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Editors’ Introduction
Ivan Nenadic1, Matthew Urban2, James Greenleaf1, Jean-Luc Gennisson3, Miguel Bernal4,
and Mickael Tanter5

1Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
2Department of Radiology, Mayo Clinic, Rochester, MN, USA
3Imagerie par Résonance Magnétique Médicale et Multi-Modalités, Université Paris-Saclay, Orsay, France
4Universidad Pontificia Bolivariana, Medellín, Colombia
5Institut Langevin–Waves and Images, Ecole Superieure de Physique et de Chimie, Industrielle (ESPCI) Paris, France

Medical imaging has become an integrated part of modern medicine. Images are made on the
basis of exploiting physical processes as contrast mechanisms. For example, X-Ray imaging
takes advantage of the differences in mass density of different tissues. Magnetic resonance imag-
ing uses proton densities and magnetic relaxation times to create exquisite images of different
soft tissues. Ultrasound imaging takes advantage of acoustic impedance differences related to
the compressibility of tissue.

Palpation has been practiced by physicians for centuries because pathological tissue “feels”
harder or stiffer than normal tissues, as in the examples of breast tumors. Palpation has some
disadvantages – such as being subjective, dependent on the proficiency of the examiner, insen-
sitive to deep or small lesions, and difficult to compare assessments at different time points. For
the last 25 years scientists have been working on methods to create images based on the material
stiffness differences of tissues in the body. This imaging modality has come to be known as elas-
ticity imaging or elastography. The advantages of such a modality are that it would be objective,
quantitative, independent of the examiner, and have high spatial and temporal resolution.

Within the field of elasticity there is a very large parameter space of different material
properties – such as the Young’s modulus, shear modulus, Poisson’s ratio, viscoelasticity,
anisotropy, nonlinearity, and density [1]. These different properties vary in different tissue
types, some over narrow ranges and some over large ranges – such as the shear modulus which
can range over six orders of magnitude [2, 3].

There is a wide range of pathological processes that change the material properties of tis-
sue such as the liver, breast, thyroid, skeletal muscle, pancreas, spleen, kidney, myocardium,
vasculature, brain, bladder, prostate, etc. Different conditions, such as inflammation, fibrosis,
edema, and cancer, all contribute to changing the material properties of organs because the
constituents of the organs are altered on the microscopic scale and that translates into changes
observed at the macroscopic scale (micrometers to centimeters).

Elastographic measurements require some form of mechanical stimulation or excitation to
cause deformation. Then a measurement system is needed to measure the resulting deforma-
tion. The deformation can be caused by an external applied source, such as mechanical vibra-
tion, an internal source, such as acoustic radiation force, or an endogenous process, such as the
pumping of the heart. Based on the particular form of excitation and its temporal and spatial

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
Edited by Ivan Nenadic, Matthew Urban, James Greenleaf, Jean-Luc Gennisson, Miguel Bernal, and Mickael Tanter.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.



4 Ultrasound Elastography for Biomedical Applications and Medicine

characteristics, different material properties can be evaluated. The measurement system could
be magnetic resonance imaging, ultrasound, optical, or acoustic (hydrophone or accelerome-
ter). For the purposes of this book, we focus only on ultrasound-based measurement of defor-
mations.

This book is comprised of chapters written by pioneers and innovators in the field of
ultrasound-based elastography. The book is broken up into eight primary sections.

The first section provides an overview of ultrasound physics and imaging theory, a primer on
mechanical stimulation of tissue and its response, and ultrasound-based methods for motion
estimation. In Chapter 2, Drs. Roberto Lavarello and Michael Oelze provide a systematic review
of ultrasound physics and imaging formation relevant for the field of ultrasound-based elasto-
graphy. Dr. Kevin Parker gives an overview of the continuum of excitation used in this field in
Chapter 3. Chapter 4, by Drs. Jingfeng Jiang and Bo Peng, provides a thorough treatment of the
ultrasonic and signal-processing methods to measure tissue motion, which is one of the main
components of any elastographic measurement.

The second section provides an in-depth theoretical background on continuum mechanics
and wave propagation. Wave propagation in anisotropic, bounded, and viscoelastic media is
covered in detail. Chapter 5 provides the basis for continuum mechanics and solutions to wave
equations as a foundation for elastography. In Chapter 6, Dr. Jean-Luc Gennisson presents
theory for shear wave (or transverse wave) propagation in anisotropic media. Chapter 7, by
Dr. Javier Brum, describes wave propagation in bounded media, which has applications to thin
structures such as vessels, myocardium, cornea, and tendons. Chapters 8 and 9 cover measure-
ments of tissue viscoelasticity.

The third section is devoted to methods that have been developed based on quasi-static
compression and endogenous excitations. Compression elastography, particularly as applied in
nonlinear materials, is covered in Chapter 10. Dynamic strain and strain rate in cardiac appli-
cations are addressed in Chapter 11 by Dr. Jan D’hooge and colleagues. Dr. Marvin Doyley
describes vascular and intravascular elastography methods in Chapter 12. Dr. Carolina Amador
presents different approaches for measurement of viscoelasticity with creep-based methods in
Chapter 13. Lastly, Dr. Elisa Konofagou writes about wave and strain imaging based on the
intrinsic motion present in the cardiovascular system in Chapter 14.

The fourth section describes methods based on external vibration for generating propagating
waves in the tissue. Two different approaches for performing dynamic elastography measure-
ments with harmonic excitations are presented in Chapters 15 and 16. Methods that produce
harmonic acoustic radiation forces including vibro-acoustography, harmonic motion imaging,
and shearwave dispersion ultrasound vibrometry are presented by leaders in these methods in
Chapters 17–19, respectively.

The fifth section details methods that use mechanical and acoustic radiation force to perturb
the tissue within the organ itself with transient excitations. Transient elastography, described by
Dr. Laurent Sandrin and colleagues in Chapter 20, is a mechanically based system used primar-
ily for investigation of liver diseases. Dr. Stefan Catheline presents methods to use time reversal
techniques for measuring wave propagation in the body in Chapter 21. Chapter 22, by Drs.
Tomasz Czernuszewicz and Caterina Gallippi, describes the acoustic radiation force impulse
(ARFI) imaging method and its applications. The supersonic shear imaging method is presented
by Drs. Jean-Luc Gennisson and Mickael Tanter in Chapter 23. Dr. Stephen McAleavey presents
the benefits of applying single tracking location shear wave elastography in Chapter 24. Lastly,
Chapter 25 describes the comb-push ultrasound shear elastography method developed by
Drs. Pengfei Song and Shigao Chen, which uses multiple simultaneous acoustic radiation force
push beams to generate shear waves for measurement of local shear wave velocity.
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The sixth section provides insights into emerging areas that are being explored in the elasto-
graphy field. Chapter 26, by Dr. Sara Aristizabal, provides an overview of different shear wave
elastography approaches applied to characterizing elastic properties in anisotropic tissues. The
use of guided waves for shear wave elastography and quantitative measurement of mechanical
properties in thin tissues is addressed in Chapter 27 by Drs. Miguel Bernal and Ivan Nenadic and
colleagues. Rheological model-free approaches for measuring viscoelasticity are described in
Chapter 28. Lastly, methods that combine quasi-static compression elastography and dynamic
shear wave elastography are presented to measure nonlinear elastic parameters in Chapter 29.

The seventh section reviews clinical application areas, including measurements made in
abdominal organs, cardiovascular tissues, the musculoskeletal system, and breast and thyroid
tissues. Chapter 30, by Dr. Matthew Urban, provides an overview of these clinical applications.
Chapter 31 describes abdominal applications with shear wave elastography in liver, kidney,
spleen, pancreas, intestines, bladder, prostate, and uterus. The group at Duke University
led by Dr. Gregg Trahey describe the use of ARFI for cardiac applications in Chapter 32.
Additional description of other cardiovascular applications of shear wave elastography are
provided in Chapter 33. Dr. Jean-Luc Gennisson details the use of supersonic shear imaging
for musculoskeletal applications using different levels of contraction of skeletal muscle and
measurements in tendons in Chapter 34. Dr. Azra Alizad writes about the use of shear wave
elastography in breast and thyroid applications in Chapters 35 and 36, respectively.

The final section provides a reflection on the growth of elastography from a literature-based
perspective by Drs. Armen Sarvazyan and Matthew Urban. Different transitions in the field are
described from a literature citation approach.

We believe that this book provides a review of the field after two decades of development,
a snapshot of current clinical applications, and look to future areas of investigation. Elasto-
graphic methods are now installed on a plethora of clinical scanners and the inclusion of these
methods is still being introduced in many clinical practices in hepatology, oncology, cardiol-
ogy, obstetrics, nephrology, and radiology, among others. This past 25 years has been devoted
to development of many efficacious methods and we believe that development will continue to
evolve such that elastographic methods are available on all types of ultrasound scanners. This
will enable another 25 years of clinical application to provide clinicians noninvasive tools for
improving diagnosis and monitoring of treatment and other interventions, providing benefit to
a multitude of patients worldwide.

References

1 Sarvazyan, A.P., Urban, M.W., and Greenleaf, J.F. (2013). Acoustic waves in medical imaging
and diagnostics. Ultrasound Med. Biol. 39: 1133–1146.

2 Sarvazyan, A.P., Rudenko, O.V., Swanson, S.D. et al. (1998), Shear wave elasticity imaging: a
new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 24: 1419–1435.

3 Mariappan, Y.K., Glaser, K.J., and Ehman, R.L. (2010). Magnetic resonance elastography: A
review. Clin. Anat. 23: 497–511.
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Theory of Ultrasound Physics and Imaging
Roberto Lavarello1 and Michael L. Oelze2

1Laboratorio de Imágenes Médicas, Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Peru
2Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,
Champaign, IL, USA

2.1 Introduction

An image is a representation of specific properties of a physical object. The properties of the
object that are utilized to form an image depend upon the manner in which the object is per-
ceived. The final representation of the object depends on how the perception of the object’s
properties is translated into the image space.

In ultrasonic imaging, the properties that are imaged are related to the mechanical structure
of the underlying tissue. The manner in which these mechanical properties are perceived is
through the transmission and reception of ultrasound waves through the tissue. Signals corre-
sponding to these ultrasound waves are collected by an ultrasonic transducer, converted to a
voltage, and processed to convert the perceived properties into an image.

Mathematically, such a process can be described through a processing operation that is a
function of the perceived signal

I(x) = Ω{r(t)} (2.1)
where I is the image, r(t) represents the perceived signal, and Ω represents the operation on
the perceived signal that maps the signal to the image space. The perceived signal in ultrasonic
imaging depends on several factors, including the shape and properties of the signal generator
and the signal detector, the bulk properties of the propagating medium (sound speed and atten-
uation), and the reflectivity of the medium. Figure 2.1 depicts an ultrasonic transmitter/detector
with the field that emanates from the detector in a medium highlighting an object to be imaged.
In a simplified model, assuming the source is excited with an impulse, the perceived signal can
be described by a series of convolutions of the different factors

rtx(t) = htx(t) ∗ ptx(t, x) ∗ s(t, x) ∗ a(t, x) ∗ prx(t, x) ∗ hrx(t) (2.2)
In Eq. (2.2), h(t) represents the impulse response of the source (tx) or the receiver (rx), p(t, x)

represents the field characteristics of the source (tx) or the receiver (rx), s(t, x) represents the
reflectivity of the medium giving rise to scattered and reflected signals, and a(t, x) represents
the frequency-dependent attenuation of the medium, which may be spatially dependent. The
contrast in the image space and the properties that are being imaged are contained in s(t, x).
The other factors in Eq. (2.2) limit how well the object can be perceived.

To understand the physics of ultrasonic imaging is to understand the different factors making
up the convolutions in Eq. (2.2), which create the signal perceived from the object. Once these

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
Edited by Ivan Nenadic, Matthew Urban, James Greenleaf, Jean-Luc Gennisson, Miguel Bernal, and Mickael Tanter.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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h(t)

a(t,x)

s(t,x)ptx(t,x)
rx

Figure 2.1 Depiction of the field from an ultrasonic sensor interacting with an object to be imaged.

factors are understood, the signal can be processed to create an image of the underlying
properties. Different processing schemes can emphasize different aspects of the underlying
medium properties, e.g. one can estimate Doppler shifts to provide flow parameters, one
can process the brightness of echoes to create B-mode images, one can estimate particle
displacements to provide strain or shear wave speed values. Therefore, the rest of the chapter is
devoted to breaking down each of the factors in the convolution of Eq. (2.2) that are combined
together to create the perceived signal, to model these different factors, and to combine them
back together to better understand different approaches that can be taken to process the
signals and create ultrasound-based images.

2.2 Modeling the Response of the Source to Stimuli [h(t)]

Medical transducer technology has advanced over the last few decades with the development
of novel materials, fabrication techniques, and approaches to transducer design. For diagnostic
ultrasound, piezoelectrics comprise the majority of transducers in use today [1]. In the future,
other types of transducers may play a more prominent role in biomedical ultrasound imaging,
e.g. capacitive micromachined ultrasound transducers (CMUTs).

The quality of an ultrasound image is directly related to the quality of the transducer ele-
ment. In terms of imaging performance, the transducer acts as a bandpass filter to signals both
received and transmitted. The transducer also controls the pressure output and the transducer
controls the sensitivity to pressure on receive. Therefore, to fully understand the physics of diag-
nostic ultrasonic imaging, it is important to model the effects of the response of the source or
transducer to stimuli.

The piezoelectric effect was first discovered by the Curie brothers [2] in 1880, when they
observed that the application of a pressure on certain classes of crystals resulted in a poten-
tial difference generated between the two surfaces of the crystal. Subsequently, the inverse
piezoelectric effect was discovered by Lippman [3] who observed that an applied electric field
resulted in a deflection of the crystal surfaces.

In the piezoelectric effect, a stress is applied to the piezoelectric crystal resulting in a deflec-
tion of the surfaces of the crystal [4]. The deflection causes the ions in the crystal to reorient
resulting in a net polarization of the crystal surface, which can be poled to produce a voltage
reading. In the inverse piezoelectric effect, the application of an electric field causes a reorienta-
tion of the constituent ions resulting in the deflection of the surface of the crystal. The deflection
of the surface of the crystal produces particle displacements of the fluid surrounding the crystal,
which then results in the propagation of an ultrasonic wave outward from the crystal.

A complete description of the relationship between the mechanical response of a piezoelec-
tric crystal and application of an electric field is beyond the scope of this chapter. However, the
interested reader can refer to a more complete work on this topic, including the following ref-
erences [4, 5]. For the purposes of this discussion, a simplified model of the transducer output
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T
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+

–

Figure 2.2 Diagram illustrating the thickness mode of a piezoelectric transducer with cross-sectional area A,
thickness d, voltage poling V , and stress response T .

when provided a given stimulus, i.e. an electric field or a pressure, will suffice. Specifically, we
will extend a 1D model of the crystal performance with the assumption of linearity, negligible
loss, and lateral dimensions much larger than the crystal thickness.

In most cases, a piezoelectric crystal acting as a transducer will produce sound through the
thickness mode. In a simplified model, assume that the transducer is a simple rectangular slab
of material with thickness d and width much larger than the thickness (see Figure 2.2). In this
case, the capacitance of the slab can be approximated [6]

C0 = 𝜀A∕d (2.3)

where 𝜀 is the dielectric constant of the crystal material. The stress resulting from the voltage
applied across the transducer is given through a form of Hooke’s law [7]

T = 𝜅S − hD (2.4)

where 𝜅 is the elastic stiffness of the material, S is the strain, D is the dielectric displacement,
and h is the piezoelectric constant. The first term is a mechanical term, typical of Hooke’s law,
and the second term incorporates the piezoelectric effect. The dielectric displacement is related
to the electric field through

D = 𝜀E = 𝜀

V
d

=
C0V

A
(2.5)

By applying a voltage impulse across the electrodes, the inverse piezoelectric effect creates
an impulse force and deflection of the top and bottom surfaces given [7] by

F(t) = TA =
hC0V

2

[
−𝛿(t) + 𝛿

(
t − d

cL

)]
(2.6)

where no reflections from the surfaces are assumed and cL is the longitudinal speed of sound
in the crystal. The Fourier transform of these two impulse function results in

F(f ) ∝ sin[𝜋(2n + 1)f ∕2f0] (2.7)

with f0 = cL∕2d. This result suggests that the output of the transducer operating in thickness mode
will have maximum output at odd harmonics of the fundamental frequency, f0. Typically, the
output of the harmonics decrease with increasing frequency.

The transducer, as described, is a resonant structure with resonant frequency related to the
thickness of the transducer. The thinner the transducer, the higher the frequency of the output.
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However, piezoelectric crystals can only be sliced to a certain thickness before the crystal
integrity is compromised.

Furthermore, because the transducer is a resonant structure, the transducer will ring at a
particular frequency when excited by an impulse. A long ring down results in a longer dura-
tion pulse, which is not beneficial to ultrasonic imaging. The axial resolution depends on the
duration of the excitation pulse and a shorter pulse will result in improved axial resolution
for imaging. Because the transducer also acts as a bandpass filter, a shorter pulse is associated
with a higher bandwidth transducer. In biomedical imaging, a high bandwidth transducer has
a bandwidth of 80% or higher.

In order to improve the output characteristics of the transducer, an acoustic matching layer
and an acoustic backing layer can be applied. The purpose of the backing layer is to reduce the
ring down of the transducer and improve the bandwidth. As a consequence, the backing layer
also results in power loss both in reception and transmission of ultrasound. To obtain a short
pulse by reducing ring down while maintaining good transducer efficiency, the backing medium
will typically have a high impedance of between 3 and 7 MRayl [1, 8].

An acoustic matching layer is used on the front surface of the transducer to provide more
efficient radiation of sound from the transducer into the medium. In its simplest form, a sin-
gle matching layer could be created that has a thickness of 𝜆/4 and has an impedance given
by ZML =

√
ZTrZMe where ZTr is the impedance of the piezoelectric crystal and ZMe is the

impedance of the medium. This is a quarter wave matching layer. The matching layer itself acts
like a bandpass filter. To improve the performance and extend the tradeoff between gain and
bandwidth, multiple matching layers can be employed [9–11].

The output of the transducer is in the form of a pulse. The bandwidth of the transducer, i.e. the
impulse response h(t), can be estimated by exciting the transducer with a voltage impulse and
recording the signal. The bandwidth is typically characterized by the width at half maximum
(−6 dB pulse echo).

2.3 Modeling the Fields from Sources [p(t, x)]

Once the transducer is excited, an ultrasonic waveform emerges from the transducer and must
propagate through a medium. Consider the general problem of ultrasonic wave propagation
in solid media. The interested reader may refer to Beyer and Letcher [12] for a more in-depth
discussion of this topic. Interactions between neighboring particles at the boundaries of dif-
ferential volumes within a continuous medium give rise to stress (in units of N/m2) tensors,
i.e.

T =
⎡⎢⎢⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤⎥⎥⎥⎦ (2.8)

where Tij represents the stress in the j-th direction on the plane normal to the i-th axis. As a
result of the forces, the material suffers rigid transformations (i.e. translations and rotations)
and deformations (i.e. changes in dimensions and shape). This latter effect is quantified by the
symmetric strain (in units of m) tensor, which is related to the particle displacement vector 𝝃 as

Sij =
1
2

{
𝜕

𝜕xj
𝜉i +

𝜕

𝜕xi
𝜉j

}
(2.9)

In order to derive the wave equation in solids, the relationships among stress, strain, and
particle displacements are required. First, the equation of motion relates the stress tensor and
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particle displacement vector as∑
i

𝜕

𝜕xi
Tij = 𝜌

𝜕

2

𝜕t2 𝜉j (2.10)

where 𝜌 is the mass density in the medium. Next, the constitutive equation in an isotropic
medium relates the stress and strain tensors as

Tij = 𝜆𝛿ij

∑
i

Sii + 2𝜇Sij (2.11)

where 𝜆 and 𝜇 are the first and second Lame’s parameters, respectively. The wave equation that
governs the particle displacement can be derived by combining the equation of motion and the
constitutive equation, combined with the fact that

∑
iSii = ∇ ⋅ 𝜉, which results in

𝜌

𝜕

2

𝜕t2 𝜉j = (𝜆 + 𝜇) 𝜕

𝜕xj
∇ ⋅ 𝜉 + 𝜇∇2

𝜉j (2.12)

The solution to the wave equation can be obtained if the particle displacement is expressed
in terms of scalar and vector potentials, i.e.

𝜉 = 𝜉L + 𝜉S = ∇𝜑 + ∇ × A (2.13)

By construction, the scalar potential results in an irrotational (or longitudinal) wave whereas
the vector potential results in a rotational (or shear) wave. The contributions of each poten-
tial are then made to satisfy the wave equation independently. The solution due to the scalar
potential can be readily derived if the wave equation is written as

𝜌

𝜕

2

𝜕t2 𝜉 = (𝜆 + 𝜇)∇(∇ ⋅ 𝜉) + 𝜇∇2
𝜉 (2.14)

which results in the familiar scalar Helmholtz equation

𝜌

𝜕

2

𝜕t2 𝜑 = (𝜆 + 2𝜇)∇2
𝜑 (2.15)

The solution due to the vector potential can be readily derived if the wave equation is written
as

𝜌

𝜕

2

𝜕t2 𝜉 = (𝜆 + 2𝜇)∇(∇ ⋅ 𝜉) − 𝜇∇ × ∇ × 𝜉 (2.16)

which in turn leads to the vector Helmholtz equation

𝜌

𝜕

2

𝜕t2 A = 𝜇∇2A (2.17)

The solutions of the wave equation can be derived in the case of harmonic waves, i.e. waves for
which the time dependency is separable and corresponds to a harmonic oscillation at an angular
frequency 𝜔. This solution is of particular interest because any arbitrary time dependency can
be derived from the simpler harmonic case using Fourier synthesis. The two solutions to the
scalar Helmholtz equation can be written as

𝜑(−→r , t) = A exp{j(𝜔t ± (kxx + kyy + kzz))} (2.18)

and are referred to as plane waves. In order to satisfy the wave equation, the wave numbers kx,
ky, and kz should be related as

k2
x + k2

y + k2
z = k2 =

(
𝜔

c

)2
(2.19)
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where c is the speed of sound in the medium. The expressions above lead to definitions of the
sound speed of the longitudinal and shear components of the particle displacement given by

cL =

√
𝜆 + 2𝜇

𝜌

(2.20)

and

cS =
√

𝜇

𝜌

(2.21)

respectively. In most soft tissues, the value of the 𝜆 parameter (in the order of a few GPa) is
typically much larger than the value of the 𝜇 parameter (in the order of a few KPa). Therefore,
longitudinal waves typically propagate at a much faster speed than shear waves in soft tissues.

At ultrasonic frequencies, the shear wave attenuates very rapidly in tissues and does not play
a substantial role in conventional B-mode imaging. At ultrasonic frequencies, the longitudinal
wave is primarily used to image tissues. However, shear waves propagating at lower frequency
due to compressions of tissues will result in displacements that can be interrogated using lon-
gitudinal waves.

The solutions to the wave equation can be written in terms of other functions when analyzed
in other coordinate systems, such as the cylindrical and spherical ones. However, all solutions
can ultimately be expressed as a combination of (potentially infinite) plane waves. For example,
the well-known monopole source in spherical coordinates can be expressed as a combination
of plane waves using Weyl’s representation, i.e.

exp(jkr)
r

= i
2𝜋∫ ∫

exp{j(kxx + kyy + kzz)}
kz

dkxdky (2.22)

The field from a monopole source can also represent the field from a simple source. A sim-
ple source can take on any shape with the constraint that the dimensions of the simple source
are much smaller than the wavelength of sound. Based on the principle of superposition, the
field from a larger aperture can be constructed by breaking the larger aperture into small sim-
ple sources and summing the field contributions from each simple source at some observation
point, r′, from the source. The simple source can be described by

dpss(r′, t) =
C
r′

ej(𝜔t−kr′)dA (2.23)

where dA is the differential area of the simple source and C is a constant. The field from a larger
aperture is just the summation of all of these simple sources at the observation point

p(r, t) = ∫
∞

−∞ ∫
∞

−∞
Ap(x0, y0)U(x0, y0)

C
r′

ej(𝜔t−kr′)dA0 (2.24)

The integration is over a plane (x0, y0) where the aperture resides, Ap(x0, y0) is the aperture
function and U(x0, y0) is called the apodization function. The apodization function weights the
contribution of each simple source to the field. In the far field from the aperture (r ≫ (x0, y0)),
approximations can be made resulting in

p(t, x) ≈ C′

r
ej(𝜔t−kr)∫

∞

−∞ ∫
∞

−∞
Ap(x0, y0)U(x0, y0)e−j(kxx0+kyy0)dA0 (2.25)

The equation above indicates that the far field from an aperture is proportional to the Fourier
transform of the product of the aperture function and apodization function, where kx = k cos 𝜃x
and ky = k cos 𝜃y. For example, if the aperture function was a rectangular function and the
apodization was unity, the resulting field pattern would look like a sinc function versus angle.
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Direct integration, angular spectrum approaches, and approximate approaches using the spa-
tial impulse response [13, 14] can provide predictions of field characteristics from a variety of
source configurations. Typically, fields from sources result in a beam at broadside or perpen-
dicular to the plane of the transducer surface that narrows as the aperture size increases. Beam
side lobes can be controlled by the apodization function and tapering the weight of the source
contributions at the edges of the aperture. While axial resolution of an ultrasonic imaging sys-
tem is dictated by the pulse duration, the lateral resolution in a 2D B-mode image is controlled
by the width of the beam coming from the source.

2.4 Modeling an Ultrasonic Scattered Field [s(t, x)]

Ultrasonic propagation at its basic level is described by the classical wave equation for longitu-
dinal waves (a generalization of Eq. 2.15)

∇2p + 1
c2

L

d2p
dt2 = 0 (2.26)

where p represents the propagating pressure wave and cL represents the longitudinal sound
speed of the wave propagation. In a homogeneous fluid medium without loss, an ultrasonic
plane wave can propagate out to infinity without any alteration in the wave properties. Of
course, in practice there is no such thing as a lossless medium or a medium extending to infinity
without inhomogeneities or an infinite plane wave.

Furthermore, while tissue is often considered to act like a fluid, the recent focus on imag-
ing shear properties of tissue indicates that tissue should be considered as an elastic solid with
weak shear properties. At frequencies used for clinical ultrasonic imaging (1 to 15 MHz), the
contributions of shear to wave propagation and scattering are negligible. At the ultrasonic fre-
quencies, shear modes attenuate very rapidly. However, at lower frequencies, shear modes can
propagate much further distances with lower attenuation. The displacements associated with
shear wave propagation can be estimated by tracking sub-resolution scatterers that are dis-
placed by the shear wave propagating past the scatterers. Therefore, the modeling of the signals
from a scattering medium is important to understanding and predicting how estimates of shear
wave propagation can be found from displacements of scattering objects. In addition, the strain
imaging technique makes use of the idea that sub-resolution scatterers will move when com-
pressed. Therefore, tracking the motion of these scatterers allows the estimation of strain when
a compression is applied to tissue.

Modeling of ultrasonic scattering falls under two distinct approaches. In the first approach,
the medium is assumed to be homogeneous with a scattering object embedded in the
medium. In the first approach the homogeneous classical wave equation is utilized. In the
second approach, the medium is assumed to be inhomogeneous and an inhomogeneous wave
equation is applied. In either case, the scatterer is first modeled by assuming an incident
wave field and a scattered field direction, as shown in Figure 2.3. For most ultrasonic imaging
applications, the observation of the scattered field is nearly 180∘ out of phase with the incident
field direction resulting in the measurement of backscatter.

In the first approach, the linear acoustic wave equation is utilized to derive the Helmholtz
equation (Eq. 2.15). The Laplacian in the Helmholtz equation is expanded in a coordinate sys-
tem that is appropriate based on the geometry of the scattering object, e.g. the Laplacian is
expanded in spherical coordinates for a spherical scatterer. The Helmholtz equation provides
an expansion of the pressure field in the coordinate system. Next, the boundary conditions at
the scattering object surface are used to solve for the scattered field in terms of the incident field
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kinc

kscat

Scattered

Incident

Figure 2.3 Illustration of incident (kinc) versus scattered
(kscat) field directions.

pressure. In a fluid, the boundary conditions are the continuity of pressure and the continuity
of the normal component of the particle velocity at the surface

pinc + psc = pint and [uinc + usc = uint]⟂ (2.27)

where the subscripts “inc” refers to the incident field, “sc” refers to the scattered field, and “int”
refers to the field internal to the scatterer.

The first approach is highly useful in predicting the scattered field from an object embedded
in a homogeneous medium if the object has a simple geometric shape, i.e. a sphere or a cylinder.
However, if the scattering object is highly irregular in shape, solving for the scattered field can
become intractable. Solutions using the homogeneous medium approach for fluid spheres and
cylinders have been reported [15]. The expansion of these solutions to include shear in the
object function for spheres and cylinders have also been reported [16]. These models have been
utilized to describe scattering from cells and collections of cells.

In modeling tissue, the homogeneous approach results in a discrete scattering model. Scat-
tering from multiple objects can be represented by a convolution of the received field with a
scattering function corresponding to the location of each scatterer

rtx(t) = f (t, x) ∗ s(t, x) (2.28)

where f (t, x) is the field and s(t, x) is the scattering function incorporating the location of the
scattering objects and a transfer function which modifies the field. The scattering function can
be expanded further as a summation of scattering functions for multiple objects

s(t, x) = s1(t − t1, x) + s2(t − t2, x) +… + sN (t − tN , x) (2.29)

for a collection of N scatterers. The scatterers do not have to be identical. For example,
sn(t − tn, x) could represent scattering from an interface (a specular reflection)

sn(t − tn, x) = Rnf (t − tn, x) (2.30)

where Rn is the reflection coefficient from the interface. Similarly, the sn(t − tn, x) function
could represent scattering from a simple object with the scattering function derived from the
homogeneous modeling approach, e.g. scattering function for a collection of fluid spheres. This
approach has been used to model tissue and tissue mimicking phantoms and can be used to
model compression of tissues by adjusting the locations, i.e. tn, or displacements of the discrete
scatterers for a given strain.

In the second approach to scattering, an inhomogeneous medium is modeled using an inho-
mogeneous wave equation [17, 18]. In this case, the medium is composed of spatially varying
density and compressibility

𝜌(x) = 𝜌0 + 𝜌e and 𝜅(x) = 𝜅0 + 𝜅e (2.31)
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where 𝜌0, 𝜅0 represent the background density and compressibility and 𝜌e, 𝜅e are the spatially
dependent changes in density and compressibility from the background. Variations in density
and compressibility result in different kinds of particle motion when presented with a harmonic
pressure wave. Given a particle exposed to a pressure gradient, Euler’s equation gives

𝜌(x)𝜕u
𝜕t

= −∇p (2.32)

where u is the particle velocity and its direction is the gradient of pressure. If we consider a
harmonic wave and a pressure gradient across a region of background density and a region of
variable density, we get the following Euler equations

j𝜔𝜌(x)ue = −∇p and j𝜔𝜌0u0 = −∇p (2.33)

Relating the equations together gives

𝜌(x)ue = 𝜌(x)(u0 + Δu) = 𝜌0u0 (2.34)

After rearranging,

Δu = −
𝜌(x) − 𝜌0

𝜌(x)
u0 (2.35)

which suggests that a fluid particle with different density from background exposed to a pres-
sure gradient will undergo different particle velocity from background density. The variation
in density from background causes the particle to move back and forth in the direction of the
pressure gradient (direction of pressure wave propagation) resulting in a dipole radiation. In a
similar fashion, the variations in compressibility lead to monopole radiation.

Variations in density and compressibility are incorporated in the inhomogeneous wave
equation

∇2p + 1
c2

L

d2p
dt2 = ∇ • (𝛾

𝜌

(x)∇p) + 𝛾
𝜅

(x) 1
c2

L

d2p
dt2 (2.36)

where the density scattering source 𝛾
𝜌

(x) incorporates the spatially dependent density variations
and the compressibility scattering source 𝛾

𝜅

(x) incorporates the spatially dependent compress-
ibility variations. The scattering sources are defined in terms of compressibilities and densities
as

𝛾
𝜌

(x) =
𝜌(x) − 𝜌0

𝜌(x)
and 𝛾

𝜅

(x) =
𝜅e − 𝜅0

𝜅0
(2.37)

Assuming a harmonic wave, i.e. p(x, t) = p(x)ej𝜔t , then the inhomogeneous wave equation
reduces to

∇2p + k2p = ∇ • (𝛾
𝜌

(x)∇p) − k2
𝛾
𝜅

(x)p = −f (r0) (2.38)

A Green’s function approach can be used to solve the inhomogeneous wave equation by
rewriting the differential equation as an integral. The Green’s function G(r|r0) describes the
observed pressure field at the detector’s location r resulting from a point source of scattering
at r0. The Green’s function is a solution to

∇2G + k2G = −𝛿(x − x0) (2.39)

which is satisfied by the free space Green’s function G(x|x0) =
1

4𝜋|x−x0|ejk|x−x0|. Combining with
the Helmholtz equation provides

[∇2p + k2p = −f (x0)]xG − p[∇2G + k2G = −𝛿(x − x0)] (2.40)
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Integrating over a volume V containing the scattering sources gives

∫V
(G∇2p − p∇2G)dV0 =∫V

p𝛿(x − x0)dV0 − ∫V
f (x0)GdV0 (2.41)

where the first integral on the right-hand side reduces to the pressure field at the detector loca-
tion (i.e. the total field). Recognizing that

G∇2p − p∇2G = ∇ • (G∇p − p∇G) = ∇ • A (2.42)

and using the divergence theorem yields

p(x) = ∮S
(G∇p − p∇G) • dS + ∫V

f (x0)GdV0 (2.43)

The first term is the total field, the second term represents fields reflected by a boundary
surface, S, and the final term represents the sum of the fields from scattering sources. Assuming
an unbounded medium (or a medium where we can gate out the signals from boundaries), all
that is left of the second term is the incident field giving

p(x) = pinc(x) + ∫V
f (x0)GdV0 = pinc(x) + psc(x) (2.44)

which helps identify the last term as the scattered field.
The scattered pressure is then given by

psc(x) = ∫V
(∇ • (𝛾

𝜌

∇p) − k2
𝛾
𝜅

p)G(x|x0)dV0 (2.45)

Using the divergence theorem on the first term and noting no contribution from scattering
sources on the bounded surface of V gives

psc(x) = ∫V
[k2

𝛾
𝜅

(x0)p(x0)G(x|x0) + 𝛾
𝜌

(x)∇p(x0) • G(x|x0)]dV0 (2.46)

Using a simplifying assumption that the scattered field is observed in the far field of the scat-
tering sources, then the Green’s function reduces to

G ≈ 1
4𝜋x

ejk|x|e−jKsc•x0 and ∇G ≈ −jk2 x
k

G (2.47)

The result of these approximations gives

psc(x) =
k2

4𝜋x
ejk|x|∫V

[
𝛾
𝜅

(x0)p(x0) − j𝛾
𝜌

(x)
(
∇p(x0) •

r
k

)]
e−jKsc•x0 dV0 (2.48)

psc(x) =
k2

4𝜋x
ejk|x|∫V

F(x0)e−jKsc•x0 dV0 (2.49)

The integral can be interpreted as the Fourier transform of an object function, F(x0), which is
a function of the scattering sources and total pressure field. The Fourier transform is multiplied
by the field of a spherical wave from a point source. The pressure field in the integral is the total
field at the location of the scatterer. Assuming a plane wave incidence and invoking the Born
approximation, i.e. p(x0) = pinc(x0), reduces the scattered field to

psc(x) = P0
k2

4𝜋x
ejk|x|∫V

(𝛾
𝜅

(x0) + 𝛾
𝜌

(x)(i • r))e−jK•x0 dV0 (2.50)

where P0 is the pressure amplitude of the incident plane wave, i • r = cos 𝜃 with 𝜃 the angle
between the incident direction and the observer (i.e. 𝜃 = 180∘ is the backscatter direction) and
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K = ks − ki is called the scattering vector. In the backscatter direction i • r = 1 and the density
and compressibility fluctuations contribute equally to the scattered field.

The second approach allows a simple estimate of the scattered field based on taking the spatial
Fourier transform of the distribution of variations of density and compressibility of a medium.
This allows the medium to be modeled as a discrete scattering medium (sn(t − tn, x) = psc,n
(t − tn, x)) or as a scattering continuum, i.e. a continuously varying density and compressibility.
The inhomogeneous medium approach requires that the scattering is weak so that the
Born approximation holds. However, the scattered field can be predicted for more complex
geometries.

In terms of ultrasonic imaging, scattering modifies the frequency content of the signals
returning to the receiver. In most cases of sub-resolution scatterers, the result of scattering is
to high pass filter the signal. To some degree, this balances the effects of frequency-dependent
attenuation, which low pass filters the signal versus depth.

2.5 Modeling the Bulk Properties of the Medium [a(t, x)]

As ultrasound propagates through tissues, changes in compressibility and density at microscale
and along surfaces result in reflection and scattering of ultrasound. However, individual tissues
and organs may have their respective background sound speed and attenuation properties.
These values can affect the response of the imaging system and how different structures are
perceived.

Changes in sound speed can cause the refraction of ultrasonic rays away from a straight ray
path. Differences in sound speed can also affect the ability to focus ultrasound using arrays
based on the time delays, i.e. phase aberration. Therefore, it is important to account for sound
speed changes in optimizing image performance. Accounting for sound speed changes from
tissue layers results in improved focusing by reducing phase aberration. Figure 2.4 depicts the
range of longitudinal sound speed values typical for different tissues at clinical ultrasonic fre-
quencies. Furthermore, sound speed is weakly dispersive in soft tissues at clinical ultrasonic
frequencies.

Another bulk tissue property that affects image performance is the frequency-dependent
attenuation. Like sound speed, different tissues and organs are associated with a range of
frequency-dependent attenuation values. For soft tissues, the frequency-dependent attenuation
coefficient is often described by a power law

𝛼(f ) ≈ 𝛽f n (2.51)
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Figure 2.4 List of ultrasonic sound speed estimates from different tissues and organs in humans [19–24].
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Table 2.1 List of attenuation estimates from different tissues and
organs in humans assuming a power law with exponent, n
[7, 19–24].

Tissue 𝜶 (dB/cm) @ 1 MHz n

Blood 0.12–0.30 1.21
Brain 0.2–0.6 1.14–1.30
Breast 0.75–1.9 1.50
Fat 0.4–0.8
Kidney 0.8–1.0 1.09
Liver 0.5–1.2 1.00–1.13
Muscle (along fibers) 0.95–1.25 1.0–1.2
Muscle (parallel) 2.7–3.1 1.0–1.2
Spleen 0.4 1.3
Testis 0.17–0.30 1.11

where n is between 1.0 and 2 for soft tissues [22]. Because the attenuation increases with fre-
quency, as the ultrasonic wave propagates through tissue, the center frequency of the ultrasonic
pulse downshifts to a lower frequency. This results in beam spreading, i.e. the beam gets wider
resulting in a loss of lateral resolution. Furthermore, as the ultrasound propagates through tis-
sue, the bandwidth can also decrease resulting in decreased axial resolution, i.e. a lengthening of
the pulse duration. Speckle is modified versus depth due to frequency-dependent attenuation,
with speckle becoming larger versus depth of propagation. Furthermore, because the attenua-
tion reduces the amplitude of the ultrasonic wave, attenuation results in a loss of signal-to-noise
ratio. Table 2.1 depicts the range of frequency-dependent attenuation values associated with
different soft tissues. In ultrasonic B-mode imaging, the depth-dependent effects of attenua-
tion are often compensated by implementing a time-gain compensation (TGC), which seeks to
equalize the image intensity versus depth of the image. At a point of observation in a tissue,
the total attenuation to the point is the sum of the spatially dependent attenuation along the
propagation path, i.e. through intervening tissues, up to the observation point

a(t, x) = ∫
x

x0

𝛼(t, x)dx (2.52)

Attenuation in soft tissues is due to a combination of absorption and scattering

𝛼 ≈ 𝛼abs + 𝛼scat (2.53)

In most soft tissues, attenuation is dominated by absorption [25]. The absorption of ultrasonic
energy by the tissue can result in heating of the tissue and a radiation force on the tissue. The
radiation force is described by

F =
2𝛼absI

cL
(2.54)

where I is the intensity of ultrasound. The radiation force can be used to push or compress tissue
at the focus of an ultrasound source. By pushing or compressing the tissue, a low frequency
shear wave can be produced that propagates outward from the location of the ultrasonic push.
The low frequency shear wave produces displacements that can be estimated through ultrasonic
imaging methods, enabling the tracking of the shear wave propagation and estimation of shear
moduli [26].
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2.6 Processing Approaches Derived from the Physics
of Ultrasound [𝛀]

Most scanners operate with array transducers, i.e. a group of sensors with specific geometric
arrangements which (to a large extent) can be individually operated in transmission and recep-
tion. The simplest model for an array is the 1D point source array, which is depicted in Figure 2.5
and consists of N point-like sources arranged along the x-axis.

Several array configurations are provided by manufacturers. Among 1D arrays, three com-
mon types are the linear, phased, and curved arrays. Linear arrays conform to the diagram
in Figure 2.5, and are typically operated with sub-aperture translation, i.e. several transmit
beams are obtained by firing sub-sets of the array elements in a sliding fashion. Typical appli-
cations involve visualization of structures with limited field of view and high resolution, such
as breast, thyroid, musculoskeletal, and vascular and superficial imaging. Phased arrays also
conform to the diagram in Figure 2.5, but have fewer elements and smaller footprints and
operate with beam steering (i.e. the electronic deflection of the beam direction over different
steering angles) to obtain different beams. Their most common application is cardiac imaging,
but are also used for transcranial and abdominal imaging. The curved arrays differ from lin-
ear and phased arrays in that the elements are arranged over a curved rather than a straight
line. Even though the array is operated with sub-aperture translation as with linear arrays, due
to the array curvature the resulting beams describe a polar grid as with phased arrays. Typi-
cal applications involve visualization of structures with a wide field of view, such as abdominal
imaging.

Unlike the case of single element transducers, the ultrasonic beam characteristics produced
by arrays are dynamically modifiable using electronic beamforming. In short, different beams
can be produced by exciting the different elements of the array with properly designed electrical
signals. The simplest case to analyze corresponds to the simultaneous excitation of all array
elements with the same pressure amplitude A [27]. The total pressure field produced by the
array under this condition is given by

p(r, 𝜃) =
N−1∑
i=0

A
Ri

exp(−jkRi) (2.55)
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Figure 2.5 Geometry of a 1D point source array.
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where Ri is the distance between the observation point and the i-th element in the array, with
the latter locations corresponding to points with x coordinates

ri =
[

i − (N − 1)
2

]
d; i = 0,1,… ,N − 1 (2.56)

where d is the transducer pitch (i.e. the spacing between adjacent element centers). If the obser-
vation point is far away from the array, the approximations Ri ≈ r − ri sin 𝜃 and Ri ≈ r can be
used in the exponential function and the denominator of the summands, respectively, which
results in

p(r, 𝜃) = A
r

N∑
i=1

exp(−jk(r − ri sin 𝜃)) (2.57)

Direct algebraic manipulation of the expression above yields the far field pressure produced
by the 1D array

p(r, 𝜃) = NA
exp(−jkr)

r

⎡⎢⎢⎢⎣
1
N

sin
(

1
2
Nkd sin 𝜃

)
sin

(
1
2
kd sin 𝜃

) ⎤⎥⎥⎥⎦ (2.58)

in which the term in brackets is known as the radiation pattern of the array and corresponds to
the sampled sinc function. For imaging, it is desirable that the radiation pattern only exhibits
one peak at broadside (i.e. the array main lobe). Examples of the far field radiation patterns of
1D linear arrays are presented in Figure 2.6 for arrays with N = 10 and d = 𝜆/2 and d = 2𝜆. It can
be observed that in the former case, in addition to the main lobe there are lobes with peaks of
maximum amplitude at directions different than broadside. These unwanted lobes are termed
grating lobes, and are a consequence of sub-optimal spatial sampling of the array aperture. In
order to avoid grating lobes, the element separation should satisfy

d
𝜆

≤ N − 1
N

(2.59)

The 1D array can also be fired at directions different than broadside. This can be easily accom-
plished if linear time delays are applied to the array elements, i.e. if the i-th element of the array
is fired at time

𝜏i =
(

i − N − 1
2

)
𝜏 (2.60)
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Figure 2.6 Far field radiation patterns corresponding to 10-element arrays with element pitch equal to 𝜆/2
(left) and 2𝜆 (right).
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The corresponding far field pressure is given by

p(r, 𝜃) = NA
exp(−jkr)

r

⎡⎢⎢⎢⎣
1
N

sin
(

1
2
Nkd(sin 𝜃 − sin 𝜃0)

)
sin

(
1
2
kd(sin 𝜃 − sin 𝜃0)

) ⎤⎥⎥⎥⎦ ; sin 𝜃0 =
cL𝜏

d
(2.61)

which means the direction of the main lobe can be changed simply by changing the rate at which
the transducer elements are fired. Just as in the case of a broadside 1D array, grating lobes will
occur for sufficiently large transducer pitch values. In particular, grating lobes can be avoided if

d
𝜆

≤ N − 1
N(1 + |sin 𝜃|) (2.62)

However, the expressions provided for the pressure field are valid only in the far field, which
approximately occurs at depths beyond

zFF =
(L∕2)2

𝜆

(2.63)

where L is the length of the array. For the case of ultrasonic waves operating in the MHz range
and typical array dimensions, this distance is in the range of tens of centimeters. Therefore,
far field conditions can typically not be met for clinical applications. Instead, the transducer is
focused in order to bring the far field of the array within the near field range.

Focusing is an operation that spatially converges the energy of an acoustic radiator at an obser-
vation point termed the transducer focus. This is achieved by having the waves contributed by
every point within the radiating surface to arrive simultaneously at the transducer focus. For
the linear array, and assuming the focus is located at coordinates (0, yf), this correspond to using
the time delays

𝜏i =
−
√

y2
f + r2

i

c
(2.64)

The expression above indicates that elements farther away from the focal point need to be
fired earlier, as expected. In practice, this expression is not directly applicable because all firing
times are negative – a common time offset needs to be considered for all elements. Further,
only discretized values of the time delays can be applied due to the increasing use of digital
transmit timing at a fixed transmit clock cycle. These considerations also apply to the case of
beam steering.

True focusing is only obtained at the focal point, and therefore the quality of focusing
degrades away from this location. The focusing quality is mainly dictated by a parameter called
the focal number (f /#), which is defined as yf/L. In the lateral direction, the extent of the focal
region can be derived explicitly from the beam pattern expression and is proportional to 𝜆*f /#.
In the axial direction, the extent of the focal region is proportional to 𝜆*(f /#)2. For imaging, it
is desired to produce a focal zone with the shortest lateral extent (i.e. short lateral resolution)
and the largest axial extent (i.e. large field of view). Unfortunately, both goals are incompat-
ible because of the relationship between the focal number and the dimensions of the focal
region.

Unlike single element transducers, the transmit beam pattern ptx(t,x) does not have to be
identical to the receive pattern prx(t,x). In particular, focusing in transmit and in receive are per-
formed differently in practice. In transmit, an electrical signal is sent to each transducer element
and the resulting beam pattern is focused by the natural propagation of the induced mechanical
waves. In receive, the focusing is achieved by combining the received signals received by each
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array element di(t) after the appropriate delays have been applied, i.e.

rtx(t) =
Na∑
i=0

r(i)di(t − Δti) (2.65)

Δti =
xf +

√
xf

2 + r2
i

c
(2.66)

Given that such operations can be performed digitally on the recorded channel data after each
transmission, focusing on receive can be implemented continuously for all points in the imaging
domain provided the scanner has sufficient computing power. Therefore, dynamic beamform-
ing allows having the whole field of view in focus on receive without the need for multiple
transmissions [28].

Other approaches to beamforming allow dynamic focusing on receive as well as on transmit,
such as synthetic aperture focusing techniques [29–31]. Recently, plane wave imaging meth-
ods have received attention due to the possibility of providing comparable imaging quality
to multi-focus beamforming with an improved frame rate [32]. Single plane wave imaging is
obtained by transmitting simultaneously with all transducer elements. Such an approach allows
the acquisition of echoes from the whole imaging field, but at the expense of decreased image
quality due to the lack of focusing on transmit. Compounded plane wave imaging fixes these
issues by coherently combining the radiofrequency data obtained from several plane waves illu-
minating the imaging target at different incidence angles, i.e.

CPW(x, y) =
∑

i,j
r(i,𝜃j)

(
y cos 𝜃j + x sin 𝜃j +

√
(x − ri)2 + y2

c

)
(2.67)

where 𝜃j is the incident angle of the j-th transmitted plane wave [33].
The differences in the quality of single focus in transmit and receive, single focus in trans-

mit and dynamic focusing in reception, and compounded plane wave imaging are illustrated
in Figure 2.7 when imaging a two-layer phantom. From Figure 2.7, it can be observed that the
sharpness of the edge between both layers using the single focus approach degrades quickly
away from the focal depth (set in this example at 20 mm), whereas the use of dynamic focusing
in reception significantly improves the edge definition throughout the field of view. Moreover,
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Figure 2.7 Echographic images of a two-layer phantom obtained using (a) single focus in transmit and receive,
(b) single focus in transmit and dynamic focusing in reception, and (c) compounded plane wave imaging.
Source: © 2014 IEEE, reprinted, with permission, from Salles [35].
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plane wave compounding also results in a more uniform signal-to-noise ratio and edge defini-
tion throughout the field of view.

The beamforming techniques result in a localizing of the ultrasonic energy or ultrasonic fields
transmitted to and recorded from tissue (ptx(t, x) and prx(t, x), respectively). These fields are
modified by the frequency-dependent attenuation of the tissue medium, a(t, x), the scattering
properties of tissue medium, s(t, x), and the bandpass filtering of the transducer, htx,rx(t). This
allows the received signal, r(t), for a particular scan line to be represented by Eq. (2.2). A set of
lines produced from a scan of tissue produce the beamformed radiofrequency data. This set of
radio frequency data can then be processed, Ω{r(t)}, to create different types of images.

Echographic images, also known as B-mode images, are the most common image mode in
biomedical ultrasound imaging and are produced from the beamformed radiofrequency data.
The basic signal processing pipeline involves calculating the envelope of the ultrasonic echoes
and applying logarithmic compression in order to improve the dynamic range of the result-
ing image. In addition, TGC (time gain compression) is performed in order to compensate
the effects of depth-dependent attenuation in the amplitude of the received echoes. However,
obtaining clinical grade ultrasonic images requires additional processing steps such as non-
linear grayscale mapping, gamma correction, and edge preserving image filtering. The actual
algorithms used for the image post-processing and display are typically proprietary knowledge
from scanner manufacturers and are not described in detail in the literature.

From Figure 2.7 it can also be observed that the B-mode images exhibit a grainy texture in
otherwise homogeneous regions. This phenomenon, known as speckle, is due to the coherent
interaction of the echoes produced by several sub-wavelength scatterers within the resolution
cell of the transducer. Several models exist for characterizing the statistics of the envelope of
the radiofrequency data. If the medium is assumed to have diffusely distributed scatterers that
produce echoes with uniformly distributed phase, the probability distribution function of the
speckle magnitude follows a Rayleigh distribution which results in a speckle signal-to-noise
ratio of 1.91 [34]. This condition is widely accepted to be reached when the medium contains a
minimum of 10 scatterers per resolution cell with random spatial locations. For sparser scatterer
distributions, or if the scatterers are not diffusely distributed, other probability distribution
functions (i.e. Rician, Nakagami, homodyned K) may better model the ultrasonic envelope
magnitude.

The speckle can be used to create maps of envelope parameters by fitting the probability distri-
bution to the envelope data. Several researchers have examined the utility of envelope statistics
for imaging and medical diagnostics [36, 37]. However, such approaches have not been widely
adopted clinically. The contrast mechanism of such envelope statistics images are parameteri-
zations of the envelope statistics.

The presence of the speckle can also provide a means of producing additional types of
images taking advantage of different contrast mechanisms. Because the speckle comes from
the arrangement of the sub-resolution scatterers, any perturbation of this arrangement will
result in either a change of the speckle features or a displacement of the speckle features. By
tracking the changing speckle arrangement versus perturbation of the tissue medium and
mapping these changes in speckle arrangement, images of displacements can be produced.

Strain imaging utilizes the beamformed radiofrequency data by comparing the displacements
of speckle features as a medium is deformed or compressed. Different tissues have different
mechanical properties, i.e. the Young’s modulus. The contrast inherent in mechanical proper-
ties of tissues, such as the Young’s modulus, is much higher in tissue than contrast in acoustic
impedance, which is the contrast mechanism for B-mode imaging. By imaging the displace-
ments of speckle for given compressions of the tissues, the relative changes in the Young’s
modulus can be visualized. Such imaging has found applications in detecting cancer and esti-
mating heart muscle strain profiles [38–41].
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In a similar manner, certain shear wave imaging techniques exploit the displacements of
scatterers and rearrangement of speckle features to estimate and map the shear modulus.
Specifically, a compression using an acoustic radiation force mechanism or other mechanism
is used to generate a lower frequency shear wave. Ultrasonic imaging is used to capture
multiple scan lines and image frames as the shear wave propagates through the tissue. The
progression of the shear wave is detected through the tracking of the speckle displacements or
rearrangements. By tracking the shear wave and estimating and mapping its speed through a
tissue, images of the shear moduli can be constructed [26, 42, 43].

One way to estimate the displacements induced by shear waves propagating through tissue
is to utilize Doppler imaging techniques. Doppler imaging techniques in ultrasound have pri-
marily been used to map the flow of blood in tissue and organs. The principle behind Doppler
imaging is that objects, e.g. blood cells, flowing away from or towards the transducer will cause
a Doppler shift in the sound wave. The flow direction and rate can be estimated through a num-
ber of mechanisms including estimating the Doppler frequency shift or tracking the phase of
signals from one frame to the next [44]. Pulsed wave Doppler imaging requires short pulses to
be transmitted into the tissues at higher pulse repetition rates than typically used for conven-
tional B-mode imaging. The maximum velocity that can be estimated is limited by the rate at
which pulses can be transmitted.

2.7 Conclusions

An image is a representation of a physical object. The representation depends fundamentally
on the contrast mechanisms within the object that give rise to signals that can be sampled
and processed to create the image. In biomedical ultrasound, the basic contrast mechanism is
the acoustic impedance differences between different structures. These differences in acoustic
impedances give rise to scattering of the ultrasonic fields propagating across different struc-
tures. The signal that is received by a transducer is a function of this scattered field, the atten-
uation of the field as it propagates through the medium, the bandwidth associated with the
ultrasonic transducer, and the field characteristics of the transducer. Each of these factors plays
a role in the final image that can be produced and the image quality, i.e. spatial resolution,
contrast resolution, and signal-to-noise ratio.

The fundamental imaging mode for biomedical ultrasound is B-mode imaging which relates
greyscale intensity to structure shapes. B-mode is produced by detecting the envelope of the
backscattered signal. B-mode is a qualitative imaging mode whose contrast is simply the differ-
ences in scattering from different structures and locations. The scattered intensity depends on
the size of the objects, their shape, and their acoustic impedance mismatches.

Other imaging approaches using ultrasound can produce images whose contrast depicts
other properties of the tissues, e.g. shear moduli, Young’s moduli, flow velocity, etc. Funda-
mentally, these techniques use the same signals that are generated for B-mode imaging, signals
which have their generation from acoustic impedance mismatches. However, by implementing
different processing approaches, different contrast mechanisms can be extracted from the
signals. For example, a shear wave can be tracked and parameterized by tracking displace-
ments of scatterers as the wave propagates through a medium. The signals coming from the
scatterers are still based on the acoustic impedance mismatch between the scatterers and some
background. However, by tracking the displacements of the scatterers, the shear wave motion
can be estimated generating new images that represent new image contrast. By understanding
the underlying physics of signal generation and reception in ultrasound, a variety of imaging
modes can be produced through processing of the signals, which can provide distinct images
with information that complement each other.
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Elastography and the Continuum of Tissue Response
Kevin J. Parker

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

3.1 Introduction

From the earliest days of medicine, the palpable “feel” of tissues and organs has been used
in diagnostic evaluations. Even today, screening exams include palpation of the liver, breast,
prostate, thyroids, skin lesions, and other tissues to characterize their condition. However, man-
ual palpation is limited to accessible surfaces and is not quantitative. By the 1980s, there existed
a wide gap between the impressive imaging abilities within radiology and the important but lim-
ited information that was obtained from palpation. How could these two disparate domains be
bridged to add hidden biomechanical properties into modern radiological imaging systems?
As the later chapters in this book will show, some early work took advantage of the availabil-
ity of Doppler ultrasound devices to study tissue motion and abnormalities in the 1970s and
1980s. Out of this background came a remarkable series of imaging approaches to map out
the elastic properties of tissues. Initially, images were produced by vibration sonoelastography,
where vibrational shear waves (typically between 50 and 1000 Hz continuous wave) are excited
within tissue and the resulting vibrations are imaged and displayed using Doppler-displacement
or phase estimators [1, 2]. Other innovative approaches applied step compressions, transient
forces, and a variety of additional imaging modalities, such as magnetic resonance elastogra-
phy (MRE) and optical imaging, to uncover the biomechanical properties of tissue that were
previously unobservable with conventional radiology. These major approaches will be covered
in subsequent chapters in this book.

While there are an impressive variety of approaches to imaging the elastic properties of tissue,
it can be shown that all techniques lie on a continuum of biomechanical responses. In fact, the
time-dependent terms can be seen as important drivers of the particular response of tissues,
and this leads naturally to a continuum, or spectrum, of approaches ranging from very slow
motion, through sinusoidal steady-state motion, to impulsive motion, as depicted in Figure 3.1.
An overview of the continuum analysis was given by Parker et al. [3].

Consider a block of tissue-mimicking elastic material as shown in Figure 3.2, constrained
on the right side, free on top and bottom, but capable of being displaced from the left side,
while being imaged so that internal displacements can be accurately estimated. The equation
of motion that governs the displacements u is given by

(𝜆 + 𝜇)
𝜕

2uj

𝜕xj𝜕xi
+ 𝜇

𝜕

2ui

𝜕xj𝜕xj
+ 𝜌fi = 𝜌

𝜕

2u
𝜕t2 or

(𝜆 + 𝜇)∇(∇ ⋅ u) + 𝜇∇2u + 𝜌f = 𝜌ü (3.1)
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Figure 3.2 A homogeneous block of biomaterial is constrained on the right and is displaced on the left. As the
applied displacements move from very slow shear or compression, to higher frequency harmonic shear in the
y-direction, to broadband (impulsive) excitation, the form of the solution within the interior moves from linear
with x, to sinusoidal in x, to a propagating pulse in x. However, all are solutions to the basic equation of motion.
In this way, all the major elastographic imaging approaches can be seen as points along a common
biomechanical spectrum.

where 𝛾 and 𝜇 are the Lamé constants, capturing the mechanical properties of the material,
and where the body forces f , such as gravity, are assumed negligible except in the important
cases where radiation force “pushes” are applied. This equation, with given boundary and initial
conditions, governs the general dynamic response of a homogeneous, isotropic, linearly elastic
material to a force or displacement excitation.
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3.2 Some Classical Solutions

Most textbook solutions to Eq. (3.1) consider particular conditions depending on the type of
tractions or body forces applied: static, sinusoidal steady state, or transient. We examine a few
of these important cases and then in the next section show how these lie on the continuum.

In classical treatments it is convenient to represent the sinusoidal steady state response in
terms of waves propagating within the tissue. Two types of plane wave, shear waves and pressure
waves, propagate independently in the bulk material, interacting only at boundaries [4]. The
shear wave equation can easily be obtained from Eq. (3.1) by noting that there is no volume
change as layers of material move in shear, transverse to the direction of propagation, so the
dilatation ∇ ⋅ u = 0. The shear wave equation is then

∇2u = 1
c2

s
ü (3.2)

where the shear wave speed is

cs =
√

𝜇

𝜌

(3.3)

This equation can either be solved in terms of standing waves or propagating waves, depending
on the particular conditions.

Propagating plane pressure waves are irrotational, that is, ∇ × u = 𝟎 so u can be written in
terms of a potential as u = ∇𝜓 . Using the vector identity ∇2u = ∇∇ ⋅ u − ∇ × ∇ × u, we can
obtain the wave equation for ∇𝜓 as

∇2(∇𝜓) = 1
c2

p
( ̇∇�̇�) (3.4)

and the pressure wave speed is

cp =

√
𝜆 + 2𝜇

𝜌

(3.5)

For typical biomaterials, the pressure wave speed is orders of magnitude faster than the shear
wave speed. Consistent with this statement, biological tissues are nearly incompressible with
0.49 <𝜈 < 0.5. In the limit as 𝜈 approaches 0.5, the shear modulus becomes

𝜇 = E
2(1 + 𝜈)

→ E∕3 (3.6)

Therefore, for a nearly incompressible material, a measurement of the shear wave speed
cs ≈

√
E∕3𝜌 can be used to obtain information about the stiffness of the material. So in

continuous wave elastographic imaging experiments, the focus of attention is typically on the
shear wave properties and not on compressional pressure wave properties, which have already
been investigated extensively in ultrasonic tissue characterization studies.

Equation (3.1) can also be a starting point for the consideration of step-compression elas-
tography experiments. For static displacement or very low frequency cyclic motion, the iner-
tial terms are negligibly small. And for nearly incompressible biomaterials, the divergence (or
dilatation) ∇ ⋅ u is nearly zero, so Eq. (3.1) reduces to Laplace’s equation

∇2u = 0 (3.7)
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Solutions to Laplace’s equation depend on and reach their extrema on the boundary values
of u. For simple one-dimensional geometry the solution for displacement ux(x) is linear with x,
and therefore the strain (the derivative of displacement) is uniform, a fact that is assumed to be
true in most step-compression elastographic imaging experiments for homogeneous materials.
Deviations from constant strain are indications of local structures that are harder or softer,
forming the basis of imaging in compression elastographic methods.

3.3 The Continuum Approach

Rather than viewing different solutions to Eq. (3.1) (and different elastographic techniques) as
isolated special cases, it can be shown that there is a continuum of responses that depend on
the degree of the time-varying terms in Eq. (3.1).

If we very slowly compress then hold the block of Figure 3.2, or slowly shear it in the
y-direction, the time-varying terms are negligible and the solution to the displacement is simply
linear with x (going to zero on the right side where the block is constrained). In the compression-
then-hold case, the solution to Eq. (3.1) with negligible time derivatives, no body forces, and
near incompressibility comes from Eq. (3.7) and the specific conditions. Assume the
compression is a small displacement Δux applied at the left surface, so that within the tissue

ux(x) =
Δux(L − x)

L
for Δux < x ≤ L and the strain

Δux

L
≪ 1 (3.8)

The displacement u(x) is linear and the one-dimensional strain 𝜕u∕𝜕x is constant within the
block of tissue. Thus, a strain image produced by compression elastography techniques would
be uniform in this case, consistent with a homogeneous block of material.

Alternatively, if a shear-and-hold displacement in the y-direction, Δuy, is applied, the
solution is

uy(x) =
Δuy(L − x)

L
(3.9)

within the block. This is illustrated in Figure 3.3. Thus, a shear strain image produced in this
case would also be uniform, consistent with a homogeneous block of material.

If we next apply a shear motion in the y-direction in a slow, repeated, sinusoidal motion, the
“quasi-static” solution is appropriate, where the displacement is still linear in x but now has a
cos(𝜔Lt) term as the temporal dependence

uy(x) =
Δuy(L − x)

L
cos(𝜔Lt) (3.10)
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Figure 3.3 Summary image showing the continuum from step displacement through dynamic vibration,
multiple tones, and transients. The displacement field uy is given in each case for the homogeneous block of
tissue. The solution for the displacement in the homogeneous object is linear for the static case, sinusoidal for
modal patterns at Eigen-frequencies, and approaches a constant for multiple, simultaneous “chord” excitation.
Transient or impulsive waves may be broadband or more narrowband from tone burst excitations.
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Here the frequency 𝜔L is so low that the second (temporal) derivative term 𝜔

2
L is insignificant.

Next, as the frequency increases, the time-varying terms of Eq. (3.1) become non-negligible and
at some minimum frequency a modal pattern can be established [5–7]. The displacement within
the material is now a shear wave of a sinusoidal form, both in time and space. This phenomenon
can be present in vibration elastography and MRE depending on the size of the organs being
imaged and the frequencies applied. Next, if we displace the left side with multiple frequen-
cies (sono-chords) [8], or short tone bursts, then the displacements are comprised of multiple
frequency components and multiple eigenmodes.

Finally, if we displace the left side with a sharp impulsive excitation, then a shear wave is
produced that will propagate as a disturbance through the biomaterial, like a ripple on a taut
string. In the one-dimensional case, a sharp force fi in Eq. (3.1) applied interiorly will launch a
pair of waves analogous to the classical D’Alembert’s solution [9, 10]. When a long, cylindrical
beam is used to generate radiation force, the solution in cylindrical coordinates is analogous
[11–13], but more intricate due to cylindrical spreading. This is the basis for impulsive
shear-wave imaging. Thus, as the frequency content of the applied displacement moves from
very low frequencies, to sinusoidal harmonic frequencies above 40 Hz, to higher frequencies
and wider bandwidths, finally to an impulsive (broadband) excitation, the particular form
of the solution varies, but all are solutions to Eq. (3.1). In this way, the many approaches to
imaging the elastic properties of tissue can be related, as depicted in Figure 3.3. The lowest
frequencies correspond naturally to breathing, heart rate, and low voice frequencies [14, 15].
Low frequency techniques are covered in detail in Section IV of this book. Radiation force
techniques can be broadband (impulsive) or narrowband, as will be discussed in Sections
V and VI of this book. The highest frequencies are limited by the high attenuation of shear
waves in viscoelastic tissue [16]. This results in a frequency range of useful applications from
approximately 1 to 1000 cycles per second.

One important distinction emerges in the context of inverse solutions, however. In order
to arrive at a unique, well-conditioned inverse solution, there can be major differences in
requirements for data, boundary conditions, and assumptions for different approaches across
the continuum [17].

3.4 Conclusion

On the surface, the field of “imaging the elastic properties of tissues” appears to be comprised of
a large number of disparate approaches, each one a special case exploiting a unique tissue per-
turbation. Reinforcing this appearance, the approaches to solving the inverse problem are also
widely disparate, depending on the particular excitation being applied. However, at a deeper
level, a unifying framework links the different techniques within a continuum. One governing
differential equation captures the response of elastic materials to applied forces and tractions.
The changing nature of tissue responses can be followed from static or very low frequency
behavior, through higher frequency, and then impulsive excitations. Gradual transitions are
seen as the time-varying term of the governing equation becomes more significant with higher
frequencies. From this perspective, each of the major approaches to elastographic imaging
occupy a specific position on a continuum, where the key continuous variable is the frequency
range of the excitation and tissue displacements that are imaged and analyzed.
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Ultrasonic Methods for Assessment of Tissue Motion in Elastography
Jingfeng Jiang and Bo Peng

Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA

4.1 Introduction

Tracking tissue motion using ultrasound data has been an active field since the 1980s. In the
early work [1, 2], researchers attempted to monitor tissue displacements resulting from phys-
iological stimuli, in order to infer tissue mechanical properties or compensate for undesirable
physiological motion among multiple images by tracking those unwanted physiological motions
[3]. In 1991, Prof. Ophir’s group first proposed strain elastography [4], demonstrating its abil-
ity to quantify very small internal strains in tissue phantoms and soft tissue samples. Progress
in tissue motion assessment made within the framework of ultrasound elastography (includ-
ing strain elastography, shear wave elastography, and acoustic radiation force imaging) built on
those early attempts and were facilitated by improvements in hardware over that used by the
earlier investigations.

A number of motion-tracking techniques have been proposed and may be classified into the
following categories, according to the signal-processing method used, as follows:
• Frequency-domain techniques: A phase-based method is applied to find zero-phase contour

between the pre- and post-deformation ultrasound signals.
• Maximum likelihood (ML) time-domain correlation-based techniques: A time-domain

(magnitude) correlation function is used to identify the peak of the correlation function and
subsequently find the tissue motion vector.

• Time- and frequency-domain hybrid methods: Both the magnitude correlation function and
the phase information are employed to estimate the motion vector.

• Time-domain maximum a posterior (MAP) motion-tracking techniques: Motion tracking is
being cast as an optimization problem that requires restoring both the echo signal coher-
ence (between the pre- and motion-compensated post-deformation signals) and physical
constraints of tissue motion (e.g. motion continuity and tissue incompressibility).

• Optical flow-based techniques: The classical optical flow technique borrowed from computer
vision is applied to estimate tissue motion.

• Mesh-based techniques: in which the region of interest (ROI) is divided into finite
elements [5].
Consequently, the solution of the tissue motion has to satisfy two conditions: (1) find-

ing the maximum of the signal correlation (between the pre- and motion-compensated
post-deformation signals) and (2) governing equations in theory of elasticity [6].

This chapter provides an overview of above-mentioned methods used for ultrasound elas-
tography, which utilizes tissue displacements as fundamental information to infer mechanical
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properties of biological soft tissues. Results available in the literature have demonstrated that,
to some extent, better tracking methods often lead to more accurate elastographic results.
Unfortunately, many challenges still remain open, largely due to the complexity of in vivo tissue
motion, and the existence of significant echo signal de-correlation.

4.2 Basic Concepts and their Relevance in Tissue Motion Tracking

Some basic concepts are included in this section for the sake of completeness.

4.2.1 Ultrasound Signal Processing

In signal processing, cross-correlation is a basic concept and has been commonly used for
pattern recognition in various applications, including time-delay estimation in elastography.
Mathematically, for continuous functions f and g, the correlation function is defined as

(f ∗ g)(𝜏) = ∫
∞

−∞
[f (t)g∗(t + 𝜏)] dt (4.1)

where g∗ denotes a complex conjugate of g and 𝜏 is a dummy variable for time lag.
The correlation function can be rewritten for discretely sampled signals f and g as follows

(f ∗ g)[n] =
∞∑

m=−∞
{f [m]g∗[m + n]} (4.2)

Practically, ultrasound signals used for motion tracking have a finite length and are often real
signals. Some correlation metrics that have been commonly used to track tissue motion in the
ultrasound elastography literature are briefly summarized below. Hereafter, all ultrasound sig-
nals in this chapter are discretely sampled real signals with finite lengths.

The normalized correlation coefficient (NCC) between two signals f and g can be written as
follows

𝜌(𝜏) =

m=N∑
m=0

{f [m] − f } × {g[m + 𝜏] − g}√√√√m=N∑
m=0

{f [m] − f }2 ×

√√√√m=N∑
m=0

{g[m + 𝜏] − g}2

(4.3)

When we substitute the actual time delay 𝛿 into Eq. (4.3), the calculated NCC becomes an
indicator of motion-tracking accuracy [7, 8]. Hereafter, the calculated NCC value at the actual
time delay 𝛿 is referred to as the motion-compensated NCC value.

The cross correlation can also be estimated as follows

R(𝜏) =
N∑

m=0
{f [m]} ∗ {g[m + 𝜏]} (4.4)

Calculation of NCC is more computationally intensive but yields a coefficient between 0 and
1, while Eq. (4.3) produces a correlation value in an arbitrary scale. Equation (4.4) can be imple-
mented with the fast-Fourier transform (FFT) to improve its computational efficiency.

The sum-squared error (SSE) and sum-absolute error (SAE) between two signals f and g are
defined as functions of the lag 𝜏 below, respectively

𝜀(𝜏) =
N∑

m=0
( f [m] − g[m + 𝜏])2 (4.5a)
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𝜀(𝜏) =
N∑

m=0
|f [m] − g[m + 𝜏]| (4.5b)

4.2.2 Constitutive Modeling of Soft Tissues

Constitutive equations of materials based on continuum mechanics describe the macroscopic
stress response to external mechanical stimuli (e.g. forces). In general, biological soft tissues are
nonlinear and inhomogeneous, poro-elastic, and anisotropic [9]. However, for the purpose of
ultrasound-based motion assessment, a linearly elastic model is often (implicitly or explicitly)
assumed [6]:

𝜃ij = Cijklekl (4.6)

where the second-order symmetric stress tensor, 𝜃ij, is linearly related to the second-order
symmetric tensor strain tensor ekl. In Eq. (4.6), Cijkl is known as constitutive constants.
Equation (4.6) is a simplified expression of Hooke’s law and assumes strain linearity for a range
of deformation. If those constitutive constants are assumed to be independent of the direction
of the applied mechanical stimuli, Eq. (4.6) becomes isotropic. In this case, the constitutive
constants are reduced to two Lamé constants. The governing equations for such a situation
can be described as follows

𝜃ij = 2𝜇eij + 𝜆𝛿if enn (4.7)

𝜕𝜃ji

𝜕xi
+ fi = 0 (4.8)

eij =
1
2

(
𝜕ui

𝜕xj
+

𝜕uj

𝜕xi

)
(4.9)

where 𝜇 = (E∕2(1 + 𝜐))and 𝜆 = (E𝜈∕(1 + 𝜈)(1 − 2𝜈)) are the Lamé constants in which E is the
Young’s modulus and 𝜈 is the Poisson’s ratio. fi is the body force in the xi direction and ui is the
displacement vector in the xi direction.

Numerically, Eqns. (4.7)–(4.9) can be solved in the framework of finite element method
(FEM) under given boundary conditions. The numerical solution results in a linear system

KU = F (4.10)

where K is the system stiffness matrix, U is the displacement vector and F is the external force
vector. The derivation of Eq. (4.10) is beyond the scope of this chapter and can be found in
many FEM textbooks (e.g. [5]). Given the frame rate from a modern clinical ultrasound scanner
(typically > 60 frames/second), linear elasticity is a good first approximation when the tissue
motion is tracked from frame to frame. That is why a linearly elastic tissue model can be used
explicitly or implicitly for tracking tissue motion.

4.3 Tracking Tissue Motion through Frequency-domain Methods

We start our initial discussion of motion-tracking approaches that track one-dimensional (1D)
tissue motion. By neglecting the small deformation between two segments of 1D echo (real)
signals s1(y) and s2(y)

s1(y) = s2(y − 𝛿y) (4.11)
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where one signal s1(y) is shifted along the axial direction with respect to the other s2(y) by the
amount 𝛿y, and y is the axial direction. In the terminology of elastography, the subscripts 1
and 2 in Eq. (4.11) denote the pre- and post-deformation RF echo signals, respectively. The
cross-correlation between s1(y) and s2(y) is given by

R(𝜏) = ∫
∞

−∞
[s1(y + 𝜏)s∗2(y)] dy (4.12)

Of note, analytic signals can be calculated from real radiofrequency (RF) data by adding an
imaginary part to the signal. This imaginary part is equal to the signal’s Hilbert transform. It is
straightforward to show that this cross-correlation function (see Eq. 4.12) reaches its maximum
when 𝜏 = 𝛿y. The relation between the phase function 𝜑 and the cross-correlation function
R(𝜏)can be written as follows

Γ1,2(𝜔) =
{
∫

∞

−∞
[R(𝜏)e−i𝜔φ(𝜏)] d𝜏

}
(4.13)

where Γ is the cross-spectrum function and 𝜔 is the angular frequency. When 𝜏 = 𝛿y, the phase
function φ(τ) = 0. This phase function φ(τ), with respect to the transducer’s centroid frequency
𝜔0, is a nearly linear function, as shown in Figure 4.1.

Therefore, the root-seeking method can be used to iteratively estimate the time delay corre-
sponding to the zero phase angle as follows

𝜏n+1 = 𝜏n −
φ(𝜏n)
φ′(𝜏n)

(4.14)

where the subscripts n and n + 1 represent the n-th and (n + 1)-th iterations, respec-
tively, and the superscript ′ denotes the first-order derivative. Equation (4.14) is, in fact, a
Newton–Raphson method [11].

This method was first proposed by Pesavento et al. [10] and has led to a class of efficient
and robust methods for estimating the axial shift through the phase of the 1D complex cross
correlation without the need for interpolation. The solution is quite robust as the magnitude
of the cross correlation is smooth with Gaussian-like characteristics, thus allowing for reliable
estimation of the (sampled) peak of the cross-correlation. The true peak of the cross-correlation
can be estimated with sub-sample accuracy in a computationally efficient manner by finding the
zero-crossing of the phase of the 1D cross-correlation near the maximum magnitude point.

φ(t)

τ2

τ0

τ1

−1 1 2 3

slope: transducer
centroid frequency ω0

t/Δ–

Figure 4.1 An illustration of the process of root-seeking using a Newton–Raphson method in the zero-crossing
algorithm proposed by Pesavento et al. Source: © 1999 IEEE, reprinted, with permission, from [10].
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Early work has demonstrated that 1D motion tracking may fail to correctly track tissue motion
with deformations as small as 0.6% axial strain [12]. This is because soft tissues are often nearly
incompressible [9], and the tissues typically move in all three dimensions when they are being
deformed primarily in one direction. This motivates the need to develop 2D tracking. However,
the 1D phase-tracking method described above cannot be easily translated to two-dimensional
(2D) phase-tracking for conventional ultrasound echo data. Mainly, this is because there is
no carrier frequency available for the lateral component of the ultrasound echo and therefore
there is no lateral phase information. A practical approach suggested by Lubinski et al. [13]
is to perform a two-step motion tracking. In the first step, the lateral displacement compo-
nent can be found using a time-domain method, as described in Section 4.4 below. Then, the
above-mentioned zero-crossing method [10] can be applied to obtain the axial displacement
component after two signals are aligned using the known lateral displacement component.

We define x and y as the lateral and axial directions, respectively, for 2D motion tracking. We
also assume that there is a translation vector (u, v) between two RF signals s1(x, y) and s2(x, y).
Without losing generality, we assume that s1(x + u, y + v) = s2(x, y). In the frequency domain
(through Fourier transform)

S2(kx, ky) = S1(kx, ky)ej(kxu+kyv) (4.15)

where S1 and S2 are the forward Fourier transforms of the original signals s1 and s2, respec-
tively, and kx and ky are spatial frequency variables in the x (lateral) and y (axial) directions,
respectively. The cross-spectrum function Γcan be written as follows

Γ1,2(kx, ky) = S1(kx, ky)S∗
2(kx, ky) = |S1(kx, ky)|2ej(kxu+kyv) (4.16a)

Γ1,2(kx, ky) = |Γ1,2(kx, ky)|e−jφ (4.16b)

where the superscript * denotes a conjugate complex,𝜑 is the phase angle of the cross-spectrum
function Γ, and | | stands for the magnitude of a complex variable. As inspired by this, Sumi
proposed an iterative tracking method [14] based on minimization of the following cost
function

Cost(u, v) =
N∑

kx=1

M∑
ky=1
|Γ1,2(kx, ky)|{Θ − kxu − kyv}2 (4.17)

It is easy to see that Eq. (4.17) can be solved in a least squares fashion for a small region where the
displacement vector (u, v) is a constant. Once the first displacement vector (u0, v0 ) is obtained,
the signal s1 can be warped (also known as motion-compensation) by the displacement vec-
tor to create a motion compensation signal s1

1. Then, a new displacement vector (u1,v1) can
be calculated again. Superscripts over the displacement vector (u, v) and the signal s1denote
the iteration numbers. Iterations continue until certain criteria (e.g. (ui,vi) and the difference
between s1

1 and s2 are small enough) are satisfied.

4.4 Maximum Likelihood (ML) Time-domain Correlation-based
Methods

As shown in Figure 4.2, procedures of typical ML time-domain correlation-based methods
involve multiple steps. These are briefly presented in this section.

As shown in Figure 4.2, some echo signal decorrelation errors due to gross motion/
deformation could be reduced by some optional steps for signal processing prior to the
correlation calculations. For instance, companding [15], stretching [16], and applying window
functions [13, 17] have been successfully applied. As illustrated in Figure 4.3a, in practice, the
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Figure 4.2 A graphic diagram illustrating procedures involving in ML correlation-based time-domain methods.
Dots near the top of the plot represent discretely sample signals. s2[n] slides over the reference signal s1[m] to
calculate SSE.

magnitude of the 1D cross-correlation function R(𝜏) (Eq. 4.12) can be evaluated by using the
SSE, SAE, NCC, or un-normalized cross-correlation between two echo signals. Alternatively,
the calculation of 1D cross-correlation can be implemented using FFT as follows

R(𝜏) = F−1{F{s1(y + 𝜏)}F{s∗2(y)}} (4.18)

where the forward and inverse Fourier transforms are denoted by F( ) and F−1( ), respectively.
It is worth noting that, prior to the estimation of the cross-correlation, interpolation and/or
filtering may be applied to reduce the noise (references) in the original echo signals. The former
(SSE, SAE, NCC etc.) falls into the framework of block-matching algorithm (BMA), while the
latter is often referred to as FFT-based correlation algorithm. In this section, discreetly sampled
data s1(y) and s2(y) are written out as s1[n] and s2[n], respectively, to emphasize the fact that they
are discretely sampled data.

Nevertheless, the magnitude of the cross-correlation function can only be estimated at the
integer sample level (Figure 4.3b). To achieve sub-sample accuracy, a number of methods have
been proposed in the literature. The basic idea behind those methods is to fit the (discretely
estimated) magnitude of cross-correlation function into an underlying analytical function. Con-
sequently, the location of the true correlation peak can be analytical solved. For example, as
shown in Figure 4.3c, three points are first selected around the peak of the discretely sampled
(magnitude) cross-correlation function (see three red circles in Figure 4.3c), those three points
are fitted into a quadratic function (i.e. the solid curve in Figure 4.3c), y = ax2 + bx + c, and then,
the x location corresponding to the analytical correlation function can be obtained by solving
𝜕y
𝜕x

= 0, i.e. the location depicted by * in Figure 4.3c. Other analytical prototype functions such
as cosine [18, 19], grid slope [20], and spline [21] functions, and reconstructive interpolation
method [19] have also been considered. The reconstructive interpolation method is intended to
find two points that have the same correlation value but locate at the two opposite sides of the
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Figure 4.3 An illustration of the steps in ML time-domain correlation methods. Given two discretely sampled
signals (a), a normalized correlation metric can be calculated [i.e. the solid line in (b)]. Three points (circles in (c))
equally spaced around the proximity of the (integer level) correlation peak are first selected and, then, fitted
into a quadratic curve (illustrated using a solid line in (c)). Finally, the analytical correlation peak can be
obtained (see the black star in (c)). In (d), it is shown that the Hilbert Transform (HT) of the magnitude
correlation function (i.e. the solid curve in the bottom plot of (d)) can be used to estimate the correlation peak
at the sub-sample level.

integer-level correlation peak. Therefore, the middle point of those two points is the estimated
displacement [19], assuming the cross-correlation function is symmetric.

As suggested by Cabot [22], displacements at the sub-sample level can also be estimated
by evaluating the Hilbert Transform (HT) of the (magnitude) cross–correlation function R(𝜏)
(Figure 4.3d). In this case, the HT{R(𝜏)} will not have a maximum value when 𝜏 = 𝛿y. Instead,
HT{R(𝜏)} crosses zero at the time delay 𝜏 = 𝛿y. It can be argued that it is easier to find a zero
crossing than a correlation peak when the signal to noise (SNR) of the RF echo signals is not
very high. Toward this end, a zero-crossing algorithm similar to that proposed by Pesavento
et al. [10] can be used to estimate the sub-sample displacement estimate based on Figure 4.3d.

Most correlation-based methods handle discretely sampled RF echo directly. Viola and
Walker [23] proposed an alternate solution by creating a continuous function using a spline
interpolation so that a sub-sample estimation is no longer restrained by a pre-determined
sample interval. More specifically, in their method, the signal s1[n] is first processed to
determine an analytical representation ŝ1(y). Now, the motion-tracking problem is equivalent
to finding a time delay 𝜏 that minimizes the difference between ŝ1(y) and the discretely sampled
s2[y + 𝛿y], as follows

𝜀(𝜏) =
N∑

i=1
(ŝ1(ik + 𝜏) − s2[i])2 (4.19)
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Figure 4.4 A graphic illustration of 1D spline-based motion-tracking algorithm by Viola and Walker [23]. The
plot was modified from the original plot in [23]. The two sets of dot-connected lines near the top represent an
analytical representation of s1[n]. The dots just below those dot-connected lines denote a discretely sampled
signal s2[n]. s2[n] slides over the reference signal s1[m] to calculate analytical functions of SSE.

where k is the sample interval that will be used by the continuous analytical function ŝ1(y) to
estimate the SSE. The solution to Eq. (4.19) can be obtained by setting 𝜕𝜀

𝜕𝜏

= 0. The graphic repre-
sentation of this spline-based algorithm [23] is displayed above in Figure 4.4. In this algorithm,
the length of reference signal s1(y) is longer than the target signal s2(y) and therefore, the target
signal s2(y) can slide on the reference signal s1(y) to obtain a set of SSE values.

The need for tracking tissue motion in 2D motivates the development of 2D time-domain
motion tracking. In an example using a tissue-mimicking phantom [24], shown in Figure 4.5,
it is easy to see that 1D tracking fails to correctly track motion in a tissue-mimicking phantom
undergoing axial deformation of 1.5% strain, whereas the 2D tracking performs very well with
only occasional mistakes.

We still assume that a simple translation (u, v) exists between two RF signals s1(x, y) and
s2(x, y). The subscripts 1 and 2 denote the pre- and post-deformation RF echo fields, respec-
tively, and x and y represent the lateral and axial directions, respectively. The cross-correlation
between those two signals is given by

R(𝜏x, 𝜏y) = ∫ ∫
∞

−∞
s1(x − 𝜏x, y − 𝜏y)s2(x + u, y + v) dxdy (4.20)

where 𝜏x and 𝜏y represent a uniform grid (i.e. dummy variables for time lags) from which a
magnitude correlation map can be obtained.
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Figure 4.5 Images of B-mode and axial strain from a tissue-mimicking phantom with one spherical inclusion
that is approximately two times stiffer than the background. 1D BMA and 2D BMA denote 1D and 2D motion
tracking using a classic BMA, respectively. Then, two axial strain images were estimated from resultant axial
displacements from 1D and 2D tracking, respectively. Arrows point to motion-tracking errors manifested on
the corresponding strain images.

Using the linear system theory of medical ultrasound systems [25–27], it is easy to demon-
strate that the log-compressed cross-correlation function (between s1and s2described above in
Eq. 4.20) within the proximity of the integer-level correlation peak can be written as follows

log(R[𝜏x, 𝜏y]) ≈
(𝜏x − u)2

C1
+

(𝜏y − 𝜈)2

C2
(4.21)

where C1 and C2 are related to the ultrasound system parameters. A log-compressed magnitude
correlation map can be calculated by varying 𝜏x and 𝜏y. Equation (4.21) indicates that, in the
vicinity of the (integer-level) correlation peak, the (log-compressed) correlation function can
be approximated as a second-order polynomial surface.

Once a 2D correlation function is obtained and the integer-level time-delay is obtained
based on Eq. (4.20), procedures of 2D sub-sample estimation using an analytical function
are nearly identical to that described for 1D tracking. The quadratic surface function [28]

z = ax2 + bxy + cy2 + dx + fy + h and Gaussian function z = a × exp
{
−
(

(x−x0)2

2𝜎2
x

+ (y−y0)2

2𝜎2
y

)}
are frequently used for estimating the sub-sample displacements. Equation (4.21) explains why
the quadratic surface function and the Gaussian function are good choices for the sub-sample
displacement estimation.

The 1D spline-based time-delay estimation method [23] has been extended into 2D [29] by
Viola and Walker. Consequently, the 2D spline-based time-delay method may be used as a
sub-sample tracking algorithm here. Such a combination takes advantage of the low bias and
error variance offered by the spline-based algorithm, while maintaining computational efficacy.

A recent method [30] developed from our group took a different approach for the sub-sample
displacement estimation. We set the right-hand side of Eq. (4.21) equal to a constant K . Con-
sequently, as seen from Eq. (4.22) below, an iso-contour of the log-compressed correlation
function R[𝜏x, 𝜏y] is an ellipse.

(𝜏x − u)2

C1
+

(𝜏y − 𝜈)2

C2
= K (4.22)

Locating the center of this ellipse (u, v) is equivalent to finding the theoretical peak of the cor-
relation function R[𝜏x, 𝜏y]. As shown in Figure 4.6, this sub-sample method first determines a
contour at a correlation value K . Then, coordinates of the contour will be fitted to an ellipse
function [31] to obtain the center of the ellipse.

If we now make the assumption that the recorded ultrasound echo signal s(x, y) comprises a
deterministic speckle signal d(x, y) plus noise, the digitized echo signal can be modeled as

s(x, y) = d(x, y) + n(x, y) (4.23)
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Figure 4.6 A graphic representation of the contour-based sub-sample estimation method by Jiang and Hall
[30]. The color bar in the right side denotes the NCC. A fitted correlation contour at the NCC value of 0.98 is
depicted by points labelled using rectangles. Coordinates of those points are fitted to an ellipse represented by
the dashed curve. The small circle (see the arrow) represents the center of the fitted ellipse and its coordinates
are the sub-sample displacements.

where n is a zero-mean noise term. If we calculate the SSE between the pre- and
post-deformation signals s1(x, y) and s2(x, y), we get

𝜀(u, v) =
∑

[(d1(x, y) − d2(x + u, y + v) + n1(x, y) − n2(x + u, y + v))]2 (4.24)

We assume that echo data have a constant mean and the noise is described by a statistically
independent Gaussian variable with zero mean and constant variance.

As a result, the noise probability density function (PDF) can be written as

Pr(n) = C × exp

{
− 1

2𝜎2
noise

N∑
i=1

M∑
j=1

[d1(i, j) − d2(i + u, j + v)]2

}
(4.25)

where C is a constant. Equation (4.25) is commonly referred to as the ML function [32]. It is
obvious that minimizing the SSE is equivalent to the maximization of the ML function (i.e.
Eq. 4.25).

𝜏MLE = argmax
𝜏

[log(P(x|𝜏))] (4.26)
Toward this end, it is worth noting that the previously discussed time-domain correlation-based
speckle-tracking techniques are commonly regarded as unbiased estimators because they try
to maximize the ML function (Eq. 4.25) and do not rely on any a priori knowledge of the exper-
iment or tissue properties.

4.5 Tracking Tissue Motion through Combining Time-domain
and Frequency-domain Information

Ebbini [33] has provided significant insight for developments along this direction. Now, let us
consider the (magnitude) cross-correlation function in the vicinity of true correlation peak (see
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Figure 4.7 A graphic illustration of the phase-coupled tracking algorithm.

Figure 4.7). The zero-phase-contour behaves like a line within the proximity of the magnitude
correlation peak (see the black solid line in Figure 4.7). The maximum slope of the (magnitude)
correlation function (see the red dashed line) should be perpendicular to the zero-phase line.

Unfortunately, in the discretely sampled RF data, (numerical) estimation of maximum slope
is not reliable. Therefore, Ebbini proposed an approximation. Assuming the (magnitude) cor-
relation function retains symmetry around the magnitude correlation peak, we can find two
closely spaced “maximum” gradients on the correlation map (see the green arrows in Figure 4.7)
which have opposite directions. It is easy to imagine that the maximum slope line (see dashed
line in Figure 4.7) passes through the intersection point between the two “maximum” gradi-
ents. Finally, the shortest distance from the zero-phase line to the intersection point between
above-mentioned two “maximum” gradients can be used to find the actual correlation peak (see
the circle in Figure 4.7).

Interested readers are referred to Ebbini’s paper [33] for elegant mathematical derivations.
In Ebbini’s work, the zero-phase line is often estimated through one of the frequency-domain
methods, while the maximum slope line can be solved using one of the time-domain correlation
methods. Consequently, his method, to our knowledge, is the first and only work to couple
time-domain correlation (magnitude) functions with the phase information together to solve
the ultrasound motion-tracking problem.

4.6 Time-domain Maximum A Posterior (MAP) Speckle Tracking
Methods

4.6.1 Tracking Large Tissue Motion

In Section 4.4, 2D ML time-domain correlation-based methods generally work well for small
tissue motion. In this chapter, small tissue motion means tissue motion is smaller than a quarter
of the wavelength of the ultrasound echo data. With the increase of tissue deformation/motion,
the probability of identifying false correlation peaks will increase. False correlation peaks result
in large tracking errors that are known as “peak hopping” errors [34] in the elastography liter-
ature. One example showing the generation of false correlation peaks is shown in Figure 4.8.
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Figure 4.8 Simulated 5 MHz RF echo waveforms and their cross-correlation functions under various cases: (a) highly similar waveforms (first row; SNR = 80 dB, fractional
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Figure 4.9 Displacement estimation results from an in vivo breast lesion under a nominal 1% of compression:
(a) B-mode image and (b) estimated axial displacement in mm. Arrows in (b) point to the large tracking errors
due to the presence of elevated secondary correlation peaks. A 2D BMA without any regularization was applied
to obtain axial displacements displayed in (b).

Figure 4.8 shows NCC values with respect to different time lags for very similar signals
(Figure 4.8a), weakly similar signals (Figure 4.8b), and narrow-band signals (Figure 4.8c). In
each case, cross-correlation functions are similar. When the signal-to-noise ratio (SNR) is high
and bandwidth is large (Figure 4.8a), the estimated correlation function has a well-defined
peak with a correlation value close to 1. When the SNR is low, extrema decrease and are
slightly widened. Secondary peaks also are elevated. When both the SNR and signal bandwidth
are reduced, secondary peaks rise to a level that is even higher than the primary correlation
peak (see Figure 4.8c). In a circumstance like this, a pure correlation-based method selects
the secondary peak as the integer-level displacement estimate, thereby resulting in large
“peak-hopping” errors during tissue motion tracking. In time-delay estimation, peak-hopping
errors modeled by Barankin bounds [35, 36], arise from cycle jumps due to secondary peaks
in the cross-correlation function. The theoretically predicted large tracking errors frequently
occur in in vivo ultrasound data. An example is shown in Figure 4.9.

4.6.2 Strategies for Accurately Tracking Large Tissue Motion

Most contemporary motion-tracking techniques are based on two important ingredients, a
coarse-to-fine search scheme (also known as multi-scale tracking) and injection of biases, to
overcome large tracking errors.

The coarse-to-fine search scheme [37–40] starts initial estimates that are computed at a
coarser resolution level. Then, those initial estimates representing large-scale structures are
successively refined by taking into account the evidence of smaller structures. Tracking tissue
motion within the framework of elastography, this coarse-to-fine search scheme could work
well because the object being imaged moves as a continuum where the small structures move
more or less the same way as larger scale structures. However, this approach may fail as soon
as the relative motion of a small-scale object is distinct as compared to the dominant motion
of the object being imaged.

Compared with single-level tracking, the multi-scale tracking is intrinsically more robust to
decorrelation and error propagation. Particularly, if the envelope data (i.e. the B-mode image)
are used, multi-scale tracking is relatively noise tolerant. The similarity metric based on the
B-mode data depends on the data’s macro-structure, which does not deteriorate so rapidly in
the presence of noise and fine-scale RF signal decorrelation [39].
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Injection of biases has also been used in order to reduce the large motion-tracking errors.
Loosely speaking, we divided methods that fell into this category into the following three
sub-categories: maximize the prior information, regularized tracking using smoothness
constraint(s), and forming a formal Bayesian tracking scheme.

4.6.2.1 Maximize Prior Information
Basically, the central scheme of methods in this category is that an initial explorative search can
first be applied at selected/pre-determined locations and then certain prediction strategies will
be employed to advance the estimation process from one point to its neighbors. In fact, this
scheme performs a “guided/predictive search” based on the availability of prior information.
The first algorithm in this category was developed by Zhu and Hall [41] to achieve compu-
tational efficiency for real-time strain image formation while maintaining acceptable image
quality. Zhu and Hall’s original algorithm used a simple row-to-row prediction [41]. An ini-
tial large (e.g. 10 samples × 10 samples) explorative search is first performed for the first row.
Those resultant displacements from the first row have to be corrected to eliminate unwanted
spikes. Then, the displacement estimation for the second row will be limited to as few as one RF
sample in each direction. Of note, the reduced search range will be dependent on the tolerable
strain and, in Zhu and Hall’s paper, the one-sample search range corresponds to approximately
8% of strain. This process proceeds until displacements in the last row are finished. Variants of
this strategy include a column-by-column search [42] and a diagonal search [43].

A new predictive search strategy named “quality-guided” tracking by Chen and colleagues
[7] quickly captured our attention. Chen and colleagues have introduced a remarkably sim-
ple but very effective predictive strategy. As shown in Figure 4.10, in the preparation step, a
(large) initial brutal-force search (for integer level displacements) will be performed for approx-
imately 5% of total number of estimation locations. Let’s say the initial search is performed
for M × N locations. For each location, the initial search yields an initial displacement vec-
tor and a corresponding motion-compensated NCC value. It is worth noting that the local
motion-compensated NCC value was defined as quality by Chen et al. [7] and can be evaluated
by Eq. (4.3).

This initial search will be followed by a recursive search until all estimation locations are com-
pleted. In the first recursive step, among all MN motion-compensated NCC values, the algo-
rithm will select the maximum NCC value as the initial seed Pt1 with the location coordinates
of lx1 and ly1. Other MN-1 displacement estimates, locations, and related motion-compensated
NCC values will be stored in a candidate pool (CP). Sub-sample estimation will be used to
obtain the full displacement vector for Pt1. A predictive search will then be performed for
four intermediate neighbors of the initial seed (i.e. (lx1 − 1,ly1), (lx1,ly1 − 1), (lx1 + 1,ly1) and
(lx1, ly1 + 1)) in a reduced search range (e.g. 3 samples × 3 samples) using the displacement esti-
mates at Pt1 as the guidance. For each neighbor, one motion-compensated NCC value will be
obtained. All four displacement vectors, locations, and calculated motion-compensated NCC
values will be stored in the CP while removing the current seed Pt1 and its related parameters
will be removed from the CP.

This recursive process will continue. Consequently, the CP contains the following at the k-th
recursive step

CPk = CPk−1 + Neighbor(Ptk−1) − Ptk−1 (4.27)

Ptk = arg max {Q(p)|p ∈ CPk} (4.28)

The search continues until CP is empty.
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Figure 4.10 A flowchart describing the procedures of speckle tracking in the quality-guided algorithm
proposed by Chen et al. [7].

Another advantage of this quality-guided tracking method [7] is its flexibility in tracking tis-
sue motion among several disjoint regions, as long as at least one initial seed can be set up
for each disjoint region. The other three predictive search strategies [41–43] mentioned above
require global continuity.

However, there is one concern about this quality-guided tracking method. As pointed by
Chen and colleagues [7], because there is no guarantee that tracking locations are processed in
order of quality, it has been suggested a re-initialization approach is needed if there are localized
errors remaining. In other words, the outcome of the quality-guided search (see Figure 4.10)
may rely on the selection of those initial candidates in the CP (Figure 4.10). A follow-up paper
[8] by our group proposed a hybrid approach where initial candidates were selected by passing
tests with the combination of correlation and local continuity. Our preliminary testing results
of this hybrid tracking approach [8] showed that it was more stable, as compared to the original
quality-guided tracking, in 100+ frame pairs of in vivo breast lesion data investigated [7].



50 Ultrasound Elastography for Biomedical Applications and Medicine

4.6.2.2 Regularized Motion Tracking Using Smoothness Constraint(s)
To use the motion regularization, speckle tracking can be modeled as an optimization problem
using an energy function combining the correlation coefficient with speckle motion continu-
ity. This is motivated by the fact that speckle motion corresponding to primary correlation
peaks preserve local motion continuity, whereas secondary correlation peaks often lead to false
displacement estimates (peak hopping errors) that do not maintain motion continuity. Regu-
larized speckle tracking can effectively eliminate the majority of peak hopping errors [34] (see
Figure 4.9).

Given a search region, the cost associated with each possible solution in the solution space
can be calculated as follows

cost = ∫ ∫Ω
[Ec + 𝛼(Es)]dΩ (4.29)

where 𝛼 is an adaptively chosen scale factor, Ec is a measure of speckle similarity/correlation,
and Es is a measure of motion smoothness that is minimized with high motion continuity. Usu-
ally, Ec is a form of correlation between two signals, e.g. Eq. (4.5a) or Eq. (4.5b), and, Es is usually
is a smoothness constraint and can be calculated using finite difference scheme from a small
neighborhood Ω.

Variants of this methodology have proposed by several groups [40, 44–47]. Pellot-Barakat
et al. [44] proposed to solve the generic cost function in Eq. (4.29) using an iterative conditional
mode (ICM) algorithm [48], while our groups [40, 45–47] have adopted the dynamic program-
ming approach to solve Eq. (4.29) so that the computational efficiency is sufficient for real-time
image formation of strain elastography. Mathematically, all of those optimization algorithms
were based on either the theory of random Markov field or Hidden Markov Chain (HMC)
models.

4.6.2.3 Bayesian Speckle Tracking
McCormick, Rubert, and Varghese [49] first proposed to use the concept of Bayes theorem [50]
to regularize speckle tracking. Their motion-tracking algorithm is a multiple step process for a
ROI consisting of M × N displacement vector estimates, as shown in Figure 4.11.

Their idea was to construct an iterative process where displacement estimation at one location
can be gradually improved by taking information from its neighbors.

In the first step, for each displacement estimation location, the correlation map will be cal-
culated given a research region. For instance, for an arbitrary displacement estimation location
(i, j), the search region is −l to +l in both directions. By searching through all (2l + 1) ×
(2l + 1) possible integer displacement vectors, we will obtain a (2l + 1) × (2l + 1) correlation
matrix; each value in this correlation matrix represents a NCC value corresponding to one pos-
sible displacement vector. This correlation matrix can be converted to a PDF if the following
two conditions are true for a function: 1) all values of the function are between 0 and 1, and
2) summation of all values of the function is a unity. This (discretely sampled) PDF function
will be used as the prior PDF in the framework of Bayes theorem [50]. Of note, for each dis-
placement estimation location, the current displacement estimate is the displacement vector
corresponding to the maximum local correlation value in its correlation map.

In the second step, ML function given the current displacement estimate Ux will be calculated
based on existing data which are the neighborhood displacements UN , as follows[49]

Pr(UN Ux) =
∏
x′∈N

maxVx′

[
Pr(Vx′ ) exp

(‖Vx′ − Ux‖2

2𝜎2
u

)]
(4.30)

where x′ is one neighbor in the entire neighborhood, Vx′ is the current displacement estimate
for the neighbor, Pr(Vx′ ) is the prior PDF for the current displacement estimate, and 𝜎u is a
parameter used to normalized the above Gaussian-like function in Eq. (4.30) based on the local
tissue deformation. It is easy to see, from Eq. (4.30), that displacement estimates resulting in an
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excessively large deformation will be penalized. Consequently, Eq. (4.30) is a form of smooth-
ness constraints.

In the third step, once the ML function for each displacement estimation location is deter-
mined, the posterior PDF will be calculated based on Bayes theorem [50]

Pr(Ux|UN ) =
Pr(UN |Ux)Pr(Ux)

Pr(UN )
(4.31)

Based on the updated posterior PDF Pr(Ux|UN ), the current displacement estimate for that
location will be updated by selecting the displacement vector corresponding to the maximum
Pr(Ux|UN ). There are two iteration loops between the second and third steps, as shown in
Figure 4.11. The inner loop is to make sure all locations within the ROI will be covered.
Therefore, the local displacement estimation can be recursively improved by updating the
displacement estimates following an order. The outer loop is to ensure there is no starting
point dependence.
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In the fourth step, the sub-sample estimation will be done based on the final local posterior
PDF function (see Eq. 4.31) of each location.

Recently, Byram, Trahey, and Palmeri [51, 52] have developed a more general Bayesian frame-
work for speckle tracking following the similar approach by McCormick, Rubert, and Varghese
[49]. One of their major contributions was to investigate the construction of the ML function.
Their suggested ML function is the following

Pr(UN |Ux) ∝ exp
[SNR

𝛼

𝜌

]
(4.32)

where 𝛼 is a scaling factor that can be empirically chosen and 𝜌 is the NCC (see Eq. 4.3). It is
worth noting that the terminology used by McComick et al. [49] was different than that used
in work [51, 52] by Byram et al. The work by Byram et al. demonstrated that the ML function
should be appropriately scaled in order to make the ML function have an improved discrimi-
nant ability (i.e. a narrower ML function with a sharp peak). In other words, after scaling, the
probability corresponding to the true displacement is higher, as compared to the unscaled ML
probability density function.

4.6.3 Discussions

There is one thing in common among three strategies described in Section 4.6.2 – they attempt
to combine signal correlation assessments with local smoothness as the prior information to
improve the displacement estimation. By making use of prior information about the conditions
of the measurement, we can eliminate possible outcomes that are non-physical.

Now our discussion will be steered toward Bayes’ theorem [50]

Pr(𝜏|d) = Pr(d|𝜏)Pr(𝜏)
Pr(d)

(4.33)

where d is the data and 𝜏 is a possible displacement vector from the solution space. The term
Pr(d|𝜏) denotes the ML function, Pr(𝜏) is the prior PDF, and Pr(𝜏|d) is the posterior PDF. In the
ultrasound-based motion-tracking literature, researchers often use the correlation function as
the ML function and tissue motion continuity as the prior information. If no prior information is
injected into the motion-tracking process, i.e. Pr(𝜏) = constant, the posterior PDF is equivalent
to the likelihood function. That is why a pure correlation-based motion-tracking method is a
ML estimator.

Now referring to those predictive search methods, they rely entirely on prior information.
Consequently, if a tracking error inherited from a previous step was not corrected immediately,
prior information would no longer be valid, and the error would likely propagate and cause a
cascade effect. That is why research efforts have been devoted to more intelligent predictions
(e.g. row-by-row [41], column-by-column [42], and diagonal search [43]). It is easy to see that
Chen’s quality-guided approach [53] can use the prior information more reliably because the
quality-guided scheme ensures that the highest quality initial displacement vector gains priority
in guiding subsequent speckle tracking. Consequently, errors occurred in early steps should
likely be isolated and the algorithm is able to process a region with one or more (geometrical)
tissue interfaces, given sufficient ultrasound data quality.

Those approaches using smoothness constraint(s) and Bayesian tracking approaches are
mathematically equivalent. This is because a MAP motion-tracking method can be formally
written as a method that maximizes the logarithm of the posterior PDF, as follows [32]

𝜏MAP = argmax
𝜏

[log(Pr(𝜏|x))] = argmax
𝜏

[log(Pr(x|𝜏)) + log(Pr(𝜏)) − log(Pr(x))]
= argmax

𝜏

[log(Pr(x|𝜏)) + log(Pr(𝜏))] (4.34)
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We have dropped the log(Pr(d)) term in Eq. (4.34) because there is no direct dependence
between the time delay 𝜏 and the existing data d in Eq. (4.33). It is straightforward to argue
that the generic cost function for smoothness regularized tracking (Eq. 4.29) is mathematically
equivalent to maximizing a posterior PDF that combines both the cross-correlation and the
smoothness/continuity.

4.7 Optical Flow-based Tissue Motion Tracking

We still assume that a displacement (u, v) exists between two radiofrequency (RF) signals s1(x, y)
and s2(x, y). The following condition holds under the assumption that the intensity of ultrasound
echo data remains constant [54]

s1(x + u, y + v) = s2(x, y) (4.35)
Expanding the left-hand side of Eq. (4.35) in a Taylor series yields

𝜕s1(x, y)
𝜕x

u +
𝜕s1(x, y)

𝜕y
v + s1(x, y) − s2(x, y) + H.O.T. = 0 (4.36a)

𝜕s1(x, y)
𝜕x

u +
𝜕s1(x, y)

𝜕y
v + s1(x, y) − s2(x, y) ≈ 0 (4.36b)

where H.O.T. denotes high-order terms truncation by the Taylor expansion above. If the
displacement vector (u, v) is sufficiently small (e.g. at the sub-sample level), those high-order
terms can be removed without losing the accuracy of Eq. (4.36b). Equation (4.36b) is known
as the optical flow constraint equation in Computer Vision. However, Eq. (4.36b) has two
unknowns and therefore is not solvable without additional equations. Those methods can
be largely divided into two categories: region-based and smoothness constraint-based. In
ultrasound elastography literature, there are only few optical flow-based methods [55–57].
Since Eq. 4.36b) is derived based on the Taylor expansion, the optical flow-based methods in
the ultrasound elastography are often used for a sub-sample tracking.

4.7.1 Region-based Optical Flow Methods

The displacement vector (u, v) in Eq. (4.36b) can be estimated from the ultrasound echo intensi-
ties in the neighborhood Ω consisting of N locations [{x1, y1}, {x2, y2}, {x3, y3}, · · · , {xN , yN}]
using a least-squares formulation as follows

A
{

u
v

}
= b (4.37a)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕s1(x1, y1)
𝜕x

𝜕s1(x1, y1)
𝜕y

𝜕s1(x2, y2)
𝜕x

𝜕s1(x2, y2)
𝜕y

· · · · · ·
𝜕s1(xN , yN )

𝜕x
𝜕s1(xN , yN )

𝜕y

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.37b)

b =

⎧⎪⎪⎨⎪⎪⎩

s1(x1, y1) − s2(x1, y1)
s1(x2, y2) − s2(x2, y2)

· · ·
s1(xN , yN ) − s2(xN , yN )

⎫⎪⎪⎬⎪⎪⎭
(4.37c)
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So far, we have explicitly assumed that there is a rigid-body motion within the neighborhood
Ω, which is typically a rectangular region in 2D.

Eqns. (4.37a)–(4.37c) can be solved in the least squared sense. Therefore, the rigid-body
motion represented by two translations u and v can be written as follows{

u
v

}
= M−1B (4.38a)

M =

⎡⎢⎢⎢⎢⎣
N∑

i=1

(
𝜕s1(xi, yi)

𝜕x

)2 N∑
i=1

(
𝜕s1(xi, yi)

𝜕x

)(
𝜕s1(xi, yi)

𝜕y

)
N∑

i=1

(
𝜕s1(xi, yi)

𝜕x

)(
𝜕s1(xi, yi)

𝜕y

) N∑
i=1

(
𝜕s1(xi, yi)

𝜕y

)2

⎤⎥⎥⎥⎥⎦
(4.38b)

B =

⎧⎪⎪⎨⎪⎪⎩

N∑
i=1

(
𝜕s1(xi, yi)

𝜕x

)
( s1(xi, yi) − s2(xi, yi))

N∑
i=1

(
𝜕s1(xi, yi)

𝜕y

)
( s1(xi, yi) − s2(xi, yi))

⎫⎪⎪⎬⎪⎪⎭
(4.38c)

If the tissue motion within the 2D rectangular neighborhoodΩ follows an affine transformation
model, the lateral and axial displacements u and v are no longer two constants. They can be
expressed by translations, elongations, and shearing as follows

{
u(x, y)
v(x, y)

}
=
{

T1
T2

}
+
⎡⎢⎢⎢⎣
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

⎤⎥⎥⎥⎦
{

x
y

}
(4.39)

where T1 and T2 are lateral and axial translations, respectively, 𝜕u
𝜕x

is the lateral strain, 𝜕v
𝜕y

is the

axial strain, 𝜕u
𝜕y

is the lateral shear, and 𝜕v
𝜕x

is the axial shear.
Substituting Eq. (4.39) into Eq. (4.36b), we obtain

𝜕s1(x, y)
𝜕x

(
𝜕u
𝜕x

x + 𝜕u
𝜕y

y + T1

)
+

𝜕s1(x, y)
𝜕y

(
𝜕v
𝜕x

x + 𝜕v
𝜕y

y + T2

)
+ s1(x, y) − s2(x, y) ≈ 0

(4.40)

Similarly, Eq. (4.40) can also be solved in a least-squares fashion for Ω consisting of N locations
[{x1, y1}, {x2, y2}, {x3, y3}, · · · , {xN , yN}]. The linear system can be written as follows

A
[

T1 T2
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]T

= b (4.41a)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕s1(x1, y1)
𝜕x

𝜕s1(x2, y2)
𝜕x
···

𝜕s1(xN , yN )
𝜕x

||||||||||||||||

𝜕s1(x1, y1)
𝜕y

𝜕s1(x2, y2)
𝜕y
···

𝜕s1(xN , yN )
𝜕y

||||||||||||||||

𝜕s1(x1, y1)
𝜕x

x1

𝜕s1(x2, y2)
𝜕x
···

x2

𝜕s1(xN , yN )
𝜕x

xN

||||||||||||||

𝜕s1(x1, y1)
𝜕x

y1

𝜕s1(x2, y2)
𝜕x
···

y2

𝜕s1(xN , yN )
𝜕x

yN

||||||||||||||

𝜕s1(x1, y1)
𝜕y

x1

𝜕s1(x2, y2)
𝜕y
···

x2

𝜕s1(xN , yN )
𝜕y

xN

||||||||||||||||

𝜕s1(x1, y1)
𝜕y

y1

𝜕s1(x2, y2)
𝜕y
···

y2

𝜕s1(xN , yN )
𝜕y

yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.41b)
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b =

⎧⎪⎪⎨⎪⎪⎩

s1(x1, y1) − s2(x1, y1)
s1(x2, y2) − s2(x2, y2)

· · ·
s1(xN , yN ) − s2(xN , yN )

⎫⎪⎪⎬⎪⎪⎭
(4.41c)

The linear system in Eq. (4.41b) can be solved by typical linear equation solvers. Therefore, all
affine parameters (see Eqns. 4.41a–4.41c) are the following[

T1 T2
𝜕u
𝜕x

𝜕u
𝜕y

𝜕v
𝜕x

𝜕v
𝜕y

]T

= (AT A)−1AT b (4.42)

Eq. (4.42) indicates that displacements can be obtained along with normal, lateral shear, and
axial strains all together [56, 57].

4.7.2 Optical Flow Methods with Smoothness Constraints

While region-based methods are commonly used, optical flow estimation can also be done by
assuming certain forms of motion smoothness through nonparametric motion models, rather
than an explicit parametric model (e.g. rigid-body or an affine transformation. One such energy
functional E(u, v) was proposed by Horn and Schunck [58]

E(u, v) = ∫
(
𝜕s1(x, y)

𝜕x
u +

𝜕s1(x, y)
𝜕y

v + s1(x, y) − s2(x, y)
)2

+ 𝜆(||∇u||2 + ||∇v||2)dΩ
(4.43)

where∇ is a gradient operator, ‖◾‖ is a L2 norm, and𝜆 is a positive regularization parameter that
balances the fidelity of the echo data (i.e. the first term at the right-hand side of Eq. 4.43) and the
contribution needed from the smoothness constraint (i.e. the second term at the right-hand side
of Eq. 4.43). Typically, Eq. (4.43) can be solved by Euler–Lagrange equations using the calculus
of variation. However, this approach is fairly computationally expensive. To our best knowledge,
little research work in ultrasound elastography has been performed to fully incorporate the
smoothness constraint to solve the above-mentioned optical flow problem (i.e. Eq. 4.43).

4.8 Deformable Mesh-based Motion-tracking Methods

Similar to techniques developed for finite element-based image registration, deformable
mesh-based motion-tracking methods are intended to ensure admissible solutions that satisfy
with the theory of elasticity [6]. In this section, heuristic explanations are provided below.
Interested readers are referred to the original publications [59, 60] for details.

As illustrated in Figure 4.12a, in deformable mesh-based methods, ultrasound data (either
RF echo data or B-mode images) can first be divided into a computer mesh (e.g. consisting
of triangles, rectangles, or other polygons). Those meshed elements are interconnected and
therefore can ensure the continuity of motion. Recall that, in the theory of FEM [5], the dis-
placement at any point within the domain of interest can be interpolated from corresponding
nodal displacements and therefore, at least, the first-order displacement continuity (C0) can be
guaranteed.

Once the computer mesh is generated, the motion-tracking problem can be reformulated as
an optimization problem to minimize the following energy function

E = Emis−match + 𝜆Eelasticity (4.44)
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(a) (b)

Figure 4.12 An generic illustration of deformable mesh-based motion-tracking algorithm: (a) generation of a
finite element mesh with the calculated image nodal forces and (b) the resultant deformed finite element
induced by image nodal forces. In (a), arrows represent the calculated nodal forces, while, in (b) arrow
represents the calculated nodal displacements.

where 𝜆 is a constant balancing the relative contributions between the first and second energy
terms in Eq. (4.44). The first energy function relates to a similarity measure representing the
mis-match between the pre-deformation signal s1 and the post-deformation signal s2. The sec-
ond term is related to tissue elasticity constraints.

In the work by Zhu et al. [60], the second term in Eq. (4.44) was a smoothness constraint. A
“pseudo-steepest descending method” was used to minimize Eq. (4.44). Their method exhaus-
tively searches the entire solution space at the integer-level until an optimal solution of Eq.
(4.44) is reached, thereby resulting in a global optimal solution. Unfortunately, this brute-force
method may not be computationally efficient.

In the work by Yeung et al. [59], the second term in Eq. (4.44) was the Lamé-Navier’s equation.
In the framework of FEM, Yeung et al. demonstrated that minimization of Eq. (4.44) is equiv-
alent to solve the following linear system to enforce admissible tissue motion to satisfy the
Lamé-Navier’s equation [6].

(K + I)U = F (4.45a)

F = ̂U (4.45b)

where K is the “scaled” system stiffness matrix that is assembled to solve the Lame-Navier’s
equation in FEM, I is an identity matrix, F is the nodal image force vector, ̂U is the displacement
vector obtained by a conventional correlation-based motion-tracking algorithm, and U is the
unknown displacement. Equation (4.45a) can be solved by a linear equation solver, given certain
(displacement) boundary conditions. Using Eq. (4.45a) suggests that the system stiffness matrix
K acts like a physics-based “filter” to regularize the initially estimated displacement vector ̂U .
However, the drawback is also apparent because the final estimated displacement vector U will
be largely dependent on the selection of the stiffness distribution of the object being imaged.
Unfortunately, knowing the stiffness distribution (particularly before the motion tracking) is
not feasible in practice, thereby limiting the use of this method in heterogeneous tissues.

A method has been developed by two groups [61, 62] to improve the original approach by
Yeung et al. In the new method, the energy function was revised as follows

minu,𝜇F(u, 𝜇) F(u, 𝜇)

= ∫Ω
Emis−match(u)dΩ + 𝜆1∫Ω

Eelasticity(u, 𝜇)dΩ + 𝜆2∫Ω
Eincompressible(u)dΩ (4.46a)
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Emis−match = (s1(x) − s2(x + u))2 (4.46b)

Eelasticity = ∫Ω
[−∇p + ∇ ⋅ (𝜇∇u + 𝜇(∇u)T )]2dΩ (4.46c)

Eimcompressibility = ∫Ω
[∇ ⋅ u]2dΩ (4.46d)

where u is the displacement field, 𝜇 is the shear modulus distribution, and p is the pressure.
In Eqns. (4.46a)–(4.46b), the soft tissue being imaged was assumed to be linearly elastic and
incompressible as a first approximation [9]. Based on Eq. (4.46a)–(4.46d), a FEM formulation
can be derived so that both displacement and shear modulus distributions can be simultane-
ously solved. Consequently, no assumptions regarding the underlying tissue elasticity informa-
tion are needed in order to estimate tissue motion that is admissible to elasticity equations (i.e.
Eqns. 4.46c and 4.46d).

4.9 Future Outlook

It is anticipated that no individual motion-tracking technique will dominate future develop-
ment of this field, and that motion-tracking techniques will evolve according to their suitability
for particular applications. However, we do want to attest that motion-tracking accuracy closely
ties to the tracking algorithm used. In order to improve the design of motion-tracking algo-
rithms, there are at least two criteria to consider. The first one, of course, is the sensitivity, i.e. the
ability to estimate very small tissue motion. The second criterion is the robustness. This is the
ability of a motion-tracking algorithm to cope with other than ideal data. Robustness also means
the ability to reliably estimate both large and small tissue motion. In elastography applications,
motion-tracking techniques for shear wave elastography [63] likely focus on sub-sample level
tracking; whereas, the nonlinear modulus inversion application [64, 65] may have to first solve
the problem of tracking tissue deformation without gross errors over a range of deformation.
To satisfy the above-mentioned two criteria, our experience is that a good tracking algorithm
has to reduce both large “peak-hopping” errors and small jitter errors.

To demonstrate how the reductions of both large “peak-hopping” and small jitter errors can
collectively improve the motion-tracking accuracy, we show an in vivo invasive ductal carci-
noma (IDC) acquired under free-hand scanning. The IDC was compressed by approximately
1%. Details of the scanning protocol and equipment can be found in the previous work by
Hall et al. [66]. Figures 4.13b–4.13g show the axial and lateral displacement estimates by three
different algorithms: (1) a classic BMA [i.e. no predictive search and no regularization], (2) a
regularized BMA [40] using smoothness constraints and, (3) the coupled sub-sample estima-
tion method [30] was applied to obtained high quality displacement data after the regularized
BMA [40] was used to obtain integer displacement estimates. It is easy to see, from Figures 4.13b
and 4.13c [see arrows], that the classic block matching algorithm makes large “peak-hopping”
errors, while the regularized BMA is able to avoid them. The general appearance of the axial
and lateral displacement images (Figures 4.13f and 4.13g) by the new sub-sample estimation
method [30] is smoother as compared to results from the regularized BMA (Figures 4.13d and
4.13e). It is interesting to note that the lateral displacement image in Figure 4.13g seems more
consistent with the tissue landmarks visible in the B-mode image (Figure 4.13a), i.e. the gross
appearance of the lesion and tissue interfaces around it.

4.9.1 Tracking Lateral Tissue Motion

In previous sections, lateral tissue motion was tracked mostly for the purpose of obtaining the
“correct” integer-level correlation peaks so that we can better track the axial component of the
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Figure 4.13 (a) B-mode of an in vivo invasive ductal carcinoma (IDC); (b) and (c) axial and lateral displacement images tracked using a classic block-matching algorithm,
respectively; (d) and (e) axial and lateral displacement images tracked using a regularized BMA [40], respectively; and (f ) and (g) axial and lateral displacement images
where the new sub-sample estimation algorithm has been applied, respectively. The arrows on (a) point to the IDC and, arrows on (b) and (c) point to the location where
the classical BMA makes large “peak-hopping errors”.
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tissue motion. Currently, the quality of lateral displacements is still poorer than that of those
axial displacement estimates (e.g. see Figure 4.13). There are a couple of reasons for that. First,
lack of a lateral phase component in ultrasound echo signals places a fundamental limit on the
accuracy of lateral displacement estimates. Second, the speckle cell size is typically too coarsely
sampled in the lateral direction, requiring interpolation by large factors. Now, interpolation
itself may become a source of error.

In order to improve lateral tracking accuracy, methods in the literature can be divided
into two categories. Methods in the first category require significant modifications of the
ultrasound imaging hardware (e.g. special beamforming or rapid beam steering). A method
independently proposed by Jensen [67] and Anderson [68] attempted to introduce non-axial
oscillations/modulations in their respective imaging point spread functions. Techavipoo et al.
used “angular compounding” to improve lateral displacements [69].

Methods in the second category are improved (software) tracking algorithms where imag-
ing/mathematical processing techniques were used to enhance lateral displacement estimation.
One common scene was to improve the ability to location the true correlation peak. The work
by Ebbini [70] and by Jiang and Hall [30], described earlier, falls into this scene. Tissue incom-
pressibility (also known as divergence-free) has been also used to explicitly tie relevant axial
and lateral displacements together. Since soft tissues can in general be considered to be incom-
pressible [9], then no volumetric change occurs during the deformation. Further, assuming that
the out-of-plane deformation is zero or minimal from frame to frame data (i.e. the plane strain
approximation), we can write the following equation for a 2D tracking problem

𝜕u
𝜕x

+ 𝜕v
𝜕y

= 0 (4.47)

where u and v are axial and lateral components of the displacement vector.
Konofagou and Ophir [71] proposed a sub-sample estimation approach where axial and

lateral displacements can be iteratively improved by re-correlating ultrasound echo sig-
nals through instantaneous motion compensations. The incompressibility (Eq. 4.47) was
incorporated into their motion compensation scheme.

Another common strategy is to rely on rigorous mathematical optimization. The work by
Brusseau et al. [72] formulated motion tracking between two echo frames as an optimiza-
tion process to find local 2D affine transformations. Therefore, both axial and lateral transla-
tions can be jointly solved using constrained nonlinear programming. Viola and Walker [29]
proposed multi-dimensional tracking using spline functions. Their solution was based on a
gradient-based optimization technique. Rivaz et al. have also applied physical constraints to
simultaneously regularize axial and lateral speckle tracking using multiple (time) frames of RF
echo data to improve displacement estimations [73] through optimization. Their method also
yielded good results.

Although progress has been made, the quality lateral displacement estimates is still relatively
poor as compared to its axial counterpart (e.g. see the comparison between Figure 4.13c and
Figure 4.13g). Since many ultrasound applications such as temperature mapping [74], modulus
inversion [75, 76], and shear strain estimation [71] may need or prefer to have accurate lat-
eral displacements, it is expected that more continued research efforts will be devoted to this
important topic.

4.9.2 Tracking Large Tissue Motion

In order to deal with large tissue motion, the consensus is probably that algorithms that are
purely based on signal correlation (i.e. the likelihood function) are not sufficient. Therefore,
prior information (e.g. smoothness) has to be injected to estimate the posterior PDF. The pur-
pose of construction of the posterior PDF is to balance the information obtained from the
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Posterior PDF

Likelihood
function

Prior Figure 4.14 A graphical illustration of
construction of the posterior PDF.

likelihood function and prior information function, as shown in Figure 4.14. Consequently, it is
straightforward to argue that, in the general framework of Bayesian speckle tracking, the esti-
mate could be biased toward non-physical solutions if either the prior function or the likelihood
function was not appropriately selected.

In the literature, evidence showed that the design of the posterior PDF could be a major factor.
For instance, in the original work by McCormick et al. [49], they found that their posterior PDF
was only effective for relative large deformations. Once Byram et al. [51, 52] scaled the ML
PDF in their work, their results showed that the sensitivity of the posterior PDF was actually
enhanced, thereby improving the motion tracking for fairly small displacements (e.g. shear wave
elastography).

Furthermore, Byram et al. [51, 52] discussed their desire of having a prior PDF function that
can change its shape. Early work from our group [40] has also explored how to adjust the relative
contributions to the generic cost function (i.e. Eq. 4.29) between the signal correlation and the
smoothness constraint by using different forms of the smoothness function to apply various
levels of the motion continuity constraint. Methodologically, our thoughts are consistent with
the idea of Byram et al. [51, 52]. It is possible that a new direction for motion tracking may
be “organ-specific” or “application-specific” motion-tracking design. For instance, for motion
tracking around breast lesions, motion continuity is expected and therefore should be enforced.
However, in situations where irregular motion can be expected, such as when large vessels are
present, when there is an inter-organ boundary (e.g. liver, kidney, and prostate), or when there is
an intra-organ cavity (e.g. uterine cavity and common carotid artery), only minimal constraints
are needed. That can be done through adjusting the shapes of the likelihood function and the
prior PDF.

It is worth noting that in several MAP motion-tracking algorithms the addition of smooth-
ness constraints was merely to obtain correct displacement estimates at the integer level. The
sub-sample estimation of displacement was still based on the (magnitude) correlation values.
More recently, several algorithms have started to use values directly from either the cost
function or the posterior PDF to estimate the sub-sample displacements. The work shown by
Rivaz et al. [77] has demonstrated that the estimated tissue deformation was influenced by the
choice of the smoothness constraints. If the posterior PDF function will be used to obtain the
sub-sample estimates, the concern is whether or not those ad hoc posterior PDFs will yield
physically correct solution.

Despite the importance of designing appropriate posterior PDF, there is probably no consen-
sus on how to design such a function. Hopefully, more research work will shed light on this
topic very soon.
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4.9.3 Testing of Motion-tracking Algorithms

Assuming we can design better motion-tracking algorithms, the overarching question now is:
“How can we evaluate the outcome of motion tracking so that it will meet the clinical elastog-
raphy needs?” Regarding algorithm testing, there are generally two aspects: evaluation metrics
and benchmark data for performance assessment, as expanded below.

4.9.3.1 Evaluation of Performance
In early work [78–85], attention was focused on estimating lower bounds on error variance
for (time-delay and) displacement estimation, That work collectively demonstrated that errors
in axial displacement estimates are predictable, once the processing and ultrasound system
parameters (i.e. bandwidth, center frequency, tracking window length Z, and window sepa-
ration distance ΔZ) are known. These theoretical efforts collectively led to better designs for
motion-tracking algorithms in general but are inadequate for comparing a group of specific
motion-tracking algorithms for two important reasons. First, the derivation of the minimum
error variance bounds assumes that all residual motion-tracking errors are sub-sample jitter.
This is a good assumption for applications such as radiation-force experiments [86, 87] where
deformations are small compared to the acoustic wavelength. But tissue deformations in other
applications include maximum displacements of several wavelengths and potentially involve
“peak-hopping” errors. Second, the methods used to derive these error bounds assume 1D cor-
relation techniques, but many tracking methods are not purely correlation-based.

Recall that the goal of speckle tracking between two radio frequency (RF) echo fields s1 and
s2 is to obtain a transformation T that maximizes the similarity between s1 and T(s2). There-
fore, we can register the two RF echo fields by first applying the displacement estimates (i.e.
transformation T) to the deformed echo data and then remapping to the coordinates of the
pre-deformation echo data field. T(s2) is the motion-compensated post-deformation echo field.
A higher NCC value between two registered regions (i.e. s1 and T(s2)) implies that two regions
with apparent deformations are better registered. Hence, it may be surmised that displace-
ment estimates between the two RF fields are more accurate. An example of this approach
is the trashogram [88] that displays the local motion-compensated NCC values between the
pre- and post-deformation RF echo fields as a grayscale image. Another example is the dis-
placement quality metric method (DQM; [89]) developed by our group, though DQM was
specifically for strain elastography. One metric of the DQM is the NCC value between the entire
pre-deformation and motion-compensated post-deformation RF echo fields. The difference is
that a global NCC value was used in the DQM method while the trashogram method used a
map of local NCC values.

A comprehensive framework is based on signal coherence between the pre- and
motion-compensated post-deformation RF echo signals [90–92]. By comparing the
cross-power spectrum between the pre- and motion-compensated post-deformation RF
echo signals, Insana and Cook [90] and Cook et al. [91] derived the Fourier cross-talk matrix
to assess ultrasonic strain imaging systems. Basically, motion tracking can be evaluated in
terms of spatial sampling characteristics. The Fourier cross-talk matrix, to some extent, can
be regarded as a graphical representation of signal coherence. The diagonal elements of the
cross-talk matrix represent the generalized transfer function, describing the strength of every
Fourier coefficient representing the signals. The off-diagonal components of the cross-talk
matrix represent the degree of aliasing between any two Fourier coefficients. If the pre-
and motion-compensated post-deformation RF fields are aligned perfectly, no off-diagonal
elements will be observed. When motion-tracking errors result in signal misalignment,
off-diagonal elements in the cross-talk matrix increase. This graphical representation of signal
coherence makes this method appealing. Furthermore, the trace of the cross-talk matrix was
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offered as a summary performance measure. It would be interesting to see how this method
can be used for comparing motion-tracking algorithms, particularly, in conjunction with
clinical data.

In short, research efforts are still under way to research a consensus on performance assess-
ment of motion-tracking methods, though several candidates are available for immediate use.

4.9.3.2 Testing Data
Like many new diagnostic imaging systems, phantom development [24, 93, 94], in particular the
development of anthropomorphic phantoms [94], has aided in testing prototype elastography
systems and potentially uncovering weaknesses in these systems. However, we found that many
motion-tracking algorithms perform well and show great promise in phantom experiments
(with regular geometry and simple boundary conditions) but fail to live up to expectations
in in vivo clinical trials because the underlying motion in phantom experiments is too simple
and uniform whereas that found in in vivo tissue motion during clinical trials has significantly
heterogeneous mechanical properties and complex boundary conditions.

Toward this end, it is important to create a common repository of clinical ultrasound data
for benchmarking tests. Using the same data, it would pave the way of discovering what is the
best motion-tracking performance being achieved – whether by a particular motion-tracking
algorithm, by a particular ultrasound scanning protocol, or by a combination of multiple track-
ing strategies. Even with the availability of clinical benchmark data, rigorous assessment of
motion-tracking performance is still an open question as described earlier in the previous
section. What we need is complex but known tissue motion that is similar to what occurs in vivo.

A virtual strain elastography simulation platform [95] has been recently developed in our
group by leveraging existing open source software packages including Field II (ultrasound sim-
ulator [26]), VTK (geometrical visualization and processing [96]), FEBio (FEM [97]), and Tetgen
(mesh generator [98]). This virtual simulation platform can generate complex ultrasound fields
containing complex tissue deformation. One example with simulated breast ductal structures
is shown in Figure 4.15.

This software platform may allow comparisons and validations of motion-tracking algorithms
with a known but (arbitrarily) complex phantom, and show the correlation between an elas-
tographic image and its underlying soft tissue properties. This software platform is currently
expanded into simulation of shear wave elastography. It is our vision that rigorous imaging tests
can be transparently done using simulated complex heterogeneous but known media, as a sup-
plement to clinical data. Collectively, this kind of information can then be used to identify gaps
so that clinical needs of motion-tracking development can be met at an accelerated rate.
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Figure 4.15 A simulated milk-duct structure embedded into the fibro-glandular region: (a) acoustic reflection
coefficient image and (b) a simulated B-mode image by Field II. In (a), 1 to 4 denote breast fat, fibro-glandular
tissue, milk ducts, and lobe, respectively. Source: reprinted with permission from [95].
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4.9.4 Future with Volumetric Ultrasound Data

Most motion-tracking algorithms discussed above were designed and tested only with 2D
ultrasound echo data. Furthermore, testing was mainly done with ultrasound data acquired
from linear array ultrasound transducers. Now volumetric ultrasound data acquisition became
available from clinical or prototype clinical systems. For instance, sweeping a 1D array in the
elevational direction thorough mechanical steering provides data points in a curvilinear grid
with non-uniform spacing is available in clinical scanners [99–101]. The advent of capacitive
micro-machined ultrasound transducers (CMUTs) may also become an opportunity to man-
ufacture 2D array systems with relatively low cost [102, 103]. Work available in the literature
[104–106] has demonstrated that full 3D tracking can provide higher quality of displacement
data derived from 3D ultrasound echo data, as compared to displacement data obtained from
tracking 2D ultrasound data. Consequently, it is logical to anticipate that the availability of
these volumetric data and subsequent full 3D motion tracking using the state-of-art techniques
will very likely further augment the ability to track complex in vivo tissue motion, though it
remains to be seen.

4.10 Conclusions

This chapter represents the current state of the field of ultrasound-based 2D tracking methods
for assessing tissue motion. Motion tracking is defined as the determination of a geometrical
transformation that aligns points in one 2D view of an object being imaged by ultrasound
with corresponding points in another 2D view of that object under ultrasound. Therefore,
unique challenges exist to improve motion tracking in 2D while the tissue moves in all three
dimensions. Methods of motion tracking exist beyond correlation-based methods. However,
the emphasis in this chapter is on correlation-based methods because, as of the time of writing,
most of the work and most of the progressing registration has been made in this area.

Ultrasound-based motion tracking is important because it is a core component of many ultra-
sound elastography applications. Thanks to research listed in the bibliography of this chapter,
much is now known about this area, and many effective algorithms have been developed, some
of the best of which are described above. Of course, there is a good possibility of unintended
omission of other good work because it is nearly impossible to include two decades of excellent
work in this short book chapter.
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Acronyms

ARFI acoustic radiation force impulse
BMA block-matching algorithm
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CMUT capacitive micro-machined ultrasound transducer
CP candidate pool
FEM finite element method
FFT fast Fourier transform
HMC hidden Markov chain
HT Hilbert transform
IDC invasive ductal carcinoma
MAP maximum a posterior
ML maximum likelihood
NCC normalized correlation coefficient
PDE partial differential equation
PDF probability density function
RF radio frequency
ROI region of interest
SAE sum-absolute error
SNR signal to noise ratio
SSE sum-squared error
1D one-dimensional
2D two-dimensional

Additional Nomenclature of Definitions and Acronyms

𝜏 a dummy variable for time lag
𝛿 actual time delay
𝜌(𝜏) normalized cross-correlation coefficient
R(𝜏) cross-correlation function
𝜃ij stress tensor
Cijkl constitutive constants
ekl strain tensor
E Young’s modulus
𝜈 Poisson’s ratio
𝜇, 𝜆 Lamé constants
K global/system stiffness matrix
I identity matrix
U displacement vector
̂U estimated displacement vector
F external force vector
s(y) 1D radio-frequency signals
𝜑(𝜏) phase function
Γ cross-spectrum function
𝜔 angular frequency
𝜔0 transducer’s centroid frequency
s(x, y) 2D radio-frequency signals
S(kx, ky) forward Fourier transforms of 2D RF signals
kx, ky spatial frequency variables
F() forward Fourier transforms
F−1() inverse Fourier transforms
𝜀(𝜏) SSE for 1D
𝜀(u, v) SSE for 2D
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R(𝜏x, 𝜏y) 2D cross-correlation function
Pr( ) probability density function
Ω neighborhood for an 2D integration
Ec a measure of speckle similarity/correlation
Es a measure of motion smoothness
∇ gradient operator‖◾‖ L2 norm
T() a geometrical transformation
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5.1 Introduction

The phenomenon of wave propagation is well known and extremely common to our lives.
One’s speech is propagated through sound using the air as medium, for example. Words orig-
inate from a forced motion on a portion of a deformable medium; from this point forward
the movement is propagated from particle to particle, creating a wave. This process may also
be understood as an energy transmission that can be done within small bodies, like medical
ultrasound, or large structures, like earthquakes. By analyzing how those waves are transmit-
ted through the medium and the interfaces, a series of properties can be determined and so too
can its viscoelastic properties [1].

Many ultrasound elastography methods rely on these transmission characteristics to rhe-
ologically define biological tissues, and therefore analyze how they are behaving in compar-
ison to healthy tissue parameters. This process is supported by a very strong mathematical
basis – a toolkit of equations that describe the laws of mechanical wave propagation. Once those
equations are established all conditions and space configurations can be evaluated and new, and
more specific, equations can be derived. The objective of this chapter is set the foundation of
those equations, the continuum mechanics [2].

5.2 Mathematical Basis and Notation

The equations that describe physical quantities and laws are called tensor equations. They com-
bine quantities, measured with a number and represented by scalars, with any special direction.
Most systems have tensors of order one, or vectors, which represent quantities characterized
by direction and magnitude [3].

5.2.1 Tensor Notation

For the theory presented in this chapter, the Cartesian coordinate system is sufficient. The three
dimensions are usually specified by the numbers 1, 2, and 3, set as subscripts to a letter. The
coordinate is denoted by uj and base vectors by ij, where j specifies the dimension. In this
manner we will have

u = u1i1 + u2i2 + u3i3 (5.1)
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Since summations like Eq. (5.1) are very frequent, a summation convention is used to sum-
marize equations, where a repeated subscript implies a sum. In this case we can express

u = ujij (5.2)

A scalar product of two vectors would be

u ⋅ v = ujvj = u1v1 + u2v2 + u3v3 (5.3)

Tensors of second rank, like 𝜎ij, have two free indices. In other words, the number of free
indices will specify the tensor rank. An important special tensor is the Kronecker-Delta, defined
by

𝛿ij = 1 if i = j
𝛿ij = 0 if i ≠ j (5.4)

The components of a cross product such as h = u ∧ v may be expressed by alternating tensor
and summation conventions like

hi = eijkujvk (5.5)

So the components of h are

h1 = u2v3 − u3v2

h2 = u3v1 − u1v3

h3 = u1v2 − u2v1

5.2.2 Vector Operators

One of the most important vector calculus operators is ∇, or nabla. When applied to a scalar
field it yields a gradient of the original scalar field

grad f = ∇f = i1
𝜕

𝜕x1
+ i2

𝜕

𝜕x2
+ i3

𝜕

𝜕x3
(5.6)

Partial differentiations are denoted by a comma, like

grad f = ∇f = ip f ,p (5.7)

When there is just a single subscript in f ,p it means these are components of a rank one tensor,
i.e. a vector.

In a vector field written as ui(x1, x2, x3), assuming that it is differentiable, all nine partial
derivatives written as 𝜕ui(x1, x2, x3)∕𝜕xj, can be rewritten as ui,j.

The divergence operator is defined by the vector operator ∇ “multiplied” by a vector

div u = ∇ ⋅ u = ui,i (5.8)

The curl of u is done by taking the cross product of ∇ and u, denoted by ∇ ∧ u. If q = ∇ ∧ u,
the components of q are

qi = eijkuk ,i (5.9)

If we take the divergence of a gradient, ∇ ⋅ ∇, we’ll have a Laplacian operator ∇2. In this man-
ner we can write

∇2u = ∇ ⋅ ∇u = up,jjip (5.10)

In tensor analysis there is one integral theorem that is frequently used. This expression relates
a volume integral to a surface integral over the bounded surface of the volume, and it is called
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Gauss’ theorem. If we consider a convex region B of volume V , with a surface S which possesses
a piecewise continuously turning tangent plane. Then, consider a tensor field 𝜏jkl…p where every
component of it is continuously differentiable in B. Then Gauss’ theorem states

∫V
𝜏jkl…p ,i dV = ∫S

ni 𝜏jkl…p dA (5.11)

where ni are the components of the unit vector along the outer normal to the surface S. Now we
can write Eq. (5.10) with the three components of a vector u successively substituted for 𝜏jkl…p,
and if the three resulting equations are added, we have

∫V
ui,i dV = ∫S

ni ui dA (5.12)

This equation is known as the divergence theorem of vector calculus.

5.2.3 Important Tensors and Notations

The main tensors used in the theoretical elastography are position vector (xi), displacement
vector (ui), and strain (𝜀ij) and stress (𝜎ij) tensors.

5.3 Solutions to Wave Equations

5.3.1 Displacement and Deformation

At first it is important to define how to mathematically describe the particle motion in space,
and this is done by the vector called displacement [2, 4]. It indicates both the final and the initial
position of the particle, and is denoted by u(x, t). Extrapolating to a notion of continuum, the
gradients of the displacement vector describe the deformation of the medium and is denoted
by 𝜀, the small-strain tensor, and thus

𝜀ij =
1
2
(ui,j + uj,i) (5.13)

It is also important to define another tensor of rank two, the rotation tensor 𝜑 whose com-
ponents are defined as

𝜑ij =
1
2
(ui,j − uj,i) (5.14)

5.3.2 The Stress Tensor

The continuous media postulate that the mechanical action on particles on one side of a mate-
rial upon those on another side of the same material can be considered as a surface traction
on another surface. So if this surface has a normal n pointing outward we can also define the
traction T [4].

Let us consider an object with a body V and a surface S that is subjected to a traction T(x, t).
Each element, or particle, may be subjected by a force f (x, t). Following the principles of balance
of linear momentum, the resultant of all forces acting on a body at an instant is equal to the
instantaneous rate that the linear momentum is changed, and thus

∫S
T dA + ∫V

ρf dV = ∫V
ρü dV (5.15)

where ü is the second time derivative of the displacement. Following the Cauchy’s stress
theorem which states that a second-order tensor field 𝜎(x, t) is defined by the combination
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of all traction vectors associated with all planes, that can be simplified in three mutually
perpendicular planes with normal n. So we can define the Cauchy stress formula

T (n) = 𝜎klnk (5.16)

In other words, 𝜎kl is the component of traction on the surface with a normal ik in the
xl-direction. Substituting Eq. (5.16) in Eq. (5.15) we have

∫S
𝜎klnk dA + ∫V

ρf dV = ∫V
ρü dV (5.17)

Using the Gauss’ theorem to transform the surface integral into a volume integral

∫S
(𝜎kl,k + ρfl − ρül) dV = 0 (5.18)

If the integrand is continuous we have Cauchy’s first law of motion

𝜎kl,k + ρfl = ρül (5.19)

5.3.3 Stress–Strain Relation

In basic terms, the relation between the stress tensor and strain tensor components is

𝜎ij = Cijkl𝜀kl (5.20)

where

Cijkl = Cjikl = Cklij = Cijlk

This means that only 21 of 81 components of the tensor Cijkl are independent and if these coef-
ficients are constants, then the material is elastically homogeneous. Also, if there is no preferred
direction and the elastic constants are the same at any orientation of the Cartesian coordinate
system, then we can say the material is isotropic. In isotropic conditions the constants Cijkl can
be expressed as

Cijkl = 𝜆𝛿ij𝛿kl + 𝜇(𝛿lk𝛿ji + 𝛿il𝛿jk) (5.21)

so Hooke’s law then states

𝜎ij = 𝜆𝜀kk𝛿ij + 2𝜇𝜀ij (5.22)

Both equations contain the Lame’s elastic constants 𝜆 and 𝜇. Setting j = i to Eq. (5.22) we get

𝜎ii = (3𝜆 + 2𝜇)𝜀ii (5.23)

By rewriting Eq. (5.23) in function of 𝜀ii and applying it to Eq. (5.22) and solving it for 𝜀ij, we
obtain the following relation

𝜀ij = −
𝜆𝛿ij

2𝜇(3𝜆 + 2𝜇)
𝜎kk +

1
2𝜇

𝜎ij (5.24)

The small-strain tensor 𝜀ij can only be solved for a given 𝜎ij only if

𝜇 ≠ 0 and 3𝜆 + 2𝜇 ≠ 0

For a condition of simple shear where 𝜎12 ≠ 0 and other stresses are 0, we have 𝜎12 = 2𝜇𝜀12.
With this we can identify 𝜇 as the shear modulus, and since small deformations in 𝜎12 and 𝜀12
have the same directions it is fair to say 𝜇 > 0.

Another important constant implied in certain conditions is the bulk modulus (K ). In cases
of hydrostatic pressure where 𝜀ij = −p𝛿ij we can use Eq. (5.23) to find p = −K𝜀kk and therefore
K = 𝜆 + 2

3
𝜇. It is clear that a hydrostatic pressure will cause a reduction of volume and so K > 0.



Continuum Mechanics Tensor Calculus and Solutions to Wave Equations 77

Table 5.1 Isotropic elastic constants relationships [1].

𝜆, 𝜇 E, 𝜇 E, 𝜈

𝜆 𝜆

𝜇(E − 2𝜇)
3𝜇 − E

Ev
(1 + v)(1 − 2𝜈)

𝜇 𝜇 𝜇

E
2(1 + 𝜈)

K 𝜆 + 2
3
𝜇

𝜇E
3(3𝜇 − E)

E
3(1 − 2𝜈)

E 𝜇(3𝜆 + 2𝜇)
𝜆 + 𝜇

E E

𝜈

𝜆

2(𝜆 + 𝜇)
E − 2𝜇

2𝜇
𝜈

There are other important constants useful for homogeneous, isotropic, linearly elastic media
such as Young’s modulus (E) and Poisson’s ratio (𝜈). All these constants are intrinsic character-
istics of each media and are related to each other through a set of equations, summarized in
Table 5.1.

5.3.4 Displacement Equation of Motion

Now, inserting the stress–strain relation, or Hooke’s law (Eq. 5.22), into Cauchy’s first law of
motion (Eq. 5.19) and we get

(𝜆𝜀kk𝛿ij + 2𝜇𝜀ij),j + ρfi = ρüi (5.25)

Using Eq. (5.13) to make it a function of displacement (u) gives us(
𝜆𝛿ijuk,k + 2𝜇1

2
[ui,j + uj,i]

)
,j
+ ρfi = ρüi (5.26)

𝜆𝛿ijuk,kj + 𝜇[ui,jj + uj,ij] + ρfi = ρüi

𝜆uk,ki + 𝜇[ui,jj + uj,ij] + ρfi = ρüi

Finally we can rearrange the terms and get the dynamic Navier’s equation of equilibrium

(𝜆 + 𝜇)uj,ji + 𝜇ui,jj + ρfi = ρüi (5.27)

or, in its vector equivalent

(𝜆 + 𝜇)∇∇ ⋅ u + 𝜇∇2u + ρf = 𝜌ü (5.28)

5.3.5 Helmholtz Decomposition

Navier’s equation of equilibrium is a very powerful tool to understand the propagation of waves.
It can be rewritten in several ways [1]. Using the scalar notation one can decompose it in three
equations

(𝜆 + 𝜇)
(
𝜕

2u
𝜕x2 + 𝜕

2v
𝜕x 𝜕y

+ 𝜕

2w
𝜕x 𝜕z

)
+ 𝜇∇2u + ρfx = 𝜌

𝜕

2u
𝜕t2

(𝜆 + 𝜇)
(

𝜕

2u
𝜕y 𝜕x

+ 𝜕

2v
𝜕y2 + 𝜕

2w
𝜕y 𝜕z

)
+ 𝜇∇2u + ρfy = 𝜌

𝜕

2u
𝜕t2 (5.29)

(𝜆 + 𝜇)
(

𝜕

2u
𝜕z 𝜕x

+ 𝜕

2v
𝜕z 𝜕y

+ 𝜕

2w
𝜕z2

)
+ 𝜇∇2u + ρfz = 𝜌

𝜕

2u
𝜕t2
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where the particle displacements are u, v, w in the x, y, z directions, respectively. The dilatation
of a material is defined, in vector notation, by

Δ = ∇ ⋅ u = 𝜀x + 𝜀y + 𝜀z = 𝜀kk (5.30)
Substituting Eq. (5.30) in Eq. (5.28)

(𝜆 + 𝜇)Δ∇ ⋅ u + 𝜇∇2u + ρfi = 𝜌ü (5.31)
Another vector identity can be applied to Navier’s equation

∇2u = ∇∇ ⋅ u = ∇ × ∇× (5.32)
so that Eq. (5.30) may also be written as

(𝜆 + 2𝜇)∇∇ ⋅ u − 𝜇∇ × ∇ × u + ρf = 𝜌ü (5.33)
Recalling Eq. (5.14), the rotation vector is defined as

𝜔 = 1
2
∇ × u (5.34)

Returning with the dilatation Δ, one can express the equation as
(𝜆 + 2𝜇)∇Δ ⋅ u − 2𝜇∇ × ω + ρf = 𝜌ü (5.35)

This last form explicitly displays the rotation and dilatation components of displacement.
Another characteristic of this variation is that its result is valid for rectangular and curvilinear
coordinate systems.

An easier way to define and use the displacement equations is done by applying the scalar
and vector potentials Φ and H

u = ∇Φ + ∇ × H,∇ ⋅ H = 0 (5.36)
The Helmholtz theorem, also known as Helmholtz decomposition, states that a vector field in

three dimensions is a sum of an irrotational (curl-free) vector and a solenoidal (divergence-free)
vector field. To determine the three components of u from the four components of Φ, H the
condition ∇ ⋅ H = 0 is needed. So one can also express

f = ∇f + ∇ × B,∇ ⋅ B = 0 (5.37)
Substituting Eqs. (5.36) and (5.37) in Eq. (5.28)

(𝜆 + 𝜇)∇∇ ⋅ (∇Φ + ∇ × H) + 𝜇∇2(∇Φ + ∇ × H) + 𝜌(∇f + ∇ × B) = 𝜌(∇ ̈Φ + ∇ × ̈H)
(5.38)

Regrouping
∇{(𝜆 + 2𝜇)∇2Φ + 𝜌f − 𝜌

̈Φ} + ∇ × (𝜇∇2H + 𝜌B − 𝜌
̈H) = 0 (5.39)

To satisfy this equation both bracket terms need to vanish and so
(𝜆 + 2𝜇)∇2Φ + 𝜌f = 𝜌

̈Φ (5.40)
𝜇∇2H + 𝜌B = 𝜌

̈H (5.41)
This is the complete solution of the displacement equation in terms of irrotational and

solenoidal vector fields.

5.3.6 Compressional and Shear Waves

Considering the governing displacement equation without body forces
(𝜆 + 𝜇)∇∇ ⋅ u + 𝜇∇2u = 𝜌ü (5.42)
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Applying the vector operation of divergence on the above

(𝜆 + 𝜇)∇ ⋅ (∇∇ ⋅ u) + 𝜇∇ ⋅ (∇2u) = 𝜌∇ ⋅ ü (5.43)

Since

∇ ⋅ ∇ = ∇2

∇ ⋅ (∇2u) = ∇2(∇ ⋅ u) and
∇ ⋅ u = Δ

The dilatation reduces to

(𝜆 + 2𝜇)∇2Δ = 𝜌

𝜕

2Δ
𝜕t2 (5.44)

This equation can be rewritten as the compressional wave equation

∇2Δ = 1
c2

p

𝜕

2Δ
𝜕t2 (5.45)

where the compressional wave propagation velocity is given by

cP =

√
𝜆 + 2𝜇

ρ
(5.46)

This motion is parallel to the direction of propagation and it is called a longitudinal wave.
This type of wave may also be called a compressional wave or P-wave (primary wave).

In the other hand, if the curl operation is applied to the governing equation considering that
the gradient of a scalar is zero

𝜇∇2
𝜔 = 𝜌

𝜕

2
𝜔

𝜕t2 (5.47)

where 𝜑 = ∇ × u∕2, seen as the rotation vector in Eq. (5.14). This equation can be rewritten as
the shear wave equation

∇2
𝜔 = 1

c2
s

𝜕

2
𝜔

𝜕t2 (5.48)

where the shear wave propagation velocity is given by

cS =
√

𝜇

ρ
(5.49)

In this case the motion is normal to the propagation direction, and the wave is called a trans-
verse wave. This type of wave is also often called shear wave or S-wave (secondary wave).

Referring to Eqs. (5.40) and (5.41), which resulted from the scalar and vector potentials Φ
and H, if the body forces are zero then f = B = 0, and both equations give the scalar and vector
wave equations and contain the velocities cp and cS. We can conclude that the vector potential is
directly associated to the longitudinal part of the disturbance, while the scalar portion is related
to the transverse part.

From Eqs. (5.30) and (5.31) along with Table 5.1, one can derive

cP

cS
=

√
𝜆 + 2𝜇

𝜇

=
√

2(1 − 𝜈)
1 − 2𝜈

(5.50)

where 𝜈 is the Poisson’s ratio. In most of materials 0 ≤ 𝜈 ≤ 0.5, and it follows that cP > cS. Metals,
for example, have very high pressure and shear wave phase velocities. For instance, aluminum
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Table 5.2 Approximate values for common materials [1].

Material 𝝆 (kg∕m3) cp(m∕s) cS(m∕s) 𝜿

Air 1.2 340 – –
Water 1000 1480 – –
Steel 7800 5900 3200 1.845
Copper 8900 4600 2300 2
Glass 2500 5800 3400 1.707
Rubber 930 1040 27 38.5

Table 5.3 Approximate values for different tissues [5].

Material cp(m∕s) cS(m∕s)

Breast 1450–1570 1.10–3.46
Breast cancer 1437–1584 3.25–9.64
Liver 1522–1623 0.85–3.01
Fibrotic/cirrhotic liver 1535–1581 0.84–5.00
Skeletal muscle 1500–1610 1.56–7.60
Kidney 1558–1562 1.20–3.50
Heart 1528–1602 0.83–7.00
Arteries 1559–1660 2.83–6.09
Brain 1460–1580 1.02–4.63
Skin 1498–1540 2.66–5.99
Lung 577–1472 0.90–3.54
Spleen 1515–1635 1.10–2.36
Cornea 1542–1639 1.43–6.80
Cervix/uterus 1625–1633 2.01–2.58
Thrombus 1586–1597 0.33–1.27
Tendons 1631–3530 79.4
Cartilage 1520–1665 39.71–87.83
Bone 1630–4170 1420–3541

has cP = 6300 m∕s and cS = 3100 m∕s. Tables 5.2 and 5.3 illustrate the differences between some
common materials and human tissues. Note from Table 5.3 that the compressional wave veloci-
ties occupy a fairly narrow range as a percentage while shear wave velocities change over several
orders of magnitude even for soft tissues.

The continuum mechanics presented here has set the basic pillars of modern elastography.
Studies have shown that rheological properties have a large dynamic range through different
media, which is ideal to characterize different types of tissue, whether normal or pathological
[5]. In the past, this was only partially possible by palpation tests done by physicians, therefore
relying only on the practitioner’s experience and sensibility. Many studies have also demon-
strated that biological tissues are viscoelastic materials, that is, their deformation will depend
on the time course of the stress applied, and to properly characterize them it is necessary
to use complex moduli [5]. The equations derived in this chapter are necessary for a good
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understanding of the chapters to come and for ultrasound elastography as a whole. It is very
important to comprehend the relations between displacement, strain, and stress, along with all
viscoelastic parameters and how they affect wave propagation on materials and tissues.
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6.1 Introduction

In science and technology elastic properties of solids have considerable significance. This
information is of fundamental importance in interpreting and understanding the nature of
bonding in the solid state, because the elastic properties describe the mechanical behavior
of materials. When a material is subjected to a stress it will experience strain. Within the
elastic limit, strain varies linearly with the applied stress and leads to the definition of the
common elastic material properties, which are the Young’s modulus (E), bulk modulus (𝜅),
shear modulus (𝜇), and Poisson’s ratio (𝜐). Additional to these elastic constants there is the
longitudinal modulus and transverse modulus that can be determined from the velocity of
propagation of longitudinal waves and transverse waves through a solid. The number of elastic
constants for anisotropic solids such as crystals that have been discussed previously [1–5].
Anisotropy has also long been studied in geophysics [6, 7] or in nondestructive testing with
ultrasound [8, 9]. In biological media ex vivo, Hoffmeister [10] and Kuo [11] on tendon,
Yoon [12] on bone, or Levinson [13] and Andersen [14] on muscle quantify the anisotropic
longitudinal elastic moduli. The first technique that tried to quantify shear elastic anisotropy
was the sonoelasticity technique by using an external steady state vibrator [15, 16]. Now
transient elastography techniques, using the propagation of a low frequency shear wave in vivo
[17–19], can measure the Young’s modulus of soft tissues.

In this chapter, we describe how these methods can be adapted to study the anisotropic shear
moduli of simple muscles in vitro and in vivo. In Section 6.2, theoretical considerations from
general to hexagonal anisotropic medium, also called a transverse isotropic medium, are pre-
sented and predict the existence of a slow and a fast shear wave in biological tissue such as
muscle. In Section 6.3, different techniques are presented to show how shear wave elastography
can estimate anisotropy.

6.2 Theoretical Considerations from General to Transverse
Isotropic Models for Soft Tissues

Determining the elastic constant by measuring the velocity of sound in crystals is a standard
method. The use of high frequency acoustic waves leads to precise results compared to the static
methods. The elastic constants are tensors, which measure the crystal property. The mathe-
matical theory of elasticity relates stress and strain in solids [20]. The state of strain (𝜀ij) in

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
Edited by Ivan Nenadic, Matthew Urban, James Greenleaf, Jean-Luc Gennisson, Miguel Bernal, and Mickael Tanter.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.



Transverse Wave Propagation in Anisotropic Media 83

the solid at any given point can be expressed by resolving the displacement of an elementary
volume originally located at some point along three perpendicular directions and by differen-
tiating these components, one can obtain the nine components of strain tensor. Likewise the
state of stress (𝜎ij), which the volume element is subjected to, could be resolved into interactive
forces acting along each of the three coordinate axes. Thus there are three types of stresses,
one longitudinal and two shear, perpendicular to each other. There are nine components of a
stress–strain proportionality relationship and would involve (9 × 9) or 81 elastic constants.

By using Einstein’s convention, this tensor can be expressed in the general form as

𝜎ij = Cijkl𝜀kl (6.1)

The stress tensor and strain tensor are second rank tensors. Hence the constant of propor-
tionality is a fourth rank tensor. This tensor is referred to as the elastic stiffness tensor Cijkl. The
stiffness constants and elastic compliances are determined by elastic wave propagation mea-
surements in solids [2, 21–23]. Further, these constants determine the velocity of elastic waves
in any direction in an anisotropic solid. Cijkl has 81 elements relating 9 strain components and 9
stress components. In the absence of rotation in the material the stress and strain tensors obey
the symmetry ij = ji.

The law of reciprocity enables one to interchange the direction of force and displacement
without change in the constant of proportionality. Thus the number 81 is reduced to 45 con-
stants. These 45 constants are required to describe the elastic behavior of a triclinic crystal.
On the basis of Cauchy’s assumption and by the application of the reciprocity relationship, the
number of constants reduces to 21 for a triclinic crystal. The reduction in the strain compo-
nent from 9 to 6 may be summarized by the statement that the elastic strain can be separated
into pure strains and rotations and the latter can be ignored. A correct and complete theory of
elasticity has necessarily to take all the nine components of the stress and strain tensors into
consideration.

Then by introducing a more compact notation (Voigt notation) with two suffixes, Cijkl is
replaced by the matrix (CIJ, [IJ = 1, 2, 3, 4, 5, 6]) leading for locally homogeneous medium
to the following relationship⎡⎢⎢⎢⎢⎢⎢⎣

𝜎11
𝜎22
𝜎33
𝜎44
𝜎55
𝜎66

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

C11
C12
C13
C14
C15
C16

C12
C22
C23
C24
C25
C26

C13
C23
C33
C34
C35
C36

C14
C24
C34
C44
C45
C46

C15
C25
C35
C45
C55
C56

C16
C26
C36
C46
C56
C66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝜀11
𝜀22
𝜀33

2𝜀44
2𝜀55
2𝜀66

⎤⎥⎥⎥⎥⎥⎥⎦
(6.2)

This introduces another 15 equalities in the elastic constants and reduces the maximum num-
ber of independent constants to 21. Further reduction of the number of independent elastic
constants is possible when the symmetry of the crystal is considered, and this number is differ-
ent for the different crystal classes. When suitable directions are chosen as axes, the crystal
may be grouped on the basis of its macroscopic morphology into one of 32 crystal classes
(point group symmetry) which forms a sub-group among 7 crystal systems [24]. The crys-
tal classes comprise of the combination of the point symmetry operations such as inversion,
n-fold rotation, reflection, etc. The basic crystal systems in the order of decreasing symmetry
are the following: cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic and tri-
clinic. by applying all symmetry operation, one after another to each tensor component, one
can solve the whole set of equations and determine those components which must vanish and
also find any relation between the non-vanishing tensors [25]. Then one can obtain the number
of non-zero elastic constants for various crystal systems as follow: 21 triclinic, 13 monoclinic,
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9 orthorhombic, 7 tetragonal i, 6 tetragonal ii, 7 trigonal i, 6 trigonal ii, 5 hexagonal, 3 cubic,
2 isotropic. For the isotropic solid, two independent constants appear, C12 and C44, and are
defined as the Lamé constants 𝜆 and 𝜇, respectively.

From these considerations the propagation of elastic waves are governed within an
anisotropic medium by three linear equations known as “Christoffel equations” which relate
velocity, direction of the waves, and elastic constant. Consider an anisotropic medium, which
obeys the ideal Hooke’s law, and in which body forces, body torques, dissipative processes,
and nonlinear or dissipative phenomena can be neglected. A disturbance in such a medium is
represented by a set of position and time-dependent particle displacements u(x,t) which are
related by the equations

𝜌

𝜕

2ui

𝜕t2 =
𝜕𝜎ij

𝜕xj
(6.3)

where 𝜌 is the density of the medium. To obtain the wave equation the right-hand side of this
equation is written in terms of the deformation components of ui. For this the relation between
stress and strain is used. This gives the wave equation in the form

𝜌

𝜕

2ui

𝜕t2 = Cijkl
𝜕

2uk

𝜕xj𝜕xl
(6.4)

The Cijkl is the second-order elastic constant. A plane monochromatic wave ui = u0exp
[i(kr − 𝜔t)] is a solution of the above equation, where u0 is the amplitude, k is the wave vector,
and 𝜔 the frequency, satisfying the condition|Cijklkjkl − 𝜌𝜔

2
𝛿ik| = 0 (6.5)

The three homogenous equations for ui have a solution only if the secular equation of their
coefficients is satisfied. This requirement leads to the familiar form of a determinantal equation
for the propagation velocity v = 𝜔/k. If one writes the propagation velocity in terms of cosines
as k = k [n1, n2, n3] the secular determinant becomes|Γik − 𝜌v2

𝛿ik| = 0 (6.6)

where the coefficientΓik is called the Christoffel matrix and its elements depend on the direction
of wave propagation and elastic constant. Equation (6.4) is a cubic equation for 𝜌v2, which has
three roots with respect to interchange of k and i. The requirement for crystal stability ensures
that Γik is a positive definite matrix and hence the three eigenvalues are positive. At last by using
the Voigt notation for the elastic constants, the Christoffel coefficients are in the most general
case given in the Table 6.1.

Table 6.1 Christoffel coefficients.

𝚪ij n1
2 n2

2 n3
2 2n1n3 2n3n1 2n1n2

Γ11 C11 C66 C55 C56 C15 C16

Γ22 C66 C22 C44 C24 C46 C26

Γ33 C55 C44 C33 C34 C35 C45

Γ32 = Γ23 C56 C24 C34 [C23 + C44]/2 [C36 + C45]/2 [C25 + C46]/2
Γ31 = Γ13 C15 C46 C35 [C36 + C45]/2 [C13 + C55]/2 [C14 + C56]/2
Γ21 = Γ12 C16 C26 C45 [C25 + C46]/2 [C14 + C56]/2 [C12 + C66]/2
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On evaluating the determinant and equating it to zero, one obtains the secular equation.
This is a cubic equation in v2 and hence it has three solutions and three different velocities are
associated with it. Thus for a given direction there are three waves propagating with different
velocities. The fastest of the three is the longitudinal wave or quasi-longitudinal wave. The other
two are fast and slow transverse waves or quasi-transverse waves. The waves are purely longi-
tudinal or purely transverse only in the pure mode directions in the crystal and the directions
are usually the symmetry axes or symmetry planes in the crystal [26, 27]. The three values of
pv2 are the eigenvalues of the matrix Γik and corresponding solutions for the displacement vec-
tor uk are the eigenvectors. While the eigenvalues give the three velocities, the corresponding
eigenvectors give the direction of particle motion or the polarization direction of the wave.

From the general expression for elastic waves propagation presented in the above section, one
can deduce equations for higher symmetry crystals. This is due to the fact that several elastic
constants are zero for the higher symmetries, as shown above. Further simplification occurs
when symmetry direction or planes are chosen as the propagation direction so that one or two
of the direction cosines n1, n2, n3 are equal to zero.

In the following part, one defines the waves characteristics for an hexagonal system which
is the most common system found in the human body and used in elastography experiments.
Thus for a hexagonal medium, the nonzero elastic constants are C11 = C22, C33, C44 = C55, C12,
C13 = C23 and C66 = [C11 − C12]/2. All other constants in the Christoffel matrix are zero. The
coefficients of the Christoffel matrix Γik can be written as

Γ11 = C11n2
1 + C66n2

2 + C44n2
3 (6.7)

Γ22 = C66n2
1 + C11n2

2 + C44n2
3

Γ33 = C44n2
1 + C44n2

2 + C33n2
3

Γ23 = (C44 + C13)n2n3

Γ13 = (C44 + C13)n1n3

Γ12 = (C11 + C66)n2n1

Now consider the wave propagation in the xy-plane, which means n3 = 0; the Γik coefficients
now become

Γ11 = C11n2
1 + C66n2

2 (6.8)

Γ22 = C66n2
1 + C11n2

2

Γ33 = C44n2
1 + C44n2

2

Γ23 = 0

Γ13 = 0

Γ12 = (C11 + C66)n1n2

The determinant equation can be written as||||||
Γ11 − 𝜌v2 Γ12 0

Γ12 Γ22 − 𝜌v2 0
0 0 Γ33 − 𝜌v2

|||||| = 0 (6.9)
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On substitution of the Γik values for the xy-plane, considerable algebraic simplification occurs
and very simple solutions are obtained, as

𝜌v2
0 = c44

𝜌v2
1 = c11

𝜌v2
2 = c66 (6.10)

The above results show that the velocity is independent of the direction in this plane and
that all modes are pure. v0 is a shear mode polarized parallel to the z-axis, v1 is a longitudinal
mode, and v2 is a shear mode polarized normal to the z-axis. The above relations are valid for
the directions x,y or any direction in the plane.

Consider propagation in the xz-plane, which means n2 = 0. The coefficients are then
obtained as

Γ11 = C11n2
1 + C66n2

2

Γ22 = C66n2
1 + C11n2

3

Γ33 = C44n2
1 + C33n2

3

Γ23 = 0
Γ13 = (C13 + C44)n1n3

Γ12 = 0 (6.11)

This leads to the characteristic equation

(Γ22 − 𝜌v2)[𝜌2v4 − 𝜌v2(Γ11 + Γ33) +
(
Γ11Γ33 − Γ13

2)] = 0 (6.12)

Then the linear part gives one root and the quadratic part gives two roots and

𝜌v2
0 = Γ22

2𝜌v2
1 = (Γ11 + Γ33) +

√
(Γ11 + Γ33)2 − 4(Γ11Γ33 + Γ2

13)

2𝜌v2
2 = (Γ11 + Γ33) −

√
(Γ11 + Γ33)2 − 4(Γ11Γ33 + Γ2

13) (6.13)

v0 is a pure shear mode polarized normal to the plane, v1 is a quasi-longitudinal wave, and v2 is
a quasi-shear wave. It can be seen that these expressions are rotationally invariant for rotations
about the z-axis. Hence, the same expressions are valid for the yz-plane also.

For propagation in the x-direction, the corresponding direction cosines are n1 = 1, n2 = 0,
n3 = 0. In this case the solutions are

𝜌v2
0 = C44 (6.14)

𝜌v2
1 = C11

𝜌v2
2 = C66

Then the pure mode waves are v0 transverse mode polarized parallel to the z-axis, v1 is a
longitudinal and v2 is a transverse mode polarized normal to z.

For symmetry direction along the z-axis the above expressions (Eq. 6.13) can be simplified by
putting n1 = 0 and n3 = 1. This gives

𝜌v2
0 = C44 (6.15)

𝜌v2
1 = C11

𝜌v2
2 = C44
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v1 is a longitudinal mode, v0 and v2 are shear modes polarized normal to the z-axis and are
degenerate since the two transverse velocities are identical in the z-direction of the hexagonal
crystal. Then the z-axis is an acoustic axis of the crystal.

6.3 Experimental Assessment of Anisotropic Ratio by Shear Wave
Elastography

The most common organ in the body is muscle. The muscle model considered presents a ran-
dom distribution of fibers oriented in the same direction. This consideration entails the exis-
tence of a symmetry axis along the fibers. It is proven [8] that this kind of symmetry corresponds
to a hexagonal system, transverse isotropy. In this part, two main shear elastography techniques
are presented to assess anisotropy in biological tissues: transient elastography technique (TE)
and supersonic shear imaging technique (SSI).

6.3.1 Transient Elastography

In the transient elastography technique an external vibrator is used to give a low-frequency
pulse at the surface of the body in order to generate shear waves from the surface of the skin
(see Chapter 20 in this book). In that specific case the generated shear wave is spherical. By
changing the shape of the piston source, for example with a rod, the resulting generated shear
waves are polarized perpendicularly to the piston rod (Figure 6.1) [17].

The shear elastic constants C44 and C66 can be obtained with the TE technique from the veloc-
ities of shear waves propagating in a direction perpendicular to the fiber axis with a polarization
oriented either parallel to the fibers (V S3), or perpendicular to the fibers (V S1). Experimentally
by just rotating the rod at the surface of the body both velocities can be measured (Figure 6.1).

6.3.2 Supersonic Shear Imaging

In the supersonic shear imaging technique, the external vibrator is replaced by the acoustic
radiation force (see Chapter 23 in this book). Then shear wave are directly generated within
tissues and propagate perpendicularly to the ultrasound axis. Then by rotating the probe at the
surface of muscles, regarding the orientation of the fibers, it is possible to estimate shear wave
velocities and recover C44 and C66 (Figure 6.2).
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Figure 6.1 Schematics of the TE technique where a rod mounted on a vibrator gives a low-frequency pulse at
the surface of the medium generating shear waves. (a) When the rod is perpendicular to the fibers’ axis, a shear
wave propagates (k, x1 axis) perpendicularly to the fibers’ axis with a polarization (u, x3 axis) parallel to the
fibers’ axis. (b) When the rod is parallel to the fibers’ axis, a shear wave propagates (k, x1 axis) perpendicularly to
the fibers’ axis with a polarization (u, x2 axis) perpendicular to the fibers’ axis. Such configurations give,
respectively, access to the elastic constants C44 and C66. Source: reprinted with permission from Royer et al.
[28], copyright 2011, Acoustical Society of America.
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Figure 6.2 Schematics of the SSI technique where a radiation force perpendicular to the fibers’ axis generates
shear waves. (a) When the ultrasonic probe is parallel to the fibers’ axis, a shear wave propagates (k, x3 axis)
parallel to the fibers’ axis with a polarization (u, x1 axis) perpendicular to the fibers’ axis. (b) When the ultrasonic
probe is perpendicular to the fibers’ axis, a shear wave propagates (k, x2 axis) perpendicularly to the fibers’ axis
with a polarization (u, x1 axis) perpendicular to the fibers’ axis. Such configurations give, respectively, access to
the elastic constants C44 and C66. Source: adapted from Royer et al., [28], copyright 2011, Acoustical Society of
America.

Finally, soft tissues (muscles, tendons) exhibit a mechanical behavior very different from
hexagonal crystals since the bulk modulus is quite large compared to the shear moduli. This
unusual behavior of transverse isotropic tissues is the difference of anisotropy according to the
type of elastic waves. Regarding the speed of ultrasound waves, the ratio of anisotropy is quite
close to unity for longitudinal waves. The anisotropy of soft tissues is mainly related to the shear
parameters governing the speed of slow transverse waves. This explains why the anisotropy was
not very widely studied in recent decades in ultrasonography.

6.4 Conclusion

Due to the current technology, the full characterization of the anisotropy of a biological tis-
sue is quite challenging. Estimation of the shear wave velocity in ultrasound elastography can
only be done in one direction at the time. Thus multiple measurements with different probe
placement must be done. Moreover, only a simple model is often assumed when estimating
the anisotropic ratio, as for example the transverse isotropic model, but only few organs have
this type of symmetry. To solve the full anisotropic tensor, technological improvement must be
realized, and having access to volumetric measurement of shear wave propagation could help
with this challenge [29].
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Transverse Wave Propagation in Bounded Media
Javier Brum
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7.1 Introduction

Wave propagation in bounded media has been widely used in several fields (e.g. non-destructive
evaluation, seismology, underwater acoustics) to determine different material properties.
Recently, ultrasound elastography, motivated by several medical applications, has used guided
waves to determine, non-invasively, the mechanical properties of plate-like tissue, such as
cornea, skin, myocardium, bladder, arteries, and tendons [1–10]. In these applications, the
shear wavelength (𝜆∼ 1–10 cm) is comparable to the tissue’s thickness (e.g.∼0.1 cm for arteries
and skin, ∼1 cm for myocardium). As a consequence, the shear wave is guided within the
tissue due to the successive reflections on the tissue boundaries. In this scenario, the relation
between wave speed and elasticity is more complex than in the case of an infinite tissue, where
the shear waves propagate in the bulk of the sample (i.e. away from the boundaries). To retrieve
the bulk shear wave speed cT and therefore the shear elasticity of the plate-like tissue, the
typical sequence is the following:
• first waves are generated inside the plate
• then the transverse component of the displacement field is acquired by using an ultrafast

ultrasound scanner and the wave velocity dispersion curve is extracted from the displace-
ment field through a Fourier analysis

• finally, a given plate model is assumed (e.g. plate in water, plate in vacuum, etc.) and cT is
retrieved by fitting the theoretical dispersion curve to the experimental data.
In this context, the main goal of this chapter is to review the main features of transverse wave

propagation in plate structures with application to ultrasound elastography. To this end, the the-
ory of guided wave propagation developed for an elastic solid will be presented and revised for
soft tissues in the experimental configurations encountered in ultrasound elastography. Several
types of wave guides and boundary conditions adapted to different applications will be studied.

7.2 Transverse Wave Propagation in Isotropic Elastic Plates

The exact solution to the problem of wave propagation in an elastic isotropic plate has been
obtained through different approaches. The two most popular approaches are the displacement
potentials method and the partial wave technique (see [11] for further reading). In this chapter
the partial wave technique will be used since it is more suitable to study wave propagation in
anisotropic plates. Furthermore, the partial wave technique leads to more direct wave solutions
and provides a deeper insight into the physical nature of the waves.
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Figure 7.1 Example of sample geometry used in the partial wave technique. In each layer the partial waves
(L±, S±) that combine to generate the guided wave are presented. Source: © 2012 IEEE, reprinted, with
permission, from Brum et al. [13] .

The partial wave technique [12] is based on the fact that the field equations for the displace-
ments and stresses in a flat plate can be written as the superposition of the fields corresponding
to four bulk waves within the plate. In Figure 7.1 the case for a single plate embedded in an
elastic medium is presented. Inside the plate there are four waves, two shear waves (S±) and
two longitudinal waves (L±), propagating with positive (S+, L+) and negative (S−, L−) x1 com-
ponents. Due to refraction and mode conversion, these four waves create two kinds of waves in
the surrounding medium: one shear wave and one compressional wave.

The first step of the method consists in deriving the field equations for bulk waves, which are
solutions to the wave equation in an infinite medium. As a result the stresses and displacements
within the plate can be expressed in terms of the amplitudes of all the bulk waves that can exist
within that plate. Then by introducing the proper boundary conditions at each interface the
rules for coupling between plate and surrounding medium are defined. Finally, the different
boundary conditions can be combined into one global matrix which describes the entire system
by relating the bulk wave amplitudes to the physical constraints.

7.2.1 Field Equations for Plane Waves in Two Dimensions

In what follows it will be assumed that the wavelengths involved are smaller than the width of
the plate and therefore a plane strain analysis is valid. The plane strain hypothesis restricts the
model to waves whose particle motion is entirely in the (x1, x3) plane, thus excluding for example
shear horizontal (SH) modes. SH modes are usually not observed in ultrasound elastography
since the ultrasound probe is placed parallel to the plate; however, they may be observed with
other imaging modalities, such as MRI. (Please refer to references 11, 14, and 15 for further
reading on SH modes and its inclusion into the general theory.)

Under a plane strain hypothesis, where there is no variation of any quantity in the x2 direction,
the coordinate system may be reduced to the plane defined by the wave propagation direction
and the normal to the plate (see Figure 7.1). A convenient way of presenting the solutions for
bulk waves inside the plate is by introducing Helmholtz potentials. The longitudinal waves (L)
are described by a scalar potential 𝜙 while the shear waves (S) are described a vector poten-
tial �⃗� whose direction is normal to the wave propagation direction and the particle motion
direction.

𝜙 = −iALei(⃗k ⋅ x⃗−𝜔t) (7.1)

�⃗� = −iASei(⃗k ⋅ x⃗−𝜔t) x̂2 (7.2)
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Here AL and AS are the longitudinal and shear wave amplitudes, ⃗k is the wavenumber vector,
and 𝜔 is the angular frequency. From the potentials, the displacements of the longitudinal and
shear waves can be calculated as

u⃗L = ∇𝜙 =
⎛⎜⎜⎝
k1
0
k3

⎞⎟⎟⎠ALei(⃗k ⋅ x⃗−𝜔t) (7.3)

u⃗S = ∇ × �⃗� =
⎛⎜⎜⎝
−k3

0
k1

⎞⎟⎟⎠ASei(⃗k ⋅ x⃗−𝜔t) (7.4)

7.2.2 The Partial Wave Technique in Isotropic Plates

As stated above, the development of a model for wave motion in plates is achieved by
the superposition of longitudinal and shear bulk waves and the imposition of boundary
conditions at the different interfaces. For modeling the guided wave propagating along
the plate it is sufficient to assume the presence of four bulk waves inside the plate: two
shear waves (S±) and two longitudinal waves (L±). Each of these bulk waves is termed a
partial wave.

Let k3 be denoted by k, which corresponds to the wavenumber of the guided wave. Then, the
k1 component of the wave vector of each partial wave can be expressed in terms of k and the
bulk wave velocities of the plate as

ki = ±
√

𝜔
2

c2
i
− k2 (7.5)

where the subscript i = L,T stands for the longitudinal or shear partial wave, ci denotes the
bulk phase velocity of each type of wave in the plate and the + and − signs correspond to a wave
moving with positive (“downward”) and negative (“upward”) x1 component. The displacements
and stresses at any location inside the plate may be found from the amplitudes of the bulk waves
using the field equations. In particular, the expressions for the two displacement components
u1 and u3, the normal stress 𝜎11, and the shear stress 𝜎13 will be derived since in a plate system
these quantities must be continuous over the different interfaces. From Hooke’s law and the
strain definition, the stresses can be calculated as

𝜎11 = 𝜆

(
𝜕u1

𝜕x1
+

𝜕u3

𝜕x3

)
+ 2𝜇

𝜕u1

𝜕x1
(7.6)

𝜎13 = 𝜇

(
𝜕u1

𝜕x3
+

𝜕u3

𝜕x1

)
(7.7)

Thus for the longitudinal partial bulk waves it can be found

u1 = ±kLAL±e±ikLx1 ⋅ ei(kx3−𝜔t) (7.8a)

u3 = kAL±e±ikLx1 ⋅ ei(kx3−𝜔t) (7.8b)

𝜎11 = i𝛼 ⋅ AL±e±ikLx1 ⋅ ei(kx3−𝜔t) (7.8c)

𝜎13 = ±i𝛽 ⋅ kL ⋅ AL±e±ikLx1 ⋅ ei(kx3−𝜔t) (7.8d)
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For the partial shear bulk waves

u1 = −k ⋅ AS±e±ikTx1 ⋅ ei(kx3−𝜔t) (7.9a)

u3 = ±kTAS±e±ikTx1 ⋅ ei(kx3−𝜔t) (7.9b)

𝜎11 = ∓i𝛽 ⋅ kT ⋅ AS±e±ikTx1 ⋅ ei(kx3−𝜔t) (7.9c)

𝜎13 = i𝛼 ⋅ AS±e±ikTx1 ⋅ ei(kx3−𝜔t) (7.9d)

where 𝛼 = 𝜌(𝜔2 − 2c2
Tk2) = 𝜌c2

T(k
2
T − k2), 𝛽 = 2𝜌kc2

T, and 𝜌 corresponds to the medium’s den-
sity. The displacements and stresses at any location in the plate may be found by summing the
contributions due to the four partial wave components.

⎛⎜⎜⎜⎜⎝
u1

u3

𝜎11

𝜎13

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
kLeikLx1 −kLe−ikLx1 −keikTx1 −ke−ikTx1

keikLx1 ke−ikLx1 kTeikTx1 −kTe−ikTx1

i𝛼 ⋅ eikLx1 i𝛼 ⋅ e−ikLx1 −i𝛽 ⋅ kT ⋅ eikTx1 i𝛽 ⋅ kT ⋅ e−ikTx1

i𝛽 ⋅ kL ⋅ eikLx1 −i𝛽 ⋅ kL ⋅ e−ikLx1 i𝛼 ⋅ eikTx1 i𝛼 ⋅ e−ikTx1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
AL+

AL−

AS+

AS−

⎞⎟⎟⎟⎟⎠
(7.10)

The matrix in Eq. (7.10) describes the relation between the wave amplitudes and the
displacements and stresses at any position inside the plate. Its coefficients depend on the
through-thickness position inside the plate, i.e. x1; the material properties of the layer, i.e.
𝜌, cT, cL; and the frequency and wavenumber of the guided wave.

By using Eq. (7.10) it is possible to combine all the different boundary conditions at each
interface into a single global matrix [G] which represents the entire system [12]. The columns
of the global matrix correspond to the amplitudes of the partial wave at each interface, while
the rows correspond to each boundary condition. Thus, by multiplying the global matrix [G] by
a vector {A} containing the partial wave amplitudes, all boundary conditions will be satisfied
simultaneously. The resulting equation will always be zero providing the characteristic equation
of the system

[G] ⋅ {A} = 0 (7.11)

To obtain non-trivial solutions for the vector of partial wave amplitudes {A}, the deter-
minant of the global matrix in Eq. (7.11) must be zero. This constraint will allow only
particular wave numbers k for a given frequency. By changing the frequency it is possible
to find the relation c(𝜔) = 𝜔∕k(𝜔), where c is the phase velocity of the guided wave, i.e.
the phase velocity dispersion curve. The phase velocity dispersion curve is the quantity
that is usually measured in ultrasound elastography. Consequently, to retrieve the bulk
shear wave speed cT and therefore the shear elasticity of the plate, it is necessary to fit the
experimental dispersion curve to a given plate model. In what follows several plate models
will be presented along with their different applications and consequences in ultrasound
elastography.

7.3 Plate in Vacuum: Lamb Waves

Let us now apply Eq. (7.10) to study transverse wave propagation in an elastic plate in vacuum
(i.e. Lamb waves). Although this situation is difficult to meet in practice it will be helpful to
establish some basic concepts of guided wave propagation. These concepts will be used later
in more complex situations. Let h be the thickness of the plate. For a plate in a vacuum, the
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normal stresses should vanish at each interface (i.e. traction-free condition): 𝜎11 = 𝜎13 = 0 at
x1 = ±h∕2. Under this condition Eq. (7.10) results in

0 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜎11|− h
2

𝜎13|− h
2

𝜎11| h
2

𝜎13| h
2

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
𝛼 ⋅ e−ikLh∕2

𝛼 ⋅ eikLh∕2 −𝛽 ⋅ kT ⋅ e−ikTh∕2
𝛽 ⋅ kT ⋅ eikTh∕2

𝛽 ⋅ kL ⋅ e−ikLh∕2 −𝛽 ⋅ kL ⋅ eikLh∕2
𝛼 ⋅ e−ikTh∕2

𝛼 ⋅ eikTh∕2

𝛼 ⋅ eikLh∕2
𝛼 ⋅ e−ikLh∕2 −𝛽 ⋅ kT ⋅ eikTh∕2

𝛽 ⋅ kT ⋅ e−ikTh∕2

𝛽 ⋅ kL ⋅ eikLh∕2 −𝛽 ⋅ kL ⋅ e−ikLh∕2
𝛼 ⋅ eikTh∕2

𝛼 ⋅ e−ikTh∕2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
AL+

AL−

AS+

AS−

⎞⎟⎟⎟⎟⎠
(7.12)

By combining rows and columns, the determinant of Eq. (7.12), which determines the phase
velocity dispersion curve, gives

det(G) =
||||| 𝛼 ⋅ cos(kLh∕2) −𝛽kT sin(kTh∕2)
−i𝛽kL ⋅ sin(kLh∕2) −i𝛼 sin(kTh∕2)

|||||
|||||𝛽kL cos(kLh∕2) 𝛼 cos(kTh∕2)
−i𝛼 sin(kLh∕2) i𝛽kT sin(kTh∕2)

||||| = 0

(7.13)

As described by Eq. (7.13), the determinant of the global matrix is calculated as a product
of two determinants. Each determinant corresponds to one particular mode of propagation:
the one on the left corresponds to the symmetric modes while the one on the right to corre-
sponds to the anti-symmetric modes. For the symmetric modes the longitudinal component of
the displacement field (u3) is an even function of x1 while the transverse component (u1) is an
odd function of x1. On the contrary, for the anti-symmetric modes, while u3 is an even func-
tion, u1 is an odd function of x1. Consequently, for each mode, the plate movement is either
symmetric or anti-symmetric with respect to the median plane of the plate. In Figure 7.2 the
phase velocity dispersion curve along with a schematic of the plate movement is presented for
the different modes. The anti-symmetric and symmetric modes are denoted with letters An and
Sn respectively, where the subscript n = 0, 1, 2, .. indicates the order of the mode.

By expanding each determinant in Eq. (7.13) the following characteristic equation is found
for the symmetric (Eq. 7.14) and anti-symmetric modes (Eq. 7.15) respectively

(k2
T − k2)2 cos(kLh∕2) sin(kTh∕2) + 4k2kLkT sin(kLh∕2) cos(kTh∕2) = 0 (7.14)

(k2
T − k2)2 sin(kLh∕2) cos(kTh∕2) + 4k2kLkT cos(kLh∕2) sin(kTh∕2) = 0 (7.15)
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Figure 7.2 (a) Wave velocity dispersion curves for an isotropic plate in vacuum presented in dimensionless
variables c/cT and f⋅h/cT. The longitudinal wave speed was set to 1500 m/s. (b) Schematic of the plate
displacement field for the first four modes for f⋅h/cT = 1.5.
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7.3.1 Low Frequency Approximation for Modes with Cut-off Frequency

It may be observed in Figure 7.2 that several modes (n > 0) present a cut-off frequency. Near
the cut-off frequency c → ∞ therefore k → 0, kT → 𝜔∕cT and kL → 𝜔∕cL. Consequently, from
Eq. (7.10), the displacement field and stresses near the cut-off frequency may be expressed as

u1 = kL(AL+ − AL−) cos(kLx1) + ikL(AL+ + AL−) sin(kLx1) (7.16)

u3 = ikT(AS+ + AS−) sin(kTx1) + kT(AS+ − AS−) cos(kTx1) (7.17)

𝜎11 = i𝜌𝜔2[i(AL+ − AL−) sin(kLx1) + (AL+ + AL−) cos(kLx1)] (7.18)

𝜎13 = i𝜌𝜔2[(AS+ + AS−) cos(kTx1) + (AS+ − AS−) sin(kTx1)] (7.19)

where the first term of each equation corresponds to the anti-symmetric modes and the
second to the symmetric modes. For the symmetric modes, the even solutions S2n (n = 1, 2, ..)
correspond to an even displacement field, therefore (AL+ + AL−) = 0. Consequently, the
corresponding boundary condition gives

sin
(kTh

2

)
= 0 →

𝜔ch
cT

= n𝜋 → fc =
ncT

h
(7.20)

This corresponds to a pure longitudinal symmetric mode. On the contrary, the odd solutions
S2m+1 with m = 0, 1, 2, .., correspond to (AS+ − AS−) = 0, giving

cos
(kLh

2

)
= 0 →

𝜔ch
cL

= (2m + 1)𝜋
2

→ fc =

(
m + 1

2

)
cL

h
(7.21)

which corresponds to a pure transverse mode. For the anti-symmetric modes the same reason-
ing yields the following cut-off frequencies

fc = ncL∕h (7.22)

fc =
(

m + 1
2

)
cT∕h (7.23)

for the even (A2, A4, ..) and odd (A1,A3, ..) anti-symmetric modes respectively.
At this point, it is important to notice the consequences of Eqs. (7.20–7.22) for Lamb

wave propagation in soft tissues. In ultrasound elastography cL ∼ 1500 m/s, cT ∼ 1–20 m/s,
h ∼ 1–20 mm, and the frequency is usually below 2 kHz. Therefore, the even anti-symmetric
and the odd symmetric modes will not be generated in an ultrasound elastography experiment
since the lowest fc for these modes is ∼ 7.5 kHz (Eq. 7.21). On the contrary, the presence of the
even symmetric modes and the odd anti-symmetric modes will depend on frequency and on
the ratio cT∕h (Eqs. 7.20 and 7.23). For tissues such as skin, arteries, bladder, or cornea where
h ∼ 1–3 mm, the fc for these modes will lie in the kHz range and they will not be generated.
Consequently, for these kind of tissues the only modes that may be expected are the zero-order
symmetric (S0) and anti-symmetric (A0) modes, which have no cut-off frequency. For other
types of tissue, e.g. the myocardium, where h ∼ 1 cm and cT ∼ 5 m/s, the cut-off frequencies
for A1 is ∼250 Hz, for S2 is ∼500 Hz, etc. Therefore, these modes may eventually coexist with
the S0 and A0 modes, depending on the type of source, frequency, plate thickness, and shear
elasticity involved in the experiments. It is important to point out, that although these modes
may theoretically be present, to our knowledge they have not been detected yet in a plate of
soft tissue. This may be explained by the fact that, as seen above, the odd anti-symmetric and
symmetric modes are mainly longitudinal near the cut-off frequencies, which, combined with
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a strong attenuation for frequencies above ∼400 Hz (i.e. tissue is by nature viscoelastic), makes
it very difficult to detect them in the experiments. Consequently, the most common situation
in an elastography experiment is the presence of the S0 and A0 modes. Let us briefly present
the main features of these modes.

7.3.2 Modes Without Cut-off Frequencies

In the low-frequency approximation, i.e. as k and 𝜔 approach to zero, Eq. (7.14) and Eq. (7.15)
may be reduced to

𝜔

4

c4
T
= 4k2

𝜔

2

(
1
c2

T
− 1

c2
L

)
(7.24)

𝜔

4

c4
T
= 4

3
h2k2 𝜔

2

c2
T

(
1
c2

L
− 1

c2
T

)
(7.25)

From Eq. (7.24), the phase velocity for S0 tends to a finite limit given by 2cT

√
1 − c2

T∕c2
L, which

for a soft tissue (cL ≫ cT) may be approximated as 2cT. Additionally, it may demonstrated that
when kh ≪ 1, the S0 mode is essentially longitudinal, i.e. u1∕u3 ≪ 1 [15]. Since soft tissue is
incompressible, a longitudinal displacement will generate a small but non-negligible transverse
displacement (see Figure 7.2b), therefore, this mode may be eventually detected by using ultra-
sound elastography. Additionally, the velocity of the mode is close to cT and may be followed by
an ultrafast scanner. For A0, by using Eq. (7.25), it may be demonstrated that its phase velocity
may be approximated as

c =
√

cT𝜔h∕
√

3 (7.26)
Therefore, by fitting this expression to the experimental dispersion curve the value of cT may

be retrieved without cumbersome determinant calculations. In the high-frequency region, i.e.
h ≫ 1, the velocities of the S0 and A0 approach to Rayleigh wave velocity which is ∼ 0.95cT.
Therefore the phase velocity for the S0 and A0 modes will always lie between zero and 2cT.

Finally, it is important to point out that the generation of each mode will not only depend
on the frequency, but also on the type of source used in the experiments [11]. A type of source
which is common in ultrasound elastography is the radiation force of ultrasound. This type of
source acts all along the thickness of the plate in a direction perpendicular to the plate, gener-
ating mainly the A0 mode, which is a flexural mode (Figure 7.2b).

7.4 Viscoelastic Plate in Liquid: Leaky Lamb Waves

Let us study a more realistic situation than a plate in vacuum. The model of a viscoelastic plate
surrounded by non-viscous fluid has widely been used to determine in vivo and ex vivo the
shear elasticity and viscosity of several types of tissues, e.g. arteries [6, 7], cornea [1, 16, 17],
bladder [5], and myocardium [3, 18]. In these works the Lamb waves were generated by using
the acoustic radiation force of focused ultrasound, generating only A0 mode. Therefore, in what
follows, special attention will be devoted to this specific mode of propagation.

7.4.1 Elastic Plate in Liquid

Let us derive the dispersion equation for an elastic plate in liquid by using the partial wave
technique introduced in Section 7.2.2. For a plate embedded in a non-viscous fluid of density
𝜌liq and longitudinal wave velocity cliq, six partial waves should be taken into account. The four
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waves inside the plate create two longitudinal waves (L+
ext, L−

ext) in the surrounding fluid. By
applying the continuity at each interface of u1, 𝜎11, and 𝜎13 the global matrix governing the
system can be written as

[G] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−kliqFliq −kLF∗
L kLFL kF∗

T kFT 0

ialiqFliq −i𝛼F∗
L −i𝛼FL i𝛽kTF∗

T −i𝛽kTFT 0

0 −i𝛽kLF∗
L i𝛽kLFL −i𝛼F∗

T −i𝛼FT 0

0 kLFL −kLF∗
L −kFT −kF∗

T −kliqFliq

0 i𝛼FL i𝛼F∗
L −i𝛽kTFT i𝛽kTF∗

T −i𝛼liqFliq

0 i𝛽kLFL −i𝛽kLF∗
L i𝛼FT i𝛼F∗

T 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.27)

where * denotes complex conjugate, FL,T = eikL,Th∕2, and Fliq, 𝛼liq, kliq correspond to the sur-
rounding liquid. By combining rows and columns the determinant of [G] may be calculated
as a product of two sub-determinants which give the following characteristic equations

(k2
T − k2)2 cos

(kLh
2

)
sin

(kTh
2

)
+ 4k2kLkT sin
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2

)
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(kTh
2

)
+ i
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𝜌kliqc4
T
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2

)
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(kTh
2

)
= 0 (7.28)
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(kLh
2

)
cos

(kTh
2

)
+ 4k2kLkT cos
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(kLh

2

)
cos

(kTh
2

)
= 0 (7.29)

Equations (7.28) and (7.29) correspond to the symmetric and anti-symmetric modes respec-
tively. It is important to notice that these equations differ from the equations for a plate in
vacuum (Eqs. 7.14 and 7.15) by one term which takes into account the contribution of the fluid.
In Figure 7.3 the phase velocity dispersion curves for the different modes for a plate in water
(circles) are compared to the dispersion curves for a plate in vacuum (black dots).
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Figure 7.3 Wave velocity dispersion curves for an isotropic plate in a non-viscous fluid (i.e. leaky Lamb mode)
shown in circles and a plate in vacuum shown in black dots. For both figures, (a) anti-symmetric and (b)
symmetric modes, 𝜌 = 𝜌liq = 1000 kg/m3 and cL = cliq = 1500 m/s.
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7.4.1.1 Leakage into the Fluid
Contrary to what happens for a plate in a vacuum, where the acoustic energy is trapped inside
the plate, for a plate surrounded by fluid the energy may leak into the surrounding medium.
Leakage may be described by an amplitude exponential reduction with distance along the plate,
which can be expressed by a complex wavenumber k = kr + iki. The real part of the wavenum-
ber is related to the phase velocity and describes the harmonic wave propagation while the
imaginary part describes the wave attenuation in space.

Leakage will depend on the ratio between the phase velocity of each mode and the bulk veloc-
ities of the plate. Snell’s law requires that all the partial waves share the same frequency and
spatial properties in the x3 direction at each interface. This constrains the angles of incidence,
transmission, and reflection of the partial waves inside the plate by

k
𝜔

= 1
c
=

sin(𝜃L)
cL

=
sin(𝜃T)

cT
=

sin(𝜃liq)
cliq

(7.30)

where 𝜃i are the angles at which longitudinal and shear partial waves propagate with respect to
the x1 direction. Therefore, a leakage angle, 𝜃leak, may be determined as sin−1(cliq∕c). Therefore,
if c < cliq, the leakage angle would be imaginary, which means that instead of creating a wave
that propagates away from the plate, the displacements will decay exponentially and energy will
be trapped in the fluid region close to the plate. [The same conclusion is obtained from Eq. (7.5):
if 𝜔2∕c2

liq is smaller than k2 then kliq is imaginary and the wave is evanescent in the x1 direction.]
Consequently, a mode will not leak if its phase velocity is less than the bulk velocity of any
waves that can exist in the surrounding medium. In elastography, since cL ≅ cliq and cT ≪ cliq,
the phase velocities of the different measurable modes will be lower than cliq (see Figure 7.3)
and no leakage should be considered. Therefore, when solving Eqs. (7.28) and (7.29) real values
of k should be searched.

7.4.2 Viscoelastic Plate

Another source of wave attenuation is viscosity, which is inherent to any type of tissue. In many
applications viscosity had to be taken into account to properly model the guided wave propaga-
tion. To introduce viscosity, the elastic constant 𝜇 will no longer be considered as a real number
but as a complex number instead. For example, if the frequency dependence is assumed to obey
a Voigt model, as it was assumed in previous works [3, 9, 18], then 𝜇 may be written as

𝜇 = 𝜇1 + i𝜔𝜂 (7.31)

where 𝜇1 is the elastic component and 𝜂 is the viscous component or viscosity. [Other rheolog-
ical models, such as Maxwell or Zener, will introduce different relations than the one presented
in Eq. (7.31); please refer to Fung [19] for further details.] It is important to note that the partial
wave technique still remains valid in the presence of viscosity [12]; however, to solve Eqs. (7.28)
and (7.29) complex wavenumbers k should be searched: the real part is related to the phase
velocity and the imaginary part is related to wave attenuation. In Figure 7.4 the phase velocity
and attenuation dispersion curves for different values of viscosity are presented. In this figure
cT =

√
Re[𝜇]∕𝜌, with Re[ ] being the real part.

From Figure 7.4, it is important to point out, that while the phase velocity dispersion curve
differs from the pure elastic case (the solid line) for values of f ⋅h/cT > 0.15, for f ⋅h/cT < 0.1
they practically remain unchanged when viscosity is added. On the other hand, the attenu-
ation dispersion curve is clearly sensitive to viscosity. This effect has already been observed
by Nguyen et al. [2] for Lamb waves in viscoelastic isotropic plates and by Brum et al. [9] for
guided wave propagation in the Achilles tendon. Consequently, for low values of f ⋅h/cT, the
elasticity constant associated with the guided wave can be retrieved directly from the phase
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Figure 7.4 (a) Phase velocity and (b) attenuation dispersion curves for the A0 mode in a viscoelastic plate in
water for different values of viscosity η.

velocity dispersion curve independently of the viscosity effects, i.e. elasticity and viscosity are
uncoupled.

7.4.3 Empirical Formula

An empirical formula (Eq. 7.32) was first proposed by Couade et al. [6] to retrieve the shear
modulus of the arterial wall from the A0 dispersion curve by assuming the artery to behave as
an elastic plate in water.

c =
√

𝜔hcT

2
√

3
(7.32)

This formula introduces a correction factor of 1∕
√

2 when compared to the low-frequency
approximation of the A0 mode for a plate in vacuum (Eq. 7.26).

The validity of this empirical formula was discussed in the work of Nguyen et al. [2] in the case
of thin elastic plates submerged in water. In this work, Eq. (7.32) was tested for plate thicknesses
and shear wave speeds ranging between 0.5 and 1.5 mm and 5 and 10 m/s respectively, showing
that the relative deviation of the empirical formula from simulated dispersion curves is as much
as 15% for the thickest and softest plates. However, its deviation was less than 5% for plates of
1 mm thickness whose shear wave speeds were greater than 10 m/s. Therefore, this empirical
formula is suitable for some particular applications, e.g. elasticity estimation of cornea, skin, or
the arterial wall.

7.5 Isotropic Plate Embedded Between Two Semi-infinite Elastic
Solids

The model of an isotropic plate surrounded by two semi-infinite elastic solids of bulk waves
speed cg1

L,T and cg2
L,T has been used in vitro by Brum et al. [13] to measure the elasticity of thin

plates embedded in an elastic solid and numerically by Couade et al. [6] to establish the bias of
the Leaky lamb model used in their work with respect to other plate models with more realistic
boundaries conditions.
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For a plate embedded in an elastic medium eight partial waves should be taken into account
(see Figure 7.1). The four waves inside the plate create two kinds of waves in the surrounding
medium: one shear and one longitudinal wave propagating with positive (L+

ext, S+
ext) and negative

(L−
ext, S−

ext) x1 component. As a consequence at each interface six partial waves should be taken
into account. By applying the continuity at each of the interfaces of u1, u3, 𝜎11, and 𝜎13 the global
matrix governing the system can be written as

[G] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−kg1
L ⋅Fg1

L −k⋅Fg1
T −kL ⋅F

∗
L kL ⋅FL k⋅F∗

T k⋅FT 0 0

k⋅Fg1
L −kg1

T ⋅Fg1
T −k⋅F∗

L −k⋅FL −kT ⋅F
∗
T kT ⋅FT 0 0

i𝛼g1 ⋅Fg1
L i𝛽g1 ⋅kg1

T ⋅Fg1
T −i𝛼⋅F∗

L −i𝛼⋅FL i𝛽 ⋅kT ⋅F
∗
T −i𝛽 ⋅kT ⋅FT 0 0

−i𝛽g1 ⋅kg1
L ⋅Fg1

L i𝛼g1 ⋅Fg1
T −i𝛽 ⋅kL ⋅F

∗
L i𝛽 ⋅kL ⋅FL −i𝛼⋅F∗

T −i𝛼⋅FT 0 0

0 0 kL ⋅FL −kL ⋅F
∗
L −k⋅FT −k⋅F∗

T −kg2
L ⋅Fg2

L k⋅Fg2
T

0 0 k⋅FL k⋅F∗
L +kT ⋅FT −kT ⋅F

∗
T −k⋅Fg2

L −kg2
T ⋅Fg2

T

0 0 i𝛼⋅FL i𝛼⋅F∗
L −i𝛽 ⋅kT ⋅FT i𝛽 ⋅kT ⋅F

∗
T −i𝛼g2 ⋅Fg2

L 𝛽

g2 ⋅kg2
T ⋅Fg2

T

0 0 i𝛽 ⋅kL ⋅FL −i𝛽 ⋅kL ⋅F
∗
L i𝛼⋅FT i𝛼⋅F∗

T −i𝛽g2 ⋅kg2
L ⋅Fg2

L −i𝛼g2 ⋅Fg2
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ u1(−h∕2)

→ u3(−h∕2)

→ 𝜎11(−h∕2)

→ 𝜎13(−h∕2)

→ u1(h∕2)

→ u3(h∕2)

→ 𝜎11(h∕2)

→ 𝜎13(h∕2)

L−
ext S−

ext L+ L− S+ S− L+
ext S+

ext (7.33)

For the equation of F , 𝛼, and 𝛽 with a superscript gi with i = 1,2, the bulk wave speeds and
density of each semi-infinite solid should be used. For the particular case of cg1

L,T = cg2
L,T = cg

L,T,
Brum et al. [13] demonstrated that the determinant of [G] may be reduced to a product of two
determinants

det(G) =

||||||||||||

−kg
L −k kL ⋅cos

(
kLh

2

)
k⋅cos

(
kTh

2

)
k −kg

T −i⋅k⋅sin
(

kLh
2

)
i⋅kT ⋅sin

(
kTh

2

)
i𝛼g i𝛽g ⋅kg

T 𝛼⋅sin
(

kLh
2

)
𝛽 ⋅kT ⋅sin

(
kTh

2

)
−i𝛽g ⋅kg

L i𝛼g i⋅𝛽 ⋅kL ⋅cos
(

kLh
2

)
−i𝛼⋅cos

(
kTh

2

)

||||||||||||
⋅

||||||||||||

i⋅kL ⋅sin
(

kLh
2

)
i⋅k⋅sin

(
kTh

2

)
−kg

L k

k⋅cos
(

kLh
2

)
−kT ⋅cos

(
kTh

2

)
−k −kg

T

i⋅𝛼⋅cos
(

kLh
2

)
i⋅𝛽 ⋅kT ⋅cos

(
kTh

2

)
−i𝛼g i⋅𝛽g ⋅kg

T

−𝛽 ⋅kL ⋅sin
(

kLh
2

)
𝛼⋅sin

(
kTh

2

)
−i𝛽g ⋅kg

L −i𝛼g

||||||||||||
= 0

(7.34)

The determinant on the left corresponds to the anti-symmetric modes and the one on the
right to the symmetric modes. Since the plate is embedded in an elastic medium, leakage will
occur whenever the phase velocity of the guided wave c exceeds one of the bulk wave velocities
of the surrounding medium. Since in elastography c ≪ cL, leakage will mainly depend whether
c is greater or less than the shear wave speed of the surrounding medium. Therefore, complex
wavenumbers should be searched when solving Eq. (7.34).

7.6 Transverse Wave Propagation in Anisotropic Viscoelastic Plates
Surrounded by Non-viscous Fluid

Transverse isotropic tissue like tendons and muscles are commonly present in ultrasound
elastography. Recently, guided wave propagation along a transverse isotropic plate has been
used to model shear wave propagation in vivo in the human Achilles tendon [9, 10]. Another
example lies in the cornea [17]. Let us briefly describe the main features of guided wave
propagation along transverse isotropic plates.

For an isotropic solid only two constants (i.e. Lamé constants) are needed to characterize it.
On the contrary, for a transverse isotropic solid the Christoffel’s tensor Cij describing the system
is composed of five independent elastic constants: C11, C33, C13, C55, and C66. In an infinite
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transverse isotropic medium the elastic constants C11, C33, and C13 can be determined from the
measurement of longitudinal ultrasound phase velocities along the perpendicular and parallel
directions, respectively. Moreover, the elastic constants C55 and C66 can be deduced from the
phase velocity measurement of shear waves propagating either parallel or perpendicular to the
fibre direction with a polarization perpendicular to the fibers [20]. However, in a transverse
isotropic plate the relation between phase velocity and elasticity is more complex. Let us use
the partial wave technique to derive the secular equation for a transverse isotropic plate. Two
situations will be considered: k parallel and perpendicular to the fiber orientation.

7.6.1 Guided Wave Propagation Parallel to the Fibers

Let us first consider the case where the wave propagation direction is parallel to the fibers. A
plane wave traveling in an arbitrary direction x may be written as

−→u =
−→A ⋅ ei(

−→
k ⋅−→x−𝜔t) (7.35)

where −→U is the displacement vector and
−→
A is its amplitude. Under a plane strain condition, the

nature of the bulk plane waves which can exist within a transverse isotropic plate are determined
by Christoffel’s equation

𝜌𝜔

2Ai =
∑
j,k,l

CijklkkkjAl (7.36)

Thus, by combining Eq. (7.35) and Eq. (7.36), the following equations relating the plane wave
amplitudes A1 and A3 are deduced

𝜌𝜔

2A1 = C11k2
1A1 + (C55 + C13)k1k3A3 + C55k2

3A1 (7.37)

𝜌𝜔

2A3 = C33k2
3A3 + (C55 + C13)k1k3A1 + C55k2

1A3 (7.38)

From Eq. (7.37) it is possible to express the ratio R between the wave amplitudes A1 and A3
as

R ≡ A3

A1
=

𝜌𝜔

2 − C11 k2
1 − k2

3 C55

(C55 + C13)k1 k3
(7.39)

By eliminating A1 and A3 from Eq. (7.38) by using Eq. (7.39), the following quadratic equation
for k1 in terms of k and the elastic constants is deduced

k2
1 =

k2
3

2
(−B ±

√
B2 − 4D) (7.40)

where B and D are given by

B =
−(C55 + C13)2 − (𝜌𝜔2∕k2)(C55 + C11)

C11C55
+

C11C33 + C2
55

C11C55
(7.41)

D = 𝜌𝜔

2

k2

𝜌𝜔

2∕k2 − C33

C11C55
− 𝜌𝜔

2

k2
1

C11
+

C33

C11
(7.42)

Let us define kp and km as the two values of k1 obtained from Eq. (7.40) with + and – signs
respectively. Also, Rp and Rm will denote the value of R when kp and km are respectively substi-
tuted in Eq. (7.39).

The equations above, derived for bulk plane waves propagating in an unbounded transverse
isotropic medium, predict the presence of four partial waves. These partial waves are the equiv-
alent of the two shear and the two longitudinal partial waves described in the case of an isotropic
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plate described in Section 7.2. Consequently, the displacements inside the plate may be written
as a superposition of partial waves

u1 = ei(kx3−𝜔t) [Ap+eikpx1 + Ap−e−ikpx1 + Am+eikmx1 + Am−e−ikmx1
]

(7.43)

u3 = ei(kx3−𝜔t) [RpAp+eikpx1 − RpAp−e−ikpx1 + RmAm+eikmx1 − RmAm−e−ikmx1
]

(7.44)

where the subscript i = p,m stands for the partial wave propagating with wave number com-
ponent kp and km respectively. By coupling these displacements along with the stresses (𝜎11 =
C11(𝜕u1/𝜕x1) + C13(𝜕u3/𝜕x3) and 𝜎13 = C13(𝜕u1/𝜕x3 + 𝜕u3/𝜕x1) to the ones of the surrounding
fluid, the global matrix gives

[G] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

X X−1 Y Y−1 kliqeikliqh∕2 0
X−1 X Y−1 Y 0 kliqeikliqh∕2

GpX −GpX−1 GmY −GmY−1
𝜌liq𝜔

2eikliqh∕2 0
GpX−1 −GpX GmY−1 −GmY 0 −𝜌liq𝜔

2eikliqh∕2

HpX HpX−1 HmY HmY−1 0 0
HpX−1 HpX HmY−1 HmY 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ u1(h∕2)
→ u1(−h∕2)
→ 𝜎11(h∕2)
→ 𝜎11(−h∕2)
→ 𝜎33(h∕2)
→ 𝜎33(−h∕2)

Ap+ Ap− Am+ Am− AF
+ AF

− (7.45)

where X = eikp.h/2, Y = eikm.h/2, Gp,m = C11kp,m + C13Rp,m.k, Hp,m = Rp,mkp,m + k. By combining
columns and rows, the determinant of the global matrix can be calculated as follows

|G| = |||||||
cos(kph∕2) cos(kmh∕2) kliqeikliqh∕2

iGp sin(kph∕2) iGm sin(kmh∕2) 𝜌liq𝜔
2eikliqh∕2

Hp cos(kph∕2) Hm cos(kmh∕2) 0

|||||||
|||||||

i sin(kph∕2) i sin(kmh∕2) kliqeikliqh∕2

Gp cos(kmh∕2) Gp cos(kmh∕2) 𝜌liq𝜔
2eikliqh∕2

iHp sin(kph∕2) iHm sin(kmh∕2) 0

|||||||
(7.46)

The determinant on the left corresponds to the anti-symmetric modes while the one on the
right corresponds to the symmetric modes. This determines the dispersion relation for the
different modes of a wave propagating along a transverse isotropic elastic plate in a direction
parallel to the fibers. In this case the velocity dispersion curve will depend on following elas-
tic constants: C11, C33, C13, and C55. To introduce viscosity, the elastic constant C55 should be
considered as complex number.

7.6.2 Guided Wave Propagation Perpendicular to the Fibers

To solve the problem of guided wave propagation in the direction perpendicular to the fibers
it is important to note that this is the same problem of wave propagation along the parallel
direction but in a different reference frame. Thus, it suffices to change the subscript 3 to 2 and
replace C55 by C66 in Eqs. (7.39) to (7.42) to re-obtain Eq. (7.46). However, since the plate is
transverse isotropic: C11 = C22 and C12 = C11 – 2C66. Under these conditions Hp,m, Gp,m, and
kp,m are reduced to the following expressions

kp = k ⋅ [(𝜌𝜔2)∕(k2C66) − 1]1∕2

km = k ⋅ [(𝜌𝜔2)∕(k2C11) − 1]1∕2

Hp = (k2 − kp
2)∕k
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Hm = 2k

Gp = 2C66kp

Gm = C66(kp
2 − k2)∕km

Consequently Eq. (7.46) may be reduced to Eqs. (7.28) and (7.29), which corresponds to the
Leaky Lamb wave equation for an isotropic plate of shear wave speed of (C66/𝜌)1/2 and longi-
tudinal wave speed of (C11/𝜌)1/2. Again, to introduce viscosity C66 may be considered to obey a
Voigt model, thus, C66 = c66 + i𝜂66.

7.7 Conclusions

Throughout this chapter the main features of transverse wave propagation in plate structures
with application to ultrasound elastography have been reviewed. Wave propagation in such
a configuration may be described as a superposition of different modes of propagation (e.g.
symmetric/anti-symmetric modes) which depend on the geometry, isotropy, mechanical prop-
erties, and boundary conditions of the wave guide. Moreover, the generation of each mode
will depend on the frequency and type of source used in the experiments. In this scenario, it is
mandatory to take the dispersive nature of each mode into account in order to retrieve the shear
wave speed of the plate, otherwise bias in the shear wave speed estimation will be introduced.
For a given application, once a plate model is assumed (e.g. plate in water, plate in vacuum, etc.)
the shear wave speed of the plate may be retrieved by identifying the corresponding mode and
fitting the theoretical dispersion curve to the experimental data. At the moment, the only mode
that was consistently detected using ultrasound elastography is the zero -order anti-symmetric
mode. However, new applications will shortly lead to the detection of other types of modes
as well as to the development of the theory for different types of geometries, sources, wave
guides, etc.
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Rheological Model-based Methods for Estimating Tissue
Viscoelasticity
Jean-Luc Gennisson

Imagerie par Résonance Magnétique Médicale et Multi-Modalités, Université Paris-Saclay, Orsay, France

8.1 Introduction

As was shown in Chapter 5 in this book, the wave equation can be expressed in terms of the
different pair parameters of elastic properties of tissue. It was shown that two types of waves
propagate in the solid: compressional waves and shear waves. Each of these waves will be intu-
itively linked to the speed propagation (cP, cS), but they can also be connected to the pair of
bulk and shear moduli (𝜅, 𝜇). Thus the equations for the compression and shear waves can be
reformulated as

𝜌𝜕

2
t2 up = 𝜅Δup (8.1)

𝜌𝜕

2
t2 us = 𝜇Δus (8.2)

where 𝜌, up, us are respectively the density, the longitudinal displacement, and the shear dis-
placement.

It is then possible to make an analogy with the oscillations of a spring or even the behavior of
any unamortized oscillator. The left-hand side is the product of the mass of the object and its
acceleration, whereas the right-hand side corresponds to the restoring force which allows the
oscillations of the object considered. As stated, the formalism of this equation is the equation
of motion for an undamped oscillator (i.e. oscillations exist indefinitely). In other words, this
equation assumes that the waves will propagate in the environment remaining unchanged and
can be propagated indefinitely if it is considered that the solid has no limit.

But biological tissues are known to be characterized by a greater attenuation of the shear
waves (i.e. the amplitude of the shear wave decreases during propagation). The nature of this
attenuation can be described by many models [1–4]. For this attenuation to be considered in
the wave equation, it is necessary to consider that the shear modulus is not a real number but
a complex number. To be convinced, it may be interesting to determine the equation of shear
wave solution when the shear modulus 𝜇* is a complex number of the form: 𝜇* = 𝜇d + i⋅𝜇l. The
general solution of the wave equation in one dimension is of the form

ut(x, t) = u0ei(𝜔⋅t−k⋅x) (8.3)
with 𝜔 the wave pulsation and k the wave vector. When the displacement is replaced by this
expression in the equation of the shear waves previously established, it is then possible to
express the wave number as follows

k2 = 𝜌 ⋅ 𝜔2

𝜇
∗ (8.4)
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In this case, if the shear modulus is complex, then the wave vector is complex since the
pulsation and the density are positive real numbers. The wave vector can be written k = kd
+ i ⋅ kl, leading to

ut(x, t) = u0ekl⋅xei(𝜔⋅t−kd⋅x) (8.5)

The imaginary part of the shear modulus allows to show a wave attenuation term. Also, it is
possible to take into account the attenuation of shear waves in the equation describing their
propagation in biological tissues whereas shear modulus is a complex number. Whatever is the
attenuation model considered, it is then necessary to adapt the expression of the shear modulus.

8.2 Shear Modulus and Rheological Models

In this section, solid mechanical properties are limited to single shear. It is possible to see the
problem only in shear terms by considering only the complex shear modulus, where the wave
equation becomes

𝜌𝜕

2
t2 u = 𝜇

∗Δu (8.6)

The behavior of the solid is then described by the expression of the complex shear modu-
lus. The complex shear modulus can simplify the notation and its expression will allow us to
describe some solid behaviors. The different patterns of behavior actually correspond to rheo-
logical models whose complexity varies greatly according to the desired use [5].

8.2.1 Rheological Models and Mechanical Response of the Solid

The study of the characteristics of the deformable body (elasticity, viscosity (𝜂), plasticity, fluid-
ity) is better known under the name of rheology. This word was created in 1929 by E.C. Bingham
from the Greek words λoγoς (meaning “speech” and, by extension, “science”), and ρϵoς (mean-
ing “the current” or “the fluid”). Thus the objective is to study the rheology of fluid flow and, by
extension for deformable solids, viscoelastic properties. The rheology is mainly based on a phe-
nomenological modeling of elastic behavior. These models are shown with the same formalism:
the elementary bricks connect deformations 𝜀 to stresses 𝜎. Elementary units are associated in
series or in parallel as schematic representations of electrical circuits. The two basic compo-
nents used in rheology are the spring (𝜎 = k⋅𝜀) and the damper (𝜎 = 𝜂⋅𝜕t⋅𝜀).

The rheological models can be characterized according to their static or dynamic behavior.
The static characterization is carried out by means of two types of experiments: creep and relax-
ation. Creep is to subject the system to a constant stress and to observe the distortion of the
system. Relaxation comes to free the system from its restraint and observe its return to bal-
ance. The dynamic characterization amounts to expressing the shear modulus according to the
characteristics of the considered model and observe its behavior as a function of the frequency.

8.2.2 Voigt’s Model

The Voigt model, also called the Kelvin–Voigt model, describes the behavior of viscoelastic
materials that are characterized by both elasticity kVo and viscosity 𝜂

Vo. This model takes its
name from two physicists: the British William Thomson, first Baron Kelvin, and the German
Woldemar Voigt. This model consists of a spring and a damper which are connected in parallel.
As the spring and the damper are in parallel, it is possible to express the stress versus strain as
follows

𝜎 = kVo
𝜀 + 𝜂

Vodt𝜀 (8.7)
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Figure 8.1 Voigt’s model (kVo = 1 kPa, 𝜂Vo = 10 Pa⋅s). (a) This model consists of a spring and a damper in
parallel. (b) The typical response of a Voigt-like material is characterized by a progressive deformation followed
by a decrease related to damping properties. (c) The dynamic behavior of Voigt’s model is relatively simple
since the dynamic part of the shear modulus is constant while the attenuation part is proportional to the
frequency of elastic waves propagating in the medium.

Figure 8.1a shows the Kelvin–Voigt model. Examples of the strain response from an applied
step force (Figure 8.1b) and the dynamic behavior (Figure 8.1c) are shown for kVo = 1 kPa and
𝜂

Vo = 10 Pa⋅s.
From Eq. (8.7), it is also possible to determine the wave propagation equation in terms of

the elasticity of the spring and the viscosity of the shock absorber for an object whose vis-
coelastic properties are described by a Voigt’s model. Note that this dynamic study consists in
studying the behavior of complex shear modulus as a function of frequency. In this case, the
wave equation is considered in the case of monochromatic waves characterized by pulsation 𝜔.
So that

−𝜌𝜔2u = kVoΔu + i𝜂Vo
𝜔Δu (8.8)

From this expression, it is possible to express the real and imaginary parts of the shear
modulus

μd = kVo (8.9)
μl = 𝜂

Vo
𝜔 (8.10)

The real part of the complex shear modulus is constant as a function of the frequency, which
means that the elasticity remains unchanged irrespective of the frequency of the propagating
waves. The imaginary part of the complex shear modulus is proportional to the frequency. By
using such a viscoelastic model, it is evident that the elastic wave propagation does not depend
on the frequency, but the attenuation of such waves depends on the frequency.

8.2.3 Maxwell’s Model

The Maxwell model describes the behavior of viscoelastic materials that are characterized by
both kMa and viscosity 𝜂

Ma. This model takes its name from the physicist James C. Maxwell,
who proposed it in 1867. The Maxwell model consists of a spring placed in series with
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Figure 8.2 Maxwell’s model (kMa = 1 kPa, 𝜂Ma = 10 Pa⋅s). (a) This model consists of a spring and a damper in
series. (b) The typical response of a Maxwell-like material is characterized by a progressive deformation
followed by a decrease related to damping properties. (c) The real part of the shear modulus is proportional in
a first time to the square of the frequency then remains constant for the elastic waves of high frequency. The
attenuating part on the contrary increases with frequency to decrease thereafter.

damper. Due to the structure of this model, it is possible to express the stress versus the strain
as follows

𝜎 + 𝜂

Ma

kMa dt𝜎 = 𝜂

Madt𝜀 (8.11)

Figure 8.2a shows the Maxwell model. Examples of the strain response from an applied step
force (Figure 8.2b) and the dynamic behavior (Figure 8.2c) are shown for kMa = 1 kPa and
𝜂

Ma = 10 Pa⋅s.
From Eq. (8.11), it is also possible to determine the propagation equation of the waves depend-

ing on the elasticity of the spring and viscosity of the damper for an object whose viscoelastic
properties are described by a Maxwell’s model. The wave equation is considered in the case of
monochromatic waves characterized by pulsation 𝜔. So that

−𝜌𝜔2u + i𝜂
Ma

kMa 𝜌𝜔
3 ⋅ u = −i𝜔𝜂Ma Δu (8.12)

From this expression, it is possible to express the real and imaginary parts of the shear mod-
ulus

μd = A2

1 + A2 kMa (8.13)

μl =
A

1 + A2 kMa (8.14)

where A is the ratio between viscosity and elasticity: A = 𝜂

Ma
𝜔/kMa.

The dynamic modulus is proportional to the square of the frequency for low frequencies and
then reaches a plateau corresponding to the spring for the high frequencies. The attenuation
modulus also increases for low frequencies, but there is just proportional to the frequency. The
dynamic modulus thus increases significantly faster than the attenuation modulus on the same
range of low frequencies. However, the attenuation modulus then decreases for high frequen-
cies in contrast to the dynamic modulus. This decrease is due to the fact that the imaginary part
of the shear modulus is proportional to the inverse of the frequency for the high frequencies.
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8.2.4 Standard Linear Model

The standard linear model, also called Zener’s model, was introduced to describe an instanta-
neous response to a mechanical solid described by a Voigt’s model. The structure of this model
is therefore based on a spring #1 and a damper placed in parallel and to which a spring #2 is
added in series to create this instantaneous mechanical response. Due to the structure of this
model, it is possible to express the stress versus the strain as follows

𝜎 + 𝜂

Ze

kZe
2

dt𝜎 = kZe
1 𝜀 + 𝜂

Zedt𝜀 (8.15)

Figure 8.3a shows the standard linear model. Examples of the strain response from an applied
step force (Figure 8.3b) and the dynamic behavior (Figure 8.3c) are shown for kZe

1 = 10 Pa,
kZe

2 = 1 kPa, 𝜂Ma = 10 Pa⋅s.
From Eq. (8.15) it is possible to establish the propagation equation of the waves depending on

two elasticities and the viscosity. The wave equation is considered in the case of monochromatic
waves by pulsation 𝜔. So that

−𝜌𝜔2u + i𝜂
Ze

kZe
2
𝜌𝜔

3u = kZe
1 Δu − i𝜔𝜂Ze Δu (8.16)

From this expression, it is possible to express the real and imaginary parts of the shear
modulus

μd = 1
1 + A2 kmean +

A2

1 + A2 kZe
2 (8.17)

μl =
A

1 + A2 k′
2 (8.18)

where kmean is the average of the two resulting elasticities of the model, k′
2 is the elasticity of the

second spring weighted by both elasticities, and A is the ratio between the viscosity and the two
elasticities. The expressions of these three characteristic quantities of the model are then

kmean =
kZe

1 kZe
2

kZe
1 + kZe

2
, k′

2 =
(kZe

2 )2

kZe
1 + kZe

2
, kmean =

kZe
1 kZe

2

kZe
1 + kZe

2
(8.19)
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Figure 8.3 Standard linear model (kZe
1 = 10 Pa, kZe

2 = 1 kPa, 𝜂Ma = 10 Pa⋅s). (a) This model consists of a spring
and a damper in parallel where a second spring is associated in series. (b) The second representation of the
Zener model is equivalent in terms of the relationship between stress and strain. (c) The dynamic modulus of
this model provides constant values to low and high frequencies. The attenuation modulus is comparable to
that of Maxwell’s model: it is growing at low frequency and decreasing at high frequency.
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From the expressions of real and imaginary parts of the complex shear modulus in the case
of standard linear model, there are three important variables: kmean, kZe

2 and k′
2. The first two

variables are involved in the expression of the dynamic modulus 𝜇d. The average elasticity kmean
is the value taken by the low dynamic modulus frequency. This non-zero elasticity allows the
material to behave like a solid on this frequency range. Similarly, the elasticity kZe

2 allows the
material to be characterized by a dynamic modulus or a constant elasticity for high frequencies.
More particularly, this constant elasticity allows the system to have an instantaneous response
during a sudden mechanical stress at high frequencies. Finally, the elasticity k′

2 will be respon-
sible for the position of the maximum of the attenuation modulus. Indeed, the attenuation
modulus is an increasing function for low frequencies, and is a decreasing function for high fre-
quencies. Also at low frequency as well as at high frequency, Zener’s type materials will exhibit
almost a zero attenuation for low and high frequencies while at the same frequency range the
dynamic modulus is constant.

The study of this third rheological model has shown that it was possible to model instan-
taneous mechanical response for a solid described by the Voigt model adding a spring.
It is thus possible to model each of the mechanical properties of a solid by adding base
components. More generally, it is difficult to model the behavior of any solid from a single
pair of values (elasticity, viscosity) and this results in difficulty in that the viscoelastic behavior
is generally different according to the scale at which they are observed. To be able to model
the dynamics of the material over a wide spectral range, it is then necessary to general-
ize this approach by concatenating several basic models to describe material dynamics at
different scales.

8.2.5 Fractional Rheological Models and Biological Tissues

8.2.5.1 Spring-pot
By establishing a network of rheological building blocks, it is possible to describe the behavior
of a solid. However, this method quickly becomes complex, particularly if the aim is to esti-
mate the viscoelastic properties of biological tissues. To prevent this escalation in the number
of rheological parameters, a generalization of Newton’s law was introduced to stop considering
the stress as proportional to the first derivative of the deformation, but rather as a fractional
derivative [4, 6–8]. This generalization was behind the introduction of a new elementary rhe-
ological building block: the spring-pot, a mixture of a spring (spring) and a damper (dashpot).
This new element is characterized by an elasticity E

𝛼

parameter and a fractional derivative D𝛼

t𝛼 𝜀.
This new element particularly allows us to adopt a type of model while having an adjustable 𝛼

parameter to describe the best dynamic behavior of the studied material. Such an approach has
shown convincing results for measurements made with both rheometers [9] and with optical
tweezers [10] over wide frequency ranges.

The viscoelastic behavior of biological tissue can be modeled by means of the different mod-
els previously introduced. Indeed, these materials have together a liquid structure (Maxwell’s
model) because they are mostly water, and a solid structure (Voigt’s model) as they do not flow
and they have a certain stiffness. Instead of using models with multiple parameters, the intro-
duction of the spring-pot eliminates a number of parameters through the fractional derivative
which can be expressed through the integral of Riemann-Liouville [11]

D𝛼

t𝛼 f (t) = 1
Γ(−𝛼) ∫

t

0

f (𝜏)
(t − 𝜏)𝛼+1 d𝜏 (8.20)

where Γ is the Bessel integral. As the fractional order derivative α is found midway between
the order 0 of Hooke’s law and the order 1 of Newton’s law, this new approach seems to bet-
ter describe biological tissues that are halfway way between a solid and a liquid behavior [12].
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Figure 8.4 Frequency of a spring-pot (a) behavior (E = 1 kPa⋅s−𝛼 , 𝛼 = 0.15): (b) dynamic and attenuation
moduli satisfy the same non-integer power law of the frequency.

The wave propagation equation can be determined in the same manner as above from the
relationship between stress and strain for elastic waves of a monochromatic pulsation 𝜔

−𝜌𝜔2u = E(i𝜔)𝛼Δu (8.21)

From the wave equation in an environment described by a unique spring-pot, it is then pos-
sible to express the real and imaginary parts of the complex shear modulus based on the actual
number 𝛼 and the pseudo-elasticity E

μd = E𝜔𝛼 cos
(
𝛼

𝜋

2

)
(8.22)

μl = E𝜔𝛼 sin
(
𝛼

𝜋

2

)
(8.23)

In order to keep the real and imaginary parts of the complex shear modulus positive, it is nec-
essary that the power 𝛼 takes values between 0 and 1. This need shows that the spring-pot is an
intermediate building block between the spring and the shock absorber in terms of rheological
function. While 𝛼 = 0, the spring-pot acts as a spring and thus shows pure elasticity, while if
the spring-pot 𝛼 = 1 it behaves as a pure damper.

Figure 8.4a shows the spring-pot model. An example of the dynamic behavior (Figure 8.4b)
is shown for E = 1 kPa⋅s−𝛼 , 𝛼 = 0.15.

From this expression, it appears that both the real and imaginary parts of the complex shear
modulus have a neighboring term since their ratio is constant regardless of the frequency of the
monochromatic elastic wave. In addition, the dynamic and attenuation moduli are proportional
to a non-integer frequency power 𝛼. Such behavior can be interesting and at midway between
the solid and liquid behavior. Also, it may be interesting to consider generalized models of Voigt
and Maxwell for which the damper was replaced by a spring-pot.

8.2.6 Generalized Maxwell and Voigt Models

In the case of the generalized Voigt model [4], the relationship between stress and strain can be
established and the equation governing the propagation of elastic waves in such a medium is

−𝜌𝜔2u = kΔu + E(i𝜔)𝛼Δu (8.24)
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Figure 8.5 The generalized Voigt model (E = 1 kPa⋅s−𝛼 , 𝛼 = 0.15, k = 1 kPa). (a) The spring-pot replaces the
damper in the classical Voigt model. (b) The dynamic modulus is close to the value of the elasticity k at low
frequency before following an increase in 𝜔

𝛼 , and the attenuation term is growing as for the spring-pot alone.

It is then possible by identification to recover the complex shear modulus as follows

𝜇d = k + E𝜔𝛼 cos
(
𝛼

𝜋

2

)
(8.25)

𝜇l = E𝜔𝛼 sin
(
𝛼

𝜋

2

)
(8.26)

Figure 8.5a shows the generalized Voigt model. An example of the dynamic behavior
(Figure 8.5b) is shown for E = 1 kPa⋅s−𝛼 , 𝛼 = 0.15, k = 1 kPa.

The frequency behavior of the complex shear modulus is comparable to that obtained when
only a spring-pot is considered. It should be noted, however, that the dynamic modulus is close
to the value of the elasticity k for the propagation of a wave of low frequency. This is related
to the fact that the term 𝜔

𝛼 is small compared to the constant elasticity k for low frequencies.
However, at high frequencies the elasticity of the spring is no longer involved since the end of
the spring-pot in the expression of the dynamic modulus becomes predominant.

As was done for the classical Voigt model, it is possible to build a generalized Maxwell model
by replacing the damper with a spring-pot. Such a model has been used in several works bearing
both on polymers [12–14] or soft tissue [15, 16]. As before, it is possible to easily establish the
equation of the constraint in terms of design and of deformation and the equation governing
the propagation of elastic waves of monochromatic pulsation 𝜔.

−𝜌𝜔2
(

1 + E
k
(i𝜔)𝛼

)
u = E(i𝜔)𝛼Δu (8.27)

It is then possible to recover the complex shear modulus by identification of terms, as follows

μd =
A2 + A cos

(
𝛼

𝜋

2

)
1 + 2A cos

(
𝛼

𝜋

2

)
+ A2

k (8.28)

μl =
A + A sin

(
𝛼

𝜋

2

)
1 + 2A cos

(
𝛼

𝜋

2

)
+ A2

k (8.29)

with A the ratio between the viscosity term E𝜔𝛼 and the elasticity term k.
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Figure 8.6 The generalized Maxwell model (E = 1 kPa⋅s−𝛼 , 𝛼 = 0.15, k = 1 kPa). (a) The spring-pot replaces the
damper in the classical Maxwell model. (b) The dynamic modulus follows an increase in 𝜔

𝛼 for low frequencies
before reaching a horizontal asymptote corresponding to the spring placed in series with the spring-pot. As for
the classic model, the attenuation modulus increases in 𝜔

𝛼 for low frequencies before decreasing for high
frequencies.

Figure 8.6a shows the generalized Maxwell model. An example of the dynamic behavior
(Figure 8.6b) is shown for E = 1 kPa⋅s−𝛼 , 𝛼 = 0.15, k = 1 kPa.

The frequency behavior of the complex shear modulus is comparable to that observed in the
classical Maxwell model. The dynamic modulus increases for low frequencies according to a
non-integer power-law 𝜔

𝛼 . Then for high frequencies the curve admits a horizontal asymptote
corresponding to the spring placed in series with the spring-pot. This particular behavior is due
to the presence of the spring which enables it to provide an instant response to the mechanical
system. In the case of the attenuation modulus, the analysis of the function as well as the graph
allows us to identify two behaviors at low and high frequency. Initially, the attenuation modulus
increases at low frequency with a non-integer power-law 𝜔

𝛼 and decreases at high frequency
according to a reverse non-integer power-law 𝜔

−𝛼 .
The use of the spring-pot adds more freedom in modeling viscoelastic materials. This result

is even more enhanced by the fact that it is possible to describe a spring-pot from rheological
networks simply composed of springs and shock absorbers [12, 17]. The advantage of using
spring-pots is the need to determine only the two parameters 𝛼 and E instead of having to
determine all the parameters of the springs and shock absorbers constituting the equivalent
network. Finally, it should be noted that from this base, it is also possible to refine the rheological
model in order to describe the different characteristics of viscoelastic materials experimentally
observed.

8.3 Applications of Rheological Models

Understanding the use of such models and their basics elements, allows a user to build any
rheological model that describes experimental data well in order to better understand material
behavior. In this way it is possible to link shear wave measurements to rheological models;
however, to completely understand the rheological behavior of the investigated medium, it
is necessary to acquire measurements over multiple decades of frequencies. In the following
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sub-sections, two examples show how to recover the rheological behavior of blood during coag-
ulation or hydrogels by combining shear wave measurements and other rheological approaches
with rheometers.

8.3.1 Blood Coagulation

In one of our studies, blood from healthy pigs was used for experimentation [18]. In order to
completely characterize blood during coagulation, multiple measurements with different set
ups were used.

At low frequency, rheological experiments were performed using a Haake Mars II rheometer
(Thermo Fisher Scientific Inc, Waltham, MA, USA) between 0.25 and 25 Hz. From rheological
results, G′ (dynamic modulus) and G′′ (loss modulus), the shear wave phase velocity (v) was cal-
culated in order to get the shear wave dispersion curve at low frequency by using the following
formulae

v(𝜔) =

√√√√√√ 2(G′2 + G′′2)

𝜌G′

(
1 +

√
1 + G′

G′′

2) (8.30)

At high frequency, shear wave experiments were performed using the supersonic shear imag-
ing technique described in Chapter 23 in this book by using an ultrafast ultrasound device (V12

prototype, Supersonic Imagine, Aix-en-Provence, France). Results were recovered between 50
and 300 Hz by using the shear wave spectroscopy method [19].

All measurements with both techniques were performed on two different blood samples from
the same blood sample at different times during coagulation initiated at the same time (the
entire experiments lasts 2 hours with one measurement every minute). By combining both sets
of results, the dispersion of the shear wave phase velocity was recovered over multiple decades
and plotted on Figure 8.7 over coagulation time. Then by using the expression of the shear wave
phase velocity for different models it is possible to fit all the results and to define what is the
best rheological model for describing the material.

Maxwell’s model v(𝜔) =

√√√√√ 2μ

𝜌

(
1 +

√
1 + μ2

𝜔
2
𝜂

2

) (8.31)

Voigt’s model v(𝜔) =
√

2(μ2 + 𝜔
2
𝜂

2)
𝜌(μ +

√
μ2 + 𝜔

2
𝜂

2)
(8.32)

Zener’s model v(𝜔) = 𝜔√√
A2+B2−A

2

(8.33)

where A =
−𝜔2

𝜌(𝜔2
𝜂

2(μ1 + μ2) + μ1
2μ2

μ2
1μ

2
2 + 𝜔

2
𝜂

2(μ1 + μ2)
and B =

𝜔

3
𝜌μ2

1𝜂

μ2
1μ

2
2 + 𝜔

2
𝜂

2(μ1 + μ2)2

Results shows that the choice of a rheological model to describe biological tissue can be com-
plicated. By taking only shear wave elastography measurements at high frequency, the three
models can fit the data well, but by adding the low frequency measurements it reveals that the
Zener model is the simplest model that best fits blood during coagulation.

8.3.2 Hydrogel Characterization

In the same way, this sub-section presents a study on hydrogels by using multiple techniques
over five orders of frequency [20]. The technique used were strain-controlled rheometry,
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Figure 8.7 Fitting of Maxwell, Voigt, and Zener models to the experimental dispersion curves at selected times
of coagulation (10, 30, 50, 80, and 120 min) in a blood sample. The solid lines in each panel represent best fit
(least mean square error minimization) of each model at the given time point. Source: reprinted from Bernal
et al. [18] with permission from Elsevier.

transient elastography (Chapter 20 in this book), and supersonic shear wave imaging (Chapter
23 in this book). Such a combination of techniques allows one to characterize materials over a
huge frequency range between 10−2 Hz and 1200 Hz. With results obtained in strain-controlled
rheometry giving access to G′ and G′′, and by using Eq. (8.30), shear wave phase velocity
was recovered between 10−2 Hz and 15 Hz. By using transient elastography technique and
supersonic shear imaging technique, shear wave phase velocity was recovered between 25 Hz
and 800 Hz, and between 200 Hz and 1200 Hz respectively. In Figure 8.8, the shear wave
phase velocity is presented for all techniques over five decades of frequency for two different
hydrogels.

A delicate point in this work is the assumption of the rheological model of the hybrid hydro-
gels at the frequency range of rheology. Here the model that can best describe the frequency
behavior is a power law, as was previously reported in the literature concerning hydrogels
[21–23]. Such characterization at relatively low frequencies does not signify that the viscoelas-
tic behavior of the gels follows the same model at high frequency. The choice of the power law
was only used to extrapolate conservation and loss moduli at high frequency. All elastography
measurements are well distributed within the standard deviation of the extrapolated power law
(not shown here, refer to Gennisson et al. [20]).

These two examples show that dynamic ultrasound elastography techniques can character-
ize tissues, biomaterials, and polymers in an unusual range of frequencies compared to classical
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Figure 8.8 Logarithmic representation of shear wave velocity calculated from strain-controlled rheometry
(SCR) measurements and shear wave phase velocity measured by transient elastography (TE) and supersonic
shear imaging (SSI) for two different hydrogels (solid and dashed lines, respectively) Source: © 2014 IEEE,
reprinted, with permission, from Gennisson et al. [20].

rheology, giving direct access to conservation and loss moduli. This shows also that the choice
of a rheological model to characterize a material or a biological tissue is very complicated with-
out knowing large decades of frequencies. By using only shear wave elastography techniques
the characterization of the rheological model can be easily missed by the small range of fre-
quency assessed, but the choice of a simple model could be relevant over the frequency range
investigated.

8.3.3 Some Conclusions

As a conclusion, future work should focus on the shear wave attenuation measurements to
give direct access to conservation and loss moduli directly. As shear wave phase velocity and
shear wave attenuation are directly linked to dynamic and loss moduli, this allows to choice of
the rheological model to be made without any assumption on it [24]. Such measurements will
permit clinical in vivo characterization over a high frequency bandwidth, compared to classical
rheology, and opens interesting perspectives for material characterization.
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9.1 Introduction

Utilizing dynamic-wave elastographic techniques for estimating mechanical properties of tissue
offers several advantages. Firstly, among the many methods now available for visualizing tissue
viscoelastic properties, wave-based techniques are valued for their ability to quantitatively map
shear modulus G. The shear moduli of human tissue can span six orders of magnitude, from
a few hundred Pa for brain tissue to several GPa for bone and cartilage. Also, the shear mod-
uli of diseased tissues can increase 2–10-fold when compared to healthy baseline values [1–3].
High elasticity contrast for disease states is beneficial in clinical diagnosis but can pose chal-
lenges when estimating properties. Secondly, unlike static compression elastography, dynamic
methods apply stress or strain locally with adjustable frequency in wave-based techniques,
thus estimation bias concerns from stress distributions and boundary conditions outside of
the region of interest are reduced. Ultrasound and other phase-sensitive imaging modalities
(MRI, optical coherence tomography (OCT)) have been available for capturing the complex
wave motion thanks to their high sensitivity to sub-millimeter-scale movements. Therefore,
wave-based elastography techniques have much potential to offer accurate mechanical prop-
erty information with high diagnostic value.

Mechanical-wave stimulation/excitation is usually the key aspect that determines the
quality of elasticity imaging. Except for passive elastography, which utilizes waves gener-
ated by physiological motion such as breathing and cardiac activities [4], most wave-based
elastography techniques introduce exogenous waves, often with a controllable geometry,
amplitude, and frequency bandwidth. Bulk and surfaces waves may be generated when pulsed
or harmonic sources are applied. An impulse stimulus or a single-cycle sinusoid induces a
broadband force-wave pulse with a group velocity that is predictive of tissue elasticity [2, 5, 6].
Harmonic-force stimulus, on the other hand, generates a narrowband force-wave burst that
improves the signal-to-noise ratio (SNR) for estimating wave speed and attenuation at each
excitation frequency [7–9]. The scope of this chapter is restricted to the discussion of exoge-
nous harmonic-wave stimulation and its applications in estimating mechanical properties of
elastic and viscoelastic media.

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
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9.2 Estimating the Complex Shear Modulus from
Propagating Waves

The theory of shear-wave propagation in viscoelastic media is well established [10–12]. This
section briefly summarizes the equations that describe local displacements associated with
shear waves as a function of the spatially varying complex shear modulus.

The relationship between strain 𝜀 and stress 𝜎 tensors can be expressed when displacements
in the medium are small by the expression

𝜎ij = Cijkl𝜀kl , where i, j, k, l = 1, 2, 3 (9.1)

where C is a fourth-rank tensor. For isotropic materials, C reduces to just two independent
variables, the Lamé constants 𝜆 and 𝜇, where 𝜇 is the shear modulus

𝜎ij = 2𝜇𝜀ij + 𝜆𝜀nn𝛿ij (9.2)

For source (applied force) f , the equation of wave motion is

𝜌

𝜕

2ui

𝜕t2 = ∇j ⋅ 𝜎ij + fi (9.3)

which describes how stress influences the displacement-field vector u. Usually stress is difficult
to measure experimentally. Therefore, we eliminate it by substituting Eq. (9.2) into Eq. (9.3),
using the definition 𝜀ij = (ui,j + uj,i)∕2 as well as the assumption that the analysis wave field
does not include an active source. (We use the partial derivative notation ui,j = 𝜕ui∕𝜕xj.)
The result is

𝜌

𝜕

2u
𝜕t2 = 𝜇∇2u + (𝜆 + 𝜇)∇(∇ ⋅ u) (9.4)

If we further assume that the contribution from longitudinal waves can be ignored, Eq. (9.4)
simplifies to

𝜌

𝜕

2u
𝜕t2 = 𝜇∇2u (9.5)

because the divergence of the shear-wave component and the curl of the longitudinal-wave
component are both zero. If longitudinal-wave energy is significant, Eq. (9.5) can remain
valid by applying the curl operation to the displacement vector (∇ × u) to remove its
effects.

Knowing the density of the medium 𝜌 and estimating field u, we can directly compute shear
modulus 𝜇 as a function of position from Eq. (9.5). This is the Helmholtz inversion technique.
Normally, Helmholtz inversion is performed in the frequency domain, combined with heavy
filtering of the displacement vector to avoid amplifying errors from the Laplacian in Eq. (9.5).
Finite element-based techniques have been developed to iteratively solve for 𝜇 in a way that
minimizes the error between simulated and experimentally acquired wave fields [13, 14]. The
drawback of such techniques is a long computational time.

Alternatively 𝜇 may be estimated using a phase-gradient technique [12]. For harmonic-wave
motion, and assuming local homogeneity, Eq. (9.5) reduces to

𝜌𝜔

2 = 𝜇k2
s (9.6)

In linear-elastic media, both 𝜇 and ks are real numbers representing, respectively, the
shear modulus and the wave number at each location. In viscoelastic media, like most
biological tissues, ks = kr − i𝛼 is complex with real part kr = 𝜔∕cs and imaginary part 𝛼(𝜔),
the frequency-dependent attenuation coefficient for shear waves. Consequently, the shear
modulus 𝜇(𝜔) = 𝜇r(𝜔) + i𝜇i(𝜔) is complex for viscoelastic media.
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To measure 𝜇r and 𝜇i independently, both wave speed and attenuation must be estimated. It
is very challenging to estimate shear-wave attenuation unless the wave-front geometry is well
known. However, attenuation estimation is not necessary if a mathematical model is adopted
to describe the behavior of 𝜇r and 𝜇i as a function of frequency. With the model, shear-wave
speeds dispersion curve is a function of those model parameters (Eq. 9.7). One can determine
the best model parameters through least-square fitting of Eq. (9.7) to the dispersion curve.

cs(𝜔) =

√√√√√ 2(𝜇2
r + 𝜇

2
i )

𝜌(𝜇r +
√

𝜇

2
r + 𝜇

2
i )

(9.7)

Speed cs is estimated from the shear-wave phase gradient along the direction of shear-wave
propagation where rheological model parameters are obtained as a function of position.
The range over which phase gradients yield accurate wave-speed estimates depends on the
homogeneity of the medium. There is an inherent tradeoff between spatial resolution and
phase-estimation accuracy with this approach.

9.3 Wave Generation and Propagation

Most readily accessible ultrasound machines support only two-dimensional echo acquisition.
This restricts the direction of shear-wave propagation to be along the lateral direction of a
1D array. Cylindrical waves and surface waves are widely used to mechanically excite tissues
[15–21]. Other wave geometries, such as plane and Lamb waves, are used in some circum-
stances; for example, when imaging a vessel wall [19]. However, they are difficult to apply in
media with amorphous structure, such as biological tissues. There are several advantages to
using cylindrical or surface waves. Both wave geometries are easy to generate experimentally
by, for example, vibrating a needle inserted into the medium [16], acoustic radiation force (ARF)
[18], dual-focus ultrasound transducer [21], or through a sequence of ARF pulses over a range
of depths that generate a shock wave [20].

Cylindrical waves provide radially symmetric excitation fields about the vibrating needle,
making it possible to image tissues at any depth. Figure 9.1 gives an example of a cylindri-
cal wave propagating in homogeneous gelatin gels (an elastic medium at these frequencies).
More detail about the setup is presented in ref. [16]. A biopsy needle vibrating at 200 Hz along
the z axis generates harmonic shear waves that are imaged by a Doppler probe (7 MHz, PRF
12.5 kHz). In the direction of shear-wave propagation, the phase of the wave shifts linearly while
its amplitude decreases exponentially. Even if 𝜃 ≠ 0, the phase remains linear near the source at
depths as much as 40 mm in gelatin gel. Ultrasonically guided breast needle biopsy is an oppor-
tunity to excite tissues with harmonic cylindrical waves for shear-wave imaging without adding
to patient risk.

There are several noninvasive techniques for generating approximately cylindrical waves in
tissues, e.g. ARF impulses are commonly applied. Fink et al. [20] transmitted a sequence of
ARF push pulses that excite a Mach-cone-shaped shear wave, which is approximately cylin-
drical for large Mach numbers. The method takes advantage of the fact that the speed of the
compressional-wave ARF pulses in tissues is about 1000 times faster than that of the shear
waves they generate.

Rayleigh-type surface waves are generated when a forcing source is applied at or near a free
surface of a solid sample [22], e.g. see Figure 9.2. Rayleigh waves are a mixture of shear and
longitudinal particle motions, and yet its phase velocity can be directly related to shear-wave
velocity by a constant between 0.92 and 0.96 depending on Poisson’s ratio for the medium [23].
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Figure 9.1 A vibrating needle generates patterns of 200 Hz cylindrical shear waves inside a gelatin block that
are imaged using standard ultrasonic Doppler techniques at angle 𝜃. Measurements of a linear phase shift with
lateral position about the needle are shown (right).
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Figure 9.2 Acoustic radiation force geometry (upper left) generates surface waves inside a gelatin block
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tomographic (OCT)-detected displacement amplitude for a 3 kHz ARF excitation. A plot of displacement
amplitude at the depth indicated by the horizontal line is shown on the lower right. Source: republished with
permission from CRC Press from [27]; permission conveyed through Copyright Clearance Center, Inc.
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Although the speeds of surface and bulk waves are about 5% different, the amplitudes of both
waves decay according to the geometric factor 1∕

√
r with distance r from a point source in

elastic media. In more viscous media, the frequency-dependent shear-wave attenuation reduces
the amplitude more rapidly. Thus, we are able to apply similar estimation algorithms for imaging
surface and bulk transverse waves.

Surface waves are easier to excite using noninvasive sources than are cylindrical shear waves,
because the impedance discontinuity at the surface acts to strongly couple the transfer of pulse
momentum to the medium surface. Surface waves travel with some depth in the medium. They
propagate about one to two wavelengths in depth so both optical and ultrasonic Doppler tech-
niques can image this motion. Ultrasound is sensitive to transverse-wave particle motion over
many centimeters of depth, while optical coherence tomography (OCT) is more sensitive to the
small displacement amplitudes of high-frequency transverse waves but only 1–2 mm deep [24].
High-frequency surface waves enable measurement of mechanical properties at higher spatial
frequencies and with higher spatial resolution, which is particularly beneficial for imaging het-
erogeneous tissues.

One characteristic of surface waves is depth-related velocity dispersion. The velocity of sur-
face waves is a function of material property at each depth location that the wave penetrates. The
wavelength of a surface wave and its penetration depth each decrease inversely in proportion
to frequency. If the mechanical property of the material varies with depth, it will be reflected in
the surface wave velocity-dispersion curve. This curve can be used to resolve spatially varying
mechanical information in layered media if the material is not too strongly dispersive [25, 26].

Figure 9.2 illustrates images of surface waves in a homogeneous 8%-concentration gelatin
gel using an ARF source applied from below. A compressional wave pulse traveling upward
is totally reflected at the sample–air surface, thus generating a transverse surface wave. That
surface wave travels horizontally with a cone-shaped geometry in the image plane near the
source. In this example, 800 Hz waves are imaged using OCT to measure particle motion along
the top surface of the sample [27]. The wave amplitude map for a 3 kHz source is also shown on
the bottom left of Figure 9.2. The top of the sample is located at depth z = 0, and the brightest
spot at the center is the excitation source.

Cylindrical shear waves and radial surface waves have each been successfully applied in elas-
ticity imaging. The choice of wave excitation method depends on specific experimental condi-
tions, as well as sample size, shape, and degree of inhomogeneity. In practice, transverse wave
propagation is distorted by sample heterogeneities and boundaries that can bias shear mod-
ulus estimates. For example, distortion of the phase front will bias low the shear-wave speed
estimated using phase-gradient methods [28]. Most of these effects are minimized when the
sample size is larger than two shear wavelengths. In some cases, directional filters can help
reduce the influence of reflected shear waves [29]. Internal wave reflections pose a significant
challenge for 2D ultrasonic phase measurements near tissue interfaces. In highly attenuating
media, reflections are less of a factor; instead displacement SNR is the limiting factor for mod-
ulus estimation.

9.4 Rheological Models

The complex shear modulus 𝜇 = 𝜇r + i𝜇i as a function of frequency provides a model-
independent metric that characterizes the viscoelastic behavior of a material under dynamic
loading. Rheological constitutive models are proposed as a way to connect physical and
experimental parameters to the real and imaginary parts of the property 𝜇; for example,
the Kelvin–Voigt (KV) model implies 𝜇r is the elastic shear modulus E and 𝜇i is the vis-
cous coefficient times the radial frequency, –𝜂𝜔. That is, for 𝜎 = 𝜇𝜀 the KV model gives
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Table 9.1 Comparison between the Kelvin–Voigt model and the Maxwell model.

Kelvin–Voigt Maxwell

description 𝜎 = E𝜀 + 𝜂

d𝜀
dt

1
E

d𝜎
dt

+ 𝜎

𝜂

= d𝜀
dt

𝜇 A cos𝜑 + iA sin𝜑 = E − i𝜔𝜂 i𝜔𝜂E
E − i𝜔𝜂

= 𝜔

2
𝜂

2E
E2 + 𝜔

2𝜂2 − i 𝜔𝜂E2

E2 + 𝜔
2𝜂2

𝜇 = E − i𝜔𝜂. Other models have been proposed in attempts to summarize in just one or two
imaging parameters values representing 𝜇 for very complicated materials. The basic problem
with these simple models is that tissues are not the material continua assumed. Tissues are
better described as multiphasic composites and sometimes structures, depending on the
measurement scale. No model fully captures the constitutive complexity of soft tissues, which
prompts some investigators to avoid them altogether by adopting methods that estimate
𝜇 directly.

When models are assumed, the simplest and most-often applied are the Kelvin–Voigt (KV)
and Maxwell models, summarized in Table 9.1. The KV model describes solid materials while
the Maxwell model describes viscoelastic fluids, and both offer two parameters that are fre-
quently mapped into elasticity images. Since soft tissue is neither solid nor fluid, a combina-
tion – the Zener model – is somewhat more realistic. Others models proposed include the
Jeffrey model, the generalized Maxwell model, and the generalized KV model, most of which
are higher order combinations of KV and Maxwell elements [30]. Recently, fractional deriva-
tive (FD) models are proving to be efficient in summarizing the dynamic behavior of viscoelastic
materials over a wide frequency range with just 2 or 3 parameters [31, 32]. Figure 9.3 shows the
dispersion behaviors predicted by the different models.

Given that all models are limited in their ability to predict behavior, we settle for those
that yield physically meaningful imaging parameters that are sensitive to the presence of
disease. The best models offer parameters that are correlated with inflammation, hyper
cellularity, fibrosis, and other classic pathological biomarkers. At this point in elasticity imag-
ing development, we are still correlating model parameters with tissue states characteristic
of disease.
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Figure 9.3 Dispersion curves as predicted by four rheological models over the same frequency range.
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9.5 Experimental Results and Applications

9.5.1 Validation of Shear Wave and Surface Wave Elasticity Imaging on Phantoms

Pure gelatin gels (<15% concentration) do NOT model soft tissue behavior accurately. However,
gelatin samples are well suited for directly comparing elastic imaging results with materials
characterization techniques such as mechanical indentation, which provides methodological
validation for different measurement approaches. We and others have shown that the elastic
modulus remains approximately constant over a large force-frequency bandwidth, as predicted
by the KV model, so results can be directly compared [16, 33].

Shear-wave and surface-wave measurements were compared for 4% gelatin-concentration
samples in Figure 9.4. Although each measurement is most sensitive in different frequency
ranges, there is overlap showing similar estimates below 300 Hz. The Young’s modulus val-
ues (calculated from the average of cs estimates over all frequencies) were 1.95 ± 0.08 kPa for a
shear-wave method and 2.38± 0.14 kPa for a surface-wave method. Young’s modulus measured
using quasi-static Hertzian indentation estimated was 1.75 ± 0.06 kPa for the same sample [34].
Since the viscosity of gelatin is ignored during estimation, modulus values can be expected to
bias measurements at high frequency, contributing to the observed differences. These simi-
larities provide confidence that wave-based elasticity imaging can reliably yield moduli that
compare well among standard materials measurements.

9.5.2 3D Modulus Reconstruction of Sample with Inclusion

Resolution is essential in any imaging system due to the heterogeneous nature of human tissue.
Wave-based elasticity imaging may never provide micrometer-level resolution but it can clearly
distinguish a lesion with mechanical contrast relative to the background. In this study, a soft
cylindrical inclusion (4%) was embedded in a stiff gelatin gel block (8%), which was imaged using
ultrasonic shear-wave methods and a vibrating needle source. 3D ultrasonic data were obtained
from stacking multiple 2D images in the elevation direction. The measured shear-wave patterns
near a cylindrical inclusion are in good agreement with predictions. The wavelength shortens
as the shear wave enters the soft inclusion. A 3D Helmholtz inversion technique was used to
reconstruct the shear modulus of the object (corresponding results are shown in Figure 6 in
ref [35]). The modulus estimation accuracy near the edge of the inclusion is compromised more
when only 2D wave data are available.

0 500
0

0.5

1

1.5

2

S
he

ar
 w

av
e 

sp
ee

d 
(m

/s
)

1000 1500 2000

4% gelatin phantom

Shear wave - US
Surface wave - OCT

2500 3000 3500

Frequency (Hz)

Figure 9.4 Comparison of wave dispersion curves measured on 4% gelatin sample using shear-wave imaging
technique and surface-wave imaging technique. Shear waves and surface waves were tracked by ultrasound
and optical coherence tomography, respectively.
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Figure 9.5 (left) Dispersion curve of viscous gel measured by ultrasonic shear wave imaging technique, with
Maxwell model fit. (Right) Dispersion curve of an ex vivo fresh porcine liver measured by optical surface wave
imaging, with Kelvin–Voigt mode fit.

9.5.3 Modeling of Viscoelastic Material

Wave speed in an elastic material is constant with frequency. In contrast, viscoelastic materials
are dispersive; i.e. the wave speed changes substantially with frequency. Dispersive behavior is
determined by the components of the materials and their mechanical couplings. In standard
rheological models, these components are represented by springs and dash-pots. The combi-
nation patterns of springs and dash-pots usually represent certain components or their inter-
actions, and inappropriate models could produce non-physical and perhaps non-diagnostic
parametric images. Generally, materials that share similar compositions will be similarly dis-
persive, thus the same model can be adopted to fit their dispersion curves.

Figure 9.5 shows different dispersive behaviors. On the left is a dispersion curve of a viscous
gel that is fitted to a Maxwell model, implying this gel has fluid-like properties. The model
parameters are E = 5.58 kPa, 𝜂 = 2.9 Pa⋅s. On the right is the dispersion curve of ex vivo
porcine liver fitted to a KV model, implying solid material behavior. The model parameters
are E = 1.75 kPa, 𝜂 = 0.4 Pa⋅s. It is difficult to directly compare these modeling results of the
materials because neither are a continuum. The viscous gel is an oil-based cream emulsified
in gelatin (a composite material) and liver is a collagen polymer embedded in open- and
closed-cell fluid compartments. We need new ways of representing complex mechanical
structures.

The solution is not to increase the number of parameters by adding coupled components
to existing models. It is unlikely that more complicated models will enhance the diagnostic
performance of elastography. There is new hope in recent efforts to model tissue mechanics
using fractional derivative models [36]. These models may help resolve the solid–fluid duality
of soft biological tissues [37] by offering a compact feature space that is sensitive to disease
states.

9.6 Summary

Shear-wave and surface-wave imaging offer quantitative estimates of intrinsic viscoelastic prop-
erties of dispersive tissues. Coupling dispersion behavior with rheological models parameter-
izes measurements as needed for imaging. The appropriate model depends on how well it
represents the data and how well it separates healthy and pathological tissues based on his-
tological features. The future for this type of diagnostic imaging continues to brighten as we
learn to summarize mechanical properties of tissues from measurements of transverse waves
in the body.
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10.1 Introduction

Over the last few decades elastography, or elasticity imaging, has emerged as a novel imaging
modality that may be used to detect and diagnose malignant tumors [1–3]. The premise behind
this role for elastography is that disease often alters tissue microstructure, which in turns leads
to altered macroscopic tissue properties. Most efforts in elastography have focused on recover-
ing the linear properties of tissues [4–6] while ignoring their nonlinear behavior which becomes
evident at large strains. Recent ex vivo data suggests that the nonlinear elastic behavior may play
an important role in differentiating benign and malignant tissue, with the concensus being that
malignant tissue tends to stiffen to a larger extent with increasing strain [7–9]. This leads to the
intriguing possibility of using the nonlinear behavior of tissue to discern whether a tumor is
cancerous. Over the last two-to-three years several studies have demonstrated the feasibility of
this idea [10–14].

Motivated by these applications we have developed and implemented an iterative, nonlinear
algorithm to determine the nonlinear elastic properties of a tissue from the knowledge of its
internal displacement field. We have tested this algorithm in two dimensions in the context of
plane-stress and plane-strain approximations [15, 16]. We have benchmarked its performance
using synthetic (computer-generated) displacement data. We have also applied it to a small
set of patient data [27]. In this chapter we benchmark the performance of this algorithm on
experimentally acquired tissue-phantom data. This allows us to work with a realistic set of mea-
sured displacements, in terms of the noise and bias introduced by the ultrasound equipment
and displacement estimation algorithms, and at the same time provides a ground truth with
which to compare our reconstructed material properties. We challenged our reconstruction
techniques by performing a “blind” test, in that the reconstruction team was provided no infor-
mation (shape, number, or contrast of inclusions) about the phantom while the modulus images
are reconstructed. Once the reconstruction team delivers its “final” answer, it is compared to
the experimental measurements. This answer is not modified in light of what is now known
to be the correct answer. We also utilize this study as an opportunity to analyze the effect of
various algorithmic choices made in our computational strategy. In particular, we examine the
effect of assumed boundary conditions and the values of regularization parameters used in the
inverse problem.

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
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The layout of the remainder of this chapter is as follows. In Section 10.2 we briefly describe
the solution of the inverse nonlinear elasticity problem, the ultrasound data acquisition, and the
displacement estimation algorithm. Section 10.3 presents the reconstructions for the linear and
nonlinear elastic parameters for the tissue-phantom. The following section discusses several
algorithmic choices for our reconstruction algorithms. Finally in Section 10.5 we discuss these
results and end with conclusions.

10.2 Methods

10.2.1 The Inverse Algorithm

The inversion strategy uses a quasi-Newton optimization algorithm (L-BFGS-B [28, 29]) cou-
pled with a nonlinear finite element code. The objective function is given by the sum of a data
matching term and total variation (TV) regularization terms [11, 15]:

𝜋 = 1
2∫Ω

Nmeas∑
n

wn|T(Un) − T(Un
meas)|2 + 𝛼

𝜇∫Ω

√
𝛽

2
𝜇
+ |∇𝜇|2

+ 𝛼
𝛾∫Ω

√
𝛽

2
𝛾
+ |∇𝛾|2 (10.1)

In the equation above Un
meas is the n-th measured displacement field, Un is the correspond-

ing predicted displacement field which satisfies the equations of equilibrium for a hyperelastic
material, T is a diagonal matrix whose values are selected to emphasize the displacement com-
ponents that are measured accurately, and wn is a weight related to the amplitude of Un. It is
selected so that measurements made at disparate levels of strain contribute in equal measure
to the data-matching terms. The material parameters are denoted by 𝜇 and 𝛾 , which denote the
shear modulus at zero strain and nonlinear parameter distributions, respectively. Finally, 𝛽

𝜇

and
𝛽
𝛾

are small constants that ensure the differentiability of the regularization terms at the origin;
𝛼
𝜇

and 𝛼
𝛾

are the regularization parameters associated with 𝜇 and 𝛾 , respectively. These para-
meters determine the relative importance of the data matching and the regularization terms.
We note that a change in the material parameters leads to a change in the predicted displace-
ments Un which in turn leads to a chance in the functional 𝜋. The goal is to find the distribution
of the material parameters that minimizes 𝜋.

We model the material (gel) as an incompressible hyperelastic material. The stress-strain
behavior is thus completely determined by the strain energy density function given by

W = 𝜇

(
1
𝛾

(e𝛾(I1+1∕I2−3) − 1) − 1
2
(I1 + I1∕I2 − 3)

)
(10.2)

In the equation above 𝜇 is the shear modulus at small strains and 𝛾 represents the rate of
increase of stiffness with strain. In addition I1 and I2 are the invariants of the two-dimensional
Cauchy-Green strain tensor C. We note that the expression for the strain energy density we
have used is the restriction of a simplified Veronda-Westmann model [15, 30] to plane stress.

At every iteration the quasi-Newton algorithm requires the gradient vector which represents
the change in 𝜋 corresponding to a change in𝜇 or 𝛾 at a spatial location. This vector is computed
efficiently by utilizing the adjoint elasticity equations and a continuation strategy in material
parameters [15, 16].

10.2.2 Phantom Description and RF Data Acquisition

A phantom containing four spherical inclusions was manufactured using previously reported
ultrasound phantom materials with nonlinear elastic properties [17]. The methods for
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Figure 10.1 Three dimensional depiction of the phantom. (a) Parts that composed the phantom;
(b) the phantom in its final form.

manufacturing phantoms with coplanar spherical inclusions were also previously reported
[18, 19]. Sketches of the phantom identifying the background layers and individual targets
are provided in Figure 10.1. The assembled phantom is a 100 mm cube. Each spherical target
is 10 mm diameter. They are separated by 30 mm (center-to-center) and are placed 35 mm
(center to phantom edge) from the top and each lateral side of the phantom.

When the phantom components were manufactured, a test cylinder of the same material
was also cast to provide identical material with simple geometry to independently test the
stress–strain behavior of the material. Mechanical tests were performed with an EnduraTEC
ELF 3200 (Bose-EnduraTEC Systems Corporation, Minnetonka, MN, USA) using a 1 kg load
cell and Teflon® platens larger than the sample surface. Each test cylinder was stored in oil to
prevent desiccation, and that oil was used to lubricate the platens for the mechanical testing.
During the mechanical testing, the upper platen was first lowered to make contact with the test
cylinder. Then, the platen was lowered further (at 0.04 mm/s) to the center of the cyclic defor-
mation range used for material characterization and the platen remained at that deformation
for 5 s. A 1 Hz oscillatory compressive load (ranging from 1% to 25% strain) was applied for 5 s
before starting data acquisition to precondition the sample [20, 21]. Following the precondition-
ing step, force and displacement data were acquired for the randomized range of displacement
magnitudes for each phantom material. Thus, the stress–strain curve of each tissue-mimicking
material (2 backgrounds and 4 inclusions) was obtained and subsequently fitted to the modi-
fied Veronda-Westmann model to estimate the small strain shear modulus 𝜇 and the nonlinear
parameter 𝛾 (see Eq. 10.2).

During phantom experiments, radiofrequency (RF) data were acquired using a Siemens
SONOLINE Antares (Siemens Medical Solutions USA, Inc, Malvern, PA) clinical ultrasound
system with a linear array ultrasound transducer (Siemens VFX9-4) pulsed at 8.89 MHz.
Details of the URI and bandwidth of the Siemens system are given by Brunke et al. [22]. A large
(approximately 15 cm by 15 cm) compression plate was attached to the ultrasound transducer
to ensure nearly uniaxial deformations of the phantom. More specifically, ultrasound RF data
were acquired for every 1.5% increment deformation (after the first few frames of 0.5% strain)
up to approximately 20% (with respect to its height). Further details regarding this phantom
are reported by Pavan et al. [23].

10.2.3 Displacement Estimation

To obtain large deformations (approximately 20%) required for nonlinear elasticity imaging,
we first tracked motion sequentially through multiple frames similar to the multi-compression
technique [24]. In the first step, offline motion tracking using RF echo data acquired from the
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nonlinear tissue-mimicking phantom was performed between each pair of two adjacent RF
echo frames [e.g. from the i-th frame to the (i + 1)-th frame] using a modified block-matching
algorithm [25]. This modified block-matching algorithm combines smoothness-constrained
motion tracking with predictive search [26]. Specifically, this modified block-matching
algorithm first estimated reliable motion within a small neigborbood to obtain high quality
displacement estimates in a sparse grid (e.g. every 5 mm). Then, these reliable high quality
displacements were used as seeds to perform predictions for its immediate neighbors. During
this process, a small (approximately 0.5 mm [height] by 1 mm [width]) tracking kernel was first
used to obtain integer displacements. Then, sub-sample displacement estimates (necessary for
modulus inversion) were obtained with quadratic interpolations. Collectively, this algorithm
significantly reduces the occurance of large motion tracking errors between two adjacent RF
frames. Once all displacement fields between adjacent RF echo frames were obtained, we
mapped all displacement estimates in this sequence (from the first frame to the n-th frame) to
the coordinate system of the first echo frame by using B-spline interpolations.

10.3 Results

The displacement data was measured on a 300 × 231 grid with a resolution of 0.1545 ×
0.1217 mm. It was found that the data close to the boundaries contained more noise than
inside the domain. As a result 39 lines were removed from the axial edge close to the ultrasound
probe and 8 lines were removed from the opposite axial edge. In addition 9 lines were removed
from each of the lateral edges. We define the axial direction to be the direction along the axis
of the ultrasound transducer. The lateral direction is the direction in the imaging plane that
is perpendicular to the axial direction. In order to keep the problem small the displacement
field was downsampled by a factor of four in each direction. The shear modulus and nonlinear
parameter images were generated on a 63 × 54 mesh with a resolution of 0.618 × 0.487 mm.
The displacement measurements were sampled on the same grid. It was recognized that the
measured data in the axial direction (y) was much more accurate than in the lateral direction
(x). As a result the latter was dropped from the displacement matching term by selecting
Txx = 0 and Tyy = 1. The reconstructions were performed by a team comprising of the first
four authors of this chapter without any a priori knowledge of the phantom and its properties.
Further, once the comparison with experimental data was made, these reconstructions were
not revisited or polished.

10.3.1 Description of the Forward Problem

As part of our iterative strategy a forward elasticity problem is solved at every iteration of the
optimization algorithm. For the boundary conditions in the forward problem, on every edge,
the axial component of the displacement was set equal to the measured displacement while in
the lateral direction a traction-free state was assumed. This implied perfect slip on the axial
(the top and the bottom) edges and zero normal traction on the lateral (left and right) edges.
This choice was motivated by the experimental set-up and the fact that the measured lateral
displacements were too noisy to be imposed strongly. The effect of other choices for boundary
conditions was also explored and is described in Section 10.4.4. The phantom was assumed to
be in a state of plane stress, which is appropriate since the phantom was not confined in the
elevational direction.

10.3.2 Options for the Optimization Strategy

The material parameters 𝜇 and 𝛾 were determined sequentially. That is, first 𝜇 was recon-
structed using measurements at small deformation while keeping 𝛾 fixed at 0.1. Thereafter 𝛾
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was reconstructed using two displacement fields at large strains while 𝜇 was held fixed at the
previously computed value.

Several tests (not reported here) demonstrated that the choice of the initial value for 𝜇 and
𝛾 did not impact the final reconstructions provided that the initial field(s) were in a reasonable
range. In this chapter, the initial fields were chosen to be uniform with a value of 𝜇 = 1.05 and
𝛾 = 0.5. We would like to emphasize that even though the final results are not influenced by
the initial field, the rate of convergence is: not surprisingly, the closer the initial choice is to the
final solution, the faster the convergence.

The TV regularization used in Eq. (10.1) is a linear function of the magnitude of the
gradient of the fields and consequently for a given contrast in material properties it will
tend to reduce the mean value of the field. Additionally, the shear modulus is recovered
only to a multiplicative constant as we use only displacement data in our inverse problem.
Therefore it is necessary to specify a lower bound for the optimization algorithm. In this
chapter, the shear modulus and nonlinear parameter are constrained as follows: 1 ≤ 𝜇 ≤ 10
and 0.01 ≤ 𝛾 ≤ 10. Note that we ensured that the upper bound was never obtained for both 𝜇

and 𝛾 .
The convergence criterion plays an important role in determining the final answer. The

L-BFGS-B algorithm implements two stopping criteria: stop when

(i) the relative change in the objective function value is less than a prescribed value, or
(ii) when value of the L2-norm of the projected gradient is smaller than a prescribed value.

In our experience the iterations terminated due to the first criterion and we set the tolerance to
be 0.1𝜖, where 𝜖 is the machine precision. Choosing such a small value for the tolerance leads
to results that are convincingly converged. A slightly higher value could have been chosen to
reduce the number of iterations.

10.3.3 Shear Modulus Images

The shear modulus was reconstructed using the displacement measured with an overall
strain of approximately 1.5%. The results are shown in Figure 10.2 and the values of the
regularization parameters appear in Table 10.1. The robustness of this strategy was verified by
using one or more displacement fields with overall strain in the range of 0.5% to 3.5% in order
to recover the shear modulus. It was found that this choice did not significantly change the
results.

10.3.4 Nonlinear Parameter Images

The nonlinear mechanical behavior can only be observed for rather large deformations and
therefore it is appropriate to use deformation states where the strain is around 20%. Figure 10.3
shows the non linear parameter fields obtained when frames 30 (with 18% overall strain) and
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Figure 10.2 Shear modulus 𝜇 reconstructions for sections 1 through 4 (left to right).
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Table 10.1 Values of the parameters for the
reconstructions (Eq. 10.1).

Parameter set 1 set 2 set 3 set 4

𝛼
𝜇

7e-5 4e-5 4e-5 1e-5
𝛽
𝜇

6e-3 6e-3 6e-3 3e-3
𝛼
𝛾

4e-4 4e-4 7e-5 1e-4
𝛽
𝛾

7e-3 7e-3 7e-3 7e-3

NLP
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NLP
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Figure 10.3 Non linear parameter 𝛾 reconstructions for sections 1 through 4 (left to right).

36 (with 20.5% overall strain) are used. Note that, since these strains are close to each other, the
weights wn in Eq. (10.1) are identical and equal to unity. As for the shear modulus, the values of
the regularization parameters are given in Table 10.1.

10.3.5 Axial Strain Images

The displacement data used in generating the shear modulus and nonlinear parameter images
was also used to generate axial strain images. This lead to two strain images for each section
of the phantom, at approximately 1.5% and 20.5% overall strain which were evaluated using
the gradient filter within Paraview [31]. These images are shown in Figures 10.4 and 10.5. We
observe that at small strain the strain contrast changes somewhat from one section of the phan-
tom to another. Also, for a given section it changes rather dramatically from small to large
strains.

Ax. strain
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Figure 10.4 Axial strain images at 1.5% overall strain for sections 1 through 4 (left to right).
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Figure 10.5 Axial strain images at 20.5% overall strain for sections 1 through 4 (left to right).

10.4 Discussion

10.4.1 Analysis of the Shear Modulus Distributions

The shear modulus reconstructions show that every data set contains a circular inclusion in the
lower part of the image. We observe that the shape and the sharp boundary of these inclusions
have been recovered very accurately. The diameter of these inclusions, measured along the axial
and lateral directions, is listed in Table 10.2, where we have also listed the manufactured diame-
ter of these inclusions. We observe very good agreement too, with the maximum error of about
1 mm.

With only measured displacement data, the shear modulus can be determined up to a multi-
plicative constant and therefore it is interesting to focus on the contrast between the inclusion
and the background. The predicted and measured values are compared in Table 10.3. The mea-
sured values are obtained as described in Section 10.2.2. That is, a cylinder of each material
type was compressed to obtain the uniaxial stress–strain curve, and that curve was matched
to the analytical curve for the Veronda-Westmann strain energy density function in order to
determine 𝜇 and 𝛾 .

Table 10.2 Dimensions of the inclusions after segmentation (thresholding at 30% of the
maximum contrast).

incl. 1 incl. 2 incl. 3 incl. 4 Manufactured

Lateral diameter (mm) 9.60 9.38 9.28 9.21 10.0
Axial diameter (mm) 10.87 10.94 10.74 10.61 10.0
Area (mm2) 81.7 76.8 75.8 76.5 78.5

Table 10.3 Reconstructed and measured values of material properties.

Source incl. 1 incl. 2 incl. 3 incl. 4 backg. 1/ backg. 2

Recontructed 𝜇 2.11 1.86 3.02 4.09 1 / 1.2
Measured 𝜇 2.83 2.27 3.54 5.26 1 / 1.16
Reconstructed 𝛾 0.35 2.6 3.8 2.9 3.4 / 2.7
Measured 𝛾 2.2 6.5 4.9 4.5 4.7 / 4.3
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We observe that in all cases we have underestimated the contrast by about 20%. It is well
known that the TV regularization results in diminishing contrast as is apparent here. Further,
based on our previous experience with noisy data, a factor of 20 % appears reasonable.

We note that there is a small gradient in the shear modulus reconstruction in the axial direc-
tion. In particular the top portion of the phantom appears to be stiffer than the lower portion.
We have observed the same effect in all sections and in axial strain images. This is consistent
with how the phantom was manufactured in that the top portion of the background was slightly
stiffer than the bottom portion (see Section 10.2.2). It is remarkable that the reconstructions
are able to pick up this small effect.

10.4.2 Analysis of the Nonlinear Parameter Images

The images for the nonlinear parameter for the sections of the phantoms are shown in
Figure 10.3. Here we can clearly see an inclusion only in the first section. For the other sections
the inclusion is not clearly seen. This observation is consistent with the actual tissue phantom,
where the background material and the inclusion material for inclusions 2, 3, and 4 was
constructed to have the same nonlinear behavior. It is remarkable that our reconstructions
recover this fact. Additionally, the independent mechanical measurements suggest that top
background is slightly more nonlinear than bottom portion; this trend is properly captured in
our reconstructions.

The measured and predicted values of the nonlinear parameter are presented in Table 10.1.
We observe that, unlike with the values for the shear modulus, there is greater discrepancy
between the measured and predicted values. This may be attributed to the following causes:
(i) In order to quantitatively recover 𝛾 and to compare the reconstructed and the measured

values, as well as to compare the reconstructed values of 𝛾 across different, phantom
sections, it is necessary to utilize displacement measurement at two, significantly dif-
ferent, levels of finite strain. In our reconstructions we have utilized displacements at
18% and 20.5% overall strain. These may not be sufficiently different so as to measure 𝛾

quantitatively.
(ii) Using the formula derived in Gokhale et al. [15], see Equation (56) therein, we conclude

that we require a strain of about 24% in the inclusion in order to measure 𝛾 accurately. At
20.5% overall strain we are close to, but still less than, this number. Thus the amount of total
strain may not be sufficient to accurately estimate 𝛾 for the given problem.

We also note that the images for 𝛾 display more artifacts than the corresponding images for
𝜇. This may be explained by recognizing that in general the measured displacements are less
sensitive to changes in 𝛾 than in 𝜇 [16], which makes recovering 𝛾 from displacement measure-
ments more sensitive to noise. In addition we note that 𝛾 is recovered sequentially, that is it
is based on utilizing a reconstructed (and hence noisy) 𝜇 distribution. Therefore, in addition
to the noise in the measured displacements, it is also influenced by errors in the recovered 𝜇

distribution.
Finally, we note that strain images can be misleading when interpreting nonlinear elastic

effects. A quick glance at Figures 10.4 and 10.5 might convince the reader, that relative to the
background, the first two inclusions soften with strain. However, a look at the measured and
reconstructed values of 𝛾 reveals that this not the case for the second inclusion. Only the first
inclusion behaves this way, a fact that is correctly captured in the reconstruction for 𝛾 .

10.4.3 Effect of Varying Regularization Parameters

The total variation regularization terms are the last two terms in Eq. (10.1). In these terms 𝛼
𝜇

and 𝛼
𝛾

are parameters that determine the importance of the regularization term relative to
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the data matching term while 𝛽
𝜇

and 𝛽
𝛾

are parameters that ensure that the integrand of the
regularization terms is twice-differentiable when ∇𝜇 = 0 or ∇𝛾 = 0. The idea is to select 𝛽 to
be small enough so that they do not influence the final result, and at the same time provide the
problem with enough smoothness so that quasi-Newton methods can be used to solve it.

We have thoroughly investigated the effect of varying 𝛽
𝜇

and 𝛽
𝛾

on the corresponding recon-
structions. In Figure 10.6 we present one such study for reconstructing the nonlinear parameter
of the first specimen. We select three different values of 𝛽

𝛾

(that differ from each other by a
factor of ≈ 7) while keeping all other parameters fixed. We observe that changes in the recon-
structions, especially between the two images corresponding to the smaller values of 𝛽

𝛾

, are
minimal, indicating that we have reached an asymptotically small value for 𝛽

𝛾

. We also observe
that reducing 𝛽

𝛾

adversely effects the smoothness of the problem which translates to an increase
in the total number of iterations to convergence.

The effect of varying the regularization parameter 𝛼
𝛾

is shown in Figure 10.7, where we plot
the reconstructed images for 𝛾 for section 1 at three different values of 𝛼

𝛾

. We note that the
image on the right (Figure 10.7c) is clearly under-regularized and displays strong variations even
within the homogeneous background region. The center image (Figure 10.7b) gets rid of this
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Figure 10.6 Influence of the regularization parameter 𝛽
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on the nonlinear parameter reconstruction for
section 1. (a) 𝛽 = 4e-2 (914 iterations to convergence); (b) 𝛽 = 7e-3 (2214 iterations to convergence); (c) 𝛽 = 1e-3
(5977 iterations to convergence)).
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Figure 10.8 Effect of the boundary condition in the lateral direction on lateral faces for section 1.
(a) zero traction; (b) measured lateral displacement; (c) smoothed lateral displacement.

artifact while preserving the boundary of the inclusion. The image on the left (Figure 10.7a) has
a still higher regularization parameter (around 2.5 times that for the center image). We observe
that this image is similar to the center image, although the distribution for 𝛾 appears to have
shifted to a lower overall value. This is to be expected as this change corresponds to lowering
the total variation of 𝛾 .

10.4.4 Effect of Boundary Conditions on Lateral Edges

While solving the forward problem we are required to specify a boundary condition in each
direction on every edge. In the axial direction the measured displacements are used as bound-
ary conditions on every edge. If we also use the measured displacement in the lateral direction
as boundary data we obtain the shear modulus image for section 1 shown in Figure 10.8b. In
this image we can clearly see artifacts along the edges due to the noisy lateral displacement
estimates that are imposed strongly through the boundary conditions. These artifacts are some-
what mitigated by using a smoothed version of the lateral displacements, as seen in the image
in Figure 10.8c. The smoothed displacement field on the boundary is obtained by linearly inter-
polating between 24 carefully selected points on the boundary. A point is included in this set
if its lateral displacement is close to the average lateral displacement on the edge (so as to pre-
clude outliers) and if it is sufficiently far from other points that have already been included in
the selected set. Perhaps the best (in terms of a homogeneous background) reconstruction is
obtained when homogeneous lateral traction is imposed (see Figure 10.8c). We note that this
latter boundary condition is appropriate for our data since the phantom was not constrained
along the lateral direction as they were compressed. This is the boundary condition we have
used in the reconstructions shown in Figures 10.2 and 10.3.

10.5 Conclusions

We have tested the ability of ultrasound based quasi-static elasticity imaging in creating images
of the linear and nonlinear elastic properties of soft materials in two dimensions. For this pur-
pose we have utilized tissue-mimicking phantoms with tunable linear and nonlinear elastic
response as our models. We conclude that we are able to accurately reconstruct the spatial vari-
ation of the shear modulus and are able to resolve sharp interfacial changes. We are also able
to recover the contrast in the shear modulus with an accuracy of about 20%. For the nonlinear
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response, we conclude that we are able to distinguish differences in the nonlinear behavior of
the constituents of the gelatin phantoms. However, we observe more artifacts and the values of
the recovered parameters differ from estimates based on the phantom recipe and independent
mechanical tests. We attribute these discrepancies to insufficient overall strain in the phantoms
and the lack of displacement measurements at two distinct values of finite strain.
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Cardiac Strain and Strain Rate Imaging
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11.1 Introduction

Although some pioneering work had been done in the 1980s, it was not until the 1990s that
cardiac strain imaging by ultrasound drew significant clinical interest in the quest for a quan-
titative measure of regional myocardial (contractile) function. The original methodology relied
on Doppler techniques, but later on other techniques – commonly referred to as speckle track-
ing – entered the scene, avoiding some of the pitfalls of the original methodology. At present,
cardiac strain imaging has become an established diagnostic tool in echocardiography that
has been demonstrated to be more prognostic than traditional functional indices, e.g. ejection
fraction. Moreover, it has now reached a level of maturity to be included in the guidelines for
monitoring the progression of certain diseases and/or their treatment.

This chapter starts with a recapitulation of the nomenclature of strain in the cardiac set-
ting. Next, a brief review is given of the different technical approaches taken towards cardiac
motion and deformation estimation using ultrasound as well as the available methodologies
for validating these measurements. Subsequently, a glimpse on the typical clinical workflow is
given and two important clinical applications are presented. Finally, a look into potential future
developments concludes this chapter.

11.2 Strain Definitions in Cardiology

In cardiology, “strain” is typically defined as the total deformation of the cardiac muscle dur-
ing the cardiac cycle. Most often, the R-wave on the ECG (i.e. onset of the ejection period) is
defined as the reference state (i.e. zero strain) although more recently it has been suggested
to use diastasis (i.e. onset P-wave) as an alternative instead [1]. Importantly, this definition of
“strain” is thus different from what is typically used in elastography where “strain” refers to the
instantaneous change in the dimensions of an object between two subsequent recordings. In
the cardiac context, this (instantaneous) strain value would, however, be dependent on the data
acquisition rate (i.e. frame rate) as well as on the heart rate and thus be of little meaning in
itself. Therefore, the (instantaneous) strain in cardiology is normalized for the acquisition rate
thereby resulting in a quantitative estimate of deformation rate, i.e. “strain rate” (SR). Integra-
tion of strain rate over the cardiac cycle then results in the effective “strain”. In elastography,
the latter is typically referred to as “cumulative strain”. To summarize, “strain rate” and “strain”
in cardiac literature thus correspond to “(instantaneous) strain” and “cumulative strain” in the
context of elastography.

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
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Figure 11.1 Illustration of the local cardiac coordinate system in combination with a schematic of how the left
ventricle experiences torsion during the cardiac cycle. Source: modified from D’hooge [2] by permission of
Oxford University Press.

In order to interpret cardiac strain, it needs to be related to the cardiac physiology. As such,
it is important to describe the measured strains in a cardiac coordinate system. This system has
been defined locally to exist of three orthogonal axes (Figure 11.1):

(i) the radial (R) axis which is orthogonal to the epicardial surface and pointing from the left
ventricular cavity outwards

(ii) the longitudinal (L) axis which is tangential to the epicardium and points from apex to base
and

(iii) the circumferential axis which is tangential to the epicardium and defined in such a way
that the RLC-coordinate system is right handed. The three normal strain values (εRR,
εLL, εCC) thus refer to local wall thickening, longitudinal, and circumferential shortening
respectively while, for example, the CL-shear (εCL) component represents the local
shearing as a result of ventricular torsion (i.e. differential rotation around the ventricular
long axis of the basal with respect to the apical segments).

In order to characterize the cardiac strain curves that are – by definition – time dependent,
the following parameters are typically reported:

(i) end-systolic strain, which is the strain measured at the end of systole, i.e. at the moment of
aortic valve closure

(ii) peak systolic strain, which is the maximal strain magnitude occurring during the ejection
period and

(iii) post-systolic strain, which is the continued thickening/shortening of the segment after aor-
tic valve closure.

Similarly, peak systolic strain rate – the maximal magnitude of the strain rate during sys-
tole – is most often reported to characterize the strain rate curve. These parameters are illus-
trated in Figure 11.2.

Please note that strain was originally defined as a measure of local wall deformation, and is
typically reported as an average per cardiac segment [3] . However, later on, the term “global
strain” was defined as a quantity to characterize overall pump function of the ventricle. It can
been defined as the average of all locally measured (segmental) strain values or – as currently
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Figure 11.2 Parameters used to characterize the temporal strain (right) and strain rate (middle) curves. In this
particular example, longitudinal strain (rate) curves as obtained from an apical transducer position are shown
at three locations along the interventricular septum. The left panel shows the instantaneous systolic strain
rates color-coded on top of the B-mode image. (MVO: mitral valve opening; AVC: aortic valve closure.)

recommended – as the relative change in length of the entire myocardial border over the cardiac
cycle [4].

11.3 Methodologies Towards Cardiac Strain (Rate) Estimation

Although cardiac strain (rate) estimation was originally Doppler-based, over the years a vast
number of different techniques have been developed. In this section, a brief overview of this
wide range of techniques is given. A schematic overview of the different methodologies is shown
in Figure 11.3.

11.3.1 Doppler-based Methods

The original cardiac strain (rate) imaging methodology was based on color tissue Doppler imag-
ing (TDI) which measures local myocardial movement using the exact same measurement
principles as the ones used for color flow mapping of blood flow in a conventional Doppler
system but with adapted filter settings such that the weakly scattering, relatively fast blood
velocities are filtered and only the more strongly scattering, relatively slow velocities originat-
ing from myocardial tissue are retained [5]. Cardiac strain rate can subsequently be calculated
from this color TDI data set using the spatial velocity gradient, either by sampling velocities
over a fixed offset along the beam [6] or as the slope of a regression line through multiple veloc-
ities estimated within a certain distance [7]. Strain is then obtained by temporally integrating
the strain rate curves.

The strength of TDI-based strain estimation is its sensitivity as well as its temporal resolution
that is typically about 200–300 Hz when using a narrow field of view (i.e. sector angle) [8].
Very recently, a novel beamforming approach was proposed to enable wide-field-of-view, high
frame rate TDI imaging (i.e. 200 Hz for a 90-degree sector image) [9] but its clinical application
remains to be explored.

The major pitfall of the TDI approach is that a Doppler system can only measure the velocity
component along the ultrasound image line (i.e. motion towards or away from the transducer).
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Figure 11.3 Classification of ultrasound-based cardiac deformation techniques.

As the TDI-based strain estimate is derived from this angle-dependent 1D velocity field, it
inherits this 1D property and only deformation along the ultrasound line can be assessed. As the
number of acoustic windows to the heart is limited, this implies that not all strain components
can be measured in all myocardial segments [2].

In order to overcome this angle dependency, vector Doppler (also known as multi-beam or
cross-beam Doppler) approaches have been proposed. Vector Doppler combines multiple con-
ventional 1D Doppler measurements from multiple independent directions allowing to recon-
struct the 2D (or even 3D) velocity vector. This principle can be implemented in several ways
either by using multiple transducers; by moving a single transducer around the region of inter-
est; or by using different apertures within the same transducer [10]. From a practical point of
view, the latter approach is preferable and it has been a popular approach in the field of blood
velocity estimation. However, its extension to cardiac strain estimation has remained limited,
e.g. [11], likely due to relatively small transducer footprints used in cardiac imaging making the
angulation (and therefore the accuracy of the resulting velocity vector) between both Doppler
acquisitions limited.

For a more elaborate coverage concerning the history of TDI, the underlying technical princi-
ples and its clinical applications, the reader is referred to Sutherland et al. [12] or several review
papers on this topic [13, 14].
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11.3.2 Optical Flow Methods

Optical flow (OF) is the apparent motion of brightness patterns within an (ultrasound) image
sequence resulting from underlying tissue motion. Techniques computing OF can be divided
into the following categories: differential methods, region-based methods, and phase-based
methods [15, 16].

11.3.2.1 Differential Methods
Differential or gradient-based OF methods rely on the assumption that the intensity of a
particular point in a moving pattern does not change with time. This is mathematically
expressed through the well-known optical flow equation [16]. Nevertheless, without additional
constraints, this is an underdetermined problem (also known as the aperture problem), given
that at least two velocity components are unknown (for a 2D image sequence) while only
one equation is available. Two popular approaches exist to add more boundary conditions.
The Horn-Schunck technique regularizes motion globally by imposing smoothness across the
whole image [17] while the Lucas-Kanade method estimates the motion locally assuming that
the velocity field is constant within a small image region [18]. Both techniques were shown to
be reliable in estimating cardiac motion on synthetic US images [19]. The Lucas-Kanade OF
has been tested in a clinical setting (e.g. [20, 21]) and was further refined by Suhling et al. to
also capture rotation and shearing motion [22]. Finally, the Horn-Schunck OF approach was
extended to 3D [23].

The OF equation also acts as the driving force behind the motion-estimation process in a
large family of “demons” algorithms which regard image boundaries as diffusive membranes
[24]. It was first adopted in the context of cardiac strain estimation by Somphone et al. [25],
later followed by a series of further modifications, e.g. [26].

11.3.2.2 Region-based Methods
Region-based methods, also termed block matching (BM) or speckle tracking, assume that a
local speckle pattern remains stable between two subsequent frames. Motion of a certain point
is found by first defining a local neighborhood and iteratively (often exhaustively) searching for
the best match – according to some similarity metric – in its neighborhood in the next frame.
Different similarity measures can be used and have been compared, e.g. [27–31]. Moreover, in
order to obtain sub-pixel displacement estimates, the similarity metric is typically interpolated
[32]. Interesting to note is that such interpolation is not required for the differential OF tech-
niques as they obtain an analytic solution. On the other hand, BM does not make assumptions
on the magnitude of the displacement whereas differential OF assumes that they are small.

Block-matching techniques can be applied on either the B-mode (i.e. after envelope detection
and scan conversion) or directly on the radio-frequency (RF) data.

B-mode based BM has seen most popularity likely due to its conceptual simplicity and high
computational speed. Trahey et al. were the first to successfully apply block matching to track
blood motion [33], and were later followed by Bohs et al. who applied the technique to track
2D tissue motion [27]. Cardiac strain estimation based on the BM concept has been extensively
validated experimentally, e.g. [34–39] and several implementations have become commercially
available. As such, it has been applied in many clinical studies [40], and several commercial
implementations are now available [41–46]. As 3D ultrasound systems have become more read-
ily available, it was only natural that the BM concept was also extended for 3D tissue motion
estimation [47, 48].

As an alternative, 2D block matching can be performed directly on the RF data by defining
a 1D or 2D kernel over the RF signal and finding the optimal shift within a certain 2D search
region in the next frame [29, 49–51]. Several studies have shown that due to the higher fre-
quency content of the RF signals, more accurate motion estimates can be obtained in the axial
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direction. However, due to faster decorrelation of RF signals compared to B-mode data, frame
rate has to be higher [52, 53]. An extension to 3D is therefore challenging given the currently rel-
atively low volumetric acquisition rate [54]. The major difficulty with these RF-based methods is
their computational load, which is significantly higher than that for B-mode image processing.

Importantly, the results of the BM process are typically noisy. Therefore, an a posteriori reg-
ularization step is typically required, e.g. by median filtering [55] or wavelet denoising of the
initial displacement estimates [56], by averaging the strain images [57], or by using least-square
strain estimators in 1D (linear curve fitting through the displacement estimates [58]) or in 2D
(plane fitting [59]). Several authors have also derived strategies to incorporate confidence mea-
sures and only retain those estimates with a high tracking quality, e.g. [48, 49, 60].

Finally, please note that BM-based motion estimates are intrinsically different from
Doppler-based motion estimates. Indeed, Doppler measures the instantaneous velocity that
is assumed to be constant between subsequent estimates (i.e. no acceleration) while BM
measures the average velocity of a region from one frame to the next (i.e. irrespective of
acceleration).

11.3.2.3 Phase-based methods
Some authors have proposed to solve the OF equation using image phase rather than image
intensity [61, 62]. They argued that using phase information should be less sensitive to bright-
ness fluctuations and more strictly correlated with the image structure. Tautz et al. applied
a set of quadrature filters in several directions to extract phase information from volumetric
US datasets [63] while Alessandrini et al. applied the OF equation directly on the phase of
the monogenic signal [64]. These methods have recently been validated using simulated US
datasets, first in 2D [64] and later in 3D [61, 63].

11.3.3 Registration-based Techniques

Registration techniques model cardiac deformation using a weighted set of basis functions.
By adjusting the coefficients of the basis functions, different dense deformation fields can be
represented in an efficient way. The optimal deformation field is typically found in an iterative
fashion by minimizing a cost function describing (dis)similarity between subsequent frames
in combination with physical penalties to constrain the possible configurations (e.g. imposing
a smooth deformation field). A wide range of basis functions has been employed in medical
imaging (e.g. see [65]), but for the analysis of cardiac US images, B-splines, and radial basis
functions (RBF) have seen most popularity. The fundamental difference of these approaches
over the BM approach is that regularization of the motion estimates is done during the motion
estimation process rather than a posteriori.

In free-form deformation (FFD) models, (typically cubic) B-spline functions are placed on
a rectangular control point grid [66, 67]. Given the local support of a B-spline, the displace-
ment of any point within the myocardium is therefore governed only by a limited number of
control points, allowing a localized description of cardiac deformation. These models were first
applied by Ledesma et al. on 2D US images [68]; its feasibility for 3D motion estimation was
later demonstrated by Elen et al. in simulated datasets [69], and was followed by in vitro and in
vivo validation studies [70, 71]. Several flavors of the algorithm have been proposed over recent
years, all designed to add extra layers of regularization. An alternative control point topology
adapted to the cardiac morphology and motion was described in [72]. The heart moves in a
cyclic fashion throughout the cardiac cycle, which was taken into account by either formulating
the transformation as a diffeomorphism [73–75], or by explicitly adding a regularization term
imposing smoothness in time [76]. In work by Myronenko et al. [77] and [78], motion estimation
was combined with myocardial segmentation by incorporating a segmentation-based energy
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in the cost function. Finally, in order to increase the temporal resolution of the resulting strain
curves, 3D motion fields were reconstructed within an FFD framework from tri-plane B-mode
acquisitions combined with input from TDI [79]. As an alternative, RBFs express the displace-
ment of a given point as a function of its distance to the center of every basis function [80].
The advantage of RBFs is that the center points can be placed anywhere within the image, as
opposed to the regular placement on a grid for the FFD models. Their main disadvantage is that
they have a global support, which may be undesirable when seeking local transformations. A
popular choice for these RBFs are thin-plate splines. They have been used in 3D echocardiogra-
phy to interpolate motion estimates originating from several inputs. For example, Compas et al.
used RBFs to combine motion estimates from speckle tracking and shape tracking [81]. Duan
et al. used a block-matching approach to estimate motion on the endocardial and epicardial
surfaces only, and obtained a dense motion field by applying RBF interpolation [82].

11.3.4 Biomechanical Models

These techniques exploit knowledge about the deformation properties of tissues and construct
biomechanical deformation models to mimic their properties and behavior. The main advan-
tage of these models is their use of informed priors about biomechanical properties that allow
estimating a complex deformation with few degrees of freedom.

Papademetris et al. adopted a transversely isotropic linear elastic model for the myocardium,
taking into account fiber directions, to generate a dense motion field within the myocardium
from the motion estimates obtained at the endocardial and epicardial surfaces. The motion esti-
mates on these surfaces were obtained from a shape-tracking approach [83, 84]. Sermesant et al.
presented an electromechanical model of the heart, able to simulate the electrical propagation
and the mechanical contraction. By deforming the model to fit the myocardial boundaries it
could be used to estimate cardiac deformation [85, 86].

11.3.5 Statistical Models

This class of methods introduces a priori knowledge in the motion estimation process by off-line
training a statistical model describing cardiac deformations obtained through a large annotated
database in which this deformation is known. Myocardial motion in a new dataset can then be
estimated on-line, guided by the statistical model. The advantage of these models is their ability
to reduce the computational cost while achieving a robust performance. It is important to note
that the set of images used during the learning stage should be representative for the expected
range of deformations in the population that it aims to analyze later.

Wang et al. proposed a learning-based framework where information from multiple cues was
fused, such as speckle patterns, image boundaries, and motion statistics [87, 88]. Leung et al.
used a statistical model of cardiac motion trained from endocardial segmentations to regularize
optical flow results [89].

11.4 Experimental Validation of the Proposed Methodologies

The technical validation of a novel cardiac strain estimation methodology is critically impor-
tant before applying it clinically. Unfortunately, a single, ideal validation setting does not exist
as each approach offers its own strengths and weaknesses. In this section, a brief overview is
therefore given of the different available validation setups with their respective pro’s and con’s
(Figure 11.4).



150 Ultrasound Elastography for Biomedical Applications and Medicine

Reliability and extent

of the reference

Level of realism

In-silico: increased realism

Mock-models

Experimental animals
Heyde et al. 2012

Heyde et al. 2013

Alessandrini et al. 2015Gao et al. 2009

In-silico

Jasaityte et al. 2010

In-vivo patients
Validation setting

Model
Resulting

ultrasound

image

Figure 11.4 Overview of the different validation methodologies schematically showing the trade-off to be
made between the level of realism of the images and the corresponding reliability and extent of the reference.

11.4.1 Synthetic Data Testing

By combining kinematic or (electro)mechanical models of the heart with ultrasound simulation
tools, the image formation process can be mimicked and synthetic data can be generated. These
data can subsequently be processed as if it were real data so that the measured (local) myocardial
strain can be contrasted against the ground truth available from the cardiac models. Although
these synthetic data sets originally looked rather basic [90], continued efforts have evolved them
in such a way that non-expert readers can no longer distinguish them from a real recording [91].

Synthetic data sets have been used to develop a multitude of algorithms and have recently
been used to contrast all commercially available speckle tracking solutions [92]. The strength
of this validation approach is that the ground truth is precisely known at every location of the
myocardium but – despite significant improvements being made in terms of overall realistic
appearance – it remains hard to include realistic artifacts and clutter.

11.4.2 Mock Model Testing

Mock models try to mimic the heart both acoustically and mechanically. Often, a
tissue-mimicking material (e.g. polyvinyl alcohol) is used that can be shaped into a proper
geometry by pouring it in its liquid form into a suited mold. It can then be attached to a
hydraulic setup containing blood-mimicking fluids, in which pumps change intra-cavity
pressures over time thereby mimicking the cardiac cycle [93]. This “beating heart” is then
imaged using a real ultrasound system and the resulting images can be processed. To obtain
reference local deformation values, a finite element model of the setup can be built although
it is more common to implant sonomicrometry crystals in the model. Different models with
differing complexity have been proposed (e.g. [71]), with the most realistic (and complex) ones
being passively beating [94, 95] as well as explanted heart setups [96].

The advantage of this mock model approach is that it does not require modeling of the ultra-
sound acquisition process. However, the reference values have intrinsic measurement error,
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are only available in 1 or a finite number of positions on the model, and sonomicrometry might
bias the motion estimation process as the crystals show in the resulting ultrasound recordings.
Finally, despite the fact that the image acquisition is real, image quality might not be realistic
for clinical imaging (e.g. due to artifacts originating from the walls of the imaging tank or the
phantom holder), thus potentially biasing the outcome of the measurements.

11.4.3 Experimental Animal Testing

In order to bring the mock model setups closer to the clinical setting, validation can also be
done in large animals. Hereto, an open-chest animal preparation is required in order to implant
sonomicrometers as reference methodology (cf. mock models, e.g. [97]). Next to having a real
ultrasound recording, this setup has the advantage of also providing very realistic physiologic
deformation characteristics and competitive image quality. However, the true deformation can
only be measured at a limited set of points and image quality is still not identical to that obtained
in clinical scanning (e.g. due to the offset of the chest wall and the presence of ribs).

11.4.4 In Vivo Human Testing

The ultimate validation stage is in patients in a clinical setting. The most common approach is to
compare strain values extracted via echocardiographic methodologies with those obtained with
magnetic resonance imaging approaches, e.g. [34]. Unfortunately, all methods contain error
resulting in relatively uncertain reference values for benchmarking. In fact, in this setting, it
is most likely better to compare values between different modalities then truly validating one
technology against another because of the measurement errors in all approaches.

11.5 Clinical Applications

The availability of speckle tracking echocardiography (STE) and its potential to provide imme-
diate quantitative evaluation of (regional) myocardial deformation led to an extensive use of
strain measurements in both clinical and research domains, as shown by the steep increase
of publications which addressed the method, thus surpassing its predecessor, tissue Doppler
imaging (TDI).

Currently, multiple commercial packages for speckle tracking analysis are accessible both
on-board of the ultrasound machines and as stand-alone software for image post-processing.
Although each tool has its particularities, the typical workflow includes manual or automated
detection of the endocardial border, which generates a myocardial region of interest, followed
by the tracking of speckle motion within the cardiac cycle. The timing of cardiac mechanical
events is very important for both global and regional strain measurements. The definition of two
reference points is pivotal in the analysis of myocardial deformation: the beginning and the end
of the systolic period. Hereto, in practice, vendors commonly use the electrocardiographic QRS
complex as indicator of end-diastole, although M-mode tracings or mitral spectral Doppler
could also be a more reliable surrogate. Similarly, there are several options to select end-systole,
e.g. by visually assessing the timing of aortic valve closure in the apical 3-chamber view, by
finding the point in time with either the peak strain or the minimal left ventricular volume, or
by identifying the end of the LV outflow through a pulsed wave Doppler recording. Irrespective
of the chosen method to define the timings, consistency between repeated measurements is
extremely important.

Left ventricle longitudinal strain is the most extensively studied parameter and the currently
available data indicates that global εLL (often referred to as GLS) has the most potential for



152 Ultrasound Elastography for Biomedical Applications and Medicine

(a) (b) (c)

Figure 11.5 Segmental longitudinal strain in apical four- and three-chamber views in a patient with inferior
myocardial infarction. Note the post-systolic shortening (orange arrows) in (a) the basal inferior wall and (b) the
basal posterior wall. (c) MRI sequence of the same patient in which the presence of late gadolinium
enhancement in the inferoposterior region confirms ischemia at the same areas identified by
echocardiography.

clinical use at this moment. In a normal population the values of GLS range between −16% to
−22% [98] and in conditions of optimal B-mode images, feasibility was reported to be good to
excellent and similar to that of EF measurements [99].

The prognostic and diagnostic efficiency of GLS has been investigated in a number of known
or suspected cardiovascular diseases. GLS has demonstrated to be a superior predictor of
all-cause mortality when compared to conventional echo measurements such as LV ejection
fraction and myocardial wall motion [100]. Moreover, GLS was found to hold independent
prognostic value for adverse outcomes in patients with heart failure [101], cardiomyopathies
[102], coronary artery disease (CAD) [103], and valvular heart disease [104]. The clinical
applicability of circumferential, radial, and rotational strain components is still being explored.

One of the most valuable clinical applications of strain measurements is in the context
of ischemic regional myocardial dysfunction. Early experimental studies validated against
sonomicrometry showed that both Doppler-derived [105] and STE-derived [106] longitudinal
strain can accurately detect the presence and extent of ischemia where post-systolic shortening
was shown to be a hallmark of ischemia. Indeed, this post-systolic deformation can easily be
assessed by quantifying myocardial deformation, while its visual recognition remains difficult
even for experienced echocardiographers (Figure 11.5). As such, strain parameters proved
to identify ischemic regions with higher precision than conventional echocardiographic
parameters [107].

Studies also reported strain measurements to be sensitive indicators for subclinical cardiac
impairment associated with chemotherapy treatment or various pathologies such as chronic
kidney disease, diabetes mellitus, and arterial hypertension [108, 109]. Furthermore, in
conditions of hypertrophied LV, strain measurements demonstrated to accurately differ-
entiate between primary myocardial disease and disorders of myocardial deposition [110]
(Figure 11.6).

The only factor limiting a full integration of strain measurements in clinical practice is their
reliability in daily routine. Although several studies demonstrated good to excellent intra- and
inter-operator reproducibility of GLS measurements [99, 111], the variability between vendors
still raises concern. Indeed, the reported inter-vendor variability of the measurement makes
it difficult to apply this technology for long-term monitoring of patients. As such, current
recommendations endorse GLS as a robust parameter for clinical use as long as repeated
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(a) (b)

Figure 11.6 Longitudinal strain in two subjects with hypertrophied LV. The subjects are matched for LV wall
thickness (19 mm). (a) Patient with hypertrophic cardiomyopathy. Note the reduced longitudinal strain in the
basal segments while the apical segments show a preserved function. (b) Patient with amyloidosis. Note the
diffuse and severe reduction of longitudinal deformation.

measurements are performed with the same vendor-specific software [112]. Fortunately,
standardization of cardiac strain imaging is on-going [113] which – hopefully – will overcome
this problem.

11.6 Future Developments

Since its introduction, cardiac strain (rate) imaging has matured into a clinically used modality
with proven benefit over traditional approaches. Further developments can be expected to even
further strengthen this technology.

• Automatic definition of the region of interest (ROI): at present, most commercial solutions
provide an automated solution towards endocardial contouring and subsequently assume
the wall thickness to be uniform in order to define the ROI for further deformation analysis.
It can be anticipated that novel segmentation approaches will allow making this contouring
process fully automatic, thereby making the analysis even less time consuming and observer
dependent [114].

• Strain at high time resolution: with the continuing developments in fast ultrasound image
formation [115], cardiac deformation imaging will become possible at high temporal resolu-
tion. While currently most commercial solutions have a time resolution of about 50–60 Hz,
which is sufficient to temporally resolve the strain curves, it is anticipated that future image
acquisition schemes will operate at a much higher time resolution which will allow more
reliable and accurate estimation of local strain rate (as is the case for the original TDI-based
approach).

• True volumetric strain approaches: although speckle tracking can be done in 3D, in practice,
only the longitudinal strain component is being used as it can be measured most reliably.
Further developments will enhance the accuracy and reproducibility of the deformation
orthogonal to the image line thereby facilitating the measurement of the circumferential
and radial strain components [116].
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• Computer-assisted interpretation of strain (rate) data: at present, the interpretation of strain
(rate) data is fully left to the operator and is therefore subject to the amount of experience
of the reader. Recently, statistical methodologies have been proposed to help the reader cor-
rectly interpret the measured strain (rate) data [117]. Without doubt, this trend will continue
whereby ultimately the reader gets a computer-generated suggestion towards the interpre-
tation of the strain (rate) information to be (dis)approved by the treating physician.
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12.1 Introduction

Strokes and heart attacks, which cause more deaths than all cancers combined [1], can occur
when a life-threatening plaque ruptures in either the carotid or coronary arteries [2–4].
Conventional imaging techniques can visualize the carotid artery [5], but they cannot detect
life-threatening plaques. For example, vascular angiography can assess the extent of stenosis,
but the extent of stenosis is a poor indicator of a cerebrovascular event: composition – not
stenosis – is the key determinant as to whether plaque will rupture [6]. Multi-slice computed
tomography (CT) can visualize the carotid atherosclerosis [7], but like angiography, it cannot
characterize plaque composition. High-resolution magnetic resonance imaging (MRI) can
characterize plaque composition [8], but MRI is expensive and inflexible, traits that make it
an inappropriate screening tool. Ultrasound (US) is relatively inexpensive and more flexible
than MRI. Furthermore, ultrasound can assess the extent of stenosis and characterize plaque
burden [9, 10], but it cannot characterize plaque composition [11]. Vascular elastography is an
emerging ultrasound imaging technique that visualizes the mechanical properties of vascular
tissues. In this chapter, we will discuss the general principles of intravascular and endovascular
elastography – techniques that have been developed to detect rupture-prone plaques in the
coronary and carotid arteries, respectively.

12.2 General Principles

Techniques that have been proposed for visualizing the mechanical properties within vascular
tissues are classified as being either strain- or model-based techniques. Strain-based vascular
imaging approaches visualize the strain distribution within vascular tissues, which are used as a
surrogate for shear modulus by assuming stress uniformity. Model-based inversion techniques
use a theoretical model that describes soft tissue mechanics, knowledge of the external bound-
ary conditions, and the measured strains or displacements to compute the spatial variation of
relative or absolute values of Young’s modulus within vascular tissues [12]. In the following
sub-sections, we will discuss both approaches, and illustrate how they are used to characterize
the mechanical properties of coronary and carotid arteries.
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Figure 12.1 Mechanical stimulus employed in vascular elastography. (a) Pressure distribution within vessel. (b)
Pulsatile intraluminal pressure.

12.2.1 Strain-based Vascular Imaging Methods

Vascular elastography uses the intraluminal blood pressure as the source of mechanical stim-
ulation (Figure 12.1). Cross-correlation echo is typically used to measure the resulting internal
tissue displacements. To do this a pair of radiofrequency (RF) echo-frames are acquired from
the vessel at different intraluminal pressure (differential pressure on the order of 2–4 mmHg
[13, 14], which are spatially differentiated to produce strain images. Figure 12.2 provides a
flowchart that describes the general workflow used to estimate strain and displacements in
vascular elastography.

For coronary imaging, a phased array or a rotating element intravascular ultrasound imag-
ing system is used to acquire RF echo at high spatial resolution (∼100–200 μm) from within
the artery. Since the acquired ultrasound images are in the vessel coordinate system (polar
coordinates), axial strain represents the radial strains within the vessel. A limitation of intravas-
cular ultrasound elastography is that it not suitable for real-time application. To address this
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Figure 12.2 Flow chart showing the general principles of vascular elastography. Acquiring a pair of
radiofrequency echo frames at two different intraluminal pressures, applying a cross correlation-based echo
tracking algorithm to acquired echo frames, and then spatially differentiating the measured displacement to
produce radial strain images.
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Figure 12.3 Intravascular palpogram. A composite
image that contains both echogenic and elastographic
information. Source: reprinted from Ultrasound in
Medicine and Biology [18], with permission from Elsevier.

limitation, an offshoot of intravascular ultrasound elastography known as palpography was
developed at Thorax center in the Netherlands [15–17], which is implemented as a selectable
option on a commercially available intravascular ultrasound imaging (Volcano Corporation,
San Diego, CA, USA). Intravascular palpography measures strain within the inner layer of the
arterial wall, which is superimposed on a sonogram to produce a composite image that contains
both elastographic and echogenic information (Figure 12.3). The advantage of palpography is
that it is fast and robust, which makes it ideally suited for clinical imaging.

Endovascular ultrasound elastography uses a hand-held transducer to measure the mechan-
ical properties of the common carotid artery in either the transverse or sagittal plane. In the
sagittal plane, axial and lateral strains are equivalent to radial and circumferential displacements
in the vessel.

Figure 12.4 shows a representative example of radial displacement elastograms obtained from
the sagittal plane of the carotid artery. Strains measured in the transverse plane are not equiv-
alent to those in the vessel coordinate system [19]. Consequently, strains are transformed from
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Figure 12.4 Elastograms obtained from the sagittal plane of the common carotid artery: (a) radial
displacements and (b) radial strains overlaid on the sonograms.
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the transducer to the vessel coordinate system (polar) as follows:

{𝜀′} = T
𝜀

{𝜀} (12.1)

The transformation matrix T
𝜀

is given by [19]

T
𝜀

= 1
x2 + z2

⎡⎢⎢⎢⎣
x2 xz xz z2

−xz x2 −z2 xz
−xz −z2 x2 xz
z2 −xz −xz x2

⎤⎥⎥⎥⎦ (12.2)

The radial (𝜀rr) and circumferential (𝜀
𝜃𝜃

) strain elastograms were computed from Eqs. (12.1)
and (12.2)

𝜀rr =
1

x2 + z2 [x
2
𝜀xx + xz(𝛾xz + 𝛾zx) + z2

𝜀zz] (12.3)

𝜀
𝜃𝜃

= 1
x2 + z2 [z

2
𝜀xx − xz(𝛾xz + 𝛾zx) + x2

𝜀zz] (12.4)

This transformation requires reliable estimates of both axial and lateral displacements,
which standard ultrasound imaging methods cannot provide. More specifically, the phase
information in the direction of the propagating wave allows ultrasound to measure axial
displacement precisely. However, the relatively broad lateral beam width and the lack of
phase information in that lateral direction degrades the precision of lateral displacements
[20, 21]; the precision of axial displacements is an order of magnitude better than that of lateral
displacements [22–24]. Sparse array or plane wave imaging in combination with beam forming
can reduce this problem. More specifically, they significantly reduce the lateral extent of the
ultrasound point spread function to allow reliable estimates of axial and lateral displacements
(Figure 12.5).

12.2.2 Model-based Imaging

Assuming that soft tissues exhibit isotropic, nearly incompressible (𝜈 = 0.495) linear elastic
behavior, then the governing equation that describes the resulting deformation is given
by [25]

−∇p + ∇ ⋅ (𝜇(∇u + ∇uT )) = 0, where p = −𝜆∇ ⋅ u (12.5)

where u represents the tissue displacement vector field, 𝜇 and 𝜆 are the Lamé constants, and p
represents the internal hydrostatic pressure. The shear modulus (𝜇) can be reconstructed from
measured radial displacements using a direct or iterative inversion technique. Direct inversion
methods are fast; however, they are more prone to errors. Consequently, we will limit the dis-
cussion to iterative techniques. The reconstruction process consists of minimizing the following
cost function

𝜋[𝜇] = 1
2∫Ω

(ur(𝜇) − ur
meas)2 + 𝜋r[𝜇,u0]dΩ (12.6)

where ur
meas is the measured radial component of displacement, ur is the radial component of

displacement computed from the shear modulus distribution 𝜇 using a finite-element repre-
sentation of Eq. (12.5); 𝜋r is a regularization function. Since the inverse reconstruction method
is not unique, the solution is constrained by applying a constant regularization function to all
pixels in the reconstruction field of view. For some tissues this constraint is not ideal, because
the magnitude of the regularization is noticeably higher in a positive contrast problem (stiff
tumor in a soft background) compared to a negative contrast problem (soft plaque embed-
ded in a stiffer vessel wall). A logarithmic regularization function can remove the dependence
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Figure 12.5 (i) Point spread function of (a) sparse array, (b) plane wave, and (c) compounded plane wave
imaging system. (ii) Displacement and strain elastograms produced using compounded plane wave imaging.

of the regularization on modulus contrast. The logarithmic regularization function, c(𝜇, 𝜇0) is
given by [26]

c(𝜇, 𝜇0) = ln
(

𝜇

𝜇0

)
(12.7)

where 𝜇0 is the baseline modulus for each region, which is analogous to a DC offset, which
is computed as part of the reconstruction process. Since regularization methods may be
problem-specific [27], several regularization approaches have been proposed in model-based
elastography. The three most widely used regularization methods are Tikhonov, H1-seminorm,
and the total-variation-diminishing (TVD) method, which are defined as follows [26]

• Tikhonov regularization:

𝜋R[𝜇, 𝜇0] =
𝛼

2∫Ω
c(𝜇, 𝜇0)2dΩ (12.8)
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• H1-seminorm regularization:

𝜋R[𝜇, 𝜇0] =
𝛼

2∫Ω
(∇c(𝜇, 𝜇0) ⋅ ∇c(𝜇, 𝜇0))dΩ (12.9)

• TVD regularization:

𝜋R[𝜇, 𝜇0] = 𝛼∫Ω

√
∇c(𝜇, 𝜇0) ⋅ ∇c(𝜇, 𝜇0) + 𝛽

2dΩ (12.10)

The regularization parameter 𝛼 in Eqs. (12.8), (12.9), and (12.10) controls the weight given
to the cost information. The variable 𝛽 in Eq. (12.10) is a small scalar that is used to ensure
the continuity of the regularization at ∇c = 0, which was set to unity in all reconstructions.
Minimizing Eq. (12.6) with respect to shear modulus variations is a nonlinear process, which is
realized through an iterative solution using either a Gauss Newton iterative scheme [28] or the
quasi-Newton BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm and the adjoint method
as described by Oberai [29]. For the adjoint method, the resulting shear modulus solution at
the (q + 1)-th iteration has the general solution

𝜇q+1 = 𝜇q − 𝜑qB−1
q gq (12.11)

where Bq is an approximation of the Hessian matrix that is computed using the BFGS algorithm
[30] at the q-th iteration, 𝜑q represents the step size, and gq is the functional gradient of 𝜋U
evaluated at 𝜇q.

The inverse problem incurred in vascular elastography is highly ill-posed; consequently
additional constraints (hard or soft priors) are used to stabilize the problem. The hard prior
method can be viewed as parameter lumping [31–33] where all the nodes in a given region
are assigned the same shear modulus. Structural information can be extracted by applying
deformable curves to strain elastograms [32], manually segmenting sonograms or strain elas-
tograms [34]. The hard prior reconstruction method used a similar objective function to that
employed in the no prior reconstruction method; however, since this was a well-conditioned
problem, no regularization is included in the objective function. To impose hard priors, first all
the nodes within each segmented region are identified, and then reconstructed only a single 𝜇

within each region. To illustrate, let us assume that the reconstruction field of view was divided
into M regions based on the structural information, and that the shear modulus within each
region was computed by applying a matrix transformation to B (the approximate Hessian),
such that

̃B = KB (12.12)

where K is an M × N sparse matrix, and N represents the number of nodal points. The prior
matrix K then had the form

K =
⎡⎢⎢⎢⎣

k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
⋮ ⋮ ⋱ ⋮

kM,1 kM,2 · · · kM,N

⎤⎥⎥⎥⎦ , where km,n =
{

1 n ∈ Rm
0 n ∉ Rm

}
, n = (1,N) and m = (1,M)

(12.13)

A new gradient vector can be computed by summing all gradient components from each
row that corresponded to the m-th region, and the shear modulus for each region was solved
as follows

𝜇q+1 = 𝜇q − 𝜑q
̃B−1

q g̃q (12.14)
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where the dimension of the update vector 𝜇q+1 was M. Segmentation of congruent features
always includes classification errors, which could degrade the performance of hard prior recon-
struction methods. Soft priors can overcome this issue. Soft prior reconstruction methods use
the same objective function (Eq. 12.6), but the regularization term was different, as given by
Tikhonov

𝜋R[𝜇, 𝜇m
0 ] =

𝛼

2∫Ω
ln (𝜇

/
𝜇

m
0 )

2dΩ, where m = 1,M (12.15)

and M is the number of segmented regions.
The soft prior method has been employed in endovascular elastography. Geometric informa-

tion can be included in the image reconstruction process by minimizing the following objective
function

Ω(𝜇) = ‖um − uc(𝜇)‖2 + 𝛼‖L[𝜇]‖2 (12.16)

where L is a penalty matrix that was defined as follows

Li,j =

⎧⎪⎪⎨⎪⎪⎩
1 i = j

0 i, j ∉ R

− 1
m

i, j ∈ R

(12.17)

where m is the total number of nodes contained in a given region, R, and i and j are indices of L.
The L matrix (i.e. Laplacian) computes the average modulus in each region explicitly as follows

L1 ⋅ 𝜇 = 𝜇1 −
𝜇2

N
−

𝜇3

N
− · · · −

𝜇N

N
≈ 𝜇1 − ⟨𝜇⟩ (12.18)

Figure 12.6 shows representative examples of modulus elastograms obtained with this
method.
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(a)

(b)
0 10 20 30 40 50

SA PW

Figure 12.6 (a) Sonograms and (b) modulus elastograms obtained from a vessel phantom using a
conventional linear array (CLA), sparse array (SA), and plane wave (PW) imaging. Source: reprinted from Journal
of Medical Imaging [35], with permission from SPIE.
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12.3 Conclusion

Vascular elastography has emerged as a useful imaging technique for visualizing the strain
distribution within vascular tissues and characterizing the mechanical properties of different
vessel components. The technique is now widely used to detect life-threatening plaques, and to
understand how mechanical properties vary with age in diseases such as hypertension.
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Viscoelastic Creep Imaging
Carolina Amador Carrascal

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA

13.1 Introduction

Elasticity imaging is an emerging imaging approach that uses the elasticity of tissue as the con-
trast mechanism in images. Elasticity or stiffness is a physical property of a material that returns
to its original shape after the stress (e.g. external force) that made it deform is removed. The
mathematical description of such property is known as elastic modulus or modulus of elastic-
ity. It has been shown that the elastic modulus of tissues in the body can vary over 6 orders of
magnitude, making the dynamic range of this contrast mechanism quite large [1]. Moreover, it
is established that soft biological tissue exhibits viscoelastic behavior [2].

Viscoelastic materials exhibit both elastic and viscous behavior characterized by being time
or frequency dependent. Measuring tissue viscoelasticity is important because:
(a) if the mechanical properties of a viscoelastic material are characterized only from its elas-

ticity, the elasticity measurement can be biased higher than the actual value [3];
(b) besides the advantages of dynamic range in elastic modulus of tissue, measuring tissue vis-

cosity complements the diagnostic capability of elasticity imaging; for instance a study has
showed better discrimination between malignant and benign tumors when measuring the
time-varying viscous response of breast to a small deforming force [4].

In a laboratory setting, viscoelastic behavior is usually studied either by transient or harmonic
tests.

Transient tests are in the time domain and study viscoelastic properties such as creep and
relaxation. Time-dependent creep and relaxation tests, with conventional mechanical test sys-
tem, are not capable of completely evaluating the mechanical behavior of viscoelastic materials.
There are situations where the response of materials to a loading for short times, usually below
the resolving capability of the measurement device (approximately 0.01 s), is of practical impor-
tance [5]. Moreover, the majority of creep studies assume step-loading conditions, which are
analytically convenient but experimentally impossible to implement. To overcome these chal-
lenges, dynamic or oscillatory tests are used to study viscoelastic material response from about
10−8 seconds [5].

Harmonic experiments are formulated in the frequency domain and study viscoelastic prop-
erties such as complex modulus and loss tangent. Viscoelastic properties can also be measured
by studying shear wave propagation. Shear wave methods are usually non-invasive and are
based on measuring vertical particle motion from shear strain (angular deformation) that is
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involved in the passage of transverse waves [6, 7]. Although shear wave propagation methods
can provide maps of shear modulus and viscosity, they are limited to fitting rheological models
to shear wave velocity dispersion and the shear wave attenuation dispersion is usually unknown.

Viscoelastic creep imaging is an emerging field where the viscoelastic properties of soft tissues
are measured by monitoring the soft tissue strain or displacement response to an applied con-
stant stress. The constant stress can be applied externally or internally. External constant stress
is usually applied to the surface of the tissue with the ultrasound transducer and ultrasound
imaging is used to estimate the tissue creep response. While this method had shown success
with tissue viscoelastic characterization, it is limited to applications where the tissue of interest
is encapsulated in a hard shell or deep organs. Alternative techniques using acoustic radia-
tion force can generate constant stress that is focused internally and localized. In this chapter,
acoustic radiation force creep methods will be reviewed.

13.2 Overview of Governing Principles

13.2.1 Viscoelastic Behavior

Solid materials (e.g. elastic, plastic, viscoelastic) are characterized by their shear strain response
𝛾(t) to an applied shear stress 𝜏(t), as illustrated in Figure 13.1 [5]. Although the former state-
ment is valid for either shear or direct strain/stress, shear nomenclature will be used here-
after. An elastic material exhibits immediate strain upon loading, constant strain as long as
the stress is fixed, and no strain once the load is removed (Figure 13.1). Materials that exhibit
time-dependent strain as a response to an applied stress are called viscoelastic (Figure 13.1).
If instead an oscillatory stress is applied to a viscoelastic material, the strain response will be
an oscillation at the same frequency 𝜔 of the stress but lagging behind by a phase angle 𝛿

(Figure 13.1). As a result of the phase lag between stress and strain, the relation between these
two variables is a complex number and it is called the complex shear modulus, G∗(𝜔). The real
and imaginary parts of the complex modulus are called the storage modulus Gs(𝜔) and the loss
modulus Gl(𝜔), respectively.

13.2.2 Creep

Most viscoelastic materials exhibit the following transient behavior: instantaneous elasticity
upon loading, followed by a slow continuous deformation under constant stress, instantaneous
recovery once the load is removed, and a slow continuous decrease in deformation once the
load is removed [5]. Creep is the slow, progressive deformation of a material under constant
stress. The constitutive equations of linear viscoelastic materials are based on connecting lin-
ear springs and linear viscous dashpots. The linear spring represents the pure elastic response,

Input
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τ0

γ(t)

t
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Viscoelastic

t

γ(t)

Output Figure 13.1 Strain response of elastic and viscoelastic
materials to a constant and oscillatory stress.
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Table 13.1 Viscoelastic models properties when a step-stress is applied.

Model Kelvin-Voigt Standard linear solid

G
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τ τ
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e−
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t

therefore it exhibits instantaneous elasticity and instantaneous recovery. The linear spring con-
stitutive equation is described as [5]

𝜏(t) = G𝛾(t) (13.1)
where 𝜏(t) is the shear stress, 𝛾(t) is the shear strain and G is the shear modulus. On the other
hand, the dashpot element represents the pure viscous response, a linear increase in strain
under constant stress. The linear viscous dashpot element constitutive equation is described
as [5]

𝜏(t) = 𝜂

d𝛾(t)
dt

(13.2)

where 𝜏(t) is the shear stress, d𝛾(t)
dt

is the shear strain rate or the first derivative of the shear
strain and 𝜂 is the shear viscosity. Table 13.1 summarizes the properties of most common linear
viscoelastic models that are used in viscoelastic creep imaging methods [5].

13.2.3 Acoustic Radiation Force

As an ultrasound beam propagates through an absorbing medium, the energy transfer results
in a second-order effect that produces a force, which is termed radiation force [8]. Acoustic
radiation force has been described as

F = 2𝛼I
c

(13.3)

where F (N/m3) is the acoustic radiation body force, c (m/s) is the speed of sound in the medium,
𝛼 (Np/m) is the absorption coefficient of the medium and I (W/m2) is the in situ temporal aver-
age intensity at a given spatial resolution [8]. In viscoelastic creep imaging, acoustic radiation
force is used to apply a step-stress excitation and the creep response is monitored with tra-
ditional ultrasound imaging. A conventional acoustic radiation force beam pulse sequence to
generate and monitor creep and recovery is shown in Figure 13.2. High intensity pushing beams
are interspersed with conventional tracking beams during the creep period, while only tracking
beams are used during the recovery period.

13.3 Imaging Techniques

13.3.1 Kinetic Acoustic Vitreoretinal Examination (KAVE)

Motivated by the medical evaluation of ocular disorders, Walker et al. developed a method to
study the viscous and elastic components of tissue using acoustic radiation force called Kinetic
acoustic vitreoretinal examination (KAVE) [10, 11]. The KAVE method consisted in translating
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Figure 13.2 Illustration of a conventional acoustic radiation force
pulse sequence to generate and monitor creep and recovery.
Source: © Institute of Physics and Engineering in Medicine,
reproduced by permission of IOP Publishing, all rights reserved [9].

a piston transducer that was used for ultrasonic transmission and detection. The transducer
was translated through 150 lateral locations with a computer-controlled positioning system.
At each location, 5000 pulses were transmitted at 5.0 kHz pulse repetition frequency. Ultra-
sound echoes were received every 100th pulse. Displacement due to the acoustic radiation force
was estimated by performing a sum absolute difference search between the first and each con-
secutive ultrasound echo. The measured creep displacement was modeled with a Kelvin-Voigt
model. In the proposed experimental set up, the initial location of the tissue and the applied
force were unknown, therefore the measured displacement u(t) was modeled as [10]

u(t) = 1
kr
(e−krNΔt∕𝜂r − e−krt∕𝜂r ) (13.4)

where kr is the relative measure of elasticity (kr = k∕A, k is the elastic constant, A is the force
amplitude), 𝜂r is the relative measure of viscosity (𝜂r = 𝜂∕A, 𝜂 is the viscous constant, A is
the force amplitude), Δt is the pulse interval, and N is the total number of detecting pulses.
Figure 13.3 illustrates the measured and modeled creep displacement response in four soft
acrylamide gel phantoms [10].

Figure 13.4 illustrates experimental B-mode, maximum displacement, relative elasticity and
relative viscosity images from four soft acrylamide gel phantoms [10]. The advantage of this
technique is the increase in dynamic contract achieved from the relative elasticity and viscosity
images that is limited with conventional the B-mode images.

Viola and Walker [11] developed the KAVE method further by proposing a Kelvin-Voigt
model with added mass in series to account for inertial response. The Kelvin-Voigt model with
mass component differential equation is [11]

F(t) = kx(t) + 𝜇

d
dt

x(t) + m d2

dt2 x(t) (13.5)

where F(t) and x(t) are the applied force and the induced displacement as a function of time,
k is the elastic constant, 𝜇 is the viscous constant and m is the inertial component. Solving the
differential equation to a step force F(t) = AU(t), where U(t) is the unit step function, the creep
displacement equations is described as [11]

x(t) = −
𝜉 +

√
𝜉

2 − 1

2
√
𝜉

2 − 1
s ⋅ e(−𝜉+

√
𝜉

2−1)𝜔t +
𝜉 −

√
𝜉

2 − 1

2
√
𝜉

2 − 1
s ⋅ e(−𝜉−

√
𝜉

2−1)𝜔t + s (13.6)

where 𝜉 is the damping ratio, 𝜔 is the natural frequency, and s is the static sensitivity. The pre-
vious parameters can be defined in terms of the properties of the medium as follows [11]

𝜉 = 𝜇

2
√

k ⋅ m
, 𝜔 =

√
k
m
, s = A

k
(13.7)
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Figure 13.3 Experimental measured displacement (open symbols) and Kelvin-Voigt model fit (continuous line)
in acrylamide gel phantoms. Source: © Institute of Physics and Engineering in Medicine, reproduced by
permission of IOP Publishing, all rights reserved [10].
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To address the limitation of unknown force, force-free parameters of natural frequency 𝜔,
damping ratio 𝜉, and time constant 𝜏 are proposed [11]

𝜉 =
𝜇r

2
√

kr ⋅ mr

, 𝜔 =

√
kr

mr
, 𝜏 =

𝜇r

kr
(13.8)

where kr = k∕A, 𝜇r = 𝜇∕A, and mr = m∕A. Images of the force-free parameters in gel mimick-
ing phantoms have been reported [11].

13.3.2 Monitored Steady-state Excitation and Recovery (MSSER) Radiation
Force Imaging

Mauldin et al. [12] developed a non-invasive acoustic radiation force based method with a
commercial ultrasound scanner and a linear array transducer to monitor steady-state tissue
response as in KAVE. In addition to the KAVE method, the monitored steady-state excitation
and recovery (MSSER) radiation force imaging method also accounts for the response after
the cessation of the step-stress (recovery). In the MSSER method, a Kelvin-Voigt model and a
standard linear viscoelastic model are proposed during creep and recovery displacements.

Solving the Kelvin-Voigt (KV) model differential equation to a creep and recovery excitation
gives creep xKV,creep(t) and recovery xKV,recovery(t) displacements as [12]

xKV,creep(t) =
A
E
𝜇

(
1 − e−

t
𝜏
𝜎

)
; for 0 < t < t′ (13.9)

xKV,recovery(t) =
A
E
𝜇

(
1 − e−

t′

𝜏
𝜎

)
e−

(t−t′ )
𝜏
𝜎 ; for t > t′ (13.10)

where A is the force magnitude (N), E
𝜇

or 𝜇 is the relax elastic modulus (N/m), and 𝜏
𝜎

or 𝜂

𝜇

is the
relaxation time for constant stress (s). Similarly, solving the Standard linear solid (SLS) model
differential equation for a creep and recovery excitation gives creep xSLS,creep(t) and recovery
xSLS,recovery(t) displacements as [12]
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where A is the force magnitude (N), E
𝜇

or 𝜇0 is the relax elastic modulus (N/m), 𝜏
𝜀

or 𝜂1

𝜇1
is the

relaxation time for constant stress (s), and 𝜏
𝜎

is 𝜂1

(
𝜇0+𝜇1

𝜇0𝜇1

)
.

As in the KAVE method, the magnitude of the force A is unknown. However, Mauldin et al.
proposed two approaches to estimate A. The force magnitude A is related to the magnitude of
the radiation force per unit volume F by [12]

A = F × 𝓁Lat × 𝓁Elev × 𝓁Axial (13.13)

where 𝓁Lat (m), 𝓁Elev (m), and 𝓁Axial (m) are the lateral, elevational, and axial span over which the
acoustic radiation force F acts. The acoustic radiation force F (N/m3) is defined in Eq. (13.3). The
first approach to estimate A consisted in measuring the absorption coefficient of the medium
𝛼 (Np/m), the speed of sound in the medium c (m/s), and the in situ temporal average intensity
I (W/m2) to directly estimate F . Because the first approach is not clinically relevant, the second
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proposed approach was based in measuring the Young’s modulus E (N/m2) of tissue with shear
wave elasticity imaging (SWEI). To do so, the Young’s modulus E is defined as follows [12]

̃E = Δ�̃�
Δ�̃�

=
Δ(F𝓁Axial𝓁0)

Δxss
× C (13.14)

where 𝓁0 is the original axial length (m), xss is the steady-state displacement (m), and C is a cor-
rection factor implemented because of system-dependent factors that lead to underestimation
of steady-state displacement as well as error in estimating the axial length. The axial length was
estimated as the −6 dB width of the MSSER pushing pulse. The Young’s modulus was estimated
by [12]

E = 2(1 + 𝜈)𝜌c2
s (13.15)

where 𝜈 is the Poisson’s ratio, 𝜌 is the density, and cs is the shear wave speed.
Figure 13.5 illustrates the measured and modeled creep and recovery displacement response

in four gel phantoms and an excised pig muscle [12]. It can be seen that for the same applied
force in the gelatin phantoms, the stiffer phantoms (A and B) exhibited less displacement than
the softer phantoms (C and D). On the other hand, the excised pig muscle was excited with
different force amplitude and as expected the steady-state displacement increased as the applied
force amplitude increased.

Parametric images of gelatin phantoms using the Kelvin-Voigt model fit of creep and recovery
are shown in Figure 13.6 [12].

The excised pig muscle B-mode image, conventional acoustic radiation force impulse (ARFI)
image and standard linear solid model parametric images are shown in Figure 13.7 [12].

13.3.3 Viscoelastic Response (VisR) Imaging

Selzo et al. [13] introduced a faster alternative to MSSER and KAVE which assesses the vis-
coelastic properties of tissue using two successive acoustic radiation force (ARF) impulses and
observing three points along the viscoelastic creep profile predicted by the Kelvin-Voigt model.
The method is called viscoelastic response (VisR) imaging.

Figure 13.8 illustrates the displacement response of the VisR excitation and the pulse
sequence of VisR, MSSER, and ARFI [13].

The VisR method uses the solution of the Kelvin-Voigt model differential equation during
recovery, as illustrated in Eq. (13.10), to describe the displacement D1 measured at t = t1 after
a first ARF push applied at t = tARF [13]

D1 = A
E

e−
(t1−tARF )

𝜏
𝜎 − A

E
e−

t1
𝜏
𝜎 (13.16)

After allowing partial recovery, the displacement remaining is called D2. Then, a second ARF
push of duration tARF is applied t = t2. Finally, a displacement D3 measured at t4, t4 − t2 = t1, is
defined by solving the differential equation with the initial condition x(0) = D2 [13]

D3 = A
E

e−
(t1−tARF )

𝜏
𝜎 − A

E
e−

t1
𝜏
𝜎 + D2e−

t1
𝜏
𝜎 (13.17)

Substituting Eq. (13.16) from Eq. (13.17) and solving for 𝜏
𝜎

yields [13]

𝜏
𝜎

=
−t1

ln
(

D3−D1

D2

) = 𝜂

E
(13.18)
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An alternative approach to assess 𝜏
𝜎

with only one ARF excitation and measuring displace-
ments D1a and D2a at t1a and t2a can also be used [13]

𝜏
𝜎

=
t1a − t2a

ln
(

D2a

D1a

) (13.19)

It is important to note that 𝜏
𝜎

in Eqs. (13.18) and (13.19) is independent of the applied force
magnitude A. Figure 13.9 shows a measured displacement from a double push VisR excitation in
homogeneous tissue-mimicking phantom using a conventional ultrasound scanner equipped
with a linear array transducer [13].

Two-dimensional images of structured (spherical inclusion) tissue-mimicking phantoms
were achieved by administering the VisR and ARFI beam sequences in 40 lateral locations, as
illustrated in Figure 13.10 [13].



Viscoelastic Creep Imaging 179

15

20

(a)
E (kPa) A (N) × 10−5 μ (N/m) η (kg/s) × 10−2 τσ (ms)

(b)

(c)

(d)

25

15

20

10

5

0
5–5 0

15

20

25

15

20

10

5

0
5–5 0

15

20

25

15

20

10

5

0
5–5 0

15

20

25

15

20

10

5

0
5–5 0

15

20

25
5

0

2

4

6

–5 0

15 30

20

10

0

8

6

2

4

0 0

1

2

3

4

5

20

25
5–5 0

15

20

25
5–5 0

15

20

25
5–5 0

15

20

25
5

0

2

4

6

–5 0

15 30

20

10

0

8

6

2

4

0 0

1

2

3

4

5

20

25
5–5 0

15

20

25
5–5 0

15

20

25
5–5 0

15

20

25
5

0

2

4

6

–5 0

15 30

20

10

0

8

6

2

4

0 0

1

2

3

4

5

20

25
5–5 0

15

20

25
5–5 0

15

20

25
5–5 0

15

20

25
5

0

2

4

6

–5 0

15 30

20

10

0

8

6

2

4

0 0

1

2

3

4

5

20

25
5–5 0

mm

D
ep

th

15

20

25
5–5 0

15

20

25
5–5 0

Figure 13.6 Kelvin-Voigt model parametric images from SWEI and MSSER. Gelatin phantom samples are
indicated by row label. Source: © 2008 IEEE, reprinted, with permission, from [12].

The phantom studies demonstrated that the double push VisR method produced better
contrast images than ARFI and single push VisR. The feasibility of the double push VisR
imaging method was evaluated in vivo in a semitendinosus muscle of a golden retriever dog
with an unknown musculoskeletal disorder. The double push VisR image was compared with
microscopy images of the same region, as illustrated in Figure 13.11 [13]. As expected, the 𝜏

𝜎

estimates were lower in regions of highly collagenated connective tissue than in surrounding
normal muscle.

13.3.4 Acoustic Radiation Force-induced Creep (RFIC)

Amador et. al. [9] introduced a method that quantifies viscoelastic properties in a
model-independent way by estimating the complex elastic modulus from time-dependent
creep response induced by acoustic radiation force. The method called acoustic radiation force
induced creep (RFIC), uses the analytical solution of the Boltzmann integral (integral equation
of the viscoelastic constitutive equations) to convert the time-dependent creep response to
the frequency-dependent complex modulus. By definition, the ratio between the shear strain
response, 𝛾(t), and the applied shear constant stress, 𝜏0, is called the creep compliance, J(t).
Under any given stress history, provided that the creep compliance is known, the creep strain
is described by the Boltzmann integral representation [5]

𝛾(t) = ∫
t

0
J(t − 𝜉)𝜕𝜏(𝜉)

𝜕𝜉

d𝜉 (13.20)

where 𝜕[⋅]
𝜕𝜉

represents first derivative respect to the independent variable 𝜉. When Fourier trans-
form convolution and derivative properties are applied to Eq. (13.20), it can be seen that the
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frequency 𝜔 domain complex shear modulus, G∗(𝜔), is related to the time domain compliance
J(t) as follows

FT[𝛾(t)] = FT[J(t)]FT
[
𝜕𝜏(t)
𝜕t

]
(13.21)

FT[𝛾(t)] = FT[J(t)]i𝜔FT[𝜏(t)] (13.22)

G∗(𝜔) = FT[𝜏(t)]
FT[𝛾(t)]

= 1
i𝜔FT[J(t)]

(13.23)

where FT[⋅] represents the Fourier transform. Because J(t) is a function that grows with increas-
ing time, its Fourier transform is not convergent. Evans et. al. [14] reported the analytic solution
of Eq. (13.23)

G∗(𝜔) = i𝜔⎡⎢⎢⎢⎣
i𝜔J(0) + (1 − e−i𝜔t(1)) (J(1)−J(0))

t(1)
+ e−i𝜔t(N)

𝜂

…

+
N∑

n=2

(
J(n) − J(n − 1)
t(n) − t(n − 1)

)(
e−i𝜔t(n−1) − e−i𝜔t(n))

⎤⎥⎥⎥⎦
, n = 1 ∶ N (13.24)
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where J(0) and 𝜂 are the compliance at n = 0 and the steady-state viscosity. J(0) is estimated by
extrapolation of the compliance function to t → 0. Similarly, 𝜂 is estimated by extrapolation of
compliance function to t →∞. The frequency range depends on the resolution (the time of the
first data point, t(1)) and duration (the time of the last data point, t(N)) of the data set.

As in KAVE, MSSER, and VisR the actual applied force is generally unknown; therefore, the
magnitude of the applied stress is also unknown. In addition, ultrasound motion detection
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applications usually estimate the displacement response instead of the strain response. Assum-
ing that the material is linear, the creep compliance, J(t), is linearly proportional to displacement
u(t) by a constant factor 𝛽, which relates to the magnitude of the applied step-stress and the
length of the infinitesimal especial region of excitation. Equation (13.23) can be rewritten as [9]

G∗(𝜔) = 1
i𝜔𝛽FT[u(t)]

(13.25)

The outcome of Eq. (13.25) will be 𝛽G∗(𝜔), which is referred to as the extracted complex mod-
ulus, C∗(𝜔), and will vary as a function of material absorption and acoustic beam intensity. To
overcome this problem, a widely used property of viscoelastic materials called the loss tangent
or tan(𝛿), defined as the ratio of the imaginary part and real part of the storage modulus, is not
dependent on material absorption and acoustic beam intensity [9]

tan(𝛿) = Im[C∗(𝜔)]
Re[C∗(𝜔)]

= Im[𝛽G∗(𝜔)]
Re[𝛽G∗(𝜔)]

= Im[G∗(𝜔)]
Re[G∗(𝜔)]

(13.26)

Representative creep displacement responses obtained in the same tissue-mimicking phan-
tom with different acoustic beam intensities show a proportional increase in displacement and
the extracted complex modulus, whereas the estimated loss tangent did not change as function
of acoustic beam intensity, as shown in Figure 13.12 [9].

The estimated loss tangent of two tissue-mimicking phantoms that had different storage
modulus and similar loss modulus, as reported by the manufacturer, is illustrated in
Figure 13.13 [9].

The proportionality factor 𝛽 can be found using shear wave velocity dispersion; this approach
is described in Chapter 28 of this book.
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13.3.5 Acoustic Radiation Force-induced Creep-recovery (RFICR)

In the RFIC method, both creep and recovery are induced but only the creep period is used.
Moreover, to study a wide range of frequencies, the creep period needs to be maintained for
long periods of time, for instance, 30 milliseconds of acoustic radiation force exposure. The
acoustic radiation force-induced creep-recovery (RFICR) method, developed by Amador et.
al. [15, 16], consisted of estimating the model-free complex shear modulus from the recovery
response after acoustic radiation force creep excitation.

The RFIC method theory can be applied to the recovery period as follow. The recovery period
or the response to the removal of the step-stress may be expressed as the application at t = t′ of
another step equal in magnitude but of opposite sign to the step applied at t = 0. This excitation
can be expressed in terms of the unit step function as [15]

𝜏(t) = 𝜏0u(t) − 𝜏0u(t − t′) (13.27)

The first term in Eq. (13.27) represents the imposition of a step-stress of magnitude 𝜏0 at
t = 0, while the second term represents the removal of the stress, expressed as the imposi-
tion of a step-stress of equal magnitude but opposite direction delayed by the amount t′. Such
stimulus and its response are illustrated in Figure 13.14, where the creep or the response to
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Figure 13.12 Tissue-mimicking phantom (a) mean creep displacement; (b) estimated storage moduli; (c) loss
moduli; and (d) loss tangent of a 1.6 μs (o) and 3.2 μs (*) push duration. Average of five repeated measurements.
The dashed lines represent the standard deviation of five repeated measurements. Source: © Institute of
Physics and Engineering in Medicine, reproduced by permission of IOP Publishing, all rights reserved [9].

the step-stress (shear strain 𝛾(t)) is shown with circles and the recovery or the response to an
opposite step-force is shown with asterisks [16].

The creep and recovery curves can be brought into superposition by reflecting either one
around the time axis and then shifting them along both axes. Then, creep and recovery contain
the same information on the time-dependent behavior of a linear viscoelastic material. More-
over, in Eqs. (13.23) and (13.24), the compliance J(t) for the recovery signal remains the same but
with negative magnitude from the negative step-stress and it is defined from t > t′ [16]. To illus-
trate this, Figure 13.15a shows the numerical simulation of a normalized Kelvin-Voigt model
creep strain and recovery for different recovery times and Figure 13.15b shows the estimated
loss tangent on simulated creep strain and flipped-shifted recovery strain. It can be observed
that the estimated loss tangent from the creep strain and the flipped-shifted recovery strain con-
tains the same information on the time-dependent behavior of a linear viscoelastic Kelvin-Voigt
material [15].

Another improvement presented in the RFICR method is the definition and estimation of the
shear strain 𝛾(t) [16].

𝛾ZX(t) = 𝛾(t) =
𝜕uz(t)
𝜕x

+
𝜕ux(t)
𝜕z

(13.28)
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Figure 13.13 Loss tangent (average of five
measured locations) as a function of
frequency for CIRS 1 (*) and CIRS 3 (o)
phantom. The dashed lines represent the
standard deviation of five measured
locations in each phantom. Source: ©
Institute of Physics and Engineering in
Medicine, reproduced by permission of IOP
Publishing, all rights reserved [9].
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where uz(t) and ux(t) are displacements along the ultrasound beam direction z, and lateral direc-
tion x, and 𝜕

𝜕

[⋅] represent a partial derivative [16]. As a result, Eq. (13.25) will be in terms of the
shear strain 𝛾(t) instead of displacement u(t), and the proportionality constant 𝛽 will be only
related to the magnitude applied stress. Although Eq. (13.28) defines the shear strain 𝛾(t) as a
function of the partial derivative of lateral and axial displacements, in finite element modeling
simulations Amador et al have shown that second term of Eq. (13.28) is considerably smaller
than the first term, therefore the shear strain is dominated by the partial derivative of axial
displacement with respect to the lateral distance [16].

The main advantage of the RFICR method is that a pulse sequence used for shear wave elas-
ticity imaging (SWEI) will generate a shear wave that propagates outside the focal point and
it will also inducer creep-recovery at the focal point. Figure 13.16 illustrates an excised swine
kidney creep-recovery strain and loss tangent measured resulting from a continuous acoustic
radiation force impulse.

The shear wave group velocity and center frequency from the induced shear wave using
acoustic radiation force in the excised kidney is shown in Figure 13.17.
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The loss tangent, group velocity, and center frequency estimation can be used to reconstruct
the complex modulus G* of viscoelastic materials with a method that will be addressed in
Chapter 28.

13.4 Conclusion

Quantitative characterization of viscoelastic properties (elasticity and viscosity) of human soft
tissues has the potential to provide an independent indicator of soft tissue health. Viscoelas-
tic creep imaging offers a more complete alternative to the conventional shear wave elasticity
imaging method by characterizing both elasticity and viscosity properties. The kinetic acoustic
vitreoretinal examination (KAVE), monitored steady-state excitation and recovery (MSSER)
radiation force imaging and viscoelastic response (VisR) imaging methods are able to create
color maps of viscoelastic parameters using rheological models. Although the acoustic radiation
force creep (RFIC) and acoustic radiation force creep-recovery (RFICR) methods have not been
implemented to create color maps of viscoelastic properties, they are able to estimate viscoelas-
tic parameters without the need of a rheological model. Moreover, the techniques employed in
KAVE, MSSER, and VisR to create viscoelastic maps can be implemented with RFIC and RFICR
methods.

An important component of viscoelastic material characterization is to account for inertial
effects that happen when the step-force is imposed and removed. The KAVE method proposed
a modification of the Kelvin-Voigt model that accounts for inertial or mass effect. Since MSSER
and VisR methods are also based on using rheological models, the modified Kelvin-Voigt
model with the mass component proposed in the KAVE method could be easily implemented
to MSSER and VisR. On the other hand, the RFIC and RFICR methods are based on the
constitutive equations of viscoelasticity, which by definition allow any stress excitation,
meaning that the analytic solutions of the constitutive equation used in RFIC and RFICR are
only valid for a specific creep response. Therefore, the mass and inertial effects on the creep
and creep-recovery responses need to be further studied.

References

1 Sarvazyan, A.P., Rudenko, O.V., Swanson, S.D., et al. (1998). Shear wave elasticity imaging:
A new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 24: 1419–1435.

2 Fung, Y. (1993). Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag.
3 Kruse, S.A., Smith, J.A., Lawrence, A.J., et al. (2000). Tissue characterization using magnetic

resonance elastography: preliminary results. Phys. Med. Biol. 45: 1579–1590.
4 Qiu, Y.P., Sridhar, M., Tsou, J.K., et al. (2008). Ultrasonic viscoelasticity imaging of nonpal-

pable breast tumors: preliminary results. Acad. Radiol. 15: 1526–1533.
5 Findley, W.N., Lai, J.S., and Onaran, K. (1989). Creep and Relaxation of Nonlinear Viscoelas-

tic Materials: With an Introduction to Linear Viscoelasticity. Dover.
6 Deffieux, T., Montaldo, G., Tanter, M., and Fink, M. (2009). Shear wave spectroscopy for

in vivo quantification of human soft tissues visco-elasticity. IEEE Trans. Med. Imaging 28:
313–322.

7 Chen, S., Urban, M., Pislaru, C., et al. (2009). Shearwave dispersion ultrasound vibrometry
(SDUV) for measuring tissue elasticity and viscosity. IEEE Trans. Ultrason., Ferroelect., Freq.
Control 56: 55–62.

8 Torr, G.R. (1984). The acoustic radiation force. Am. J. Phys. 52: 402–408.



188 Ultrasound Elastography for Biomedical Applications and Medicine

9 Amador, C., Urban, M.W., Chen, S.G., and Greenleaf, J.F. (2012). Loss tangent and complex
modulus estimated by acoustic radiation force creep and shear wave dispersion. Phys. Med.
Biol. 57: 1263–1282.

10 Walker, W.F., Fernandez, F.J., and Negron, L.A. (2000). A method of imaging viscoelastic
parameters with acoustic radiation force. Phys. Med. Biol. 45: 1437–1447.

11 Viola, F. and Walker, W.F. (2003). Radiation force imaging of viscoelastic properties with
reduced artifacts. IEEE Trans. Ultrason., Ferroelect., Freq. Control 50: 736–742.

12 Mauldin, F.W., Haider, M.A., Loboa, E.G., et al. (2008). Monitored steady-state excita-
tion and recovery (MSSER) radiation force imaging using viscoelastic models. IEEE Trans.
Ultrason., Ferroelect., Freq. Control 55: 1597–1610.

13 Selzo, M.R. and Gallippi, C.M. (2013). Viscoelastic response (VisR) imaging for assessment
of viscoelasticity in Voigt materials. IEEE Trans. Ultrason., Ferroelect., Freq. Control 60:
2488–2500.

14 Evans, R.M.L., Tassieri, M., Auhl, D., and Waigh, T.A. (2009). Direct conversion of rheologi-
cal compliance measurements into storage and loss moduli. Phys. Rev. E 80: 012501.

15 Amador, C., Urban, M.W., Chen, S., and Greenleaf, J.F. (2012). Complex shear modulus
quantification from acoustic radiation force creep-recovery and shear wave propagation.
IEEE UFFC International Ultrasonic Symposium, Dresden, Germany.

16 Amador, C., Bo, Q., Urban, M.W., et al. (2013). Acoustic radiation force creep-recovery:
Theory and finite element modeling, Ultrasonics Symposium (IUS), IEEE International,
363–366.



189

14

Intrinsic Cardiovascular Wave and Strain Imaging
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14.1 Introduction

Cardiovascular diseases remain America’s primary killer by a large margin, claiming the lives
of more Americans than the next two main causes of death combined (cancer and pulmonary
complications). In particular, coronary artery disease (CAD) is by far the most lethal, causing
17% of all deaths every year (whether cardiac related or not). One of the main reasons for this
high death toll is the severe lack of effective and accessible imaging tools upon anomaly detected
on the electrocardiogram (ECG), especially at the early stages when CAD can be stabilized
with appropriate pharmacological regimen. Arrhythmias refer to the disruption of the natural
heart rhythm. Cardiac arrhythmias lead to a significant amount of cardiovascular morbidity and
mortality. An irregular heart rhythm causes the heart to suddenly stop pumping blood. Atrial
pathologies are the most common arrhythmias, with atrial fibrillation and atrial flutter being the
most prevalent. Similarly, arterial stiffening has been linked to a variety of diseases – spanning
from cardiovascular disease and dementia to Parkinson’s, diabetes, and end-stage renal disease.
Yet, in sharp contrast with the clear universality and significance of pulse waveform velocity
(PWV) as a biomarker, is the lack of such measurements in the clinic. There is currently no
technique that yields a regional PWV or maps the PWV along a detected pathology to evalu-
ate risk. This is because current methodology assumes a single stiffness value over the entire
circulation obtained through a carotid-to-femoral pressure measurement. Clearly, this single
stiffness value is not sufficient to localize or characterize focal disease such as aneurysms or
atherosclerotic plaques. In this chapter, we introduce ultrasound-based methodologies that
are based on inferring the mechanical and electrical properties of the myocardium as well as
mechanical properties of the vascular wall in order to better image the onset and progression
of the aforementioned diseases.

14.2 Cardiac Imaging

14.2.1 Myocardial Elastography

14.2.1.1 Introduction
According to the latest report on Heart Disease and Stroke Statistics by the American Heart
Association [1], more than 2150 Americans die of cardiovascular disease each day, an average
of 1 death every 40 seconds. Cardiovascular disease currently claims more lives each year in
both men and women than the next two most deadly diseases combined, i.e. cancer and chronic
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lower respiratory disease. Among the cardiovascular diseases, coronary artery disease (CAD)
is by far the most deadly, causing approximately 1 of every 6 deaths in the United States in 2010.
Approximately every 34 seconds, one American has a coronary event, and approximately every
1 minute 23 seconds, an American will die of one. It is estimated that an additional 150 000
silent first myocardial infarctions occur each year [1]. However, there are currently no screen-
ing or early detection imaging techniques that can identify abnormalities prior to any symptoms
or fatalities. Clinically available imaging techniques such as echocardiography or nuclear per-
fusion (radionuclide imaging) are typically used after a cardiac event has already occurred to
determine the extent of damage. Despite the fact that over the past few years therapeutic tech-
niques, such as angioplasty, heart valve surgery, and pacemakers, have experienced exponential
growth in new procedures, the progress in the development of novel diagnostic techniques has
stalled by comparison.

14.2.1.2 Mechanical Deformation of Normal and Ischemic or Infarcted Myocardium
Detection of cardiac dysfunction through assessment of the mechanical properties of the heart,
and more specifically, the left-ventricular muscle, has been a long-term goal in diagnostic car-
diology. This is because both ischemia [2], i.e. the reduced oxygenation of the muscle necessary
for its contraction, and infarction [3], i.e. the complete loss of blood supply inducing myocyte
death, alter the mechanical properties and contractility of the myocardium. In the ischemic
heart, the diastolic left-ventricular pressure–volume or pressure–length curve slope is typi-
cally increased, suggesting increased chamber stiffness [4]. Regional myocardial stiffness has
also been reported to increase as a result of ischemia [5–8]. The increased stiffness could be
due to myocardial remodeling, including elevated collagen and desmin expression as well as
the titin isoform switch [4]. Acute myocardial infarction caused by partial or total blockage of
one or more coronary arteries can cause complex structural alterations of the left-ventricular
muscle [9]. These alterations may lead to collagen synthesis and scar formation, which can cause
the myocardium to irreversibly change its mechanical properties. Holmes et al. [10] reported
that this myocardial stiffening can be measured within the first 5 minutes following ischemic
onset. As reported by Gupta et al. [9], in vitro mechanical testing showed that the stiffness of
the infarcted region increases within the first 4 hours, and continues to rise by up to 20 times,
peaking 1–2 weeks following the infarct and decreasing 4 weeks later (down to 1–10 times the
non-infarcted value). The fact that the mechanical properties induced by the ischemia change
right at the onset, continue changing thereafter, and peak two weeks later, indicate the poten-
tial for a mechanically based imaging technique to detect the ischemia and infarct extent early.
Regarding its conduction pattern, ischemia or infarction will alter the normal pattern and result
in reduced and complete lack of conduction, respectively, at the region of abnormality since the
myocytes no longer properly conduct the action potential.

14.2.1.3 Myocardial Elastography
Our group has pioneered the technique of myocardial elastography that we have been
developing for more than a decade [11–18]. This technique encompasses imaging of mechan-
ical (cumulative or systolic; Figure 14.1) or electromechanical (incremental or transient)
strain or activation times to respectively highlight the mechanical or electrical function of the
myocardium. Myocardial elastography benefits from the development of techniques used for
high precision 2D time-shift-based strain estimation [19] and high frame rates available in
echocardiography scanners [13] to obtain a detailed map of the transmural strain in normal
[20–22], ischemic [21], and infarcted [23] cases in vivo. These strain-imaging techniques aim
at achieving high precision estimates through recorrelation techniques [19] and customized
cross-correlation methods [24] and are thus successful in mapping the full 2D and 3D strain
tensors [18, 25, 26].
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Figure 14.1 (a) Envisioned role and (b, c) initial findings of myocardial elastography in the current clinical
routine to avoid false positives and/or thus unnecessary invasive procedures and false negatives by the
currently used techniques. (b) Normal short-axis radial strain image, largely thickening myocardium, in an
echocardiography false positive case where CT angiography was administered only to confirm normal
function. (c) Abnormal short-axis radial strain image containing an ischemic region (thinning; arrow) in a
nuclear perfusion. Subsequent CT angiography confirmed the myocardial elastography findings regarding two
occluded territories (64-year-old female, 40% LAD and 30% RCA occlusion). (d) Coronary territories given for
reference. CUMC: Columbia University Medical Center. LAD: left anterior descending artery, LCx: left circumflex
artery, RCA: right coronary artery. Myocardial Elastography was capable of detecting normal function and
identifying both compromised territories.

2D Strain Estimation and Imaging A fast, normalized cross-correlation function is first used on
RF signals from consecutive frames to compute two-dimensional motion and deformation
[19, 27]. The cross-correlation function uses a 1D kernel (length = 5.85 mm, overlap = 90%) in
a 2D (or 3D) search to estimate both axial and lateral (and elevational) displacements (Eq. 14.1;
Figures 14.1 and 14.2). The correlation kernel size is approximately 10 wavelengths, which
has been found to be the optimal length using cross-correlation [28]. It should also be noted
that the elastographic resolution has been shown to depend mainly on the kernel shift (not
the kernel size) [29], which in our studies is 10%, or 0.6 mm. When searching in the lateral
(or, elevational) direction, the RF signals are linearly interpolated by a factor of 10 in order to
improve lateral (or, elevational) displacement [19, 21, 30]. Recorrelation techniques are applied
in two iterations that aim at increasing the correlation coefficient of each strain component
by correction or shifting the RF signals by the displacements estimated in the other (two)
orthogonal direction(s) [19, 30]. A least-squares kernel [31] is finally applied to compute the
axial and lateral strains in 2D-PBME (parallel beamforming myocardial elastography) and
axial, lateral, and elevational strains in 3D-PBME. The estimated displacements use a reference
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Figure 14.2 (a) B-mode, (b) radial, (c) circumferential, and (d) longitudinal strain images of a cylindrical model undergoing radial deformation using PBME in phased array
configuration in FIELD II for 2D (top panel) and 3D (bottom panel) myocardial elastography. In the proposed study, the canine LV geometry and electromechanical
simulation model (Figure 14.3) are used. The black boundaries in the top panel represent where the simulated myocardium. Strains outside the tissue are not taken into
account.
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point of the first frame in each estimation pair, yielding incremental (inter-frame) strains that
are then accumulated over the entire systolic phase. Radial, circumferential, and longitudinal
strains are then calculated. For 2D, radial and circumferential strains are estimated in a
short-axis view (Figures 14.2b and 14.2c). In 2D-PBME, rotation matrices, R, for each material
point within the myocardium in a 2D short axis view are written as

R =
[

cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

]
(14.1)

where 𝜃 is the angle relative to the origin of the Cartesian coordinates in the FE models. Strains
in cardiac coordinates are therefore obtained by

̂E = RERT (14.2)
where ̂E is the 2D radial-circumferential strain tensor. The diagonal components of ̂E are radial
(Err) and circumferential (Ecc) strains. Positive and negative radial strains indicate myocardial
thickening and thinning, respectively, while myocardial stretching and shortening are repre-
sented by positive and negative circumferential strains, respectively. A standard B-mode image
(Figure 14.2a) is reconstructed from the RF data, allowing for manually initialized segmentation
of the myocardial border, which is subsequently automatically tracked throughout the cardiac
cycle based on the estimated displacements – as previously developed by our group [27].

3D Strain Estimation and Imaging 3D includes the estimation of longitudinal strains. The MAT-
LAB function interp3 is used to interpolate all three orthogonal components (axial, lateral,
radial, and circumferential) between each of the 16 slices. The interpolated data set is depicted
in 3D, on two surfaces: one located near the endocardium, the other located near the epi-
cardium. The frame rate is lower by 16-fold compared to 2D, i.e. 344 frames/s in 3D (from
5500 frames/s in 2D) but is tested whether it can be sufficient to estimate strain at high signal
to noise ratio (SNR) as predicted by preliminary findings (Figure 14.3).

PBME Performance Assessment A probabilistic framework has been developed by our group in
order to compare the strain estimation quality between conventional and parallel beamforming
[23, 32]. The elastographic signal-to-noise-ratios (SNRe) are calculated for each sequence over
the phase of systole. SNRe is computed for every point in an image using

SNRe =
𝜇(𝜀)
𝜎(𝜀)

(14.3)

Figure 14.3 E(SNRe|𝜀) transverse strain curves
increase with frame rate.
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where 𝜇(𝜀) and 𝜎(𝜀) refer to the mean and standard deviation of the strain (𝜀) magnitude within
a small 2D region of interest (ROI) (3.0× 3.2 mm). Since both strain and SNRe are computed for
each point in the myocardium throughout systole, a large number (>600 000) of strain-SNRe
pairs are generated for each sequence [23]. The conditional expected values of SNRe for each
strain are calculated using [23, 32]

E(SNRe|𝜀) = ∫
+∞

0
SNRe

f (SNRe, 𝜀)
f (𝜀)

dSNRe (14.4)

E(SNRe|𝜀) curves are generated for each sequence, which allows for a relatively easy compar-
ison to be performed between different sequences for a wide range of strain values. Examples
of E(SNRe|𝜀) curves for radial strain estimation are provided in Figure 14.3. The SNRe of both
2D-PBME and 3D-PBME are computed with respect to the strain (equivalent to frame rate)
and compared to focused (standard 2D and 3D myocardial elastography) to perform a quality
comparison with parallel beamforming techniques. Both inter-frame (electromechanical) and
cumulative (mechanical) strain SNRe are quantified.

Compounding A compounding technique is applied to determine increase in SNR when par-
allel beamforming is applied. Plane waves are electronically steered and transmitted at three
different angles separated by 20∘ (–20∘, 0∘, 20∘) and the resulting RF frames are combined into
a compounded image. The received radiofrequency (RF) frames are reconstructed by applying
a delay-and-sum method on GPU-based parallel computing to accelerate reconstruction pro-
cessing [32]. In preliminary studies, we have found that compounding in human hearts in vivo
decreases the frame rate from 5500 fps to 1375 fps, which is sufficiently high for myocardial
elastography (Figure 14.3) while SNR increases by 4-fold.

14.2.1.4 Simulations
A phased array simulation model was implemented for the quality assessment of PBME. Field
II, an established and publicly available ultrasound field simulation program [33, 34] is used to
simulate the RF signals of the myocardium. The simulated mesh, including the myocardium,
cavity, and background are loaded into FIELD II [28, 35]. Instead of a focused wave, a diverging
wave sequence is employed for transmit by placing the focus 6.75 mm (half the size of the aper-
ture) behind the array surface to achieve a 90∘ angle insonification [32]. For 2D-PBME, the RF
signals are obtained from 192 elements and 3.5 MHz center frequency with 60% bandwidth (at
−6dB) phased array similar to those used in the canine study. Hanning apodization is applied
both during transmit and receive to reduce grating lobes. The width and height of the phased
array are 43 and 7 mm, respectively. The RF signals are reconstructed by coherent summation
of the signals received by all the elements using a delay-and-sum algorithm. For 3D-PBME, RF
signals are obtained from a 2D array with 16 × 16, 32 × 32, and 64 × 64 elements and 3 MHz
center frequency, similar to those used in experiments.

14.2.1.5 Myocardial ischemia and infarction detection in canines in vivo

Ischemic Model In order to test myocardial elastography in the assessment of ischemia by
depicting the change in both mechanical and electrical properties, twelve (n = 12) adult male
dogs (20–25 kg) were used according to well-established anesthetized canine models. The flow
in the coronary artery was continuously controlled via pressure-flow curves.

• Step 1 (control): Mongrel dogs with normal/healthy myocardium, as verified using stan-
dard echocardiography, are used for control measurements. Channel data with both 2D- and
3D-PBME are continuously acquired during 5 min in sets of three cardiac cycles each taken
20 s apart, i.e. approximately 15 sets in total. This established the strain baseline.
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Figure 14.4 (a) Progression of ischemia, shown as thinning systolic strain as indicated compared to the
surrounding non-ischemic (thickening) strain, from 0% to 100% occlusion in the same dog using 2D-PBME and
identifying the region and extent of ischemia in each case (shown with the ROI). (b) TTC pathology showing
pale (unstained by TTC; ischemic) vs. red (stained by TTC; normal) myocardium. (c) Temporal radial strain
profiles in the anterior wall region of 3 × 3 mm2 at 0%, 40%, 60%, and 100% occlusion levels with
sonomicrometry (SM) and 2DME [21].

• Step 2 (mild to acute ischemia): The dogs undergo a left thoracotomy followed by grad-
ual constriction of the mid-proximal left anterior descending coronary artery (LAD) using
the Ameroid constrictor by 0–100% of baseline, at intervals of 20% for 15 min each. Strain
images are shown in Figure 14.4a. The slope of the coronary pressure-flow curves (using Mil-
lar catheters and sonomicrometry) are used to monitor the ischemic onset at each occlusion
step. RF data in the same views as in Step 1 were continuously acquired during the full 15 min
in sets of three cardiac cycles (10 s apart), i.e. approx. 70 sets total.

Infarct Model Mongrel dogs underwent similar surgical procedure as in the ischemia model but
survived for four days after complete ligation only in order to develop a fully developed infarct
(Figure 14.5).

14.2.1.6 Validation of Myocardial Elastography against CT Angiography
CT angiography is an established technique used for reliable detection of a coronary occlu-
sion and was used to confirm the occlusion and validate the location of the ischemia or infarct
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Figure 14.5 (a) Transthoracic systolic radial strain image of a canine left ventricle in vivo. Thinning strain region
clearly indicates the extent of infarction. (b) Electromechanical isochrones in 3D identifying spatial extent of MI.
Arrow denotes MI region.

as detected by myocardial elastography. The objectives of this study were to show that 2D
myocardial strains can be imaged with diverging wave imaging and are different in average
between healthy subjects and coronary artery disease (CAD) patients. In this study, 15 CAD
patients and 8 healthy subjects were imaged with ME. Patients with more than 50% occlu-
sion in one of the main coronary arteries were considered to have obstructive CAD. Incre-
mental axial and lateral displacements were estimated using normalized 1D cross-correlation
and then accumulated during systole. Axial and lateral cumulative strains were then estimated
from the displacements and converted to radial cumulative strains (Figures 14.6 and 14.7).
The end-systolic radial strain in the total cross-section of the myocardium in healthy subjects
(14.9 ± 8.2%) was significantly higher than obstructive CAD patients (−0.9 ± 7.4%, p < 0.001)
and in non-obstructive CAD patients (3.7 ± 5.7%, p < 0.05). End-systolic radial strain in the
left anterior descending (LAD) territory was found to be significantly higher in healthy sub-
jects (16.9 ± 12.9%) than in patients with obstructed LAD (2.2 ± 7.0%, p < 0.05) and patients
with non-obstructed LAD (1.7 ± 10.3%, p < 0.05) (Figure 14.8). These findings indicate that
end-systolic radial strain measured with myocardial elastography is higher on average in healthy
subjects compared to CAD patients and indicates that myocardial elastography has the poten-
tial to be used for non-invasive, radiation-free early detection of CAD.
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Figure 14.6 Comparison between (a) 2D-ME (conventional (focused) beamforming) using ECG gating and
(b) 2D-PBME (parallel beamforming) systolic radial strain image in a normal patient. The quality is comparable
without the artifacts from sector matching and ECG gating in part (a).
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Figure 14.7 2D-PBME showing progression of coronary disease in three different patients: (a) Normal;
(b) occlusions – RCA: 90%; LAD: 20%, LCX: 20%; and (c) occlusions – RCA: 99%; LAD: 100%, LCX: 100%.
Figure 14.1d can be used for reference of the position of the coronary arteries.
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Figure 14.8 Preliminary findings in 25 human subjects (19 patients and 6 normals) using PBME. Non-severe
CAD (stenosis <50%) and severe (>50% stenosis). LAD: left anterior descending artery; LCx: left-circumflex
artery; RCA: right coronary artery; total: all territories. In all territories except LCx PBME was capable of
differentiating normal from non-severe and from severe CAD.

14.2.2 Electromechanical Wave Imaging (EWI)

14.2.2.1 Cardiac Arrhythmias
Cardiac arrhythmias can be separated into atrial (or supraventricular) and ventricular. While
ventricular arrhythmias, such as ventricular fibrillation (chaotic rhythm), ventricular tachy-
cardia (rapid rhythm), and ventricular bradycardia (slow rhythm) incur the most episodes of
sudden death, they are less common and easier to diagnose than atrial arrhythmias. Atrial
arrhythmias, including atrial fibrillation (Afib or AF) and atrial flutter (AFL), are the most com-
mon. Similar to the ventricular definition, atrial fibrillation denotes the chaotic rhythm while
atrial flutter denotes the regular but abnormal (rapid or slow) rhythm. The number of individu-
als with atrial fibrillation in the United States is expected to reach 12 million by 2050 [36] with
atrial flutters, often a result of treatment, also expected to rise as more of these treatments are
administered. The EWI methodology has the dual purpose of both enhancing the diagnosis and
treatment planning and guidance of arrhythmias that are both the most common but also the
most difficult to diagnose, i.e. the atrial arrhythmias. A short overview of the state-of-the-art
diagnostic and treatment techniques is provided.
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14.2.2.2 Clinical Diagnosis of Atrial Arrhythmias
ECG recordings and no imaging modality is typically used for the noninvasive identification
of atrial arrhythmias. If ECG recordings indicate atrial flutter or fibrillation, Radio-frequency
(RF) ablation (see Section 14.2.2.3) is warranted that allows for catheterized cardiac mapping
during its procedure. Cardiac mapping involves the insertion of a catheter containing a small
number of electrodes in the heart chamber to contact the endocardium and measure times of
activation. The procedure is minimally invasive and ionizing since it uses computed tomogra-
phy (CT) guidance, but it can be a lengthy procedure requiring topical or general anesthesia
and is warranted only when the ECG recordings indicate that RF ablation is the appropriate
course of treatment. Limitations include some inaccessible endocardial sites and the inability
to map the mid-myocardium and epicardium. More importantly, as potentials in only one or
a few locations in the atrium are measured per heartbeat it can be used only to study stable,
repeatable arrhythmias.

14.2.2.3 Treatment of Atrial Arrhythmias
Radio-frequency ablation is a minimally invasive technique rapidly emerging as the most com-
monly used therapeutic modality for atrial flutter and atrial fibrillation. For this treatment, a
catheter, whose tip carries an electrode, is inserted through the femoral vein and the tip of the
electrode is positioned at the arrhythmic origin. The tip causes a frictional heat generated by
intracellular ions moving in response to an alternating current. The electrode is connected to
a function generator and the electrical current flows and raises the local temperature up to
95 ∘C, maintaining it for about 15 min, generating thermal lesions in the vicinity of the ablating
catheter. The treatment consists thus in modifying or blocking the circuits of electrical conduc-
tion in the heart. Current surgical procedures are invasive and have a moderate efficiency in the
persistent forms of atrial fibrillation. AF in some patients may be due to focal activity originat-
ing in the pulmonary veins and 70% of these patients can be successfully treated by RF ablation
of the focus inside the pulmonary veins [37]. However, the treatment of AF using RF ablation
can often lead to the development of other arrhythmias. For example, a sizeable increase of
atypical flutter is due to catheter ablation of atrial fibrillation.

14.2.2.4 Electromechanical Wave Imaging (EWI)

Cardiac Electromechanics The heart will not adequately contract unless it is electrically acti-
vated via a very specific route (Figure 14.9; green arrows). In sinus rhythm (that is, natural
contraction), the path of activation originates at the sinoatrial (SA) node (right before the ECG’s
P-wave), from which the electrical signal in the form of an action potential spreads to both right
and left atria causing their contraction (during the P-wave). The wave then propagates to the
atrioventricular (AV) node (right after the P-wave), through the bundle of His and along the
left and right bundles on the interventricular septum (during the Q-R segment) to the Purkinje
fibers (S-wave) finally causing both ventricles to synchronously contract, starting at the apex
towards their lateral and posterior walls (Figure 14.9). The heart is thus an electromechanical
pump that needs to first be electrically activated in order to contract. Propagating electrical
waves of excitation result in localized contractions. Each electrical activation in Figure 14.9b
is followed by an electromechanical one, i.e. the depolarization of a cardiac muscle cell, or,
myocyte, is followed by an uptake of calcium, which triggers contraction after a certain elec-
tromechanical delay of a few milliseconds [38, 39]. In the presence of arrhythmia, electrical and
electromechanical patterns are disrupted.

Electromechanical Wave Imaging (EWI) Our group has pioneered a unique noninvasive and
direct (as opposed to inverse problem) imaging technique that could reliably map the con-
duction wave in the heart in all of its four cardiac chambers. Electromechanical wave imaging
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Figure 14.9 (a) State-of-the-art CT angiography of the CRT leads. The ablation catheters and coronary arteries
are clearly visible but the heart and the myocardium are not visible. A similar system is used to guide
electroanatomic mapping. (b) Illustration of the cardiac conduction system. The arrows indicate the path of
activation as the action potential propagates from the sinoatrial node (SA node) in the right atrium along the
Purkinje fiber network. (c) Current (2D) 4-chamber EWI activation map with conventional beamforming in a
normal human heart obtained transthoracically. (d) 3D-rendered, 4-chamber EWI activation map (reversed
color map used compared to part c) in vivo.

[15, 16, 20, 40–48] has been shown capable of noninvasively mapping the conduction wave
during propagation. We identified that high frame rate (>500 frames/s, fps) and precise 2D
imaging of the cardiac deformation is feasible so that the transient cardiac motion resulting
from the fast electromechanical wave can be mapped in murine [15, 16, 40–43], canine
[20, 46–48], and human [15, 32, 45] hearts in vivo. We were also capable of demonstrating
that EWI is angle-independent [47], has excellent correlation with electrical activation mea-
surements in canines in vivo [47] (slope of 0.99 and r2 = 0.88; Figures 14.10 and 14.11) and
is in excellent agreement with electromechanical simulations [32, 49]. More importantly, our
group was capable of recently showing that EWI was feasible in the atria of human hearts
in vivo undergoing sinus rhythm. [32]. There is simply no other modality that can directly
map the conduction of the atria under sinus rhythm noninvasively in the clinic. An important
additional advantage of this methodology is that it can be routinely applied in the clinic through
straightforward integration with any echocardiography system. It could thus be used both at
the diagnostic and at the treatment guidance levels, either off- or on-line. Despite the fact that
EWI can map both the atria and the ventricles, we chose to focus on the atrial arrhythmias in
this study given that they are far more common, more salvageable, and completely lacking of
any noninvasive imaging modality that can map their conduction properties.

EWI can be useful in a number of diseases that can be treated with ablation therapy: e.g. atrial
fibrillation, atrial flutter, ventricular tachycadia, Wolff-Parkinson-White (WPW) syndrome,
etc. WPW is a heart condition where an additional electrical pathway links the atria to the
ventricles. It is the most common heart rate disorder in infants and children and is preferably
treated using catheter ablation. EWI could be used in predicting the location of the accessory
pathway, thus reducing the overall time of the ablation procedure. Since a sizeable increase of
atypical flutter is due to catheter ablation of atrial fibrillation, the prevalence of atrial flutter is
also expected to rise. However, the relationship between AF and AFL is still not fully understood
[50]. Atrial flutter, a type of atrial tachycardia, has historically been defined exclusively from
the ECG recordings. More specifically, differentiation between flutter and other tachycardias
was based on the atrial rate and the presence or absence of isoelectric baselines between atrial
deflections. Since then, electrophysiological studies and RF ablation brought new understand-
ing into the atrial tachycardia mechanisms, which did not correlate well with these ECG-based
definitions [51]. In other words, ECG recordings offer only a limited value in the determination
of specific atrial tachycardia mechanisms, and, ultimately, for the selection of the appropriate
course of treatment. Cardiac mapping allowed different mechanisms of macroreentrant atrial
tachycardia to be identified, such as typical flutter, reverse typical flutter, left atrial flutter, etc.,
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Figure 14.10 (a) Propagation of the electromechanical wave when paced from the lateral wall, near the base.
Activation in this view corresponds to thickening of the tissue. Activated regions are traced at (A) 15 ms, (B)
30 ms, (C) 50 ms (D) 85 ms, and (E) 120 ms and indicated on the electrocardiogram (F). 0 ms corresponds to the
pacing stimulus. A–C: The EW propagates from the basal part of the lateral wall towards the apex. D: Note that
in the apical region, a transition from lengthening to shortening is observed rather than a transition from
thinning to thickening. D, E: In the anterior wall, the EW propagates from both the base and apex. The scale
shows inter-frame strains. (b) Correlation of EWI with simulation findings of electromechanical and electrical
activation [46]. (c) Electrical and electromechanical activation times during the four pacing protocols and sinus
rhythm in four different heart segments in the posterior and anterior walls [46].
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Figure 14.11 Isochrones showing the activation sequence under different pacing protocols as shown. Arrow
indicates the pacing origin. (a) Pacing from the basal region of the lateral wall; (b) pacing from the apex; (c)
pacing from the apical region of the lateral wall; (d) pacing from the apical region of the right-ventricular wall;
and (e) Isochrones showing the EW activation sequence during sinus rhythm. The activation sequence exhibits
early activation at the median level and late activation at the basal and apical levels. Activation of the right
ventricular wall occurred after the activation of the septal and lateral walls. The cross indicates the pacing lead
location.

although a significant number of atypical flutters are still poorly understood [51, 52]. While
mapping the right atrium is routinely undertaken successfully using this procedure, mapping
the left atrium is riskier since it requires a transseptal puncture. However, as it currently stands
in the clinic, right atrium arrhythmia cannot be distinguished from left atrium arrhythmia
prior to treatment and only the latter warrants transseptal puncture, which is a riskier pro-
cedure. In some cases, the left atrium arrhythmia is not diagnosed until the entire right atrium
is ablated (which may involve several unproductive hours of intervention), posing further risk
to the patient. Consequently, left atrial activation sequences are not well characterized in many
atrial tachycardia cases [51]. Moreover, the surface ECG is insufficiently specific to distinguish
left from right atrial flutters [50, 52]. EWI could thus offer an important step for the localization
of the right vs. left atrial arrhythmia as well as localizing the origin(s) at the treatment planning
stage, i.e. prior to the catheterization of the patient rendering the treatment to be more efficient,
much shorter in duration, and with unnecessary ablations in the wrong chamber or avoiding
unnecessary transseptal punctures.

Treatment Guidance Capability of EWI Currently, there is simply no noninvasive electrical conduc-
tion mapping techniques of the heart that can be used in the clinic. In addition, apart from the
currently available clinical electrical mapping methods being all catheter-based and limited to
mapping the endocardial or epicardial activation sequence, they are also time-consuming and
costly. Even in a laboratory setting, mapping the 3D electrical activation sequence of the heart
can be a daunting task [53]. Studies of transmural electrical activation usually require usage
of a large number of plunge electrodes to attain sufficient resolution [54–56], or are applied
to small regions of interest in vivo [38]. Non-contact methods to map the electrical activation
sequence have also emerged but are not used in the clinic. Optical imaging techniques use
voltage-sensitive dyes that bind to cardiac cell membranes and, following illumination, fluo-
resce if the cell undergoes electrical activation. Optical imaging methods can map the activation
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sequence of ex vivo tissue on the endocardial and epicardial surfaces [57–62] but cannot be
applied in the clinic since they require the use of an electromechanical decoupler that inhibits
cardiac contraction during imaging. Other newly developed methods to map the local electri-
cal activity of the heart based on inverse problems are available: electrocardiographic imaging
(ECGI) [63–65] and non-contact mapping [66–68]. The former is based on body surface poten-
tials and CT or MRI scans and provides reconstructed epicardial action potentials, including the
atria [69]. The latter consists in reconstructing the transmural potentials from potentials mea-
sured in the heart chamber based on specific assumptions that may be susceptible to inverse
problem errors [70–72].

14.2.2.5 Imaging the Electromechanics of the Heart
As of today, no imaging method currently used in the clinic has been capable of mapping the
electromechanics of the heart. Initial measurements to determine the correlation between the
electrical and electromechanical activities have been reported [73, 74]. These results suggest
that the electrical activation sequence could be deduced from the electromechanics. Clinically
available imaging modalities, such as standard echocardiography or MRI, cannot adequately
detect the electromechanical wave (EW) since they are too slow, i.e. the time required to acquire
a single image is similar to the duration of the entire ventricular depolarization. The electrical
activation lasts approximately 60 to 100 ms and requires a resolution of a few milliseconds (e.g.
2–5 ms) to generate precise activation maps. Moreover, the regional inter-frame deformation
to be measured at these frame rates is very small (∼0.25% at a 2 ms temporal resolution) and
requires a highly accurate strain estimator [20, 46–48]. We have shown that EWI is capable
of reaching high frame rates (up to 2000 frames/s) as well attain the precision of the incurred
strains (up to 0.25%) which result from an electromechanical activation and therefore fulfill the
requirements of both high temporal and spatial resolution unique to our technology.

14.2.2.6 EWI Sequences
A block diagram of EWI is shown in Figure 14.12. Two imaging sequences, the automated
composite technique (ACT) [45] and the temporally-unequispaced acquisition sequences
(TUAS) [32, 75] have been developed and implemented [20, 32, 46–48, 75–77] as well as the
single-heartbeat sequence [32, 75–79].

The ACT Sequence An Ultrasonix RP system with a 3.3 MHz phased array was used to acquire
RF frames from 390 to 520 frames/s (fps) using an automated composite technique (ACT)
[45]. Briefly, to increase the resulting frame rate, the image is divided into partially overlapping
sectors corresponding to separate cardiac cycles (Figure 14.12a). The axial incremental
displacements are obtained with a RF-based cross-correlation method (Figure 14.12b) (win-
dow size: 4.6 mm, 80% overlap). Briefly, this method consists in dividing every ultrasound
beam in a large number of overlapping, one-dimensional, 4.6 mm-long windows. Then, the
following process is applied to each window and each sampled time t. A reference window
at time t1 is compared with all the windows contained in the same beam at sampled time
t2. The axial location of the window providing the highest correlation determines the axial
displacement between two consecutive sampled times. After repeating this process for every
available window and every available sampled time, we obtain axial displacements at multiple
locations along the ultrasound beam and for every sampled time. The full-view image is then
reconstructed using the motion-matching technique (Figure 14.12c) [20]. Briefly, this method
consists of comparing, through a cross-correlation method, the incremental displacements
measured in the overlapping line of two sectors obtained at different heartbeats to synchronize
the sectors. More specifically, the acquisition sequence is designed such that each sector
contains at least one ultrasound beam that is also part of the following sector. Therefore, this
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Figure 14.12 Block diagram of the EWI technique. (a) High frame-rate acquisition is first performed using
either ACT (follow lighter arrows) or TUAS (black arrows). (b) High precision displacement estimation between
two consecutively acquired RF beams (t1, t2) is then performed using very high frame rate RF speckle tracking.
(c) In ACT only, a region of the heart muscle, common to two neighboring sectors, is then selected. By
comparing the temporally varying displacements measured in neighboring sectors (s1, s2) via a
cross-correlation technique, the delay between them is estimated. (d) In ACT only, a full-view ciné-loop of the
displacement overlaid onto the B-mode can then be reconstructed with all the sectors in the composite image
synchronized. (e) In ACT and TUAS, the heart walls are then segmented, and incremental strains are computed
to depict the EW. (f ) By tracking the onset of the EW, isochrones of the sequence of activation are generated.
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overlapping beam is expected to result in identical (or highly similar) axial displacements
whether they corresponds to heartbeat h that occurred when sector s was acquired or to
heartbeat h + 1 that occurred when sector s + 1 was acquired. By comparing, over time, the
displacements obtained in the overlapping beams, the time delay corresponding to the maxi-
mum cross-correlation coefficient are obtained to synchronize each set of neighboring sectors.
The procedure is repeated for each pair of sectors, allowing the reconstruction of the full-view
of the heart, hence ensuring the continuity of the transition incremental displacements across
sectors. This method does not rely on the ECG. Therefore it is especially useful in cases where
the ECG may be unavailable or too irregular to perform ECG gating [20]. The axial incremental
strains were then obtained by taking the spatial derivative of incremental strains in the axial
direction using a least-squares estimator [31] with a kernel equal to 6.75 mm (Figure 14.12d).
The myocardium was segmented using an automated contour tracking technique [80] and
displacement and strain maps were then overlaid onto the corresponding B-mode images
(Figure 14.12e). Isochrones were generated by mapping the first time occurrence at which
the incremental strains crossed zero following the Q-wave. More specifically, the absolute
value of the incremental strains was minimized in a temporal window following the Q-wave in
up to a hundred manually selected regions. Noisy data were excluded. Subsample resolution
was obtained through spline interpolation and Delaunay interpolation was used to construct
continuous isochronal maps. Two echocardiographic planes, identical to the planes imaged
in the standard apical four- and two-chamber views, were imaged across the long axis of
the heart. These two views were temporally co-registered using the ECG signals, spatially
co-registered by an echocardiography expert, and displayed in a three-dimensional biplane
view in Amira 4.1 (Visage Imaging, Chelmsford, MA) (Figure 14.12f ).

The TUAS Sequence We have developed and implemented in an Ultrasonix MDP system a tem-
porally unequispaced acquisition sequence (TUAS) (Figure 14.12) [32], which is a sector-based
sequence [81], adapted to optimally estimate cardiac deformations. In TUAS, it is possible to
simultaneously achieve a wide range of frame rates for motion estimation, large beam den-
sity, and a large field of view in a single heartbeat, thus avoiding the motion-matching and
reconstruction steps in EWI, with little dependence on depth and beam density. Consequently,
for a given set of imaging parameters, motion can be estimated at frame rates varying from
a few Hz to kHz. The prior knowledge, in this case, is the minimum sampling rate, i.e. the
Nyquist rate, of the motion over time at a given pixel. The conventional way to construct an
ultrasound image using a phased array is to acquire a finite number of beams, typically 64 or
128, over a 90∘ angle. These beams are acquired sequentially, and the process is repeated for
each frame. For example, a given beam, e.g. beam 3 (Figure 14.13), is acquired at a fixed rate
(Figure 14.13, conventional sequence). In TUAS, the beam acquisition sequence is reordered to
provide two distinct rates, defined as follows (Figure 14.13): the motion-estimation rate and the
motion-sampling rate. The motion-estimation rate rme is defined as the inverse of the time, i.e.
Tme, lapsing between the two RF frames used to estimate motion. The motion-sampling rate
rms is defined as the inverse of the time, i.e. Tms, lapsing between two consecutive displacement
maps. In conventional imaging sequences, these two rates are equal, because a given frame is
typically used for two motion estimations (un and un + 1 in Figure 14.13). In TUAS, the operator
can adjust the motion-estimation rate. As shown in Figure 14.13, a frame in the TUAS case
is used only once for motion estimation, thus halving the motion-sampling rate relative to the
conventional method. For example, an acquisition performed at a 12 cm depth with 64 beams
with a conventional sequence corresponds to a frame rate of 100 Hz. However, while 100 Hz
may suffice to satisfy the Nyquist sampling criterion of cardiac motion, it is usually insufficient
for accurate motion tracking using RF cross-correlation. Therefore, to reach a higher frame
rate of, e.g. 400 Hz typically used for EWI, the conventional sequence requires to divide the
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Figure 14.13 Illustration of an acquisition
sequence in a simple case where only six lines
form an image, with each sector using two lines.
In a conventional acquisition sequence, the time
separating two acquisitions of the same line is
the same. In TUAS, the time separating two
acquisitions of the same line is modulated to
optimize motion estimation.

1

2

3 4

5

6

Conventional

Sequence

Tme= Tms

12 3 4 5 6 12 3 4 5 6 12 3 4 5 6 1 2 3 4 56

12 1 2 3 4 34 5 6 5 6 12 1 2 3 4 3 4 5 6 56

Tme

Tme

Tms

un un+1

Tms

un un+1

TUAS

Tme≤ Tms

number of beams by four, and thus reduce either the beam density, the field of view, or both.
At the same depth and beam density, TUAS provides a motion-sampling rate of 50 Hz and a
motion-estimation rate that can be varied, as shown in the following section, within the fol-
lowing group: {6416, 3208, 1604, 802, 401, 201, 100} Hz. This has numerous advantages. For
example, both the beam density and the field of view can be maintained while estimating the
cardiac motion with an optimal frame rate, which could be, e.g. either 401 or 802 Hz, depend-
ing on the amplitude of the cardiac motion. This results into a halving of the motion-sampling
rate; however, the motion-sampling rate has only little effect on the motion estimation accu-
racy. Theoretically, if this rate remains above the Nyquist rate of the estimated cardiac motion,
it will have no effect. We estimated that at a motion-sampling rate above 120 Hz, the effect of
the motion-sampling rate became negligible compared to the effect of the motion-estimation
rate [32].

Single-heartbeat EWI and Optimal Strain Estimation In TUAS, a wide range of frame rates can be
achieved, including very high frame rates, independently of other imaging parameters. There-
fore, by maintaining a set of imaging parameters (e.g. field of view, imaging depth) and varying
the frame rate, it is possible to identify an optimal frame rate by studying the link between
the strain signal-to-noise ratio (SNRe) and the EW. A previous report [82] on the strain filter
indicates that the SNRe depends mostly on the value of the strains to be measured when the
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imaging parameters are fixed. This theoretical framework allows the construction of an upper
limit on the SNRe as a function of the strain amplitude (also known as the strain filter). The
strain filter corresponds, in this case, to the Ziv-Zakai lower bound (ZZLB) on the variance.
The ZZLB is a combination of the Cramér-Rao lower bound (CRLB) and the Barankin bound
(BB). The ZZLB transitions from the CRLB to the BB when decorrelation becomes important
to the point that only the envelope of the signal contains information on the motion [83]. In
the correlation model used here [84], this transition occurs only at very large strains. Since the
amplitude of strains to be measured is directly related to the motion-estimation rate (a large
motion-estimation rate will result in small inter-frame strains), finding an optimal strain value
is equivalent to finding an optimal motion-estimation rate. The strain filter was calculated with
the imaging parameters used in this study as a reference; however, it was developed for the anal-
ysis of strains occurring in static elastography and is not adapted to the more complex motion
of the heart. We have therefore developed a new probabilistic framework based on experimen-
tal data acquired in a paced canine in vivo to not only establish an upper bound on the SNRe,
but to estimate the probability of obtaining a given SNRe for a given strain amplitude [32].
Since the motion-estimation rate can be used as a means to translate and narrow the strain
distribution), the optimal motion-estimation rate can be found by studying the link between
the strains and the SNRe. More specifically, a conditional probability density function span-
ning a large range of strains values was constructed (Figure 14.14) and was found in agreement
with the strain-filter theory, which provides a higher bound on the SNRe. The ZZLB predicts
a sharp transition between the CRLB and BB when decorrelation becomes important, to the
point that the phase of the signal does not contain information about motion. Figure 14.14
shows that the conditional probability density function is comprised within the CRLB up to
approximately 4% before it becomes comprised within the BB. A sharp decrease in the expected
value of the SNRe is also observed at 4% strain, underlining the importance of using the phase
information of the RF signal for accurate strain measurements. A distortion in the strain dis-
tribution may indicate that while a high SNRe can be maintained, the accuracy of the strain
estimator is strongly impaired at low motion-estimation rates, i.e. less than 350 Hz in this case
(Figure 14.14). Finally, we showed that TUAS is capable of accurately depicting non-periodic
events at high temporal resolution. Therefore, the optimal frame rate will need to be between
389 and 3891 Hz according to the strains estimated (Figure 14.14). Strain patterns expected
during such a phenomenon were depicted, such as a disorganized contraction, leading to lit-
tle to no large scale motion of the heart. Regions of the myocardium were oscillating rapidly
from thinning to thickening and thickening to thinning over time. Studying the frequencies of
these oscillations could be useful in understanding the mechanisms of fibrillation [85] and we
plan to use Fourier-based analysis and principal component analysis in order to identify those
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components in fibrillation and better identify the arrhythmic origin(s). Ciaccio et al. [86] have
developed such methods, including non-harmonic analysis for the analysis of electrical signals
in the heart during fibrillation (and will assist in further development for EWI).

14.2.2.7 Characterization of Atrial Arrhythmias in Canines In Vivo

Electrical Mapping Data from the St. Jude EnSite system was exported to a workstation for
co-registration with EWI isochrones. Comma separated value (CSV) files containing the coor-
dinates of the 3D mesh as well as the data from each acquired point (activation time and spatial
coordinates) were retrieved. The 3D mesh was recreated in Maya (Maya 2016, Autodesk, San
Rafael, CA, USA) and the open-source software MeshLab (Visual Computing Lab – ISTI, CNR,
meshlab.sourceforge.net). 3D co-registration was performed by aligning the isochrones with
the 3D mesh using anatomical landmarks such as the location of the apex, the mitral valve
annulus, the lateral wall, or the septum. Once both the isochrones and the mesh were aligned,
positions of the acquired points on the EnSite system were projected onto the isochrones and
times of activation were compared. This process provided pairs of electrical and electrome-
chanical activation times which were then plotted against each other. Linear regression was
then performed and slope, intercept, and R2 values were obtained.

Validation The objective of this study was to validate EWI against electrical mapping using an
electroanatomical mapping system, in all four chambers of the heart. Six (n = 6) normal adult
canines were used in this study. The electrical activation sequence was mapped in all four cham-
bers of the heart, both endocardially and epicardially using a St. Jude EnSite mapping system
(St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed during normal sinus rhythm
and pacing and isochrones of the electromechanical activation were generated. Electrome-
chanical and electrical activation times were plotted against each other and linear regression
was performed for each pair of activation maps. Electromechanical and electrical activations
were found to be highly correlated with slopes of the correlation ranging from 0.77 to 1.83,
electromechanical delays between 9 and 58 ms and R2 values from 0.71 to 0.92 (Figure 14.15).
The excellent linear correlation between electromechanical and electrical activation and good
agreement between the activation maps indicate that the electromechanical activation follows
the pattern of propagation of the electrical activation. This suggests that EWI could be used to
accurately characterize arrhythmias and localize their source.

14.2.2.8 EWI in Normal Human Subjects and with Arrhythmias
The objectives of the clinical studies [23, 32, 46–48, 77] were (i) to determine the potential
for clinical role of EWI, by predicting activation patterns in normal subjects, (ii) to determine
the feasibility of EWI to identify the site of origin in subjects with tachyarrhythmia, and
(iii) to identify the myocardial activation sequence in patients undergoing CRT. In normal
subjects (Figures 14.16 and 14.17), the EW propagated, in both the atria and the ventricles, in
accordance with the expected electrical activation sequences based on reports in the literature.
In subjects with CRT, EWI successfully characterized two different pacing schemes, i.e. LV
epicardial pacing and RV endocardial pacing versus sinus rhythm with conducted complexes.
In two subjects with AFL (Figure 14.18), the propagation patterns obtained with EWI were in
agreement with results obtained from invasive intracardiac mapping studies, indicating that
EWI may be capable of distinguishing LA from RA flutters transthoracically. Finally, we have
shown the feasibility of EWI to describe the activation sequence during a single heartbeat in
a patient with AFL and RBBB (Figure 14.18) [32]. The results presented demonstrate for the
first time that mapping the transient strains occurring in response to the electrical activation,
i.e. the electromechanical wave propagation, can be used to characterize both normal rhythm
and arrhythmias in humans, in all four cardiac chambers transthoracically using multiple-
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Figure 14.15 Comparison of EWI against electroanatomical mapping. Anterior and posterior views in the (a)
right (RA) and left (LA) atria and (b) entire canine left ventricle (LV) using EWI noninvasively and
electroanatomical mapping with the proposed clinical system (Ensite, St. Jude Medical). Linear regression
analysis shows excellent correlation between the electromechanical and electrical activation with the intercept
indicating the electromechanical delay [79].
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Figure 14.16 EWI using a flash sequence for motion estimation (motion sampling rate: 2000 Hz, motion
estimation rate: 500 Hz) overlaid on a standard 128-beams, 30-fps B-mode. All four chambers are mapped but
only atrial activation is shown here. Activation (shortening) was initiated in the right atrium (RA) (50 ms) and
propagated towards the atrial septum (60 ms) and the left atrium (LA) (70 ms) until complete activation of both
atria (100 ms). RV: right ventricle, LV: left ventricle.

and single-heartbeat methodologies. EWI has the potential to noninvasively assist in clinical
decision making prior to invasive treatment, and to aid in optimizing and monitoring responses
to CRT. Some more recent endeavors are using multi-2D rendering for reconstruction of the
ventricular [87] and atrial surfaces.

14.3 Vascular Imaging

14.3.1 Stroke

Stroke is one of the leading causes of death often associated with severe, long-term disability
[88]. One of the main reasons behind this large death toll is that characterization of plaque
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Figure 14.17 EWI isochrone in all four chambers in a
healthy, 23-year-old male subject. Activation in this
view corresponds to shortening of the tissue. Activation
is initiated in the right atrium and propagates in the left
atrium. After the atrio-ventricular delay, activation is
initiated in the ventricles from multiple origins, which
are possibly correlated with the Purkinje terminal
locations. Arrows (both white and black) indicate the
direction of propagation.
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Figure 14.18 Noninvasively detecting and characterizing atrial flutter with EWI in three human subjects (RA:
right atrium, LA: left atrium). (a) Normal subject: activation is initiated in the right atrium and propagates
towards the left atrium. (b) Unknown atrial flutter in a flutter patient with a prosthetic mitral valve, which was
believed to cause the atrial flutter from the left side. Since the patient could not sustain the long procedure
needed to construct a full activation map using cardiac mapping, ablation was attempted without complete
information in two locations in the left atrium, which did not lead to cardioversion, i.e. did not return to sinus
rhythm. The patient was sent home and a second ablation is scheduled in the near future. This case exemplifies
the need for a faster mapping method, which could have led to the proper identification of the ablation site
and so potentially limit the number of ablation procedures needed to treat this patient. Indeed, the EWI
isochrones shown here display the initial activation in the left atrium, close to the septum. (c) Atypical left atrial
flutter patient confirmed by cardiac mapping. EWI isochrones also show early activation is initiated in the left
atrium. (d) CARTO map of a left-sided flutter case.

composition in the clinic remains a remarkable challenge with no real consensus and no non-
invasive modalities, as MRI, CT, and ultrasound currently fall short for different reasons [89].
In addition, approximately 795 000 people in the United States suffer new strokes every year
[1]. About 20–30% of new strokes are attributed to atherosclerotic carotid artery disease, i.e.
approximately 200 000 per year [90]. Atherosclerotic plaques are characterized by a focal accu-
mulation of lipids, complex carbohydrates, blood cells, fibrous tissues, and calcified deposits
[91]. Currently, despite major advances in the treatment of atherosclerosis, a large percentage
of individuals with the disease die without any prior symptoms [92].

14.3.2 Stroke and Plaque Stiffness

The development of carotid plaques has been generally associated with local changes in the
vascular mechanical properties [91]. However, none of the aforementioned modalities provide
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any mechanical property information. Biomechanical studies have been conducted to assess
lesion morphology while the tissue properties are related to the tissue stresses and the vul-
nerability of the plaque. For example, using 2D finite element analysis (FEA), the presence of
a lipid pool has been shown to increase the tissue stress in the overlying fibrous cap com-
pared to a fibrous core [93]. Based on the assumption that decreasing the cap thickness could
increase the risk of rupture [94], the effect of the cap thickness was investigated experimentally.
A criterion was thus proposed with caps smaller than 65 μm prone to rupture in coronaries
[95, 96], while in carotids this critical cap thickness was found to be higher (200 μm) [97].
However, it has been observed that thicker caps can also rupture, the rupture can occur at
stresses lower than the predicted threshold of 300 kPa, and the ruptures frequently do not
coincide with the location of peak circumferential stress [98]. Therefore, additional parameters
are warranted as determinants of plaque rupture in addition to the cap thickness [99]. A large
histological study has evidenced that the composition of the plaque is correlated to the vulner-
ability [97]. Furthermore, Lee et al [100] demonstrated the radial Young’s modulus of different
types of plaques, non-fibrous (41.2 ± 18.8 kPa), fibrous (81.7 ± 33.2 kPa), and calcified (354.5 ±
245.4 kPa), showing thus that stable (mainly calcified) plaques can be differentiated from unsta-
ble (mainly lipid or fibro-fatty) plaques based on the plaque mechanical properties. Increased
arterial stiffness has also been previously reported in stroke patients [101] and in patients with
myocardial infarction [102, 103]. In addition, it has been widely accepted that atherosclerotic
arterial segments are characterized by marked stiffening [104]. Clinical observations show that
the formation, expansion, and rupture phases of a vessel are each associated with changes in
arterial stiffness, mainly driven by elastin and collagen degradation [105]. However, there is cur-
rently no medical imaging technique in the clinic that can reliably map the stiffness in carotid
walls [106].

14.3.3 Abdominal Aortic Aneurysms

Vascular stiffening happens naturally with aging. The elastin components of the blood vessel
wall are gradually reduced and the collagen that remains leads to overall hardening of the arter-
ies. One of the results of vascular aging is also a higher probability of developing an abdominal
aortic aneurysm (AAA), which is a focal, balloon-like dilation of the terminal aortic segment
that occurs gradually over a span of years. This condition is growing in prevalence in the elderly
population, with approximately 150 000 new cases being diagnosed every year [107, 108]. An
AAA may rupture if it is not treated, and this is ranked as the 13th most common cause of
death in the US and the most common aneurysm type [109]. Current AAA repair procedures
are expensive and carry significant morbidity and mortality risks [110–116]. Despite the advent
of sophisticated imaging techniques over the last three decades, none of the available imaging
techniques is entirely satisfactory for detection and monitoring of this often silent and deadly
disease. The most standard diagnostic technique is abdominal ultrasound or CT imaging. In
both cases, images of the abdominal aorta are obtained and the aneurysm is measured. If its
transverse diameter is found to be higher than 5.5 cm, the chance of aneurysm rupture increases
by 10–20% within a year [117] and the patient typically has to undergo surgery to remove the
aneurysm. If left untreated, more than 30% of the aneurysms will rupture and the patient will
die as a result. There are, therefore, two main emergent problems that the current clinical diag-
nostic practice cannot resolve. First, most AAAs are asymptomatic and, therefore, rupture can
occur without a warning. This warrants an effective screening technique, especially since family
history is such a strong risk factor. Second, despite the fact that since an AAA diameter increase
beyond 5.5 cm correlates with only 10–20% chance of aneurysm rupture, it is the currently the
only criterion used for AAA surgery. The obvious difficulty is that a large number of patients
are exposed to the risks of surgery or endovascular intervention, but their AAAs might never
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rupture. Autopsy studies have shown that small AAAs can rupture [118, 119], while some of
those considered large will not rupture [120], given the life expectancy of the patient [121]. In
the study by Darling et al. [121], they found 473 non-resected AAAs, of which 118 were rup-
tured. Nearly 13% of AAA 5 cm in diameter or smaller ruptured, and 60% of the aneurysms
greater than 5 cm in diameter (including 54% of those within 7.1 and 10 cm) never ruptured.

14.3.4 Pulse Wave Velocity (PWV)

Several techniques have been proposed for non-invasive measurement of the global PWV
[122–127].

Hoctor et al. [128] defined PWV as the speed at which the arterial pulse propagates through-
out the entire circulation tree, and which is directly linked to stiffness or Young’s modulus
through the Moens-Korteweg (MK) equation. In fact, the global PWV is widely considered
as a surrogate to arterial stiffness and as a reliable indicator of cardiovascular mortality and
morbidity in the case of hypertension [129]. Given that the two sites of measurement between
which the time delay in the foot or peak of the wave is estimated, are typically several cen-
timeters apart, the accuracy of the PWV measurement suffers from poor specificity and large
measurement errors [63]. Despite its shortcomings, PWV is considered the gold standard for
hypertension management and has been adopted by the European Society of Hypertension and
the European Society of Cardiology [129].

14.3.5 Pulse Wave Imaging

Pulse wave imaging (PWI) (Figure 14.19) is an ultrasound-based method of imaging the pulse
wave induced displacement on the vascular wall during end-systole at very high frame rates
(>500 fps). As a result, unlike in alternative techniques, the pulse wave propagation (>1 m/s)
can be sufficiently sampled and depicted as well as characterized. This entails the steps of: (i)
acquiring sequential RF frames at high frame rates; (ii) estimating the wall displacement using
1D cross-correlation on RF frames and qualitatively imaging the pulse wave induced displace-
ment (e.g. in red along the anterior wall) propagation; (iii) segmenting the vascular wall and
automatically tracking it [27] for diameter measurements over time along the entire vessel seg-
ment; (iv) generating a spatio-temporal plot that depicts the axial/radial wall velocity, equal
to the displacement normalized by the frame rate (to standardize with respect to the latter)
over time, identifying the 50% upstroke of the wall velocity and performing linear regression
for regional pulse wave velocity (PWV) estimation of the entire vessel segment; (v) perform-
ing piecewise regression for detailed PWV mapping; and (vi) generating the PWV and stiffness
maps overlaid onto the B-mode images. The wall stiffness, or Young’s modulus (E), is calculated
in each vessel segment based on the regional PWV value.

PWI is thus a localized PWV and stiffness mapping modality that is highly suitable in char-
acterizing focal disease such as plaques before the onset of pathology (normal, thin wall) to its
later stages. The parameters mapped with PWI are the PWV (Figure 14.19d), r2 (coefficient of
determination; Figure 14.19c), and compliance (Figure 14.19e), which indicate the magnitude
of the velocity of the pulse wave, its uniformity of propagation, and the underlying stiffness,
respectively, all of which can be mapped and used as biomarkers that are highly complementary
to the ultrasound and CT scan clinical standards.

14.3.6 Methods

In order to accommodate both current clinical ultrasound practice but also ongoing method-
ologies developed by our group, a new PWI system was developed that optimized parameters
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(a) RF Acquisition and anterior

wall segmentation

(b) Motion Estimation and

automated wall tracking

(c) Spatio-temporal map and

piece-wise PWV estimation(d) PWV map(d) Modulus map

Figure 14.19 Block diagram of the pulse wave imaging (PWI) technique on a normal carotid artery in vivo. (a)
RF frame sequence and ciné-loop of RF frames. (b) PWI ciné-loop and frames: Pulse waves induce upward wall
displacement along the anterior wall. The white arrows indicate the propagation of the wavefront along the
anterior wall. (c) Spatiotemporal map of the pulse wave induced displacement along the vessel length and
time with a single PWV value given in the entire segment imaged. (e) PWV and (f ) stiffness maps overlaid on
the anterior wall of the B-mode.

such as beam density and frame rate. New PWI methodologies, such as those described below,
are applied in phantom studies. The high frame rates facilitated by plane wave imaging allowed
us to apply the following techniques that significantly enhance the quality and performance.

14.3.6.1 PWI System using Parallel Beamforming
An open-architecture system (Vantage, Verasonics, Redmond, WA) allows for software-based
beamforming for simultaneous high frame rate and high beam density. Similar to others in
the field, we have found that the performance of speckle tracking is not compromised when
such systems are used, based on the advantages of differential, phase-based measurements
(as opposed to amplitude-based approaches) [23, 32]. The acoustic exposure is on the same
level as that of a standard ultrasound scanner. We have implemented such a sequence [32] that
excites the transducer elements with specific delays, allowing a large field of view and then uses
the delay-and-sum method to reconstruct the RF signals from the channel data. The associ-
ated frame rate is only limited by the depth and speed of sound. As a result, the system can
obtain up to 8333 fps. Both conventional (with lower beam density to increase the frame rate)
and parallel beamforming sequences are used with the same system for the purpose of this
study. Because of the parallel beamforming used, the highest beam density (128 beams) and
frame rate (up to 8333 fps) in PWI can simultaneously be achieved. The transducers to be used
are the 128-element linear array at a center frequency of 5.5 MHz (L7-4 (4–7 MHz)) and the
128-element linear array at a center frequency of 17.5 MHz (L22-15 (15–22 MHz)) for higher
spatial resolution allowing us to characterize composition and determine vulnerable plaques.
We will determine the effect of lower spatial resolution and SNR associated with plane wave
imaging on PWV and stiffness estimates with PWI.

• Automated diameter and wall thickness algorithms have also been implemented, similar to
the segmentation and tracking methods our group has already developed [27].



Intrinsic Cardiovascular Wave and Strain Imaging 213

0

35

30

25

20

15

D
e

p
th

 (
m

m
)

10

5

10 20
Width (mm)

30 0

35

30

25

20

15

D
e

p
th

 (
m

m
)

C
o

m
p

lia
n

c
e

 (
1
0

–
7
 m

2
/k

P
a

)

10

5

10 20
Width (mm)

30
0

10

20

30

40

50

60
pPWI Compliance Map

(a) (b) (c)

Figure 14.20 PWI in a vulnerable plaque with a fibrous cap (male, age 75). (a) Ultrasound B-mode image only
of the detected plaque. (b) PWI: B-mode with overlaid PWI compliance map. (c) Gross pathology of the plaque
with lipid core following endarterectomy. The B-mode in part (a) provides information on the level of stenosis
but not the stiffness of the plaque, like PWI in part (b). PWI was capable of mapping plaque stiffness across its
thickness to identify a mostly lipid plaque (low stiffness, i.e. high compliance) confirmed by (c) pathology [138].

• PWV mapping – our fast 1D normalized cross-correlation method is applied on the con-
secutively acquired RF signals to estimate the normalized wall displacement (Figure 14.19),
as in our previously published studies [27, 28]. In order to obtain the regional PWV, all of
the 50% upstroke points of the spatio-temporal plots are divided into overlapping segments.
50% upstroke was determined to yield highest SNR for PWV estimation in both human aor-
tas and carotids [130]. Fixed regression windows have been used thus far to perform linear
regression for PWV estimation, especially due to the low beam density afforded by conven-
tional beamforming techniques. A piecewise, linear regression fit has thus been developed.
Sub-regional PWVs are estimated within 2–4 mm segments along the length of the arterial
wall and estimates the regional stiffness using the methodology described previously. Instead
of single values for the entire vessel, this method provides maps of PWV along the entire wall
imaged (Figure 14.19) but also within the plaque itself (Figure 14.20).

• Automated PWV estimation – a dynamic programming algorithm is implemented to auto-
matically select the size, location, and number of windows according to a mean r2 optimiza-
tion routine with criteria based on the performance of the resulting linear regression. More
specifically, the windows are appropriately selected to satisfy the maximization criterion:

max
NW,SWi,PWi

1
NW

(NW∑
i=1

ri
2

)
maxNW,SWi,PWi

1
NW

⋅

(NW∑
i=1

ri
2

)
(14.5)

where NW is the number of windows used to model the stiffness of the imaged arterial wall,
SWi is the size of the i-th window (namely the number of markers that it contains). and PWi
is its position (namely the number of the starting marker).

• Stiffness/compliance mapping – the 1D system of the coupled governing pulse wave propa-
gation is

dA
dt

+ d
dx

(uA) = 0 (14.6)

and
du
dt

+ u du
dx

+ 1
𝜌

dP
dx

+ KRu = 0 (14.7)

where u is the fluid velocity, P is the pressure, A is the cross-sectional area, 𝜌 the fluid den-
sity, and KR is the resistance per unit length. The relationship between the PWV and vessel
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stiffness is derived by assuming a pressure–area relationship. Commonly, a thin-walled cylin-
drical elastic vessel is assumed, so that the wall displacement

Δr = r2(1 − v2)
Eh

ΔP (14.8)

for a pressure increment ΔP in a vessel of Young’s modulus E, Poisson’s ratio v, radius r, and
thickness h, which gives the well-known Moens-Korteweg equation. In this study of carotid
plaques, cylindrical geometry cannot be reasonably assumed, so we use a generalized linear
pressure–area relationship, which is valid for non-circular cross-sections

ΔA = kpΔP (14.9)

The compliance, kp, is related to the PWV through the Bramwell-Hill equation [131, 132], i.e.

kp = πr2

4𝜌(PWV)2 ; PWV =
√

A
𝜌kp

(14.10)

and can be related to the effective Young’s modulus as follows

Eeff = 2πr3(1 − v2)
kph

(14.11)

that shows that compliance and stiffness are inversely proportional for a given geometry
[133]. As a result, as a first approximation, the longitudinal distribution of kp can be com-
puted by a regional PWV estimation map without homogeneity or symmetry assumptions
(Figure 14.19e).

14.3.6.2 Coherent Compounding
A coherent compounding technique can be applied to determine an increase in SNR when par-
allel beamforming is applied. Plane waves are electronically steered and transmitted 1-, 3-, 5-,
9- and 12-plane-waves and the resulting RF frames are combined into a compounded image
[134]. The received radiofrequency (RF) frames are reconstructed by applying a delay-and-sum
method on GPU-based parallel computing to accelerate reconstruction processing [32]. In pre-
liminary studies, we have found that compounding in human carotids in vivo decreases the
frame rate from 8333 fps to 2273 fps, which remains sufficiently high for PWI (Figure 14.21)
while SNR increases by 5-fold using the framework described here (Figure 14.21a).
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Figure 14.21 E(SNRd|𝛿) increase with number of angles in coherent compounding in (a) phantoms and (b) in
vivo humans.
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(a)

(b)

Figure 14.22 (a) PWI frames with Doppler flow; (b) pressure/displacement curves revealing the phase lag
amount and thus viscoelasticity of the vessel (phantom). The dark curve denotes the pressure, the lighter the
cumulative displacement, and the last curve shows these two overlaid.

14.3.6.3 Flow Measurement
A 2D autocorrelation method is utilized [135] to generate color Doppler images (Figure 14.22a).
A wall filter consisting of an FIR high-pass filter is used to only retain the blood velocities that
are fused with the corresponding PWI frames. This allows us to determine the effect of the
blood pressure wave on the pulse wave propagation along the wall imaged on the PWI images
as well as infer about the wall viscoelasticity (Figure 14.22b).

14.3.6.4 3D PWI
A 2D matrix array (Sonic Concepts, Inc., Bothell, WA) is used in this study with a total of 1024
elements (32 × 32) and a 4.5 MHz center frequency and will be used with the Verasonics Van-
tage system for the highest frame rate. A custom diverging beam sequence with a virtual focus
placed behind the transducer face is implemented in order to interrogate the entire field of
view in a single transmit sequence. Element data is acquired and reconstructed in a pixel-wise
fashion. In sections of the common carotid prior to the bifurcation, inter-frame pulse wave
induced axial displacements (not the full 3D vector) are mapped in 3D given the lower SNR
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Figure 14.23 3D PWI frames with wave propagating from right to left in a human carotid in vivo on both the
proximal (top) and distal (bottom) walls.

Table 14.1 Preliminary validation of PWV values in a PVA phantom
and a silicone phantom (with soft and stiff layers). The static PWV is
a mechanical testing method. PVA: poly-vinyl alcohol.

Material
Static PWV
estimates (m/s)

PWI-derived PWV
values (m/s)

Phantom 1, PVA 1.57 1.53
Phantom 2, soft 2.31 1.86
Phantom 2, stiff 2.87 2.86

in lateral and elevational displacement estimations. Bicubic Hermite interpolation is imple-
mented to render the vessel in 3D, which provides better visualization of the complex anatomy
and motion of non-axisymmetric plaques. The frame rate is expected to similar to 2D, i.e. up
to 5500 fps, and sufficient to visualize the pulse wave and estimate the PWI parameters. 3D
B-mode feasibility and strain imaging are shown in Figure 14.23 [136].

14.3.7 PWI Performance Assessment in Experimental Phantoms

In order to ensure highest quality PWI in vivo, its performance is optimized in phantoms prior
to application in vivo. Parallel beamforming provides images with reduced sonographic SNR;
however, this issue has been addressed with coherent compounding. This is at the cost, how-
ever, of frame rate. Thus, by varying the number of angled plane wave acquisitions this tradeoff
between frame rate and image SNR can be fine tuned and adjusted to the requirements of the
application. This is verified in PVA cryogel [130] and silicone [133] phantoms with prelimi-
nary results shown in Table 14.1. Carotid artery phantoms with a plaque-mimicking inclusion
are constructed from a mixture (w/w) of 87% deionized water, 10% polyvinyl alcohol (PVA)
with a molecular weight of 56.140 g/mol (Sigma-Aldrich, St. Louis, MO, USA), and 3% graphite
powder with particle size < 50 μm (Merck KGaA) [137].

A peristaltic pump (Manostat Varistaltic, Barrington, IL) operating at 2 Hz is used. The
parameters to be studied for optimizing the PWI performance are: (i) frame rate; (ii) number
of transmitted plane waves (coherent compounding); (iii) motion estimation rate (MER); and
(iv) size of kernel in piecewise PWI (pPWI) (PWV is estimated within these kernels). A proba-
bilistic framework has been developed by our group in order to compare the strain estimation
quality between conventional and parallel beamforming [23, 32]. The signal-to-noise-ratio
of the displacement (SNRd) is calculated for each sequence over the phase of systole. SNRe
is computed for every point in an image within a small 2D ROI (3.0 × 3.2 mm). Since both
strain and SNRd are computed for each point in the vessel, a large number (>600 000) of
displacement–SNRd pairs are generated for each sequence [23]. The conditional expected
values of SNRd for each strain are calculated using E(SNRd|𝛿) curves generated for each
sequence, which allows for a relatively easy comparison to be performed between different



Intrinsic Cardiovascular Wave and Strain Imaging 217

P = 0kPa P = 0.84kPa P = 1.66kPa P = 2.5kPa

2.5 3 3.5 4

Radius (mm)

4.5 5 5.5

Pressure-radius relationship
3000

2500

2000

1500

1000

500

0

P
re

s
s
u

re
 (

P
a

)

0

30

20

10

0

50 100 150

Time (ms)

200 250

S
e

g
m

e
n

t 
le

n
g

th

(a)

(b)

Figure 14.24 (a) Static estimation of the PWV (Eq. 14.13) from a vessel phantom compared with PWI showing
the B-mode of a phantom at different static pressures. (b) Measurements in phantom with PWI and static
expansion test, respectively.

sequences for a wide range of strain values. Examples of E(SNRd|𝛿) curves for displacement
estimation are provided in Figure 14.21a. The SNRd of both 2D PWI and 3D PWI are computed.

14.3.8 Mechanical Testing

Three types of mechanical testing are performed to validate our in vivo PWI findings. First, in
order to preserve the geometry of the sample and reproduce the in vivo pre-stretch, effect of
surrounding tissue, and loading conditions, the entire sample is kept intact and inflated at static
pressures (Figure 14.24). The compliance

kp = dA
dP

(14.12)

can be measured experimentally by applying this static pressure and measuring the diameter
change on the B-mode images. The PWV can then be estimated by

PWV =

√
kpr
2𝜌

(14.13)

A phantom example showing good agreement between the PWV estimated through static
testing and PWI is shown in Table 14.1.
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14.3.9 PWI in Aortic Aneurysms and Carotid Plaques in Human Subjects In Vivo

The clinical potential of PWI to provide complementary information on the mechanical prop-
erties of vessels in order to help stage disease and inform treatment are assessed. Therefore,
the underlying hypothesis of this study is that imaging the regional pulse wave propagation at
high temporal resolution is sufficient to determine regional elastic vessel wall properties and
thus localize and characterize focal vascular disease at its very early stages, i.e. before changes in
aortic diameter or other anatomical changes may occur or become detectable. It is also hypothe-
sized that the regional stiffness changes will unveil the regions most susceptible to wall rupture.

14.3.9.1 Abdominal Aortic Aneurysms
The clinical feasibility of PWI was evaluated in normal and aneurysmal human aortas. PWI
was performed in normal (N = 15, mean age 32.5 years ± 10.2), and aneurysmal (N = 5, mean
age 71.6 years ± 11.8) human subjects (Figure 14.25) [138]. The PWV of the AAA aortas was
significantly higher ( p < 0.001) compared to that of the other two groups. The average r2 in the
AAA subjects was significantly lower (p < 0.001) than that in the normal subjects, very similar
to what was shown in mice.
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Figure 14.25 PWI compliance maps in human carotids in vivo: (a) lipid plaque (male, aged 75); (b) calcified
plaque (female, aged 78); and (c) PWI reproducibility in 6 normal subjects and different acquisitions.
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Figure 14.26 Preliminary compliance findings across 10 normal and 12 atherosclerotic carotids confirmed
with endarterectomy and/or CT. * p < 0.05; ** p < 0.01; *** p < 0.001.

14.3.9.2 Carotid Plaques
The feasibility of PWI in normal [139] and atherosclerotic (Figure 14.20) common carotid arter-
ies has been demonstrated in vivo. The pulse wave velocity (PWV) in eight (N = 8) normals
varied between 4.0 and 5.2 m/s with high propagation uniformity (r2

> 0.90) with excellent
reproducibility (Figures 14.25 and 14.26).
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15.1 Vibration Amplitude Sonoelastography: Early Results

Vibration amplitude sonoelastography entails the application of a continuous low-frequency
vibration (40–1000 Hz) to excite internal shear waves within the tissue of interest [1, 2]. A dis-
ruption in the normal vibration patterns will result if a stiff inhomogeneity is present in soft
tissue surroundings. A real-time vibration image can be created by Doppler detection algo-
rithms. Modal patterns can be created in certain organs with regular boundaries. The shear
wave speed of sound in the tissue of these organs can be ascertained with the information
revealed by these patterns [3].

Figure 15.1 reproduces the first vibration-amplitude sonoelastography image [1, 2], which
marked the emergence of elastography imaging from the previous studies of tissue motion.
The vibration within a sponge and saline phantom containing a harder area (the dark region)
is depicted by this low resolution image. Range-gated Doppler was used to calculate the
vibration amplitude of the interior of the phantom as it was vibrated from below. By 1990, a
modified color Doppler instrument was used by the University of Rochester group to create
real-time vibration-amplitude sonoelastography images. In these images, vibration above a
certain threshold (in the 2 μm range) produced a saturated color (Figure 15.2).

Measurements of tissue elastic constants, finite-element modeling results, and phantom and
ex vivo tissue sonoelastography were later reported [5–7]. Thus, by the end of 1990, the working
elements of vibration elastography (sonoelastography and sonoelasticity were other names used
at the time) were in place, including real-time imaging techniques and stress-strain analysis of
tissues such as prostate, with finite-element models and experimental images demonstrating
conclusively that small regions of elevated Young’s modulus could be imaged and detected using
conventional Doppler-imaging scanners.

15.2 Sonoelastic Theory

Along with the useful finite-element approach of Lerner et al. [5] and Parker et al. [7], there were
important theoretical questions to be answered by analytical or numerical techniques. How did
vibration fields behave in the presence of elastic inhomogeneities? What is the image contrast of
lesions in a vibration field, and how does the contrast depend on the choice of parameters? How
do we optimally detect sinusoidal vibration patterns and image them using Doppler or related
techniques? These important issues were addressed in a series of papers through the 1990s.

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
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Figure 15.1 Original imaging data and schematic of the first known image of relative stiffness, derived from
Doppler data in a phantom with applied vibration. The original image was published in 1987 and 1988 and
marks the emergence of elastographic imaging.

One foundational result was published in 1992 under the title: “Sonoelasticity of Organs, Shear
Waves Ring a Bell” [3]. This paper demonstrated experimental proofs that vibrational eigen-
modes could in fact be created in whole organs, including the liver and kidneys, where extended
surfaces create reflections of sinusoidal steady-state shear waves. Lesions would produce a
localized perturbation of the eigenmode pattern, and the background Young’s modulus could be
calculated from the patterns at discrete eigenfrequencies. Thus, both quantitative and relative
imaging contrast detection tasks could be completed with vibration elastography in a clini-
cal setting, in vivo, by 1992. A later review of eigenmodes and a strategy for using multiple
frequencies simultaneously (called “chords”) was given in Taylor et al. [8].

Furthermore, a vibration-amplitude analytical model was created [9, 10]. This model used a
sonoelastic Born approximation to solve the wave equations in an inhomogeneous, isotropic
medium. The total shear wave field inside the medium can be expressed as

Φtotal = Φi + Φs (15.1)

where Φi is the homogeneous or incident field, and Φs is the field scattered by the
inhomogeneity. They satisfy, respectively

(∇2 + k2)Φi = 0 (15.2)

(∇2 + k2)Φs = 𝛿(x) (15.3)

where 𝛿(x) is a function of the properties of inhomogeneity and k is the wavenumber of shear
wave propagation at a frequency 𝜔0. The theory accurately describes how a hard or soft lesion
appear as disturbances in a vibration pattern. Figure 15.3 summarizes the theoretical and exper-
imental trends.

Signal processing estimators were also developed in the study of vibration amplitude sonoe-
lastography. Huang et al. suggested a method to estimate a quantity denoted 𝛽, which is pro-
portional to the vibration amplitude of the target, from the spectral spread [11]. They found a
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Figure 15.2 A representative first-generation image of vibration sonoelastography, circa 1990. Doppler
spectral variance is employed as an estimator of vibration in the 1–10 μm range and displayed over the B-scan
images. No color implies low vibrations below threshold. Shown is the fill-in of vibration within a whole
prostate, with a growing cancerous region indicated by the deficit of color within the peripheral zone. Source:
courtesy of Dr. R. M. Lerner; Anastasio and La Riviere [4], Figure 12.4, p. 186; reproduced with permission from
Taylor and Francis Group.
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Figure 15.3 Theoretical results of the contrast of vibration sonoelastography for soft or hard lesions in a
background medium. The image contrast increases with both increasing frequency and with increasing size of
the lesion.

simple correlation between 𝛽 and the Doppler spectral spread 𝜎
𝜔

𝛽 =
√

2(𝜎
𝜔

∕𝜔L) (15.4)

where 𝜔L is the vibration frequency of the vibrating target. This is an uncomplicated and very
useful property of the Bessel Doppler function. The effect of noise, sampling, and nonlinearity
on the estimation was also considered. In their later work, they studied real-time estimators of
vibration amplitude, phase, and frequency that could be used for a variety of vibration sonoe-
lastography techniques [12].

Finally, an overall theoretical approach that places vibration sonoelastography on a biome-
chanical spectrum with other techniques including compression elastography, magnetic
resonance elastography (MRE), and the use of impulsive radiation force excitations, is found
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in “A Unified View of Imaging the Elastic Properties of Tissues” [13]. This perspective is
highlighted in Chapter 3 of this book.

15.3 Vibration Phase Gradient Sonoelastography

In parallel to the early work at the University of Rochester, a vibration phase gradient approach
to sonoelastography was developed by Sato and collaborators at the University of Tokyo [14].
They mapped the amplitude and the phase of low frequency wave propagation inside tissue.
From this mapping, they were able to derive wave-propagation velocity and dispersion proper-
ties, which are directly linked to the elastic and viscous characteristics of tissue.

The phase-modulated (PM) Doppler spectrum of the signal returned from sinusoidally oscil-
lating objects approximates that of a pure-tone frequency modulation (FM) process, as given
in Eq. (15.2). This similarity indicates that the tissue vibration amplitude and phase of tissue
motion may be estimated from the ratios of adjacent harmonics. The amplitude ratio between
contiguous Bessel bands of the spectral signal is

Ai+1∕Ai = |Ji+1(𝛽)∕Ji (𝛽)| (15.5)

where Ai is the amplitude at the i-th harmonic, 𝛽 is the unknown amplitude of vibration in the
tissue, and Ji(•) is an i-th order Bessel function. 𝛽 can be estimated from the experimental data
if Ai+1∕Ai is calculated as a function of 𝛽 beforehand. The phase of the vibration was calculated
from the quadrature signals.

The display of wave propagation as a moving image is permitted by constructing phase and
amplitude maps (Figure 15.4) as a function of time. The use of a minimum squared error algo-
rithm to estimate the direction of wave propagation and to calculate phase and amplitude
gradients in this direction allows images of amplitude and phase to be computed offline. By
assuming that the shear viscosity effect is negligible at low frequencies, Sato’s group obtained
preliminary in vivo results [14].

Vibration
source

ROI

Tissue

Ultrasonic
transducer

array

Figure 15.4 A depiction of the system developed by Prof. Sato and colleagues at the University of Tokyo,
including external vibration and an imaging array with signal processing for estimating the phase of the
vibration in tissue. The rate of change of phase can be estimated to yield tissue hardness.
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Sato’s technique was used and refined by Levinson [15], who developed a more general
model of tissue viscoelasticity and a linear recursive filtering algorithm based on cubic
B-spline functions. Levinson took the Fourier transform of the wave equation and derived the
frequency-domain displacement equation for a linear, homogeneous, isotropic viscoelastic
material. From this, equations that relate the shear modulus of elasticity and viscosity to the
wave number and the attenuation coefficient of the wave can be derived.

Levinson et al. [15] conducted a series of experiments on the quadriceps muscle group in
human thighs. It was assumed that shear waves predominate and that viscosity at low frequen-
cies is negligible. Phase gradient images of the subjects’ thighs under conditions of active muscle
contraction enabled the calculation of Young’s modulus of elasticity. The tension applied to the
muscle was controlled using a pulley device. The measured vibration propagation speed and
the calculated values of Young’s modulus increased with the increasing degrees of contraction
needed to counteract the applied load.

15.4 Crawling Waves

A fascinating extension of vibration sonoelastography is the use of an interference pattern
formed by two parallel shear wave sources. The interference patterns reveal the underlying
local elastic modulus of the tissue. The term “crawling waves” comes from the useful fact that
by implementing a slight frequency difference, typically on the order of 0.1 Hz, between the
two parallel sources, the interference pattern will move across the imaging plane at a speed
controlled by the sources [16]. Thus, the crawling waves are readily visualized by conventional
Doppler imaging scanners at typical Doppler frame rates; there is no need for ultrafast scan-
ning. Other advantages of crawling waves include: (1) the region of interest excited between the
two sources is large; (2) most of the energy in the crawling waves is aligned in the Doppler (axial)
direction; and (3) a number of analysis or estimation schemes can be applied in a straightfor-
ward manner to derive the quantitative estimate of local shear wave velocity and Young’s modu-
lus. Crawling waves can also be implemented by a number of techniques including mechanical
line sources, surface applicators, or radiation force excitations of parallel beams.

The use of crawling waves was first described in 2004 by Wu et al. at the University of
Rochester [16]. It was shown that crawling waves could be used to accurately derive the
Young’s modulus of materials and to delineate stiff inclusions [17–20]. Estimators of shear
wave speed and Young’s modulus and the shear wave attenuation are derived by Hoyt et al.
[21–23] and McLaughlin et al. [24].

Implementation into scanning probes can be accomplished by utilizing radiation force exci-
tation along parallel beams [25–27], or by utilizing a pair of miniature vibration sources [28].

15.5 Clinical Results

The initial applications of amplitude sonoelastography were to characterize average tissue prop-
erties using eigenmode information [3, 29] and to identify stiff lesions by the amplitude contrast
effect. In particular, the demonstration of improved detectability of prostate cancer was pub-
lished in Radiology in 1995 [30]. This work was then adapted to in vivo and 3D studies of the
prostate [8, 19, 31–34], and it was demonstrated that the sensitivity and specificity of prostate
cancer detection could be markedly improved using sonoelasticity. Separately, it was shown
that the definition and volumetric measurement of thermal lesions in tissue could be greatly
improved by sonoelastography [35–38].
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Figure 15.5 Crawling waves in the prostate. (a), left: B-scan of whole excised prostate; right: crawling waves
frame; (b), right: pathology with labels: upper triangle = cancer and lower ovals = benign prostatic hyperplasis
(BPH); left: quantitative estimates of shear velocity from crawling waves analysis, indicating the hard region as a
upper right area (corresponding to the region with cancer). Estimates from an average of three frequencies are
shown. All images are co-registered. Source: Anastasio and La Riviere [4], Figure 12.8, p. 190; reproduced with
permission from Taylor and Francis Group.

Applications of crawling waves include the ex vivo prostate [39–41], in vivo muscle [42], and
ex vivo liver [20]. An example from ex vivo prostate is given in Figures 15.5a and 15.5b.

Other applications of crawling waves include quantification of the elastic properties of muscle
[42, 43], thyroid [44], and fatty livers [45–48].

15.6 Conclusion

There are a number of key advantages to “sonoelastography” imaging and crawling waves imag-
ing. First, in sinusoidal steady-state shear wave excitation, the amplitude contrast effect (of
stiff lesions) can be seen with any Doppler imaging platform; it is not necessary to have any
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synchronization system or specialized platform [49]. Second, by proper choice of shear wave
frequency, entire organs can be covered with shear waves, providing large ROIs for analysis [3].
This fact has been used to great advantage in MRE, as well. Finally, the crawling waves approach
provides data that can be analyzed with a number of simple local estimators, while producing
comparable resolution and accuracy to the very best shear wave tracking approaches using radi-
ation force excitations [50]. In addition, the crawling waves patterns can be produced simply by
external transducers [18, 28] or by an alternating pair of radiation force beams, one on the right
and on the left of the ROI [51, 52]. Thus these techniques are widely applicable and efficacious
for studies of tissue elastography in the breast, liver, thyroid, muscle, and other soft tissues.
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Harmonic Shear Wave Elastography
Heng Zhao

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA

16.1 Introduction

As introduced in Chapter 5 in this book, shear wave propagation speed can be used to nonin-
vasively quantify tissue mechanical properties such as elasticity, which is an indicator of tissue
health [1]. Unlike elastography/strain imaging using quasi-static compression, which shows the
contrast among materials with different stiffness [2], absolute elasticity/viscosity can be derived
from the shear wave speed [1].

We need to introduce shear waves to the tissue in order to measure the propagation speed,
which can be done either externally or internally. Internal sources include physiological move-
ment such as heart beat, respiration, vocal cords vibration, etc., which are safe and do not
involve additional devices [3]. However, shear waves generated by such sources are generally
weak and lack control. Alternatively, the shear waves can be introduced using external sources.
Ultrasound radiation force has been widely used for its capability of producing localized waves
and evaluating the mechanical properties of a specified region, i.e. virtual biopsy [4, 5]. How-
ever, the motion in tissue generated by such a force is typically weak (amplitude of several
micrometers) and subject to attenuation, phase aberration, and diffraction. Some methods such
as supersonic shear imaging (SSI) [6] and comb-push ultrasound shear elastography (CUSE)
[7] have been applied to maximize the existence of shear waves and extend the field of view
(FOV). However, weak shear waves become challenging issues for deeper organs and especially
overweight/obese patients.

Mechanical vibration does not require a high voltage transmitter pulser that would be nec-
essary for ultrasound radiation force. Therefore, it can be implemented on low-cost imaging
systems [8, 9]. More importantly, shear waves generated by mechanical vibration are much
stronger than those produced by radiation force and can be delivered through thicker tissues
to deeper organs. Multiple shear waves can be generated such that the shear wave propagation
speed can be measured in a large FOV. Such advantages have strong implications in diagnos-
ing overweight or obese patients. However, because the waves are typically delivered from the
skin surface into the tissue, it is difficult to control the location or direction of the waves, which
is essential for measuring the shear wave speed based on conventional time-of-flight methods
[4, 10].

Some adapters have been introduced to guide the shear waves from the vibrator into the
tissue [11], but they are effective for superficial muscles or organs only. For deeper organs
(some of which are inside the rib cage), the shear wave field would be more complicated due
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to the diffractions and reflections. Direct inversion can be applied to calculate the model-free
complex modulus based on a complicated wave field [12]. However, such a method requires
three-dimensional displacement/velocity data, and taking the spatial gradient of the wave dis-
tribution is highly susceptible to noise [13]. A time-reversal approach also has been proposed
to calculate shear wave speed or wave length based on cross-correlation of a diffuse wave field
[14]. Yet a diffuse wave field is difficult to obtain in vivo.

Recently, time-harmonic elastography (THE) has been developed to measure the speed of
shear waves generated by continuous external vibration [15]. Multiple measurements were
taken at different angles to estimate the actual shear wave speed. However, THE only provides
one-dimensional localized elasticity measurement, which does not meet the need of modern
diagnostic modalities.

Harmonic shear wave elastography (HSWE) or external vibration multi-direction ultra-
sound shear wave elastography (EVMUSE) uses similar external vibration as THE to create
a multi-direction shear wave field [16]. There is no restriction on the direction, location,
or occurrence of the shear waves within the imaging plane. Directional filters are used to
separate shear waves propagating in different directions. For each direction, a two-dimensional
(2D) shear wave speed estimator is used to calculate a local 2D shear wave speed map. The final
shear wave speed map is constructed by compounding the speed maps from all directions.
In this chapter, we are going to introduce the basic principles of the harmonic shear wave
elastography, followed by validation of the method ex vivo using phantoms. Finally, harmonic
shear wave elastography is applied for in vivo liver fibrosis staging in patients with liver
diseases.

16.2 Basic Principles

16.2.1 Vibration Source

Ultrasound imaging systems do not have magnetic compatibility issues that magnetic reso-
nance imaging (MRI) systems do [17]. Therefore, a large variety of magnetic vibrators can be
chosen for HSWE, which are generally cheaper and more powerful than the pneumatic devices
used by magnetic resonance elastography (MRE). One or several vibrators can be positioned
judiciously on the skin surface to deliver proper shear waves into the tissue, and at the same
time leaving a window for the ultrasound probe to access. The vibrators are typically driven
by single frequency sinusoidal waves to maximize the harmonic motion output. The frequency
usually ranges from tens to several hundred Hertz. Special attention needs to be paid to avoid
interference between the vibrators and the ultrasound probe, for the probe motion would intro-
duce artifacts into shear wave motion detection. Alternatively, high frame rate motion detection
can start shortly after the vibrator motion terminates, such that shear wave propagation is still
present in the FOV, whereas the transducer motion is negligible [16].

16.2.2 Motion Detection

As mentioned above, a high frame rate plane wave imaging technique is used to detect the
shear wave motion in the axial direction [18]. A short pulse (one or two cycles) at the trans-
ducer center frequency is transmitted by all the channels to form a plane beam, and the signals
are received by all the channels for beamforming. Spatial compounding and/or coded exci-
tation can be used to compensate for the signal-to-noise ratio (SNR) loss due to the unfo-
cused beam [18, 19]. One dimensional (1D) [20]/two-dimensional (2D) autocorrelation [21]
or cross-correlation [22] can be used to calculate the axial displacement/velocity at each pixel
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within the image plane from the demodulated in-phase/quadrature (IQ) signals or beamformed
radio-frequency (RF) signals, respectively.

16.2.3 Directional Filter

As mentioned above, vibrators typically create a multi-direction shear wave field in the region
of interest (ROI), because of multiple contact locations between the vibrators and the skin.
This means at any given time, multiple shear waves may occur at multiple locations and prop-
agate in different directions. Such shear waves have to be separated in order to use conven-
tional time-of-flight methods to calculate the shear wave speed [4, 10]. First, the spatiotemporal
(x, z, t) motion signals are converted to the spatiotemporal frequency (kx, kz, ft) domain, or k-f
domain, using a three-dimensional (3D) Fourier transform. Tukey windows are applied to the
spatiotemporal signals to create a smooth transition from the FOV to surrounding zeros, mini-
mizing the edge effects due to the Fourier transform. Then the directional filters are applied by
multiplying the directional filter response with the signals in the k-f domain [23]. Figure 16.1
shows the directional filter response in eight directions. For each direction, shear waves prop-
agating within an angular range near the primary direction can pass through whereas shear
waves moving in other directions are suppressed.

Both compressional waves [24] and out-of-plane shear waves [25] appear as high speed waves
which are present as low spatial frequency components in the k-f domain. They need to be sup-
pressed in order to measure the shear wave speed accurately. Given an upper speed limit ch at
a temporal frequency ft, a spatial frequency limit kl = ft/ch can be imposed upon the directional
filter to suppress waves with propagation speeds higher than ch, by removing spatial frequency
components lower than kl as indicated by the regions inside the white circles at the center of the
directional filter response in Figure 16.1. Such a speed limit is reasonable because the shear wave
speed inside a certain tissue should be within a physiologically possible range. A Butterworth
high-pass filter was designed to apply smooth transitions for kl to avoid Gibbs ringing effects.
Based on the relation between kl and ft, the radius of the removed region (cutoff frequency of
the high-pass filter) increases with the temporal frequency ft.

Besides the spatial high-pass filtering, another Butterworth band-pass filter can be applied
in the temporal frequency direction to remove low frequency drift and high frequency noise
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Figure 16.1 Eight directional filters from 0∘ to 315∘ with 45∘ steps. The white circle indicates the cutoff region
where ch is imposed at ft.. Source: © 2014 IEEE, reprinted, with permission, from [16].
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in the temporal signals [16]. The cutoff frequencies are selected according to the vibration fre-
quency to allow possible shear wave signals to pass through. For example, if the vibrators are
driven at 50 Hz, the cutoff frequencies are set at 10 Hz and 100 Hz, respectively. After the direc-
tional filtering, the resulting shear wave signals in different directions are converted back to the
spatiotemporal domain using an inverse 3D Fourier transform.

16.2.4 2D Shear Wave Speed Estimation

After directional filtering, the shear wave propagation speed in each direction is measured sep-
arately using a 2D shear wave speed estimation method. Data filtered by each directional filter
mainly contain waves propagating in that direction, which can be at an oblique angle to the
lateral and axial coordinates (x, z) of the ultrasound detection data grid. Similar to the methods
introduced by Hoyt et al. [26] and Song et al. [27], cross-correlation is applied to calculate the
time delays between the temporal signal at one pixel and the signals from two other pixels a
certain distance away in the x and z directions, respectively. As illustrated in Figure 16.2, con-
sider a plane shear wave (indicated by the long dashed lines) moving at a constant speed of cs
with an angle of 𝜃 with respect to the x axis. The time delays are measured between the origin o
and two locations x and z, both with a distance of r from o. There is a tradeoff for the selection
of r, since a shorter distance would result in higher resolution and lower signal decorrelation,
but also a larger percentage error for time delay estimation [28]. The time for the shear wave to
travel from o to x is Δtx, and the time for the shear wave to propagate from o to z is Δtz. Based
on geometry, it follows that

r cos 𝜃 = cs • Δtx

and

r sin 𝜃 = cs • Δtz

Therefore,

cs =
r√

Δt2
x + Δt2

z

To improve the estimation accuracy, the temporal signals are upsampled 10 times and
parabolic interpolation was applied to locate the sub-pixel correlation peaks [29, 30]. Nor-
malized correlation coefficients (CC) [31] are also calculated in both the x and z directions to

Figure 16.2 Illustration of the principle of the 2D cs
estimation. Source: © 2014 IEEE, reprinted, with permission,
from [16].
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control the quality of cs estimation. Because there are two CCs for each pixel from shear wave
estimation along x and z directions, respectively, the lower value of the two are selected to
represent the CC for that pixel to be conservative.

16.2.5 Weighted Averaging

To further improve the robustness of the measurement, the value of cs at one pixel (cs) was
determined by averaging with estimates from the surrounding pixels. Both inverse distance
weighting (IDW) [32] and correlation coefficient weighting (CCW) are applied to calculate the
average speed as described in Eq. (16.1) [27]

cs(0, 0) =

N∑
x=−N

N∑
z=−N

cs(x, z)•cc(x, z)2∕r(x, z)

N∑
x=−N

N∑
z=−N

cc(x, z)2∕r(x, z)

, r(x, z) =
{√

x2 + z2(x2 + z2 ≠ 0)
0.1(x2 + z2 = 0)

(16.1)

where cs(x, z) is the speed measured at a location with a CC of cc(x, z) and a distance of r(x, z)
(unit: pixel) away from the center pixel (0, 0). N determines the range of the pixels involved in
the averaging (also the spatial resolution of the cs image). The above process is applied to each
image pixel in the shear wave speed map, and forms a 2D cs image in each direction.

16.2.6 Shear Wave Speed Image Compounding

After the 2D cs maps from each of the directions are calculated, they can be compounded into a
final image by averaging the measured cs in each direction. In some cases, especially for in vivo
measurement, the shear wave field may mostly propagate in one or two directions instead of
in many directions. The cs results should be more reliable in directions where there are strong
shear waves. Therefore, the final cs value at each pixel is calculated as a weighted average of the
cs results in different directions, using the shear wave energy for that direction as the weight.
The shear wave energy at each pixel in each direction is calculated by summation of the corre-
sponding squared temporal signal, and normalized by the aggregation of the shear wave energy
over different directions, such that the weights in different directions from each pixel always
add up to 1 [27].

16.3 Ex Vivo Validation

16.3.1 Experimental Setup

As mentioned above, one or several electromagnetic vibrators can be used to generate shear
waves. For the particular application in this chapter, we use a single loudspeaker (Pioneer SW-8,
Pioneer Electronics Inc., Japan) embedded as a part of the examination bed [33], with the
diaphragm exposed and facing upward, as illustrated in Figure 16.3. For the phantom exper-
iments, the phantoms are placed on the examination bed with the bottom coupled with the
loudspeaker.

A Verasonics ultrasound system with a C5-2v curved array transducer (Verasonics Inc.,
Kirkland, WA) is programmed to have both B-mode imaging and shear wave motion detection
capabilities. Under the guidance of the B-mode imaging, the transducer can be adjusted
to locate the ROI. By hitting a button, the system immediately sends a trigger signal to a
function generator (Agilent 33250A, Agilent Technologies, Inc., Santa Clara, CA), which sends
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Figure 16.3 Illustration of the experimental
setup. The embedded loudspeaker is driven by
an amplifier controlled by a function generator.
The Verasonics ultrasound system sends out a
trigger signal to activate the vibration, and then
acquires the B-mode image and records the
motion. Source: © 2014 IEEE, reprinted, with
permission, from [16].

Verasonics
Trigger

Transducer

Toneburst
Loudspeaker

Amplifier

Function

generator

out a 50 Hz tone burst with a duration of 100 ms and an amplitude of 1.2 V to activate the
loudspeaker, after the signal is amplified (Crown XLS202, Crown Audio, Inc., Elkhart, IN) with
a voltage gain of 30 dB. 10 ms after the vibration terminates the program switches to the high
frame rate imaging mode for shear wave motion detection which lasts for 200 ms with 0.5 mm
spatial resolution and 3-angle (−2∘, 0∘, and 2∘) spatial compounding [18] at a frame rate of
1 kHz.

16.3.2 Phantom Experiments

First, two homogeneous elasticity phantoms (Phantom 1 and 2; CIRS Inc., Norfolk, VA) cal-
ibrated with SSI using the Aixplorer scanner (SuperSonic Imagine, Aix-en-Provence, France)
were studied using HSWE. The C5-2v transducer was held by hand perpendicularly to the sur-
face of the phantom with minimum pressure. Five measurements were taken for each phantom
at five random locations on the phantom. For each measurement, eight directional filters, as
shown in Figure 16.1, with 5 m/s speed limit and 10–100 Hz band-pass filter in the tempo-
ral direction were applied to the shear wave signals. 2D shear wave speed was calculated with
4 mm (8 pixels) estimation and averaging window, resulting in a 4 mm resolution. Then a 2D
cs image was constructed and a mean value was calculated from all the pixels of the image. For
comparison, five SSI images were acquired at five random locations on the phantom using a
curved array transducer SC6-1 and the Aixplorer [6]. The SSI images were analyzed offline, and
a mean Young’s modulus (E) was measured from a round ROI with 2 cm diameter centered
at 3 cm depth in each of the SSI images, from which a mean cs value was calculated based on
E ≈ 3𝜇 = 3𝜌c2

s [6], where 𝜌 is the mass density of the medium (assumed to be 1000 kg/m3) and
𝜇 is the shear modulus.

Figure 16.4 shows representative 2D cs images measured from the two phantoms superim-
posed over their B-mode images. The edges of the cs images were 1 cm away from the edges of
the FOV to avoid possible edge effects due to the Fourier transform in the directional filters.
The measured cs averaged over five measurements were 1.18 ± 0.04 m/s and 2.08 ± 0.05 m/s for
phantom 1 and 2, respectively, compared to 1.18 ± 0.01 m/s and 2.04 ± 0.01 m/s, respectively
using SSI. The penetration of HSWE in both phantoms was over 7 cm.

To further demonstrate the penetration of HSWE, a multi-purpose phantom (Model 040GSE;
CIRS Inc., Norfolk, VA) was studied. The maximum depth of the measured phantom section
is 16 cm with attenuation coefficient of 0.7 dB/cm/MHz. One HSWE measurement was taken
with an ROI reaching the depth of 14 cm using the C5-2v transducer. For comparison, one SSI
measurement was taken using the Aixplorer and SC6-1 with an ROI centered at 6.5 cm depth
where measurements failed at the bottom half of the ROI due to the penetration limitations. Five
more SSI measurements were taken using the Aixplorer and the SC6-1 with the ROI centered
at 3 cm depth where elasticity of the phantom was reliably measured. Figure 16.5a shows the
2D HSWE cs image superimposed over a B-mode image. The ROI of the image was centered at
12.5 cm depth (11–14 cm) with averaged cs of 2.60 ± 0.15 m/s. For SSI image at 6.5 cm depth,
no elasticity result could be acquired from the lower part of the ROI due to the attenuation. For
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Figure 16.4 Representative cs images of phantoms 1 (a) and 2 (b) superimposed over their corresponding
B-mode images. Source: © 2014 IEEE, reprinted, with permission, from [16].
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Figure 16.5 (a) 2D cs image of the multi-purpose phantom superimposed over its B-mode image. The ROI of
the image was centered at 12.5 cm with measured average cs over the ROI of 2.60 ± 0.15 m/s; (b) SSI image of
the same phantom with ROI centered at 6.5 cm depth. Source: © 2014 IEEE, reprinted, with permission, from
[16].

the other five SSI measurements at 3 cm depth, the cs averaged over different measurements
was 2.60 ± 0.01 m/s, which was comparable to the single HSWE measurement result. Note
that the standard deviation for HSWE was calculated from the cs at different pixels within the
ROI, whereas the standard deviation for SSI was from the mean cs of different measurements.

16.4 In Vivo Application

Liver fibrosis and cirrhosis are the result of chronic liver injury, and affect hundreds of mil-
lions of patients worldwide [34]. A variety of methods has been applied for liver fibrosis staging
[4, 35–37] as noninvasive alternatives to the gold standard of liver biopsy [38]. However, ultra-
sound radiation-based methods failed to obtain reliable measurement in overweight or obese
patients [39, 40], whereas the prevalence of adult obesity (defined as body mass index or BMI
≥ 30) in the United States is over one third of the population and keeps increasing [41]. As
demonstrated in the phantom experiments above, HSWE is capable of 2D elasticity imaging
and has superior image penetration over other methods, which could be useful in liver fibrosis
staging, especially for overweight or obese subjects.
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Ten patients (8 women and 2 men; age range: 30–77 years; BMI: 19.4–34.0) undergoing clin-
ically indicated liver MRE exams participated in the study. Five patients were overweight with
BMI between 25 and 30, and two patients were obese with BMI over 30. The study was approved
by the institutional review board (IRB) of the Mayo Clinic and written consent was obtained
from each subject.

The MRE exams were performed using a 1.5T MRI scanner (GE Healthcare, Milwaukee, WI),
with a pneumatic driver attached to the subject’s abdomen to provide a harmonic mechanical
vibration at 60 Hz. Standard MRE exam-acquired images of wave propagation in the liver were
analyzed by physicians following the standardized clinical routine [42].

The experimental setup is the same as that of phantom studies as illustrated in Figure 16.3.
During the experiment, the subject was laid supine with the back (lower rib cage) coupled with
the loudspeaker and right arm abducted, giving the transducer access to the available inter-
costal acoustic windows. For each measurement, a sonographer positioned the transducer using
B-mode imaging to locate a relatively large liver region free of major vessels through inter-
costal spaces. Then the subject was instructed to suspend breathing while the operator activated
HSWE measurement. For each subject, 15 measurements were obtained through three inter-
costal spaces (between ribs 9 and 10, 8 and 9, 7 and 8) with five repetitions for each intercostal
space.

For each HSWE measurement, a 2D cs image was calculated. Figure 16.6a shows a repre-
sentative cs image superimposed over the B-mode image from one measurement of one patient
(BMI: 26.4). The HSWE ROI of in vivo liver reached around 7 cm. Similar to the phantom study,
a mean value was computed over a trapezoidal ROI, the edges of which were 1 cm away from the
liver capsule, the left, right, and bottom edges of the FOV, respectively. Among the 10 patients,
five patients were also examined by SSI following a similar protocol (15 measurements through
three different intercostal spaces). A representative SSI image of the same patient is shown in
Figure 16.6b.

For each patient, a median value was calculated from the 15 mean values from the HSWE
measurements as that patient’s result. The interquartile ratio, defined as the ratio between the
interquartile range (from the first quartile to the third quartile) and the median value, was also
calculated to evaluate the reliability of the results [40, 43]. The interquartile ratios for the HSWE
results are listed in Table 16.1. All of the ratios using HSWE were below the 30% boundary,
within which the results are regarded as reliable [43]. The ratios of the SSI measurements from
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Figure 16.6 (a) Representative cs image of the in vivo liver superimposed over its corresponding B-mode
images from one patient (patient No. 6). The measured cs within the colored region of the image was 1.48 ±
0.07 m/s. (b) Representative SSI image of the same patient. The measured cs based on the offline analysis
described in the phantom study was 1.46 m/s. The mean shear modulus of the patient measured by MRE was
2.3 kPa which corresponds to a cs of 1.52 m/s. Source: © 2014 IEEE, reprinted, with permission, from [16].
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Table 16.1 Interquartile ratios of EVMUSE and SSI results. © 2014 IEEE.
Reprinted, with permission, from [16].

Patient
No. BMI

EVMUSE
ratio (%)

SSl
ratio (%)

1 26.9 8.0
2 28.4 22.8
3 27.4 9.8
4 34.0 17.1
5 22.7 8.0 5.0
6 26.4 10.1 10.8
7 19.4 13.5
8 32.3 15.6 74.4
9 24.2 19.8 69.0

10 23.5 9.1 84.1
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Figure 16.7 EVMUSE results from the 10 patients plotted against the MRE results. The Pearson
product–moment correlation coefficient r was 0.86 with p < 0.001, indicating the correlation was significant.
Source: © 2014 IEEE, reprinted, with permission, from [16].

the five patients are also listed in Table 16.1. The interquartile ratios of the HSWE and SSI mea-
surements for the patient shown in Figure 16.6 were 10.1% and 10.8%, respectively, whereas
the ratios for another patient with BMI of 32.3 were 15.6% and 74.4%, respectively, indicating
HSWE may be able to give more consistent results within each patient, especially for over-
weight/obese patients.

HSWE results from the 10 patients were plotted against MRE results, as shown in Figure 16.7.
The Pearson product–moment correlation coefficient between the MRE and ultrasound results
was 0.86 (95% confidence interval: 0.71–0.98) with p < 0.001, indicating the correlation was
significant.

16.5 Summary

In this chapter, we have introduced the harmonic shear wave elastography (HSWE) method
for 2D elasticity imaging by measuring the cs from a multi-directional shear wave field gener-
ated by harmonic mechanical vibration. Results showed HSWE is capable of measuring tissue
elasticity accurately, as validated by SSI in in vitro phantom studies, and the in vivo measure-
ments in patients with liver disease correlate well with MRE results. HSWE was demonstrated
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to have better penetration than the radiation force-based method, and thus has potential for
non-invasive staging of liver fibrosis in obese patients.
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17.1 Introduction

Vibro-acoustography (VA), a new ultrasound-based imaging modality, has gained much inter-
est in the medical field in recent years. This acoustic imaging modality uses the radiation force
of ultrasound to induce low-frequency vibrations in the tissue and creates images of the acous-
tic response. This chapter focuses on potential biomedical applications of VA. The purpose is to
bring together the results of various studies, ex vivo and in vivo, on breast, thyroid, human arter-
ies, and prostate. Here, after a brief discussion about the general principle of VA, we describe
the applications. Future developments and potential impact of VA in breast and thyroid imaging
are also discussed.

17.2 Background

New imaging modalities based on radiation force of ultrasound have been developed for charac-
terizing mechanical properties of soft tissues. All of these methods aim to differentiate normal
tissue from diseased tissue by exploiting the elasticity as a contrast mechanism. Ultrasound
radiation force vibrates and deforms soft tissues noninvasively, and the resulting mechanical
response of tissues provides elasticity information useful in detection and differentiation.

17.2.1 General Principles of VA and Method

VA is a noninvasive imaging technique that produces palpation-like information by measur-
ing the acoustic response of a tissue or object to a vibration induced by the radiation force of
ultrasound [1, 2]. The VA technique can be summarized in three steps:
(1) applying a localized oscillating force on or inside the tissue to induce vibration,
(2) recording the resulting sound arising from the vibrating tissue, and
(3) creating an image from the recorded acoustic signal [3].

The basic concept of the VA technique is using the force of ultrasound. Numerous investiga-
tors have studied the theory of acoustic radiation force [4–7], and the biomedical applications
of acoustic radiation force has been described by Sarvazyan et al. [8].

VA uses two ultrasound beams at slightly different frequencies, f 1 and f 2, and these beams
focus at a common location to produce a modulated ultrasound radiation force at Δf and
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Figure 17.1 Generation of localized oscillatory radiation force using two ultrasound beams.

creates an acoustic field. The focused US beam is scanned across the tissue. A hydrophone
placed nearby obtains acoustic emissions to form an image. The resulting VA images are speckle
free. Figure 17.1 shows a simplified VA system [3, 9].

17.2.2 Features of a Vibro-acoustography Image

A VA image illustrates information about ultrasonic properties such as the scattering and power
absorption characteristics, which are also seen in conventional ultrasonography. Most impor-
tantly, VA depicts the dynamic characteristics of the tissue at frequency Δf that represents how
the tissue responds to a vibrating force, which are related to mechanical properties and tissue
stiffness. Such information is not available from conventional ultrasonography [1, 2].

Furthermore, VA produces images free of speckle, the snowy pattern seen in conventional US
images. Speckle reduces the contrast of ultrasound images and small structures such as micro-
calcifications. In addition, low-contrast lesions in tissue cannot be easily seen. The acoustic
emission signal in VA, which is at a low frequency, creates speckle-free images with high con-
trast [3]. VA is still in the research stage. A number of experiments have been conducted to
evaluate its effectiveness in various applications.

17.3 Application of Vibro-acoustography for Detection
of Calcifications

Ex vivo VA has been used to characterize and image biological tissues [10–14]. VA is capable
of detecting macro- and micro-calcifications and delineates these calcifications with high con-
trast. Microcalcifications are common findings in a wide spectrum of breast lesions, ranging
from benign to malignant [15]. The clinical application of VA in detection of microcalcifica-
tions in radiologically dense breasts found in younger, pregnant, or lactating women has great
potential. The ability of VA to detect calcification has been studied in vitro in a variety of
human tissues including breast [16–20], prostate [21, 22], heart valve leaflets [23], and human
arteries [24].
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(a) (b)

Figure 17.2 Single microcalcification: (a) X-ray image of the breast tissue showing a microcalcification at the
center of the sample; (b) VA of the same tissue shows the calcification as bright spot. Source: © 2004 IEEE,
reprinted, with permission, from [17].

Figure 17.3 VA of excised human carotid arteries:
vibro-acoustography of the normal and calcified arteries The
calcification is seen as a bright region in vibro-acoustography
images. Source: © Institute of Physics and Engineering in
Medicine; reproduced by permission of IOP Publishing, all rights
reserved [11].

We present an example of breast tissue microcalcification detected by VA. A bright spot at the
center of X-ray represents the microcalcification. VA of this tissue clearly shows the microcal-
cification also as a bright spot. The shape and position of the microcalcification match well with
the corresponding spot in the X-ray. VA also shows the structure of the soft tissue (Figure 17.2).

Figure 17.3 shows VA images of two carotid arteries. The left artery is from a young person
and has no calcification. The right artery is from an older person. The arteries were immersed
in a water tank for scanning. The Δf in this experiment is 7 kHz. The VA image shows no calci-
fication on the left artery, while some calcium deposit near the bifurcation on the right artery
is seen as a bright region.

Figure 17.4 shows VA images of an aortic valve and the corresponding radiography. The VA
image resembles the radiography of this heart valve. The arrow in both images points to a small
piece of calcification, about 1 mm in diameter, that is visible in both the radiograph and the
vibro-acoustic scans. This image demonstrates that VA may be used to identify early calcifica-
tion buildup on heart valves.

VA scanning has been conducted on a series of prostate tissues. Imaging results of ex vivo
prostate tissues reveals the potency of VA as a promising tool to detect abnormalities, delineate
tissue structures and anatomical zones, and locate calcifications. We present the X-ray, US,
and VA images of a prostate tissue in Figure 17.5. Tissue X-ray shows a cluster of micro and
macro-calcification, but the US image is not informative. The VA image of this prostate tissue
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Figure 17.4 (a) Photograph of calcified aortic valve; (b) X-ray of aortic valve mounted on scanning bracket; and
(c) VA image of calcified tissue valve. VA scan image resembles the corresponding radiography of heart valve
tissue. Arrow points to small piece of calcification (1 mm in diameter), seen in both X-ray and VA scan images.
Source: reprinted from [23], copyright 2002, with permission from Elsevier.
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Figure 17.5 (a) X-ray of a prostate tissue (calcification is seen in the center); (b) US of the tissue; and (c) VA
image of this prostate tissue shows calcification plus anatomical zones, peripheral zone (PZ) and central zone
(CZ).
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clearly demonstrates a group of large calcifications as well as the anatomical zones, peripheral
zone (PZ) and central zone (CZ).

17.4 In Vivo Breast Vibro-acoustography

17.4.1 Background on Breast Imaging

Breast cancer is the most common non-skin cancer among women in the USA and the sec-
ond leading cause of cancer death in US women, after lung cancer [25]. Depending on their
application, many of the current imaging modalities have low specificity rates. The diagnostic
performance of mammography is greatly reduced, especially in dense breasts. This is partic-
ularly important in the case of high- and moderate-risk women who need to be screened at
younger age when they have dense breasts, obscured masses, or lesions with microcalcifica-
tions (MCs) and small lesions. Ultrasound imaging is not sensitive to MCs. Even as studies
report high sensitivity with MRI, one of the major limitations of breast MRI is that false-positive
enhancement can occur in benign breast lesions, resulting in relatively low specificity. The poor
specificity results in unnecessary follow-ups and biopsies, extra cost, and great emotional dis-
tress. Breast MRI also relies on other tissue parameters that do not contrast mass lesions based
on tissue stiffness [26, 27].

Tissue stiffness is known to be associated with pathology [28, 29]. Except for the emerging
elastography methods, none of the current imaging modalities used in clinics today, such as
conventional breast US, mammography, and MRI, is sensitive to stiffness. Manual detection
of breast lumps (palpation) is the simplest, yet is effective for identifying and differentiation of
breast masses. However, the diagnostic performance is poor in deep lesions and depends on
the expertise of examiner.

Part of these problems, if not all, could be resolved with VA (as an imaging tool). VA is sensi-
tive to stiffness and provides palpation-like information that is sensitive to tissue stiffness – thus
it may be used to improve the diagnosis of breast cancer. VA, a low-cost and noninvasive imag-
ing modality, is sensitive to mechanical properties of breast and can provide information not
available in other imaging modalities. In particular, VA is sensitive to microcalcifications (MCs)
[17], which are markers of some breast cancers. In addition, the performance of VA is not
reduced in dense breast. MRI is not sensitive to MCs and it is hard to detect MCs with ultra-
sound. Breast imaging by VA has been reported before [3, 18, 19, 30, 31], where the images were
mainly evaluated against X-ray mammography. The purpose of this section is to present the
results of various studies on in vivo breast VA to demonstrate the potentials of this technology
and the role it may play in the future as a breast-imaging tool.

17.4.2 Method of In Vivo VA and Results

A VA system was integrated into a stereotactic mammography machine (Fischer Imaging Inc.,
MammotestTM system) and has been tested for in vivo breast imaging [18]. This combined
system enables the operator to obtain matching VA and mammography images of the human
breast. The patient lies down in a prone position while her breast is passed through a hole in
the bed. The breast is placed between the back panel, which includes the X-ray detector, and
a sliding compression panel. The compression panel consists of a window covered with a thin
latex membrane transparent to US beam. An annular confocal US transducer is located behind
the window. VA images were acquired in the cranial-caudal view at different depths from the
skin. The VA image area was 5 × 5 cm. A hydrophone is placed on the side of the breast to
receive the acoustic emission generated by the radiation force of US. The simplified diagram of
the VA system is shown in Figure 17.6.
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Figure 17.6 Diagram of the combined mammography and vibro-acoustic system. Breast positioning between
panels is shown. Source: adapted from [31].

(a) (b) (c)

Figure 17.7 Fibroadenoma: (a) mammography shows the marker placed on the location of palpable mass;
(b) and (c) VA images of the same breast at 2.0 cm depth (b) and 2.5 cm depth (c) show a lobulated
well-defined mass (arrows). Source: adapted from [31].

In vivo breast VA using the integrated system has been studied on 60 female patients with
breast lesions [31]. Benign and malignant breast cases will be discussed as follows.

A female patient in her 40s with a palpable mass in her right breast has been examined.
Targeted US examination on palpable site revealed a 29 × 19 ×13 mm lobulated well-defined,
mildly hypoechoic mass. Diagnostic mammography showed heterogeneous, dense parenchyma
in both breasts, but did not show the palpable mass. A marker was placed on the skin to iden-
tify the location of the palpable mass (Figure 17.7). The result of pathology has proved the mass
to be a fibroadenoma. The importance of this case is that VA can identify masses not seen on
mammograms.

A case of fibroadenoma is shown in Figure 17.8. The patient is in her 70s. Scattered fibrog-
landular densities and two masses were identified on both breasts in mammography screening.
The diagnostic mammography showed a 2 cm sharply marginated mass with coarse lobulation
on the right breast (Figure 17.8a). The VA image of the right breast clearly showed the margins
and mass with the gentle coarse lobulation that are classic findings in fibroadenoma. The cal-
cification seen in mammogram is at a different depth and is not visible at the depth of this VA
image.

Figure 17.9 shows another case, a woman in her 60s, whose screening and diagnostic
mammography identified a small group of suspicious microcalcifications of different sizes and
shapes along with minimal architectural distortion and increased soft-tissue density. Targeted



256 Ultrasound Elastography for Biomedical Applications and Medicine

Right breast

(a) (b)

Figure 17.8 Fibroadenoma: (a) mammography of the right breast shows a round well defined mass (arrow);
(b) VA at 2.5 cm depth shows a well-defined mass (arrow). Patient moved after mammography and during the
examination, thus the mass slightly shifted upward. Source: reprinted from [31].

(a) (b) (c)

Figure 17.9 Invasive ductal carcinoma: (a) Mammography demonstrations increased soft-tissue density
(arrow); (b) US image shows a hypoechoic lesion with shadowing; and (c) VA shows an irregular mass with
spiculation (arrow). Source: reprinted from [31].

US confirmed a 5 × 7 cm hypoechoic lesion with an irregular border and posterior shadowing.
The biopsy revealed an invasive ductal carcinoma, Nottingham grade II/III, in her right breast.
The VA image was able to identify the lesion as a small irregular mass with fine spiculation that
is characteristic of this type of malignant mass. The characteristic spiculation was difficult to
see in the mammogram.

A patient in her 60s with mammographically dense breasts was examined. During mammog-
raphy, a spiculated mass with no calcification was noted in her left breast (Figure 17.10a). Breast
MRI identified a large, enhancing, irregular, spiculated mass measuring 8.5× 3.3× 5.4 cm in the
left breast (Figure 17.10b). This was associated with left breast shrinkage and nipple inversion.
VA of this breast also identified the lesion, which extended beyond the 5 × 5 cm of the imag-
ing window, with remarkable spiculation that is suggestive of malignancy (Figure 17.10c). The
pathology revealed the mass as grade I infiltrating lobular carcinoma. This case demonstrates
that VA can detect breast cancer.

VA studies using a confocal VA system demonstrate the ability of VA in identifying various
breast abnormalities, including microcalcifications as well as benign and malignant masses with
relatively high specificity [3, 31]. This system was equipped with a water tank to accommodate
acoustic coupling to tissue during scanning. A drawback of this system is limited access to parts
of the breast near the chest wall and slower image acquisition.
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(a) (b) (c) (d)

Figure 17.10 Infiltrating lobular carcinoma. (a) Mammogram identifies a large distorted area with spiculation.
The U-shaped wires are used to present image orientation. (b) US images shows a large irregular hypoechoic
mass with shadowing. (c) Magnetic resonance image shows a large, irregular region. (d) VA shows a large
spiculated mass that almost covers the imaging window. Source: adapted and modified from [31].

To overcome the limitations of the annular confocal VA system, to shorten the scanning
time, and to provide optimum coverage of the breast for imaging, we have advanced our imag-
ing system by implementing VA on a clinical ultrasound scanner equipped with a “quasi-2D”
array transducer. We call this technique “quasi-2D vibro-acoustography” (Q2-DVA). A clini-
cal ultrasound scanner (GE Vivid 7, GE Healthcare Ultrasound Cardiology, Horten, Norway)
was modified to perform both ultrasound imaging and VA. The Q2-D transducer array is in
the form of a matrix with multiple rows and columns of ultrasound elements. This transducer
is electronically constructed to generate an ultrasound beam resembling that of the confocal
transducer. The newly designed VA system was tested on patients with breast lesions [32]. Our
results indicate that our newly modified VA system can identify benign and malignant solid
breast lesions and can easily detect microcalcification. Our results suggest that with further
development, Q2-DVA can provide high-resolution images and has the potential to provide
diagnostic information in the clinical setting and may be used as a complementary tool in sup-
port of other clinical imaging modalities. Here, we present the preliminary in vivo results of
breast VA obtained by the new VA system equipped with the array Q2-D transducer [33].

First we present a case of invasive ductal carcinoma. The patient is a woman in her 50s with
a palpable lump in her right breast. Her mammography demonstrated a heterogeneous dense
breast with a central focal asymmetry (dashed yellow contour) and small microcalcifications
(red arrows). Targeted clinical US showed a 21 mm × 14 mm irregular hypoechoic mass with
an indistinct margin and posterior acoustic shadowing. VA images obtained with the handheld
1.75D probe show the mass and dimensions of the lesions are larger than those of the clinical US
image (Figure 17.11). Similar findings have been seen and confirmed in our previous VA study
[31] where malignant breast masses appeared lager in VA than in B-mode US. The pathology
of this mass revealed it to be invasive ductal carcinoma, Nottingham grade II.

VA imaging of a benign fibroadenoma is presented here. A woman in her 40s with a pal-
pable lump in her left breast was examined. Diagnostic mammography showed a heteroge-
neous dense breast with a 15 mm well-circumscribed solid mass at the anterior depth (yellow
arrow), shown in Figure 17.12. Her targeted US demonstrated a corresponding solid round
mass with circumscribed margins. VA images were obtained at a depth of 20 mm and revealed
a well-defined mass (yellow arrows). US guided biopsy revealed a benign fibroadenoma.

A diagnostic mammogram in a patient discovered a partially obscured oval mass (yellow
arrow in Figure 17.13a). A targeted transverse US image demonstrated an oval hypoechoic
mass with posterior shadowing measuring 19 × 10 × 10 mm (Figure 17.13b). The VA image
obtained at a depth of 30 mm showed an elongated mass with a well-defined border, suggesting
a benign lesion. The biopsy result revealed the lesion as sclerosing fibroadenoma with densely
hyalinized stroma. The sclerosing accounts for the shadowing posterior to the lesion. The mass
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Figure 17.11 Invasive ductal carcinoma. (a) Mammogram of the right breast demonstrates a central focal
asymmetry. Microcalcifications are marked with arrows. (b) B-mode US shows an irregular 23 mm hypoechoeic
mass. (c, d) VA images obtained by array probe at depths of 25 mm and 27.5 mm, respectively. The lesion is
marked with cross markers on panel (c). The presence of calcifications is also noted in the VA image at 25 mm
(marked with red arrows). Source: reprinted from [33]; copyright 2014, with permission from Elsevier.

1.0 cm

(a)

1.0 cm

(b) (c)

Figure 17.12 (a) Magnified mammography of the left breast shows a round mass with circumscribed margin.
(b) US image demonstrates the round mass with mixed internal echogenicity and circumscribed margins.
(c) 1.75D VA image of the breast outlines the corresponding mass (arrows). Source: reprinted from [33],
copyright 2014, with permission from Elsevier.

is well-visualized (dark) in the VA image. The lesion shown to be at deeper depths by VA than
shown in B-mode imaging, due to more compression applied during the clinical US imaging
procedure.

The results of the study using VA implemented on a clinical ultrasound scanner equipped
with a Q2-D US transducer indicate that this new VA has the potential to identify and differ-
entiate breast lesions. The Q2-DVA system can also overcome the difficulties associated with
using confocal VA, such as the inability to image lesions close to the chest wall or the discom-
fort associated with patient positioning and compression. Our results provide a foundation
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Figure 17.13 Sclerosing fibroadenoma: (a) magnified mammogram shows an oval mass in the posterior depth
of the right breast; (b) clinical B-mode ultrasound documents the corresponding mass; (c) quasi-2D
vibro-acoustography image of breast tissue with a sclerosing fibroadenoma at a depth of 30 mm. Source:
reprinted from [33], copyright 2014, with permission from Elsevier.

for further development of clinical VA systems and further investigation in a larger group of
patients.

17.5 In Vivo Thyroid Vibro-acoustography

Ultrasonography of thyroid does not always lead to conclusive results. Furthermore, current
ultrasound imaging technology has a poor performance in detecting important microcalcifi-
cations and its role in diagnosis of malignant nodules is limited and carries poor specificity
[34]. Uncertainties in ultrasound and other thyroid imaging methods lead to a large number of
unnecessary biopsies. Fine needle aspiration biopsy (FNAB) is associated with false-negative
rate of up to 11%, a false-positive rate of up to 8%, with a sensitivity of about 80%, and a speci-
ficity of 73% [35–38]. Vibro-acoustography is sensitive not only to the ultrasound properties of
the tissue but also to the dynamic behavior at low frequencies; thus VA offers information that
is not available with conventional ultrasound.

We have investigated the feasibility of using VA with a handheld array US transducer for
detection and localization of thyroid nodules [39]. The results demonstrate that VA imple-
mented on a clinical ultrasound scanner equipped with a handheld array US transducer can
identify and has potential to differentiate thyroid nodules.

A 48-year-old female patient with a benign thyroid nodule was examined. B-mode ultrasound
identifies large hypoechoic nodule with small cystic appearance measuring about 47 × 27 mm
(x-z dimensions). The nodule appears on C-mode US, taken at 2 cm depth, measuring about
44.2 × 30.5 mm (x-z dimensions). The VA at 2.0 cm depth reveals the large nodule with distinct
margin measuring about 30.5 mm in the y direction and more than 47 mm in the x direction,
with its side margins extending out of VA image window. Its shape and location corresponds to
the C-scan US at 2 cm depth (Figure 17.14).

US and VA images of the right side thyroid of a 37-year-old male with papillary thyroid
carcinoma are shown in Figure 17.15. Targeted US shows a cystic nodule measuring about
1.0 × 1.3 × 1.4 cm with peripheral calcifications, one of the characteristics of papillary car-
cinoma. The VA scan at 2.5 cm depth identifies the nodule with a cystic appearance in slightly
larger dimensions as well as some peripheral calcifications with greater clarity than shown in
the US image, denoted by arrows.

These results suggest that VA may have a potential as a clinical tool in thyroid imaging; how-
ever, VA is not intended to replace B-mode US or FNAB. Larger studies are needed to determine
sensitivity and specificity of this imaging tool in thyroid cancer detection and differentiation.
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Figure 17.14 Benign nodule: (a) B-mode US of a patients thyroid shows a large solid nodule with small cystic
component; (b) ultrasound C-scan at 2.0 cm depth measuring about 44.2 × 30.5 mm in the x-y dimensions; and
(c) in vivo VA image of thyroid (with 7 L array probe) at 2.0 cm depth which corresponds to the C-scan plane,
measuring more than 47 mm. The VA image is 47 × 50 mm. Source: reprinted from [39].
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Figure 17.15 Papillary thyroid cancer: (a) B-mode US shows a cystic nodule measuring 1.0 × 1.3 × 1.4 cm with
peripheral calcifications, as denoted by arrows; (b) VA scan at 2.5 cm depth shows the nodule with cystic
appearance slightly in larger size with coarse peripheral calcifications. Source: reprinted from [39].

17.6 Limitations and Further Future Plans

This VA system can overcome the difficulties associated with using confocal VA, such as inabil-
ity to image the lesions close to the chest wall, and the discomfort associated with patient
positioning, breast compression, and longer scanning duration. There were a few problems that
were encountered in the in vivo study. First, a system artifact that is associated with steering the
VA beams across the aperture, which created streaks in the VA image. We have developed an
algorithm to correct for these streaks [40], but this algorithm can diminish image details. Effort
is continued to find alternatives to correct this artifact. In addition, motion artifacts are asso-
ciated with patient breathing occurring during in vivo VA scanning and manifested as jagged
image detail. Our results should provide a foundation for further development of clinical VA
systems and further investigation in a larger group of patients.
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One step in further development of a VA system is using a reconfigurable array (RCA)
transducer that would provide another route for clinical implementation of VA imaging. VA
using a RCA transducer has important advantages. Using a 2D RCA transducer eliminates the
need for mechanical translation as is needed with a confocal transducer [2] or a linear array
transducer [40]. The RCA electronic scanning is expected to take about 2 ms per pixel, which is
6-fold improvement over the confocal transducer [41]. The simulation study performed by our
group provides a strong framework for optimization of VA imaging with RCA transducers for
different medical applications. Further development and implantation with RCA transducer is
in progress to achieve the optimum VA imaging.
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Harmonic Motion Imaging
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18.1 Introduction

Harmonic motion imaging (HMI) uses a focused ultrasound (FUS) beam to generate an
oscillatory acoustic radiation force for an internal, non-contact palpation to internally estimate
relative tissue hardness. HMI estimates and maps the tissue dynamic motion in response to
the oscillatory force at the same frequency, and has been shown to be feasible in simulations,
phantoms, ex vivo human and bovine tissues, as well as animals in vivo. Using an FUS beam,
HMI can also be used in an ideal integration setting with thermal ablation using high-intensity
focused ultrasound (HIFU), which leads to an alteration in the tumor stiffness. In this chapter,
the capability of HMI to localize and target the tumor as well as monitor its subsequent
ablation is assessed. The findings presented here demonstrate that HMI is capable of both
detecting and characterizing the tumor as well as efficiently detecting the onset of ablation.
More importantly, HMI is shown to be capable of distinguishing the tumor margins from the
margins of the thermal lesion in vivo in order to assess the treatment success. HMI may thus
constitute an integrated, real-time method for efficient HIFU monitoring.

18.2 Background

18.2.1 Ultrasound-guided HIFU

In ultrasound-guided methods, the HIFU lesion can only be detected when cavitation or
boiling occurs due to the high bubble concentration that causes high echo amplitudes [1].
However, bubble occurrence is usually unpredictable or random and therefore unreliable
in HIFU treatment monitoring [2]. Given that tissue coagulation has been associated with
changes in tissue stiffness [3–5], elastography has been applied in the detection and monitoring
of laser, RF, and HIFU lesions [6–12]. Unlike the small and non-reproducible acoustic contrast
between coagulated and surrounding tissue, the mechanical contrast was found to increase by
up to one order of magnitude [5, 8, 10, 13–15]. As a result, over the past two decades, several
ultrasound-based elasticity-imaging techniques have been developed for monitoring changes
in tissue elasticity during HIFU treatment, including quasi-static elastography [6, 8], super-
sonic shear imaging (SSI) [16–18], acoustic radiation force imaging (ARFI) [19, 20], and HMI
[21–32]. Quasi-static elastography that involves manual compression was initially proposed as
a method for monitoring the ablation of tumors due to its sensitivity to stiffness changes, as
has been shown in bovine liver in vitro [6, 8] and remains the only elasticity-imaging technique
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applied in patients in a prostate cancer study [33]. However, the external compression of the
organ adds significant challenges in registration for planning and guidance in vivo [33], thereby
stalling elastography’s clinical translation for HIFU monitoring over the past decade. The
aforementioned radiation-force methodologies were developed to overcome the contact and
manual compression requirements of quasi-static elastography. The first method to be applied
to HIFU monitoring was HMI by our group followed by other methodologies.

18.2.2 MR-guided HIFU

For MRI guidance, T1-weighted images are consecutively acquired to monitor the tempera-
ture rise during HIFU by measuring the spectral shifts occurring as a result of temperature
change. Reliable functional and anatomical information during HIFU treatment can currently
be provided only by using MRI-based techniques, i.e. MR-guided FUS (MRgFUS) [34–37]. In
one of the first breast cancer clinical trials, nine patients (eleven fibroadenomas) were treated
over 2 hours for 2 cm lesions and 45 min for 1 cm lesions with an average temperature rise
of up to 45.9 ∘C. Common side-effects, such as skin burn or swelling following the treatment,
were not observed six months after treatment [34] and no sign of tumor re-growth in the same
treated region was detected 3-4 years following treatment [34]. Gianfelice et al. [38] applied the
MRI-monitoring method and demonstrated that 79% of 24 patients had negative biopsy results
after 1 or 2 HIFU sessions. More recently, Khiat et al. [39] used dynamic contrast-enhanced
MRI (DCE-MRI) in 25 patients (26 invasive ductal carcinomas) after HIFU and tumor resec-
tion. After correlation with histopathology, it was concluded that in most patients, the tumors
were eliminated by more than 90%. Magnetic resonance elastography (MRE) [40] relies on the
stiffness change to detect HIFU lesions [5]. Despite its exquisite imaging quality and accurate
thermometry feedback, MRgFUS involves steep healthcare costs and low temporal resolution
resulting in lengthy procedures (up to 6 hours for uterine fibroid HIFU ablation [41]), apart from
the alignment challenges, restrictions in the patient pool, and large physical space requirements.
Both MRgFUS and MRE are currently hindered by the same limitations of low framerates and
high costs associated with MRI. HIFU therefore remains an effective and low-cost technology
currently incurring steep costs in monitoring methodologies. As a result, despite the promise
shown in studies over the past 15 years, breast HIFU remains unavailable to patients. This is
in contrast to other ablative procedures in the clinic that are far more invasive and risky but
have highly affordable, fast, and reliable monitoring. The current lack of low-cost and reliable
monitoring methods may result in the confinement of this promising treatment and low-cost
technique to large research centers worldwide – as proclaimed by Kennedy [1] more than a
decade ago. In addition, MRgFUS provides only temperature elevation and not the coagulation
onset, and it is coagulation onset that is most important for informing lesioning and has been
reported to occur at distinct temperatures across organs or even within the same organ.

18.2.3 Harmonic Motion Imaging

Harmonic motion imaging (HMI) is a radiation-force-based technique of HMI that utilizes
the ultrasound beam to induce local vibration of tissues and thus infer to their underlying
mechanical properties. HMI is thus an elasticity-imaging technique, but, unlike quasi-static
elastography, it does not require any direct contact, alignment, or external tissue deforma-
tion. The localized vibration is achieved using amplitude modulation on the probing beam that
induces a vibration at the focus of the transducer in order to image the mechanical responses of
the tissue being imaged. The mechanical property of the tissue changes as a result of pancreatic
cancer and, thus, the displacement changes during tumor growth. The oscillatory motion can be
monitored in real time using cross-correlation techniques on the acquired RF signals using an
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Figure 18.1 In vivo HMI showing the displacement image on the ultrasound system screen (left) with an
example of displacement measurement at the tumor. The force is applied remotely and internally at the focus
of the probing (or force) transducer (ellipsoids in focal area) through AM modulation of the FUS beam (as
shown in path between the transducer and ellipsoids).

ultrasound imaging transducer, confocal with the probing transducer (Figure 18.1). The system
can thus be used to localize the tumor and image its stiffness-based displacement amplitude at
variable depths [25, 42–47] (Figure 18.1). Due to its use of pulse-echo methods, B-mode and
HMI images can be seamlessly co-registered while sharing the advantages of portability, lack
of ionizing radiation, low cost, and noninvasiveness. In summary, HMI combines the advan-
tages of diagnostic ultrasound for high spatial and temporal resolution with the advantages of
radiation-force-based elasticity imaging for sensitive, reliable, stiffness-based measurements at
large depths.

18.2.4 Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

The all-ultrasound-based (imaging and therapy) technique of HMIFU utilizes the same
ultrasound beam for both HIFU and local vibration of tissues before, during, and after HIFU
treatment (Figure 18.1). The same system can thus be used to localize [25, 42–47], monitor
[21, 22, 24–26, 48], and ablate [27–31, 42–45, 49] the tumor. HMI is a radiation-force-based
technique that induces oscillatory displacements in the focal zone of the HIFU transducer for
the detection of localized stiffness changes. HMI is thus an elasticity-imaging technique, but,
unlike quasi-static elastography, it does not require any direct contact, alignment, or external
tissue deformation. HMIFU denotes the seamless application of HMI to HIFU monitoring
(Figure 18.2a). The combination into a single device (Figure 18.1) has been shown successful
in monitoring lesion formation in real time in tumors ex vivo and in vivo. Due to its use of
pulse-echo methods, B-mode and HMI images can be seamlessly co-registered while sharing
the advantages of portability, lack of ionizing radiation, low cost, and noninvasiveness. HMIFU
entails the simultaneous integration of HMI into HIFU treatment by utilizing an amplitude
modulation (vibration; low frequency) onto the therapeutic beam (ablation; high frequency)
(Figure 18.2a). More importantly, the HMIFU system is easily integratable into ultrasound
systems already in use in the clinic, ensuring thus its rapid translation by using standard arrays
with an additional module for ablation (Figure 18.1). Therefore, in HMIFU (Figure 18.2a),
monitoring and ablation methods are inherently fully co-registered. The localized vibration
is achieved using amplitude modulation on the therapeutic beam, which will not affect the
treatment duration or efficacy but only induce a vibration at the focus of the transducer in
order to detect the mechanical property changes of the treated tissue. The mechanical property
of the treated tissue changes before, during, and after ablation, and, thus, the displacement also
changes during treatment (Figure 18.2b). The oscillatory motion can be monitored in real time
using cross-correlation techniques on the acquired RF signals using an ultrasound imaging
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transducer, confocal with the HIFU transducer (Figure 18.1). The slope reversal denotes the
coagulation onset (Figure 18.2b) based on the associated rapid and irreversible stiffening
[5]. In summary, the HMIFU method combines the advantages of diagnostic ultrasound
for high spatial and temporal resolution with the advantages of therapeutic ultrasound for
noninvasive, low-cost treatment, and the advantages of elasticity imaging for sensitive, reliable,
stiffness-based measurements during ablation. This combination results in a technique that is
fast, low-cost, reliable, and noninvasive, expanding thus the potential of HIFU for treatment of
focal breast tumors and simultaneously setting the foundations for future HIFU applications
in early-stage tumors in other organs such as liver and pancreatic cancer. Due to the inherent
registration between the imaging and therapeutic components, prolonged co-registration,
plaguing other modalities, is not required.

18.3 Methods

Our group has developed 1D (Figure 18.2b) and 2D (Figure 18.2c) methodologies as well as
parallel beamforming that has allowed us to use the 2D methodology without the associated
tradeoff in frame rate.

18.3.1 The HMIFU System

The HMIFU system (Figure 18.2a) utilizes a new 93-element HIFU phased array trans-
ducer. The individual element diameter = 10 mm, overall outer diameter = 110 mm, inner
diameter = 44 mm (to fit the imaging probe, Figure 18.2c, center frequency = 1.1 MHz, and
focal depth = 70 mm). This transducer by Sonic Concepts Inc. (Bothell, WA, USA), operates
at the fundamental (1.1 MHz) for human specimens and at the third harmonic (3.3 MHz) for
mice. The HIFU array was concentric with a 64-element imaging phased array (ATL, Bothell,
WA, USA; Figure 18.2c) which will have different center frequencies for mice and humans. The
93-element HIFU transducer was driven in phase by an amplitude-modulated (AM frequency
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Figure 18.2 Schematic of harmonic motion imaging (HMI) system with experimental setup: (a) block diagram
of HMI system. The small ellipsoid region indicates the focus of the FUS transducer; (b) the 1D HMI system
comprises of a single-element FUS transducer (outer diameter = 80 mm, inner diameter = 16.5 mm) coaligned
with a single-element pulse-echo transducer (diameter = 15 mm); (c) the 2D HMI system consists of a probing
phased array transducer and a concentric phased array imaging probe.



268 Ultrasound Elastography for Biomedical Applications and Medicine

𝜔AM = 25 Hz) sinusoidal signal generated by a dual-channel arbitrary waveform generator
(AT33522A, Agilent Technologies Inc. Santa Clara, CA, USA) and amplified by a nominal
50 dB gain power amplifier (325LA, E&I, Rochester, NY, USA). Each HIFU and imaging
transducer was operated by a dedicated open-architecture system (Vantage, Verasonics,
Redmond, WA, USA) with the HIFU array powered by the external HIFU supply option to
induce sufficient power. The HIFU and imaging arrays are at different center frequencies, so as
to effectively employ analog bandpass filters and remove the HIFU beam interference prior to
HMIFU estimation [24, 29].

18.3.2 Parallel Beamforming

Similar to others in the field, we have found that the performance of motion estimation is not
compromised [50, 51] when such systems are used, based on the advantages of differential,
phase-based measurements (as opposed to amplitude-based approaches) [50]. We have imple-
mented beamforming sequences [50] that excite the transducer elements with specific delays
allowing a large field of view and then uses the delay-and-sum method to reconstruct the RF
signals from the channel data. This mode is similar to plane wave imaging, but the diverging
wave from a virtual point source behind the transducer allows imaging with a large field of view
[50, 51]. The associated frame rate is only limited by the depth and speed of sound. As a result,
the system can obtain up to 5000 fps for breast imaging. Parallel beamforming has thus recently
allowed us to obtain similar frame rates in our 2D system (Figure 18.2c) as with our previously
developed 1D system (Figure 18.2b) but with the added advantage of full 2D HMI.

18.3.3 HIFU Treatment Planning

Beam localization was performed prior to ablation, as recently developed by our group [52]. A
burst of AM signal at 231 W/cm2 was applied in order to localize the beam without significant
temperature rise. Based on the maximum peak-to-peak HMI displacement, the −3 dB HIFU
focal zone was calculated in order to quantitatively monitor the ablation [52].

18.3.4 HIFU Treatment Monitoring

After the planning phase, a continuous AM wave (Figure 18.1) was generated at 1086 W/cm2

for 50 s for fast and efficient ablation [31, 47]. The temporal variation of the displacement ampli-
tude was continuously imaged using HMI. The change in the slope of the HMI displacement
variation over time (Figures 18.3a and 18.3b) indicates lesion formation [29, 45].

18.3.5 HIFU Treatment Assessment

After the ablation is completed, HMI was performed across the entire specimen to determine
the extent of the HIFU lesion (Figure 18.3e).

18.3.6 Displacement Estimation

A fast, normalized 1D cross-correlation function implemented by our group [53] was used on
the continuously acquired, reconstructed RF signals from the channel data acquired using the
imaging array during the application of the radiation force by the HIFU array (see Figure 18.2).
The cross-correlation function uses a 1D kernel (length = 5.85 mm, overlap = 90%) for search
in the axial direction. The correlation kernel size is approximately 10 wavelengths, which was
found to be the optimal length using cross-correlation [54].
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Figure 18.3 (a) Real-time HMI displacement. (b) Peak-to-peak HMI displacement against temperature showing
coagulation at the slope change or ∼80 ∘C or temperature elevation of ∼60 ∘C. (c) Resulting HIFU lesion
(arrow). 2D HMI monitoring of HIFU lesion (d) at the start and (e) at the end of the HIFU treatment. The lesion
can be identified and its displacement drops due to stiffening while the extent of the region has increased.

18.3.7 Real-time Implementation

In order to implement HMIFU in real time, we apply our GPU-based, sparse-matrix reconstruc-
tion algorithm that will accelerate the delay-and-sum beamforming (Figure 18.4) as well as the
scan conversion in matrix-vector products since these operations are linear [29, 56]. In order
to obtain every beamformed RF frame, two sparse matrices were generated for reconstruction
and scan conversion, respectively. More specifically, every RF frame was reconstructed by first
multiplying the channel data matrix with the reconstruction sparse matrix, then multiplying
the product matrix by another sparse matrix for scan conversion, each performed as a single

Verasonics V-1 ultrasound system

• 2.5 MHz phased-array (ATL P4-2)

• 64 transmit channels

• 2000 Hz acquisition frame rate

diverging wavefront

Receive on 64 elements Parallel beamforming using a

delay-and-sum method

A(x,y) = ∑

x

y

ai (t(x,y))
64

i = 1

Figure 18.4 Parallel beamforming sequence to be used on the Verasonics system.
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Figure 18.5 (a) 2D HMIFU real-time monitoring of HIFU lesion in ex vivo liver (showing eight HMIFU frames
during treatment (0–120 s). The method localizes the focal spot of the HIFU beam (white arrow at 30 s) and
follows the formation of the lesion based on the HMI displacement decrease until the end of the treatment
with the final lesion (dark arrow). (b) Focal spot plot in water confirming the focal spot size in (a). (c) Automated
lesion size monitoring in real time with HIFU showing lesion formation beyond 20 s. (d) Resulting HIFU lesion
(discolored region). The lesion can be identified and its displacement drops due to stiffening [55]. The lesioning
can be completed at 100 s instead of 120 s.

operation. The RF signals were upsampled to 80 MHz and reconstructed on a 90∘ field of view
with 128 beam lines. Our group has pioneered this algorithm in another methodology [29]
with resulting RF ultrasound frame rates of 1000 Hz and HMI frame rates of 10 Hz [56]. This
methodology allows for real-time monitoring (Figure 18.5).

18.3.8 Beam Steering

To achieve an even shorter treatment monitoring time, one of the earliest challenges of clinical
HIFU translation, electronically steered beams can provide up to 66% increased speed com-
pared to mechanical scanning [57]. The HIFU array is operated through a four-board VDAS
system and the imaging array by a separate four-board VDAS system. This has allowed us to
develop real-time steering (Figure 18.6), which is essential in implementing a fast application
of HMI without physically moving the transducer [58]. The HMI displacement can be imaged
within the steering range up to 5 mm in the lateral and 27 mm in the axial through the pro-
posed array. Using the steered HIFU beam across the tumor, HMI can be used to image and
ablate a larger tissue volume with higher efficiency and without requiring physical movement



Harmonic Motion Imaging 271

0

–6

–12

dB

0

–6

–12

–0.2

Steer to –0.9 mm Steer to 0.9 mmNo steer

Lateral (mm)

Normalized HMI displacement profile

–
0

.3

0
.3

0
.6

0
.9 1.
2

1.
5

1.
8

2
.1

2
.4

2
.7

3
.330

–
0

.6
–

0
.9

–
1.

2
–

1.
5

–
1.

8
–

2
.1

–
2

.4
–

2
.7–
3

–
3

.3

0

0.2

0.4

0.6

0.8

1

1.2

dB

10
mm

0
m

m

1

–1(a) (c)

0

m
m

mm

1

–1

–2 0 2

(b)

–1
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of the transducer. This allows for faster treatment and treatment of larger lesions with the same
transducer.

18.3.9 Modulus Estimation

Noninvasive measurement of mechanical properties of biological tissues in vivo could play a
significant role in improving the current understanding of tissue biomechanics. In this study,
we propose a method for measuring elastic properties noninvasively by using internal indenta-
tion as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation
force is produced by a focused ultrasound transducer at the focal region, and the resulting
displacements are estimated by tracking RF signals acquired by an imaging transducer. The
focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform
internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio
of the applied force to the axial strain measured by 1D ultrasound imaging. The reliability and
the quality of the EHMI estimate were assessed numerically, in polyacrylamide tissue-mimicking
phantoms and in biological liver specimens ex vivo. Very good correlation and agreement
was found between the actual Young’s modulus and the HMI modulus in the numerical study
(r2

> 0.99, relative error< 10%) and on polyacrylamide gels (r2 = 0.95, relative error< 24%). The
average HMI modulus on five liver samples was found to be EHMI = 2.62 ± 0.41 kPa, compared
to EMechTesting = 4.2 ± 2.58 kPa measured by rheometry. This study has demonstrated for the
first time the initial feasibility of a non-invasive, model-independent method to estimate local
elastic properties of biological tissues at a submillimeter scale using an internal indentation-like
approach. The method is based on the localized, internal acoustic radiation force, instead of
an external mechanical indenter, as the source of stress. In HMI, a focused ultrasound (FUS)
transducer is used to generate an oscillating force at the focal region. The force density can
be measured experimentally as part of the transducer calibration, and its spatial profile can
be therefore known. The resulting displacement is measured using the consecutive RF signals
acquired during the application of the oscillatory force. In the proposed method, the focal
region is modeled as a cylindrical region inside which the volumetric acoustic radiation force
is uniform. This is an approximation since the actual radiation force has a well-defined spatial
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distribution (see Figures 18.10a and 18.10b). This cylindrical region is therefore assumed to act
as an oscillating rigid piston.

Under the assumption of linear elasticity, the balance of forces on the z-axis acting on this
cylindrical region can be written as

𝜌

𝜕

2uz

𝜕t2 V = ∫ ∫ ∫V
fVdV = Fshear − Ftop − Fbottom (18.1)

Fshear, F top, and Fbottom correspond to the vertical forces acting on the lateral, superior, and
inferior surfaces of the cylinder, respectively. V is the volume of the cylinder, uz is the vertical
displacement of the cylinder, 𝜌 is the density of the tissue, and f V is the local, volumic acoustic
radiation force. The inertia term on the right-hand side of Eq. (18.1) is considered negligible,
as its order of magnitude is approximately 0.1% of the one of the other terms within the typical
HMI frequency range (10–50 Hz). Therefore, Eq. (18.1) can be rewritten as

∫ ∫ ∫V
fVdV = Fshear + Ftop + Fbottom (18.2)

which can be simply deemed as a static balance of forces, where the applied acoustic radiation
force equals the sum of elastic forces related to the deformation of the tissue around the piston{

Ftop = Fbottom = 𝜋R2 ∗ E 𝜕uz

dz
Fshear = 2𝜋Rh ∗ G 𝜕uz

dr

(18.3)

where R, h denote the radius and the height of piston, respectively, and E, G denote the Young’s
and shear modulus of the tissue, respectively. Under the assumption of quasi-incompressibility
(E = 3G), Eq. (18.2) becomes

∫ ∫ ∫V
fVdV = E ∗

(
2𝜋R2 ∗

𝜕uz

dz
+ 1

3
2𝜋Rh ∗

𝜕uz

dr

)
(18.4)

Equation (18.4) can be rewritten with tensorial strain components

∫ ∫ ∫V
fVdV = 2E𝜋R ∗

(
R ∗ 𝜀zz +

2
3

h ∗ 𝜀rz

)
(18.5)

which assumes that the displacement occurs along the z-axis only with 𝜀rz =
1
2
𝜕uz

dr
.

Another major assumption in this study is that the compressive and shear strains are equal.
As it will be demonstrated in the numerical study, they are indeed very close in a cylindrical
geometry as the one used here. Consequently, Eq. (18.5) can be written as

∫ ∫ ∫V
fVdV = 2E𝜋R𝜀zz ∗

(
R + 2

3
h
)

(18.6)

Finally, we define our HMI modulus as

EHMI =
∫ ∫ ∫V

fVdV

2𝜋R𝜀zz ∗
(

R + 2
3
h
) (18.7)

The HMI elastic modulus method requires knowledge of the acoustic radiation force. In this
study, we used the experimental pressure profile obtained using a needle hydrophone in water,
as described elsewhere [45]. The corresponding 3D acoustic radiation force distribution was
used as the input in both simulations and experiments throughout the study. The acoustic radi-
ation force f exp was then calculated as

fexp = 2𝛼I
cs

(18.8)
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Figure 18.7 (a) CIRS phantom results with three inclusions of different stiffness (20–60 kPa). HMI successfully
depicts all inclusions of different stiffness which is the expected range of variation during ablation. (b) HMI
overlaid on a B-mode in a mastectomy specimen.

where I is the acoustic intensity, cs the speed of sound (cs = 1530 m/s), and 𝛼 is the acoustic
absorption of the medium. The attenuation of the tissue above the focus was taken into account
in order to obtain realistic estimates of the acoustic intensity at the focus.

18.4 Preclinical Studies

18.4.1 Detection and Diagnosis of Breast Tumors

18.4.1.1 Phantom Studies
The elasticity phantoms from CIRS (Computerized Imaging Reference Systems, Inc., Norfolk,
VA) are the only commercially available materials developed for elasticity-imaging quality
assurance. We used a customized 049A phantom that is made of a patented solid elastic
material called Zerdine®. The background has tissue-mimicking properties with the speed of
sound equal to 1540 m/s, an attenuation of 0.5 dB/cm/MHz and a Young’s modulus of 25 kPa.
The inclusions are 8 stepped cylinders arranged in a 4 by 2 array, allowing two different depths
(30 and 60 mm). Each inclusion consists of six diameters ranging from 1.58 mm to 16.67 mm.
Feasibility in such a phantom is shown in Figure 18.7.

18.4.1.2 Ex Vivo Breast Specimens
Thirty postsurgical specimens (15 fibroadenomas, FA, i.e. benign tumors, and 15 invasive ductal
carcinomas, IDC, i.e. malignant tumors) of stage I without systemic metastasis) were collected
at the Breast Center in the Irving Pavilion of the Columbia University Medical Center from
patients who have been imaged and diagnosed by our collaborator, Dr. Bret Taback, MD, Clin-
ical Professor of Surgery at the Columbia Breast Center, and who performed the surgeries and
identified the cases needed for the proposed study. Specimens were carried in a sealed con-
tainer. Upon arrival in our laboratory, the specimens was carefully handled and embedded in a
gel matrix (similar to that used for the phantoms) for protective purposes but also to contain
them and simulate the surrounding breast, especially in the case of lumpectomy specimens. All
specimens were scanned using the HMI technique and the findings were compared to mam-
mography, sonography, and histopathology findings. Orientation of the specimen was provided
by the surgeon. Baseline HMI was acquired immediately followed by HMIFU of the specimen
(see Figure 18.9a). In our preliminary studies with the HMIFU system, in all successful abla-
tion cases, the ablation onset was identified and lesioning was detected (Figures 18.8 and 18.9).
Through the department of pathology, there has been an agreement in place to utilize for tumor
ablation discarded tumor parts that are typically not useful in pathology or histological analysis
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Figure 18.8 HMIFU ablation monitoring in 2D overlaying on B-mode images in an invasive ductal carcinoma
(IDC) lumpectomy specimen. Peak negative HMI displacement frames at 50 Hz HMI at five representative time
points during treatment are shown. The focal displacement decreases as the thermal lesion forms. At 50 s, the
treatment is completed and can be stopped.

of the tumor. The mass to be obtained was ∼1–2 cm in diameter, which is the tumor size that
is intended to have HIFU used in its in vivo human application. HMIFU feasibility in normal,
malignant, and benign human breast specimens after ablation is shown in Figure 18.9, demon-
strating that human breast lesion detection due to the fact that the lesion is several times harder
than the unablated breast tissue [15]. Those tissues were subsequently utilized in order to assess
the imaging parameters, such as SNR and resolution, which can be achieved for displacement
and viscoelastic property estimation before and after ablation. The same HIFU transducer that
is used to generate the radiation force (Figure 18.1), but at higher intensities (1086 W/cm2), was
employed here to generate HIFU lesions of 2–12 mm in diameter.

18.4.2 Detection and Treatment Monitoring of Breast and Pancreatic Tumors In Vivo

18.4.2.1 Breast Mouse Tumor Model
Over the past few years, Dr. Thomas Ludwig’s group has generated mice carrying conditional
alleles for Brca1, Brca2, Bard1, and p53, which are human cancer mutations known to result in
tumor growth in mice. To inactivate these conditional alleles in the mammary glands, animals
were crossed with mice expressing cre under control of regulatory elements from the whey
acidic protein (Wap) gene, expression of which is normally restricted to mammary epithe-
lial cells during late pregnancy and lactation. Mammary gland-specific inactivation of Brca2
[59], Brca1, and Bard1 results in the development of mammary adenocarcinomas. The tumors
typically grown using the aforementioned techniques reach a diameter of 1–2 cm before the
mice are sacrificed. The tumor localization, temperature dependence, and coagulation-onset
detection of the HMIFU technique were evaluated based on our preliminary feasibility studies
(Figure 18.11) [45]. Small tumors (<1 cm) as shown in our preliminary results in both human
and mouse tissues (Figure 18.11) can be detected at the frequencies used in our HMIFU system
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Figure 18.9 Multi-2D HMI displacement images of normal breast tissue (top panel), IDC (middle panel), and FA
(bottom panel). (a) Gross pathology photograph of a normal breast specimen mounted on the gel matrix, and
the 3D reconstructed HMI of the selected tissue (b) before and (c) after HMIFU ablation. (d) Gross pathology
photograph of an IDC specimen mounted on the gel matrix, and the 3D reconstructed HMI of the selected
tissue (e) before and (f ) after HMIFU ablation. (g) Gross pathology photograph of a FA specimen mounted on
the gel matrix, and the 3D reconstructed HMI of the selected tissue (h) before and (i) after ablation. The
brighter (darker) colors indicate higher (lower) HMI displacement and lower (higher) relative stiffness.

due to the high mechanical contrast. The setup can easily accommodate animals in vivo due to
the suspended waterbath, i.e. without incurring underwater submergence of the animals. The
mammary glands in the transgenic tumor model mice were imaged. Each animal was placed on
top of a platform (THM100, Indus Instruments, Houston, TX, USA) monitoring its tempera-
ture, ECG, and blood pressure, available in our laboratory during mouse imaging. A thermo-
couple manufactured out of 50 μm manganin and constantan wire was fed through a catheter
that was implanted in the superficial tumor. The B-mode image was used in order to visualize
the tumor and guide the catheter. The HIFU beam was thus properly aligned perfectly with
the thermocouple tip. The catheter is then removed prior to the sonications. The signal was
amplified and detected by an acquisition board (CS14200, Gage Applied Technologies, Lachine,
Canada), which was used to capture band-pass filtered RF data at the sampling frequency of
80 MHz. For the raster-scanning process, the transducer was moved along a 3D grid using a
computer-controlled positioner (Velmex Inc., Bloomfield, NY, USA) with a step size of 1 mm.
The system also allows control of the amplitude and frequency of the therapy beam.

Based on our preliminary results ex vivo (Figures 18.8 and 18.9) and in vivo (Figure 18.11),
sonication for 20–40 s was used and the tissue heating was monitored before, during, and after
ablation. Both the temperature and HMI measurements was acquired and stored for further
analysis. The HMI measurements were repeated in five locations in each tumor with target
temperatures within 45–80 ∘C to ensure coagulation. Our preliminary in vivo results in ten
(n= 10) mice enabled by our previous study indicated that the thermal lesion can be successfully
mapped when generated in the tumor, since the lesion is significantly harder than the tumor
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(Figure 18.11b) [45]. Twenty-five animals (n = 25) were used altogether after approximately 6
weeks, when the mammary tumor is expected to have reached 1 cm in diameter (Figure 18.11a).
In each animal, the tumor was scanned before, during, and after ablation. In the first ten ani-
mals, the thermocouple was inserted and kept in place in the tumor during ablation to validate
temperature resolution characteristics, temperature dependence, and coagulation onset detec-
tion of the HMIFU monitoring. In the remaining 15 animals, the same procedure was repeated
without the thermocouple so as to ensure minimal interference in the thermal treatment dura-
tion. All animals were anesthetized during the entire procedure using an isofluorane system
available in our laboratory. After HIFU treatment, the animals were sacrificed, and the HMI
images was compared with histological examinations of the tumors. This was performed in
both tumors in each mouse.
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18.4.2.2 Pancreatic Mouse Tumor Model
Dr. Kenneth Olive’s group has extensive experience in the development of mouse tumor mod-
els. We have used mice carrying conditional alleles for Brca1, Brca2, Bard1, and p53, which are
human cancer mutations known to result in mammary tumor growth in mice. However, the
mammary tumor was superficial and hence was not providing the challenge of a deep-seated
tumor. In accordance with the National Institutes of Health guidelines for animal research,
all animal procedures were reviewed and approved by the Institutional Animal Care and Use
Committee of the Columbia University. The animal model used was a transgenic mouse model
of pancreatic ductal carcinoma PDA, K-rasLSL.G12D/+; p53R172H/+; PdxCre (KPC) mice
[60, 61]. The KPC mice develop pancreatic tumors with pathophysiological and molecular fea-
tures resembling those of human PDA [60]. Feasibility in both accurately detecting the tumor
(Figure 18.12) and monitoring ablation (Figure 18.13) have been shown in those mice using
HMI and MIFU, respectively [62, 63].

18.5 Future Prospects

As indicated previously, despite the successful implementation of our approach with conven-
tional (focused) beamforming, our group has also developed parallel beamforming for HMI,
which we have found to be extremely advantageous due to the high frame rates involved accord-
ing to our initial feasibility. In this study, we used HMI and HMIFU (Figure 18.3) with parallel
beamforming and tested its capability for reliable displacement and modulus mapping in phan-
toms and ex vivo human breast specimens.

In order to precisely locate the pancreas, a high-frequency ultrasound imaging system
(Vevo 770, VisualSonics Inc. Toronto, Canada) coupled with a high-frequency ultrasound
probe (RMV-707B) of a nominal center frequency of 30 MHz was used [64–66]. The mouse
abdomen is first be scanned by the Vevo system to find the tumors in the KPC mice or normal
pancreases in the wild-type mice. Under the guidance of the Vevo system, a grid is then placed
in the water container above the mouse and adjusted so that the node on the grid will lie
directly above the targeted tumor location. The Vevo is then replaced by the HMIFU system
and the tumor was found by localizing a metallic grid [62]. Real-time 2D and/or 3D HMI
was performed during ablation in each location. Ablation onset, and therefore completion of
treatment in each lesion location, was detected based on the HMI displacement slope reversal
(Figures 18.2b and 18.5b). Our in vivo results in ten (n = 10) mice [62] indicated that the
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thermal lesion can be successfully mapped when generated in the tumor, since the lesion is
significantly harder (Figure 18.13) [62]. The tumor localization, temperature dependence, and
coagulation onset detection of the HMIFU technique was evaluated based on our preliminary
feasibility studies [45, 62]. Small tumors (<1 cm) as shown in our preliminary results in both
human and mouse tissues can be detected at the frequencies used in our HMIFU system due to
the high mechanical contrast. The same HMIFU system developed and evaluated is used. The
setup can easily accommodate animals in vivo due to the suspended water bath, i.e. without
incurring underwater submergence of the animals. As in our prior studies, the duration of 120
s was used that ensured the largest lesion size (∼1 cm) (Figure 18.13); therefore, for tumors
of up to 1 cm in diameter, four sonications with real-time steering was performed in four 2D
planes, i.e. 16 sonications for full tumor ablation, i.e. perilesional tissue of up to 1 cm is also
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Figure 18.13 HMI sequence of during HIFU ablation in mouse tumor (T) in vivo. The displacement decrease
indicates successful ablation in the tumor.

ablated. The transducer was moved 4 times since steering will not require physical movement.
This results in a total treatment duration of ∼30 min. Prior lesions did not affect monitoring in
individual locations given the differential nature of the measurement (Figure 18.13) [62].
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Shear Wave Dispersion Ultrasound Vibrometry
Pengfei Song and Shigao Chen
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19.1 Introduction

This chapter introduces an ultrasound imaging method called shear wave dispersion ultrasound
vibrometry (SDUV) that can quantify both tissue elasticity and viscosity noninvasively. SDUV
generates multi-frequency wide-band harmonic shear waves using both acoustic radiation force
(ARF) and external mechanical vibration to obtain the shear wave speed dispersion curve, from
which tissue viscoelasticity can be robustly estimated [1, 2]. SDUV has been used on a variety
of ex vivo and in vivo tissues including liver, heart, artery, kidney, prostate, and muscle. In this
chapter we will first provide reviews of the principles of the SDUV technique, followed by brief
reviews of existing clinical applications of SDUV.

19.2 Principles of Shear Wave Dispersion Ultrasound Vibrometry
(SDUV)

Shear wave speed (cs) in a homogeneous Voigt medium depends on the frequency of the shear
wave 𝜔s
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where 𝜌, 𝜇1, and 𝜇2 are the density, shear elasticity, and shear viscosity of the medium, respec-
tively [1]. The density of the soft tissue can be assumed to be 1000 kg/m3. If shear wave speed at
multiple frequencies can be measured (i.e. a shear wave dispersion curve can be obtained), one
can calculate both 𝜇1 and 𝜇2 by fitting the dispersion curve with a Voigt model. To achieve such
measurements, several SDUV setups have been proposed (Figure 19.1). The original setup used
single-element transducers to push at different frequencies and detect shear waves at different
spatial locations (Figure 19.1a) so that cs(𝜔s) can be obtained by

cs(𝜔s) = 𝜔sΔr
/
Δ𝜙s (19.2)

where Δ𝜙s = 𝜙1 − 𝜙2 is the phase change over the traveled distance Δr [1]. An alternative
approach is to use an array transducer and electronically move the push and detection beam
locations to achieve measurement of phase difference at different locations (Figure 19.1b). Both
these methods use ARF as the source for shear wave generation. SDUV can also be realized by
using external mechanical vibration (Figure 19.1c), where harmonic shear waves are produced
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Figure 19.1 Different SDUV implementations. (a) Two transducers are used, with one transducer generating
shear waves and the other transducer detecting shear waves at different locations. One can also fix the
detection transducer and move the push transducer to different spatial locations. (b) An array transducer is
used with electronically focused push and detection beams. (c) A external mechanical shaker-based setup
where harmonic shear waves are produced by a shaker and shear waves at different spatial locations are being
detected. Source: © 2009 IEEE, reprinted with permission from [1], and © Institute of Physics and Engineering in
Medicine, reproduced by permission of IOP Publishing. All rights reserved [3].

by a mechanical shaker and shear wave motion is detected at different spatial locations [3]. To
achieve multi-frequency broad-band shear wave excitation, the ARF-based SDUV approach
uses repeated push sequences at a certain pulse-repetition frequency (e.g. 100 Hz) to produce
shear waves at the fundamental frequency of the push pulse (e.g. 100 Hz) as well as shear waves
at the harmonics (e.g. 200, 300, and 400 Hz). The detection pulses are interleaved between the
push pulses to detect the wide-band shear wave signal.

Figure 19.2 shows a typical in vivo SDUV measurement in pig liver: one can see the harmonic
shear wave motion from the repeated push pulses at different spatial locations (Figures 19.2a
and 19.2b); the shear wave phase at different frequencies can be estimated at different posi-
tions (Figure 19.2c), from which a frequency-dependent shear wave dispersion curve can be
obtained and fitted to a Voigt model to calculate elasticity and viscosity (Figure 19.2d). Another
approach of implementing SDUV is to replace the push transducer with a mechanical shaker,
which can vibrate at different frequencies to generate multi-frequency broad band shear waves
(Figure 19.2c) [3–5]. More robust shear wave signals with higher amplitude can be produced by
use of such methods. Also, mechanical vibration does not rely on generating shear wave har-
monics from the fundamental frequency, which improves the shear wave signals especially at
the harmonics and higher frequencies. However, the mechanical vibration approach needs cer-
tain mechanical coupling between the shaker and the tissue (ideally by direct contact), which
limits its in vivo implementations in deep organs such as heart and kidney.

One practical challenge of the original SDUV technique is that the repeated push pulse
may result in excessive transducer and tissue heating. Another challenge is that since multiple
repeated push and detection cycles are needed, the total data acquisition time can be long,
which makes the method vulnerable to tissue physiological motion. To resolve these issues, a
single push pulse-version of SDUV was developed by Bernal et al., in which a short tone-burst
of push pulse is used to produce a wide-band shear wave signal, and by use of k-space analysis
(i.e. Fourier transform) of the shear wave spectrum one can obtain frequency-dependent shear
wave speeds and calculate both elasticity and viscosity [6] (Figure 19.3). In the 2D k-space
analysis, the dominant or highest energy points at each frequency are extracted and used
to calculate the phase velocity of the shear wave (Figures 19.3b–19.3e). A similar approach
using phase gradient analysis for shear wave dispersion named shear wave spectroscopy
was proposed by Deffieux et al. [7], in which the supersonic shear imaging (SSI) push beam
configuration was used to excite broadband transient shear wave signals. These transient shear
wave-based dispersion analysis approaches only need a single push-detect data acquisition
cycle, which is more practical for in vivo applications. However, these methods may not be
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Figure 19.2 In vivo SDUV measurement in liver: (a) shear wave motion signal at location 0 mm; (b) shear wave
motion signal at location 2 mm; (c) phase-position plot calculated from the shear wave motion signals; and (d)
shear wave speed dispersion curve and the Voigt-model fitting results for elasticity and viscosity. Source: ©
2009 IEEE, reprinted, with permission, from [1].

able to produce sufficiently wideband shear wave signals in vivo, which results in poor shear
wave dispersion analysis.

19.3 Clinical Applications

19.3.1 Tissue-mimicking Phantoms

Early work on SDUV showed that in tissue-mimicking phantoms, the viscoelastic properties
of a gelatin phantom could be well characterized by SDUV and were in good agreement to
the properties found using another independent method involving an embedded sphere [8].
Zhang and Greenleaf also demonstrated using the SDUV principle to estimate surface wave
dispersion over a range of 100–400 Hz on a tissue-mimicking phantom [9]. Nenadic et al. used
SDUV to analyze Lamb and Rayleigh wave dispersion on plate gelatin phantoms and studied
geometry-dependent tissue dispersion [3, 10, 11]. Bernal et al. used the single-push dispersion
analysis to study the wave dispersion in an artery-mimicking urethane tube under different
transmural pressures [6]. Recently, Zhu et al. used SDUV to quantify the viscoelasticity of
oil-in-gelatin phantoms and reported significantly increased tissue viscosity with increased oil
concentration [12].
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19.3.2 Liver

SDUV was first demonstrated to be able to provide both elasticity (2.2 ± 0.63 kPa) and viscosity
(1.96 ± 0.34 Pa⋅s) measurements from in vivo porcine liver that were in good agreement with
MRE results [1]. Deffieux et al. used the shear wave spectroscopy method based on SSI and
showed that human liver is very dispersive and ranges from 1.2 m/s to 3 m/s from 75 Hz to
459 Hz [7]. Chen et al. used the SDUV technique to investigate the value of viscosity in liver
fibrosis staging and showed that elasticity and viscosity measured between 95 Hz and 380 Hz
are correlated and both can be used to stage liver fibrosis, although elasticity had a better AUC
than viscosity (0.98 vs. 0.86) [13]. A similar observation was reported from an in vitro rat liver
study in which viscosity was found to be not as robust as elasticity for liver fibrosis staging
[14]. The impact of tissue viscosity on liver fibrosis staging using shear wave speed was recently
studied by Nightingale et al. and it was showed that the cutoff shear wave speed value for differ-
entiating advanced fibrosis from mild-to-moderate fibrosis is frequency-dependent [15]. This
is an important factor that needs to be accounted for when comparing shear wave speed mea-
surements from different commercial machines or imaging modalities.

19.3.3 Skeletal Muscle

Skeletal muscle is a highly anisotropic material and exhibits different elasticity and viscosity
along different fiber orientations. Chen et al. used SDUV on ex vivo bovine muscle and reported
elasticity of 29 kPa, viscosity of 9.9 Pa⋅s when imaging along the fiber, versus elasticity of 12 kPa
and viscosity of 5.7 Pa⋅s when imaging across the fiber [1]. Urban et al. measured shear vis-
coelasticity of ex vivo porcine muscle and also reported higher elasticity and viscosity along the
fibers than across the fibers [16, 17]. Deffieux et al. [7] and Gennisson et al. [18] used a SSI-based
shear wave spectroscopy technique and reported similar behavior of shear elasticity in in vivo
human muscle under different loading conditions (Figure 19.4), but opposite viscosity behav-
ior: shear viscosity is very small along the fiber than across the fiber, which suggests that muscle
is more dispersive across the fiber and almost nondispersive along the fiber (Figures 19.4c and
19.4d). One possible reason contributing to the different results is that the muscle tissue in Chen
et al. and Urban et al. was ex vivo and from the loin, while Deffieux et al. and Gennisson et al.
conducted the study in vivo on human biceps muscle. The difference in the muscle materials
and the muscle activities may have an influence on the elasticity and viscosity measurements
from these studies [2]. To date, no studies have been reported using muscle viscosity as a clinical
biomarker for musculoskeletal pathology.

19.3.4 Heart

The viscoelastic properties of the heart throughout a cardiac cycle have been investigated
using the SDUV technique on in vivo porcine hearts [4, 5, 19–22]. Mechanical vibration was
mainly used in these studies to obtain robust multi-frequency broadband shear wave signals
(Figure 19.5). Nenadic et al. proposed to use a Lamb wave model instead of a shear wave model
to fit the myocardial mechanical waves due to the plate-like geometry of the myocardial wall
[10]. Pislaru et al. first investigated the feasibility of using SDUV in vivo using a pig model
and reported 𝜇1 = 1.7 kPa and 𝜇2 = 3.2 Pa⋅s for diastole, and 𝜇1 = 31.0 kPa and 𝜇2 = 5.0 Pa⋅s
for systole [19]. Urban et al. used a similar setup and studied eight pigs in an open-chest
preparation, reporting 𝜇1 = 1.5 kPa and 𝜇2 = 2.5 Pa⋅s for diastole, and 𝜇1 = 28.3 kPa and
𝜇2 = 2.1 Pa⋅s for systole when using a shear wave frequency ranging from 50 to 400 Hz [4].
Recently Pislaru et al. studied the viscoelastic properties of normal and infarcted myocardium
using the SDUV approach and found that both end-diastolic 𝜇1 and 𝜇2 and systolic 𝜇2
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Figure 19.4 Shear wave signal (a) along the muscle fiber and (b) across the muscle fiber with 0 kg loading
conditions. (c) Shear wave dispersion curves along the muscle fiber under different loading conditions. (d)
Shear wave dispersion curves across the muscle fiber under different loading conditions. Source: reprinted
from [18], copyright 2010, with permission from Elsevier.

increased after reperfusion of the infarcted myocardium, indicating that infarcted perfused
myocardium was significantly stiffer and more viscous than normal myocardium [5]. For
clinical applications, it is challenging to use such a mechanical vibration-based SDUV setup
and open-chest procedure to evaluate myocardial viscoelasticity. Although acoustic radiation
force-based shear wave methods can remotely generate shear waves trans-thoratically, it is
challenging to obtain robust shear wave signals with wide bandwidth to support shear wave
dispersion [23]. On the other hand, shear elasticity can be more robustly measured from
transthoracic scans among non-obese patients with ideal acoustic windows [24]. However, so
far only diastolic myocardial shear elasticity has been reported by use of transthoracic scan.
Systolic measurements are very difficult to obtain because the myocardium is much stiffer in
systole, and consequently shear wave motion can be very small and shear wave speed can be
very high, both resulting in unreliable shear elasticity estimates. More robust technique needs
to be developed to quantify myocardial viscoelasticity throughout the cardiac cycle.

19.3.5 Prostate

SDUV can quantify the shear elasticity and viscosity of the prostate tissue and potentially be
used for diagnosis of prostate cancer. Mitri et al. used the SDUV to measure the viscoelasticity
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and viscosity 𝜇2 by curve fitting the experimental data with a Lamb wave model; (d) calculation of the shear
elastic modulus from stress-strain data. Source: reprinted from [5], copyright 2014, with permission from
Elsevier.

of excised human prostate (Figure 19.6) and reported 𝜇1 of 1.78 kPa and 𝜇2 of 1.11 Pa⋅s [25].
Although previous studies based on shear wave elasticity imaging (SWEI) have shown correla-
tions between prostate pathology and shear elasticity (i.e. shear wave speed) [26–28], the role of
viscosity in prostate cancer detection still remains unknown. However, like liver fibrosis stag-
ing, the frequency-dependent shear wave speed or shear elasticity needs to be accounted for
when setting up cutoff values for diagnosis.

19.3.6 Kidney

Kidney viscoelasticity is related to various kidney diseases or dysfunction such as renal fibrosis,
hypertension, and renal transplant rejection. SDUV has been implemented on kidney to
quantify elasticity and viscosity in both in vitro and in vivo settings [29–33]. For normal
kidney, Amador et al. reported average cortex elasticity of 1.81 ± 0.17 kPa and viscosity of
1.48 ± 0.49 Pa⋅s [32]. Both shear elasticity and shear viscosity were found to be correlated
to kidney anisotropy [32]. By submerging kidney in formalin, both shear elasticity and shear
viscosity significantly increased, resulting from the formation of methylene bridges induced by
formaldehyde [32]. In vivo clinical application of SDUV on kidney faces the same penetration
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Figure 19.6 Examples of an SDUV viscoelasticity measurement of an excised human prostate: (a) shear wave
motion signal from three different locations at different distance from the push origin; (b) shear wave phase as
a function of propagation distance at different frequencies; (c) shear wave dispersion curve with Voigt model
fitting; (d) repeated measurements from the same location with Voigt model fitting. Source: © 2011 IEEE,
reprinted, with permission, from [25].

challenge as the heart application because the native kidney is typically deep from the body
surface. This results in poor shear wave generation and detection and consequently suboptimal
shear wave signal. For kidney transplants, however, the depth is typically very shallow and thus
ideal for SDUV and other shear wave applications. In addition to the penetration issue, other
challenges for kidney applications include the anisotropic nature of the kidney tissue, which
results in different shear elasticity and viscosity measurements with shear waves propagating
at different angles to the renal fiber. Another confounding factor in kidney application is that
shear elasticity and viscosity may be pressure dependent and needs to be accounted for when
interpreting results.

19.4 Summary

In this chapter we introduced the shear wave dispersion ultrasound vibrometry (SDUV) tech-
nique that first introduced the concept of using ultrasound to remotely quantify elasticity and
viscosity of the soft tissue. Different configurations of SDUV have been developed using acous-
tic radiation force and external mechanical vibration. The concept of SDUV has been extended
to using a transient shear wave signal and dispersion analysis to quantify tissue viscoelasticity.
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SDUV has been performed in both ex vivo and in vivo tissues. Several clinical applications
of SDUV and other similar techniques that provide viscoelasticity measurements have been
briefly reviewed. Future directions include developing and exploring different physical models
that take both the geometry and boundary conditions of the tissue into account for dispersion
curve analysis; developing improved shear wave generation and detection methods to improve
the shear wave signal quality, facilitating more robust and accurate estimates of both elasticity
and viscosity; and continuing investigating the role of viscosity and exploring potential clinical
applications that can use viscosity as a new biomarker.
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20.1 Introduction

Initially developed with the critical aim of improving the management of deadly breast and
prostate cancers, elastography eventually succeeded in the field of diffuse liver diseases. As a
matter of fact, liver diseases are very common diseases which have long been known as affect-
ing liver stiffness. In Aphorisms from more than two thousand years ago, Hippocrates noticed
that it is a bad sign if the liver becomes hard during a jaundice. The breakthrough of quanti-
tative elastography of the liver came with the development of Vibration-Controlled Transient
Elastography based FibroScan® which is now considered as the noninvasive standard for the
measurement of liver stiffness. Today liver stiffness is widely used as a surrogate marker of liver
fibrosis, which is part of the structural and functional alterations in most chronic liver dis-
eases. Among chronic liver diseases, hepatitis C and B lead to nearly 1.4 million deaths every
year according to the World Health Organization. The principles of transient elastography are
presented in this chapter. The FibroScan® device is detailed, along with a clinical review of its
applications to liver diseases. Other applications of transient elastography are discussed in the
last part of this chapter.

20.2 Principles of Transient Elastography

Though transient elasticity imaging refers to elastography techniques that rely on the use of
transient shear waves, the term “transient elastography” specifically addresses transient elas-
ticity imaging methods in which the transient shear waves are induced mechanically. Indeed,
the methods developed for transient elastography were extended to radiation force based shear
wave generation.

20.2.1 Elastic Wave Propagation in Soft Tissues

The human body has very long been considered by the ultrasound community as a fluid. In
1987, Krouspok et al [1] started to study the shear wave inherent to any solid. Harmonic vibra-
tions were generated on the surface by mechanical vibrators and the induced shear waves were
tracked using Doppler imaging; this is the so-called sonoelasticity. However, these early obser-
vations of elastic wave propagation in soft tissues were not clearly understood: for example,
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the observed shear wave was longitudinally polarized and, its phase velocity was puzzlingly
increasing at low frequency [2]. In 1999, together with a pulsed or transient generation of shear
waves, a theoretical approach of elastic wave in soft solids was reported [3, 4]. It was based
on the exact solution of the elastodynamic equation, namely the Green’s function. This solu-
tion, mentioned in numerous textbooks [5, 6], was first given by Stockes in 1849 and was later
adapted to semi-infinite solids [7]. It was shown that the shear wave field measured at a few
wavelengths from the source in soft tissues using transient elastography was under the influence
of the near field. This near field, usually neglected in the ultrasound community, is responsible
for the strange polarization of the shear wave as well as for the phase velocity behavior. The the-
oretical approach of Oestreicher [8], based on an oscillating sphere embedded in a viscoelastic
medium, is worth mentioning [9]. However, the computation treats separately the two shear
and compression wave equations without a source. As a consequence, Oestreicher’s solutions
for an infinitely small sphere are incompatible with the Green’s function, except in the far field.
In elastography, the importance of the near field is such that the exact solution of the Green’s
functions are needed. For source size bigger than a shear wavelength (typically a few centime-
ters), the diffraction effect based on the Green’s function decomposition was shown to nicely
fit experimental data [10]. But some questions remained: the near-field term, sometimes called
the coupling term, responsible for the longitudinally polarized shear wave on the axis of a piston
source is neither curl-free nor divergence-free. Thus does this shear wave deserve its name? In
a recent approach [11], the near-field term was split into a divergence-free term and a curl-free
term. It does not change anything about the Green’s function but allows us to clearly identify
the compression wave and the shear wave. As shown in Figure 20.1, not only the shear wave
can be longitudinally polarized but also a compression wave can be transversely polarized. The
longitudinal shear wave and the transverse compression wave are located inside the dashed
boxes called Zoom #1 and #2. The Zoom #1 box shows the transverse compression wave which
propagates at the compression wave speed with a wave vector q. The transversal component
of displacements along the vertical axis of symmetry is clearly apparent (arrows). The strain
sequence illustrated in the upper right panel implies neither volume change nor particle veloc-
ity circulation: it is divergence- and curl-free. The Zoom #2 box shows the longitudinal shear
wave which is subjected to a special strain field propagating at the shear speed with a wave
vector k. It is represented as a semi-transparent rectangle. The longitudinal component of dis-
placements along the horizontal axis of symmetry is clearly apparent (black and red arrows).
The strain sequence illustrated in the upper right panel implies neither volume change nor
particle velocity circulation: it is divergence- and curl-free.

20.2.2 Early Developments of Transient Elastography

Transient elastography emerged in the late 1990s [3, 4, 12]. At that time the objective was to
overcome limitations of existing quantitative elastography techniques such as magnetic res-
onance elastography [13] or sonoelastography [1, 14]. As a matter of fact, in dynamic elas-
tography techniques, the medium is stimulated with a continuous vibration which induces
interference nodes due to reflections at boundaries. The sensitivity to boundary conditions
is reduced in transient elastography by using a transient excitation which allows the separa-
tion of compression and shear waves and avoids the presence of interference nodes within the
investigated medium. Indeed, the speed of compression waves is orders of magnitude supe-
rior to the shear wave speed. As transient shear waves travel through the tissues within tens of
milliseconds (typical speed ranging from 1 to 10 m/s), the ultrasound-based imaging modal-
ity needs to be ultrafast to be able to track the shear wave propagation. Indeed the displace-
ments induced by the shear wave propagation are obtained using cross-correlation algorithms
applied to the raw ultrasound A-lines which are divided into segments as a function of depth.
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Figure 20.1 Elastic Green’s function. The dilatational wave and the shear wave are clearly visible at angles
Θ = 0 and Θ = 𝜋/2. Source: reprinted with permission from [11], copyright 2015, Acoustical Society of America.

Cross-correlation analysis is used to measure the similarity of two windows obtained at differ-
ent times as a function of the lag of one relative to the other. Commonly used cross-correlation
matching algorithms are normalized cross-correlation, sum of absolute differences, and sum
of squared differences. Frame rates of several thousand per second are be obtained to measure
the displacements induced by the shear wave propagation. Initially used to follow the propa-
gation of mechanically induced shear waves [12, 15], ultrafast imaging was later used to follow
the propagation of shear waves induced by radiation-force as proposed in the early 1990s by
Sugimoto et al. [16] and later developed by other groups [17–19].

20.2.3 1D Transient Elastography: A Purely Longitudinal Shear Wave

Transient elastography yielded the development of an average stiffness measurement method
referred as 1D transient elastography [20]. The technique relies on a single element ultrasound
transducer and a mechanical actuator. The ultrasound transducer and the vibrator are located
on the same axis. As shown in Figure 20.2, two modes have been described so far: the transmit
mode, where the ultrasound transducer and the vibrator are located on opposite sides of the
medium, and the reflection mode, in which the ultrasound transducer is mounted on the axis
of the vibrator. The reflection mode is very favorable not only because it does not require access
to two sides of the investigated object, but also because it ensures a perfect alignment of the
ultrasound and shear wave axis of propagation. Interestingly, when the ultrasound transducer
is mounted on the axis of the vibrator, the low-frequency shear wave and the ultrasound sig-
nals are generated by the same piston-like transducer. Indeed, the ultrasound beam coincides
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Figure 20.2 In 1D transient elastography, the ultrasound transducer and the vibrator are located on the same
axis. They may be located (a) on opposite sides of the medium (transmit mode) or (b) on the same side
(reflection mode).

with the vibrator axis, which means that only purely longitudinal displacements can be mea-
sured with this setup under the assumption of homogeneity. The observation of a longitudinally
polarized shear wave on the axis of symmetry is a consequence of the diffraction effects from the
piston-like transducer surface and the presence of the so-called coupling term [10]. A technique
called maximum likelihood estimation (MLE) [21] was developed to compensate for the diffrac-
tion effects observed in transient elastography. MLE is based an analytical approximation of the
displacements induced in the medium. Green’s functions are being computed with the geom-
etry of a semi-infinite medium hit by a circular piston. The MLE technique enables improve-
ments of shear wave speed estimation by transient elastography in homogeneous semi-infinite
media. 1D transient elastography was successfully applied to in vivo measurement of liver stiff-
ness [22]. This technique was also applied to the assessment of viscoelastic properties of blood
during clotting [23], to the assessment of arterial stiffness in vitro [24], to the monitoring of
heat-induced changes in fresh bovine skeletal muscle samples [25], and to the assessment of
thin-layered soft tissue stiffness [26].

20.2.4 Ultrafast Imaging for Transient Elastography

The development of ultrasound-based transient elastography for elasticity imaging was made
possible through the use of programmable electronic platforms for ultrasound. These electronic
platforms were originally designed by Jean-Michel Hasquenoph for time-reversal mirror exper-
iments in nondestructive evaluation [27]. Dedicated programming of these platforms allowed
the development of ultrafast imaging to track the displacements induced by transient shear
waves in soft tissues using 2D transient elastography [12, 15, 28]. As a matter of fact, by using
plane wave illumination instead of standard ultrasound beamforming, the frame rate of an ultra-
fast programmable electronic platform is only limited by the travel time of ultrasound and is
therefore able to reach several thousands of frames per second. Depending on the attenua-
tion of the medium and the ultrasound frequency being used, it can reach several thousands of
frames per second. The limitations of high frame rate imaging are the image dynamic and the
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sensitivity to heterogeneities which affect the ultrasound plane wave. Indeed focusing only in
receive mode does allow a higher frame rate but it is not likely to be used as itself for standard
ultrasound imaging where image quality is crucial.

20.2.5 Validation on Phantoms

Few manufacturers provide tissue-mimicking phantoms compatible with quantitative elas-
tography techniques. Indeed such phantoms should not only mimic ultrasound properties
of soft tissues but should also have similar viscoelastic properties. Therefore, Oudry et al.
[29] proposed the use of copolymer in oil as a new material for testing shear wave-based
ultrasound elastography devices. CIRS (CIRS Incorporated, USA) manufactures quantitative
elastography phantoms using a patented elastic material (Zerdine®) that are compatible with
transient elastography. The stiffness of manufactured phantoms is measured using ASTM
standards D575-91 [30]. Since viscoelastic properties of phantoms are influenced by the
applied force [31], it is important to apply minimal force on the phantom surface when mea-
suring stiffness for performance evaluation. Oudry et al. [32] evaluated stiffness of phantoms
using two common mechanical techniques, quasi-static compression (QSC) and dynamic
mechanical analysis (DMA), and two techniques based on shear wave propagation, VCTE
and hyper-frequency viscoelastic spectroscopy (HFVS). All measurements were performed at
50 Hz except for QSC.

20.3 Fibroscan

20.3.1 An Average Stiffness Measurement Device

FibroScan® was introduced by Echosens (Paris, France) which was founded in 2001
(co-founders: Laurent Sandrin, Jean-Michel Hasquenoph, Sylvain Yon, Bertrand Fourquet).
Early research and development activities were performed between 2001 and 2002 during a
pilot trial at the Institut Montsouris (Paris, France). The commercialization of FibroScan®started in December 2003. The most recent model is FibroScan 502 Touch (Figure 20.3). The
background technology, vibration-controlled transient elastography (VCTE) [22, 33, 34], is
covered by several US patents and their foreign counterparts. Though the algorithms it involves
are complex, the basic principle of FibroScan® remains simple: a single element ultrasound
transducer is mounted on the axis of a mechanical actuator (Figure 20.3b).

As shown in Figure 20.4, the ultrasound transducer emits and receives ultrasound to mea-
sure the displacements induced in the medium by the propagation of a low-frequency (50 Hz)
transient shear wave induced by the displacement of the ultrasound transducer. The technique
is taking advantage of two interesting effects: diffraction effects due to the piston-like vibrator
surface and the existence of a coupling term. As the low frequency shear wave and the ultra-
sound signals are generated by the same piston-like transducer, longitudinal displacements due
to the shear wave propagation through the liver can be measured using the ultrasound RF sig-
nals. Cross-correlation techniques are applied to the successive ultrasound RF lines acquired
at high pulse repetition frequency (PRF) of 6 kHz. A spatial-temporal strain map is computed
from the recorded displacements. The shear wave front can be observed in the strain map.

The average shear wave speed is calculated using proprietary algorithms and the average stiff-
ness is deduced according to the well-known equation

E = 3𝜌V 2
s (20.1)

where E is the Young’s modulus, V s is the shear wave speed, and 𝜌 is the mass density. This
also assumes an isotropic, homogeneous, and incompressible material. Three spatial-temporal
strain maps measured in livers of increasing stiffness are shown in Figure 20.5.
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Figure 20.3 (a) FibroScan® 530 Compact and (b) FibroScan® 502 Touch with (c) M, S and XL probes.
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Figure 20.4 Typical VCTE acquisition. Ultrafast ultrasound acquisitions (PRF = 6 kHz) are performed during the
propagation of a shear wave induced by a 50 Hz center frequency transient excitation.
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Figure 20.5 The shear wave slope (white dotted line) gets steeper as the stiffness of the medium increases: (a)
normal liver; (b) medium stiff liver; and (c) cirrhotic liver. The shear wave speed is measured between 25 and
65 mm depth under the skin surface.

20.3.2 Probes Adapted to Patient Morphology

Several probes are being used with FibroScan® depending on the patient morphology. The M
probe is the most common probe. It is based on a 3.5 MHz ultrasound transducer of 7 mm
active diameter. Larger adults may be measured using the XL probe which signal penetrates
deeper within the tissue as the center ultrasound frequency is decreased to 2.5 MHz and the
active diameter increased to 10 mm. The S probe is used for measuring small adults or chil-
dren, with a 5 mm active diameter transducer of 5.0 MHz. The amplitude of vibration for shear
wave generation varies depending on the probe. The amplitude is 1 mm peak-to-peak with the
S probe, 2 mm peak-to-peak with the M probe, and 3 mm peak-to-peak with the XL probe.
Simulated acoustic fields in water of the three different ultrasound transducers are shown in
Figure 20.6. Simulations were performed using Field II [35, 36].

20.3.3 Narrow Band and Controlled Shear Wave Frequency Content

The term “vibration-controlled” in VCTE was chosen to emphasize the importance of control-
ling the shape of the vibration to perform reproducible liver stiffness measurements. As shown
in Figure 20.7, soft tissue viscoelastic properties vary as a function of frequency. The stiffness
of a fresh liver sample can vary between 2 kPa at 50 Hz and 10 kPa at 400 Hz. It is therefore
crucial to control the shear wave frequency. FibroScan® controls the shear wave frequency by
two means. First FibroScan® generates a narrow band shear wave frequency content centered
at 50 Hz which limits the influence of the dispersion of shear wave speed. Second it uses a
servo-controlled motion actuator to precisely control the shape of the vibration: one period of
a sinusoid at a center frequency of 50 Hz. The amplitude of the sinusoid varies as a function of
exam type and therefore patient morphology. This control is important to ensure that the shape
of the low-frequency excitation not be distorted. As a matter of fact, without a servo-controlled
motion actuator, a frequency shift towards lower frequencies would be observed as the force
applied on the tip of the probe increases.

The control of the shear wave frequency content is a significant advantage of VCTE compared
to radiation-force based elastography techniques [16, 17, 37] which do not control the shear
wave frequency content and therefore present depth-dependent and frequency-dependent bias
[38–40]. Indeed, the frequency content of shear waves generated using radiation-force depends
on several factors: the depth of measurement as the ultrasound frequency content changes with
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Figure 20.6 Simulated acoustic fields of S, M, and XL transducers.

depth due to the frequency dependence of attenuation at ultrasonic frequencies, the ultrasound
transducer center frequency, the ultrasound transducer excitation duration. and the stiffness of
the tissue at the location of the push due to radiation-force.

20.3.4 Low Acoustic Output Power

Using large acoustic output power is not recommended in some fragile patients or in the pres-
ence of disorders that may affect blood circulation and therefore the thermal convection in
tissues. FibroScan® uses very limited acoustic output power since it only requires a single ele-
ment ultrasound transducer. The peak (Isppa.3 ≈ 50 W/cm2) and average (Ispta.3 ≈ 15 mW/cm2)
acoustic output power are below the limits (Isppa.3 < 190 W/cm2 and Ispta.3 < 94 mW/cm2) for
abdominal imaging given by the relevant international standard (IEC60601-2-37) and therefore
the thermal and mechanical indices do not even need to be displayed.

20.3.5 Standardized Examination Procedure

Depending on patient morphology and device (older devices include a slower CPU), the exami-
nation usually lasts between 1 and 5 minutes. The examination is highly standardized in order to
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Figure 20.7 Elasticity of fresh and boiled pig liver samples as function of frequency. Measurements performed
by viscoelastic spectroscopy. Source: courtesy of Rheolution Inc.

improve the overall performance. As shown in Figure 20.8, the probe is placed in the intercostal
position in front of the right lobe of the liver at the level where a biopsy would be performed.
The patient is lying in dorsal decubitus, with the right arm elevated to enlarge the intercostal
spaces. The tip of the probe is contacted to the intercostal skin with coupling gel in the 9th to
11th intercostal space at the level where a liver biopsy would be performed.

The operator locates the measurement location using A-mode and TM-mode ultrasound
images (Figures 20.9a and 20.9b). It is recommended that the measured liver portion be free
of large vessels on A-mode and TM-mode ultrasound images and at least 6 cm deep. Interest-
ingly, the measurement location is where a biopsy would be performed. The force applied on

Figure 20.8 FibroScan® probe is placed in intercostal position in front of the right lobe of the liver. The patient
is lying in dorsal decubitus and the right arm in maximal abduction in order to enlarge the intercostal space.
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(a) (b) (c)

(f)

(d)

(e)

Figure 20.9 During the examination procedure, the operator locates the liver using TM-mode (a) and A-mode
(b) ultrasound images. The applied force is displayed (d). The slope of the shear wave is represented by a white
line on the shear wave propagation map (c) as a function of depth and time. The result (f ) is the median of the
individual valid measurements (e).

the patient skin at the tip of the probe is monitored during the exam. This monitoring does not
aim to avoid direct compression of the liver as the ribs prevent direct compression of the liver.
The force is monitored in order to ensure that the contact is sufficient to allow a correct shear
wave transmission through the subcutaneous tissues while not being too high, which could dis-
tort the shear wave excitation shape. With M probe, the operator can trigger a measurement
when the force lies within 4 to 8 N. A force indicator is used to assist the operator in getting a
correct force value (Figure 20.9d). Data acquisition is almost instantaneous as data are acquired
in only 80 ms and the processing time for each measurement ranges from 1 second to 3 seconds
depending on FibroScan® model. The shear wave propagation map is displayed to the opera-
tor (Figure 20.9c). The average shear wave speed is measured within the 25 to 65 mm depths
(M probe). A validity criteria is computed for each measurement. Invalid measurements are
automatically rejected. A single valid measurement provides an estimate of the group shear
wave speed around 50 Hz. Thereafter individual stiffness measurements are derived using Eq.
(20.1). The median of valid measurements is kept as the final stiffness value (Figure 20.9f ). The
interquartile range (IQR = Q3 – Q1) value is provided as an indicator of the values disper-
sion (Figure 20.9e). Operators usually stop the examination after 10 valid measurements are
obtained. FibroScan® can measure stiffness values in the range 1.5 kPa to 75.0 kPa.

20.4 Application of Vibration-controlled Transient Elastography
to Liver Diseases

As of today there are more than 1000 publications in peer-reviewed journals and more than
30 guidelines issued by professional societies about liver stiffness measurement (LSM) by
FibroScan® for the management of patients with chronic liver diseases, which together make
transient elastography (TE) by FibroScan® the noninvasive standard for LSM [41].
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20.4.1 A Questioned Gold Standard

Most of the studies on noninvasive liver fibrosis tests use liver biopsy as the gold standard.
Actually, the gold standard positioning of liver biopsy is more and more a matter of debate.
Indeed, sampling errors and inter-observer variations limit the performance of liver biopsy for
fibrosis staging. By using the METAVIR scoring system and a digital approach to artificially
create virtual liver biopsy specimens, Bedossa et al. [42] showed that only 75% of liver biopsies
were correctly categorized with 25-mm long specimens which corresponds to large specimens.
Obviously the 100 % area under the ROC curves is not a correct objective to define a good
noninvasive liver fibrosis test.

20.4.2 Viral Hepatitis

The first chronic liver disease in which LSM has been studied is viral hepatitis including HCV
mono-infection [33, 34, 43–47], HBV mono-infection [48–52], and HIV co-infected patients
[53–55]. Based on this large body of evidence, TE with FibroScan® is now recommended for
use in all HCV patients as a screening tool to exclude cirrhosis and also to prioritize patients
for antiviral therapy based on disease stage, as a better predictor than serum biomarkers for
the prediction of advanced liver fibrosis and cirrhosis in HBV patients, and as a first line tool
to exclude severe fibrosis and cirrhosis in HBV inactive carriers [41].

20.4.3 Fatty Liver Disease

The second group of chronic liver diseases where the use of LSM is of growing interest is fatty
liver disease, either related to alcohol abuse [56, 57] or to metabolic syndrome [58, 59]. Though
the existing literature in this field is not as comprehensive as for viral hepatitis, TE is also
recommended as a first line procedure for the identification of patients at low risk of severe
fibrosis/cirrhosis in alcoholic liver disease and non-alcoholic fatty liver disease [41].

20.4.4 Other Diseases

To complete the range of chronic liver diseases, the benefits of LSM have also been shown
in conditions such as primary biliary cirrhosis [60–65], biliary atresia [66–72], cystic fibrosis
[73–77], auto-immune hepatitis [78], hemochromatosis [79], diabetes [80–82], and Wilson’s
disease [76, 83].

20.4.5 Cirrhosis

LSM has also been shown to have utility beyond the assessment of liver fibrosis stage. Indeed,
liver cirrhosis is the most advanced stage of chronic liver disease as defined histologically. How-
ever, cirrhosis is further subdivided into compensated and decompensated cirrhosis, the latter
being defined by the occurrence of complications such as portal hypertension and its conse-
quences (ascites, esophageal varicose veins, and encephalopathy) or hepatocellular carcinoma.
Several studies have therefore evaluated the relationship between LSM and the occurrence of
complications of cirrhosis [56, 84–94]. Today, in settings where hepatic venous pressure gra-
dient measurement procedure is not available, TE is proposed to stratify patients at risk of
clinically significant portal hypertension [41].

20.4.6 Prognosis

At last, there is increasing evidence for the prognostic value of LSM in patients [41]. The first
study evaluating prospectively and longitudinally the prognosis value of LSM was performed
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in Japan for the assessment of the risk of developing hepatocellular carcinoma in patients with
chronic hepatitis C [95]. In another cohort of patients with primary biliary cirrhosis, progres-
sion of LSM was associated with increased risk of liver decompensation, liver transplantation,
or death [65]. Finally, overall survival, and survival without liver-related death, were shown to
be significantly associated with LSM and LSM progression in HCV and HBV patients [96–98].

20.4.7 Confounding Factors

As previously mentioned, FibroScan® measures a physical parameter (LSM) directly from the
liver parenchyma. Initially, the first publications established that LSM was closely correlated
to liver fibrosis [34] but the following 10 years of feedback and publications now provide a
clearer understanding of the different clinical parameters affecting LSM. Indeed, independent
of fibrosis, many factors may also increase LSM. The most well-known and widely studied is
inflammation (or hepatitis). LSM can dramatically increase during acute hepatitis or transam-
inase flares [99–102] independently of the degree of fibrosis. Other factors identified so far are
extrahepatic cholestasis [103], liver congestion and venous pressure due to cardiac insufficiency
[104], and amyloid deposit [105–107].

20.4.8 The Pressure–Matrix–Stiffness Sequence Hypothesis

Mueller et al. [101] have introduced the paradigm of pressure–matrix–stiffness sequence
hypothesis, which basically explains that liver stiffness is not only a consequence of liver
fibrosis. Actually, the accumulation of interstitial liquid and inflammatory infiltrate during the
course of chronic liver diseases yields to an increase mechanical stress. This stress not only
translates into a stiffness increase but also stimulates fibrotic tissue growth and therefore the
production liver fibrosis which eventually results in a permanent stiffness increase. Thus even
before liver fibrosis starts to expand in the liver parenchyma, transient liver stiffness increase
can be measured.

20.4.9 Advanced Applications: CAP

In vivo liver stiffness measurement with FibroScan® has been successfully combined with the
measure of ultrasound attenuation to provide another physical parameter independent to liver
stiffness which is related to steatosis. This parameter named controlled attenuation parame-
ter (CAP) and expressed in dB/m [108, 109] is an estimate of the total ultrasonic attenuation
(forward-and-return paths) at 3.5 MHz. CAP is evaluated using the same ultrasound signals
used to measure the liver stiffness and is only appraised if the stiffness is “valid” so as to ensure
that the operator gets an estimate of liver ultrasound attenuation in the liver exclusively. Many
studies have demonstrated the good to excellent diagnostic accuracy of CAP using the M probe
of the FibroScan® taking liver biopsy as a gold standard (see for instance [110–112]). More
recently CAP was developed on the XL probe of the FibroScan® showing a good diagnostic
accuracy similar to the CAP on the M probe [113, 114].

20.4.10 Spleen Stiffness Measurements

Esophageal varices (EV) represent one of the most severe complications of cirrhosis. Their
prevalence among cirrhotic patients is between 50% and 60%. The performances of spleen
stiffness measurement (SSM) were assessed with a modified FibroScan® in order to detect the
presence of significant EV (grade 2 and 3) in cirrhotic patients. 100 patients underwent upper
GI-endoscopy for assessment of EV grade: G0 (no varice), G1 (small varices), G2 (medium
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varices), and G3 (large varices). Results showed that SSM and EV size were significantly corre-
lated and that SSM could be used to distinguish G0/G1 grades from G2/G3 grades. This first
study using a spleen-dedicated FibroScan® shows that spleen stiffness and fibrosis blood mark-
ers are independent predictors of significant EV in cirrhotic patients.

20.4.11 Conclusion

Obviously the quest for the perfect noninvasive test for liver fibrosis is likely to be illusory. LSM
measured by FibroScan® demonstrates good to excellent performances as a noninvasive test for
liver fibrosis. Other pathological conditions such as liver inflammation or liver congestion may
influence LSM but these conditions are easily discernible within the clinical context. Therefore
LSM measured by FibroScan® is definitively a key biomarker for liver diseases given that it is
interpreted in the full clinical context of the patient by a liver specialist.

20.5 Other Applications of Transient Elastography

20.5.1 Preclinical Applications of Transient Micro-elastography

In the area of small animal experimentation, the use of elastography techniques has been
reported by several groups with magnetic resonance elastography (MRE) [115, 116] and static
ultrasound elastography [117]. However, the techniques proposed remain expensive (MRE)
and are sometimes invasive and unsuitable for in vivo applications.

A dedicated version of FibroScan® (Figure 20.10) has been developed to measure liver
stiffness measurements (LSM) in small laboratory animals. FibroScan® Lab (Echosens,
Paris, France) relies on a high-frequency implementation of transient elastography which is
called transient micro-elastography (TME). It comprises a probe, a high frequency electronic
platform, and an integrated computer to control the ultrasound system and analyze the data.
The ultrasonic transducer typically exhibits a center frequency of 10 MHz and the mechanical
actuator was improved to generate low frequency shear waves between 200 Hz and 500 Hz.

The novel system was validated in both a classical fibrosis model (CCl4) and a transgenic
murine model of systemic amyloidosis [118]. TME was successfully performed in control mice
below the xiphoid cartilage, with a mean LSM of 4.4 ± 1.3 kPa, a mean success rate of 88%, and

Figure 20.10 Transient micro-elastography using FibroScan® LAB for measurements in small laboratory
animals. Source: courtesy of Pr Sebastian Mueller, setup at the University of Heidelberg.
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an excellent intra-observer agreement (0.98). Treatment with CCl4 over seven weeks drastically
increased LSM as compared to controls (18.2 ± 3.7 kPa vs. 3.6 ± 1.2 kPa). Moreover, fibrosis
stage highly correlated with LSM (Spearman coefficient = 0.88, p < 0.01). In the amyloido-
sis model, much higher LSM values were obtained, reaching maximum values of >150 kPa.
LSM significantly correlated with the amyloidosis index (0.93, p < 0.0001) and the plasma con-
centration of mutant hapoA-II (0.62, p < 0.005). Transient micro-elastography is a promising
technique to measure the evolution of pathologies such as fibrosis in the same animal during
longitudinal studies.

Recently, TME has been used as a noninvasive tool to investigate skin stiffness with potential
applications in dermatology and cosmetology.

20.5.2 Adipose Tissue

Subcutaneous adipose tissue (scAT) undergoes severe alteration such as fibrosis during obesity.
It has been shown that this fibrosis is related to metabolic alterations and results in poor effi-
ciency in losing weight after bariatric surgery [119, 120]. As of today no noninvasive tool is able
to assess scAT. To that purpose a novel device named AdipoScanTM, based on transient elastog-
raphy, has been specifically developed to measure shear wave speed (SWS) in scAT [120–122].
Briefly, the probe of AdipoScanTM is made up of a flat mechanical actuator (center frequency of
70 Hz) associated to a flat ultrasound transducer (center frequency of 3.5 MHz). It was devel-
oped to fulfill the main constraint of being light enough to minimize the effect of the applied
static force to avoid compressing the tissues which would modify the viscoelastic properties of
the scAT. SWS is assessed using a novel algorithm based on the maximum likelihood estimate
(MLE) [123]. The scAT SWS measurement zone is defined on the right side of the patient belly
at a few centimeters from it, so as to obtain the more clinically pertinent scAT SWS.

The relevance of SWS evaluation using AdipoScanTM was assessed in a first pilot study on
morbidly obese patients candidate to bariatric surgery who were enrolled one month before
surgery at the nutrition department of the Pitié Salpêtrière hospital (APHP, Paris, France). 73
patients were assessed (86.3 % female, mean age: 44.3 ± 10.4 years, BMI ranging from 35 up to
71 kg/m2 with a median value of 45 kg/m2). AdipoScanTM exam was successful in all patients.
scAT SWS ranged from 0.50 up to 2.52 m/s with a median value of 0.80 m/s and an interquartile
range of 0.36 m/s. scAT SWS was associated with scAT total and peri-cellular fibrosis assessed
histologically (Spearman coefficient 𝜌= 0.51, p = 0.003 and 𝜌= 0.38, p = 0.03, respectively) but
also to body composition assessed by DXA (𝜌 = 0.40, p < 10−3 with total body fat in percent),
and obesity-induced comorbidities such as diabetic status, hypertension, and lipid and liver
dysfunctions. Those results are being confirmed in an ongoing prospective clinical study
[124, 125] and suggest that the characterization of scAT before bariatric surgery using
AdipoScanTM could be used in clinical practice to better stratify patient phenotypes.

20.6 Conclusion

Transient elastography pioneered the development of quantitative elastography with the intro-
duction of FibroScan®, the first commercial quantitative ultrasound elastography device, in
2003. Supported by more than 1000 peer-reviewed publications, 30 guidelines issued by pro-
fessional societies and 3500 FibroScan® devices used worldwide in 2015, vibration-controlled
transient elastography is by far the most validated and clinically used liver elastography tech-
nique. Indeed, the FibroScan® average stiffness measurement device proved very successful in
the measurement of liver stiffness in patients with chronic liver diseases. Unlike cancer appli-
cations, which require imaging capabilities, FibroScan® focuses on diffuse liver diseases and
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helps in limiting the number of liver biopsies performed for liver fibrosis assessment. Initially
introduced as a research tool, FibroScan® is now widely used in routine clinical practice and
can be considered the noninvasive standard for the measurement of liver stiffness [41]. The
rapid adoption of this disruptive technology may be attributed to several factors, including the
importance of liver stiffness in the management of patients with chronic liver diseases, the good
to excellent performance for liver fibrosis assessment, the control of the shear wave frequency,
the standardized and simple operation procedure, and the fact that the operation of the device
does not require special skills in ultrasound which makes it operable by nurses. Advanced appli-
cations such as CAP, controlled attenuation parameter, increase the importance of FibroScan®in the field of hepatology.
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From Time Reversal to Natural Shear Wave Imaging
Stefan Catheline

LabTAU, INSERM-University of Lyon, France

21.1 Introduction: Time Reversal Shear Wave in Soft Solids

The potential of time-reversal methods [1] includes different areas such as telecommunica-
tion [2, 3], nondestructive testing [4], interactivity [5], medical imaging, and therapy [6]. It is
an elegant and robust adaptive focusing method. In practical situations, a source or a strong
reflector embedded in the medium is required in order to observe a forward wave scene. Then, a
time-reversal mirror is used to recreate the backward scene. The time-reversed wave finally col-
lapses on its source location. The problem of the source in a time-reversal experiment is known
in the medical field [7] as the “artificial ultrasonic stars”, in reference to analogous laser-guided
artificial stars used for optic adaptive focusing in astronomy [8]. In the time-reversal experi-
ments presented in Figure 21.1a, a reverberant solid cavity has been used. The great advantage
of such a configuration is that a perfect time-reversal cavity can be approached experimen-
tally using a point source mounted on a vibrator: it is the so-called one-channel time-reversal
mirror [9]. The elastic field was measured noninvasively from the solid surface using a single
transducer and ultrasonic techniques developed in the field of transient elastography [10]. In
this medical field, propagation media are soft solids such as soft tissues, muscles, organs [11], or
tissue-mimicking phantoms. The low-frequency shear waves (a few hundred hertz) propagate at
a speed of a few meters per second, which results in centimeter size wavelength (Figure 21.1b).
Consequently, the original aspects of these time-reversal elastography experiments are (1) no
“artificial stars” are needed, (2) the time-reversal collapse is directly observed inside a solid, and
(3) for centimeter wavelength, near field-like effects are clearly apparent.

Contrary to the case of fluids, the elastic field before and after the collapse differs, and the
focus spot at t = 0 s is no longer isotropic (Figure 21.1b). Its size remains, however, in the
dimension of the wavelength in the absence of the high spatial frequencies of evanescent waves
[12]. The non-isotropic shape of the focus spot emerging from a homogeneous reverberating
field might appear surprising at first sight. However, this observation follows the symmetry of
the Green’s functions and the nature of their simplest associated point sources in liquids and
solids or, more generally, in a scalar or an elastic field. As far as elasticity imaging is concerned,
the experiment of Figure 21.1 demonstrates that it is in principle feasible to extract the local
shear wavelength from the time reversal focus spot and to extract the local frequency from the
time recompression. As a result, the local shear wave speed can be deduced. Nevertheless, no
time reversal mirror is used in seismology. Instead, correlation algorithms are used for the whole
approach. The process thus becomes passive in the sense that only a wave field observation is
needed. The close link between time reversal and correlation is discussed in the next section.
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Figure 21.1 (a) The experimental setup. An acoustic pulse sent by a piston vibrator generates motion in a soft solid. An ultrasonic device developed for transient
elastography allows the measurement of the displacement field, represented here as a seismogram. (b) Experimental results. Four pictures of a time-reversal field were
selected around the refocusing time, t = 0 ms. The initial point body force was aligned in the z direction. The z component of the displacement field is represented here.
Arrows indicate the propagation direction. The focus spot at time t = 0 ms reaches the diffraction limit of a half wavelength. Source: reprinted with permission from [25],
copyright 2008 by the American Physical Society.
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21.2 Shear Wave Elastography using Correlation: Principle
and Simulation Results

Correlation of noise-like signals is a recent method for the extraction of information. The most
important application to date relates to geophysics and crustal tomography [13, 14]. Earlier
work relates to helioseismology [15], ultrasonics [16], and oceanography [17]. The general con-
cept consists in retrieving the Green’s function from the correlation of a complex noise-like
wave field. The field nature depends on the context: it can be diffuse, reverberated, multiply
scattered, or equipartitioned. Up to now, noise field measurement is correctly sampled in space
and time, i.e. obeys the Shannon-Nyquist sampling theorem. With our approach, which com-
bines correlation of the field, its gradient, and its time derivative, a tomography reconstruction
is obtained even though measurements are well below the Shannon-Nyquist limit. From a wave
physics point of view, we explored configurations for which each realization of time and space
field measurement is independent. In other words, the spatiotemporal coherence of the field is a
delta function. Practically speaking, tomography reconstruction in this situation allows the use
of slow imaging devices working at a rate independent of any characteristic time period of the
noise field. This general approach is valid for any wave nature, as is demonstrated in the specific
field of shear wave imaging or elastography. The present technique thus offers the advantage of
being compatible with both recent ultrafast ultrasonic scanners and the slower conventional
ultrasonic scanners widely available in the market. In most recent applications of elastography,
controlled shear wave sources are used [11, 18–21]. Nevertheless, some authors have cho-
sen to work with natural motion induced by physiological activities such as the heart beating
[22, 23] or MRI device vibrations [24]. Instead of synchronizing detection to natural sources,
our approach consists in measuring natural shear wave noise, ideally a diffuse field. Retrieving
elastic parameters is done through correlation techniques [13] or, using wave physics termi-
nology, through time reversal [25–27]. Compared to time reversal, the correlation technique
offers the great advantage of being fully passive, so no active re-emission of the time-reversal
field is needed and thus no fancy time-reversal mirror. The first step of a time-reversal experi-
ment only is conserved, which is the observation of a wave field. It is important to point out that
using elastography as a tool for observing an elastic wave scene inside a soft solid still involves
active ultrasound sources. This approach of elastography is passive in the sense that, in vivo
experiments, no active shear wave source is used.

For the sake of clarity, the mathematics are conducted through scalar rather than elastic wave
fields [28]. Besides, based on the previously presented background, the time-reversal interpre-
tation of spatiotemporal correlations is extensively used. From a linear systems point of view, the
field 𝜙(r⃗0, t) can be expressed as a time-convolution product between the excitation function
e(r⃗s, t) of a source located on r⃗s and the impulse response h between the source and a receiver
on point r⃗0

𝜑(r⃗0, t) = e(r⃗s, t)⊗
t

h(r⃗0, r⃗s, t) (21.1)

The time-reversal field is obtained when the emitted signal e(t) is replaced by the
time-reversed version of the impulse response

ΨTR(r⃗, t) = h(r⃗0, r⃗s,−t)⊗
t

h(r⃗, r⃗s, t) (21.2)

This approach of time reversal is known as the monopole time reversal [29]. It differs from
the perfect time reversal in that it provides the impulse responses correlation. A perfect time
reversal would be equivalent to the time derivative of the correlation [30]. Whether monopole
or perfect, the time-reversal approach developed in this section is not impacted by this lat-
ter time derivative. Equation (21.2) is valid for point, pulsed sources e(r⃗s, t) = 𝛿(r⃗s, t) and can be
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generalized to sources with any spatial dimension and with any time dependence [31]. As a con-
sequence, for any field that obeys the wave equation, one can associate the following generalized
time-reversal field

ΨTR(r⃗,−t) = 𝜑(r⃗0,−t)⊗
t
𝜑(r⃗, t) (21.3)

This generalized time-reversal field happens to be the spatiotemporal correlation widely used
in seismology and known as coda wave interferometry. However, the physical time-reversal
interpretation of correlation is the following: ΨTR is the field that would be observed if
the sources responsible for the noise field were able to be controlled and were acting as a
time-reversal mirror. In this approach, correlation of broadband diffuse waves allows one to
retrieve the Green’s function between any pair of measuring points [32].

The strain 𝜀z =
𝜕Φ
𝜕z

, i.e. the gradient of the displacement field 𝜙, or the particle velocity
v = 𝜕Φ

𝜕t
, i.e. the time derivative of the displacement field 𝜙, obeys the wave equation as well. As

a consequence, different time-reversal fields are envisaged⎧⎪⎨⎪⎩
Δ𝜀z −

1
c2

𝜕

2
𝜀z

𝜕t2 = 0

Δv − 1
c2

𝜕

2v
𝜕t2 = 0

⇒

⎧⎪⎨⎪⎩
𝜉

TR(r⃗0, r⃗, t) = 𝜀z(r⃗0,−t)⊗
t
𝜀z(r⃗, t)

V TR(r⃗0, r⃗, t) = v(r⃗0,−t)⊗
t

v(r⃗, t)
(21.4)

In Eq. (21.4), 𝜉

TR designates the time-reversal strain field whereas V TR represents the
time-reversal particle velocity field and Δ represents the Laplacian operator. It is worth
pointing out that ΨTR, 𝜉TR, and V TR have the dimensions of the square of the displacement, of
strain (dimensionless), and of velocity, respectively. We now focus our attention on one single
spatiotemporal point, i.e. the source r⃗0 at the focus time t = 0 s. Notations with a subscript “0”
account for this point

ΨTR(r⃗0, r⃗0, t = 0) ≡ ΨTR
0 .

In an ideal isotropic diffuse field, plane wave decomposition at a given central frequency
allows one to use an approximation of the gradient 𝜀z ≈ k𝜙 and particle velocity v ≈ −𝜔𝜙 in the
right-hand side of Eq. (21.4). Thus the different aforementioned time-reversal fields are linked
according to{

𝜉

TR
0 ≈ k2ΨTR

0

V TR
0 ≈ 𝜔

2ΨTR
0

(21.5)

The coefficient of proportionality, the wave vector k, and the angular frequency𝜔 in Eq. (21.5)
allows one to estimate the local wave speed c according to the classical relationship

c = 𝜔

k
=

√
V TR

0

𝜉

TR
0

(21.6)

Equivalently, the local wavelength k can be reconstructed

𝜆 ≈ 2𝜋

√
ΨTR

0

𝜉

TR
0

(21.7)

Depending on experimental situations that will be described later, Eqs. (21.3), (21.6), and
(21.7) are used. A finite difference simulation of the 2D elastic wave equation was used to test
this approach. The field 𝜙 now represents the vertical displacement. As shown in Figure 21.2a,
a 400 by 400 grid meshes a solid cavity, a circle with one segment cut-off, surrounded by vac-
uum. The shear wave speed within the solid is cs = 3 m/s. The central frequency, f 0 = 100 Hz,
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Figure 21.2 Finite difference simulation tests for the passive shear wave imaging. (a) A lossless reverberating
cavity (a circle with one segment cut-off) contains three inclusions with different shear wave speeds.
(b) Magnified image of the fluctuating field 𝜙 in the region of the three inclusions. A typical noise-like signal
measured on R is represented in the top panel. Source: reprinted with permission from [28], copyright 2007 by
the American Physical Society.

is chosen to give quantitative values of shear wavelength 𝜆s ≈ 3 cm and the shear elasticity
𝜇 ≈ 9 kPa compatible with elastography experiments conducted in soft tissues. However, real-
ism was not the objective of this 2D simulation, which explains its dimensions, 80 cm by 80 cm,
and its unlikely Poisson’s ratio of 0.4 (cP =10 m/s). The aim of this simulation was rather to test
the ability of new algorithms to extract the local wave speed from any diffuse field. Three circular
inclusions of shear wave speed cs = 4.3 m/s, cs = 5.2 m/s, and cs = 6 m/s are introduced within
the solid (Figure 21.2a). The diffuse field is obtained using a pulsed source S set at coordinates
x = 20 cm and z = 60 cm. The reverberation of the waves trapped in the 2D cavity rapidly give
a homogeneous wave pattern, as represented in Figure 21.2b. Such a field of finite bandwidth
in a finite media is considered as diffuse by definition [33]. This diffuse reverberated wave field
is sampled at 1000 Hz and recorded during 3 s on each point of a 20 cm by 20 cm square in the
area of the three inclusions. A typical noise-like signal 𝜙R(t) on a receiving point R is shown
on the upper left panel. Using correlation through Eq. (21.6) is the key to reconstruct the input
shear wave speed map of Figure 21.2a. Green’s functions are retrieved along the vertical dotted
line (Figure 21.2b), including R as a pseudo source.

On the spatiotemporal representation of the correlation field (Figure 21.3a), the retrieved
Green’s functions typically appear as a cross. The time recompression and the spatial focus spot
are also represented on both sides. They are representative of the mean period and wavelength
of the diffuse field or in other words its time and spatial coherence. The corresponding tomog-
raphy reconstruction of Figure 21.3b is obtained by focusing on each point of the domain from
the particle velocity and the strain field. The ratio, according to Eq. (21.6), gives the local shear
wave speed. The speed of the three inclusions is nicely retrieved with a quantitative agreement
better than 5%. It fully validates the assumption of plane wave decomposition used to obtain
Eq. (21.5). In the previous ideal configuration, the whole spatiotemporal information is avail-
able in the data. Practically speaking, it means that diffuse fields should be sampled according
to the Shannon-Nyquist theorem, with imaging systems faster than the highest wave period.
As far as shear wave imaging is concerned, an ultrafast scanner working at typical frame rate of
1000 Hz is needed. Thus a second configuration is tested: a 25 Hz frame rate perfectly compat-
ible with most modern ultrasonic scanners is used in a simulation to sample a 100 Hz central
frequency diffuse field. As an inevitable consequence of this slow imaging frame rate, each field
measurement can be considered to be the result of a random process. This is clearly apparent
on the spatiotemporal correlation where the typical cross has disappeared. The time coher-
ence on the bottom of Figure 21.3c is now a delta function which expresses the independence
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of each realization of the field measurement. In contrast, the spatial coherence is unchanged.
Thus the loss of time information avoids computing the time-reversal particle velocity V TR,
but the preservation of space information allows one to estimate ΨTR and 𝜉

TR and, as a conse-
quence, construct a wavelength tomography from Eq. (21.7). The local wavelength tomography
is represented in Figure 21.3d and clearly retrieves the three inclusions with the same contrast
and resolution as in Figure 21.3b. The fluctuations of the reconstructions of Figures 21.3b and
21.3d are a consequence of an imperfectly isotropic diffuse field. Although this aspect would
deserve a complete study, it was noticed that the longer the observation time is, the smaller
the elasticity fluctuations are. This isotropic distribution of the field energy is crucial for the
reconstruction and can be improved by using a passive inverse filter, as shown in [34].

21.3 Experimental Validation in Controlled Media

The feasibility of this correlation-based passive elastography is first presented in tissue-
mimicking-phantoms. They can either be homemade, using poly(vinyl alcohol) (PVA), gelatin,
or agar, or they are available in the market (e.g. CIRS®). Ultrasound scanners for elastography
are widespread. The first experimental validation of passive elastography (Figure 21.4) used an
ultrafast ultrasound system by Lecoeur Electronic. From radio-frequency backscattered sig-
nals acquired at a typical repetition frequency of 1 kHz, standard speckle tracking algorithms
delivered the displacement 𝜙 generated by the shear wave field. As proof of concept for passive
elastography, a 9 s long noise-like elastic field was created by finger impacts applied randomly
all over the surface (Figure 21.4a). The displacement 𝜙z(0, t) along the first transducer at 3 cm
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Figure 21.4 (a) Experimental setup for the in vitro correlation-based tomography. A complex shear wave field
was created by random finger impacts applied to the surface of a tissue-mimicking phantom (PVA gel).
Displacements were measured inside the volume using an ultrafast ultrasonic scanner and elastography
algorithms. (b) The z-component of the particle velocity at x = 0, z = 3 cm. (c) The magnified image of 0.5 s of
the particle velocity at z = 3 cm shows the wave propagation around 1.4 s. Source: © 2011 IEEE, reprinted, with
permission, from [27].

inside the gel is shown in Figure 21.4b. The zoom of 0.5 s of the displacement field along
one line parallel to the array (x-axis) is shown as a color-scale map (Figure 21.4c). The finger
impacts generated a low-frequency random-like displacement field that was dominated by
shear waves.

The noise-correlation function C(x0, x; t) or, equivalently, the time reversal field ΨTR is shown
for six refocusing spots x0 (Figure 21.5a). For each position, the amplitude was maximal at
x = x0 and t = 0, that is to say for the autocorrelation. The cross-shape correlation obtained
from the simulation shown in Figure 21.3a is thus nicely retrieved from experiments; its
physical interpretation is a 1D representation of a time-reversal field with a converging wave
(t < 0 s), a spatiotemporal collapse (t = 0 s), and the diverging wave (t > 0 s). Then, different
tomography strategies can be tested, as in Figures 21.5c, 21.5d, and 21.5e. The group velocity
using Eq. (21.6) or the wavelength using Eq. (21.7) can be represented. The group velocity
tomography, as in any shear wave elastography technique, is probably the closest to the
elasticity palpation. However, the shear wavelength tomography presents a fantastic result:
it is perfectly compatible with a slow imaging device. By slow, this means having a frame
rate totally independent of the Shannon-Nyquist limit and possibly in the limit of 0 Hz. As
an experimental demonstration, a 100 Hz shear wave field is detected by a conventional
ultrasound scanner (Bruel et Kajer; Hoack System) working at 25 Hz and by a MRI system
working at 0.7 Hz (i.e. one frame every 1.5 s).

In the ultrasound experiments, the field is again created using finger impacts randomly dis-
tributed at the surface of a calibrated CIRS phantom (Figure 21.6a). For a period of 18 s, 450
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Figure 21.5 (a) Correlation maps measured at six refocusing spots x0 in a homogeneous hydrogel. The
converging and diverging waves are responsible for this typical cross-like shape of the TR field in this
spatiotemporal representation. The group velocity of these waves can be estimated from the delay 𝛿t of the
maximum of the field along 𝛿x (bottom right). Another approach estimates the −6 dB focal spot width close to
the half wavelength 𝜆/2 (top right). (b) Sonogram of the bilayer hydrogel, where the two layers with different
scatterer concentrations are clearly apparent. (c) Shear wave speed tomography estimated from local
group-speed estimation. (d) Shear wavelength tomography estimated from the refocusing width. (e) Slow
shear wavelength tomography estimated from a displacement field sampled at 50 Hz. The interface between
the two layers is in the same position in the four images, and good quantitative agreement was found for the
shear speed values. Source: reprinted with permission from [28], copyright 2007 by the American Physical
Society.

radio-frequency ultrasound frames are stored in memory and then converted into displacement
field 𝜙s(x, z; t) using speckle tracking algorithms as usual. Then, correlation algorithms are
applied to this latter diffuse elastic field and, using Eq. (21.7), the tomography reconstructions of
Figure 21.6b are obtained in a calibrated CIRS elastography phantom. The four inclusions, from
the hardest to the softest, are clearly apparent. The expected values given by the CIRS company
are in reasonable agreement with the retreived Young modulus E based on the assumption of
a constant frequency field of 50 Hz. This agreement thus fully validates the use of wavelength
retreival from correlation in passive elastography using slow commercial utrasound scanners.

In the magnetic resonance elastography (MRE) experiment, the diffuse elastic field cannot
be induced by random finger impacts for technical reasons. As shown in the experimental
setup (Figure 21.7a), vibrations are generated synchronously from 12 contact points by a
device mounted on a piezoelectric source and working with a 80.3 s modulated sinusoid
excitation. The emitted frequencies range from 20 to 200 Hz. The acquisition of 320 frames for
the out-of-plane component of the displacement field was carried out at ∼0.7 Hz on six slices
that were equally spaced by 3 mm, with 3 × 3 × 3 mm3 isotropic voxels, over 8 min. According
to the Shannon-Nyquist limit, the maximum shear wave frequency was ∼0.35 Hz, which is
far below the central frequency of shear waves in the experiment. The first six consecutive
snapshots of the displacement field of a total of 320 snapshots are shown in Figure 21.7b.
These snapshots clearly show the rectangular phantom surrounded by the random-phase
noise. The elastic field shows complex spatial patterns with characteristic dimensions driven
by the wavelengths associated with the 20–200 Hz frequency content of the sweep source
signal. Small wavelengths are visible at t = 1.5 s, whereas larger wavelengths dominate at
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[28], copyright 2007 by the American Physical Society.

t = 3 s. A correlation coefficient smaller than 5% between consecutive snapshots of the wave
pattern confirms the random property of the diffuse elastic field. The extraction of the elastic
parameters from 320 snapshots was then carried out using noise correlation, using Eq. (21.7).

The dimensions of the focal spot vary according to the local stiffness of the medium at the
location r⃗0 chosen for the virtual point source: a small focal spot in the soft inclusion, a medium
one in the background, and a large one in the hard inclusion (Figure 21.8a). The same logic holds
for the focal spots in the two remaining inclusions. As a consequence, by sequentially selecting
each point of the field as a virtual source location r⃗0, tomography of the wavelength is conducted
in a processing time of 1 s. Compared with a T2-weighted sequence (Figure 21.8b), the wave-
length tomography shows good agreement on the location and the size of the four inclusions
(Figure 21.8c); a slight geometric distortion probably introduced by the effect of magnetic field
inhomogeneity on the echo planar acquisition (EPI) is also visible. As expected, their growing
stiffness is clearly apparent from left to right.

Snapshots are acquired at a sampling time longer than the mean wave period. Therefore, they
show independent wave patterns, which prevents the determination of the exact time course of
the wave. Nevertheless, the existence of wave patterns implies that motion in one region is cor-
related with motion in its vicinity at a distance of a mean wavelength. This spatial extension is
the key parameter to estimate the shear wavelength. It is close to what is known as the spectral
autocorrelation method in seismology. A second physical time-reversal interpretation of corre-
lation states that ΨTR is the field that would be observed if the sources responsible for the noise
waves were able to be controlled and act as a time-reversal mirror. The waves would, thus, back
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propagate and reach the location of the virtual point source r⃗0 at a special spatiotemporal refo-
cusing time t0. The energy concentration at t0 defines a region around the virtual source r⃗0 called
the focal spot. This approach offers a simple and robust way to estimate the mean wavelength
(Figure 21.8a); indeed, the time-reversal focal spot reaches the diffraction limit that is known
as the Rayleigh criterion [16, 17]. The sampling rate under the Shannon-Nyquist limit prevents
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the computation of the time-reversal field as a function of time but leaves the spatiotempo-
ral refocusing at time t0 unaltered [18, 19]. The extraction of the shear wavelength as spatial
information from this latter time-reversal field ΨTR does not contradict the Shannon-Nyquist
sampling theorem that addresses time information.

21.4 Natural Shear Wave Elastography: First In Vivo Results
in the Liver, the Thyroid, and the Brain

For the in vivo experiments, the physiological noise that is inherently present in the body creates
a natural complex shear wave field. To start with, the liver was imaged at a 750 Hz repetition fre-
quency, by placing the transducer array under the ribs of the subject (Figure 21.9a). The material
and method is described in Section 21.3 and Figure 21.4. In Figure 21.9b, the particle displace-
ments in the low-frequency bandwidth from 5 to 70 Hz are mainly caused by cardiac activity.
The displacement field in the liver shows a cardiac pulse each 0.5 s, followed by reverberation
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Figure 21.9 (a) Experimental setup for the in vivo correlation-based tomography: an ultrafast scanner was
used to measure the natural displacement field in the liver region. (b) The particle velocity along an acquisition
line at 4 cm, and parallel to the array, shows the physiological elastic field. (c) In the correlation map C(x0, x; t)
with x0 = 14 mm, only one direction of propagation emerged from the refocusing field. (d) Sonogram of the
liver region. The interface between the abdominal muscles and the liver is visible around z = 12 mm. (e) The
passive shear wave speed tomography from the correlation width clearly shows the two regions. The averaged
shear speed estimations are in agreement with values in the literature. Source: © 2011 IEEE, reprinted, with
permission, from [27].
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and scattering. This complex field was used to compute the correlation function (Figure 21.9c).
Compared with the refocusing field in Figure 21.5, only one branch of the cross shape was
recovered, which can be explained by the strong directivity of the field. In other words, using a
time-reversal analogy, we were not dealing with a perfect time-reversal cavity, in which the con-
verging wave was coming from all directions of a closed surface, but rather with a time-reversal
mirror that was located around the heart region and that was re-emitting waves in the direc-
tion of the liver. In addition to this problem of directivity, it should be noted that the particle
velocity amplitudes were weak, at only 7.5 mm/s, which was quite close to the sensitivity limit
of the elastography, at around 1 mm/s. For these two reasons, only the more robust technique,
i.e. the wavelength approach, was used for in vivo passive tomography. In the sonogram data
(Figure 21.9d), two zones were visible. Above z = 12 mm, the bright region corresponded to the
abdominal muscles and the dark region was the liver. Good correspondence was seen with the
shear wave speed tomography (Figure 21.9e), where the interface between these two regions
was seen around z = 12 mm. In muscle and liver, the averaged shear wave speeds were in quan-
titative agreement with other studies [26, 27]. The variability of the reconstructed tomography
results shown in Figure 21.9 is believed to be related to the directivity variance of the shear
wave field. Indeed, it is well established in seismology that the flux resulting from a diffuse
field [35, 36] can be responsible for bias in the tomography. Special efforts need to be made to
compensate for this effect.

An in vivo experiment on the thyroid of a healthy volunteer with a signed consent was con-
ducted using passive elastography and a commercial ultrasound scanner. The material shown
in Figure 21.10 has previously been described for the CIRS phantom experiment in Section
21.3 (Figure 21.6). The medical array was hand-held during the acquisition of 800 ultrasound
frames at 25 Hz. Breathing was prohibited and moving was avoided during these 32 s. The
real-time acquisition movie includes the sonogram, speckle tracking correlation, displacement,
and strain. Shear waves present in the entire thyroid are thought to be mainly generated by
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structure. Source: Source: reprinted with permission from [28], copyright 2007 by the American Physical
Society.
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the pulsing of the neighboring carotid artery. As is clearly apparent on both the sonogram
(Figure 21.10b) and the passive elastogram (Figure 21.10c), a benign cyst is present. Its structure
is a mix of viscous fluid and solid parietal tissue. Some artifacts are visible in this image since
the diffuse nature of the shear wave field is probably not verified. Despite this handicap, a good
general agreement is found between the results of sonogram and the passive elastogram. As a
conclusion, a standard ultrasound scanner together with natural shear waves can give relevant
elastography images.

In the brain, the natural motion is caused by arterial pulsation and cerebrospinal fluid
exchange [23, 24]. The MRE sequence presented in the brain of a healthy volunteer with a
signed consent is the same as the one described for the phantom in Section 21.3 (Figure 21.7),
except for the three following parameters: the voxel size of six slices is 4 mm × 4 mm × 4 mm
to improve the signal-to-noise ratio (SNR), the total time of the in vivo experiments is 11 min,
and three components of the displacements are acquired. The out-of-plane component only
is investigated here. The first six 64 × 64 pixel snapshots shown in Figure 21.11 show that the
MRE sequence can reveal the natural motion in the brain. The amplitudes are relatively small
at only 5 μm, but the signal is clearly apparent. Because correlation computation is equivalent
to an adaptive filter, the focal spot clearly emerges from the noise (Figure 21.11b). The existence
of these time-reversal focus spots is a convincing clue that natural motions in the brain are
transported by shear waves. They are responsible for correlation decreasing down to negative
values. The black −6 dB isolevel boundary lines more clearly illustrate the different sizes of the
focal spots. With a mean of 10 cm, the wavelength estimations are within the expected range.
Indeed, assuming that the motion is proportional to the intracranial pressure [37] and given
the frequency-dependent sensitivity of the 50 Hz motion-encoding gradient used in our in vivo
experiment, the central frequency of displacement (as encoded in the phase images) is expected
to be ∼1 Hz [38]; 10% of energy is nonetheless present at a frequency of 15 Hz. It is expected
that the wavelength estimation is dominated by the higher frequencies. Therefore, the shear
wave speed in the brain is around 1.5 m/s [39, 40]. Therefore, the expected smaller wavelength
ranges from 8 to 15 cm. In addition, longer wavelengths are observed on the periphery of
the frontal and parietal lobes than in the center of the brain (Figure 21.11b), which is clearly
apparent on the shear wavelength tomography reconstructions (Figure 21.12). The anatomic
details of T2 images are apparent on the shear wavelength tomography, especially along the
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Figure 21.11 In vivo brain results. (a) Phase representation of the displacement field. Six snapshots were
extracted from a movie of 144 images. These in vivo measurements of brain motion were acquired with a
gradient-echo MRE sequence every 1.5 s. (b) Time-reversal focal spots in the brain for four different
virtual-source locations S. The isolevel black boundary lines stress the shear wavelength variations. Source:
figure extracted from [42].
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Figure 21.12 In vivo brain passive MRE. (a) Axial view of the T2-weighted image (left) and its corresponding
shear wavelength tomography (right). (b) Sagittal view of the T2-weighted image (left) and its corresponding
shear wavelength tomography (right). Source: figure extracted from [42].

longitudinal fissure in the axial view (Figure 21.11a). Finally, the longest wavelengths are visible
in the posterior region of the brain, in the axial (Figure 21.12a) or sagittal reconstructions
(Figure 21.12b).

21.5 Conclusion

From a general point of view, extracting information from complex reverberant fields and nat-
ural shear waves in the human body [41, 42] is thought to be potentially useful for medicine as
it is for seismology [43]. Compared to active elastography, this passive approach might bring
a solution in situations where shear wave generation is tricky. This is the case for deep organs
such as the prostate, for protected organs such as the brain, and for fragile organs such as the
retina. It is also the case for obese patients. Passive elastography is thus foreseen in the short
term to be complementary to active methods. Our long-term vision would be to use tiny natural
elastic vibrations due to thermal motion: any shear wave sources would no longer be required
for elastography imaging.
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Acoustic Radiation Force Impulse Ultrasound
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22.1 Introduction

An approach to ultrasonically evaluating the mechanical properties of tissue is acoustic radi-
ation force impulse (ARFI) imaging [1]. ARFI is distinguished from alternative elastographic
imaging methods in that the mechanical excitation used to induce tissue motion is delivered
with temporal and spatial precision via impulsive, focused acoustic radiation force (ARF). Rel-
ative to compression elastography, an advantage to ARFI imaging is that the force is applied
directly to the tissue of interest, which obviates challenges associated with indirect force cou-
pling and minimizes the stresses needed to achieve sufficient contrast of mechanical features. In
this chapter, the fundamental physics of impulsive ARF are presented first, followed by detailed
descriptions of both qualitative and quantitative ARFI imaging methods.

22.2 Impulsive Acoustic Radiation Force

A critical component of ARFI imaging is the impulsive ARF excitation force, which is delivered
by a focused ultrasound pulse with longer length and/or higher acoustic power than conven-
tional B-mode imaging pulses [2, 3]. The force magnitude, in a tissue medium in which absorp-
tion is the primary cause of attenuation, is directly proportional to tissue absorption (𝛼) and
sound-beam local average temporal intensity (I), and inversely proportional to the speed of
sound (c)

F = 2𝛼I
c

(22.1)

Equation (22.1) reflects several important considerations in ARFI imaging. Examining I,
which represents the volumetric intensity field transmitted by the focused ultrasound pulse,
it is apparent that the ARF is a body force that is delivered to the spatial location of the
transmitted point spread function (PSF). As the PSF magnitude is spatially variable, so is the
magnitude of the achieved ARF. Also, higher I achieves greater ARF magnitude and thus
larger tissue displacements, with the possibility of improving contrast of mechanical features.
Figure 22.1 shows the spatial and temporal characteristics of an impulsive ARF excitation.

Next, considering 𝛼 in Eq. (22.1), it is clear that the amplitude of the ARF depends on the
absorbing properties of tissue as well as the focal configuration of the beam. In low attenuating
media, focal gains will dominate, and the ARF will be delivered with the greatest amplitude at
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Figure 22.1 Spatial geometry and temporal dynamics of an impulse of acoustic radiation force. Images (a)–(c)
show the simulated axial displacement response in three dimensions for a homogenous, isotropic, elastic
material (Young’s modulus = 4 kPa) at three time points following excitation (0.3 ms, 2 ms, and 4 ms). The
transducer is located at the top of the image. The displacement versus time curves at each symbol (x, circle,
square) are shown in (d), where the legend indicates lateral distance from the region of excitation. Within the
region of excitation, displacement is highest and occurs immediately after excitation. As time progresses, a
shear wave propagates away from the region of excitation, instigating time-lagged displacements at positions
some distance away from the region of excitation. Source: reprinted with permission from [31].

the focal zone. In highly attenuating media, ARF will be more broadly distributed in the near
field, equaling or even exceeding that experienced by the focal zone, and may result in a larger
volume of tissue being set in motion. Furthermore, because attenuation is frequency dependent,
the displacement fields from ARF excitations with higher frequencies may experience more
near-field broadening compared to lower frequency excitations of the same tissue region [4].
Thus, the ideal center frequency for the ARF excitation is material and application dependent.

Peak acoustic radiation force magnitudes are typically on the order of dynes for in vivo appli-
cations, creating tissue displacements in the range of 1 to 10 μm. Such ARF magnitudes are
achievable within the US Food and Drug Administration (FDA)-regulated diagnostic ultra-
sound limits for thermal index (TI), mechanical index (MI), and spatial peak temporal average
intensity (Ispta). Palmeri and Nightingale demonstrated, using finite element method (FEM)
models with experimental validation and neglecting cooling effects, that conventional ARFI
imaging methods heat tissue less than 1 ∘C, which is below the 6 ∘C FDA limit [5, 6]. How-
ever, the existing FDA limits were established without specific regard to the methods of ARFI
imaging, and the possibility of safely expanding these limits to support deeper penetration and
improve contrast in ARFI is under investigation [7, 8].

22.3 Monitoring ARFI-induced Tissue Motion

22.3.1 Displacement Resolution

In ARFI imaging, one-dimensional axial displacements induced in the location of force applica-
tion, or the “region of excitation” (ROE), is considered to reflect relative tissue stiffness, and thus
a critical component to ARFI imaging is accurate displacement measurement. ARFI-induced
displacements are small, typically less than 10 μm, and correlation-based time delay estima-
tors are conventionally used to track them [9]. Error in correlation-based displacement esti-
mates is due to large false peak errors, defined as displacement estimates that are greater than
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one-quarter cycle larger than the true displacement, and small jitter errors, which are displace-
ment errors too small to be classified as false peaks [10]. False peak errors may be mitigated
using non-linear approaches [11], but jitter error cannot be removed and therefore places a
fundamental limit on displacement resolution. The magnitude of this limit, which has been
predicted using the Cramér-Rao lower bound (CRLB), is [10]

𝜎 ≥
√

3
2 f 3

0 𝜋
2T(B3 + 12B)

(
1
𝜌

2

(
1 + 1

SNR2

)2
− 1

)
(22.2)

where f 0 is the pulse center frequency, B is the pulse bandwidth, T is the kernel size, 𝜌 is the
normalized correlation between signals, and SNR is the signal-to-noise ratio.

This fundamental limit on displacement resolution as predicted by the CRLB pertains to
unbiased estimators (such as normalized cross-correlation, Loupas [12], and Kasai [13] meth-
ods). However, by implementing a small amount of bias into the estimator, the Bayesian speckle
tracking method achieves displacement resolution that surpassed the CRLB [14, 15]. Contin-
ued optimization of the biased estimator is in development, and this technique has potential
for improving displacement resolution in ARFI as well as other imaging methods that rely on
motion tracking.

22.3.2 Displacement Underestimation

Aside from jitter error, acoustic displacement estimation in ARFI imaging suffers another lim-
itation. This limitation is caused by the focused nature of the acoustic radiation force that is
used to excite tissue. In the lateral and elevational dimensions of this force, induced scatterer
displacements are non-uniform because the force magnitude varies (i.e. as a sinc function) over
space. More specifically, induced scatterer displacements are largest in the center of the pulse
and decrease with distance away from the center. Such a distribution of scatterer displacements
within the tracking pulse’s PSF causes error, or “shearing” artifact. Shearing artifacts have two
primary consequences. First, ARFI-measured peak displacement will tend to underestimate
true tissue peak displacement due to averaging of scatterer motion under the tracking reso-
lution cell. This can lead to a reduction in contrast in ARFI images because soft features may
appear stiffer than they truly are. Second, due to the non-uniform displacement of scatterers,
the correlation between the reference pulse and tracking pulses immediately following the ARFI
excitation will decrease. This reduction in correlation will ultimately lead to an increase in jitter
variance in the displacement estimate and, therefore, noisier ARFI images.

Shearing artifact in ARFI was first explored analytically by McAleavey et al. [16] under simpli-
fying assumptions that modeled the displacement field and tracking beam pattern as Gaussians
and ignored the effects of non-axial motion. In this work, expressions were derived for echo
correlation, jitter, and mean ARFI displacement as functions of lateral and elevational beam
widths for pushing and tracking pulses. A significant conclusion was that displacement under-
estimation in ARFI can be mitigated by adjusting the ratio of pushing and tracking beam widths;
specifically, when the pushing beam width is much wider than the tracking beam width, the
ARFI-derived displacement estimate matches the true tissue displacement much more closely
than when the pushing and tracking beam widths are identical. In a common imaging sce-
nario (1D linear array) where control over F/# can only be exerted in the lateral dimension,
ARFI-derived peak displacement could, at most, be only 1

/√
2 of the true tissue peak displace-

ment. The expressions derived by McAleavey et al. were later improved by Dhanaliwala et al.
[17] by adding additional terms to account for the effect of mechanical coupling of tissue in
three dimensions. In the original derivation, McAleavey et al. assumed that the dimensional-
ity of the tissue region displaced by ARFI was equal to the width of the two-way response of
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the pushing beam. Dhanaliwala et al., using 3D finite element simulations, demonstrated that
the displaced tissue region is actually wider than the pushing beam width due to mechani-
cal coupling and adjusted McAleavey’s expression accordingly. Using the Dhanaliwala modi-
fication, the expression for the jitter lower bound (𝜎) in ARFI imaging can be written as the
following [17]

𝜎 ≥

√√√√√√√√√√√
3

2 f 3
0 𝜋
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(22.3)

Lx =
Dx

Tx
, Ly =

Dy

Ty
(22.4)

where A is the maximum scatterer displacement, c is the speed of sound, and Dx, Tx, Dy, Ty,
are displacement and tracking beam widths in the lateral and elevational dimensions, respec-
tively. Likewise, the expression for mean ARFI-derived displacement (𝜇) can be written as the
following

𝜇 =
2ALxLy√

(2L2
x + 1)(2L2

y + 1)
(22.5)

And finally, using Eqs. (22.3) and (22.5) and scaling by c
/

2 to maintain consistent units, an
expression for the upper bound of SNRARFI can be written as the following:

̂SNRARFI ≤ 𝜇

𝜎 c
2

(22.6)

Figure 22.2 shows the predicted SNRARFI for a 1D linear array as a function of peak displace-
ment amplitude. This figure demonstrates that increasing ARFI displacement has diminishing
returns in terms of improving SNRARFI due to displacement underestimation and differential
motion decorrelation.

Interestingly, underestimation bias in ARFI-derived displacements is not constant with time.
Palmeri et al. [18, 19], using 3D finite element simulations, demonstrated that underestimation
is worst in the early time points following the ARF excitation, but resolves over time at a rate
corresponding to the shear wave speed of the material. Therefore, stiffer materials with faster
shear wave speeds are less susceptible to underestimation bias compared to softer materials
with slower shear wave speeds. Note that this phenomenon exacerbates the reduction in ARFI
contrast as soft tissues experience more acoustic displacement underestimation than stiff tis-
sues. The material dependence of displacement underestimation was validated experimentally
by Czernuszewicz et al. [20] using a high-speed camera and a series of optically translucent
ultrasound phantoms. Figure 22.3 shows underestimated ARFI displacement curves from FEM
and phantom experiments.

To mitigate differential motion decorrelation in post-processing, Mauldin et al. proposed
using principal component analysis (PCA) as either a filter prior to conventional time-delay
estimation [21], or as a unique time-delay estimator itself [22]. In PCA, a linear transformation
is used to convert a set of possibly correlated variables (e.g. scatterer displacements encoded
as phase shifts in radio frequency, RF, data) into a set of uncorrelated variables or basis vec-
tors, with the stipulation that the basis vectors are orthogonally distributed. While PCA-based
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Figure 22.2 SNRARFI as a function of peak displacement. The solid lines represent the derived analytical model
for a 1D and 1.5D array respectively, while the symbols represent the finite element simulation results. Asterisks
represent significant difference (p < 0.05) between 1D and 1.5D simulations. Source: © 2012 IEEE, reprinted,
with permission, from [17].

approaches are not necessarily able to resolve underestimation bias completely, results suggest
that they are more robust to decorrelation, and provide estimates with lower jitter compared
to conventional estimation techniques such as the Loupas autocorrelation method.

Instead of rejecting differential motion decorrelation in post-processing, it is possible to min-
imize the occurrence of shearing artifact by increasing the uniformity of the ARFI excitation
within the tracking PSF. This is achieved by employing an ARFI excitation pulse that is wider lat-
erally and elevationally than the tracking pulse. While manipulating the lateral width of acoustic
pulses is readily possible with conventional one-dimensional linear array transducers, expand-
ing the width of the ARFI excitation in the elevational dimension relative to that of the tracking
pulse requires multi-dimensional arrays capable of two-dimensional focusing.

22.3.3 Clutter Artifacts

Another source of error in ARFI displacement estimation is clutter. Clutter arises from sound
reverberation in tissue layers, scattering from off-axis structures, ultrasound beam distortion,
returning echoes from previously transmitted pulses, and random acoustic or electronic noise
[23]. It is typically recognized as a coherent ring-down artifact or a diffuse haze in B-mode
images that degrades feature contrast. In application to measuring tissue displacement for
ARFI imaging, clutter signal from stationary or slowly moving tissue can bias the displacement
estimate, while decorrelation from near-field reverberation clutter increases jitter magnitude.
Therefore, the quality and diagnostic accuracy of ARFI imaging can be improved by reducing
clutter [24]. Conventional frequency domain-based clutter filters [25] have limited relevance
to ARFI imaging because the frequency spectra of the ARFI-induced motion and the clutter
signals generally overlap. Adaptive time domain-based clutter filters may be pertinent, but
these have not been specifically evaluated for clutter rejection in ARFI imaging [26]. Alter-
natively, clutter reduction may be achieved in ARFI, as it is in B-mode [27], by harmonic
imaging [24].

Doherty et al. [24] proposed the use of harmonic sequences to track ARFI-induced displace-
ments. In this study, the authors implemented two conventional tissue harmonic imaging (THI)
methods (bandpass filtering and pulse inversion) in ARFI ensembles. In the bandpass approach,
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Figure 22.3 Acoustic tracking of ARFI displacements underestimate peak tissue displacement validated with
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conventional ARFI ensembles are acquired with a broadband transducer, and a bandpass filter
is used to isolate the harmonic component in each tracking line prior to motion estimation. In
the pulse inversion approach, tracking pulses of opposite polarity are transmitted serially, and
the echoes are summed to cancel out the fundamental signal. One of the disadvantages of the
pulse inversion approach is that the pulse repetition frequency (PRF) of the ARFI ensemble is
effectively cut in half. To mitigate this, the authors developed a fully sampled pulse inversion
sequence to maintain PRF, which utilized a sliding window when summing pulses of oppo-
site polarity (Figure 22.4). The results of this work demonstrated a marked improvement in
both B-mode and ARFI image quality when using THI tracking pulses (particularly with a
fully sampled pulse inversion sequence). As was the case in conventional B-mode imaging,
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harmonic ARFI has the potential to replace fundamental ARFI in many clinical applications
due to improvements in contrast and image quality.

In addition to accuracy, the speed of displacement estimation in ARFI imaging is an impor-
tant consideration because it determines the real-time applicability of the method (see Section
22.6). Computation time is reduced relative to normalized cross-correlation using the Loupas
[12] and Kasai [13] algorithms, but at the expense of performance [9]. While the Kasai displace-
ment estimator is faster, the Loupas algorithm achieves lower displacement jitter and bias, with
comparable performance to normalized cross-correlation except when the kernel size is small
and the SNR is low or when the bandwidth is large. Therefore, the Loupas algorithm is useful
for displacement estimation in ARFI imaging when fast calculations are required.

22.4 ARFI Data Acquisition

ARFI imaging is implemented using a single ultrasound transducer for both generating impul-
sive ARF and monitoring the induced displacements. The beam sequence used to acquire ARFI
data in a single lateral location begins with two or more “reference” pulses, which serve to
establish a baseline for the position of the tissue prior to the ARFI excitation. Following the
reference pulses, an ARFI excitation, or “pushing”, pulse is administered to generate the impul-
sive ARF that induces tissue deformation. Finally, multiple “tracking” pulses are collected in
ensemble form, from which ARFI-induced displacements are measured. The ensemble length
varies with application but is typically in the range of 5 ms to enable observation of tissue
recovery from deformation. Both reference and tracking pulses are conventional, two-cycle
B-mode style pulses, while the pushing pulse has longer duration and/or higher acoustic power
than conventional ultrasound imaging pulses. Using such a pulse sequence, a two-dimensional
matrix of RF data is collected through depth and time in a single lateral location. To achieve
two-dimensional ARFI imaging, the pulse sequence is repeated in multiple lateral positions,
generating a three-dimensional matrix of RF data through depth, time, and lateral position.
The order of interrogating lateral positions is non-sequential in space. For example, data in a
lateral position on the extreme left of the imaging field of view (FOV) will be acquired, following
by data acquisition in the center of the FOV, then in one position to the right of the left-most,
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then in one position to the right of center, etc. This non-sequential ordering reduces the poten-
tial for motion interference between adjacent lateral sampling positions and minimizes tissue
heating.

22.5 ARFI Image Formation

One-dimensional axial displacement tracking, as described in Section 22.3, is applied to ARFI
data sets to measure ARFI-induced displacements through time, or ARFI “displacement pro-
files”, for each pixel in the two-dimensional imaging FOV. The displacement profiles may be
corrupted by motion artifacts arising from physiological motion as well as shear and/or longi-
tudinal wave reflections back into the ARFI ROE. Such motion artifacts are corruptive to ARFI
imaging because they distort the relevant parameters of the displacement profiles, namely: the
magnitude of displacement at a given time, the magnitude of the peak displacement, the time
to peak displacement, and the time to recovery from peak displacement.

22.5.1 Physiological Motion Rejection

Because motion artifact is detrimental to ARFI imaging, a number of motion rejection methods
have been developed [26, 28, 29]. The majority of these approaches fit a line or a polynomial
to select displacement versus time samples, using only the first and last few displacement mea-
surements. These methods assume that ARFI-induced displacement is resolved prior to the
end of the observation period, such that only physiological motion remains in the late-time
displacement samples. The fit line or polynomial is then subtracted from the measured dis-
placement profile to reject physiological motion but retain ARFI-induced displacement [28,
29] (Figure 22.5). An alternative approach uses adaptive blind source separation (BSS)-based
time-domain methods to statistically separate the disparate motion signatures of physiologi-
cal and ARFI-induced motion, assuming that the more dynamic ARFI motion is statistically
orthogonal to or independent from the physiological motion signature [26].

22.5.2 ARFI Image Resolution and Contrast

From the motion-filtered ARFI displacement profiles, parameters of interest are extracted and
rendered into two-dimensional images. As with any imaging modality, the quality of parametric
ARFI images is assessed by resolution and contrast metrics. It has been shown that the spatial
resolution of ARFI images, which does not depend on the size of the ROE, is comparable to that
of B-mode imaging, which follows logically from the fact that ARFI-induced displacements are
tracked using conventional B-mode style pulses [30].

Contrast in ARFI images, however, is unlike that of B-mode. First, the mechanisms for con-
trast generation differ. While B-mode renders images displaying differences in the acoustic
properties of tissue, ARFI details differences in the mechanical properties of tissue. For example,
tissues that exhibit similar acoustic properties but very different mechanical properties are bet-
ter contrasted by ARFI than B-mode imaging (Figure 22.6). Owing to the dynamic response of
tissue to the impulsive ARF, contrast in ARFI images varies over time. It is shown byNightingale
et al. [30] that contrast is highest shortly after the ARFI excitation ceases and then decreases
over time. Under certain circumstances, contrast may reverse due to shear wave interactions
with nearby boundaries, local differences in shear moduli, and inertial effects. Specialized finite
element method (FEM) models show that, in regard to contrasting a spherical lesion embedded
within a homogeneous background, contrast shortly after the ARFI force ceases is independent
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Figure 22.5 Motion filtering of ARFI displacement profiles. (a) ARFI displacement curve corrupted by a
constant velocity, non-ARFI motion. (b) An idealized fit to the non-ARFI motion estimated from the first and last
data points (i.e. time points where ARFI-induced motion is assumed to be zero). (c) Motion-filtered ARFI
displacement curve with linear motion profile subtracted from raw ARFI data. Common parameters measured
from ARFI displacement curves to produce 2D images include peak displacement (PD), time-to-peak (TTP), and
recovery time (RT) to two-thirds of peak displacement.

of the applied ARF magnitude, directly proportional to lesion stiffness, and inversely propor-
tional to the size of the ROE [30].

In regard to the relationship between contrast and lesion stiffness, it is important to under-
stand that because contrast in ARFI images is dynamic and dependent on the ROE size, the
ratio of ARFI-induced displacements inside and outside a stiff lesion does not directly reflect
the corresponding ratio of elastic moduli [31].

Relative to the relationship between contrast and ROE size, higher contrast ARFI imaging
is achieved using excitation pulses that are tightly focused in the lateral-elevational plane.
However, more tightly focused pushing pulses excite a smaller volume of tissue per push and
thus require more pushes, tracking ensembles, and time to acquire ARFI data. To achieve
high-contrast ARFI imaging while minimizing the impact on frame rate, rapid multi-focal-zone
ARFI imaging was developed [32, 33]. Rosenzweig et al. [33] demonstrated that using rapid
multi-focal-zone ARFI acquisitions substantially improves ARFI depth-of-field, increases
the contrast-to-noise ratio (CNR) by up to 40% compared to conventional single-focal zone
ARFI, and incurs less than 20% loss in contrast compared to sequential multi-focal-zone
ARFI. Figure 22.7 shows an example of single-focal-zone and rapid multi-focal-zone images
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applied, in a manner similar to time-gain compensation, to improve the uniformity of the ARFI image through
depth.

taken in a stiff, 4 mm cylindrical target. Comparable image quality is achieved in all three
rapid multi-focal-zone acquisitions, whereas in the single-focal-zone acquisitions, only the
image that is focused on the lesion achieves good image quality. A drawback to using rapid
multi-focal-zone ARFI is the acoustic energy output. A two-dimensional multi-focal-zone
ARFI image may require more than 100 ARFI excitations. Therefore, the benefits in image
quality have to be weighed against the potential for bioeffects when using rapid multi-focal
zone ARFI.

Improving ARFI contrast through depth can also be achieved by applying depth-dependent
gain (DDG) normalization in a manner similar to time-gain compensation (TGC) that is
done in conventional B-mode (see Figure 22.6). During ARFI excitation, a non-uniform force
is deposited through depth in the tissue due to focusing and tissue-dependent attenuation,
which can lead to spatial gradients in otherwise homogeneous tissue. To account for this,
the ARFI displacement response can be normalized by the applied force field [30], which can
either be measured experimentally in a phantom or predicted with FEM simulation. While
this technique works well in tissue with largely homogeneous attenuation coefficients, it can
be challenging in heterogeneous tissues where the applied force field is not so easily predicted.

22.6 Real-time ARFI Imaging

Conventional ARFI pulse sequences require approximately 5 ms of data acquisition per lateral
position and, for 40 or more lateral positions spanning the imaging FOV, 200 ms or more to
acquire a full ARFI data set. Displacement estimation is also time consuming, but efficient ARFI
beam sequencing approaches, combined with graphical processing unit (GPU)-based process-
ing approaches, make real-time ARFI image generation realizable.

22.6.1 Efficient Beam Sequencing

Several beam sequencing schemes have been designed to reduce acquisition time and,
because fewer ARFI excitations are needed, reduce heating [34]. One approach exploits
parallel-receive acquisition, in which multiple, adjacent A-lines are receive beamformed



344 Ultrasound Elastography for Biomedical Applications and Medicine

15
25->20->15 mm Focus

20 mm Focus 30 mm Focus10 mm Focus

30->25->20 mm Focus20->15->10 mm Focus

17

19

21

23

25

15

17

19

21

23

25
–2 20 –2 20

Lateral position (mm)
–2 2

25

23

21

19

17

15

D
ep

th
 (

m
m

)

25

23

21

19

17

15

25

23

21

19

17

15

D
ep

th
 (

m
m

)

D
ep

th
 (

m
m

)
D

ep
th

 (
m

m
)

D
ep

th
 (

m
m

)

0
Lateral position (mm)

–2 20
Lateral position (mm)

–2 20
Lateral position (mm)

25

23

21

19

17

15

D
ep

th
 (

m
m

)
–2 20

Lateral position (mm)

Contrast

CNR

Noise

0.27

2.81

0.10

Contrast

CNR

Noise

0.09

0.78

0.11

Contrast

CNR

Noise

0.18

2.29

0.08

Contrast

CNR

Noise

0.34

3.85

0.10

Contrast

CNR

Noise

0.29

3.16

0.10

Contrast

CNR

Noise

0.29

3.49

0.09

Lateral position (mm)

Figure 22.7 ARFI displacement images of a 4 mm cylindrical target, displayed 0.6 ms after force cessation.
The top row shows three different multi-focal-zone sequences and the bottom row shows three different
triple-push, single-focal-zone sequences. Comparable image quality is achieved in all of the multi-focal-zone
images, while in the single-focal-zone cases, the 10 mm and 30 mm sequence show very poor contrast. Source:
© 2015 IEEE, reprinted, with permission, from [33].

from a single, wide-transmit pulse [35, 36]. For implementation, the ARFI pushing pulse and
the tracking transmit pulse are positioned in the center of the beamformed parallel-receive
tracking lines, with displacements in the tracking positions outside the ARF ROE resulting
from ARFI-induced shear wave propagation. For systems capable of highly parallelized receive,
or “plane wave imaging” [37], shear wave attenuation is the primary limitation to the lateral
extent of the observation region.

Another beam sequencing approach to reducing ARFI data acquisition time involves mul-
tiplexed displacement tracking. The rationale for multiplexing considers that the majority of
relevant information in an ARFI displacement profile resides at the beginning (which encodes
the peak induced displacement and thus reflects tissue elasticity) and the end (which is assumed
to encode full recovery and is used for rejecting motion artifacts, as described in Section 22.5.1).
Therefore, rather than observing the dispensable displacement information in the center of the
profile, the tracking position is toggled between two different lateral positions; both experi-
ence deformation from different ARFI excitations. Combined with parallel-receive tracking in
each of the two tracking locations, this approach may yield a 2N-fold improvement in ARFI
data acquisition time, where N is the number of parallel-receive lines per tracking location. For
additional reduction in the number of required ARFI excitations, the two tracking locations
may be centered about a common ROE. As in the case of parallel tracking alone, displacements
in the tracking locations outside the ARF ROE are induced by propagating shear waves, so shear
wave attenuation remains a limitation on the lateral extent of the observation window. Note that
plane wave imaging methods may be implemented on relevant systems without multiplexing
to observe full displacement profiles along the same or larger observation regions, but at the
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potential expense of spatial resolution and SNR. The reader is referred to Bouchard et al. [34]
for illustrations of the described ARFI beam sequencing methods.

An additional benefit to designing efficient ARFI beam sequencing techniques is the poten-
tial for combination-mode imaging [38]. Specifically, ARFI imaging pulse sequences can be
designed to simultaneously acquire B-mode, ARFI, and spectral Doppler (to capture anatom-
ical, mechanical, and hemodynamic information, respectively) using the parallelization and
multiplexing techniques mentioned above. These combination-mode imaging techniques have
specific relevance to vascular and cardiac applications, where combined B-mode and Doppler
imaging are currently the clinical gold standard.

22.6.2 GPU-based Processing

These efficient beam-sequencing schemes have been demonstrated to substantially decrease
ARFI frame rates and tissue heating with little sacrifice in image quality, which is critical for
real-time ARFI applications, but another critical component is computational efficiency. To
address the computation time requirements for ARFI processing, ultrasound researchers have
turned to using GPUs. GPUs are specialized computer circuits that include hundreds of pro-
cessing cores for highly parallelized computation. Rosenzweig et al. [39] demonstrated that
a GPU-based implementation of the ARFI processing chain can substantially improve com-
putation performance (by approximately 40-fold) and enable ARFI frame rates of less than a
second. To achieve this, the authors developed custom implementations of cubic spline interpo-
lation and Loupas’ autocorrelation estimator written in Compute Unified Device Architecture
(CUDA), a programming interface developed by Nvidia Corporation to facilitate using GPUs
for general purpose processing. Using the GPU processing chain, the authors showed that dis-
placement estimate computation was no longer the rate-limiting step; instead, displaying the
image to the monitor took the most time due to an additional RAM copy.

The greatest challenge with implementing ARFI on the GPU is the significant development
time that is needed to efficiently port algorithms into a parallelized environment. Cubic spline
interpolation, for example, is not well suited for parallel execution because the solution is
dependent upon all data points. Nevertheless, once a parallel version of a given algorithm is
developed, the GPU can serve as a powerful tool to speed up lengthy computations and make
real-time implementations feasible.

22.7 Quantitative ARFI Imaging

Because the applied ARF amplitude is tissue-dependent and generally unknown, ARFI imaging
methods that monitor induced displacements in the ROE are limited to qualitative analysis
of tissue stiffness. However, quantitative assessment of tissue elasticity is possible by exploiting
ARFI-induced shear wave propagation [40–42], as in shear wave elasticity imaging (SWEI) [40].
This approach takes advantage of the fact that the shear wave velocity (SWV) is proportional
to the stiffness of the propagating tissue medium. Specifically, for a homogeneous, isotropic,
linear elastic material with Poisson’s ratio of 0.5, the Young’s modulus, E, is related to the SWV
according to E = 3 × cT

2
𝜌, where cT is the SWV and 𝜌 is the material density [43].

Originally, SWV was measured by inversion of the wave equation [44], but large jitter error
and associated variability in shear wave speed estimates are problematic. Therefore, SWV is
now generally estimated using time-of-flight algorithms [45–49], which measure the shear wave
arrival time (time of peak displacement) in multiple lateral positions outside of the ARFI ROE.
A linear regression is then performed to determine the slope of the relationship between arrival
time and distance from the ROE, and from the inverse slope, shear wave velocity is estimated
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(Figure 22.8). The size of the linear regression kernel is relevant to SWV estimation performance
[50]. The larger the kernel, the more precise the SWV estimate, provided that the tissue medium
is homogeneous. However, applied to inhomogeneous media, large linear regression kernels
result in averaging. Therefore, there is a tradeoff between spatial resolution and SWV estimation
precision. To improve the robustness of shear wave speed measurement in the case of noisy
data, and enable smaller linear regression kernel sizes, algorithms such as RANSAC [49] or the
Radon sum transform [51] have been employed to reject outliers.

The data sets acquired to measure shear wave velocity are similar to those obtained for qual-
itative ARFI imaging. The beam sequencing methods for SWV measurement can use the same
reference, pushing, and tracking pulses as used for qualitative ARFI imaging. The primary dif-
ference is that the tracking pulses are positioned lateral to, rather than centered on, the ROE
(Figure 22.9). For systems only capable of single A-line receive beamforming, multiple ARFI
excitations are needed in each ROE so that shear wave-induced displacements may be observed
in multiple lateral positions for time-of-flight calculation. For systems capable of highly paral-
lelized receive beamforming, the induced shear wave propagation is observed across multiple
lateral tracking locations simultaneously, so only one ARFI excitation may be needed to mea-
sure SWV across a region of interest spanning as much as 2 cm × 2 cm. Limiting this range is
shear wave attenuation, which is material dependent, and the requirement for high displace-
ment SNR for elastic reconstruction algorithms. Beam sequencing methods that exploit plane
wave imaging capabilities to combine qualitative ARFI with shear wave velocity information
are anticipated [31].

22.8 ARFI Imaging in Clinical Applications

The clinical utilities of both qualitative ARFI and quantitative SWV estimation have been
demonstrated in numerous applications. Generally speaking, qualitative ARFI achieves finer
spatial resolution and is therefore relevant for applications in which structural information is
important, as in delineating the structure and composition of atherosclerotic plaques [52–54].
However, quantitative imaging is advantageous for longitudinal and cross-sectional analyses of
tissue elastic properties, where variations in the magnitude and distribution of ARF from time
point to time point or from subject to subject can confound comparisons. Also, quantitative
metrics may have diagnostic meaning, as in staging advanced liver fibrosis [55]. Other clinical
applications of qualitative and quantitative ARFI imaging include: liver and kidney [56, 57],
breast [58], prostate [59], cardiac [60] and skeletal [61] muscle, nerves [32], skin [62], ablation
monitoring [63–65], and vasculature [52–54]. We herein provide an in-depth overview of the
challenges and opportunities unique to clinical ARFI imaging in the context of one of the
first proposed ARFI applications, atherosclerosis imaging. For brevity, we do not provide a
similar review of other clinical ARFI applications, but the reader is encouraged to pursue the
above-referenced sources for more information.

Cardio- and cerebro-vascular diseases (CVD) are among the leading causes of death and dis-
ability around the world. It has been shown that plaques composed of large, mechanically soft
necrotic cores covered by thin fibrous caps have a propensity to rupture and induce cardiovas-
cular accidents such as heart attack or stroke. Because the mechanical properties of atheroscle-
rotic plaques are inherently tied to their rupture potential, many groups have proposed using
elasticity-based imaging techniques to improve plaque vulnerability staging.

Indeed, one of the first clinical applications for ARFI, proposed by Trahey et al. [66], was arte-
rial plaque characterization. The initial studies were performed ex vivo in femoral and popliteal
arteries acquired from amputated human legs, and showed that regions of higher displacement
(i.e. qualitatively soft) correlated with areas of lipid/necrotic core from matched histological
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Figure 22.8 Top row: simulated displacement through time profiles, without ultrasonic tracking, at lateral
positions offset from the excitation location for elastic media with shear moduli of (a) 1.33 kPa and (b) 8 kPa.
Notice that the curve appears more finely sampled in the more compliant medium (1.33 kPa) because of its
slower propagation speed and the fixed 10 kHz temporal sampling (simulating a fixed PRF in the experimental
system). The vertical dotted lines indicate the TTP values that would be estimated from this data, although
experimentally the data would be upsampled using a low-pass interpolation from the acquired PRF to 50 kHz.
Notice that the two plots are on different time scales. Bottom row: (c) time of peak displacement at the focal
depth (20 mm) as a function of lateral position in simulation data for elastic materials, with shear moduli of
1.33 kPa and 2.83 kPa. The inverse slopes of these lines represent the shear wave speeds in these materials.
(d) Reconstructed shear moduli over depths from 16 to 20 mm using the time to peak displacement data at
lateral ranges from 2 to 8 mm outside of the ROE to estimate the shear wave speed for elastic materials with
1.33 (x) and 2.83 (o) kPa shear moduli. The raw FEM data are represented by the (x) and (o) lines, with the mean
± one standard deviation shear modulus estimates over the range of depths represented in each colored text
box. The corresponding ultrasonic displacement-tracked data, using 20 independent speckle realizations, is
shown in the black lines. Source: figure reproduced with permission from [31].

sections, while regions of lower displacement (i.e. qualitatively stiff) correlated with areas of
fibrosis and calcification. Subsequent studies done both ex vivo and in vivo in a porcine model
of atherosclerosis corroborated the initial findings [67, 68]. To quantify sensitivity and speci-
ficity of ARFI to various plaque features, Behler et al. [69] performed a study in which trained,
blinded readers scored ex vivo ARFI images for various plaque components. The results showed
that ARFI was most sensitive to calcification (sens: 96%, spec: 85%), slightly less sensitive to lipid
core (80%, 86%) and fibrous cap (86%, 82%), and least sensitive to general fibrosis (78%, 77%).
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Interestingly, ARFI was also reported to be sensitive to detecting degraded internal elastic lam-
ina (IEL, 92%, 75%). The IEL is a thin layer of elastin that separates the intima and media and,
when disrupted, is associated with increased plaque rupture risk [70].

The first in vivo ARFI images of human atherosclerotic plaque were reported by Dahl et al.
[71] in the carotids and Dumont et al. [72] in the popliteals. Neither of these studies were done
with matched histology, but subsequent in vivo clinical studies performed in patients under-
going carotid endarterectomy (CEA) [53] and carotid magnetic resonance imaging (MRI) [54]
independently demonstrated that ARFI displacements correlate with underlying plaque com-
positional elements. Figure 22.10 shows the imaging results from the right internal carotid
artery (ICA) of a symptomatic 57-year-old male. B-mode imaging shows a generally echolu-
cent plaque, with two bright echogenic foci located 9.8 mm apart. ARFI imaging shows that the
plaque exhibits generally low PD throughout (mean PD: 1.25 ± 0.7 μm), with the exception of a
higher displacing region above the left-most echogenic foci (mean PD: 3.11 ± 3.6 μm). Histol-
ogy confirms the presence of two sizable calcium deposits that correlate with the two echogenic
foci in the B-mode image. Directly above the left-most calcification there is a necrotic core that
extends around the right side of the plaque and spatially corresponds to the area of higher PD in
the ARFI image. The leftmost part of the plaque consists mostly of collagen fibers corroborating
the small displacements seen in the ARFI image.

While these preliminary efforts have shown promising results for using ARFI for plaque
characterization, there are substantial challenges. First, heavy arterial calcification and shad-
owing may prevent ARFI from accurately characterizing plaque. Calcification is known to have
high ultrasonic attenuation, which, when performing ARFI, can hamper delivery of radiation
force to areas behind the calcification, potentially reducing ARFI’s ability to fully characterize
the plaque. Thus, the position of calcium deposits, which are usually apparent as hyperechoic
regions in conventional B-mode imaging, should be considered carefully when performing
ARFI imaging. Second, the proximal wall can often be obscured with clutter from overlying
tissues and make the lumen/plaque border difficult to identify. Implementing harmonic ARFI
imaging, as described in Section 22.3.3, has been shown to achieve substantial clutter reduction
and improve delineation of the lumen in ARFI atherosclerosis imaging [24]. Third, due to the
heterogeneous nature of plaques, shear wave reflections may influence the temporal response
measured in a given ARFI ensemble. Improved motion rejection methods, including methods
that implement directional filters, such as those that have been developed for shear wave-based
imaging methods [73], may be relevant to improving assessment of the dynamic response of tis-
sue. Finally, due to physiological pulsation of the arterial wall, motion artifact may be present
in ARFI displacement profiles. To minimize physiological motion and improve reproducibility,
vascular ARFI images can be gated to diastole.

A common question regarding the application of ARFI to atherosclerosis imaging relates
to the potential for the ARFI excitation to induce rupture. The question was evaluated by
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Figure 22.10 ARFI image of carotid plaque from the common carotid artery (CCA) of a 57-year-old symptomatic male. (a) B-mode imaging shows an echolucent plaque
with two echogenic foci located ∼10 mm apart (black arrows) suggesting calcification. (b) Hybrid B-mode/ARFI peak displacement images show a plaque with generally
low displacement except for an area of higher displacement located on the right (outline) suggesting a lipid/necrotic core covered with a stiffer fibrous cap.
(c) H&E staining confirms the presence of two calcifications (black arrows), while (d) combined Masson’s staining shows a necrotic region (outline) located above the
leftmost calcification underneath a fibrous cap. Inset panels show a magnification of fibrotic (d1) and necrotic regions (d2). The necrotic region is characterized by
cholesterol clefts and free erythrocytes suggesting intra-plaque hemorrhage (d2). Source: image adapted from [53].
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Doherty et al. [74]. In this study, the authors segmented a number of plaque geometries taken
from the MRI literature and implemented them in the ARFI FEM framework developed by
Palmeri et al. [4] to determine the maximum stress imparted on the fibrous cap by ARFI. The
results demonstrated that the maximum von Mises stress imparted by an ARFI excitation on
fibrous caps was <1.2 kPa, which, compared to the circumferential stress from blood pulsation,
was much smaller. In the biomechanics literature, a value of 300 kPa is typically cited as the
critical stress necessary to cause plaque rupture [75]. While ARFI plaque imaging has not had
any adverse events reported to date, the ALARA principle (“as low as reasonably achievable”)
should always be implemented to minimize patient risk [76].

22.9 Commercial Implementation

ARFI imaging has been translated to commercial ultrasound systems in the form of the Virtual
TouchTM and Virtual Touch IQTM tissue imaging and quantification tools that are available on
the Siemens S2000 and S3000 scanner models (Siemens Medical Solutions, USA Inc. Ultra-
sound Division). Using Virtual TouchTM, a qualitative grayscale map of relative stiffness for a
user-defined region of interest is produced. With Virtual Touch IQTM, the velocities of shear
waves induced by ARFI within a user-defined region of interest are displayed as a color-coded
velocity map, enabling subjective assessment of stiffness. Virtual TouchTM was cleared by the US
Food and Drug Administration (FDA) in 2013 for use in abdominal, breast, thyroid, small parts,
and musculoskeletal exams, but the technology has been commercially available in Europe
and Asia since 2008. In addition to Siemens, Philips Ultrasound has developed a radiation
force-based shear wave elastography product, ElastPQTM, which is available on the iU22 sys-
tem (Philips Ultrasound, Inc., Bothell Washington). Using ElastPQTM, the average and standard
deviation shear wave velocity or Young’s modulus are measured in a region of interest, with
application to assessing liver fibrosis. The commercial availability of ARFI imaging tools has
enabled greater breadth of clinical investigation into relevant ARFI applications, conducted by
research groups worldwide.

22.10 Related Technologies

Several related ultrasound imaging methods exploit ROE displacements induced by impulsive
acoustic radiation force to assess tissue mechanical property.

In ARFI Surveillance of Subcutaneous Hemorrhage (ASSH) [77–80], elevated jitter variance
in ARFI-induced displacement profiles detects the presence of subcutaneous hemorrhage. By
mapping the detected hemorrhagic cross-sectional area versus time, bleeding dynamics (rate
of bleeding and time to hemostasis) are measured.

In Kinetic Acoustic Vitroretinal Examination (KAVE) [81, 82], several successive acoustic
pulses per lateral location are used to induce a steady-state tissue displacement. Assuming that
the ARFI forces approximated a temporal step function and that tissue could be described dis-
cretely by the Voigt model, images were generated of force-free parameters depicting the time
constant, damping ratio, and natural frequency of homogeneous tissue mimicking material.

Similarly, in Monitored Steady-State Excitation Recovery (MSSER) ultrasound [83], a
material creep test is mimicked using multiple successive ARF excitations. In concert with
Young’s modulus data provided through shear wave velocity measurement, mechanical
properties, including time constants, elasticity, and viscosity, were estimated in calibrated
tissue-mimicking materials and in excised muscle.

Using fewer ARF excitations than MSSER, Viscoelastic Response (VISR) ultrasound [84]
also approximates a creep response to assess the viscoelastic properties of tissue. In the VisR
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approach, the dynamic response of tissue to two successive ARF excitations, separated in time
by less than 1 ms and delivered to the same ROE, is fitted to the mass-spring-damper model to
estimate viscoelastic properties.

These methods and their applications are in continued development. Methods related to
quantitative shear wave velocity imaging are presented in Chapters 15, 16, 19–21, and 23–25.

22.11 Conclusions

ARFI ultrasound exploits impulsive, focused acoustic radiation force excitations to induce, with
temporal and spatial precision, micrometer-scale tissue displacements that are tracked, conven-
tionally by correlation-based time delay estimators. The estimated displacements in and near
the ROE qualitatively reflect tissue stiffness, and displacement estimates outside the ROE sup-
port quantitative measures of SWV. Factors impacting ARFI performance include displacement
resolution and underestimation, clutter artifact, and physiological motion; however, potential
detrimental effects have been minimized by biased displacement estimators, large excitation
relative to tracking beam focal configurations, harmonic tracking, and motion rejection algo-
rithms, respectively. ARFI achieves higher image contrast using excitation pulses that are tightly
focused in the lateral-elevational plane, although with a tradeoff in frame rate unless rapid
multi-focal zone imaging is implemented. Efficient beam sequencing combined with GPU pro-
cessing make ARFI real-time realizable, and the imaging method has been implemented on
commercial ultrasound scanners. ARFI imaging has been demonstrated in numerous clinical
applications, and progress in the field is rapidly advancing.
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Supersonic Shear Imaging
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23.1 Introduction

The physical principle of the supersonic shear imaging (SSI) technique was described for the
first time in Bercoff et al. [1]. It can be decomposed in three main stages: excitation by acoustic
radiation force, acquisition by ultrafast imaging and calculation of speed maps. It is the com-
bination of an excitation by acoustic radiation force and an ultrafast ultrasound imaging of the
resulting shear waves which characterize the specificity of this elastography mode.

23.2 Radiation Force Excitation

The basis of the SSI technique is to use radiation force to excite the medium. It is this slight
displacement of the medium which will then propagate in the form of a mechanical wave if the
medium is solid, or create a flux if the medium is liquid. It is therefore the essential component
of the SSI that allows the generation of the shear wave and replaces the techniques based on
external vibrators.

23.2.1 Radiation Force

The radiation pressure is a volumetric or surface force which results from a transfer of
momentum between a wave and its propagation medium. Originally discovered in acoustics
by Rayleigh, it could only be reliably observed with piezoelectric transducers of sufficient
power [2–4]. According to the equations of motion and continuity applied to a fluid particle
(in implicit summation)

𝜌

(
𝜕vi

𝜕t
+ vk

𝜕vi

𝜕xk

)
= −

𝜕p
𝜕xi

(23.1)

and
𝜕p
𝜕t

+
𝜕𝜌vj

𝜕xj
= 0 (23.2)

where 𝜌 is the density, v is the compressional wave speed, and p is the pressure.
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We find the expression of the quantity of motion at a point in the middle
𝜕𝜌0vi

𝜕t
= −

𝜕(p𝛿ik + 𝜌0vivk)
𝜕xk

= −
𝜕Mik

𝜕xk
(23.3)

where Mik is the defined momentum flux tensor.
The radiation force is then defined as the mean force resulting from the passage of the wave

in the medium and is therefore equal to the mean variation of the linear momentum undergone
by the medium at this point

⃗fi = −
𝜕Mik

𝜕xk
u⃗
𝜄

(23.4)

where Mik is the Brillouin tensor which corresponds to the mean value over a period.
The linear momentum variation along the propagation axis is then related to several effects

[5] – wave dissipation, wave reflections, and non-linearity.
When the wave is not confined to the medium [6], which means that its extension is much

smaller than the medium size, the overpressure p has a mean of zero [7] and the average of the
linear momentum flux is written Mik = 𝜌0vivk ; this is called the Langevin radiation force.
• For a plane wave in a non-attenuating medium v(x, t) = ej𝜔t−kx, the linear momentum is con-

stant during wave propagation and there is therefore no transfer to the medium: the radiation
force is null.

• For a plane wave in an attenuating medium v(x, t) = ej𝜔t−kx+ j𝛼x, we have a variation of the
linear momentum. From Eq. (23.4), we deduce the expression of the associated radiation
force f

⃗fi = −
𝜕Mik

𝜕xk
u⃗
𝜄

= −2𝜌0

(
vi
𝜕vk

𝜕xk

)
u⃗
𝜄

= 2𝜌0𝛼v2
i u⃗

𝜄

= 2𝛼
p2

0

𝜌0c2 u⃗
𝜄

(23.5)

where u is the displacement, 𝛼 is the attenuation, c the ultrasound speed, and p0 the pressure
field within the focal zone.

• For a plane wave reflecting perfectly on a surface, the radiation force is written

⃗fi = 2
p2

0

𝜌0c2 u⃗
𝜄

(23.6)

• For a plane wave partially reflecting on a surface with a coefficient R, the radiation force is
written

⃗fi =
(

1 + R − (1 − R)
c1

c2

) p2
0

𝜌0c
u⃗
𝜄

(23.7)

In general, in vivo radiation force is mainly related to the attenuation in soft tissues (about
0.3–1.0 dB/cm/MHz) as well as to the reflections by the interfaces of the organs.

23.2.2 Focus Duration

The acoustic radiation force generates a distant mechanical force F . Being proportional to the
square of the amplitude of the ultrasound, a focusing law is used to locally raise the amplitude
of the ultrasound waves and thus to generate a peak of force at a precise point.

The duration of the focusing does not change the amplitude of the radiation force, but only
its temporal duration. The typical focusing times used are of the order of a few hundred micro-
seconds. The radiation force can then be modeled by

F(r⃗, t) = 2𝛼
p0(r⃗)2

𝜌0c2 rectT(t) (23.8)
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23.2.3 Impulse Response

The impulse response of the induced mechanical force can be calculated through the elastic
Green’s function. This impulse response was developed by Aki and Richards [8] in a purely elas-
tic medium. It is written for the j component of the displacement field generated by a radiation
force along the axis ui

Gij(
−→r , t) = (gP

ij (
−→r , t) + gS

ij(
−→r , t) + gPS

ij (
−→r , t)) (23.9)

where

• gP
ij is a compressional wave propagating longitudinally with a speed cP =

√
𝜆+2μ
𝜌

gP
ij (r⃗, t) =

1
4𝜋𝜌c2

P
𝛾i𝛾j

1
r
𝛿

(
t − r

cP

)
(23.10)

where 𝛾j is the cosine director of unit vector r⃗ and r = ||r⃗||, 𝜆 and 𝜇 are the Lamé coefficients,
and i,j are the direction index numbers of the displacement and the source respectively

• gS
ij is a shear wave propagating transversally with a speed cS =

√
μ
𝜌

gS
ij(r⃗, t) =

1
4𝜋𝜌c2

S

𝛿ij − 𝛾i𝛾j

r
𝛿

(
t − r

cS

)
(23.11)

• gPS
ij is a coupling term between shear and compression

gPS
ij (r⃗, t) =

1
4𝜋𝜌

(3𝛾i𝛾j − 𝛿ij)
1
r3 ∫

r
cS

r
cP

𝜏𝛿(t − 𝜏)d𝜏 (23.12)

An analytical formulation of the Green’s function taking into account the viscosity has been
proposed by Bercoff et al. [9] and allows one to simulate experimental observations. For a com-
pressive 𝛼P and shear 𝛼S viscosity, the viscous Green’s function is then written

• For gP
ij

gP
ij (r⃗, t) =

1
4𝜋𝜌c2

P

1√
2𝜋𝜐Pt

𝛾i𝛾j
1
r

e−
(t−𝜏)2c2

P
2𝜐P t (23.13)

where 𝛾j cosine director of unit vector r⃗ and r = ||r⃗||, 𝜐P = 𝜂P+2𝜂S

𝜌

.
• For gS

ij

gS
ij(r⃗, t) =

1
4𝜋𝜌c2

S

1√
2𝜋𝜐St

𝛿ij − 𝛾i𝛾j

r
e−

(t−𝜏)2c2
S

2𝜐S t (23.14)

where 𝜐S = 𝜂S

𝜌

• For gPS
ij

gPS
ij (r⃗, t) =

1
4𝜋𝜌

(3𝛾i𝛾j − 𝛿ij)
1
r3 [IP(r⃗, t) + IS(r⃗, t)] (23.15)

with

IP(r⃗, t) =
√
𝜐Pt√

2𝜋cP

[
e−

t2c2
P

2𝜐P t − e−
(t− r

cP )
2

c2
P

2𝜐P t

]
+ t

2

⎡⎢⎢⎢⎣Erf

(
cPt√
2𝜐Pt

)
− Erf

⎛⎜⎜⎜⎝
cP

(
t − r

cP

)
√

2𝜐Pt

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
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(a) Simulation
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Figure 23.1 Impulse response after 100 μs of ultrasound focalization. (a) Simulation calculated from the
viscous Green’s function. (b) Experimental validation in an agar–gelatin phantom [10].
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and Erf being the error function.

Then the Green’s function is convolved with the radiation force impulse in order to compute
the displacement field resulting from it with the impact of the focalization duration and the
size of the focal spot. Figure 23.1 presents simulation results and experimental results in an
agar–gelatin phantom.

23.2.4 Mach Cone and Quasi Plane Shear Wave

The radiation force allows one to generate a mechanical wave (including a shear term) at a
precise location within the medium. Unfortunately, the amplitude of this wave is quite low and,
in addition, decreases sharply during propagation due to strong diffraction in the imaging plane
(Figure 23.1). To remedy this, the idea of SSI is to focus the ultrasound successively at different
depths; the interference of the shear waves generated by each focusing makes it possible to
construct a quasi-plane shear wave [11].

As the speed at which the shear wave source is moved in depth is higher than the shear wave
rate of the medium, it will create a supersonic regime and a Mach cone [12]. From this anal-
ogy was born the name of “supersonic shear imaging”. The interference of the “pushes” makes
possible the generation of a quasi-plane shear wave whose angle depends on the ratio of the
velocities of the source and of the shear wave, that is to say the Mach number (Figure 23.2). The
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Figure 23.2 (a) Mach cone simulation by using the Green’s function defined above. (b) Experimental validation
in an agar–gelatin phantom. The shear wave speed in the gel is 2 m/s and the speed of the shear source is
6 m/s resulting in a Mach number of 3 [10].

plane wave thus generated is inclined by an angle 𝜃 = tan−1(M), where M is the Mach number.
Such phenomenon can be simulated with the previous Green’s function described above.

23.2.5 Norms and Safety

Focusing large amplitude ultrasound in biological tissue can lead to tissue damage [13]. It is
thus necessary to study the effects of the radiation pressure on the tissues in order to ensure its
safety for short application times.

Ultrasound has two physical properties that can damage the integrity of living cells.

• Heating: the absorption of the wave by the viscous forces leads to a rise in temperature locally
which can cause tissue necrosis.

• Cavitation: high negative pressures can induce cavitation that tears and destroys cells.
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It is therefore important to control these two effects. For this reason, the Food and Drug
Administration (FDA) has put in place several standards to insure that these two physical quan-
tities (pressure and temperature) remain below damaging thresholds [14].

• Intensity spatial peak temporal average (ISPTA) evaluates the mean energy deposited in the
focus using the formula

ISPTA =
p2

0

𝜌0c
ΔtUS

Δtpause + ΔtUS
(23.16)

where p0 is the pressure corrected by tissue absorption (∼0.3 dB/cm/MHz), tUS is the ultra-
sound duration, and tpause is the time without focalization. This value must be lower than
720 mW/cm2 for almost all the organs of the body.

• Mechanical index (MI) evaluates the cavitation risk using the formula

MI =
p0√

f0

(23.17)

where f 0 is the ultrasound frequency. This value must be lower than 1.9 for almost all the
organs of the body.

The SSI technique, by generating a quasi-plane shear wave in the imaging plane (which goes
through the whole medium and is imaged at once) greatly reduces the total ultrasound focusing
time in the medium. By this way, norm values are respected in the SSI sequence and this allows
one to conduct multiple clinical protocols in vivo [15, 16].

23.3 Ultrafast Imaging

After generation of the shear wave in situ, it must be observed in order to deduce the mechanical
properties of the medium from its propagation. Since the propagation speed of the shear wave
generally varies between 1 and 20 m/s in biological tissues, this implies, for an imaging zone of
the order of 40 mm, that the shear wave goes through the imaging plane in less than 40 ms. It is
therefore a very fast phenomenon that must be imaged with an excellent temporal resolution,
which is not possible for conventional ultrasound scanners since they usually produce an image
every 20 ms.

It has therefore been necessary to develop an imaging mode capable of making several thou-
sand images per second to follow this wave. For this reason the idea of the SSI technique is to
use ultrafast imaging by illuminating the medium with ultrasonic plane wave, a method already
used in the 2D transient elastography technique [17].

23.3.1 Ultrasonic Plane Wave Imaging

In classical ultrasound imaging, the medium is illuminated by several ultrasonic transmissions
successively focused in different areas of the image (usually line by line). This makes it possible
to concentrate the energy in a precise zone, which has two effects: a better signal-to-noise
ratio and a better discrimination of the imaged area at emission, which improves resolution
and contrast since all echoes come from the focal zone alone. Unfortunately this tech-
nique involves repeating the focusing step a lot of times in order to reconstruct a complete
image.

Plane wave imaging is performed with a single emission [18]. The entire field-of-view is illu-
minated at once, and as soon as the ultrasound is transmitted, the ultrasound device can switch
into a receive mode to record the first echoes, thus saving a lot of time [19].
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Focused imaging Plane wave imaging

Figure 23.3 Comparison between focused imaging and plane wave imaging. Focused imaging has better
contrast and lateral resolution but does not achieve the plane wave frame rate [10]. Experiment performed on
a Philips ATS550 phantom with a 4.3 MHz ultrasonic probe.

Unsurprisingly, the plane wave mode is less effective for contrast and lateral resolution [10]
(Figure 23.3). With only focusing on reception, a diffraction impulse response corresponding
laterally to a cardinal sine instead of a cardinal sinus squared (obtained with focalization
on transmit and reception) is obtained. The lateral resolution is thus slightly degraded (the
width of the focal spot is slightly diminished) and the contrast decreased by a factor almost
equal to two (lobes at about −35 dB instead of −70 dB). Nevertheless, in most cases, since
the generated shear wavelengths are much greater than the resolution of the ultrasound
image obtained, the loss of resolution does not significantly influence the quality of the
motion estimation. However, resolution and contrast can be enhanced by using ultrasonic
compound imaging described in Montaldo et al. [20]. This technique consists in coherently
summing different ultrasound images obtained with different angles of plane wave insoni-
fication. Such a technique reduces the frame rate by the number of angles but remains fast
enough to follow transient motions due to the shear wave propagation. Finally, a tradeoff
between frame rate and image resolution is chosen depending on the purpose of the SSI
technique.

23.3.2 Shear Wave Detection

The last step to be able to follow the shear wave is to measure the displacement of the tissue
from the ultrafast movie. For this purpose, each image is cut into axial windows which are
compared from one image to the next to measure the temporal offset [21]. This technique,
called ultrasonic speckle interferometry [22], makes it possible to estimate the speckle speed
at each point of the image and so to calculate a movie of the axial displacement uz(z,x,t). Since
the displacement generated by the radiation pressure is low (some μm), the correlation of the
non-demodulated ultrasonic signals s(z,x,t) is used. This allows one to measure displacements
smaller than the ultrasonic wavelength, which can be improved by parabolic interpolation of
the correlation functions.

As in most of the ultrasonic devices, signals are directly demodulated in IQ (in phase and
quadrature demodulation), then a phase measurement between the IQ samples is directly used
with 𝜔 being the pulsation frequency

s(z, x, t) = I(z, x, t) cos(𝜔z∕c) + Q(z, x, t) sin(𝜔z∕c) (23.18)

𝜏(z, x, t) = 1
𝜔

a tan−1
(

Q(t)I(t + 1) + Q(t + 1)I(t)
I(t + 1)I(t) + Q(t + 1)Q(t)

)
(23.19)
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uz(z, x, t) =
𝜏(z, x, t) ∗ c

2
∗ frame rate (23.20)

23.4 Shear Wave Speed Mapping

One possible way to map the shear wave speed in tissues is to use a time-of-flight algorithm.
Time-of-flight is a simple and intuitive way to find the time that the shear wave travels between
two spatial points. Although this approach is less general than the wave equation inversion
(since it requires a flat shear wave), it offers better stability to noise. The time-of-flight is calcu-
lated by cross-correlating the axial displacements uz of two points spaced a distance dx (called
the correlation distance) and located on the same horizontal line (the direction of propagation
of the plane wave). The maximum of the cross-correlation function makes it possible to obtain
the time shift dt and the speed of propagation of the shear wave is then simply estimated
by vs = dx/dt.

In order to express the link between the time-of-flight measurement and the shear modulus,
we can study the cross-correlation function of two waves separated by a distance dr in the case
of a purely elastic model. Under a purely elastic model, the link between time-of-flight and
shear modulus is simple because there is no shear wave dispersion. One can write the wave
displacement uz of amplitude A0 in x and x + dr by

uz(x, t) = A0(t)and uz(x + dr, t) = A0(t) ∗ 𝛿

(
t −

√
𝜌

μ
dr
)

(23.21)

Correlation of uz(x, t) and uz(x + dr, t) is then maximal for 𝜏 =
√

𝜌

μ
dr, which gives the shear

wave speed by time-of-flight as vs =
√

𝜌

μ
.

23.4.1 Building an Image

Time-of-flight is used to reconstruct a shear wave speed map wherever the shear wave has
propagated. Thus, in the push zone, no shear wave propagates and it is therefore impossible
to find the values of the elasticity in this zone. In order to reconstruct a complete image of
the medium, it is therefore necessary to generate another Mach cone, or even a third cone
to completely “explore” the imaging zone. Conventionally, three Mach cones are used and are
sufficient to reconstruct the entire image. In practice, each pushing beam is followed by an
ultrafast imaging sequence and all the pushes are chained automatically in a few milliseconds.
This “multizone” sequence is thus as straightforward to use as a simple sequence. Instead of
acquiring a single film of the shear wave propagation, three films are obtained. On each film,
the time-of-flight algorithm is used to reconstruct a piece of the shear wave speed map, as
illustrated in Figure 23.4. Finally, in order to obtain the full map shear wave speed map, the
“push zone” is masked by using a dedicated algorithm. Then the three maps are combined with
a quality criterion such as a local weighting [24].

The whole technique was firstly implemented on an ATL HDI 1000 ultrasound device and ini-
tially showed its potential in breast cancer detection (Figure 23.5) [16]. After this technique was
implemented on an ultrasound diagnostic imaging device called the Aixplorer® (Supersonic
Imagine, Aix-en-Provence, France), its diagnosis performance as well as its reproducibility were
demonstrated in several organs, and more particularly in the breast [25]. In particular, a mul-
ticentric study in 939 patients with breast cancer showed an important increase in specificity
for breast lesion characterization (+17.4%) with the addition of the elasticity parameters to the
classical BIRADs criteria [26].
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Figure 23.4 (a), (c), (e): Shear wave displacements at one time of the acquired shear wave movie for three
different Mach cone genrerated consecutively. (b), (d), (f ): Corresponding shear wave speed map for each Mach
cone [23].
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Figure 23.5 Ductal infiltrating carcinoma. The B-mode image brings out a hypo-echogenic mass with blurry
borders with a shadow posterior to the lesion. The lesion is classified as ACR5. The elasticity imaging clearly
brings out a very stiff mass at more than 150 kPa (7.1 m/s). Source: reprinted from [16] with permission from
Elsevier.

23.5 Conclusion

The supersonic shear imaging technique allows quantitative and real-time imaging of elastic-
ity by judiciously using radiation pressure to generate a shear wave and ultrafast imaging for
acquisition. The use of a time-of-flight algorithm makes it possible to determine the shear wave
propagation speed and thus to find shear modulus maps of the medium. This method makes
it possible to produce maps in vivo with a good spatial resolution. Beyond the production of
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stiffness maps, it is possible to construct different estimation strategies to obtain, for example,
an average value of stiffness that is as precise as possible. This elastography method, improved
here for in vivo acquisition, has already been tested on several clinical applications, from breast
cancer diagnosis to liver stiffness staging or muscle characterization.
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24.1 Introduction

Shear wave elastography (SWE) infers tissue mechanical properties by observing the propaga-
tion of shear waves in the tissue [1–3]. Conventional methods for estimating tissue mechanical
properties (e.g. indentation, uniaxial loading [4]) are invasive and require direct contact with tis-
sue samples. Compared with these methods, SWE has the advantages of being noninvasive and
nondestructive, and allows in vivo quantification of tissue mechanical properties. The speed,
attenuation, and distortion of a shear wave as it propagates are determined by the mechanical
properties of the tissue. By measuring these wave characteristics we can in principle estimate
the properties of the tissue that supports the wave.

For instance, in an elastic medium the speed c of a shear wave is related to the shear modulus
G by G = 𝜌c2, where 𝜌 is the density of the medium. Thus, by measuring the speed of propaga-
tion of a shear wave in a medium of known density, we can determine its modulus. Within the
human body shear modulus varies over many orders of magnitude between tissues, while soft
tissue density is equivalent to water within an error of a few percent. The relative uniformity of
density compared to shear modulus makes shear wave speed measurements in tissue effective
surrogates of shear modulus.

Implementation of this measurement requires that we first generate a shear wave and then
measure its propagation speed. Several shear wave sources have been used for SWE, including
electromechanical actuators – voice coils mechanically coupled to the tissue. These have the
advantage of being able to generate large forces over a wide range of frequencies, from DC
up to a kilohertz. A disadvantage is that, in noninvasive applications, the shear waves must
propagate from the skin surface to the region of interest, which may be subject to shadowing.
The mechanical shaker is an additional device that must be positioned along with the ultrasound
transducer, which can be cumbersome.

Another method of generating shear waves relies on the phenomenon of acoustic radiation
force [5]. This is a body force associated with the propagation of an acoustic wave in an absorp-
tive medium. The direction of the force is in the direction flow of acoustic energy. For a weakly
focused ultrasound beam of intensity I, the associated acoustic radiation force F is given by
F = 2𝛼I

cu
, where 𝛼 is the ultrasound attenuation coefficient of tissue and cu is the ultrasound

wave speed. In soft tissues the variations in cu and 𝛼 are small compared to the variations in
I that can be achieved by focusing. We can thus generate force distributions in tissue in equal
proportion to our ability to shape the intensity of an ultrasound beam. The same electronic
beamforming that allows transmit beams for B-mode image formation to be tightly focused
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and rapidly steered from point to point allows equally fine localization and rapid translation of
radiation force. High-intensity ultrasound tonebursts with durations of 10−5 to 10−3 s are thus
able to be used to generate localized body forces that act as shear wave sources, a method called
acoustic radiation force impulse (ARFI) [5, 6]. Here the term “impulse” is used to imply that the
duration of force application is short compared with the timescale of the mechanical response
of the tissue. To illustrate this notion in a typical case, the ultrasound toneburst and associated
radiation force may be a few hundred microseconds long, while the time to peak tissue dis-
placement at the ultrasound focus is on the order of milliseconds. The amplitudes associated
with the resulting waves are small, less than 100 μm, but sufficient to be measured ultrasonically
in vivo.

ARFI may be used to generate a shear wave at a point of interest distal to an ultrasound trans-
ducer. The speed of the shear wave as it propagates away from the source can be measured by
timing its arrival at two or more “gates” a known distance apart. This approach is illustrated in
Figure 24.1a. The arrival time of the shear wave at each tracking location may be determined by
a particular metric, e.g. the time of peak displacement. Using two tracking locations a known
distance Δx apart, the shear wave speed can be calculated from the arrival time difference Δt
as c = Δx∕Δt. Tracking at more than two locations provides redundancy and can be used to
reduce error in the shear wave speed measurement due to noise in the arrival time estimates.
We will refer to this approach, involving timing of shear arrival at several locations, as the mul-
tiple tracking location (MTL) method. Examples of MTL methods include shear dispersion
ultrasound vibrometry (SDUV [7, 8]), supersonic shear wave imaging (SSI [9]), and ARFI shear
wave elastography (ARFI-SWE [10]).

The great flexibility in the position and form of the shear wave source afforded by electronic
beamforming and the acoustic radiation force phenomenon allows a complementary approach
to be implemented, which we call single tracking location (STL). In this approach, illustrated
in Figure 24.1b, tissue motion due to shear wave propagation is tracked at one point. An ARFI
shear wave source with multiple peaks with known spacing Δx is applied to the tissue. The
difference in the arrival time of the shear wave peaks Δt at the single tracking location is used
to estimate the shear wave speed c = Δx∕Δt.

The two approaches, STL and MTL, are complementary, with the location of push beams
and track beams reversed between each. In STL the spatial information, Δx, is encoded in the
push beam spacing, while MTL prescribes it in the spacing of the tracking beams. The estima-
tion of shear wave speed relies on the same ratio of beam spacing to arrival time difference.

MTL

Δx

1 2

(a)

STL

1

Δx

cScS

(b)

Figure 24.1 Schematic illustrations of (a) MTL SWEI and (b) STL SWEI. The measurement of wave speed
requires both a spatial and a temporal component. In MTL, the value of Δx is set by the distance between the
two tracking beams. In STL methods, Δx is determined by a spatial property of the shear wave excitation. In
SMURF, this is the spacing between simultaneously applied ARFI intensity peaks, while in STL-SWEI, Δx is the
distance between sequentially applied ARFI pushing beams.
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We shall see that asymmetries in the uncertainty of push and tracking locations, however,
leads to significant differences in the noise associated with each method. STL approaches, and
their associated advantages and disadvantages compared with MTL methods, are the focus of
this chapter.

First, we shall examine implementation details of the STL method in more detail. Next we
demonstrate the effect of ultrasound speckle on shear wave speed estimates, and describe how
STL methods are immune to speckle noise. Finally, we will consider the extension of STL meth-
ods to the estimation of tissue viscoelastic parameters.

24.2 SMURF

The first STL SWEI method developed is called spatially modulated ultrasound radiation force
(SMURF) [11, 12]. The core idea in SMURF is to use a spatially varying acoustic radiation force
to generate a shear wave with a known wavelength 𝜆. Once created, the speed of this wave can
be estimated by measuring its frequency f , using the relationship c = 𝜆f . This approach is the
complement of sonoelastography, SDUV, and similar MTL methods that generate a shear wave
of known frequency and measure its wavelength.

To understand how an acoustic radiation force impulse applied to an elastic medium can give
rise to a shear wave of a desired wavelength, we can consider an analogous 1D model, that of the
“struck string” illustrated in Figure 24.2 [13]. Let us define u as the displacement of the string,
u̇ its speed (particle velocity), and x a point along the string. Initially the string is at rest, so
that u = u̇ = 0. At time zero a hammer strikes the string. The transverse force F applied by the
hammer can be separated into a spatial component and an impulsive temporal component, so
that

F(x, t) = f (x)𝛿(t) (24.1)

This force results in a step change in the velocity of the string proportional to the force, so
that at time t = 0+, just after the application of the impulse force

u̇ = 1
𝜌

f (x) (24.2)

t = 0

x
(a)

t > 0

u

cc

x

(b)

u

cc

x

(c)

Figure 24.2 “Struck string” model of SMURF imaging. (a) A
hammer strikes a taut string at time zero. The hammer face
is in contact with the string for just an instant, and applies a
uniform force over the region indicated by the bracket. (b)
D’Alembert derived the solution for the wave resulting from
the hammer blow. (c) The displacement velocity u̇(x, t) is a
scaled replica of applied force propagating at a speed c, so
that u̇(x, t) ∝ f (x − ct) + f (x + ct). The displacement u(x, t)

is the running integral of the velocity, u(x, t) = ∫
t

−∞
u̇(x, 𝜏)d𝜏

(center).
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and u = 0. The solution for t > 0 of the one-dimensional wave equation
d2u
dt2 − c2 d2u

dx2 = 0 (24.3)

with these initial conditions is

u̇(x, t) = 1
2𝜌

{f (x − ct) + f (x + ct)} (24.4)

An impulsive force with spatial dependence f (x) thus gives rise to a particle velocity described
by forward and backward propagating replicas of f (x), i.e. f (x − ct) and f (x + ct).

In this example let us choose f (x) to have a sinusoidal variation with a particular spatial fre-
quency k, e.g. let

f (x) = cos(kx) (24.5)

In response to this forcing function, the particle velocity of the wave that develops is pro-
portional to cos(k(x − ct)) + cos(k(x + ct)). Using the relationship kc = 𝜔 this can be written as
cos(𝜔t − kx) + cos(𝜔t + kx). Thus, an impulsively applied force with a known, controlled spatial
frequency k gives rise to a shear wave with temporal frequency 𝜔. By measuring the frequency
𝜔 and using the known spatial frequency k, we find the wave speed by taking the ratio 𝜔∕k.

In three dimensions, the relationship between the spatial distribution of an impulsive body
force and the resulting shear wave field is more complicated. We can, however, create an approx-
imately 1D situation by confining rapid variation F to a single direction, so that close to the shear
wave source the force is well approximated by a 1D function. For instance, consider a forcing
function that acts in the z direction of the form

F(x, y, z, t) = e
− x2

𝜎

2
x
− y2

𝜎

2
y
− z2

𝜎

2
z cos(kx)𝛿(t) ̂Z (24.6)

with 𝜎x ≪ 𝜎y, 𝜎z, as illustrated in Figure 24.3. This pulse is concentrated near x = 0, but decays
much more slowly in the y and z directions. For points along the x axis near the origin, this
forcing function will give rise to shear wave packets of the form

e−(x±ct)2∕𝜎2
x cos(𝜔t ± kx) ̂Z (24.7)

with frequency 𝜔 = kc. As illustrated, the induced particle motion is in the ±z direction, and
the wave packet propagates principally in the ±x direction. With increasing distance from the
origin diffraction effects distort the wave so that it is not a perfect replica of F . Nonetheless, in an
elastic medium spatially modulated ARFI can generate a shear wave with a defined wavelength.

With the shear wave thus generated, the wave speed c may be estimated by measuring the
frequency 𝜔 associated with the particle velocity of the medium, that is, the time derivative
of displacement. Many methods for estimating tissue velocity are known [14, 15], including
Doppler methods, time-domain cross correlation methods, and speckle tracking. In all cases,
a succession of ultrasound pulses is transmitted and echoes collected. Because it is the velocity
of the tissue induced by the shear wave, and not the absolute displacement, that is of interest,
the tracking operation may be performed on successive echoes. This is an inherently high-pass
operation that has the salutary effect of suppressing the low frequency associated with the enve-
lope of the shear wave and passing the high frequency component that carries the information
about shear modulus.

The frequency of the induced shear wave is determined by the shear wave speed in the region
of excitation. Assuming linear propagation of the shear wave, its frequency does not change as it
propagates. Redundant measurements of the shear wave frequency at multiple spatial locations
can thus be used to reduce estimate noise. Note that while the frequency may be measured at
multiple spatial positions, the frequency is determined at each location individually, so that this
is still essentially an STL measurement.
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Figure 24.3 Idealized SMURF push pulse and
resulting shear wave. A localized, impulsive force in
the axial (z) direction, with a sinusoidal amplitude
modulation in the lateral (x) direction (top) gives rise
to a shear wave packet propagating in the ±x
direction. The form of the particle velocity
associated with the shear wave packet is
approximately a replica of the spatially modulated
forcing function. The temporal frequency of the
shear wave is determined by the spatial frequency of
the forcing function and the shear modulus of the
region of excitation. As the wave propagates, the
frequency remains constant, even as the wavelength
may vary when the wave propagates to regions of
differing shear modulus.

Elegbe evaluated several approaches for generation of the spatially modulated push beam
[16]. The first is an application of the Fraunhofer approximation, wherein the pressure ampli-
tude in the focal region of a transducer is the Fourier transform of the velocity amplitude of the
aperture. Thus, for instance, a Gaussian-enveloped sinusoidal lateral variation in pressure is
achieved with an apodization function consisting of Gaussians on either side of the beam axis,
as illustrated in Figure 24.4. A second approach is to interfere a pair of plane waves propagating
at angles ±𝜃 to the beam axis, producing a lateral modulation with spatial frequency 2kl sin 𝜃.
The analysis presented models limited aperture size and includes a metric for selection between
the two methods based on imaging depth and ROI size.

Rather than simultaneously generate multiple shear wave peaks, one may generate two or
more peaks sequentially in time [11]. If these peaks are generated rapidly enough, the effect is
the same as that of the simultaneously generated peaks described above (SMURF). “Rapidly”
in this case means that the entire set of peaks is generated before any appreciable shear wave
propagation takes place. This is satisfied if the time required is much less than the peak spacing
divided by the shear wave speed. When the time required to generate the peaks is not negligible,
the frequency estimate can be corrected using the known push-beam spacing and time between
push pulses [11].

The spatial resolution associated with SMURF is determined by the size of the region of exci-
tation. Increasing the spatial resolution of the shear wave speed estimate requires reducing the
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Figure 24.4 Simulated practical SMURF push beams. (a) A desired spatial modulation may be generated using
the focal Fraunhofer approximation – that the lateral pressure amplitude profile is the Fourier transform of the
velocity amplitude in the transducer plane. (b) A spatial modulation of the ultrasound intensity can also be
generated by intersecting Gaussian beams. (c) Conventionally focused push beams may be transmitted in
rapid succession to sequentially generate a series of shear wave peaks of controlled spacing. All simulations
were performed in Field II and modeled a 3 MHz, 𝜆-sampled array at the top of the field (centered at (0,0))
radiating in the +z direction (downwards). Tissue attenuation was modeled as 0.7 dB/cm/MHz attenuation.
Source: © 2007 Sage Publishing, reprinted with permission from [12].

size of the region of excitation, with a consequent reduction in the space between peaks. This
in turn leads to an increase in the induced shear wave frequency.

A limitation of the SMURF approach is the assumption of a purely elastic model. Under this
assumption the speed of propagation of a wave is independent of its frequency. All compo-
nents of the induced shear wave propagate at the same speed c, so that the propagating wave
retains the shape of f (x). Biological tissues, however, are viscoelastic [4]. Shear wave speed
exhibits significant frequency dependence at frequencies greater than 100 Hz. The attenuation
of shear waves increases with frequency in viscoelastic media. As a consequence of these effects,
SMURF push beams containing high spatial frequencies do not result in propagating shear
waves. High frequency components are rapidly attenuated. As a result, attempting to generate
a shear wave with a short wavelength in viscoelastic material results in the rapid attenuation of
the high frequency component. The low frequency envelope portion continues to propagate a
measureable distance, but without the spatial modulation, without a wavelength defined by the
push beam, there is no measurable frequency from which to calculate the wave speed.

24.3 STL-SWEI

The applicability of SMURF is limited to cases where the viscoelasticity of the medium does
not inhibit generation of shear waves of the desired spatial frequency. As a consequence, high
spatial resolution SMURF imaging, which requires high spatial frequencies, is possible only in
a relatively elastic medium.
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Figure 24.5 STL-SWEI beam sequence for a single ensemble. (a) Schematic illustration of push and track beam
locations and sequence. Tissue motion in response to ARFI push pulses is tracked along a common A-line
(track). A reference echo is collected prior to the application of ARFI (top row). A first pushing pulse is applied
along an A-line (push 1) a distance x0 from the tracking A-line. A series of tracking echoes is collected to
measure tissue motion in response to the shear wave induced by the push pulse. After the shear wave has
propagated through the tracking beam, a second push pulse is fired (push 2), offset by Δx from the first.
Tracking echoes are collected and the motion in response to this second push tracked at the tracking A-line. (b)
Tracked displacement in response to “push 1” (solid) and “push 2” (dashed). The difference in the arrival time of
the shear waves Δt relative to the transmission of push beams “push 1” and “push 2” is determined by
cross-correlation of the shear wave signals (c).

Relaxing the requirement that the shear wave be generated with a specific spatial frequency
allows the development of an STL approach for viscoelastic tissue. We will denote this method,
illustrated in Figure 24.5, as STL-SWEI [17, 18]. In this approach, a shear wave is generated using
the acoustic radiation force of a focused ultrasound beam. The beam intensity is localized, but
no sinusoidal modulation is applied as in SMURF. Tissue motion is tracked at a location offset
laterally to the push beam, and the time of arrival t1 of the shear wave is measured, for instance,
by time to peak velocity. Here the arrival time is determined with reference to the time of ARFI
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excitation. A second shear wave is then generated, from a push beam focal point translated by
Δx relative to the first focus, and its arrival time t2 at the same tracking location calculated.
The shear wave speed is determined

c = Δx
t2 − t1

= Δx
Δt

(24.8)

In contrast to the SMURF approach, there is no requirement that Δx be greater than some
minimum value to allow shear wave propagation; Δx plays no role in determining the temporal
frequency of the shear wave. Inserting an adequate time delay between the generation of the
first and second shear waves avoids their overlap spatially. The STL-SWEI approach eliminates
the tight coupling between shear wave frequency and spatial resolution inherent in SMURF
and allows a single tracking location approach to be pursued in viscoelastic media with high
spatial resolution. In contrast to the MTL implementation that determines the shear wave speed
between two tracking beams, STL-SWEI determines the shear wave speed between the two
push beams.

MTL imaging sequences, such as SSI [9], can use parallel receive beamforming or high frame
rate imaging to obtain shear wave speed estimates throughout a tissue region in response to a
single push beam. STL-SWEI sequences, in contrast, require that the pulse sequences ensem-
bles described above be “walked” across the region of interest. Each lateral pixel in the final shear
wave speed image requires a push beam on either side. As shown in Figure 24.6, an STL-SWEI
image M pixels wide thus requires at least M + 1 push beams to be transmitted. If two-to-one
parallel receive beamforming is not available, the number of required push beams increases

Figure 24.6 STL imaging beam sequences. MTL
SWEI implemented with planewave imaging
(e.g. SSI) can generate a shear wave speed
image over a region of interest with a single
ARFI push pulse. In contrast, each line of an
STL-SWEI requires push pulses on either side of
it. STL images are formed by walking an
ensemble across the region of interest (top). In
a single receive beam implementation, each
ensemble consists of two push pulses and a
tracking beam T (bottom). A total of 2M push
pulse transmissions is required to form an
M-line image. If two-to-one parallel receive
beamforming is implemented, the number of
push pulses can be reduced. Note that P1 and
T 2 for the n-th ensemble correspond to P2 and T
for the (n + 1)-th ensemble. An implementation
with parallel receive beamforming can thus
generate an M-line image with M + 1 push
pulses.

P P T P P T P P T

Ensemble 1 Ensemble m Ensemble M

Ensemble 1

Ensemble 2

Ensemble 3

Ensemble 4
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to 2M. The acquisition time of STL-SWEI and SMURF are thus inherently greater than that of
MTL-SWEI.

24.4 Noise in SWE/Speckle Bias

Shear wave elastography is dependent on estimates of tissue displacement u at one or more
points within the tissue x⃗. Ultrasonic tracking of shear wave propagation is subject to mea-
surement error, which produces noise in shear wave speed images [19]. This noise arises from
a variety of sources, including uncorrelated thermal noise, as well as correlated noise sources
associated with the coherent nature of ultrasound backscatter imaging, e.g. speckle. Compared
to MTL-SWEI, a characteristic of STL-SWEI imaging is that, for a given spatial resolution, it
is comparatively insensitive to correlated noise in the shear wave arrival time estimate [20, 21].
As an illustration, Figure 24.7 presents two shear wave speed images of the same phantom, one
obtained by STL, the other by MTL. While the spatial resolution of the images is similar – the
push beam spacing Δx for the STL image is the same as the track beam spacing for the MTL
image – the STL image exhibits less noise. This section describes the effect of correlated noise
sources in shear wave tracking and arrival time estimation, and the relative immunity of STL to
these sources.

Ultrasound tracking of tissue motion and measurement of u(x⃗) can be achieved by a variety
of methods [22, 23], including windowed normalized cross correlation [24, 25] and phase shift
estimation [26, 27]. The echoes used to track tissue motion exhibit limited signal-to-noise ratio
(SNR), due to thermal noise in the transducer and receiver electronics, and other sources. The
finite SNR results in a “jitter” in the displacement estimate [28, 29]. As an uncorrelated noise
source, this jitter tends to zero on average. Repeated measurements at the same location x⃗ can
be combined to reduce the error in u.

Shearing of the tissue is another source of echo distortion and tracking error [28, 30, 31].
Changes in the relative positions of scattering sites within the tissue, as caused by a shear wave
or other deformation of the tissue, results in echoes that are imperfectly correlated [30]. In
contrast to thermal noise, the error in displacement estimate resulting from shearing is repeat-
able and correlated with the echo. If the tissue undergoes the same shearing in two successive
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Figure 24.7 Matched STL and MTL images of a stiff inclusion. Both the STL and MTL images are obtained with a
beam spacing of 1.24 mm. The increased spatial noise in the STL image is evident.
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Figure 24.8 STL and MTL modulus images of a nylon monofilament target. MTL imaging shows a distinct
artifact associated with the presence of a bright scatterer, realized here by subresolvable nylon filaments.
Tracking beams in the vicinity of the bright scatterer track its motion preferentially to that of the background
medium. As a result, arrival time estimates correspond to the arrival time of the shear wave at the bright
scatterer, rather than at the tracking beam axis. The STL image does not exhibit this artifact, as the arrival time
of the shear wave from each push location exhibits the same arrival time bias.

measurements, the same error in displacement estimate will be observed [32]. Thus, averaging
of repeated measurements of a given speckle realization will not diminish the error in u at a
given x⃗ due to this source.

In addition to error in the displacement amplitude [31, 33], ultrasound tracking of tissue
motion is subject to uncertainty and error in the position x⃗ that is tracked. The motion mea-
sured by ultrasound may not correspond precisely to the assumed beam axis for a variety of
reasons. For instance, refraction of the acoustic beam due to variations in the speed of sound of
tissue can displace the beam from the desired alignment. Deflection of the tracking beam will
result in a biased estimate of the shear wave speed.

Variation in the strength of the echo generated at different points within the tracking beam
can induce a similar bias in the shear wave speed measurement. A simple example is illustrated
in Figure 24.8, wherein a dominant scatterer (a nylon filament) is embedded in a comparatively
weakly scattering matrix. The strong echo from the filament dominates the total echo over a
range of tracking beam positions. As a result, the tracked motion corresponds to that of the
wire, rather than that of the matrix on the tracking beam axis. The estimated arrival time like-
wise corresponds to the arrival time of the shear wave at the filament, rather than the tracking
beam axis.

This bias in arrival time estimates is not limited to isolated bright scatterers, but can be
observed in uniformly echogenic media with fully developed speckle [32]. Ultrasound backscat-
ter images are dominated by speckle due to coherent insonification and detection of echoes.
Echoes from the scattering sites within the tissue constructively and destructively interfere,
producing the speckle characteristic of B-mode images. From a tracking standpoint, speckle
results in non-uniform sensitivity to tissue motion with the tracking beam. This is illustrated
schematically in Figure 24.9. On one side of the tracking beam axis, echoes from scatterers
destructively interfere. The tracked signal is thus insensitive to the motion of these scatterers.
Areas exhibiting constructive interference produce a detectable echo and are tracked. Thus,
areas of constructive interference are tracked, while areas of destructive interference are effec-
tively hidden. The resulting coherent error in the shear wave arrival time estimate is called
speckle bias [20, 32, 34, 35].
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Figure 24.9 Speckle bias in a diffuse scattering medium. (a, b) Constructive and destructive interference of
echoes from randomly distributed scatterers results in speckle. Regions of constructive interference contribute
strongly to the echo signal, and are tracked preferentially to regions of destructive interference. This leads to
arrival time biases associated with the speckle pattern, similar to that observed with a single bright scatterer.
This is illustrated in (c). An image of the local speckle pattern may be generated by holding the transmit beam
position fixed, and sweeping the receive beam pattern over the region of interest. This in effect creates an
image of the transmit beam in the medium. Overlaid on this image is the measured shear wave arrival time, by
time to peak displacement, scaled by the shear wave speed. Note the correlation between the shear wave
arrival time bias and the speckle patter. Source: © 2015 IEEE, reprinted, with permission, from [32].

A simulation study [32] demonstrated a significant correlation between the error in the shear
wave arrival time estimate and the lateral position of the local speckle pattern in a fully devel-
oped speckle model. Arrival time estimates were scaled by the shear wave speed (known in the
simulation, estimated from the overall average in a homogeneous phantom) and plotted on an
image of the local speckle pattern. A qualitative agreement between the arrival time bias and
the speckle position was seen. The speckle bias effect was demonstrated in three dimensions
by Hollender and Trahey [35]. MTL arrival times were shown to have a spatially varying error
due to tracking of different speckle realizations, while STL showed a fixed offset error.

Strictly speaking, the arrival time estimate error will be the same only if the experiment is
repeated precisely; that is, the shape and amplitude of the shear waves must be identical, and
the same scatterers must be tracked, to avoid introducing decorrelation-based tracking errors.
However, in both the phantom measurements and simulation [32], the arrival time error was
seen to be relatively insensitive to the amplitude of the shear wave, which varied from −20 μm
to +20 μm, as shown in Figure 24.10. That is, the mean squared error of the arrival time at
any given pixel was ∼10× larger than the change in the error as the shear wave amplitude was
varied. This suggests that the speckle bias, rather than decorrelation, is the dominant source of
error in the simulation. A matched phantom experiment yielded similar results.

Correlated errors in shear wave arrival time estimates manifest differently between MTL and
STL SWEI. This difference explains the relatively greater noise in MTL images produced at
the same spatial resolution as STL images. In the MTL case, motion is tracked at two separate
locations. Since the scatterers tracked at the two locations are distinct, the arrival time estimates
at each location will include independent errors. While some of this noise is uncorrelated due
to finite SNR, repeating and averaging the measurement will not reduce the error in the arrival
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Figure 24.10 Representative arrival time graph. Simulated shear waves of several amplitudes were applied to a
uniform speckle target mode. Arrival time errors showed little change with peak shear wave amplitude
compared with the variation at different axial locations, corresponding to different speckle realizations. This
result suggests that the underlying speckle pattern, rather than echo decorrelation, is responsible for the
observed arrival time errors.

time estimate due to echo decorrelation. The shear wave speed estimate will contain a term due
to the arrival time estimate errors

cMTL = Δx
(𝜏2 + 𝜖2) − (𝜏1 + 𝜖1)

= Δx
Δt + Δ𝜖

(24.9)

If the arrival time errors Δ𝜖 are comparable to the true difference in arrival time Δt = Δx∕c,
the shear wave speed estimate will exhibit large errors. To improve spatial resolution, the spac-
ing between tracking beams is decreased. As the true arrival time decreases with decreasing
beam spacing, the error in the MTL shear wave speed estimate increases. In STL-SWEI, because
the measurement is repeated at the same location, the error in arrival time estimate 𝜖 is the same
for both shear waves. When the shear wave speed is calculated, the common error is suppressed

cMTL = Δx
(𝜏2 + 𝜖) − (𝜏1 + 𝜖)

= Δx
Δt

(24.10)

Figure 24.11 presents matched STL and MTL images of a uniform phantom with Δx = 1.24
mm. The tracking window length is ∼2𝜆. The relatively lower noise of the STL image is evident.
Also shown is the measured standard deviation of shear wave speed estimates in the phantom
using both approaches for a range of Δx. These results suggest that, when echo SNR and tissue
motion are not limiting factors, the suppression of speckle bias by STL allows for lower noise
images for a given spatial resolution. This benefit comes at the cost of increased acquisition
time compared to an MTL sequence.

The reduction in noise and the improvement in image quality due to suppression of corre-
lated noise has been reported by several authors. Elegbe et al. demonstrated a marked reduction
in STL measurement variance compared to MTL in liver tissue [20]. Hollender et al. quanti-
fied the improved contrast-to-noise ratio (CNR) of STL vs. MTL and conventional ARFI in
imaging inclusions of 1.5 to 6 mm diameter [21]. STL-SWEI exhibited the highest CNR of the
three methods. The authors describe the close beam spacing and high resolution allowed by
STL-SWEI as enabling micro-elastography, μE [18].
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Figure 24.11 Comparison of standard deviations of STL and MTL shear wave speed estimates in a uniform
phantom as a function of beam spacing. A uniform phantom scanned with MTL exhibits greater shear wave
speed estimate variance than an STL sequence of identical spatial resolution (left). Repeated scans of the
phantom yielded identical noise patterns, indicating that the noise was due to a correlated source, e.g. speckle
bias, rather than inadequate SNR. The greater image uniformity of the STL imaging for a given spatial
resolution is quantified by the correspondingly lower standard deviations (right).

24.5 Estimation of viscoelastic parameters (STL-VE)

Biological tissues are viscoelastic and exhibit frequency-dependent shear wave speed and atten-
uation. The methods described so far in this chapter estimate the group speed of shear waves,
but do not model or directly measure the frequency dependence of shear wave speed or atten-
uation. Measurement of viscoelastic parameters is more challenging than group wave speed
estimation but offers some potential benefits.

One advantage of methods that incorporate a viscoelastic model is reduced sensitivity to sys-
tem parameters. The speed and attenuation of shear waves in tissue varies with frequency. As a
result, the frequency content and group speed of transient shear waves varies with propagation
distance. As the wave propagates, faster-moving high-frequency components are rapidly atten-
uated, leaving the slower-moving low-frequency component of the wave. The frequency content
of the shear wave is itself a function of the push beam shape and duration. Thus, measured
shear wave speed in a viscoelastic medium will vary significantly with changes in push beam
focusing and duration, and with push and track beam separation. When a naïve elastic model
is applied to measurements made in a viscoelastic medium, these system-dependent variations
can be mistaken for variations in tissue mechanical properties. Different measurement systems,
exciting shear waves at differing frequencies in the same viscoelastic material, will register dif-
ferences in shear wave speed and apparent elastic modulus. For example, the confounding role
of viscoelasticity in quantitative shear wave elastography of the liver has been recognized as
a challenge by the RSNA Quantitative Imaging Biomarker Alliance (QIBA) Ultrasound Shear
Wave Speed (SWS) committee [36, 37].

A second benefit of methods that quantify viscoelasticity is that that such parameters of tissue
can themselves be diagnostic. Several studies have demonstrated a strong correlation between
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measured viscosity parameters and liver fibrosis stage [38–46]. Shear wave dispersion may pro-
vide information about the microscopic structure of tissue [41, 47], and may provide a marker
of disease progression prior to the onset of fibrosis [40]. Changes in viscoelastic parameters
are associated with tissue damage and inflammatory response. For example, Wuerfel showed
early stage multiple sclerosis results in a lowering of the viscoelastic parameter of brain tissue,
prior to any morphological change [48]. Aubrey et al. observed that tendonopathy results in a
reduction of the viscoelastic parameter compared with healthy tendon [49]. While measure-
ment of viscoelastic parameters is potentially useful as a diagnostic tool, viscosity estimates are
challenged by larger measurement variance relative to elasticity or shear wave group speed. The
omission of viscosity measurement is largely due to the inability to obtain stable, reproducible
measurements [44].

In a viscoelastic material, the wave number k is a complex-valued function of 𝜔. A plane
wave can be modeled as ej(𝜔t−k(𝜔)x) = ej(𝜔t−kr(𝜔)x)e−ki(𝜔)x, with the real part of the wavenumber
kr denoting the change in phase with position, and the imaginary part ki generating the loss
in amplitude due to viscoelastic attenuation. The relationship between k and 𝜔 is material
dependent. Numerous models exist for viscoelastic solids [50], including the Kelvin-Voigt (KV),
Zener, fractional-derivative Kelvin-Voigt, and microchannel [51] models. While a given vis-
coelastic model may fit over a limited range of frequencies, e.g. less than a decade, there is
not yet an established model that accurately models tissue over a wide frequency range. The
KV model is perhaps the simplest model that captures viscoelastic behavior of a solid. In this
model, the storage 𝜇 and loss 𝜂 moduli are related to the wave number by

kr = 𝜔

√
𝜌(𝜇 +

√
𝜇

2 + 𝜔
2
𝜂

2)
2(𝜇2 + 𝜔

2
𝜂

2)
(24.11)

and

ki =

√
𝜌(−𝜇 +

√
𝜇

2 + 𝜔
2
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2)
2(𝜇2 + 𝜔

2
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(24.12)

Viscoelastic measurement methods may be model based, wherein the goal is to estimate
the parameters of the viscoelastic model. Alternatively, a model-free approach can be taken,
wherein the goal is to estimate a spectrum k(𝜔), from which the shear wave speed as a func-
tion of frequency is determined c(𝜔) = 𝜔

k(𝜔)
[47]. We will first consider a model-free approach,

spectroscopy, in the context of STL vs. MTL, before developing a model-based STL technique,
STL-VE.

Let us denote the spectrum of the first shear wave signal as

S1(𝜔) = F{s1(t)} = A0(𝜔)ej(k(𝜔)x1+𝜙0(𝜔)) = A0(𝜔)ej(kr(𝜔)x1+𝜙0(𝜔)) e−ki(𝜔)x1 (24.13)

The second shear wave signal has spectrum

S2(𝜔) = F{s2(t)} = A0(𝜔)ej(k(𝜔)x2+𝜙0(𝜔)) (24.14)

Both waves contain a priori unknown phase components 𝜙0(𝜔) and spectral amplitude A(𝜔).
The locations x1 and x2 are also subject to speckle-bias errors. In the STL implementation, x1
and x2 share a common tracking position error 𝜖, while in the MTL realization each location
has independent errors 𝜖1 and 𝜖2.

The phase shift associated with the shear wave propagation over the distance Δx = x2 − x1
can be obtained by forming the cross spectrum H(𝜔) = S2(𝜔)S∗

1(𝜔). The phase of H(𝜔) is the
difference between the phase of S2(𝜔) and that of S1(𝜔). Using the expression x1 + Δx = x2 the
STL cross spectrum can be written

H(𝜔) = S2(𝜔)S∗
1(𝜔) = A2

0(𝜔)e
−ki(𝜔)2(x1+𝜖)ejk(𝜔)Δx (24.15)
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The STL spectrogram, formed by dividing the cross spectrum by the power spectrum of S1, i.e.

P(𝜔) = H(𝜔)
S1(𝜔)S∗

1(𝜔)
= ejkr(𝜔)Δxe−ki(𝜔)Δx (24.16)

which provides the real and imaginary part of the wave number without speckle bias. In con-
trast, the MTL cross spectrum

H(𝜔) = A2
0(𝜔)e

−ki(𝜔)2x1+𝜖1+𝜖2 ejk(𝜔)(Δx+𝜖2−𝜖1) (24.17)

and spectrogram retain speckle bias errors. Langdon demonstrated that speckle bias noise in
the spectrogram can mimic tissue viscoelasticity [52, 53].

The spectrogram is not constrained to a particular model and represents a challenging esti-
mation problem with high noise sensitivity [54]. A model-based approach attempts to estimate
a small number (2 or 3) of viscoelastic parameters that can be more robust in the face of noise.
One potential approach to viscoelastic parameter estimation is to fit a particular viscoelastic
model to the spectrogram data. While intuitive, this approach has shortcomings. The spec-
trogram is subject to truncation artifacts due to the finite spatial and temporal support of the
data acquired; this introduces “ringing” artifacts and spectral blurring. Multiple model param-
eter combinations may be found to fit the data over the measured frequency range, and the
spectrogram does not itself provide data to distinguish among the possibilities.

A maximum-likelihood approach was proposed by Langdon, called STL viscosity estimation
(STL-VE) [55]. The method is illustrated conceptually in Figure 24.12. The propagation of a
shear wave through a region of tissue Δx can be modeled as the action of a filter K on the
shear wave, transforming shear wave s1 into shear wave s2. The filter models both geometrical
properties of the wave (e.g. plane, cylindrical, or other form) as well as the viscoelastic properties
of the tissue according to the selected model. A KV model was used in the initial development
but other models are equally applicable. In the absence of noise, when the correct geometric
and viscoelastic parameters are selected the filter output matches the observed shear wave and
s2 = −1{K{s1}}. In the case of a plane wave geometry in a Kelvin-Voigt material, the filter
takes the form

K(𝜔) = exp
(

j𝜔Δx
c(𝜔)

)
(24.18)
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Figure 24.12 Representative STL-VE model fits in viscoelastic tissue. STL-SWEI shear wave data collected in
bovine liver (left) was fitted to a KV model using the STL-VE approach (right). Shear wave traces s1 and s2 in VE
material. The “model fit” trace (solid black line) is obtained by passing the shear wave trace from the first
excitation through the propagation filter. A high degree of correspondence results between the observed
s2 shear wave trace and the model fit. Source: © 2015 IEEE, reprinted, with permission, from [53].
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Figure 24.13 STL-VE yields a consistent estimate of storage modulus over a wide range of simulated loss
modulus values. In contrast, a naïve linear elastic STL-SWEI model shows increasing estimated shear modulus
as the viscoelastic parameter is increased. Source: © 2015 IEEE, reprinted, with permission, from [53].
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given in terms of the viscoelastic parameters 𝜇 and 𝜂.
With each measured signal shear wave signal corrupted by noise, Langdon et al. [53]

demonstrated that the maximum likelihood estimator is that which minimizes the residual
between the observed noisy signal y2 = s2 + n2 and the observed input shear wave filtered
by the wave filter −1{K{y1}}, where y1 = s1 + n1. In other words, the STL-VE approach
estimates the viscoelatic parameters of the tissue by finding the parameters of the filter K that
minimize|y2 − −1{K{y1}}|2 = |n2 − −1{K{n1}}|2 (24.20)

A benefit of this approach is that the fitting and comparison of signals is performed in the
time domain, rather than the frequency domain, avoiding truncation issues associated with
frequency domain approaches [53].

Figure 24.13 compares the output of STL-SWEI with a naïve G = 𝜌c2 estimator to the STL-VE
estimate of shear modulus 𝜇 as shear viscosity is varied from 0 Pa⋅s to 1 Pa⋅s [52]. The pre-
cise dependence of the STL-SWEI overestimation of the shear modulus in practice will depend
on the spectral content of the shear wave [56]. STL-VE yields the correct shear modulus esti-
mate independent of viscosity. The accuracy of the shear modulus estimate is dependent on
the correct geometrical model for the shear wave. In the example shown, a plane wave was
modeled and assumed for the estimator. Langdon quantified biases due to the assumption of
an incorrect shear wave geometry [52, 53]. Figure 24.14 compares the variance of shear mod-
ulus and shear viscosity estimates obtained with STL and MTL implementations of STL-VE,



384 Ultrasound Elastography for Biomedical Applications and Medicine

Viscoelastic shear modulus estimation: 

STL vs. MTL

WNCC Kernel (mm)

S
h

e
a

r 
m

o
d

u
lu

s
 (

k
P

a
)

0
0

0.5

1

1.5

2

2.5

3

3.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7

STL Shear modulus
MTL Shear modulus

Viscoelastic shear viscosity estimation: 

STL vs. MTL

WNCC Kernel (mm)

S
h

e
a

r 
v
is

c
o

s
it
y
 (

P
a

·s
)

0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

STL Shear viscosity
MTL Shear viscosity

(a) (b)

Figure 24.14 STL-VE using STL vs. MTL data. Speckle bias increases the variance in the estimate of (a) storage
modulus 𝜇 and (b) loss modulus 𝜂 when MTL-SWEI data are applied to the STL-VE estimator. STL-SWEI
suppresses the speckle bias, resulting in correct storage and loss modulus estimates for a range of tracking
kernel lengths. When the speckle bias is particularly pronounced (low kernel length) a bias in the MTL
estimate, in addition to the increased variance, is also observed. Source: © 2015 IEEE, reprinted, with
permission, from [53].

demonstrating that speckle bias not only increases the variance of the parameter estimates, but
can also increase the apparent viscosity.

24.6 Conclusion

STL-SWEI methods for shear wave elastography are characterized by the use of a common
ultrasound tracking location to measure tissue motion in response to shear waves generated
with a known characteristic spatial dimension. The common tracking location inherently
suppresses speckle noise, which can be a limiting factor in generating shear wave speed
estimates with closely spaced beams. STL-SWEI is a complement to other acoustic radiation
force methods, with its principle advantage being reduced estimate variance and improved
contrast-to-noise ratio compared to an MTL implementation with similar spatial resolution.
The use of STL-SWEI is potentially advantageous for high spatial resolution shear wave speed
imaging. STL-VE, a method of processing STL-SWEI echo data, allows the estimation of
viscoelastic parameters, with potential benefits to reducing system-dependent measurement
results and diagnostic viscoelastic images.
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Comb-push Ultrasound Shear Elastography
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25.1 Introduction

Comb-push ultrasound shear elastography (CUSE) is one of the acoustic radiation force-based
ultrasound shear wave elastography methods that first introduced the concept of simultaneous
generation of multiple shear wave sources, which allows reconstruction of a full field-of-view
(FOV) shear elasticity map with a single shear wave push-and-detection cycle. In conventional
ultrasound shear wave elastography, a single shear wave source at a fixed lateral location is
typically used for shear wave generation (Figure 25.1a). As a result, the shear wave speed under
the shear wave source region cannot be recovered because of the absence of shear waves
(Figure 25.1b) [1]. A second challenge in conventional ultrasound shear wave elastography is
that as shear waves propagate in tissue, significant shear wave attenuation will occur in areas
that are far away from the push beam region (Figure 25.1c), which results in poor shear wave
signal-to-noise ratio (SNR).

One typical solution for these limitations is to transmit multiple push beams at different
spatial locations and detect the resulting shear waves in multiple push-detect data acquisitions,
so that the push beam artifacts can be removed and the shear wave SNR can be improved
by concatenating multiple shear elasticity maps from these acquisitions [2]. This solution,
however, requires multiple push-detection data acquisitions that increase the total data
acquisition time. This may introduce artifacts caused by physiologic motion and also make
it challenging to study tissue dynamic mechanical properties during fast physiological event
such as muscle contraction.

CUSE was recently proposed by Song et al. [3–5] to address these challenges by using mul-
tiple laterally distributed shear wave sources to simultaneously generate multiple shear waves
inside the FOV. By using a directional filter to remove the wave interference and separate the
left-to-right and right-to-left shear waves, CUSE can reconstruct a full FOV 2D shear elas-
ticity map without push beam artifacts with a single push-detection data acquisition. Also in
CUSE, each imaging pixel always has a shear wave source close by, which effectively alleviates
the shear wave attenuation and increases shear wave SNR. In this chapter, we will introduce the
principles of CUSE, different configurations of CUSE with various ultrasound push beams, and
several clinical applications using the CUSE technique.

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
Edited by Ivan Nenadic, Matthew Urban, James Greenleaf, Jean-Luc Gennisson, Miguel Bernal, and Mickael Tanter.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 25.1 (a) A schematic plot of an ultrasound push beam and the resulting shear wave propagation
direction. The focused ultrasound push beam (indicated by the red shape) produces two shear wave fronts
propagating away from the push beam (indicated by the two red arrows pointing at opposite directions) in a
homogeneous phantom. (b) A shear elasticity map of this phantom was reconstructed by calculating the shear
wave propagation speed at each imaging pixel location. The area marked by the rectangle indicates the artifact
caused by absence of shear waves at the push beam region. The dashed line indicates the path of shear wave
propagation. (c) The maximum shear wave amplitude along the blue dashed line in (b). Source: reprinted from
[1].

25.2 Principles of Comb-push Ultrasound Shear Elastography
(CUSE)

The basic concept of CUSE is to distribute multiple shear wave sources inside the tissue
simultaneously. Multiple configurations of the push beam have been developed (Figure 25.2):
simultaneous transmission of multiple unfocused ultrasound push beams (unfocused-
CUSE, U-CUSE), simultaneous transmission of multiple focused ultrasound push beams
(focused-CUSE, F-CUSE), and sequentially marching the focused push beams in lateral

Unfocused comb-push Focused comb-push Marching comb-push

1

t1 t1 t1 t1 t1 t1 t1 t1 t1
t1 t2 t3 t4

2 3 4 1 2 3 4

1 2 3 4

5 6 7 8 9

Time
(c)(b)(a)

Figure 25.2 Schematic plots of different CUSE imaging sequences. (a) U-CUSE: transmits multiple unfocused
ultrasound push beams simultaneously at time t1. (b) F-CUSE: transmits multiple focused ultrasound beams
simultaneously at time t1. (c) M-CUSE: transmits single focused ultrasound beam using element subgroup 1 at
time t1, then marches laterally to push with subgroup 2 at time t2, subgroup 3 at time t3, and subgroup 4 at
time t4. The time interval between the end and start of consecutive push beams was 15 μs. Source: reprinted
from [1].
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direction (marching-CUSE, M-CUSE). Each push beam produces two shear waves prop-
agating at opposite directions away from the push beam. The shear waves from different
push beams interfere with each other and eventually fill the entire FOV, so that the push
beam artifact can be removed because each imaging pixel always has at least one shear wave
propagating through (Figure 25.3). This allows a reconstruction of full FOV 2D shear elasticity
map with a single push-detection data acquisition, which improves the theoretical frame rate
of shear wave imaging. Figure 25.3 shows examples of the shear wave motion signal from the
three different kinds of CUSE. One can clearly observe the shear wave interferences during
propagation. The number of push beams and the configuration of each push beam (e.g. F/#,
center frequency, etc.) can be variable and typically optimized for different applications.

Before one can use the comb-push shear wave field to reconstruct shear elasticity maps,
there is a key challenge that needs to be addressed. As shown in Figure 25.4, due to the shear
wave interference, shear wave signals from adjacent spatial pixels are severely decorrelated
(Figure 25.4b). As a result, it is difficult to accurately estimate the shear wave speed using such
shear wave signals. The shear wave interference has to be removed in order to obtain robust
local shear wave speed calculations. One way of removing the interference is to use directional
filters [6]. As shown in Figure 25.5, one can convert the shear wave signal to the Fourier domain
and selectively preserve or discard the spectra that are corresponding to waves traveling in a cer-
tain direction. By application of an inverse Fourier transform of the filtered spectrum, one can
recover shear waves that are purely propagating from left to right or from right to left. We can
now revisit the two shear wave waveforms that are severely decorrelated in Figure 25.4b. After
directional filtering (Figure 25.4c), one can clearly see that the interference is removed and the
shear wave signals resemble each other. One can easily calculate the time delay between the two
signals using techniques such as time-of-flight and cross-correlation, and accurately estimate
the local shear wave speed.

Using the left-to-right (LR) and right-to-left (RL) propagating shear waves, one can recon-
struct two shear wave speed maps. Figure 25.6 shows an example of the U-CUSE shear wave
speed map reconstruction. The push beam artifacts appear under the subgroup 1 region in the
LR map, and subgroup 9 region in the RL map, both due to absence of shear waves. However,
by blending the two maps, one can get a full FOV shear wave speed map without the push beam
artifact (Figure 25.6c). The two shear wave speed maps can be blended by averaging or can be
weighted some by certain metrics such as the cross-correlation coefficient generated in local
shear wave speed calculation. Figure 25.7 shows the schematic plot of the F-CUSE shear wave
speed map reconstruction and an example of the reconstruction in an inclusion phantom.

It was shown by Song et al. [5] that U-CUSE is suited for shallow shear wave imaging,
F-CUSE is suited for mid to deep range imaging, and M-CUSE is suited for deep shear
imaging. Because multiple shear waves are being generated into the tissue, multiple shear
wave signals can be observed at each imaging pixel, which improves the robustness of the local
shear wave speed calculation [5].

The multi-source shear wave imaging concept can be extended to other configurations of
shear wave generation. A method of “rain-push” CUSE was proposed by Song [1] which not only
distributes multiple shear wave sources at different lateral locations simultaneously, but multi-
ple sources at different axial locations as well. Figure 25.8 shows an example of the rain-push
CUSE shear wave field. Similar post-processing methods as conventional CUSE can be used to
reconstruct the rain-push shear wave field. Another multi-source shear wave imaging approach
is to randomize the push aperture apodization to produce randomly located shear wave sources
inside the tissue [7]. This approach maximizes the quantity of shear wave sources and shows
excellent performance in inclusion phantoms. A common limitation of these multi-source shear
wave imaging methods is that, because the total amount of acoustic energy that can be trans-
mitted inside the tissue is limited (i.e. power limited, transducer and tissue heating limited, etc.),
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Figure 25.3 Plots of particle axial velocity at different time steps for U-CUSE, F-CUSE, and M-CUSE in a
homogeneous elastic phantom with shear wave speed of about 1.5 m/s. Shear waves from different push
beams interfere with each other and eventually fill the entire FOV. Left column: U-CUSE: The white arrows
indicate the left-to-right propagating shear wave front from the leftmost tooth (subgroup 1) of the comb-push.
(a) Initial positions of shear waves produced by 5 teeth, white arrow is at the shear wave front from subgroup 1
of the comb-push. (b) Shear waves from each push beam begin to propagate away from the push beam on
opposite directions, the right-propagating shear wave from subgroup 1 is shown by the white arrow. (c) The
right-propagating shear wave from subgroup 1 merged with the left-propagating shear wave from subgroup
3. Middle column: F-CUSE: (d), (e), and (f ) show that four shear wave sources were generated by the four
focused push beams. Each push beam generates two shear wave fronts that propagate away from the push
beam. As indicated by the white arrows, the left-to-right shear wave from subgroup 1 appears in (e) and
merges with the right-to-left shear wave from subgroup 2 in (f ). Right column: M-CUSE. (g), (h), and (i) show
that four shear waves were generated by the four focused push beams. As indicated by the white arrows, the
right-to-left shear wave from subgroup 4 appears in (h) and merges with the left-to-right wave from subgroup
3 in (i). The color bar is in units of mm/s and the scale is different for each time step. “x” represents the lateral
dimension, “z” represents the axial dimension. Source: reprinted from [1].
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Figure 25.4 (a) Relative positioning between the targeting pixels and the comb-push beam. (b) Shear wave
signals from the two pixels indicated in (a). The dark curve corresponds to the dark dot and the light curve
corresponds to the light dot. Due to shear wave interferences, the two shear waveforms have large
discrepancies. (c) After directional filtering, the shear wave interference is removed and one can easily estimate
the time delay between the two signals. Source: reprinted from Song [1], courtesy of Pengfei Song.
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Figure 25.5 Directional filtering. (a) The original shear wave field created by F-CUSE before directional filtering.
(b) The 2D Fourier transform of (a). (c) The directional filter masked out the 2nd and 4th quadrants
(corresponding to RL shear waves) and preserved the 1st and 3rd quadrants (corresponding to LR shear waves).
(d) Extracted LR shear waves by a 2D inverse Fourier transform of (c). Source: reprinted from [1].
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Figure 25.6 Schematic plots of 2D shear wave speed map reconstruction and the reconstructed 2D shear
wave speed maps. Column (a): shear wave speed map reconstructed using LR waves. Column (b): shear wave
speed map reconstructed using RL waves. Column (c): final shear wave speed map combined by Recon1 and
Recon2. Source: reprinted from [1].

the shear wave energy from each individual source is inversely proportional to the number of
sources being generated. Therefore, it is important to balance the number of shear wave sources
and the shear wave energy from each source to achieve robust shear wave speed estimation at
each imaging pixel.

CUSE can be implemented on different types of ultrasound transducers. Figure 25.9a shows
an F-CUSE implementation on a curved array transducer with four focused ultrasound push
beams transmitted simultaneously into the tissue. Because of the curvature of the transducer,
the ultrasound push beams are tilted at a certain angle. As a result, the shear waves do not prop-
agate horizontally (i.e. along the x-axis of the azimuthal plane). Conventional local shear wave
speed calculation methods assume a lateral shear wave propagation direction, which will intro-
duce overestimate bias when the shear wave propagates at a tilted angle. To address this issue, a
2D shear wave speed calculation method was proposed which can accurately calculate the speed
of tilted shear waves without a priori knowledge of the propagation angle [8]. The 2D shear wave
speed calculation method performs local cross-correlation both along the lateral and the axial
directions to obtain the correct shear wave speed. To avoid angled shear wave propagation,
one can also steer each push beam to the vertical direction so that shear waves only propagate
along the horizontal direction. Figure 25.9b shows an M-CUSE implementation on a cardiac
phased array transducer with two focused ultrasound push beams transmitted at different steer-
ing angles. Due to the limited aperture size of a phased array, M-CUSE is a preferred comb-push
setup which uses a large portion of the aperture for each push beam. 2D shear wave speed cal-
culation is necessary for accurate shear wave speed estimation from the steered push beams.
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Figure 25.8 Rain-push CUSE example: a total of 8 push beams were excited to produce 8 shear wave sources.
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CUSE can be implemented on both software beamforming-based ultrasound systems with
plane wave imaging capability [3, 5] and hardware beamforming-based systems with conven-
tional a line-by-line scanning scheme [9]. With conventional ultrasound systems that cannot
support massive parallel beamforming for plane wave imaging, a time-aligned sequential track-
ing (TAST) technique was proposed to enable 2D shear wave elastography on these systems [9].
Figure 25.10 shows a realization of CUSE on a conventional ultrasound system GE LOGIQ E9.
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Figure 25.10 Snapshots of the CUSE shear wave propagation movie at different time instants obtained from
the LOGIQ E9. A 4-tooth focused comb-push was transmitted and the resulting shear waves were tracked by
TAST. Source: © 2015 IEEE, reprinted, with permission, from [9].
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25.3 Clinical Applications of CUSE

Initial clinical applications of CUSE are being conducted in breast cancer detection [10, 11], thy-
roid nodule evaluation [12], and liver fibrosis staging [13]. Figure 25.11a shows an example case
of the 2D shear elasticity map of a mass that was diagnosed as an invasive mammary carcinoma
Nottingham grade III of III. Figure 25.11b shows that tissue stiffness varies significantly among
normal, benign, and malignant thyroid nodules. Figures 25.11c and 25.11d show example cases
of a 2D shear elasticity maps of healthy liver and fibrotic liver, respectively. In the breast cancer
detection pilot study, CUSE showed 89.19% sensitivity, 88.69% specificity, and 0.911 for the area
under the curve (AUC) with a cutoff Young’s modulus value of 83 kPa [10, 11]. For liver fibro-
sis detection, preliminary results showed 0.83 sensitivity, 0.88 specificity, and 0.9 AUC with a
cutoff shear wave speed of 1.43 m/s [13].

25.4 Summary

In this chapter we introduced a new multi-source shear wave imaging technique named
comb-push ultrasound shear elastography (CUSE). The flexible distribution of shear wave
sources by simultaneous or rapid-sequential firing of sub-apertures of elements allows ver-
satile imaging configurations that can be fine tuned to meet the needs of different imaging
applications. When combined with plane wave detection, CUSE only needs one shear wave
push-detect data acquisition to generate a full FOV 2D shear wave speed map, which offers
the highest theoretical shear wave imaging (acoustic radiation force-based) frame rate. The
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Figure 25.11 (a) 2D shear elasticity map of a malignant breast lesion. © 2015 IEEE. Reprinted, with permission,
from [9]. (b) Box plots of Young’s modulus of normal, benign, and malignant thyroid nodules. © 2015 IEEE.
Reprinted, with permission, from [12]. (c) 2D shear elasticity map of a healthy liver. (d) 2D shear elasticity map
of a fibrotic liver. Source: republished with permission of American Institute of Medicine from [13]; permission
conveyed through Copyright Clearance Center, Inc.
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directional filter is the key to resolve the complicated comb-push shear wave field which enables
robust shear elastogram reconstruction. CUSE has been implemented on different types of
ultrasound transducers and has been successfully translated to different ultrasound imaging
platforms with conventional hardware beamformers (i.e. a line-by-line scan system) as well as
emerging software beamformers (i.e. a plane wave imager). Preliminary in vivo results of CUSE
showed promise in a variety of clinical applications such as breast cancer and liver fibrosis.
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Anisotropic Shear Wave Elastography
Sara Aristizabal

Well Living Lab, Rochester, MN, USA

26.1 Introduction

Shear wave elastography constitutes the principle behind a large range of techniques developed
in the last two decades for noninvasive assessment of the mechanical properties of soft tis-
sues such as the breast, skeletal muscle, liver, myocardium, prostate, and kidney, under normal
and abnormal conditions [1–4]. The basic principle of most shear wave elastography tech-
niques relies on the use of focused ultrasound to generate acoustic radiation force to vibrate
the tissue and generate shear waves. The shear wave group velocity (cg) is then tracked as a
function of time (Δt) and distance (Δx). Under the assumption that the tissue is purely elas-
tic, locally homogenous, and isotropic, the shear wave group velocity (cg) can then be related
to the shear modulus (μ) and the underlying tissue stiffness can be estimated. Based on these
principles, several acoustic radiation force-based shear wave methods have been developed.
Acoustic radiation force impulse (ARFI) [1] uses impulsive radiation force to generate shear
waves outside of the excitation region. Supersonic shear imaging (SSI) [3] creates shear waves
inside the tissues by applying focused ultrasound beams at different depths. Shear wave dis-
persion ultrasound vibrometry (SDUV) [4] creates shear waves with harmonic components
applying repeated tonebursts of a focused ultrasonic beam. The abovementioned methods pro-
vide the ability of accurately quantifying the tissue mechanical properties when dealing with
isotropic media or tissues whose mechanical properties are independent of the relative orien-
tation of the transducer with respect to the tissue volume. However, the diagnostic potential
of these techniques is challenged when the tissues under evaluation have properties that are
directionally dependent, a phenomenon known as anisotropy. The importance of anisotropy
has long been stated in the field of seismology [5], where it has been shown that the wave motion
in anisotropic solids is fundamentally different from motion in isotropic solids, where the most
distinctive feature of the propagation in uniform anisotropic solids seems to be the variation of
properties with direction [6]. The human body is not exempt of this behavior, as tissues such as
the kidney [7], myocardium [8], and skeletal muscle [9] have directionally dependent proper-
ties. Anisotropic effects occur when the direction of shear wave propagation is perpendicular
to main axis of the tissue structure that is being evaluated. As a result of this, differences in
shear wave speed with respect to tissue fiber orientation arise, leading to incorrect interpre-
tation of the shear wave speed values which, consequently, affects the quantification of tissue
elasticity. To facilitate the estimation of the elastic parameters of these types of tissues, it is
common to assume that these anisotropic biological media can be modeled as being trans-
versely isotropic (TI). TI tissues can be considered as tissues with physical properties which
are symmetric about one plane, normal to the plane of isotropy; in this plane of symmetry the
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Figure 26.1 Representation of a transversely
isotropic material, with two orthogonal planes of
symmetry and an additional plane of material
isotropy (x2, x3), where properties are the same in
all directions.

material properties of the media are the same in all directions [10]. This behavior is illustrated
on Figure 26.1. This chapter summarizes some of the work that has been done in the field to
demonstrate why elastography techniques must take into account the property of anisotropy
in the measurement of the viscoelastic properties of tissues. In particular, the chapter concen-
trates on summarizing the findings from previous studies that have investigated the feasibility
of estimating the mechanical properties of various tissues with an anisotropic behavior under
this transversely isotropic assumption.

26.2 Shear Wave Propagation in Anisotropic Media

The wave propagation in anisotropic media is governed by the strain-stress relations or con-
stitutive equations governing the dynamic and static deformation of a material. In order to
estimate these relations, it is necessary to first define the strain-energy volume density, which
can be expressed using Cartesian components in the form of a 4th order elasticity tensor (Cijkl)
[11], as

2V = Cijkl𝜀ij𝜀kl (26.1)

where 𝜀ij𝜀kl corresponds to the strain tensors and V corresponds to strain energy. Using the
symmetries between the strain and stress tensors, and the independence of the second par-
tial derivatives of V with respect to the strain components, the number of independent elastic
constants can be reduced from 81 to 21 [11]. Furthermore, assuming the following form of
the strain tensor 𝜀 =

∑
𝜀ijêi ⊗ êj, which corresponds to the sum of the tensor product of the

vectors êi and êj multiplied by the strain tensor 𝜀ij, if the material is transversely isotropic and
therefore it possesses an axis of symmetry (x3), perpendicular to a plane of isotropy (x1, x2), the
strain energy volume density will not be modified by rotations around that axis of symmetry
and it can be defined [11] as

2V = C11(e11
2 + e22

2) + C33e33
2 + 2(C11 − 2C66)e11e22 + 2C13(e11 + e22)e33

+ C44(e23
2 + e13

2) + C66e12
2 (26.2)

After determining the strain-energy volume density expression, it is necessary to consider the
stress, which in its more general form can be defined as

𝜎ij =
𝜕V
𝜕𝜀ij

(26.3)

Again, using the Cartesian components, the stress for a linear elastic solid (Hooke’s law) can
be expressed as

𝜎ij = Cijkl𝜀kl (26.4)
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where Cijkl and 𝜎ij represent the elasticity tensor and stress tensor, respectively [11].
The strain-stress relations described above represent the basis to determine the wave prop-

agation in reference to the displacement in a transversely isotropic material, for which the
elasticity tensor contains only five independent elastic constants based on the axial symmetry
of TI materials and can be expressed using a matrix notation [10] as:⎡⎢⎢⎢⎢⎢⎢⎣

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎛⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13
C12 C11 C13
C13 C13 C33

C44
C44

C66

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜀11
𝜀22
𝜀33

2𝜀23
2𝜀31
2𝜀12

⎤⎥⎥⎥⎥⎥⎥⎦
(26.5)

where the conditions of existence are

C12 = C11 − 2C66andC11 > 0, C33 > 0, C44 > 0, C66 > 0.

Wang et al. [10] has described the mathematical derivations necessary to find the shear wave
group velocity in a transversely isotropic material, where the wave equation determined from
the relationship between the stress-strain constitutive equations and the equation of motion
can be solved assuming plane wave solutions and the symmetry relations that exist for a TI
material. The solution of the wave equation becomes a Christoffel equation with the form of
an eigenvector eigenvalue problem; from which the shear wave group velocity for a TI material
can be calculated as

𝜌cg
2 =

C44C66

C44sin2Θ + C66cos2Θ
(26.6)

where Θ is the angle of wave propagation with respect to the fibers in the propagation plane, cg
is the shear wave group velocity, 𝜌 is density, C44 is the longitudinal shear modulus, and C66 is
the transverse shear modulus [10].

26.3 Anisotropic Shear Wave Elastography Applications

26.3.1 Influence of Tissue Anisotropy on the SWE Evaluation of Kidneys

The presence of anisotropy can be identified in tissues such as the kidneys, where the effect
of anisotropy commonly occurs as its two basic layers, the cortex and the medulla, contain
structures such as the renal tubules, capillaries, and small blood vessels that are radially oriented
[12]. It has been shown that the shear wave speed and material properties vary with the direction
of the shear wave interrogation with respect to the renal structures [13–15]. The most relevant
findings [13] are summarized below.

26.3.1.1 Experimental Setup
Gennisson et al. [13] used three adult female pigs (CIRHYO origin) for the study. The pigs were
anaesthetized and intubated. After laparotomy, each kidney with its renal pedicle was exposed.
Renal artery, renal vein, and the lumbar ureter were isolated for subsequent ligation. The ureter
was cannulated for retrograde filling and for intrapelvic pressure measurement. Renal elasticity
was measured before and after total occlusion of the renal artery and after occlusion of the
renal vein.

Shear waves were generated and measured using an ultrafast scanner (Aixplorer; SuperSonic
Imagine, Aix-en-Provence, France) equipped with an 8 MHz transducer. The principles of
SSI are described in Chapter 23 of this book. To evaluate the influence of anisotropy at each
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stage of the experiment, measurements were performed in a renal segment with a pyramid
axis parallel to the US beam, then in a renal segment with a pyramid axis perpendicular to the
US beam. As the medium is considered to be anisotropic and therefore the relationship E = 3𝜇
is no longer valid, the findings shown in this section of the chapter are presented in terms of
𝜇parallel, which corresponds to the case where pyramid axis is perpendicular to the US beam
and 𝜇perpendicular, which corresponds to the case where pyramid axis is parallel to the US beam.

26.3.1.2 Experimental Results
The impact of anisotropy was evaluated by measuring 𝜇parallel and 𝜇perpendicular in three dif-
ferent renal compartments, outer cortex, inner cortex, and the medulla for the six different
pig kidneys. Measurements were performed under baseline conditions (no perfusion), dur-
ing the occlusion of the renal artery, and during occlusion of the renal vein, as illustrated in
Figures 26.2a, 26.2b, and 26.2c, respectively. In all three studies, the estimates for 𝜇parallel were
higher than those obtained for 𝜇perpendicular for the three different compartments. This described
behavior was showed to be more significant at the renal medulla.

The reason behind the shear modulus behavior in Figure 26.2 has to do with the internal
organization of the kidney and the direction of shear wave propagation with respect to the tissue
structures. The medulla is composed of tubules oriented perpendicular to the capsule, while the
cortex is composed of spherical glomeruli and convoluted tubes. In the case where the US beam
is sent parallel to the structures, the shear waves will propagate perpendicular to them, therefore
decreasing the speed of propagation and the value of 𝜇 obtained. On the contrary, when the US
beam is sent perpendicular to the structures, the shear waves will propagate parallel to them,
resulting in a higher 𝜇 value. As the medulla is more linearly organized than the cortex, the
velocity of wave propagation is higher as there is less resistance in the path of propagation.

26.3.2 Influence of Tissue Anisotropy on the SWE Evaluation of the Achilles Tendon

The Achilles tendon is a strong unidirectional arrangement of collagen fibers within a sup-
porting matrix that connects the calf muscles to the heel bone (calcaneus) [15]. It serves as a
mechanical buffer to optimize muscle work, making it more efficient. Unfortunately, it is a com-
monly injured tendon; it can tear completely or partially due to overstretch affecting the ability
to walk properly. Due to its complex TI nature, it has been difficult to develop noninvasive tools
to assess the stiffness of the tendon. Brum et al. [16] showed the possibility of estimating the
elastic properties of the in vivo transverse isotropic Achilles tendon using shear wave disper-
sion analysis with the goal of underlying a new technique to diagnose tendon injury. The most
relevant findings by Brum et al. [16] are summarized below.

26.3.2.1 Experimental Setup
Brum et al. [16] evaluated the left and right tendons of five healthy volunteers in the study. For
each experiment, the volunteer was in a sitting position with a 90∘ angle between the foot and
the tibia, and between the tibia and the femur. The foot and the ultrasonic transducer were sub-
merged in a water tank to avoid pre-compression of the tendon. Shear waves were generated and
measured using an ultrafast scanner (Aixplorer; SuperSonic Imagine, Aix-en-Provence, France)
equipped with an 8 MHz linear array transducer (SL15-4, Supersonic Imagine). The princi-
ples of SSI are described in Chapter 23 of this book. To evaluate the influence of anisotropy,
measurements were taken along and across to the tendon fiber orientation by first placing the
transducer parallel to the tendon and then by tilting it by a 90∘ angle to study wave propagation
perpendicular to the fibers.

The phase velocity determination was done using the dispersion curves (phase velocity as a
function of frequency) [17]. This method consists of taking a spatiotemporal matrix of particle
displacement or velocity signals from different locations along the propagation direction for a
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Figure 26.2 Boxplot of the shear modulus calculation over the six pig kidneys in the outer cortex, inner cortex,
and the medulla during (a) Baseline condition (no perfusion), (b) occlusion of the renal artery, and (c) occlusion
of the renal vein with the US beam along (||) and perpendicular (⟂) to the main pyramid axis. Source: reprinted
from [13], copyright 2012, with permission from Elsevier.



406 Ultrasound Elastography for Biomedical Applications and Medicine

given region of interest (ROI) and then the k-space is calculated by taking 2D Fourier transform
(FT) of the matrix. From the magnitude distribution of this Fourier representation of the wave
motion data, the global peak is found for each temporal frequency. Then, the wavenumber, ks,
corresponding to the peak in frequency, f , in k-space is used to calculate shear wave phase
velocity, cs

cs =
f
ks

(26.7)

For the final dispersion curve, an average over the ROI width is performed. The method is
illustrated on Figure 26.3. Due to its dispersive nature, produced by guided wave propagation
(shear wavelengths in the parallel and perpendicular direction are bigger than the mean ten-
don thickness); a model has to be fitted to the curve, in order to recover the elasticity values. To
model the observed velocity dispersive behavior, the wave propagation in the Achilles tendon
is assumed to take place in an infinite transverse isotropic viscoelastic plate (waves attenuate
before they arrive at the tendon’s end) of constant thickness, surrounded by liquid (leaky Lamb
waves). The guided wave propagation equation along and perpendicular to the fiber direction
for a transverse isotropic viscoelastic plate submerged in nonviscous fluid was derived by Brum
et al. [16] using the global matrix technique developed by Lowe [18]. The complete mathemat-
ical derivation can be found in Brum et al. [16].

26.3.2.2 Experimental Results
The experimental velocity dispersion curves and the corresponding model fit for left and right
tendon of one subject for the parallel and perpendicular direction of wave propagation are
shown on Figures 26.4a, 26.4b, 26.4c, and 26.4d. By fitting the model to the experimental data,
the mechanical properties of the tissue represented by three elasticity constants and a viscous
component were estimated. There is a good agreement between the model and the experimen-
tal data; the mean correlation coefficient and mean relative deviation along the fibers is 0.995
± 0.004 and 1.2%, respectively. The mean correlation coefficient and mean relative deviation
across the fibers is 0.993 ± 0.004 and 1.4%, respectively.

It is then possible to appreciate that the direction of shear wave propagation with respect
to the fibers primary orientation has an effect in the estimation of the elastic properties of the
Achilles tendon. Brum et al. [16] have demonstrated that the use of a dispersion model can aid
on the correct estimation of the tendon elasticity when its behavior is assumed to be that of a
TI media.

26.3.3 Influence of Tissue Anisotropy on the SWE Evaluation of Skeletal Muscle

Anisotropy constitutes one of the primary challenges in musculoskeletal ultrasound imaging.
Muscle consists of cylindrical fibers organized parallel to each other in clusters called fasciculi.
Anisotropy artifacts occur when these clusters of muscle fibers are oblique with respect to the
main axis of the muscle or when the orientation of the muscle fibers with respect to the axis of
tendons (muscle insertion) occurs in different patterns [9]. Previous work has demonstrated the
feasibility of estimating the mechanical properties of the skeletal muscle under the assumption
that it can be modelled as being transversely isotropic. Wang et al. [10] and Gennisson et al. [19]
have provided quantitative speed measurements of shear waves generated by ARFI on ex vivo
muscle and by low-frequency vibrations on beef muscle and the human biceps, respectively. The
most relevant findings by Gennisson et al. [19] and by Wang et al. [10] are summarized below.

26.3.3.1 Experimental Setup
Gennisson et al. [19] evaluated the feasibility of transient elastography for the estimation of the
mechanical properties of anisotropic media such as muscle. For the evaluation of the elastic
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Figure 26.3 Shear wave dispersion method used for the analysis of the wave propagation parallel and perpendicular to the fibers of the Achilles tendon. © Institute of
Physics and Engineering in Medicine. Source: reproduced by permission of IOP Publishing, all rights reserved [16].
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Figure 26.4 Phase velocity dispersion curves and the corresponding fit for one subject (a, b) in the direction
parallel to the fibers and (c, d) in the direction perpendicular to the fibers. Source: © Institute of Physics and
Engineering in Medicine, reproduced by permission of IOP Publishing, all rights reserved [16].

properties of isotropic media, a 5 MHz ultrasound transducer is set up on a vibrator (Bruel &
Kjaer, type 4810) and an acoustic impulse (100 Hz) is generated by the transducer while it works
as a pulse echo system. When the pulse is applied, both compressional and shear waves are
generated by the transducer (piston source). The determination of the Young’s modulus of the
media depends on the estimation of the low frequency (50–150 Hz) shear wave speed. By esti-
mating the displacement field with a cross-correlation technique on successive A-lines, and
linearly fitting the phase as a function of depth, the speed can be evaluated. The Young’s mod-
ulus of the simplest isotropic media can then be calculated as

E = 3𝜌V 2
s (26.8)

In the case of a transverse isotropic media such as muscle, which possesses an axis of symme-
try in the principal direction of the muscle fibers, it is necessary to determine the speed of two
different waves, a shear wave with polarization perpendicular to the fibers and a shear wave with
a polarization parallel to the fibers, to characterize the media. The use of a rod source instead of
a piston source allows the shear wave to induce a strain field in a preferential direction. When
the rod is positioned parallel to the fibers, it is possible to obtain the speed of the shear wave
with a polarization perpendicular to the fibers; when the rod is set perpendicular to the fibers,
it is possible to obtain the speed of the shear wave with a polarization parallel to the fibers. To
obtain the complete TI behavior, the rod is rotated with respect to the fibers from 0∘ to 180∘, in
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Figure 26.5 Transducer–muscle sample configurations for the shear wave imaging. First, the push
configuration (black arrow) is set perpendicular to the fibers and therefore wave propagation is observed in the
coronal plane of the imaging coordinate system (dashed plane). Second, the push configuration is set oblique
to the fibers. Source: © 2013 IEEE, reprinted, with permission, from [10].

10∘ steps, and the shear wave speed is estimated at each angle. In order to test this hypothesis,
Gennisson et al. [19] evaluated the mechanical properties of an in vitro beef muscle and an in
vivo human biceps.

Wang et al. [10] evaluated the feasibility of imaging the transverse isotropic properties of
muscle by tracking the shear wave propagation induced by ARFI using a 2D matrix array in an
ex vivo canine muscle. Six canine ex vivo muscle samples embedded in agar gel and immersed
in a water bath were evaluated in the study. Shear waves were generated and measured using
an annular focused HIFU piston transducer (H-101, Sonic Concepts, Bothell, WA). First, shear
waves were acquired, with the push axis perpendicular to the fiber orientation. In this configu-
ration, the wave propagation in a plane of symmetry can be observed in the coronal plane of the
imaging coordinate system. With the purpose of evaluating whether it was possible to estimate
the fiber orientation when the push was not oriented perpendicular to the fibers, shear waves
were also acquired with the push oblique to the fibers by tilting the ultrasound probe. In this
configuration, the plane where wave propagation occurs and the fiber orientation have to be
found by assessing the dominant spatial orientation of the wave displacement amplitude using
an iterative system. The two different configurations are shown on Figure 26.5. The evaluation
of the shear wave propagation in 3D allows access to the shear wave group velocity (cg) and
phase velocity (cs) in all directions; cg and cs were measured for ray angles from 0∘ to 360∘ in
1∘ steps by finding the TTP of the displacement time profile and by calculating the local spatial
derivative of the shear wave arrival time, respectively.

26.3.3.2 Experimental Results
The results from the Gennisson et al. [19] study show the shear wave speed as a function of
the angle of rotation of the rod with respect to the fibers for the ex vivo muscle sample and the
in vivo human biceps (Figures 26.6a and 26.6b respectively). The speed increases gradually as
the rod is rotated to an angle perpendicular to the fibers, and it decreases gradually as the rod
is rotated to an angle parallel to the fibers. In other words, the speed is maximum when the
shear wave propagates parallel to the fibers and a minimum when the shear wave propagates
perpendicular to them. This behavior is characteristic of a TI material.

The findings by Wang et al. [10] are shown in Figure 26.7, where the behavior of the phase and
group velocities when the shear wave propagates in the coronal plane are illustrated in a polar
coordinate system. The group velocity behavior approximates the profile of an ellipse, where
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speed is higher parallel to the fibers than perpendicular to them. The phase velocity behavior
approximates the profile of a hippopede.

The predominant fiber orientation, estimated by applying a 3D Radon Transform method to
the B-mode ultrasound volumes of the muscle samples for all possible 3D orientations is also
shown as a projection in Figure 26.7.

The results from Gennisson et al. [19] and Wang et al. [10] indicate that the property of
anisotropy has to be taken into account when assessing the mechanical properties of skele-
tal muscle using shear wave elastography. By using the methods described in this section, it is
possible to estimate the shear wave group and phase velocity as a function of the angle between
the transducer and the fibers in addition to the fibers’ main orientation axis.

26.3.4 Influence of Tissue Anisotropy on the SWE Evaluation of the Myocardium

Anisotropy issues are also present in the myocardium as cardiomyocytes enclosed by
endomysial sheaths of collagen are grouped together in fascicles by a sheath of connective
tissue (perimysium) organized in a honeycomb-like arrangement. This network gives rise
to directionally dependent mechanical properties [8], as demonstrated by Lee et al. [20].
Elastic tensor imaging [20] has emerged as a noninvasive ultrasound elastography-based
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technique capable of accurately assessing the tissue fiber orientation and therefore the stiffness
anisotropy. The principle of this technique is described below.

26.3.4.1 Experimental Setup
Lee et al. [21] introduced in 2012 a technique capable of estimating the tissue fibers’ orientation
through a tensor-based approach for ultrasound-based shear wave imaging (SWI). This tech-
nique was called elastic tensor imaging (ETI). To evaluate the feasibility of the technique, ETI
was compared to magnetic resonance diffusion tensor imaging (DTI), which has been exten-
sively investigated and its ability in mapping 2D and 3D myocardial fiber architecture has been
previously demonstrated by multiple studies [22–25]. The principles of DTI can be found in
Le Bihan et al. [26].

The ETI technique is based on the SWI technique [21]; SWI relies on the above mentioned
principle, where shear waves propagate faster along the fibers than across the fibers and there-
fore the shear wave speed of propagation is dependent on the local fiber orientation and stiff-
ness to estimate the fiber direction. Due to the myocardium’s complex architecture, the SWI
technique presented several limitations, including limited angular step resolution and compli-
cations when estimating the shear wave speed. ETI aims at overcoming these limitations by
utilizing a tensor-based approach to improve the robustness and accuracy of the fiber angle
estimation.

The ETI procedure can be summarized in three steps. First, shear waves are generated
using ARF [27] on a programmable prototype ultrasound system (Supersonic Imagine,
Aix-en-Provence, France) and a phased array transducer. Special care is taken in generating
intense planar shear waves that can cover a large wall thickness of the myocardial sample.
Shear waves are imaged using an ultrafast frame rate, higher than that of conventional
echocardiography scanners and coherent-compounded images are obtained by averaging
three different angled plane waves transmitted from the ultrasonic array at angles of −2∘, 0∘,
and 2∘.

Second, to evaluate the anisotropic characteristics of the in vitro porcine myocardial samples
shear waves are generated and measured from −90∘ to 90∘ in 5∘ steps, as shown in Figure 26.8a.
The transducer was rotated with respect to the samples, where 0∘ was defined along the fibers,
and 90∘ and −90∘ were defined across the fibers. 2D images were taken to visualize the shear
wave propagation across different time points, as illustrated in Figure 26.8b. The shear wave
group velocity across the different rotation angles was estimated using spatiotemporal images
of the shear wave propagation at different myocardial wall depths, as shown in Figures 26.8c
and 26.8d.

Lastly, in order to map the fiber orientation independent of the rotation angle resolution (5∘
increments of the probe rotation), the elastic wave equation was solved in a tensor form using
a least-square approximation and an eigendecomposition to estimate both the elasticity tensor
and the high-precision fiber angle estimates.

26.3.4.2 Experimental Results: ETI Method
The comparison between the estimated myocardial fiber orientation according to the estimated
angles and wall depths using the ETI and DTI methods for one of the myocardium samples
are shown in Figure 26.9. The fiber distribution across the three different regions of the wall
ventricle (anterior, lateral, and posterior) are shown in Figures 26.9a, 26.9b, and 26.9c. It is
possible to observe on the corresponding scatter plots (Figures 26.9d, 26.9e, and 26.9f ) that
there is a very good correlation between the ETI and DTI estimations (r2 = 0.95, 0.77 and 0.94)
and therefore this ultrasound technique can help in the estimation of the shear wave speed
along and across the fibers and in the determination of the myofiber orientation.
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Figure 26.9 (a)–(c) Fiber orientation as a function of wall depth estimated using ETI and DTI of one sample of left ventricular anterior region. 0% to 33% wall depths
indicate sub-endocardium, 33% and 67% wall depths indicate midwall and 67% to 100% wall depths indicate sub-epicardium, respectively. (d) to (f ) Scatterplot of the
estimated fiber orientation using the ETI method vs. the fiber orientation estimated using DTI. Source: © Institute of Physics and Engineering in Medicine, reproduced by
permission of IOP Publishing, all rights reserved [21].
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26.3.5 Design and Evaluation of Tissue-mimicking Phantoms to Characterize
the Anisotropy Phenomenon in a Laboratory Setting

As can be seen, anisotropy is present in most of the soft tissues of the human body and
therefore the consideration and study of this phenomenon when using ultrasound-based shear
wave elastography methods [1–4] is a rule rather than an exception. Aristizabal et al. [28] and
Chatelin et al. [29] have developed tissue-mimicking phantoms that have characteristics that
mimic the shear moduli and shear wave speed variation found in TI materials. Phantoms with
TI characteristics that can take into consideration different parameters related to anisotropy
can help in the accurate interpretation of the shear wave speed measurements and the
characterization of this phenomenon in a laboratory setting.

26.3.5.1 Experimental Setup
In order to characterize TI materials in a laboratory setting, Aristizabal et al. [30] created two
different phantom designs using fibrous material and fishing line material with directionally
dependent properties. The two phantom designs consisted of cube-shaped phantoms using
multiple parallel layers of fibrous material (polyester) and using a parallel arrangement of
monofilament fishing line material (20 lb, Test R6, transparent nylon, 0.50 mm diameter,

(a)

(c)

(b)

(d)

Figure 26.10 Phantom designs incorporating fibrous material (a), (b) fishing line material (c), (d) that have
preferential orientations. Both set of phantoms were embedded in porcine 300 Bloom gelatin using two
different concentrations of the gelatin (8%, 14%). Source: © Institute of Physics and Engineering in Medicine,
reproduced by permission of IOP Publishing, all rights reserved [30].
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Figure 26.11 (a) Experimental setup with the designed phantom and pork muscle placed on a rotating
platform with a rotation range oscillating between 0∘ and 360∘ in 10∘ steps. (b) Top view of the designed
phantom, when the ultrasound transducer is placed along the axis of the fibers (0∘). (c) Top view of the
designed phantom after rotation when the ultrasound transducer is placed at an angle Θ with respect to the
axis of the fibers. Source: © Institute of Physics and Engineering in Medicine, reproduced by permission of IOP
Publishing, all rights reserved [30].

Eagle Claw, Denver, CO) with a spacing of 3 mm between them. Both phantom designs
were embedded in porcine 300 Bloom gelatin (Sigma-Aldrich, St. Louis, MO) using two
different concentrations of the gelatin (8%, 14%) (Figures 26.10a, 26.10b, 26.10c, and 26.10d,
respectively). Moreover, in order to evaluate the ability of the phantom designs to effectively
mimic TI tissues, they evaluated the anisotropic characteristics of an ex vivo sample of pork
tenderloin in a saline bath at 30 ∘C for comparison.

To evaluate the TI characteristics of the four phantoms and the excised pork muscle, each
individual phantom and the muscle sample were placed on a rotating platform with the rotation
ranging between 0∘ to 360∘ in 10∘ steps, as shown in Figure 26.11a. The phantoms and muscle
were rotated with respect to the transducer, where 0∘ and 180∘ were defined along the fibers, and
90∘ and 270∘ were defined across the fibers, as shown in Figures 26.11b and 26.11c. Three shear
wave acquisitions were performed at each angle. They also evaluated two different locations for
each phantom. To characterize the shear wave speed variation in TI materials, the shear wave
group velocity was estimated as a function of the angle between the transducer and the fibers
of the two phantom designs and the ex vivo muscle sample.

Chatelin et al. ([29]) designed a PVA hydrogel phantom capable of mimicking fibrous tis-
sue such as cardiac, muscular or tendon. The phantom was created using 5wt% PVA solu-
tion and 1wt% cellulose was added as scattering particles. The mechanical TI of the phantoms
was achieved by stretching the physical crosslinks of the polymeric chains along a preferen-
tial direction while undergoing freeze/thaw cycles using a customized static tensile-test setup.
The characterization of the mechanical anisotropy of this phantom using shear wave elastog-
raphy was done using an ultrafast scanner (Aixplorer; SuperSonic Imagine, Aix-en-Provence,
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Figure 26.12 (a) Shear wave imaging setup. Ultrasound generated the focused acoustic beam (orange dots)
source of cylindrical shear waves. To estimate the shear wave speed, spatiotemporal images are taken of the
wave propagation as a function of the rotation angles (b) and (c). Source: © Institute of Physics and Engineering
in Medicine, reproduced by permission of IOP Publishing, all rights reserved [29].

France) equipped with a 6 MHz transducer in supersonic shear imaging mode (SSI). The prin-
ciples of SSI are described in Chapter 23 of this book. To characterize the shear wave speed
variation in the phantom, the shear wave group velocity was measured from −90∘ to 90∘ in
10∘ steps throughout the sample by taking a spatiotemporal image at the depth of interest and
fitting its profile, as shown in Figures 26.12a, 26.12b, and 26.12c. Additionally, the anisotropic
characteristics of the phantom were characterized using linear transverse shearing dynamical
mechanical analysis (DMA), BTI, and optical coherence tomography (FFOCT).

26.3.5.2 Experimental Results
The B-mode images of the two transversely isotropic phantom designs at a gelatin concentration
of 14% and the pork muscle sample when the transducer was set parallel (Θ = 0∘) and perpen-
dicular (Θ = 90∘) to the fibers are illustrated in Figures 26.13a, 26.13b, and 26.13c. Here, it is
possible to appreciate the changes in the pattern of fiber organization when the angle between
the transducer and the fibers goes from Θ = 0∘ (along the fibers) to Θ = 90∘ (across the fibers).

The shear wave group velocity measurements obtained at different angles between the trans-
ducer and the fibers demonstrate that the shear wave group velocity increases gradually as the
pork muscle sample and both phantoms designs are rotated to an angle parallel to the fibers
(Figure 26.14). The shear wave group velocity decreases gradually as the phantoms and pork
muscle are rotated to an angle perpendicular to the fibers. Similar characteristics for the group
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Figure 26.13 B-mode Images for (a) fibrous phantom, (b) fishing line phantom, and (c) pork tenderloin, when
the ultrasound transducer is placed along the axis of the fibers (0∘). B-mode Images for (d) fibrous phantom, (e)
fishing line phantom, and (f ) pork tenderloin, when the ultrasound transducer is placed across the axis of the
fibers (90∘). Source: © Institute of Physics and Engineering in Medicine, reproduced by permission of IOP
Publishing, all rights reserved [30].

velocity in an anisotropic media have been reported in this chapter. Transversely isotropic
phantoms represent an alternative when it is desired to characterize the properties of trans-
versely isotropic body organs such as the kidney, skeletal muscle, myocardium, and tendons in
a laboratory setting.

As mentioned above, Chatelin et al. [29] performed a multimodality characterization of
the PVA hydrogel phantom. The shear wave speed variation from the SSI measurements in
shown in Figure 26.15a. It can be observed that there is a good correlation between the results
obtained experimentally and the TI model. The spatial coherence of the ultrasonic speckle was
also characterized in the constructed phantom using backscatter tensor imaging (BTI) [31],
where, by means of a spatially averaged coherence factor (SACF), it was possible to observe
that the spatial coherence varied as a function of the rotation angle, where the scatterers were
more coherent in the direction of the fibers than in the direction perpendicular to them. Lastly,
the volumetric mechanical anisotropy characteristics (main anisotropy axis and fiber orien-
tation) of the designed phantom were evaluated using FFOCT combined with elastography
(Figures 26.15b, 26.15c, and 26.15d). The PVA hydrogel phantom proved to be a potential
tool to evaluate the mechanical and optical anisotropy of biological fibrous tissues such as SSI
and FFOCT.
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26.4 Conclusion

Consideration of the phenomenon of anisotropy in tissues such as the kidney, tendons,
myocardium, and skeletal muscle is a necessity rather than an exception when assessing the
mechanical properties of this type of tissue using shear wave based elastography techniques.
Methods that can provide complementary information about the tissue fiber orientation,
thereby helping in the accurate interpretation of the shear wave speed measurements and the
characterization of this phenomenon in a clinical and laboratory setting, have been described.
The evaluation of the medium anisotropy has emerged as a potential tool to study other
mechanical factors that can help improve the accuracy and robustness of current elastography
methods for the assessment of the viscoelastic properties of biological soft tissues.
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27.1 Introduction

The field of shear wave elastography has offered numerous techniques to quantify the
viscoelastic properties of various biological tissues such as kidneys, myocardium, breast,
liver, prostate, and others [1–3]. The majority of these methods assume the presence of a
“pure” shear wave and relate the observed shear wave velocity (c) to the shear modulus of
elasticity (𝜇) via 𝜇 = c2

𝜌, where 𝜌 is tissue density (around 1000 kg/m3). The pure shear wave
assumption is appropriate for tissues such as the liver, kidneys, and breast tissue (often referred
to as bulky organs) when the shear waves propagate in the middle of the organ and do not
reflect from the organ boundaries. In bulky organs, the focused radiation force excites shear
waves and compressional waves that attenuate before they reach the edges of the medium,
and therefore do not form an interference pattern. In organs such as the arteries, myocardial
free wall, bladder, cornea, and tendons, this assumption is not appropriate [4] because the
compressional and shear waves create an interference pattern resulting in types of shear waves
that are traditionally modeled as Lamb and Rayleigh waves [5–7]. These organs are referred
to as boundary sensitive media and the application of shear wave elastography methods in
these organs requires additional theoretical consideration. The theoretical basis of guided
waves in boundary sensitive media has been described in greater detail in Chapter 7 of this
textbook (Transverse Wave Propagation in Bounded Media). Here, we briefly revisit the theory
and summarize experimental results of in vivo application of guided waves in the viscoelastic
assessment of the myocardium, large arteries, bladder, cornea, and tendons.

27.2 Myocardium

The general theory of wave propagation in boundary sensitive media has been laid out in
Chapter 7 of this textbook (Transverse Wave Propagation in Bounded Media). Here, we briefly
summarize the basic concepts and build on the previously presented work. Most techniques
mentioned in this chapter rely on the anti-symmetric Lamb wave theory [8, 9].

Ultrasound Elastography for Biomedical Applications and Medicine, First Edition.
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Kanai [10] originally presented an anti-symmetric Lamb wave model used to represent the
motion of the septal myocardium due to aortic-valve closure. The myocardium was modeled
as a homogenous viscoelastic plate composed of a Voigt material so that the shear modulus
𝜇 = 𝜇1 + i𝜔𝜇2, where 𝜇1 and 𝜇2 are the shear elasticity and viscosity, respectively. Additionally,
this plate is considered to be surrounded by fluid on both edges. Assuming that the bulk mod-
ulus is much larger than the shear modulus, the anti-symmetric Lamb wave model requires the
following equation to hold

4k3
L𝛽 cosh(kLh) sinh(𝛽h) = (k2

s − 2k2
L)

2 sinh(kLh) cosh(𝛽h) + k4
s cosh(kLh) cosh(𝛽h)

(27.1)

where kL = 𝜔∕cL is the Lamb wave number, 𝜔 is the angular frequency, cL is the frequency-
dependent Lamb wave velocity, 𝛽 =

√
k2

L − k2
s , ks = 𝜔

√
𝜌m∕𝜇 is the shear wave number, 𝜌m is

the density of the sample, and h is the half-thickness of the sample. In order to obtain the elas-
ticity and viscosity coefficients 𝜇1 and 𝜇2 Eq. (27.1) is fitted to the Lamb wave dispersion curves
(velocity versus frequency).

The myocardium is a soft tissue subject to the propagation of guided waves along its length.
The thickness of the heart wall with respect to the shear wavelength can affect the velocity of
propagation of shear waves, giving rise to guided waves which depend on both the geometry
and the properties of the tissue. Alterations in the normal structure of the myocardium can
change the tissue properties and function, hence the importance of developing a method that
can assess the mechanical properties of the myocardial tissue noninvasively.

The left ventricular (LV) free myocardium is 10–20 mm thick and it can be considered in the
same order of the magnitude of the focal length of the acoustic radiation force for many appli-
cations. The myocardium is characterized by being surrounded by blood and pericardial fluid
on either side of it and can therefore be modelled as a solid plate submerged in fluid. Kanai [10]
used a high sensitivity ultrasound method to detect shear wave propagation in the myocardial
septum due to closure of the aortic valve. The motion of the septum was modeled by an antisym-
metric plane Lamb wave in an infinite isotropic plate with incompressible fluid on both sides.
This method was used to measure shear wave dispersion in the frequency range 10–90 Hz and
fit the Lamb wave model to estimate elasticity and viscosity. Nenadic et al. proposed a similar
method to measure the dispersion of anti-symmetric Lamb waves in the myocardium, called
the Lamb wave dispersion ultrasound vibrometry method (LDUV) [8]. LDUV measures the
velocity dispersion as a function of frequency of anti-symmetric Lamb waves in the tissue of
interest. The principle of LDUV is shown in Figure 27.1.

A cross-spectral analysis or other type of analysis can be performed to calculate the motion as
a function of time and the velocity is measured by calculating the phase shift over the distance
of wave propagation [11, 12]. An antisymmetric Lamb wave model is then fitted to velocity
dispersion data to estimate the elasticity and viscosity. An example in a rubber plate phantom
is shown in Figure 27.2.

The LDUV method was used in ex vivo myocardial samples and the ranges of the viscoelas-
tic parameters were 𝜇1 = 15–18 kPa and 𝜇2 = 5–7 Pa⋅s [8]. Nenadic et al. performed in vivo
experiments of Lamb wave propagation in pig hearts using a transthoracic approach [13]. For
these studies, the wave excitation was triggered by electrocardiographic (ECG) R-wave and the
data was acquired during an entire heart cycle. The elasticity and viscosity of the myocardium
were estimated by fitting Eq. (27.1) to the dispersion curves throughout the heart cycle. In these
transthoracic measurements, the average group velocity, elasticity, and viscosity showed a sim-
ilar pattern of increase in systole and decrease in diastole, consistent with the ECG signal, as
shown in Figures. 27.3c, 27.3d, and 27.3e respectively.
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Figure 27.2 Lamb wave dispersion in a urethane rubber plate: experimentally obtained shear wave dispersion
curves are shown as circles. Lamb wave model (solid line) was fitted to the data to obtain the values of elasticity
and viscosity 𝜇1 = 45.1 kPa and 𝜇2 = 6.5 Pa⋅s. © Institute of Physics and Engineering in Medicine. Source:
reproduced by permission of IOP Publishing, all rights reserved [8].

Group velocity changed from around 1.5 m/s in diastole to around 5 m/s in systole
(Figure 27.3c). Leftward and rightward propagating waves follow the same general pattern and
are fairly similar. The values of elasticity (𝜇1) increased from ∼ 2 to 8 kPa, while the values of
viscosity (𝜇2) increased from ∼2 to 12 Pa⋅s from diastole to systole.

Urban et al. used the LDUV method with mechanical excitation in eight pigs in an open-chest
preparation [14]. Using a mechanical actuator, harmonic waves were generated to propagate
in the myocardial wall and the velocities of wave propagation were measured in the range of
50–400 Hz over several cardiac cycles. The results of this study demonstrated that the dispersive
phase velocity of the waves is consistent with an antisymmetric Lamb wave model. Additional
work was done with the same method on pigs with myocardial infarction with reperfusion
which demonstrated that the viscosity increased after reperfusion in diastole and systole and
the shear elasticity increased in diastole after reperfusion [15]. Additionally, the LDUV method
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Figure 27.3 R-wave ECG-gated transthoracic measurements of Lamb wave group velocity, elasticity, and
viscosity in a beating porcine left ventricular free wall averaged over 5–10 acquisitions. Average group velocity
(c), elasticity (d), and viscosity (e) show a similar pattern of increase in systole and decrease in diastole,
consistent with the ECG signal. Source: © Institute of Physics and Engineering in Medicine, reproduced by
permission of IOP Publishing, all rights reserved [32].

allows for the estimation of elasticity and viscosity of the myocardial wall throughout the course
of the cardiac cycle.

Similar open-chest studies have been performed by Couade et al. for the in vivo assessment of
myocardial mechanical properties during the cardiac cycle. [16]. To estimate the shear modulus,
𝜇, of the myocardium, the speed of propagation of the shear wave, cT is measured and the
following relationship is used to estimate 𝜇

cT =
√

𝜇

𝜌

(27.2)
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Figure 27.4 (a) ECG trace registered to the acquisition (including R-wave, T-wave, and then P-wave). (b) 2D
spatiotemporal representation of the total particular velocity due to heart motion and shear wave induced 15
times by radiation force every 45 ms. (c) Particular velocity due to shear wave only: the heart motion is rejected
by removing at each location the time average over the 4 ms length of the acquisition. (d) Time axis
representing the global acquisition sequence: each blue rectangle is 4 ms wide and represents the
combination of a pushing beam and an ultrafast sequence (as shown in Figure 27.2). Because the ultrafast
imaging is used only every 45 ms for only 4 ms, the motion is not estimated continuously [16].

where 𝜌 is the density of the myocardium, which is assumed to be equal to that of water
(1000 kg/m3). Couade et al. assumed that the shear waves induced using the SSI method
have millimetric wavelengths and propagate only over a few millimeters, hence they are
not subject to the condition of guided wave propagation since the propagation distance is
not comparable to the thickness of the myocardial wall. Nevertheless, they are subjected to
myocardial anisotropy.

To explore this phenomenon experiments were conducted on ten sheep. Shear waves were
generated and measured at an ultrafast frame rate during an entire cardiac cycle using the super-
sonic shear imaging method whose principles have been described in Chapter 23. The mea-
surement of elasticity was performed in a 2 cm wide region and the myocardium was imaged
over its whole thickness. The speed of propagation of the shear wave was then calculated from
backscattered ultrasonic echoes obtained at an ultrafast frame rate (up to 12 000 frames per
second).

Figure 27.4 shows 15 wave acquisitions of 4 ms each where it is possible to appreciate the
change of shear wave speed several times during the cardiac cycle. Additionally, the variation
of the shear modulus of the myocardium as a function of time is shown in Figure 27.5, where it
is possible to appreciate the temporal variation of 𝜇 for acquisitions within the same region.

27.3 Arteries

Estimating the mechanical properties of arteries has become a central role in the cardiovascular
field as it has been shown to be a predictor of heart-related diseases such as type II diabetes,
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Figure 27.5 Time variation of shear modulus: four consecutive acquisitions were performed by
removing/replacing the probe on the left ventricle in long axis view (mean SD). Based on coregistered ECG
signal (not represented here), the time axis has been shifted for each acquisition in order to put the R-wave
peak at t = 0 [16].

hypertension, and end-stage renal disease [17–19]. The viscoelastic properties of arteries have
been widely studied over the last two decades but more recently arterial stiffness has become the
subject of serious investigations to assess the progression of conditions that affect the arterial
tree [20, 21]. In this chapter, we introduce the work performed by Bernal et al. and Couade
et al., who have investigated the material properties of arteries using acoustic radiation force
and shear wave imaging [9, 22].

Bernal et al. studied arterial elasticity by identifying the modes of wave propagation in tubes
made out of urethane rubber and excised pig carotid arteries using the two-dimensional (2D)
fast Fourier transform (2D FFT) [22]. From the magnitude distribution of the k-space of the
propagating wave, the global peak is found by identifying the maximum magnitude for each
temporal frequency and then determining the wavenumber, ks, associated with it. Using the
values of frequency, f , and wavenumber, ks, we can calculate the dispersion curves using c = 𝜆f ,
where c is the velocity of the guided wave and 𝜆 is the wavelength 1/ks. The dispersion curves
are then derived by finding the phase velocity for the maximum magnitude of the 2D Fourier
transform at each individual frequency after filtering the interference of the arterial pulse wave
from the cardiac cycle by removing the time-averaged particle velocity of each line. The dis-
persion curves are then used to estimate the shear modulus of the arterial wall using a leaky
zero-order antisymmetric (A0) Lamb wave model of propagation described elsewhere in this
textbook (Chapter 7, Transverse Wave Propagation in Bounded Media). Urethane tubes and
excised arteries were mounted in a metallic frame and embedded in tissue-mimicking gelatin.
Arteries and tubes were pressurized over a range of 10–100 mmHg. Mechanical waves were
generated and measured using a focused ultrasound and measured with a pulse-echo trans-
ducer, respectively.

To generate mechanical waves, Bernal et al. used acoustic radiation force, consisting of five
tone bursts lasting 200 μs each, transmitted using a confocal transducer with center frequency
of 3 MHz. Vibration of the arterial wall was measured using pulse-echo at 21 points along the
length of the artery/phantom. A cross-spectral method was used to estimate the phase shifts
between pulse-echo measurements [11]. The dispersion curves were obtained from the k-space
representation using the 2D FFT method. The shear modulus of elasticity, 𝜇1, of the excised
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Figure 27.6 Experimental dispersion curves and fitting of a Lamb wave model. Panel A shows the dispersion
curve for the urethane tube at 50 mmHg. The black circles represent the highest energy mode while the light
circles represent the peaks in the wave number direction. The dark and the light lines represent the
antisymmetric (A) and symmetric (S) modes for the Lamb wave model. Similarly, panel B shows the dispersion
curves and Lamb wave fitting for the artery at 50 mmHg. The legend from panel A also applies to panel B [22].

arteries and urethane tubes were estimated by fitting the first antisymmetric Lamb wave mode,
A0 in Eq. (27.2), to the dispersion curves as shown in Figure 27.6. The lower order of longitudinal
guided wave propagation in tubes can be approximated by the antisymmetric Lamb wave mode
in plates.

Couade et al. proposed an ultrasound method based on supersonic shear imaging (SSI) [23]
to assess the arterial wall stiffness. This technique generates a broadband guided shear wave
(100–1500 Hz) in the arterial wall and tracks the wave propagation using ultrafast imaging.
The studied was performed using a Aixplorer (SSI) scanner programmed to perform conven-
tional B-mode imaging, acoustic radiation force for the generation of shear waves, and ultrafast
imaging to image the propagation of shear waves at a frame rate higher than 2000 images
per second.
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Figure 27.7 Shear wave propagation along the superior wall of an arterial phantom (agar gel) embedded into
softer gelatin gel. The axial velocity field (tissue Doppler imaging) is superimposed to the anatomic grayscale
image in color (mm/s) at different time steps: (a) t = 0.5 ms, (b) t = 2 ms, and (c) t = 4 ms. The ultrasonic probe is
located on the top of the images. The elastic wave propagating along the wall is faster than in the surrounding
softer gel [9].

(a) (b) (c)

Figure 27.8 In vivo experiment in the carotid artery: propagation of a shear wave generated by acoustic
remote palpation and acquired by ultrafast imaging: Color-coded axial displacements are superimposed to
grayscale anatomic B-mode and represented at (a) t = 0.5 ms, (b) t = 2 ms, and (c) t = 4 ms after the generation
of the acoustic radiation force [9].

To image the shear wave propagation in the arterial walls, the setup similar to that shown in
Figure 27.1 is used, where the acoustic radiation force push and pulse-echo detection are per-
formed with the same transducer. The transducer is aligned with the artery during the entire
process. The generated push beam is transmitted at three specific locations in depth, spaced
1 mm apart. The average focal depth is set in the center of the arterial wall. This is done to com-
pensate for any movement due to the cardiac cycle. Each push beam has duration of 100 μs,
inducing a mean wall displacement of 10 μm along the plane of the probe. After the transmis-
sion of the shear wave was complete, the probe is switched to the ultrafast mode in order to
scan and acquire data of the shear wave propagation. Beamforming is performed to create the
2D images of the entire motion of the shear wave propagation using the ultrasonic backscat-
tered echoes (RF data). The wave’s axial velocity is estimated via an in-phase/quadrature (IQ)
auto-correlation of frame-by-frame motion detection [12]. Images are then stitched to create
a “movie” of the axial velocity at a frame rate of 8000 images/second similar in appearance to
Figures 27.7 and 27.8. The velocity of the shear wave in the arterial wall could then be extracted
using Eq. (27.3), where x is the line number, t is the frame number, and rwall(x, t) is the detected
position of the arterial wall at a specific line and frame number. Data from an experiment in
a phantom is shown in Figure 27.7. In vivo measurements in the carotid artery are shown in
Figure 27.8.

vr(x, t) = vr(rwall(x, t), x; t) (27.3)

As the mechanical properties of the arterial wall can vary across the cardiac cycle, Couade
et al. also showed the feasibility of generating and measuring shear waves several times per
second during the cardiac cycle in order to track these changes, as shown in Figure 27.9 [9].
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Figure 27.9 Real-time in vivo measurement of carotid arterial wall shear modulus variation during a single
heart cycle (13 values/cycle) with time-registered ECG. (a) 15 successive space-time representations of tissue
particle velocity in the arterial wall. One clearly notices on each successive set of data the presence of a
propagating wave caused by the radiation force generation. (b) The same dataset after filtering of the
homogeneous velocity offset as a result of the arterial pulse wave propagation for each ultrafast acquisition.
One can clearly notice that this filtering enables discriminating both waves (arterial pulse wave and radiation
force-induced wave). (c) Shear modulus deduced from each ultrafast acquisition owing to the estimation of the
wave speed of the radiation force-induced wave [9].

Additional research has been carried out to estimate the elastic properties of the arterial
wall and other thin layered organs. Nguyen et al. proposed a method called shear wave spec-
troscopy to estimate the viscoelastic properties of organs with thickness smaller than that of
the shear wavelength [24]. These types of organs behave as soft plates and therefore the shear
wave propagation in these types of tissues is guided and subjected to dispersive effects. Hence,
by experimentally measuring the dispersion curves in these organs, the shear modulus can
be approximated in viscoelastic plates using an analytic dispersion equation derived from the
Lamb wave theory for the zero-order antisymmetric mode A0

vph(𝜔) =
√

hcT𝜔

2
√

3
(27.4)

where h is the plate thickness, cT is the transverse velocity, and 𝜔 is the angular frequency. This
formula provides a reasonable approximation of the shear modulus in the frequency range from
500 to 2000 Hz.

To investigate the influence of viscosity on dispersion curves, Nguyen et al. performed shear
wave spectroscopy experiments using two phantoms with viscoelastic characteristics made
using 5% gelatin/agar. Xanthan gum (0.5%) was added to one of the phantoms to increase the
viscosity of the sample. Nguyen et al. showed that the non-viscous plate exhibited a dispersive
effect because of the guided propagation of the shear waves and no significant differences were
observed in the dispersive curves for the two phantoms, indicating that wave guides tend to
affect the shear wave propagation significantly and therefore it is necessary to use shear wave
spectroscopy to recover the shear modulus.
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27.4 Urinary Bladder

Ultrasound bladder vibrometry (UBV) is a noninvasive technique developed by Nenadic et al.
that uses Lamb waves to investigate the viscoelastic properties of the bladder wall [25]. An
increase in the stiffness of bladder can be associated with pathogenic processes; hence there is a
need for methods to monitor the rigidity of the bladder wall to ensure the adequate functioning
of the urinary system. UBV allows monitoring the properties of the bladder wall as a function of
filling volumes which is analogous to urodynamic studies. Urodynamic studies are the clinical
gold standard in assessing bladder function; however, this method is invasive, costly, and can
cause infection due to urinary catheterization.

UBV uses an ultrasonic array transducer to generate acoustic radiation force to excite anti-
symmetric Lamb waves in the bladder wall and tracks the motion of the wave using pulse-echo
techniques. To estimate the elastic properties of the bladder using the anti-symmetric Lamb
wave theory described earlier, the bladder is modelled as an isotropic solid plate submerged in
an incompressible non-viscous fluid. Nenadic, et al. performed experiments on formalin treated
ex vivo porcine bladders to induce tissue stiffness and untreated excised porcine bladders. An
example of a measurement is shown in Figure 27.10. The ex vivo experiments showed that UBV
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Figure 27.10 Ex vivo measurements of porcine bladder elasticity and viscosity. (a) B-mode of bladder wall
outlined in solid line. (b) Wave propagation as a function of time and distance. (c) A 2D FFT of the time and
spatial signals is used to calculate the guided wave propagation dispersion. (d) The resulting phase velocity as
a function of frequency is fitted with an antisymmetric wave model (Eq. 27.1) to estimate the bladder elasticity
and viscosity. Source: © Institute of Physics and Engineering in Medicine, reproduced by permission of IOP
Publishing, all rights reserved [25].
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Figure 27.11 Summary of UDS and UBV comparative measurements obtained using the study design shown
in Figure 27.4 in patients with a compliant (circles) and incompliant (squares) bladders. (a) UDS measurements
of the detrusor pressure versus volume. (b) UBV measurements of the group velocity (cg) versus volume.
(c) UBV measurements of elasticity (𝜇) versus volume. Source: © reproduced by permission of PLOS, all rights
reserved [26].

can track changes of the bladder wall’s elastic properties, moreover there was a high correlation
between the pressure measurements and the shear modulus estimated using UBV [25].

Nenadic et al. also evaluated the feasibility of the UBV method for the assessment of the
viscoelastic properties of the human bladder. The UBV method was performed in two patients
with at least one of the following conditions: neurogenic bladder, stress incontinence, or benign
prostatic hyperplasia and scheduled to undergo UDS and UBV. One of the patients was known
to have a noncompliant bladder through clinical documentation while the other had a normal
compliant bladder [26]. Figure 27.11 shows the mean and standard deviation of the velocity
of Lamb wave propagation along the bladder wall as well as the shear modulus as a func-
tion of filling volume. The shear modulus of the noncompliant bladder was higher than that
of the normal compliant bladder. The results of the clinical studies performed in in vivo blad-
der demonstrated that the elastic parameters estimated using UBV closely correlate with the
UDS estimated data. UBV could become a potential alternative to the invasive methods for
bladder compliance evaluation.
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27.5 Cornea

The assessment of the viscoelastic properties of the cornea is important for monitoring the
progression of diseases such as the keratoconus, as well as a follow up strategy to evaluate the
corneal biomechanical properties after patients undergo vision treatment.

Tanter et al. evaluated the feasibility of dynamic elastography to provide a map of corneal vis-
coelasticity using SSI. The cornea’s boundary conditions can significantly affect the shear wave
propagation since it can be characterized by a thin plate compared to the shear wavelength. The
fact that the cornea is surrounded by a viscous fluid (aqueous humor) induces partially guided
wave propagation due to reflections as the shear wave travels along the length of the cornea.

To estimate the viscoelastic properties of the corneal tissue, Tanter et al. modelled the cornea
as a thin elastic plate surrounded by liquid. In this approximation, as the wave propagates along
the plate it leaks energy at the wall interfaces on what is known as a “leaky” Lamb wave. Couade
et al. derived an approximation for the phase velocity of this type of wave propagating in tissues
(Eq. 27.4). This approximation is then used to estimate the viscoelastic properties of the tissue
from the dispersion curves, c(𝜔).

Tanter et al. evaluated fresh excised porcine eyes, placed in a positioning cap and immersed
in a water bath similar to the setup in Figure 27.1 [27]. The ultrasound probe is driven by an Aix-
plorer system. Three pushing sequences were performed, which allowed elasticity imaging in
the center and edges of the imaged area for a complete mapping of the cornea elasticity. To meet
the Food and Drug Administration (FDA) requirements for ophthalmological applications, the
acoustic intensity was decreased in comparison to the intensities used for organs such as the
breast or muscle. Local tissue particle velocity was estimated using a 1D cross-correlation of
the successive ultrafast echographic images. The shear wave speed was subsequently estimated
using a time-of-flight method between two points during the shear wave propagation and the
shear wave group velocity was estimated over the whole shear wave bandwidth. To estimate the
shear wave velocity, Tanter et al. used a shear wave spectroscopy algorithm, a Fourier transform
of these signals was computed, and the ratio between wave number and frequency at each fre-
quency peak was calculated to obtain the phase velocity. The Young’s modulus is then estimated
by reformulating Eq. (27.4) into the form

E = 36𝜌c(𝜔)4

h2
𝜔

2 (27.5)

The 2D spatial distribution of the excised corneas’ relative displacements along the z-axis as
the central push is being applied is shown in Figure 27.12.

An estimate of the shear wave speed at point A outside of the pushing zone (Figure 27.13)
is obtained by estimating the time delay between time profiles at points B and C surrounding
point A. The choice of the distance between B and C is optimized based on the data quality (i.e.
the signal-to-noise level of tissue displacements estimates) at A. The complete 2D mapping of
the cornea using the time-of-flight algorithm is shown in Figure 27.13 [27].

Using the time profiles of the z-displacement computed at each location, as shown in
Figure 27.13, the Fourier transform is applied to each of them to estimate the phase of each
spectral component. Finally, the dispersion curves were deduced from each pushing mode.
The data was fitted to obtain the value of the Young’s modulus (Figure 27.14).

This study by Tanter et al. demonstrated the ability to provide a quantitative mapping
of corneal elasticity [27]. More recently, Nguyen et al. investigated the potential of corneal
elasticity as a biomarker of the effectiveness of the UV-A/riboflavin-induced corneal collagen
cross-linking treatment (CXL) for keratoconus, a vision disorder where the round cornea
undergoes a progressive thinning resulting in an irregular cone-like shaped cornea [28]. One
of the treatments available for this condition is CXL, which is a minimally invasive method
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Figure 27.12 Cornea relative displacements
between successive echographic images (i.e.
particle velocity) at different time steps just
after the ultrasonic radiation force generated
at the center of the cornea. These color
relative displacement images depict the
shear wave propagation in the cornea and
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Figure 27.13 2D map of the shear wave speed superimposed on the gray scale ultrasound image of the
cornea. From the knowledge of the corneal thickness (mm) and central frequency of the mechanical excitation
(1500 Hz), this map can be converted into a quantitative Young’s modulus map using Eq. (27.5) [27].

to stop the progression of the keratoconus disorder and it consists of photo-reticulating the
collagen fibers of the cornea to stiffen its structure. Because there is no way to quantify the
efficacy of the treatment, Nguyen et al. evaluated the biomechanical effects of CXL using
corneal elasticity measured with SSI [28]. Nguyen et al. used the method previously laid out
by Tanter et al. to study the biomechanical properties of ex vivo and in vivo porcine eyes
using CXL experiments together with SSI. The shear wave imaging sequence consisted of four
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Figure 27.14 Shear wave dispersion curves
estimated experimentally for the three successive
mechanical waves generated by pushing modes no.
1, 2, and 3 into the porcine cornea. The solid line
corresponds to Eq. (27.5) [27].
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pushing beams applied along the cornea surface followed by an ultrafast imaging sequence
after each push to map the entire cornea. A rubber ring was placed around the eye to enable the
cornea immersion during elastography acquisition. Riboflavin 0.1% is dropped on the cornea
for 20 minutes, and then the cornea was exposed to UV-A light for 30 minutes. Anesthetized
pigs were used for the in vivo studies. Elastography acquisitions were performed before and
after CXL treatment with the probe placed above the cornea, as shown in Figure 27.16. The
elastography measurements were triggered with the respiratory and cardiac cycle to avoid
physiological displacements. The wave speed maps obtained in two corneas are shown in
Figure 27.15.

A map of the shear wave speed of the corneal tissue obtained after the application of the CXL
treatment unilaterally on the cornea can be observed in Figure 27.16. The map was obtained
from the wave acquisitions in different imaging planes. The superior half of the map was stiffer
than the inferior half which matches well the areas of the cornea that were treated and untreated,
respectively. The work done by Nguyen et al. demonstrated the feasibility of using SSI to mon-
itor the biomechanical changes during the CXL treatment, and it has the potential to be used
immediately after CXL treatment is applied [28].

27.6 Tendons

Tendons are structures that attach the muscle to a bone and other structures in the human body.
Tendon ruptures are associated with significant morbidity in sports and daily life and therefore
it is essential to find a noninvasive technique to evaluate the elastic properties of tendons in
order to predict tendon rupture and monitor the recovery.

Tendons can be described as an arrangement of collagen fibers oriented in one main direction,
hence they exhibit transverse isotropic characteristics. In other words the mechanical proper-
ties of tendons are directionally dependent and the value of elasticity is different along and
across the fibers. Moreover, the thickness of tendons (4 mm) is smaller than the wavelength of
the shear wave, which can give rise to the propagation of guided shear waves along the tissue
in the form of Lamb waves.

Brum et al. evaluated the elastic properties of tendons by studying the wave propaga-
tion along and across the fibers as a function of frequency using shear wave spectroscopy.
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Figure 27.17 Shear wave spectroscopy in the Achilles tendon for the shear wave propagation direction parallel and perpendicular to the fibers. Source: © Institute of
Physics and Engineering in Medicine, reproduced by permission of IOP Publishing, all rights reserved [29].
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Figure 27.18 Shear wave dispersion curves for the propagation direction parallel to the fibers. The black
solid line shows the least mean square fit of the transverse isotropic plate model. Source: © Institute of
Physics and Engineering in Medicine, reproduced and adapted by permission of IOP Publishing, all rights
reserved [29].

During this study, they evaluated the right and left Achilles tendon of five healthy volunteers.
Volunteers were seated with a 90∘ angle between the foot and the tibia and also between the
tibia and the femur. The feet of the volunteers were submerged in water to facilitate the posi-
tioning of the ultrasound array. The SSI technique was applied to the tendon in the direction
parallel and perpendicular to the fibers. Shear waves were generated and measured using an
ultrafast ultrasound scanner. From the measured displacement shear wave, spectroscopy was
applied to obtain the dispersion [29]. The results for the measurements performed along and
across the fibers are shown in Figure 27.17.

To obtain the elastic properties of the Achilles tendon, Brum, et al. assumed the wave prop-
agation to take place in a transverse isotropic plate surrounded by liquid (leaky Lamb wave).
Moreover, Brum et al. demonstrated that guided wave propagation along the tendon fibers
can be described as a superposition of anti-symmetric and symmetric models of a transverse
isotropic material. Meanwhile the propagation perpendicular to the fibers is governed by the
leaky Lamb wave equation for an isotropic plate. It was found that it is essential to account
for the viscosity in the direction perpendicular to the fibers, but in the parallel direction,
the elasticity and viscosity are uncoupled due to strong guided wave effects. The dispersion
curves obtained for two of the subjects of this study along and across the fibers are shown in
Figures 27.18 and 27.19, respectively. It is possible to observe that the elastic plate behavior
explains well the wave propagation along the fibers. However, this is not the case for the
propagation across the fiber, where it is necessary to account for the tendons’ viscosity in order
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Figure 27.19 Shear wave dispersion curves for the propagation direction perpendicular to the fibers. The
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isotropic plates, respectively. Source: © Institute of Physics and Engineering in Medicine, reproduced and
adapted by permission of IOP Publishing, all rights reserved [29].

to have a good estimation. Additional work on this topic has been reported by Yeh et al. and
Helfenstein-Didier et al. [30, 31].

27.7 Conclusions

Certain organs, because of their finite thickness with respect to the shear wavelength, produce
guided wave behavior. Taking into account the geometry of these organs, myocardium, arteries,
bladder, cornea, and tendons, allow for quantitative estimation of the elastic and viscoelastic
properties. It is important to note that the wave speed alone may not be sufficient for this full
characterization, but may serve to provide some differentiation among different patients. These
methods still have yet to be added to clinical machines, but the applied uses of guided waves is
growing for clinical evaluation.
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28.1 Introduction

Current shear wave imaging techniques are useful to identify tissue linear viscoelastic prop-
erties; however, to quantify these properties a rheological model must be used. This chapter
reviews current methods that have been proposed to quantify viscoelastic properties in a
model-independent way. Two methods, called acoustic radiation force-induced creep (RFIC)
and acoustic radiation force-induced creep–recovery (RFICR), estimate complex elastic mod-
ulus from time-dependent creep response or creep–recovery response induced by acoustic
radiation force in combination with acoustic radiation force shear wave propagation [1–3].
A third model-free method named AMUSE (attenuation measuring ultrasound shearwave
elastography), estimates shear wave velocity and attenuation independently. AMUSE measures
the location and shape of the k-space magnitude maxima that is directly related to the speed
and attenuation of the shear wave propagating in the tissue [4]. Measuring both the shear
wave velocity and attenuation at given frequencies characterizes tissue mechanical properties
and allows a true measurement of tissue viscoelasticity. It is important to note that all the
models here described consider a source-free, harmonic shear wave propagating in a linear,
homogeneous, isotropic, viscoelastic medium.

28.2 Overview of Governing Principles

28.2.1 Wave Propagation

Viscoelastic properties can be measured by studying shear wave propagation. Shear wave meth-
ods are usually noninvasive and are based on measured particle motion from shear strain (angu-
lar deformation) that is involved in the passage of transverse waves. The one-dimensional plane
shear wave propagation in soft tissue is described by [5]

𝜕

2u(x, t)
𝜕x2 + k2u(x, t) = 0 (28.1)

where u(x, t) is the displacement resulting from a shear wave propagating unidirectionally along
the x-axis and k is the wave number. A solution for Eq. (28.1) in a linear viscoelastic medium
is [5]

u(x, t) = u0ei𝜔teik0x (28.2)
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where 𝜔 = 2𝜋f is the angular frequency and f is the frequency of the wave, u0 is the ini-
tial amplitude of the wave, and x and t are the spatial and temporal dimensions, respectively.
Additionally, in the case of linear viscoelastic medium, the wave number k is complex, written as
k0 = kr – iki [5], and thus

u(x, t) = u0ei(𝜔t+krx)e(kix) (28.3)

where kr and ki are the real and imaginary parts of the wave number respectively. Shear wave
phase velocity, cs, is defined as the ratio between 𝜔 and kr. On the other hand, the shear wave
attenuation coefficient, 𝛼s, is the imaginary wave number, ki. The complex wave number,
k0 = kr – iki, and complex shear modulus, G*(𝜔) = Gs(𝜔) + iGl(𝜔), are related by [6]

Gs(𝜔) = 𝜌𝜔

2 k2
r − k2

i

(k2
r + k2

i )
(28.4)

Gl(𝜔) = −2𝜌𝜔2 krki

(k2
r + k2

i )
(28.5)

where 𝜌 is the mass density. Shear wave phase velocity, cs, and shear wave attenuation, 𝛼s,
written as a function of shear complex modulus yield [7]

cs(𝜔) =

√√√√√ 2(G2
s + G2

l )

𝜌(Gs +
√

G2
s + G2

l )
(28.6)

𝛼s(𝜔) =

√√√√√𝜌𝜔
2
(√

G2
s + G2

l − Gs

)
2(G2

s + G2
l )

(28.7)

The wave velocity in a given medium is defined by the velocity of a single frequency compo-
nent (phase velocity) or the velocity of the wave packet (group velocity). The change in the phase
velocity of a propagated wave with frequency is known as dispersion; therefore, phase velocity
is not the same as group velocity in a dispersive medium. On the other hand, in a nondispersive
medium, phase velocity is the same as group velocity. Dispersion can be caused by both tis-
sue geometry and material properties. Equation (28.3) assumes an infinite medium; therefore,
geometric dispersion is negligible.

28.3 Imaging Techniques

28.3.1 Acoustic Radiation Force-induced Creep (RFIC) and Acoustic Radiation
Force-induced Creep–Recovery (RFICR)

As described in Chapter 13 of this book, the acoustic radiation force-induced creep (RFIC) and
acoustic radiation force-induced creep–recovery (RFCR) methods use the analytical solution
of the Boltzmann integral (integral equation of the viscoelastic constitutive equations) to con-
vert the time-dependent creep response to the frequency-dependent complex modulus [1–3].
Recalling the constitutive equation of linear viscoelastic materials, under any given stress his-
tory, the creep strain is described by the Boltzmann integral representation [8]

𝛾(t) = ∫
t

0
J(t − 𝜉)𝜕𝜏(𝜉)

𝜕𝜉

d𝜉 (28.8)

where 𝛾(t) is the shear strain, 𝜏 is shear stress, J(t) is the creep compliance, and 𝜕[•]
𝜕𝜉

repre-
sents first derivative respect to the independent variable 𝜉. Equation (28.7) represents the



444 Ultrasound Elastography for Biomedical Applications and Medicine

time-dependent response of a linear viscoelastic material and by using Fourier transforms, it
can be converted to the frequency domain to obtain the complex shear modulus G∗(𝜔)

G∗(𝜔) = FT[𝜏(t)]
FT[𝛾(t)]

= 1
i𝜔FT[J(t)]

(28.9)

where FT[•] represents the Fourier transform. Because J(t) is a function that grows with increas-
ing time, its Fourier transform is not convergent. Evans et al. [9] reported the analytic solution
of Eq. (28.9).

In RFIC and RFICR, Eq. (28.9) is used to estimate 𝛽G∗(𝜔), which is referred to as the extracted
complex modulus, C∗(𝜔), and it will vary as a function of material absorption and acoustic beam
intensity. To overcome this problem, a widely used property of viscoelastic materials called loss
tangent or tan(𝛿), defined as the ratio of the imaginary part and real part of the storage modulus,
is not dependent on material absorption and acoustic beam intensity [2]

tan(𝛿) = Im[C∗(𝜔)]
Re[C∗(𝜔)]

= Im[𝛽G∗(𝜔)]
Re[𝛽G∗(𝜔)]

= Im[G∗(𝜔)]
Re[G∗(𝜔)]

(28.10)

The loss tangent or tan(𝛿) written in terms of the complex wave number is [6]

tan(𝛿) =
2krki

k2
r − k2

i
(28.11)

If both tan(𝛿) and kr are known, the negative solution for ki in Eq. (28.11) is [6]

ki = kr

⎡⎢⎢⎣
(

1
tan(𝛿)

)
−

√√√√(
1 −

(
1

tan(𝛿)

)2
)⎤⎥⎥⎦ (28.12)

Finally, by knowing kr and ki, the shear storage and loss moduli are obtained from Eq. (28.4)
and Eq. (28.5).

Figures 28.1a and 28.1b show the mean creep displacement response and loss tangent
(tan(𝛿)) from five locations in an excised swine kidney, respectively. The solid line represents
the mean and the dashed lines represent the standard deviation from the mean. Figures 28.1c
and 28.1d illustrates the shear wave phase velocity dispersion and estimated shear wave
attenuation dispersion.

Figure 28.2 shows the estimated model-free shear complex modulus in an excised kidney that
was reconstructed by the shear wave velocity and shear wave attenuation.

28.3.2 Attenuation Measuring Ultrasound Shear Wave Elastography (AMUSE)

AMUSE is a method that measures shear wave velocity and attenuation independently to pro-
vide a model-free characterization of the mechanical properties of tissue. Together with RFIC
and RFCR, these are the only known methods of their kind.

The most basic implementation of AMUSE requires a shear wave propagating in the medium
(tissue) and the ability to track tissue motion in the spatiotemporal domain; such requirement
is fulfilled using, for example, ultrasound technology.

Performing a two-dimensional Fourier transform (2D FT) of the tissue motion as a function
of time (t) and distance (x), results in the frequency (f ) versus wave number (k) domain, also
known as the k-space. Shear wave velocity and attenuation are directly related to the location
and shape of the k-space magnitude maxima [4].

Taking into account that the displacement (u) of a one-dimensional, harmonic plane shear
wave propagating in an infinite viscoelastic medium in respect to the complex wave number k0
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Figure 28.1 Excised swine kidney: (a) acoustic radiation force-induced creep; (b) estimated loss tangent; (c)
shear wave phase velocity; and (d) shear wave attenuation. Source: © Institute of Physics and Engineering in
Medicine, reproduced by permission of IOP Publishing, all rights reserved [2].

is defined by Eq. (28.2), we can then also define k0 as

k0 =
𝜔0

c
+ i𝛼 (28.13)

where 𝜔0 = 2𝜋f 0 is the angular frequency and f 0 is the frequency of the wave, c is the shear
wave velocity, and 𝛼 is the shear wave attenuation. With this said, we can rewrite Eq. (28.2) as

u(x, t) = u0ei𝜔0tei(𝜔0∕c)xe−𝛼x (28.14)

Taking the absolute value of the 2D FT of this equation of motion results in

|U(k, f )| = u0𝛿(f − f0)√
𝛼

2 + 4𝜋2
(

k − f0

c

)2
(28.15)
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where k is the wave number, f is the frequency, 𝛿(⋅) is the Dirac delta function, and |U(k,f )| is
the magnitude of the 2D FT of U(k,f ).

Equation (28.15) shows that for a wave with frequency f 0, the magnitude of its 2D FT distri-
bution, or the k-space, has a corresponding peak at (k,f ) = (f 0/c, f 0). Thus, the k-space analysis
can be used to calculate wave velocity. Upon further visual inspection of Eq. (28.15), one can
notice that the equation is similar to the Lorentzian distribution, which has a convenient rela-
tionship between the width of the peak and one of the parameters, in this case, 𝛼. In practice,
the Dirac delta function 𝛿(⋅) has a finite amplitude, and in this case its maximum amplitude A
lies at k = f 0/c. The maximum amplitude of the k-space is thus equal to |U(k,f )|max = u0A/𝛼,
and the relationship between the maximum and half-maximum is

u0A
2𝛼

=
u0A√

𝛼
2 + 4𝜋2

(
k1∕2 −

f0

c

)2
(28.16)

where k1/2 is the wave-number at half-maximum amplitude of the peak. Solving Eq. (28.16) for
k1/2 yields

k1∕2 = ±
√

3
2𝜋

𝛼 +
f0

c
(28.17)

Considering that the full-width at the half-maximum (FWHM) is the distance between the
two half-maxima along the k-axis then we can cite that FWHM = 𝛼

√
3∕𝜋, consequently the

shear wave attenuation 𝛼 is

𝛼 = 𝜋 × FWHM√
3

(28.18)

In conclusion, both shear wave velocity and attenuation can be calculated based on the 2D
FT of the tissue displacement as a function of time and distance, and we can find, with no
need of rheological models, the complex shear wave number. For some ultrasound elastography
methods, the particle velocity instead of displacement is the raw measurement. Because the
particle velocity is the time derivative of the displacement, the differentiation property of the
Fourier transform can still be applied, and Eq. (28.18) still holds [4].
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The impulsive focused radiation force produced by a linear array transducer approximately
generates a cylindrical wave whose energy dissipates via cylindrically shaped wave fronts of
increasing radius as the wave propagates away from the source. These cylindrical wave fronts
are different than the plane wave fronts, so the equation that defines displacement of the particle
in the tissue in the direction of wave propagation (x) would be

uz(x, t) =
i
4

H (1)
0 (k∗

0 x)ei𝜔0t (28.19)
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Figure 28.3 FEM simulation, PVA phantoms, and excised pig liver were used to measure the shear wave
velocity. In each medium, plane harmonic, cylindrical harmonic, and cylindrical impulse sources were used to
excite shear waves. In the FEM, the theoretical prediction curve is plotted as a solid line for comparison. For the
PVA and excised liver phantoms, the phase gradient was considered as the gold standard for the velocity
estimates plotted for comparison. During FEM studies: (a) the velocity calculations using the phase gradient
and the k-space method in plane harmonic waves are in good agreement with the theoretical curve; (b) the
k-space-based velocities with and without the

√
x correction for cylindrical harmonic waves are close to the

theoretical values; (c) similar results are observed in case of cylindrical impulse propagation. For PVA phantom:
(d) the phase gradient and the k-space methods are in good agreement for the harmonic plane wave
propagation; (e) the k-space-based velocities with and without the correction in case of cylindrical harmonic
waves are similar to the plane wave phase gradient measurements; (f ) the k-space velocities due to impulse are
also in good agreement. (g), (h), (i): The pattern is similar in the excised pig liver. Source: © Institute of Physics
and Engineering in Medicine, reproduced by permission of IOP Publishing, all rights reserved [4].
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where H0
(1) is the zeroth-order Hankel function, and k0 =𝜔0/c+ i𝛼 is the complex wave number.

In the limit of (k0x) ≫ 0, Eq. (28.19) converges to

uz(x, t) =
i
4

√
2

𝜋k0x
ei(𝜔0∕c)xe−𝛼xei𝜔0t (28.20)

By multiplying both sides of the equation by
√

x, and taking into account that A = i
4

√
2
𝜋k0

is
a constant, one obtains(√

x
)

uz(x, t) = Aei(𝜔0∕c)xe−𝛼xei𝜔0t (28.21)
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Figure 28.4 FEM simulation, PVA phantoms, and excised pig liver were used to measure the shear wave
attenuation. To excite shear waves, plane harmonic, cylindrical harmonic, and cylindrical impulse sources were
used. In the FEM, the theoretical prediction curve is plotted as a solid line for comparison. The attenuation
estimates using the amplitude decay were considered the gold standard and are plotted for comparison to PVA
and excised liver measurements. During FEM studies: (a) the attenuations calculated from the amplitude decay
and the k-space for plane harmonic waves are in good agreement with the theory; (b) the k-space estimates
with the

√
x correction for cylindrical harmonic waves are close to the theoretical values, but the estimates

without the correction are not; (c) similar behavior is observed for cylindrical impulse propagation. In PVA: (d)
the amplitude decay and the k-space method is in good agreement for the harmonic plane wave propagation;
(e) the k-space attenuations with the correction in case of cylindrical harmonic waves are close to the gold
standard proposed, while the estimates without the correction are not as close; (f ) this behavior persists in case
of the cylindrical impulse. (g), (h), (i): The results are similar in the excised pig liver. Source: © Institute of Physics
and Engineering in Medicine, reproduced by permission of IOP Publishing, all rights reserved [4].
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If one compares the right hand sides of Eqs. (28.14) and (28.21), it is noticeable that both
equations only differ in the amplitude of the wave, and so the relationship between the attenua-
tion equation (𝛼) and FWHM still holds if one is analyzing a cylindrical wave field multiplied by
the square root of the propagation distance vector. Throughout the chapter, this multiplication
will be simply called the correction. Figures 28.3 and 28.4 demonstrate, in a brief manner, the
importance of using this correction when estimating shear wave speed and attenuation for a
cylindrical shear wave. The results shown in these figures validate the shear wave velocity and
attenuation measurements obtained with AMUSE against laboratory gold standard measure-
ments, using FEM simulation, PVA phantoms, and excised pig liver. The shear wave velocity
measurements were in good agreement with the gold standard for all excitation scenarios, while
the evaluation of shear wave attenuation due to cylindrical excitation requires the correction
factor. In conclusion, the results in Figures 28.3 and 28.4 validate the AMUSE method from a
numerical and experimental perspective.

28.4 Conclusion

In this chapter, methods to fully quantify regional viscoelastic properties in a manner inde-
pendent of models are described. Previous work in this area involved the use of rheological
models, but the need for such models affects the viscoelastic parameter estimation as well as
the fitting process. The acoustic radiation force-induced creep and creep–recovery use a con-
version formula that is the analytic solution of a constitutive equation of linear viscoelastic
material to estimate the loss tangent, then shear wave propagation is used in combination with
the loss tangent to calculate the model-free complex modulus. The AMUSE method estimates
shear wave speed by calculating directly from the k-space the peak at a given frequency and
dividing the f -coordinate by the kx-coordinate. Shear wave attenuation is calculated by mea-
suring the full-width-at-half-maximum (FWHM) in the f -coordinate and using an equation
to determine the attenuation. These methods can be used noninvasively for viscoelastic char-
acterization of different tissues for increased understanding of how disease processes change
mechanical properties.
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29.1 Introduction

The characterization of mechanical properties of soft matter is of interest for medical
applications. For example, shear elasticity is a pertinent indicator for a diagnosis of tissue
degradation. Linear and nonlinear elastic moduli of soft materials can be obtained (i) by
dynamic experiments imaging low-frequency shear wave propagation or (ii) by acoustoelastic
measurements of speed variations under static strains. The first part goes through solving
an inverse problem in the linear case or fitting experimental and theoretical results in the
nonlinear one. The second part describes the measurement of linear shear wave in a material
under uniaxial stress. Quantifying shear nonlinearity may be important for medical applica-
tions. For example, it could be used to tell malignancies apart from benign tumors. In this
chapter, nonlinearity is defined from the expression of the strain energy density at higher
orders and specifically expressed in the case of soft media [1]. Three different methods to
assess third-order shear coefficients are presented (Sections 29.2, 29.3, and 29.4). Finally, an
estimation of the fourth-order parameter is presented (Section 29.5).

29.2 Shocked Plane Shear Waves

Although the nonlinear behavior of transverse waves is common to optics (an electromagnetic
field in a nonlinear isotropic dielectric), seismology, and acoustics, the experimental observa-
tion of a shocked transverse wave is very rarely observed. In comparison, the nonlinear behavior
of longitudinal waves in fluids or solids is well established from both a theoretical and an exper-
imental point of view [2], and the sawtooth shape of a shock longitudinal wave is a well-known
result. Now, the shape of a shock transverse wave is very unknown, though it has been theoret-
ically predicted [3–5]. The main reason for this lack of experiment is that the nonlinear effects
of transverse waves are very small. For example, in acoustics, they are one order of magnitude
smaller than the nonlinear effects of longitudinal waves. Moreover, the high stiffness of crystals
or metals does not allow any source to impose a high particle velocity compared to the speed
of the wave itself, and a typical Mach number in such media is 10−4. In the field of soft solids,
such as biological tissues (muscle, fat, and breast) or agar/gelatin-based phantoms (a soft tis-
sue model), the very low value of the shear elasticity (typically 2.5 kPa) allows the propagation
of a low-frequency transverse wave (some hundreds of Hz) with a very high particle velocity
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compared to its speed. Thus Mach numbers as large as unity are obtained. Consequently, in this
peculiar configuration, third-order nonlinear effects become very high and clearly modify the
transverse wave shape [6].

29.2.1 Theoretical Developments

The detailed development of elastic nonlinear theory can be found in numerous text-
books [7]. Here we summarize the general equations in the case of cubic approximation in
quasi-incompressible soft media.

In the isotropic case, the energy (W S) can be expressed as a function of the three scalar invari-
ants of the strain S (the invariants defined by Landau, usually denoted I1, I2, and I3, are the
respective traces of S, S2, and S3) [4].

WS = μI2 +
𝜆

2
I2

1 + A
3

I3 + BI2I3 +
C
3

I3
1 + EI1I3 + FI2I2

1 + GI2
2 + HI4

1 (29.1)

The form of Eq. (29.1) takes into account both compression and shear strains, with a com-
plete set of elastic constants or moduli: two at the second order (linear elastic approximation
expressed with the Lamé coefficients 𝜇 and 𝜆), three at the third order (A, B, C), and four at the
fourth order (E, F, G, H).

It has been pointed out in previous papers, from theoretical [1, 8] and experimental [9] points
of view, that soft solids can be considered as quasi-incompressible. The physical interpreta-
tion of shear moduli can be attributed to 𝜇 and A, because both are zero for a perfect fluid.
This physical interpretation can be obtained by comparing the energy development, valid for
a perfect fluid and written with strain tensor invariants (and solid-like Landau moduli), to the
development Eq. (29.1) of the isotropic solid.

In fluids and solids, incompressibility can be commonly expressed by:
(

𝜌

𝜌0

)2
= 1 = Det(Fij)2,

where Fij = 𝜕xi∕𝜕aj is the transformation tensor. The dilatation tensor Cij respects a similar
constraint: IIIC = Det(Cij) = 1, but cannot be used to develop the energy because it is not an
infinitesimal quantity. This tensor is commonly used in hyperelasticity theory [10]. Starting
from the general form given by Eq. (29.1), the energy has been written in a simplified form as

W = W0(𝜌) + μ(𝜌)I2
A(𝜌)

3
I3 + D(𝜌)I2

2 (29.2)

To obtain this form, we start with the following relations

IIIc = 1 + 2I1 − 2I2 + 2I2
1 + 4

3
I3

1 − 4I1I2 +
8
3

I3 (29.3)

Since only I2 and I3 seem to be involved in shear energy, we can first express the invariant I1
as a combination of the other ones, assuming IIIC = 1 in the previous relation,

I1 = I2 − I2
1 − 2

3
I3

1 + 2I1I2 −
A
3

I3 (29.4)

which becomes by recursion (substituting I1 in Eq. 29.4 until terms involving I1 are insignifi-
cant)

I1 = I2 −
A
3

I3 + I2
2 (29.5)

Then, by substituting this expression of I1 in the development Eq. (29.1), we obtain Eq. (29.2)
with

D = 𝜆

2
+ B + G (29.6)
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With this method the reference value W (𝜌0) is zero, and the three elastic moduli are those of
the equilibrium state: 𝜇(𝜌0), A(𝜌0), and D(𝜌0). In the course of calculation, supposing we know
the order of magnitude of each term, the fourth-order terms involving moduli C, E, F , H and
higher-order term combination of invariants have been neglected.

29.2.2 Numerical Simulation with Modified Burgers Equation

By numerically simulating this theoretical approach and by comparison with experiments it is
possible to deduce the nonlinear coefficients. Here the detail of the modified Burgers equation
governing the numerical simulation is given. We consider a plane transverse wave of wave num-
ber k propagating in the z direction in an isotropic medium (the displacement, denoted u, is
polarized along directions x or y; axis are defined on Figure 29.1). In this simpler case, the vis-
cous stress can be added and is assumed to be

𝜏ik = 2𝜂
[dSik

dt
− 1

3
𝜕ik

dSll

dt

]
+ 𝜉𝜕ik

dSll

dt
(29.7)

where 𝜂 and 𝜉 are the shear and volumetric viscosity coefficients. This corresponds to a vis-
coelastic Voigt’s model. Equation (29.7) and the energy development equation (Eq. 29.2) sim-
plify assuming a pure shear wave polarized along the z axis. The wave equation can then be
rewritten in its nondimensional form (ũ = u∕u0, z̃ = kz, and ̃t = 𝜔t)

𝜕

2ũ
𝜕z̃2 − 𝜕

2ũ
𝜕
̃t2

= −𝛽M2 𝜕
2ũ
𝜕z̃2

(
𝜕ũ
𝜕z̃

)2
− 𝜂𝜔

μ
𝜕

3ũ
𝜕z̃2

𝜕
̃t

(29.8)

With

𝛽 = 3

(
1 +

A
2
+ D
μ

)
(29.9)

Vibrator

Rigid
plate

#128 ... 1

Agar-gelatin
phantom

Ultrafast
scanner

Ultrasonic array

Function generator
(100 Hz)

Accelerometer
+

Oscilloscope

z

x

u

k

Figure 29.1 Experimental setup. Transient elastography technique: a medical transducer array connected to
an ultrafast scanner insonifies a tissue-mimicking phantom. A 100 Hz shear wave strain is generated by a
vibrator from a rigid plate applied on one side of the phantom. Simultaneously, frames (at a 3000 Hz repetition
rate) are stored in memory. With cross-correlation algorithms between frames, the transverse displacement
field (along the z axis) of the shear wave is measured along the central axis of the plate (parallel to the x axis).
Source: reprinted with permission from [6], copyright 2003, Acoustical Society of America.
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Table 29.1 Parameters corresponding to experimental conditions for
longitudinal and transverse waves in gels. Reprinted with permission
from [14]. Copyright 2007, Acoustical Society of America.

Polarization transverse longitudinal
Elastic moduli (Pa) μ = 5 × 103 λ = 2.5 × 109

Velocity (m/s) 2 1500
Viscosity (Pa⋅s) η = 0.6 0.005
Frequency (Hz) 100 4.3 × 106

Attenuation (Np/m) 13.4 0.025
Nonlinear parameter 20 3.5
Wavelength (mm) 20 1.5

This equation is simplified by first introducing the (dimensionless) retarded time 𝜏 = ωτ
= ̃t − z̃, and then substituting to z̃ the slow coordinate M2z̃:

𝜕

2ũ
𝜕𝜏𝜕z̃

= 𝛽M2

2
𝜕

2ũ
𝜕𝜏

2

(
𝜕ũ
𝜕𝜏

)2
+ 𝜂𝜔

2μ
𝜕

3ũ
𝜕𝜏

3 (29.10)

This cubic nonlinear equation is valid if 𝛽M2 « 1, i.e. by neglecting the fourth-order terms
compared with both cubic nonlinearity and viscosity terms on the right-hand side of Eq. (29.10).
The characteristic values, in experimental conditions, are presented in Table 29.2. The previous
approximation is not always well verified, since 𝛽M2 can reach a value equal to 0.5, but remains
conceivable in most cases. Finally, the so-called modified Burgers equation [11] is expressed
with the particle velocity 𝜐 = 𝜕u/𝜕𝜏 and can be compared to the longitudinal case of quadratic
nonlinearity [12]

𝜕𝜐

𝜕z
= 𝛽

2V 3
T
𝜐

2 𝜕𝜐

𝜕𝜏

+ 𝜂

𝜌0V 3
T

𝜕

2

𝜕𝜏
2 (29.11)

Neglecting the dissipation term allows one to solve this equation with classical methods
(implicit solution for simple boundary conditions [3, 11, 12] or successive approximations for
weak nonlinearity). The shock distance is given by

zc =
2V 3

T

𝛽𝜔0𝜐
2
0

(29.12)

and the attenuation coefficient is given by

𝛼 =
𝜂𝜔

2
0

2𝜌0V 3
T

(29.13)

Nevertheless, as in gels, the attenuation length L
𝛼

= 1/𝛼 is significant, and such a simplifi-
cation is no longer relevant. A numerical model, transposed from the quadratic (longitudinal)
case [13] has thus been developed for this cubic nonlinear equation.

29.2.3 Experimental Study

Here we present an experimental study of a shock transverse wave using an ultrafast ultrasonic
scanner. Such a scanner provides images of the tissues similar to a standard ultrasound device
but with a rate of more than 5000 frames per second (Figure 29.1). It includes a medical ultra-
sonic array (5 MHz) with 128 channels [15]. In a typical experiment, 250 ultrasound images
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(at a 3000 Hz frame rate) are recorded in memory. A displacement movie is obtained using
cross-correlation algorithms between successive speckle images [16]. Indeed, agar powder (3%)
in suspension in a solid gelatin solution (3%) gives birth to backscattered ultrasonic signals.
Tracking methods such as cross-correlation algorithms allow one to interpret the speckle mod-
ifications induced by low-frequency shear waves in terms of tissue motion within the medium.
The whole technique is known as transient elastography. As shown in Figure 29.1, the low fre-
quency (100 Hz) shear wave is generated by shaking a rigid aluminum plate (11 cm × 17 cm)
transversally, which is applied on one side of the phantom, with a vibrator (Bruel&Kjaer 4809
type). The transverse displacement field of the shear wave is measured in one dimension along
the axis of the rigid plate at a distance of 40 mm, which represents a few shear wavelengths. An
accelerometer is set on the vibrator to control the possible harmonics of the source itself.

From the particle velocity movie 𝜐x(z, t), averaged over x, we measure the speed of the
shear wave (V T = 2.1 m/s) and the attenuation coefficient (𝛼 = 8.6 Np/m) using, respectively,
the phase and amplitude evolutions versus propagation distance. The viscosity coefficient is
deduced from attenuation assuming a viscoelastic Voigt’s model. Since nonlinear effects affect
the amplitude of the fundamental component (100 Hz), the measurement of attenuation has
to be done at a low excitation level.

At a higher excitation level (𝜐0 = 0.5 m/ s and M = 0.24), the sensor placed between the vibra-
tor and the plate allows one to check that no harmonic is present at the source, as shown
in Figure 29.2 by the wave form and its spectrum. The wave form distortion, presented in
Figure 29.2, differs significantly from a nonlinearity distorted longitudinal wave. Here, only odd
harmonics at 300 and 500 Hz are present in the spectrum in Figure 29.2, which is a character-
istic of cubic nonlinear effects affecting transverse waves. It may be pointed out that coupling
effects [4, 17, 18] are too small to give rise to a longitudinal component centered at the dou-
ble frequency. The measured field 𝜐x(z, t), obtained by placing the transducer array in front
of the plate, does not contain any 200 Hz component. This effect should be greater in “hard
solids” because of the favorable ratio of velocities, but remains relative to the incident shear
wave amplitude.

The nonlinear coefficient 𝛽, relative to shear waves, has been estimated by fitting experimen-
tal and numerical results. The waveform and spectrum of the particle velocity, represented in
Figure 29.2, are fitted near the source. Then the parameter is corrected to fit the evolutions of
the fundamental 100 Hz and harmonic 300 and 500 Hz amplitudes as a function of propagation
distance (Figure 29.3). Using the value of β = 17, the parameters entered in the model are listed
in Table 29.2 are obtained with an uncertainty of the order of ±10%.

29.3 Nonlinear Interaction of Plane Shear Waves

Similar comparisons, between experiment and simulation, can be performed using the more
general case of two-wave interactions at frequencies f 1 and f 2, which are reduced to the har-
monic generation when f 1 = f 2. Such an interaction, involving cubic nonlinearity, will give rise
to numerous odd-frequency components.

The vibrator was excited by a superposition of two sinusoidal components. Different
frequency ratios have been tested. The more significant results have been obtained for two
frequencies close to each other because of the strong attenuation of agar/gelatin phantoms.
Choosing frequencies of the excitation signal in the lower part of the bandwidth allows one to
observe harmonic components at sum and difference frequencies. In fact, higher frequencies
are too quickly distorted and attenuated and the use of lower frequencies is limited by the
burst duration.
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Figure 29.2 Comparison between experiment and simulation in the case of harmonic generation. The
temporal profile of the shear wave propagation (a, c) and the corresponding Fourier transform (b, d) in linear
and nonlinear cases, respectively, are shown. The input parameters of the simulation are listed in Table 29.2.
Source: reprinted with permission from [14], copyright 2007, Acoustical Society of America.

The signal applied to the vibrator is composed of a superposition of sinusoidal components
at frequencies f 1 =100 Hz and f 2 = 140 Hz. The signal measured by the force sensor and its
spectrum are represented in Figures 29.4a and 29.4c. This wave form, as for the shocked plane
shear wave, is used as an input in the simulation while its amplitude is estimated from the
particle velocity measured in front of the first element of the array.

In the spectrum, the fundamental frequencies at 100 and 140 Hz are clearly observed. The
comparison between experiment and simulation is shown in Figures 29.4b and 29.4d.
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showing experiment (dotted lines) and simulation (solid lines). Source: reprinted with permission from [14],
copyright 2007, Acoustical Society of America.

Table 29.2 Input parameters of the numerical model of the modified Burgers
equation corresponding to both the harmonic generation experiment presented
and to the nonlinear interaction case. Reprinted with permission from [14].
Copyright 2007, Acoustical Society of America.

Experiment harmonic generation two-wave interaction
Shear modulus (Pa) 4400 6300
Speed (m/s) 2.1 2.4
Particle velocity (m/s) 0.5 0.62
Mach number 0.24 0.26
Viscosity (Pa⋅s) 0.45 0.7
Frequency (Hz) 100 100, 140
Attenuation (Np/m) 8.6 9.1, 17.8
Nonlinear parameter 17 20
Wavelength (mm) 21 24, 17
Shock distance (mm) 7 5.7, 4.1

A closer look at the spectra as a function of depth represented on a gray scale image in
Figure 29.5 is necessary to compare the results and to highlight the created harmonics. The
sum (2f 1 + f 2, 2f 2 + f 1) and odd frequencies (3f 1, 3f 2) are clearly observed in experiments and
in simulations. Unfortunately, difference frequencies (2f 1 − f 2, 2f 2 − f 1), although present in
the spectrum, have the same level as side lobes of the emitted signal. These side lobes are due to
the finite duration of the emitted signal. The emitted signal is imposed by the size of the sample:
For a longer emission signal, the echo coming from the side opposite to the plate interferes with
the direct traveling wave.

Another way of testing the model is to change the amplitude of one of the two primary
components. At a given depth z = 10 mm, relative amplitudes of the most significant harmon-
ics are plotted in Figure 29.5 versus increasing amplitudes of the component centered at f 2.



458 Ultrasound Elastography for Biomedical Applications and Medicine

0.5

0 50

100

20 40 60 80 100 120

200 300 400 5000

100

Time (ms)
(a)

(b)

(c)

(d)

Time (ms)

0 100 200 300 400 500
Frequency (Hz)

Frequency (Hz)

A
m

pl
itu

de
 (

m
/s

)
A

m
pl

itu
de

 (
a.

u.
)

A
m

pl
itu

de
 (

a.
u.

)
A

m
pl

itu
de

 (
m

/s
)

150 200

–0.5

0

0.5

0.5

–0.5

0.5

1

0

0

1

0

Figure 29.4 Comparison between experiment and simulations. The signal shown in the first line, obtained
from the force sensor, is used as source signal for the calculation. The input parameters for the simulation
are listed in Table 29.2. Source: reprinted with permission from [14], copyright 2007, Acoustical Society
of America.

The component at (2f 2 + f 1) involving two times this frequency varies faster than the other one
(2f 1 + f 2). This follows qualitatively the results of a perturbation method. This method, also
called successive approximation and equivalent to series development, could be applied to the
lossless wave equation. This consists in considering the nonlinear contribution as a correction
of the linear solution [12], which gives the (2f 2 + f 1) and (2f 1 + f 2) component amplitudes,
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Source: reprinted with permission from [14], copyright 2007, Acoustical Society of America.

respectively, proportional to k1k2U1U2
2 and k1k2U1

2U2. U1 and U2 are the amplitudes and k1
and k2 are the wave numbers of the components f 1 and f 2 at the source. The quadratic depen-
dence on U2 is not checked in the experiment, which confirms that in gels the attenuation
cannot be neglected and the level of nonlinearity is too high to use such solutions.

The numerical model, which takes into account attenuation, is in good agreement with these
experiments. The input parameters for the model are recalled in Table 29.3. The adjustment of
the experimental and theoretical data has been done using the wave form and spectrum and the
evolution of the most significant harmonics versus distance. The use of wave interaction allows
one to take full advantage of the large bandwidth of ultrafast imaging. An accurate measurement
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Table 29.3 Elastic moduli measured in two different soft solids. Reprinted with permission from [19]. Copyright
2007, Acoustical Society of America.

Nonlinear shear modulus [Landau coefficient A (kPa)]

Materials

Linear shear
modulus (Lamé
coefficient 𝛍 (kPa)
mean value at
0 stress)

Indice of
propagation 12

Indice of
propagation 21

Shear
wave
indices 13

Mean
value

Agar/gelatin phantom 1 6.6 ± 0.6 −35.0 −48.6 −29.4 −37.7 ± 9.8
Agar/gelatin phantom 2 8.5 ± 0.8 −21.5 −25.6 −21.0 −22.7 ± 2.5
Agar/gelatin phantom 5 9.9 ± 0.5 −7.1 −5.9 −4.8 −5.9 ± 1.2
Agar/gelatin phantom 3 16.6 ± 0.1 109.8 91.8 102.8 101.4 ± 9.0
Agar/gelatin phantom 4 19.2 ± 0.1 466.4 404.1 312.8 394.4 ± 77.2
PVA phantom 1 4.1 ± 0.1 −25.8 −15.4 −11.2 −17.5 ± 7.5
PVA phantom 2 8.1 ± 0.1 10.7 9.7 12.6 11.0 ± 1.4
PVA phantom 3 20.4 ± 0.1 31.8 56.3 42.8 43.6 ± 12.2

of the source amplitude would lead to a better agreement with all spectral components and an
accurate estimation of the nonlinearity coefficient.

The possibility of having nonlinear behavior that depends on the attenuation amplitude is
omitted in the theoretical approach. The quadratic dependence of the attenuation coefficient
versus frequency comes from the hypothesis of a viscous stress tensor being proportional to
the deformation rate. Such comparison between experiments and simulations could be used to
test nonlinear viscoelastic models and improve the measurement accuracy.

29.4 Acoustoelasticity Theory

Another way to measure the shear nonlinearity of a medium is to perform acoustoelasticity
(AE) experiments, i.e. assessing the shear wave speed in a uniaxially stressed media. Acous-
toelasticity can be defined as the phenomenon of change of wave speed when uniaxial stress
is applied. Experimentally, it consists of determining the third-order nonlinear coefficient, in
other words the nonlinear parameter A, by measuring the speed of an acoustic wave along dif-
ferent directions in a medium submitted to uniaxial stress. Recently, AE has attracted a special
interest in the field of ultrasound for two reasons. First, AE has the potential of becoming a new
mechanical parameter in addition to the second-order elastic modulus (𝜇) and anisotropy, that
will help to improve the characterization of the properties of the tissues in the field of shear
wave elastography [19]. Second, Urban et al. [20] have recently shown that AE can be also used
as an alternative method to create phantoms with a TI behavior.

The theory behind AE is based on the speed of elastic waves in a uniaxially stressed loss-less
solid [19]. The equation of motion in Lagrangian coordinates (a, t) can be expressed as

𝜌0�̈�𝜄

=
𝜕Pik

𝜕ak
for 1 ≤ i, k ≤ 3 (29.14)

where 𝜌0, 𝜌ik , and ̈

𝜇 = 𝜕

2
𝜇

𝜕t2 represent the density, the Piola-Kirchhoff stress tensor, and the par-
ticle acceleration, respectively. The Piola-Kirchhoff stress tensor is given by

Pik = 𝜕e

𝜕

(
𝜕𝜇i

𝜕ak

) (29.15)
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e, the strain energy density, can be expressed as a third-order relationship

e = 𝜇I2 +
𝜆

2
I2

1 + A
3

I3 + BI1I2 + CI3
1 (29.16)

where 𝜆 and 𝜇 represent the Lamé first- and second-order parameters that describe the lin-
ear behavior of a solid. A, B, and C represent the third-order elastic coefficients of Landau,
which describe the nonlinear response of the deformed solid. I1, I2, and I3 are invariants of the
Lagrangian stress tensor. In the case of an incompressible media, the strain energy density (e)
can be expressed in terms of a set of independent parameters (IIIc, I2, I3), with IIIc = 1 due to
the assumption of incompressibility.

e = 𝜇I2 +
A
3

I3 + DI2
2 (29.17)

The parameter D is the fourth-order elastic constant but as only the propagation of plane
waves of small amplitude is considered, fourth-order terms are ignored for the rest of the the-
oretical derivation. The strain tensor can now be defined as

Sik = 1
2

(
𝜕𝜇i

𝜕ak
+

𝜕𝜇k

𝜕ai
+

𝜕𝜇l

𝜕ai

𝜕𝜇l

𝜕ak

)
(29.18)

and, based on Eq. (29.15), the equation of motion becomes
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(29.19)

As the AE experiment consists on measuring the speed of an acoustic wave along different
directions in a medium submitted to uniaxial stress, two main displacements are considered in
the theory, a static displacement and a dynamic displacement. The static displacement is a result
of the uniaxial stress applied and the dynamic displacement corresponds to the propagation of
shear waves induced by ARF. The displacement can then be expressed as the sum of the static
displacement (

−⇀
𝜇

S) and the dynamic displacement (
−⇀
𝜇

D)
−−−⇀
𝜇

TOT =
−⇀
𝜇

D +
−⇀
𝜇

S (29.20)

If the nonlinear dynamic and static deformations of higher order are ignored, the wave
equation becomes
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(29.21)

To simplify the calculations, it is possible to consider linearly polarized plane shear waves, as
shown in Figure 29.6.
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Figure 29.6 Three different experimental configurations for generating and detecting the shear wave
propagation during compression (application of uniaxial stress 𝜎22). Source: reprinted with permission from
[19], copyright 2007, Acoustical Society of America.

The particle displacement in the wave is characterized by two indices in the following con-
vention (12): the first index indicates the direction of the shear wave displacement induced by
ARF and the second corresponds to the axis of propagation of the shear wave. In the case where
the wave propagates along the a2 the wave equation can be expressed as
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(29.22)

Now, to define the nonlinear elastodynamic equations it is important to first express the
wave equation in terms of the initial coordinates. For simplicity, the initial strain and stress are
defined as uniform and they are described by the static displacement as x = a + 𝜇

s. The dynamic
displacement is defined by y = x + 𝜇

D, where a, x, and y denote the natural, initial, and current
state of the shear wave propagation respectively. Using the change of variable a → x,
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and the wave equation becomes
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Assuming incompressibility and by using Hooke’s law, the spatial derivatives of 𝜇s are
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and based on these derivatives the elastodynamic equations are written as follows:

• For the first configuration (Figure 29.6a) where the shear waves are designated as 12 or 32

𝜌0V 2
S12 = 𝜇 − 𝜎22

(
1 + A

12𝜇

)
(29.26)

where Vs denotes the shear wave velocity.
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Figure 29.7 Experimental setup. A Plexiglas tank gradually filled up with water is placed on the top of the PVA
phantom. Two transducer arrays are placed along the vertical axis in contact with the side and bottom of the
homogeneous phantom. Source: reprinted with permission from [19], copyright 2007, Acoustical Society of
America.

• For the second configuration (Figure 29.6b) where the shear waves are designated as 21 or 23

𝜌0V 2
S21 = 𝜇 − 𝜎22

(
A

12𝜇

)
(29.27)

• For the third configuration (Figure 29.6c) where the shear waves are designated as 13 or 31

𝜌0V 2
S13 = 𝜇 + 𝜎22

(
1 + A

6𝜇

)
(29.28)

For the elastodynamic equations (Eqs. 29.26–29.28), in the case where the medium is
unstressed 𝜎22 = 0. On the contrary, when the stress is varying 𝜇 will change according to a
linear dependence with a linear slope defined by 𝜇 and the nonlinear parameter (A).

Therefore, by estimating experimentally Vs, and the stress applied to the soft solid 𝜎22, it is
possible to obtain the linear (𝜇) and nonlinear (A) elastic moduli in AE.

To evaluate the AE method, Gennisson et al. [19] estimated the third-order elastic modulus
(A) in phantoms made out agar/gelatin and polyvinyl alcohol. For the experimental setup, a
Plexiglas tank was placed on the top of the phantoms, the tank was filled with different amounts
of water to simulate the uniaxial stress. Two transducers were placed along the vertical axis of
the phantom and on the bottom of the phantoms to measure the shear wave propagation, as
shown in Figure 29.7.

Shear wave propagation was investigated in each of the three configurations described above,
the ultrasonic beam was therefore two times parallel and one time perpendicular to the uniax-
ial applied stress. Shear waves were generated using ARF and the shear wave propagation was
imaged with an ultrafast echography scanner and an ultrafast imaging sequence by sending
plane wave insonifications at a really high frame rate (2 kHz). The shear wave speed was esti-
mated from displacement fields induced by the shear wave at successive times after the push.
The values for the linear (𝜇) and nonlinear (A) elastic moduli calculated at each configuration
are shown in Table 29.3. As can be seen in Table 29.1, the set-up used for the experiment allows
us to obtain (A) in three different manners. The agreement on the estimation of the nonlinear
parameter across all the three configurations was very good for the agar/gelatin phantoms and
fairly good for the PVA phantoms, which can be explained by difficulties in the setup when
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Figure 29.8 Experimental setup; a plastic tank gradually filled up with water is placed on the top of the
cylindrical phantom. Transducer A is placed on the side of the phantom and it is rotated from 0∘ to 180∘ in 10∘
steps. Transducer B is placed in contact with the bottom of the phantom. Source: © 2015 IEEE, reprinted, with
permission, from [20].

testing a very soft phantom. These experiments have shown that it is possible to use AE to
characterize the nonlinear shear behavior of soft solids.

Gennisson et al. [19] and Urban et al. [20] have also shown that the application of an uniaxial
stress creates a situation where a homogeneous material presents an anisotropic behavior due
to the nonlinear effects producing a change in shear wave speed. Urban et al. [20] have shown
that this behavior can be characterized using a TI model and therefore it could be used to cre-
ate elasticity phantoms that can mimic the behavior of anisotropic materials. To evaluate this
hypothesis, Urban et al. [20] evaluated the properties of six cylindrical shape phantoms made
with different concentrations of gelatin (7%, 8.25%, 8.5%, and 10% by volume). The phantoms
were placed on a Plexiglas platform and two transducers were put in contact with the phantom.
Transducer A was attached to a stepper motor, which was rotated from 0∘ to 180∘ in 10∘ steps.
To induce a uniaxial stress, a Plexiglas plate was placed on the top of the phantom as well as
a large container, which was filled up with water in increments of either 400 or 600 ml. The
experimental setup is shown in Figure 29.8.

For the AE measurements, the stress was calculated from the added volumes of water and
the surface area of the phantom. The strain was calculated by measuring the distance between
the plates at each water increment and calculating the change in distance with respect to the
original distance when no stress other than that produced by the weight of the Plexiglas plate
was applied. The shear wave speed was calculated using a Radon transform method [20] and the
speeds estimated at each rotation angle were used to fit a TI model to the data. Figure 29.9 shows
the mean and standard deviation from shear wave velocity with different applied values of stress
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Figure 29.9 Shear wave velocity as a function of the angle of rotation of transducer A at different applied
values of uniaxial stress for the 10% gelatin phantom. Source: © 2015 IEEE, reprinted, with permission, from [20].

for the 10% gelatin phantom. It is possible to appreciate that the compression of homogeneous
phantoms generates a TI behavior that can be assessed using shear wave based methods.

Recently the feasibility of the technique was demonstrated in vivo which opens a new way
to characterize lesions in breast cancer. Figure 29.10 presents in vivo results on healthy breast
(Subject 1: 𝜇 = 1.0 ± 0.5 kPa, 𝜇NL = 52 ± 10 kPa), benign lesion (Patient 1: 𝜇 = 7.8 ± 2.4 kPa, 𝜇NL
=−698± 1014 kPa), and malignant lesion (Patient 6:𝜇= 3.5± 1.4 kPa,𝜇NL =−1203± 2675 kPa)
[21]. However, clinical studies on a large scale would be needed to show the usefulness of this
new technique for in vivo diagnosis.

29.5 Assessment of 4th Order Nonlinear Shear Parameter

In this last part of the chapter we present ways to recover fourth-order nonlinear shear coeffi-
cients by combining high amplitude shear wave propagation and acoustoelasticity experiments.

The experimental setup is presented in Figure 29.1. In order to generate plane shear waves
with an amplitude large enough to observe cubic nonlinear effects, a tone burst of central fre-
quency f 0 = 𝜔0/2𝜋 = 100 Hz is emitted by a vibrator connected to a rigid large plate applied on
one side of the phantom (an agar/gelatin phantom). The chosen frequency represents a compro-
mise between a maximal nonlinear cumulative effect and a prohibitive absorption. In order to
check that nonlinear components are not emitted by the source, an accelerometer is connected
to the vibrator.

The transverse particle velocity field along the x axis of the shear wave is measured along the
central axis of the plate parallel to the z axis. Then, using a numerical band-pass filter, the third
harmonic component is extracted from the total particle velocity. Finally, the evolution of the
amplitude of this component with respect to the propagation distance z is measured for various
amplitudes 𝜐0 of the vibration transmitted by the source.
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Figure 29.10 Results of the nonlinear shear modulus (NLSM) on three patients, a healthy volunteer, a patient
presenting with a tumor, and a patient with a benign lesion. The left column shows the ultrasound images,
where the mass is enclosed in dashed squares. The center and the right columns show the corresponding
images for the shear and the NLSM, respectively. The dotted squares are the ROIs used in the mean and
standard deviation values. Source: © 2016 IEEE, reprinted, with permission, from [21].

In order to measure the nonlinearity parameter 𝛽, two methods have been used. In the first
method, experimental results of the third harmonic amplitude as a function of the propagation
distance are compared to a numerical simulation of the shear wave propagation based on a
finite difference scheme of Eq. (29.11). The second method results from the comparison with
an analytical formulation of the third harmonic amplitude given by Zabolotskaya et al. [11]. This
formulation is obtained under the well-known assumption of weak nonlinearity, which assumes
that the Goldberg number, defined as the ratio of the shear shock formation distance (Eq. 29.12,
characteristic length of nonlinear effects) and the absorption characteristic length L

𝛼

= 1/𝛼0 is
small. In that case, Eq. (29.11) is solved analytically using a perturbation method. Assuming
that 𝛼0 varies as the square of the frequency, the third harmonic component expresses as

𝜐

II(z, t) = −
𝛽𝜔0𝜐

3
0

24𝛼0V 3
T
(e−3𝛼0z − e−9𝛼0z) sin(3𝜔0𝜏) (29.29)

In order to deduce the nonlinearity parameter from the third harmonic evolution, it is
necessary to know accurately three parameters: the attenuation coefficient 𝛼0, the shear wave
speed V T, and the amplitude of the source 𝜐0. Indeed, these three parameters are involved in
Eq. (29.29) and are also used as input parameters in the numerical simulation. First, we have
checked the assumption of a quadratic dependence of the shear attenuation coefficient with
frequency.

Measurements of 𝛼0 were performed for different values of the tone burst central frequency
from 50 to 600 Hz, emitted in a linear regime small amplitude of the source, in an agar/gelatin
phantom with 5% of gelatin. The measured attenuation coefficients were obtained by measuring
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Table 29.4 Results for the linear shear modulus 𝜇, the Landau nonlinear modulus A [19],
the attenuation coefficient 𝛼0, the shear nonlinearity parameter 𝛽 , and the fourth-order
elastic constant D in the two agar/gelatin phantoms [22].

% of gelatin 𝝁 (kPa) A (kPa) 𝜶0 (Np/m) 𝜷 D (kPa)

5 6.6 ± 0.6 −37.7 ± 9.8 17 4.0 ± 0.5 30 ± 10
7 8.5 ± 0.8 −22.7 ± 2.5 12 2.5 ± 1 17 ± 9

the amplitude of the central frequency for each frequency. The shear wave speed, deduced from
the phase delay between the signals measured at different distances, is found to be 2.56 m/s.
It corresponds to the shear modulus given in Table 29.4. The amplitude of the source is mea-
sured at the closest distance separating the source and the transducer array z = 3 mm and
corrected of the absorption effect. Results for the linear shear modulus, the attenuation coef-
ficient 𝛼0, and the nonlinear Landau modulus A are reported in Table 29.4 for the two tested
agar/gelatin phantoms. The dots represent experimental results; the solid lines correspond to
the analytical formulation Eq. (29.29) and the dashed lines to the simulation output.

As predicted by Eq. (29.29), the third harmonic amplitude increases linearly with the dis-
tance (nonlinear cumulative effect) near the source. At larger distances, this growth is limited by
absorption effects affecting both the fundamental and third harmonic components. The results
provided by the analytical and numerical methods are in good agreement. Thus, for the source
amplitude range tested (Figure 29.11 was obtained for the largest emission amplitude, leading
to a Goldberg number of 0.97 for the 5% gelatin gel), the quasilinear approximation, necessary
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Figure 29.11 Third harmonic amplitude as a function of the propagation distance z. The dots represent
experiments, the solid lines correspond to the analytical expression Eq. (29.29), and the dashed lines are
numerical outputs. Reprinted with permission from [22]. Copyright 2008 by the American Physical Society.
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to derive Eq. (29.29), remains valid. Shear nonlinearity parameters 𝛽 were measured in the two
samples for five emission amplitudes 𝜐0. Mean values and corresponding standard deviations
are listed in Table 29.4. For the 7% gelatin sample, the standard deviation is larger: since the
inverse of the square of the Mach number increases, the signal-to-noise ratio was smaller in
this case. However, it seems that the nonlinearity parameter becomes smaller when the gelatin
concentration increases.

Finally, taking into account the previous measurements of the Landau nonlinear modulus A
and using Eq. (29.9), an estimation of the fourth-order shear elastic constant D is then obtained
(Table 29.4). For both samples, this constant is found to be positive and of the order of 10 kPa. It
seems that while the linear shear modulus and the Landau modulus A increase with the gelatin
concentration [19], both the nonlinearity parameter 𝛽 and the fourth-order elastic constant D
are decreasing. This tendency needs to be confirmed.

29.6 Conclusion

Finding new parameters to improve diagnosis for physicians is challenging. So, the evaluation of
quantified nonlinear shear parameters could help to answer this need. Different methods allow
one to estimate nonlinear parameters, acoustoelasticity theory, high amplitude shear waves
propagation, or nonlinear interaction of shear wave. So far, only acoustoelasticity theory has
showed some in vivo results and seems to be the easiest one to implement. However, assessment
of nonlinear shear parameters is still quite young in soft tissues in vivo and ex vivo and needs
to prove its usefulness for clinical practice.
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Current and Future Clinical Applications of Elasticity Imaging
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30.1 Introduction

Elastography or elasticity imaging is a field of medical imaging that is aimed at quantifying the
mechanical properties of living tissues [1]. Palpation has been used for centuries by physicians
to examine patients because it is well known that diseased tissue “feels” stiffer than normal tis-
sue in many pathologies. Disease changes structure, which alters function, and manifests as
symptoms. However, change in structure and composition also changes the mechanical prop-
erties of the tissue. For example, fibrosis is the result of an inflammatory response that destroys
working functional units in an organ. Fibrosis results from an increase in collagen replacing
the normal tissue, which makes the organ stiffer than when the healthy functional units are
present [2]. Additionally, blood flow and environmental changes due to tumor presence can
also alter the local stiffness of organs. However, palpation has several disadvantages, including
its subjectivity, dependence on the proficiency of the examiner, reproducibility, and insensitivity
to deep structures.

Elastography offers an approach for noninvasive, reproducible, objective, and high resolu-
tion characterization of the mechanical properties of tissues [1]. Any form of elastography
depends on deforming the tissue with some sort of stress and the measurement of the resulting
deformation – typically with ultrasound or magnetic resonance imaging techniques. The role
of magnetic resonance elastography (MRE) has been significant in establishing this elasticity
imaging field and has efficacious applications, particularly in the case of liver fibrosis staging.
While this chapter will primarily focus on ultrasound-based methods, MRE results will also be
highlighted in certain application areas.

There are many different parameters that have been used to characterize tissues. Most
elastography methods assume that the tissues are elastic, homogeneous, incompressible, and
isotropic. In this case the diagnostic parameters that are used are related to the displacement,
strain, shear wave speed, shear, or Young’s modulus [1]. However, some tissues are not
homogenous, such as a breast with a tumor. In this case there is normal tissue and the lesion
to evaluate. Some tissues have directionally dependent material properties, such as a skeletal
muscle which has muscle fibers oriented in a certain direction. It is well known that the shear
modulus along the fibers is higher than that across the fibers [3]. Lastly, most, if not all, tissues
are inherently viscoelastic [4]. This adds a new dimension to a number of parameters that can
be used to characterize the tissues.

The field of elastography has been populated with a multitude of methods for measuring the
mechanical properties of different tissues, which have been detailed in chapters in this book
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(see Chapters 10–25). Some of the methods that have been discussed are naturally point-based
measurement techniques and others are imaging techniques. The ultimate aim of the devel-
opment of these methods is to evaluate whether they can be used for clinical diagnosis and
monitoring of therapeutic interventions.

Many different tissues have been evaluated using different technologies. These applications
can broadly be separated into two categories: (i) evaluating a systemic disease that affects the
whole organ in a homogeneous manner or (ii) evaluating a localized disease such as a cancerous
lesion. In the case of the systemic diseases, such as liver fibrosis, it is assumed that the entire
liver is affected and changes are global. Therefore, a point-based or imaging method would be
suitable for this type of evaluation. Alternatively, for a localized disease, such as a breast tumor,
information about both the normal surrounding tissue and the tumor itself are often desired,
in particular to use the contrast between the two regions as diagnostic indicators. Therefore, an
imaging method would be desired to acquire data in both the normal and abnormal regions.

30.2 Clinical Implementation and Use of Elastography

To be useful in the clinic, the elastography methods must be available on clinical ultrasound
machines. Strain elastography has been implemented on machines produced by Siemens,
Toshiba, Hitachi, General Electric, Philips, Ultrasonix, Zonare, and Samsung Medison. Shear
wave elastography (SWE) methods have been implemented on systems made by Siemens,
Supersonic Imagine, Philips, Echosens, Toshiba, Samsung Medison, and General Electric.
Shear wave point-based measurement techniques are available on Siemens, Philips, Echosens,
and Samsung Medison machines. Shear wave speed imaging has been implemented on
Siemens, Supersonic Imagine, Toshiba, and General Electric instruments. The Supersonic
Imagine Aixplorer can also perform three-dimensional shear wave elastography with a linear
array transducer on a mechanical wobbler to obtain multiple planes of elastographic data.
Different array transducers are being used and developed for specific clinical applications.

As these methods are introduced into clinical practice, guidelines for their use are of critical
importance so that consistency is maintained in practice and so that measurements that are
reported in the biomedical literature are comparable from study to study. Sets of guidelines
for liver, breast, and thyroid applications have been introduced by the World Federation for
Ultrasound in Medicine and Biology (WFUMB) and the European Federation of Societies for
Ultrasound in Medicine and Biology (EFSUMB) [2, 5–8].

These guidelines are important for describing and understanding the physics related to the
measurement of material properties and parameters related to these properties. It was found
that in some early literature that misreporting of elastographic parameters was occurring [9],
which is why these guidelines are so important for clinicians and day-to-day users of these
technologies. Additionally, the procedures for using the techniques are also detailed in these
guidelines. The ultrasound scanner manufacturers provide best practices for their respective
equipment and those practices should be considered. Approaches to avoid known artifacts
should also be respected.

Additional efforts have been put forth by the Radiological Society of North America’s
Quantitative Imaging Biomarker Alliance (RSNA’s QIBA), which has undertaken a standard-
ization of shear wave velocity measurement for particular application in liver fibrosis staging
[10]. Studies involving phantom measurements, simulations, measurements in patients, and
creation of a measurement profile have been done or are in progress to study the effects of
viscoelasticity and the differences between different machines to obtain consistent shear wave
velocity measurements [11].
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All of these methods that have been implemented on clinical machines have been approved
by regulatory agencies. Vibration levels imposed in the body needed to be assessed for safety
in patients [12]. Additionally, methods based on acoustic radiation force also need to meet reg-
ulatory limits for the acoustic output, particularly the mechanical index (MI0.3), thermal index
(TI), and spatial peak temporal average intensity (Ispta,0.3) after derating by 0.3 dB/cm/MHz [13].
Typically, the MI is the limiting factor for most methods, though the thermal stress on the trans-
ducer also needs to be addressed, usually through executing the measurements at low repetition
rates of 0.5–1 Hz.

30.3 Clinical Applications

The organs that have been explored substantially include the liver, breast, and thyroid. Liver
fibrosis and steatosis have been the target diseases for many shear wave elastography stud-
ies. Breast and thyroid cancer diagnosis and differentiation have been the application areas for
strain-based and, more recently, shear wave elastography methods. Many other organs or dis-
eases have also been investigated with various elastographic techniques and are emerging as
potential clinical applications. Previously reported work in other organs (such as prostate), in
lymph nodes, in thrombosis, and for tumors in organs other than breast, thyroid, and liver have
been reviewed by Sarvazyan et al. [1]. In this chapter, the use of ultrasound-based elastography
will also be reviewed for the emerging areas of musculoskeletal, renal, cardiac, and vascular
applications.

30.3.1 Liver

Liver fibrosis is a systemic disease resulting from inflammation and other insults [2]. Liver
fibrosis is a progressive disease that ends in cirrhosis, which results in total destruction of
the functional units of the liver. Cirrhosis can lead to portal hypertension and hepatocellular
carcinoma. Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of disease which
involves steatosis (the build-up of lipids within the liver), and which can ultimately lead to
fibrosis, cirrhosis, and hepatocellular carcinoma [14].

Multiple methods have been employed to characterize fibrosis in the liver. Shear wave speed
measurements have shown great promise through the transient elastography (TE) technique
and through shear wave point-based or imaging methods. Due to the depth of the liver,
strain elastography methods have not been applied with nearly the same success as the shear
wave-based methods. There have been numerous TE studies to evaluate staging of hepatic
fibrosis in large populations with different disease etiologies [15–18]. Magnetic resonance
elastography has also been used extensively to examine hepatic fibrosis [19–21]. MRE has
been so successful that at the Mayo Clinic MRE scans are the standard of care for staging
of liver fibrosis in many cases. ARF-based methods implemented on Siemens, Supersonic
Imagine, and Philips devices have also been used and compared against TE [22–28]. Among
these methods, they are generally very accurate for diagnosing advanced fibrosis or cirrhosis,
but the intermediate fibrosis stages are more difficult to separate.

A few complications remain for these shear wave-based methods, including distinguishing
between intermediate fibrosis stages and grading steatosis or dealing with the effects posed by
the presence of steatosis [2]. Measuring the ultrasound attenuation of the liver and the shear
phase velocity dispersion have been proposed as alternatives to addressing the problems of
steatosis characterization [14, 29–33]. Some additional work has been done in the area of char-
acterizing hepatic tumors with SWE techniques [2].
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30.3.2 Breast

Ultrasound has long been an adjuvant imaging modality for breast cancer detection in addi-
tion to screening mammography. Ultrasound becomes very useful, particularly in patients with
radiographically dense breast tissue. Early work in the study of breast cancer detection and
characterization was performed with strain elastography because the breast is easily accessible
and compressible. Numerous studies and grading approaches have been developed for charac-
terizing breast lesions and their classification as benign or malignant based on the strain dis-
tribution [1, 6]. The Tsukuba score has been developed to evaluate breast lesions [6]. Different
features related to the geometry and strain ratios have also been investigated. Some studies have
reported good sensitivities and specificities for differentiating malignant from benign lesions
[34, 35]. However, without substantial knowledge of the boundary conditions and stress, abso-
lute quantitative evaluations cannot be done. SWE has also been applied to breast imaging as
it can provide quantitative shear modulus measurements.

In general, malignant lesions have been shown to have larger shear moduli than benign
lesions [36–38]. The parameters that are used to characterize the lesions and have the most
clinical efficacy are somewhat controversial. The analyses are ultimately based on selecting a
region-of-interest (ROI) in the image. Some groups have reported the use of the maximum,
mean, or median modulus. It still remains for the community to determine what may be
most appropriate for proper diagnosis and characterization of breast lesions. Measurement
accuracy of the shear modulus is dependent on the size of the lesion, as larger inclusions which
incorporate more shear wavelengths will be characterized accurately. This is a common issue
with all SWE methods because of the physics related to the shear wave propagation.

There are also some artifacts that are associated with imaging of breast lesions, including
imaging of calcifications [39] and the effects of compression. Calcified lesions can produce
characteristic artifacts on SWE images that may be a useful indicator of calcified tissue. Addi-
tionally, it is known that compression of soft tissues can yield changes in the measured shear
modulus [40, 41]. This occurs because of a phenomenon known as nonlinear elasticity. Typi-
cally, the clinical guidelines advocate that minimal to no compression be applied so as to not
incur these effects. However, some research groups are using compression in addition to shear
wave elastography to get additional information on the mechanical properties in the breast and
the tumors under investigation [41].

30.3.3 Thyroid

The thyroid is another shallow organ that has been the subject of many elastography studies.
Ultrasound is the first-line imaging modality used for thyroid imaging. One aspect of B-mode
ultrasound in the thyroid is that thyroid nodules are very common, so sensitivity is very high,
but specificity is not.

Strain elastography has been applied extensively for the characterization of thyroid nodules
[42–45]. Scoring systems are variable among many different studies. Additionally, many differ-
ent parameters related to geometry, contrast, and ultrasound echogenicity have been evaluated
for their diagnostic effectiveness. In recent years, SWE has also been applied for thyroid nodule
evaluation [46–49]. The sensitivity and specificity is slightly lower than for strain elastography,
but this area of application is still relatively naïve to make solid conclusions.

30.3.4 Musculoskeletal

Ultrasound of the musculoskeletal (MSK) system has been growing progressively. The use of
SWE in MSK applications has also been increasing [50–52]. Some preliminary studies to char-
acterize muscles in relaxed and loaded states have been reported. The applicability of SWE in
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skeletal muscle may be useful for longitudinal studies of muscle disorders or rehabilitation from
injuries. In a similar vein, SWE has been applied in tendons, specifically the Achilles tendon,
for the application of evaluating Achilles tendon tear or rupture recovery [53–55].

There are a few challenges with MSK applications in that skeletal muscle and tendons are
composed of sets of fibers that are preferentially oriented. Because of this structural orga-
nization, the material properties of these tissues are spatially dependent or anisotropic. The
orientation of the shear wave propagation needs to be carefully controlled in these tissues to
obtain consistent results among different individuals and within the same individual.

Additionally, these tissues can become quite stiff, particularly in loaded or stretched states,
so some devices may not be able to measure the material properties at the full range of loading
or stretch. This is because most devices have a defined upper limit for reliable measurements.

Magnetic resonance elastography has been used in the investigation of muscle in previously
reported studies [56–59]. Quantitative shear modulus changes were found in normal subjects
compared with patients with diseased muscle. Additionally, the anisotropic nature of skeletal
muscle [60–62] as well as its viscoelastic properties [63, 64] have been investigated.

Transient elastography was one of the first methods used for investigation of skeletal mus-
cle [3, 65, 66]. Sonoelastography is a method that uses external actuators to create propagating
shear waves in tissue and the motion is measured by pulse-echo ultrasound techniques [67].
Application of different harmonic frequencies to the actuators can yield data for dispersive
velocity analysis. Viscoelastic measurements in muscle have been made in human subjects, but
the need for external hardware is a limiting factor for widespread clinical implementation [68].

Acoustic radiation force impulse (ARFI) imaging was used to explore stiffness in skeletal mus-
cle [69]. Supersonic shear imaging (SSI) is an ARF-based method to perform SWE imaging has
been used for multiple studies in various skeletal muscle applications [50, 51, 70–75]. These
studies have demonstrated that the shear modulus can be related to muscle activity or contrac-
tile state [50, 51, 75]. Additionally, changes in muscle stiffness are associated with pathology
[72, 73]. SWE has been used to quantify the shear wave velocity (SWV) in the neck muscles
in subjects with chronic neck pain [76]. A 2D matrix array was used to measure shear wave
propagation in a plane orthogonal to the radiation force to quantify the anisotropic properties
of ex vivo skeletal muscle [77].

Skeletal muscle, like many other soft tissues, is a viscoelastic material, that is, muscle has both
elastic and viscous properties. Viscoelastic materials exhibit time-dependent deformation when
a stress is applied, whereas elastic materials exhibit immediate deformation. Many mechanical
testing studies have demonstrated these effects [78–83], but most of these studies examine very
low frequency characteristics (<10 Hz) of the skeletal muscle, while most clinically relevant
information is contained in a higher bandwidth (50–1000 Hz).

The shear wave-based methods mentioned above for applications in skeletal muscle using
either MR or ultrasound have explored viscoelastic properties from 50–500 Hz [63, 68, 70, 84,
85]. Shear wave measurement techniques have emerged over the last decade as a prominent
way to assess the viscoelastic properties of tissue. To fully characterize skeletal muscle, mea-
surements of the elastic and viscous components of the tissue and their anisotropic distribution
need to be measured [86]. This is a topic of ongoing research for multiple groups.

30.3.5 Kidney

Chronic kidney disease (CKD) encompasses a long-term decrease in function of the kidneys.
The prevalence of CKD in stages 1–5, where the stage is determined by albuminuria and esti-
mated glomerular filtration rate (eGFR) based on serum creatinine concentration, increased in
the years 1999–2004 compared to that during the period of 1988–1994 from 10.0% to 11.5%
in adults aged 20 and over [87]; more than 20 million people. Another stark reality concerning
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CKD is that patients with this affliction carry 2–5 times the disease burden of non-CKD patients
because large numbers of CKD patients also have diabetes, hypertension, cardiovascular dis-
ease, and chronic obstructive pulmonary disease [88].

CKD can progress to kidney failure or end-stage renal disease (ESRD) and the treatment
options for these patients include hemodialysis or kidney transplant [89]. Hemodialysis treat-
ment is not a long-term solution. Patient and graft survival rates have increased over the past
two decades [88], but long-term survival of grafts is still an issue. The patient survival prob-
abilities for patients receiving deceased- or living-donor transplants are higher than the graft
survival rates, indicating that the patient will often outlive the graft and have to be retrans-
planted or undergo dialysis treatment.

The kidney has been studied using several elasticity imaging techniques. Strain elastography
has been used in several ex vivo studies in kidneys [90–92] and some in vivo human studies
of kidney transplant patients [93, 94]. Areas of lower strain correlated with fibrotic or scarred
tissue, implying that this tissue is stiffer than normal tissue.

MRE has been applied to quantitatively evaluate the stiffness of renal cortex and medulla
in ex vivo porcine kidneys, in in vivo rat and swine models, and in healthy human adults
[95–98]. In the study in rats, comparisons were made between normal animals and animals
that developed nephrocalcinosis due to exposure to ethylene glycol. The shear stiffness in the
renal cortex increased after 2- and 4-week exposures [96] In studies in swine, the renal artery
was occluded in progressive steps, and the cortical and medullary shear stiffness decreased as
a result of decreased perfusion [97, 99].

SWE measurements in patients with CKD and renal transplants have been reported. It
has been shown that SWV changes in patients with CKD compared to healthy individuals
[100–103]. Results using TE showed that stiffness in renal allografts correlated significantly
with the degree of fibrosis and eGFR [104]. Several studies using SWE compared shear wave
speed and renal transplant Banff biopsy scores for measurements made in transplanted kidneys
[105, 106]. The study by Syversveen et al. examined 30 patients and did not find a significant
correlation of shear wave speed with fibrosis [105]. Stock et al. studied 18 patients and found
positive correlations between shear wave speed and level of fibrosis [106]. The kidney, like
many other soft tissues, can be modeled as a viscoelastic material, that is, the kidney has both
elastic and viscous characteristics [107–111].

30.3.6 Heart

Many conditions in the heart alter the structure of the heart and typically lead to an increase in
tissue stiffness. Strain and strain rate measurements are part of the cadre of tools that are used
routinely in echocardiography as they can be used to detect abnormalities in the motion of
the heart due to systemic stiffening related to systolic or diastolic dysfunction or localized dys-
function related to myocardial infarctions [112–115]. Additional recent work has been targeted
towards examining the electromechanical waves in the heart [116–122].

Multiple ultrasound-based methods that measure propagating waves have been used for
evaluating myocardial mechanical properties. Kanai observed that the aortic valve closure gen-
erated a measurable wave in the ventricular septum [123]. A Lamb wave model was used to esti-
mate the viscoelastic properties of the myocardial tissue. Shear waves propagating in a bounded
medium reflect at the surfaces and cause mode conversion at the boundaries, which creates
shear and longitudinal waves and which influences the observed wave velocities. Nenadic et al.
built upon Kanai’s observations to develop the Lamb wave dispersion ultrasound vibrometry
(LDUV) method that used external vibration to create harmonic anti-symmetric Lamb waves
[124–126]. Phase velocities at frequencies with a bandwidth of 50–500 Hz were fit to the same
anti-symmetric Lamb wave model proposed by Kanai [123]. The LDUV technique was utilized



Current and Future Clinical Applications of Elasticity Imaging Techniques 479

for studies in normal pigs and pigs with myocardial infarctions to quantify the viscoelastic
mechanical properties of the left ventricular heart wall in an open heart preparation [127, 128].

Acoustic radiation force has been used to generate shear waves in the myocardium for studies
involving wave propagation. Couade et al. used the SSI technique in the left ventricle of in vivo
sheep in an open chest preparation [129]. Measurements of dynamic variation through the car-
diac cycle were performed in different scanning orientations, revealing anisotropic wave prop-
agation. In addition, changes in the wave velocities through the thickness of the myocardium
at different angles in an explanted heart sample was also studied. Additional ARF-based stud-
ies have been performed in open chest dogs [130] and Langendorff perfused isolated rat and
rabbit hearts [131, 132]. The used of intracardiac transducers has been reported in normal
pigs and pigs with infarcted regions [133, 134]. Most of the previously described work with
ultrasound-based SWE has been done with invasive preparations or procedures. Transthoracic
measurements in humans have recently been performed and are an initial step towards trans-
lating SWE methods into clinical applications in humans [135].

Some studies have explored the spatial variation of the wave velocity through the thickness of
the myocardium. The intrinsic anisotropic architecture of the myocardial tissue and the rotation
of the muscle fiber directions through the thickness of the ventricular wall is the explanation for
these observations [136]. Two important studies have investigated the anisotropy of the heart
wall using waves generated using ARF in ex vivo and in vivo hearts [137, 138]. The elastic tensor
imaging (ETI) technique that was developed for analysis of myocardial anisotropy adopted the
approach of modeling the heart as a series of transversely isotropic layers [138]. In a transverse
isotropic medium, such as skeletal muscle which has muscle fibers running in a preferred direc-
tion, the wave will travel faster when propagating along the fibers and will travel slower when
propagating perpendicular to the fiber direction [3, 77, 139]. The fiber direction at each depth
was estimated using ETI by rotating the transducer and acquiring data at multiple angles and
estimating the angle which provides the fastest wave velocity. This was performed in numerous
heart samples and the results were validated against histology of the samples or measurements
made using magnetic resonance diffusion tensor imaging [137, 138].

30.3.7 Arteries and Atherosclerotic Plaques

Many groups have worked on various ultrasound-based approaches for evaluating the carotid
artery and atherosclerotic plaques, including transcutaneous strain imaging, intravascular
ultrasound (IVUS) strain imaging, ARFI imaging, and SWE. MRE has been used for ex vivo
and in vivo applications of the porcine and human aorta and human femoral artery [140–143].

Pulse wave imaging (PWI) is a method that measures the motion of the arterial wall due to
the pressure pulse to quantify the local pulse wave velocity (PWV), and has been utilized in
the aortas of mice with and without aneurysms [144], and in human aortas and carotid arteries
[117, 145–147]. This method has the advantage of assessing the PWV over a short segment
(1–9 cm) compared to the longer segment used clinically in carotid-femoral pulse wave velocity
(cfPWV) measurements. One limitation of PWI is that only one measurement can be made for
each cardiac cycle, so the spatial resolution is higher than traditional cfPWV methods, but the
temporal resolution is no better.

Acoustic radiation force has been utilized for perturbing arterial vessels for material char-
acterization. Acoustic radiation force has also been used to create high frequency propagating
waves in human carotid arteries to measure the material properties through the cardiac cycle
[148]. One method, called vibro-acoustography, was used to image arteries with calcifications in
ex vivo tissues and in in vivo porcine arteries [149–151]. Another method, called shearwave dis-
persion ultrasound vibrometry (SDUV), uses ARF to generate and measure shear waves in soft
tissues and analyze the shear wave velocity dispersion, or velocity variation with frequency, to
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extract viscoelastic material properties [84, 152]. We have used ARF in tubes and ex vivo arteries
to produce high frequency waves (100–500 Hz) in the wall of the tube or vessel to investigate
the material properties [153–161].

Noninvasive strain imaging has been under investigation for the last decade, with the goal
of using the motion of the artery from the pressure pulse variation to examine the stiffness of
the arterial wall and plaques [162–175]. In addition to strain imaging performed using transcu-
taneous ultrasound, strain-based elastography using IVUS has been proposed and developed
to image vulnerable plaques to ascertain their likelihood of rupture and formation of emboli
[176–187]. ARFI imaging has been used to explore localized plaque formation in arterial vessels
[188–197]. Analysis of the displacement amplitude and time course was used in swine models
to investigate the ability to localize and classify atherosclerotic plaques [190, 193]. SWE has
been used to measure the material properties in arterial phantoms and atherosclerotic plaques
in humans [159, 198–200].

30.4 Future Work in Clinical Applications of Elastography

Future work by several academic and industrial research groups is directed towards refinement
of elastographic techniques to improve accuracy and precision so that values reported by clin-
ical machines meet similar standards of performance. New techniques are constantly being
developed and time will tell if they are integrated into clinical devices.

Artifact identification and avoidance is also an area that will expand as these methods, par-
ticularly SWE, is used more in clinical settings. The importance of adherence to the initial
guidelines will aid in normalizing data reported in the biomedical literature.

As the SWE methods are used more consistently, data reported could be assembled to build
databases of normal and abnormal values for the benefit of making clinical decisions. Within
these endeavors variations with sex, age, and other factors need to be identified. However, one
aspect of this is that results may be dependent on the device and its settings so that information
needs to be taken into account for proper interpretation of the assembled data.

It is inevitable that new clinical applications will arise or that nascent ones will be devel-
oped further. Additionally, the expansion of investigation into additional mechanical proper-
ties, such as nonlinearity, anisotropy, and viscoelasticity, provide a landscape that could be
used for improved diagnosis or techniques for monitoring of patients undergoing therapeutic
interventions.

30.5 Conclusions

This chapter has provided a brief overview of clinical applications for elastographic imaging
using ultrasound-based methods. There are many active application areas in which strain elas-
tography and shear wave elastography have been used. Due to the translation of these methods
from academic laboratories to clinical instruments, patients have benefited and continue to
benefit from the development with these largely noninvasive methods. The future is bright as
other clinical areas expand their use of these methods for diagnosis, prognosis, and treatment
monitoring.
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Abdominal Applications of Shear Wave Ultrasound Vibrometry
and Supersonic Shear Imaging
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31.1 Introduction

Abdominal applications have been one of the major research and clinical interests of shear
wave elastography since the birth of the technology. Many abdominal pathological conditions
present abnormal tissue mechanical properties such as elevated stiffness, which can be
quantitatively and noninvasively characterized by ultrasound shear wave imaging. To date,
abdominal application of shear wave imaging has been investigated and reported in liver,
prostate, kidney, intestine, uterine cervix, spleen, pancreas, and bladder, with active ongoing
explorations of other abdominal applications. In this chapter, we provide brief technical and
clinical reviews of each of the above-mentioned abdominal applications.

31.2 Liver Application

At present, liver application is the most significant and well-established field of ultrasound
shear wave imaging research, owing to the longer period of time that shear wave elastography
has been investigated in liver. Several seminal reviews of liver shear wave elastography and
clinical guidelines by different organizations have been published [1–7]. Readers can refer
to these reviews and guidelines for in-depth technical and clinical details. In parallel to
liver ultrasound shear wave research, a large body of liver shear wave elastography research
based on magnetic resonance elastography (MRE) is also under active development and
investigation [8–11].

One key application of liver shear wave imaging is fibrosis staging of chronic liver disease [3].
Liver fibrosis is represented by deposition of collagen and other components of the extracellu-
lar matrix in response to chronic injury [3], which results in increased liver stiffness. Currently
the clinical gold standard for fibrosis staging is biopsy, which is invasive and suffers from sam-
pling variability. On the other hand, liver shear wave elastography provides noninvasive and
quantitative measurement of liver stiffness. It has been shown that shear wave measurements
are strongly correlated to the biopsy staging results (Figure 31.1) and can potentially be used to
stage liver fibrosis with high sensitivity and specificity [9, 12–18].

Various ultrasound shear wave imaging techniques have been developed and implemented
in liver application, including transient elastography [19, 20] (Figure 31.2a), acoustic radi-
ation force (ARF)-based point shear wave elastography (pSWE) [3, 21–24] (Figure 31.2b),
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Figure 31.1 Mean liver stiffness with increased fibrosis
stage in patients. Source: reprinted from [9], copyright
2007, with permission from Elsevier.
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two-dimensional ultrasound shear wave elastography based on ARF [12, 25–27] (Figures 31.2c
and 31.2d), and external mechanical vibration [28, 29]. Among these techniques, transient
elastography and mechanical vibration-based methods produce shear waves externally and
use ultrasound to track the shear wave motion. These methods have superior penetration
performance compared to ARF-based techniques. The advantage of the ARF-based techniques
is that no external wave source is needed: the same transducer can be used to both generate and
track shear waves. However, these techniques may suffer from low success rate among obese
patients. For both transient elastography and pSWE, a single shear elasticity value is reported
per data acquisition (Figures 31.2a and 31.2b). For 2D shear wave elastography methods, a
2D shear elasticity map can be produced (Figures 31.2c and 31.2d). While both point and 2D
measurements are suitable for diffuse liver diseases such as fibrosis, the 2D methods may be
more beneficial for focal liver diseases such as hepatocellular carcinoma (HCC).

Among these different imaging techniques, different quantities are being reported, including
shear wave speed (cs), shear modulus or shear elasticity or shear stiffness (𝜇), and Young’s mod-
ulus (E). It is commonly assumed that soft tissues including liver are pure elastic, isotropic, and
incompressible, and therefore

E = 3𝜇 = 3𝜌c2
s (31.1)

where 𝜌 is the density of the tissue and can be assumed to be 1000 kg/m3. One can use Eq. (31.1)
to conveniently convert from one stiffness quantity to another.

In addition to shear elasticity measurement using shear waves, shear waves can also be
used quantify tissue viscosity from the shear wave dispersion curve [24, 30, 31]. Like other
soft tissues, liver is viscoelastic and shear wave speed of the liver is frequency dependent
[30] (Figure 31.3). The frequency-dependent shear wave dispersion can potentially be used to
diagnose early-stage fatty liver disease [32, 33]. Viscosity has also been reported to be used
for fibrosis staging, but with poorer diagnosing performance than elasticity [24, 34]. One
possible reason of the poor performance of using viscosity in vivo is the suboptimal shear
wave signal quality obtained from in vivo tissue, which makes accurate estimate of tissue
viscosity challenging. Nevertheless, because shear wave speed is frequency dependent in liver
(Figure 31.3), one should account for the difference of the frequency of the shear waves when
reporting shear wave speed measurements using different techniques and determining cutoff
values for fibrosis staging.



494 Ultrasound Elastography for Biomedical Applications and Medicine

(a)

Ribs Liver

0

25

20

15

10

5

0

0 5 10

Time (s)

D
is

pl
ac

em
en

t (
μm

)

15

10

20

30

D
ep

th
 (

m
m

)

405

0Vs

ROI

–5
0

10

20

30

40

D
ep

th
 (

m
m

)

50

60
20 40

Time (ms)

60 %

50

60
–10 10

Leteral position (mm)

0

ROIVibrator

Probe

Ultrasonic
transducer

(c)

Imaging area

Curved array

Focal spots

Shear waves

D
ep

th
 z

 (
m

m
)

20

E (kPa) E (kPa)

40

60

500

Width x (mm)

–50

D
ep

th
 z

 (
m

m
)

20

40

60

606

4

2

0

40

20

0
500

Width x (mm)

–50

(b)

(d)

Figure 31.2 (a) Upper panel: schematic plot of probe positioning for liver elasticity measurements using
transient elastography; lower panel: the resulting shear wave signal and ROI selection for shear wave speed (Vs)
measurement. Reprinted from [20]. Copyright 2003, with permission from Elsevier. (b) pSWE (a.k.a. acoustic
radiation force impulse (ARFI) shear wave imaging) data acquisition (left panel) from the ROI positioned inside
the liver; right panel: shear wave signals recorded inside the ROI from which shear wave speed is calculated
based on time-to-peak. Reprinted from [21]. Copyright 2008, with permission from Elsevier. (c) 2D shear wave
elastography with the supersonic imaging (SSI) technique (upper panel) and examples of 2D liver shear
modulus maps (lower panel) from a healthy liver (left) and fibrotic liver (right). Reprinted from [12]. Copyright
2011, with permission from Elsevier. (d) 2D shear wave elastography with the comb-push ultrasound shear
elastography (CUSE) technique and shear wave speed maps of a normal liver (above) and a fibrotic liver with
advanced fibrosis (below). Source: republished with permission from [27]; permission conveyed through
Copyright Clearance Center, Inc.

31.3 Prostate Application

Prostate cancer is a common disease in men worldwide. Serum prostate-specific antigen (PSA)
tests and ultrasound-guided biopsy are clinical standards for diagnosing prostate cancer but
suffer from poor diagnosis accuracy and are invasive [35]. Ultrasound shear wave elastography
can provide quantitative measurement of the tissue stiffness and potentially differentiate benign
and malignant tumors [36–38]. The majority of the current prostate cancer shear wave studies
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Figure 31.3 Shear wave dispersion curves for (a) a stage F1 patient liver and (b), (c) two stage F3 patient livers.
The slope of the dispersion curve is 1.21 mm for (a), 1.09 mm for (b), and 5.17 mm for (c). Source: reprinted from
[12], copyright 2011, with permission from Elsevier.

used the transrectal ultrasound transducer equipped with real-time 2D shear wave elastography
function based on supersonic shear imaging [25]. Barr et al. reported a prostate cancer diag-
nosing sensitivity of 96.2%, specificity of 96.2%, positive predictive value (PPV) of 69.4%, and
negative predictive value (NPV) of 99.6% when using a cutoff value of 37 kPa from 53 patients
[36]. Woo et al. used a mean stiffness cutoff value of 43.9 kPa and reported 60.8% sensitivity and
66.4% specificity, with an AUC of 0.599 from 87 patients [35]. Ahmad et al. studied 50 patients
and reported a sensitivity of 90% and a specificity of 88% for patients with PSA < 20 μg/L; and
a sensitivity of 93% and specificity of 93% for patients with PSA > 20 μg/L. Recently, Correas
et al. reported a large scale study in 184 men and reported 96% sensitivity, 85% specificity, 48%
PPV, 99% NPV, and 95% AUC when using a stiffness cutoff value of 35 kPa [38]. Woo et al. also
demonstrated excellent intra-observer reproducibility of the shear wave elastography technique
in prostate with an interclass correlation coefficient (ICC) of 0.876 [39]. Overall, shear wave
elastography is a very promising tool for the detection and biopsy of prostate cancer. The high
NPV has been reported by multiple studies, which is particularly useful to reduce the biopsy
rate clinically [36].

31.4 Kidney Application

Kidney viscoelasticity is an important biomarker for renal dysfunction and renal fibrosis. To
date many studies of implementing shear wave imaging on kidney have been reported both in
vivo and in vitro, and both in animal models and in humans [40–50]. Kidney is a particularly
challenging tissue for ultrasound shear wave elastography because of the anisotropic nature of
the kidney tissue and the various vascular and urinary pressure levels, both of which can change
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Figure 31.4 (a) Image of a lower half of a pig kidney. In region 1 shear waves propagate across the renal fibers
and in region 2 shear waves propagate along the renal fibers. (b) Shear elasticity map of region 1 in part (a).
(c) Shear elasticity map of region 2 in part (a). Shear wave speed is higher along the fiber orientation than
across the fiber orientation. Source: reprinted from [40], copyright 2012, with permission from Elsevier.

the shear wave speed measurement significantly [40, 42] (Figure 31.4). Gennisson et al. showed
that both cortical and medullary elasticity values were higher when shear waves propagate along
the renal fiber than across the fiber (7.7 ± 2.3 kPa vs. 6.9 ± 1.4 kPa for cortex; 8.7 ± 2.5 kPa vs.
6.6 ±2.3 kPa for medulla) [40]. They also showed that inner cortex was stiffer than outer cor-
tex, and parenchymal elasticity changed significantly with vascular and urinary pressure levels.
These factors need to be accounted for when using shear wave elastography for kidney disease
diagnosis. Another significant challenge for kidney shear wave application is that native human
kidneys are typically deep from the body surface, which makes robust shear wave generation
and detection challenging. This is one main reason why the majority of the studies reported
to date were from kidney transplants [44–47, 49]. Among these studies, Syversveen et al. used
pSWE techniques (ARFI quantification) to quantify kidney transplant stiffness and found no
correlation between shear wave speed and kidney fibrosis [44, 45]; Grenier et al. used 2D SWE
techniques based on supersonic shear imaging (SSI) and also reported no significant correla-
tion between renal cortical stiffness and fibrosis [46]. On the other hand, Arndt et al. used the
transient elastography technique to evaluate renal allograft fibrosis and found significant cor-
relation between stiffness and the extent of interstitial fibrosis [47]; Gennisson et al. used 2D
SWE based on SSI and found moderate correlation between correlation between kidney stiff-
ness and fibrosis [49]. In addition to the technical challenges mentioned above that may have
resulted in these controversial results, it was noted that kidney pathology leading to transplant
failures may impact the outcome of the kidney stiffness [49]. Also, the relatively low intra- and
inter-observer agreement still remains as a critical challenge for robust estimate of transplant
kidney stiffness [44–46].

31.5 Intestine Application

Crohn’s disease (or inflammatory bowel disease, IBD) is the major clinical application for ultra-
sound shear wave elastography. The use is to differentiate intestinal inflammation from fibro-
sis; this is a clinically significant yet challenging task that lacks robust biomarkers [51]. Early
ultrasound elastography studies using strain elastography (qualitative approach) revealed the
feasibility of differentiating between inflammatory from fibrotic intestine in rat models but not
in human with Crohn’s disease [51]. Recently, Dillman et al. used 2D shear wave elastography
based on ARFI shear wave imaging techniques to distinguish inflammation from fibrosis in a
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Crohn’s disease animal model [52]. The study showed elevated tissue stiffness with both acute
inflammation and fibrosis and by using the ratio of shear wave speed to applied strain, one can
well differentiate inflammation from fibrosis with an AUC of 0.971. Another study by Dillman
et al. on ex vivo human intestinal specimens revealed that point pSWE and 2D SWE meth-
ods can distinguish low- from high-fibrosis score bowel segments [53]. At present, no in vivo
human studies on Crohn’s disease with shear wave elastography have been reported.

31.6 Uterine Cervix Application

Quantification of cervical stiffness using ultrasound shear wave elastography can be a promis-
ing tool for screening and treatment for preterm birth prevention [54]. The cervix softens in
preparation for delivery. Shear wave elastography has been used to assess cervical stiffness on
ex vivo human samples [55, 56]. These studies found that cervical tissues were highly anisotropic
and unripened cervical tissue was significantly stiffer than the ripened cervical tissue. Gennis-
son et al. studied 21 women using the 2D shear wave elastography technique based on SSI and
found that normal cervix is stiffer than pathological cervix (19.0 ± 18.6 kPa vs. 7.0 ± 3.0 kPa)
[57]. It was also shown by Gennisson et al. [57] that uterus contraction could be imaged in real
time using the 2D SWE technique. Meanwhile, better shear wave imaging methods for uterine
cervix application are also being developed [58].

31.7 Spleen Application

Spleen stiffness can be used to predict the presence of liver cirrhosis and the severity of
esophageal varices [59–61]. A MRE study also showed that splenic stiffness was correlated
with portal hypertension [62]. Among the ultrasound shear wave studies, Bota et al. showed
that cirrhotic patients’ spleens are significantly stiffer than those of the healthy patients (3.10 ±
0.55 m/s vs. 2.04 ± 0.28 m/s) and with a cutoff value of > 2.51 m/s, pSWE based on ARFI had
85.2% sensitivity, 91.7% specificity, 95.8% PPV, 73.3% NPV, 87.1% accuracy, and AUC of 0.91
[59]. Grgurevic et al. also used pSWE based on ARFI and showed that with a cutoff of 2.73 m/s,
spleen stiffness could be used differentiate patients with liver cirrhosis and non-cirrhotic
chronic viral hepatitis with AUC of 0.82 [63]. Ye et al. used ARFI-based pSWE techniques on
spleen and found that spleen stiffness can be used to differentiate stage 4 liver fibrosis with
a cutoff of 2.72 m/s (AUC = 0.96), and that the spleen stiffness correlated linearly with the
varix grade [60]. Leung et al. used SSI-based 2D SWE techniques and transient elastography
to evaluate both liver and spleen stiffness among 226 liver patients and 171 healthy subjects,
and found that combining spleen stiffness with liver stiffness did not further improve the
diagnostic accuracy of fibrosis staging [64]. Cassinotto et al. also used SSI-based 2D SWE
approachs to evaluate cirrhosis and oesophageal varices and found relatively high failure
rate of measuring spleen stiffness although spleen stiffness showed promising results for the
detection of esophageal varices [61]. Further studies are necessary to develop more robust
techniques for measuring spleen stiffness.

31.8 Pancreas Application

To date, most of the pancreas elastography studies used strain-based elastography techniques
with endoscopic ultrasound transducers [65–67]. These studies support the use of shear wave
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elastography to quantify the stiffness of the pancreas for various disease diagnoses. Pancreas
shear wave speed from healthy subjects was measured by 2D SSI-based shear wave elastography
and reported as 4.8 ± 3 kPa [68]. D’Onofrio et al. used pSWE to quantify pancreatic cystic
lesions and found that shear wave speed can be used to differentiate more complex (mucinous)
from simple (serous) content in the cystic lesions [69].

31.9 Bladder Application

Ultrasound shear wave elastography can be used to quantify both the elasticity and the viscosity
of the bladder wall, which can be used to evaluate variations of bladder stiffness and under-
stand various diseases. Nenadic et al. reported the use of ultrasound bladder vibrometry (UBV)
to measure both the elasticity and viscosity of the bladder wall and showed good correlations
between elasticity and bladder volume and pressure [70]. An in vivo pig study demonstrated
the feasibility of translating this technique to the clinic (Figure 31.5).

0

5

10

A
xi

al
 d

is
ta

nc
e,

 z
 (

m
m

)

Azimuthal distance, x (mm)

15

300

250

200

150

k 
(1

/m
)

100

50

0
0 200 400

f (Hz) Frequency (Hz)
600 0 200 400 600

Wave dispersion

Lamb wave fit

0

5

10

15

–10 10 2 4 6

6

5

4

3

V
el

oc
ity

 (
m

/s
)

2

1

0

80

(a)
Time (ms)

(b)

(c) (d)

x 
(m

m
)

Figure 31.5 Ex vivo measurement of porcine bladder elasticity and viscosity: (a) B-mode image of the bladder
wall. (b) Shear wave signal extracted from the bladder wall. (c) 2D Fourier transform of the shear wave signal in
part (b). (d) Dispersion analysis of the Fourier-domain signal yields viscoelastic measurements of the bladder
wall. Source: © Institute of Physics and Engineering in Medicine, reproduced by permission of IOP Publishing,
all rights reserved [70].
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31.10 Summary

Abdominal applications are one of the most important and attractive fields of research
for ultrasound shear wave elastography. In this chapter we have briefly reviewed several
applications in different abdominal organs including liver, prostate, kidney, intestine, uterine
cervix, spleen, pancreas, and bladder. Some of these applications, such as liver, have been
developed for over a decade and are moving towards clinical practice with maturing guidelines
and clinical protocols. Some new applications, such as bladder, are still under active inves-
tigation. Newer techniques are still being developed to further improve the performance of
abdominal shear wave elastography in the context of better penetration, higher frame rate,
and more robust algorithms to estimate both elasticity and viscosity. Shear wave elastography
is also being translated to different ultrasound transducers such as transvaginal and catheter
transducers for specialized ultrasound applications.
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32.1 Introduction

Heart diseases are the leading cause of death for both men and women in developed countries,
accounting for approximately 1 out of every 4 deaths in the United States each year [1]. Virtually
every form of heart disease involves modifications to myocardial elasticity, and the past several
decades have seen significant developments in elastography-based imaging techniques to clini-
cally evaluate myocardial stiffness for diagnosis and monitoring of cardiac diseases. In addition
to being a powerful diagnostic tool for cardiac function, elasticity imaging techniques are also
showing promise for guiding clinical cardiac ablation treatment for heart rhythm disorders.

This chapter reviews the current research and applications for acoustic radiation force
(ARF)-based methods, namely acoustic radiation force impulse (ARFI) imaging and shear
wave elasticity imaging (SWEI) methods, in the diagnosis and treatment of cardiac diseases.

32.2 Acoustic Radiation Force-based Elastography Techniques

ARFI imaging is an ultrasound-based elastography method that provides information about
the local mechanical properties of tissue. ARFI imaging uses short duration (0.03–1 ms)
acoustic radiation force excitations to generate localized displacements in tissue, and these dis-
placements are tracked using ultrasonic correlation-based methods [2–5]. Soft tissues typically
displace 2–10 μm in response to an ARFI excitation and exhibit an overdamped response with
a recovery time of 3–4 ms to the pre-excitation position. The tissue response to these forces
is monitored both spatially and temporally using conventional ultrasound methods [5]. Local
physiological motion is typically measured before the push pulse and after tissue recovery,
interpolated within the period during ARFI-induced motion, and removed or “filtered” from
the tissue response signal [6, 7]. The ARFI-induced tissue displacement is inversely related
to tissue stiffness, and tissue recovery response is related to tissue viscoelastic properties
[8, 9]. It is important to note that the measured ARFI-induced displacements are qualitative
surrogates for relative tissue stiffness, and do not directly quantify an absolute material
property [10]. ARFI imaging is optimally suited to discrete targets of differing stiffness, such as
ablation lesions.

SWEI imaging is another ARF-based elastography technique that uses acoustic impulses
to displace tissue, but rather than tracking the displacement in the region of ARF excitation,
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the SWEI method monitors the region laterally off-axis for the propagation of the radiation
force-induced transverse shear wave [11–13]. The velocity of propagation, or shear wave speed
(SWS), is a function of the tissue material properties and is proportional to the tissue stiff-
ness (shear and Young’s modulus). Traditional SWS calculations require a spatial kernel that
can result in lower resolution than ARFI imaging, and SWEI imaging is best used for quanti-
fying a global elasticity metric than for differentiating discrete targets [10]; more sophisticated
sequencing methods are under investigation to improve the resolution [13].

SWEI and ARFI imaging are currently implemented on software-modified diagnostic ultra-
sound scanners and use conventional and prototype ultrasound transducers for the generation
of radiation force and the tracking of the tissue response [14]. The use of conventional diagnos-
tic equipment provides the ability to acquire spatially and temporally co-registered traditional
B-mode images and facilitates fast translation to the clinic.

32.3 ARF-based Elasticity Assessment of Cardiac Function

Cardiovascular disorders are among the leading causes of morbidity and mortality in the world
and cardiovascular researchers have been trying to develop tools for clinical assessment of
cardiac function for decades. Ideally, a clinician could diagnose and monitor a treatment course
for common cardiac diseases with a noninvasive evaluation of cardiac function. The gold stan-
dard technique for cardiac mechanical assessment is the pressure-volume loop measurements
[15], a highly invasive test that requires catheter-based measurements of intra-ventricular
pressure and volume and therefore it has not been adopted widely in the clinic. To develop a
noninvasive technique, measures of cardiac function have been developed based on imaging
techniques such as ultrasound strain imaging and tissue Doppler imaging [16, 17]. While
promising, these measurements are usually indirect and load dependent. Therefore, there is
currently no noninvasive and dependable technique to provide direct measurement of systolic
and diastolic functions such as contractility, compliance, or relaxation time constant in clinical
practice.

32.3.1 ARF-based Measurement of Cardiac Elasticity and Function

Ultrasound elastography can provide direct tissue stiffness measurements throughout
the cardiac cycle, and cardiac functional indices can be extracted from these mechanical
measurements. As a qualitative elastography technique, ARFI imaging can provide relative
measurements of cardiac function such as a systolic/diastolic stiffness ratio or indices that
are time dependent such as relaxation time constants. In addition to these indices, SWEI
can provide a quantitative measurement of myocardial stiffness during systole and diastole
that represent contractility and compliance measurements respectively. Figure 32.1 shows the
myocardial stiffness through the cardiac cycle measured by ARFI imaging and SWEI. This
figure displays data acquired using M-mode ARFI imaging and SWEI in an isolated rabbit
heart setup. This figure illustrates that cardiac stiffness increases during systole as the heart
contracts and decreases in diastole when the heart is relaxed. A number of significant cardiac
functional indices that can be derived from these stiffness measurements are identified.

In 2007, Hsu et al. first used M-mode and 2D ARFI imaging to evaluate the changes in myocar-
dial stiffness through the cardiac cycle in an open chest canine heart model [7, 18]. Couade et al.
measured the diastolic shear modulus at ∼2 kPa and the systolic shear modulus as ∼30 kPa
using quantitative shear wave imaging methods [19].

Pernot et al. have studied contractility assessment using SWEI stiffness measurements
in isolated rat hearts by recording systolic stiffness before and after administration of
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Figure 32.1 (a) SWEI and (b) ARFI stiffness measurements through the cardiac cycle respectively. SWEI
measurements are shear modulus of stiffness and ARFI measurement are inverse displacement values (a
measure of stiffness). (c) Simultaneous ECG signal. Note that cardiac stiffness increases during systole as the
heart contracts and decreases during diastole when the heart is relaxed. The potential cardiac functional
indices are marked on the SWEI measurements curve.

isoproterenol, an inotropic agent [20]. The myocardial stiffness and change in stiffness over
time (d(stiffness)/dtmax) increased significantly during systole and represented contractility.
The measured myocardial stiffness also correlated strongly with isovolumic systolic pressure.
In addition, the study reports significantly higher diastolic stiffness in hypertrophic rat hearts
compared to a control group, suggesting shear wave imaging can quantify cardiac compliance.
In another study in an in vivo large animal model, Pislaru et al. showed that measurements of
passive myocardial elasticity quantified by a shear wave imaging method were correlated with
elastic modulus and pressure-segment length, an invasive measure of compliance [21].

In order to investigate the ability of SWEI to detect changes in compliance and contractility,
Vejdani-Jahromi et al. conducted experiments that used the known phenomena of the “Garden
Hose effect” and “Gregg effect” respectively on isolated rabbit hearts [22]. It was shown that
SWEI could detect the change in compliance due to the Garden Hose effect, the passive effect
of coronary perfusion on cardiac compliance. The Gregg effect is the active effect of coronary
perfusion on cardiac contractility. It was shown that SWEI could detect the increase in con-
tractility corresponding to the increase in coronary perfusion shown by other methods in the
literature. In addition, the Gregg effect was blocked by inhibiting Ca channels which resulted
in a decrease in the contractility changes by coronary perfusion [23]. Figure 32.2 shows the
effect of coronary perfusion pressure on cardiac contractility and compliance recorded by SWEI
at different coronary perfusion pressure steps [23]. The potential of deriving relaxation time
constant and systolic/diastolic ratio using ARFI imaging and SWEI techniques is also under
investigation [24].
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Figure 32.2 SWEI measurements of stiffness through cardiac cycle in an isolated rabbit heart. Myocardial
stiffness increases in systole and diastole as the coronary perfusion is increased, corresponding to the known
Gregg and Garden Hose effects. Systolic change is more prominent and is an active contractility change and
diastolic change is less significant with a passive effect on compliance, as shown in the literature by
pressure-volume loop measurement. This is consistent with the SWEI stiffness recordings [23].

Considering the complicated nature of cardiac tissue, one can anticipate several factors
that could affect elastography measurements of cardiac function. First of all, a linear, elastic,
isotropic medium is assumed in the calculation of shear modulus of stiffness from the shear
wave velocity or SWS [12]. However, it has been shown that cardiac tissue is a nonlinear,
viscoelastic, and anisotropic medium. The previously mentioned work by Vejdani-Jahromi
et al. could imply the nonlinearity of cardiac tissue [22]. Researchers have utilized viscoelastic
models to isolate elastic and viscous moduli of the cardiac tissue from each other [21, 25].
Therefore, it might be more practical if shear velocity is reported as the measure of stiffness
rather than converting it to shear modulus using the above-mentioned assumptions.

The quantitative measurements for ARFI imaging (displacement) and SWEI (SWS) are largely
affected by anisotropy, particularly regarding the dependency of the shear wave propagation
velocity on fiber orientation and the presence of heterogeneities [26, 27]. Myocardium is known
to be highly anisotropic [28, 29] and shear waves propagate faster along fibers; without knowl-
edge of local fiber orientation any quantitative measurements are of suspect value. A number of
studies have examined the effect of anisotropy on SWEI measurements in the cardiac tissue and
found significant effects of fiber orientation on SWEI shear wave velocity [19, 30, 31]. In addi-
tion, in an in vitro experiment Lee et al. showed that fiber angle could be mapped by rotating
the transducer and finding the maximum SWS at each myocardial layer. Further developments
using matrix probes could acquire and incorporate fiber orientation information into the elastic
parameter calculations, thus improving the accuracy of the myocardial stiffness measurement.

Another issue to consider when calculating ARF-induced SWS is the presence of
Lamb-Rayleigh waves, mechanical waves that propagate along the surface of a tissue.
Lamb-Rayleigh waves have different propagation properties than shear waves, and in
ARF-based imaging methods they are indistinguishable from shear waves and can affect the
SWS calculation. Nonetheless, Nenadic et al. found that the velocity of Lamb-Rayleigh waves
is related to the shear wave velocity [32, 33].

Further studies are needed to characterize the relationship between ARFI imaging,
SWEI-derived local elasticity measurements, and global measurements of cardiac function,
such as the pressure-volume loop and relaxation time constants. Furthermore, the relationship
between ARFI-derived indices compared to SWEI should be studied in detail. Cardiac func-
tional indices, including relaxation time constants measured by other techniques, need to be
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investigated and compared to the ones measured using ARF-based methods. In summary, this
is the first time in the history of cardiovascular research that a technique is able to detect the
stiffness of cardiac tissue directly in vivo, and these methods have great potential for research
and clinical applications in the field of cardiovascular research.

32.3.2 Clinical Translation of Transthoracic ARF-based Methods for Cardiac Stiffness
Assessment

As described in the previous section, imaging the stiffness of the heart with ultrasound has
yielded highly encouraging results in ex vivo isolated heart preparations as well as open chest
settings. While the above-mentioned studies demonstrate the ability of cardiac elastography
to provide novel information about myocardial function, its clinical applicability is contingent
upon the ability to extract these functional indices through noninvasive means such as transtho-
racic imaging.

Transthoracic translation of ARFI and SWEI has been the topic of significant research by
several groups over the last decade. Bradway et al. first demonstrated the ability of M-mode
ARFI to generate and track displacements in the interventricular septum through intercostal
and subcostal imaging windows on porcine subjects [34]. They observed cyclic variations in dis-
placement magnitude that corresponded to expected myocardial stiffness trends through the
cardiac cycle based on the simultaneous ECG signal. In 2012, they also reported on the safety
and feasibility of M-mode ARFI in human subjects at varying levels of mechanical index (MI)
at and above the FDA limit of 1.9 [35]. Their findings suggested that high MI sequences were
thermally and mechanically safe for human use. While the use of higher MI resulted in larger
tissue displacements in both cardiac phases, the ratio of diastolic to systolic displacements was
relatively steady, suggesting that this ratio could be used as a radiation force-independent met-
ric of cardiac function. Most recently, Kakkad et al. reported on implementing M-mode ARFI
with harmonic tracking on a clinical ultrasound system to interrogate the stiffness of the inter-
ventricular septum through the cardiac cycle in parasternal long and short axis views within
the FDA limits [36]. They measured diastolic to systolic displacement ratios in the range of 1.32
to 2.27 on human subjects. Figure 32.3 shows a transthoracic M-mode ARFI acquisition.

Studies using transthoracic SWEI have primarily been limited to measuring stiffness of the
myocardium at end diastole. Song et al. demonstrated improvements in the ability to track
shear waves in vivo in the left ventricle through a short axis view with the use of pulse inversion
harmonic tracking [37]. They measured mean end diastolic shear wave speeds of 1.56 m/s and
saw successful shear wave propagation in 80% of acquisitions. They have further shown that
improvements in success rates and shear wave signal quality can be made by tracking at higher
frequencies using pediatric phased array transducers [38].

Even though transient elastography has shown promise for transthoracic applications, the
results to date tend to have a large amount of variability associated with the derived indices of
cardiac function. The cause of this variability has largely been attributed to three main chal-
lenges: (i) the difficulty in generating substantial displacements at depth, ii) the difficulty in
accurately tracking induced displacements amidst ultrasonic clutter, and (iii) the difficulty in
separating radiation force-induced displacements from complex, multi-dimensional intrinsic
cardiac motion.

The first challenge can be addressed using high MI and/or longer push pulses. However the
FDA currently limits the MI of all ultrasound applications to 1.9, and the use of longer pulses
raises concerns about transducer and tissue heating. Stationary ultrasonic clutter is a routine
issue in transthoracic imaging [39]. It not only degrades border detection and image quality but
also adversely affects the accuracy of displacement tracking algorithms that are at the heart of
ultrasound elastography [5]. The use of pulse inversion harmonic on tracking has been shown to
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Figure 32.3 Transthoracic M-mode ARFI displacements in the interventricular septum measured through a
parasternal long axis view. When compared with simultaneous ECG, the ARFI displacements show the
expected cyclic pattern with high displacements in diastole (prior to P-wave) and low displacements in systole
(following the QRS complex).

improve the quality of displacement estimates for ARFI imaging [40] and SWEI [37]. Plane wave
coherent compounding has also been shown to suppress clutter and improve displacement esti-
mation [41]. Motion filtering has traditionally been performed after displacement estimation
to remove axial components of tissue motion using linear or quadratic polynomial fit algo-
rithms [6, 18]. However, the heart goes through complex motions, such as stretch, shear, and
torsion, which need to be accounted for in order to better characterize its mechanical response
to spatially confined impulsive excitations.

Given the inherent challenges posed by transthoracic imaging windows, transesophageal
echocardiography (TEE) could provide a more viable alternative for the interrogation of cardiac
elasticity. Transesophageal imaging would allow for lower clutter levels, better image quality,
and shorter depths of penetration to the cardiac walls of interest at the expense of being a more
intrusive procedure compared to transthoracic imaging. This avenue, while theoretically feasi-
ble, has yet to be explored in practice due to the limited availability of TEE probes capable of
generating ARF excitation pulses.

Noninvasive measurement of cardiac stiffness through transthoracic imaging has great prog-
nostic potential to diagnose a myriad of cardiomyopathies. Indices of cardiac function derived
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from transient elastography could be used to differentiate between systolic and diastolic heart
failure, identify hypertrophy, assess transplant rejection, etc. Overcoming the challenges for
these techniques could lead to a robust, real-time tool with wide applications in general and
interventional cardiology.

32.3.3 ARFI Imaging of Myocardial Ischemia and Infarct

ARFI and SWEI techniques have been explored as a means of characterizing damaged
myocardium following an ischemic event. Couade et al. noted a reversible decrease in systolic
shear wave speeds in response to temporary local ischemia induced by ligation in open-chested
sheep [19]. Hollender et al. used intracardiac ARFI and SWEI (M-mode and 2D × time) to
image pigs that had focal infarctions induced by coronary occlusion, finding local decreases
in contractility months after the event and increased diastolic stiffness within the infarcted
septum [42]. The same study noted the spatial heterogeneity of stiffness and contractility
measurements, corresponding to the scattered locations of infarct confirmed with ex vivo
MRI. The complexity of ischemic heart disease presents an opportunity for an ARFI-based
imaging system to have diagnostic impact, but requires a solution for reliably imaging the
elasticity of large sections of myocardium with high spatial and temporal resolution throughout
the cardiac cycle that is yet to be demonstrated.

32.4 ARF-based Image Guidance for Cardiac Radiofrequency
Ablation Procedures

Cardiac arrhythmias, heart rhythm disorders caused by fast, slow, or irregular heartbeats, affect
millions patients each year. The most commonly diagnosed arrhythmia in clinical practice is
atrial fibrillation (AF), which affects between 3 and 6 million people in the United States annu-
ally [1, 43]. Arrhythmias such as AF can arise due to a variety of factors (abnormal tissue,
random firing), but most can be diagnosed with a comprehensive electrocardiography exam
[43]. Nearly all cardiac arrhythmias can be managed with pharmaceutical intervention or pal-
liatively treated with transcatheter ablation (TCA) [44]. Tens of thousands of TCA procedures
are performed in the US annually, and diagnoses of AF are expected to more than double in the
coming decades [1].

TCA aims to restore the normal rhythm of the heart by directly destroying or electrically
isolating abnormally conducting myocardium with thermal radiofrequency ablation (RFA)
lesions. To permanently stop the arrhythmia, the RFA lesions must extend the full depth of
the myocardium (be transmural) and lesion lines must not have conductive gaps in between
discrete lesions [45–47]. TCA procedures can be curative, but there is currently no clinically
available method to directly visualize RFA lesions in the tissue; without a reliable way to assess
lesion presence, size, and transmurality, post-TCA arrhythmia recurrence is common and a
significant number of patients (10–30%) require additional ablation procedures [48]. Ideally,
direct visualization of the ablated region following RF delivery would provide feedback of RFA
lesion presence and transmurality as well as lesion line continuity.

RF-induced tissue heating creates a localized necrotic lesion that is stiffer than the surround-
ing myocardium. This change in viscoelasticity is due to the thermocoagulation and denatura-
tion of the myocardium structural proteins (collagen [49], elastin) and myofilaments (myosin,
actin [49–53]). Myocyte injury and tissue necrosis during thermal ablation are considered per-
manent and irreversible once protein thermocoagulation has occurred [50, 54], making relative
tissue stiffness a useful measure for acutely differentiating a permanent lesion from healthy
myocardium.
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Eyerly et al. demonstrated that ARFI imaging could visualize the active stiffening process
of the myocardium during thermal lesion formation in vitro [55]. It was found that the mean
ARF-induced displacements measured outside the lesion remained consistently high, but dis-
placements decreased inside the pathological lesion during RF delivery. This finding confirmed
that RF-induced thermocoagulation actively stiffened the lesion site and that ARFI imaging
could detect the change in relative tissue stiffness. It is important to note that in this case the
stiffening was not due to immune-fluid swelling or edema [56] as the preparation was in vitro.

In another in vitro experiment, Pernot et al. measured the increase in absolute tissue stiff-
ness at RFA sites to be roughly twice that of the unablated tissue (unablated Young’s modulus
∼27 kPa vs. ablated ∼54 kPa) using shear wave imaging methods [57]. Kwiecinski et al. simi-
larly measured the increase in shear modulus at two- to five-fold (22 ± 5 kPa unablated vs. 99
± 17 kPa ablated) after ablation in vitro using shear wave elastography methods [58]. The accu-
racy of using ARFI imaging to determine RFA lesion size was investigated in vitro by Eyerly
et al. [59]. This study determined that lesion dimensions from ARFI and pathology images were
statistically similar, exhibiting borders within 1–2 mm.

32.4.1 Clinical Translation of ARFI Imaging for Acute Ablation Lesion Assessment

Translation of ARF-based imaging methods for intraprocedure visualization of RFA lesions in
an in vivo heart introduces five primary considerations: (1) the stiffness contrast of the lesion
during the cardiac cycle, (2) the effects of bulk tissue motion on the displacement estimations,
(3) transient physiological tissue stiffening processes, such as edema, that can affect the accu-
racy of the stiffness-based lesion visualization, (4) imaging access, and (5) correlation of the
elastography-defined lesion with electrical block.

Acquiring ARFI images in diastole resolves considerations (1) and (2). As described in the
cardiac function section, the myocardium is most compliant during diastole, and diastole-gated
ARFI imaging maximizes lesion contrast [57, 58, 60–62]. Figure 32.4 illustrates the relative stiff-
ness difference between systole and diastole around a ventricular epicardial RFA lesion [60].
The lesion is visible as a semicircular region of relatively low ARFI-induced displacement (dark
blue). Using shear wave imaging, Kwiecinski et al. found absolute atrial stiffness was lowest
during diastole (R-wave) for both unablated and ablated myocardium [58]. Also, late diastole
is the time of least intrinsic motion during the cardiac cycle and reduces the effects of bulk
cardiac motion on the tissue displacement measurements. It has been shown that bulk cardiac
motion can be effectively managed with post-processing “motion-filter” techniques [6]. Over-
all, diastole gated ARFI imaging provides the highest contrast between any stiff lesions and the
surrounding myocardium, but this approach limits the acquisition frame rate to one image per
heartbeat.

While in vitro work demonstrated the ability of ARFI imaging to visualize thermocoagu-
lated lesions, the myocardium surrounding the pathological lesion in vivo can be temporarily
affected by the diffusive hyperthermia immediately following ablation [63–65]. This “border”
zone is characterized by injured or “stunned” myocytes that suffer a temporary loss of cellular
excitability and immune-fluid infiltration or edema [56, 63–65]. A study by Grondin et al. mea-
sured an increase in tissue stiffness (decrease in strain) at RFA sites in human patients using
strain-imaging methods [66]. In three patients, they reported that the average of the abso-
lute strain measurements decreased from 16.2 ± 17.7% to 10.0 ± 10.7% when re-measuring
the strain of the ablation site at a later time step (5 to 20 minutes). These results suggested
there was a stiffening of the tissue at the ablation site in the peri-ablation period; the stiffening
could have been due to a hydrostatic pressure increase from acute transient edema at the ther-
mal injury site that was large enough to increase the local tissue stiffness. Therefore to address
consideration (3), Eyerly et al. characterized the spatial and temporal stability of the lesion, or
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Figure 32.4 ARFI images of a right ventricular epicardial RFA lesion through the cardiac cycle. A nonirrigated
electrode tip ablated the epicardial surface (EPI = epicardium, ENDO = endocardium) for 7 s at 20 W. (a) ARFI
images acquired at different times during the cardiac cycle: (1) and (4) during diastole, (2) during systole, and
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lesion, the ARFI-induced displacement is low throughout the cycle. The normal myocardium cycles between
high displacement during diastole and low displacement during systole. (b) ARFI acquisition times
corresponding to the ECG. Source: reprinted from [60], Copyright 2012, with permission from Elsevier.

region of stiffness increase (RoSI), in the peri-ablation period in vivo [48]. In six canine sub-
jects, SWEI measurements and 2D ARFI images were acquired at six ventricular endocardial
RFA sites before, during, and for 30 minutes post ablation. The imaging transducer was placed
on the epicardial surface and the imaging plane penetrated inward while the ablation catheter
and RFA was applied inside on the endocardial surface; the ablation catheter blocks the ARF
excitation and this way the catheter was below the tissue being evaluated with ARFI imaging.
In this setup, an immediate increase in tissue stiffness was detected during RFA, and the area of
the RoSI as well as the relative stiffness at the RoSI center were stable approximately 2 minutes
after ablation. Of note is the observation that relative stiffness in the region adjacent to the RoSI
increased slightly in the first 15 minutes after ablation, consistent with local fluid displacement
or edema. The magnitude of this increase, ∼0.5-fold from baseline, was significantly less than
the magnitude of the stiffness increase directly inside the RoSI, which was greater than 3-fold
from baseline.

To translate ARF-based imaging techniques for clinical use in the hearts of human patients
during TCA procedures, ARFI imaging and shear wave imaging methods were developed on
intracardiac echocardiography (ICE) platforms [42, 58, 61, 62, 67]. ICE is clinically performed
with a phased-array ultrasound transducer on an 8-10 French catheter, and during TCA pro-
vides real-time visualization of the cardiac anatomy and function from within the cardiac cham-
bers [68–71]. ICE is an indispensable tool for guiding safe and accurate trans-septal punctures
for left atrial (LA) access [68, 71–73] during ablation procedures and is often used for visualizing
catheter placement and tissue contact for effective RF delivery.
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Fahey et al. in 2005 and Hsu et al. in 2007 [61, 62] conducted preliminary in vivo feasibility
studies of ICE-ARFI imaging in a canine model; they observed an increase in tissue stiffness at
three endocardial RFA sites, evident by a decrease in the measured ARFI-induced displacement
[62]. This work also described the challenges encountered when implementing ARFI imaging
from an ICE catheter in vivo [62]. For example, it was discovered that the flexible transducer tip
experienced a small rebound force, or “kick-back” from the generation of the ARFI excitations
that is then measured along with the tissue-displacement response. Kwiecinski et al. reported
a similar phenomenon when using ICE-based shear wave elastography [58]. Methods to min-
imize the effect of this kick-back on the data, such as adding “priming-pulses” to pre-load the
imaging catheter before the tissue-excitation sequence [62], are being used and more sophisti-
cated methods are under investigation. Additional challenges related to maximizing the energy
delivery and the uniformity of the energy across the field of view were also described by Hsu
et al. [62]. Their investigation suggested the ICE catheter be positioned at an imaging focal depth
within 2 cm of the endocardium and as parallel to the transducer face as possible; this maxi-
mizes the induced displacement (contrast) and minimizes depth-dependent energy delivery to
the tissue [9, 62, 74].

Eyerly et al. integrated the ICE-ARFI imaging techniques developed by Fahey et al. and Hsu
et al. with an electroanatomical mapping (EAM) system, and used the combined system to
precisely gather ARFI images of RFA lesions during TCA procedures in canine subjects [60, 75].
Readers of the ARFI images identified stiff lesion locations with high specificity and sensitivity
and found that average measured displacements were lower in ablated myocardium (6.06 ±
0.94 μm) than unablated (11.23 ± 1.71 μm) myocardium; average lesion contrast was 0.29 ±
0.33 and the contrast to noise was 1.83 ± 1.75 [75]. Similarly, Kwiecinski et al. found a SWS
increase ratio of 1.8 ± 0.3 from unablated to ablated with ICE-based shear wave imaging in a
preclinical study in sheep [58].

To be a clinically relevant method for lesion evaluation during TCA, the stiffness-identified
lesions in the ARFI images must also correlate with the electrical substrate modification or elec-
trical block at the ablation site. Eyerly et al. conducted an experiment that showed ICE-ARFI
imaging was able to identify lesions that correlated with the electrical destruction of the tissue
[60]. Using the integrated ICE-ARFI imaging and EAM system, in eight canine subjects review-
ers of the ARFI images identified conduction-disturbing RFA-treated sites with high sensitivity
(95.7%) and specificity (91.5%). Identification of contiguous lesion sets or complete electrical
block based on the ARFI images had 75.3% specificity and 47.1% sensitivity. An example from
this study is shown in Figure 32.5. Before RFA the myocardial elasticity is homogeneous with
relatively high ARFI-induced displacements (Figure 32.5, part 1C) and electrical propagation,
represented by the color gradient, is smooth and uninhibited (Figure 32.5, part 1A). When a
conductive unablated gap was left in the lesion line (Figure 32.5, part 2A), this is visible as the
area of high tissue displacement (>7.5 μm) surrounded by areas of relatively low tissue dis-
placements (<4.5 μm) in the ARFI image (Figure 32.5, part 2C). The final ARFI image shows
a homogeneous region of low displacement (Figure 32.5, part 3C) correlating with the line of
conduction block (Figure 32.5, part 3A), confirming complete ablation of the gap. This study
also highlighted the necessity of the EAM system to guide the 2D ARFI imaging plane for effi-
cient imaging of the RFA targets. Further development of 3D ARFI imaging methods[76] would
be necessary to make ARFI a standalone tool for lesion assessment.

32.4.2 Preliminary Clinical Investigations of ARFI Imaging of Ablation Lesions

The preclinical work presented in the previous section demonstrated ARF imaging methods
could visualize the relative stiffness difference between untreated myocardium and RFA lesions
in vivo and that the stiff lesions created electrical propagation modifications. Based on these
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Figure 32.5 An example of three ARFI image-EAM map pairs. Row 1: acquired before RFA. Row 2: acquired
after intentionally creating a 1 cm conductive gap. Row 3: acquired after closure of the 1 cm gap. Column A:
electrical maps showing the imaging fan position in the canine right atrium and the location of delivered RFA
lesions (red spherical markers). Column B: conventional B-mode images acquired at the location indicated on
the LAT maps. There is no lesion visible in the B-mode images. Column C: maximum ARFI-induced
displacement images. The color bar units are microns of tissue displacement away from the transducer. RFA
lesion sites are visible as regions of lower relative displacement (stiffer tissue). Source: reprinted from [60],
copyright 2012, with permission from Elsevier.

findings, a pilot clinical study by Bahnson et al. was undertaken to investigate the feasibility of
intraprocedure RFA lesion evaluation with ARFI imaging in human patients [77]. In this study,
intraprocedure ICE-ARFI images successfully identified acute RFA lesions in common ablation
targets in the human heart, and ARFI imaging identified a ∼47% reduction in the relative stiff-
ness at RFA sites. This finding is similar to the difference between the increases in stiffness seen
in the previously mentioned studies. An example image from this study is shown in Figure 32.6;
the figure depicts ARFI imaging of sequential RFA sites at the LA roof of a patient undergoing
TCA for AF. Tissue stiffening, relative to adjacent unablated tissue in the field of view, is pro-
duced by the sequential application of RF energy. The initial ablation near the left of each panel
produced tissue stiffening that was reproducibly imaged over a period of the several minutes.

Based on the success of preclinical results and preliminary clinical trials, further investiga-
tion of ARFI imaging for intraprocedure ablation lesion assessment is underway. Improvements
in imaging technology, image sequencing, and scanner and catheter hardware would greatly
increase the chances of this technology being successfully integrated into clinical TCA pro-
cedures. Opportunities also exist for elastography-based assessment of chronic lesions and
endogenous atrial scar tissue characterization for improving TCA treatment strategies [78].
If successfully translated for clinical use, elastography-based lesion assessment could improve
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microns of tissue displacement away from the transducer. Source: reprinted from [77], copyright 2012, with
permission from John Wiley and Sons.

the accuracy and safety of TCA procedures with minimal modifications to current procedure
methods and equipment.

32.5 Conclusions

ARF-based elastography techniques have recently been under investigation for cardiac imag-
ing applications. ARF-based imaging methods offer a myriad of opportunities for the diagnosis
and treatment of various cardiac diseases as it provides previously unavailable information on
the local dynamic stiffness characteristics of tissue. The content in this chapter presents the
encouraging results encountered in our research into cardiac ARF-based elastography. Also,
both ARFI imaging and SWEI techniques can be implemented on conventional ultrasound
scanners and probes, thus providing a portable and cost-efficient imaging modality for car-
diac imaging. These promising results highlight the many opportunities to improve and refine
ARFI imaging and SWEI techniques for cardiac applications.
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Cardiovascular Application of Shear Wave Elastography
Pengfei Song and Shigao Chen

Department of Radiology, Mayo Clinic, Rochester, MN, USA

33.1 Introduction

Cardiovascular diseases cause 17.3 million deaths a year worldwide, according to the World
Heart Federation, and are the leading causes of death in the United States, claiming more lives
than all forms of cancer combined [1]. Echocardiography has been playing a significant role in
diagnosis and prognosis of cardiovascular diseases, thanks to its high imaging frame rate, low
cost, and powerful imaging tools such as Doppler blood flow imaging and strain imaging. As
evidenced by the success of strain imaging in cardiovascular applications, biomechanical prop-
erties of the myocardium and vessels are strong biomarkers for the state of the cardiovascular
health [2]. Strain imaging directly measures the dynamic deformation of the tissue, and pro-
vides semi-quantitative assessment of myocardial and vascular stiffness in terms of strain or
strain rate [3]. For instance, the ischemic infarcted myocardium contracts less than the normal
myocardium and thus exhibits lower strain in strain maps [4]; fatty plaque tissue is softer than
fibrous plaque tissue and therefore is represented as regions with higher strain. The main draw-
back of strain imaging, however, is the unknown stress field within cardiac or vascular walls,
which makes quantitative assessment of cardiovascular stiffness challenging.

In the last decade, significant amounts of effort have been made to pursue quantitative assess-
ment of cardiovascular viscoelasticity using shear wave-based techniques. Similar to the imple-
mentation of shear wave elastography in other soft tissues, one can quantify both shear elasticity
and shear viscosity of the cardiovascular tissue by inducing shear waves and solving the shear
wave equation. Thanks to the fast imaging speed, shear wave elastography can be used to mea-
sure dynamic cardiovascular stiffness throughout the cardiac cycle with high temporal and spa-
tial resolutions [5–7], which is similar to strain imaging. However, different from strain imaging,
shear wave imaging provides direct and quantitative measurements of the myocardial and vas-
cular wall stiffness in the units of shear modulus, which is usually not available with strain
imaging. The quantitative nature of shear wave enables measurement of local contractility of the
heart and diastolic myocardial stiffness [5, 8–12], which have significant clinical values for many
cardiovascular diseases. At present, many different shear wave imaging techniques have been
developed for cardiovascular applications, including various shear wave generation methods
[13–16], shear wave detection methods [10, 17], and inversion methods [18–21]. Cardiovas-
cular application of shear wave imaging includes myocardial infarction [14, 22, 23], real-time
assessment of myocardial contractility [8], myocardial architecture imaging with myocardial
fiber orientation mapping [24, 25], quantitative evaluation of atrial radio frequency ablation
[26], coronary perfusion pressure quantification [27], and carotid artery plaque characteriza-
tion [28, 29], with new clinical applications being actively explored. In this chapter, we will first
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review the different cardiovascular shear wave imaging techniques, followed by a brief review
of the aforementioned different cardiovascular applications of shear wave elastography.

33.2 Cardiovascular Shear Wave Imaging Techniques

33.2.1 Cardiovascular Shear Wave Generation Methods

Three main shear wave generation methods have been developed for cardiovascular appli-
cations: external mechanical vibration, acoustic radiation force, and intrinsic physiological
motion. Figure 33.1 shows an example of the external mechanical vibration setup used by
Urban et al. [13]. A similar setup has been used by others [20, 23, 30]. In this category of
methods, a mechanical coupling (e.g. shaker rod) is established between the tissue and
the external shaker device to induce shear waves into the myocardial or vascular wall. The
shaker rod can be placed on the surface of the plate-like tissue, such as myocardial wall, to
produce Rayleigh waves, or be inserted throughout the thickness of the myocardial wall to
produce Lamb waves [19]. Here we use shear waves to represent different types of waves for
succinctness. We will explain the differences in the next section. For shear wave detection,
an ultrasound transducer is positioned close to the shear wave source and tracks the shear
wave motion. The advantage of using external mechanical vibration is that high-amplitude
and multi-frequency (40–500 Hz) shear waves can be produced, which is ideal for assessing
viscoelastic properties of the myocardium and vessel wall. However, because the shaker needs
to be mechanically coupled to the tissue, for cardiac applications this setup is best suited for
open-chest in vivo experiments or excised in vitro studies. For closed-chest transthoracic
cardiac imaging, an external acoustic driver can be placed on the surface of the chest wall
to generate shear waves into the myocardium, which is commonly used in cardiac magnetic
resonance elastography (MRE) [31–37]. This method is currently under investigation for
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Figure 33.1 Shear wave generation with external mechanical vibration. (a) Rod with a ball bearing attached to
the mechanical shaker is placed onto the surface of the myocardial wall. A linear array transducer was
suspended above the heart wall and coupled with water-filled latex cover for shear wave detection. (b) Rod
with a plate and steel cylinder bearing attached to the mechanical shaker is placed onto the surface of the
myocardial wall. (c) M-mode recording of the wave motion generated by the mechanical shaker. Small
oscillations can be observed from the 150 Hz vibration in the magnified inset. Source: © 2013 IEEE, reprinted,
with permission, from [13].
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Figure 33.2 (a) The same ultrasound transducer was used for both shear wave generation using acoustic
radiation force and for shear wave detection. The transducer is rotated around the pushing beam axis to
investigate myocardial anisotropy. (b) B-mode image of the myocardium; (c)–(e) Color-coded shear wave
motion signal superimposed to the B-mode image at different time instants after the push beam. Source: ©
2011 IEEE, reprinted, with permission, from [5].

cardiac ultrasound implementations [38]. For vascular applications, one may be able to attach
the shaker to the surface of the body to generate shear waves in superficial vessels such as the
carotid artery, with the compromise of shear wave attenuation by surrounding tissues and the
complicated wave field. MRE has shown the potential of using the acoustic driver to generate
shear waves to deep vessels such as the abdominal aorta and assess the arterial stiffness [39].
One can use a similar vibration setup and use an ultrasound transducer to detect the shear
wave motion.

The second method for cardiovascular shear wave generation is the use of acoustic radia-
tion force (ARF) to remotely produce shear waves inside the tissue [40]. Figure 33.2 shows a
supersonic shear imaging (SSI) implementation of this method [5]. A push beam is first trans-
mitted to exert acoustic radiation force onto the tissue, which generates two shear wave fronts
propagating in opposite directions away from the push beam (Figure 33.2, right panel). The
same transducer is then used to track the shear wave motion with the ultrafast compound
plane wave imaging technique [5]. ARF-based shear wave elastography can be implemented
both on transthoracic phased arrays or intracardiac echocardiography catheter arrays [14, 15].
ARF-induced shear waves are transient and broadband, and can also be used for assessing vis-
coelasticity of the myocardial and vessel wall [5, 6, 21, 41]. The advantage of the ARF method is
that the shear wave is being generated and detected by the same transducer, which can be used
for both open-chest epicardial imaging and closed-chest transthoracic imaging [9, 10]. Mean-
while, as compared to the mechanical vibration method, the propagation direction of the shear
wave is better controlled for the ARF method in closed-chest transthoracic imaging, which
significantly simplifies the inversion process. However, ARF-induced shear waves suffer from
the low wave motion amplitude caused by acoustic attenuation to the push beam, and conse-
quently suffers from poorer signal-to-noise ratio (SNR) for closed-chest transthoracic imaging.
Also, the ARF method requires a quasi-orthogonal relationship between the push beam and
the tissue to ensure effective shear wave generation. For scan views where the myocardial wall
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is vertical (e.g. the left ventricular walls under apical 4-chamber view) and parallel to the push
beam, shear waves cannot be effectively generated.

The final shear wave generation method is based on intrinsic physiological motion. It has been
shown that during a cardiac cycle, multiple spontaneously actuated pulsive vibration motions
propagate in the heart wall, which can be utilized to measure both elasticity and viscosity of the
myocardium [16, 42–44]. Among these waves, the diastolic myocardial stretch (Figure 33.3, left
panel) induced by atrial systole or atrial kick enables robust shear wave measurements and has
been validated by sonomicrometry [16]. This wave can be used to quantify diastolic ventricular
myocardial stiffness. For vascular applications, pulse waves generated at the ejection phase of
the left ventricle have been widely used to measure arterial stiffness (Figure 33.3, right panel),
which has shown significant clinical value [45–48]. The advantage of using intrinsic physiologi-
cal motion is that no additional shear wave sources are required. However, the wave source can
be ambiguous and the wave propagation can be complicated. Advanced tracking techniques
such as high frame-rate 3D imaging may be necessary to capture the full propagation pattern in
cardiac tissue and obtain the correct wave speed. Also, intrinsic shear wave generation can be
unstable and variable among different subjects. For instance, the atrial-kick induced diastolic
wave does not work in patients without atrial systole.

33.2.2 Cardiovascular Viscoelasticity Calculation Methods

Both the myocardial and vascular walls are viscoelastic tissues and show significant
frequency-dependent wave speed dispersion [6, 19–21]. It has been suggested that because
the thickness of the cardiovascular wall is comparable to the wavelength of the shear wave,
it is more appropriate to term these waves as Lamb waves instead of shear waves [6, 20, 42].
Differentiating Lamb waves from shear waves is important in wave dispersion analysis where
the correct wave model is needed to calculate elasticity and viscosity. If only the group velocity
is measured, the two terms can be used interchangeably because Lamb waves are one type of
shear wave. For waves generated directly inside the cardiovascular tissue (e.g. the embedded
shaker rod or ARF-induced shear waves), the waves can be treated as Lamb waves. For waves
generated from the surface of the tissue (e.g. a shaker rod attached to the tissue surface), the
resulting wave can be a Rayleigh wave if the excitation frequency is high and a Lamb wave if
the excitation frequency is low. It has been shown that Raleigh waves converge to Lamb waves
at high frequencies and, therefore, it is possible to use the Lamb wave dispersion model for
viscoelasticity measurements [19].

The detailed derivation of the Lamb wave equations can be found in Couade et al. [6] and
Nenadic et al. [20]. For post-processing, the wave motion signal is typically converted to Fourier
domain for frequency-dependent analysis [6, 20, 21]. Phase velocities of the wave as a function
of frequency can be obtained in Fourier domain, from which model fitting can then be per-
formed to calculate elasticity (𝜇1) and viscosity (𝜇2). Figure 33.4 shows examples of myocardial
Lamb wave dispersion analysis and carotid artery dispersion curves.

Dispersion analysis provides comprehensive details of elasticity and viscosity of the tissue.
However, it is sensitive to noise and needs a relatively wide band shear wave signal to achieve
robust model fitting. For in vivo applications, group velocity of the shear wave is more robust to
noise and more commonly used to quantify the stiffness of the cardiovascular tissue. Neglecting
dispersion and viscosity, shear wave speed (cs) is related to the shear modulus (𝜇) of the tissue
by:𝜇 = 𝜌c2

s , where 𝜌 is the density of the tissue and can be assumed to be 1000 kg/m3. Shear wave
group velocity can be measured by a variety of methods such as time-to-peak and time-of-flight
[5, 49], cross-correlation [50, 51], and Radon-transform [9, 10]. The final results can be 2D shear
wave speed or shear modulus maps (Figure 33.5a), or 1D point measurements from a local
region of the tissue (Figure 33.5b).
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33.2.3 Cardiovascular Shear Wave Detection Methods

Shear wave speed in cardiovascular tissues ranges from ∼1 m/s to over 10 m/s, which demands
high frame-rate ultrasound imaging to robustly track the shear wave propagation. If a conven-
tional line-by-line scanning scheme is used, one needs to substantially reduce the number of the
imaging lines to satisfy frame rate [16, 42]. Ultrafast compound plane wave imaging can reach
very high imaging frame rates with high spatial and temporal resolutions, which is ideal for car-
diovascular shear wave detection [5–8]. To increase the dimension of the tracking region, one
can use coherent compounding diverging wave imaging with very high frame rate [52, 53]. In
cardiovascular imaging, ultrasound clutter noise can be severe, which significantly deteriorates
the shear wave signal quality. Recently Song et al. proposed to use pulse-inversion harmonic
imaging for shear wave detection and showed substantial improvement of shear wave signal
quality under in vivo transthoracic scans compared to detection using fundamental imaging
[10]. Pulse-inversion harmonic imaging has also been implemented in detecting ARF-induced
tissue motion for carotid artery [17].

33.3 Clinical Applications of Cardiovascular Shear Wave
Elastography

Like other tissues, stiffness is a strong biomarker for diagnosis and prognosis of numerous
cardiovascular diseases. The quantitative shear elasticity measurements obtained with ultra-
sound shear wave elastography offers great potential for many clinical applications. Here we
briefly review some of these clinical applications, including ischemic myocardial infarction,
assessment of myocardial contractility, myocardial architecture imaging, evaluation of atrial
radio frequency ablation, coronary perfusion pressure quantification, and carotid artery plaque
characterization.
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33.3.1 Ischemic Myocardial Infarction

Several animal studies have investigated the feasibility of using shear wave elastography to quan-
titatively measure myocardial stiffness changes induced by ischemic myocardial infarction and
reperfusion [14, 23, 54]. It was found that for reversible ischemia (stunned), systolic myocardial
shear elasticity first decreased with ischemia, and then gradually increased back to the baseline
level after reperfusion; diastolic myocardial shear elasticity did not change significantly [54]. For
irreversible ischemia (infarction), Pernot et al. reported decreased myocardial shear elasticity
during ischemia and finally increased myocardial shear elasticity after reperfusion, while dias-
tolic myocardial stiffness gradually increased during ischemia and reperfusion [54]. Pislaru et al.
reported both increased diastolic shear elasticity and shear viscosity after reperfusion, while less
consistent changes were found during systole [23]. Using an intracardiac catheter transducer,
Hollender et al. reported increased shear wave speeds in infarcted left ventricular free wall,
but no significant stiffness change in the intraventricular septum and no significant myocardial
remodeling was observed [14]. It was noted in these studies that myocardial anisotropy can
significantly vary the measured shear wave speed; therefore, the myocardial fiber orientation
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needs to be accounted for when comparing shear wave speed measurements. Also, shear elas-
ticity measurement is preload dependent. Shear wave speed measurements are more variable
in systole than in diastole due to cardiac motion and high systolic shear wave speed. Mean-
while, because of the short propagation distance of shear waves due to significant shear wave
attenuation in myocardium, only a small region of the myocardium can be imaged. Therefore,
this method only works for pre-identified localized infarctions.

33.3.2 Assessment of Myocardial Contractility

Myocardial contractility is conventionally measured invasively by catheterization. A noninva-
sive technique that can monitor myocardial contractility in real time is of great interest. Pernot
et al. investigated the use of shear wave elastography for myocardial contractility assessment
and showed a strong correlation between the systolic myocardial stiffness and the systolic pres-
sure, which indicates that peak systolic myocardial stiffness has the potential to be used as an
index of myocardial contractility [8]. It was found that end-systolic myocardial stiffness was
relatively load independent. Although the study was performed ex vivo on a Langendorff setup,
it should be applicable for noninvasive imaging of the human heart.

33.3.3 Myocardial Architecture Imaging

Myocardium is a highly anisotropic tissue with organized myofibers oriented from approxi-
mately −60∘ near the epicardium to +60∘ near the endocardium [24]. It is known in physics
that a shear wave propagates faster along the fiber than across the fiber. Therefore, by using
shear wave elastography, one can map the myocardial fiber orientation to detect abnormal
myocardial fiber orientation for hypertrophic or ischemic myocardium. In an in vivo open-chest
animal model, Lee et al. showed strong correlation between shear wave mapped myofiber ori-
entation and histology findings (Figure 33.6). They further demonstrated successful mapping
of transmural fiber orientation in three beating ovine hearts [24]. In another study by Lee et al.,
good correlation of myofiber orientation mapping was found between shear wave elastography
and magnetic resonance diffusing tensor imaging [25]. Noninvasive in vivo imaging of human
myocardial fiber orientation is under investigation. Recently Song et al. reported that in in vivo
human (both adults and pediatrics) transthoracic shear wave imaging, the myocardial shear
wave speed measurements obtained from a parasternal short-axis view are significantly higher
than those obtained from a parasternal long-axis view [11, 12]. These results corroborate with
the animal study results by Lee et al. However, for in vivo human imaging, the available trans-
ducer rotation angles may be limited in transthoracic scans [11, 12]. Also, the accuracy of the
method may be compromised by the low shear wave signal quality in vivo [11, 12].

33.3.4 Evaluation of Atrial Radio Frequency Ablation

Radio frequency catheter ablation (RFCA) is a well-established procedure for atrial fibrilla-
tion. However, precise ablation monitoring still remains challenging in the clinic. Kwiecinski
et al. recently demonstrated the feasibility of using shear wave elastography on an intracardiac
catheter transducer to quantitatively evaluate RFCA [26]. An approximately 4.5-fold increase
in stiffness was observed in ablated ex vivo tissue, and a 3-fold increase in shear modulus was
observed in vivo in three sheep (Figure 33.7) [26]. It was noted that the lack of navigation system
was very challenging for the alignment of the ultrasound and the RFA catheters. Fluoroscopy
was used in this study for the alignment. However, this major limitation can be addressed by a
dual mode approach that uses a single catheter system which can both image and ablate with
ultrasound.
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toward that in the subepicardial (right) circumferential-longitudinal slices. (c) Shear wave imaging fiber
orientation plot and the comparison of transmural fiber angles between shear wave imaging and histology
measurements from the same sample shown in (b). Source: © 2012 IEEE, reprinted, with permission, from [24].

33.3.5 Coronary Perfusion Pressure Quantification

A recent study by Vejdani-Jahromi et al. reported a good correlation between diastolic shear
modulus measured by shear wave elastography and the coronary perfusion pressure on a
Langendorff perfused rabbit heart setup [27]. Shear wave speed was found to be linearly
correlated with the randomly varying coronary artery pressure. The study suggests SWEI
might be used to evaluate the compliance of the heart when it is damaged by various cardiac
disorders – including coronary artery diseases, diastolic heart failure, transplant rejection, or
chemo-induced cardiotoxicity [27].

33.3.6 Carotid Artery Plaque Characterization

Carotid artery plaque characterization has been extensively investigated by non-shear
wave-based techniques such as strain imaging [55–58] and acoustic radiation force impulse
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Figure 33.7 Shear wave speed maps in normal (middle), ablated (right) right atrial tissue, with B-mode images
taken before ablation (left). The mean shear wave speed value varied in the central region of the sample from
1.6 ± 0.3 m/s in normal tissue to 3.3 ± 0.4 m/s in the ablated zone. Source: reprinted with permission from
AAPM [24].

(ARFI) imaging [59–64]. Shear wave elastography applications were recently investigated by
Ramnarine et al. [28, 29] and Widman et al. [65]. Both Ramnarine et al. and Widman et al.
reported good repeatability and low sensitivity to pulsatile flow when using shear waves
to quantify plaque stiffness [28, 65]. Widman showed good agreement of plaque stiffness
measurement between shear wave imaging and mechanical tensile testing [65]. A patient study
by Ramnarine et al. showed that shear wave elastography is able to quantify carotid plaque
elasticity and an improved performance for assessing carotid plaques could be achieved when
combining shear modulus measurement with gray scale ultrasound [29]. Currently, it is still
challenging to correctly model the wave propagation in the plaque and accurately calculate the
stiffness of small plaques. Further technical development and large-scale clinical studies are
being conducted.

33.4 Summary

Similar to other shear wave applications, cardiac shear wave elastography offers direct and
quantitative myocardial viscoelasticity measurements, which cannot be readily obtained from
existing clinical tools. These measurements are vital to numerous critical clinical cardiovas-
cular applications, with great potential to benefit hundreds of millions of patients worldwide.
To date, the majority of the cardiac shear wave studies have been conducted under preclinical
settings on animals. Clinical translation is undermined by the poor shear wave signal qual-
ity transthoracically in vivo. Current research topics include improving shear wave generation
and detection, exploring alternative shear wave sources such as external vibration or intrinsic
myocardial shear waves, and implementing shear wave elastography on intracardiac and trans-
esophageal echocardiography (TEE) transducers to gain better imaging quality. Other potential
clinical applications are also being actively investigated.
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Musculoskeletal Applications of Supersonic Shear Imaging
Jean-Luc Gennisson
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34.1 Introduction

In vivo muscle biomechanical properties have been classically inferred from inverse dynamics
or measurements of joint torque performed using ergometers. However, these measures pro-
vide information about the combined behavior of several structures, such as muscles, tendons,
nerves, and skin, all acting around a given joint. To isolate the behavior of an individual muscle
is highly complicated. Since the introduction of elastography in the 1990s, many techniques
have been developed with the aim to noninvasively assess localized muscle stiffness. In this
chapter we focus on the supersonic shear imaging technique in musculoskeletal applications.
As described in Chapter 23 of this book, this technique allows one to recover locally the stiffness
of an organ by looking at the propagation of shear waves. Since propagation velocity is directly
linked to the shear elastic modulus of the tissue, the stiffer the tissue, the faster the shear wave
propagation (Eq. 34.1).

𝜇 = 𝜌V s
2 (34.1)

where 𝜇 is the shear elastic modulus of the tissue, 𝜌 is the density of muscle (1000 kg/m3), and
V s is the shear wave velocity.

However, for the study of muscle biomechanics the relevance of the shear elastic modu-
lus measurement requires some consideration. The Young’s modulus (E) is the most relevant
measure of stiffness of a given material. In the case of isotropic, locally homogeneous and
quasi-incompressible biological tissues, for example liver, the shear elastic modulus is directly
linked to the Young’s modulus

E ≈ 3𝜇 (34.2)
However, because of its anisotropy (i.e. the muscle mechanical properties are not the same in
all directions), this equation cannot be theoretically applied to skeletal muscles [1]. Eby et al. [2]
demonstrated on an in vitro muscle that when the ultrasound probe is parallel to muscle fibers,
muscle shear elastic modulus is strongly linearly related to the Young’s modulus measured using
classical ergometers. This demonstrates that in spite of the anisotropy of skeletal muscle the
measurement of muscle shear elastic modulus provides an accurate characterization of muscle
stiffness.

In this chapter we focus on the use of the supersonic shearwave imaging (SSI) technique that
provides a quantitative imaging of tissue stiffness in real time. This technique uses an ultrafast
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Figure 34.1 Examples of Young’s modulus maps obtained in biceps brachialis (a) at rest and (b) during a
moderate contraction. The quantitative stiffness maps coded in color are superposed onto the B-mode image.
To obtain a representative value, the modulus is classically average over the whole map.

imaging modality combined with a transient and remote mechanical vibration, generated by
radiation force induced by a focused ultrasonic beam (see Chapter 23). Each pushing beam gen-
erates a remote vibration in the target tissue that results in the propagation of a transient shear
wave. Then, an ultrafast ultrasound imaging sequence is performed to acquire successive raw
radio-frequency data at a very high frame rate (up to 20 kHz). A one-dimensional cross correla-
tion of successive radio-frequency signals is used to calculate the shear wave velocity along the
principal axis of the probe using a time-of-flight estimation, giving access to two-dimensional
maps of the shear elastic modulus in quasi real time (1 frame/s; Figure 34.1) using Eq. (34.1).

Thanks to the accuracy of the SSI technique to quantify the shear elastic modulus with mod-
erate stiffness, up to some hundreds of kPa [3], this technique seems to be really adapted to
characterize muscles in different configurations: rest, passive stretching, passive contraction,
dynamic contractions.

34.2 Muscle Stiffness at Rest and During Passive Stretching

Development of supersonic shear imaging gives access to noninvasive muscle stiffness assess-
ment in vivo. In different studies this technique shows its reliability and its ease of use to make it
a potentially interesting technique that would be of benefit to fundamental, applied, and clinical
research projects that need an accurate assessment of muscle mechanical properties at rest. As
an example, Dubois et al. [4] define a measurement protocol to be used in clinical routine for
quantifying the shear modulus of lower limb muscles. Four positions were defined to evaluate
shear modulus in 10 healthy subjects: parallel to the fibers, in the anterior and posterior aspects
of the lower limb, at rest, and during passive stretching. Reliability was first evaluated on two
muscles by three operators; these measurements were repeated six times. Then, measurement
reliability was compared in 11 muscles by two operators; these measurements were repeated
three times. Reproducibility of shear modulus was 0.48 kPa and repeatability was 0.41 kPa, with
all muscles pooled. Position did not significantly influence reliability. Shear wave elastography
appeared to be an appropriate and reliable tool to evaluate the shear modulus of lower limb
muscles with the proposed protocol.
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Reliability of shear elastic modulus measurements performed using supersonic shear imaging
was also verified in muscles of different architectures and typologies [5]. Thirty healthy subjects
were randomly assigned to the intra-session reliability (n = 20), inter-day reliability (n = 21),
and the inter-observer reliability (n = 16) experiments. Muscle shear elastic modulus ranged
from 2.99 kPa (gastrocnemius medialis) to 4.50 kPa (adductor digiti minimi and tibialis
anterior). On the whole, very good reliability was observed, with a coefficient of variation (CV)
ranging from 4.6% to 8%, except for the inter-operator reliability of adductor pollicis obliquus
(CV = 11.5%). The intraclass correlation coefficients were good (0.871 ± 0.045 for the
intra-session reliability, 0.815 ± 0.065 for the inter-day reliability, and 0.709 ± 0.141 for the
inter-observer reliability).

Regarding passive stretching, muscle shear elastic modulus has been measured in humans
(dorsiflexion [6] and plantarflexion [7]). Maïsetti et al. [6] showed that the relationship between
muscle shear elastic modulus and muscle length is similar to that predicted by musculoskeletal
modeling [8]. This suggested that muscle shear elastic modulus measured using elastography
could be used to estimate the passive tension. This result has now been confirmed in vitro on
chicken muscles [9], where a strong linear relationship (R2 values ranging from 0.971 to 0.999)
between shear elastic modulus and passive muscle force was reported.

Based on the Hoang’s model, the slack length of the gastrocnemius muscle-tendon unit can
be estimated. The slack length of the muscle-tendon unit is defined as the length beyond which
the muscle-tendon unit begins to develop passive force. Although sensitivity analyses have
shown that the slack length is the most important parameter for musculoskeletal modeling,
until recently the experimental methods used to estimate the slack length were limited. Tra-
ditionally, slack length was determined as the muscle-tendon length at which the passive joint
torque (measured using an ergometer) first exceeds zero. However, passive torque is influenced
by all structures crossing the joint (e.g. all the agonist/antagonist muscles, skin, and tendons).
Therefore the first increase in passive joint torque cannot be definitively associated to the true
slack length of an individual muscle-tendon unit.

However, this model can only be used for this specific muscle, and it remains to be validated.
Taking advantage of the strong linear relationship between muscle stiffness and passive mus-
cle force [9], the slack length of individual muscles (e.g. gastrocnemius medialis [6], long and
short head of biceps brachii [10]) has recently been determined using SSI. The slack length
of gastrocnemius medialis was determined to be more plantarflexed (∼20∘ of plantarflexion;
knee extended) than when using the Hoang’s model (∼29∘ of plantarflexion; knee extended)
[6]. Using shear wave elastography to determine the slack length of individual muscle-tendon
units provides a unique opportunity to improve both the accuracy of musculoskeletal models
and our understanding of passive muscle-tendon biomechanics.

Overall, the shear elastic modulus measurement provides a unique opportunity to measure
localized muscle stiffness and thus to estimate the passive tension of individual muscles when
being stretched. It can provide a deeper understanding of individual muscle mechanical
behavior than more global measurements (such as maximal range of motion or joint torque
during passive stretching). For example, Le Sant et al. [11] measured the shear elastic modulus
of each hamstring muscle during passive knee extension at different hip angles. They found
that the long head of the biceps femoris is stiffer than the semimembranosus, and the
semimembranosus is stiffer than the semitendinosus. This is in accordance with the prevalence
of strain injuries that occur in the biceps femoris. This example shows that SSI may be useful
to determine which is the stiffer muscle, such that stretching interventions may target it using
an optimal joint configuration.
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34.3 Active and Dynamic Muscle Stiffness

Looking at contracting muscles, stiffness maps can provide useful insight for a better under-
standing of muscle behavior during isometric contractions and unvoluntary or voluntary
contractions. The major questions associated with contraction are: what is the force developed
by a muscle? Can it be linked to the shear elastic modulus quantified with the SSI technique?
Does fatigue alter stiffness quantification? Recent studies have tried to explore these questions.

34.3.1 Isometric Contraction

Regarding the force during isometric contraction, this is the principal parameter quantified
in musculoskeletal applications but it remains challenging to measure in complex structures.
Bouillard et al. [12] investigated the relationship between muscle shear elastic modulus and
force during isometric contractions of human finger muscles. In this study, two tasks were used:
(i) isometric index finger abduction, which mainly involves the first dorsal interosseous, and (ii)
isometric little finger abduction, which mainly involves the abductor digiti minimi. Assuming
a negligible change in moment arm during the isometric contractions, the torque measured
during these tasks was assumed to be directly related to force produced by the investigated
muscle. During contractions with ramped torque (up to 30% of maximal voluntary contraction
(MVC) for abductor digiti minimi and 60% of MVC for first dorsal interosseous), muscle shear
elastic modulus measured using SSI was strongly linearly related to muscle force (R2 values
ranged from 0.951 to 0.997). Note that although the relationship between electromyogram
(EMG) amplitude and torque was also linear, R2 values were lower. Further, participants then
performed isometric contractions where they were asked to freely vary the torque produced.
Using the previously determined linear relationship between muscle shear elastic modulus and
torque, Bouillard et al. [12] demonstrated the ability to accurately estimate the torque (RMS
error < 6% of MVC) from the muscle shear elastic modulus measured. Further to this, Sasaki
et al. [13] reported a linear relationship between force and shear elastic modulus of tibialis ante-
rior during maximal isometric dorsiflexion performed at different ankle joint angles. This work
provides solid evidence that an individual muscle force-length relationship can be estimated by
measuring muscle shear elastic modulus.

Regarding the influence of fatigue during effort, force sharing during non-fatiguing con-
tractions was investigated by Bouillard et al. [14], who measured the shear elastic modulus
of elbow flexor muscles (brachialis, biceps brachii, brachioradialis) and extensor muscles (tri-
ceps brachii) during isometric elbow flexion with ramped torque (from rest to 40% of MVC).
Each muscle exhibited a unique relationship between shear elastic modulus and elbow flexion
torque, which provided evidence of torque-dependent changes in the force sharing strategy.
More precisely, the characteristic shape of the change in shear elastic modulus of both heads of
biceps brachii with increasing torque demonstrated little change initially, but showed increas-
ingly large increments in modulus at higher torques. In contrast, the shear elastic modulus
of the brachioradialis and brachialis increased rapidly at low torques and then plateaued for
brachialis. These data provide an alternative explanation for the nonlinear relationship reported
between surface EMG and torque in large muscles such as biceps brachii and contrasts with the
long-held hypothesis of altered motor unit recruitment strategies [15]. Interestingly, the shear
elastic modulus of the antagonist muscle (triceps brachii) did not simultaneously increase, and
indeed remained very low throughout the ramp contraction. It provides evidence that the fre-
quent reports of a systematic increase in surface EMG amplitude of antagonist muscles (i.e.
increased co-activation) at high force levels may relate more to cross talk than increased drive
to the antagonist muscles. Overall, these observations suggest that elastography might provide
a unique opportunity to reconsider our current understanding of muscle co-contraction.
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During fatiguing contraction, a change in force sharing between agonist muscles during
a prolonged task is thought to limit the occurrence of neuromuscular fatigue and enhance
the ability to sustain a contraction. A complete understanding of this adaptation is therefore
crucial for sports scientists who aim to optimize human performance. Evidence of altered
force-sharing strategies mainly comes from surface EMG studies. However, because fatigue
alters the relationship between EMG amplitude and force [16], it is difficult to dissociate
the effects of neuromuscular fatigue from putative compensations of force between muscles.
Subsequently, these results cannot be directly interpreted as changes in muscle force and thus
changes in force-sharing strategies. As the relationship between muscle shear elastic modulus
and force is not altered by neuromuscular fatigue [17], elastography can be used to assess
relative changes in force of individual muscles during isometric fatiguing contractions. In
this way, some evidence for altered force sharing among the heads of the quadriceps muscle
has been reported during a force-matched isometric knee extension task [17]. Interestingly,
a change in force sharing was not observed in all participants, and when it was observed
participants did not exhibit the same strategies, i.e. compensations did not systematically
occur between the same muscles.

In order to investigate the origin of this variability in force sharing, Bouillard et al. [18] used
electrical stimulation to selectively fatigue the vastus lateralis muscle. They observed a system-
atic decrease in the force produced by this muscle during a subsequent submaximal isometric
force-matched task. However, the compensation strategy (i.e. the muscle(s) which produced
more force to compensate for the reduction in force of vastus lateralis) varied between indi-
viduals. This data further confirmed the absence of a consistent redistribution of force sharing
among the heads of the quadriceps muscles between individuals during force-matched fatigu-
ing contractions.

Moreover, as neuromuscular fatigue dramatically alters the relationship between EMG ampli-
tude and force, there is a paucity of data that describes changes in muscle force during fatiguing
contractions. In contrast to EMG measurements that are influenced by several electrophysio-
logical parameters, the shear elastic modulus is a mechanical property. As such, it is less likely
to be influenced by neuromuscular fatigue. To test this hypothesis, Bouillard et al. [17] asked
participants to perform linear isometric torque ramps (little finger abduction) before and after
a fatiguing protocol. They demonstrated that the relationship between muscle shear elastic
modulus and force is not affected by fatigue. Then, by using the linear regression of the rela-
tionship obtained before fatigue, they estimated with a good accuracy the change in little finger
abduction torque during a submaximal isomeric fatiguing task performed until task failure.
This experiment provides evidence that fatigue does not influence the ability to estimate the
changes in muscle force using the shear elastic modulus measurement.

Taken together, the results presented above support the hypothesis that muscle stiffness is lin-
early related to both active and passive muscle force during isometric contractions. Although
measurement of muscle shear elastic modulus alone cannot be used to estimate muscle force
(in N) or torque (in N m), it can be used to estimate relative changes in muscle force. Concurrent
measurements of shear elastic modulus of multiple agonist muscles will provide information
about force-sharing strategies, and thus provide valuable insight into how the neural system
choses to generate force in different muscles that cross the same joint. It is important to note
that in the absence of normalization of the elastic modulus to that recorded during MVC, a
change in force-sharing strategies could only be determined when different muscles demon-
strate an opposite, or a different, profile of change in the shear elastic modulus. In contrast, if
the changes in shear elastic modulus of two muscles both increased or decreased, a change in
force sharing between these muscles could not be determined, even if different amplitudes of
absolute change were noted. This is because the slope of the relationship between the elastic
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Figure 34.2 Elasticity of the myometrial wall over time during multiple contractions in the same region of
interest. Source: reprinted from [19], copyright 2015, with permission from Elsevier.

modulus and force may differ between muscles, so the same absolute change in shear elastic
modulus could relate to very different changes in force between muscles.

34.3.2 Involuntary and Voluntary Contraction

Thanks to the frame rate of the SSI technique (1 frame/s in shear wave elastography mode or
more in research mode), involuntary contraction can be followed in quasi-real time. This is
of a great importance for heart applications, as described in Chapter 33 of this book. As an
example on another organ, Gennisson et al. [19] showed that SSI can help to better understand
myometrium’s physiology in terms of its shear modulus. This could considerably help the pre-
vention of difficult births, the consequences of which are tremendous for neonate morbidity and
pathologies. It shows the feasibility of the in vivo monitoring of myometrial stiffness changes in
contraction and relaxation during pregnancy (Figure 34.2). In this study, SSI proved to be effi-
cient for the monitoring of tissue elasticity during involuntary contraction. Changes in shear
wave speed were tracked in real time during the uterine contraction and were well correlated
with the uterine pressure, which is currently considered to be a gold standard. These results
open a new way to better understand the myometrium contraction during labor.

In the case of voluntary contraction, the technique is still limited in commercial mode since
it currently provides for only 1 frame/s. Actually in research applications it has been shown that
SSI is able to follow fast muscle contraction in the heart [20, 21] or fast changes in elasticity,
as in the carotid due to the pulse wave [22]. Nevertheless, slow voluntary contraction can be
followed in real time. Shinohara et al. [23] reported the first data that detected the distribution
of local muscle stiffness within and between contracting muscles at different muscle lengths.
Tibialis anterior, medial gastrocnemius, and soleus were investigated during plantarflexion.

34.4 Tendon Applications

Mechanical properties of tendons play an important role in regulating physiological functions
of muscles. The SSI technique was developed to characterize such hard organs under condition
of contractions. Such a development was performed noninvasively in vivo on human Achilles
tendon (AT) [24]. Clinically, the quantification of the Achilles tendon elastic properties may
enhance diagnosis of tendon injury and the assessment of recovery treatments. Shear wave
elastography has shown to be a powerful tool to estimate tissue mechanical properties. How-
ever, its applicability to quantitatively evaluate tendon stiffness is limited by the understanding
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of the physics of the shear wave propagation in such a complex medium. First, tendon tissue is
transverse isotropic. Second, tendons are very hard (i.e. they will conduct shear waves quickly).
Hence, the shear wavelengths are greater than the tendon thickness, leading to guided wave
propagation. Thus, to better understand shear wave propagation in tendons and consequently
to properly estimate their mechanical properties, a dispersion analysis is required (presented
in Chapter 5 of this book). In this study [24], shear wave dispersion was measured in vivo in ten
Achilles tendons by applying the concept of shear wave spectroscopy parallel and perpendicu-
lar to the tendon fiber orientation. By modeling the tendon as a transverse isotropic viscoelastic
plate immersed in fluid it was possible to fully describe the experimental data (deviation<1.4%).
We show that parallel to fibers the dispersion curve is not influenced by viscosity, while it is
so influenced perpendicularly to fibers. Elasticity and viscosity values were retrieved from the
model in good agreement with reported results.

More recently, Helfenstein-Didier et al. [25] used this previous development to analyze the
dispersion of shear wave propagation in the AT during passive dorsiflexion using the phase
velocity method in order to obtain the tendon shear elastic modulus (C55) [24]. Additional aims
were: (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess
the effect of the probe locations, and (iii) to compare results with elasticity values obtained with
the SSI technique. The AT shear modulus (C55) consistently increased with the ankle angle
(n = 10, main effect of angle: p < 0.05). Furthermore, the technique showed a very good repro-
ducibility (all SEM values < 10.7 kPa and all CV values ≤ 0.05%). In addition, independently
from the ankle angle, the shear modulus was significantly higher in the proximal location com-
pared to the more distal one. The shear modulus 𝜇 provided by SSI was always lower than C55
and the difference increased with the ankle angles. However, shear modulus values provided by
both methods were highly correlated (R = 0.84), indicating that the conventional SSI technique
can be used to compare tendon mechanical properties across populations.

These previous studies showed that the SSI technique allows noninvasive quantification of
tendon mechanical properties, and there is a need for that in clinical practice. Thus Yeh et al.
[26] investigated the feasibility of using SSI to quantitatively differentiate normal and damaged
tendons based on their mechanical properties in order to answer clinical questions. Five
freshly harvested porcine tendons were used for an ex vivo experiment. Tendon damage was
induced by incubating the tendons with a collagenase solution and degeneration of collagen
fiber was observed. SSI and tensile stiffness measurement of the tendons in various loading
conditions were conducted before and after collagenase treatment. Values of shear modulus
were derived both by directly estimating from shear group velocity using an isotropic model
and by fitting phase-velocity dispersion to a transverse isotropic model. Values of Young’s
modulus in different loading conditions were estimated using an incremental approach.
Results show that the collagenase treatment successfully induced tendon damage. As the
preload applied to the tendon increased from 0 to 3 N, the mean shear modulus from SSI and
Young’s modulus estimated from mechanical testing increased from 14.6 to 89.9 kPa and from
1.45 to 10.36 MPa, respectively, in untreated tendons, and from 8.4 to 67 kPa and from 0.93 to
7.2 MPa in collagenase-treated tendons. Both shear moduli correlated well with the changes in
Young’s moduli. These data indicate that shear modulus can be used to assess tendon stiffness
dynamics and characterize normal and collagenase-damaged tendons, and holds the promise
to improve the diagnostic accuracy of tendon dysfunctions.

Additionally, Zhang and Fu [27] showed on patellar tendon that SSI can be used to assess
elastic properties without any physical model for guided waves. This gives access to a relative
modulus which is in agreement with classic mechanical testing. Tests on the reliability of the
technique was done on 22 patellar tendons. Spearman correlation coefficients for shear elas-
tic modulus and tangent traction modulus ranged from 0.82 to 1.00 (p < 0.05). The intra- and
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inter-operator reliabilities were 0.98 (95% CI: 0.93–0.99) and 0.97 (95% CI: 0.93–0.98) respec-
tively. The SSI shows good intra- and inter-operator repeatability.

34.5 Clinical Applications

Estimation of individual muscle force and, more generally, quantification of stiffness of a local-
ized area of muscle, provides the opportunity for new insights into changes in muscle mechan-
ical properties with musculoskeletal and neurological disease progression and rehabilitation.
Although elastography is widely used for diagnosis of breast cancer, liver fibrosis, and thyroid
nodules, the musculoskeletal applications are just beginning to be realized. The main advan-
tages of the SSI technique for clinical assessment and rehabilitation purposes are that it provides
noninvasive, quantitative, reliable, and fast measurements. In addition, localized areas of several
muscles, rather than global stiffness of a given joint, can be independently assessed.

Moreover, SSI was revealed to be accurate in terms of feasibility and reliability for passive
muscle stiffness measurements in children as young as two years, which is of great interest
for monitoring myopathies. Brandenburg et al. [28] conducted a prospective cross-sectional
study quantifying the passive stiffness of bilateral lateral gastrocnemius muscles during pas-
sive stretching in 20 typically developing children (age range, 2.0–12.6 years). Four positions of
progressive passive foot dorsiflexion, the demographic characteristics of the participants, and
comparison of demographic characteristics were compared with shear modulus. Results show
that passive stiffness increased with increasing stretching and that for all four foot positions, no
significant difference was found between right and left legs or between the sexes. No correla-
tion of passive muscle stiffness with age, body mass index, or ankle range of motion was found.
The reliability of measurements was good to excellent (mean [95% confidence interval] range
of reliability, 0.67 [0.44–0.83] to 0.80 [0.63–0.90]). Defining normal passive muscle stiffness
in children is critical for identifying and understanding the implications of abnormal passive
muscle stiffness in children with neuromuscular disorders.

As an example, Duchenne muscular dystrophy (DMD) is associated with increased muscle
stiffness, leading to high degree of joint contractures. Lacourpaille et al. [29] have recently quan-
tified this increased muscle stiffness in a cross-sectional study that compared people with DMD
and healthy controls. As the disease severity evolves mainly in a proximal–distal manner, not
all muscles are affected similarly. This work demonstrated that SSI could be used to provide a
localized and sensitive measure of early changes in stiffness of targeted muscles. Such informa-
tion may in the future be used to direct physical interventions and thus slow joint deformities
and prolong autonomy. Assessment of muscle stiffness might also be helpful to quantify the
efficacy of new therapies. Although longitudinal studies with large sample sizes are needed to
determine the sensitivity of SSI to detect changes in muscle stiffness throughout the course of
the disease, it opens interesting perspectives for many neurological conditions associated with
increased muscle stiffness.

SSI may also be useful to quantify changes in muscle mechanical properties associated with
musculoskeletal conditions. For example, in rabbits, a model of muscle crush injury, Lv et al.
[30] demonstrated that it is possible to detect an increase in muscle stiffness subsequent to the
injury. Similarly in exercise-induced muscle damage in humans, Lacourpaille et al. [31] reported
increased muscle stiffness associated with more subtle muscle damage. This ability to accurately
quantify the increase in passive stiffness associated with muscle injury and to objectively isolate
this to the muscle that is damaged, might help the clinician to target interventions to the most
affected muscle or muscle region.

Finally, quantification of muscle stiffness also provides crucial insight into the mechanisms
that may underlie treatments and rehabilitation programs and, ultimately, to assess their
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efficacy. Interventions that aim to alter muscle stiffness are common in physiotherapy/physical
therapy practice (e.g. massage, taping, dry needling, stretching). Because of the lack of
techniques to assess stiffness of a localized area of muscle tissue, their mechanical effect has
not been verified. Therefore, controversies exist regarding their mechanical and thus clinical
efficacy. Taking advantage of SSI, Hug et al. [32] demonstrated that de-loading tape applied
to the skin directly over the rectus femoris muscle reduced tension in the underlying muscle
region for the muscle conditions where the muscle was loaded (during moderate and high mus-
cle stretch and contraction). These data provided a biomechanical explanation for the effect of
de-loading tape observed in clinical practice (reduce pain, restore function, and aid recovery).
Massage is another controversial technique that may be used to reduce muscle stiffness.

34.6 Future Directions

To date, the commercialized version of the SSI ultrasound device provides maps of shear elastic
modulus at one sample per second, which limits the study of isometric contractions and slow
passive stretching tasks (1 to 4 per second). Because the measure of shear wave propagation
velocity is performed in less than 15 ms, this limitation can be overcome by improving hard-
ware and software capabilities. In this way, a beta version of the SSI technique with a higher
temporal resolution in terms of stiffness map frame rate of up to four samples per second has
been recently used for measurements during ramped isometric muscle contraction [33].

Beyond the measurement of muscle stiffness, measurements of tendon stiffness may provide
important insights into musculoskeletal biomechanics. However, the application of SSI tech-
nique for tendons requires some consideration. Because tendons are both very stiff and thin,
shear wavelengths are greater than the tendon thickness, leading to guided wave propagation
[24]. As a consequence, measurements are biased if no correction is applied. For instance, two
tendons with the same stiffness but with different thickness will exhibit different shear elas-
tic modulus values. But by analyzing shear wave dispersion (as presented in Chapter 5 of this
book) this problem can be resolved and this technique has been shown to provide accurate
tendon elasticity and viscosity values [24, 25]. This technique is therefore recommended for
future elastography studies on the tendon. Alternatively, a method that takes into account ten-
don thickness to correct measurements performed using conventional shear wave elastography
should be developed in the future.

Currently the SSI technique measures the shear wave velocity in 2D; however, the wave prop-
agation occurs in 3D. New developments in ultrasound devices enables the measurements to
be performed in 3D, in real time [34]. This pilot study demonstrated that it is possible to per-
form ultrafast ultrasound acquisition and SSI measurements in 3D using a 2D matrix array
probe. This technique will provide a unique opportunity to assess spatial variability of muscle
stiffness. In addition to information on muscle stiffness, 3D elastography will provide crucial
information on muscle anisotropy and shear viscosity, which are thought to be related to the
structural organization of the muscle. 3D elastography is promising for the evaluation of muscle
neuromuscular conditions where muscle structure is affected.
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35.1 Introduction

Emerging ultrasound elasticity imaging techniques have been of great interest as an adjunct
to breast sonography to improve its sensitivity and specificity for diagnosis of breast cancer.
Among elasticity imaging methods, shear wave elastography has gained much attention in
recent years as a new imaging modality for differentiation of breast masses. This chapter focuses
on applications of shear wave elastography techniques, more specifically comb-push ultrasound
shear elastography (CUSE) in breast imaging. In addition, we will present the results of in vivo
results of breast CUSE. Future developments and potential impact of CUSE in breast imaging
are also discussed.

35.2 Background

Today, breast cancer remains a major health problem among women around the world. Breast
cancer is the leading cause of cancer death in women aged 20 to 59 years and second to lung
cancer in women 60 and older. According to the American Cancer Society in 2015, over 231 000
new cases of invasive breast cancer are expected to occur in one year alone, accounting for 29%
of all new cancer cases among American women. There is a probability that 1 in 8 women are at
risk of developing invasive breast cancer in their lifetime [1]. This data is shown in Table 35.1.

Manual breast examination is the oldest, simplest, yet effective, method for detection of
breast masses, because the stiffness of breast tumors is significantly different from surrounding
tissue. However, it has limited value in detecting deep and small masses.

Current imaging methods, e.g., mammography and ultrasound, carry low specificity rates
that lead to a great number of unnecessary (i.e. benign) biopsies. According to the American
College of Radiology Imaging Network (ACRIN), in women with dense breasts, using com-
bined whole-breast screening, ultrasound (US), and mammography yielded a sensitivity of
77.5% versus 50% for mammography or ultrasound alone. However, the increased sensitivity
in combined use of US and mammography is associated with a substantial increase in the
number of false-positive cases [2]. Thus, due to low specificity of current imaging modalities,
women encounter a high number of unnecessary follow-up examinations and procedures.
Only 20% to 40% of breast biopsies are cancerous [3, 4]. Thus, the rate of false-positive cases
seems to be common with current imaging tools. Consequently, the number of unnecessary
benign breast biopsies that are performed annually in the US approaches 1 million cases,
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Table 35.1 Estimated new cases and deaths in American women.

Estimated new cases in 2015 231 670
% of all new cancers among American women 29%
Estimated deaths in 2015 40 290
% of all cancer deaths among American women 15%

with an associated cost of an excision breast biopsy of $2400 per case [5]. Thus, the cost of
potentially unwarranted biopsies is around $2 billion annually, which contributes substantially
to US healthcare spending [5, 6]. Furthermore, women who undergo biopsy for benign disease
experience great emotional distress and morbidity [7].

The efficacy of mammography is also greatly reduced in dense breasts [8, 9]. This is partic-
ularly important in the case of high- and moderate-risk women who need to be screened at
a younger age [8, 9]. Even though magnetic resonance imaging (MRI) has high sensitivity, the
poor specificity results in unnecessary follow-ups and biopsies that are associated with high
extra cost and great emotional distress. Moreover, the limited availability and substantial cost
of MRI limit the use of MRI in breast cancer detection [10–12].

To overcome the limitations of current breast imaging modalities, new noninvasive tools for
breast imaging with high sensitivity and specificity are being developed. In the last 25 years or
so, various ultrasound-based techniques [13–19] or MRI-based methodologies [20–25] have
been developed to characterize the mechanical response of tissues under external stress.

More research is in progress in the development of ultrasound- or MRI-based elasticity tech-
nologies, especially those that provide palpation-like information, for example, information
about tissue stiffness. In palpation, breast masses differ from surrounding tissue [26]. In fact,
breast tumors are often stiffer than normal tissue [27] and malignant breast lesions are harder
than benign lesions [28, 29]. Hence, new techniques are being developed to noninvasively eval-
uate the pathology of a tissue based on its mechanical properties [30].

35.3 Breast Elastography Techniques

Elasticity imaging is an emerging field that can noninvasively evaluate the tissue elasticity. From
this group, magnetic resonance elastography (MRE) was introduced to differentiate pathologi-
cal breast tissues from normal and increase diagnostic specificity [23, 31–34]. However, MRE, a
MRI-based technology, is expensive and less likely to be available for a wide range of the patient
population.

Ultrasound-based elasticity imaging is an emerging field and has been of great interest as
an adjunct to breast sonography to improve its sensitivity and specificity for the diagnosis of
breast cancer. Various elastography methods are available on many ultrasound systems, with
most of them based on some form of tissue deformation (i.e. strain). This can be done either by
manual pressure and release, or by taking advantage of normal cardiac or respiratory motion.
Conventional quasi-static elastography is one such technique, which calculates the relative
deformation of the tissue or strain. Studies have showed it can increase the specificity of con-
ventional B-mode US in the detection of breast cancer [30]. Quasi-static elastography utilizes
compression and US-based strain imaging to obtain maps of relative stiffness [35–39]. However,
in most cases, it is a qualitative imaging technology so the results differ with users’ experience
in data acquisition and interpretation, and their operator dependency may hinder their clinical
effectiveness [40]. The newly emerging shear wave elastography (SWE) techniques are the alter-
native, which use acoustic radiation force to induce shear waves and estimate tissue elasticity
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from measured shear wave speed. Shear waves travel faster in stiffer tissues and slower in softer
tissues; therefore, shear wave elastography could be an optimal technique to be used for differ-
entiation of breast masses [41].

35.3.1 Shear Wave Elasticity Imaging (SWEI)

Shear wave elasticity imaging (SWEI) is the first shear wave elastography method, and was
introduced by Sarvazyan et al. [42]. The 1D or 2D transient elastography technique was first
performed by using an external vibrator. This technique uses an ultrafast ultrasound acquisi-
tion imaging system (5000 frames/s) that allows a real-time in vivo imaging of transient shear
waves propagating in human tissues. The transient elastography technique has been tested to
differentiate breast masses [19]. The use of large external vibrators has limited the clinical appli-
cation of transient elastography. To overcome this limitation, efforts have been made to advance
shear wave elastography techniques.

35.3.2 Supersonic Shear Imaging (SSI)

The ultrafast SWE system from Supersonic Imagine performs supersonic shear imaging (SSI),
uses an acoustic radiation force, and through a focused ultrasound beam, remotely induces
mechanical vibrations in breast tissue. SSI uses a conventional transducer and produces a super-
sonic regime of moving sources to generate shear waves, and by using ultrafast plane wave
imaging captures the propagation of resulting shear waves and quantifies tissue elasticity from
measured shear wave speed [41, 43, 44]. Promising results in studies with SSI for differentiation
of breast masses have been reported [45–52]. Here, we present a SSI shear wave map and US
image of a woman in her 80s who had abnormal screening mammography. Targeted ultrasound
of the right breast demonstrates a 0.9 × 0.9 × 0.6 cm hypoechoic mass, which corresponds to
the mammographic abnormality as shown in Figure 35.1. A shear wave map using SSI showed
a high value of mean elasticity, Emean of 111.8 kPa. The result of pathology confirmed the malig-
nant breast lesion as an invasive mammary carcinoma with mixed ductal and lobular features,
grade I.

35.3.3 Virtual Touch Tissue Quantification using Acoustic Radiation Force Impulse

Shear wave elastography using acoustic radiation force impulse (ARFI) has also been used for
differentiation of breast masses [53–55]. The ARFI shear wave elastography technique is based
on generating an impulse-focused radiation force to induce shear waves in tissue and then use
pulse-echo ultrasound to detect such waves. Then, the speed of shear waves estimated at each
location is used to calculate the stiffness of the tissue [56].

35.3.4 Comb-push Ultrasound Shear Elastography (CUSE)

Recently, Song et al. [57, 58] have developed an US shear wave elastography technique called
Comb-push ultrasound shear elastography (CUSE) that uses multiple simultaneous acoustic
radiation force (ARF) beams. CUSE is a fast quantitative US shear wave elasticity imaging
methodology that provides a two-dimensional map of shear wave speed. CUSE uses acoustic
radiation force beams that are laterally distributed and simultaneously excite the tissue and gen-
erate shear waves [58]. CUSE uses four focused push beams that are spaced laterally for shear
wave production and shear waves traveling in both lateral directions fill the entire field of view
(FOV). A directional filter is used to separate the shear waves traveling in opposing directions
and estimates the elasticity map of the FOV in one single comb-push acquisition [37, 59].
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Figure 35.1 SSI and ultrasound images of a patient
with invasive mammary carcinoma. The shear wave
speed is significantly higher in the lesion.

35.4 Application of CUSE for Breast Cancer Detection

CUSE was conducted on patients with suspicious masses using a fully programmable ultra-
sound platform, Verasonics V-1 system (Verasonics Inc., Redmond, WA), using a linear array
transducer L7-4 (Philips Healthcare, Andover, MA).

In the CUSE technique using Verasonics, after excitation of the tissue, the system instantly
shifts to plane wave imaging mode in order to track the propagated shear wave. A graphi-
cal user interface was developed using Matlab (MathWorks Inc., MA) to process the obtained
CUSE data and then reconstruct the shear wave speed map. As a quality control factor, a nor-
malized cross-correlation coefficient of the shear wave speed map was used [60]. The per-
formance of CUSE using a research ultrasound scanner has been reported with promising
results [61, 62].

An example of breast CUSE, as such is presented in Figure 35.2. This case is a patient in
her 70s. The targeted ultrasound of her right breast demonstrates an irregular mass measur-
ing 1.4 cm in the longest dimension. The measured mean shear wave speed within the ROI
was 2.63 ± 1.59 m/s with a Young’s modulus of 20.75 kPa. Breast biopsy results were a benign
fibroadenoma.

CUSE imaging using a Verasonics research US system was conducted for a patient in her
70s with a concerned lump in her right breast. Targeted ultrasound of her right breast shows
a hypoechoic mass measuring 2.3 cm in the longest dimension, as shown in Figure 35.3. The
measured mean shear wave speed of the ROI was 7.07 ± 1.18 m/s, with a Young’s modulus
149.9 kPa. The result of a breast biopsy was malignant grade II invasive ductal carcinoma with
ductal carcinoma and calcifications in situ adjacent to it.
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(a) (b)

Figure 35.2 US image and CUSE shear wave speed map of breast tissue (dashed rectangle) including the
breast mass ROI (dashed circular contour). (a) B-mode US image, (b) CUSE shear wave speed map. Source:
adapted from [61].

(a) (b)

Figure 35.3 B-mode US and CUSE shear wave speed map of a patient’s breast (dashed rectangular contour)
including the breast mass ROI (red circular contour). (a) B-mode US image, (b) CUSE shear wave speed map.
Source: adapted from [61].

35.5 CUSE on a Clinical Ultrasound Scanner

Recently, CUSE has been implemented in a GE LOGIQ E9 (LE9) (General Electric Healthcare,
Wauwatosa, WI) ultrasound scanner [63]. We have studied more than 100 patients with breast
masses detectable on ultrasound. Here, we present examples of breast CUSE images using a
clinical ultrasound scanner. Figure 35.4 presents US and CUSE images of a patient using a
clinical ultrasound scanner. The patient is a woman in her 60s with abnormal mammography
screening. Targeted ultrasound of her right breast demonstrated a 1.0 × 0.7 × 0.8 cm hypoe-
choic mass with a hyperechoic rim and angular margins in the right breast. SWE results showed
a high elasticity value, Emean = 114.3 kPa. Pathology results demonstrated invasive lobular car-
cinoma with alveolar variant features (grade II).

CUSE using a clinical US scanner has been performed on a patient in her 40s with an abnor-
mal mammography screening. Targeted US of her right breast showed a hypoechoic complex
cystic mass measuring 1.5 × 0.4 × 1.1 cm, as shown in Figure 35.5. SWE showed low elasticity
value, Emean = 14.5 kPa. Pathology results of the mass showed clustered apocrine cysts.
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Figure 35.4 B-mode US and CUSE shear wave speed map of a patient’s breast; invasive lobular carcinoma.
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Figure 35.5 (a) B-mode US and (b) CUSE shear wave speed map of a patient’s breast; benign clustered
apocrine cysts.

An example of breast carcinoma examined by CUSE using a clinical US scanner is shown in
Figure 35.6. The patient is a woman in her 70s with a palpable abnormality in her left breast.
Targeted US confirmed a 12 × 9 mm oval circumscribed mass, as shown in Figure 35.6. SWE
results showed a high elasticity value, with Emean = 132.7 kPa. This mass was later diagnosed by
pathology as mucinous carcinoma (grade I).

Another example of breast cancer evaluated by CUSE imaging using a clinical US scanner
is shown in Figure 35.7. The patient is a woman in her 70s with a 1.3 cm asymmetry seen in
her screening mammography. Targeted US demonstrated a 1.3 cm irregular region with pos-
terior shadowing, as shown in Figure 35.7. SWE showed a high elasticity value, with Emean =
97.7 kPa. Pathology results classified the mass as invasive mammary carcinoma with mixed
ductal and lobular features (grade I), and calcifications present in benign ducts and invasive
carcinoma.

Figure 35.8 presents ultrasound and CUSE imaging of a patient in her 50s with an asymme-
try presented as a 0.7 cm round mass during mammography screening. Targeted ultrasound
showed a 0.7 cm round circumscribed mostly anechoic mass. SWE map is Emean = 6.8 kPa.
The mass was revealed as a cyst after biopsy.
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(a) (b)

Figure 35.6 (a) B-mode US and (b) CUSE shear wave speed map of a patient’s breast with a malignant breast
mass; mucinous carcinoma (grade I).

(a) (b)

Figure 35.7 (a) B-mode US and (b) CUSE shear wave speed map of a patient’s breast with a malignant breast
mass; invasive mammary carcinoma.

(a) (b)

Figure 35.8 (a) B-mode US and (b) CUSE shear wave speed map of a patient’s breast; benign cyst.

35.6 Limitations of Breast Shear Wave Elastography

There are some limitations in shear wave elastography. Technical factors, such as the amount of
precompression used, can negatively alter the shear wave elastography results. However, that
can be controlled by minimizing the compression [67].

Despite the promising results on breast shear wave elastography, significant overlap in elastic-
ity between benign and malignant breast masses has been reported [50, 65, 67–72], which limits
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the discriminating power of elasticity imaging regardless of the accuracy of the measurement
method. Usually false-positive rates are higher than false-negative rates. Smaller lesion size
and increased breast thickness and depth are associated with false-negative results. Conversely,
large lesion size is associated with false-positive results [73]. Also, the presence of calcifications
in benign lesions can induce the apparent high stiffness regions when they are evaluated by
SWE methods, and that may lead to false-positive results [74, 75].

Future developments in shear wave elastography techniques would help to overcome the cur-
rent limitations.

35.7 Conclusion

Shear wave elastography is a quantitative elasticity imaging technique that has the potential to
help in the better differentiation of breast lesions and can be used complementary to conven-
tional ultrasound to improve our certainty in the final assessment of solid breast masses. Studies
on using SSI, the most well-known shear wave elastography, have shown that the addition of
SWE to B-mode US increased the specificity of breast US mass assessment without the cost
of decreasing the sensitivity [45, 64]. It has been shown that adding the elasticity ratio (Eratio)
improves the diagnostic performance of shear wave in differentiating benign and malignant
breast lesions [49, 65].

Gray scale ultrasound may underestimate the size of cancerous tumor when compared to
actual size at histology. Shear wave elastography of such tumors shows peritumoural stiffness
3 mm beyond the tumor border seen in an ultrasound image; as such, tumor size estimation is
closer to the actual histological size. Therefore, shear wave elastography may have the potential
to accurately estimate cancerous tumor size and help with breast-conserving surgery planning
[66]. However, further studies are required to assess the relationship of the extent of SWE stiff-
ness to grayscale US and final histological size of breast cancer.
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36.1 Introduction

Shear wave elastography is a quantitative elasticity-based imaging method that has been of
great research interest for thyroid nodule differentiation. This chapter focuses on application
of shear wave elastography techniques, more specifically comb-push ultrasound shear elastog-
raphy (CUSE), in thyroid imaging.

In addition, we will present the in vivo results of shear wave elastography (SuperSonic Imagine
and CUSE) on thyroid. Future developments and potential impact of CUSE in thyroid imaging
are also discussed.

36.2 Background

Four to seven percent of the adult population in the United States has a palpable thyroid nod-
ule and only 5% of those identified nodules are malignant [1]. The high prevalence of thyroid
nodules is associated with increased imaging examinations for cancerous lesions. Furthermore,
incidental thyroid cancers are often identified after diagnostic examinations for non-thyroidal
primary diseases. In recent years, the incidence of differentiated thyroid cancers of all sizes
has increased drastically, with a 3-fold higher rate rise in women, and the numbers of new
cases of thyroid cancer are rising faster than that of any other malignancy in recent years [2–5].
Currently, thyroid cancer is the 4th most common cancer in American women (Table 36.1).

The worldwide growth in thyroid cancer incidence is mostly due to the more frequent use
of ultrasound or other sensitive diagnostic tools and of a true rise in the number of cancers,
possibly as result of frequent radiation exposure and to other unknown carcinogens [4]. Fur-
thermore, increasing numbers of small, asymptomatic incidental thyroid cancers are frequently
being identified by ultrasound and cytology examinations.

36.3 Role of Ultrasound and its Limitation in Thyroid Cancer
Detection

Real-time ultrasound (US) has revolutionized the clinical practice of thyroidology. Ultra-
sonography can identify thyroid nodules with high accuracy in determining the number
and size of nodules. However, the vast majority of nodules discovered by ultrasound are
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Table 36.1 Key statistics for thyroid cancer, 2015.

Total Women Men

Estimated new cases in 2015 62 450 47 230 15 220
Estimated deaths in 2015 1950 1080 870

Data from http://www.cancer.org/cancer/thyroidcancer/detailedguide/
thyroid-cancer-key-statistics.

small (less than a centimeter in diameter) and are benign. The prevalence for small thyroid
nodules is remarkably high and more than 50% of individuals older than age 50 may harbor
one or more nodules [5]. Only a small number of US identified thyroid nodules (5%) are
malignant [5]. Ultrasound features associated with malignancy, such as microcalcifications,
hypoechogenicity, intranodular vascularity, irregular margins, and absent halo sign, alone are
suggestive of malignancy, but not sufficient for diagnosis [6]. With a low specificity of US in
detecting malignant nodules, the ability of US to accurately distinguish them from the sea
of benign nodules is limited [7]. As a result, ultrasound-guided fine needle aspiration biopsy
(FNAB) is performed on many of these nodules for further characterization.

36.4 Fine Needle Aspiration Biopsy (FNAB)

While FNAB has a major role in differentiating benign thyroid nodule from malignant ones, it
is also an imperfect technique. First, the results are non-diagnostic in approximately 15–20%
of cases [8–10]. Second, there is a false-negative rate of approximately 3–5% [11]. Third, there
is wide variability in interpretation of cytopathology of the FNAB samples; most commonly,
sampling problems associated with insufficient FNA collected specimens as well as overlap
in morphological markers between benignity and malignancy. Currently, most patients with
FNAB cytological indicated “follicular neoplasm” or suggested as “suspicious for follicular neo-
plasm” undergo thyroidectomy, to make a definitive diagnosis [9], and only 15 to 32% of these
patients have cancer [8, 12]. It appears that as the sensitivity of FNAB increases, its specificity
decreases [13]. A report of a multi-institutional study indicates that inadequate FNAB speci-
mens can cause diagnostic errors with false-negative and false-positive results up to 25% and
9.9%, respectively [14]. Furthermore, performing FNAB on such a large patient population with
benign nodules is associated with a significant cost and psychological stress and may incorrectly
select patients for an unnecessary surgery for true benign thyroid nodules.

36.5 The Role of Elasticity Imaging

The stiffness of thyroid nodules usually differs significantly from surrounding tissues. In fact,
thyroid nodules are often stiffer than normal thyroid tissue [15] and malignant nodules are
stiffer than benign nodules [16]. However, the use of palpation through the skin as a diagnostic
tool has limited value in quantifying the nodule stiffness. The examiner’s assessment of a nodule
stiffness changes with the various characteristics of surrounding tissues. Also, the degree of
stiffness estimation differs between multiple examiners.

Elasticity imaging is an emerging imaging modality that can noninvasively provide tissue vis-
coelasticity information. Magnetic resonance elastography (MRE) has been used by our group
to distinguish normal and diseased thyroid [17]. However, this MRI-based technology is costly
and is not widely available.

http://www.cancer.org/cancer/thyroidcancer/detailedguide/thyroid-cancer-key-statistics
http://www.cancer.org/cancer/thyroidcancer/detailedguide/thyroid-cancer-key-statistics
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36.5.1 Thyroid Ultrasound Elastography

US-based elastography for thyroid nodule differentiation has been of great interest because
of its advantages, including being nonionizing, real-time, low cost, easily transferrable, and
widely available [18]. Amongst US-based elastography methodologies, strain or quasi-static
elastography applies compression to obtain maps of relative stiffness, and has shown promise
in thyroid nodule screening [19–22]. However, it is a qualitative imaging technology and is
operator dependent; the results of data acquisition and interpretation vary with user experi-
ence. Static elastography has limited value in screening thyroid nodules with indeterminate
cytology in FNAB. As a result, quantitative stiffness evaluation may help nodule differentiation
become accurate [23].

36.5.2 Thyroid Shear Wave Elastography

Shear wave elastography (SWE) techniques use radiation force of ultrasound to induce shear
waves within the tissue, and by measuring the generated shear wave speed one can make a
quantitative estimation of tissue stiffness.

Supersonic shear imaging (SSI) and acoustic radiation force impulse (ARFI) imaging are pio-
neers in this SWE group. Both SSI and ARFI shear wave imaging provide 2D maps of shear
elasticity.

36.5.3 Virtual Touch Tissue Imaging using Acoustic Radiation Force Impulse (ARFI)

Virtual Touch imaging (VTI), sometimes also referred to as Virtual Touch tissue imaging
(VTTI), is available on the ACUSON S2000TM and ACUSON S3000TM ultrasound systems.
Virtual Touch tissue imaging and quantification (VTIQ; Siemens Medical Solutions, Mountain
View, CA, USA) is a two-dimensional quantitative SWS imaging and an ARFI-based method
that uses an acquisition sequence consisting of reference, excitation, and tracking sonic pulse
types.

Virtual Touch tissue imaging provides the relative stiffness in the selected region of interest
(ROI). A short-duration high-intensity acoustic “pushing pulse” in Virtual Touch tissue imaging
and quantification (VITQ) generates a localized tissue displacement. The displacement induces
lateral shear wave propagation. By measuring the time peak of displacement at each lateral
location, the shear wave velocity can be measured and its map can be reconstructed [24]. Studies
on ARFI elasticity imaging (Virtual Touch imaging and tissue quantification) have shown good
diagnostic value for thyroid nodules [24–26].

36.5.4 Supersonic Imagine (SSI)

SuperSonic Imagine introduced the Aixplorer in 2006 which uses transient pulses to gener-
ate propagating shear waves in tissue, and by measuring the speed of wave propagation, the
elasticity will be estimated [27]. Studies reported promising results of the effectiveness of this
technique in distinguishing malignancy from benignity in thyroid nodules [28–34].

Here we present two examples of SSI imaging conducted in an IRB approved study on a group
of patients with thyroid nodules who were scheduled for FNAB.

The first case is a man in his 40s who had a nodule in his chest CT and was further evaluated
with thyroid US. His US showed a 14 × 9 × 16 mm hypoechoic, predominantly solid nodule
in the right side of the thyroid isthmus with indeterminate appearance. SWE of the nodule
showed Emean = 81.8 kPa. FNA of the thyroid isthmus revealed cytologic features consistent
with papillary thyroid carcinoma (Figure 36.1).
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Figure 36.1 Ultrasound and SWE speed maps of a papillary thyroid carcinoma.

The second case is a woman in her 60s with a nodule in her right lobe. Ultrasound of thyroid
showed a mixed cystic and solid nodule in the mid to lower pole of the right thyroid lobe mea-
suring 36 × 13 × 18 mm. The superior portion of this nodule is predominantly cystic, as shown
in Figure 36.2. The inferior portion is more solid, with scattered small cystic spaces, and also
contains a focal cluster of small calcifications. SWE estimation using SSI resulted in Emean =
6.9 kPa. FNA of the nodule revealed cytologic features consistent with benign thyroid nodule
with degenerative changes.

36.5.5 Comb-push Ultrasound Shear Elastography (CUSE)

Recently, Song et al. [35, 36] have developed an ultrasound shear elastography technique called
comb-push ultrasound shear elastography (CUSE), which uses multiple simultaneous acous-
tic radiation force (ARF) beams. CUSE is a fast quantitative US shear wave elasticity imaging
methodology that provides a two-dimensional map of shear wave speed. CUSE uses acoustic
radiation force beams that are laterally distributed and simultaneously excite the tissue and gen-
erate shear waves [36]. CUSE uses four focused push beams that are spaced laterally for shear
wave production and shear waves travelling in both lateral directions fill the entire field of view
(FOV). A directional filter is used to separate the shear waves traveling in opposing directions
and estimates the elasticity map of the FOV in one single comb-push acquisition [37, 38].

One major challenge in shear wave measurements using ultrasound radiation force is that
the induced shear waves are very weak and can only propagate a short distance due to high
attenuation in tissue. Therefore, shear wave speeds typically can only be reliably estimated in a
small region close to the focus of the push beam.

In CUSE, the entire area under the transducer is filled with shear waves produced by mul-
tiple teeth of the comb-push. Therefore, every pixel always has a shear wave source nearby to
provide shear waves of sufficient amplitude for high SNR (signal-to-noise ratio) measurement.
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Figure 36.2 B-mode US and SWE speed maps of a benign thyroid nodule using SSI.

As a result, the full field of view (FOV) under the transducer can be obtained in one single
comb-push acquisition, which only takes about 20 ms [39].

36.6 Application of CUSE on Thyroid

Here, we present examples of CUSE imaging using a Verasonics research ultrasound scanner
on suspicious thyroid nodules under an IRB approved protocol.

A patient in his 60s was investigated for a suspicious thyroid nodule. Ultrasound of right thy-
roid lobe shows a round hypoechoic nodule, as shown in Figure 36.3. The CUSE image indicates
higher shear wave speed within the nodule compared to the surrounding normal background,
but lower than the cutoff for a malignant nodule. FNA of the thyroid nodule revealed cytologic
features consistent with benign thyroid nodule.

Figure 36.4 shows a CUSE estimation of a patient in her 40s with a suspicious nodule in her left
thyroid lobe. Her US image shows a suspicious 12 mm hypoechoic nodule in ultrasound. The
shear wave speed measured by CUSE within the nodule was 7.60 ± 0.84 m/s, significantly faster
than the normal thyroid background (2.76 ± 0.50 m/s). FNA of the nodule revealed cytologic
features consistent with papillary thyroid carcinoma.

36.7 CUSE on Clinical Ultrasound Scanner

Recently, CUSE has been implemented in a GE LOGIQ E9 (LE9) (General Electric Health-
care, Wauwatosa, WI) ultrasound scanner [40]. We have processed more than 35 patients with
ultrasound-identifiable thyroid nodules. Here, we present examples of thyroid CUSE images
using a clinical ultrasound scanner.
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Figure 36.3 US image and CUSE shear wave speed maps of patient’s thyroid with a benign nodule. (a) CUSE
shear wave speed map; (b) B-mode US with a nodule (solid contour). The nodule is clearly visualized with a
slightly higher speed map compared to background but much less than cut off. Both B-mode US and CUSE
images were acquired in longitudinal planes. Shear wave speed: SWV (nodule): 4.96 ± 0.28 m/s, SWV (normal or
background): 2.25 ± 0.89 m/s. Source: © 2015 IEEE, adapted, with permission, from [39].

–60 –40 –20 0 20 40 60

(b)

0

5

10

15

20

25

30

35

–15 –10 –5 0 5 10 15
x (mm)

(a)

0

1

2

3

4

5

Figure 36.4 US image and CUSE shear wave speed map of a patient’s thyroid tissue with a malignant nodule.
(a) CUSE shear wave speed map; (b) B-mode US image shows a nodule. The nodule is clearly visualized with
significantly higher shear wave speed. Both B-mode US and CUSE images were acquired in longitudinal planes.
Shear wave speed: SWV(nodule) = 7.60 ± 0.84 m/s, SWV(normal) = 2.76 ± 0.50 m/s.

Figure 36.5 shows a woman in her 40s with a suspicious thyroid nodule. Ultrasound of her
left thyroid shows a 7 × 7 × 8 mm hypoechoic nodule with moderate vascularity by color.
Doppler imaging was present in the left thyroid bed. The nodule was concerning for recur-
rent neoplasm. SWE results showed Emean = 72.9 kPa (Figure 36.5). FNA of the nodule revealed
recurrent Hurthle cell carcinoma.

Figure 36.6 shows CUSE estimation of a thyroid nodule in a man in his 60s. Ultrasound shows
a 36 × 13 × 18 mm mixed cystic and a solid nodule which was observed in the mid to lower pole
of the right thyroid lobe. The superior portion of this nodule was predominantly cystic. The
inferior portion was more solid with scattered small cystic spaces and also contained a focal



Thyroid Shear Wave Elastography 563

Figure 36.5 Ultrasound and shear wave speed map of a malignant thyroid nodule, using CUSE on a clinical
ultrasound scanner.

Figure 36.6 Ultrasound and shear wave speed map of a benign nodule, using CUSE on a clinical ultrasound
scanner.

cluster of small calcifications. SWE resulted in Emean = 6.9 kPa. FNA of the nodule resulted in
cytologic features consistent with benign thyroid nodule with degenerative changes.

36.8 Conclusion

The prevalence of thyroid nodules detected by ultrasound is as high as 60%, and there are no sin-
gle or combined sonographic criteria sensitive enough to accurately differentiate the nodules.
As a result, the specificity of US in detection of malignant nodules is low. Shear wave elas-
tography is a quantitative elasticity imaging technique that has the potential to help in better
differentiation of thyroid nodules and can be used complementary to conventional ultrasound
to improve our confidence in the final assessment of thyroid nodules [33]. Adding quantitative
SWE to B-mode ultrasound will add the specificity for thyroid cancer [41]. Studies showed that
a 66 kPa threshold in shear wave elastography is best for the differentiation of malignant and
benign thyroid nodules [31]. Furthermore, quantitative SWE may have the potential to help
accurately select thyroid nodules with indeterminate cytology for surgical intervention.
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There is a significant effect of pre-compression on SWE estimation in normal thyroid tissue,
benign nodules, and papillary carcinomas. These findings may explain some of the discrepan-
cies that have been observed in the results of preliminary thyroid SWE studies for diagnostic
performance of SWE for thyroid malignancy [42].

Another limitation is the diagnosis of calcified nodules. Presence of calcifications in benign
lesions can induce the appearance of a high stiffness region when they are evaluated by SWE
methods, and that may lead to false-positive results [43, 44]. Although SWE is simple, quantita-
tive, and reproducible, more advances are still needed in order to differentiate calcified nodules
and follicular tumors.

Acknowledgments

The work described in this chapter was supported by National Institutes of Health (NIH) grants
R01CA148994, R01CA148994-S1, R01CA168575, R01EB017213, and R01CA174723 from the
NIH-National Cancer Institute. The content is solely the responsibility of the author and does
not necessarily represent the official views of NIH. The author is very grateful to the follow-
ing individuals for their valuable work during the course of the study that presented in as this
chapter: Dr. Max Denis, Dr. Mahdi Bayat, Dr. Mohammad Mehrmohammadi, Ms. Adriana Gre-
gory, and Ms. Cynthia Andrist.

Disclosure: the author, AA, discloses that Mayo Clinic hold patents on the CUSE technol-
ogy; and Mayo Clinic has also received royalties from companies that have licensed the CUSE
technology. The author does not have any financial interest on the described technology in
this chapter.

References

1 Hegedüs, L. (2004). The thyroid nodule. N. Engl. J. Med. 351 (17): 1764–1771.
2 Brito, J.P., Morris, J.C., and Montori, V.M. (2013). Thyroid cancer: zealous imaging has

increased detection and treatment of low risk tumours. Br. Med. J. 347: f4706.
3 Chen, A.Y., Jemal, A., and Ward, E.M. (2009). Increasing incidence of differentiated thyroid

cancer in the United States, 1988–2005. Cancer 115 (16): 3801–3807.
4 Pellegriti, G., et al. (2013). Worldwide increasing incidence of thyroid cancer: update on epi-

demiology and risk factors. J. Cancer Epidemiol. 2013: 965212.
5 Davies, L. and Welch, H.G. (2006). Increasing incidence of thyroid cancer in the United

States, 1973–2002. J. Am. Med. Assoc. 295 (18): 2164–2167.
6 Reading, C.C., et al. (2005). Sonography of thyroid nodules: a “classic pattern” diagnostic

approach. Ultrasound Q. 21 (3): 157–165.
7 Deandrea, M., et al. (2002). Fine-needle aspiration biopsy of the thyroid: comparison

between thyroid palpation and ultrasonography. Endocr. Pract. 8 (4): 282–286.
8 Gharib, H. and Goellner, J.R. (1993). Fine-needle aspiration biopsy of the thyroid: an

appraisal. Ann. Int. Med. 118 (4): 282–289.
9 Burch, H.B., et al. (1996). Fine needle aspiration of thyroid nodules. Acta Cytolog. 40 (6):

1176–1183.
10 Alexander, E.K. (2008). Approach to the patient with a cytologically indeterminate thyroid

nodule. J. Clin. Endocrinol. Metab. 93 (11): 4175–4182.
11 Goellner, J.R. (1996). Fine needle aspiration of the thyroid gland. In: Fine Needle Aspi-

ration of Subcutaneous Organs and Masses (ed. Y.S. Erozan), 1st edn. Philadelphia:
Lippincott-Raven.



Thyroid Shear Wave Elastography 565

12 Haas, S., Trujillo, A., and Kunstle, J. (1993). Fine needle aspiration of thyroid nodules in a
rural setting. Am. J. Med. 94 (4): 357–361.

13 Cap, J., et al. (1999). Sensitivity and specificity of the fine needle aspiration biopsy of the
thyroid: clinical point of view. Clin. Endocrinol. (Oxf.) 51 (4): 509–515.

14 Raab, S.S., et al. (2006). Errors in thyroid gland fine-needle aspiration. Am. J. Clin. Pathol.
125 (6): 873–882.

15 Sarvazyan, A. (2001). Elastic properties of soft tissues. In: Handbook of Elastic Properties of
Solids, Liquids and Gases (ed. M. Levy, H.E. Bass, R.R. Stern, A.G. Every, and V. Keppens),
vol. 3, 107–127. Academic Press.

16 Krouskop, T.A., et al. (1998). Elastic moduli of breast and prostate tissues under compres-
sion. Ultrason. Imaging 20 (4): 260–274.

17 Bahn, M.M., et al. (2009). Development and application of magnetic resonance elastogra-
phy of the normal and pathological thyroid gland in vivo. J. Magn. Reson. Imaging 30 (5):
1151–1154.

18 Szabo, T.L. (2004). Diagnostic Ultrasound Imaging: Inside Out. Academic Press.
19 Lyshchik, A., et al. (2005). Elastic moduli of thyroid tissues under compression. Ultrason.

Imaging 27 (2): 101–110.
20 Rago, T., et al. (2007). Elastography: new developments in ultrasound for predicting malig-

nancy in thyroid nodules. J. Clin. Endocrinol. Metab. 92 (8): 2917–2922.
21 Lyshchik, A., et al. (2005). Thyroid gland tumor diagnosis at US elastography 1. Radiology

237 (1): 202–211.
22 Dighe, M., et al. (2008). Differential diagnosis of thyroid nodules with US elastography using

carotid artery pulsation 1. Radiology 248 (2): 662–669.
23 Bae, U., et al. (2007). Ultrasound thyroid elastography using carotid artery pulsa-

tion – preliminary study. J. Ultrasound Med. 26 (6): 797–805.
24 Gu, J., et al. (2012). Preliminary study on the diagnostic value of acoustic radiation force

impulse technology for differentiating between benign and malignant thyroid nodules. J.
Ultrasound Med. 31 (5): 763–771.

25 Bojunga, J., et al. (2012). Acoustic radiation force impulse imaging for differentiation of thy-
roid nodules. PloS One 7 (8): e42735.

26 Friedrich-Rust, M., et al. (2012). Acoustic radiation force impulse-imaging for the evaluation
of the thyroid gland: a limited patient feasibility study. Ultrasonics 52 (1): 69–74.

27 Tanter, M., et al. (2008). Quantitative assessment of breast lesion viscoelasticity: initial clini-
cal results using supersonic shear imaging. Ultrasound Med. Biol. 34 (9): 1373–1386.

28 Sebag, F., et al. (2010). Shear wave elastography: a new ultrasound imaging mode for the
differential diagnosis of benign and malignant thyroid nodules. J. Clin. Endocrinol. Metab.
95 (12): 5281–5288.

29 Slapa, R.Z., et al. (2012). Shear wave elastography may add a new dimension to ultrasound
evaluation of thyroid nodules: case series with comparative evaluation. J. Thyroid Res. 2012:
657147.

30 Magri, F., et al. (2012). Shear wave elastography in the diagnosis of thyroid nodules: feasibil-
ity in the case of coexistent chronic autoimmune Hashimoto’s thyroiditis. Clin. Endocrinol.
76 (1): 137–141.

31 Veyrieres, J.-B., et al. (2012). A threshold value in Shear Wave elastography to rule out
malignant thyroid nodules: a reality? Eur. J. Radiol. 81 (12): 3965–3972.

32 Szczepanek-Parulska, E., et al. (2013). Comparison of diagnostic value of conventional ultra-
sonography and shear wave elastography in the prediction of thyroid lesions malignancy.
PloS One 8 (11): e81532.

33 Zhang, B., et al. (2013). Shear wave elastography for differentiation of benign and malignant
thyroid nodules: a meta-analysis. J. Ultrasound Med. 32 (12): 2163–2169.



566 Ultrasound Elastography for Biomedical Applications and Medicine

34 Cantisani, V., et al. (2014). Ultrasound elastography in the evaluation of thyroid pathology.
Current status. Eur. J. Radiol. 83 (3): 420–428.

35 Song, P., et al. (2013). Comb-push ultrasound shear elastography (CUSE) with various ultra-
sound push beams. IEEE Trans. Med. Imaging 32 (8): 1435–1447.

36 Song, P., et al. (2012). Comb-push ultrasound shear elastography (CUSE): a novel method
for two-dimensional shear elasticity imaging of soft tissues. IEEE Trans. Med. Imaging 31
(9): 1821–1832.

37 Song, P., et al. (2014). Fast shear compounding using robust 2-D shear wave speed calcula-
tion and multi-directional filtering. Ultrasound Med. Biol. 40 (6): 1343–1355.

38 Yoon, J.H., et al. (2011). Interobserver variability of ultrasound elastography: how it affects
the diagnosis of breast lesions. Am. J. Roentgenol. 196 (3): 730–736.

39 Mehrmohammadi, M., et al. (2015). Comb-push ultrasound shear elastography (CUSE) for
evaluation of thyoid nodules: preliminary in vivo results. IEEE Trans. Med. Imaging 34 (1):
97–106.

40 Song, P., et al. (2015). Two-dimensional shear-wave elastography on conventional ultrasound
scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear
elastography (CUSE). IEEE Trans. Ultrason., Ferroelect., Freq. Control 62 (2): 290–302.

41 Kim, H., et al. (2013). Quantitative assessment of shear-wave ultrasound elastography in
thyroid nodules: diagnostic performance for predicting malignancy. Eur. Radiol. 23 (9):
2532–2537.

42 Lam, A., et al. (2015). The influence of precompression on elasticity of thyroid nodules esti-
mated by ultrasound shear wave elastography. Eur. Radiol. 26 (8): 2845–2852.

43 Gregory, A., et al. (2015). Effect of calcifications on breast ultrasound shear wave elastogra-
phy: an investigational study. PloS One 10 (9): e0137898.

44 Gregory, A., et al. (2015). An experimental phantom study on the effect of calcifications
on ultrasound shear wave elastography. In: Engineering in Medicine and Biology Society
(EMBC), 2015 37th Annual International Conference of the IEEE.



567

Section IX

Perspective on Ultrasound Elastography





569

37

Historical Growth of Ultrasound Elastography and Directions
for the Future
Armen Sarvazyan1 and Matthew W. Urban2

1Artann Laboratories, West Trenton, NJ, USA
2Department of Radiology, Mayo Clinic, Rochester, MN, USA

37.1 Introduction

The field of elastography or elasticity imaging has grown from in its infancy more than two
decades ago to become an emerging medical imaging modality. It has found utility among physi-
cians for many different applications. The field and the level of clinical applications are projected
to grow.

The purpose of this chapter is to examine how the field of ultrasound elastography has grown
over time. To measure this impact we analyzed the publication record using PubMed for the
field and looked at different distinctions and trends. Additionally, we offer a perspective on
future investigations that could be pursued for the use of acoustic radiation force (ARF) for
ultrasound elastographic applications.

There are numerous methods that fall under the umbrella of the field of “ultrasound elas-
tography” that have been detailed in previous chapters of this book. Figure 37.1 demonstrates
the various techniques employed in the field of elastography and elasticity imaging as a whole
[1–22]. This figure lists the various means of excitation. The methods use mechanical, endoge-
nous, or acoustic radiation force as the deformation source.

37.2 Elastography Publication Analysis

In order to evaluate the development of this field we will provide an overview of the growth of
this field using the metric of published reports in the biomedical literature. We used PubMed to
perform targeted searches in the biomedical literature and looked at the number of publications
from 1995 to 2015. The histograms that follow provide insight into the publication dynamics
which can be an efficient tool for exploring history and milestones of a branch of science or
technology and for making projections on future applications in particular areas.

To make these analyses a limited set of keywords were used that would encompass the main
aspects of the subject at hand, which is the measurement of tissue elasticity with ultrasound.
The list consisted of the terms: ultrasound elastography, elastography, elasticity imaging, shear
wave, and acoustic radiation force. The first search that was performed was on “ultrasound
elastography” and is shown in Figure 37.2.

In the 1990s, few research groups (less than a dozen) in the United States, Europe, Japan, and
Russia started working in this field and basic principles and various modalities of the technol-
ogy were developed. The great surge in the publications in 2007/2008 seen in the histogram
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Figure 37.2 Dynamics of publications on “ultrasound elastography” according to the PubMed database from
1995 to 2015.
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Figure 37.3 Comparison of histograms for “elastography” and “ultrasound elastography” from 1995 to 2015.

of Figure 37.2 shows the start of wide clinical use of ultrasound elastography. After that steep
rise in the number of publications in 2008, we see a steady increase of activities in the field,
demonstrating successful application of the technology in various areas of medical diagnostics
and treatment monitoring. This shift coincided with the implementation of elastography meth-
ods in clinical ultrasound machines so that methods could be used in many different patient
populations throughout the world.

It should be noted that ultrasound elastography is part of a larger field of elastography that
encompasses other imaging techniques, including magnetic resonance imaging and mechanical
or tactile imaging [21, 22]. However, because ultrasound is a relatively inexpensive and widely
available modality, methods developed using ultrasound can be disseminated widely for access
to patients. Figure 37.3 shows the proportion of ultrasound elastography reports with respect
to all “elastography” reports. This figure clearly shows a significant increase in the number of
the contributions in the last 2 or 3 years from elastography modalities other than ultrasound
elastography, mainly owing to increased activities in the fields of MR elastography and tactile
imaging.

Terminology and choice of key words are an important issue in science. In the literature
related to the subject of this review two synonyms are commonly used: “elasticity imaging”
or “elastography”. Each of these terms has certain advantages. The term “elasticity imaging”
marks the technology alongside the other diagnostic medical imaging tools such as MR imag-
ing, X-ray imaging, acoustic imaging, tactile imaging, optoacoustic imaging, etc. At the same
time, “elastography” is shorter and at the present, after elasticity imaging became a proven and
widely accepted modality in the last couple of years, “elastography” is used more and more
often, as illustrated in Figure 37.4. For example, “shear wave elasticity imaging” (SWEI), the first
ultrasonic elastography technology using shear acoustic waves, is currently more often called
“shear wave elastography” (SWE), not SWEI, which appears to rename the original technology.
There is a disadvantage with splintering of terms, particularly in the case of literature searches,
because relevant references may be missed. Also, as these methods have become commercial-
ized, general names have been replaced by the names of marketed products.

Analysis of the underlying fine structure of the “ultrasound elastography” histogram allows
one to see the dynamics of relative contributions of various modalities. For example, we found
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Figure 37.4 Comparison of trends for usage for “elasticity imaging” versus “elastography”. The curves suggest a
transition from using “elasticity imaging” to using “elastography”.

a steady decline of the publications on “static elastography”. We found out that the area of the
fastest growth of ultrasonic elastography is related to the modalities based on the use of shear
waves, as see in Figures 37.5 and 37.6. Before 2010, shear wave techniques contributed less than
a quarter of ultrasound elastography publications; in 2015 they contribute more than 70%.

There are several advantages of using shear waves as opposed to compression-based strain
elastography. First, the shear wave speed can be evaluated locally and can be used for calculat-
ing the absolute values of the shear modulus. Also, to obtain these quantitative values of the
shear modulus it is not necessary to know the stress distribution as it is in strain elastogra-
phy. Acoustic radiation force excitations typically generate shear waves with a broad frequency
range which can be exploited for viscoelastic material characterization through analyzing shear
wave velocity dispersion [13, 23–25]. The shear wave frequency can be modulated based on the
application to obtain proper levels of propagation in order to estimate the shear wave speed
with confidence. Amplitude modulation can also be used to generate ARF with specific fre-
quency content [4, 5, 26–28]. Lastly, shear waves can be used not only to evaluate the isotropic,
elastic material properties, but also the anisotropic and viscoelastic properties of tissues.

Most shear wave-based modalities use the acoustic radiation force of focused ultrasound and
the fraction of the ARF-related modes of ultrasound elasticity imaging is constantly increasing.
Therefore there is a strong correlation between the histograms of the “shear wave” and “acous-
tic radiation force”, as illustrated in Figure 37.6. Although the biomedical applications of ARF
are very diverse (they include targeted drug and gene delivery, manipulating of cells in sus-
pension, acoustical tweezers, etc.), the widest new area of its applications is elasticity imaging
and ARF-based methods are the largest part of the ultrasound elastography techniques. ARF
currently demonstrates the steepest increase the publications histograms (see Figure 37.6).

ARF is one of the most important physical phenomena in ultrasound elastography and there
are several more unexplored aspects of ARF which might further increase its role in ultrasound
elastography. Among those three will be considered here:

• the presence of a push-pull ARF
• nonlinear enhancement of ARF
• design of radiation force beams for shear wave elastography.
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37.3 Future Investigations of Acoustic Radiation Force
for Elastography

37.3.1 Nondissipative Acoustic Radiation Force

In most of the ARF-based imaging modalities, the ARF is dependent on an absorbing or atten-
uating tissue. The simplified equation for the ARF, F , is given as

F = 2𝛼I
c

(37.1)

where 𝛼 is the ultrasound attenuation coefficient, I is the ultrasound intensity, and c is the lon-
gitudinal wave speed in the medium. However, ARF can be generated in media without attenu-
ation or acoustic wave reflection. Gradients of acoustic properties of a medium, such as varia-
tions of sound velocity, cause gradients of the energy density in the propagating acoustic wave.
As a result, radiation force is generated [29, 30]. Displacement produced by non-dissipative
radiation force in inhomogeneous media can be in both directions (outward and inward toward
the transducer).

Non-dissipative radiation force can be used to generate a differential force or pressure on an
object. Figure 37.7 schematically illustrates the difference in the ARF effect on an inclusion in
the tissue with the upper drawing corresponding to a solid tumor and in the bottom drawing
corresponding to a liquid-filled cyst. We assume that the arrows represent an acoustic beam
traveling through the inclusion, the solid lines represent the unperturbed shape, and the dashed
lines represent the shape of the inclusion after the ARF stimulation.

Beyer showed the net pressure at the interface of two media is related to the difference in
longitudinal wave speeds in a medium and the corresponding gradient of the energy density of
an acoustic beam [30]

Pnet = E
[

1 −
c1

c2
+ m2

(
1 +

c1

c2

)]
(37.2)

where E is the energy density of the acoustic beam, c1 and c2 are the longitudinal wave speeds
in mediums 1 and 2, respectively, and m is the reflection coefficient defined as

m =
𝜌2c2 − 𝜌1c1

𝜌2c2 + 𝜌1c1
(37.3)

and 𝜌1 and 𝜌2 are the mass densities in mediums 1 and 2. So in the case that the surrounding
tissue has 𝜌1 = 1000 kg/m3 and c1 = 1540 m/s and the tumor has 𝜌2 = 1035 kg/m3 and c2 =

Figure 37.7 Comparison of deformation on a solid
tumor (top) and cyst (bottom) due to an ARF beam
applied to the inclusion. The arrow represents an
acoustic beam traveling through the inclusion, the solid
lines represent the unperturbed shape, and the dashed
lines represent the shape of the inclusion after the ARF
stimulation.
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1573 m/s then Pnet = +0.0225E and then on the other side going from tumor to normal tissue,
the subscripts 1 and 2 are exchanged and Pnet = –0.0199E [31]. In the second case, the sur-
rounding tissue is used as defined above and the cyst has 𝜌2 = 1000 kg/m3 and c2 = 1500 m/s,
then Pnet = −0.0263E and then on the other side Pnet = +0.0263E. The change in the signs of
the force at the edges generates a squeezing or stretching of the inclusion. Investigations would
have to be performed to evaluate the magnitude of these deformations to be used as metrics for
diagnosis. It should be noted that non-dissipative force, in contrast to the dissipative radiation
force, can be generated in tissue at low sub-megahertz frequencies despite the low attenuation
coefficient of the media.

37.3.2 Nonlinear Enhancement of Acoustic Radiation Force

To improve the induced motion using ARF for various applications, it is desired to use any
method to enhance the intensity of an acoustic beam to generate more ARF. Properly account-
ing for the ultrasonic properties of tissue, the nonlinear effects can enhance the amplitude and
localization of the radiation force in the focal region. Focusing a transducer generates a har-
monic wave which steepens due to nonlinearity and then, due to diffraction, transforms into a
short impulse. Along the acoustic path, the content of higher frequencies in the emitted har-
monic wave gradually increases, which results in an increased attenuation of the acoustic wave
and a corresponding increase of the radiation force. This effect is most pronounced close to the
focal area of the beam.

Figure 37.8 shows the relative power and radiation force for a focused beam from the linear
case and nonlinear cases where N is the ratio of the focal length of the transducer and the
nonlinear shock length.

If the shock length is constant, then the focal length could be adjusted to use the nonlinear
enhancement advantageously to increase the radiation force. The amplitude and phase shift for
each harmonic can be chosen so that the nonlinearity, diffraction, and dissipation will transform
the initial wave into a shock wave near the focal region, as depicted in Figure 37.9. In addition,
only linear and therefore not significant, losses will take place along the pre-focal distance, and
the maximum transfer of ultrasonic energy into radiation force will occur at the focus.

37.3.3 Spatial Modulation of Acoustic Radiation Force Push Beams

For ARF-based elastography applications it is necessary to produce a strong shear wave because
the shear waves attenuate in very short distances. As a result there has been significant work
to use different focusing or beamforming strategies to optimize the force delivered. Conven-
tional electronic focusing techniques have been used for many methods [3, 11]. Bercoff et al.
proposed focusing at several different depths in a fast, successive fashion to create a strong
shear wave through constructive interference in the supersonic shear imaging method [12].
Vibro-acoustography used linear array transducers with different sub-apertures to focus beams
at different ultrasound frequencies to generate an oscillatory force [32, 33].

McAleavey et al. used unique apodization schemes to generate ARF push beams to gener-
ate shear waves with known spatial frequencies for estimation of the shear wave velocity in a
medium [16]. Unfocused push beams were introduced by Zhao et al. to create shear waves near
to the transducer [34]. Another advantageous aspect of this approach was to generate a shear
wave with a large depth-of-field (DOF). Radiation force-based crawling waves were generated
with traditional focusing and axicon focusing [35]. Additional work was performed to combine
traditional and axicon focusing in a hybrid fashion to make beams with a large DOF [36].

Unfocused beams and focused beams were used in subsequent implementations of a method
called comb-push ultrasound shear elastography (CUSE), which uses the simultaneous produc-
tion of many shear waves and then uses directional filtering and correlation-based techniques
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Figure 37.8 Nonlinear enhancements of the radiation force contrasted with a linear consideration. The
ultrasound field characteristics (a) power and (b) radiation force are plotted as functions of axial distance for
linear (N = 0) and nonlinear (N = 0.3, 0.4, and 0.5) regimes. Source: reprinted from [11], copyright 1998, with
permission from Elsevier.

to measure shear wave velocity [14, 37]. Steered unfocused beams were also used to generate a
collection of high density ARF push beams [38].

The spatial distribution of ARF push beams can be optimized based on the application. There
are numerous ways to generate strong displacements with these methods for the purposes of
perturbing soft tissues.

37.4 Conclusions

This chapter provides a unique analysis of the publication history in the field of elastography. It
paints a picture that shows an incredible impact due to clinical acceptance. Shear wave-based
applications are growing and a majority of those applications are using methods based on
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Figure 37.9 Transformation of the waveform for a focused ultrasonic field. Source: reprinted from [11],
copyright 1998, with permission from Elsevier.

acoustic radiation force. We provide a few ideas for investigation to optimize and use acoustic
radiation force for future elastographic applications. The field of elastography has grown from
a few research laboratories into a very useful imaging modality that is making clinical impact
in a number of different areas of study.
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