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Preface

Fourier analysis is one method of investigating the origin of functions and their

properties by using Fourier series and Fourier transform(s). The Fourier series and

Fourier transforms were introduced by the mathematician Jean Baptiste Joseph

Fourier at the beginning of the nineteenth century; they are widely applied in the

engineering and science fields. One-dimensional waveforms (as functions of time

or position) and two-dimensional images (as functions of two positional axes) are

the main subjects studied nowadays using Fourier analysis. Fourier analysis is an

important method used to analyze complex sound waveforms in the field of

acoustical engineering. This is the reason why this book was originally listed in the

series of books published by the Acoustical Society of Japan. However, since

Fourier analysis is also applicable in many other engineering sciences, these two

books, Digital Fourier Analysis: Fundamentals, and Digital Fourier Analysis:

Advanced Techniques, are useful to readers in broader fields.

The Fourier transform itself does not fit well with analog processing because it

requires too much numerical processing, such as multiplications and summations.

That is the reason waveform analysis during the analog age could not make full

use of the Fourier method of analysis. Fourier analysis was more valuable as the

basis of theoretical analysis than for its practical applications during the analog

era. However, the digitally processed Fourier transform became a reality with the

emergence of the digital computer in the middle of the twentieth century. The later

development of the Fast Fourier transform (FFT) algorithm in 1965 and the sub-

sequent inventions of microchips for signal processing accelerated the application

of Fourier analysis based signal processing.

In the twenty-first century, Fourier analysis technology is widely used in our

daily activities, and as a natural consequence, the technology is “hidden in a black

box” in most of its applications. Even experts in the field use this technology

without knowing details of how Fourier techniques are implemented. However,

engineers, who wish to play important roles in developing future technologies,

must do more than just deal with black boxes. Engineers must understand the basis

of the present Fourier technology in order to create and build up new technologies

based on it.

This book is intended so that high-school graduates or first or second grade

college students with the basic knowledge of mathematics can learn the Fourier

analysis without too much difficulty. In order to do that, explanations of equations
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start from the very beginning and details of derivation steps are also described.

This is very rare for this kind specialized book.

This book also deals with advanced topics so that engineers who are presently

involved in signal processing work can get hints to solve their own specific pro-

blems. Ways of thinking that lie behind or lead to theories are also described, that

are a must to apply theories to practical problems.

This work comprises two volumes. Seven chapters are included in Volume I,

titled “Digital Fourier Analysis: Fundamentals.” Volume II, titled “Digital Fourier

Analysis: Advanced Techniques” contains six chapters. As the titles indicate, more

advanced topics are included in Volume II. In this sense, the former may be

classified as a text for undergraduate course and the latter for graduate course.

Notice, however, that Volume I includes some advanced topics, whereas Volume

II contains necessary items needed for a better understanding of Volume I.

Following are a brief explanation of each chapter. First, the contents of Volume

I are briefly described.

Chapter 1 commences with an explanation of the impulse as being the limit of

the summation of cosine waves with ascending frequencies. This chapter shows

that all waveforms can be synthesized by the use of Fourier series, i.e. that sine and

cosine waves are the basis of waveform analysis. It then gives a geometric image

to Euler’s formula by explaining that the projections of a constantly rotating vector

around the origin of the rectangular coordinate system onto their real and ima-

ginary axes are the cosine and sine functions, i.e. the real and imaginary parts of a

complex exponential function, respectively. The reader will be naturally guided to

the concepts of instantaneous phases and instantaneous frequencies through this

learning.

Chapter 2 starts with the theory on how to determine coefficients of the Fourier

series of a periodic function. It investigates the properties of the Fourier series,

showing why high order coefficients are needed for the waveform synthesis and

what kind of properties the Fourier series of even and odd function waveforms

have. Then, it shows that the Fourier series expansion becomes the Fourier

transform pair when the period is made infinitely large.

Chapter 3 deals with the problems encountered when one tries to express a

continuous waveform by a sequence of numbers in order to numerically compute

the Fourier transform. For that purpose, it investigates the most important issue in

digitization: how to handle the sampling time based on the knowledge of the

Fourier series; and guides the reader automatically to the sampling theorem. Then

the relation between a continuous waveform and the discrete numerical sequence,

which is the sampled version of the waveform, is discussed.

Chapter 4 guides you to the definition of the discrete Fourier transform (DFT)

and the inverse Discrete Fourier transform (IDFT). The DFT transforms a

numerical sequence with a finite length to another numerical sequence with the

same length, and the IDFT transforms the latter sequence back to the former

sequence. Then this chapter clarifies that these sequences are periodic and they

have the length (data number) of the sequence as their periodicity. For later

applications, the Discrete Cosine transform (DCT) is derived from basic concepts.
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The DCT describes the relationship between time domain and frequency domain

functions using only cosine functions.

Chapter 5 explains a principle of the FFT which drastically decreases the

number of multiplications and summations required in the computation of the

DFT. The FFT is an innovative numerical calculation method which has greatly

expanded the range of application of Fourier analysis.

Chapter 6 discusses several items such as: (1) properties of the spectrum given

by the DFT of a N-sample sequence (waveform) taken from a long chain of data;

(2) its relation with the spectrum of the original data; (3) the relationship between

sampling time and frequency resolution, and (4) a reason why new frequency

components that do not exist in the original waveform are produced by the DFT;

and so on.

Chapter 7 studies details of various weighting functions (time windows) applied

to waveforms in order to obtain stable and accurate spectra (frequencies and

amplitudes) by the DFT approach.

The explanation of Volume I ends here. But, as recognized by readers, the

description is much insufficient for the use of Fourier Analysis in the practical

applications. More knowledge described in Volume II will be required for deep

understanding the descriptions of Volume I and for the application of Fourier

analysis to wide area.

Chapter 1 of Volume II guides the reader through the use of a convolution of

two sequences to be calculated from an input and the system’s impulse response. It

becomes clear that the Fourier transform of a convolution can be expressed as the

multiplication of the two respective Fourier transforms, and this leads to the

exploration of a new way that a convolution in the time domain can be calculated

in the frequency domain. Since an issue based on DFT periodicity is raised at this

time, this chapter discusses the issue and explains in detail how to obtain the

correct result.

In Chap. 2, the correlation function that quantitatively expresses the degree of

similarity between two time sequences is derived. The difference between the

correlation and convolution functions is that the directions of the time axes of one

of two time sequences in the process of multiplication and summation calculation

are opposite with each other. The Fourier transform of the correlation function of

two time sequences is given as a cross-spectrum of the two functions in the

frequency domain, which will be discussed in the next chapter.

Chapter 3 introduces a Cross-spectrum method that uses multiplication of

spectra. The Cross-spectrum technique is a powerful method for uncovering an

original function as an inverse process based on the convolution or the correlation

function. This is a good example of the DFT’s usefulness. DFT periodicity is the

most important factor. This chapter illustrates the kind of problems related to

Cross-spectrum analysis, and discusses how to avoid errors, by taking advantage of

periodicity.

Chapter 4 introduces the concept of a Cepstrum which is defined as a Fourier

transform of the logarithm of a spectrum. This useful method of analysis is based

on a little quirky idea. Cepstrum analysis is a powerful method of signal analysis
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for detecting hidden information that is not visible from the Fourier transform of a

time domain signal.

Chapter 5, at first, analyzes the problem that occurs when a waveform is

depicted as a rotating vector in order to obtain its envelope. Since an orthogonal

waveform of the original waveform is needed to get a rotating vector, the question

of how to derive the orthogonal function in the frequency region is discussed. The

calculation of the orthogonal function in the time region by applying the inverse

Fourier transform to the orthogonal function in the frequency region results in the

Hilbert transform. While the Hilbert transform is a demodulation of the amplitude-

modulated wave to get an envelope as a length of rotating vector, it is, also, a

demodulation of the frequency-modulated wave, producing an instantaneous fre-

quency which is the rotating speed of the vector.

Chapter 6 touches upon two-dimensional DFT and DCT methods. At first, a

definition of the two-dimensional DFT is given. When the reader tries to obtain

two-dimensional spectra of images with basic patterns, one can easily guess its

output from the relation between the one-dimensional waveform and its spectrum.

The reader will understand that one-dimensional Fourier transform procedure is an

important base. By showing definitions of DCT and samples of two-dimensional

DCT spectra of simple images, the concept of how the information compression by

DCT takes place will be explained with concrete examples.

One of the features of this book is that it contains a number of figures that have

an interactive supplement. (The supplementary files can be downloaded from

http://extras.springer.com). Figures with this feature are indicated by their caption,

which includes the file name of the corresponding animation file. To view the

animation, click the corresponding exe file to start the program, and then click

the green “start” button after data input and/or selection of conditions. Then the

program starts the calculation based on the theory, input data, and conditions. The

reader may see unexpected results occasionally. As they have their own causes or

reasons, it will be worthwhile for the reader to think of them for a deeper

understanding. Note that the programs are written in Visual Basic and may not

work on all computers.

I would like to emphasize the following through my long experience as a writer

of this book and also as a user of this book in my classes and other lectures. The

reader will lose more than he/she earns if he/she prematurely thinks that he/she has

understood one topic after running a related program and briefly looking at the

result. The reader must run programs with various data and conditions and look at

the corresponding results and then he/she must think how they are related with

each other. With the attached programs, the reader can do these easily while

having some fun.

Very few references are listed at the end of this book compared to the contents

of this book. This is because most of the theories are described from the beginning,

and as a result this book became self-contained. Theory-oriented readers should

refer to books such as [4]–[9] in Reference. Since the Fourier analysis techniques

are developing day by day, the readers should refer to current journals in the

related area.
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Finally, although I would like to express my sincere appreciation to all those

who gave me tremendous encouragement and cooperation to write this book, I

must apologize that I cannot list up all of their names. My excuse is that so many

people assisted me in writing this book.

This book, originally published in Japanese, was translated first by Dr. Hideo

Suzuki, a former professor of Chiba Institute of Technology, Mr. Jin Yamagishi, a

technology management consultant of JINY Consultant Inc., and myself, and then,

very carefully checked and corrected by Dr. Harold A. Evensen of Michigan

Technological University in USA and Dr. Leonard L. Koss of Monash University

in Australia.

I would like to express my sincere appreciation to all of those who contributed

to publishing this book.

February 2013 Ken’iti Kido
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Chapter 1
Sine and Cosine Waves

All time waveforms that occur can be synthesized by sine and/or cosine waves.*
Even the ideal impulse function, which is an idealized time history, can be
expressed in a mathematical limit as the sum of sine and/or cosine waves.
Waveforms that can be observed are approximated by the sum of a finite number
of the sine and/or cosine waves and the accuracy of the approximation is improved
as the number of sine and/or cosine waves increases. Thus, understanding of the
role of sine and cosine waves is of great importance as the basis of the waveform
(signal) analysis. First, it will be demonstrated that various waveforms are syn-
thesized by the sum of sine and/or cosine waves. Then, the property of sine and
cosine waves will be examined.

The terms given by sin(2pft) and cos(2pft) are defined as sine and cosine waves
(or functions), respectively, where f is frequency. Hz, and t is time, s. Occasion-
ally, the term ‘‘sine wave’’ is used to imply both sine and cosine waves.

1.1 Synthesis of an Impulse by Cosine Waves

All real waveforms are composed by adding sine and/or cosine waves; this will be
demonstrated using the case of an impulse time history.

The left-hand side chart of Fig. 1.1 shows cosine waves with t = 0 at the center
of the horizontal time axis. All waveforms take the value 1 at t = 0 except for the dc
(direct current) component, which is equal to 0.5. The first ac (alternating current)
or fluctuating component has the frequency f, the second component 2f, the third 3f,
and so on. The n-th curve from the top of the right-hand side chart shows the
synthesized waveforms using up to the n-th component starting from the dc (0-th
order). The value of the synthesized waveform at t = 0 increases monotonically as
the number of the components increases. At times other than t = 0 and its vicinity,
the values alternate between 1 and -1. Since always the higher frequency (i.e.,
shorter time period) components are added one by one, the amplitude cannot
increase except in the vicinity of t = 0. As a result, as the number of added
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components increases, the values around t = 0 get larger and larger, and the width
of the ‘‘spike’’ gets narrower and narrower.

From the above discussion, we can say that the synthesized waveform com-
posed of an infinite number of cosine waves (components) becomes an impulse,
which has an infinitely large height and an infinitesimally narrow width.

1.2 Synthesis of Rectangular Waveforms by Sine
and Cosine Waves

Since a waveform such as the impulse function can be synthesized by sine and
cosine functions, it is natural to consider that other waveforms can be synthesized
in a similar manner.

The accuracy of a synthesized rectangular wave increases as the number of
cosine waves increases in the summation and this is shown in Fig. 1.2. The left-
hand side chart shows added waveforms from the 1st component, up to the 9th
order component. Figure 1.2 shows that the synthesized waveform (thick line)
approaches the target waveform (thin line) as the number of the added components
increases. The period of the ‘‘1st’’ order cosine wave is the same as the period of
the rectangular wave. The 2nd, 3rd, …, and n-th order cosine waves have the

Fig. 1.1 Synthesis of an impulse by adding cosine harmonics with matched phases (zero initial
phases). Animation available in supplementary files under filename E1-01_PP.exe
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periods of 1/2, 1/3, …, and 1/n of the 1st order component. The 0th order is the dc
component. Figure 1.2 clearly shows that the rectangular wave can be synthesized
by cosine waves.

The right-hand chart shows the size of the individual components that are
necessary to compose the rectangular wave. The filled bars represent the added
components and the empty bars represent un-added components. The upward and
downward bars indicate positive and negative amplitudes of the components,
respectively. The positions of the bars on the horizontal axis correspond to their
frequencies. Note that the even order frequency components are not necessary in
order to compose the rectangular wave shown in Fig. 1.2.

The third row of the left-hand side chart shows the waveform that contains
components up to the 5th harmonic of the square wave as can be seen from the
same row of the right-hand-side chart. As the order of the added components
(indicated by the filled bars) increases, the synthesized waveform approaches that
of the rectangular waveform. Each component of a waveform is called a ‘‘spec-
trum.’’ In the present case, the spectrum is not continuous and has an infinitely
narrow band and, therefore, it is called a ‘‘line spectrum.’’ If the waveform is
periodic, the wave consists of only line spectra. If the waveform is symmetric with

Fig. 1.2 Process of synthesizing a rectangular wave by adding cosine waves with matched
phases (zero initial phases). Animation available in supplementary files under filename E1-
02_Rectangle.exe
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respect to the origin of the time axis, it comprises only cosine waves. If the
waveform is rotationally symmetric, it comprises only sine waves. In general, any
waveform consists of sine and/or cosine waves.

1.3 Time Period

In Fig. 1.2, one half of a rectangle appears on either side of the wave. This
indicates that an infinite number of rectangles may appear with the period T on the
time axis. Other impulses in Fig. 1.1 are not observed simply because only
the range of the time axis from -T/2 to T/2 is shown, where T is the time period of
the cosine wave of the lowest order. Figure 1.3 shows the time axis in the range
slightly larger than the twice the period of the lowest order cosine wave. Now,
three impulses are visible, with the separation between them equal to the period of
the lowest order cosine wave.

From the above discussion, we can say that any wave that comprises the 1st and
higher order components is periodic with the period equal to the period of the 1st
order component. For this reason, the sine and/or cosine waves with the period
equal to that of the periodic wave is called the fundamental (component) and other

Fig. 1.3 Synthesis of series of impulses with period T by adding cosine waves with period T and
its harmonics with matched phases (zero initial phases). Animation available in supplementary
files under filename E1-03_PeriodicImpulse.exe
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components with frequencies equal to the integer multiples of the fundamental are
called harmonics.

In order to synthesize a wave with only one impulse in the infinite time length,
T (the period of the fundamental component) must be made infinite. However, it is
not necessary to deal with an infinitely long wave for practical applications. A
single event wave such as an impulse can be analyzed by assuming that the wave is
periodic, with period long enough to separate the events so that they do not interact
with each other.

1.4 Harmonics and Waveforms

The rectangular wave shown in Fig. 1.2, which is 1 during half of the period and 0
during the other half of the period, with the center of the rectangle on the origin of
the time axis, is composed only of odd order harmonics. If the durations are not
equal, even-order harmonics are also necessary. The rectangular wave in Fig. 1.4,
which is 1 only during 1/5 of the period, requires more harmonics than the one in
Fig. 1.2. The graphical representation of Fig. 1.4 is the same as the one in Fig. 1.2.

Fig. 1.4 Process of synthesizing a rectangular pulse with a short duration by adding harmonic
cosine waves. Animation available in supplementary files under filename E1-04_Rectangle.exe
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However, it looks quite different in the way that the harmonics up to 4th are
positive, and those from the 6th to 9th are negative. The pulses in Fig. 1.4 are
shorter than in Fig. 1.2, indicating that the former changes more rapidly than the
latter. A wave that changes rapidly contains more harmonics than a wave that
changes more slowly.

The extreme case of the short pulse is the impulse. In this case, the amplitudes
of harmonics are frequency independent as seen in Fig. 1.1. On the contrary, a
half-sine wave shown in Fig. 1.5 is approximated well with a small number of
low-order harmonics. As the second waveform from the top shows, the difference
between the thin line (half-sine wave) and the thick line (approximation) is very
small. Even when the third harmonic is added, the thick line does not change much
(see the third waveform from the top).

Figure 1.6 shows one example of a saw-tooth waves which has a vertical sharp
edge indicating that it needs a lot of harmonics for a good approximation. This is a
general property of the waveform synthesis.

The waveform shown in Fig. 1.6 is different from those shown in Figs. 1.1, 1.2,
1.3, 1.4 and 1.5. The saw-tooth wave shown in Fig. 1.6 is anti-symmetric with
respect to t = 0 (magnitudes at t = -t0 and t0 are equal but their signs are oppo-
site), while the waveforms shown in Figs. 1.1, 1.2, 1.3, 1.4 and 1.5 are symmetric
(values at t = -t0 and t0 are equal). The symmetric waveforms can be synthesized

Fig. 1.5 Synthesis of a half-wave rectified sine wave. Note the rapid approach to the target
waveform. Animation available in supplementary files under filename E1-05_HalfSine.exe
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with only symmetric cosine waves, whereas the anti-symmetric waveforms can be
synthesized only with anti-symmetric sine waves.

The programs used to draw Figs. 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6 are attached to this
book. Each program will run if the user clicks the figures in the PowerPoint slides.
Conditions of the waveform synthesis can be varied and their effects on the wave-
form can be observed. Experience of synthesizing various waveforms will help the
reader to better understand the relations between the waveforms and their spectra.

Let us summarize the terminology used thus far. The waveforms in Figs. 1.1, 1.2,
1.3, 1.4, 1.5 and 1.6 are periodic with period T, and their components are sine and
cosine waves. Among them, the sine and cosine waves with period T, i.e., with
frequency f0 (= 1/T) are the fundamental waves. The frequency f0 is the fundamental
frequency. The waves with integer multiples of the fundamental frequency f0 are the
2nd, 3rd, … harmonics. Every periodic waveform is synthesized by a combination of
the fundamental and the harmonics. Higher harmonics are necessary in order to
compose waveforms with sharper edges. Since the fundamental wave and harmonics
are sine and cosine waves of the corresponding frequencies, they are also referred to
as frequency components or frequency spectra. The periodic waves are composed
only with harmonics with multiple integers of the fundamental frequency. They are
indicated by lines as shown in the right-hand side chart of Fig. 1.2. These compo-
nents are called line spectra.

Fig. 1.6 Process of synthesis of a saw-tooth wave by adding only sine harmonics. Animation
available in supplementary files under filename E1-06_SawTooth.exe
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1.5 Fourier Series

So far, we have used only figures to explain the synthesis concept so that the
readers can grasp intuitive physical images of waves and their constituents. It is
now necessary to use equations for further development.

Figures 1.1 and 1.3 show that the impulse is synthesized by adding an infinite
number of cosine waves with equal amplitudes. This is expressed by the following
equation:

dðtÞ ¼ 0:5þ cosð2p
1
T

tÞ þ cosð2p
2
T

tÞ þ cosð2p
3
T

tÞ þ � � � ð1:1Þ

The constant 0.5 on the right-hand side can be considered a cosine wave with
frequency 0. The second term is the fundamental component with the period
T. Therefore, if T is made large, the distances between impulses become large and
the fundamental frequency becomes small. At the limit of T going to infinity, the
fundamental frequency becomes zero and there exists only one impulse in the
infinite time span.

Expressing a periodic waveform by the fundamental and harmonics is referred
to as a Fourier series expansion. The coefficient (amplitude) of each component is
referred to as a Fourier coefficient. The line spectra introduced at the end of
Sect. 1.2 are one example of Fourier coefficients.

In general, a periodic wave x(t) with the period T can be expressed by the
summation of cosine and sine waves with frequencies that are integer multiples of
the fundamental frequency 1/T.

xðtÞ ¼ A0 þ A1 cosð2p
1
T

tÞ þ A2 cosð2p
2
T

tÞ þ A3 cosð2p
3
T

tÞ þ � � �

þ B1 sinð2p
1
T

tÞ þ B2 sinð2p
2
T

tÞ þ B3 sinð2p
3
T

tÞ þ � � �

¼ A0 þ A1 cosð2pf0tÞ þ A2 cosð4pf0tÞ þ A3 cosð6pf0tÞ þ � � �
þ B1 sinð2pf0tÞ þ B2 sinð4pf0tÞ þ B3 sinð6pf0tÞ þ � � �

ð1:2Þ

where An and Bn (n = 1, 2, 3, …) are the Fourier coefficients. The component A0

with zero frequency is a constant and therefore it is referred to as the DC (direct
current) component; it represents the average value of the waveform over the
period. The method of Fourier expansion will be introduced in Chap. 2.

The fundamental frequency f0 (= 1/T) becomes infinitely small as the period
T becomes infinitely large as a limit value. In this case, the components are
distributed continuously on the frequency axis, and the spectrum is called a con-
tinuous spectrum.
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1.6 Shift of Harmonics on the Time Axis

We considered only the amplitudes of harmonics in the previous sections. How-
ever, if the harmonics are each shifted on the time axis, the synthesized waveform
is changed.

For example, as shown in Fig. 1.7, if we shift the harmonics randomly (with-
in ± T/2) on the time axis, the composed waveform becomes quite different from
the impulse shown in Fig. 1.1.

The composed waveform always changes if the harmonics are shifted on the
time axis. Fig. 1.8 shows the case when the harmonics in Fig. 1.2 are shifted
randomly within ± 0.2T. As these two cases show, the waveform is always
affected by the relative time shifts of harmonics from the fundamental component.

The waveforms shown in Figs. 1.1, 1.2, 1.3, 1.4 and 1.5 are symmetric with
respect to t, i.e., x(t) = x(-t), and therefore, they are composed only by cosine
waves. In contrast, the anti-symmetric waveforms, which have the property
x(t) = -x(-t), are composed only of sine waves. In general, any waveform can be
expressed by the summation of sine and cosine waves as shown by Eq. (1.2). Now,
let us look at the contributions of sine and cosine components to a rectangular
wave whose center is shifted in time from t = 0.

Fig. 1.7 Impulse waveform change due to random phase of harmonics used to synthesize the
waveform. Cosine waves have the same magnitudes as those given in Fig. 1.1, but they are
randomly shifted on the time axis. Animation available in supplementary files under filename E1-
07_PP.exe
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The two center columns of Fig. 1.9 are the Fourier cosine (left) and sine (right)
coefficients of each order (An and Bn in Eq. 1.2). Those of the 0th order (dc
component) are 0.692 and 0, respectively. Those of the 1st order (fundamental)
component are 1 and 0.509, respectively. The left-hand side of Fig. 1.9 shows the
waveforms of the cosine (solid lines) and sine (dotted lines) components added up
to 0th, 1st, 2nd, … to 15th orders. The solid lines are always symmetric and the
dotted lines are always anti-symmetric. The right-hand side of Fig. 1.9 shows the
added waveforms of the cosine and sine components. It is the same rectangular
waveform as that shown in Fig. 1.2 except that the waveform in Fig. 1.9 is shifted
on the time axis. In the program attached to this book, the reader can change the
starting and ending times (s1 and s2) of the waveform.

Another way of understanding the roles of sine and cosine waves is that the
original rectangular wave can be divided into two rectangular waves, one is
symmetric and the other is anti-symmetric. The Fourier series of the former can be
represented only by cosine waves (even functions) and that of the latter only by
sine waves (odd functions). Running the program for various waveforms will help
the reader understand the necessities and roles of the sine and cosine waves for the
Fourier series expansion.

Fig. 1.8 Process of synthesizing a rectangular wave by adding cosine waves. Cosine waves have
the same magnitudes as those in Fig. 1.2, but they are randomly shifted on the time axis
within ± 0.2T. Animation available in supplementary files under filename E1-08_Rectangle.exe
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It has been mentioned that, for correct synthesis of the original waveform, the
sine and cosine components should not be shifted in time. A shift of a wave on the
time axis is equivalent to the phase change of the wave. In order to properly
understand the phase, the relation between complex exponential functions and real
sine and cosine functions must be made clear.

1.7 Complex Exponential Functions and Sine and Cosine
Functions

A complex exponential function is an exponential function with a complex power.
Since this book deals with signals, an exponential function est is treated, where s is
a complex number with s- = r + jx (r and x are real numbers, j is the imag-
inary unit, i.e.

ffiffiffiffiffiffiffi

�1
p

, and t is time. The case with s- = jx (purely imaginary) is
the most important. The function ejxt has a cosine function as its real part and a
sine function as its imaginary part.

ejxt ¼ cos xt þ j sin xt ð1:3Þ

Fig. 1.9 Cosine (real) and sine (imaginary) components that comprise a non-symmetric
rectangular wave. Animation available in supplementary files under filename E1-
09_Synthesis.exe
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Equation (1.3) is referred to as Euler’s formula. In this book, x represents an
angular frequency, radians/second, which is related to the frequency f, Hz, by

x ¼ 2pf ð1:4Þ

In most theoretical books, x is used instead of f. But since f is intuitively easy to
understand, it will be used throughout this book. The Euler’s formula is rewritten
as

ej2pft ¼ cos 2pft þ j sin 2pft ð1:5Þ

The plane defined by the rectangular coordinate system with the horizontal axis
(or real axis) representing real numbers and the vertical axis (or imaginary axis)
representing imaginary numbers is referred to as the complex plane. Any complex
number can be given its own point on the complex plane. The complex number
defined by Eq. (1.5) has its real value cos2pft and imaginary value sin2pft on the
complex plane. As time t increases, the point on the complex plane moves along the
circle with radius 1. This is because the radius is given by

jej2pftj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcos 2pftÞ2 þ ðsin 2pftÞ2
q

, which is equal to 1. In order to better represent

the point ðcos 2pft; sin 2pftÞ, a vector (an arrow) with its starting point at the origin
(0,0) and its ending point at ðcos 2pft; sin 2pftÞ is considered. At t = 0 the front end
of the vector is on the horizontal axis (1,0), and as t increases, the vector rotates
counterclockwise with the angular speed of 2pf. For this reason, the vector defined
by Eq. (1.5) is referred to as a rotating vector. In general, the counterclockwise and
clockwise rotations are considered as positive and negative rotations, respectively.
The frequency, f, is considered as the number of rotations per second. If it is
positive, the rotation is counterclockwise.

The projection on the horizontal axis of the vector rotating in the positive
direction is the real part of Eq. (1.5). The trajectory of the projection of this point
on the horizontal axis is the cosine wave shown in Fig. 1.10, where the vertical
axis is used as the time axis with the positive direction downward. In the same
way, the trajectory of the projection of the point on the vertical axis is the sine
wave shown in Fig. 1.10, where the horizontal axis is used as its time axis. By
comparing Fig. 1.10 with Eq. (1.5), the meaning of the Euler’s formula will
become clear. The reader should refer to the program attached to this book. If the
reader runs the program, he/she can see the rotating vector, which will help him
understand the practical use of Euler’s formula.

The first term of the right-hand side of Eq. (1.5) is the cosine wave and the
second term is the sine wave. If they are taken as real and imaginary parts,
respectively, the exponential function ej2pft can be considered as a vector which
rotates f times per second around the origin. One period of a wave corresponds to
one rotation of the vector. The function ej2pft is referred to as the complex
exponential (or sinusoidal) function.
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So far counterclockwise rotating vectors have been considered. What would
happen if the vector rotates clockwise? Time can never go in reverse. Thus, the
frequency f must be negative to represent the vector rotating clockwise. If we
consider that f is the number of waves in one second, it is not easy to understand
negative frequency. However, considering vectors rotating in positive (counter-
clock wise) and negative (clock wise) directions, the concept of the negative
frequency can be understood as well as the concept of positive frequency.

From the above discussion, it can be concluded that the complex exponential
function with negative frequency, e�j2pft, is a vector rotating in the negative
direction, i.e., clockwise. Its projection on the real axis (horizontal axis) is the
same as ej2pft, but the projection on the imaginary axis (vertical axis) is
� sinð2pftÞ. It is expressed by the equation:

e�j2pft ¼ cos 2pft � j sin 2pft ð1:6Þ

Figure 1.11 shows the rotating vector in the negative (clockwise) direction and
its projections. The cosine wave is the same as that in Fig. 1.10 and the sine wave
has the opposite sign.

Figure 1.12 shows two vectors rotating in opposite directions. If we add the two
vectors, the cosine wave amplitude is doubled and the sine wave amplitudes cancel
with each other. This concept is expressed by

ej2pft þ e�j2pft ¼ 2 cos 2pft ð1:7Þ

Equation (1.7) is simply obtained by adding Eqs. (1.5) and (1.6). Figure 1.12
will help the reader understand the physical meaning of Eq. (1.7).

Fig. 1.10 Trajectory of a
unit vector rotating around
the origin of the complex
plane with a positive constant
angular velocity. Animation
available in supplementary
files under filename E1-
10_RotVector.exe
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From Eq. (1.7), the cosine wave can be expressed by positive and negative
frequency components.

cos 2pft ¼ ðej2pft þ e�j2pftÞ=2 ð1:8Þ

Similarly,

sin 2pft ¼ ðej2pft � e�j2pftÞ=2j ð1:9Þ

Fig. 1.11 Trajectory of a
unit vector rotating around
the origin of the complex
plane with a negative
constant angular velocity.
Animation available in
supplementary files under
filename E1-
11_RotVector.exe

Fig. 1.12 Trajectories of two
vectors rotating around the
origin of the complex plane
with identical positive and
negative constant angular
velocities. Animation
available in supplementary
files under filename E1-
12_RotVector.exe
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1.8 Phases of Cosine and Sine Functions

In Sect. 1.7, the sine wave (function) is expressed as the projection of the rotating
vector on the imaginary (vertical) axis. If the vector at t = 0, is tilted from the
horizontal axis, the sine function is shifted on the time axis. The shift is propor-
tional to the initial angle of rotation from the horizontal axis. Let / be the initial
angle at zero time. Then, the projection of the rotating vector with the initial angle
/ on the vertical axis is given by

sinð2pft þ /Þ: ð1:10Þ

The angle / is referred to as the initial phase and sin(2pft + /) is referred to as
a sine wave with the initial phase (shift) /. If / = 0, the initial vector lies on the
positive horizontal axis, and the sine wave has 0 time shift as shown in Fig. 1.13a.
Figure 1.13b shows the case with / = 40�. The sine wave has the positive (or
leading) phase since it starts from / = 40�. If the vector starts with an angle
below the positive real axis, it is said that the wave has a negative phase (or phase
delay).

The phase is expressed by the angle of the vector. The phase of 90� is the right
angle and the phase of 360� is one rotation. Since one rotation is 2p radians, the
phase can be expressed in radians as well as degrees. The radian expression is used
most often in theoretical equations, the reason will be made clear soon.

Waves with different initial phases will now be examined. Figure 1.14 shows the
sine waves with 0�, ±30�, ±60�, and ±90� initial phases. The waves in Fig. 1.14
are drawn from the top to the bottom in the order of the phase advance. Note that the
peaks of the waves shift from the left to the right as the initial phase reduces (from
the top to the bottom). This means that the peaks of a wave with a more delayed
phase comes later than those of a wave with a more advanced phase (remember that
the time progresses from the left to the right on the horizontal axis). On the right-
hand side of Fig. 1.14 the initial vectors are also shown. If the vectors are compared
with the corresponding waveforms, it will be understood that the upper waves in the
figure are more advanced in their phases than the lower ones.

Fig. 1.13 Phases of a sine wave shown by projections of rotating vectors on the imaginary-axis
(a:0�, b: 40�). Animation available in supplementary files under filename E1-13_a_VsinPhase.exe
and E1-13_b_VsinPhase.exe. a sin(2pft). b sin(2pft+/) /=40�
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The cosine and sine waves have a 90� or p/2 radian phase difference with each
other. In other words, they are the same wave except that they are 1/4 wavelength
shifted on the time axis. This is expressed by the trigonometric equation

cosð2pftÞ ¼ sinð2pft þ p=2Þ ð1:11Þ

This can also be corroborated by running the program of Fig. 1.10 or 1.13.
Now, Fig. 1.13 will be reviewed by using simple equations. Assume that two

sine waves are expressed by

x1ðtÞ ¼ sinð2pftÞ ð1:12Þ

and

x2ðtÞ ¼ sinð2pft þ uÞ ð1:13Þ

In this case, x2(t) leads x1(t) by the angle / (assuming that /[ 0) in phase. On
the other hand, the wave

x3ðtÞ ¼ sinð2pft � /Þ ð1:14Þ

is a sine wave with a phase delay of / compared to the wave x1(t).
Two types of ‘‘phase angle of a signal,’’ are considered. One is the total phase

ð2pft þ /Þ within the parenthesis of the sine or the cosine function, and the other is
the phase difference / (or the initial phase at t = 0). The latter is used very often

Fig. 1.14 Reference sine wave (middle) and sine waves with phase-lead (above) and with phase
delay (below). Animation available in supplementary files under filename E1-14_Sin7phase.exe
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because there are many cases when only the phase differences between waves, or
the initial phase of a single wave, is of importance.

The unit of phase angle is the radian, and one rotation in the complex plane is
equivalent to 2p radians. It can also be expressed as 360� (degrees) of rotation. The
degree is more familiar than the radian in engineering practice. However, in
computer software, the values of sine and cosine are calculated using radians.
Therefore, it is recommended that the reader use radians in the computer program
or at least make sure which unit (radian or degree) is employed in the specific
function being used. If necessary, change degrees to radians, or vice versa,
beforehand.

1.9 Synthesis of Sine Wave with Arbitrary Phase

Formulae of the trigonometric functions, sine and cosine, with initial phase / are
expressed as

sinð2pft þ /Þ ¼ cosð/Þ sinð2pftÞ þ sinð/Þ cosð2pftÞ
cosð2pft þ /Þ ¼ cosð/Þ cosð2pftÞ � sinð/Þ sinð2pftÞ

ð1:14Þ

As these equations show, by adding sine and cosine functions (with the same
frequency and zero initial phases), a new sine or cosine wave with a different phase
is produced. In Fig. 1.15, an example of producing a sine wave which leads in
phase by 30� is shown. Another approach will be given below.

Let the amplitudes of sine and cosine waves be As and Ac, respectively. The
summation of the two waves gives one sine wave that has a positive or negative
phase depending on the relation between As and Ac:

As sinð2pftÞ þ Ac cosð2pftÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s þ A2

c

q As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s þ A2

c

p sinð2pftÞ þ As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s þ A2

c

p cosð2pftÞ
 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s þ A2

c

q

cos / sinð2pftÞ þ sin / cosð2pftÞð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s þ A2

c

q

sinð2pft þ /Þ

ð1:15Þ

where

/ ¼ arccosð As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s þ A2

c

p Þ ¼ arcsinð Ac
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s þ A2

c

p Þ ¼ arctanðAc

As
Þ ð1:16Þ
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The dependence of the phase / given by Eq. (1.16) on As and Ac are shown by
the upper right chart in Fig. 1.15. If we assume that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s þ A2

c

p

¼ 1, As and Ac are
given by

As ¼ cosð/Þ; Ac ¼ sinð/Þ ð1:17Þ

In the chart, As is the vector on the real axis and the Ac is the vector on the
imaginary axis, both shown by thick lines. The resultant vector has the angle
(= phase) /, which is considered positive if the vector is on the upper half plane.

In the explanations up to now, the term ‘‘leading in phase’’ is equivalent to
‘‘shifting the wave towards the negative time direction.’’ This concept is correct
for a wave at any frequency. The point is that the equivalent time shift corre-
sponding to a particular phase difference is dependent on the frequency. Then a
question arises, ‘‘When a wave with multiple frequency components is shifted in
time without changing its waveform, what occurs to the phases of each compo-
nent?’’ An answer is easily obtained if phase shifts of individual components of an
impulse for a given time shift are considered.

Figure 1.16 shows a composition of an impulse which is shifted by s on the
time axis. In this case all harmonics as well as the fundamental must be shifted by
s. As the left-hand side chart shows, the same amount of time delay causes a
smaller amount of phase change for a lower frequency component and a larger
amount of phase change for a higher frequency component. The phase change
equivalent to the time delay is proportional to the frequency of the component.
This can be understood by the following way.

Fig. 1.15 Addition of sine and cosine waves to synthesize sine wave with phase u. Animation
available in supplementary files under filename E1-15_PhaseSynthesis_1.exe
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A cosine wave with time shift s is expressed as

f ðtÞ ¼ cosf2pf ðt � sÞg ¼ cosð2pft � 2pf sÞ ð1:18Þ

The above equation shows that the phase shift is given by

h ¼ �2pf s ð1:19Þ

If there is a time delay s, then a component with frequency f that comprises the
impulse has a phase shift �2pf s. This indicates that the time delay (or lead) of a
waveform is caused by the phase delays (leads) of individual components that are
proportional to their frequencies.

The impulse expressed by Eq. (1.1) is an impulse located at t = 0. The impulse
located at t = s, as shown in Fig. 1.16 is expressed by the equation below.

dðt � sÞ ¼ 0:5þ cosð2p
t � s

T
Þ þ cosð2p

2t � 2s
T
Þ þ cosð2p

3t � 3s
T
Þ þ � � �

ð1:20Þ

Fig. 1.16 Components that comprise the impulse with time delay s. The phase delay of each
component is proportional to its frequency. Animation available in supplementary files under
filename E1-16_PP.exe
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which can be rewritten as

dðt � sÞ ¼ 0:5þ cosð2p
t

T
� 2p

s
T
Þ þ cosð2p

2t

T
� 2p

2s
T
Þ þ cosð2p

3t

T
� 2p

3s
T
Þ þ � � �

¼ 0:5þ cosð2p
t

T
� /1Þ þ cosð2p

2t

T
� /2Þ þ cosð2p

3t

T
� /3Þ þ � � �

ð1:21Þ

Equation (1.21) shows that the k-th order harmonic has the same amount of
phase delay (given by the product of the frequency (k/T) and the time delay s) as
that given by Eq. (1.19).

Equation (1.21) can also be written using Eq. (1.11) as

dðt � sÞ ¼ 0:5þ sinð2p
t

T
þ p

2
� /1Þ þ sinð2p

2t

T
þ p

2
� /2Þ þ sin 2p

3t

T
þ p

2
� /3Þ

þ � � �
ð1:22Þ

As has been already shown in Figs. 1.7 and 1.8, a waveform drastically changes
as the phases of the harmonics change with respect to the phase of the fundamental.
Normally, it is impossible to guess orders and phases of harmonics contained in the
signal. However, it is not so difficult to distinguish between two signals which
contain only the even and odd order harmonics if the orders of harmonics are low.

Figure 1.17 shows two waveforms; one is at the fundamental
(x1ðtÞ ¼ A1 cos 2pf1t) and 2nd order harmonic (x2ðtÞ ¼ A2 cosð2pf2t þ hÞ) and the
other is with the fundamental and the 3rd harmonic (x3ðtÞ ¼ A3 cosð2pf3t þ hÞ).
The phases of the harmonics are varied from 0 to 6p/4 within steps of p/4 radians.
The program attached enables the reader to change the order of harmonics. The
reader should try various cases to gain an understanding of the general trend of the
differences between the signals with even and odd components.

1.10 Instantaneous Phase and Frequency

From the previous explanations, we understand that the cosine wave cosð2pft þ /Þ
is the projection of the rotating vector on the real axis that has the angle / from the
real axis at t = 0. The angle of the rotating vectorð2pft þ /Þ, when measured
counterclockwise from the positive real axis, monotonically increases with time.
Based on this understanding, we call the time-dependent angle ð2pft þ /Þ the
instantaneous phase of the cosine wavecosð2pft þ /Þ, which can be expressed as a
function of time.

hðtÞ ¼ 2pft þ / ð1:23Þ
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After defining the instantaneous phase, we consider the relation between the
phase and the frequency. In general, the frequency is defined as the number of
repetitions of a cyclic wave in one second. Referring to Fig. 1.10, the cosine and the
sine waves are the projection of the rotating vector on the real-axis and imaginary-
axis, respectively. The frequency is actually the number of the rotation of the vector
in one second. After the vector rotates f times in one second, the phase increases by
2pf since one rotation is equivalent to 2p. This is also obvious from Eq. (1.23) since

hð1Þ � hð0Þ ¼ 2pf ð1:24Þ

Then the frequency can be obtained as the phase change in one second divided
by 2p.

f ¼ 1
2p
½hð1Þ � hð0Þ�

1� 0
ð1:25Þ

Equation (1.25) indicates that, if the rotation speed of the vector is constant, the
frequency is obtained by dividing the phase increase in every one second (which is
always equal to 2pf ) by 2p. However, if the rotation speed changes, the following
definition must be applied instead of Eq. (1.25):

f ðtÞ ¼ 1
2p

hðtÞ � hðt � DtÞ
t � ðt � DtÞ

�

�

�

�

Dt!0

¼ 1
2p

dhðtÞ
dt

ð1:26Þ

Fig. 1.17 Superposition of the fundamental and the 2nd harmonic waves (left) and the
fundamental and the 3rd harmonic waves (right). Phases from 0 to 6p/4 using p/4 radian steps
and are given to the 2nd and 3rd harmonics. Animation available in supplementary files under
filename E1-17_PhaseofHarmonic.exe
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This is the instantaneous frequency of any signal at any given time, where
hðtÞ ¼ 2pft þ u is the instantaneous phase. Instead of the instantaneous frequency,
the instantaneous angular frequency can be defined using the relation given by
Eq. (1.4).

xðtÞ ¼ 2pf ðtÞ ¼ dhðtÞ
dt

ð1:27Þ

The angular frequency is the rotational angle per second of the vector rotating
in the positive direction, which has the unit of rad/s (radian per second). From
Eqs. (1.23) and (1.26), it is concluded that the instantaneous frequency of a single
sine or cosine wave is constant (time-independent).

If a signal has multiple frequency components, then the speed of the rotating
vector is not always constant. As an example, consider a signal with two frequency
components, one component has a frequency of 1 and amplitude of 1, and the other
has a frequency of 2 and amplitude of 0.6, respectively. The locus of the rotating
vector is shown in Fig. 1.18. The vector of the first component rotates around the
origin with radius 1 and at a constant rotating speed (1 revolution per 1 s), which is

shown by the vector 01
�!

. The second component vector is drawn from the front

end of the vector 01
�!

, which is indicated by 12
�!

in the figure. Considering that the
second vector rotates with twice the speed of the first vector, it is understood that
the locus of the added vector 02 (shown by the thick line) becomes just like a

Fig. 1.18 Rotating vector, whose projection on the real axis is equal to 2½cos 2pft þ 0:6 cos 2p
ð2f Þt�, and the instantaneous frequency obtained from the angular velocity of the vector.
Animation available in supplementary files under filename E1-18_InstF.exe
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‘‘cardioid figure.’’ When the added vector is around the negative axis, it rotates in
the clockwise direction for a short period of time, resulting in the negative
instantaneous frequency. The instantaneous frequency is shown by the upper left
chart in Fig. 1.18. The details of instantaneous frequency are discussed in
Chap. 12.

If the reader runs the program, he will gain a better understanding of the
generating mechanism of the negative instantaneous frequency.

1.11 Exercise

1. What kind of wave is obtained if the phase of a sine wave is advanced by p=2?
2. What kind of wave is obtained if the phase of a sine wave is delayed by p=2?
3. What kind of wave is obtained if the phase of a cosine wave is advanced by

p=2?
4. What kind of wave is obtained if the phase of a cosine wave is delayed by

p=2?
5. What kind of wave is obtained if a sine wave and a cosine wave with the same

amplitude, frequency, and phase are added?
6. Show how to obtain a sine wave with a 30� initial phase from a sine wave with

0� initial phase?
7. Draw examples of waveforms of even functions.
8. Draw examples of waveforms of odd functions.

Fig. 1.19 Examples of waveforms (The maximum value is one for every figure)
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9. Two waveforms are at hand: one is made of a fundamental and its 2nd har-
monic and the other is made of the fundamental and the 3rd order harmonic.
How are the two distinguished?

10. If phase delays are introduced to all harmonics (including the 1st order) of a
periodic signal, with the property that they are each proportional to their
individual orders, how does the signal change?

11. Which waveforms in Fig. 1.19 can be synthesized using only sine waves?
12. Which waveforms in Fig. 1.19 can be synthesized using only cosine waves?
13. Which waveforms in Fig. 1.19 must be synthesized using both sine and cosine

waves?
14. The Fourier series expansion of (o) in Fig. 1.19 whose period is 2T is com-

posed of the cosine series and the sine series.

(a) Draw the waveform synthesized only by the cosine series.
(b) Draw the waveform synthesized only by the sine series.

15. The Fourier series expansion of (p) in Fig. 1.19 whose period is 2T is com-
posed of the cosine series and the sine series.

(a) Draw the waveform synthesized only by the cosine series.
(b) Draw the waveform synthesized only by the sine series.
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Chapter 2
Fourier Series Expansion

In Chap. 1, it was shown, mostly by using graphics, that various waves can be
expressed by a summation of sine and cosine functions, i.e., by the Fourier series
(see Eq. 1.5). In this chapter, first, a method of determining coefficients of Fourier
series will be given. A key idea is the integral of the products of sine and cosine
functions. It was shown that an addition of sine and cosine functions with the same
frequency can be combined into one sine or cosine function by introducing a phase
term (see Eq. 1.5). It is also possible to express an arbitrary function by a com-
bination of even and odd functions. The former and the latter can be expressed by
cosine and sine functions, respectively. The next step is the expression of a Fourier
series by complex exponential functions. The coefficients in this case are also
complex, but since the mathematical manipulations are simpler, this method will
be used most of the time hereafter.

The steps will be given one by one in this chapter and the reader should
understand that the same thing is dealt with from different angles. A derivation of
the Fourier transform pair as the extreme case of the Fourier series is the last
subject in this chapter.

2.1 Integrals of Sine and Cosine Functions

As the starting point of this chapter, Eq. (1.2) is shown here again. It states that a
waveform x(t) with period T can be expressed by sine and cosine functions with
frequencies kf0 ¼ k=T ðk ¼ 0; 1; 2; . . .Þ.

xðtÞ ¼ A0 þ A1 cos 2p
1
T

t þ A2 cos 2p
2
T

t þ A3 cos 2p
3
T

t þ � � �

þ B1 sin 2p
1
T

t þ B2 sin 2p
2
T

t þ B3 sin 2p
3
T

t þ � � �
ð2:1Þ

The first task is to find a way of determining the Fourier coefficients Ak and Bk

assuming that a periodic function can be represented in the form of Eq. (2.1). In
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order to determine the Fourier coefficients, both sides of Eq. (2.1) are multiplied
by cosf2pðk=TÞtg or sinf2pðk=TÞtg and integrated over one period T. Since the
integration can be carried out term by term, the basic problem is how to integrate
the sine, cosine, and their products over one period (T).

With regard to the first term A0, we need to integrate 1 � cosf2pðk=TÞtg or
1 � sinf2pðk=TÞtg. For k = 0, cosf2pðk=TÞtg ¼ 1 and sinf2pðk=TÞtg ¼ 0.
Therefore, their integration over period T is T and zero, respectively. It is obvious
that the integrations of sine and cosine functions over multiples of their funda-
mental period are zero if k C 1. Figure 2.1a shows sinf2pð1=TÞtg and
cosf2pð1=TÞtg, and Fig. 2.1b shows how the integrations vary as the integration
time is increased from t = 0 to T. Since the positive and negative areas are the
same, the integration over one period becomes zero for both cases. It should be
clear that the results are the same for higher orders (k C 2).

With regard to the higher order terms An (n C 1), it is necessary to investigate
the integration of cosf2pðk=TÞtg and sinf2pðk=TÞtg multiplied by either
cosf2pðm=TÞtg or sinf2pðm=TÞtg. It should be remembered that both k and m are
integers. The situation varies depending on the two cases: k = m and k 6¼ m. Since
equations of integration of products of sine and cosine functions are shown in
many books, an emphasis will be put on gaining a physical image of these
integrations.

Figure 2.2 shows integrations of cosine (a) and sine (b) functions multiplied by
themselves. In this figure (a), x1(t) and x2(t) are the same cosine functions with the
period T. The product of these two functions is shown by the curve W12(t) (thin
line). This function never takes negative values and it has the period of T/2 (twice
of the original frequency). The integration of W12(t) is shown by E12(t) (thick line),
which is a monotonically increasing function. The integration of W12(t) over
period T takes a finite value. A formula (equation) is needed to obtain this value,
which will be discussed in Sect. 2.2. In the case of the sine function, the inte-
gration takes a different path but the final value at t = T is the same as that of the
cosine function.

Fig. 2.1 Sine and cosine functions (top) and their integrations (bottom) starting from t = 0 and
ending at t = T. Animation available in supplementary files under filename E2-01_SinCos.exe
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Even if the functions x1(t) and x2(t) are both sine or cosine functions, if k 6¼ m,
the integration becomes zero. This is shown in Fig. 2.3 for the case with the
frequency ratio of 1:2 (Fig. 2.3a: cosine functions, Fig. 2.3b: sine functions). The
validity can be checked for any ratio of two integers (k and m) by running the
program.

If x1(t) is a cosine function and x2(t) is a sine function, the integration becomes
zero regardless of the values of k and m. Fig. 2.4 shows these cases.

In summary, it is concluded that the integrals of products of two sine or two
cosine functions are zero except for the cases when the frequencies of the two sine
or two cosine functions are identical (i.e., k = m). This statement is also valid for
the cases of integration of cosf2pðk=TÞtg and sinf2pðk=TÞtg. Each of these
functions is considered as the product of itself with the cosine function of zero
frequency (m = 0) since cosf2pð0=TÞtg ¼ 1. A set of functions with the property
that the integration of a product of any two of its functions over the same fixed
range is zero unless the functions are identical is called an ‘‘orthogonal system.’’ A
set of sine and cosine functions that have integer multiples of a fundamental
frequency has this ‘‘orthogonality’’ property.

Fig. 2.2 Integration of cos2f2pð1=TÞtg and sin2f2pð1=TÞtg. Animation available in supple-
mentary files under filename E2-02_SCIntegral.exe

Fig. 2.3 Integration of a cosf2pð1=TÞtg � cosf2pð2=TÞtg and b sinf2pð1=TÞtg � sin sf2p
ð2=TÞtg. Animation available in supplementary files under filename E2-03_SCIntegral.exe
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It has been made clear from the above discussion that, if the right-hand side is
multiplied by cosf2pðk=TÞtg or sinf2pðk=TÞtg and integrated from t = 0 to T,
only the k-th term of the cosine or sine series remains. This is the means by which
the coefficients Ak and Bk can be determined. Since we cannot determine the values
of integration from the charts, we must use equations, which will be developed in
the next section.

2.2 Calculations of Fourier Coefficients

In order to derive formulae to determine the coefficients of the Fourier series,
explanations given in Sect. 2.1 will be followed using equations.

First, what kinds of results are obtained if we integrate both sides of Eq. (2.1)?

Z T

0
xðtÞdt ¼

Z T

0
½A0 þ A1 cos 2p

1
T

t þ A2 cos 2p
2
T

t þ A3 cos 2p
3
T

t þ � � �

þ B1 sin 2p
1
T

t þ B2 sin 2p
2
T

t þ B3 sin 2p
3
T

t þ � � ��dt

The integration of the right-hand side will be done term by term. The first term
with A0, is given by

Z T

0
A0dt ¼ TA0 ð2:2Þ

The integrations of the following terms with coefficients Ak, k = 1, 2,… are all
equal to zero.

Z T

0
Ak cos 2p

k

T
tdt ¼ Ak

T

2p
sin 2p

k

T
t

ffi

ffi

ffi

ffi

T

0

¼ 0 ð2:3Þ

Fig. 2.4 Integration of a cosf2pð1=TÞtg � sinf2pð1=TÞtg and b sinf2pð1=TÞtg � cos

f2pð2=TÞtg . Animation available in supplementary files under filename E2-04_SCIntegral.exe
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It is the same for the coefficients Bk, k = 1, 2,…
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T
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¼ 0 ð2:4Þ

Equation (2.2) is rewritten, giving an equation to determine A0.

A0 ¼
1
T

Z T

0
xðtÞdt ð2:5Þ

Next, we will multiply cosf2pðk=TÞtg on both sides of Eq. (2.1).
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ð2:6Þ

Let’s check this integration term by term. The first term becomes zero as shown
by Eq. (2.3). The second and higher order terms are the integrations of products of
cosine functions with different frequencies or the products of sine and cosine
functions. The discussion in Sect. 2.1 showed that there is only one nonzero term,
which is the product of cosine functions with the same frequency.

The product of cosf2pðk=TÞtg and sinf2pðk=TÞtg is rewritten as

cos 2p
k

T
t

� �

cos 2p
m

T
t

� �

¼ 1
2

cos 2p
k þ m

T
t

� �

þ cos 2p
k � m

T
t

� �� �

:

The integration of this product from t = 0 to T is zero if k 6¼ m. If k = m, the
second term of the right-hand side is T/2 since cosf2pð0=TÞtg ¼ 1. Similarly, the
product of cosf2pðk=TÞtg and sinf2pðm=TÞtg is rewritten as

cos 2p
k

T
t

� �

sin 2p
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T
t

� �

¼ 1
2

sin 2p
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T
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� sin 2p
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T
t

� �� �

:

The integration of this product from t = 0 to T becomes zero for both cases:
k 6¼ m and k = m.

Finally, only one nonzero term remains, which is

Z T

0
xðtÞ cos 2p

k

T
t

� �

dt ¼ Ak
T

2
:

This gives the equation to determine Ak,
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Ak ¼
2
T

Z T

0
xðtÞ cos 2p

k

T
t

� �

dt: ð2:7Þ

Similarly, the equation to determine Bk is given by

Bk ¼
2
T

Z T

0
xðtÞ sin 2p

k

T
t

� �

dt: ð2:8Þ

The range of integration need not be from t = 0 to T. It can be over any range
from t = T1 to T2 as long as T2 - T1 = T. Then the equations to determine Fourier
coefficients are given as

A0 ¼
1
T

Z T1þT

T1

xðtÞdt ð2:9Þ

Ak ¼
2
T

Z T1þT

T1

xðtÞ cos 2p
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dt ð2:10Þ

Bk ¼
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xðtÞ sin 2p
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dt: ð2:11Þ

If a symmetrical expression is preferred, the equations will be

A0 ¼
1
T

Z T=2

�T=2
xðtÞdt ð2:12Þ

Ak ¼
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T

Z T=2

�T=2
xðtÞ cos 2p
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dt ð2:13Þ

Bk ¼
2
T

Z T=2

�T=2
xðtÞ sin 2p

k

T
t

� �

dt: ð2:14Þ

The three sets of equations to calculate Fourier coefficients have been presented
(Eqs. (2.5), (2.7)–(2.14)). The most general expression is the second set. Each set
will give different values of Ak and Bk. This is due to the phase difference caused
by the change of starting point of each harmonic of the waveform. However, the

magnitude of each harmonic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
k þ B2

k

p

is independent of the starting point.
A reason why a waveform is expanded into a series of sine and cosine functions

is because each coefficient can be determined using the orthogonality property of
sine and cosine functions. There are other types of orthogonal functions that could
be used to expand the same waveform. However, there is no reason here to seek
other orthogonal functions since the sine and cosine functions constitute one of the
most elegant sets of orthogonal systems.
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Until now, we have not paid much attention to the region outside of the range
0 B t \ T, T1 B t \ T2, or -T/2 B t \ T/2, within which the function is defined.
However, since the fundamental component of the Fourier series has the period-
icity T and its k-th harmonic has the periodicity T/k, any waveform expressed by
use of the Fourier series will exhibit the periodicity T. Therefore, as shown in
Fig. 2.5, if the portion of a waveform between T1 B t \ T2 is expressed by a
Fourier series, the Fourier series expansion of that waveform repeats the waveform
with period T (thick line) within the range T1 B t \ T2. Note that the original
waveform (thin line) and the Fourier series expansion extended outside the range
T1 B t \ T2 (dotted line) may be different.

Since selecting a portion of a continuous waveform is analogous to looking at
the waveform through a window, it is called time-windowing in the field of signal
processing. The period T or T2 * T1 is the length of the time window. The
waveform expressed by the Fourier series repeats the extracted waveform within
that time window, with the period of the window length.

As shown by Eq. (2.1), the Fourier series is expressed by the series of cosine
functions with coefficients Ak and the series of sine functions with coefficients Bk.
Once Ak and Bk are obtained, each cosine and sine combination can be combined
into one cosine or one sine function as shown by Eqs. (1.23) and (1.25). Only the
results will be shown here.

The expression using only cosine functions is given by

xðtÞ ¼ C0 þ C1 cos 2p
1
T

t � /1

� �

þ C2 cos 2p
2
T

t � /2

� �

þ � � � ð2:15Þ

where

C0 ¼ A0; Ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
k þ B2

k

q

; /k ¼ arctanðBk=AkÞ ð2:16Þ

A similar expression using only sine functions is given by

Fig. 2.5 An infinitely long waveform (thin line) and its Fourier expansion in the range
T1 B t \ T2 (thick line). The Fourier series expansion repeats the same (extracted) waveform
outside the range T1 B t \ T2, as shown by the dotted line. Animation available in supplementary
files under filename E2-05_AnalysisRange.exe
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xðtÞ ¼ C0 þ C1 sin 2p
1
T

t þ h1

� �

þ C2 sin 2p
2
T

t þ h2

� �

þ � � � ð2:17Þ

where C0, Ck are given by Eq. (2.16) and hk is given by

hk ¼ arctanðAk=BkÞ ð2:18Þ

The coefficient Ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
k þ B2

k

p

, which is common for Eqs. (2.15) and (2.17), is
the amplitude of the combined component of the cosine and sine functions with
frequency k=T . Therefore, the set of amplitudes Ck is called the amplitude spec-
trum, which is expressed as a function of k (order) or the real frequency (k=T). On
the other hand, a set of squares C2

k is called the power spectrum, since, for
example, the square of the amplitude of the voltage or the current is proportional to
the (electrical) power. The frequencies of the spectra given as components of the
Fourier series are integer multiples of 1/T. The spectra are distributed at discrete
points on the frequency axis and their magnitudes are expressed by vertical thin
lines. Therefore, they are called line spectra.

2.3 Expressing Waveforms by Even Functions

The Fourier coefficients, or Fourier spectra, obtained using an extracted waveform
with length T have cosine and sine components as shown in Fig. 2.6. The time
windowed (extracted) waveform repeats itself with period T, and the spacing
between the adjacent spectra is 1/T. Each spectrum is actually composed of two
components, the cosine (‘‘real’’) and sine (‘‘imaginary’’) components, Ak and Bk,
respectively. These two can be combined into single cosine or sine components
while introducing the phase terms as shown by Eq. (2.15) or (2.17). The intro-
duction of phase may make the situation more complex, rather than making it
simpler. Then, a question arises, ‘‘Is there a way of expressing a waveform by
cosine or sine functions without using phase terms?’’

As we have learned in Chap. 1, an even function, which is symmetric with
respect to the origin of time t = 0, is expressed only by cosine functions, and an
odd function, which is anti-symmetric with respect to the origin of time t = 0, is
expressed only by sine functions. Then, if a waveform that is symmetric with
x(t) is introduced into the time range, -T B t \ 0, as shown in Fig. 2.7, and if the
combined waveform (A2TE) is expressed by the Fourier series with period 2T, the
series will contain only the cosine terms.

Figure 2.7 shows exactly what we expect. Figures 2.6 and 2.7 are the spectra of
waveform constructed from the same portion of another waveform. Figure 2.6
shows Fourier coefficients of a periodic waveform AT with a single period T and
Fig. 2.7 shows Fourier coefficients of a periodic waveform (A2TE) with period
2T. Therefore, the frequency spacing (resolution) of the former figure is 1/T and

32 2 Fourier Series Expansion

http://dx.doi.org/10.1007/978-1-4614-9260-3_1
http://dx.doi.org/10.1007/978-1-4614-9260-3_1


that of the latter figure is 1/2T (one half of the former). In order to make this clear,
the horizontal axis is scaled by frequency (instead of integer k) and vertical dotted
lines are inserted at every Fm frequency. Following charts are shown using the
same format so that the charts may be compared more easily.

Fig. 2.6 Fourier coefficients (real and imaginary parts of the spectrum) and amplitude spectra
obtained when the extracted waveform AT is assumed to be periodic. Animation available in
supplementary files under filename E2-06_F-Coeff_A.exe

Fig. 2.7 Even waveform A2TE with period 2T and its spectra obtained by adding a symmetric
waveform of AT (see Fig. 2.6) in the region -T B t \ 0 . Animation available in supplementary
files under filename E2-07_EvenF_A.exe
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The waveform shown in Fig. 2.6 has many spectral components outside of
±Fm. A reason why so many spectral lines are necessary is that the constructed
waveform has a large discontinuity at the connections when the portion of the
waveform with the period T is repeated. The constructed waveform in Fig. 2.7, has
a smaller degree of discontinuity and, therefore, more of the harmonics are kept
within ±Fm. As shown in Fig. 2.7, if a symmetric waveform is introduced into the
time range, -T B t \ 0, the constructed waveform becomes an even function and
the whole range from -T to T must be taken into account when applying the
Fourier series expansion. In this case, the waveform in the range from 0 to T is
completely recovered and the series has only cosine terms. This may seem to be an
advantage to be able to avoid the use of the phase terms. However, since the period
is doubled (in other words, the frequency spacing is one half), two times the
number of spectra are necessary to cover the same frequency range. The number of
spectral lines of the waveforms shown in Figs 2.6 and 2.7 are the same since the
latter needs only the cosine terms even though the spectral density is twice.

For later use, what was explained above will be described using equations. In
order to express the waveform x(t) in 0 B t \ T using only cosine terms, the
symmetric waveform x(-t) is added to the range -T B t \ 0. The combined
waveform is of course symmetric (even), which will be named z(t). The k-th order
Fourier coefficients defined in the range -T B t \ T, is given by

Ak ¼
1
T

Z T

�T
zðtÞ cos 2p

k

2T
t

� �

dt

Since z(t) and cosine functions are both even functions, the integration from
t = -T to 0 is the same with the integration from 0 to T. Therefore, the above
integration can be given by

Ak ¼
2
T

Z T

0
zðtÞ cos 2p

k

2T
t

� �

dt:

Since x(t) = z(t) in the range from 0 to T, it is given by

Ak ¼
2
T

Z T

0
xðtÞ cos 2p

k

2T
t

� �

dt: ð2:19Þ

The coefficient A0 can be obtained by the same way.

A0 ¼
1
T

Z T

0
xðtÞdt ð2:20Þ

With these coefficients, the waveform x(t) in 0 B t \ T can be expressed by
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xðtÞ ¼ A0 þ A1 cos 2p
1

2T
t

� �

þ A2 cos 2p
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t

� �

þ A3 cos 2p
3
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t

� �
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ð2:21Þ

This is called the ‘‘cosine Fourier series.’’ By expressing the waveform in
Fig 2.6 using the cosine Fourier series, the frequency components higher than Fm

are not visible and it seems possible to approximate x(t) with relatively low fre-
quency components. At first glance, this method seems to be a good idea, but it is
necessary to make sure if this is always the case.

Let’s take an example (‘‘waveform BT’’) shown in Fig. 2.8. As shown in the
figure, there are very few spectral lines in the range outside of ±Fm. One reason is
that the original waveform itself contains small levels of high frequency compo-
nents. Another reason is that the waveform in 0 B t \ T is connected smoothly at the
joint to the preceding and following repetitive waveforms, which are shown by the
dotted lines in the figure. The reader can check this by running the program Fig. 2.8.

Figure 2.9 shows an even function, ‘‘waveform B2TE’’ with period 2T produced
by adding the time-reversed waveform of BT in the region -T B t \ 0 and its
spectra. Since waveform BT increases sharply at t = 0, the symmetric waveform
B2TE has a large discontinuity at t = 0. Since it is an even function, the Fourier
series is composed of cosine functions only. A comparison of Fig. 2.9 with
Fig. 2.8 shows that waveform B2TE has a larger distribution of spectra in the high
frequency region. A reason for this is that there is a large trough (discontinuity)
around t = 0. Since, the more abrupt the waveform change is, the larger the high
frequency components are, Fig. 2.9 has larger high frequency components. This is
necessary not to produce the waveform in 0 B t \ T, but to produce the symmetric

Fig. 2.8 Fourier series obtained when the extracted waveform BT is assumed to be periodic.
Animation available in supplementary files under filename E2-08_F-Coeff_B.exe
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waveform in the negative time range. If more components are necessary, the
benefit of expressing the waveform only by the cosine series is lost. What can be
done to avoid this?

2.4 Expressing Waveforms by Odd Functions

The even function B2TE with period 2T produced by adding the time-reversed
waveform of BT into the region -T B t \ 0 has more higher frequency compo-
nents than BT. Another way of connecting BT in the region -T B t \ 0 is to
reverse BT in time and also to reverse its sign, resulting in an odd function as
shown in Fig. 2.10.

Figure 2.10 clearly shows that the connection at t = 0 is now smooth and the
spectral distribution is narrower than Fig. 2.9. Since the waveform is an odd
function, its Fourier series contains only sine components. It became possible to
express the series only by sine functions with lower levels of the high frequency
components. The reason why the levels of the high frequency components are kept
low is that the connected waveform has no abrupt change at t = 0 and at ± T. This
assures smooth connections at t = 0, and ± T. On the other hand, if an odd
waveform A2TO is made from AT, levels of the high frequency components are
increased. This can be checked by running the program in the CD

Let’s write down the Fourier coefficients for the case of odd functions. Since the
waveform is made anti-symmetric, the coefficients are all sine waves. If a time-

Fig. 2.9 Even waveform B2TE with period 2T obtained by adding a symmetric waveform of BT

in the region -T B t \ 0 and its spectra. Animation available in supplementary files under
filename E2-09_EvenF_B.exe
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reversed and sign-reversed signal -x(-t) of the original waveform
x(t) (0 B t \ T) is introduced into the time range -T B t \ 0, an odd function
with period 2T is produced, which will be referred to as z(t). The Fourier coeffi-
cients of z(t) is given by changing the region of integration as

Bk ¼
1
T

Z T

�T
zðtÞ sin 2p

k

2T
t

� �

dt:

Since z(t) and the sine functions are both odd functions, their products are even
functions, and the above integral can be obtained by doubling the integration in the
region 0 B t \ T.

Bk ¼
2
T

Z T

0
xðtÞ sin 2p

k

2T
t

� �

dt ð2:22Þ

By the use of these coefficients, the waveform x(t) (0 B t \ T) is given only by
sine terms.

xðtÞ ¼ B1 sin 2p
1

2T
t
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þ B2 sin 2p
2

2T
t
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þ B3 sin 2p
3

2T
t

� �

þ � � � ð2:23Þ

This is called the sine Fourier series.
In the Fourier series expansion of a portion of a waveform, both sine and cosine

terms are necessary. In the discussion in Sects. 2.3 and 2.4, it was made clear that,

Fig. 2.10 Odd waveform B2TO with period 2T produced by adding the time-reversed and sign-
reversed waveform of BT in the region -T B t \ 0, and its spectra. Animation available in
supplementary files under filename E2-10_OddF_B.exe
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depending on the way of combining the same waveform and making a new
waveform with period 2T, it can be expressed solely by sine or cosine terms.
Which one to choose may depend on the property of the waveform as well as
signal processing needed later. However, it is clear that the choice of methods is
dependent on the waveform.

2.5 Expressing Waveforms by Complex Exponential
Functions

In Sect. 1.7, it was shown that the sine and cosine waves can be replaced by a
complex exponential function, of which the real part is the cosine function and the
imaginary part is the sine function. A geometrical expression of the complex
exponential function by a rotating vector on the complex plane led to the idea of
phase ‘‘lead’’ or phase ‘‘delay’’, which corresponds to the positive or negative
angle of the rotating vector at t = 0 measured counter-clockwise from the positive
real axis. More benefits, such as the simpler expression of the series and conve-
nient mathematical handling tools, are gained by the introduction of the complex
exponential functions into the Fourier series expansion.

In order to introduce the Fourier series expansion expressed by complex
exponential functions, some of the equations that have been shown before will be
listed here.
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xðtÞdt ð2:24Þ
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dt ð2:26Þ

Using the above equations, Eq. (2.1) can be rewritten as Eq. (2.27)

xðtÞ ¼ 1
T
½a0 þ 2a1 cos 2p

1
T

t

� �

þ 2a2 cos 2p
2
T

t

� �

þ 2a3 cos 2p
3
T

t

� �

þ � � �

þ 2b1 sin 2p
1
T

t

� �

þ 2b2 sin 2p
2
T

t

� �

þ 2b3 sin 2p
3
T

t

� �

þ � � ��

¼ 1
T

a0 þ
2
T

X

1

k¼1

ak cos 2p
k

T
t

� �

þ bk sin 2p
k

T
t

� �
 �

:

ð2:27Þ
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The use of Euler’s formula (Eq. 1.3) enables us to express the cosine and sine
functions using complex exponential functions.

xðtÞ ¼ 1
T

a0 þ
2
T

X

1

k¼1

1
2
½ðak � jbkÞ expðj2p

k

T
tÞ

þ ðak þ jbkÞ expð�j2p
k

T
tÞ�

By introducing new coefficients Xk, and defining X-k = Xk
*, Eq. (2.28) can be

derived.

xðtÞ ¼ 1
T

X

1

k¼�1
Xk exp j2p

k

T
t

� �

ð2:28Þ

Now let’s get an expression for the coefficient Xk. Multiplying both sides of
Eq. (2.28) by expf�j2pðm=TÞg and integrating from -T/2 to T/2:

Z T=2

�T=2
xðtÞ exp �j2p

m

T
t

� �

dt ¼ 1
T

X

1

k¼�1
Xk

Z T=2

�T=2
exp j2p

k

T
t

� �

exp �j2p
m

T
t

� �

dt

The integration on the right-hand side becomes

Z T=2

�T=2
exp j2p

m

T
t

� �

exp �j2p
m

T
t

� �

dt ¼
Z T=2

�T=2
dt ¼ T

for k = m, and

Z T=2

�T=2
exp j2p

k � m

T
t

� �

dt ¼ 0

for k 6¼ m. Then Eq. (2.29) is obtained.

Xk ¼
Z T=2

�T=2
xðtÞ exp �j2p

k

T
t

� �

dt ð2:29Þ

Equation (2.28) is the Fourier series expressed by the use of complex expo-
nential functions and Eq. (2.29) is the equation used to obtain the coefficients. The
coefficient Xk is referred to as the ‘‘amplitude’’ of the complex wave compo-
nentexpf�j2pðk=TÞg, in the same way that Ak and Bk are the amplitudes of cosine
and sine waves, respectively. However, since Xk is complex, it is referred to as the
complex amplitude’’. The situation may seem to be more complicated but it is not.
There is the same number of coefficients Ak’s for positive and negative k’s and the
real and imaginary parts are even and odd, respectively. Since expf�j2pðk=TÞg
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has a real (even) part and an imaginary (odd) part, the expression of the Fourier
series becomes simpler than using sine and cosine functions. In following sections,
describing digital processing carried out using computers, the complex exponential
functions will be used most of the time.

Equation (2.28) is the equation that gives a waveform from the complex
coefficients when the Fourier series is expressed by the complex exponential
functions. On the other hand, Eq. (2.29) gives a complex amplitude of the coef-
ficients from the waveform. These are the pairs of expressions that exist between
the waveform and the complex amplitude of each harmonic. If a waveform is
given, its complex coefficients are obtained by Eq. (2.29); if the complex coeffi-
cients are given, the waveform is recovered by Eq. (2.28).

The waveform x(t) is the time-dependent function and the Fourier coefficient Xk

is dependent on the order k of each frequency component. Therefore, Xk is con-
sidered a frequency-dependent function. In this sense, x(t) and Xk are referred to as
time domain and frequency domain functions, respectively. The terms Xk are
referred to as complex Fourier coefficients or complex spectra.

Let’s check the similarities and differences between Eqs. (2.28) and (2.29).
Equation (2.28) gives a waveform of time domain function obtained by multi-
plying the Fourier coefficients, i.e., the complex spectra, by complex exponential
functions whose exponents are purely imaginary with positive sign. Equation
(2.29) gives Fourier coefficients (complex spectra) of the frequency domain
function, which is obtained by multiplying the waveform in the time domain by the
complex exponential functions, whose exponents are purely imaginary with neg-
ative sign. There is much similarity between the two equations except that the
exponents have opposite signs and Eq. (2.28) is composed of summations and
Eq. (2.29) is composed of integrations. The latter may seem to be a major dif-
ference. This is caused by the fact that the frequency spectra exist at discrete points
on the frequency axis (because the waveform is periodic). In this case, the inte-
gration on the frequency domain becomes a summation (with multiplication) at its
extremity. The opposite sign of the exponent will be discussed in the next section.
Thus far, the region of integration has been from -T/2 to T/2. As has been
discussed before, this is not a necessary condition. It can be from T1 to T2 as long
as T = T2-T1. Then Eq. (2.29) becomes

Xk ¼
Z T1þT

T1

xðtÞ exp �j2p
k

T
t

� �

dt: ð2:30Þ

The equation for obtaining the time function is still the same (Eq. 2.28). The
difference is that the integration interval is from T1 to T2. The property that the
cosine function is even and the sine function is odd is inherent in the property of Xk

in that the real and imaginary parts are the even and odd functions of k.
The property of periodicity remains the same when Eq. (2.28) is applied to the

region outside of T1 B t \ T2. This can be checked by substituting t by t + pT (p:
integer).
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xðt þ pTÞ ¼ 1
T

X

1

k¼�1
Xk exp j2p

k

T
ðt þ pTÞ

� �

¼ 1
T

X

1

k¼�1
Xk exp j2p

k

T
t

� �

exp j2pkpð Þ

Since k and p are both integers,

expðj2pkpÞ ¼ 1:

Therefore

xðt þ pTÞ ¼ 1
T

X

1

k¼�1
Xk exp j2p

k

T
t

� �

¼ xðtÞ: ð2:31Þ

The time function x(t + pT) repeats itself with period T.

2.6 Fourier Transform

We have discussed the method of expressing a waveform with length T by the sine
and cosine functions with period T. The reader may have noticed that there is no
restriction on the period T. Then, what happens if the period T is made infinite?

Let’s make the region of integration from -T to T by keeping the waveform
unchanged in Eq. (2.29), that is, by using the same time period -T/2 B t \ T/2 to
extract the portion of the waveform, and assigning zeros to the regions -T B t \ -

T/2 and T/2 B t \ T. Equation (2.29) will be rewritten using m instead of k,

Um ¼ U
m

2T

� �

¼
Z T

�T
xðtÞ expð�j2p

m

2T
tÞdt ð2:32Þ

The integration length is doubled to 2T, and the fundamental frequency is
halved to 1/2T but no other changes are made. The length of the extracted
waveform is T but the spacing between the spectral lines is 1/2T. Since zeros have
been added to the regions -T B t \ -T/2 and T/2 B t \ T, the region of inte-
gration of Eq. (2.32) can be reduced to -T/2 B t \ T/2.

Um ¼ U
m

2T

� �

¼
Z T=2

�T=2
xðtÞ expð�j2p

m

2T
tÞdt ð2:33Þ

Comparing Eqs. (2.29)–(2.32), the reader will find that they are equal if
m = 2 k. Since m and k are both integers, the value Um is equal to Xk when m is
even.
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U2k ¼ Xk ð2:34Þ

What is described above is shown in Fig. 2.11. The top chart is the waveform
BT. The spectrum obtained with the integration T is shown by the vertical lines in
the second chart (ST). If zeros are added to the region -T B t \ -T/2 and
T/2 B t \ T, and if the integration over the period 2T is carried out, the spectrum
shown in the next chart (B2T) is obtained. The shape of the spectrum distribution is
not changed but the spacing between the spectral lines is halved.

In the case of the waveform that has zeros except for the region -T/2 B t \T/2,
after integration over the region –mT B t \ mT, the fundamental frequency
becomes 1/(2mT). The following relation exists (m : integer).

U2mk ¼ Xk ð2:35Þ

The bottom chart in Fig. 2.11 shows the spectrum of B4T for the case m = 2
(integration over period -2T B t \ 2T). The spectral spacing is 1/2 of B2T and 1/4
of BT. The continuous thin line in each chart is the spectrum when m is made
infinite, i.e., when the period of the periodic function is made infinite.

In Fig. 2.11, the same lengths of zeros are added to both sides of the extracted
waveform BT. It is also possible to add zeros to one side of the extracted wave-
form, but in this case, the origin of the time axis is changed and the equivalent
phase shifts will be produced. However, the power spectrum is kept unchanged.
This can be confirmed by running the program.

Fig. 2.11 Change in the power spectrum due to the change in the period for the computation of
Fourier coefficients of waves BT, B2T and B4T. Animation available in supplementary files under
filename E2-11_VariP.exe
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Now, let’s consider the case when the extracted waveform is unchanged and the
integration range is made infinite (i.e., the integration region is -? B t \?). In
this case the spectral spacing becomes infinitely small and the distribution of
Fourier coefficients becomes a continuous function of frequency. Then, Eq. (2.29)
becomes:

Xðf Þ ¼ lim
m!1

X
k

2mT

� �

¼ lim
m!1

Z mT

�mT
xðtÞ exp �j2p

k

2mT
t

� �

dt ð2:36Þ

If we use f ¼ lim
m!1
fk=2mTg, the frequency f can take continuous values, and

the integration region becomes -? B t \?.

Xðf Þ ¼
Z þ1

�1
xðtÞ expð�j2pftÞdt ð2:37Þ

This is the equation known as the Fourier transform using complex exponential
functions . The Fourier coefficients Xk of the periodic function are line spectra, but
X(f) defined by Eq. (2.37) is a continuous function of frequency. The continuous
curve shown in each of the spectral charts in Fig. 2.11 is X(f) obtained by letting
m be infinite. As shown by Fig. 2.11, the envelope of the line spectra of a periodic
waveform is the continuous spectrum of the waveform that is made from only one
extracted waveform in the infinite time domain. The k-th Fourier coefficient of the
periodic waveform is equal to the value of the continuous spectrum at f = k/
T. These will be understood by considering the process starting from Eqs. (2.32)
and (2.33) and reaching Eq. (2.37), which is obtained by letting the integration
region be -? B t \?.

Equation (2.27) is the Fourier transform that calculates the spectrum X(f) from a
waveform x(t) which is a function of time. It is necessary to have an inverse
Fourier transform as the counterpart of the Fourier transform. This will be derived
by replacing k/T in Eq. (2.28) by f and replacing the summation by the integration.
Since 1/T in Eq. (2.28) is an inverse of time, it has the dimension of frequency, and
as time T becomes infinitely large, its inverse 1/T should be represented as df.
Then, Eq. (2.28) is rewritten as

xðtÞ ¼
Z þ1

�1
Xðf Þ expðj2pftÞdf ð2:38Þ

Equations (2.37) and (2.38) are the Fourier transform and inverse Fourier
transform using complex exponential functions, respectively, and is known as the
Fourier transform pair.

Let’s check what happens when the waveform x(t) is delayed by s, which is
represented by x(t-s). Replacing x(t) in Eq. (2.37) by x(t-s):
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X0ðf Þ ¼
Z þ1

�1
xðt � sÞ expð�j2pftÞdt

An introduction of a new parameter u = (t-s), since t = u + s and dt = du,
makes it possible to replace the parameter t by u +s.

X0ðf Þ ¼
Z þ1

�1
xðuÞ expð�j2pfuÞ expð�j2pf sÞdu

¼
Z þ1

�1
xðuÞ expð�j2pfuÞdu � expð�j2pf sÞ ¼ Xðf Þ expð�j2pf sÞ

ð2:39Þ

The spectrum of the waveform with time delay s is given by the product of the
original Fourier spectrum X(f) andexpð�j2pf sÞ.

Conversely, the inverse Fourier transform of the product of X(f) andexpð�j2pftÞ
gives the original waveform but with time delay s. This is shown as follows. The
substitution of Xðf Þ by Xðf Þ expð�j2pf sÞ gives

x0ðtÞ ¼
Z þ1

�1
Xðf Þ expð�j2pf sÞ expðj2pftÞdf

¼
Z þ1

�1
Xðf Þ expfj2pf ðt � sÞgdf ¼ xðt � sÞ:

ð2:40Þ

In preparation for later digital processing, let’s check the Fourier transform of
the unit impulse (Dirac’s delta function in the time domain)d(t). The unit impulse
satisfies

Z þ1

�1
dðtÞdt ¼ 1:

The spectrum of the unit impulse is given by

Xðf Þ ¼
Z þ1

�1
dðtÞ expð�j2pftÞdt:

Since d(t) = 0 for t 6¼ 0 and, expð�j2pftÞ ¼ 1 for t = 0,

Xðf Þ ¼
Z þ1

�1
dðtÞ expð�j2pftÞjt¼0dt ¼

Z 1

�1
dðtÞdt ¼ 1: ð2:41Þ

The Fourier transform of the unit impulse is equal to 1 at all frequencies.
The Fourier transform (FT) of the impulse dðt � sÞ that exists at t = s, is

obtained directly from Eq. (2.37). By letting xðtÞ ¼ dðt � sÞ, we have
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FTfdðt � sÞg ¼
Z þ1

�1
dðt � sÞ expð�j2pftÞdt

Since the integrand is nonzero at t = s, the above equation is rewritten as

FTfdðt � sÞg ¼
Z þ1

�1
dðt � sÞ expð�j2pf sÞdt

¼ expð�j2pf sÞ
Z 1

�1
dðt � sÞdt

¼ expð�j2pf sÞ

ð2:42Þ

Equation (2.42) shows that the spectrum of an impulse that exists at t = s is
given by expð�j2pf sÞ . This means that the absolute value of the spectrum of an
impulse is 1 for all frequencies and the phase delay at frequency f is equal to the
product of the time delay and2pf . The statement above may seem superfluous
since the same result has been already shown in Fig. 1.16, and is obvious from
Eqs. (2.39) and (2.42). However, this result will play an important role in Chap. 4.

Let’s introduce another important theorem of the Fourier transform: the energy
of the time function x(t), is given by the integral of the absolute Fourier transform
squared over the range -? B f \?.

Z þ1

�1
xðtÞj j2dt ¼

Z þ1

�1
xðtÞx�ðtÞdt ¼

Z þ1

�1
xðtÞ

Z þ1

�1
X�ðf Þ expð�j2pftÞdf


 �

dt

where x*(t) is the complex conjugate of x(t) (the imaginary part of it would have
the opposite sign of x(t)). By changing the order of integration,

Z þ1

�1
xðtÞj j2dt ¼

Z þ1

�1
X�ðf Þ

Z þ1

�1
xðtÞ expð�j2pftÞdt


 �

df

¼
Z þ1

�1
X�ðf ÞXðf Þdf

which gives,

Z þ1

�1
xðtÞj j2dt ¼

Z þ1

�1
Xðf Þj j2df ð2:43Þ

Equation (2.43) affirms that ‘‘the energy of the Fourier spectrum X(f) obtained
from the Fourier transform of x(t) has the same energy as x(t).’’ This is known as
Parseval’s formula.

The same idea is applicable to the Fourier series expansion. Let’s calculate the
energy in one period of x(t) using Eqs. (2.28) and (2.29).
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Z þT=2

�T=2
xðtÞj j2dt ¼

Z þT=2

�T=2
xðtÞx�ðtÞdt ¼

Z þT=2

�T=2
xðtÞ 1

T

X

1

k¼�1
X�k expð�j2p

k

T
tÞ

" #

dt

Reversing the order of integration,

Z þT=2

�T=2
xðtÞj j2d ¼

X

1

k¼�1
X�k

1
T

Z þT=2

�T=2
xðtÞ expð�j2p

k

T
tÞdt

" #

¼ 1
T

X

1

k¼�1
X�k Xk

:

Then, the following equation is obtained.

Z þT=2

�T=2
xðtÞj j2dt ¼ 1

T

X

1

k¼�1
Xkj j2 ¼ F

X

1

k¼�1
Xkj j2 ð2:44Þ

where F = 1/T is the spacing of the Fourier spectrum. This is Parseval’s relation in
the case of a Fourier series expansion. The energy of one period of a periodic
function is equal to the summation of squares of Fourier coefficients multiplied by
the frequency spacing.

Appendixes 2A–C are supplements of Chap. 2. They will be useful for a better
understanding of the following chapters.

2.7 Gibbs’ Phenomenon

By the end of the previous section, it was shown that any periodic waveform can
be expanded by a Fourier series, which requires an infinite number of harmonics.
As can be seen in Fig. 2.12, the Fourier series expansions of a rectangular
waveform up to the 5-th, 10-th, and 50-th harmonic gradually approach the rect-
angle, but overshoots are observed near the edges of the waveform. The height of
the overshoot seems to approach a fixed value as the number of harmonics
increases. This phenomenon was named Gibbs Phenomenon after the discoverer,
Gibbs. Let’s check how the height of the Gibbs Phenomenon is determined.

The Fourier series expansion of a periodic rectangular waveform x(t) with the
period T, x(t) = -1 for -T/2 \ t \ 0, and x(t) = 1 for 0 \ t \ T/2, is given by

xðtÞ ¼ 4
p

X

1

k¼0

1
2k þ 1

sin 2p
2k þ 1

T
t

� �

: ð2:45Þ

The partial sum up to the (K-1)-th harmonic is given by
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xKðtÞ ¼
4

pT

X

K�1

k¼0

T

2k þ 1
sin 2p

2k þ 1
T

t

� �

¼ 8
T

X

K�1

k¼0

Z t

0
cos 2p

2k þ 1
T

u

� �

du:

ð2:46Þ

By exchanging the order of the sum and the integration, the following is
obtained.

xKðtÞ ¼
8
T

Z t

0

X

K�1

k¼0

cos 2p
2k þ 1

T
u

� �

du ð2:47Þ

Let the integrand be

SK ¼
X

K�1

k¼0

cos 2p
2k þ 1

T
u

� �

: ð2:48Þ

The multiplication of Sk with sin(2pu/T) becomes

SK sin 2p
u

T

� �

¼
X

K�1

k¼0

sin 2p
u

T

� �

cos 2p
2k þ 1

T
u

� �
 �

¼ sin 2p
u

T

� �

cos 2p
u
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� �

þ sin 2p
u

T

� �

cos 2p
3u

T

� �

þ � � �

� � � þ sin 2p
u

T

� �

cos 2p
2K � 1

T
u

� �

:

Fig. 2.12 Waveform of step
wave synthesized by finite
number of harmonics.
Animation available in
supplementary files under
filename E2-12_GIBBS.exe
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Since

sin 2p
u

T

� �

cos 2p
ru

T

� �

¼ 1
2

sin 2p
r þ 1

T
u

� �

� sin 2p
r � 1

T
u

� �
 �

it is rewritten as

2SK sin 2p
u

T

� �

¼ sin 2p
2
T

u

� �

þ sin 2p
4
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u

� �

� sin 2p
u

T

� �

þ � � �

� � � þ sin 2p
2K

T
u

� �
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T
u

� �

¼ sin 2p
2K

T
u

� �

:

Therefore

SK ¼
1
2

sin 2p 2K
T u

� 

sin 2p 1
T u

�  : ð2:49Þ

Then, Eq. (2.47) becomes

xKðtÞ ¼
4
T

Z t

0

sin 2p 2K
T u

� 

sin 2p 1
T u

�  du ð2:50Þ

The function xKðtÞ: takes maxima or minima at times when its time-derivative
equals 0.

dxKðtÞ
dt
¼ 4

T

sin 2p 2K
T t

� 

sin 2p 1
T t

�  ¼ 0 ð2:51Þ

Those are given by

t ¼ mT

4K
ðm ¼ 1; 2; 3; � � � ;KÞ: ð2:52Þ

The function xKðtÞ takes maxima or minima when m is odd or even, respec-
tively. The largest of the maxima is given when m is 1.

xKð
T

4K
Þ ¼ 4

T

Z T
4K

0

sin 2p 2K
T u

� 

sin 2p 1
T u

�  du

By the variable transformation
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v ¼ 2p
2K

T
u:

xKðtÞ is given by

xKð
T

4K
Þ ¼ 2

p

Z p

0

sin vð Þ
v

v
2K

sin v
2K

�  dv: ð2:53Þ

The limit given when K approaches infinity is

lim
K!1

xK
T

2K

� �

¼ 2
p

Z p

0

sin v

v
dv ffi 1:17898:

The overshoot is approximately 18 %.
The time width of the overshoot becomes infinitely small as K approaches

infinity, and therefore the power of the overshoot becomes zero. Similar phe-
nomena are observed in functions other than rectangular, which take different
values when t approaches a discontinuity from the negative and the positive
directions. These are also referred to as Gibbs’ Phenomena.

2.8 Exercises

1. What is the orthogonal property of sine and cosine functions?
2. Derive Eq. (2.8) used to obtain Fourier coefficients Bk.
3. If a function x(t) defined in the region 0 B t \ T is represented by a sum-

mation of an even function xe(t) and an odd function xo(t), both defined in the
region -T B t \ T, derive equations for xe(t) and xo(t).

4. Describe the properties of xe(t) and xo(t) defined in Problem 3.
5. When the Fourier expansion is applied to a function x(t) defined in the region

0 B t \ T, what are the frequencies of the individual frequency components?
6. What is the complex exponential function?
7. What is the relationship between the even and odd functions in x(t) and the real

and imaginary parts of its complex Fourier transform X(f)?
8. Express a cosine wave with the phase lead of 45� using a complex exponential

function.
9. Express a cosine wave with the phase lead of h using a complex exponential

function.
10. A function x(t) defined in the region –?\ t \? as zero everywhere except

in the region 0 B t \ T has Fourier transform X(f). When a Fourier series
expansion is applied to this same function in the region 0 B t \ T, what would
you expect to get as the Fourier series?

11. When a Fourier series expansion is applied to x(t) in Problem 10 over the
region -nT B t \ nT, what would you expect to get as the Fourier series?
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Give answers for n = 1, n = arbitrary integer, and n % an infinitely large
integer.

12. Obtain Fourier coefficients of the functions (a)–(j) in Fig. 2.13. Assume the
same peak value A for each waveform and the starting value in (i) be B.

Fig. 2.13 Waveforms with period T
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Chapter 3
Numerical (Digitized) Waveforms

Old analog techniques of Fourier analyzing signals are passé due to major
advances in digital technology. Modern digital processing involves sampling
analog time signals that are obtained from transducers (such as microphones or
accelerometers) at uniform time intervals. Taking values of a waveform at discrete
times (mostly at uniform time intervals) is called sampling and the sampled
waveform is referred to as a numerical (digitized) waveform. Numerical wave-
forms are used for:

• Storing data
• Analyzing data
• Transmitting data

When representing a waveform by a sequence of numerical values, the analyst
must decide the time interval of the sampling, i.e., the sampling time (or sampling
period). The first aim of this chapter is to make clear how to determine the
sampling time. After that, a discussion on how to recover a continuous waveform
from the sequence of sample values is given.

The number of significant digits of the digitized or sampled data is also
important when sampling (i.e., digitizing) the analog waveforms. At the early stage
of the digital age, the accuracy of the sample values was an important subject of
discussion. However, due to the advancement of signal processing techniques,
achieving a high degree of precision in digitization has become less costly. The
precision of digitization should be considered depending on individual applica-
tions and, therefore, this subject is not treated in this book.

3.1 Fourier Series Expansion of Spectrum

A numerical waveform is a sequence of numbers generated from the analog
waveform by the sampling process, an example of which is given in Fig. 3.1. The
instantaneous value xn at the n-th sample is called a sample value. If information is
not lost by the sampling process, the original waveform can be reconstructed from
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the sample values. An obvious way to do so is to sample the waveform with a very
small time interval. However, if the sample interval is too small, the data size
becomes too large and sampling is not economical. On the other hand, if the
sampling interval is too large, the reconstruction will be impossible.

The thick vertical lines in Fig. 3.1 represent sample values of a waveform when
it is sampled at intervals that are 1/8 (a), 1/12 (b), 1/16 (c), and 1/20 (d) of the total
length. The sequence shown in Fig. 3.1b is the limit of coarse sampling in the
sense that it may not be possible to reconstruct the waveform when it is sampled at
a wider step. However, it is difficult to determine the limit of coarse sampling
visually and, therefore, a method to quantitatively determine the limit will be
discussed. A hint is obtained from the spectrum and the Fourier coefficients.

It was made clear in the previous chapter that the coefficients of the Fourier
series of an extracted waveform with length T from a longer continuous waveform
are the amplitudes of sine and cosine waves with frequencies n/T (n = 0, 1, 2, …).
These amplitudes are equal to the amplitudes at the same frequencies on the
continuous spectrum of the waveform with length T. This is shown in Fig. 3.2a.
Representing a waveform by a Fourier series automatically assumes that the
waveform is periodic with the period T; the assumed preceding and following
waveforms are shown by the dotted lines in the Figure. Their line spectra have the
spacing 1/T; the real and imaginary parts are the coefficients of the cosine and sine
waves, which are even and odd functions of frequency, respectively. This is only
one example but there is a 1:1 relationship between the waveform and its spec-
trum. If the waveform is determined, its spectrum is also known, and vice versa.

Fig. 3.1 Waveform and sequences of sample values with various sampling rates. Animation
available in supplementary files under filename E3-01_SAMPLING.exe
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Let’s take an example of the continuous spectrum of a continuous waveform,
shown by the solid line in Fig. 3.2b, where the real and imaginary parts are even
and odd functions of frequency, respectively. If the spectrum outside of ±Fm is
zero, the same spectrum pattern on the frequency axis with period 2Fm can be
added without overlapping the original spectrum. Considering that the spectrum is
a periodic function, the Fourier series expansion can be applied. Since the periodic
spectrum has an even real part and an odd imaginary part (see Eq. (2.29) and the
paragraph below it), the Fourier series (left) has only the real part, and the spectral
lines are located on the ‘‘time’’ axis with (1/2Fm) spacing.

In the previous chapter, it was shown that the Fourier coefficients (line spectra)
on the frequency axis agree with the continuous spectrum (see Fig. 2.11). For the
same reason, the Fourier coefficients (line spectra) of the spectrum on the time axis
should agree with the continuous function (the waveform) on the time axis. That is,
the coefficients are the values of the waveform at 1/2Fm steps. In other words, the
continuous waveform is reconstructed from the sample sequence at 1/2Fm steps.

One thing should be mentioned. If the Fourier series of the spectrum is cal-
culated using expð�j2pkf=2FmÞ for the exponential function, the Fourier series on
the time domain will be reversed. This problem is solved if expðj2pkf=2FmÞ is
used. The reader is referred to Appendix 3, which discusses this matter.

From the above discussion, the reader may have inferred that sampling with a
spacing equal to or less than 1/2Fm, is enough to represent the continuous
waveform.

The discussion so far has been too qualitative. For a stricter discussion, we can
refer to Eq. (2.29) in the previous chapter.

The Fourier series expansion of a spectrum is an extract of a portion of the
spectrum, and it is assumed that the spectrum repeats itself on the frequency axis.
Since the real and imaginary parts of the spectrum are even and odd functions,

Fig. 3.2 a Periodic waveform with period T (a/left) and its Fourier coefficients (line spectrum)
(a/right); b continuous periodic spectrum with period 2Fm (b/right) and its Fourier coefficients
(line pulses with (1/2Fm) spacing) (b/left)
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respectively, and they are distributed equally on the positive and negative sides of
the axis, the frequency range of the extracted spectrum must have its center at the
origin of the frequency axis. If the spectrum is actually distributed over a wider
range than that of the extracted spectrum, the spectrum shape changes and the
original waveform cannot be reconstructed. If the spectrum distribution is limited
within ±Fm, the range of the extracted spectrum must be within ±Fx (where
Fx C Fm).

Consider the Fourier series expansion with period Fx of a spectrum shown in
Fig. 3.3a. The Fourier series expansion assumes that the function is periodic as
shown in Fig. 3.3b. This function has one period which is equal to the spectrum of
Fig. 3.3a and it is periodic with period 2Fx (C2Fm).

In order to check whether the coefficients of the Fourier series of the spectrum
agree with the instantaneous values of the waveform, the waveform x(t) and its
spectrum X(f) are required. The relationship between these two is expressed by the
Fourier transform. However, since it is difficult to deal with an infinitely long
waveform, it is assumed that x(t) has nonzero values only within the time range
±T/2. If it is necessary, the range can be made as long as desired. Then the
spectrum is calculated by:

Xðf Þ ¼
Z T=2

�T=2
xðtÞ expð�j2pftÞdt: ð3:1Þ

If the spectrum X(f) does not have any significant value outside the frequency
range of ±Fm, the range of integration of the inverse Fourier transform can be
limited within ±Fx (where Fx C Fm). Therefore, the integration becomes

xðtÞ ¼
Z þFx

�Fx

Xðf Þ expðj2pftÞdf : ð3:2Þ

Fig. 3.3 A spectrum with the bandwidth equal to ±Fm (a) and a periodic spectrum with period
2Fx (where Fx [ Fm) (b)
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The Fourier series expansion is applied to the periodic spectrum shown in
Fig. 3.3b, and is equal to X(f) within the frequency range ±Fm. The Fourier series
is given by replacing t by f and T/2 by Fm in Eq. (2.29). Also it is necessary to
change the sign of the exponential function since this is a transform from the
frequency domain to the time domain (see Appendix 3). Then, the following is
obtained

xn ¼
Z þFx

�Fx

Xðf Þ expðj2p
n

2Fx
f Þdf : ð3:3Þ

This equation is equal to Eq. (3.2) when t is replaced by n/2Fx. The Fourier
coefficient xn, of the periodic spectrum which is equal to X(f) within the frequency
range ±Fx, is the sample value of x(t) at t = n/2Fx.

xn ¼ xðn=2FxÞ ð3:4Þ

So far, it has been shown that the sample values of x(t) at t = n/2Fx are
obtained from the spectrumX(f) of x(t). If it is confirmed that the continuous
waveform x(t) is recovered from the sequence of sample values xn, it implies that a
method of sampling is established.

Let’s review this process:

(1) x(t) contains the spectrum X(f) that is limited to the frequency range ±Fm.
(2) Assume that the spectrum X(f) of the waveform x(t) is periodic with the

period 2Fx (where Fx C Fm).
(3) Obtain the Fourier coefficients xn from the periodic spectrum X(f). The sign of

the exponent of the exponential function must be positive so that the order of
the coefficients agrees with the direction of the time axis.

(4) The resulting values xn can be seen to agree with x(t) at t = n/2Fx.
(5) The spectrum X(f) is uniquely determined from the Fourier coefficients xn

(this is obvious from (3)). Since the coefficients xn are the sample values of
the waveform, it can be stated that X(f) is uniquely determined from the
sequence of time samples.

(6) The spectrum and the waveform have a 1:1 correspondence. Since X(f) is the
spectrum of a waveform x(t), then, if X(f) is determined, x(t) is obtained by
the inverse Fourier transform of X(f).

The above discussion shows that the waveform x(t) is determined uniquely from
the sequence of sample values xn, which are sampled with spacing 1/2Fx. It can be
stated that the method of sampling, without loss of information, has been
established.

Remember that the sequence xn, is obtained as the inverse Fourier transform of
an infinitely long periodic spectrum, in which X(f) is repeated infinitely with period
2Fx. Therefore, the spectrum of the sequence xn has an infinite distribution on the
frequency axis. The reason why the spectrum has the infinite range is that each
sample is an impulse that has an infinite frequency range. However, this spectrum
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has the period 2Fx, and the spectrum of the continuous waveform is limited within
±Fx and zero outside this range. Therefore, this frequency range (within ±Fx) of
the spectrum of xn is called the base frequency band. The spacing of sequence xn

(1/2Fx) is called the sampling period and its reciprocal (2Fx) is called the sampling
frequency.

3.2 Reproduction of the Continuous Waveform
from the Sequence of Sample Values

It was shown in Sect. 3.1 that the original waveform can be reproduced from a
sequence of sample values, which are sampled with the sampling period of 1/2Fx,
if the original waveform has a spectrum in the frequency range within ±Fx.
However, a concrete method of reconstructing the original waveform has not yet
been derived. This is the aim of this section.

Let us summarize the previous section: the Fourier series expansion of the
spectrum X(f) sampled over the frequency range -Fx to +Fx produces a sequence
of sample values xn of a waveform x(t) with sampling frequency 2Fx. Since this
sequence of sample values xn has the sampling period 1/2Fx, its spectrum is
infinitely wide and periodic with period 2Fx. But, since the spectrum within the
band ±2Fx is equal to the spectrum of the waveform x(t) itself, then x(t) can be
reconstructed by the inverse Fourier transform of the spectrum within the band
±Fx.

Now, an equation to calculate X(f) will be derived using the fact that the
sequence xn is the coefficient of the Fourier series of that spectrum. For this
purpose use Eq. (2.28) in Chap. 2, which is a formula to calculate Fourier series of
a time domain waveform. To calculate the Fourier series of a spectrum, the
parameters t ? f, k ? n, T ? 2Fx, and Xk, ? xn have to be replaced. We also
need to replace j in the exponent by -j. Since the range of n defines the range in
which the waveform exists, the number of samples is equal to N = 2TFx obtained
by dividing the time length T by the sampling period 1/2Fx. If n starts from 0, it
ends at N - 1. Then, the Fourier series expansion of the spectrum becomes,

Xðf Þ ¼ 1
2Fx

X

N�1

n¼0

xn expð�j2p
n

2Fx
f Þ: ð3:5Þ

Because xn is a sample sequence, the spectrum obtained by Eq. (3.5) is periodic
with period 2Fx. But, since the spectrum of the continuous waveform x(t) is zero in
the range outside of ±Fx, the range of the inverse Fourier transform must be
limited within the range ±Fx. Then, x(t) is calculated by
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xðtÞ ¼
Z þFx

�Fx

Xðf Þ expðj2pftÞdf : ð3:6Þ

The equations to obtain x(t) from the sequence of sample values xn sampled
with the sampling period 1/2Fx have been formalized.

The spectrum of a sample sequence can be calculated using Eq. (3.5). A con-
tinuous waveform can then be obtained from the inverse Fourier transform of the
spectrum within the range ±Fx using Eq. (3.6). Let us check this using an
example.

One sequence is shown in Fig. 3.4a as an example. Figure 3.4a is a sequence of
a 320 ms long waveform sampled with 5 ms sampling time, resulting in 64
samples. It is assumed that the sequence has all zero values except for these 64
samples. The spectrum obtained using Eq. (3.5) is an infinitely long periodic
function with period of 200 Hz (=1/0.005 s) in the frequency domain.

Fig. 3.4 Sequence of samples, its spectrum and time waveform. a Sample sequence, b, c real
and imaginary parts of the spectrum of (a), d waveform obtained by the inverse Fourier transform
from (b) and (c), e overlay of (d) and (a). Animation available in supplementary files under
filename E3-04_DATrans.exe
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The real and imaginary parts of the spectrum in the base frequency band are
shown in Fig. 3.4b, c respectively. The same spectrum repeats itself outside the
base band and is not shown in the figure. If the spectrum in the base band is inverse
Fourier transformed, the continuous waveform shown in Fig. 3.4d is obtained.
Fig. 3.4e is the overlay of Fig. 3.4a, d showing that Fig. 3.4a, d agree with each
other at the sampling points.

3.3 Frequency Bandwidth and Sampling Frequency

Another example will be given as an introduction to this section. Figure 3.5a
shows a waveform and its sampled values. This waveform was made so that its
spectrum has nonzero values only within the frequency range ±Fm. The real and
imaginary parts of the spectrum X(f) of the continuous waveform are shown in the
base frequency bands in Fig. 3.5b, c respectively. If this waveform (Fig. 3.5a) is
sampled with a sampling time 1/2Fx, its spectrum becomes periodic with the
frequency period 2Fx. By applying Eq. (3.3) to X(f), the sample values xn (Fourier
coefficients) are obtained, shown as many vertical lines with 1/2Fx spacing in
Fig. 3.5d. Figure 3.5d also shows the original waveform. As expected, the ends of
the vertical lines fall on the curve of the waveform, indicating that xn are the
sample values of the waveform. It can be seen that the waveform obtained by the
inverse Fourier transform of the spectrum (Fig. 3.4b, c) within the frequency band

Fig. 3.5 a Waveform, whose spectrum is limited within ±Fm, and sample values with sampling
time 1/2Fx, (Fm B Fx), b and c real and imaginary parts of the spectrum of the sample sequence,
d sample sequence and inverse Fourier transform of the spectrum within the frequency range 2Fx.
Animation available in supplementary files under filename E3-05_SmPC.exe
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±Fx = ±1.2Fm matches perfectly with the original waveform shown in Fig. 3.5a
(only one curve is seen even though two curves are plotted).

It was found that, as long as the relationship Fx C Fm is maintained as in the
case of Fig. 3.5, the sample sequence is the set of the Fourier coefficients of
the undistorted spectrum, and therefore a continuous waveform is recovered from
the sample sequence. What happens if the condition Fx C Fm is not satisfied?
Figure 3.6 shows the case for Fx = 0.8Fm. Figure 3.6a shows the same waveform
as in Fig. 3.5a. The sample sequence has 1/2Fx frequency spacing which, since
Fx = 0.8Fm, is wider than the one shown in Fig. 3.5. The spectrum of the sample
sequence is periodic with period 2Fx. But, since the spectrum has the width 2Fm,
the spectrum overlaps with itself. As a consequence, the spectrum within the
frequency range ±Fx differs from the spectrum of the continuous waveform. The
properties that the real part is even, the imaginary part is odd, and their Fourier
coefficients are real are still kept. If the Fourier coefficients are calculated
assuming that the spectrum is periodic with period 2Fx, the sequence of impulses
shown in Fig. 3.6d is obtained. The waveform shown in Fig. 3.6a is also plotted in
Fig. 3.6d. It can be seen that the ends of the vertical lines fall on the curve of both
the reproduced (blue) and original (red) waveforms, indicating that xn with period
2Fx are the sample values of the waveform, even though the two waveforms do not
coincide.

Fig. 3.6 a Waveform, whose spectrum is limited within ±Fm, and sample values with sampling
time 1/2Fx, (Fx B Fm), b and c real and imaginary parts of the spectrum of the sample sequence,
d sample sequence and inverse Fourier transform of the spectrum within 2Fx and the original
waveform (dotted line). Animation available in supplementary files under filename E3-
06_SmPC.exe
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Is it sufficient to use the sample sequence with sampling time 1/2Fx, (Fx B Fm)?
Can the original continuous waveform be reconstructed from this sequence? The
answer is ‘‘no.’’ In order to check this answer, the inverse Fourier transform is
calculated using the spectrum (Fig. 3.6b, c) within the frequency range ±Fx,
assuming all zeros outside of the ±Fx frequency range; this is shown by the solid
line in Fig. 3.6d. Unfortunately, however, it differs from the dotted line. They
match only at the sampling points. The sample values shown in Fig. 3.6d are those
of the samples at 1/2Fx steps but the original waveform of Fig. 3.6a cannot be
reconstructed from this sample sequence.

Let us summarize the above results. If Fx C Fm, there is no spectral change by
arranging the spectrum of the continuous waveform with period 2Fx. Its Fourier
coefficients, i.e., the sample values, are spaced on the time axis with 1/2Fx steps.
The spectrum of this sample sequence matches that of the continuous spectrum
within ±Fm. Therefore, from this spectrum, the continuous waveform can be
reconstructed.

On the other hand, if Fx \ Fm, the spectrum of the sample sequence sampled
with the sampling frequency 2Fx overlaps at both ends of the base frequency band
as shown in Fig. 3.6b, c. Of course the inverse Fourier transform of the distorted
spectrum differs from the original waveform, and therefore the original continuous
waveform cannot be reconstructed.

In Fig. 3.5, since Fx = 1.2Fm, when the spectrum is repeatedly placed with
period 2Fx on the frequency axis, the spectrum in one band does not interfere with
those of neighboring bands. If Fx [ Fm is satisfied, the original waveform is
reconstructed from the sample sequence. Therefore, two times the maximum
frequency of the spectrum of the original continuous waveform is the minimum
sampling frequency that enables the reconstruction of the waveform.

Let us take a different view point. If the spacing of the sample sequence is 1/Fs,
i.e., if the sampling frequency is Fs, that spacing will determine the maximum
frequency of the spectrum of the waveform. The maximum frequency Fx, which is
equal to Fs/2, is called the Nyquist frequency.

The reader can check what has been developed in this section by running the
program with various ratios (Fx/Fm) of the Nyquist frequency Fx to the maximum
frequency of the spectrum Fm.

3.4 Smoothing of Sample Sequence by Low-Pass Filtering

The explanation of the process of reconstructing the waveform from the sample
sequence was that (1) the spectrum from the sample sequence is calculated using
Eq. (3.5), then (2) the inverse Fourier transform is applied to the spectrum in the
base band using Eq. (3.6). Although this is a roundabout way, this explanation was
chosen because it clearly shows how the spectrum is treated in the reconstruction
of the waveform. The reader who understands this should also realize that there is
a simpler way to reconstruct the continuous waveform.
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Let us examine Fig. 3.3 once again. Figure 3.3a shows that the spectrum X(f) of
the continuous waveform x(t) is limited to the frequency range ±Fm. Figure 3.3b
shows the periodic spectrum with a period of two times the frequency Fx satisfying
the condition Fm B Fx. Each frequency period contains the spectrum X(f). The
development up to Eq. (3.6) shows that the inverse Fourier transform of this
infinitely long periodic spectrum becomes the sample sequence of the original
waveform. Letting the spectrum become periodic is equivalent to producing a
sample sequence of the waveform in the time domain. Conversely, arranging
samples with 1/2Fx spacing forces the spectrum to be periodic with period 2Fx.

The innermost period of the spectrum shown in Fig. 3.3b, i.e., the base band
from -Fx to +Fx, is the same spectrum as the one shown in Fig. 3.3a, and is
actually the spectrum of the continuous waveform. If all spectra except for the one
in the base band are removed, the remaining spectrum is that of the continuous
waveform itself. In order to obtain the continuous waveform from the sample
sequence, the sample sequence (actually the electrical pulse train) is fed to a low-
pass filter (LPF) so that the spectra outside of the base band are removed while the
spectra inside the base band are unchanged). The resulting signal is the desired
continuous waveform in the time domain.

If an ideal LPF were available, all components higher than Fx (and lower than
-Fx) would be completely removed and the low frequency components within
±Fx would be preserved without changing their amplitudes and phases. This
process is exactly equivalent to the numerical process of letting the higher fre-
quency components be zero and applying the inverse Fourier transform to the
remaining data. It is a common practice that the impulse train is input to a LPF
with a cutoff frequency that is higher than Fm and lower than Fx. The output of the
LPF is a continuous waveform.

However, a real LPF cannot have an ideally sharp cutoff response and the phase
of the waveform is also changed in the high frequency region near the cutoff
frequency. This process produces changes, or distortion, in the waveform. The
waveform changes due to phase distortion are usually not a big problem in cases of
speech and music signals. However, if the signal is used for imaging or for
studying details of transient properties of a waveform, the effect of the phase
change is sometimes devastating. In order to minimize waveform change due to
phase distortion, the cutoff frequency of the LPF is normally much higher than the
maximum frequency of the waveform. In other words, a large Fx/Fm ratio is mostly
employed.

If a sample sequence is already given, it is considered that a large Fx/Fm ratio
cannot be employed. If a sample sequence with a higher sampling frequency could
be generated from the given sequence, however, it becomes possible to use a large
Fx/Fm ratio. There are other occasions when different sampling frequencies are
required. In the following sections, some important sampling-related topics such as
the sampling theorem are explained. Then methods of changing sampling fre-
quencies will be discussed.
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3.5 Sampling Theorem

Starting with Eq. (2.28), which expands a waveform x(t) into a complex Fourier
series, the waveform x(t) can be recovered from the Fourier coefficients Xk, located
at discrete points on the frequency axis with 1/T spacing. On a contrary note, the
equation that is used to obtain the continuous spectrum on the frequency axis from
the time sequence on the time axis will be derived. In order to mechanically modify
Eq. (2.28) to an equation in a desired form, T is replaced by 2Fx and the spectrum Xk

is replaced by the sample value xn. Furthermore, since this is a transformation from
the frequency domain to the time domain, the minus sign must be used for the
exponent of the complex exponential function (see Appendix 3). Actually, what is
obtained is Eq. (3.5). However, an equation that has a widened range of xn to
infinity (n = ±?) is used.

~Xðf Þ ¼ 1
2Fx

X

1

n¼�1
xn expð�j2p

n

2Fx
f Þ ð3:7Þ

This spectrum is a periodic function on the frequency axis, with period 2Fx. It is
a known property of the impulse train that its spectrum is periodic on the infinitely
wide frequency range.

In order to obtain the time waveform from the frequency spectrum, the inverse
Fourier transform is used. However, if Eq. (3.7) is inverse Fourier transformed, the
same pulse train is obtained. It is necessary to remove the spectrum outside of ±Fx

in order to obtain the continuous waveform x(t), which can be done by restricting
the integration range from -Fx to +Fx.

xðtÞ ¼
Z þFx

�Fx

~Xðf Þ expðj2pftÞdf ð3:8Þ

By substituting ~Xðf Þ in Eq. (3.7) into Eq. (3.8), the following equation is
obtained

xðtÞ ¼ 1
2Fx

Z þFx

�Fx

X

1

n¼�1
xn expð�j2p

n

2Fx
f Þ expðj2pftÞdf :

If the order of integration and summation are changed, then the following is
obtained

xðtÞ ¼ 1
2Fx

X

1

n¼�1
xn

Z þFx

�Fx

exp½j2pf ðt � n

2Fx
Þ�df

¼ 1
2Fx

X

1

n¼�1
xn

exp½j2pf ðt � n
2Fx
Þ�

j2pðt � n
2Fx
Þ

ffi

ffi

ffi

ffi

ffi

þFx

�Fx

: ð3:9Þ
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By using Eq. (3.9), the equation used to calculates x(t) from sample sequence xn

with sampling frequency 2Fx is obtained:

xðtÞ ¼
X

1

n¼�1
xn

sin 2pFx t � n
2Fx

� �h i

2pFx t � n
2Fx

� � : ð3:10Þ

This is knows as the Shannon–Someya’sSampling Theorem.
As shown above, the method of obtaining the continuous waveform from the

sample sequence with sampling frequency 2Fx has been established, where both of
them perfectly agree with each other in the time domain. However, Eq. (3.10) does
not contain any restriction on the sampling frequency. Once the sample sequence
and its sampling time are given, a continuous waveform that perfectly fits with the
sample sequence is obtained by Eq. (3.10) regardless of the original waveform.
Therefore, if twice the maximum frequency of the spectrum (2Fm) is larger than
the sampling frequency (Fx), it is clear that Eq. (3.10) cannot be used to recon-
struct the original waveform. It was mentioned earlier that the frequency Fx is
called the Nyquist frequency if the sampling time is equal to 1/2Fx.

3.6 Smoothing of a Sample Sequence Using the Sampling
Theorem

Even if a numerical sample sequence is converted into an electrical waveform, the
waveform is still an impulse train and the original waveform is not yet recon-
structed. It must be reshaped as a continuous waveform. For this purpose,
Eq. (3.10) is used to interpolate between the discrete impulses. Let us investigate
how Eq. (3.10), which seems very complex at first glance, produces the continuous
waveform by a graphical representation. Each term of Eq. (3.10) is the product of
the sample value xn at n/2Fx and the sinc function.

sincðFxtÞ ¼ sinð2pFxtÞ
2pFxt

ð3:11Þ

Figure 3.7 shows the sinc function. The sinc function takes the maximum value
of 1 at Fxt ¼ 0 and it gradually decreases to zero as Fxtj j becomes larger and
larger, while keeping its values zero when 2Fxt takes integer values. Each sinc
function in Eq. (3.10) is a shift of Eq. (3.11) by t ¼ n=2Fx on the time axis. It
takes the maximum value t ¼ n=2Fx and zeros at other sampling points
(t ¼ m=2Fx ðm 6¼ nÞ). Therefore, the value of Eq. (3.10) takes the value xn at each
sampling point.

Now, it is known that each sinc function takes the waveform shown in Fig. 3.7
and that Eq. (3.10) is equal to the value xn at each sampling point. Still, there is a
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remaining concern. Does Eq. (3.10) take the values of the original waveform at
points other than the sampling points? It is already known from the discussions up
to Sect. 3.3 that the spectrum of the original waveform is reconstructed from the
Fourier coefficients that are given by the sample values, and its corresponding time
function is the original continuous waveform. Therefore, there is no need to check
this question theoretically but it is worthwhile to investigate it by numerical
calculation.

Figure 3.8 shows the results of the x(t) calculated from the sample values
fxngwith sample period of 1/2Fx, together with the sinc functions centered at
individual sampling points. As stated above, at the time t ¼ n=2Fx when the
sample value xn exists, the other sinc functions centered at times other than this are
all equal to zero and, therefore, Eq. (3.10) is equal to the sample values fxng. At
other times, Eq. (3.10) is the summation of sinc functions which are centered at the
individual sampling points, which is actually the smooth original curve.

It has been shown that the original waveform x(t), whose spectrum is limited
within ±Fm, can be reconstructed from discrete sample values if they are sampled
with sampling frequency (Fx C Fm).

Fig. 3.7 Waveform of the sinc function sincðFxtÞ ¼ sinð2pFxtÞ=ð2pFxtÞ

Fig. 3.8 Function x(t) and individual terms calculated from the sample values fxng using
Eq.(3.10). Animation available in supplementary files under filename E3-08_Smpl-to-Wave.exe
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At this point, the reader may remind Gibbs Phenomenon. However, an
expression of a waveform with the sampling frequency fx means that frequency
components above fx/2 equal zero, and therefore there is no waveform disconti-
nuity and no Gibbs Phenomenon.

3.7 Folding (Aliasing) of the Spectrum

So far, the permissible minimum value of the sampling frequency has been made
clear. It has also been made clear that, if a sample sequence is obtained using a
sampling frequency higher than the permissible minimum value, the original
waveform is recovered. What happens if a signal is sampled using a sampling
frequency lower than the minimum sampling frequency, or if the signal contains
components that are higher than the Nyquist frequency? The answers to these
questions are the topics of this section.

One may think that it is unnecessary to investigate this topic if the original
signal is not recovered. However, it is important to know what type of result is
obtained when wrong conditions are used in the measurement. When one
encounters an unexpected result, this kind of knowledge is useful when guessing at
the cause of the trouble.

Sine and cosine waves are convenient for the present purpose. It is known that if
the signal is a sine or a cosine wave with frequency f, the sampling frequency must
be higher than 2f. When a sine wave with 32 periods is sampled, at least 64
samples are necessary to describe the signal. Or if 64 samples are used, the number
of periods must be lower than 32. Let us check how the sample values and the
spectrum vary by changing the frequency of the sine wave while keeping the
sampling frequency constant.

Figure 3.9a shows sample values when 27–35 periods are sampled with 64
samples and Fig. 3.9b shows their power spectra. Since the numbers of the periods
are integers, the spectrum components are given by infinitely narrow vertical lines
and there is one line spectrum in each positive and negative frequency region of
the base band.

If 32 periods of a cosine wave are sampled with 64 samples, the spacing
between the two adjacent sampling points is given by 32� 2p=64 ¼ p. Therefore,
if the phase u of the first sampling point is 0, the sample values are +1, -1, +1, ….
The fourth row of Fig. 3.9a, which is for the case of 32 periods, shows that the
impulses of 1 and -1 repeat alternatively. Only for this case, the line spectra are at
the discrete frequencies …, -94, -32, +32, +96, …. This occurs because the
positive and negative components overlap with each other. Therefore, the mag-
nitude of the line spectra in this case is twice the other cases (the difference of
magnitudes is not shown in the figure).

Whether the original waveform can or cannot be reconstructed from the
alternating +1 and -1 pulses is a natural question. On the condition that there are
frequency components that are lower than or equal to the Nyquist frequency, the
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only possibility is the cosine function with the Nyquist frequency. However, if
u ¼ p=2, i.e., for the case of sine function, all sample values are equal to zero and
there is no way to reconstruct the waveform. The term u has to be known at the
time of sampling in order to reconstruct the waveform if 32 periods with 64 sample
points are taken.

When the frequency of the waveform becomes lower (i.e., fewer periods than
32), the phase difference between the adjacent sampling points gets smaller than p,
and therefore sample values take different values (see below the fourth row of
Fig. 3.9a). The sample values change like a cosine wave and the maximum value
is equal to the amplitude of the original cosine wave. The frequency of the line
spectrum also becomes lower (see below the fourth row in Fig. 3.9b). The period
of the change of the sample values included in the 64 point interval is given by
2 9 (32 - M), where M is the number of the period of the original waveform. In
case of M = 31 (or 30), the number of zeros is 2 (or 4). Please remember that the
number of zeros of the original waveform is given by 2 M, which is not easily seen
from the sample values in Fig. 3.9a since the number of sampling points is not
enough to show the details of the original waveform.

One may question whether the original waveform can be reconstructed from
such widely varying sample values. If the spectrum of the waveform is completely
zero above or equal to the Nyquist frequency, it is possible. Also, please remember
that the above examples are rather special cases in the sense that each sampled
waveform has an integer number of periods (from 27 to 35). If the number of the

Fig. 3.9 Sample sequences (a) and their corresponding spectra (b) for the cases when there are
27–35 periods of a cosine wave in the time length of 64 sampling periods. Animation available in
supplementary files under filename E3-09_Ariasing.exe
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sampling is finite and a waveform with noninteger number of periods is sampled,
there is a spectrum spread and in such a case the reconstruction becomes
impossible.

When the frequency of the waveform becomes higher (i.e., more periods than
32), the frequency of the line spectrum also becomes higher (i.e., the two line
components move outside of the base band). However, since the spectrum must be
periodic with the period of the base band (64 in this case), the line components that
were outside of the base band must move into the base band in order to keep the
periodicity (see above the third row in Fig. 3.9b).

Examine this from a different viewpoint. The line component moves toward the
boundary of the base band as the number of period increases and reaches the
boundary when the number equals 32. As the number of the periods further
increases, it seems like the line component is bounced back to the base band. Or, it
looks like the folding back at the boundary of a sheet of paper, on which line
components that exist outside of the boundary are drawn. This is why the termi-
nology ‘‘folding spectrum’’ was born. The higher frequency components greater
than the Nyquist frequency Ns/2 and appearing in the base band are called
foldingspectra.

The third (or second) row of Fig. 3.9a is exactly the same as the fifth (or sixth)
row of Fig. 3.9a. If the sample sequences are the same, the resulting continuous
waveforms are also the same. If the sample sequence is obtained by sampling the
cosine waveform of 33 periods with 64 sampling points, the reconstructed con-
tinuous waveform appears to be a cosine waveform with only 31 periods.

As seen above, higher frequency components greater than the Nyquist fre-
quency appear as lower frequency components that actually do not exist, causing a
change of the waveform. The waveform distortion produced by this phenomenon
is called aliasingdistortion.

The reader can check this by using the program attached to the figure; items to
check include how the results change by changing cosine waves to sine waves and
also what occurs when the waveform contains multiple components with slightly
different frequencies.

What happens if there are more frequency components that are higher than the
Nyquist frequency? What occurs was already shown in Fig. 3.6. Figure 3.10
shows results viewed from a different angle. Figure 3.10a shows a waveform to be
analyzed and sample sequence sampled at two times the highest frequency, i.e., the
minimum permissible sampling frequency. Figure 3.10b shows the waveform
obtained by removing the frequency components that are higher than the Nyquist
frequency, this waveform matches perfectly with the waveform of Fig. 3.10a.

Figure 3.10c shows the sample sequence sampled with 0.8 times of the sam-
pling frequency of Fig. 3.10a. The solid line in Fig. 3.10d is the waveform
obtained from (c) by removing the frequency components that are higher than the
Nyquist frequency. The dotted line in Fig. 3.10d is the waveform in Fig. 3.10a.
Figure 3.10e shows the difference between the two waveforms.

As Fig. 3.10 shows, if the sampling frequency is lower than the minimum
permissible frequency, the waveform distortion appears almost everywhere on the
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time axis. If the sampling frequency is higher than twice the frequency of the
maximum frequency components, the original waveform is reconstructed. Using
the program attached to Fig. 3.10, the reader can try several cases with different
sampling frequencies and waveforms.

A sample sequence numerically generated on a computer for a repetitive
rectangular wave gives a series of impulses as shown in Fig. 3.11. The sample
sequence appears reasonable for a rectangular wave. However, the rectangular
wave has very high frequency components as seen in Fig. 1.4 and some other
figures. If the sample sequence in Fig. 3.11a has a 10 ms time spacing, its spec-
trum is periodic with period of 100 Hz (±50 Hz) as shown in Fig. 3.11b (real part)
and Fig. 3.11c (imaginary part). In order to produce a continuous waveform, all
components outside of the base band must be removed. The result, with those
components removed, is the wavy shape shown in Fig. 3.11d. Figure 3.11e shows
the difference between the waveforms (a) and (d).

The difference between the original and reproduced waveforms shown in
Fig. 3.11e is due to violation of the sampling theorem and it is not related to Gibbs
Phenomenon.

Fig. 3.10 Waveform and its sample sequences sampled with the minimum permissible sampling
rate and with a sampling rate lower than that, and reconstructed waveforms. a Original waveform
and its sample sequence sampled with the minimum permissible sampling frequency,
b reconstructed waveform from the sample sequence shown in (a), c sample sequence sampled
with 0.8 times the minimum permissible sampling frequency, d reconstructed waveform (solid
line) and original waveform (dotted line) shown in (a) and (b), e difference between the two
waveforms shown in (d) and (b). Animation available in supplementary files under filename E3-
10_WaveReproF4 K.exe
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3.8 Sampling Frequency Conversion I (Application
of the Fourier transform)

There are occasions where the sampling frequency of a sample sequence must be
converted to another sampling frequency. When two signals with different sam-
pling frequencies must be added, the sampling frequencies must be made the same.

First, consider the method of converting sampling frequencies using the Fourier
transform approach. This technique is an extension of the relations among the
waveform, the spectrum, and the sample sequence. Figure 3.12a shows a band
limited spectrum within the frequency range ±Fx, which is obtained by the Fourier
transform of a continuous waveform x(t) with duration T. This spectrum is con-
tinuous and is also the envelope of the Fourier coefficients Xk obtained by the
Fourier series expansion of the waveform, assuming that it is periodic with period
T. Let xn be the sample sequence with sampling frequency 2Fx and let N be the
number of sample points in the time length T. Then, since the spacing of the
sample sequence is 1/2Fx, xn = x{n/(2Fx)} gives the n-th sample value. Also there
is a relationship N = 2FxT since T = N 9 (1/2Fx). The spectrum of the sample
sequence xn is periodic with period 2Fx. as shown in Fig. 3.12b.

Fig. 3.11 An example of inadequate sampling rate. a sampling sequence made from two
rectangular waves in 320 ms, b, c its real and imaginary spectrum components, respectively,
d reconstructed waveform from the spectrum in the base band, and e the difference between the
two continuous waveforms (d) and (a). Animation available in supplementary files under
filename E3-11_ReproF4 K.exe
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If the same original waveform is sampled with sampling frequency 4Fx, the
spectrum of the new sample sequence is distributed on the frequency axis with
period 4Fx. Since the spectrum value outside of ±Fx is zero, the periodic spectrum
becomes similar to the one shown in Fig. 3.12c. This suggests the method of
getting the new sample sequence sampled with sampling frequency 4Fx. The steps
of the method are; (1) calculate the continuous spectrum from the sequence xn, (2)
obtain Fig. 3.12c by adding N/2 zeros on both sides of the base band (outside of
the frequency range ±Fx), and (3) apply the inverse Fourier transform of 2N data
to the periodic spectrum with period 4Fx (Fig. 3.12c).

Let’s consider the actual procedure of the method. The continuous spectrum
X(f) of Eq. (3.5) is given by the Fourier transform of the sample sequence xn,
which is obtained by sampling the original waveform x(t) with sampling period 1/
(2Fx). This spectrum is in the frequency band within ±Fx centered at 0 frequency
(i.e., in the base band). This is a continuous spectrum and it is not suitable to
convert the sampling frequency by a numerical method. However, if it is assumed
that the waveform is periodic with period T, Its spectrum becomes the Fourier
coefficients, and is represented by replacing f with k/T, in Eq. (3.5).

Fig. 3.12 Explanation of the method of producing sample sequence with n times the sampling
frequency from a sample sequence of a continuous waveform whose frequency spectrum is
limited within ±Fx. a original spectrum, b–e spectra of the sample sequences of the original
waveform sampled with sampling frequencies 2Fx, 4Fx, 6Fx and 7Fx, respectively
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T
Þ
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N
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ð3:12Þ

There is no need to mention that the sample values of x(t) at 1/(2Fx) intervals
are represented by the Fourier series given by Xk.

xn ¼ xðn=2FxÞ ¼
1
T

X

N=2�1

k¼�N=2

Xk expðj2p
kn

N
Þ: ð3:13Þ

In order to double the sampling frequency, zeros of N/2 points on both sides of
the high frequency regions are added (Fig. 3.12c) and the inverse Fourier trans-
form of 2N point data is calculated. Since the spectrum in the regions where
kj j[ N=2 is zero, the range of k is the same as in Eq. (3.13). With regard to the

range of k, one only needs to change 2Fx in Eq. (3.13) to 4Fx. The range of the
sample number n is from 0 to (2N - 1) instead of 0 to (N - 1) since the sampling
period is halved and the waveform length T is unchanged.

xðn=4FxÞ ¼
1
T

X

N=2�1

k¼�N=2

Xk expðj2p
kn

4FxT
Þ

¼ 1
T

X

N=2�1

k¼�N=2

Xk expðj2p
kn

2N
Þ

ð3:14Þ

Thus, it became possible to calculate the sample sequence when the sampling
frequency is doubled (2Fx to 4Fx). By extending this idea, one will come up with
the method of converting the sampling frequency from 2Fx to 6Fx or from 2Fx to
7Fx by referring to Fig. 3.12d, e.

At this point, the method of converting a sample sequence with sampling
frequency Fs (=2Fx) to a sample sequence with sampling frequency pFs has been
established. This method uses the Fourier transform, which can be computed only
after a full set of data is ready. This causes some amount of time delay in pro-
cessing even if the computing time becomes negligibly small (because one has to
wait to obtain the full data set of the Fourier transform).

In Fig. 3.12, the spectrum is shown with its center at zero frequency. However,
the calculation of the spectrum given as a discrete sequence of values (numbered
from 0 to N) is done by using the discrete Fourier transform (DFT). The details of
calculation will be given in Appendix 4B in Chap. 4.
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3.9 Sampling Frequency Conversion II (Application
of LPF)

The problem mentioned in the last section is solved by the introduction of low-pass
filtering in the time domain. The principle will be explained here.

Figure 3.13a shows a continuous waveform (left) and its continuous spectrum
limited within ±Fx (right). Figure 3.13b (left) shows the sample sequence obtained
with sampling period s (sampling frequency 2Fx = 1/s). The impulses take the
same values as the continuous waveform at the discrete times, and the spectrum of
this sample sequence is an infinite periodic function with period 2Fx as shown in
Fig. 3.13b (right).

If the same waveform (a, left) is sampled with sampling frequency 4Fx, the
sample sequence becomes like Fig. 3.13c (left). The sample values are the same as
the waveform at the sample points. The spectrum of this sequence is infinitely
wide and periodic with its base band period from -2Fx to +2Fx. Since the spec-
trum of the original waveform is limited within ±Fx, the spectrum in the region
outside of ±Fx is zero. This spectrum within ±Fx, has the same shape as
Fig. 3.13a, b but the magnitude is two times larger than the spectra of Fig. 3.13a, b
in the same region. The reason why it is doubled is that the sampling number is
doubled in the same time period.

What happens when the data in Fig. 3.13b is subtracted from the data in
Fig. 3.13c? Every other sample of the resulting sample sequence is zero as seen in

Fig. 3.13 Principle of doubling the sampling frequency by a digital LPF. a Original waveform
(left) and its spectrum (right), b sample sequence with period s (left) and its spectrum (right),
c sample sequence with period s/2 (left) and its spectrum (right), d (c) - (b), e (c) - (d)
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Fig. 3.13d (left). It appears like the sampling period is s. Its spectrum is shown in
Fig. 3.13d (right). The spectrum between Fx and 3Fx and -Fx and -3Fx are the
inverse of the spectrum Fig. 3.13b since Fig. 3.13b is subtracted from Fig. 3.13c.

The sample sequence in Fig. 3.13d (left) appears like the sample sequence of
the waveform Fig. 3.13a with sampling period s = 1/2Fx . In that sense, the
difference from Fig. 3.13b is only that the times of the sampling are shifted by
1/4Fx. However, there is another difference: the sample values at the time of
sampling of Fig. 3.13b (left) are zero. These are the reasons why the period of
Fig. 3.13d (right) is 4Fx and that there are regions where the signs of the spectra
are reversed from those of Fig. 3.13b (right). The fact that the period of Fig. 3.13d
(right) is 4Fx is equivalent to the fact that the sample sequence is spaced with
1/4Fx. That is, the sample sequence in Fig. 3.13d (left) is composed of two
sequences, one of them is made of sample values of the waveform Fig. 3.13a (left)
with period 1/2Fx and the other sequence is made of all zeros spaced also with
1/2Fx, where the zeros of the latter sequence are located amidst the data points of
the former sequence.

Next, when the data in Fig. 3.13d is subtracted from the data in Fig. 3.13c, the
data in Fig. 3.13e is obtained. This seems just like the sequence Fig. 3.13b (left).
But it has zeros between the sample values of Fig. 3.13b (left). This sequence can
be made very easily from Fig. 3.13b (left) by inserting zeros at centers of two
adjacent sample points. If the region outside of ±Fx of the spectrum shown in
Fig. 3.13e (right) is made zero by a digital filter with sampling rate s/2, the output
of the filter is a sample sequence with period s/2, and its envelope agrees with the
waveform Fig. 3.13a. That is, the output of the digital filter is the sample sequence
with twice the original sampling frequency.

From the above discussion, a procedure for doubling the sampling frequency is
given. This will be explained using Fig. 3.14.

Figure 3.14a is the sample sequence with sampling period s (=1/2Fx). Fig-
ure 3.14b is the sequence obtained by inserting zeros centered between adjacent
sample points. This new sequence has the period s/2 and its spectrum is from -2Fx

to -Fx and from +Fx to +2Fx and is the same as the spectrum within ±Fx (i.e., in
the base band). By letting the spectra below -Fx and above Fx equal zero by a
digital LPF, a sample sequence with sampling period s/2 that has spectra only
within ±Fx is obtained. This is shown in Fig. 3.14c. Since the half of the spectrum
has been removed and the number of samples has been doubled, the amplitude of
each sample is halved. By doubling the values of the sequence Fig. 3.14c, the
sequence Fig. 3.14d is obtained, which is equal to the sample sequence obtained
by sampling the original continuous waveform with sampling frequency 4Fx.

The method of inserting zeros between existing data points and letting it go
through a LPF can be used not only for doubling, but also for any other integer
ratios of the sampling frequency. In order to triple, two zeros can be spaced
equally between adjacent sample points. However, the converting ratio must be an
integer.

It is possible not only to increase the sampling frequency, but also to lower it.
For example, in order to halve the sampling frequency, just use every other sample
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value. If one-third of the sampling frequency is required, use one in every three
samples. However, caution must be exercised. The lowered sampling frequency
still must satisfy the sampling theorem. Otherwise, there will be an unrecoverable
distortion.

One can also achieve 2.5 times the sampling frequency. First, increase the
sampling frequency 5 times, and then halve the new sample sequence. Many other
combinations are possible with some ingenuity.

3.10 Exercises

1. When sampling a continuous waveform, what are the requirements?
2. What are the necessary conditions in order for the inverse Fourier transform to

be real?
3. What is the necessary condition in order to represent a waveform, whose

spectrum is limited within ±Fm, by a sample sequence.
4. Explain why one cannot reconstruct a waveform whose spectrum is limited

within ±Fm when it is sampled with the sampling period of 1/2Fm.
5. What happens to the reconstructed continuous waveform when one samples a

waveform with a sampling frequency lower than the Nyquist frequency?
6. Given a sample sequence which is obtained by sampling a waveform, whose

spectrum is limited within ±Fm, with the sampling frequency 2Fx (CFm). If one
could input this sequence to an ideal digital LPF with cutoff frequency Fc, what
kind of differences between the input and output sequences should one expect?

7. A waveform is reconstructed from a sample sequence obtained by sampling an
original waveform, whose spectrum is limited within ±Fm, with sampling

Fig. 3.14 Process of converting the sampling frequency from 2Fx to 4Fx

74 3 Numerical (Digitized) Waveforms



frequency Fs which is lower than, but close to, 2Fm. What kind of difference
does one expect between the spectra of the original and the reconstructed
waveform?

8. Explain the method of making a sample sequence with sampling frequency pFs

from a sample sequence obtained with sampling frequency Fs from a waveform
whose spectrum is limited within ±Fm. Discuss cases for various p.
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Chapter 4
Discrete Fourier Transform

The Fourier transform is an integral of the product of a signal (waveform) to be
analyzed and a complex exponential function with an arbitrary frequency (see
Eq. (2.37)). In theoretical discussions, it is possible to deal with continuous
functions. However, since a continuous function requires an infinite number of
points to describe, it is not suitable for a numerical analysis using a digital
computer. That is why the waveform is converted to a finite length sample
sequence and numerical analysis is applied to it, as explained in Chap. 3. Instead
of directly applying the Fourier transform, theoretical formulae that are applicable
to a finite number of sample values should be defined. The pair of formulae
developed for this purpose is the Discrete Fourier Transform (DFT) pair, which
will be explained in this chapter.

The transform pair can be represented by sine and cosine functions, but it can
also be represented by cosine functions only. This is called the Discrete Cosine
Transform (DCT), which is often used for data reductions and discussed at the end
of this chapter and in Chap. 6 of volume II of this book.

4.1 Fourier Transform of Discrete Sequence of Numbers

First, let us consider a sample sequence, sampled with constant time spacing from
a continuous waveform, and see how its Fourier transform is represented. At the
top of Fig. 4.1, a sequence of impulses as well as its original waveform x(t) are
shown.

If the sampling period is s, the time length of the waveform is T, and the
number of samples is N, then the relation T = Ns holds. We define the start of the
waveform as the origin of the time axis (t = 0). Then, the first sample has 0 time
delay and amplitude x(0), the second sample has time delay s and amplitude x(s),
the nth sample has time delay ns and amplitude x(ns), and so on. Then, the sample
sequence can be represented as a weighted series of impulses:

K. Kido, Digital Fourier Analysis: Fundamentals,
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-1-4614-9260-3_4,
� Springer Science+Business Media New York 2015
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xð0ÞdðtÞ þ xðsÞdðt � sÞ þ xð2sÞdðt � 2sÞ þ � � � þ xðnsÞdðt � nsÞ þ � � �

Each term of the above equation is taken one by one from the sample values of
the top row of Fig. 4.1. Beginning with the second row, one impulse is shown in
each row with its equation on the left side of each row. By adding all these
impulses, the sample sequence shown in the top row is obtained. If we represent
the sample sequence by xs(t), it is given by

xSðtÞ ¼
X

N�1

n¼0

xðnsÞdðt � nsÞ ð4:1Þ

The Fourier transform of the sample sequence xs(t), is the sum of the Fourier
transforms of the individual impulses, each of which has a separate time delay ns.
The Fourier transform of an impulse that has time delay s has been already given
by Eq. (2.42). It follows that the Fourier transform Xn(f) of the nth impulse
xðnsÞdðt � nsÞ is given by

Xnðf Þ ¼ xðnsÞ expð�j2p ns f Þ ð4:2Þ

Then, the Fourier transform of Eq. (4.1) is given by

Fig. 4.1 Derivation of the formula for the DFT by representing the waveform as a sequence of
impulses with magnitudes of sample values at discrete sampling times and by making the
summation of spectra of the impulses
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FTfxSðtÞg ¼
X

N�1

n¼0

xðnsÞ exp �j2pnsfð Þ ð4:3Þ

This equation indicates that the Fourier transform of the N point sample
sequence xs(t) of x(t) with spacing s is given by the summation of N complex
exponential functions. In Eq. (4.3), there are parameters for the continuous (ana-
log) waveform such as s and f. However, these parameters will take on discrete
values for the reasons explained below.

Since the spectrum is limited within ±Fx, and there are N points in the time
period from 0 to T, which is sampled with period s = 1/2Fx, the following rela-
tionship exists between s and N:

s ¼ 1=2Fx ¼ T=N ð4:4Þ

Since the frequency spectrum is the set of Fourier coefficients of the waveform
with period T, it follows that the frequencies of the components are integer mul-
tiples of 1/T. That is, FT{xs(t)}, which is the Fourier transform of xs(t) given by
Eq. (4.1), takes the discrete frequencies given by

f ¼ k=T k ¼ 0; 1; 2; . . . ð4:5Þ

Substituting Eqs. (4.4) and (4.5) into Eq. (4.3), the following equation is
obtained for the Fourier transform:

FTfxSðtÞg ¼
X

N�1

n¼0

xðnsÞ exp �j2p
nk

N

ffi �

ð4:6Þ

Representing the sample value xs(ns) of xs(t) at every s by xn, and the Fourier
coefficients at each frequency f = k/T by Xk, Eq. (4.6) is rewritten as

Xk ¼
X

N�1

n¼0

xn exp �j2p
nk

N

ffi �

ð4:7Þ

This is the formula of the Fourier transform of a sample sequence with
N samples, called the discrete Fourier transform (DFT) of x(t) in the sense that it is
the Fourier transform of a discrete sequence. The variables k and n are called the
discrete frequency and the discrete time, respectively. When it is necessary to
show that it is a transform of N point data, it is called the N pointDFT. Sometimes,
the DFT is called the finite Fourier transform since the number of data on the time
axis is finite.

The equation of definition of the discrete Fourier transform has now been
derived. Still, the region of the variable k needs to be defined. From the discussions
up to Chap. 3, we know that the negative frequency spectrum is also necessary. If
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the length of the waveform, whose spectrum is within ±Fx, is T, the number of the
Fourier coefficients with f0 (= 1/T) steps should be

2Fx=f0 ¼ 2FxT

From Eq. (4.4), this must be equal to N. Therefore, the absolute value of k is
from 0 to N/2. That is, the frequency range is from -Fx to +Fx and the discrete
frequency range is nominally from -N/2 to +N/2. If N is even, the discrete fre-
quency range should be -N/2 to +N/2-1. The numbers of the positive and neg-
ative frequency components are different, but this is not a serious problem. If N is
odd, the number of integers in the range from -(N-1)/2 to +(N-1)/2 is
N. Therefore, this is the proper range for odd N.

Since it has been shown that the real part of the spectrum corresponds to an
even function and the imaginary part corresponds to an odd function, the spectrum
in the negative frequency range is easily established from the spectrum in the
positive frequency range. For this reason, only the positive frequency components
from k = 0 to N/2-1 or (N-1)/2 are required to describe the spectrum.

If Eq. (4.7) is used only for calculating the spectrum, the above conclusion is
enough. However, when the inverse equation is required, the one that calculates
the waveform from the spectrum, the range of k from 0 to N/2 is not sufficient and
the full range from -N/2 to +N/2-1 must be used. The inversion equation will be
derived in Sect. 4.2, and the range of k will be discussed again.

4.2 Inverse Discrete Fourier Transform (IDFT)

Equation (4.7) is equivalent to Eq. (2.37), which is the Fourier transform of a
continuous waveform. We need another equation which is equivalent to Eq. (2.38),
the inverse Fourier transform. Although it is possible to derive the inverse discrete
Fourier transform by inverting each component of the line spectrum, we will take a
different approach here.

In the Fourier transform pair given by Eqs. (2.37) and (2.38), there are minus
and plus signs in the argument of the exponential functions, and the integrations
are with respect to t and f, respectively.

For the inversion, let us try the same process described above, i.e.: multiplying
both sides of Eq. (4.7) by expðþj2pnk=NÞ and summing with respect to the dis-
crete frequencyk. The parameter n in the right-hand side of Eq. (4.7) must be
changed. The range of the parameter should be k = -N/2 * N/2 - 1 for even k,
and k = -(N - 1)/2 * (N - 1)/2 for odd k. However, since Xk is periodic with
period N, we can also let the range of k be from 0 to N as in Eq. (4.7). Since this is
permissible, k can be handled the same way without regard to being even or odd.
The result becomes as follows:
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X

N�1

k¼0

Xk expðj2p nk=NÞ ¼
X

N�1

k¼0

expðj2p nk=NÞ
X

N�1

m¼0

xm expð�j2p mk=NÞ:

Reversing the order of summation, we get the following equation:

X

N�1

k¼0

Xk expðj2p nk=Ng ¼
X

N�1

m¼0

X

N�1

k¼0

xm expfj2pðn� mÞk=Ng

¼
X

N�1

m¼0

xm

X

N�1

k¼0

expfj2pðn� mÞk=Ng:

The sum of the exponential functions can be obtained easily using the following
reasoning:

In case of m = n, since expfj2pðn� mÞk=Ng ¼ 1, the sum with respect to k is
N. Therefore, the right-hand side of the above equation is equal to Nxn when
m = n. In case of m 6¼ n, the exponential functions are the vectors that are shown
by the arrows in Fig. 4.2 (N = 8 is assumed). In these cases, the summation is
always zero. Now, since

Fig. 4.2 Vectors that represent expfj2pðn� mÞk=Ng and their summation for the case with
N = 8
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xn

X

N�1

k¼0

exp j2p
ðn� mÞk

N

ffi �

¼ Nxn n ¼ m
0 n 6¼ m

�

the equation above this one can be rearranged as follows:

xn ¼
1
N

X

N�1

k¼0

Xk exp j2p
nk

N

ffi �

: ð4:8Þ

Equation (4.8) is called the inverse discrete Fourier transform (IDFT) of Xk.
You can confirm that you will get Xk when you substitute xn obtained from this
equation into the equation of the discrete Fourier transform, Eq. (4.7).

Equations (4.7) and (4.8) together are called the discrete Fourier transformpair.
These equations are almost the same and they have a good symmetry except that:
(a) the sign of the argument of the complex exponential function in the forward
and inverse transforms is negative and positive, respectively; and (b) in the for-
ward transform, the summation stands alone and in the inverse transform it is
divided by N. Sometimes, in order to make the pair more symmetric, the following
pair of equations is used.

Xk ¼
1
ffiffiffiffi

N
p

X

N�1

n¼0

xn exp �j2p
nk

N

ffi �

ð4:9Þ

xn ¼
1
ffiffiffiffi

N
p

X

N�1

k¼0

Xk exp j2p
nk

N

ffi �

ð4:10Þ

One more problem should be made clear. The range of k was taken from 0 to
N-1 instead of from -N/2 to N/2-1. The only reason for doing this was that Xk is
periodic with period N. The question is ‘‘Is this sufficient?’’

Let us use a new variable p that satisfies k = N-p in the range k C N/2. Then,
Xk expðj2pnk=NÞ can be rewritten as

Xk expðj2pnk=NÞ ¼ XN�p expfj2pnðN � pÞ=Ng
¼ XN�p expfj2pnð�pÞ=Ng expðj2pnÞ
¼ XN�p expfj2pnð�pÞ=Ng

From this equation, it is known that the data number and the discrete frequency
have the correspondence shown in Fig. 4.3. The circles in Fig. 4.3 have the data
number and the discrete frequency outside and inside the circles, respectively, for
the cases N = 8 (even, left) and N = 9 (odd, right). Whatever k is, the upper half
of the data numbers corresponds to the negative frequency k-N.

If not otherwise mentioned, the term ‘‘frequency’’ will be used in place of
‘‘discrete frequency’’.
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Let us check the relationship between the real and imaginary parts and the time
function. If we represent the DFT of the 16-point sample sequence shown in
Fig. 4.4(aw) by Rk +jIk, then the real and imaginary parts:

Rk ¼ RefXkg ¼
X

N�1

n¼0

xn cos 2p
nk

N

ffi �

ð4:11Þ

Fig. 4.3 Relation between the data number and the discrete frequency on the frequency axis

Fig. 4.4 Discrete sample sequence and its even and odd parts and their IDFTs. (aw): 16-point
sample sequence, (as): amplitude spectrum of (as), (bs): real part of DFT of (aw), (cs): imaginary
part of DFT of (aw), (bw): IDFT of (bs), (cw): IDFT of (cs). Animation available in
supplementary files under filename E4-04_DFT_Ana.exe
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Ik ¼ ImfXkg ¼ �
X

N�1

n¼0

xn sin 2p
nk

N

ffi �

ð4:12Þ

become as shown in Fig. 4.4(bs), (cs), respectively. Since the amplitude spectrum
is given by the square root of the sum of the squares of real and imaginary parts,
the amplitude spectrum is as shown in Fig. 4.4(as). The positive frequency range is
given by k from 0 to N/2-1 (=7) and the negative frequency range is given by
k from N/2 (=8) to N-1 (=15). The negative frequency corresponding to this range
is from -N/2 (-8) to -1. Figure 4.3 will help you understand this relationship
between the data number and the real frequency. The real part of the spectrum is
an even function because the cosine function is even, and the imaginary part is an
odd function because the sine function is odd.

The IDFTs of Fig. 4.4(bs), (cs) are given by Fig. 4.4(bw), (cw), respectively.
Fig. 4.4(bw) is an even function and Fig. 4.4(cw) is an odd function. The sum of
the even and odd functions is given by Fig. 4.4(aw). It is possible, therefore, to
separate Fig. 4.4(aw) into the even function Fig. 4.4(bw) and the odd function
Fig. 4.4(cw) without using a complex operation such as the DFT.

4.3 The DFT and the Fourier Transform

Formulae for the DFT and IDFT have been derived in the previous sections. Let us
consider a little more about the relationships between the discrete and continuous
Fourier transforms.

It is already known that line spectra with spacing (1/T) are obtained as a set of
Fourier coefficients through the Fourier expansion of a waveform with period T,
and that the spectrum of a sequence with spacing s (=1/2Fx) is obtained as a set of
Fourier coefficients through the Fourier expansion of a spectrum whose compo-
nents are limited to the frequency range ±Fx.

Since the sample sequence is a sequence of impulses with individual ampli-
tudes, the Fourier transform of the n-th impulse is a complex number
ðxn expð�j2pfn=2FxÞÞ with amplitude xn and with phase �j2pfn=2Fx which is
proportional to frequency f, where n is the sample number, (1/2Fx) is the sampling
period, and n/2Fx is the (discrete) sample time. By adding all these terms, the
equation of the DFT is obtained. The equation of the IDFT is obtained from the
DFT with the idea that it is one of the two members of the transform pair. One can
also confirm that it is valid as the equation of the inverse transform. With these
thoughts in mind, let us summarize the relationships between the continuous/
periodic/discrete waveforms and their corresponding continuous/discrete/periodic
spectra.

Figure 4.5a shows the continuous waveform (left) and its continuous spectrum
(right). The waveform is limited to the range from 0 to T, and its spectrum is
limited within ±Fx. If the waveform is real, the spectrum is complex, and the real
and imaginary parts are even and odd functions of the frequency, respectively.
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For simplicity, however, the spectrum is drawn as an even function. The time
and frequency domain functions in Fig. 4.5a are continuous and limited within
their own ranges and are null (or at least no significant components) outside of
those regions. The relationship between these two functions is established by the
Fourier transform pair given by Eqs. (2.37) and (2.38).

Xðf Þ ¼
Z þ1

�1
xðtÞ expð�j2pftÞdt 2:37ð Þ ð4:13Þ

xðtÞ ¼
Z þ1

�1
Xðf Þ expðj2pftÞdf 2:38ð Þ ð4:14Þ

When it is assumed that the waveform repeats itself infinitely with period T, its
spectrum is given by the line spectrum with spacing 1/T. It is known from dis-
cussions in Chap. 2 that the envelope of this line spectrum is given by Fig. 4.5a,
right. There is a 1:1 correspondence between the periodic waveform and the line
spectrum, indicating that when one of them is determined the other is also
determined. These relations have already been given by Eqs. (2.28) and (2.29).

xðtÞ ¼ 1
T

X

1

k¼�1
Xk exp j2p

k

T
t

ffi �

also 2:28ð Þ ð4:15Þ

Fig. 4.5 Relations between waveforms and their spectra. a Finite continuous waveform and its
finite continuous spectrum (assuming no significant components outside –Fx and Fx), b continuous
periodic waveform and its discrete spectrum, c finite sample sequence and its continuous periodic
spectrum, d periodic sample sequence and its discrete periodic spectrum
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Xk ¼
Z T=2

�T=2
xðtÞ exp �j2p

k

T
t

ffi �

dt also 2:29ð Þ ð4:16Þ

This pair relation is shown in Fig. 4.5c. The spectrum in Fig. 4.5c is the one
obtained by assuming that the spectrum in Fig. 4.5a (right) repeats itself infinitely
with period 2Fx. If the Fourier expansion is applied to this periodic function, the
sample values (Fourier coefficients) are located only at integer multiples of 1/2Fx

on the time axis. The envelope of the Fourier coefficients is equal to the waveform
in Fig. 4.5a (left). The sample values xn, which are Fourier coefficients, are given
by Eq. (3.3), and the continuous periodic spectrum is obtained from the sample
values xn, by Eq. (3.5).

xn ¼
Z þFx

�Fx

Xðf Þ exp j2p
n

2Fx
f

ffi �

df 3:3ð Þ ð4:17Þ

Xðf Þ ¼ 1
2Fx

X

N

n¼0

xn exp �j2p
n

2Fx
f

ffi �

3:5ð Þ ð4:18Þ

If it is assumed that a continuous waveform with finite length is periodic, its
corresponding frequency spectrum function becomes an impulse sequence. If we
assume that a continuous spectrum with finite length is periodic, its corresponding
time function becomes an impulse sequence. Figure 4.5d shows the case when
both the time and frequency functions are finite length sample sequences. It should
be remembered that a periodic function, even if it is an impulse sequence, can be
expanded as a Fourier series, and therefore, both the waveform and the spectrum
become impulse sequences. The relations between the two sequences with length
N is given as the DFT pair, which is shown here again.

Xk ¼
X

N�1

n¼0

xn exp �j2p
nk

N

ffi �

4:7ð Þ ð4:19Þ

xn ¼
1
N

X

N�1

k¼0

Xk exp j2p
nk

N

ffi �

ð4:8Þ ð4:20Þ

It should be kept in mind that both xn and Xk are infinite functions with period
N.

In the past, it was very difficult to carry out the forward and backward (inverse)
Fourier transforms by use of analog computers, but with the advent of digital
computers, it is now easy to numerically calculate Eqs. (4.19) and (4.20). Of
course, these are discrete Fourier transforms and one must remember that the
relationship between the waveform and the spectrum is like the one shown in
Fig. 4.5.

86 4 Discrete Fourier Transform

http://dx.doi.org/10.1007/978-1-4614-9260-3_3


4.4 Waveform and Its DFT

Thus far, the basic idea of the DFT has been discussed. In order to better apply the
DFT to real problems, it is useful to have familiarity with DFTs of a variety of
signals with known properties. Let us look at several examples.

DFTs with N = 32 or 64 data points will be used because a smaller number
makes it easier to understand the relationship between the discrete sample
sequence and the discrete spectrum. Since the number of examples that can be
listed in this book is limited, other examples are included in the related program.

4.4.1 Sine and Cosine Waves

The spectra of the sine sinð2pftÞ and cosine cosð2pftÞ waves have frequency
components only at ±f. However, depending on the way these waveforms are
extracted, the calculated spectrum may take different shapes. This is because the
extracted waveform is treated as one period of an infinitely long periodic
waveform.

Figure 4.6 (left) shows a sample sequence of a sine wave, and Fig. 4.6 (right)
shows its spectrum. Figure 4.7 shows the same for a cosine wave. Figures 4.6a and
4.7a have exactly 4 periods in the window (that is, the frequency is 4) and in these
cases, the periodic waveforms become exactly the original sine and cosine waves,
respectively. Therefore, their spectra have positive and negative frequency com-
ponents at k = 4 and k = -4, respectively, as shown by the thick blue vertical
lines. The thin red line envelopes are the continuous spectrum distributions
obtained by the Fourier transform assuming that the waveforms outside the region
±T/2 are zero. In these cases, the continuous spectra give exactly the same values

Fig. 4.6 Sample sequences of sine waveforms (left) and their spectra (right). a 4 periods in the
sequence, b 4.5 periods in the sequence. Animation available in supplementary files under
filename E4-06_Sine.exe
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at k = 4 and k = -4. At the other discrete frequencies, the continuous spectrum
distributions are always zero.

On the other hand, if the number of wave periods is a noninteger value like
Fig. 4.5 (see Figs. 4.6b and 4.7b), the peak frequency and the frequencies at which
the continuous spectra are zero are not integers. Since the values obtained by the
DFT occur only at integer frequencies, many nonzero frequency components are
observed.

The general definition of ‘‘frequency’’ is the number of periods per second.
Here, it is defined as the number of periods in the window length (=T): the
frequencies in (a) and (b) are 4 and 4.5, respectively.

The waveform in Fig. 4.6 is a sine function and its spectrum is purely imagi-
nary; the waveform in Fig. 4.7 is a cosine function and its spectrum is purely real.
The reason is that the former is antisymmetric and the latter is symmetric when the
time origin is taken at the center of the waveforms. If this origin is shifted, there
will be a proportional phase shift, and the spectrum will contain both real and
imaginary parts. In general, the spectral distribution is not as simple as these two
cases.

4.4.2 Phase and Spectrum

Figure 4.8 shows the case with the sine wave shifted to the left on the time axis.
There are 64 sample points in each sample sequence and there are 6 waves in each
sequence. That is, the frequency is 6 (using the above definition). Therefore, the
line spectra are located at ±6. Since the time shifts are 1/8 and 1/3, respectively, of
one fundamental period, the phases are 45� (Fig. 4.8a) and 120� (Fig. 4.8b),
respectively. Since cos 45� ¼ sin 45�, the magnitudes of the real and imaginary

Fig. 4.7 Sample sequences of cosine waveforms (left) and their spectra (right). a 4 periods in the
sequence, b 4.5 periods in the sequence. Animation available in supplementary files under
filename E4-07_Cos.exe
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parts of the spectrum (a) are the same. The real and imaginary parts of the
spectrum of (b) are cos 120� and sin 120�, respectively. The magnitude of the
spectrum is independent of the phase.

4.4.3 Harmonics

If a 2nd harmonic, with amplitude 0.5 and zero time shift, and a 3rd harmonic,
with amplitude 0.5 and 1/4 period shift to the left, are added to the left and right
waveforms shown in Fig. 4.8, respectively, the waveforms and spectra take the

Fig. 4.8 Waveforms and their spectra. a Sample sequence of 6 period sine waves with 45� (A)
and 120� (B) phase shifts: b real part of the spectrum, c imaginary part of the spectrum,
d absolute value of the spectrum, e power spectrum in dB. Animation available in supplementary
files under filename E4-08_SC.exe
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form shown in Fig. 4.9. Since the DFT is a linear transformation, even when the
harmonics are added, the fundamental components of the spectrum do not change.
Since the initial phase of the 2nd harmonic is 0�, the spectrum of the harmonic
appears only in the imaginary part (see (A)). And, since the initial phase of the
third harmonic is 90� (i.e., it is a cosine wave), the spectrum of the harmonic
appears only in the real part.

Fig. 4.9 Waveform and spectral changes when a second harmonic and a shifted third harmonic
are added to the waveform in Fig. 4.8 (fundamental). The amplitudes of the 2nd and the 3rd
harmonics are 0.5 and their phase shifts are 0� and 90�, respectively. Animation available in
supplementary files under filename E4-09_SC.exe
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4.4.4 Symmetric and Antisymmetric Waveforms

The above example was for the case when the frequency is an integer. Let us check
the case with noninteger frequency. Figure 4.10 shows the case when the fre-
quency is 6.5. The top row shows two sample sequences with 64 point data.
Figure 4.10A (top) is a sine wave starting with n = 0. Since the frequency is 6.5,
the sample at N - n is equal to the sample at n, i.e., the waveform is symmetric.
Therefore, the spectrum has only the real components, which are distributed at
many frequencies.

Figure 4.10B (top) shows the case with the cosine waveform (or sine with 90�
phase shift). In this case, the magnitude of the value at N-n is equal to that of the
value at n with the opposite sign, i.e., the sample sequence is antisymmetric (odd

Fig. 4.10 64-point sample sequences and their DFTs. Animation available in supplementary
files under filename E4-10_SC.exe
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function). In this case, the real part might be expected to be zero. But it is not
completely zero because the value at N, which corresponds to the value at n = 0,
is not included in the sequence. If the value at n = 0 were removed from the
sequence, the sequence would become purely antisymmetric. Therefore, the
spectrum is actually the sum of the purely imaginary components, corresponding
to the antisymmetric part of the sequence, and the spectrum corresponding to the
impulse at n = 0. Each line of the latter spectrum is constant, with magnitude
1/N. However, since the asymmetry is very small, the real components of the
spectrum are hard to discern in the figure.

The above-mentioned constant components are specific with DFT analysis. If
the waveform is infinitely long, N becomes infinitely large and their effect
becomes negligible. But, for finite sequences, these components sometimes
become noticeable.

Since the sequence with the first component removed is purely antisymmetric,
its spectrum is purely imaginary. But, the components are distributed at many
discrete frequencies because the number of the period is not an integer.

4.4.5 Sine Waveforms with Noninteger Frequencies

Figure 4.11A shows a waveform with four sine waves (left) and its spectrum
(right). The number of periods of the sine waves in the 64-point sample sequence
is 4, 9.5, 14, and 21, respectively. The phases of the third and fourth waves are 90�
and 180�, respectively. These four waves are not harmonically related. Since the
first, third, and fourth waves have integer frequencies, each of them has a line
spectrum at the expected positive and negative integer frequencies. But the fre-
quency of the second wave is not an integer, and its spectrum is distributed at
various frequencies.

From Fig. 4.11A, one can see that the spectrum of the combined four waves is
the summation of the individual spectra of the four waves. This is an important
property of linear transformation.

4.4.6 Too Wide Sample Spacing

What type of spectrum would be expected from the DFT of a sample sequence
obtained by sampling a waveform, which contains a frequency spectrum within
±fm, using a sampling frequency less than 2fm? This has already been discussed in
Figs. 3.6, 3.9, and 3.10 from the standpoint of recovering the waveform. Let us
consider this problem again from the standpoint of spectrum changes.

One example is shown in Fig. 4.11B. The waveform contains sine waves with
frequencies of 8, 16, and 35. The sample sequence has 64 sample data points and,
therefore, the sampling frequency is considered to be 64. In this case, the
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frequency component that is higher than 32 is not properly evaluated. In the figure,
the spectra of the waves with frequencies 8 and 16 are observed at the expected
locations. However, those of the wave with frequency 35 (=32 + 3) are observed
at 29 (=32 - 3), and at -29 (=-32 + 3).

As had already been explained in Fig. 4.9, line spectra should appear at ±35, but
in the 64-point DFT, the frequency spectrum is periodic, with the base band from
-32 to +32 and the next period (right-side band) centered at +64 ranging from +32
to +96. The line spectrum expected at 35 lines to the left of center +64 appears at 29
(=64 - 35) in the base band. Also the line spectrum expected at 35 lines to the right
of center -64 of the left-side band appears at -29 (=-64 + 35) in the base band.
These are examples of the folding spectrum mentioned in Chap. 3. It is clear that the
original waveform cannot be reconstructed from a spectrum with aliasing

Fig. 4.11 A Waveform that contains four integer and noninteger frequency waves, and its
spectrum. B Waveform that contains a wave that has 35 periods in the 64-point sample sequence,
and its spectrum. Frequencies, amplitudes, and phases of each wave are shown in the charts at the
top. Animation available in supplementary files under filename E4-11_SPC.exe
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distortion, since the ‘‘aliased’’ spectral lines at ±29 will be misinterpreted as cor-
responding to a frequency of 29.

Even when these distortions exist, low frequency spectral components that are
not affected by these distortions (i.e.: the actual and aliased frequencies do not
overlap) may be correctly represented. However, the possibility of aliasing will
always exist if the sample frequency is not selected with the highest-frequency
component taken into account.

4.4.7 Rectangular Wave

Consider a 64-point sample sequence, which contains two periods. Each period is
made of 3 positive pulses, 11 zeros, 5 negative pulses, 11 zeros, and 2 positive
pulses. Figure 4.12A shows the sample sequence and its spectra. The first pulse is
at the origin of the time axis. If it is considered that the region from n = N/2 to
N - 1 represents the negative time region, the sample sequence is symmetric.
Therefore, the spectrum contains only the real part. The spectrum at zero fre-
quency (dc component) is zero since the average of the sample sequence is zero.

The-64 point sample sequence shown in Fig. 4.12B also contains two periods.
Each period is made of 16 equal pulses and remaining 16 zeros. This sample
sequence could be divided into two sub-sequences: one a constant pulse train with
0.5 amplitudes; the other made of 16 positive, 16 negative, 16 positive, and 16
negative pulse trains with 0.5 absolute amplitudes. The first sequence is sym-
metric, minus one data point, the second is antisymmetric. The large real DC
component corresponds to the first sequence; the many equally-spaced short lines
along the frequency axis occur for the same reason given in Fig. 4.10B. There is
also a antisymmetric imaginary part, which corresponds to the second, antisym-
metric sequence.

Many waveforms can be made graphically. These are useful when learning the
properties of the DFT. The reader is encouraged to try other examples using the
program attached to Fig. 4.12.

4.5 Discrete Cosine Transform (DCT)

It was made clear that one must use complex numbers in order to calculate the
DFT, even though the waveforms one analyzes are real. The discrete cosine
transforms introduced in this section make it possible to calculate the DFT using
only real numbers. There are four types of these DFTs, and one of them is used
with photo, movie, and acoustic signals to reduce the data size.

The seed has already been planted in Chap. 1. In Fig. 1.9, it was shown that a
rectangular wave that was offset from the center could be divided into two parts,
one of which is an even function (symmetric) and the other is an odd function
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(antisymmetric). The former can be represented only by cosine functions and the
latter only by sine functions. In Sect. 2.3, it was shown that if a reversed function
is added in the region from -T to 0 to a waveform defined in the region from 0 to
T, the resulting waveform becomes an even function in the region from -T to T,
and it can be represented using only cosine functions. The coefficients are given by
Eqs. (2.19) and (2.20). Since the resulting waveform is even, the numerical cal-
culation can be done with real numbers, and the results are also real. The DCT is
derived by extending this idea.

Both real and imaginary parts are needed to obtain the original waveform from
the DFT of the sample sequence (see Fig. 4.4 if one wants to make sure). One
cannot reconstruct the original waveform using only the real part of the spectrum.
As indicated before, the usefulness of the DCT lies in making the function even
(symmetric).

Fig. 4.12 Examples of sample sequences of periodic rectangular waveforms and their spectra.
Animation available in supplementary files under filename E4-12_GeoWaveDFT.exe
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It is not necessary that the input of the DCT (the sequence to be transformed by
the DCT) be a time function. But, in this section, the inputs will be treated as time
functions and the outputs as frequency functions.

Let us apply the DCT to the sample sequence shown in Fig. 4.13a. This is a
sequence given in the region from 0 to N - 1. There are no samples in the region
from N to 2N. Before performing the 2N point DFT, the samples in the region N to
2N are arranged symmetrically with those in the region from 0 to N - 1. The
symmetric sample sequence is shown in Fig. 4.13b.

The DFT of the 2N-point sample sequence, which is an even function, gives
only the real spectrum, as shown in Fig. 4.13r, i. In the process of obtaining the
DFT, the imaginary part that involves products and sums of the sine functions is
identically zero, and there is no need to do the related calculations. The necessary
operations can be performed using only real numbers. Since the spectrum of this
sequence is periodic and symmetric, the operation that obtains the time sequence
from this spectrum (IDFT) can also be performed using only real numbers. The
result is shown in Fig. 4.13c, which is identical with (b), as expected. The first half
of the sequence (c) is exactly the same as sequence (a). If the second half of
sequence (c) is then abandoned, the resulting sequence is the original sequence.

It can be said that modifying the original sequence and executing the forward
and inverse transforms using only the cosine functions is too roundabout, in the
sense that it requires us to add the same length sequence to the original sequence
and then, after the inverse conversion, the latter half of the sequence has to be
thrown away.

What would happen if the DFT with cosine functions only is applied to a
sequence that has zeros in the region from N to (2N - 1) as shown in Fig. 4.14a,

Fig. 4.13 2N-point DFT of N-point sequence augmented by a symmetric N-point sequence, so
that only cosine functions are needed. a original N-point numerical sequence from n = 0 to
n = N - 1; b 2N-point symmetric sequence built from (a); (r) and (i) real and imaginary parts of
the DFT of the 2N-point sequence (b); c IDFT of (r) and (i). Animation available in
supplementary files under filename E4-13_DCT.exe
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instead of the even sequence given by Fig. 4.13b? The real part of the DFT is
given by,

XcðkÞ ¼
X

2N�1

n¼0

xðnÞ cos 2p
nk

2N

ffi �

ð4:21Þ

The imaginary part of the DFT is given by,

XSðkÞ ¼ �
X

2N�1

n¼0

xðnÞ sin 2p
nk

2N

ffi �

ð4:22Þ

The two parts are shown in Fig. 4.14r, i, respectively. The amplitude spectrum
is shown in Fig. 4.14s. Note that this amplitude spectrum is different from
Fig. 4.13s, obviously because waveforms Figs. 4.13b and 4.14a are different.

Since one likes to use only the real part, let us find out what one will get when
the IDFT is applied to the real part of the spectrum, Fig. 4.14r. Since the real part
is symmetrical, the IDFT equation is given by,

xcðkÞ ¼
1
N

X

2N�1

k¼0

XcðkÞ cos 2p
nk

N

ffi �

ð4:23Þ

This is the same as Eq. (4.21) except for the division by N. The result is shown
in Fig. 4.14b.

The length of this sequence is 2N and the time range N� n\2N also has
nonzero values. But, let us pay attention only to the left-hand time range 0� n\N.

Fig. 4.14 2N-point DFT of N-point numerical sequence with successive N-point zeros. a original
N-point numerical sequence from n = 0 to n = N - 1, zeros from N to 2N-1, (r) real part of
2 N-point DFT of (a), (i) imaginary part of 2N-point DFT of (a), b 2N-point IDFT of (r). c 2N-
point IDFT of (i). Animation available in supplementary files under filename E4-14_DCT.exe
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The sequence Fig. 4.14b is equal to the sequence Fig. 4.14a at n = 0, and is half of
the latter for 1� n\N. If our purpose is only to recover the original sequence, it
can be done by using only the first half ð0� n\NÞ of Eq. (2.23), keeping the value
at n = 0 as it is, and doubling the values for 1� n\N. But this is a stopgap
measure.

In the forward and inverse transforms, using only cosine functions, if the
augmented sequence is symmetric with values in the negative time range, the
original sequence is recovered. If the sequence has zeros in the range N � n\2N,
the recovered sequence becomes half the original except at n = 0. This is because
the time function is the summation of the IDFTs of the real and imaginary parts
and at n = 0, only the real part contributes to the inverse transform.

Let us reconsider Fig. 4.14a, b. The time sequence (a) has zeros in the range
N� n\2N. Its spectrum sequence (r) obtained by using only the cosine functions
is a symmetric 2N point sequence. If the inverse transform is applied to this
sequence again using only cosine functions, one gets the symmetric time sequence
(b). As mentioned earlier, one then recovers the original sequence by doubling this
sequence except at n = 0.

In this example, the spectrum sequence has 2N length, which is a transform of
an N point sequence using only the cosine functions. It is natural to consider
whether there might exist an N-point spectrum that gives a similar time sequence
when it is inverse transformed. If so, then an N-point cosine transform pair
becomes possible. This way of thinking suggests that the following transform pair
may exist:

XðkÞ ¼ ACk

X

N

n¼0

DnxðnÞ cos p
kn

N

ffi �

ð4:24Þ

xðnÞ ¼ BDn

X

N

k¼0

CkXðkÞ cos p
kn

N

ffi �

ð4:25Þ

where A and B are constants and Ck and Dn are coefficients dependent on k and n,
respectively. If one can determine these constants, the goal is achieved. The upper
limit of n is extended to N, so that terms for n = N can be used.

In order for the above two equations to be a transform pair, the result of
substituting X(k) of Eqs. (4.24) into (4.25) must be equal to x(n) and vice versa.

The substitution becomes:

x0ðnÞ ¼ BDn

X

N

k¼0

CkACk

X

N

m¼0

DmxðmÞ cos p
km

N

ffi �

cos p
kn

N

ffi �

:

Changing the order of summation, this can be rewritten as:
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x0ðnÞ ¼ AB

2
Dn

X

N

m¼0

DmxðmÞ
X

N

k¼0

C2
k cos p

kðmþ nÞ
N

� �

þ cos p
kðm� nÞ

N

� �� �

:

ð4:26Þ

First, consider the R with respect to k in Eq. (4.26), for the case m 6¼ n. A
similar summation was experienced in Sect. 4.2 (see Fig. 4.2). The differences are:
(i) the summation of the real part of expðjpkðm� nÞ=Ng instead of
expfj2pkðm� nÞ=Ng, and ii) the maximum of k is N instead of N - 1. The angle
of the vector pkðm� nÞ=N starts from zero (k = 0) and ends at pðm� nÞ (k = N).
If ðm� nÞ is odd, the (real parts of the) first and the last vectors cancel each other
(assuming that C0 = CN) and the summation of the remaining vectors is also zero
(assuming that C1 = C2 = ��� = CN-1). If ðm� nÞ is even, the vector for k = N/2
and the vectors for k = 0 and k = N will cancel each other if Ck is defined by:

fC2
kg ¼ f

1
2
; 1; 1; . . .1;

1
2
g:

The summation of the remaining vectors is also zero. Therefore, it is necessary
to consider only the case when m = n.

For the case of m = n, the summation of the first term in [ ] is zero for the same
reason stated above. The sum of the second terms in [ ] for 0 \ k \ N is equal to
N - 1, and the sum of the second terms for k = 0 and N is 1 because
C2

0 ¼ C2
N ¼ 1=2. Then, the total summation is equal to N. Therefore, except for the

special cases of n = 0 and n = N, Eq. (4.26) becomes,

x0ðnÞ ¼ AB

2
D2

nNxðnÞ: ð4:27Þ

If n = m = 0 or n = m = N, the summation with respect to k is equal to 2N,
and, therefore, Eq. (4.26) becomes,

x0ðnÞ ¼ AB

2
D2

n2NxðnÞ ð4:28Þ

If Dn is defined the same way as Ck by,

fD2
ng ¼ f

1
2
; 1; 1; : : : 1;

1
2
g

Equation (4.28) is equal to Eq. (4.27).
In order for x0(n) to be equal to x(n), the following condition is necessary.

ABN=2 ¼ 1

If one defines A and B to satisfy above equation by
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A ¼ B ¼
ffiffiffiffi

N

2

r

a symmetric transform pair is obtained using only the cosine functions:

XðkÞ ¼
ffiffiffiffi

2
N

r

Ck

X

N

n¼0

CnxðnÞ cos p
kn

N

ffi �

ð4:29Þ

xðnÞ ¼
ffiffiffiffi

2
N

r

Cn

X

N

k¼0

CkXðkÞ cos p
kn

N

ffi �

ð4:30Þ

where

fC2
kg ¼ f

1
ffiffiffi

2
p ; 1; 1; : : : 1;

1
ffiffiffi

2
p g: ð4:31Þ

This is one of several possible cosine transform pairs and is called the DCT-I.
Figure 4.15 shows an example of a numerical calculation for the case of

N = 16. Figure 4.15a (left) is the time sequence and its DCT is Fig. 4.15a (right).
Figure 4.15b (right) is Fig. 4.15a (right) repeated and its IDCT is given by
Fig. 4.15b (left). Of course, Fig. 4.15a (left), b (left) are identical.

4.6 Extension of the Discrete Cosine Transform

In the DCT-I, one can interpret that the sequence is arranged symmetrically on the
positive and negative sides of n, and half of the data from n = 0 to n = N is
transformed. Consequently, the data at n = 0 to n = N are overlapped and the
values are doubled. The coefficient Cn is used to adjust this problem.

Fig. 4.15 Example of transforms by DCT-I and IDCT-I. aleft time sequence, right its DCT-I,
bright same spectrum as (a, right), bleft IDCT-I of (b, right). Animation available in
supplementary files under filename E4-15_DCT-1.exe
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There is a different point of view. Equations (4.29) and (4.30) both use
cosðpkn=NÞ, which takes the same value when n = 0 and n = N. This makes it
necessary to adjust Cn in order to make the transform pair valid. Even if the
symmetry property is preserved, it is not natural to have (N + 1) data points when
the semicircumference is divided by N.

As a method of solving this problem while preserving complete symmetry, the
arrangement of data shown in Fig. 4.16b is a candidate. The numbering of data is
from 0 to N - 1, and the positions of all data are shifted by 1/2 of the discrete time
interval. There are N data in both the positive and negative ranges of n and the total
number is 2N, which seems to be congenial with the 2N point DFT.

Since the sequence x(n) is shifted by 0.5 on the time axis and since there is no
overlap of the data, as shown in Fig. 4.16b, there is no need to use the coefficient
Dn. Then, Eq. (4.24) can be rewritten as

XðkÞ ¼ ACk

X

N�1

n¼0

xðnÞ cos p
kðnþ 0:5Þ

N

ffi �

: ð4:32Þ

By comparison with Eqs. (4.24) and (4.25), the inverse transform of this
equation must be

xðnÞ ¼ B
X

N�1

k¼0

CkXðkÞ cos p
kðnþ 0:5Þ

N

ffi �

: ð4:33Þ

In order for these two equations to be a transform pair, one must determine the
coefficients A, B, and Ck.

Fig. 4.16 Two ways of making a sequence even. a With n = 0 at the center; b by shifting each
data sequence by 1/2 outward from n = 0. The void columns are shown to illustrate that the
frequency spectrum is periodic
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The substitution of Eq. (4.32) into Eq. (4.33) gives

x0ðnÞ ¼ AB
X

N�1

k¼0

C2
k

X

N�1

m¼0

xðmÞ cos p
kðmþ 0:5Þ

N

� �

cos p
kðnþ 0:5Þ

N

� �

¼ AB

2

X

N�1

m¼0

xðmÞ
X

N�1

k¼0

C2
k cos p

kðmþ nþ 1Þ
N

� �

þ cos p
kðm� nÞ

N

� �� �

:

The second cosine terms in the last R are equal to 1 for m = n, and if k = 0,
both cosine terms are equal to 1 for all m and n. Therefore, if C2

0 ¼ 1=2 and
C2

k ¼ 1 ðk [ 0Þ, the R with respect to k is N for m = n. Except for the case m = n,
the summation with respect to k is zero. Therefore, the result is

ABN

2
¼ 1:

That is, if

A ¼ B ¼
ffiffiffiffi

2
N

r

:

Equations (4.32) and (4.33) can also be members of a discrete cosine transform
pair. These formulae are rewritten as

XðkÞ ¼
ffiffiffiffi

2
N

r

Ck

X

N�1

n¼0

xðnÞ cos p
kðnþ 0:5Þ

N

ffi �

ð4:34Þ

xðnÞ ¼
ffiffiffiffi

2
N

r

X

N�1

k¼0

CkXðkÞ cos p
kðnþ 0:5Þ

N

ffi �

ð4:35Þ

where

C0 ¼
ffiffiffiffiffiffiffiffi

1=2
p

;Ck ¼ 1:k [ 0:

The discrete cosine transform pair given by Eqs. (4.34) and (4.35) is called the
DCT-II.

In the DCT-II, the discrete time axis has been shifted by 0.5. As you can easily
guess, the transform pair is still valid even if k and n are exchanged, in which case
the discrete frequency is shifted by 0.5. This transform pair is given by

XðkÞ ¼
ffiffiffiffi

2
N

r

X

N�1

n¼0

CnxðnÞ cos p
ðk þ 0:5Þn

N

ffi �

ð4:36Þ
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xðnÞ ¼
ffiffiffiffi

2
N

r

Cn

X

N�1

k¼0

XðkÞ cos p
ðk þ 0:5Þn

N

ffi �

ð4:37Þ

where

C0 ¼
ffiffiffiffiffiffiffiffi

1=2
p

;Cn ¼ 1:n [ 0:

This is the discrete cosine transform called the DCT-III.
Moreover, by shifting both axes by 0.5, another transform is available. This is

the transform which is called the DCT-IV.

XðkÞ ¼
ffiffiffiffi

2
N

r

X

N�1

n¼0

xðnÞ cos p
ðk þ 0:5Þðnþ 0:5Þ

N

� �

ð4:38Þ

xðnÞ ¼
ffiffiffiffi

2
N

r

X

N�1

k¼0

XðkÞ cos p
ðk þ 0:5Þðnþ 0:5Þ

N

� �

ð4:39Þ

In this transform, there is no need to specify constants.
So far, there have been derived four pairs of forward and inverse cosine

transforms. Details of the derivation of DCT-III and DCT-IV are not shown, but
both can be easily accomplished if one refers to the derivations of the DCT-I and
DCT-II. These derivations are left as exercises.

Figure 4.17 shows two example time sequences and their spectra obtained by
the four types of DCTs. Fig. 4.17A shows a one period sine wave and the four
spectra; and (B) shows a DC signal and the four spectra. The time sequence of (B)
has a nonzero value at n = N, but this is necessary only for DCT-I. There is no

Fig. 4.17 Two waveforms and their DCT spectra obtained by DCT-1, DCT-II, DCT-III, and
DCT-IV. Animation available in supplementary files under filename E4-17_DCT_A.exe

4.6 Extension of the Discrete Cosine Transform 103



further need to show that the inverse transforms (Eqs. 4.30, 4.35, 4.37, and 4.39)
each give exactly the same original time waveform.

Notice that the different DCTs produce different spectra. The constant time
sequence (B) should produce only the DC component, but it does not. The DCTs
of the single-period sine sequence are quite different from the spectrum obtained
by the DFT. In fact, the DCTs of the single-period sine sequence have many high-
frequency components. DCTs produce much more complicated spectral shapes
than the DFT.

The spectrum obtained by the DFT is understood to describe the frequency
components of the original waveform. But, the DCTs shown above cannot be
interpreted this way. Nevertheless, the DCT components of the one-period sine
wave are limited to the low-frequency region, indicating that the DCT has some
capability of frequency analysis. Because of this property as well as the property
that only real numbers are handled in the DCTs, they are widely used for data
reduction of images and sounds.

In the program of Fig. 4.17, the reader can choose any one of eight examples of
16-point waveforms and apply a DCT to it and then apply the IDCT to the
spectrum using only a selected number of lowest order harmonics. The program
shows the differences between the original and recovered waveforms in percent,
which indicates that higher order harmonics can be neglected if small differences
are tolerated. In many cases, the DCT-II seems more advantageous than others, but
a more advanced discussion will be given in Chap. 13.

4.7 Exercises

1. What is the number of data points of the spectrum obtained by the N point
DFT?

2. When the DFT of an N-point real sequence xn is given by Xn ¼ Rn þ jIn, what
is the DFT of the imaginary sequence jxn?

3. What are the differences between the N-point DFTs of purely real and purely
imaginary sequences?

4. If the real and imaginary parts of an N-point DFT are neither even nor odd,
what properties does the original N-point sequence have?

5. Can one obtain the DFT of the real part of a complex sequence from the DFT
of the complete complex sequence? If yes, explain how it is obtained.

6. Must the time sequence satisfy the sampling theorem in order for the DFT pair
to be valid?

7. The N-point DFT of a real sequence xn is Xk. Can one obtain the original
sequence xn using only the values of Xk in the range from k = 0 to k = N/2 -

1? If yes, describe the method.
8. In the problem above, what is the answer if the sequence xn is complex?
9. When sampling a waveform which has frequency components up to

1:2Fx [Hz], with sampling frequency 2Fx [Hz], is it possible to obtain the
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correct spectrum of the original waveform from the DFT of the sampled
sequence?

10. With regard to the spectrum of the above problem, what is the upper frequency
limit of the correct spectrum?

11. Describe the reason why the high-frequency components of (A) are smaller
than those of (B) in Fig. 4.10.

12. Derive Parseval’s formula for a discrete sequence using Eqs. (4.9) and (4.10).
13. Derive the transform pair DCT-III.
14. Derive the transform pair DCT-IV.
15. In Fig. 4.17, the spectra of a constant time sequence are given. The DCT-III

and DCT-IV spectra have larger high-frequency components than the DCT-II
spectrum, which gives only the DC component. Explain why.
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Chapter 5
Fast Fourier Transform

The digital Fourier transform (DFT) pair introduced in Chap. 4 is a very useful
formula for numerical operations of the Fourier transform. However, if one tries to
perform the calculation, it requires a large number of computations. In order to
calculate an N-point DFT or IDFT, it requires N2 times of summation and mul-
tiplication. Therefore, the computation of the DFT of several tens of points is not
really practical. Even in the year of 1965, when fast computers were being
developed, the DFT of more than 1,000 points was not easy to perform. In that
year, an epoch-making algorithm of the fast Fourier transform (FFT) was invented
by Cooley and Tukey [1–2]. It reduced the computation time to several hundredths
of that required for N2 computations, and engineering applications of the Fourier
transform explosively expanded.

The algorithm of the fast Fourier transform is the one which reduces the number
of summation and multiplication by successively conducting the calculation for
smaller groups of data when N is a product of several integer numbers. First, in this
chapter, the decimation in time of the FFT algorithm, which decomposes the DFT
computation into successively smaller DFT computations, is introduced. Next, the
decimation in frequency of the FFT algorithm, which divides the output sequence
into smaller subsequences, is introduced. Then, several examples of computations
following these principles are described.

5.1 Decimation in Time Algorithm

In this section, an N-point sequence will be dealt with, where N is given by a product
of other integers, i.e., N = LM. At first, the original sequence is divided into L-point
subsequences by choosing data at M intervals. The N-point DFT is obtained from the
results gained by applying an L-point DFT to M subsequences. It will be shown that
the number of summations and multiplications is reduced this way rather than
directly applying an N-point DFT to the original sequence. This method is referred to
as the decimation in time algorithm in the sense that the sequence is divided into
M subsequences by taking the samples in M steps.

K. Kido, Digital Fourier Analysis: Fundamentals,
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-1-4614-9260-3_5,
� Springer Science+Business Media New York 2015
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Before going into the details of FFT, a complex exponential function is defined
as:

WN ¼ expð�j2p
1
N
Þ ð5:1Þ

WN is the first point on the unit circle among N points which are given by
dividing the circumference by N. The points are counted clockwise starting from
the point on the positive real axis as shown in Fig. 5.1. Then Wp

N represents the p-
th point on the unit circle. W0

N is on the crossing of the real positive axis and the
circle. As p increases, the point moves clockwise on the unit circle. For this reason,
Wp

N is called a rotational factor. W�1
N is sometimes called a primitive N-th root of

unity or a weighting kernel.
Equations (4.19) and (4.20) are rewritten using Wp

N as follows:

XðkÞ ¼
X

N�1

n¼0

xðnÞ expð�j2p
nk

N
Þ ¼

X

N�1

n¼0

xðnÞWnk
N ð5:2Þ

xðnÞ ¼ 1
N

X

N�1

k¼0

XðkÞ expðj2p
nk

N
Þ ¼ 1

N

X

N�1

k¼0

XðkÞW�nk
N ð5:3Þ

In order to obtain XðkÞ from Eq. (5.2), N multiplications of xðnÞ and Wnk
N and

(N - 1) summations are necessary. Since k takes N values, the total number of
multiplication and summation is given approximately by N2. If N is given by a
product of some integers, there is a method of reducing the number of the

Fig. 5.1 Rotational factor
Wp

N for N = 16
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computation. One should notice that the multiplications and summations are
carried out using complex numbers.

If N is a product of L and M,

N ¼ LM ð5:4Þ

The DFT of Eq. (5.2) is rewritten as

XðkÞ ¼
X

L�1

r¼0

xðrMÞWrMk
N þ

X

L�1

r¼0

xðrM þ 1ÞW ðrMþ1Þk
N þ � � � þ

X

L�1

r¼0

xðrM þM � 1ÞW ðrMþM�1Þk
N

¼
X

L�1

r¼0

xðrMÞWrk
L þ

X

L�1

r¼0

xðrM þ 1ÞWrk
L Wk

N þ � � � þ
X

L�1

r¼0

xðrM þM � 1ÞWrk
L W ðM�1Þk

N

Each term
PL�1

r¼0 xðrM þ lÞWrk
L ðl ¼ 0; 1; . . .; M � 1Þ in the above equation

has L multiplications and summations. However, since Wrk
N is a periodic function

of rk with period L, it takes on only L values, and therefore,
PL�1

r¼0 xðrM þ lÞWrk
L is

an L-point DFT. Then, the above equation can be written as

XðkÞ ¼ DFTL xðrMÞf g þ DFTL xðrM þ 1Þf gWk
N þ � � �

þ DFTL xðrM þM � 1Þf gW ðM�1Þk
N ð5:5Þ

where DFTLfxðnÞg represents an L-point DFT of x(n).
By this decomposition, N-point DFT becomes the sum of M products of L-point

DFT and Wlk
N ðl ¼ 0; 1; . . .; M � 1Þ. Figure 5.2 shows the flow of this calcu-

lation process. The small arrows in the figure indicate multiplications by Wlk
N . The

value of l is given in the box where the line with the arrow starts and the value of k
is given by X(k) at the end of the same line.

In Fig. 5.2, the time domain function x(n) is divided into M groups by selecting
the values in M steps. On the other hand, X(k) in the frequency domain is aligned
in the increasing order of k. In the original paper [4], this method is called the
decimation in time FFT algorithm.

Now, one can count the number of multiplications. By dividing N into L times

M (Eq. (5.5)), there are M multiplications of L-point FFT times Wlk
N . The range of

k is from 0 to N - 1, and therefore, the total number of multiplication in this step
is MN. The L-point FFT requires multiplication of L2 times, and the number of L-
point FFT is M. Then, the total number of multiplications for the L-point FFT is L2

M. After all, the total number of multiplications required is
MN + L2M = (M + L)N, since N = LM.

If N = LM, except for the cases where either L or M is 1 or L and M are both 2,
the relation (M + L) \ N holds. Therefore, the total number of multiplication is
reduced to (M + L)N from N2.
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If L or M is a product of two other integers, the reduction of the number of
multiplications is possible by the same decomposition. For example, if L = PQ,
the number of multiplications necessary for an L-point FFT is reduced to
(P + Q)L. Then, the total number of multiplications is reduced from (M + L)N to
(M + P + Q)N. By the same way, if

N ¼ P1 � P2 � . . . � PJ ð5:6Þ

the number of multiplication is reduced from N2 to

NðP1 þ P2 þ . . .þ PJÞ ð5:7Þ

In a special case, if N is given by

N ¼ rm ð5:8Þ

the number of multiplications becomes

mrN ¼ rN logr N ð5:9Þ

Fig. 5.2 Signal flow for the case of decomposition of an N-point DFT into L-point DFTs of
number M
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In this relationship, the practically unnecessary multiplication by W0
N ¼ 1 is

included. The reduction of numbers is also applicable to the numbers of summations.
As will be stated in Section 5.3, if r = 2, the number given by Eq. (5.9) is

further reduced to 1/4. Now check the reduction of computation for a practical
example. If r = 2 and m = 10, N is equal to 1,024 and the number of multipli-
cations in direct computation is approximately 1,050,000 (� N2). The number
given by Eq. (5.9) is equal to 20,480 (¼mrN), which is approximately 1/50 of N2.
As N increases, the reduction ratio increases. This much of reduction of the
computation time due only to the algorithm is very rare.

It is clear from Eqs. (5.2) and (5.3) that, if Wlk
N is replaced by W�lk

N , exactly the
same process can be used to calculate the IDFT, where an additional operation of
division by N is necessary. Hereafter, calculation of the IDFT by the FFT algo-
rithm will be called the IFFT.

5.2 Decimation in Frequency Algorithm

If N = LM, the frequency domain function X(k) can be divided into L groups by
selecting the values in L steps. Applying an M-point FFT to each group, the
number of computation can be reduced. This method is called decimation in
frequency FFT algorithm.

The first step in this case also starts by dividing Eq. (5.2). The spectrum X(k) is
divided into L groups fXð0Þ;XðLÞ;Xð2LÞ; . . .;XððM � 1ÞLÞg; fXð1Þ;XðLþ 1Þ;
Xð2Lþ 1Þ; . . .;XððM � 1ÞLþ 1Þg; . . .; and fXðL� 1Þ;Xð2L� 1Þ;Xð3L� 1Þ; . . .;
XððN � 1Þg. Figure 5.3 shows X(k) arranged in these L groups. The parameter k in
the L groups can be represented as

k ¼ rL; rLþ 1; rLþ 2; . . .; rLþ L� 1;

where r = 0, 1,…, M - 1. Then, Eq. (5.2) is divided into L groups:

XðrLÞ ¼
X

N�1

n¼0

xðnÞWrLn
N

XðrLþ 1Þ ¼
X

N�1

n¼0

xðnÞW ðrLþ1Þn
N

..

.

..

.

ð5:10Þ

XðrLþ L� 1Þ ¼
X

N�1

n¼0

xðnÞW ðrLþL�1Þn
N
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The multiplication and summation of the right-hand side of the first equation
can be divided into L groups by grouping them in the descending order.

XðrLÞ ¼
X

M�1

n¼0

xðnÞWrLn
N þ

X

2M�1

n¼M

xðnÞWrLn
N þ � � � þ

X

LM�1

n¼ðL�1ÞM
xðnÞWrLn

N

¼
X

M�1

m¼0

xðmÞWrLm
N þWrLM

N

X

M�1

m¼0

xðM þ mÞWrLm
N þ � � �

þWrLðL�1ÞM
N

X

M�1

m¼0

xfðL� 1ÞM þ mgWrLm
N

where N ¼ LM, WrLM
N ¼ WrN

N ¼ 1, WrLv
N ¼ Wrv

M . Furthermore, since r is an integer,

XðrLÞ ¼
X

M�1

m¼0

xðmÞWrm
M þ

X

M�1

m¼0

xðM þ mÞWrm
M þ � � � þ

X

M�1

m¼0

xfðL� 1ÞM þ mgWrm
M

¼
X

M�1

m¼0

xðmÞ þ xðM þ mÞ þ � � � þ xfðL� 1ÞM þ mg½ �Wrm
M

ð5:11Þ

Fig. 5.3 Signal flow of N-point DFT by the decimation in frequency algorithm
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This is the M-point DFT of the sum of L terms taken in M steps. The second and
higher order equations in Eq. (5.10) can be handled similarly. In these cases, each
term taken in M steps is multiplied by the rotation factor as shown in Eq. (5.12).

XðrLþ lÞ ¼
X

M�1

n¼0

xðnÞW ðrLþlÞn
N þ

X

2M�1

n¼M

xðnÞW ðrLþlÞn
N þ � � � þ

X

LM�1

n¼ðL�1ÞM
xðnÞW ðrLþlÞn

N

¼
X

M�1

m¼0

xðmÞW ðrLþlÞm
N þW ðrLþlÞM

N

X

M�1

m¼0

xðM þ mÞW ðrLþlÞm
N þ � � �

þW ðrLþlÞðL�1ÞM
N

X

M�1

m¼0

xfðL� 1ÞM þ mgW ðrLþlÞm
N

¼
X

M�1

m¼0

xðmÞW ðrLþlÞm
N þWlM

N

X

M�1

m¼0

xðM þ mÞW ðrLþlÞm
N þ � � �

þWlðL�1ÞM
N

X

M�1

m¼0

xfðL� 1ÞM þ mgW ðrLþlÞm
N

¼
X

M�1

m¼0

xðmÞWlm
N þ xðM þ mÞWlðMþmÞ

N þ � � � þ xfðL� 1ÞM þ mgWlfðL�1ÞMþmg
N

h i

Wrm
M

ð5:12Þ

The bracketed term of the above equation is expressed as /lðmÞ:

/lðmÞ ¼ xðmÞWlm
N þ xðM þ mÞWlðMþmÞ

N þ � � � þ xfðL� 1ÞM þ mgWlfðL�1Þþmg
L

h i

¼
X

L�1

m¼0

xðmM þ mÞWlðmMþmÞ
N

ð5:13Þ

The number of /lðmÞ is L (l ¼ 0; 1; . . .; L� 1). By looking back at Eqs. (5.11)
and (5.12), it is found that Eq. (5.11) is the M-point DFT of /0ðvÞ and Eq. (5.12) is
the M-point DFTs of /lðvÞ for l� 1. These can be expressed by the single
equation:

XðrLþ lÞ ¼
X

M�1

m¼0

/lðmÞWrm
M ð5:14Þ

The operations in the L boxes in Fig. 5.3 are the operations of Eq. (5.14),
starting from l ¼ 0 (top box) and ending with l ¼ L� 1 (bottom box). Since
r takes values from 0 to M - 1, all spectrum components (LM = N) are
calculated.

Now count the number of operations. From Eq. (5.14) it is known that the M-
point DFT is necessary in order to calculate one of XðrLþ lÞ terms. Since r takes
M values, the (sub) total number of calculations (multiplication and summation) is
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M2. The parameter l also takes L values, and therefore the total number of cal-
culation is equal to LM2 (=NM). Before the calculation of Eq. (5.14), /lðvÞ given
by Eq. (5.13) must be calculated L times since l ¼ 0; 1; . . .; L� 1. From
Eq. (5.13) it is known that L calculations are necessary for one v, and v varies from
0 to M - 1, then the number of calculations becomes LM. By multiplying by L,
the number becomes L2M (=LN).

In overall, /lðvÞ (Eq. (5.13)) requires LN calculations, and from /lðvÞ ,
X(k) (Eq. (5.14)) is obtained by MN calculations, resulting in the total number of
N(L + M) calculations (multiplications and summations). This number is equal to
that of the decimation in time FFT algorithm.

It may not be necessary to describe the reduction of the number of operation in
the case where M is a product of two integers.

Figure 5.3 shows the process of selecting values of X(k) in L steps, and dividing
into L groups, and then applying M-point DFTs to the L groups. The order of data
number of each M-point DFT is different from the original order. This is due to the
division in the frequency domain. This algorithm is called decimation in frequency
FFT algorithm in the original paper [4].

5.3 2m-Point FFT by Decimation in Time Algorithm

In the preceding sections, reasons for the reduction of number of operations have
been given, but they are not necessarily enough to write programs. So, in this and
following sections, explanations that lead to programming of FFT algorithms will
be given for the case N = 2m.

It was shown in Sect. 5.2 that if N = rm, the number of operations is reduced
from N2 to mrN ¼ rN logr N. The integer r can take any value, but the case r = 2
is the easiest and simplest to program. There are other cases than r = 2 that give a
smaller number of operations [5], but there are not enough differences in the ratio
of reduction to employ those cases. Therefore, one will start with

N ¼ 2m ð5:15Þ

In the case of Eq. (5.15), the decomposition given by Eq. (5.5) using L = N/2
and M = 2 becomes

XðkÞ ¼ DFTN=2 xð2rÞf g þ DFTN=2 xð2r þ 1Þf gWk
N

¼
X

N=2�1

r¼0

xð2rÞW2rk
N=2 þWk

N

X

N=2�1

r¼0

xð2r þ 1ÞW ð2rþ1Þk
N=2

¼ Bp þ CpWk
N p ¼ k mod ðN=2Þ

ð5:16Þ
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where

Bp ¼
X

N=2�1

r¼0

xð2rÞW2rp
N=2

Cp ¼
X

N=2�1

r¼0

xð2r þ 1ÞW ð2rþ1Þp
N=2

The case m = 3 (i.e. N = 8) provides an example that is easy to understand.
For induction of equations for this case, a property given by

Wk
N ¼ �W ðk�N=2Þ

N ð5:17Þ

should be pointed out. The relation given in Eq. (5.17) can be easily understood by
the vector representation given by Fig. 5.4.

In general, both Bp and Cp are complex, therefore, there are 4 multiplications
and summations of real numbers in Eq. (5.16).

For the case of N = 8, Bp and Cp in Eq.(5.16) will be expressed in more detail.

B0 ¼ xð0ÞW0
4 þ xð2ÞW0

4 þ xð4ÞW0
4 þ xð6ÞW0

4

B1 ¼ xð0ÞW0
4 þ xð2ÞW2

4 þ xð4ÞW4
4 þ xð6ÞW6

4

B2 ¼ xð0ÞW0
4 þ xð2ÞW4

4 þ xð4ÞW0
4 þ xð6ÞW4

4

B3 ¼ xð0ÞW0
4 þ xð2ÞW6

4 þ xð4ÞW4
4 þ xð6ÞW2

4

C0 ¼ xð1ÞW0
4 þ xð3ÞW0

4 þ xð5ÞW0
4 þ xð7ÞW0

4

C1 ¼ xð1ÞW1
4 þ xð3ÞW3

4 þ xð5ÞW5
4 þ xð7ÞW7

4

C2 ¼ xð1ÞW2
4 þ xð3ÞW6

4 þ xð5ÞW2
4 þ xð7ÞW6

4

C3 ¼ xð1ÞW3
4 þ xð3ÞW1

4 þ xð5ÞW7
4 þ xð7ÞW5

4

Using these Bp and Cp, Eq. (5.16) is rewritten as

Xð0Þ ¼ B0 þ C0W0
8

Xð1Þ ¼ B1 þ C1W1
8

Xð2Þ ¼ B2 þ C2W2
8

Xð3Þ ¼ B3 þ C3W3
8

Xð4Þ ¼ B0 þ C0W4
8 ¼ B0 � C0W0

8

Xð5Þ ¼ B1 þ C1W5
8 ¼ B1 � C1W1

8

Xð6Þ ¼ B2 þ C2W6
8 ¼ B2 � C2W2

8

Xð7Þ ¼ B3 þ C3W7
8 ¼ B3 � C3W3

8

ð5:18Þ
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W4
8*W7

8 are replaced by �W0
8*�W3

8 by the relation Eq. (5.17), which are
shown in the latter four lines in Eq. (5.18). Therefore, the number of multiplica-
tions is reduced to 1/2.

Equation (5.18) shows that summations of DFT(Bk) of even terms of x(n) and
DFT (Ck) of odd terms of x(n) multiplied by the rotation factors give from Xð0Þ to
Xð3Þ ¼ XðN=2� 1Þ, and the subtractions give from Xð4Þ ¼ XðN=2Þto
Xð7Þ ¼ XðN � 1Þ. The operation of the process is shown in Fig. 5.5. The arrows in
the figure indicate multiplications by coefficients and if ‘‘-1’’ is shown near the
arrow, it means the reversal of the sign. Therefore, the multiplications are nec-
essary for Wk

8 ð k ¼ 0; 1; 2; 3 Þ except for k = 0 (W0
8 ¼ 1).

Furthermore, the operations to calculate Bm and Cm (m = 0, 1, 2, 3, 4) are also
shortened by being divided into two N/4-point DFTs. In the calculation of Bm, the
first DFT gives D0 and D1 by using even terms X(0) and X(4) as its input and
the second DFT gives E0 and E1 by using odd terms X(2) and X(6) as its input.
In the same way, the calculation of Cm (m = 0, 1, 2, 3, 4) is replaced by two N/4-
point DFTs, giving F0, F1, G0, and G1. These are shown by the set of equations
below.

Fig. 5.4 Explanation of
Eq. (5.17) for the case N = 8
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B0 ¼ D0 þ E0W0
8

B1 ¼ D1 þ E1W2
8

B2 ¼ D0 þ E0W4
8 ¼ D0 � E0W0

8

B3 ¼ D1 þ E1W6
8 ¼ D1 � E1W2

8

C0 ¼ F0 þ G0W0
8

C1 ¼ F1 þ G1W2
8

C2 ¼ F0 þ G0W4
8 ¼ F0 � G0W0

8

C3 ¼ F1 þ G1W6
8 ¼ F1 � G1W2

8

ð5:19Þ

In Eq. (5.19), by the use of Eq. (5.17), the numbers of multiplications necessary
to calculate the third and fourth lines and the sixth and seventh lines are halved by
using results of the first and second lines and the fourth and fifth lines, respec-
tively. Using these results, N/2-point DFTs to calculate Bm and Cm in the signal
flow of Fig. 5.5 are replaced by N/4-point DFTs in Fig. 5.6.

The number of calculations of Bm and Cm, which are N/2-point DFTs, is
reduced by replacing by Dk, Ek, Fk, and Gk, which are N/4-point DFTs. By the
same way, the number of calculations of Dk, Ek, Fk, and Gk, can be reduced by
using N/8-point DFTs. Since N = 8, the N/8-point DFTs are the values themselves
of the time sequence, and Dk, Ek,, Fk, and Gk, are the 2-point DFTs with two values
of the sequence as inputs.

Fig. 5.5 Signal flow of 8-point DFT of x(n) by the decimation in time algorithm. The 8-point
DFT is decomposed into two 4-point DFTs of even and odd order terms expressed by Eq. (5.18)
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The rotation factors used in 2-point DFTs are W0
8 and W4

8 . However, since
W0

8 ¼ 1 and W4
8 ¼ �1, the necessary operation is only to change the sign when

multiplying by W4
8 . Then Dk, Ek, Fk, and Gk, (k = 0, 1) are given only by additions

and subtractions:

D0 ¼ xð0Þ þ xð4ÞW0
8 ¼ xð0Þ þ xð4Þ

D1 ¼ xð0Þ þ xð4ÞW4
8 ¼ xð0Þ � xð4Þ

E0 ¼ xð2Þ þ xð6ÞW0
8 ¼ xð2Þ þ xð6Þ

E1 ¼ xð2Þ þ xð6ÞW4
8 ¼ xð2Þ � xð6Þ

F0 ¼ xð1Þ þ xð5ÞW0
8 ¼ xð1Þ þ xð5Þ

F1 ¼ xð1Þ þ xð5ÞW4
8 ¼ xð1Þ � xð5Þ

G0 ¼ xð3Þ þ xð7ÞW0
8 ¼ xð3Þ þ xð7Þ

G1 ¼ xð3Þ þ xð7ÞW4
8 ¼ xð3Þ � xð7Þ

ð5:20Þ

By changing the first DFTs in Fig. 5.6 to the additions and subtractions of
sample values using Eq. (5.20), the signal flow shown in Fig. 5.7 is obtained.

As shown above, the basic operation of FFT is given by

yh ¼ uh þ vhWph
N

yhþs ¼ uh � vhWph
N

)

ð5:21Þ

Fig. 5.6 Signal flow of 8-point DFT of x(n) by use of Eq. (5.19), where Bk and Ck are obtained
replacing N/2-point DFTs by N/4-point DFTs
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where

N ¼ 2M

s ¼ 2r ðr ¼ 0; 1; 2; � � � ; M � 1Þ
h ¼ 0; 1; 2; � � � ; s� 1

p ¼ N=2rþ1

The signal flow in this operation is shown in Fig. 5.8. Since the shape looks like
the unfolded wings of a butterfly, it is referred to as a butterfly computation. The FFT
calculation proceeds while changing the sample values and coefficients one after
another. In writing FFT programs, the choice of inputs at each stage has to be made
clear.

In the explanation so far, N = 23 = 8 has been assumed and, in this case, three
stages of butterfly computation is necessary as shown in Fig. 5.7. The parameter
m can be an arbitrary positive integer for 2m-point FFT and its signal flow graph
can be drawn. Once the signal flow is drawn, the choice for the input to the
butterfly computation is made clear and the programming becomes possible.

Fig. 5.7 Signal flow of 8-point DFT of x(n). The first operation is N/4-point DFTs to obtain Dk,
Ek, Fk, and Gk. Each x(n) corresponds to an N/8-point DFT

Fig. 5.8 Butterfly
computation in the
decimation in time algorithm
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If one tries to write a program following the chart in Fig. 5.7, one must first
rearrange the order of sample values. Since the data is chosen every other step, the
order of data becomes 0, 4, 2, 6, 1, 5, 3, 7.

However, the rearranging of the data is not a must. A method that does not
require the rearrangement of data can be made possible by keeping the flow of data
as they are, and changing the process of calculation in the vertical order. For that
purpose, every straight line is moved to the position following the order of the
input data without changing the connection to other straight lines. For example, the
straight line x(1) ? F0 ? C0 ? X(4) is moved to the second from the top right
below the straight line of x(0) ? D0 ? B0 ? X(0). Next, the straight line
x(2) ? E0 ? B2 ? X(2) is moved below the line of x(1). Conducting this process
one by one, the order of the input data of the left-hand side can be made in the
ascending order, which is shown in Fig. 5.9.

No change of operation has been made from Figs. 5.7, 5.8 and 5.9, but the order
of the final data has been changed because of the change in the order of the straight
lines.

It has been shown that the order of the input data need not be changed, and the
FFT can be carried out correctly if the order of the final data is rearranged.

Fig. 5.9 Signal flow when the order in the vertical direction of the signal flow in Fig. 5.7 is
changed without changing the order of the data in the time domain

120 5 Fast Fourier Transform



5.4 2m-Point FFT by Decimation in Frequency Algorithm

In this section, a slightly different approach from Sect. 5.3 will be taken. Let’s start
with N = 2m, as in Sect. 5.3. The list of equations to obtain X(k) = Xk in the
ascending order of k is shown below.

X0 ¼ x0W0
8 þ x1W0

8 þ x2W0
8 þ x3W0

8 þ x4W0
8 þ x5W0

8 þ x6W0
8 þ x7W0

8

X1 ¼ x0W0
8 þ x1W1

8 þ x2W2
8 þ x3W3

8 þ x4W4
8 þ x5W5

8 þ x6W6
8 þ x7W7

8

X2 ¼ x0W0
8 þ x1W2

8 þ x2W4
8 þ x3W6

8 þ x4W8
8 þ x5W10

8 þ x6W12
8 þ x7W14

8

X3 ¼ x0W0
8 þ x1W3

8 þ x2W6
8 þ x3W9

8 þ x4W12
8 þ x5W15

8 þ x6W18
8 þ x7W21

8

X4 ¼ x0W0
8 þ x1W4

8 þ x2W8
8 þ x3W12

8 þ x4W16
8 þ x5W20

8 þ x6W24
8 þ x7W28

8

X5 ¼ x0W0
8 þ x1W5

8 þ x2W10
8 þ x3W15

8 þ x4W20
8 þ x5W25

8 þ x6W30
8 þ x7W35

8

X6 ¼ x0W0
8 þ x1W6

8 þ x2W12
8 þ x3W18

8 þ x4W24
8 þ x5W30

8 þ x6W36
8 þ x7W42

8

X7 ¼ x0W0
8 þ x1W7

8 þ x2W14
8 þ x3W21

8 þ x4W28
8 þ x5W35

8 þ x6W42
8 þ x7W49

8

ð5:22Þ

By choosing the equations with even k (0, 2, 4, 6) and using the property that
the rotation factor is periodic with period 8, the four equations shown below are
obtained.

X0 ¼ x0W0
8 þ x1W0

8 þ x2W0
8 þ x3W0

8 þ x4W0
8 þ x5W0

8 þ x6W0
8 þ x7W0

8

X2 ¼ x0W0
8 þ x1W2

8 þ x2W4
8 þ x3W6

8 þ x4W0
8 þ x5W2

8 þ x6W4
8 þ x7W6

8

X4 ¼ x0W0
8 þ x1W4

8 þ x2W0
8 þ x3W4

8 þ x4W0
8 þ x5W4

8 þ x6W0
8 þ x7W4

8

X6 ¼ x0W0
8 þ x1W6

8 þ x2W4
8 þ x3W2

8 þ x4W0
8 þ x5W6

8 þ x6W4
8 þ x7W2

8

ð5:23Þ

Since the sets of the first four and the second four rotation factors in these
equations are the same, these equations can be rewritten by changing the order of
the rotation factors:

X0 ¼ ðx0 þ x4ÞW0
4 þ ðx1 þ x5ÞW0

4 þ ðx2 þ x6ÞW0
4 þ ðx3 þ x7ÞW0

4

X2 ¼ ðx0 þ x4ÞW0
4 þ ðx1 þ x5ÞW1

4 þ ðx2 þ x6ÞW2
4 þ ðx3 þ x7ÞW3

4

X4 ¼ ðx0 þ x4ÞW0
4 þ ðx1 þ x5ÞW2

4 þ ðx2 þ x6ÞW0
4 þ ðx3 þ x7ÞW2

4

X6 ¼ ðx0 þ x4ÞW0
4 þ ðx1 þ x5ÞW3

4 þ ðx2 þ x6ÞW2
4 þ ðx3 þ x7ÞW1

4

ð5:24Þ

If one define

bi ¼ xi þ xiþ4 ð5:25Þ
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Equation (5.24) becomes

X0 ¼ b0W0
4 þ b1W0

4 þ b2W0
4 þ b3W0

4

X2 ¼ b0W0
4 þ b1W1

4 þ b2W2
4 þ b3W3

4

X4 ¼ b0W0
4 þ b1W2

4 þ b2W0
4 þ b3W2

4

X6 ¼ b0W0
4 þ b1W3

4 þ b2W2
4 þ b3W1

4

ð5:26Þ

These four equations can be expressed in one equation:

Xk ¼
X

N=2�1

p¼0

ðxp þ xpþN=2ÞW
pk
2

N
2
¼
X

N=2�1

p¼0

bpW
pk
2

N
2

ð5:27Þ

where k = 0, 2, 4,…, N - 2. This is exactly the N/2-point DFT. Using the same
approach, the list of equations with odd k(1, 3, 5, 7) are given by

X1 ¼ x0W0
8 þ x1W1

8 þ x2W2
8 þ x3W3

8 þ x4W4
8 þ x5W5

8 þ x6W6
8 þ x7W7

8

X3 ¼ x0W0
8 þ x1W3

8 þ x2W6
8 þ x3W1

8 þ x4W4
8 þ x5W7

8 þ x6W2
8 þ x7W5

8

X5 ¼ x0W0
8 þ x1W5

8 þ x2W2
8 þ x3W7

8 þ x4W4
8 þ x5W1

8 þ x6W6
8 þ x7W3

8

X7 ¼ x0W0
8 þ x1W7

8 þ x2W6
8 þ x3W5

8 þ x4W4
8 þ x5W3

8 þ x6W2
8 þ x7W1

8

ð5:28Þ

These equations can be rewritten following the procedure after Eq. (5.23) as

X1 ¼ ðx0 þ x4W4
8 ÞW0

8 þ ðx1 þ x5W4
8 ÞW1

8 þ ðx2 þ x6W4
8 ÞW2

8 þ ðx3 þ x7W4
8 ÞW3

8

X3 ¼ ðx0 þ x4W4
8 ÞW0

8 þ ðx1 þ x5W4
8 ÞW3

8 þ ðx2 þ x6W4
8 ÞW6

8 þ ðx3 þ x7W4
8 ÞW1

8

X5 ¼ ðx0 þ x4W4
8 ÞW0

8 þ ðx1 þ x5W4
8 ÞW5

8 þ ðx2 þ x6W4
8 ÞW2

8 þ ðx3 þ x7W4
8 ÞW7

8

X7 ¼ ðx0 þ x4W4
8 ÞW0

8 þ ðx1 þ x5W4
8 ÞW7

8 þ ðx2 þ x6W4
8 ÞW6

8 þ ðx3 þ x7W4
8 ÞW5

8

Using the relation W4
8 ¼ �1 and Wp

8 is a periodic function with period 8, the
above four equations can be rewritten as

X1 ¼ ðx0 � x4ÞW0
4 þ ðx1 � x5ÞW1

8 W0
4 þ ðx2 � x6ÞW2

8 W0
4 þ ðx3 � x7ÞW3

8 W0
4

X3 ¼ ðx0 � x4ÞW0
4 þ ðx1 � x5ÞW1

8 W1
4 þ ðx2 � x6ÞW2

8 W2
4 þ ðx3 � x7ÞW3

8 W3
4

X5 ¼ ðx0 � x4ÞW0
4 þ ðx1 � x5ÞW1

8 W2
4 þ ðx2 � x6ÞW2

8 W0
4 þ ðx3 � x7ÞW3

8 W2
4

X7 ¼ ðx0 � x4ÞW0
4 þ ðx1 � x5ÞW1

8 W3
4 þ ðx2 � x6ÞW2

8 W2
4 þ ðx3 � x7ÞW3

8 W1
4

ð5:29Þ

By defining

ci ¼ ðxi � xiþ4ÞWi
4 ð5:30Þ
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Equation (5.29) become

X1 ¼ c0W0
4 þ c1W0

4 þ c2W0
4 þ c3W0

4

X3 ¼ c0W0
4 þ c1W1

4 þ c2W2
4 þ c3W3

4

X5 ¼ c0W0
4 þ c1W2

4 þ c2W0
4 þ c3W2

4

X7 ¼ c0W0
4 þ c1W3

4 þ c2W2
4 þ c3W1

4

ð5:31Þ

The above four equations can be expressed in one equation:

Xk ¼
X

N=2�1

p¼0

ðxp � xpþN=2ÞWp
NWpðk�1Þ=2

N=2 ¼
X

N=2�1

p¼0

cpWpðk�1Þ=2
N=2 ð5:32Þ

where k = 1, 3, 5,…, N - 1.
Since Eqs. (5.24) and (5.29) are N/2 (=4)-point DFTs for even and odd k,

respectively, the signal flow can be expressed by Fig. 5.10.
Each of four DFTs in Fig. 5.11 can be replaced by two DFTs with two inputs. In

this case, since N = 8, it is necessary not to multiply the rotation factor but to just
perform additions and subtractions. Figure 5.12 is the signal flow including this step.

The common operation in these Figures is that the additions of two inputs are
kept as they are, and subtractions of the two inputs are multiplied by the rotational
factor. This operation is almost the same as the butterfly operation in the

Fig. 5.10 Decomposition of 8-point DFT following Eqs. (5.24) and (5.29) (principle of the
decimation in frequency algorithm)
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decimation in time FFT except for the place of multiplication of the rotational
factor as shown in Fig. 5.13.

Expressing two inputs by uh and vh, and output by yh, this operation can be
expressed by

yh ¼ uh þ vh

yhþs ¼ ðuh � vhÞWsh
N

ffi

ð5:33Þ

Fig. 5.11 Signal flow of 8-point DFT by the decimation in frequency algorithm, where two N/2
(=4)-point DFTs are decomposed into four N/4 (=2)-point DFTs of even and odd order terms

Fig. 5.12 Signal flow of 8-point FFT by the decimation in frequency algorithm
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where

N ¼ 2M

s ¼ 2r ðr ¼ 0; 1; 2; � � � ; M � 1Þ
h ¼ 0; 1; 2; � � � ; s� 1

The process of the decimation in frequency FFT is to divide into N/2-point
DFTs that give every other data of the spectrum and again divide into N/4-point
DFTs that give every other data of the spectrum, and therefore, the order of the
spectrum changes in every step as shown in Fig. 5.13.

For this reason, the spectrum at the end must be rearranged in the bit-reversed
order (this will be mentioned later). This order rearrangement is also possible at
the input stage and in this case the rearrangement at the spectrum stage is not
necessary.

By rearranging the order of the straight lines without changing the operations
on them or connections to other lines, Fig. 5.12 can be redrawn as Fig. 5.14, where
the order rearrangement is conducted at the input stage.

5.5 Rearrangement of the Bit-Reversed Order

Figures of signal flows of FFT show that, if one of the orders of the time domain
data x(n) or the spectrum data X(k) is in the ascending order, the other is in a
‘‘random’’ order. The order may look ‘‘random’’ but it is a result of a systematic
operation, therefore the order is also systematic. The order [0, 4, 2, 6, 1. 5. 3. 7] in
the case of 8-point FFT is referred to as bit-reversed order. If one understands the
reason for its regularity, one will also understand why it is called bit-reversed
order. So, let’s check why the order [0, 4, 2, 6, 1. 5. 3. 7] is obtained.

At the beginning of Sect. 5.4, the data were selected in every other step. In
order to see what it means, the data numbers in the ascending order are expressed
using the binary system, which is shown in Table 5.1. If one selects data in every
other step, that is, if one selects even numbers first and then odd numbers, one is
selecting numbers whose rightmost bits are zeros first, and then the numbers whose
rightmost bits are ones. The results of the numbers after the first rearrangement are
shown in Table 5.2.

Fig. 5.13 Butterfly
computation in the
decimation in frequency
algorithm
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The second rearrangement is to select data in every other step from the first
group whose rightmost bits are zeros and then from the second group whose
rightmost bits are ones. This means to select data whose second bits are zero first,
and then data whose second bits are ones for each group. This second rear-
rangement gives Table 5.3. There is no need to do so anymore because the

Fig. 5.14 Signal flow by the decimation in frequency FFT, where the bit reversal is performed at
the first step of the process

Table 5.1 Time-sequence Order

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Table 5.2 After the first Rearrangement

0 0 0 0
2 0 1 0
4 1 0 0
6 1 1 0
1 0 0 1
3 0 1 1
5 1 0 1
7 1 1 1
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leftmost bits in each group made of two numbers are already in that order (zero
first and one next).

If one compares the orders of bits between Tables 5.1 and 5.3, one will find that
the bits are reversed. For even larger numbers such as N = 16, 32,…, this relation
always holds. This is why the term ‘‘bit-reversed order’’ is used.

So far, a special case with N = 8 has been considered. Next, consider the
general case with N = 2m. If one expresses decimal numbers from n = 0 to
n = N - 1 using binary numbers, they can be expressed as

/ðNÞ ¼ bm�1bm�2bm�3 � � � b2b1b0 ð5:34Þ

where bk represents 0 or 1. These binary numbers are aligned in ascending order from
the smallest 0 0 0 � � � 0 (m bits) to the largest 1 1 1 � � � 1 (m bits). The total number
is equal to N (=2m) and the first and the second half of the leftmost bits (most
significant bit) of the numbers from 0 to N are 0 and 1, respectively. The first and the
second half of the second bits of the first half numbers from 0 to N/2 - 1 are 0 and 1,
respectively. This is the same for the second half numbers from N/2 to N. The first and
the second half of the third bits of the numbers of the first quarter from 0 to N/4 - 1
are 0 and 1, respectively. This is the same for the numbers of the remaining three
quarters. The same thing is valid to the last bits from the left (the least significant bit).
The first and the second (half) of the least significant bits of the first pair of the
numbers, which are 0 and 1 (=N/2m), are 0 and 1, respectively. The same thing is valid
from the second pair, 2 and 3, to the last pair, N - 2 and N - 1, of the numbers.

In the first step of the operation, the numbers whose last bits (rightmost bits) are
0s are selected. Then, the last bits of the remaining numbers become all 1s. In the
second step, the same selection is made for each of the first and second half of the
numbers. That is, the numbers, whose second from the right bits are 0s, are
selected, making those of the remaining numbers all 1s. In the third step, the same
selections are made for the third bits from the right.

If one expresses the numbers after the rearrangement by

wðNÞ ¼ cm�1cm�2cm�3 � � � c2c1c0 ð5:35Þ

c0 becomes equal to bm-1 by the first step, c1 becomes equal to bm-2 by the
second step, and so on. Finally, the all bits are reversed.

Table 5.3 After the second (Last) Rearrangement

0 0 0 0
4 1 0 0
2 0 1 0
6 1 1 0
1 0 0 1
5 1 0 1
3 0 1 1
7 1 1 1
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5.6 Speed-Up Technique by Parallel Computation

One method of speeding up the computation will be introduced here, not only for
the reduction of computing time but also for the understanding of the basic
properties of the DFT.

This method can be applied only when one intends to obtain FFTs of two real
signals, x(n) and y(n). Let’s see what one gets if one performs a DFT of a signal
with its real part x(n) and imaginary part y(n). Define the complex signal z(n) by

zðnÞ ¼ xðnÞ þ j � yðnÞ ð5:36Þ

The DFT of Eq. (5.36) is computed by

ZðkÞ ¼ DFT½zðnÞ� ¼
X

N�1

n¼0

xðnÞ þ j � yðnÞf g exp �j2p
nk

N

� �

¼
X

N�1

n¼0

xðnÞ exp �j2p
nk

N

� �

þ j �
X

N�1

n¼0

yðnÞ exp �j2p
nk

N

� �

¼ XðkÞ þ j � YðkÞ

ð5:37Þ

If one defines real and imaginary parts of Z(k), X(k), and Y(k) by ZR(k), XR(k),
and ZI(k), XI(k) and YI(k), Eq.(5.37) becomes

ZRðkÞ þ j � ZIðkÞ ¼ XRðkÞ � YIðkÞ þ jfXIðkÞ þ YRðkÞg ð5:38Þ

Since real and imaginary parts of X(k) and Y(k) are even and odd, respectively,
one obtains the following relations from the real part of Z(k):

ZRð�kÞ þ ZRðkÞ ¼ XRð�kÞ � YIð�kÞ þ XRðkÞ � YIðkÞ ¼ 2XRðkÞ

and

ZRð�kÞ � ZRðkÞ ¼ XRð�kÞ � YIð�kÞ � XRðkÞ þ YIðkÞ ¼ 2YIðkÞ

and, from the imaginary part of Z(k):

ZIð�kÞ þ ZIðkÞ ¼ XIð�kÞ þ YRð�kÞ þ XIðkÞ þ YRðkÞ ¼ 2YRðkÞ

and

ZIð�kÞ � ZIðkÞ ¼ XIð�kÞ þ YRð�kÞ � XIðkÞ � YRðkÞ ¼ �2XIðkÞ

XR(k), XI(k), and YR(k), YI(k) are obtained from the above equations. Since k has
periodicity with period N, -k can be replaced by N - k. Then, the real and
imaginary parts of DFTs of X(k) and Y(k) are calculated by
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XRðkÞ ¼ ½ZRðkÞ þ ZRðN � kÞ�=2

XIðkÞ ¼ ½ZIðkÞ � ZIðN � kÞ�=2

YRðkÞ ¼ ½ZIðkÞ þ ZIðN � kÞ�=2

YIðkÞ ¼ ½�ZRðkÞ þ ZRðN � kÞ�=2

9

>

>

>

=

>

>

>

;

ð5:39Þ

The range of k is from 0 to N-1. The spectrum from k = N/2 to k = N-1 can
be obtained using Eq. (5.39) or using the properties that the real parts are even
functions and the imaginary parts are odd functions.

By employing this method, the DFTs of two real sequences can be calculated in
one FFT, making it possible to reduce the computation time to almost one-half
when many DFTs of real numbered sequences are calculated.

Examples of calculation by this method are shown in Fig. 5.15. Figure 5.15c, d
are the real and imaginary parts of the FFT of a complex signal, whose real and
imaginary parts are given by Fig. 5.15a, b, respectively. Both the time and fre-
quency axes cover the range from 0 to N (=512 in the present case). The spectra in
the range from k = 0 to k = N/2 - 1 and from k = N/2 to k = N - 1 are for
positive and negative frequencies, respectively.

The differences of Fig. 5.15c, d from the previous cases are that the real part (c)
is not symmetric and the imaginary part (d) is not antisymmetric. This is because

Fig. 5.15 Example of accomplishing two FFTs of two real sequences by one FFT of one
complex sequence, whose real and imaginary parts are given by the two real sequences.
Animation available in supplementary files under filename E5-15_PLLFFT.exe. a Wave in real
part, b wave in imaginary part, c real part of composite spectrum, d imaginary part of composite
spectrum, e-1 real part of separated spectrum, e-2 imaginary part of separated spectrum, e-3 IFFT
of (e-1) + j�(e-2) reconstructed (a), f-1 real part of separated spectrum, f-2 imaginary part of
separated spectrum, f-3 IFFT of (f-1) + j�(f-2) reconstructed (b)
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(c) and (d) are the real and imaginary parts of FFT of a complex signal. All
previous examples were real-time signals and therefore, the real parts of the FFT
were symmetric and the imaginary parts were antisymmetric. The real and
imaginary parts of the time signal in the present case are given by Fig. 5.15a, b,
respectively. The real parts (Fig. 5.15e-1, f-1) and imaginary parts (Fig. 5.15e-2,
f-2) of the two time signals Fig. 5.15a, b, are calculated by the use of Eq. (5.39).
The real and the imaginary parts of the spectra of the two signals are even and odd,
respectively, because the two signals are real.

5.7 Exercises

1. What is b when WkL
N is expressed in the form Wb

M , where N = LM and L, M, k,
and b are all integers ?

2. In the above problem, what are the ranges of b and k?
3. Discuss efficient methods of computation of 360-point DFT.
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Chapter 6
DFT and Spectrum

One of the important purposes of Fourier analysis is to obtain spectra of wave-
forms. For that purpose, DFTs are performed on numerical sequences made from
waveforms using a computer or a similar fast operational device. In Chap. 5, the
FFT, the fast computational algorithm of the DFT has been introduced. However,
application of the DFT is sometimes troublesome because, as explained in Chap. 4,
a finite-length waveform extracted from a very long sine or cosine waveform
sometimes contains spurious frequency components that do not exist in the ori-
ginal waveform.

Assume that a waveform is observed during some finite period of time, with no
knowledge of the signal outside the observed period. Nevertheless, the DFT of the
observed data gives the spectrum of a periodic waveform that infinitely repeats the
observed finite-length waveform.

The spurious frequency components appear because there is a discontinuity
between the two ends of the extracted waveform. This will be made clear during
discussions in this chapter. Various methods of eliminating or reducing the dis-
continuity will be investigated and it will be shown that gradually reducing the
amplitudes near the two ends is a very effective means of minimizing the
discontinuity.

6.1 Periodogram

So far, it has been shown that, if the DFT is applied to N points of data extracted
from a sample sequence of a waveform, N-point complex spectral data are
obtained. However, there are spectral differences depending on the location of the
N-point data in the sample sequence. This effect is checked using a long periodic
waveform.

First, a case of an extracted 64-point data set which contains an integer number
of cycles is considered. The original waveform is calculated using the equation
below.

K. Kido, Digital Fourier Analysis: Fundamentals,
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-1-4614-9260-3_6,
� Springer Science+Business Media New York 2015
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xðnÞ ¼ sin 2p
5n

64

ffi �

þ 0:7 sin 2p
10n

64

ffi �

þ 0:2 cos 2p
16n

64

ffi �

� 0:3 sin 2p
24n

64

ffi �

ð6:1Þ

The calculated waveform from n = 0 to n = 512 is shown in Fig. 6.1a and 64-
point DFTs are shown in Fig. 6.1b–d. If it is assumed that the length of the 512-
point data set is one second (unit time length), the sampling frequency is 512 Hz,
and the maximum analysis (Nyquist) frequency is 256 Hz. The left- and the right-
hand side columns of Fig. 6.1b–d show the results of 64-point DFTs of the
extracted data, indicated by � and `, respectively, in Fig. 6.1a.

From previous analysis, it is known that the spectral components are linear.
However, the real part (b) and imaginary part (c) of the spectrum are different
depending on the position of the extracted waveform. This is due to the phase
change caused by the difference of the position on the time axis. Since the mag-
nitudes of the components do not change regardless of the phase change, the power
spectrum, Fig. 6.1d, stays unchanged. Figure 6.1e shows the power spectrum
using a decibel scale (refer to Appendix 6A for ‘‘decibel’’). The power spectrum is
symmetric with respect to k (frequency).

Fig. 6.1 Waveform comprised of four sine components given by Eq. (6.1), with DFTs of 64-
point sample sequences extracted from two different locations. a Waveform, b spectrum (real),
c spectrum (imaginary), d power spectrum, and e power spectrum in dB. Animation available in
supplementary files under filename E6-01_PeriG.exe
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In order to show the wide range of amplitudes of the power spectrum, the
decibel scale is used. The 3rd and 4th components in Fig. 6.1d are slightly visible,
but in Fig. 6.1e, they become clearly visible. For this reason, the logarithmic
power spectrum will be frequently used.

The horizontal scales in Fig. 6.1b–d shows the sample numbers, while that in
Fig. 6.1e shows the real frequency. The maximum frequency is one-half the
sampling frequency (=256 Hz, Nyquist frequency).

If the data analyzed from n = 0 (the start of the waveform), the phases of
Eq. (6.1) could be obtained from the real and imaginary parts. However, in most
cases of real signal analysis, the n = 0 position is arbitrary. The phases obtained
will be different from those defined by Eq. (6.1), and dividing the spectrum into
real and imaginary parts becomes meaningless. The power spectrum, on the other
hand, is independent of the origin of the extraction and is a good indication of the
spectral property of the waveform.

However, if the number of cycles in the N-point data set is not an integer, the
situation is not so simple. To check this, DFTs of waveforms of sine waves
calculated from Eq. (6.2) are investigated.

xðnÞ ¼ sin 2p
5:2
64

n

ffi �

þ 0:7 sin 2p
10:3n

64

ffi �

þ 0:2 cos 2p
16:2n

64

ffi �

� 0:3 sin 2p
24:4n

64

ffi �

ð6:2Þ

The 512-point waveform and two different DFTs are shown in Fig. 6.2. The
real and imaginary parts of the two DFTs are different for the same reason as
shown in Fig. 6.1. The power spectra, obtained by the squared sum of the real and
imaginary parts, are also different depending on the location of the extraction as
can be seen by the decibel representation (Fig. 6.2e). If the two spectral distri-
butions are examined, it is difficult to imagine that they are obtained from the same
original waveform Eq. (6.2).

In Fig. 6.1, each sine component is represented by a pair of line spectra. In
Fig. 6.2, however, the spectrum displays a spreading. The difference comes from
the fact that, in Figs. 6.1 and 6.2, there are integer and non-integer number of
periods (cycles) in the 64-point data, respectively. It has already been shown that
the spectrum displays spreading if the number of periods in the sample sequence is
not an integer.

In the first case, Fig. 6.1, the power spectrum is independent of location of the
sample sequence, and therefore, it is correct to say that the obtained power
spectrum is that of the original waveform. However, in the second case, Fig. 6.2,
the power spectrum changes as the location of extraction changes. The power
spectrum in each case is that of the extracted waveform and not of the original
waveform. The spectrum obtained by the DFT is that of the infinitely long periodic
series of the extracted waveforms, which is mostly different from the original
waveform. To clarify this difference, the spectrum obtained by the DFT is referred
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to as the DFT spectrum . The absolute squared value of the complex DFT spectrum
is called the periodogram, which is the power spectrum obtained by the DFT.

The periodogram is a function of the discrete frequency k of the N-point DFT.
This is defined by

PxxðkÞ ¼ XðkÞj j2¼ X�ðkÞXðkÞ ð6:3Þ

or

PxxðkÞ ¼
1
N

XðkÞj j2¼ 1
N

X�ðkÞXðkÞ ð6:4Þ

The periodogram is a presentation of the absolute squared values of each
spectrum line, and its dimension is power. If Eq. (6.3) is used, the magnitude is
proportional to the sample number N. To avoid this problem, the definition given
by Eq. (6.4) is also used. Eq. (6.4) gives the power spectral density, which is
independent of the sample number N.

The periodogram given by Eq. (6.4) is equal to the power spectrum of the
original waveform when an integer number of periods is included in the sample
sequence. Even when this is not so, the result given by Eq. (6.4) is the power
spectrum of the waveform in the analysis band, and therefore, it is not wrong to

Fig. 6.2 Waveform comprised of four sine components described in the box at the top and two
DFTs of 64-point sample sequences extracted from two different locations. a Waveform,
b spectrum (real), c spectrum (imaginary), d power spectrum, and e power spectrum in dB.
Animation available in supplementary files under filename E6-02_PeriG.exe
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call this the power spectrum. However, to avoid ambiguity, the term periodogram
will be used whenever necessary.

It is natural to consider that the average of the periodogram obtained by
shifting the beginning of the sample sequence may give an estimate of the power
spectra of the original (overall) waveform. However, it has been proven that this
does not give an exact estimate but a biased estimate [7]. Instead of presenting the
proof here, a different approach will be given.

Since the waveform is defined by Eq. (6.2), the power spectrum should be
given by four lines in the positive frequency range. Since there are many spectral
lines in Fig. 6.2c, d, and since each component is given by the sum of squares of
the real and imaginary parts, they can never be negative and their averaging never
approaches zero. This is the simple explanation of the reason why the averaging of
the periodogram never becomes the power spectrum.

As shown above, it is impossible to estimate the correct power spectrum from
the DFTs. Why, then, is the DFT used? The DFT does not give an exact estimate
of the power spectrum, but it still gives a result that is not completely meaningless.
The result is the power spectrum of the periodic waveform. Before giving up, a
method that gives a better estimate of the power spectrum of the original wave-
form will be searched.

Some additional explanations in Fig. 6.2 will be given because several similar
figures are shown in the following sections. Figure 6.2b, c are the real and
imaginary parts of the N-point DFT. They take positive and negative values, which
are indicated by the lines above and below the horizontal axis, respectively. The
frequency is not shown by the order of DFT, but the negative frequency compo-
nents are shown on the left-hand side of the horizontal axis.

In some cases, the amplitude spectrum, the square root of the power spectrum
(periodogram), will be shown. This is because small power spectral components,
which are almost invisible, may become visible when the amplitude spectrum is
used. For example, a power spectrum of 0.01 is difficult to identify on the graph
with a full scale of one, but the corresponding amplitude spectrum of 0.1 may be
easily identified. This can be confirmed by running the attached program.

Figure 6.2e is the decibel representation of the power spectrum. From the
definition of the decibel, the power and the amplitude spectra give identical results.
The decibel scale can display a very wide range of magnitudes (see Appendix 6A).

6.2 Uncertainty Principle

In this section, the discussion is concentrated on the relationship between the
frequency resolution and the length of the sample sequence. The main purpose of
the frequency analysis is to obtain exact values of frequencies and levels of sine
and cosine components that are comprised in the waveform. It was shown that the
analysis of a sample sequence with length T gives frequency components that are
integer multiples of 1/T, i.e., k/T, k = 0, 1, …, N-1.
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As it has been made clear in Chaps. 3 and 4, the frequency spacing of the line
spectra of the DFT of a finite-length waveform with length T, i.e., the spacing
between the adjacent samples in the frequency domain, is 1/T. If a two-period-long
waveform of a 100-Hz sine wave is analyzed, the time length is 0.02 s and its
reciprocal is 50 Hz. This means that the frequency spacing of the DFT of the
two-period-long waveform of the 100-Hz sine wave is 50 Hz. The frequency,
100 Hz, is the integer multiple of 50 Hz, and the waveform of 100 Hz or its
harmonics can be analyzed without error. However, what happens when a 260 Hz
wave is included, or if the 100-Hz signal is changed to 90 Hz? If an answer does
not exist, then the frequency analysis has no meaning.

It is clear that this can be solved by lengthening the window length (analysis
time), based on Chap. 3. If a spectrum spacing that is narrower than 5 Hz is
required, the time window length should be longer than 1/5 (s). In this window
length, there are 20 periods of the 100-Hz wave. If the maximum frequency of the
highest components is 1,000 Hz, the sampling frequency should be more than
2,000 Hz. Therefore, the sampling number in the window should be 400 or more.
Since the number 400 is not equal to an integer power of two, it is not convenient
to apply the FFT algorithm. If the sampling number 512 is chosen without
changing the sampling frequency, the window length becomes equal to 0.256 s,
and the frequency spacing is equal to 3.9 Hz. If the sampling number 1,024 is
chosen, a spectrum with 1.95 Hz spacing is obtained.

Differences between results obtained using different time window lengths will
be made clearer by analyzing a real signal with various window lengths, rather
than by studying the numbers mentioned above. One example of analysis is shown
in Fig. 6.3. In this figure, results of a 32-point DFT and a 512-point DFT, both
from n = 0, are shown by (A) and (B), respectively. In case (A), the frequency
resolution is too coarse, and it is difficult to get an idea of what kind of frequency
structure the waveform has. In case (B), it can be clearly seen that the waveform
consists of four frequency components, and it can be guessed the relative ampli-
tudes of the four components.

The logarithmic power spectrum of Fig. 6.3B(d) shows many small compo-
nents other than the four large frequency components. This is due to the fact that
the numbers of cycles in the extracted waveform are not integers.

From the above discussion, it is clear that frequency resolution improves with
increasing analysis length. Using T and D f to represent the analysis time length
and frequency resolution between adjacent spectral lines, respectively, the fol-
lowing relation holds:

D f � T ¼ 1 ð6:5Þ

This relation is derived from the discussions in Chap. 2 and Eqs. (4.4) and (4.5)
in Chap. 4. If the analysis time T is lengthened in order to get a fine frequency
structure within a small period around a specific time, the result is an increase in
frequency resolution from Eq. (6.5). Equation (6.5) shows that both parameters
cannot be made small at the same time.
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The above relation is analogous to the uncertainty principle in quantum
mechanics: the product of the measurement errors of the position of an electron
and its momentum cannot be made smaller than some finite number. For this
reason, Eq. (6.5) is referred to as the uncertainty principle in frequency analysis.

From Eq. (6.5), the analysis time length required to obtain frequency resolution
less than Df is given by Eq. (6.6)

T � 1=D f ð6:6Þ

In practice, it is common that the number of FFT points has higher priority than
the time length itself. Therefore, we will derive a relation that takes this into account.

The sampling frequency must be higher than two times the maximum frequency
(fm) of the signal, and the analysis time length must be determined by the required
frequency resolution of the spectrum. The sampling interval s is given by

s\1=ð2fmÞ ð6:7Þ

From Eqs. (6.6) and (6.7), the number of DFTs, N, is chosen so that it satisfies
the equation:

Nð¼ T=sÞ[ 2fm=D fm ð6:8Þ

Fig. 6.3 Comparison of 32-point DFT and 1,024-point DFT with waveform composed of four
frequency components. a Wave form, b spectrum (real), c spectrum (imaginary), d power
spectrum, and e power spectrum in dB. Animation available in supplementary files under
filename E6-03_PeriG.exe
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The number N given by Eq. (6.8) can be used as a point number of the DFT. If
the widely used FFT algorithm is employed, a number N0 that satisfies Eq. (6.8)
should be used (N 0 ¼ 2M �N; M : integer).

6.3 Spreading of the Spectrum

In Sect. 6.2, the relationship between the frequency resolution and the analysis
time length was made clear. But some other things must also be made clear. As
shown in Figs. 6.2 and 6.3, there is a spreading of spectrum if the number of cycles
in the analysis time window is not an integer. If this happens, small components
with different frequencies may be buried in the spread spectrum.

It has already been shown that the spread of the spectrum becomes less as the
analysis time length gets longer. But lengthening of the analysis time is not a very
efficient means of reducing the spreading of the spectrum. The relationship
between these two should be made clear. Sometimes, there are cases when the
analysis time cannot be made longer.

Some more examples of spectrum changes due to the analysis time change are
examined. Two examples of 512-point sample sequences of original signals made
of four frequency components are considered. All of the components of sequence
(A) have integer frequencies (number of cycles in the 512 points) as shown in the
table at the top. However, if a sub-sequence made of 128 consecutive points is
employed, the analysis time is 0.25 s. The sequence contains an integer number of
cycles of the first and the fourth components and their spectra become lines
without spreading. But, this is not the case for the second and third components.
This can be seen marginally in Fig. 6.4b, c. The spreading of the power spectrum
is very difficult to identify in Fig. 6.4d. But, if the decibel scale is used for the
vertical axis, the wide range of spectra becomes visible without regard to the
amplitude or the power spectrum representations.

If the frequencies of the four components are increased by 3 %, all of the
numbers of the four components in the 128-point sequence are non-integers, all
components have spreading as shown in Fig. 6.4B. This spreading is sometimes
called the leakage of spectrum and it can be narrowed if the analysis time is made
longer but it never disappears.

Figure 6.5 shows the periodogram of DFTs with different data numbers. The
waveform is the same as shown in Fig. 6.4. In this figure, the data number is
changed progressively from 64 (a) to 1,024 (e), being doubled in each step. Since
the sampling frequency is 512 Hz, the length of the 64-point sequence is 0.125 s.
The first component (64 Hz) has the period of 0.015625 s (=1/64). Therefore, there
are eight cycles in the sequence. In this case, the DFT of this component appears as
the eighth line spectrum from the zero frequency. The spectra of the other waves
are spread since the numbers of periods in the 64-point sequence are not integers.
Figure 6.5b shows the 128-point sequence. In the analysis time length of 0.25 s,
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there are 55 periods of the 220 Hz fourth wave component, and a line spectrum
occurs at the 55th line in (b). In Fig. 6.5c, the 3rd wave component appears as the
line spectrum at the 93rd line. In Fig. 6.5d, the 2nd wave component appears as the
line spectrum at the 125th line as well as the other three components. The results
do not change any more even if the analysis time length is doubled to 1,024.

In the case of Fig. 6.5B, since the frequencies are 1.03 times of those in
Fig. 6.5A, none of the numbers of periods of the four waves in the analysis time
length become an integer, and therefore, no pure line spectrum is observed.
However, as the analysis time length increases, the spread of the spectrum is
reduced, resulting in better frequency separation.

6.4 Analysis of Short Waves

It has been made clear that frequency resolution gets finer with increasing analysis
time length. This is possible only when the original signal is long enough. If the
signal itself is short or if the signal changes its property drastically, the analysis
time length cannot be made long enough for a required frequency resolution. Even
in these cases, it is expected that the frequency resolution will be made finer if the

Fig. 6.4 Two waveforms comprised of four sine components shown in the boxes at the top and
two DFTs. a Waveform, b spectrum (real), c spectrum (imaginary), d periodogram, and
e periodogram in dB. Animation available in supplementary files under filename E6-04_PeSP.exe

6.3 Spreading of the Spectrum 139



analysis time length is increased by adding zero data after (or before) the original
signal and increasing the data number of the DFTs. If this works, it would be
beneficial to investigate the fine structures of the spectra of waves with short wave
lengths. Since the spectrum of the null signal is zero, an essential change of the
spectrum of the zero-padded signal may not happen.

This concept will be examined using similar waves. After a 32-point sequence,
a 224-point zero sequence is added and the 256-point DFT is calculated. Results
are shown in Fig. 6.6. In this figure, the spectral shape is shown by the envelope
obtained by connecting the individual spectral peaks. In general, if the frequency
resolution is high, this type of representation of the spectrum is a better way to
indicate the spectral fluctuation.

In Fig. 6.6A, since the frequency of the fundamental component is 16 Hz in the
256-point data length, the sample length of one period of the fundamental is 16.
Therefore, there are exactly two periods in the 32-point length sequence. The other
three components are the harmonics of the fundamental component, and therefore,
there are integer numbers of periods in the 32-point sequence. In this case, a 32-
point DFT gives the perfect result as shown in Fig. 6.6e. However, in the case of
(B), the fundamental frequency is 16.5 Hz, resulting in a non-integer number of

Fig. 6.5 Periodogram with various point numbers of DFT of the two waveforms shown in
Fig. 6.4. Animation available in supplementary files under filename E6-05_PrSP.exe
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periods in the 32-point sequence. The periodogram obtained by the 32-point DFT,
which is shown by Fig. 6.6B(e), does not give the impression that the original
wave consists of four frequency components.

By adding 224-point zeros to the 32-point sample sequences, and by calculating
DFTs for the sequences (A) and (B), the results shown by Fig. 6.6b, c, d were
obtained. The spectra shown in Fig. 6.6b, c, d are the amplitude spectrum, the
power spectrum, and the power spectrum in dB, respectively. There are 256
spectral lines, but since the peaks of the lines are connected, the spectrum dis-
tributions appear continuous. The spectra of the 1st, 2nd, and 4th components, with
large amplitudes, appear as the wide lobes shown in Fig. 6.6b, c, d. However, the
spectrum of the relatively small 3rd component appears to have a lobe with a dent
at its center. Also, there are other peaks over the entire frequency range.

It is interesting to note that the 32-point DFTs of (A) and (B) are very different,
but the zero-added 256-point DFTs are very similar, as shown in Fig. 6.6b, c, d.

It seems that there is something valuable in adding zeros and increasing the data
length. The question of how the spectral distribution changes as the number of
added zeros increases will now be considered.

Figure 6.7 shows waveforms and their 64-, 128-, 256-, and 512-point DFT
results when zeros are added to the 32-point data of Fig. 6.6B. If no zeros are

Fig. 6.6 256-point sample sequences and DFTs of the two waveforms comprised of the four sine
components shown in the boxes at the top. The first 32-point sample sequences are those of the
waveforms and 224-point zero samples are added in series. a Waveform, b amplitude spectrum,
c periodogram, d periodogram in dB, and e periodogram in dB of the 32-point DFT. Animation
available in supplementary files under filename E6-06_FrWSP.exe
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added, the result is the same as (e) of Fig. 6.6B. As the number of zeros increases,
the logarithmic periodic power spectrum becomes similar to that of Fig. 6.6A.
From this spectrum, one could guess that there are components near the peak
frequencies of the large lobes (because this fact is already known!). However, it is
impossible to tell that the original waveform consists of four harmonic compo-
nents, and the frequencies and amplitudes of each component cannot be precisely
determined. The 256- or 512-point DFT is better than the 32- or 64-point DFT, but
still far from a complete description because only two periods of the fundamental
component are included in the 32-point (non-zero) data.

It is reasonable to think that zero-added DFTs of short waveforms may improve
the frequency resolution, but the results are not very impressive. A further increase
in the data number of the DFT (more than 512 in Fig. 6.7) may not improve the
situation.

Next, consider the spectrum change when the length of the non-zero data is
varied. Figure 6.8 shows the 256-point DFT for the cases when 128 zeros are
added to the 128 sample data of the signals in Fig. 6.6. Since the non-zero data
lengths are longer this time, the spectrum clearly shows the existence of the four

Fig. 6.7 DFTs (periodogram in dB) with various point numbers. The waveform consists of the
four sine components shown in the box at the top. The first 32-point sample sequence is from the
waveform shown in the box at the top, and various numbers of zero samples are added in series.
Animation available in supplementary files under filename E6-07_WLength.exe
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components. Other phantom components are still observed but the frequency
structure is better presented compared to the results of the previous figure.

The frequency structure becomes finer as the analysis signal length is increased.
Then, spectrum changes will be examined as the analysis signal length is varied
while the total number of DFT points is kept constant.

Figure 6.9 shows the results for the cases when the number of non-zero data points
is increased from 0 to 240 while keeping the total length at 256. Frequencies of the
components are increased by 1 % from those used in Fig. 6.6A in this example.

The upper chart in Fig. 6.9 is the case when all 256 points from the original data
are used. However, all four components exhibit spreading of the spectrum since
they are discontinuous between the beginning and the ending of the signal. The
next chart shows the case with 128 non-zero data points. The spreading is even
more pronounced than in the previous case. This trend increases as the number of
non-zero data points is further reduced. Smaller components, even if they exist,
may not be detected since they are covered by the spectrum spreading of the larger
components.

The spreading of the spectrum should be reduced for a better analysis of the
frequency structure of a signal in general. In the following sections and in Chap. 7,
this will be the main topic of discussion.

Fig. 6.8 256-point sample sequences and DFTs of the two waveforms comprised of the four sine
components shown in the boxes at the top. The first 128-point sample sequences are those of the
waveforms and 128-point zero samples are added in series. a Waveform, b amplitude spectrum,
c periodogram, d periodogram in dB, and e periodogram in dB of the 128-point DFT. Animation
available in supplementary files under filename E6-08_FrWSP.exe
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6.5 DFT of Sine Waves

In seeking to answer the question raised at the end of Sect. 6.4, the first example
shown in Fig. 6.10 will be considered.

In Fig. 6.10A, the 32-point sample sequence of a five-period sine waveform is
shown by (a); the real and imaginary parts of its spectrum (32 point DFT) by (b)
and (c), respectively; the amplitude spectrum by (d); and the periodogram in dB by
(e). Figure 6.10B shows those of a sample sequence of a 5.6-period sine waveform
in the sample time.

From what was learned in Chap. 5, the following can be mentioned. In the case of
Fig. 6.10A, there are exactly five periods (cycles) in the sample sequence and,
therefore, the spectrum should appear at discrete frequencies ±5 as line components.
Since the waveform is a sine function, the spectrum should be purely imaginary. In
the case of Fig. 6.10B, however, the spectrum spreads and both real and imaginary
components exist. From the periodogram, Fig. 6.10B(e), it is difficult to imagine that
the analyzed waveform is a single sinusoidal function. It would be more reasonable
to conclude that there are many sine components around frequency 5 or 6.

The reason why spectrum spreading occurs is that the DFT coefficients of a
sample sequence are actually those of the infinitely long periodic function with
period T, which is given by the product of point number of the DFT and the sample

Fig. 6.9 256-point sample sequences and periodograms (in dB) of the waveform shown in
Fig. 6.6a. The first 16-, 32-, 64-, 128-, and 256-point sample sequences are those of the waveform
and the remaining sequences are filled with zeros. Animation available in supplementary files
under filename E6-09_WLength.exe
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period (spacing between adjacent samples). Figure 6.11a, b shows the analyzed
waveforms with the duration of 5T and 5.6T s, respectively. If there are an integer
number of cycles in the sample sequence, the cascaded waveform becomes con-
tinuous, as shown in Fig. 6.11a. If there are a non-integer number of cycles in the
sample sequence, the cascaded waveform becomes discontinuous, as shown in
Fig. 6.11b. Many frequency components, described by complex numbers, are
necessary to synthesize discontinuous waveforms of the type shown in Fig. 6.10b.

Fig. 6.10 A Sample sequence with five cycles in it and its 32-point DFT and B sample sequence
with 5.6 cycles in it and its 32-point DFT. Animation available in supplementary files under
filename E6-10_SinSP.exe

Fig. 6.11 a Periodic waveform of a sample sequence with five cycles in it and b periodic
waveform of a sample sequence with 5.6 cycles in it
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6.6 Removal of Discontinuity by the Adjustment
of the Sampling Frequency

As the previous sections have shown, if the number of cycles in the sample
sequence is an integer, the spectrum becomes linear. Then it may be possible to
adjust the sampling period so that the number of cycles in the sample sequence
becomes an integer. This is possible if there is only one component. If there are
two or more, this is possible only when those components are all in harmonic
relationship. Otherwise this idea is not practical.

Most musical instruments produce harmonic components. The appropriate
sampling frequency may not be determined after the first trial but after several
trials. With this concept in mind, some examples will be examined.

Figure 6.12 is an example of 32-point DFT of a waveform comprised of four
sine components. In Fig. 6.12a, the fundamental component has two periods in the
32-point sample sequence. The other three components are at 2, 3, and 4 times
higher frequencies of the fundamental. Therefore, all components have integer
numbers of periods in the sample sequence, and the sample values at n and n + 16
are identical (16 is the period of the present waveform of analysis). In this case the
harmonic components are obtained with no error by the 32-point DFT as shown in
Fig. 6.12a.

Fig. 6.12 Waveforms made of fundamental and lowest three harmonics, and their 32-point
DFTs. A The frequency of the fundamental component is two (fundamental period is 16), and
B the frequency of the fundamental component is 2.0645 (fundamental period is 15.5). Animation
available in supplementary files under filename E6-12_SinSPS.exe
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In Fig. 6.12b, all four components have the same frequency ratios as in (A).
However, in this case, the sample period is given by dividing the time length of
two periods of the fundamental component by 31 (instead of 32 in (A)). Then, the
period of the waveform becomes 15.5 (instead of 16 as in (A)). In other words, the
fundamental frequency becomes 2.0645… (=32/15.5), which is not an integer.

The small change in the sampling frequency or the sampling period causes a
large spectrum difference as shown in Fig. 6.12. The difference of the sampling
period is only 3.2 % (=1/31), but the spectrum distributions are significantly
different. Even if one is very careful in determining the sampling frequency in
order to obtain the correct harmonic components, a small misadjustment of the
sampling frequency may lead to meaningless results.

A case will now be examined where the frequencies of the ‘‘harmonics’’ are
slightly off from the integer multiples of the frequency of the fundamental com-
ponent. This has a practical meaning since some musical instruments such as
pianos have the characteristic called ‘‘inharmonicity.’’ The question is: what kind
of results does one obtain when the sampling frequency is adjusted to the fre-
quency of the fundamental component.

One example is shown in Fig. 6.13. The waveform shown here is almost the
same as the previous one. The length of the sample sequence is 64 (twice the

Fig. 6.13 64-point DFTs of two waveforms made of fundamental and lowest three harmonics.
A Three harmonics have 1 % higher frequencies than the integer multiples of the fundamental
frequency. B The fourth harmonic has 1 % higher frequency than the integer multiple of the
fundamental frequency. Animation available in supplementary files under filename E6-
13_SinSP.exe
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previous case), and therefore, the spectral density is also twice the previous case.
Since the sampling frequency is adjusted so that there are four cycles of the
fundamental component in the sample sequence, its discrete frequency is four. In
Fig. 6.13a, the second and higher ‘‘harmonics’’ have 1 % higher frequencies than
the integer multiples of the fundamental frequency, resulting in the spreading of
their spectra. In Fig. 6.13b, only the fourth ‘‘harmonic’’ is given 1 % higher fre-
quency than four times the fundamental frequency (its amplitude is one-half of the
fundamental component). Figure 6.13b shows that a wide spreading of the spec-
trum is caused when even a single component has non-integer frequency. This
indicates that low amplitude harmonics may be buried under the spread spectra of
higher amplitude harmonics.

The above discussion shows that the idea of adjusting the sampling frequency
so that an integer number of cycles of the fundamental component is included in
the sample sequence does not work if the ‘‘harmonics’’ are actually slightly dif-
ferent from integer multiples of the frequency of the fundamental component.

6.7 Removal of Discontinuity by the Weighting of Sample
Sequences

The N-point DFT of a waveform is a Fourier transform of a periodic function that
repeats the N-point sample sequence infinitely. As has been explained in many cases,
if there is a discontinuity at the junctions between two adjacent periods, the abrupt
changes of the waveform cause spreading of the spectrum. Generally, the spreading of
the spectrum is proportional to the magnitude of the discontinuity (leakage of spec-
trum ). Even when zeros are added to the sample sequence, there are still disconti-
nuities at the junction: those jumping up to some value from zero and those falling
from some value to zero, causing the spreading of the spectrum (see Sect. 6.4).

The above discussion indicates that if the tail of the sample sequence is
smoothly connected to the head of the sample sequence, the spreading of the
spectrum may be reduced. The same thing can be said when zero data are added to
a sample sequence. The sample sequence should be smoothly reduced to zero at
both ends in order to reduce the abrupt change in the modified sample sequence
used for the analysis. The removal of the abrupt change of the waveform can be
achieved by tapering (or weighting) the beginning and the end of the sample
sequence gradually to zero. If the amplitude of one sequence gradually approaches
zero and the beginning of the next sequence (which is the identical sequence) also
gradually increases from zero, there should be no abrupt change in the waveform.
However, a question may be raised, ‘‘Is it safe to modify the waveform in this
way?’’ To answer this question, consider the effect of this modification of the
waveform on the spectrum, using a periodogram of a sine wave.

Consider the case of a 64-point sample sequence which has 5.5 cycles (periods)
of a sine wave. Figure 6.14a shows the sample sequence and its periodogram. The
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periodogram exhibits a wide spreading. Next, taper (fade in and fade out) this
sequence. The amplitudes of the beginning and ending (20 % of the total sequence
length) are linearly tapered. The remaining 80 % in the middle is not modified.
The sample sequence and its periodic power spectrum are shown in Fig. 6.14b.
Although the spectrum is far from a single line spectrum, the spreading is much
narrower than in Fig. 6.14a. The peak of the spectrum exists between frequencies
5 and 6, and since the levels at 5 and 6 are the same, it is reasonable to guess that
the peak frequency is 5.5. This is what would be expected, because the number of
sine cycles in the sample sequence is 5.5.

In order to reduce the slope of the tapering, the portion of the unmodified region
is reduced from 80 to 40 %. The result is shown in Fig. 6.14c, where it seems that
the spreading is reduced over the case of (b).

The slopes used in Fig. 6.14b, c are linear. It may be more effective to use a
curved (e.g., sine-squared) tapering. For this purpose the functions
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Fig. 6.14 The effect of tapering on the periodogram (64-point DFT) of a sine wave with
frequency 5.5. a Without tapering, b linear tapering with 80 % flat area, c linear tapering with
40 % flat area, d sine-squared tapering with 80 % flat area, and e sine-squared tapering with 40 %
flat area. Animation available in supplementary files under filename E6-14_TaperSP.exe
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are applied to the beginning and ending of the sample sequence, respectively. The
former and latter functions gradually start from 0 (1) and gradually end at 1(0),
respectively. The modified sample sequences using the above functions for the
cases with s ¼ 0:1N and s ¼ 0:3N, and their power spectra, are shown in
Fig. 6.14d, e, respectively. There is not much improvement of these results
compared to those of (b) and (c).

The previous case is for a single sine wave. A higher frequency resolution is
required when there are two or more components. Next consider a case with two
frequency components with a 1:2 frequency ratio. The second harmonic has an
amplitude of 0.5 compared to one for the fundamental component. The flat area is
further reduced to 20 and 0 % (previous cases were 80 and 40 %).

Results are shown in Fig. 6.15. Even without tapering, the second harmonic is
clearly seen in (a). Since the number of cycles of the second harmonic is 11
(integer), its line spectrum stands out from the spread spectra of the first component.

Fig. 6.15 The effect of tapering on the periodogram (64-point DFT) of two sine waves with
frequency 5.5 and 11 (the amplitude of the latter is half of the former). a Without tapering,
b linear tapering with 20 % flat area, c linear tapering with 0 % flat area, d sine-squared tapering
with 20 % flat area, and e sine-squared tapering with 0 % flat area. Animation available in
supplementary files under filename E6-15_TaperSP.exe
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If there are other components with smaller amplitudes or slightly different fre-
quencies, they may not be detected.

As shown in Fig. 6.15b–e, tapering works to reduce the possibility of such
masking. The cases (c) and (e) with the 0 % flat area seems to work better than the
cases (b) and (d) with the 20 % flat area. It is very attractive that the spreading of
the second harmonic in (e) is very narrow. However, is it safe to modify the
sample sequence to such a degree that there is no flat area? It is necessary to
investigate the effect of the modification.

The above results show that the idea of tapering both ends of the waveform to
reduce the abrupt change at the junction is promising. At this stage, tapering with
0 % flat area seems to work better than the other cases. However, not much more
is known than what has been seen in some numerical examples about the effect of
tapering (weighting). In the next chapter, the theoretical meaning of various kinds
of weighting will be considered.

6.8 Exercise

1. The N-point DFT of a sample sequence has 1 at n = m and N - m and zeros at
all other points. What is the original waveform?

2. The N-point DFT of a sample sequence is j at n = m and -j at N - m and
zeros at all other points. What is the original waveform?

3. The N-point DFT of a sample sequence has -1 at n = m, 0.5 at n = k, -1 at N-

m, -0.5 at N-k, and zeros at all other points. What is the original waveform?
4. The N-point DFT of a sample sequence has several distinct line spectra and

other many smaller components around them. What kind of property does the
original waveform have?

5. In the case where the period of a sine wave is not an integer multiple of the
inverse of the period of an N-point sample sequence, what kind of DFT do you
expect? Why?

6. What is the definition of periodic power spectrum?
7. In what cases does the periodic power spectrum become identical with the

power spectrum of the total waveform?
8. Can you get any information about the frequency of a signal if you have data

measured only at a single instant time?
9. What is the frequency resolution of a waveform with duration T?

10. What is the uncertainty principle in frequency analysis?
11. There are 11 cycles of one sine wave and 13.5 cycles of another sine wave in

an N-point sample sequence. Can you tell what components compose the wave
from the N-point DFT?

12. There are cases when the periodic power spectrum has a discrete line spectrum,
and when it has a distributed spectrum. State examples for each such case.

13. In what cases does the imaginary part of an N-point DFT become zero?
14. In what cases are both the real and imaginary parts of an N-point DFT non-zero?
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Chapter 7
Time Window

It was shown that tapering both ends of the sample sequence improves the
amplitude and frequency resolutions even if the number of waves in the sample
sequence is not an integer. However, the discussion stopped short of developing
the relationship between tapering concepts and their resulting improvements. The
aim of this chapter is to make clear the consequences of tapering and to develop
guidelines for the selection of types of tapering.

Weighting functions that taper (or cut off) both ends of sample sequences are
called time windows. The properties of various windows, which are called with
different names, were enthusiastically investigated right after the invention of the
FFT algorithm.

7.1 Fourier Transform of a Product of Two Time
Functions

The tapering of both ends of a time sequence is actually the multiplication of that
time function by a time window function. Therefore, the resulting spectrum is
known if the spectrum of the product of two functions is known.

Let x(t) and w(t) be the time function to be analyzed and the time window
function (or simply, time window), respectively, and Xðf Þ and Wðf Þ be their
corresponding continuous Fourier transforms. The transform pairs are given by
Eqs. (7.1) to (7.4).

Xðf Þ ¼
Z þ1

�1
xðtÞ expð�j2pftÞdt ð7:1Þ

xðtÞ ¼
Z þ1

�1
Xðf Þ expðj2pftÞdf ð7:2Þ

Wðf Þ ¼
Z þ1

�1
wðtÞ expð�j2pftÞdt ð7:3Þ

K. Kido, Digital Fourier Analysis: Fundamentals,
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-1-4614-9260-3_7,
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wðtÞ ¼
Z þ1

�1
Wðf Þ expðj2pftÞdf ð7:4Þ

Our concern is with the Fourier transform of the product of x(t) and w(t). The
aim of this chapter is to investigate how the spectrum of the time function changes
when multiplied by a window function. In general, any time function is expressed
by the summation of several sine waves. Therefore, it is necessary to understand
how the spectrum of a sine wave changes when multiplied by a window function.
This multiplication process is equivalent to amplitude modulation in communi-
cation systems, as used in AM radio broadcasting technology.

Let x(t) be a sine wave with frequency f0. One needs to calculate the product of
x(t) and w(t). If it is assumed that w(t) exists only in the region -T/2 B t B T/2
and has zero amplitude outside of this region, then the Fourier Transform inte-
gration is expressed by:

FT ½xðtÞwðtÞ� ¼
Z þT=2

�T=2
sinð2pf0tÞwðtÞ expð�j2pftÞdt ð7:5Þ

Expressing the sine function as a pair of complex functions by use of Euler’s
formula, the above equation is rewritten as:

FT ½xðtÞwðtÞ� ¼
Z þT=2

�T=2

expðj2pf0tÞ � expð�j2pf0tÞ
j2

wðtÞ expð�j2pftÞdt

¼ 1
j2

Z þT=2

�T=2
wðtÞ expf�j2pðf � f0Þtgdt

� 1
j2

Z þT=2

�T=2
wðtÞ expf�j2pðf þ f0Þtgdt:

ð7:6Þ

Since the window function w(t) is zero outside of -T/2 B t B T/2, its Fourier
transform given by Eq. (7.3) is expressed by the following equation.

Wðf Þ ¼
Z þ1

�1
wðtÞ expð�j2pftÞdt ¼

Z þT=2

�T=2
wðtÞ expð�j2pftÞdt ð7:7Þ

The only difference between Eq. (7.7) and (7.6) is that f is replaced by (f - f0)
or (f + f0). Therefore, Eq. (7.6) can be rewritten as

FT ½wðtÞ sinð2pf0tÞ� ¼ 1
j2
½Wðf � f0Þ �Wðf þ f0Þ� ð7:8Þ

When a cosine wave is used instead of the sine wave, the following equation is
obtained by the same methodology.
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FT ½wðtÞ cosð2pf0tÞ� ¼ 1
2
½Wðf � f0Þ þWðf þ f0Þ� ð7:9Þ

If the time function is composed of L number of sine and cosine functions,

xðtÞ ¼
X

L�1

i¼0

Ai cosð2pfitÞ þ
X

L�1

i¼0

Bi sinð2pfitÞ ð7:10Þ

the Fourier transform of the product of this time function and the time window is
given by the summation of Eqs. (7.8) and (7.9) each multiplied by the Fourier
coefficients Ai and Bi.

FT ½wðtÞxðtÞ� ¼ 1
2

X

L�1

i¼0

Ai½Wðf � fiÞ þWðf þ fiÞ�

þ 1
j2

X

L�1

i¼0

Bi½Wðf � fiÞ �Wðf þ fiÞ�
ð7:11Þ

.
This equation reveals that the spectrum Wðf Þ of the window function w(t) is

shifted on the frequency axis to Wðf � fiÞ and Wðf þ fiÞ by the frequencies �fi of
the sine and cosine functions. Therefore, in order to investigate the effect of the
window function, one only needs to investigate the spectrum of the window
function instead of the spectrum of the product of the time function and the
window function.

On the basis of this understanding, the spectra of various window functions will
be examined.

7.2 Spectra of Tapered Functions

Let’s consider the results shown in Figs. 6.14 and 6.15 from a different point of
view, that is, as frequency shifted spectra of time window functions.

Spectra of various time window functions are shown in Fig. 7.1. The
W(t) shown in Fig. 7.1a is without tapering, the W(t) shown in (b) and (c) are
linearly tapered, the W(t) shown in (d), (e), and (f) are tapered by sine squared
functions. In each of the charts, the top graph is the time window function and the
bottom is its corresponding spectrum. The length of the window, T, is the same for
all charts. The percentages of the window functions with flat area are: 100 % for
(a), 80 % for (b) and (e), 40 % for (c) and (f), and 0 % for (d). The spectra are
shown in the range ±32/T. The vertical axis is shown in dB so that amplitudes as
small as 3/1000 of full scale may be visible.

The spectrum (Fig. 7.1a) of the rectangular window, which jumps up and down
stepwise at t = 0 and T, has a very wide frequency domain spreading. The shapes
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of the spectra shown in Figs. 6.14a and 6.15a are the results of shifting the
spectrum of the rectangular window by ±f0, where f0 is the frequency of the sine
wave. The superimposed spectrum takes a relatively large value even at frequency
0, since the spectrum in Fig. 7.1a takes a finite value at ±f0 (the frequency is ±5.
5 Hz in Fig. 6.14a). The spectrum shown in Fig. 6.15a is an addition of a second
harmonic which has two line spectra at ±11Hz.

The spectrum shown in Fig. 6.14b is the superposition of the two spectra which
are obtained by shifting the spectrum of Fig. 7.1b. The time window shown in
Fig. 7.1b is linearly tapered in the 10 % ranges from both ends, and its spectral
spreading is smaller than the rectangular window without tapering. If the tapering
is increased to 30 % as in Figs. 6.14c and 7.1c, the spreading is further reduced and
the spectral distributions centered at ±f0 are separated in a larger degree.

The window functions shown in Fig. 7.1a–c are linearly tapered time windows,
while the ones shown in Fig. 7.1d–f are curvilinearly tapered windows. The
function of the curvilinear taper in the range from t = 0 to t = s - T is given by

wðtÞ ¼ 0:5� 0:5 cosð2pt=sÞ ð7:12Þ

Fig. 7.1 Comparison of spectra of the weighting functions (windows) used in Chap. 6 (see Figs.
6.14 and 6.15). Animation available in supplementary files under filename E7-01_TaperingSP.
exe

156 7 Time Window

http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6


and in the range from t = T - s to t = T is given by

wðtÞ ¼ 0:5� 0:5 cosf2pðT � tÞ=sg: ð7:13Þ

A distinctive feature of these functions is that the gradients at both ends are
zero, and therefore, the windows in Fig. 7.1d–f smoothly change from 0 to 1 and 1
to 0. The time s is the duration of the curvilinear portion and if the flat area is 0, 40,
or 80 %, then s is equal to 0.5, 0.3, or 0.1 T, respectively. One can see the effect of
smooth tapering in the spectra of Fig. 7.1d–f, d and e of Figs. 6.14 and 6.15.

It was stated at the end of Chap. 6 that the effect of sine functions given by Eqs.
(7.12) and (7.13) was not significant. Let us consider the reason using Fig. 7.1. The
comparison of Fig. 7.1b and e shows that the spreading of (b) is smaller than that of
(e) if levels below -40 dB are neglected, indicating that the straight line type
window is better. Further, it seems that the windows with smaller flat areas have
spectral distributions more concentrated at the center. However, if Fig. 7.1c and f
are compared, (f) is better. And among all, the spectrum of Fig. 7.1d with zero flat
area has the best performance in every respect.

The above discussion showed that the sine function type tapering with zero flat
area is the better time window. The function defined by Eqs. (7.12) and (7.13) with
s = 0.5 T is called Hanning weighting, and the time window with this weighting is
called the Hanning window. It is one of the most common windows in use in
frequency analysis applications. The properties of this window will be discussed
together with other windows in Sect. 7.4.

If there is an integer number of periods of a sinusoidal signal in the rectangular
window, there is one discrete line spectrum in each of the positive and negative
frequency region. This is only possible when the window is rectangular. However,
the spectrum of the rectangular window has the spreading as shown in Fig. 7.1a.
These two facts seem contradictory with each other.

The spectrum obtained by the DFT has values only at frequencies, which are
integer multiples of the inverse of the window time length (n/T). On the other
hand, the spectrum of the rectangular window is zero at these frequencies except
for n = 0. This has been shown in Figs. 4.6 and 4.7 in Chap. 4. More explanations
may be necessary to explain this matter.

The spectrum of the rectangular window, that is equal to 1 in the range
-T/2 \ t \ T/2 and equal to 0 outside, is given by Eq. (2.37) in Chap. 2, which
becomes as follows:

Wðf Þ ¼
Z þT=2

�T=2
expð�j2pftÞdt

¼ j
1

2pf
expð�j2pftÞjþT=2

�T=2¼ j
expð�jpfTÞ � expðjÞ

2pf

¼ T
sinðpfTÞ

pfT
:

ð7:14Þ

7.2 Spectra of Tapered Functions 157

http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_6
http://dx.doi.org/10.1007/978-1-4614-9260-3_4
http://dx.doi.org/10.1007/978-1-4614-9260-3_4
http://dx.doi.org/10.1007/978-1-4614-9260-3_2
http://dx.doi.org/10.1007/978-1-4614-9260-3_2


This is called the ‘‘sinc function’’, which was studied in Sect. 3.6 (see Eq. (3.11)
and Fig. 3.7). The sinc function takes the maximum value 1 at x ¼ pfT ¼ 0 and
decreases to zero amplitude as xj j gets larger and larger. The sinc function is equal
to zero (crosses the x-axis) when fT takes integer values (i.e., f ¼ k=T k 6¼ 0).
The rectangular window (left) and its spectrum (right) are shown in Fig. 7.2a.

The spectrum of a sine and cosine wave extracted by the rectangular window
are given by Eqs. (7.8) and (7.9), respectively. Figure 7.2b, c show results for the
sine waves.

Shown in Fig. 7.2b is the case when there are exactly 5 periods in the window
-T/2 B t B T/2. The spectrum is the sum of the two spectra of (a) that are cen-
tered at frequencies fT = +5 (sign reversed) and (b) -5. Since the spectrum of
DFT exists only at frequencies when fT takes integer values, all values except for
the frequencies at fT = +5 (sign reversed) and -5 are equal to zero.

On the other hand, if there are 5.5 periods in the window as shown in Fig. 7.2c,
the spectrum is the sum of the two spectra of the rectangular wave that are centered
at frequencies fT = +5.5 (sign reversed) and -5.5. The frequencies at which the
spectrum becomes zero are not integers. In this case, the spectrum of the win-
dowed wave is not zero at integer values of fT, as shown by the thick line in
Fig. 7.2c, and the line spectrum exhibits a wide distribution.

Fig. 7.2 Rectangular window and sine waves extracted by the rectangular window and their
spectra. a Rectangular window, b sine wave with 5 periods in the window, and c sine wave with
5.5 periods in the window. Animation available in supplementary files under filename E7-
02_RectWindSP.exe
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The spectrum shown in Fig. 6.14a in Chap. 6 is the same case (there are 5.5
periods in T) as this one. Since the spectrum is shown using a decibel scale, the
small values appear larger but actually they are of the same amplitude.

7.3 DFT of Short Waveforms

In the previous section, waveforms that exist in the whole range of the time
window was dealt with. In this section, waveforms with short duration or cases
when short portions of quickly changing waveforms must be analyzed will be
considered. This analysis has already been discussed in Chap. 6 (see Figs. 6.6, 6.7,
6.8 and 6.9), where zero amplitude data were added to increase the number of DFT
points. In these figures, the problem was the spreading of the spectrum. The
analysis in Sects. 7.1 and 7.2 suggests that tapering both ends of short waveforms
may reduce the spreading of the spectrum.

For this analysis use the weighting function (d) in Fig. 7.1, which looks the best
compared to other windows in the figure. This window is referred to as the
Hanning window, but naming and other details will be described in the next
section. The results are shown in Figs. 7.3 and 7.4.

From the discussion of Fig. 6.7 and considering that the effective length of the
window becomes approximately 1/2 of the rectangular window, a 64-point win-
dow is used. Figure 7.3a shows the windowed waveforms, (b) their power spectra
using a linear scale, and (c) the power spectra using a decibel scale (see footnote).

The spectrum in Fig. 7.3A illustrates the case when all four components have
integer frequencies (i.e., integer numbers of periods in the total DFT length
(=256)), while (B) illustrates the case where the 1st and the 3rd components have
non-integer frequencies. The difference between (A) and (B) is very small. Both of
them show similar spectra, with four main peaks, without regard to the number of
periods in the window length (or the frequencies of the components).

Since zero data are appended to the waveforms as shown in (a), the power
spectra shown in (b) and (c) are not exactly the ‘‘periodgrams’’ of the Hanning
windowed waveform.

The data given in Fig. 7.4 shows the effects when the Hanning window length is
varied from 32 to 96 points in 16 steps ((A): waveform, (B): power spectrum, (C):
power spectrum in dB). The Hanning window is applied to the extracted (short)
waveform.

In Fig. 7.4, when the window length is 32, only two rounded peaks are
observed. However, if the length is increased to 48, all four components of the
waveform become visible. As the length is further increased, the separation
between the components is also increased. Figure 7.3 suggests that similar results
may be obtained even if the frequencies are not integers. They are not shown here
but one can check by running the program attached to Fig. 7.4.
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Fig. 7.3 Results of 256 point DFTs of the waveforms shown in the tables at the top (same as
those used in Fig. 6.8). The 64 point Hanning window is applied to the waveforms and zeros are
added to the 192 remaining points. Animation available in supplementary files under filename
E7-03_L0SP.exe

Fig. 7.4 Results of 256 point DFTs of the waveforms shown in the table at the top (same as in
Fig. 6.9). The Hanning window length is varied from 32 to 96 in 16 steps. Animation available in
supplementary files under filename E7-04_L0SP.exe
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By comparing the above results with those from Figs. 6.6, 6.7, 6.8 and 6.9, one
can conclude that tapering is also effective when the DFT is applied to short
extracted waveforms with additions of zero data.

One may note that a longer window length will produce a better frequency
separation. The improvement of the spectrum can be checked by choosing dif-
ferent window lengths in the programs attached to Figs. 7.3 and 7.4.

It has been shown that the use of weighting functions such as the Hanning
window is recommended even when the DFT is applied to short extracted
waveforms: the windowed waveforms are then zero padded to improve the fre-
quency resolution. We should remember that the effective window length is
shortened by the windowing, therefore, the number of the periods in the window
should not be too small.

7.4 Various Time Windows

The terminology time window is in general used to describe the extraction of a
smaller portion from a longer waveform or sample sequence. However, at the same
time, some kind of weighting is being performed on the extracted waveform.
Depending on the weighting functions, various names are given to individual time
window functions.

The purpose of the time window function in DFT analysis is to obtain the
precise spectral information of the waveform while suppressing generation of
extraneous spectral components that do not exist in the original waveform.
However, what is actually obtained is the periodogram, which is not exactly the
same as the power spectrum of the original waveform (even after many averages
have been taken) as previously described in Chap. 6.1.

Usage of time windows affects the power of the waveform as well as its
spectrum. With these observations in mind, several well-known windows will be
examined.

7.4.1 Rectangular Window

Extracting a portion of a waveform with the uniform weighting is referred to as
‘‘sampling without weighting’’ or ‘‘applying a rectangular window.’’ As was
demonstrated in Chap. 6, if the number of periods of a harmonic in the window is
an integer, the spectrum of the waveform is obtained with no error. If not, the
spectrum demonstrates some spreading. However, since the rectangular window
does not distort waveforms, it is the most basic and important window.

The spectra of the rectangular window and a portion of a sine waveform
extracted with the rectangular window were shown in Fig. 7.2. It is possible to
quantitatively explain these spectra by substituting the spectrum of the rectangular
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window into W(f) in Eq. (7.8) for a sine wave, Eq. (7.9) for a cosine wave, and
Eq. (7.11) for a general waveform. In order to do this, the spectrum of the rect-
angular window must be formulated.

The rectangular window with length T is expressed by Eq. (7.15) for the
continuous system. Its spectrum is expressed by Eq. (7.16).

wrðtÞ ¼
1 ð�T=2� t\T=2Þ
0 (otherwise)

ffi

ð7:15Þ

Wrðf Þ ¼ T
sinðpfTÞ

pfT
ð7:16Þ

For the discrete system, the rectangular window with N sample length is defined
by:

wrðnÞ ¼ 1 ð0� n�N � 1Þ ð7:17Þ

Its N-point DFT is given by

WrðkÞ ¼
N ðk ¼ 0Þ
0 k 6¼ 0

ffi

ð7:18Þ

However, Eq. (7.18) is the spectrum of an infinitely long waveform that repeats
Eq. (7.17) infinite times. This waveform is continuous and equal to 1 everywhere,
representing a direct current. This is not the spectrum of the waveform w(t) given
by Eq. (7.15), which is 0 for �1\t\� T=2, 1 for �T=2� t� T=2 and 0 for
T=2\t\1.

In order to calculate the spectrum of an extracted waveform in an N-point time
window, the spectrum of the time window which is continuous both in the time
and the frequency domains is necessary. Equation (7.18), which is obtained as the
discrete spectrum of the time window which is periodic with the period of the
window length as the consequence of N-point DFT, has nothing to do with what is
needed. Therefore, the equations of discrete spectra of time windows will not be
shown.

Figure 7.5 shows the rectangular window and its continuous spectrum. This
spectrum has its maximum at a frequency 0 Hz, and smaller peaks at other fre-
quencies than zero Hz. This is a common trait for all time windows, i.e., the main
peak at the center (0 Hz) and smaller peaks around it (at frequencies other than
0 Hz).

The spectrum in Fig. 7.5 becomes zero (-? in dB) at the frequencies when fT
is a positive or negative integer. Since this is valid from fT = ±1, the rectangular
window has the narrowest main lobe compared to other types of windows. On the
other hand, the fact that the side lobes do not decrease much compared to the main
lobe is the disadvantage of this window in frequency analysis.
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On the other hand, if the number of periods in the time window is equal to an
integer, the correct spectrum is obtained in the discrete display, which is an
advantage of this window.

7.4.2 Hanning Window (Von Hann Window)

The Hanning window function was proposed by Julius Von Hann, but following the
naming of the Hamming window, it is called the ‘‘Hanning window.’’ The spectrum
of Hanning window in the continuous time and frequency domains, and the Han-
ning window function in the discrete time domain, are shown (see Figs. 6.15e and
7.1d).

wnðtÞ ¼ wrðtÞ 0:5þ 0:5 cos 2p
t

T

� �n o

¼ wrðtÞ cos2 pt

T

� �

ð7:19Þ

Wnðf Þ ¼ 0:5T
sin pfT

pfT
þ 0:25T

sin pðfT � 1Þ
pðfT � 1Þ þ

sin pðfT þ 1Þ
pðfT þ 1Þ

ffi �

ð7:20Þ

wnðnÞ ¼ 0:5� 0:5 cos
2pn

N

� �

¼ sin2 pn

N

� �

ð0� n�N � 1Þ ð7:21Þ

Fig. 7.5 Rectangular time window and its spectrum. Animation available in supplementary files
under filename E7-05_Rect_Wind_Spec.exe
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power reduction ¼ 4:26 dB ð7:22Þ

The Hanning window and its spectrum are shown in Fig. 7.6. Compared to
Fig. 7.5, the side lobes decrease more rapidly as their distance from the lobe center
increases. The width of the main lobe, which influences the frequency resolution,
is twice that of the rectangular window. The frequencies at which the spectrum
becomes zero are given by fT = ±m (integer, m C 2). This spectrum has the least
spreading compared to the other tapered windows shown thus far.

Time waveforms and spectra of sine waves extracted by use of the Hanning
window are shown in Fig. 7.7b, c, while Fig. 7.7a shows that of the Hanning
window itself. The spectra of (b) and (c) are superpositions of the spectra, that are
obtained by frequency shifting the spectrum of (a) by ±k (k = fT) and also by the
sign reverse of the spectrum for +k. If k is an integer (b), the spectrum has its
maximum at the frequency, and has two components of magnitude 0.5 at its both
sides(± (k ± 1)). At the worst case, k = 5.5, (c), there are two components with
almost the same magnitude at the two adjacent positive integer frequencies [k] and
[k] + 1, and at negative frequencies -[k] and -([k] + 1), where [k] is an integer
that does not exceed |k|. The spreading of the spectrum outside of these two
components is smaller compared to that of the rectangular window (see Fig. 7.2c).
This is an advantage in frequency analysis when the number of periods in the
window is not an integer (which is very common in practical applications).

Fig. 7.6 Hanning window with length T and its spectrum. Animation available in supplementary
files under filename E7-06_Hann_Wind_Spec.exe
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The Hanning window function in the continuous time domain (Eq. 7.19) has its
center at t = 0 so that it is convenient to see the properties of the window. If t = 0
is used as the starting point for the continuous window function, a phase shift due
to the time shift is introduced and the spectrum becomes more complex. The
discrete time domain has its starting point at n = 0 so that the formula of DFT can
be directly applied. If the range �N=2� n\N=2 is used for the discrete window
function, it does not match with the common range of the DFT, 0� n\N � 1.
This is the reason why different ranges are used for the continuous and discrete
systems even though there is a slight difference between the two formulae.

Waveforms of sine and cosine waves extracted by the Hanning window and
their spectra obtained by 64-point DFT are shown in Fig. 7.8. Figure 7.8A and B
are for the case with 8 and 8.5 periods in the window, respectively. Figure 7.8A
and B have purely imaginary and purely real spectra, respectively, because the
former is an odd function and the latter is an even function. Since the data point N-
n corresponds to -n, the oddness or evenness can be judged by the anti-symmetry
or symmetry of the wave with regard to the vertical dotted line at N/2.

In Fig. 7.8A with 8 periods in the window, there are spectral lines at fre-
quencies ±8, and smaller spectra on both sides of them. In Fig. 7.8B with 8.5
periods in the window, there are positive and negative spectral lines with the same
magnitudes at ±8 and ±9 and there are smaller spectral lines around them. The
difference of the signs of the components between Figs. 7.7 and 7.8 is due to the

Fig. 7.7 Waveforms and spectra of the Hanning window and those of extracted sine waveforms
by the Hanning window. Animation available in supplementary files under filename E7-
07_HanWindSP.exe
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phase shift introduced by the difference in the starting time. Other than that, the
results of the two figures are basically the same.

A tapered window such as the Hanning window loses the total power in the
window because of the reduction of the amplitude. The power ratio, expressed as
PRN, between the waves extracted by the Hanning and the rectangular windows is
given by:

PRN ¼
1
T

Z T=2

�T=2
0:5þ 0:5 cos 2p

t

T

� �h i2
dt ¼ 0:375 ð7:23Þ

Expressing in dB, this is equal to -4.26 dB (= 10 log(0.375), see Eq. (7.22)). In
the introduction of following windows, the power reductions obtained by the same
calculation will be shown after the time windows and their spectra.

When applying the Hanning window, there will be 3 frequency components
around each signal component, even under the best sampling conditions. It can be
said that the precise power spectrum cannot be obtained by the DFT as described
in Chap. 6.1.

Fig. 7.8 Waveforms and spectra of sine waves obtained by the 64-point Hanning window. (A): 8
periods in the window, (B): 8.5 periods in the window. Animation available in supplementary
files under filename E7-08_Haning.exe
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7.4.3 Hamming Window

The Hanning window has several good features but one disadvantage is that the
side lobes nearest to the main lobe are relatively large. If there are two components
close to each other and one of them is less than -30 dB compared to the other, the
smaller component may be buried under the side lobes of the larger component. Is
there any possibility to further reduce the nearest side lobe?

If the spectra of the rectangular and Hanning windows are compared with this
in mind, it is observed that the signs of the side lobes for |fT| = 2 and 3 are
negative, whereas, those of the rectangular window are positive. Therefore, if the
magnitudes of two windows are adjusted and combined so that those side lobes
will cancel each other, the combined window will have lower side lobes.

The window shape and the spectrum of the Hamming window constructed from
this concept are shown in Fig. 7.9. Since the rectangular window is added to the
Hanning window, the side lobes in the region 4 B |fT| do not decrease much below
1/100 of the main lobe (-40 dB).

The window function wmðtÞ, its spectrum Wmðf Þ, the window function in the
discrete system wmðnÞ and the corresponding power reduction are shown below.

wmðtÞ ¼ wrðtÞ Rþ ð1� RÞ cos 2p
t

T

� �n o

ð7:24Þ

Wmðf Þ ¼ RT
sin pfT

pfT
þ 1� R

2
T

sin pðfT � 1Þ
pðfT � 1Þ þ

sin pðfT þ 1Þ
pðfT þ 1Þ

ffi �

ð7:25Þ

wmðnÞ ¼ R� ð1� RÞ cos
2pn

N

� �

¼ 2R� 1þ 2ð1� RÞ sin2 pn

N

� �

ðR ¼ 0:5435; 0� n�N � 1Þ
ð7:26Þ

power reduction ¼ �4:0 dB ð7:27Þ

As shown in Fig. 7.9, the main lobe has almost the same width as that of the
Hanning window, but the nearest side lobes are lower than -40 dB. However, a
large portion of the side lobes stays above -50 dB. Therefore, the analysis of
components down to -40 dB is possible but not below -50 dB. The Hamming
window is often used in cases where the components below -40 dB can be
neglected and when the separation of components is important. Since it is rare that
analog equipment in speech transmission would have a dynamic range of more
than 40 dB, this window is commonly used in the processing of speech.

The spreading of the spectrum becomes greatest when the number of periods of
the waveform in the window is equal to an integer n + 0.5, and if not, it becomes
smaller than expected from Fig. 7.9. Figure 7.10A shows the largest spectrum
spreading with the number of the periods equal to 8.5 (amplitude of the wave is 1).
Figure 7.10B demonstrates the case when three more components are added. The
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amplitudes and number of periods are 0.5, 0.1, and 0.01, and 4, 13.5 and 18.8,
respectively. In this case even the fourth component with amplitude 1/100
(-40 dB) is detected. Below this level, it becomes difficult or impossible to detect
using the Hamming window.

The programs attached to the figures enable the reader to check the spectrum
changes of the sine waves extracted by different types of windows.

7.4.4 Blackman-Harris Window

For detection of even smaller components than the Hamming window can do, it
may be possible by lowering the slope of the window on the time axis. At the same
time, action must be taken to lower the side lobes near the main lobe. The
‘‘Blackman-Harris window’’ was invented with this intention; this window is
shown in Fig. 7.11.

Fig. 7.9 Hamming window with length T and its spectrum. Animation available in supplemen-
tary files under filename E7-09_Hamm_Wind_Spec.exe
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The window function wBðtÞ, its spectrumWBðf Þ, the window function in the
discrete systemwBðnÞ and the power reduction are shown below.

wBðtÞ ¼ wrðtÞ B1 þ B2 cos 2p
t

T

� �

þ B3 cos 4p
t

T

� �n o

ð7:28Þ

WBðf Þ ¼ B1T
sin pfT

pfT
þ B2

2
T

sin pðfT � 1Þ
pðfT � 1Þ þ

sin pðfT þ 1Þ
pðfT þ 1Þ

ffi �

þ B3

2
T

sin pðfT � 2Þ
pðfT � 2Þ þ

sin pðfT þ 2Þ
pðfT þ 2Þ

ffi � ð7:29Þ

wBðnÞ ¼ B1 � B2 cos
2pn

N

� �

þ B3 cos
4pn

N

� �

ð0� n�N � 1Þ

B1 ¼ 0:4232; B2 ¼ 0:4975; B3 ¼ 0:0792

ð7:30Þ

power reduction ¼ 5:14 dB ð7:31Þ

Other windows, with different coefficients than those of the Blackman-Harris
window, can further reduce the level of the side lobes. These may be preferable in
some applications of frequency analysis. However, the difficulties described in the
next paragraph must be considered.

The levels of the side lobes are much lower than those of the previously
introduced windows, but the width of the main lobe is three times that of the

Fig. 7.10 Examples of frequency analysis by the Hamming window. Animation available in
supplementary files under filename E7-10_Hamming.exe
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rectangular window. It can be generally said that lowering the levels of the side
lobes results in increased width of the main lobe. Widening the main lobe and
reducing the levels of side lobes are caused by smoothing the rise and fall of the
start and end of the window, and narrowing the center part that has a larger weight.
The power reduction also becomes larger. Of course, this type of window may not
be appropriate when fine frequency resolution is required.

7.4.5 Half-Sine Window and Riesz Window

Each of the previous three types of windows has a relatively narrow effective
window length because the center part of the window is narrowed in order to
smoothly connect to zero at both ends of the window. This means that a narrower
portion of the window is observed even if the sampling is made for a longer
duration.

The half-sine window is used with the opposite idea: to use the wider range of
the window. The feature of this window is that the width of the main lobe is
relatively narrow (approximately 3/4 of the Hanning window, or 1.5 of the rect-
angular window) and the levels of the side lobes are not so high. They quickly
reduce as the distance from the main lobe increases (Fig. 7.12).

Fig. 7.11 Window shape and spectra of the Blackman-Harris window. Animation available in
supplementary files under filename E7-11_BlkHarris_Wind_Spec.exe
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The half-sine window function wsðtÞ, its spectrum Wsðf Þ, the window function
in the discrete system wsðnÞ and the power reduction are shown below.

wSðtÞ ¼ wrðtÞ cos 2p
t

T

� �

ð7:32Þ

WSðf Þ ¼ 0:5T
sin pð0:5� fTÞ
pð0:5� fTÞ þ

sin pð0:5þ fTÞ
pð0:5þ fTÞ

ffi �

ð7:33Þ

wSðnÞ ¼ cos p
n

N
� 1

2

� �

¼ sin
pn

N
ð0� n�N � 1Þ ð7:34Þ

power reduction ¼ 3 dB ð7:35Þ

The spectrum of the half-sine window also has zeros at 1/T intervals. A major
difference is that the frequencies of the zeros are at ±1.5, ±2.5, ±3.5… instead of
the integer frequencies of the rectangular and Hanning windows. The spectrum of
the half-sine window takes maxima at integer frequencies. For this reason, the
spectrum of an integer frequency component is widely spread. If the frequency is
given by f = n + 0.5 (n: integer), only two line spectra appear at f = n ± 0.5
(four if the negative frequency components are counted). This result is the reverse
of those achieved with the Hanning and Hamming windows.

Fig. 7.12 Half-sine window function with length T and its spectrum. Animation available in
supplementary files under filename E7-12_HalfSine_Wind_Spec.exe
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Figure 7.13 shows the extracted waveforms and their spectra for the cases with
8 and 8.5 periods in the window. As Fig. 7.13A shows, if the frequency is 8, the
spectrum is widely spread. On the other hand, if the frequency is given by
f = 8 + 0.5 (n : integer) as shown in Fig. 7.13B, the center of the main lobe
coincides with the discrete frequency, and there are two line spectra in each of the
positive and negative frequency regions.

It is interesting to see that the outcomes (A) and (B) of Fig. 7.8 are reversed in
Fig. 7.13. It is possible to envision this without looking at the spectrum of the
window but by considering that a beat is produced when two components with the
same amplitudes and with slightly different frequencies are superimposed. The one
period of the beat is equal to the length of the time window T.

Most of the windows now in use are expressed by sine functions. But, almost
the same window as the half-sine window is expressed without using the sine
function, and is given by:

wzðtÞ ¼ wrðtÞ 1� 2t

T

� �2
( )

ð7:36Þ

This window, shown in Fig. 7.14, is called Riesz window. The shape of this
function is similar to that of the half-sine window and, of course, their spectra are
also similar even though the equations look different. A difference is that the

Fig. 7.13 Waveforms and their spectra extracted by the half-sine window. Animation available
in supplementary files under filename E7-13_HalfSine.exe
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power reduction is approximately 0.27 dB less. Also since the frequencies of zero
spectrum are not equal to n + 0.5 (n: integer), the spectrum for a waveform with
(n + 0.5) periods in the window exhibits more spreading than the two line spectra
of the half-sine window (see Fig. 7.13).

The spectrum of the Riesz window defined by Eq. (7.36) in the continuous
domain, its window function in the discrete domain, and power reduction are
shown below.

Wzðf Þ ¼ 2T
sin pfT � pfT cos pfT

p3f 3T3
ð7:37Þ

wzðnÞ ¼ 1� 2
N

n� N

2

� �2

ð7:38Þ

power reduction ¼ �2:73 dB ð7:39Þ

7.4.6 Flat-Top Window

None of windows have a flat region at the top of the main lobe of the spectrum.
Therefore, the magnitudes of components analyzed by these windows are

Fig. 7.14 Riesz window function with length T and its spectrum Animation available in
supplementary files under filename E7-14_Riesz_Wind_Spec.exe
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dependent on the number of periods included in the window length. One window,
called the flat-top window, was invented with the idea to avoid this problem where
the window shape is folded at both ends. To accomplish such a shape, the sinc
function (the spectrum of rectangular wave) is multiplied by a Hamming or
Hanning window.

The flat-top window is designed in the following manner:

(1) In order to produce a rectangular spectrum with height 1/fb, and width ±fb/2,
its time window should be its inverse Fourier transform sinðpfbtÞ=ðpfbtÞ.

(2) Since sinðpfbtÞ=ðpfbtÞ has unlimited time length, it will be limited within ±2/
fb.(the total window length is 4/fb). This window will be positive within the
region�1=fb� t� 1=fband negative in the region �2=fb� t� � 1=fb and
1=fb� t� 2=fb.

(3) The Hamming window is then applied to gradually reduce the time window
to zero at t ¼ �2=fbin order to avoid the spreading of the spectrum.

The window function wFðtÞ and its spectrum WFðf Þin the continuous domain
and the window function wFðnÞ in the discrete domain and the power reduction are
given below.

wFðtÞ ¼ wrðtÞ 0:54þ 0:46 cos 2p
t

T

� �n o sinð4pt=TÞ
4pt=T

ð7:40Þ

WFðf Þ ¼ Wmðf Þ �W2=Tðf Þ ¼
Z 1

�1
WmðgÞW2=Tðf � gÞdg ð7:41Þ

where

W2=Tðf Þ ¼
1 �2=T � f � 2=T

0 f \� 2=T ; 2=T\f

ffi

wFðnÞ ¼ 0:54� 0:45 cos
2pn

N

� �ffi �

sin 2pð1� 2n=NÞ
2pð1� 2n=NÞ

ð7:42Þ

power reduction ¼ �7:0 dB ð7:43Þ

This window takes negative values at the 1/4 lengths close to the ends as seen in
Fig. 7.15. The effective length is the shortest among the windows that have been
introduced, i.e., the power reduction of this window is the largest. In order to
completely separate two line spectra, the window length must be at least 5 times
the inverse of the frequency difference. Even with this disadvantage, this window
is useful when obtaining accurate magnitudes of line spectra.

The dependence of magnitude of a sine wave on the number of periods in the
time window, using the rectangular, Hamming, and flat-top windows, is illustrated
in Fig. 7.16. The number of periods is between 5 and 6. The left-hand graph shows
the ratios of the magnitude obtained by the three windows, relative to the true
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Fig. 7.15 Flat-top window with length T and its spectrum. Animation available in supplemen-
tary files under filename E7-15_Flat-Top_Wind_Spec.exe

Fig. 7.16 Dependence of magnitudes of sine waves obtained by the FFT on the number of
periods in the rectangular, Hamming, and flat-top windows. Animation available in supplemen-
tary files under filename E7-16_FTW.exe
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magnitude, and the right-hand graph shows them in decibel scale (0 dB is the
maximum magnitude obtained by each window). For all three windows, the results
are almost constant even when the number of periods in the window is between 10
and 11.

The left-hand graph shows the variation of the estimated magnitude. The
magnitude of the original waveform is four times the magnitude obtained using the
flat-top window. The reduction of power is significant but the dependence on
the number of periods in the window is very small. The maximum reductions for
the rectangular, Hamming, and flat-top windows are -3.9, -1.4, and -0.1 dB,
respectively.

7.4.7 Bartlett Window

A linearly tapered window that has no flat region was introduced in Chap. 6. This
window is called the ‘‘Bartlett window’’ or ‘‘triangular window.’’ From the results
given in Fig. 6.15c this window is seen to have a better characteristic than expected
from its simple shape. The spectrum of this window is shown in Fig. 7.1c, but since
it is convenient to compare the Bartlett window with other windows, equations, and
figures for this window will be shown next.

The Bartlett window function, which has the shape of an isosceles triangle,
linearly increases from 0 to 1 in the region -T/2 B t B 0 and linearly decreases
from 1 to 0 in the region 0 B t B T/2. The window function wDðtÞ, its spectrum
WDðf Þin the continuous domain, window function wDðnÞ in the discrete domain,
and the power reduction are given as follows.

wDðtÞ ¼
0 jtj[ T=2
1þ 2t=T �T=2� t� 0
1� 2t=T 0� t� T=2

8

<

:

ð7:44Þ

WDðf Þ ¼
T

4
sin2ðpfT=2Þ
ðpfT=2Þ2

ð7:45Þ

wDðnÞ ¼
2n=N 0� n\N=2

2ð1� n=NÞ N=2� n\N

ffi

ð7:46Þ

power reduction ¼ �4:77 dB ð7:47Þ

The shape of this window and its spectrum are shown in Fig. 7.17. One
apparent difference is that the width of the side lobes is twice the width of the side
lobes of the other windows. The width of the main lobe is about the same with
those of the half-sine and Hanning windows. Compared with the half-sine window,
the first side lobe is slightly smaller but the reduction of the levels of the side lobes
is significantly slower. This window is used in frequency analysis on very few
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occasions, but its weighting is automatically introduced when an auto-correlation
function of a finite sequence is calculated.

7.4.8 Gaussian Window

The Gaussian function (normal probability density function) has a special feature
that its Fourier transform is also a Gaussian function. This property is explained in
Appendix 7B. In this section this function is introduced as a window function.

The normal probability density function is given by:

pðtÞ ¼ 1
ffiffiffiffiffiffi

2p
p

r
exp � t2

2r2

� �

ð7:48Þ

where r is the standard deviation. Its Fourier transform is given by:

PðjxÞ ¼ exp � r2

2
x2

� �

ð7:49Þ

If this function is used as a time window, the functions in the time and the
frequency domains have the same forms and they have a convenient duality.
However, the Fourier transform pair shown above is valid only in the infinite time

Fig. 7.17 Bartlett window with length T and its spectrum. Animation available in supplementary
files under filename E7-17_Bartlett_Wind_Spec.exe
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and frequency domains. Since the time window for the DFT must be finite,
Eq. (7.48) must be modified in order to be used as a window.

The Gaussian window function is determined by letting T/2 (T : window length)
be equal to integer m times r. Then, the window function and the spectrum are
given as follows.

wGðtÞ ¼ wrðtÞ
2m
ffiffiffiffiffiffi

2p
p

T
exp � 2m2

T2
t2

� �

ð7:50Þ

WGð2pf Þ ¼ exp � p2T2

2m2
f 2

� �

ð7:51Þ

wGðnÞ ¼ exp � 2m2

N2
n� N

2

� �2
( )

ð0� n�N � 1Þ ð7:52Þ

The power reduction of the Gaussian window is a function of m, as shown by
Fig. 7.18. The range of the horizontal axis, m (= T/r), is from 1 to 3 and the
vertical axis is the power reduction in dB.

The minimum and maximum power reductions of the previously introduced
windows are 2.7 dB (Riesz window) and 7 dB (flat-top window), respectively.
These are within the range of m from 1 to 3. The power reductions of the other
windows are shown in the graph for comparison. For example, the power reduction
of the Hanning window corresponds to m = 1.95 for the Gaussian window.

The spectrum of the Gaussian window is of course affected by m. The window
function and its spectrum shown in Fig. 7.19 is for m = 1.95. This spectrum has a
narrower main lobe than that of the Hanning window, which is a good feature for

Fig. 7.18 Dependence of the power reduction on the parameter m of the Gaussian window and
relation to power reductions of other windows

178 7 Time Window



frequency analysis. By running the program attached to this figure, one can check
for other values of m.

It can be seen that the spectrum is also Gaussian by overlapping the linear
spectrum on the window function. The window shape and the spectrum shape
nicely overlap with each other, especially if m = 2.5 is chosen.

7.5 Comparison of Windows by the Results
of Frequency Analysis

Properties of various windows have been described in the previous sections. Each
window has advantages and disadvantages. It may not be easy to choose one of
them among so many windows. As one guide for the selection of windows, the
results of frequency analysis of a synthesized waveform with many sine compo-
nents will be shown.

To simulate a noisy signal with many line spectra, a signal with 30 sine
components of various magnitudes are synthesized and analyzed using the rect-
angular, Hanning, Hamming, Blackman-Harris, half-sine, Riesz, flat-top, and
Bartlett windows. Results of the analysis are shown in Fig. 7.20. The dots in the
figure identify computed frequencies and magnitudes of the 30 components. The

Fig. 7.19 Gaussian window with length T and its spectrum. Animation available in
supplementary files under filename E7-19_Gaussian_Wind_Spec.exe

7.4 Various Time Windows 179



Fig. 7.20 Comparison of results of frequency analysis of a multi-component waveform by the
use of eight windows. The dots show the frequencies and magnitudes of all components.
Animation available in supplementary files under filename E7-20_AnaCompo.exe
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purpose of the frequency analysis is to determine exact positions (frequencies and
magnitudes) of these dots in each chart.

Figure 7.20a shows that if the FFT is directly applied to the sample sequence,
that is if the rectangular window is used, the chance of missing components more
than 20 dB (1/10) lower than the maximum component is very large.

In general, there are few occasions when a component which is smaller than
1/100 (-40 dB) of the maximum component must be detected. All windows except
for the rectangular (a) and the flat-top (g) windows pass this criterion. If low levels
in the regions without frequency components and detections of small components
adjacent to large components are important, the Hamming window (c) should be a
good choice. Compared with the Hanning window (b), the former seems to perform
slightly better than the latter if levels above -40 dB are considered.

If the lowest level for the detection of components is lowered to -50 dB, the
Hamming window (c) starts to have difficulty. If further lowered to -60 dB, the
Hanning window (b) does better. In this case, the Blackman-Harris window (d) may
be a better choice. As Fig. 7.11 shows, the Blackman-Harris window has very low
side lobes (below -70 dB). But it is difficult to find an advantage of the Blackman-
Harris window (d) over the Hanning window (b) when the two charts are compared.

Furthermore, in practical applications, due to linearity and noise problems, it is
very difficult to detect components lower than -60 dB from the maximum level.
In such a case, a different approach should be taken.

From the above discussions, it is considered that the Hanning window is a good
choice for most practical applications. However, since the Hanning window
sometimes gives incorrect results in frequency response function estimation, the
Hanning window is not always the better choice.

7.6 Exercise

1. Derive Eq. (7.8) in the text.
2. Explain why a window such as the Hanning window should be used in DFT

analysis even when zero data are added to a short waveform.
3. In the analysis of a short waveform, there should be at least three periods of a

wave in the time window. Explain why.
4. If there is an integer number of periods of a wave in the window, there is one

line spectrum each in the positive and negative frequency regions, but if there
are non-integer periods of the wave, the spectrum has a spreading. Explain
why.

5. If there is an integer number of periods of a wave in the Hanning or Hamming
windows, there are three line spectra each in the positive and negative fre-
quency regions. Explain why.

6. If there is an integer number of periods of a wave in the Blackman-Harris
window, how many line spectra are in the positive and negative frequency
regions?
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Appendix

Appendix 2A Fourier Transform of the Step Function

The unit step function equals one-half of the summation of the dc component with
magnitude 1 and the sign function.

uðtÞ ¼ 1
2
½1þ sgnðtÞ� ð2A:1Þ

The Fourier transform of the sign function is given as the extreme case of the integral
of the exponential functions expðr tÞ ðt\0Þ and expð�r tÞ ðt [ 0Þ with r! 0
Z þ1

�1
sgnðtÞ expð�j2pftÞdt

¼
Z 0

�1
expðrtÞ expð�j2pftÞdt þ

Z þ1

0
expð�rtÞ expð�j2pftÞdt

¼ 1
ðr� j2pf Þ expfðr� j2pf Þtg

ffi

ffi

ffi

ffi

0

�1
þ 1
ð�r� j2pf Þ expfð�r� j2pf Þtg

ffi

ffi

ffi

ffi

þ1

0

¼ 1
ðr� j2pf Þ �

1
ðrþ j2pf Þ ¼

r� j2pf � r� j2pf

fr2 þ ð2pf Þ2g
¼ �j4pf

r2 þ ð2pf Þ2
:

ð2A:2Þ

By letting r! 0, Eq. (2A.2) becomes
Z þ1

�1
sgnðtÞ expð�j2pftÞdt ¼ 1

jpf
: ð2A:3Þ

The Fourier transform of 1 is give by the delta function,
Z þ1

�1
1 � expð�j2pftÞdt ¼ dðf Þ: ð2A:4Þ

Therefore, the Fourier transform of the unit step function Eq. (2A.1) is given by

Uðf Þ ¼ 1
2

dðf Þ þ 1
j2pf

: ð2A:5Þ

K. Kido, Digital Fourier Analysis: Fundamentals,
Undergraduate Lecture Notes in Physics, DOI: 10.1007/978-1-4614-9260-3,
� Springer Science+Business Media New York 2015
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Appendix 2B Fourier Transforms of Sine Functions

The Fourier transform of the sine function sinð2pf0tÞ, which is periodic from -?
to +?, is considered nonexistent. However, it can be calculated by a similar
approach as in 2A. A Fourier transform of a sine function with a finite duration
from t = -T/2 to t = T/2 is calculated first and then T is made infinite.

Ffsinð2pf0tÞg ¼
Z T=2

�T=2
sinð2pf0tÞ expð�j2pftÞdt

¼ 1
j2

Z T=2

�T=2
fexpðj2pf0tÞ � expð�j2pf0tÞg expð�j2pftÞdt

¼ 1
j2

Z T=2

�T=2
expfj2pðf0 � f Þtgdt � 1

j2

Z T=2

�T=2
expf�j2pðf0 þ f Þtgdt

¼ 1
j2

expfj2pðf0 � f ÞtgjT=2
�T=2

j2pðf0 � f Þ � 1
j2

expf�j2pðf0 þ f ÞtgjT=2
�T=2

�j2pðf0 þ f Þ

¼ sinf2pðf0 � f ÞT=2g
j2pðf0 � f Þ � sinf2pðf0 þ f ÞT=2g

j2pðf0 þ f Þ

¼ j
T

2
sinf2pðf0 þ f ÞT=2g

2pðf0 þ f ÞT=2
� sinf2pðf0 � f ÞT=2g

2pðf0 � f ÞT=2

� �

:

ð2B:1Þ

This spectrum is concentrated at two locations around f = +f0 and -f0 and
equal to 0 at f = f0 ± n/T and -f0 ± n/T. The amplitudes gradually reduce to zero
as the frequency moves away from +f0 or -f0. The peak value is approximately
equal to jT/2 at f = -f0 and -jT/2 at f = +f0. The reason why ‘‘approximately’’ is
used is that the term which has a maximum at f = -f0 (the first term in Eq. 2B.1)
does not necessarily equal to zero at f = f0. This is true also for the second term. If
the number of the periods in T is an integer, the values are exactly equal to jT/2 at
f = -f0 and -jT/2 at f = +f0.

These results are for the case with finite duration. If T is made infinite, the
spectrum exists only at f = ±f0 and the magnitude T/2 becomes infinite. It can be
understood that the energy of the wave becomes infinite as T ? ?, but the width
of the peak 2/T becomes infinitely small, and thus the product of the height and the
width does not change and is equal to 1.

Then, we can derive the Fourier transforms of the infinitely long sine and cosine
waves as follows (Fig. 2B).

Ffsinð2pf0tÞg ¼ j
1
2
½dðf þ f0Þ � dðf � f0Þ�: ð2B:2Þ

Ffcosð2pf0tÞg ¼ 1
2
½dðf þ f0Þ þ dðf � f0Þ�: ð2B:3Þ
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Appendix 2C Fourier and Inverse Fourier Transforms

The Fourier and inverse Fourier transforms are defined by Eqs. (2.37) and (2.38),
respectively, that are almost identical with each other. Let us calculate the Fourier
(not ‘‘inverse’’) transform x0(t) of the function X(f) which is given by

x0ðtÞ ¼
Z þ1

�1
Xðf Þ expð�j2ptf Þdf ð2C:1Þ

where the minus sign in the exponential function is used. By replacing t by -t0, it
is rewritten as

x0ð�t0Þ ¼
Z þ1

�1
Xðf Þ expðj2pt0f Þdf

¼ xðt0Þ:
ð2C:2Þ

Since xðt0Þ is the same with xðtÞ, then

x0ð�t0Þ ¼ xðtÞ
or

x0ðtÞ ¼ xð�tÞ
ð2C:3Þ

Fig. 2B Relation between
the length of the sine function
and its spectrum
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is obtained.
Eq. (2C.3) shows that, if the Fourier transform of x(t) is known as X(f) the

Fourier transform of X(f) is x(-t).

Appendix 3A Calculation of Fourier Transform of a Spectrum

The spectrum X(f) of a function x(t) that is zero outside of the region -T/2 B

t BT/2 is give by

Xðf Þ ¼
Z þT=2

�T=2
xðtÞ expð�j2pftÞdt: ð3A:1Þ

Let us obtain the Fourier transform of X(f) for the case when it is zero outside of
the region -Fx B t BFx.

~xðtÞ ¼
Z þFm

�Fm

Xðf Þ expð�j2pftÞdf : ð3A:2Þ

Replacing X(f) in Eq. (3A.2) by Eq. (3A.2), we have

~xðtÞ ¼
Z þFm

�Fm

Z þT=2

�T=2
xðsÞ expð�j2pf sÞds expð�j2pftÞdf

¼
Z þT=2

�T=2
xðsÞ½

Z þFm

�Fm

expf�j2pf ðsþ tÞgdf �ds

where the order of integrals has been changed in the last equation. Since the
integral with respect to f in the last equation is equal to 2Fx if s + t = 0 and equal
to zero otherwise, the last equation can be rewritten as

~xðtÞ ¼ 2Fx

Z þT=2

�T=2
xð�tÞds ¼ 2FxT � xð�tÞ ð3A:3Þ

The inverse Fourier transform gives a time reversed signal instead of the
original signal. If expðj2pftÞ is used in Eq. (3A.2), this time reversal can be
avoided. As far as the Fourier transform pair is defined by Eqs. (2.36) and (2.37),
expð�j2pftÞ and expðj2pftÞ must be used in the forward and inverse Fourier
transforms, respectively.

Appendix 4A Parseval’s Formula

The conservation of energy between the time domain signal and the frequency
domain spectrum is kept as shown by the Parseval’s formula (see Eq. 2.43). This is
also valid in the DFT. The energies in the time domain and the frequency domain
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are calculated using the definition equations of DFT given by Eqs. (4.7) and (4.8).
The energy in the time domain is given by Eq. (4.7):

X

N�1

n¼0

xnj j2 ¼
X

N�1

n¼0

xnx�n ¼
X

N�1

n¼0

xn
1
N

X

N�1

k¼0

X�k expð�j2pknÞ:

By changing the order of the multiplication and summations, the above
equation becomes

X

N�1

n¼0

xnj j2 ¼
1
N

X

N�1

k¼0

X�k
X

N�1

n¼0

xn expð�j2pknÞ ¼ 1
N

X

N�1

k¼0

X�k Xk ¼
1
N

X

N�1

k¼0

Xkj j2:

Therefore,

X

N�1

n¼0

xnj j2 ¼
1
N

X

N�1

k¼0

Xkj j2: ð4A:1ÞÞ

This is not equivalent to the Parseval’s formula given by Eq (2.43). There is the
term 1/N in the right side of Eq. (2.43). This indicates that the energy in the
frequency domain is N times of the energy in the time domain. Obviously, this is
not correct. This was introduced because we used the transform pair Eqs. (4.7) and
(4.8) which does not have the symmetry. If the transform pair Eqs. (4.9) and (4.10)
is used, this problem is removed. The derivation is left as your exercise (Prob-
lem 4.12).

Appendix 4B Increasing the Sampling Frequency of DFT
by Integer Multiples

In the N-point DFT, the first and the last N/2 point data in the frequency domain
are for the positive and negative frequencies. If another N -point zero data are
added in the middle, and if 2N-point IDFT is conducted, a time sequence with
twice of the original sampling frequency is obtained as can be seen in Fig. 4B.
Figure 4Ba is the original time sequence. Figure 4Bb shows the N-point data in the
frequency domain. Figure 4Bc shows spectrum data with after the addition of zero
data. The original data in the two regions in 0 B k B N/2 and in N/2 B k \ N are
moved to the two regions 0 B k0 B N/2, and 3N/2 B k0\ 2N, respectively, where
k0 is the frequency in the 2N-point DFT. The remaining region from N/4 to 3N/4
are filled with zero data. The IDFT of Fig. 4Bc gives the 2N-point time domain
sample sequence, Fig. 4Bd.

The procedure explained above is the case when the sampling frequency is
doubled. You can think of other cases to increase the sampling frequency by
adding even number of zeros in the middle.
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Appendix 6A Decibel

The symbol ‘‘dB’’ is an abbreviation for ‘‘decibel’’ or ‘‘deci-Bell,’’ which is used
as a unit of representing a ratio of two powers (or energies). The decibel Y of a
power ratio E/E0 is calculated by:

Y ¼ 10 log10 E=E0ð Þ: ð6A:1Þ

Since the power is proportional to squares of magnitudes of physical quantities
such as voltage, current, force, velocity, sound power, etc., Eq. (6A.1) is rewritten
as

Y ¼ 10 log x2=x2
0

� �

¼ 20 log x=x0ð Þ ð6A:2Þ

where x and x0 represent arbitrary and reference magnitudes of voltage, current,
force, velocity, sound power, etc., respectively.

If a voltage is 10 times of a reference voltage, the ratio in dB is 20. If the power
ratio is 10, then it is 10 in dB. The relation of the power ratio and dB is shown in
Fig. 6A.

‘‘Bell’’ is after Abraham Bell, which is defined by Y ðin Bell) ¼ log10 E=E0ð Þ. If
the voltage ratio is 2, it is 0.6 Bell and if the ratio is 10, it is 2 Bell. Since these
values are too small, ‘‘deci-bell’’ is used to enlarge the scale by 10.

Appendix 7A Fourier Transform of a Product of Two Functions

Let us obtain the formula for a Fourier transform Y(f) of a product of two
functions, x(t) and w(t).

Fig. 4B Procedure to obtain a 2N-point time sequence from the N-point time sequence by
doubling the sampling frequency
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Yðf Þ ¼
Z þ1

�1
xðtÞwðtÞ expð�j2pftÞdt: ð7A:1Þ

By substituting x(t) by Eq. (7.2) (f is replaced by /), we have

Yðf Þ ¼
Z þ1

�1

Z þ1

�1
Xð/Þ expðj2p/tÞd/ � wðtÞ expð�j2pftÞdt

¼
Z þ1

�1
Xð/Þ

Z þ1

�1
wðtÞ expf�j2pðf � /Þtgdt�d/

¼
Z þ1

�1
Xð/ÞWðf � /Þd/:

ð7A:2Þ

By substituting w(t) by Eq. (7.4) (f is replaced by u), we have

Yðf Þ ¼
Z þ1

�1

Z þ1

�1
Wð/Þ expðj2p/tÞd/ � xðtÞ expð�j2pftÞdt

¼
Z þ1

�1
Wð/Þ

Z þ1

�1
xðtÞ expf�j2pðf � /Þtgdt � d/

¼
Z þ1

�1
Wð/ÞXðf � /Þd/:

ð7A:3Þ

Fig. 6A Relation between power ratios and decibels. Since the power and energies are pro-
portional to voltage, current, force, velocity, sound pressure, etc., the horizontal axis is shown
with two scales
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Equations (7A.2) and (7A.3) show that the Fourier transform of a product of
two functions is given by the convolution of the two functions in the frequency
domain (explained in Chap. 1 in Volume II of this book).

Appendix 7B Fourier Transform of the Normal (Gaussian)
Probability Density Function

The normal (Gaussian) probability density function is given by Eq. (4.48), which
is shown here again.

pðtÞ ¼ 1
ffiffiffiffiffiffi

2p
p

r
exp � t2

2r2

� 	

ð7B:1Þ

where r is the standard deviation. It is known that the integral of this equation with
respect to t from -? to +? is equal to 1.

Z þ1

�1
pðtÞdt ¼ 1

ffiffiffi

p
p C

1
2

� 	

¼ 1 ð7B:2Þ

where C xð Þ is the Gamma function. The Fourier transform of this equation is
calculated as follows:

PðjxÞ ¼ 1
ffiffiffiffiffiffi

2p
p

r

Z þ1

�1
exp � t2

2r2

� 	

expð�jxtÞdt

¼ 1
ffiffiffiffiffiffi

2p
p

r
exp � r2x2

2

� 	

Z þ1

�1
exp � t

ffiffiffi

2
p

r
þ j

rx
ffiffiffi

2
p

� 	2
( )

dt:

ð7B:3Þ

By replacing t by z ¼ t þ jr2x (complex variable), the integral with respect to
t from -? to +? becomes a line integral on the z-plane from �1þ jr2x to
þ1þ jr2x, a straight line parallel to the real axis. However, the integrand
exp �ð1=2r2Þz2

 �

is regular between the real axis and the line of integral, the
integral does not change even if the line of integral is shifted to the real axis.
Therefore, Eq. (7B.3) becomes

PðjxÞ ¼ 1
ffiffiffiffiffiffi

2p
p

r
exp � r2x2

2

� 	

Z þ1

�1
exp � z2

2r2

� 	

dz: ð7B:4Þ

Since the integrand is an even function of z, the range of integration can be
changed from 0 to ?. Furthermore, replacing z by n (n ¼ z2,
dz ¼ dn=2z ¼ dn=2

ffiffiffi

n
p

), the integral becomes

2
Z 1

0
exp � z2

2r2

� 	

dz ¼
Z 1

0

1
ffiffiffi

n
p exp � n

2r2

� 	

dn: ð7B:5Þ
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This has the same form as the Laplace transform of 1=
ffiffi

t
p

, which is shown
below.

Z 1

0

1
ffiffiffi

n
p exp � n

2r2

� 	

dn ¼
ffiffiffiffiffiffi

2p
p

r: ð7B:6Þ

Then, Eq. (7.49) is obtained.

PðjxÞ ¼ exp � o2

2
x2

� 	

7:49ð Þ: ð7B:7Þ
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Answers

Chapter 1

1. Cosine wave with the same frequency.
2. Negative (sign-reversed) cosine wave with the same frequency.
3. Negative (sign-reversed) sine wave with the same frequency.
4. Sine wave with the same frequency.
5. Sine wave with amplitude

ffiffiffi

2
p

, the same frequency, and a phase leading by p/4
(45�).

6. Add a cosine wave with the same frequency and with amplitude 1=
ffiffiffi

3
p

.
7. Symmetric waveform with respect the origin t = 0.
8. Anti-symmetric waveform with respect the origin t = 0.
9. See Fig. 1.17.

10. Delayed in time without changing the waveform.
11. (b), (c), (g), (i)
12. (a), (d), (e), (j), (k), (m), (n)
13. (f), (h), (l), (o), (p)
14. If only the sine terms are used, the obtained waveform is 1/2 of the waveform

(i). If only the cosine terms are used, the obtained waveform is symmetric
waveform. whose left half is 1/2 of the original waveform.

15. Relpace (i) with (c) in Answer (14).

Chapter 2

1. See 2.1.
2. Multiply sinð2pkt=TÞ instead of cosð2pkt=TÞ which is multiplied to each term

of Eq. (2.1) to obtain Eq. (2.3).
3. For t [ 0, xeðtÞ ¼ xoðtÞ ¼ xðtÞ=2.

For t\0, xeð�tÞ ¼ xeðtÞ ¼ xðtÞ=2 and xoð�tÞ ¼ �xoðtÞ ¼ �xðtÞ=2.
At t ¼ 0, it should be considered that

xeð0Þ þ xoð0Þ ¼ ½xeðtÞt!�0 þ xeðtÞt!0 þ xoðtÞt!�0 þ xoðtÞt!0�=2 ¼ xð0Þ=2

4. The spectrum of xeðtÞ is an even function (purely real). The spectrum of xoðtÞ
is an odd function (purely imaginary).
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5. k=T (k : 0, ±1, ±2, …)
6. See Sect. 1.7 (it is assumed that the exponent is purely imaginary).
7. The real part is an even function and the imaginary part is an odd function.

8. expðj2pft þ jp=4Þ or 1ð1þjÞ
ffiffi

2
p expðj2pftÞ. The real part is the cosine function.

9. expðj2pft þ jhÞor ðcos hþ j sin hÞ expðj2pftÞ . The realpart is the cosine function.
10. The Fourier coefficient of the kth order term is given by X(k/T).
11. For n = 1, the Fourier coefficient of the kth order term is given by X(k/2T). For

integers n [ 1, the Fourier coefficient of the kth order term is given by X(k/2nT).
For n ? ?, the Fourier coefficient of the kth order term is given by X(f).

12. The Fourier coefficients of (a), (b), and (h) are given by the sum of the Fourier
coefficients of the ascending and descending triangular waves.

The Fourier coefficients of the ascending triangular waves starting at t ¼ s1 and
ending at t ¼ s2 are given by

A0 ¼
s2 � s1

2T
same for the descending triangular waveð Þ

Ak ¼
2T

s2 � s1

1
4k2p2

cos 2kp
s2

T

� 

� cos 2kp
s1

T

� n o

þ 2
2kp

sin 2kp
s2

T

� 

Bk ¼
2T

s2 � s1

1
4k2p2

sin 2kp
s2

T

� 

� sin 2kp
s1

T

� n o

� 2
2kp

cos 2kp
s2

T

� 

Bk ¼
2T

s2 � s1

1
4k2p2

sin 2kp
s2

T

� 

� sin 2kp
s1

T

� n o

� 2
2kp

cos 2kp
s2

T

� 

The Fourier coefficients of the descending triangular waves starting at t ¼ s1

and ending at t ¼ s2 are given by

Ak ¼
2T

s2 � s1

1
4k2p2

cos 2kp
s2

T

� 

� cos 2kp
s1

T

� h i

� 2
2kp

sin 2kp
s1

T

� 

Bk ¼
2T

s2 � s1

1
4k2p2

sin 2kp
s2

T

� 

� sin 2kp
s1

T

� h i

þ 2
2kp

cos 2kp
s1

T

� 

The answers for (a), (b), and (h) will be obtained by assigning proper values to
s1 and s2 in the above equations.

The answers to (i) and (j) are given by the combination of answers of (c) and
(d).

(a) A0 ¼ s
2T

Ak ¼
4

Ts
T

2pk

� 	2

1� cos 2p
k

T
s

� 	� �

Bk ¼ 0

(b) A0 ¼ s1þs2
2T
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Ak ¼
2
T

T

2pk

� 	2 1
s1
þ 1

s2

� 	

� 2
T

T

2pk

� 	2 1
s1

cos 2p
k

T
s1

� 	

þ 1
s2

cos 2p
k

T
s2

� 	� �

Bk ¼ �
2

Ts1

T

2pk

� 	2

sin 2p
k

T
s1

� 	

� 2
Ts2

T

2pk

� 	2

sin 2p
k

T
s2

� 	

(c) A0 ¼ t1þt2
T

Ak ¼
1
pk

sin 2p
k

T
t2

� 	

þ sin 2p
k

T
t1

� 	� �

Bk ¼
1
pk

cos 2p
k

T
t1

� 	

� sin 2p
k

T
t2

� 	� �

(d) A0 ¼ s1�t1
2T þ

t1þt2
T þ

s2�t2
2T

Ak ¼
2
T

1
s1 � t1

T

2pk

� 	2

cos 2p
k

T
t1

� 	

� cos 2p
k

T
s1

� 	� �

� 1
pk

sin 2p
k

T
t1

� 	

þ 1
pk

sin 2p
k

T
t2

� 	

þ sin 2p
k

T
t1

� 	� �

þ 2
T

1
s2 � t2

T

2pk

� 	2

cos 2p
k

T
t2

� 	

� cos 2p
k

T
s2

� 	� �

� 1
pk

sin 2p
k

T
t2

� 	

Bk ¼
2
T

1
s1 � t1

T

2pk

� 	2

sin 2p
k

T
s1

� 	

� sin 2p
k

T
t1

� 	� �

� 1
pk

cos 2p
k

T
t1

� 	

þ 1
pk

cos 2p
k

T
t1

� 	

� sin 2p
k

T
t2

� 	� �

þ 2
T

1
s2 � t2

T

2pk

� 	2

sin 2p
k

T
t2

� 	

� sin 2p
k

T
s2

� 	� �

þ 1
pk

cos 2p
k

T
t2

� 	

(e) A0 ¼
1
p

s
T

Ak ¼
s

pðT þ ksÞ sinfp
2
ð1þ ks

T
Þg þ s

pðT � ksÞ sinfp
2
ð1� ks

T
Þg

(f) A0 ¼
s

2T
; Ak ¼

s
T

1
pks=T

sin p
ks
T

� 	

þ s=T

2

sinfpð1þ ks�

TÞgpð1þ ks=TÞ: þ sinfpð1�ks
T Þg

pð1�ks=TÞ

o

(g) Bk ¼ s
sin p� p s

T k
� �

p T � ksð Þ � s
sin pþ p s

T k
� �

p T þ ksð Þ ¼
2Ts

p T2 � ðksÞ2
n o sin p

ks
T

� 	

(h) A0 ¼
1
T

Z þs

0
f ðtÞdt ¼ s

2T

Ak ¼
2
T

Z þs=2

�s=2
cosð2p

t

s
Þ cosð2p

k

T
tÞdt
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Chapter 3

1. To reproduce the original waveform with the minimum sampling number.
2. The real part of the spectrum is even and the imaginary part of the spectrum is

odd.
3. The sampling time should be less than 1/2Fm.
4. The components above Fx are changed from those of the original waveform if

the sampling frequency is 2Fx (Fx \ Fm) (see Fig. 3.6).
5. Smoother waveform than the original.
6. If Fc \ Fm, the spectrum above Fc of the original waveform is lost, and the

waveform becomes smoother. If 2Fx - Fm [ Fc [ Fm, the original spectrum is
reserved and the original waveform is reconstructed. If Fc [ 2Fx - Fm,
unnecessary spectrum is left, and the original waveform is not reconstructed.

7. There is not much difference in the low frequency region but there will be a
difference due to the aliasing in the region near Fm (see Fig. 3.6).

8. (1) See Sect. 3.8. You can obtain the sample values using equation below.

x
n

2pFx

� 	

¼ 1
T

X

N=2�1

k¼�N=2

Xk expðj2p
kn

pN
Þ 0\n\pN � 1:

(2) See Sect. 3.9. If p is an integer, you multiply the sample data by p by adding
(p-1) number of zeros between the samples and input it to a lowpass filter with
the cutoff frequency Fx.

Chapter 4

1. N complex values (which is equal to 2N real values)
2. jXn ¼ �In þ jRn

3. If the original sequence is purely real, the real part and the imaginary part of
the spectrum are even and odd, respectively. If the original sequence is purely
imaginary, the real part and the imaginary part of the spectrum are odd and
even, respectively.

4. A complex sequence.

198 Answers

http://dx.doi.org/10.1007/978-1-4614-9260-3_3#Fig6
http://dx.doi.org/10.1007/978-1-4614-9260-3_3#Fig6
http://dx.doi.org/10.1007/978-1-4614-9260-3_3
http://dx.doi.org/10.1007/978-1-4614-9260-3_3
http://dx.doi.org/10.1007/978-1-4614-9260-3_3
http://dx.doi.org/10.1007/978-1-4614-9260-3_3


5. Yes. Let DFT’s of xn, yn and xn þ jyn be XrðkÞ þ jXiðkÞ, YrðkÞ þ jYiðkÞ, and
ZrðkÞ þ jZiðkÞ, respectively. Since ZrðkÞ ¼ XrðkÞ � YiðkÞ and
ZiðkÞ ¼ XiðkÞ þ YrðkÞ, and XrðkÞ and YrðkÞ are even functions and XiðkÞ
and YiðkÞ are odd functions, XrðkÞ and YrðkÞ are obtained by

XrðkÞ ¼ fZrðkÞ þ ZrðN � kÞg=2 0� k\N=2

and

YrðkÞ ¼ fZiðkÞ � ZiðN � kÞg=2 0� k\N=2

respectively.
6. Not necessary.
7. Yes. Let the DFT of real xðnÞ be XrðkÞ þ jXiðkÞ. Since XrðkÞ is even, and XiðkÞ

is odd, the necessary values in the range N=2� k�N � 1 for IDFT are given
by XrðN � kÞ ¼ XrðkÞ and XiðN � kÞ ¼ �XiðkÞ, where 0� k�N=2.

8. Impossible.
9. Impossible. However, since the maximum frequency of the spectrum is

known, the spectrum in the low frequency region can be recovered.
10. 0:8Fx.
11. When the sampled sequences are arranged periodically, the discontinuities at

the joints in (A) are smaller than those in (B). In order to represent this larger
discontinuity, waveform (B) needs higher frequency components than
waveform (A).

12. Follow the procedure given in Appendix 5.
13. 14 Follow the procedure used to derive DCT-II (see Sect. 4.6).

Chapter 5

1. b ¼ k.
2. 0 B b, k B M – 1.
3. Since 360 = 5 9 8 9 9, write efficient programs for 5-, 8-, and 9-point DFTs

and then draw the flow chart similar to Fig. 5.2.

Chapter 6

1. cosð2pmn=NÞ
2. �j sinð2pmn=NÞ
3. � cosð2pmn=NÞ � j0:5 sinð2pkn=NÞ
4. Waveforms with non-integer numbers of sine and cosine waves in the N-point

sample sequences.
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5. A N-point DFT is a Fourier transform of an infinite periodic series of a sample
sequences. If the sample sequence is of a waveform which is composed of
non-integer numbers of sine and cosine components in the sequence, there
occurs a discontinuity (including the discontinuity of the slope) at the joints
between the sequences. The Fourier series requires many components to take
care of these discontinuities as well as the original sine and cosine
components.

6. See the explanation on Eq. (3.6).
7. When the waveform is periodic and the period of the waveform is k/N, where

N is the size of the sequence and k is an integer (1 B k B N).
8. Impossible.
9. Approximately 1/T Hz.

10. See Sect. 6.2.
11. Impossible in the strict sense but it is possible to roughly guess, because the 11

wave sinusoidal component produces line spectra at ±11 frequencies and the
13.5 wave sinusoidal component produces spectral distributions which have
peaks at ±13 and ±14 frequencies.

12. See the answer 11.
13. When the sample sequence is symmetric with respect to the center of the

analysis period.
14. When the sample sequence is neither symmetric nor anti-symmetric.

Chapter 7

1. Replace sine with cosine in Eq. (7.5).
2. The windows such as the Hanning window help prevent or reduce to produce

spurious spectrum which is not included in the original waveform by removing
abrupt changes from a finite value to zero.

3. The widths of the main lobes of the rectangular and Hanning windows are 2
times and 4 times of the reciprocal of the window length, respectively.
Therefore, it becomes impossible to separate each harmonic of waveform if the
number of the periods of the waveform in the window length is small.

4. See the explanations of Fig. 7.2.
5. See the explanations of Fig. 7.2.
6. Five. See Fig. 7.11.
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Index

A
Aliasing, 65, 67, 94
Amplitude spectrum, 32
Angular frequency, 12
Anti-symmetric, 92

B
Bartlett window, 176
Basic frequency band, 56
Bit reversed order, 127
Blackman-Harris window, 168, 169
Butterfly computation, 119, 125

C
Clockwise, 13
Complex amplitude, 39, 40
Complex exponential function, 13, 43
Complex Fourier coefficient, 40
Complex plane, 17
Complex sinusoidal function, 12
Complex spectra, 40
Continuous spectrum, 8
Conversion, 69, 72
Cosine Fourier series, 35
Counter clockwise, 13

D
dB, 188
DCT-I, 100
DCT-II, 103, 104
DCT-III, 105
DCT-IV, 105
Decimation in frequency algorithm, 111, 112,

121
Decimation in time algorithm, 107,

114, 117
Delay, 24

Digitizing, 51
Digitized waveform, 51
Discrete cosine transform, 77, 94–96
Direct current (DC), 8, 10
Discrete frequency, 80, 82, 83
Discrete Fourier transform (DFT), 78, 79, 82,

84, 87, 88
DFT pair, 86
DFT spectrum, 134
Discrete time, 79

E
Euler, 12
Euler’s formula, 39
Even function, 10, 36
Exponential functions, 43

F
Fast Fourier transform (FFT), 107, 108
Finite Fourier transform, 79
Flat-top window, 173–176
Folding, 65, 67
Folding spectrum, 93
Fourier coefficient, 8, 32, 33
Fourier series, 10, 28, 54
Fourier transform, 45, 49, 69, 84
Fourier transform pair, 43
Frequency band width, 58
Frequency component, 14
Frequency domain, 40
Frequency spectrum, 8
Fundamental, 10, 18

G
Gaussian window, 177, 178
Gibbs’ phenomenon(a), 46, 47, 49
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H
Hanning window, 157, 163
Hamming window, 167
Half sine window, 170
Harmonics, 8, 9, 18

I
Imaginary, 15
Impulse, 8, 9
Inharmonicity, 147
Initial phase, 17
Instantaneous frequency, 22, 23
Instantaneous phase, 20–22
Inverse Fourier transform, 44
Inverse discrete Fourier transform (IDFT), 80,

82

L
Lead, 38
Leading phase, 15
Leakage of spectrum, 138
Linear transformation, 90
Line spectrum, 8, 10, 35

N
Negative frequency, 14
Negative phase, 17
Normal probability density function, 177
Numerical waveform, 51
Nyquist frequency, 63, 67

O
Odd function, 10, 40
Orthogonality, 30
Orthogonal sytem, 30

P
Parallel computation, 128
Period, 8, 12
Periodgram, 134, 135
Perseval’s formula, 45, 187
Phase, 20–24, 90
Phase angle, 16
Phase delay, 19
Phase shift, 18

Positive frequency, 13
Positive phase, 20
Power reduction, 167
Power spectrum, 32, 42
Primitive Nth root, 108

R
Radian, 20
Real, 15
Real part, 12
Rectangular wave, 94
Rectangular window, 161
Rotating vector, 15
Riesz window, 173
Rotational factor, 108

S
Sample spacing, 92
Sampling, 53
Sampling frequency, 58
Sampling frequency conversion, 69, 72
Sampling period, 56, 57
Sampling time, 51, 57
Sampling theorem, 63, 68
Saw-tooth, 6, 7
Shannon, 63
Shift of harmonics, 9
Signal flow, 112
Sign function, 183
Sinc function, 63, 64
Sine Fourie series, 37
Smoothing, 63
Someya, 63
Spectrum, 8–10
Spurious, 131
Symmetric, 91
Synthesis, 8
Synthesis of phase, 22

T
Tapered function, 155
Time delay, 38
Time domain, 43, 44
Time window, 31
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U
Uncertainty principle, 135, 137

V
Vector, 15
Von Hann window, 163

W
Waveform, 11, 88

Weighting kernel, 108
Window, 162, 163

Bartlett, 177
Blackman-Harris, 170
flat-top, 175
Gaussian, 179
half-sine, 173
Hamming, 168, 169
Hanning, 159, 165
rectangular, 162
Riesz, 173
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