functionality. As long as each two corresponding lattice stages in the analysis
and synthesis sections are PR, the overall system is PR. To switch one filter bank to another, the lattice
stages of the analysis section are changed from one set to another. If the corresponding lattice stages of
the synthesis section are also changed according to the changes of the analysis section, the PR property
will hold during transition. Due to the existence of delay elements, any change in the analysis section
must be followed with the corresponding change in the synthesis section, but with an appropriate delay.
For example, the parameter aj of the analysis and synthesis filter banks can be changed instantaneously.
But any change in parameter aj�1 in the analysis filter bank must be followed with the similar change in
the synthesis filter bank after one sample delay. Because of such delays, switching between two PR filter
banks can occur only by going through a transition period in which both analysis and synthesis filter
banks are changing in time.

In [12,26], the design of time-varying extended lapped transform (ELT) [27,28] was reported. The ELT
is a cosine-modulated filter bank with an additional constraint on the filter lengths. Here, the design
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Time-Varying Analysis-Synthesis Filter Banks 37-7



procedure is based on factorization of the time-domain transform matrix into permutation and rotation
matrices. As the ELT is paraunitary, the inverse transform can be obtained by reversing the order of the
matrix multiplication. Since any orthogonal transform is a succession of plane rotations, any changes in
these rotation angles result in changing the filter bank without losing the orthogonality property. The
authors derived a general frame work for M-band ELT transforms compared to the two-band case
approach in [16]. This method parallels the lattice technique [16] except with the mild modification of
imposing the additional ELT constraints. In [17], the authors presented yet another formulation for
designing time-varying filter banks. In this chapter, a different factorization of the paraunitary transform
has been shown which is not based on plane rotations unlike the ones in [12,26]. Using this factorization,
a paraunitary filter bank can be implemented in the form of some cascade structures. Again, to switch
one filter bank to another, the corresponding structures in the analysis and synthesis filter bank are
changed similarly but with an appropriate delay. If the orthogonality property in each cascade structure is
maintained, the time-varying filter bank remains PR. This formulation is very similar to the ones in
[12,16,26], but represent a more general form of factorization. In fact, all above procedures consider
similar frameworks of structures that inherently guarantee the exact reconstruction.

TABLE 37.1 Comparison of Time-Varying Filter Bank Different Designing Methods

Intermediate
Analysis

Changing
Frequency
Resolution

Filter Bank
Requirement

Computational
Complexity

Intermediate Arrowood Yes Indirect Lattice structures Low

analysis Smith

de Queiroz Yes Indirect ELT Low

Rao

Gopinath Yes Indirect Paraunitary Low

Burrus

Synthesis Herley et al. Yes Direct Paraunitary Low

IAS Chen Yes Direct Noncausal synthesis Low

Vaidyanathan

ITS LS synthesis No Direct General (not PR) Low

Redesigning analysis No Direct General High

Post filtering No Direct General Low
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FIGURE 37.6 The block diagram of a two-band paraunitary filter bank in lattice form: (a) analysis lattice and
(b) synthesis lattice.
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Herley et al. [13–15,29] introduced a time-domain method for designing time-varying paraunitary
filter banks. In this approach, the time-invariant analysis transforms do not overlap. As a simple example,
consider the case of switching between two paraunitary time-invariant filter banks. The analysis
transform around the transition period can be written as

T ¼
[ P1 ]

[ PT ]
[ P2 ]

2
4

3
5: (37:15)

The matrices P1 and P2 represent paraunitray transforms and therefore are unitary matrices. Their
nonzero columns also do not overlap with each other. The matrix PT represents the analysis filter bank
during the transition period. In order to find this filter bank, the matrix PT is initially replaced with a zero
matrix. Then, the null space of the transform T is found. Any matrix that spans this subspace can be a
candidate vector for PT. By choosing enough independent vectors of this null space and applying the
Gram–Schimidt procedure to them, an orthogonal transform can be selected for PT. This method has
also been applied to time-varying modulated lapped transforms [24] and two-dimensional time-varying
paraunitary filter banks [30].

The basic property of all above procedures is the use of intermediate analysis transforms in the
transition period. The characteristics of these analysis transforms are not easy to control and typically the
intermediate filters are not well behaved.

37.4.2 Approach II: Instantaneous Transform Switching

In the second approach, the analysis filters are switched instantaneously and time-varying synthesis filters
are used in the transition period. We refer to this approach as the instantaneous transform switching
(ITS) approach. In the ITS approach, the analysis filter bank may be switched to another set of analysis
filters arbitrarily. This means that the basis vectors and the tiling of the time-frequency plane can be
changed instantaneously. To achieve PR at each time in the transition period, a new synthesis section is
designed to ensure proper reconstruction.

In the least squares (LS) method [10], for any given set of analysis filters, an LS solution of Equation
37.14 can be used to obtain the ‘‘best’’ synthesis filters of the corresponding system (in L2 norm):

s(n)LS ¼ (A(n)TA(n))�1A(n)Tb(n): (37:16)

The advantage of the LS approach is that there is no limitation on the number of analysis filter banks that
can be used in the system. The disadvantage of the LS method is that it does not achieve PR. However,
experiments have shown that the reconstruction is significantly improved in this method compared to
direct switching [10].

In the LS solution, b(n) is projected onto the column space of A(n). For PR, the projection error should
be zero. Thus, to obtain time-varying PR filter banks, the reconstruction error, kA(n)s(n)� b(n)k2,
can be brought to zero with an optimization procedure. The optimization operates on the analysis filter
coefficients and modifies the range space of A(n) until b(n) 2 range[A(n)]. Although the s(n)’s at
different states are independent of each other, since the A(n)’s have some common elements, optimiza-
tion procedures should be applied to all analysis sections at the same time. This method is referred to as
‘‘redesigning analysis’’ [10].

The last ITS method, post filtering, uses conventional filter banks with time-varying coefficients
followed by a time-varying post filter. The post filter provides exact reconstruction during transition
periods, while it operates as a constant delay elsewhere. Assume at time n0 the time-varying filter bank is
switched from the first filter bank to the second. If the length of the transition period is L samples,
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the output of the filter bank in the interval [n0, n0þ L� 1] is distorted because of switching. The post
filter removes this distortion. The block diagram of such a system is shown in Figure 37.7. In this figure,
z(n) and y(n) are the analysis=synthesis filter bank and post filter impulse responses, respectively. If the
delays of the filter bank and the post filter are denoted D and Q, respectively, we can write

x̂(n) ¼ Distorted if n0 � n < n0 þ L
x(n� D) otherwise.

�
(37:17)

The desired output of the post filter is

~x(n) ¼ x(n�Q� D): (37:18)

The input=output relation of the time-varying filter bank during the transition period can be written as

x̂(n) ¼ zT(n)xI(n), (37:19)

where
xI(n) is the input vector at time n:

xI(n) ¼ [x(n), x(n� 1), x(n� 2), . . . , x(n� I þ 1)]T and

z(n) is a vector of length I and represents the time-varying impulse response of the filter bank at time n.
If the transition impulse response matrix is defined to be

Z ¼

[z(n0 þ L� 1)] O O
O [z(n0 þ L� 2)] O

O O . .
. ..

.

..

. ..
.

O
O O [z(n0)]

2
666664

3
777775, (37:20)

then the input=output relation of the filter bank in the transition period can be described as

x̂L(n0 þ L� 1) ¼ ZTxK (n0 þ L� 1) (37:21)

where Z is a K3 L matrix and K¼ Iþ L� 1. In Equation 37.21, the I�D� 1 samples before and D

samples after the transition period are used to evaluate the output. The above intervals are called the tail
and head of the transition period, respectively. Since the first and second filter banks are PR, the tail and
head samples are exactly reconstructed. We write xK(n0þ L� 1) as the concatenation of three vectors:

xK (n0 þ L� 1) ¼
xa
xt
xb

2
4

3
5, (37:22)

z(n)

Filter bank Post filter

x(n) x̂(n) x~(n)y(n)

FIGURE 37.7 The block diagram of time-varying filter bank and post filter.
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where xa and xb are the input signals in the head and tail regions while xt represents the input samples
which are distorted during the transition period. Using this notation, Equation 37.21 can be written as

x̂L(n0 þ L� 1) ¼ ZT
a xa þ ZT

t xt þ ZT
bxb, (37:23)

where

Z ¼
Za

Zt

Zb

2
4

3
5: (37:24)

By replacing vectors xb and xa with their corresponding output vectors x̂a and x̂b, xt of Equation 37.23 can
be written as

xt ¼ ZT
t

� 	�1
x̂t � ZT

a x̂a � ZT
b x̂b

� 	
¼ YTx̂K : (37:25)

Equation 37.25 describes the post filter input=output relationship during the transition region. In this
equation, Y is the time-varying post filter impulse response which is defined as

Y ¼
�ZaZ�1

t
Z�1
t

�ZbZ�1
t

2
4

3
5: (37:26)

From Equation 37.25, it is obvious that the condition for causal post filtering is

Q � Lþ D� 1: (37:27)

The post filter exists if Zt has an inverse. It can be shown that the transition response matrix Zt, can be
described by a matrix, product of the form

Zt ¼ CLS, (37:28)

where
CL is the analysis transform applied to those input samples that are distorted during the transition

period
S contains the synthesis filters during the transition period

In order for Zt to be invertible, it is necessary (but not sufficient) thatCL and S be full rank matrices. The
analysis sections are defined by the required properties of the first and second filter banks andCL is fixed.
Therefore, a filter bank is switchable to another filter bank if the corresponding CL is a full rank matrix.
In this case, by proper design of the synthesis section, both S and Zt will be full rank. Two methods to
obtain proper synthesis filters are shown in [20,22].

37.5 Conclusion

In this chapter, we briefly review some analysis and design methods of time-varying filter banks. Time-
varying filter banks can provide a more flexible and accurate approach in which the basis functions of the
time-frequency transform are allowed to adapt to the signal properties.
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A simple formof time-varyingfilter bank is achieved by changing the filters of an analysis-synthesis system
among a number of choices. Even if all the analysis and synthesis filters are PR sets, exact reconstruction will
not normally be achieved during the transition periods. To eliminate all distortion during a transition period,
new time-varying analysis and=or synthesis sections are required for the transition periods.

Two different approaches for the design were discussed here. In the first approach, both analysis and
synthesis filters are allowed to change during the transition period to maintain PR and so it is called the
intermediate analysis-synthesis approach. In the second approach, the analysis filters are switched
instantaneously and time-varying synthesis filters are used in the transition period. This approach is
known as the instantaneous transform switching approach.

In the IAS approach, both analysis and synthesis filters can change during the transitions rather than
only the synthesis filters in ITS approach. That implies that maintaining PR conditions is easier in the
IAS approach. Note that the analysis filters in the transition periods are designed only to satisfy PR
conditions and they do not usually meet the desired time and frequency characteristics.

In the ITS approach, only synthesis filters are allowed to be time-varying in the transition periods.
These methods have the advantage of providing instantaneous switching between the analysis transforms
compared to IAS methods. But they have different drawbacks: the LS method does not satisfy PR
conditions at all times, the redesigning analysis method requires jointly optimization of the time-
invariant analysis section, and finally the post filtering method has the drawback of additional compu-
tational complexity required for post filtering.

The analysis and design methods of the time-varying filter bank have been developed to design adaptive
time-frequency transforms. These adaptive transforms have many potential applications in areas such as
TFR, subband image and video coding, and speech and audio coding. But since the developments of the
time-varying filter bank theory is very new, its applications have not been investigated yet.
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38.1 Introduction

The idea of a lapped transform (LT) maintaining orthogonality and non-expansion of the samples was
developed in the early 1980s at MIT by a group of researchers unhappy with the blocking artifacts so
common in traditional block transform coding of images. The idea was to extend the basis function
beyond the block boundaries, creating an overlap, in order to eliminate the blocking effect. This idea was
not new, but the new ingredient to overlapping blocks would be the fact that the number of transform
coefficients would be the same as if there was no overlap, and that the transform would maintain
orthogonality. Cassereau [1] introduced the lapped orthogonal transform (LOT), and Malvarn [5,6,13]
gave the LOT its design strategy and a fast algorithm. The equivalence between an LOT and a multirate
filter bank was later pointed out by Malvar [7]. Based on cosine modulated filter banks [15], modulated
lapped transforms (MLTs) were designed [8,25]. Modulated transforms were generalized for an arbitrary
overlap later creating the class of extended lapped transforms (ELTs) [9–12]. Recently a new class of LTs
with symmetric bases was developed yielding the class of generalized LOTs (GenLOTs) [16,20,21]. As we
mentioned, filter banks and LTs are the same, although studied independently in the past. We, however,
refer to LTs for paraunitary uniform FIR filter banks with fast implementation algorithms based on
special factorizations of the basis functions.

We assume a one-dimensional input sequence x(n) which is transformed into several coefficients yi(n),
where yi(n) would belong to the ith subband.We alsowill use the discrete cosine transform [24] and another
cosine transform variation, which we abbreviate as DCT and DCT-IV (DCT type 4), respectively [24].

38.2 Orthogonal Block Transforms

In traditional block-transform processing, such as in image and audio coding, the signal is divided into
blocks ofM samples, and each block is processed independently [2,3,11,14,22–24]. Let the samples in the
mth block be denoted as

xTm ¼ [x0(m), x1(m), . . . , xM�1(m)], (38:1)
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for xk(m)¼ x(mMþ k) and let the corresponding transform vector be

yTm ¼ [y0(m), y1(m), . . . , yM�1(m)]: (38:2)

For a real unitary transform A, AT¼A� 1. The forward and inverse transforms for the mth block are

ym ¼ Axm, (38:3)

and

xm ¼ ATym: (38:4)

The rows of A, denoted aTn (0 � n � M� 1), are called the basis vectors because they form an orthogonal
basis for the M-tuples over the real field [23]. The transform vector coefficients [y0(m), y1(m), . . . ,
yM�1(m)] represent the corresponding weights of vector xm with respect to this basis.
If the input signal is represented by vector x while the subbands are grouped into blocks in vector y,

we can represent the transform T which operates over the entire signal as a block diagonal matrix:

T ¼ diag{ . . . ,A,A,A, . . . }, (38:5)

where, of course, T is an orthogonal matrix.

38.2.1 Orthogonal Lapped Transforms

For LTs [11], the basis vectors can have length L, such that L>M, extending across traditional block
boundaries. Thus, the transform matrix is no longer square and most of the equations valid for
block transforms do not apply to an LT. We will concentrate our efforts on orthogonal LTs [11] and
consider L¼NM, where N is the overlap factor. Note that N, M, and hence L are all integers. As in the
case of block transforms, we define the transform matrix as containing the orthonormal basis vectors
as its rows. An LT matrix P of dimensions M3 L can be divided into square M3M submatrices
Pi (i¼ 0, 1, . . . ,N� 1) as

P ¼ [P0 P1 � � �PN�1]: (38:6)

The orthogonality property does not hold because P is no longer a square matrix and it is replaced by
other properties which we will discuss later.

If we divide the signal into blocks, each of size M, we would have vectors xm and ym such as in
Equations 38.1 and 38.2. These blocks are not used by LTs in a straightforward manner. The actual vector
which is transformed by the matrix P has to have L samples and, at block number m, it is composed of
the samples of xm plus L�M samples. These samples are chosen by picking (L�M)=2 samples at
each side of the block xm, as shown in Figure 38.1, for N¼ 2. However, the number of transform

2M

2M 2M

2M

MMMMM M M M

FIGURE 38.1 The signal samples are divided into blocks of M samples. The LT uses neighboring block samples,
as in this example for N¼ 2, i.e., L¼ 2M, yielding an overlap of (L�M)=2¼M=2 samples on either side of a block.
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coefficients at each step is M, and, in this respect, there is no change in the way we represent the
transform-domain blocks ym.

The input vector of length L is denoted as vm, which is centered around the block xm, and is defined as

vTm ¼ x mM � (N � 1)
M
2

� �
� � � x mM þ (N þ 1)

M
2
� 1

� �� �
: (38:7)

Then, we have

ym ¼ Pvm: (38:8)

The inverse transform is not direct as in the case of block transforms, i.e., with the knowledge of ym we do
not know the samples in the support region of vm, and neither in the support region of xm. We can
reconstruct a vector v̂m from ym, as

v̂m ¼ PTym, (38:9)

where v̂m 6¼ vm. To reconstruct the original sequence, it is necessary to accumulate the results of the vectors
v̂m, in a sense that a particular sample x(n) will be reconstructed from the sum of the contributions it
receives from all v̂m, such that x(n) was included in the region of support of the corresponding vm. This
additional complication comes from the fact that P is not a square matrix [11]. However, the whole
analysis-synthesis system (applied to the entire input vector) is orthogonal, assuring the PR property using
Equation 38.9.

We can also describe the process using a sliding rectangular window applied over the samples of x(n).
As an M-sample, block ym is computed using vm, ymþ1 is computed from vmþ1 which is obtained by
shifting the window to the right by M samples, as shown in Figure 38.2.

As the reader may have noticed, the region of support of all vectors vm is greater than the region of
support of the input vector. Hence, a special treatment has to be given to the transform at the borders.
We will discuss this fact later and assume infinite-length signals until then, or assume the length is very
large and the borders of the signal are far enough from the region to which we are focusing our
attention.

M samples x(n)

y(n)

x̂(n)v̂m+1
v̂m

vm

ym ym+1

vm+1

FIGURE 38.2 Illustration of an LT with N¼ 2 applied to signal x(n), yielding transform domain signal y(n). The
input L-tuple as vector vm is obtained by a sliding window advancing M samples, generating ym. This sliding is also
valid for the synthesis side.
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If we denote by x the input vector and by y the transform-domain vector, we can be consistent
with our notation of transform matrices by defining a matrix T such that y¼Tx and x̂¼TTy. In this
case, we have

T ¼

. .
.

P
P

P
. .
.

2
6666664

3
7777775
, (38:10)

where the displacement of the matrices P obeys the following:

T ¼
. .
. . .

. . .
.

P0 P1 � � � PN�1

P0 P1 � � � PN�1

. .
. . .

. . .
.

2
66664

3
77775: (38:11)

T has as many block-rows as transform operations over each vector vm.
Let the rows of P be denoted by 13 L vectors pTi (0 � i � M � 1), so that PT¼ [p0, . . . , pM�1]. In an

analogy to the block transform case, we have

yi(m) ¼ pTi vm: (38:12)

The vectors pi are the basis vectors of the LT. They form an orthogonal basis for an M-dimensional
subspace (there are only M vectors) of the L-tuples over the real field.

Assuming that the entire input and output signals are represented by the vectors x and y, respectively,
and that the signals have infinite length, then, from Equation 38.10, we have

y ¼ Tx (38:13)

and, if T is orthogonal,

x ¼ TTy: (38:14)

The conditions for orthogonality of the LT are expressed as the orthogonality of T. Therefore, the
following equations are equivalent in a sense that they state the PR property along with the orthogonality
of the LT:

XN�1�l

i¼0

PiP
T
iþl ¼

XN�1�l

i¼0

PT
i Piþl ¼ d(l)IM (38:15)

TTT ¼ TTT ¼ I1: (38:16)

It is worthwhile to reaffirm that orthogonal LTs are a uniform maximally decimated FIR filter bank.
Assume the filters in such a filter bank have L-tap impulse responses fi(n) and gi(n) (0� i�M� 1,
0� n� L� 1), for the analysis and synthesis filters, respectively. If the filters originally have a length
smaller than L, one can pad the impulse response with 0s until L¼NM. In other words, we force the basis
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vectors to have a common length which is an integer multiple of the block size. Assume the entries of P
are denoted by {pij}. One can translate the notation from LTs to filter banks by using

pkn ¼ fk(L� 1� n) ¼ gk(n): (38:17)

38.3 Useful Transforms

38.3.1 Extended Lapped Transform

Cosine modulated filter banks are filter banks based on a low-pass prototype filter modulating a cosine
sequence. By a proper choice of the phase of the cosine sequence, Malvar developed the MLT [8], which
led to the so-called ELT [9–12]. The ELT allows several overlapping factors N, generating a family of LTs
with good filter frequency response and fast implementation algorithm.

In the ELTs, the filter length L is basically an even multiple of the block sizeM, as L¼NM¼ 2kM. The
MLT-ELT class is defined by

pk, n ¼ h(n)cos kþ 1
2

� �
n� L� 1

2

� �
p

M
þ (N þ 1)

p

2

� �� �
(38:18)

for k¼ 0, 1, . . . ,M� 1 and n¼ 0, 1, . . . , L� 1. h(n) is a symmetric window modulating the cosine
sequence and the impulse response of a low-pass prototype (with cutoff frequency at p=2M) which is
translated in frequency to M different frequency slots in order to construct the uniform filter bank. The
ELTs have as their major plus a fast implementation algorithm, which is depicted in Figure 38.3 in an
example forM¼ 8. The free parameters in the design of an ELT are the coefficients of the prototype filter.
Such degrees of freedom are translated in the fast algorithm as rotation angles.

For the case N¼ 4 there is a useful parameterized design [10–12]. In this design, we have

uk0 ¼ �p

2
þ mM=2þk (38:19)

uk1 ¼ �p

2
þ mM=2�1�k, (38:20)

where

mi ¼
1� g

2M

� �
(2kþ 1)þ g

� �
(38:21)

and g is a control parameter, for 0� k� (M=2)� 1. g controls the trade-off between the attenuation and
transition region of the prototype filter. For N¼ 4, the relation between angles and h(n) is

h(k) ¼ cos(uk0)cos(uk1) (38:22)

h(M � 1� k) ¼ cos(uk0)sin(uk1) (38:23)

h(M þ k) ¼ sin(uk0)cos(uk1) (38:24)

h(2M � 1� k) ¼ �sin(uk0)sin(uk1) (38:25)

for k¼ 0, 1, . . . ,M=2� 1. See [11] for optimized angles for ELTs. Further details on ELTs can be found in
[9–12,16].
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38.3.2 Generalized Linear-Phase Lapped Orthogonal Transform

The generalized linear-phase lapped orthogonal transform (GenLOT) is also a useful family of LTs
possessing symmetric bases (linear-phase filters). The use of linear-phase filters is a popular requirement
in image processing applications. Let

W ¼ 1ffiffiffi
2

p IM=2 IM=2

IM=2 �IM=2

� �
and Ci ¼ Ui 0M=2

0M=2 Vi

� �
, (38:26)

where Ui and Vi can be anyM=23M=2 orthogonal matrices. Let the transform matrix P for the GenLOT
be constructed interactively. LetP(i) be the partial reconstruction ofP after including up to the ith stage.We
start by setting P(0)¼E0 where E0 is an orthogonal matrix with symmetric rows. The recursion is given by

P(i) ¼ CiWZ WP(i�1) 0M
0M WP(i�1)

� �
, (38:27)
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FIGURE 38.3 Implementation flow graph for the ELT with M¼ 8.
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where

Z ¼ 0M=2 0M=2 IM=2 0M=2

0M=2 IM=2 0M=2 0M=2

� �
: (38:28)

At the final stage we set P¼P(N�1). E0 is usually the DCT while the other factors (Ui and Vi) are found
through optimization routines. More details on GenLOTs and their design can be found in [16,20,21].
The implementation flow-graph of a GenLOT with M¼ 8 is shown in Figure 38.4.

38.4 Remarks

We hope this chapter is helpful in understanding the basic concepts of LTs. Filter banks are covered in
other parts of this book. An excellent book by Vaidyanathan [28] has a thorough coverage of such
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subject. The interrelations of filter banks and LTs are well covered by Malvar [11] and Queiroz [16]. For
image processing and coding, it is necessary to process finite-length signals. As we discussed, such an
issue is not so straightforward in a general case. Algorithms to implement LTs over finite-length signals
are discussed in [11,13,16–19]. These algorithms can be general or specific. The specific algorithms are
generally targeted to a particular LT invariantly seeking a very fast implementation. In general, Malvar’s
book [11] is an excellent reference for LTs and their related topics.
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Index

A

Acoustic echo cancellation, 18-7 to 18-8
Adaptive algorithm recapitulation

block-iterative NLMS (BINLMS) algorithm,
31-6 to 31-7

normalized least mean squares (NLMS)
algorithm, 31-6

recursive least squares (RLS) algorithm, 31-7
Adaptive fault tolerance, 1-27 to 1-28
Adaptive filters

adaptation process, 18-2
adaptive FIR algorithm, 18-11
definition, 18-1
error signal, 18-2
feedforward control, 18-10 to 18-11
finite-precision effects, 18-15 to 18-16
inverse modeling, 18-8 to 18-9
least-mean-square (LMS) algorithm, 18-14
linear prediction, 18-9 to 18-10
mean-squared error cost function, 18-12
robustness

a priori estimation error, 20-5
autoregressive model, 20-3
deterministic convergence analysis,

20-14 to 20-15
dist and error vectors, 20-5 to 20-6
energy bounds and passivity relations,

20-7 to 20-8
energy propagation, feedback cascade, 20-14
error and energy measures, 20-4
error quantities, 20-4
filtered-error gradient algorithms, 20-15 to 20-19
finite-impulse-response (FIR) filter, 20-2
independence assumption, 20-3
input to output map, 20-4 to 20-5
LMS vs. RLS algorithm, 20-9 to 20-10
l2–stability and small gain condition,

20-12 to 20-14
maximum singular value, 20-6
min–max optimality, gradient algorithm,

20-8 to 20-9
recursive estimator, 20-2, 20-4

structure, 20-2 to 20-3
system identification, 20-1 to 20-2
time-domain analysis, 20-10 to 20-11
weight vector, 20-3 to 20-4

steepest descent method, 18-13
stochastic gradient algorithms, 18-15
structures

direct-form FIR filter, 18-3
direct-form IIR filter, 18-4
input–output relationship, 18-3
lattice filter, 18-4 to 18-5
parameter=coefficient vector, 18-3
Volterra and bilinear filter, 18-5

system identification
adaptive noise cancellation, 18-8
analog-to-digital (A=D) converter, 18-16
black box, 18-6
channel identification, 18-6 to 18-7
coefficients, 18-17
convergence, error signal, 18-16 to 18-17
echo cancellation, 18-7 to 18-8
Gaussian-distributed signal, 18-16
loudspeaker identification, 18-16 to 18-17
observation noise signal, 18-6
plant identification, 18-7

tracking, 18-5
Wiener solution, 18-12 to 18-13

Adaptive FIR filters, 19-13
Adaptive IIR filters, 19-13
Adaptive infinite impulse response filters

algorithms and performance issues, 23-4
alternate parametrizations, 23-19 to 23-20
equation error approach

instrumental variable algorithms,
23-7 to 23-9

LMS and LS equation error algorithms,
23-5 to 23-7

unit norm constraints, 23-9 to 23-10
output error approach

gradient-descent algorithm,
23-11 to 23-14

stability theory, 23-14 to 23-16
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preliminaries, 23-4 to 23-5
Steiglitz–McBride (SM) algorithm

GN-style version, 23-17
Hankel singular value, 23-18
LS criterion, 23-16
noise term effect, 23-18
off-line system identification method, 23-16
regressor vector, 23-17

system identification framework
mean-square output error, 23-3
sufficient order and undermodeled case, 23-4
two error signals, 23-2 to 23-3

Adaptive line enhancement, 18-10
Adaptive noise cancellation, 18-8
Adder overflow limit cycle, 3-1; see also Overflow

oscillations
Advanced detection technology sensor (ADTS)

system, 33-5
Affine transform

cepstral coefficients
degraded cepstrum, 27-13
impulse response, 27-14
predictor coefficients, 27-13
speech signal cepstrum, 27-12

definition, 27-8
parameters

least squares solution, 27-15
three cases, 27-16 to 27-17

singular value decomposition (SVD), 27-8
Agarwal–Cooley algorithm, 8-12
Akaike information criterion (AIC), 16-8
All-pole filter, 11-35
Almost periodically time-varying (APTV)

filter, 17-23 to 17-24
identification and equalization, 17-19
input–output relation, 17-18 to 17-19
LTI system, 17-18
multichannel model, 17-19
parametric modeling, 17-28

Alpha-stable characteristic exponent, 16-12
Amplitude modulation, 17-14 to 17-15
Analog-to-digital (A=D) converter, 18-16

3-bit flash A=D converter, 5-6 to 5-7
8-bit successive approximation A=D converter, 5-7
cyclic A=D converter, 5-8 to 5-9
ideal transfer characteristics, 5-2 to 5-3
nonideal behavior, 5-3 to 5-5
pipelined A=D converter, 5-7 to 5-8

Applebaum algorithm, 30-13 to 30-14
Array processing, 17-22 to 17-23
Autocorrelation matrix

Pisarenko harmonic decomposition (PHD)
method, 14-20

spherically invariant random process,
19-4 to 19-5

Autoregressive moving average (ARMA) models,
14-18 to 14-19

B

Backward residual vector, 21-31 to 21-32
Bartlett method, 14-10
Bayesian estimation, see Maximum a posteriori (MAP)

estimation
Bayesian spectrum estimation,

14-22 to 14-23
Bilinear filter, 18-5
Blackman–Tukey method, 14-11 to 14-12
Blind adaptive equalization

adaptive algorithms and notations
adaptive equalizer coefficients, 24-7
stochastic gradient descent (SGD)

approach, 24-6
basic facts, 24-5 to 24-6
common analysis approach, 24-13
decision-directed adaptive channel equalizer,

24-4 to 24-5
errorless decision output, 24-12
globally convergent equalizers

fractionally spaced equalizer (FSE),
24-15 to 24-17

linearly constrained equalizer, convex cost,
24-14 to 24-15

initialization issues, 24-14
local convergence, 24-13 to 24-14
mean cost functions and associated algorithms

constant modulus=Godard algorithms,
24-9 to 24-10

pulse-amplitude modulation (PAM), 24-7
Sato algorithm, 24-8 to 24-9
Shalvi–Weinstein algorithm, 24-10 to 24-11
stochastic gradient descent minimization

algorithm, 24-8
stop-and-go algorithms, 24-10

QAM data communication systems
input=output relationship, 24-2
intersymbol interference (ISI), 24-3
minimum mean square error (MMSE), 24-4
simple system diagram, 24-2
zero-forcing (ZF) criterion, 24-4
z-transform notation, 24-3

Blind channel equalization, 17-26 to 17-27
Block convolution

FIR filter, 8-5 to 8-6
IIR filter

block recursive equation, 8-7
characteristics, 8-7 to 8-8
constant coefficient difference equation, 8-6
impulse response, 8-6 to 8-7
scalar difference equation, 8-7

Block diagonal matrix, 38-2
Block filtering algorithms

overlap-add processing algorithm,
1-23 to 1-24

overlap-save partitioning algorithm, 1-23
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Block-iterative NLMS (BINLMS) algorithm,
31-6 to 31-7

Block recursion, 8-6 to 8-8
Block Toeplitz matrix, 35-4

C

Calderon–Zygmund integral operators, 10-5 to 10-6
Channel equalization, 18-9

discrete-time adaptive filter
adaptive algorithms, regularization properties,

31-7 to 31-9
block-iterative NLMS (BINLMS) algorithm,

31-6 to 31-7
normalized least mean squares (NLMS)

algorithm, 31-6
recursive least squares (RLS) algorithm, 31-7

discrete-time intersymbol interference channel
model

bandpass transmitted pulse train, 31-2
signal flow block diagram, 31-2
white Gaussian noise, 31-2

matrix formulation, 31-3
regularization

generalized pseudo-inverse, 31-5
least squares solution, 31-4
Moore–Penrose (M–P) inverse method,

31-4 to 31-5
noise amplification, 31-6
singular value decomposition (SVD), 31-4

Channel estimation, 17-21 to 17-22
Characteristic polynomial, 2-5 to 2-6, 2-18
Chinese remainder theorem (CRT), 7-4, 7-19,

7-22 to 7-23
Cholesky factor, 21-17
Clique function, 29-4
Coefficient error correlation matrix

evolution equation, 19-10
SIRP and I.I.D. input signal analysis,

19-11
zeroth-order approximation near convergence,

19-12
Coefficient quantization error

alternate realization structure, 3-17 to 3-18
definition, 3-15
realizable pole locations, 3-16 to 3-17

Coherent noise, see Speckle noise
Complete data representation

CD_Dx,v algorithm, 29-16
CD_uv algorithm, 29-15 to 29-16
CD_uy algorithm, 29-14 to 29-15

Complexity theory
bilinear algorithm, 9-2
convolution algebras, 9-3, 9-5
direct sum theorem, 9-3
fundamental theorem, 9-6
matrix representation, 9-4

multidimensional DFTs, 9-7 to 9-8
nesting, 9-2
nonquadratic minimal algorithm, 9-5
nonstandard models and problems, 9-8 to 9-9
one-dimensional DFTs, 9-6 to 9-7
polynomial algebras, 9-2 to 9-3
product computation, 9-1
Strassen’s algorithm, 9-2

Computed tomography (CT)
algebraic reconstruction techniques

free parameters, 26-7
I-dimensional vector, 26-6 to 26-7
specific optimization criterion and associated

algorithm, 26-6
algorithms, performance comparison, 26-8 to 26-9
expectation maximization, 26-7 to 26-8
filtered backprojection, 26-2 to 26-3
linogram method

chirp z-transforming, 26-5
fast Fourier transform (FFT), 26-4
projection theorem, 26-3

Radon transform, 26-2
reconstruction problem, 26-1 to 26-2
series expansion methods, 26-5 to 26-6

Constant false alarm rate (CFAR) detector,
33-12 to 33-13

Constraints
definition, 34-10
projecting onto convex sets (POCS) method, 34-11

Continuous space-time Fourier transform (CSFT)
basic properties, 4-6
definition, 4-5
lattice combs, 4-6 to 4-7

Continuous time periodic signals
Fourier series representation

convergence of Fourier series, 1-10 to 1-11
exponential Fourier series, 1-7 to 1-8
Fourier transform of, 1-11
trigonometric Fourier series, 1-8 to 1-9

Fourier transform
discrete-time signals, 1-5 to 1-6
Fourier spectrum, 1-6
generalized complex, 1-6 to 1-7
properties, 1-2 to 1-4

Continuous-time random process, 14-2
Convergence

basic iteration, 34-9 to 34-10
iteration with reblurring, 34-10

Cooley–Tukey (CT) mapping
decimated initial sequence, 7-9
2-D length-15 CTFFT, 7-11
vs. Good’s mapping, 7-11 to 7-12
index mappings, 7-11
modulo N2, 7-10

Cooley–Tukey fast Fourier transform (CTFFT),
7-3 to 7-4, 7-11

Cosine-modulated filter bank, 37-7
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Cost function, 28-7 to 28-8
Cramér–Rao inequality, 12-25, 15-5
Cyclic A=D converter, 5-8 to 5-9
Cyclic convolution

DFT computation, 7-20 to 7-21
multidimensional mapping

auxiliary polynomial, 7-23
CRT computation, 7-22 to 7-23
cyclotomic polynomials, 7-22
linear complexity, 7-25
matrix-vector product, 7-24 to 7-25
prime polynomials, 7-21

number theoretic transforms (NTTs), 8-19
short- and medium-length convolutions, 8-9 to 8-10

Cyclostationary signal analysis
adaptive algorithm, 17-1
amplitude modulation, 17-14 to 17-15
application

array processing, 17-22 to 17-23
blind channel equalization, 17-26 to 17-27
cyclic correlations and spectrum, 17-19 to 17-21
cyclic Wiener filtering, 17-23 to 17-25
diversity, channel estimation, 17-21 to 17-22
parametric APTV modeling, 17-28
time-delay estimation, 17-25 to 17-26

cyclic statistical estimation, 17-10 to 17-11
definitions

cyclic correlation, 17-2
generalized Fourier series pair, 17-3
multiplicative and additive noise,

17-3 to 17-4
period, 17-2

fractional sampling and multivariate=multirate
processing, 17-16 to 17-17

nonstationary process, 17-1 to 17-2
periodically varying systems, 17-18 to 17-19
periodicity, 17-2
properties

finite sums and products, 17-4 to 17-5
nonstationary (harmonizable) process,

17-7 to 17-8
N-point Fourier transform, 17-5 to 17-6
stationary process, 17-5 to 17-7

representations
decimated components, 17-8 to 17-9
subband components, 17-9

testing, 17-12 to 17-14
time-frequency links, 17-9 to 17-12
time index modulation, 17-15 to 17-16
time-varying systems, 17-1

D

De Casteljau algorithm, 11-39
Decimation in frequency (DIF) algorithms,

7-4, 7-12 to 7-16
Decimation in time (DIT) algorithm, 7-4, 7-12 to 7-15

Decision-directed adaptive channel equalizer,
24-4 to 24-5

Degenerated Bessel function, 19-5
Delta–sigma A=D converter

first-order delta–sigma converter, 5-13 to 5-14
oversampled and nonoversampled, 5-9 to 5-10
principle, 5-10 to 5-13
second-order delta–sigma converter, 5-14

Desired response signal, 19-3, 19-15
DFDP-4=plus software, 11-77 to 11-81
Difference equations

causality conditions, 2-15
classical solutions

auxiliary conditions, 2-21
complementary solution, 2-17 to 2-18
constant and sinusoidal input, 2-22
exponential input, 2-21
initial conditions and iterative solution, 2-15
particular solution, 2-19
repeated roots, 2-19

convolution method
assessment of, 2-25
superposition property, 2-23

operational notation, 2-16 to 2-17
Differential equations

auxiliary conditions, 2-2 to 2-3
classical solutions

complementary solutions, 2-4 to 2-5
complex exponential input, 2-9
constant input, 2-9
exponential input signal, 2-8 to 2-9
repeated roots, 2-5 to 2-6
sinusoidal input, 2-10
undetermined coefficients method, 2-6

convolution method
assessment of, 2-14
superposition property, 2-12

definition, 2-1
Digital filter design

affine filter structure
Chebyshev norm, 11-41
IFIR filter, 11-42
least squares error, 11-41
prefilter, 11-41 to 11-42
transfer function, 11-40

allpass (phase-only) IIR filter design, 11-70 to 11-71
analog filtering, 11-4 to 11-5
bilinear transformation method, 11-31 to 11-32
combining criteria

bandpass filters, 11-66 to 11-67
constrained least square, 11-67
flat passband, Chebyshev stopband,

11-65 to 11-66
lowpass filter, bound-constrained least

squares, 11-68
moment preserving maximal noise reduction,

11-64 to 11-65
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polynomial smoothing, 11-63 to 11-64
problem formulation, 11-67 to 11-68
quadratic programming approach, 11-69
Savitzky–Golay filters, 11-62 to 11-63
symmetric FIR filter, flat passband, 11-65

delay variation
continuously tuning vo and G(0),

11-61 to 11-62
cutoff frequency, 11-59
linear-phase, 11-55
magnitude responses and group delays,

11-59, 11-61
nonlinear-phase maximally flat filters,

11-59 to 11-60
problem formulation, 11-58 to 11-59
reduction, 11-62

design specifications
conjugate-symmetric frequency response,

11-2
frequency-selective filters, 11-3
lowpass filter, 11-3 to 11-4
phase response, 11-4
sharp cutoff edges, 11-3

equiripple optimal Chebyshev filter design
alternation theorem, 11-23 to 11-26
linear phase filter, 11-29 to 11-30
linear programming, 11-30
lowpass filters, 11-27 to 11-29
problem formulation, 11-23
Remez exchange algorithm, 11-23,

11-26 to 11-27
error measure, 11-5 to 11-6
filter implementation

arbitrary magnitude IIR filter, 11-77, 11-81
code generation, 11-79, 11-81
eighth-order IIR bandpass elliptic filter,

11-77, 11-79 to 11-80
fixed-point scaling, 11-82
length-57 FIR filter, 11-77 to 11-78
second-order section cascade, 11-82
time and size optimization, 11-81

filter type and order selection
FIR characteristics, 11-6 to 11-7
IIR characteristics, 11-7 to 11-8

generalization, 11-37
graphical user interface (GUI)

automatic order estimation, 11-76 to 11-77
bandedges and ripples, 11-75
control types, 11-73
eight-pole elliptic bandpass filter, 11-77
frequency scaling, 11-76
graphical manipulation, specification template,

11-75
MATLAB software, 11-73 to 11-74
pop-up menu, 11-73 to 11-74
six-pole elliptic bandpass filter, 11-77 to 11-78

linear-phase filter types, 11-12

magnitude and phase approximation,
11-71 to 11-72

magnitude response, 11-37 to 11-38
maximally flat real symmetric FIR filters

amplitude response, 11-38 to 11-39
half-magnitude frequency, 11-39 to 11-40
2K zeros, 11-39
monotone response, 11-38
passband and stopband transition, 11-39

minimum-phase FIR filters, 11-55 to 11-57
model order reduction (MOR) techniques,

11-72
nonsymmetric=nonlinear phase FIR filter design,

11-42
numerical methods, magnitude only approximation,

11-70
optimal design

algorithm, 11-44 to 11-47
descent steps, 11-47 to 11-50
low delay filters, 11-51 to 11-52
problem formulation, 11-43 to 11-44
real-valued=exactly linear-phase filters, 11-52
seismic migration filters, 11-52 to 11-55
simplex method, descent, 11-50 to 11-51

optimal square error design
discrete squares error, 11-20 to 11-21
impulse response coefficients, 11-19
Lagrange multipliers, 11-20
least squares approaches, 11-22
symmetric odd-length filters, 11-19
transition regions, 11-21 to 11-22
weighted integral square error, 11-19

poles and zeros, 11-36 to 11-37
procedure selection, 11-8 to 11-9
realization

DTFT, 11-9
FIR filters, 11-10
IIR filters, 11-10 to 11-11
linear shift-invariant (LSI), 11-9
quantization, finite wordlength effect, 11-11

time-domain approximation, 11-72
types of filter

analog prototypes, 11-35
Butterworth filter, 11-32, 11-34
elliptic filter, 11-35
maximally flat delay IIR filter, 11-35 to 11-36
Type I and Type II Chebyshev filter,

11-34 to 11-35
window method

design steps, 11-13 to 11-14
discrete prolate spheroidal (DPS) sequence,

11-16 to 11-17
Dolph–Chebyshev window, 11-17 to 11-18
eigenvalue problem, 11-16 to 11-17
Fourier series, sinc function samples, 11-14
generalized cosine and Bartlett (triangular)

windows, 11-16
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Gibbs phenomenon, 11-14
ideal lowpass filter, 11-14 to 11-15
Kaiser’s window, 11-17 to 11-18
sinc function truncation, 11-14, 11-16

Digital signal processing (DSP), inverse problems,
28-1 to 28-2

Digital-to-analog (D=A) converter
architecture, 5-5 to 5-6
ideal transfer characteristics, 5-2 to 5-3
nonideal behavior, 5-3 to 5-5

Digital Wiener filtering, 15-14 to 15-15
Diophantine inverse filtering method,

32-14 to 32-15
Direct blind equalization, 17-27
Direct-form FIR filter, 18-3
Direct-form IIR filter, 18-4
Direct sum theorem, 9-3
Discrete cosine transform (DCT), 7-35 to 7-36
Discrete Fourier transform (DFT)

algorithms, real data, 7-33 to 7-34
computation as convolution, 7-20 to 7-21
definitions, 4-10
fast Fourier transform (FFT) algorithms,

1-16 to 1-18
Gaussianity tests, 16-4
multidimensional, 9-7 to 9-8
multidimensional DFTs, 7-6
one-dimensional, 9-6 to 9-7
properties of, 1-15 to 1-16
pruning, 7-35
spectral analysis, 1-20 to 1-21

Discrete Hartley transform (DHT), 7-35
Discrete random signals

random signals and sequences
autocorrelation function, 12-4 to 12-5
complex random signals, 12-6
definition, 12-1
ergodic process, 12-5
first- and second-order moments, 12-4
joint density function, 12-3
periodicity and cyclostationarity, 12-3
periodic random process, 12-3 to 12-4
predictable random process, 12-2
random=stochastic process, 12-1

stationary random signals
frequency and transform domain

characterization, 12-9 to 12-13
moments and cumulants, 12-6 to 12-9

Discrete space-time Fourier transform (DSFT), 4-7
Discrete-time Fourier transform (DTFT), 14-3,

14-5 to 14-6
CT and DT spectra, 1-14 to 1-15
CT Fourier transform, 1-13
DTFT pairs, 1-12
properties of, 1-13 to 1-14

Discrete-time Lyapunov equation, 15-10
Discrete-time random process, 14-2

Discrete-time unit impulse function
definition, 2-23

Discrete-time Wiener–Hopf equations, 15-15
Discrete-time zero-mean white noise sequence,

15-17
Distortion measure, properties of, 6-3
Divide-and-conquer approach, 7-7
Divide-and-conquer fast matrix multiplication

arbitrary precision approximation (APA) algorithms,
10-3 to 10-4

fast noncommutative algorithm, 10-2 to 10-3
nesting algorithm, 10-3
number theoretic transform (NTT) based algorithms,

10-4 to 10-5
Strassen algorithm, 10-1 to 10-2

Down=up samplers, 37-3
Dyadic wavelet bases, 35-4, 35-14

E

Echo cancellation
acoustic echo cancellation, 18-7 to 18-8
long-distance transmission, 18-7

Encoder, 6-2
Energy function, 28-8
Equivalent matrix model, 13-11
Error-covariance matrix, 15-7, 15-11, 15-14
Error function, 28-4 to 28-5, 28-8
Error-path filter, 20-18
Estimation theory and algorithms

basic state-variable model
jointly Gaussian white noise sequences,

15-9
Kalman filter (KF), 15-11 to 15-13
probability density function, 15-10
single-stage prediction, 15-10 to 15-11
smoothing, 15-13 to 15-14
time-invariant and stationary, 15-10

best linear unbiased estimation (BLUE),
15-5 to 15-6

digital Wiener filtering, 15-14 to 15-15
estimator properties, 15-4 to 15-5
extended Kalman filter (EKF)

covariance matrix, 15-18
discretized perturbation, 15-18 to 15-19
linearization, 15-17, 15-19
nominal differential equation, 15-18 to 15-19
nonlinear differential equation, 15-17
time-varying Jacobian matrix, 15-18

iterated least squares (ILS), 15-17
least-squares estimation

linear estimator, 15-3
matrix inversion, 15-4
normal equation, 15-3
recursive WLSE, 15-3 to 15-4
time-varying digital filter, 15-4
weighting matrix, 15-2
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linear prediction, 15-16
maximum-likelihood estimation (MLE),

15-6 to 15-7
measurement noise vector, 15-2
random parameters

maximum a posteriori (MAP) estimation,
15-8 to 15-9

mean-squared estimation, 15-7 to 15-8
Expectation-maximization (EM) algorithm

conditional expectation calculations
Gibbs–Bogoliubov–Feynman (GBF) inequality,

29-7 to 29-8
local mean field energy (LMFE), 29-7
Monte Carlo simulation, 29-6

convergence problem, 29-9 to 29-10
experimental results

CD_uv algorithms, 29-21, 29-23
CD_uy algorithms, 29-21 to 29-22
iterative multichannel Wiener algorithm, 29-21
noise variance, 29-23
red, green, and blue (RGB) channels, 29-20

to 29-21
signal-to-noise ratio (SNR), 29-20 to 29-22
single-channel algorithm, 29-21 to 29-22

MLE approach, 29-3
multichannel image identification and restoration

E-step, 29-18 to 29-19
M-step, 29-20
problem formulation, 29-17 to 29-18

simple MRF
Bayes’ formula, 29-5
clique function, 29-4, 29-6
energy function, 29-3 to 29-4
E-step, 29-4 to 29-5
Gibbs distribution, 29-5
minimum mean square error, 29-4
M-step, 29-5
partition function, 29-3 to 29-5

single channel blur identification and image
restoration

complete data representation, 29-13 to 29-16
E-step, 29-13
iterative Wiener filtering approach,

29-16 to 29-17
maximum likelihood parameter identification,

29-11 to 29-13
problem formulation, 29-11
zero-mean Gaussian process, 29-13

Extended Kalman filter (EKF)
covariance matrix, 15-18
discretized perturbation, 15-18 to 15-19
linearization, 15-17, 15-19
nominal differential equation, 15-18 to 15-19
nonlinear differential equation, 15-17
time-varying Jacobian matrix, 15-18

Extended lapped transform (ELT), 37-7 to 37-8,
38-5 to 38-6

F

Fast array algorithm
circular and hyperbolic rotation, 21-24
gain vectors, 21-25
low-rank property, 21-23
prearray, 21-23 to 21-24

Fast convolution and filtering
block convolution

FIR filter, 8-5 to 8-6
IIR filter, 8-6 to 8-8

convolution definition, 8-1
distributed arithmetic

multiplication, 8-16 to 8-17
table lookup, 8-17 to 8-18
two dimensional, 8-17

multirate methods, running convolution
decomposition, 8-15
filter bank structure, 8-14
polynomial product, 8-13 to 8-14
Toom–Cook algorithm, 8-14
transposition, 8-15

number theoretic transforms (NTTs)
cyclic convolution, 8-19
Fermat number moduli, 8-20
linear transformation, 8-19
modulus definition, 8-18
prime factorization, 8-20

overlap-add methods, 8-2 to 8-3
overlap-save methods, 8-3 to 8-4
polynomial-based methods, 8-21
short- and medium-length convolutions

Agarwal–Cooley algorithm, 8-12
cyclic convolution, 8-9 to 8-10
split-nesting algorithm, 8-12 to 8-13
Toom–Cook method, 8-8 to 8-9
Winograd short convolution algorithm,

8-10
special low-multiply filter structures, 8-21
subbands, 8-15 to 8-16

Fast Fourier transforms (FFTs)
additive complexity, 7-31 to 7-32
algorithms, 1-16 to 1-18
costless mono- to multidimensional mapping

cyclic convolution, 7-21 to 7-25
DFT computation, 7-20 to 7-21
Good’s mapping, 7-18 to 7-20
matrix products, 7-28
prime factor algorithms, 7-25 to 7-26
Winograd’s Fourier transform algorithm,

7-26 to 7-28
discrete cosine transform (DCT), 7-35 to 7-36
discrete Fourier transform (DFT)

algorithms, real data, 7-33 to 7-34
pruning, 7-35

discrete Hartley transform (DHT), 7-35
Gauss to CTFFT, 7-3 to 7-4
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implementation issues
digital signal processors, 7-42
general purpose computers, 7-42
vector processor and multiprocessor, 7-43
very large scale integration (VLSI), 7-43

in-place computation, 7-32
inverse FFT, 7-32
motivation

initial sequence, 7-7 to 7-8
mapping and subproblem costs, 7-8
matrix-vector product, 7-6 to 7-7
z-transform, 7-7

multidimensional transforms
nested algorithms, 7-39 to 7-40
polynomial transform, 7-40 to 7-41
row–column algorithms, 7-37 to 7-38
vector-radix algorithms, 7-38 to 7-39

multiplicative complexity
coprime factors, 7-6
nontrivial real=complex multiplication, 7-29
practical algorithms vs. lower bounds,

7-30 to 7-31
split-radix fast Fourier transform

(SRFFT), 7-29 to 7-30
WFTA, 7-30

quantization noise, 7-33
regularity and parallelism, 7-33
with twiddle factors

Cooley–Tukey mapping, 7-9 to 7-12
radix-2 and radix-4 algorithms, 7-12 to 7-15
radix p2 algorithm, 7-18
refinements, 7-4
split-radix algorithm, 7-15 to 7-18
Yavne’s algorithm, 7-5

without twiddle factors, 7-5 to 7-6, 7-28
Fast matrix computations

divide-and-conquer fast matrix multiplication
arbitrary precision approximation (APA)

algorithms, 10-3 to 10-4
fast noncommutative algorithm,

10-2 to 10-3
nesting algorithm, 10-3
number theoretic transform (NTT) based

algorithms, 10-4 to 10-5
Strassen algorithm, 10-1 to 10-2

wavelet-based matrix sparsification
Calderon–Zygmund integral operators,

10-5 to 10-6
electromagnetics, 10-5
heuristic interpretation, 10-9
integral equation, 10-5
integral operators, 10-8 to 10-9
wavelet transform, 10-6 to 10-8

Fast transversal filter, 21-26
Fault-tolerant transform domain adaptive filters

erroneous filter coefficient, 22-20 to 22-21
inherent adaptive property, 22-17

learning curve, 22-19
MSE, 22-20 to 22-21

Feedforward control, 18-10 to 18-11
Fermat number moduli, 8-20
Filter bank design

aliasing component (AC) matrix, 36-4 to 36-5
applications-specific filter bank, 36-1
downsampling and upsampling operation,

36-2 to 36-3
equivalent equation, 36-3
finite field filter bank

exact and perfect reconstruction, 36-12
four-level octave band decomposition,

36-13 to 36-14
Gaussian distribution, 36-13
subband image coding, 36-11
system gain, 36-12 to 36-13
two-tap Haar analysis filter, 36-12
wrap-around arithmetic, 36-11

lattice implementation, 36-7 to 36-8
multi-band analysis-synthesis filter bank,

36-2
nonlinear filter bank

image coding, 36-13
vs. linear filter bank, 36-16
polyphase filter, 36-15
rank-order filter, 36-14
ringing effects, 36-13 to 36-14
two-band polyphase nonlinear filter bank,

36-14 to 36-15
Type I, II and III structures, 36-15

spectral factorization
filter coefficients, 36-6
M-channel, 36-6 to 36-7
unity transfer function, 36-6
zero-phase half-band lowpass filter, 36-5

subband decomposition, 36-1
time-domain design

design formulation functionality,
36-10 to 36-11

error function, 36-10
M-band analysis-synthesis system, 36-8
M3M matrix, 36-8 to 36-9
zero-element column vector, 36-9

two-band analysis-synthesis filter bank,
36-2 to 36-3

z-domain, 36-3
Filtered-error gradient algorithms

banded matrix, 20-17
convergence curve, average squared error,

20-18 to 20-19
error signal, 20-15, 20-18
feedback path, 20-16
filtered-error LMS algorithm, 20-16 to 20-17
optimum value, 20-18
step-size parameter, 20-17 to 20-18
structure, 20-15 to 20-16
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Finite-impulse-response (FIR) filter
adaptive filter robustness, 20-2
affine filter structure

Chebyshev norm, 11-41
IFIR filter, 11-42
least squares error, 11-41
prefilter, 11-41 to 11-42
transfer function, 11-40

block convolution, 8-5 to 8-6
combining criteria

bandpass filters, 11-66 to 11-67
constrained least square, 11-67
flat passband, Chebyshev stopband, 11-65 to 11-66
lowpass filter, bound-constrained least squares,

11-68
moment preserving maximal noise reduction,

11-64 to 11-65
polynomial smoothing, 11-63 to 11-64
problem formulation, 11-67 to 11-68
quadratic programming approach, 11-69
Savitzky–Golay filters, 11-62 to 11-63
symmetric FIR filter, flat passband, 11-65

delay variation
continuously tuning vo and G(0),

11-61 to 11-62
cutoff frequency, 11-59
linear-phase, 11-55
magnitude responses and group delays,

11-59, 11-61
nonlinear-phase maximally flat filters,

11-59 to 11-60
problem formulation, 11-58 to 11-59
reduction, 11-62

equiripple optimal Chebyshev filter design
alternation theorem, 11-23 to 11-26
linear phase filter, 11-29 to 11-30
linear programming, 11-30
lowpass filters, 11-27 to 11-29
problem formulation, 11-23
Remez exchange algorithm, 11-23, 11-26 to 11-27

filter bank, 35-14
orthogonality, 35-10
symmetric solutions, 35-12

linear-phase filter types, 11-12
maximally flat real symmetric FIR filters

amplitude response, 11-38 to 11-39
half-magnitude frequency, 11-39 to 11-40
2K zeros, 11-39
monotone response, 11-38
passband and stopband transition, 11-39

minimum-phase FIR filters, 11-55 to 11-57
nonsymmetric=nonlinear phase FIR filter design,

11-42
optimal design

algorithm, 11-44 to 11-47
descent steps, 11-47 to 11-50
low delay filters, 11-51 to 11-52

problem formulation, 11-43 to 11-44
real-valued=exactly linear-phase filters, 11-52
seismic migration filters, 11-52 to 11-55
simplex method, descent, 11-50 to 11-51

optimal square error design
discrete squares error, 11-20 to 11-21
impulse response coefficients, 11-19
Lagrange multipliers, 11-20
least squares approaches, 11-22
symmetric odd-length filters, 11-19
transition regions, 11-21 to 11-22
weighted integral square error, 11-19

window method
design steps, 11-13 to 11-14
discrete prolate spheroidal (DPS)

sequence, 11-16 to 11-17
Dolph–Chebyshev window, 11-17 to 11-18
eigenvalue problem, 11-16 to 11-17
Fourier series, sinc function samples, 11-14
generalized cosine and Bartlett (triangular)

windows, 11-16
Gibbs phenomenon, 11-14
ideal lowpass filter, 11-14 to 11-15
Kaiser’s window, 11-17 to 11-18
sinc function truncation, 11-14, 11-16

Finite wordlength effects
coefficient quantization error

alternate realization structure, 3-17 to 3-18
definition, 3-15
realizable pole locations, 3-16 to 3-17

fixed-point quantization errors, 3-3 to 3-4
floating-point quantization errors, 3-4 to 3-5
limit cycles, 3-13 to 3-14
number representations, 3-2
overflow oscillations, 3-14 to 3-15
realization, 3-18
roundoff noise

determination, 3-5 to 3-6
finite impulse response (FIR) filter, 3-6 to 3-7
fixed-point infinite impulse response (IIR) filter,

3-7 to 3-10
floating-point IIR filters, 3-10 to 3-13

FIR digital filters
general and special cases, 1-22 to 1-23
window function, 1-21 to 1-22

First-order delta–sigma converter, 5-13 to 5-14
Fixed-interval smoothing, 15-13 to 15-14
Fixed-order combiner, 21-26
Fixed-point quantization errors, 3-3 to 3-4
Flash A=D converter, 5-6 to 5-7
Floating-point quantization errors, 3-4 to 3-5
Focused synthetic aperture radar, 33-8 to 33-9
Fourier series

coefficients, 17-4
continuous time periodic signals

convergence of Fourier series, 1-10 to 1-11
exponential Fourier series, 1-7 to 1-8
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Fourier transform, 1-11
trigonometric Fourier series, 1-8 to 1-9

Fourier transform
continuous time periodic signals

discrete-time signals, 1-5 to 1-6
Fourier spectrum, 1-6
generalized complex, 1-6 to 1-7
properties, 1-2 to 1-4

Fractionally spaced blind equalizers
one-to-one mapping, 24-17
sub-channel transfer function, 24-16
vector representation, 24-16 to 24-17

Frequency adaptive algorithm, 34-16 to 34-17
Frequency and transform domain characterization

bispectrum and trispectrum, 12-10 to 12-11
coherence function, 12-11
complex random process, 12-10
complex spectral density function, 12-12

to 12-13
cross-correlation function, 12-11 to 12-12
magnitude-squared coherence (MSC), 12-12
power spectral density function, 12-9 to 12-10
real exponential autocorrelation function, 12-13
real-valued random process, 12-12
regions of symmetry, 12-11

Frobenius matrix norm, 36-10
Frost algorithm, 30-8 to 30-9
Fundamental domains, 4-4

G

Gaussian density function
complex Gaussian density, 12-21 to 12-22
real Gaussian density, 12-20 to 12-21

Gaussian-distributed signal, 18-16
Gaussian random process, 19-5
Gauss–Markov theorem, 15-6
Gauss–Newton (GN) algorithm, 23-12 to 23-13
Generalized Gaussian noise, 16-10 to 16-11
Generalized linear-phase lapped orthogonal transform

(GenLOT), 38-6 to 38-7
Gerchberg–Papoulis (GP) algorithm, 25-13
Gibbs–Bogoliubov–Feynman (GBF) inequality,

29-7 to 29-8
Gibbs’ distribution, 28-6
Gradient-based adaptive algorithms

adaptive FIR algorithm, 18-11
finite-precision effects, 18-15 to 18-16
least-mean-square (LMS) algorithm, 18-14
mean-squared error cost function, 18-12
steepest descent method, 18-13
stochastic gradient algorithms, 18-15
system identification, 18-16 to 18-17
Wiener solution, 18-12 to 18-13

Gradient-descent algorithm
convergence analysis, 23-13
definition, 23-11

Gauss–Newton (GN) algorithm, 23-12 to 23-13
mean-square output error, 23-13 to 23-14
output error, 23-11

H

Hermitian symmetry, 12-17, 12-19
Higher order iterative algorithms, 34-11 to 34-12
High-resolution methods, 14-15

I

Image compression, 36-13
Independent and identically distributed (i.i.d.)

random process, 19-4
Infinite impulse response (IIR) filter design

allpass (phase-only) IIR filter, 11-70 to 11-71
bilinear transformation method, 11-31 to 11-32
block convolution

block recursive equation, 8-7
characteristics, 8-7 to 8-8
constant coefficient difference equation,

8-6
impulse response, 8-6 to 8-7
scalar difference equation, 8-7

filter types
analog prototypes, 11-35
Butterworth filter, 11-32, 11-34
elliptic filter, 11-35
maximally flat delay IIR filter, 11-35 to 11-36
Type I and Type II Chebyshev filter,

11-34 to 11-35
generalization, 11-37
magnitude and phase approximation,

11-71 to 11-72
magnitude response, 11-37 to 11-38
model order reduction (MOR) techniques, 11-72
numerical methods, magnitude only approximation,

11-70
poles and zeros, 11-36 to 11-37
time-domain approximation, 11-72

Intersymbol interference (ISI), 24-3, 31-1
Inverse fast Fourier transform, 7-32
Inverse Fisher information matrix, 12-26
Inverse problems, array processing

broadband arrays
array output, 30-8
formulations, 30-10 to 30-11
Frost algorithm, 30-8 to 30-9
Frost array, 30-15 to 30-16
input spectrum, 30-15 to 30-16
interference suppression, 30-16
phase shift, 30-6 to 30-7
transfer functions, 30-7

narrowband arrays
Applebaum algorithm, 30-13 to 30-14
array output, 30-5

I-10 Index



formulations, 30-9 to 30-10
input spectrum, 30-13
input vector, 30-4 to 30-5
look-direction constraint, 30-5 to 30-6
pilot signal constraint, 30-6

row-action projection method, 30-11 to 30-12
spatial frequency, 30-4
spatial sampling, 30-3
wave propagation, 30-2 to 30-3

Iterated extended Kalman filter, 15-19
Iterated least squares (ILS), 15-17
Iterative recovery algorithms

advantages, 34-2
constrained minimization regularization approaches

functional minimization approach, 34-14
projection onto convex sets approach, 34-13
robust functionals, 34-14 to 34-15
set theoretic formulation, 34-13
spatially adaptive image restoration, 34-14

constraints
definition, 34-10
projecting onto convex sets (POCS) method, 34-11

convergence
basic iteration, 34-9 to 34-10
iteration with reblurring, 34-10

degradation, 34-2 to 34-3
ill-posed problems and regularization theory,

34-12
iteration adaptive image restoration algorithms

frequency adaptive algorithm, 34-16 to 34-17
spatially adaptive algorithm, 34-15 to 34-16

matrix-vector formulation
basic iteration, 34-7
least-squares iteration, 34-7 to 34-8
restoration problem, 34-6 to 34-7

spatially invariant degradation
convergence, 34-4 to 34-6
degradation model, 34-3
iterative restoration algorithm, 34-3
vs. matrix-vector representation, 34-8
reblurring, 34-6

J

Jointly Gaussian process, 15-7 to 15-9

K

Kalman filter (KF)
Kalman gain matrix, 15-11 to 15-12
mean-squared filtered estimator, 15-11
recursive predictor, 15-12
steady-state algebraic matrix Riccati equation,

15-13
time-invariant and stationary systems, 15-12 to 15-13
time-varying recursive digital filter, 15-12

Karhunen–Loéve transform (KLT), 1-26, 22-10

L

Lapped orthogonal transform (LOT), 38-1
Lapped transform (LT)

extended lapped transform, 38-5 to 38-6
generalized linear-phase lapped orthogonal

transform (GenLOT), 38-6 to 38-7
orthogonal block transforms

basis vectors, 38-2, 38-4
filter banks, 38-4 to 38-5
input vector, 38-3 to 38-4
M samples, 38-1 to 38-2
perfect reconstruction (PR) property,

38-4
transform-domain blocks, 38-3
transform vector coefficients, 38-2

Lattice chains, 4-13
Lattice filter, 18-4 to 18-5, 21-27
Lattices

definitions, 4-2 to 4-3
fundamental domains, 4-4
reciprocal lattices, 4-4 to 4-5

Least-mean-square (LMS) adaptive filter
coefficient mean value, 19-3
definitions, 19-6 to 19-7
independence assumptions, 19-6
mean analysis

coefficient error vector, 19-7, 19-9
convergence, 19-9
Gaussian signals, 19-10
matrix equation, 19-8
signal statistics, 19-9
simulation runs, 19-10
steepest descent, 19-8 to 19-9

mean-square analysis
coefficient error correlation matrix evolution,

19-10 to 19-12
MSE, mean-square stability, and misadjustment,

19-12 to 19-13
performance characteristics

FIR model adequacy, 19-13
identifying stationary system, 19-15
misadjustment, 19-14
simulation, 19-2 to 19-3
speed of convergence, 19-13 to 19-14
tracking time-varying system,

19-15 to 19-16
probability density function (p.d.f), 19-3 to 19-5,

19-19
sign-error adaptive filter, 19-19
statistical models, input signal

independent and identically distributed random
process, 19-4

spherically invariant random processes,
19-4 to 19-5

system identification model, desired response signal,
19-3
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time-varying step size selection
adaptive and matrix step sizes, 19-18
heuristic approximation, 19-18
normalized step sizes, 19-16 to 19-17
stochastic approximation, 19-18

Least squares solutions, signal recovery
pseudoinverse solution

degradation matrix, 25-9
generalized inverse solution, 25-8
singular value decomposition (SVD), 25-9

regularization techniques, 25-10 to 25-11
Wiener filter

Fourier domain, 25-7
impulse response, 25-6
signal-to-noise ratio (SNR), 25-7

Limit cycles, 3-13 to 3-14
Linde–Buzo–Gray (LBG) algorithm, 6-5 to 6-6
Linear least-squares estimation, 21-8
Linear multivariate Gaussian model, 13-6 to 13-7
Linear parametric models, stationary random process

confidence intervals, 16-10
fourth-order cumulant function, 16-4
Gaussianity tests

bispectrum, 16-5 to 16-6
coarse and fine grids, 16-5
covariance matrix, 16-6
discrete Fourier transform, 16-4
P-vectors, 16-5
trispectrum, 16-6

linear discrete-time stationary signal, 16-1
linearity tests, 16-6 to 16-7
linear model fitting, 16-1 to 16-3
model validation, 16-8 to 16-9
noise modeling

generalized Gaussian noise, 16-10 to 16-11
Middleton class A noise, 16-11 to 16-12
stable noise distribution, 16-12

order selection, 16-8
parsimonious parametric models, 16-1
stationarity tests, 16-7
third-order cumulant function, 16-3

Linear phase filter bank, 35-9 to 35-10
Linear predictive coding, 18-10
Linear time-invariant (LTI) system, 17-18
Linogram method

chirp z-transforming, 26-5
fast Fourier transform (FFT), 26-4
projection theorem, 26-3

Lloyd–Max algorithm, 6-4 to 6-5
LMS adaptive filter theory

autocorrelation matrix, 22-4 to 22-5
eigenvalue spread, 22-4
error surface, simple 2-tap filter,

22-4 to 22-5
ideal cost function, 22-3

Local mean field energy (LMFE), 29-7

M

MacDonald function, 19-5
Magnitude-squared coherence (MSC), 12-12
Martinez–Parks algorithm, 11-37
Matrix Riccati equations, 15-12
Matrix-vector formulation

basic iteration, 34-7
least-squares iteration, 34-7 to 34-8
restoration problem, 34-6 to 34-7

Maximum a posteriori (MAP) estimation,
15-8 to 15-9

Maximum likelihood (ML) classifier, 13-6,
13-12 to 13-14

Mean-squared error (MSE), 18-12, 19-6 to 19-7, 19-12,
19-14

Median filters, 36-14
Mersenne numbers, 8-20
Metropolis criterion, 28-5 to 28-6
Microphone array

dereverberation
least squares method, 32-2 to 32-3
minimum and non-minimum phase function,

32-1 to 32-2
sub-band approaches, 32-3

impulse responses
Diophantine inverse filtering system,

32-18, 32-20
matched filtering system, 32-18
single beamformer, 32-17

matched filtering technique
aim and power of, 32-14
multiple beamformer, 32-12
principle of, 32-13

multiple input–output (MINT) model,
32-14 to 32-15

signal-to-noise ratio (SNR), 34-15 to 34-18
simple delay-and-sum beamformers

adaptive arrays, 32-6 to 32-8
constrained adaptive beamforming formulation,

32-8 to 32-11
multiple beamforming, 32-11

speaker identification experiment, 32-19 to 32-20
Middleton class A noise, 16-11 to 16-12
Modified Kaczmarz algorithm, 25-19 to 25-20
Modulation transfer function, 25-3
Moments and cumulants

autocorrelation and autocovariance function,
12-7 to 12-8

cross-correlation and cross-covariance functions,
12-7, 12-9

mean, 12-6
regions of symmetry, 12-9
wide-sense stationary, 12-7
zero-mean random process, 12-8

Moore–Penrose (M–P) inverse method, 31-4 to 31-5
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Multichannel filter, 17-24
Multidimensional discrete cosine transforms, 9-8
Multidimensional discrete Fourier transforms,

9-7 to 9-8
Multidimensional mapping

cyclic convolution
auxiliary polynomial, 7-23
CRT computation, 7-22 to 7-23
cyclotomic polynomials, 7-22
linear complexity, 7-25
matrix-vector product, 7-24 to 7-25
prime polynomials, 7-21

DFT computation, 7-20 to 7-21
Good’s mapping

bidimensional transform, 7-20
CRT mapping, 7-19
DFT equation definition, 7-19 to 7-20
subset selection, 7-18

matrix products, 7-28
prime factor algorithms, 7-25 to 7-26
Winograd’s Fourier transform algorithm

diagonal matrices, 7-26 to 7-27
graphical display, 7-27
length conversion, 7-26
split nesting, 7-28
trivial multiplications, 7-26

Multiple input�output (MINT) model,
32-14 to 32-15

Multiple signal classification (MUSIC) method,
14-21 to 14-22

Multiplicative complexity theory, 9-2, 9-5
Multiplier roundoff limit cycle, 3-13; see also

Limit cycles
Multivariate=multirate processing, 17-16 to 17-17

N

Noise-shaping function, 5-12 to 5-13
Nonlinear dynamical system, 15-17
Nonnegativity constraint, 28-4
Nonoversampling A=D converter, 5-9 to 5-10
Normalized least-mean-square (NLMS)

adaptive filter, 19-17
Normalized least mean squares algorithm, 31-6
Number theoretic transforms (NTTs)

cyclic convolution, 8-19
Fermat number moduli, 8-20
linear transformation, 8-19
modulus definition, 8-18
prime factorization, 8-20

O

One-dimensional DCTs, 9-8
One-dimensional DFTs, 9-6 to 9-7
Operational notation, 2-16 to 2-17
Optical transfer function (OTF), 25-3

Order-recursive filters
backward prediction error vectors, 21-29 to 21-31
estimation error, 21-27
filtering=joint process array, 21-38
fixed-order combiner, 21-26
forward prediction error vectors, 21-31 to 21-33
joint process estimation, 21-27 to 21-29
lattice filter, 21-27
nonunity forgetting factor

angle-normalized prediction error, 21-34
a priori and a posteriori prediction errors, 21-33
definitions and relations, 21-33 to 21-34
order-update relations, 21-35
orthogonality principle, 21-34 to 21-35

QRD-LSL filter
angle-normalized prediction error,

21-35 to 21-36
a priori and a posteriori prediction errors,

21-35
minimization problem, 21-37 to 21-38
orthogonal rotation, 21-36

Orthogonal lapped transforms
basis vectors, 38-2, 38-4
filter banks, 38-4 to 38-5
input vector, 38-3 to 38-4
PR property, 38-4
transform-domain blocks, 38-3

Orthogonal rational two channel filter banks, 35-10
Output error algorithms

gradient-descent algorithm
convergence analysis, 23-13
definition, 23-11
Gauss–Newton (GN) algorithm, 23-12 to 23-13
mean-square output error, 23-13 to 23-14
output error, 23-11

stability theory
convergence, 23-14, 23-15
parameter error, 23-15
pseudolinear regression, 23-14
simplified hyperstable adaptive recursive filter,

23-14, 23-16
strictly positive real (SPR) condition,

23-15 to 23-16
Overflow oscillations, 3-14 to 3-15
Overlap-add processing algorithm, 1-23 to 1-24
Overlap-save partitioning algorithm, 1-23
Oversampling A=D converter, 5-9 to 5-10
Oversampling ratio, 5-13

P

Periodic autoregressive moving average (PARMA)
models, 17-28

Periodizing operator, 4-17
Periodogram

autocorrelation sequence, 14-8
consistent estimator, 14-9
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definition, 14-8
rectangular window, 14-9 to 14-10
zero-padded sequence, 14-9

Picket-Fence effect, 1-21
Pilot signal constraint, 30-6
Pipelined A=D converter, 5-7 to 5-8
Pisarenko harmonic decomposition (PHD) method

autocorrelation matrix, 14-20
power spectral density (PSD), 14-1, 14-19, 14-21
pseudospectrum, 14-21
zero-mean white noise, 14-19

Point spread function (PSF), 25-3
Poisson distribution, 16-11
Poisson mechanism interference, 16-12
Polarimetric whitening filter (PWF), 33-5, 33-10
Polarization scattering matrix, 33-10
Prediction error filter (PEF), 15-16
Predictive speech coding

distance measure, 6-11
spectral distortion, 6-10 to 6-11

Projection onto convex sets (POCS)
closed linear manifolds (CLMs), 25-12
geometric interpretation, 25-12 to 25-13
Gerchberg–Papoulis (GP) algorithm, 25-13
image restoration

final iterative algorithm, 25-19
in-band and out-of-band term, 25-17
modified Kaczmarz algorithm, 25-19 to 25-20

unique-nearest-neighbor property, 25-12
Prolate spheroidal wavefunctions, 25-4 to 25-6
P stationary narrowband subprocess, 17-9
P-variate stationary multichannel process, 17-8

Q

QR decomposition-based least-squares lattice
(QRD-LSL) filter

angle-normalized prediction error, 21-35 to 21-36
a priori and a posteriori prediction errors,

21-35
backward prediction error, 21-37
minimization problem, 21-37 to 21-38
orthogonal rotation, 21-36

Quadrature amplitude modulated (QAM) data
communication systems

input=output relationship, 24-2
intersymbol interference (ISI), 24-3
minimum mean square error (MMSE), 24-4
simple system diagram, 24-2
zero-forcing (ZF) criterion, 24-4
z-transform notation, 24-3

Quantization
definition, 6-2
design algorithms

Linde–Buzo–Gray (LBG) algorithm, 6-5 to 6-6
Lloyd–Max method, 6-4 to 6-5

distortion=distance measure, 6-3

optimal criteria, 6-3 to 6-4
practical issues

dimension, codebook storage, and search
complexity, 6-7

parameter set and distortion measure,
6-7

quantizer type and robustness, 6-8
training set data, 6-8 to 6-9

predictive speech coding
distance measure, 6-11
spectral distortion, 6-10 to 6-11

speaker recognition
components, 6-11
robustness issue, 6-13
VQ-based classifier, 6-12
VQ codebooks, 6-12 to 6-13

Quasi-Newton adaptive algorithms
examples, 22-13 to 22-14
fast Quasi-Newton algorithm

positive semidefinite autocorrelation lag
estimator, 22-12

Toeplitz symmetric matrix, 22-13
FIR adaptive filter, 22-11
RLS algorithm, 22-12

Quincunx lattice, 4-6

R

RAdio Detection And Ranging (Radar), 33-2
Radon transform, 26-2
Random vectors

Gaussian density function
complex Gaussian density, 12-21 to 12-22
real Gaussian density, 12-20 to 12-21

linear transformation
correlation matrix, 12-19 to 12-20
definition, 12-18
diagonal matrix, 12-20
triangular matrix, 12-19 to 12-20
unitary matrix, 12-19

moments, 12-17 to 12-18
statistical description, 12-16 to 12-17

Reciprocal lattices, 4-4 to 4-5
Recursive constant coefficient filter, 15-12
Recursive digital filters, 11-37
Recursive least-squares adaptive filters

array algorithms
elementary circular rotations, 21-4
elementary hyperbolic rotations, 21-4 to 21-5
J-orthogonal matrix, 21-3
square-root-free and householder

transformations, 21-5
computational and statistical properties, 21-1
estimation errors and conversion factor, 21-15
fast transversal algorithms

fast array algorithm, 21-23 to 21-25
fast transversal filter, 21-26
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floating point operation, 21-21
linear combiner, shift structure, 21-22
low-rank property, 21-22 to 21-23
prewindowed case, 21-22

inverse QR algorithm
Cholesky factor, 21-17
coefficient matrix inversion, 21-19
pre- and postarrays, 21-18
square-root factor, 21-17 to 21-18

least-squares problem
additive noise model, 21-7
geometric interpretation, 21-8
statistical interpretation, 21-9

matrix inversion formula, 21-15
matrix notation, 21-2
minimum cost updation, 21-16
motivation, 21-16
optimization problem, 21-14
order-recursive filters

backward prediction error vectors,
21-29 to 21-31

estimation error, 21-27
filtering=joint process array, 21-38
fixed-order combiner, 21-26
forward prediction error vectors,

21-31 to 21-33
joint process estimation, 21-27 to 21-29
lattice filter, 21-27
nonunity forgetting factor, 21-33 to 21-35
QRD-LSL filter, 21-35 to 21-38

orthogonal matrix, 21-16 to 21-18
QR algorithm

back-substitution, 21-21
orthogonal transformation, 21-20
square-root factor, 21-19 to 21-20
triangular linear system, 21-21

quadratic cost function, 21-1
reduction, regularized form, 21-13
regularized least-squares problem

geometric interpretation, 21-10 to 21-11
observation vector, 21-10
optimization criterion, 21-9
statistical interpretation, 21-11

time updates, 21-14
weight vector, 21-12

Recursive least squares (RLS) algorithm, 31-7
Recursive running sum (RRS), 11-41
Recursive weighted least-squares estimator,

15-3 to 15-4, 15-6
Regularization methods

constrained minimization regularization approaches
functional minimization approach, 34-14
projection onto convex sets approach,

34-13
robust functionals, 34-14 to 34-15
set theoretic formulation, 34-13
spatially adaptive image restoration, 34-14

iteration adaptive image restoration algorithms
frequency adaptive algorithm, 34-16 to 34-17
spatially adaptive algorithm, 34-15 to 34-16

Relinearized Kalman filter, 15-18 to 15-19
Rissanen’s minimum description length (MDL)

criterion, 16-8
Robust functionals, 34-14 to 34-15
Robust speech processing

affine transform
cepstral coefficients, 27-12 to 27-15
definition, 27-8
parameters, 27-15 to 27-17
singular value decomposition (SVD),

27-8
cepstral mean subtraction (CMS), 27-8
cepstral vectors correspondence

expectation step, 27-17
maximum-likelihood method, 27-18

frequency response and Gaussian white noise,
27-6 to 27-7

multiplicative noise, 27-6
predictor coefficients transformation

additive noise, 27-11 to 27-12
deterministic convolutional channel,

27-9 to 27-10
speech acquisition system, 27-6
speech enhancement approach, 27-8
speech production and spectrum-related

parameterization
autocorrelation method, 27-3 to 27-4
cepstral coefficient, 27-2 to 27-3
covariance method, 27-3
predictor coefficients, 27-2 to 27-4
steady-state system function, filter,

27-2
template-based speech processing

cepstral distance, 27-4, 27-6
quasi-periodic air wave, 27-4
voiced=unvoiced speech, 27-4 to 27-5

Roundoff noise
determination, 3-5 to 3-6
finite impulse response (FIR) filter,

3-6 to 3-7
fixed-point infinite impulse response (IIR) filter,

3-7 to 3-10
floating-point IIR filters, 3-10 to 3-13

Row-action projection method, 30-11 to 30-12

S

Sampling of continuous functions
combined spatial and frequency sampling,

4-11 to 4-12
continuous space-time Fourier transform (CSFT)

basic properties, 4-6
definition, 4-5
lattice combs, 4-6 to 4-7
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discrete Fourier transform (DFT)
definition, 4-10 to 4-11
isometry property, 4-20

discrete space-time Fourier transform (DSFT), 4-7
HDTV-to-SDTV conversion, 4-17 to 4-18
periodizing and sampling, 4-7 to 4-8
Shannon sampling theorem, 4-8 to 4-9

Sampling of discrete functions
change of variables, 4-14
lattice chains, 4-13

SAR, see Synthetic aperture radar
Sato algorithm

BGR extensions, 24-8 to 24-9
error function and slicer output, 24-8

Savitzky–Golay filters, 11-62 to 11-63
Second-order delta–sigma converter, 5-14
Shalvi–Weinstein algorithm, 24-10 to 24-11
Shannon sampling theorem, 4-8 to 4-9
Short-time Fourier transform (STFT), 37-1
Side-looking airborne radar (SLAR), 33-6 to 33-7
Signal classification

density function, 13-5 to 13-6
hypothesis, 13-5, 13-12, 13-14
maximum likelihood (ML) classifier, 13-6,

13-12 to 13-14
minimum distance classifier, 13-13
misclassification probability, 13-5 to 13-6,

13-13 to 13-14
prewhitened signal, 13-14
Voronoi cells, 13-13

Signal detection
detector design strategy, 13-2 to 13-3
Gaussian noise, temporal signals

known gains, 13-8 to 13-9
random gains, 13-9 to 13-10
single signal, 13-10
time-sampled superposed signal model, 13-7
unknown gains, 13-9

likelihood ratio test (LRT)
composite hypothesis testing, 13-3
false alarm constraint, 13-5
threshold test, 13-4 to 13-5

null and alternative hypothesis, 13-2
receiver-operating characteristic (ROC) curve,

13-2 to 13-3
spatiotemporal signals

complex Gaussian noise vectors, 13-10
known gains and known spatial covariance,

13-11
steering vector, 13-10
unknown gains and unknown spatial covariance,

13-11 to 13-12
Signal extraction

array processing, 17-22 to 17-23
cyclic Wiener filtering

FIR and IIR filters, 17-23

multichannel-modulation equivalent,
17-24 to 17-25

multichannel-multirate equivalent, 17-24
scalar processing, 17-23 to 17-24
time-varying normal equation, 17-23

Signal recovery
block-based methods

Kaczmarz algorithm, 25-15
Landweber iteration, 25-16

least squares solutions
pseudoinverse solution, 25-8 to 25-10
regularization techniques, 25-10 to 25-11
Wiener filter, 25-6 to 25-7

problem, formulation
additive noise, 25-4
block diagram, 25-2 to 25-3
Fredholm integral equation, 25-2
optical transfer function (OTF), 25-3
prolate spheroidal wavefunctions, 25-4 to 25-6
PSF, 25-3
signal degradation effects, 25-2

projection onto convex sets (POCS)
closed linear manifolds (CLMs), 25-12
geometric interpretation, 25-12 to 25-13
Gerchberg–Papoulis (GP) algorithm, 25-13
image restoration, 25-16 to 25-20
unique-nearest-neighbor property, 25-12

row-based methods
Kaczmarz algorithm, 25-14
relaxation parameter, 25-15
Widrow-Hoff least mean squares algorithm,

25-14
Sign-error adaptive filter, 19-19
Simulated annealing procedure

annealing algorithm, 28-5 to 28-6
three-dimensional signal restoration, 28-7

Singular-value decomposition (SVD), 15-3
Sinusoidal input

difference equations, 2-22
differential equations, 2-10

Software tools
filter implementation

arbitrary magnitude IIR filter, 11-77, 11-81
code generation, 11-79, 11-81
eighth-order IIR bandpass elliptic filter, 11-77,

11-79 to 11-80
fixed-point scaling, 11-82
length-57 FIR filter, 11-77 to 11-78
second-order section cascade, 11-82
time and size optimization, 11-81

graphical user interface (GUI)
automatic order estimation, 11-76 to 11-77
bandedges and ripples, 11-75
control types, 11-73
eight-pole elliptic bandpass filter, 11-77
frequency scaling, 11-76
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graphical manipulation, specification template,
11-75

MATLAB software, 11-73 to 11-74
pop-up menu, 11-73 to 11-74
six-pole elliptic bandpass filter, 11-77 to 11-78

Space alternating generalized EM (SAGE), 29-9 to 29-10
Spatial frequency, 30-4
Spatially adaptive algorithm, 34-15 to 34-16
Spatially invariant degradation

convergence, 34-4 to 34-6
degradation model, 34-3
iterative restoration algorithm, 34-3
vs. matrix-vector representation, 34-8
reblurring, 34-6

Speaker recognition
components, 6-11
robustness issue, 6-13
VQ-based classifier, 6-12
VQ codebooks, 6-12 to 6-13

Speckle metric, 33-10
Speckle noise, 33-9 to 33-11
Spectrum estimation and modeling

Bayesian spectrum estimation, 14-22 to 14-23
deterministic signal spectra

complex-valued function, 14-3 to 14-4
discrete-time Fourier transform

(DTFT), 14-3
energy density spectrum, 14-4
frequency domain, 14-4 to 14-5
inverse DTFT, 14-3, 14-5
power spectral density (PSD), 14-5
total energy, 14-4
total power, 14-5

Monte Carlo-based solution, 14-23
nonparametric spectrum estimation

autocorrelation estimator, 14-8
Bartlett method, 14-10
Blackman–Tukey method, 14-11 to 14-12
minimum variance spectrum estimator,

14-12 to 14-13
multiwindow spectrum estimator, 14-13
periodogram, 14-8 to 14-10
Welch method, 14-10 to 14-11

parametric spectrum estimation
autoregressive models, 14-16 to 14-17
autoregressive moving average (ARMA) models,

14-18 to 14-19
input–output difference equation, 14-15
moving average models, 14-17 to 14-18
multiple signal classification (MUSIC) method,

14-21 to 14-22
Pisarenko harmonic decomposition method,

14-19 to 14-21
zero-mean white noise process,

14-15 to 14-16
power spectrum estimation, 14-7 to 14-8

random processes
continuous- and discrete-time random

process, 14-2
spectra, 14-5 to 14-6
stationary and realization, 14-2
wide-sense stationary, 14-2 to 14-3

Spherically invariant random process (SIRP),
19-4 to 19-5

Split-nesting algorithm, 8-12 to 8-13
Sptool, 11-73 to 11-74
Square-root factor

inverse QR algorithm, 21-17 to 21-18
QR algorithm, 21-19 to 21-20
symmetric positive-definite matrix, 21-3
triangular square-root factor, 21-17

Stable noise distribution, 16-12
Statistical mechanics, analogies

combinatorial optimization
assumptions, 28-3 to 28-4
error-function, 28-4 to 28-5
nonnegativity constraint, 28-4

Gibbs’ distribution, 28-6
Metropolis criterion, 28-5 to 28-6

Statistical signal processing
linear mean-square estimation

autocorrelation function, 12-31 to 12-32
cross-correlation function, 12-32
estimation problem, 12-29
mean-square error, 12-30
orthogonality, 12-30 to 12-31
signal estimation, 12-31

linear transformations
autocorrelation function, 12-14 to 12-15
autocovariance and cross-covariance

functions, 12-15
bispectrum and trispectrum, 12-16
complex spectral density function, 12-15
correlation matrix, 12-19 to 12-20
definition, 12-18
diagonal matrix, 12-20
linear shift-invariant system, 12-14
power spectral density function, 12-15 to 12-16
triangular matrix, 12-19 to 12-20
unitary matrix, 12-19
unit step and transfer function, 12-15

parameter estimation
Cramér–Rao bound, 12-25 to 12-26
inverse Fisher information matrix, 12-26
maximum likelihood estimation, 12-22 to 12-24
moments, 12-27 to 12-28
statistical properties, 12-24
Tchebycheff inequality, 12-25
variance estimation, 12-24

random signals and sequences
autocorrelation function, 12-4 to 12-5
complex random signals, 12-6
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definition, 12-1
ergodic process, 12-5
first- and second-order moments, 12-4
joint density function, 12-3
periodicity and cyclostationarity, 12-3
periodic random process, 12-3 to 12-4
predictable random process, 12-2
random=stochastic process, 12-1

random variable estimation, 12-28 to 12-29
random vectors

Gaussian density function, 12-20 to 12-22
moments, 12-17 to 12-18
statistical description, 12-16 to 12-17

stationary random signals
frequency and transform domain

characterization, 12-9 to 12-13
moments and cumulants, 12-6 to 12-9

Steady-state filter state equation, 15-13
Steiglitz–McBride (SM) algorithm

GN-style version, 23-17
Hankel singular value, 23-18
LS criterion, 23-16
noise term effect, 23-18
off-line system identification method,

23-16
regressor vector, 23-17

Strassen algorithm, 10-1 to 10-2
Strassen’s algorithm, 9-2
Subband image coders, 36-13
Successive approximation A=D converter, 5-7
Symmetric positive-definite matrix, 21-17
Synthetic aperture radar (SAR)

automatic object detection and classification,
33-11 to 33-13

defense and intelligence applications, 33-2
Doppler effect, 33-3
image enhancement, 33-9 to 33-11
image formation process

advanced detection technology sensor
(ADTS) system, 33-5

focused synthetic aperture radar,
33-8 to 33-9

side-looking airborne radar (SLAR),
33-6 to 33-7

unfocused synthetic aperture radar,
33-7 to 33-8

open research issues, 33-14

T

Tap-centering method, 24-14
Tchebycheff inequality, 12-25
Template-based speech processing

cepstral distance, 27-4, 27-6
quasi-periodic air wave, 27-4
voiced=unvoiced speech, 27-4 to 27-5

Three-dimensional weight vector, 21-31

Time-delay estimation, 17-25 to 17-26
Time-domain feedback analysis

deterministic convergence analysis, 20-14 to 20-15
energy propagation, feedback cascade, 20-14
l2–stability and small gain condition

arbitrary mapping, 20-12 to 20-13
energy ratios, 20-12
estimation error, 20-14
feedback structure, 20-12
l2–gain plot, 20-13
lossless mapping, 20-12

time-domain analysis, 20-10 to 20-11
Time-frequency representations (TFR), 37-1
Time index modulation, 17-15 to 17-16
Time-invariant two-band filter bank, 37-6
Time-varying digital filter, 15-4
Time-varying filter banks

analysis filters, 37-3
direct switching, 37-6 to 37-7
down=up samplers, 37-3
ideal impulse response, 37-5
input=output function, 37-3 to 37-4
instantaneous transform switching (ITS)

impulse response matrix, 37-10
input=output relation, 37-10 to 37-11
least squares (LS) solution, 37-9
post filter, 37-10 to 37-11
redesigning analysis, 37-9
transition response matrix, 37-11

intermediate analysis-synthesis (IAS)
extended lapped transform (ELT),

37-7 to 37-8
factorization, 37-8
lattice structure, 37-6, 37-8
paraunitary filter bank, 37-8 to 37-9
time-domain transform matrix, 37-8
time-invariant two-band filter bank, 37-6
transition period, 37-7, 37-9
unitary matrix, 37-9

perfect reconstruction (PR), 37-2, 37-5
short-time Fourier transform (STFT), 37-1
structure, 37-2 to 37-3
synthesis filters, 37-4
time-frequency tiling, 37-1 to 37-2

Time-varying recursive digital filter, 15-12
Time-varying systems, 17-1
Toom–Cook method, 8-8 to 8-9, 8-14
Transform domain adaptive filter (TDAF)

adaptive fault tolerance (AFT), 1-27 to 1-28
erroneous filter coefficient, 22-20 to 22-21
inherent adaptive property, 22-17
learning curve, 22-19
MSE, 22-20 to 22-21

characteristics, 1-26
convergence rate

error surface, 22-7 to 22-8
recursive least squares (RLS), 22-9
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direct-form adaptive filter structure, 22-1 to 22-2
2-D filters

vs. FQN, 22-15 to 22-16
KLT, 22-15
structure, 22-14 to 22-15

Karhunen–Loe’ve transform (KLT), 22-10
learning characteristics, 22-10
least-mean-square (LMS) algorithm

autocorrelation matrix, 22-4 to 22-5
eigenvalue spread, 22-4
error surface, simple 2-tap filter, 22-4 to 22-5
ideal cost function, 22-3

orthogonalization and power normalization,
22-5 to 22-7

power normalization scheme, 22-10
power-of-2 (PO2) transform, 22-11
quasi-Newton adaptive algorithms

examples, 22-13 to 22-14
fast quasi-Newton algorithm, 22-12 to 22-13
FIR adaptive filter, 22-11
RLS algorithm, 22-12

structure, 1-25 to 1-26
white pseudo-noise, 22-11

Triangular decomposition, 12-19 to 12-20
Triangular square-root factor, 21-17
Twiddle factor

Cooley–Tukey mapping
decimated initial sequence, 7-9
2-D length-15 CTFFT, 7-11
vs. Good’s mapping, 7-11 to 7-12
index mappings, 7-11
modulo N2, 7-10

radix-2 and radix-4 algorithms
computational complexity, 7-14
decomposition, 7-14 to 7-15
DIT and DIF algorithm, 7-12 to 7-13
mixed-radix approach, 7-15
number of operations, 7-14

radix p2 algorithm, 7-18
refinements, 7-4
split-radix algorithm

DIF algorithm, 7-15 to 7-16
first recursion, 7-15
number of nontrivial real multiplication,

7-16 to 7-17
number of operations, 7-16
real-factor algorithm, 7-17 to 7-18

Yavne’s algorithm, 7-5
Two-band polyphase nonlinear filter bank, 36-15
Two-channel filter banks

bases construction, 35-7
finite impulse response and symmetric solutions,

35-12
finite interval, 35-9
linear phase filter bank, 35-9 to 35-10
orthogonality, 35-8 to 35-10
subband coding, 35-8

Two-tap Haar analysis filter, 36-12
Two=three-dimensional Green’s function, 10-5

U

Unfocused synthetic aperture radar, 33-7 to 33-8

V

Vector quantization
multistage, 6-9
split, 6-10

Volterra filter, 18-5

W

Walsh–Hadamard transform (WHT), 1-19 to 1-20
Wavelet-based matrix sparsification

Calderon–Zygmund integral operators,
10-5 to 10-6

electromagnetics, 10-5
heuristic interpretation, 10-9
integral equation, 10-5
integral operators, 10-8 to 10-9
wavelet transform, 10-6 to 10-8

Wavelets and filter banks
analysis=synthesis system, 35-1, 35-4
block Toeplitz matrix, 35-4
continuous-time bases

analysis scaling function, 35-6
biorthogonality properties, 35-7
logarithmic tree, discrete-time filter, 35-5
piecewise constant function, 35-6
sequence of function, 35-5 to 35-6
stretches and translates, 35-4
synthesis scaling function, 35-7

correlation functions, 35-2 to 35-3
even-indexed coefficients, 35-2
impulse response, 35-3
maximally decimated two-channel multirate filter

bank, 35-1 to 35-2
odd-indexed coefficients, 35-3
synthesis filter, 35-1
two-channel filter banks

bases construction, 35-7
finite impulse response and symmetric

solutions, 35-12
finite interval, 35-9
linear phase filter bank, 35-9 to 35-10
orthogonality, 35-8 to 35-10
subband coding, 35-8

Venn diagram, 35-13 to 35-14
Wave propagation, 30-2 to 30-3
Weighted Chebyshev error, 11-41
Weighted error sum, 21-12 to 21-13
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Weighted least-squares estimator (WLSE)
best linear unbiased estimator (BLUE),

15-5 to 15-6
linear estimator, 15-3
matrix inversion, 15-4
recursive WLSE, 15-3 to 15-4
time-varying digital filter, 15-4
weighting matrix, 15-2

Weighted square error, 11-41
Welch method, 14-10 to 14-11
White noise process, 12-7, 12-10 to 12-11, 12-15
Wide-sense stationary random process, 14-2 to 14-3
Wiener filter, 25-6 to 25-8
Wiener–Hopf equation, 12-32
Winograd’s Fourier transform algorithm (WFTA)

diagonal matrices, 7-26 to 7-27
graphical display, 7-27

length conversion, 7-26
multiplicative complexity, 7-30
split nesting, 7-28
trivial multiplications, 7-26

Winograd short convolution algorithm, 8-10

Y

Yavne’s algorithm, 7-5

Z

Zero-mean continuous-time white noise
process, 15-17

Zero-mean Gaussian white noise sequence, 15-11
Zero-mean white noise process, 14-15 to 14-16, 14-19
Zero-phase half-band lowpass filter, 36-5
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