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Preface

For centuries, what is life has remained a central question in life science. This series

highlights living systems as open systems emerging from multicomponent and

hierarchical interactions and the role of mechanics in the realization of such

systems. It covers cutting-edge research in the new frontiers of biomechanics that

explores the fundamental concepts of what constitutes life, based on principles of

energy and information.

Traditionally, biomechanics has been concerned mainly with the dynamics of

biological bodies and mechanical behaviors of tissues, cells, and biomolecules.

Recently, the field has progressed to incorporate multiscale structure-function

relationships that underlie biological phenomena. To contribute to the further

development of biomechanics, this series aims to explore the core concepts of

“what makes life what it is” and how the functionality of dynamical living systems

are realized and maintained. Consequently, the series attempts to answer the

question, “what is life?”

Taking a keen look at our life from birth to death highlights the following

observations:

– First, development and growth of a living organism occur through highly

orchestrated multiple morphogenetic events including cell division, prolifera-

tion, and differentiation that initiate tissue/organ formation. These processes

evolve systematically right from conception to maturity, giving rise to a fully

formed and functional organism.

– Second, living systems maintain their structure and functionality through elab-

orate homeostatic processes, and they possess adaptive capabilities such as

wound healing and remodeling that enable them to adapt and respond to changes

in their surroundings.

– Third, living systems, such as humans, succumb to diseases, infections, or

injuries that lead to system breakdown and subsequent loss of functionality or

even death.
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Overall, these phases in a life cycle of a living system involve mechanical

processes at different spatiotemporal levels and result from coupling interactions

between mechanical and biochemical processes. Biomechanics dealt with in this

series is concerned with quantitative analyses and approaches aimed at elucidating

the fundamental mechanisms that underlie these coupling interactions that collec-

tively build living systems.

Considering that a living system is an open system exchanging energy and mass

with its surroundings, the processes outlined above are dynamical in nature and

comprise both linear and nonlinear and stable and unstable events and bifurcation

processes that lead to “emerging selectivity,” which determines how the sequences

of events occurring in living systems emerge from dynamical complexities with

large degrees of freedom. In such a dynamical open system, the most intrinsic

processes are those mediated by the complex and spatiotemporally hierarchical

interactions among the numerous system components.

Interestingly, mechanical phenomena are inherent in the dynamics of complex

living systems and play important roles in the emergence of order that makes life

what it is. Thus, a mechanistic approach is fundamental to understanding living

systems. Mechanics referred to here is not just the classical Newtonian mechanics

dealing with forces but, in a broader sense, one that encompasses areas ranging

from statistical thermodynamics and electromagnetism to quantum mechanics.

Research involving these energy-based disciplines will in the near future become

multidisciplinary and ultimately yield new disciplines that treat life as a creation of

information.

From the viewpoint of structural dynamics, thermodynamics, and fluid dynam-

ics, the analyses of a living system based on the principles of energy and mass will

naturally extend to include physical as well as biological information. This will

enable the formulation of more descriptive models for a better understanding of the

complex biological interactions, such as genetic transcription network, cell signal-

ing cascade, and cell-cell communication, and the dynamics of macroscopic living

systems.

A major objective of this series is to pioneer new frontiers of biomechanics by

including concepts and ideas from new research frontiers yet to be addressed within

the existing paradigm of biomechanics. In other words, the series presents a novel

energy- and information-based perspective of life that extends from the classical

energy-based understanding. We believe that this series will make a strong contri-

bution toward the expansion of our understanding of “interactions and feedbacks”

that are necessary for adaptive responses exhibited by living systems.

A future milestone of the series is to understand complex open systems, such as

the brain, the nervous system, and the immune system: systems that are born and

maintained homeostatically based on energy and information and whose function-

ality changes dynamically through the interaction with the surrounding environ-

ment. In this regard, the series is intended to develop as an open system (analogous

to living systems) that is admissible of future research dynamics and expansion in

the field of biomechanics.
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Physical forces play an essential role in establishing and maintaining the vital

functions of our bodies. It is well known that a variety of biological processes in

living organisms, such as cell differentiation, morphogenesis, growth, remodeling,

and regeneration, are largely regulated by mechanical factors. The skeletal system,

a leading topic of research, has been studied for several years with the objective of

identifying the contribution of physical forces in living systems. The skeletal

system has a remarkable ability to adapt its structure and function to its mechanical

environment via continual remodeling and regeneration. In light of the progress

made through state-of-the-art research in this field, the principal objective of this

book is to initiate a discussion on skeletal mechanics by elucidating bone adaptation

through the lens of in silico modeling.

The sophisticated bone structure of the human body is a result of the collabora-

tive activities of numerous bone cells that interact with their mechanical environ-

ment. It is extremely important to understand the mechanism underlying the self-

organized regulation of bone adaptation, both from the clinical and scientific points

of view. Maintenance of the load-bearing function of the skeleton over the lifetime

of an individual is critical to preventing locomotive syndrome caused by osteopo-

rosis and osteoarthritis in our aging society. Furthermore, an abnormality in the

skeletal and immune systems—collectively known as osteoimmunology—triggers

bone destruction associated with rheumatoid arthritis. To deal with such serious

health problems that can significantly affect the quality of life, it is crucial to

investigate the cellular mechanism underlying bone adaptation. This approach

would provide a deeper understanding of the well-organized dynamics of living

systems that emerge from complex cellular interactions. This can also provide a

clue toward answering the question, “What makes life what it is?”

Recent advances in cellular and molecular biology, along with improved imag-

ing techniques and omics technologies such as genomics, transcriptomics, and

proteomics, have revealed single-cellular and multi-cellular activities associated

with bone adaptation and their underlying molecular mechanisms via complex

intercellular signaling. In addition to the experimental approach, the parallel

usage of mathematical modeling and computer simulation has remarkably

enhanced our understanding of bone adaptation by linking cellular and molecular

dynamics to organ and tissue behaviors. Such active research has accelerated the

development of novel technologies and drugs toward the treatment of bone dis-

eases. Thus, even though studies of the bone fall under the category of classical

research, these continue to raise important and intriguing questions on the intrinsic

nature of living systems.

This book focuses on the systems biomechanics of bone adaptation through

remodeling that provides a multiscale model for it, spanning the cellular, tissue, and

organ levels. The mathematical model explained in each section provides concrete

examples of in silico approaches for bone adaptation. It will be immensely useful

for readers interested in bone morphology and metabolism and will serve as an

effective bridge connecting mechanics, cellular and molecular biology, and medical

sciences. These in silico approaches toward exploring the mechanisms by which the

functioning of dynamic living systems is established and maintained have potential
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Chapter 1

Overview: In Silico Approaches to Understand
Bone Adaptation

Abstract In this chapter, we provide an overview of our in silico modeling

approaches based on a bottom-up perspective to understanding bone adaptation.

For investigating the underlying cellular mechanism, we propose a mathematical

model of trabecular bone remodeling that considers cellular mechanosensing and

intercellular communication. Through remodeling simulations, this model is able to

explain the phenomenological remodeling law to achieve locally uniform mechan-

ical states at the tissue level. Furthermore, we present a model for trabecular surface

remodeling based on the hypothesis that bone remodeling is driven by the local

non-uniformity of stress distribution on the trabecular surface. The trabecular

remodeling simulations incorporating this phenomenological model can success-

fully represent the functional adaptation of the trabecular architecture from the

tissue level to the organ level.

Keywords Bone adaptation • Mechanical hierarchy • Mathematical model • Cell •

Tissue • Organ

1.1 Introduction

Bone is a hard tissue that supports the body’s weight and protects the various organs
within the body. The internal structure and external form of bone adapt continually

to the mechanical environment by remodeling and maintain its strength as a load-

bearing organ. If long bones such as the femur and tibia were sliced open, cancel-

lous bone would be found with an intricate network structure consisting of multiple

trabeculae. This structure may be reminiscent of the well-designed supporting

framework of buildings. Although the close relationship between the trabecular

orientation and the applied mechanical load is generally recognized, how the

functional bone structure is formed through remodeling is still an enigma. Clarify-

ing the mechanism of bone adaptation is an important and fascinating problem not

only in the fields of biology and medical sciences, but also in mechanics and

engineering.

The earliest mechanical interpretation of bone structure dates back to Wolff’s
Law, often known as the law of bone transformation, which states a mathematical

correspondence between trabecular arrangement and principal stress trajectories
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(Brand 2010; Duda et al. 2010; Wolff 1870, 2010). The ability of bone to align its

trabeculae with stress trajectories was interpreted as a self-regulated functional

adaptation by remodeling (Roux 1881). For the quantitative evaluation of Wolff’s
doctrine, a number of in vivo experiments investigated the adaptive changes of bone

under controlled mechanical conditions (Goldstein et al. 1991; Guldberg et al.

1997a, b). In parallel to the experimental works, several theories to account for

bone adaptation have been proposed. An adaptive elasticity theory developed by

Cowin and Hegedus (1976) is one of the successful continuum theories to describe

an elastic material that adapts its structure to the applied load. According to this

theory, a rate equation of bone morphological changes could be described as a

function of mechanical stress/strain (Hegedus and Cowin 1976). While in their

analytical study, bone structure and mechanics were simplified, computer simula-

tions enabled us to handle more complex spatial and temporal information with

remarkable improvements in our quantitative understanding of bone adaptation.

Carter et al. (1987) and Huiskes et al. (1987) proposed a finite element procedure to

predict the relationships between trabecular bone density and mechanical loading

based on their own adaptive bone remodeling theories. These density-based simu-

lation models were later extended to investigate the morphological changes in

individual trabeculae as a result of bone adaptation (Mullender et al. 1994; Weinans

et al. 1992). Thus, mathematical modeling and computer simulation—the so-called

in silico approaches—have played an important role in the history of bone adapta-

tion research. The objective of this book is to reconsider the underlying mechanism

of bone adaptation through in silico approaches by taking into account up-to-date

research findings ranging from those at the cellular level, to the tissue level, and up

to the organ level.

The process of bone remodeling is intimately associated with the hierarchy of

bone structure and function. Figure 1.1 shows the multiscale bone structure from

the cellular level to the organ level. The remodeling in cancellous bone results from

the repetition of bone resorption by osteoclasts and bone formation by osteoblasts

on individual trabecular surfaces, which is called the remodeling cycle (Parfitt

1994). This coordinated activity is believed to be orchestrated by osteocytes buried

in calcified bone matrix (Bonewald 2011; Dallas et al. 2013; Nakashima et al. 2011;

Tatsumi et al. 2007), which account for about 90% of bone cells. From an anatom-

ical point of view, the osteocyte network via slender cell processes housed in the

lacuno-canalicular porosity seems to be suitable for sensing the surrounding

mechanical environment (Cowin et al. 1991; Himeno-Ando et al. 2012; Sugawara

et al. 2005). Moreover, the flow of interstitial fluid in the lacuno-canalicular

porosity is considered to work as a mechanical cue that initiates an osteocytic

response (Burger and Klein-Nulend 1999; Kameo et al. 2016; Weinbaum et al.

1994), as well as enhances the transport of signaling molecules (Ciani et al. 2014;

Fritton and Weinbaum 2009; Price et al. 2011).

In order to comprehensively understand the entire process of bone functional

adaptation by considering the intrinsic hierarchy ranging from the cellular level to

the organ level, mathematical modeling and computer simulation have become

more and more indispensable. In this chapter, we provide an overview of our
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multiscale modeling and in silico approaches based on a bottom-up perspective to

investigate bone adaptation to mechanical load and the underlying cellular activi-

ties, as shown in Fig. 1.2. First, we introduce a mathematical model of trabecular

bone remodeling that considers the cellular mechanical response to the interstitial

fluid flow and intercellular communication in Sect. 1.2. Through the trabecular

remodeling simulations at the tissue level, this model is shown to have the potential

to represent the phenomenological law of bone transformation toward a locally

uniform mechanical state of stress or strain in the trabecula. Next, based on the

hypothesis that bone remodeling is driven according to the non-uniformity of local

stress on the trabecular surface, we present a model to describe trabecular bone

adaptation from the tissue level to the organ level in Sect. 1.3. The successful use of

this phenomenological model is shown to reproduce highly organized trabecular

architecture in whole bone. Finally, we present questions that remain unanswered

and the future research directions.

1.2 Modeling Bone Adaptation from Cellular to Tissue
Level

Bone adaptation is a biological event that results from cooperative metabolic

activities of numerous bone cells influenced by mechanical environment. One of

the most essential cellular activities that regulate bone adaptation is a

mechanotransduction, i.e., the process by which mechanosensory cells transduce

Femur Cancellous bone
Trabecula

Osteocytes

100 mm 1 mm
100 µm

10 µm

Osteoblast
Osteoclast

Osteocyte
Bone cells

Bone lining cell

Fig. 1.1 Hierarchical structure of bone from cellular to organ level
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mechanical signals into biochemical signals. An experimental study using isolated

osteocytes, which are considered to be mechanosensory cells, showed that the

mechanosensitivity of the cell processes is higher than that of the cell bodies

(Adachi et al. 2009b). However, there is still a significant gap between the strain

required for cellular responses such as the influx of calcium ions or nitric oxide

production (ε ¼ 1–10%) and the strain in bone tissue caused by daily activities

(ε ¼ 0.01–0.1%). Taking into account this contradictory finding, interstitial fluid

flow in the lacuno-canalicular porosity is thought to play an important role as an

amplifier of mechanical stimuli given to osteocytes (Weinbaum et al. 1994).

To gain a deeper understanding of the multiscale bone adaptation, we have

adopted a bottom-up perspective in which knowledge obtained at the microscopic

scale is pieced together to reveal a macroscopic phenomenon. We visualized a

single osteocyte process within a canaliculus and reconstructed a three-dimensional

model with the help of ultra-high voltage electron microscope (UHVEM) tomog-

raphy (Kamioka et al. 2012). Using the obtained image-based model, we simulated

the microscopic fluid flow in the pericellular space to identify the effects of the

geometric complexity of the canaliculus and osteocyte process (Chap. 2). From a

more macroscopic viewpoint, the spatially averaged interstitial fluid flow in the

Femur,
Vertebra

Cancellous 
bone

Trabecula Bone cell Molecule

100 mm 1 mm 100 µm 10 µm 1 nm100 10

Chap. 8–11

Chap. 12–14

Chap. 2, 4

Chap. 3, 5, 6

Chap. 7

Osteocyte mechanotransduction

Signaling in bone metabolism

Osteocyte morphologyOsteocyte morphology

Signaling in bone metabolism

Fig. 1.2 Overview of multiscale modeling and in silico approaches
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lacuno-canalicular porosity can be regarded as seepage flow in porous bone tissue.

The macroscopic fluid flow in an individual trabecula was analyzed by Biot’s
poroelastic theory (Chap. 3). In the poroelastic analysis, the effects of the lacuno-

canalicular microstructure on the seepage flow are reflected in the value of perme-

ability, which can be estimated using a cross-sectional image of a single trabecula

(Chap. 4). Based on these findings, we developed a mathematical model for

trabecular bone remodeling, incorporating the mechanical hierarchy ranging from

microscopic cellular activities to macroscopic bone tissue adaptation, where flow

stimuli to osteocytes are assumed to be a driving force for bone remodeling

(Chap. 5). The validity of this model has been shown through remodeling simula-

tions for single trabeculae subjected to a cyclic uniaxial load (Chap. 5) and a cyclic

bending load (Chap. 6). Furthermore, remodeling simulations for a cancellous bone

specimen demonstrated the functional adaptation of the consisting multiple trabec-

ulae and the corresponding uniformalization of the stress in the cancellous bone

(Chap. 7). These results suggest that the proposed model can represent the phe-

nomenological remodeling law to achieve local uniform stress states at the tissue

level. This finding could be useful in developing a more macroscopic remodeling

model, which is introduced in the following sections.

1.3 Modeling Bone Adaptation from Tissue to Organ Level

The bottom-up modeling to link information from the cellular level to the tissue

level is an effective approach to clarify the underlying cellular mechanism of bone

adaptation. However, this approach requires a tremendous number of parameters to

characterize a whole organ composed of millions of cells. To capture the essential

features of macroscopic organ dynamics emerging from complex cellular interac-

tions, phenomenological modeling, in which a phenomenon is represented using

only a few meaningful parameters, is a powerful strategy. From a historical point of

view, prior to bottom-up models that consider cellular activities, several phenom-

enological models for bone adaptation such as Frost’s mechanostat theory (Frost

1987, 2003) were proposed in order to refine Wolff’s Law. So far, a variety of

computer simulation models of adaptive bone remodeling have been developed in

combination with finite element methods (Carter et al. 1987; Huiskes et al. 1987). In

most of these remodeling simulations, the associated cellular activities were

designed to be governed by some mechanical factors at the tissue level such as

stress and strain (Gerhard et al. 2009). These models are distinctively characterized

by the assumption that each mechanosensory cell intrinsically “knows” the refer-

ence value of the specific mechanical quantity at the state of remodeling

equilibrium.

In contrast to the conventional remodeling models (Carter et al. 1987; Huiskes

et al. 1987), we proposed a novel rate equation for trabecular surface remodeling

toward a uniform stress state at the tissue level (Chap. 8), inspired by the cellular-to-

tissue-level simulations mentioned in the previous section. This rate equation

1.3 Modeling Bone Adaptation from Tissue to Organ Level 5



assumes that trabecular surface remodeling is driven by the local non-uniformity of

stress distribution, i.e., bone is formed at the site with convex stress distribution and

resorbed at the site with concave stress distribution. The originality of our

remodeling model lies in the phenomenological hypothesis that each

mechanosensory cell can acknowledge the local variation in the mechanical state

in the neighboring tissue through a bone cell network. This hypothesis is supported

by the experimental findings that the propagation distance of cell-to-cell calcium

signaling induced by mechanical stimuli is limited within several hundred micro-

meters (Adachi et al. 2009a; Huo et al. 2008). The fundamental features of the

remodeling model have been investigated through computer simulations for

two-dimensional single trabeculae (Chap. 8), two-dimensional cancellous bone

specimens (Chaps. 8 and 9), and three-dimensional cancellous bone specimens

(Chap. 11), with discussions about the distribution of mechanical quantities on

the trabecular surface (Chap. 10). Moreover, the proposed remodeling rate equation

has been applied to organ-level remodeling simulations using the models of

two-dimensional (Chap. 12) and three-dimensional (Chap. 13) human proximal

femurs. Surprisingly, the simulations successfully reproduced highly complex

trabecular architecture similar to that in the actual femur. These results indicate

that a simple remodeling law to achieve local uniform stress states at the tissue level

can realize bone functional adaptation at the organ level. The three-dimensional

trabecular remodeling simulation has also been applied to predict the effects of a

spinal fixation screw on trabecular structural changes in a vertebral body

(Chap. 14), demonstrating a potential for future clinical applications.

1.4 Open Questions and Future Directions

Although our multiscale mathematical modeling and computer simulation have

revealed much about the underlying mechanism of bone adaptation, some unan-

swered questions remain, which should be addressed in future work (see Fig. 1.2).

1.4.1 Osteocyte Mechanotransduction

The molecular mechanism of osteocyte mechanotransduction is a fascinating and

challenging research topic. Osteocytes are believed to convert mechanical infor-

mation from the surrounding interstitial fluid flow into signals that regulate gene

expression and protein synthesis through complex intracellular and extracellular

ultrastructures, such as the cytoskeleton, plasma membrane, and proteoglycan, all

of which are mechanically linked together. However, the relationship between the

ultrastructure of osteocytes and mechanotransduction is poorly understood. The

first step in clarifying the whole picture of this physiological event is to develop a

constitutive model of a single osteocyte within a fluid-filled lacuno-canalicular
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porosity by explicitly modeling the associated cellular components. The mechan-

ical properties of each component should be carefully determined in reference to

microscale experimental studies. The application of this osteocyte model to a fluid-

structure interaction simulation can demonstrate the detailed mechanical behavior

of the osteocyte in response to the interstitial fluid flow. By considering the

experimental findings obtained through cellular and molecular biology, this model-

ing approach can provide insights into the underlying roles of mechanical cues that

contribute to physiological and pathological phenomena in bone.

1.4.2 Osteocyte Morphology

Increasing evidence suggests that the morphology of osteocytes is an essential

factor that influences their mechanosensitivity to maintain physiological bone

remodeling. An experimental study using early mice showed that osteocyte net-

work formation in both cortical bone and cancellous bone was affected by mechan-

ical loading (Sugawara et al. 2013). Indeed, there exists a significant structural

difference in the osteocyte network between the parietal bone (flat bone) and tibia

(long bone) in mice, reflecting physiologically different loading conditions

(Himeno-Ando et al. 2012). It was also reported that pathologies resulting in

different bone mineral densities, such as osteopenia, osteoarthritis, and

osteopetrosis, are related to differences in the osteocyte morphology (van Hove

et al. 2009). Thus, alterations in the micromechanical environment of osteocytes

within a lacuno-canalicular porosity may affect osteocyte mechanotransduction via

interstitial fluid flow. In order to investigate the relationship between microscopic

osteocyte morphology and macroscopic bone adaptation, our multiscale modeling

and in silico approaches extended by considering the variations in the osteocyte

micromechanical environment will provide a useful platform.

1.4.3 Signaling in Bone Metabolism

While in this book we have highlighted the mechanical aspects of bone adaptation,

it is inherently a biochemical process regulated by complex signaling cascades

among a large number of bone cells. One of the most important signaling pathways

involved in bone remodeling is the RANK–RANKL–OPG interaction, which is

responsible for osteoclastogenesis (Wada et al. 2006). Advances in molecular

biology have uncovered various cell-cell signaling pathways that influence bone

mineral density. Based on these experimental findings, several drugs for bone

pathologies targeting specific signaling molecules have been developed. These

include bisphosphonate, parathyroid hormone (teriparatide), selective estrogen

receptor modulator (SERM), anti-receptor activator of nuclear factor-κΒ ligand

(RANKL) antibody (denosumab), and anti-sclerostic antibody (Kawai et al. 2011).

1.4 Open Questions and Future Directions 7



In spite of identifying individual signaling pathways, it is still difficult to predict the

behavior of bone metabolism systems emerging from complex communication

between bone cells. One of the effective strategies to integrate diverse experimental

data is to construct a mathematical model of bone metabolism incorporating an

entire signaling cascade. The in silico experiments based on this mathematical

model can enhance our knowledge of the molecular mechanism of bone pathologies

for diagnosis and treatment, and ultimately would help us understand the nature of

bone homeostasis.

Thus, a comprehensive understanding of bone adaptation necessitates an inter-

disciplinary approach combining mechanics, cellular and molecular biology, and

medical sciences. To successfully treat the hierarchy of bone structure and function,

the synergistic interaction between the following two strategies is indispensable.

One is to dig down into the detail of underlying molecular mechanisms that regulate

bone metabolism from the viewpoint of reduction, and the other is to concentrate on

the holistic behavior of bone as a biological system by integrating separate molec-

ular mechanisms. We believe that in both strategies, multiscale mathematical

modeling and computer simulation will provide powerful techniques to solve the

long-standing enigma of bone adaptation.

1.5 Conclusion

In this chapter, we introduced multiscale modeling and in silico approaches to

understand bone adaptation from the cellular level, over the tissue level, and up to

the organ level. To clarify the underlying cellular mechanism, we developed a

mathematical model of trabecular bone remodeling based on a bottom-up perspec-

tive that considers cellular mechanosensing and intercellular communication.

Through the trabecular remodeling simulations at the tissue level, this remodeling

model was suggested to have the potential to represent the phenomenological law of

bone transformation toward a locally uniform mechanical state. To distill the

essence of the mechanical aspects of bone adaptation, we proposed a rate equation

for trabecular surface remodeling based on the phenomenological hypothesis that

bone remodeling is driven by the local non-uniformity of stress distribution at the

tissue level. The trabecular remodeling simulations incorporating this rate equation

reproduced the adaptive changes in trabecular architecture at the tissue level and the

organ level. The complementary usage of two remodeling models with different

characteristics could contribute to the comprehensive understanding of bone func-

tional adaptation.
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Chapter 2

Microscopic Fluid Flow Analysis
in an Osteocyte Canaliculus

Abstract This chapter describes a computational analysis of the interstitial fluid

flow in a single osteocyte canaliculus, which is closely associated with cellular

mechanotransduction. A three-dimensional simulation model of an osteocyte pro-

cess within a canaliculus was reconstructed based on serial tomographic images

obtained by ultra-high voltage electron microscopy. The fluid flow simulation

predicts the generation of highly inhomogeneous flow patterns in the pericellular

space, owing to the microscopic surface roughness of the canalicular wall and the

osteocyte process. These flow patterns may contribute to the amplification of

mechanical stimuli to osteocytes through deformation of cytoskeletal elements in

the cell processes.

Keywords Interstitial fluid flow • Osteocyte canaliculus • Osteocyte process •

Computational fluid dynamics • Ultra-high voltage electron microscopy

2.1 Introduction

Changes in bone mass and structure owing to remodeling are regulated by the

metabolic activities of bone cells in response to mechanical loading. Among bone

cells, osteocytes, the most abundant cell type in bone tissue, are believed to

orchestrate osteoclastic bone resorption and osteoblastic bone formation

(Nakashima et al. 2011; Tatsumi et al. 2007). Osteocytes are considered the most

likely mechanosensory cells (Adachi et al. 2009a, b, c; Bonewald 2011; Cowin

et al. 1991) from an anatomical point of view since they form a complex

intercellular network via slender cell processes housed in the lacuno-canalicular

porosity inside the mineralized bone matrix (Kamioka et al. 2001, 2009; Sugawara

et al. 2005).

The mechanism by which mechanosensory cells transduce mechanical signals

into biochemical signals, in a process known as mechanotransduction for bone

remodeling, remains unclear. Several experimental and theoretical studies suggest

that the flow of the interstitial fluid in the lacuno-canalicular porosities induced by

dynamic loading plays a pivotal role in the activation of osteocytes (Burger and

This Chapter was adapted from Kamioka et al. (2012) with permission from The Royal Society of

Chemistry.
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Klein-Nulend 1999; Fritton and Weinbaum 2009; Knothe Tate et al. 1998;

Weinbaum et al. 1994). Weinbaum et al. (1994) performed a poroelastic analysis

of bone tissue to show that osteocytes can be activated by flow-induced shear stress

on the surface membranes of their processes. Subsequent studies identified addi-

tional factors that amplify the cellular strain, such as tethering elements connecting

the osteocyte processes to the canalicular wall (Han et al. 2004; You et al. 2001) and

integrin-mediated focal attachments of the cell processes to the canalicular wall

(Wang et al. 2007). However, the apparent complexity of the microstructural

features of canaliculi and the osteocyte processes makes it difficult to judge the

validity of any hypothesis regarding mechanotransduction. To investigate the

effects of their complex geometries, it is essential to obtain high-resolution, pref-

erably three-dimensional, morphological data of the canaliculi and cell processes

within real bone.

In this chapter, we visualize a single osteocyte process within a canaliculus and

create a three-dimensional model with the help of ultra-high voltage electron

microscope (UHVEM) tomography. Using this image-based model for computa-

tional fluid dynamics analysis, we simulated the patterns of interstitial fluid flow in

the pericellular space between the osteocyte process and the canalicular wall to

identify the effects of geometric complexity of the canaliculus on the flow profiles

that drive cellular mechanotransduction.

2.2 Three-Dimensional Reconstruction of Osteocytes
in Canaliculi

For observation of osteocytes in canaliculi, cortical bone samples (surgical waste)

were obtained from the femur of a male donor (aged 62 years) without any

metabolic bone disease, during a joint replacement surgery. Informed consent

was obtained from the donor. Using UHVEM tomography (Kamioka et al. 2009;

Martone et al. 2000; Takaoka et al. 2008) at accelerating voltages of 2 MeV, we

visualized the osteocyte processes within canaliculi at a nanometer scale in 1-μm-

thick sections of the human bone and reconstructed three-dimensional models.

Figure 2.1 shows a series of tomographic images for a transverse cross-section

through a canaliculus containing an osteocyte process. These images are obtained

from one image plane at 10-voxel intervals. Each tomographic image consisted of

500 pixels � 500 pixels, with a final pixel size of 1.7 nm. The total stack of

tomographic images contained 700 images per virtual slice with a 1-voxel thickness

of 0.86 nm. A tethering element (Fig. 2.1, TE), connecting the osteocyte process to

the canalicular wall, was observed. Both transversely sectioned (Fig. 2.1, cross-

section, CS) and longitudinally sectioned (Fig. 2.1, LS) collagen fibrils were

observed in considerable abundance. It was clear that the contour of the canalicular

wall was determined by the collagen fibrils running parallel to the cell process

(Fig. 2.1, Z ¼ 40, white star) and by others running in a direction perpendicular to
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the cell process (Fig. 2.1, Z ¼ 10, black star). With regard to the cell process, a

protuberance was observed, forming a discontinuity in the otherwise smooth and

tube-like structure of the osteocyte process (Fig. 2.1, Z ¼ 20). Protuberances like

Fig. 2.1 Serial tomographic images of a transverse cross-section of a canaliculus containing an

osteocyte process. These images are obtained at 10-voxel intervals (8.6 nm intervals) along the Z-
direction. TE indicates tethering fibers that occupy the space between the cell process and the

canalicular wall. CS indicates cross-section of a collagen fibril and LS indicates longitudinal

section of a collagen fibril. The white star indicates a collagen fibril that runs along the cell

process, and the black star indicates a collagen fibril that runs in a direction perpendicular to the

cell process. Bar ¼ 200 nm (This figure was adapted from Kamioka et al. (2012) with permission

from The Royal Society of Chemistry)
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these have been observed earlier and seem to be a natural feature of osteocyte

processes (McNamara et al. 2009).

We generated a three-dimensional reconstruction of a single canaliculus

containing an osteocyte process (Fig. 2.2) by using serial tomographic images

from Fig. 2.1. Three-dimensional reconstruction clearly illustrates that the osteo-

cyte process runs through the center of its canaliculus, without direct attachment to

the canalicular wall (Fig. 2.2a–c). Furthermore, a three-dimensional distribution of

collagen fibrils was apparent (Fig. 2.2d–e). The contour of the canalicular wall was

Fig. 2.2 Three-dimensional reconstruction of a single canaliculus containing an osteocyte pro-

cess. The osteocyte process is shown in orange, the canalicular wall is shown in blue, the collagen
fibrils running parallel to the cell process are shown in green, and the collagen fibrils running in a

direction perpendicular to the cell process are shown in red (This figure was adapted from

Kamioka et al. (2012) with permission from The Royal Society of Chemistry)
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determined by linear collagen fibrils running parallel to the cell process (green;

Fig. 2.2d–i) and in a direction perpendicular to the cell process (red; Fig. 2.2d–i).

2.3 Computational Fluid Flow Analysis

The fluid flow in the pericellular space between the osteocyte process and the

canalicular wall was numerically analyzed by the lattice Boltzmann method

(Chen and Doolen 1998; Takeishi et al. 2015). This is a computational fluid

dynamics method in which a discretized Boltzmann equation, i.e., lattice

Boltzmann equation, is solved to simulate the flow. The macroscopic flow profiles

obtained by the lattice Boltzmann equation were shown to be equivalent to those

obtained by the Navier-Stokes equation, i.e., Newtonian fluid flow.

In the lattice Boltzmann method, the fluid dynamics are expressed by the

propagation and collision processes of mesoscopic particles that move on a regular

lattice. This lattice represents a discretization of both three-dimensional coordinate

space and particle velocity space. Each node in the lattice is connected to the

27 neighboring nodes in our implementation; this model is called D3Q27. Using

a number density distribution function of the particles fi, with a discretized velocity
ci, the fluid dynamics are described by the following equation:

f i xþ ciΔt; tþ Δtð Þ � f i x; tð Þ ¼ �Δt
τ

f i x; tð Þ � f eqi x; tð Þ� �� Fi x; tð ÞΔt, ð2:1Þ

where the Bhatnagar-Gross-Krook (BGK) approximation was applied in the pro-

cess of particle collisions. In the above equation, x is the position within the lattice,
t is the time, Δt is the time step, τ is the BGK relaxation time, and Fi is the external

body force. The local equilibrium distribution f eqi is given by

f eqi x; tð Þ ¼ ωi
ρ

m
1þ 3ci � v

c2
þ 9 ci � vð Þ2

2c4
� 3v � v

2c2

" #
, ð2:2Þ

where ωi is the weight that depends on the value of |ci|, m is the mass of a particle,

and c is the lattice speed defined as the ratio of the lattice intervalΔx to the time step

Δt (c ¼ Δx/Δt). The macroscopic density ρ and velocity v are, respectively,

calculated by

ρ x; tð Þ ¼
X27
i¼1

mf i x; tð Þ, ð2:3Þ
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v x; tð Þ ¼
P27
i¼1

mcif i x; tð Þ
ρ x; tð Þ ð2:4Þ

The kinematic viscosity of the fluid ν satisfies the following relation:

v� c2

3
τ � Δt

2

� �
ð2:5Þ

2.4 Model of Osteocyte Canaliculi

Based on the three-dimensional visualization of a canaliculus with an osteocyte

process (discussed in Sect. 2.2) image-based simulation models of the pericellular

fluid space between the cell process and the canalicular wall were constructed from

two different canaliculi. One model is of an almost straight canaliculus and the

other is that of a bifurcating canaliculus. These models were discretized by a regular

lattice with a Cartesian coordinate system (x, y, z), where the z-direction was set as

the direction perpendicular to the plane of the section used for tomographic

reconstruction. The lengths of the canalicular models along the z-direction were

set to 134 for the straight canaliculus (Δx ¼ 3.4 nm) and to 124 for the bifurcating

canaliculus (Δx ¼ 7.0 nm). The total number of nodes was 574,617 for the straight

canaliculus and 1,417,997 for the bifurcating canaliculus.

The boundary condition at the surface of the cell process and the canalicular wall

was a no-slip condition. The periodic boundary condition at the inlet and outlet was

applied by connecting these with an imaginary channel whose cross-section

changes smoothly from one end to the other. The fluid flow was generated

by the uniform body force along the z-direction. We set the kinematic viscosity at

10�6 m2/s and the acceleration of the body force at 106 m/s2. Here, we assumed that

the kinematic viscosity of interstitial fluid has the same value as that of salt water.

The value of acceleration of the body force has been determined with reference to

the fluid pressure gradient in a canaliculus obtained by poroelastic analysis: ~ 1 Pa/

nm (Weinbaum et al. 1994). These parameter values produce an extremely low

Reynolds number flow, which is governed by the Stokes equation, i.e., the inertia is

negligible, because the dimension of the channel is only several hundred nanome-

ters. Under the above mechanical conditions, we simulated the flow profiles in

steady state inside the canaliculi.
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2.5 Interstitial Fluid Flow in Osteocyte Canaliculi

To investigate the effect of microscopic surface roughness of the canalicular wall,

which is created by collagen fibrils, on the flow profiles in the pericellular space, we

conducted computational fluid dynamics analysis by using the lattice Boltzmann

method. The fluid flow profiles in an almost straight canaliculus and in a bifurcating

canaliculus are shown in Figs. 2.3 and 2.4, respectively.

Figure 2.3a shows the distribution of the absolute value of fluid velocity and the

corresponding streamlines. In spite of the irregular surface of the canalicular wall

and a protuberance on the osteocyte process, the streamlines follow the shape of the

pericellular space and no vortexes were observed because Stokes flow was assumed

by setting an extremely low Reynolds number. Although the flow in the canaliculus

is laminar, the value of fluid velocity on a given streamline is remarkably position-

dependent. To describe the flow profiles more explicitly, the distribution of the

absolute value of fluid velocity in cross-sections of the canaliculus is demonstrated

in Fig. 2.3b, which shows the distribution in four longitudinal cross-sections

including the z-axis, and in Fig. 2.3c, which shows the distribution in five x–y
cross-sections viewed from �z-direction. These figures demonstrate that fluid

velocity is high in regions where the space between the osteocyte process and the

canalicular wall is relatively large and low in regions where this space is relatively

small. As shown in Fig. 2.3b, ii and c, ii, relatively low fluid velocity was observed

in the regions where the roughness of the surrounding canalicular wall is higher. In

addition, it must be noted that the absolute value of fluid velocity in the upper

region in Fig. 2.3b, iv was about two times larger than that in the lower region,

despite the apparent similarity of the dimensions of the upper and lower regions of

the channel.

The distribution of the absolute value of fluid velocity and the corresponding

streamlines in the bifurcating canaliculus are shown in Fig. 2.4a, and the fluid

velocity distribution in x–y cross-sections viewed from �z-direction in Fig. 2.4b.

Even though the canaliculus has a bifurcation, the flow was exactly laminar and

there was no vortex at all. The fluid flow inside each branch of channels depends on

the direction of external body force, which is determined by the surrounding

mechanical environment in vivo. Here, we focused on the flow profiles in the

lower branch where the value of the fluid velocity was comparatively large.

Figure 2.4b shows that the characteristics of the obtained inhomogeneous flow

pattern were similar to those observed in the case of the straight canaliculus

(Fig. 2.3c), i.e., the fluid velocity was higher in regions where the space between

the osteocyte process and the canalicular wall was large compared to that in regions

where the space was small.
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Fig. 2.3 Computational fluid flow analysis in an almost straight osteocyte canaliculus. (a) (i) A
three-dimensional model of a single canaliculus with an osteocyte process. (ii) Distribution of the

absolute value of fluid velocity on stream lines. (b) Distribution of the absolute value of fluid

velocity in four cross-sections of a canaliculus including the z-axis: (i) the y–z cross-section, (ii)
the cross-section rotated 45 degrees clockwise from the y–z plane, (iii) the x–z cross-section, (iv)
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2.6 Importance of Canalicular Microstructure
in Osteocyte Mechanosensing

Previous theoretical models designed to elucidate the manner in which mechanical

loads placed on a whole bone organ are transduced to the osteocyte, are predom-

inantly based on the assumption that the canalicular wall is relatively smooth and

symmetrical (Han et al. 2004; Wang et al. 2007; Weinbaum et al. 1994; You et al.

2001). Assuming that fluid flow occurs around the osteocyte because of the loads

placed upon the bone, the models would predict this flow to be relatively homoge-

neous. Yet, we found that the canalicular wall made up of collagen fibers is far from

smooth, and the distance between the osteocyte process and the canalicular wall

varies considerably. In addition, we found that the osteocyte process is smooth, but

contains protuberances as has been described previously by Kamioka et al. (2004).

Therefore, we reconstructed a three-dimensional model of the pericellular fluid

space around an osteocyte process, containing a protuberance, and used computa-

tional fluid dynamics analysis at the microscopic scale to analyze the patterns of

interstitial fluid flow.

As shown in Fig. 2.3a, b, although the flow of interstitial fluid in the canaliculus

was always laminar due to an extremely low Reynolds number, even in a bifurcat-

ing canaliculus, we found that the surface roughness of the canalicular wall induces

a complex distribution of fluid velocities. Both fluid flow simulations demonstrated

higher fluid velocities in those regions of the canaliculus where the space between

the osteocyte process and the canalicular wall was large because fluid tends to flow

along the path of least resistance. This phenomenon was previously described in a

flow simulation using an idealized canalicular model (Anderson and Tate 2008).

Inhomogeneous flow patterns may induce strains in cytoskeletal elements of the

osteocyte process, thereby amplifying mechanical stimuli. This effect can be

dominant, especially considering that fiber-like tethering elements may have a

role in amplifying mechanical stimuli in the cell process (Han et al. 2004; You

et al. 2001). More reconstructions of osteocyte processes should be made and more

fluid flow simulations should be performed to approximate the range of possible

flow patterns. However, our calculations in two types of representative canaliculi

clearly illustrate that the flow profiles remarkably depend on the size of the local

space of the channels.

⁄�

Fig. 2.3 (continued) the cross-section rotated 45 degrees clockwise from the x–z plane. (c)
Distribution of the absolute value of fluid velocity in the x–y cross-section as viewed from the

�z-direction: (i) z ¼ �50, (ii) z ¼ �25, (iii) z ¼ 0, (iv) z ¼ 25, (v) z ¼ 50 (unit: Δx) (This figure
was adapted from Kamioka et al. (2012) with permission from The Royal Society of Chemistry)
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Fig. 2.4 Computational fluid flow analysis in a bifurcating osteocyte canaliculus. (a) (i) A three-

dimensional model of a bifurcating canaliculus with an osteocyte process. (ii) Distribution of the

absolute value of fluid velocity on stream lines. (b) Distribution of the absolute value of fluid

velocity in the x–y cross-section as viewed from the �z-direction: (i) z ¼ �50, (ii) z ¼ �25, (iii)
z ¼ 0, (iv) z ¼ 25, (v) z ¼ 50 (unit: Δx) (This figure was adapted from Kamioka et al. (2012) with

permission from The Royal Society of Chemistry)
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2.7 Conclusion

In this chapter, we visualized canaliculi with osteocyte processes inside a cortical

bone sample excised from a human femur by using UHVEM tomography. By

stacking the serial tomographic images obtained, a single canaliculus containing

an osteocyte process was three-dimensionally reconstructed. For the computational

fluid dynamics analysis, image-based three-dimensional simulation models of the

pericellular fluid space between the cell process and the canalicular wall were

constructed for two different canaliculi: a straight canaliculus and a bifurcating

canaliculus. Under the assumption that the interstitial fluid flow in a canaliculus is

Newtonian with a low Reynolds number, we simulated the flow profiles in steady

state inside the canaliculi by the lattice Boltzmann method.

The computational fluid flow analysis showed that the flow of interstitial fluid in

the canaliculus was always laminar, even in a bifurcating canaliculus, and the

magnitude of fluid velocity was strongly position-dependent, owing to the irregular

surface of the canalicular wall and a protuberance on the osteocyte process. In

particular, high fluid velocity was observed in regions of the canaliculus where the

space between the osteocyte process and the canalicular wall was relatively large

because fluid flows along the path of least resistance. These results suggest the

possibility that the inhomogeneous flow patterns contribute to amplification of the

mechanical stimuli to osteocytes by inducing strains in cytoskeletal elements of the

cell processes.
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Chapter 3

Macroscopic Fluid Flow Analysis
in a Poroelastic Trabecula

Abstract This chapter deals with a poroelastic analysis of the interstitial fluid flow

in individual trabeculae. We employed an analytical approach to investigate the

response of the interstitial fluid pressure within a single trabecula to the applied

cyclic loading. By assuming a single trabecula as a two-dimensional poroelastic

material, we present an analytical solution for the interstitial fluid pressure in a

single trabecula as a summation of the transient and steady-state responses by

solving the governing equations for the quasi-static poroelasticity. The results

suggest the possibility that osteocytes embedded in the neighborhood of the tra-

becular surface play a primary role as mechanosensory cells during the bone

remodeling process.

Keywords Interstitial fluid flow • Trabecula • Mechanosensory cell • Cyclic load •

Poroelasticity

3.1 Introduction

An individual trabecula in cancellous bone is a porous material consisting of a

calcified bone matrix and interstitial fluid within a lacuno-canalicular porosity. The

trabeculae within a living body are usually subjected to low-frequency cyclic

loading owing to locomotion (1–2 Hz) and posture maintenance (15–20 Hz)

(Weinbaum et al. 1994). The deformation of the bone matrix under such external

loading induces a flow of interstitial fluid. Experimental and theoretical studies

have shown that an interstitial fluid flow is likely to be a mechanical cue initiating

an osteocytic response (Burger and Klein-Nulend 1999; Price et al. 2011;

Weinbaum et al. 1994).

For a quantitative evaluation of an interstitial fluid flow present in bone tissue,

Biot’s poroelastic theory (Biot 1941, 1955) has been widely applied (Cowin 1999).

Poroelasticity is a continuum theory that considers the mechanical behavior of a

fluid-saturated porous medium based on the interactions between the elastic defor-

mation of a solid matrix and the flow of an internal fluid. A number of analytical

studies on fluid-saturated bones have employed a poroelastic approach that con-

siders bone tissue as an isotropic material (Kameo et al. 2008; Zeng et al. 1994;

This Chapter was adapted from Kameo et al. (2009) with permission from Elsevier.

© Springer Japan KK 2018
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Zhang and Cowin 1994) or a transversely isotropic material (Remond and Naili

2005). In other studies, a poroelastic finite element method has been applied to

quantify the fluid pressure behavior found in bone tissue (Manfredini et al. 1999;

Pereira and Shefelbine 2014; Remond et al. 2008).

In this chapter, we describe an analytical investigation of the mechanical behav-

ior of an individual poroelastic trabecula in response to physiological cyclic loading

based on poroelasticity. We present an analytical solution for a fluid pressure that

contains both the transient and steady-state responses in two-dimensional

poroelastic materials subjected to cyclic axial and bending loads. Based on the

solution obtained, we demonstrate how two parameters, i.e., the loading frequency

and the axial-bending loading ratio, influence the interstitial fluid flow, which is

associated with the mechanical stimuli to the osteocytes.

3.2 Theory of Poroelasticity

This section presents a summary of the linear poroelasticity. In this theory, the

constitutive equations are based on the assumption that the pairing of stress and

fluid pressure is linearly related to the pairing of strain and fluid variation. Using

these constitutive relations, two governing equations can be obtained from the

strain compatibility and fluid continuity equations, respectively.

3.2.1 Constitutive Relations

We used the linear poroelasticity (Coussy 2004; Detournay and Cheng 1993; Wang

2000) to describe the solid-fluid interaction in an individual trabecula under the

assumption of small perturbations. In particular, we focused on the quasi-static

mechanical behavior because the bone tissue within a living body is usually

subjected to low-frequency cyclic loading from daily activities.

The Biot formulation of the constitutive equations for a fluid-saturated porous

material is based on the assumption that both the infinitesimal deformation of the

porous material and the interstitial fluid flow are expressed as a linear sum of the

contributions of the stress and fluid pressure. The constitutive relations for isotropic

poroelastic materials are expressed using the solid strain tensor εij, total stress
tensor σij, interstitial fluid pressure p, and variation in fluid content ζ, defined as a

variation in the volume of per unit volume of a porous material:

εij ¼ 1

2G
σij � ν

1þ ν
σkkδij

� �
þ α

3K
pδij, ð3:1Þ
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ζ ¼ α

K

σkk
3

þ α

KB
p, ð3:2Þ

where σkk represents a sum of the three normal stresses using the Einstein summa-

tion convention for repeated subscripts, and δij is the Kronecker delta, that is, δij¼ 1

if i ¼ j, and δij ¼ 0 if i 6¼ j. In the above equation, G, ν and K are the shear modulus,

Poisson’s ratio, and bulk modulus under drained conditions, respectively, that

satisfy K¼ 2G(1 + ν)/3(1� 2ν). The Biot-Willis coefficient α and Skempton coef-

ficient B in Eqs. (3.1) and (3.2) are given by

α ¼ 1� K

Ks
, ð3:3Þ

B ¼ 1=K � 1=Ks

ϕ=Kf þ 1=K � 1þ ϕð Þ=Ks
, ð3:4Þ

where Ks is the solid bulk modulus, Kf is the fluid bulk modulus, and ϕ is the

porosity.

Assuming an isotropic flow through a porous material, which is governed by

Darcy’s law, the fluid flux component qi is related to the fluid pressure gradient p,i
as

qi ¼ �k

μ
p, i, ð3:5Þ

where k is the intrinsic permeability and μ is the dynamic viscosity of the fluid.

Equations (3.1), (3.2), and (3.5) are constitutive equations used for the linear

poroelasticity.

3.2.2 Governing Equations

To investigate the quasi-static behavior of poroelastic materials, a linear momen-

tum conservation equation without inertia terms, i.e., a stress equilibrium equation,

is utilized. The stress equilibrium equation for a poroelastic material is

σji, j þ Fi ¼ 0, ð3:6Þ

where Fi is the body forces component. Using the constitutive equation, Eq. (3.1);

the equilibrium equation, Eq. (3.6), in the absence of body forces; and the displace-

ment-strain relation,
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εij ¼ 1

2
ui, j þ uj, i
� �

, ð3:7Þ

the strain compatibility equations lead to the following relationship between the

sum of the three normal stresses σkk and the fluid pressure p:

∇2 σkk þ 2α 1� 2νð Þ
1� νð Þ p

� �
¼ 0, ð3:8Þ

where ∇2 represents the Laplace operator.

The equation of fluid continuity is expressed as

∂ζ
∂t

þ qk,k ¼ Q, ð3:9Þ

where Q is the source density, i.e., the rate of fluid injection per unit volume of a

porous solid. Using the constitutive equation, Eq. (3.2); Darcy’s law, Eq. (3.5); the
strain compatibility equation, Eq. (3.8); and Eq. (3.9) in the absence of a fluid

source, the total stress tensor σij and fluid pressure p satisfy the following diffusion

equation:

c∇2 σkk þ 3

B
p

� �
¼ ∂

∂t
σkk þ 3

B
p

� �
, ð3:10Þ

in which the diffusion coefficient c is given by

c ¼ k

μ

2GB2 1� νð Þ 1þ νuð Þ2
9 1� νuð Þ νu � νð Þ

" #
, ð3:11Þ

where νu is the undrained Poisson’s ratio, which is defined by

νu ¼ 3νþ αB 1� 2νð Þ
3� αB 1� 2νð Þ ð3:12Þ

Equations (3.8) and (3.10) constitute the set of governing equations to be solved.

Seven independent material properties are required for a poroelastic analysis: the

permeability k, fluid viscosity μ, drained shear modulus G, drained Poisson’s ratio
ν, solid bulk modulus Ks, fluid bulk modulus Kf, and porosity ϕ.
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3.3 Poroelastic Modeling of a Single Trabecula

To represent the mechanical behavior of a single trabecula within a living body, a

poroelastic problem concerned with a two-dimensional poroelastic material under

cyclic loading was formulated. The initial and boundary value problem presented

was analytically solved for the fluid pressure by making use of the Laplace

transform technique.

3.3.1 Formulation of Poroelastic Problem

For the model of a single trabecula, we considered a two-dimensional poroelastic

material with a width of 2a in the x-direction, as shown in Fig. 3.1. This model

represents the longitudinal cross-section of an individual cylindrical trabecula. To

impose uniform external loadings, two rigid and impermeable plates were placed at

the top and bottom of the sample. The edges of the model x ¼ �a were assumed to

be drained, i.e., the fluid pressure p satisfies

p x ¼ �a; tð Þ ¼ 0 ð3:13Þ

Both the cyclic axial load per unit thickness N(t) with amplitude N0, and the

cyclic bending moment per unit thickness M(t) with amplitude M0, were applied in

the same phase along the y-direction through the plates at the initial time of t ¼ 0.

The boundary conditions for the stresses are given as

2a
x

y

o

M(t) = M0sinωt
N(t) = N0sinωtFig. 3.1 Model of a single

trabecula subjected to cyclic

axial and bending loads

(This figure was adapted

from Kameo et al. (2009)

with permission from

Elsevier)
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Z a

�a

σyydx ¼ �N tð Þ ¼ �N0 sinωt, ð3:14ÞZ a

�a

xσyydx ¼ �M tð Þ ¼ �M0 sinωt, ð3:15Þ

where ω is the angular frequency of the applied cyclic loads. The initial condition of

the poroelastic material was assumed to be at rest, that is, σij(x, t ¼ 0) ¼ 0 and p(x,
t ¼ 0) ¼ 0.

Considering the problem symmetry, the stress components σij and fluid pressure
p depend solely on x and t. Assuming no shear stresses throughout the poroelastic

material, i.e., σxy(x, t) ¼ 0, and stress-free edges x ¼ �a, the stress equilibrium in

the x-direction requires σxx(x, t) ¼ 0. Under a plane strain condition in the z-
direction, the constitutive relations yield the following:

σkk ¼ 1þ νð Þσyy � 1� 2νð Þαp ð3:16Þ

Substituting Eq. (3.16) into Eqs. (3.8) and (3.10), the governing equations are

reduced to

∂2

∂x2
σyy þ α 1� 2νð Þ

1� νð Þ p

� �
¼ 0, ð3:17Þ

c
∂2

∂x2
σyy þ 3

B 1þ νuð Þp
� �

¼ ∂
∂t

σyy þ 3

B 1þ νuð Þp
� �

ð3:18Þ

By introducing the following dimensionless values,

x∗ ¼ x

a
, t∗ ¼ ct

a2

σ∗ij ¼
2aσij
N0

, p∗ ¼ p

B 1þ νuð ÞN0=6a

H ¼ 1� ν

νu � ν
, Ω ¼ a2ω

c
, Λ ¼ 3M0

aN0

9>>>>>>>=>>>>>>>;
, ð3:19Þ

with the governing equations and boundary conditions, Eqs. (3.17) and (3.18) and

Eqs. (3.13), (3.14), and (3.15) are rewritten as follows:

∂2

∂x∗2
σ∗yy þ

1

H
p∗

� �
¼ 0, ð3:20Þ

∂2

∂x∗2
σ∗yy þ p∗

� 	
¼ ∂

∂t∗
σ∗yy þ p∗

� 	
, ð3:21Þ

p∗ x∗ ¼ �1; t∗ð Þ ¼ 0, ð3:22Þ

30 3 Macroscopic Fluid Flow Analysis in a Poroelastic Trabecula



Z 1

�1

σ∗yydx
∗ ¼ �2 sinΩt∗, ð3:23ÞZ 1

�1

x∗σ∗yydx
∗ ¼ �2

3
Λ sinΩt∗, ð3:24Þ

Henceforth, H is a dimensionless stress coefficient, Ω is a dimensionless fre-

quency, and Λ is the axial-bending loading ratio.

3.3.2 Analytical Solution for Fluid Pressure

We solved the initial and boundary value problem shown in the previous section

analytically for fluid pressure p*. The integration of Eq. (3.20) yields

σ∗yy x∗; t∗ð Þ þ 1

H
p∗ x∗; t∗ð Þ ¼ C1 t∗ð Þx∗ þ C2 t∗ð Þ, ð3:25Þ

where C1 and C2 are integration constants that depend solely on time t*. Substitut-
ing x* ¼ �1 into Eq. (3.25) using the diffusion equation, Eq. (3.21), C1 and C2 are

expressed in the following form:

C1 t∗ð Þ ¼ 1

2
σ∗yy 1; t∗ð Þ � σ∗yy �1; t∗ð Þ

n o
, ð3:26Þ

C2 t∗ð Þ ¼ 1

2
σ∗yy 1; t∗ð Þ þ σ∗yy �1; t∗ð Þ

n o
ð3:27Þ

Substituting Eq. (3.25) into Eq. (3.21) to eliminate the fluid pressure p* leads to
the following partial differential equation for the stress σ∗yy:

∂2σ∗yy x∗; t∗ð Þ
∂x∗2

¼ ∂σ∗yy x∗; t∗ð Þ
∂t∗

þ H

1� H

dC1 t∗ð Þ
dt∗

x∗ þ dC2 t∗ð Þ
dt∗


 �
ð3:28Þ

By taking the Laplace transform of Eq. (3.28) with the assumption of no stress

under the initial conditions, the fundamental solution of Eq. (3.28) is obtained as

follows:

eσ∗
yy x∗; sð Þ ¼ A sð Þcosh ffiffi

s
p

x∗ þ B sð Þsinh ffiffi
s

p
x∗

� H

1� H
~C1 sð Þx∗ þ ~C2 sð Þ �

, ð3:29Þ
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where the tilde (~) signifies the Laplace transform, and A(s) and B(s) are unknown
coefficients to be determined from the boundary conditions. Substituting x* ¼ �1

into Eq. (3.29) and using the Laplace transform of Eqs. (3.26) and (3.27) yields

~C1 sð Þ ¼ 1� Hð ÞB sð Þsinh ffiffi
s

p
, ð3:30Þ

~C2 sð Þ ¼ 1� Hð ÞA sð Þcosh ffiffi
s

p ð3:31Þ

Therefore, the substitution of Eqs. (3.30) and (3.31) into Eq. (3.29) leads to

eσ∗
yy x∗; sð Þ ¼ A sð Þ cosh

ffiffi
s

p
x∗ � Hcosh

ffiffi
s

pf gþ
B sð Þ sinh

ffiffi
s

p
x∗ � x∗Hsinh

ffiffi
s

pf g: ð3:32Þ

The application of the Laplace transforms of the boundary conditions Eqs. (3.23)

and (3.24), and the use of Eq. (3.32), yield

A sð Þ ¼ �
Ω

s2þΩ2

ffiffi
s

p

sinh
ffiffi
s

p � H
ffiffi
s

p
cosh

ffiffi
s

p , ð3:33Þ

B sð Þ ¼ � Λ Ω
s2þΩ2s

3
ffiffi
s

p
cosh

ffiffi
s

p � sinh
ffiffi
s

p
3þ Hsð Þ ð3:34Þ

Thus, all of the unknown parameters are determined.

By substituting Eqs. (3.30), (3.31) and (3.32) into the Laplace transform of

Eq. (3.25), the fluid pressure solution in the Laplace transformed domain is

expressed as

~p∗ x∗; sð Þ ¼ A sð ÞH cosh
ffiffi
s

p � cosh
ffiffi
s

p
x∗f gþ

B sð ÞH x∗sinh
ffiffi
s

p � sinh
ffiffi
s

p
x∗f g: ð3:35Þ

The inverse Laplace transform of Eq. (3.35) with the help of the residue theorem

eventually provides the solution of the fluid pressure in the form of the summation

of the transient solution p∗trans and the steady-state solution p∗steady:

p∗ x∗; t∗ð Þ ¼ p∗trans x
∗; t∗ð Þ þ p∗steady x∗; t∗ð Þ, ð3:36Þ

p∗trans x
∗; t∗ð Þ ¼ 2

X1
n¼1

Ωλ2n sin λn cos λn � cos λnx∗ð Þ
λ4n þΩ2
� �

λn � sin λn cos λnð Þ e
�λ2nt

∗

þ2Λ
X1
n¼1

Ωμ2n sin μn � μn cos μnð Þ x∗ sin μn � sin μnx
∗ð Þ

μ4n þΩ2
� �

μ2n þ μn sin μn cos μn � 2sin 2μn
� � e�μ2nt

∗
,

ð3:37Þ
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p∗steady x∗; t∗ð Þ ¼ 1þ Λx∗ð Þ sinΩt∗ � Im
H
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where Im provides the imaginary part of the complex number, and λn and μn,
respectively, are the n-th positive roots of

tan λn
λn

¼ H, ð3:39Þ
tan μn
μn

¼ 3

3� Hμ2n
ð3:40Þ

Equations (3.36), (3.37), (3.38), (3.39), and (3.40) indicate that the fluid pressure

p* depends on three dimensionless parameters, H, Ω, and Λ. The dimensionless

stress coefficient H is the parameter related to the material properties of the matrix

material and interstitial fluid that constitute the poroelastic material. Both the

dimensionless frequency Ω and the axial-bending loading ratio Λ are determined

by the loading conditions representing the temporal and spatial characteristics.

3.4 Interstitial Fluid Pressure in Trabecula

This section first presents an overview of the results obtained regarding the fluid

pressure behavior (Sect. 3.4.1), and follows with a more detailed description of the

characteristics of the steady-state (Sect. 3.4.2) and transient (Sect. 3.4.3) responses.

3.4.1 Description of Fluid Pressure Behavior

As the dimensionless stress coefficient H increases, the effect of the fluid-to-solid

coupling in a poroelastic material becomes negligible compared to that of a solid-

to-fluid coupling, which is due to the fact that, for a large H, the matrix material

supports much more of the mechanical load than the internal fluid. Indeed, it was

reported that the distribution and evolution of the fluid pressure under cyclic

loading are nearly independent of the value of H when H is larger than

50 (Kameo et al. 2008). In the current study, we focus on the dependence of the

fluid pressure on the loading condition, and investigated the effects of dimension-

less parameters Ω and Λ on the fluid pressure behavior, with H ¼ 100.
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The dimensionless frequency Ω defined in Eq. (3.19) represents the ratio of the

characteristic time of the fluid pressure relaxation, τr ¼ a2/c, to that of the applied

load, τf ¼ 1/ω. The fluid pressure distributions along the x-direction for Ω ¼ 0.1,

1, 10 and 100, with Λ ¼ 1, are shown in Fig. 3.2. Figure 3.2a corresponds to the

steady-state response p∗steady plotted for eight phase points of equal length within a

period, and Fig. 3.2b corresponds to the transient response p∗trans plotted at t* ¼ 0,

0.01, 0.1 and 1. The fluid pressure evolution at x* ¼ 0 for Ω ¼ 0.1, 1, 10 and

100, with Λ ¼ 1, is shown in Fig. 3.3. In each set of figures, the lower graph is an

enlarged view of the upper graph from the initial time, t* ¼ 0, to the 1/12 period of

the corresponding cyclic loading.

Referring to Eq. (3.19), the axial-bending loading ratio Λ indicates the ratio of

the magnitude of the bending moment to that of the axial load. The fluid pressure

distributions for Λ ¼ 0.1, 1, 10 and 100, with Ω ¼ 1, are shown in Fig. 3.4.

Figure 3.4a and b correspond to the steady-state response p∗steady and the transient

response p∗trans, respectively.
For a quantification of the transient properties of the fluid pressure, we intro-

duced two factors. The first factor is the half-value period of the transient stage T1/2,
which is defined by

T1=2 � Ω

2π

Z 1

�1

P∗
trans

�� ��dx∗� �
1=2

, ð3:41Þ

where ( )1/2 signifies the dimensionless time interval required for the quantity in

parenthesis to decay to half of its initial value. The half-value period T1/2 quantifies
the decay rate of the integration value of p∗trans over the width normalized by the

period of applied cyclic loading. The second factor is the contribution of the

transient response Π, which is defined by

Π �
R 2π

Ω
0

R 1

�1
P∗
trans

�� ��dx∗� 	
dt∗R 2π

Ω
0

R 1

�1
P∗
steady

��� ���dx∗� 	
dt∗

ð3:42Þ

This factor represents the ratio of the magnitude of the transient response to that

of the steady-state response during the first period of the loading cycle. Both the

half-value period of the transient stage T1/2 and the contribution factor of the

transient response Π are functions of the dimensionless frequency Ω and axial-

bending loading ratio Λ when the dimensionless stress coefficient H is a constant.

To identify the effects of Ω and Λ on the two factors above, which are associated

with the transient properties, Figs. 3.5 and 3.6 show T1/2 and Π plotted three-

dimensionally versus log10Λ and log10Ω, respectively.
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Fig. 3.2 Fluid pressure distribution along the x-direction for Λ ¼ 1: (a) steady-state response (i)
Ω ¼ 0.1, (ii) Ω ¼ 1, (iii) Ω ¼ 10, and (iv) Ω ¼ 100, and (b) transient response (i) Ω ¼ 0.1, (ii)
Ω ¼ 1, (iii) Ω ¼ 10, and (iv) Ω ¼ 100 (This figure was adapted from Kameo et al. (2009) with

permission from Elsevier)
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Fig. 3.3 Fluid pressure evolution at x* ¼ 0 for Λ ¼ 1 (a) Ω ¼ 0.1, (b) Ω ¼ 1, (c) Ω ¼ 10, and (d)
Ω ¼ 100. Each of the lower graphs is an enlarged view of the upper graph from t* ¼ 0 to the 1/12

period of the corresponding cyclic loading (This figure was adapted from Kameo et al. (2009) with

permission from Elsevier)
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Fig. 3.4 Fluid pressure distribution along the x-direction for Ω ¼ 1: (a) steady-state response (i)
Λ¼ 0.1, (ii) Λ¼ 1, (iii) Λ¼ 10, and (iv) Λ¼ 100, and (b) transient response (i) Λ¼ 0.1, (ii) Λ¼ 1,

(iii) Λ ¼ 10, and (iv) Λ ¼ 100 (This figure was adapted from Kameo et al. (2009) with permission

from Elsevier)
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Fig. 3.5 The half-value period of the transient stage T1/2 versus log10Λ and log10Ω (This figure
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was adapted from Kameo et al. (2009) with permission from Elsevier)
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3.4.2 Steady-State Response

As shown in Fig. 3.2a, the fluid pressure in a steady state is built up with an increase

in the dimensionless frequency Ω because the excess fluid pressure has difficulty

diffusing owing to the rapid change in applied loading. In addition, the fluid

pressure profile along the x-direction transforms from a parabolic shape into a

linear shape, leading to an increase in the fluid pressure gradient near the surface,

particularly in the positive region of the x-coordinates. Figure 3.3 indicates that

there was a remarkable phase shift between the applied cyclic loading and the

corresponding fluid pressure evolution in a steady state at x* ¼ 0 at low frequency

(Ω ¼ 0.1) owing to the interstitial fluid transport. On the other hand, when Ω is

larger than 10, the profiles are nearly in phase because the interstitial fluid has

difficulty moving at a high frequency.

Recalling that the fluid pressure p is normalized by the amplitude of axial load

N0, as shown in Eq. (3.19), the axial-bending loading ratio Λ can be regarded as the

dimensionless bending moment when N0 is constant. Figure 3.4a indicates that the

fluid pressure increases with Λ owing to the additional bending moment. When the

magnitude of axial load is much larger than that of the bending moment (Λ ¼ 0.1),

the fluid pressure profile has a symmetric shape about x*¼ 0. However, the increase

in Λ causes a sign inversion of the fluid pressure around both surfaces of the

poroelastic material. When the bending moment is dominant compared to the

axial load (Λ ¼ 100), the fluid pressure profile exhibits an antisymmetric shape

about x* ¼ 0. This transition of the fluid pressure profile with an increasing axial-

bending loading ratio Λ induces a significant fluid pressure gradient, not only in the

neighborhood of the material surfaces but also around the center of the material far

from the surfaces.

3.4.3 Transient Response

The transient stage was observed after applying cyclic loading to the poroelastic

material until the fluid pressure reached a steady state, but decayed within time t*

¼ 1. As shown in Fig. 3.3, the effect of the transient response is dominant when the

phase shift between the fluid pressure evolution during the steady state and the

applied cyclic loading is remarkable. The magnitude of the transient response is

related to such a phase shift because the sum of the transient and steady-state fluid

pressures at t* ¼ 0 must be zero to eliminate the phase shift from the initial

conditions. As a result, the rate of change in the fluid pressure is enlarged during

the transient stage. As mentioned in the previous section, the fluid pressure evolu-

tion and the applied cyclic loading are nearly in phase for a large dimensionless

frequency Ω. Therefore, the effect of the transient response is limited to the region

close to the surface of the poroelastic material when Ω is large, as shown in

Fig. 3.2b.
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Figure 3.5 shows that the half-value period of the transient stage T1/2 reaches a
plateau at 0.29 as Ω increases. This factor has a peak value of 0.36 when Λ is

smaller than 1 (log10Λ < 0) and Ω is about 10 (log10Ω ~ 1). These results suggest

that the effect of the transient response is reduced by 50% during the first 0.4 period

of the applied cyclic loading. For the contribution factor of the transient responseΠ,

Fig. 3.6 shows that there is a spike of Π at around Ω ¼ 10 (log10Ω ~ 1) with a peak

value of 0.20, whereas the value of Ω that maximizes Π varies at around Λ ¼ 1

(log10Λ ~ 0). This result indicates that the magnitude of the transient response is

about 20% of that of the steady-state response under any loading conditions. In

contrast to the behavior of T1/2, Π gradually declines after the peak with an increase

in Ω because the effect of the transient response becomes trivial when Ω increases,

as shown in Fig. 3.2b.

3.5 Importance of Transient Fluid Pressure Response

There have been many studies conducted on the mechanical behavior of poroelastic

materials under cyclic loading in a variety of fields, including geomechanics

(Bredehoeft 1967; Jacob 1940; Quilty and Roeloffs 1991; Roeloffs 1996;

Rojstaczer 1988) and biomechanics (Harrigan and Hamilton 1993; Swan et al.

2003; Weinbaum et al. 1994; Zhang and Cowin 1994; Zhang et al. 1998). Although

a detailed understanding of the poroelastic behavior requires an investigation into

the transient response observed immediately after loading, few reports have

addressed this phenomenon.

The importance of the transient stage prior to the steady state was first acknowl-

edged through a finite element analysis of a three-dimensional poroelastic beam

under cyclic loading (Manfredini et al. 1999). In this study, the authors reported that

the duration of the transient stage was nearly confined to the first cycle of the

loading curve. For a free leakage at the surface of the poroelastic material, which

corresponds to our boundary condition, the authors described the following char-

acteristics of the fluid pressure evolution around the center far from the surface:

(i) When the dimensionless frequency is low (Ω¼ 0.1), there is an immediate sharp

increase in the rate of change in fluid pressure during the transient stage, which

leads to a 1/4 phase shift between the fluid pressure evolution and the applied cyclic

loading during a steady state. (ii) When the dimensionless frequency is high

(Ω ¼ 100), the influence of the transient response is nearly negligible, and the

fluid pressure evolution and applied cyclic loading are in phase during a steady

state. All of the fluid pressure behaviors above are in agreement with our results

(see Fig. 3.3), thereby suggesting the validity of the analytical solution obtained in

the present study.

For a quantitative evaluation of the transient properties of the fluid pressure, we

introduced two factors: the half-value period T1/2, defined by Eq. (3.41), and the

contribution factor Π, defined by Eq. (3.42). As shown in Figs. 3.5 and 3.6, the

behavior of both factors varies at around Λ ¼ 1 with an increase in the
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dimensionless frequency Ω because the stress distribution for Λ > 1 has specific

characteristics, i.e., there is a region where the stress σyy in a poroelastic material is

neutral. With the exception of such Λ-dependence, T1/2 and Π depend almost solely

on Ω and have peak values at around Ω ¼ 10. This suggests that the transient

response has a magnitude comparable to the steady-state response and can signif-

icantly affect the mechanical behavior of poroelastic materials when the dimen-

sionless frequency Ω is around 10.

3.6 Implications of Fluid Flow in Trabecular Bone
Remodeling

When the applied cyclic loading can be regarded as quasi-static, the interstitial fluid

pressure behavior described in this chapter is commonly observed in various

poroelastic materials, including individual trabeculae within a living body. For a

physiological range of activities excluding shock, living bone experiences only low

frequencies of loading and exhibits a quasi-static mechanical behavior.

The mechanical behavior of trabeculae is influenced significantly by two factors:

the material properties and the loading conditions. For two-dimensional poroelastic

materials subjected to cyclic loading, the material properties are represented by the

dimensionless stress coefficient H and the loading conditions are represented by the

dimensionless frequency Ω and axial-bending loading ratio Λ. Using the material

properties of trabeculae (Smit et al. 2002), the dimensionless stress coefficient

H was derived as 82.6. This indicates that the H of trabeculae is sufficiently

large, and thus the interstitial fluid behavior is nearly independent ofH. Meanwhile,

the dimensionless frequency Ω depends not only on the angular loading frequency

ω but also on the model size a and the diffusion coefficient c, which is proportional
to the permeability k. Considering the bone permeability at the lacuno-canalicular

level, k ¼ 10�22–10�19 m2 (Beno et al. 2006), under the assumption of the typical

width of an individual trabecula, a ¼ 100 μm, and the physiological loading

frequency, 1–20 Hz, the dimensionless frequency Ω that trabeculae experience

during daily activities is estimated to be 10�2–102. Such a broad range for this

estimated value, which is mainly due to the difficulty of determining the perme-

ability, covers the range of dimensionless frequencies where the contribution of

transient response is comparatively large (Ω ~ 10). This suggests that considering

the effects of the transient response is critical for an analysis of the interstitial fluid

flow in trabeculae. The axial-bending loading ratio Λ depends on the location where

the individual trabecula is placed in cancellous bone, and is expected to have a wide

range of values from zero to infinity. It seems reasonable to assume that the

variations in Ω and Λ in cancellous bone induce a variety of mechanical stimuli

that the osteocytes sense through an interstitial fluid flow, and as a result, bone

resorption and formation are appropriately regulated.
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The seepage velocity in poroelastic materials is one of the mechanical properties

quantifying the fluid flow at the macroscopic scale. In the context of bone

poroelasticity, the seepage velocity represents the average velocity of interstitial

fluid in a lacuno-canalicular porosity and is closely associated with the mechanical

stimuli to the osteocytes during the bone remodeling process. This quantity is

proportional to the fluid pressure gradient, which is the driving force of a fluid

flow. Figure 3.2 shows that, as the dimensionless frequency Ω increases, the

seepage velocity, and thus the mechanical stimuli to the osteocytes close to the

trabecular surface increases. Furthermore, as shown in Fig. 3.4, an increase in the

axial-bending loading ratio Λ produces a larger seepage velocity around the center

of the trabecula, stimulating the osteocytes. Considering that the seepage velocity

near the trabecular surface is always larger than that far from the surface regardless

of the values of Ω and Λ, the results obtained in the current analytical study imply

that osteocytes buried within the neighborhood of a trabecular surface operate

primarily as mechanosensory cells during the bone remodeling process.

3.7 Conclusion

In this chapter, we developed an analytical solution for the interstitial fluid pressure

in two-dimensional poroelastic materials subjected to cyclic axial and bending

loads. The analytical solution contains steady-state and transient responses, both

of which depend on three dimensionless parameters: the dimensionless stress

coefficient H governing the solid-fluid coupling behavior in a poroelastic material;

the dimensionless frequency Ω, which indicates the ratio of the characteristic time

of the fluid pressure relaxation to that of the applied load; and the axial-bending

loading ratio Λ, which represents the ratio of the magnitude of the bending moment

to that of the axial load. Using the material properties of trabeculae, we investigated

the behavior of an interstitial fluid flow in a single trabecula with a change in two

dimensionless parameters Ω and Λ.
A poroelastic analysis showed that an increase in the dimensionless frequencyΩ

increases the seepage velocity, which is a characteristic of the mechanical stimuli to

osteocytes, close to a trabecular surface. In addition, the increase in axial-bending

loading ratio Λ induces an interstitial fluid flow around the center of the trabecula.

Regardless of these two values, the seepage velocity close to the trabecular surfaces

is consistently larger than that far from the surface. These results suggest that

osteocytes embedded in the neighborhood of the trabecular surface play a primary

role as mechanosensory cells during the bone remodeling process.
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Chapter 4

Estimation of Bone Permeability
for Poroelastic Analysis

Abstract Bone permeability is one of the most important material properties

addressed in the investigations of interstitial fluid flow in lacuno-canalicular poros-

ities based on poroelastic analysis. This chapter describes a method for estimating

bone permeability by deriving the analytical relationship between the volume

orientation fabric tensor, which characterizes the canalicular orientation, and the

permeability tensor. By applying this method to a cross-sectional image of a

cylindrical trabecula, it is shown that canaliculi are predominantly oriented in the

radial direction of the trabecula, and the permeability depends largely on the

canalicular morphology and dimension.

Keywords Bone permeability • Trabecula • Canalicular anisotropy • Cross-

sectional image • Poroelastic Analysis

4.1 Introduction

The flow of the interstitial fluid in a lacuno-canalicular porosity is believed to

initiate the mechanical response of osteocytes for bone remodeling, as well as

transport cell signaling molecules, nutrients, and waste products (Bonewald and

Johnson 2008; Burger and Klein-Nulend 1999; Fritton and Weinbaum 2009; Klein-

Nulend et al. 2005; Riddle and Donahue 2009). Poroelastic theory has been widely

used for determining the interstitial fluid flow caused by the bone matrix deforma-

tion (Cowin 1999; Kameo et al. 2008, 2009; Nowinski 1970), as shown in the

Chap. 3. Among the material properties required for performing poroelastic anal-

ysis, the permeability, which measures the ability of a porous material to transmit

fluids, can significantly influence the mechanical behavior of the interstitial fluid.

Despite its importance, direct and exact experimental measurements of permeabil-

ity are difficult because a typical lacuno-canalicular porosity has a complex three-

dimensional structure with a diameter on the order of several hundred nanometers.

Therefore, bone permeability is usually determined by combining experimental and

theoretical approaches (Beno et al. 2006; Oyen 2008; Smit et al. 2002; Weinbaum

et al. 1994).

This Chapter was adapted from Kameo et al. (2010) with permission from Elsevier.

© Springer Japan KK 2018
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In most studies aiming to determine the bone permeability, the bone tissue is

regarded as an isotropic material (Oyen 2008; Smit et al. 2002; Weinbaum et al.

1994), even though the lacuno-canalicular porosity and the osteocyte network

inside it both have anisotropic morphology. It follows that the interstitial fluid

flow in the lacuno-canalicular porosity is strongly anisotropy-dependent. To accu-

rately understand the mechanical behavior of the interstitial fluid, it is necessary to

evaluate the orientation of a lacuno-canalicular porosity by using a fabric tensor

(Cowin 1985, 1986), and to determine the anisotropic permeability tensor reflecting

its characteristic morphology. Beno et al. (2006) focused on the canalicular anisot-

ropy and successfully derived the anisotropic permeability in the three local

principal directions around each osteocyte lacuna by considering the directional

dependence of the number of canaliculi. However, as these authors mentioned,

determining the orientation of each osteocyte lacuna is necessary for building

anisotropic poroelastic finite element models that include lacuno-canalicular

porosity.

In this chapter, we present a method for estimating the anisotropic bone perme-

ability based on the images of lacuno-canalicular porosity. This method is applied

to a two-dimensional cross-sectional image of a cylindrical trabecula acquired by

using confocal laser scanning microscopy. First, the canalicular morphology is

extracted from the original fluorescence images. Then, the orientation of canaliculi

is quantitatively evaluated by using a fabric tensor. Finally, the anisotropic perme-

ability tensor of a single trabecula can be estimated by deriving the analytical

relationship between the fabric tensor and the permeability tensor.

4.2 Confocal Laser Scanning Imaging
of Lacuno-Canalicular Porosity

A bone specimen for determining the permeability was excised from a swine

proximal tibia (8 months old, about 300 kgf). Figure 4.1 shows a fragment of the

obtained bone, containing both cancellous and cortical bone, with a cross-section of

about 3 � 3 mm. After staining the specimen with RH414 (50 μM), a longitudinal

cross-sectional image of a cylinder-like trabecula in the cancellous bone was

acquired by using a confocal laser scanning microscope (LSM510, Carl Zeiss), as

shown in Fig. 4.2. The obtained image is 256 pixels � 256 pixels, with a pixel size

of 0.36 μm. This image reveals three regions with high fluorescence intensity; the

slender regions correspond to canaliculi, the ellipsoid-like regions correspond to

lacunae, and the region in the upper right corner corresponds to the outside of the

trabecula. The typical diameter of the canaliculi (~0.1 μm) is much smaller than that

of the lacunae (~10 μm) and the characteristic length of the outside region

(~10 μm). Taking advantage of such differences in dimensionality, we extracted
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Fig. 4.1 A bone specimen containing cancellous bone and cortical bone excised from a swine

proximal tibia. The cross-section dimensions are about 3 � 3 mm (This figure was adapted from

Kameo et al. (2010) with permission from Elsevier)

Fig. 4.2 Fluorescence image of the longitudinal cross-section of a cylindrical trabecula. This

image was acquired by using a confocal laser scanning microscope. The slender regions corre-

spond to canaliculi, the ellipsoid-like regions correspond to lacunae, and the region in the upper

right corner corresponds to the outside of the trabecula (This figure was adapted from Kameo et al.

(2010) with permission from Elsevier)
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the canalicular morphology from the original image because the interstitial fluid

flow in canaliculi is more important than that in lacunae for evaluating the

permeability.

The process for extracting the canalicular morphology is schematically shown in

Figs. 4.3a–d. First, we introduced the fluorescence intensity field L(x) as a function
of the position x, based on the intensity of the original fluorescence image. By

setting an appropriate intensity threshold Lt for binarizing the image, a domain D1

can be defined as the regions satisfying L(x) > Lt, which contain both the lacunae

and the canaliculi (Fig. 4.3a). Second, the domain D1 is contracted at the value of δ
(>0), yielding a domain D2 (Fig. 4.3b). In this process, δ is required to be larger

than the maximal canalicular radius for eliminating the canalicular regions. Third, a

domain D3, which contains only the lacunae, is generated by expanding the domain

D2 at the same value of δ (Fig. 4.3c). Finally, by subtracting the domain D3 from the

domain D1, the canaliculi can be extracted as a domain D4 (Fig. 4.3d). The domain

D4 is used for estimating the trabecular bone permeability.

We applied the above method to the confocal laser scanning image of the

lacuno-canalicular porosity, shown in Fig. 4.2. The obtained domains D1–D4 are

shown in Figs. 4.4a–d, respectively. Considering that canalicular diameters range

from 80 nm to 710 nm (You et al. 2004), we set the length of expansion or

contraction δ as 900 nm, which is equivalent to the length of 2.5 pixels in the

original image. The domain D1 (Fig. 4.4a) includes the canaliculi, the lacunae, and

the outside of the trabecula. By contracting and expanding the domain D1, both the

Domain D1 Domain D2

Domain D4Domain D3

LacunaeCanaliculi
δ

δ

L(x) > Lt

a b

c d

Fig. 4.3 The process for extracting canalicular morphology. (a) Domain D1 corresponds to the

regions containing both lacunae and canaliculi, which is defined based on the fluorescence

intensity of the original image. (b) Contraction of domain D1 at the value of δ yields domain

D2. Canalicular regions are eliminated through this process. (c) Expansion of domain D2 at the

value of δ produces domain D3, which is regarded as the lacunae. (d) By subtracting the domain D3

from the domain D1, the canaliculi can be extracted as a domain D4 (This figure was adapted from

Kameo et al. (2010) with permission from Elsevier)
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lacunae and the outside region were successfully extracted as the domain D3

(Fig. 4.4c). The domain D4, obtained by subtracting D3 from D1 (Fig. 4.4d),

includes only slender regions, which can be regarded as canaliculi.

The level set method (Osher and Sethian 1988), which is one of the numerical

algorithms for tracking interfaces and shapes of materials, was employed to expand

Fig. 4.4 Extraction of canalicular morphology from the fluorescence images through the process

shown in Fig. 4.3. (a) Domain D1 includes both lacunae and canaliculi. The region in the upper

right corner is the outside of the trabecula. (b) Domain D2 is the contracted domain of domain D1.

(c) Domain D3 contains lacunae and the outside region. (d) Domain D4 represents canaliculi (This

figure was adapted from Kameo et al. (2010) with permission from Elsevier)
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or contract the specified region. The boundaries of the object were represented by

the iso-surface of the following level set function:

ϕ x; tð Þ < 0 x2Ωþ

ϕ x; tð Þ ¼ 0, x2∂Ω
ϕ x; tð Þ > 0, x2Ω�

9=
;, ð4:1Þ

where Ω+, ∂Ω, and Ω� are the inside, boundary, and outside of the object,

respectively. The movement of the boundaries can be expressed by the evolution

of the level set function ϕ(x, t) according to the following equation:

∂ϕ x; tð Þ
∂t

þ F xð Þ ∇ϕ x; tð Þj j ¼ 0, ð4:2Þ

where F(x) is the speed function in the outward normal direction. By setting

F(x) ¼ �δ, we numerically calculated the level set function after a unit time

ϕ(x, 1), to obtain the object boundaries after expansion or contraction at the value
of δ. The initial level set function, ϕ(x, 0), was determined based on the fluorescence

field intensity L(x) of the original image, to satisfy Eq. (4.1).

4.3 Theoretical Method for Estimating Bone Permeability

This section describes the theoretical method for estimating anisotropic bone

permeability. This method consists of two steps: (1) quantification of canalicular

anisotropy (Sect. 4.3.1) and (2) derivation of the analytical relationship between the

fabric tensor and the permeability tensor (Sect. 4.3.2).

4.3.1 Quantification of Canalicular Anisotropy

For the quantitative evaluation of the anisotropy of canalicular morphology

extracted in Sect. 4.2, the volume orientation (VO) method (Odgaard et al.

1990) was utilized. This method makes it possible to characterize structural anisot-

ropy by analyzing the statistical distribution of the local volume orientation, which

describes the representative direction of the volume at an arbitrary position within

an object. The local volume orientation is determined as shown in Fig. 4.5. Suppose

that the entire domain with regular grid of points is composed of the canalicular

domain Dc and the complementary bone matrix domain. The local volume orien-

tation n (x) can be defined for each point within Dc as the unit vector with the

orientation of the longest intercept through the position x, and written in the

component form by using the orthogonal basis e1, e2, e3 as follows:
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n ¼ niei ¼ n1e1 þ n2e2 þ n3e3, ð4:3Þ

with the summation convention for the repeated subscript i, where the components

n1, n2, n3 are given by

n1 ¼ sin θ cosφ, n2 ¼ sin θ sinφ, n3 ¼ cos θ ð4:4Þ

In the above equation, θ is the angle between the x3-axis in the Cartesian

coordinate system (x1, x2, x3) and the vector n, and φ is the angle between the x1-
axis and the projection of n onto the x1 x2-plane, measured anti-clockwise. Because

the VO method assumes that the object is orthotropic, i.e., the local volume

orientation has an unsigned direction, the angles are constrained according to

0 � θ � π=2, 0 � φ � 2π ð4:5Þ

The statistical distribution of the local volume orientation can be expressed by

using the VO fabric tensor (Odgaard et al. 1997), defined by

Vij ¼ 1

Vc

Z
Vc

ninjdV, ð4:6Þ

n(x)

Position x

n(x) : Local volume orientation

Bone matrix

Canaliculi (Domain Dc)

Fig. 4.5 Definition of the local volume orientation. The entire domain with the regular grid of

points is composed of the canalicular domain Dc and the bone matrix domain. The local volume

orientation n(x) is defined for each point within Dc as the unit vector with the orientation of the

longest intercept through position x. The local volume orientation at each point is indicated by

double-headed arrows because the positive and negative directions are not distinguished in the VO

method (This figure was adapted from Kameo et al. (2010) with permission from Elsevier)
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where Vc is the volume of the canalicular domain Dc. By introducing the local

volume orientation frequency ρc(n), which indicates the volume fraction of cana-

liculi oriented toward n, Eq. (4.6) is rewritten in the following form:

Vij ¼
Z 2π

0

dφ

Z π=2

0

ninjρc nð Þ sin θdθ ð4:7Þ

4.3.2 Estimation of Trabecular Bone Permeability

The seepage flow of the interstitial fluid through porous trabeculae is significantly

influenced by the dendritic morphology of a lacuno-canalicular porosity. Our

method for estimating trabecular bone permeability is based on the derivation of

the analytical relationship between the permeability tensor kij and the VO fabric

tensor Vij, describing the canalicular anisotropy. We considered two analytical

models of lacuno-canalicular porosity with different levels of scale, as shown in

Fig. 4.6 (Weinbaum et al. 1994). The larger-scale level model is a representative

volume element (RVE) of a trabecula, containing several canaliculi (Fig. 4.6a). In

this RVE, the seepage flow is assumed to be governed by Darcy’s law; the fluid flux
component qi is related to the fluid pressure gradient p,j as

qi ¼ �kij
μ
p, j, ð4:8Þ

where μ is the fluid viscosity. The smaller-scale level model represents a single

canaliculus with the local volume orientation n, in which a slender osteocytic

process is housed (Fig. 4.6b).

For the smaller-scale level model of a single canaliculus, the microstructural

model proposed by Weinbaum et al. (1994) was employed, as shown in Fig. 4.6b.

This model can account for the interstitial fluid flow through a fiber matrix, such as

proteoglycan, in a pericellular space between the wall of the canaliculus and the

membrane of the osteocytic process. The canaliculus is idealistically modeled as a

straight cylindrical tube with a smooth surface, and the osteocytic process is

modeled as a coaxial cylinder. On this scale, the interstitial fluid flow in the

pericellular space is considered to be governed by the Brinkman equation:

p, i ¼ � μ

kp
u, i þ μu,kk, ð4:9Þ

where kp is the small-scale permeability of a pericellular matrix, approximated as

0:0572a20 Δ=a0ð Þ2:377 by using the fiber radius a0 and fiber spacing Δ (Tsay and

Weinbaum 1991). Owing to this idealistic presentation, the average fluid velocity
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vector in the canaliculus v is parallel to the local volume orientation n, and its

magnitude is proportional to the fluid pressure gradient along the direction n.
Indeed, by analytically solving the Brinkman equation, Eq. (4.9), with no-slip

boundary conditions on the surfaces of the canaliculus and the osteocytic process,

the i-th component of the average fluid velocity vector in the canaliculi oriented

toward n, vi(n), is derived as

Representative volume element model

Osteocytic process

rp rc Δ
Gap junction

Proteoglycan Interstitial fluid

θ

z

r

Osteocytesn

Single canalicular model

a

b

Fig. 4.6 Lacuno-canalicular porosity models with two different levels of scale: (a) The represen-
tative volume element (RVE) model on the larger-scale level, in which the seepage flow is

governed by Darcy’s law. (b) The model of an individual canaliculus on the smaller scale level,

in which the interstitial fluid flow in the pericellular space is governed by the Brinkman equation

(Weinbaum et al. 1994) (This figure was adapted from Kameo et al. (2010) with permission from

Elsevier)
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vi nð Þ ¼ �W p, jnj
� �

ni, ð4:10Þ

where ( p,jnj)ni is the fluid pressure gradient in the direction n, and the constantW is

given by

W ¼ � 2r2pq
3

μγ3 q2 � 1ð Þ A1 qI1 γð Þ � I1
γ

q

� �� ��
�B1 qK1 γð Þ � K1

γ

q

� �� �
� γ q2 � 1ð Þ

2q

	

ð4:11Þ

In the above equation, rp is the radius of the osteocytic process, q is the ratio of

the radius of the canaliculus rc to that of the osteocytic process rp (q¼ rc/rp), and γ is
the dimensionless parameter defined as γ ¼ rc=

ffiffiffiffiffi
kp

p
. The functions I1 and K1 are the

modified Bessel functions of the first order. Using q and γ, the constants A1 and B1

are given by

A1 ¼ K0 γð Þ � K0 γ=qð Þ
I0 γ=qð ÞK0 γð Þ � I0 γð ÞK0 γ=qð Þ

B1 ¼ I0 γ=qð Þ � I0 γð Þ
I0 γ=qð ÞK0 γð Þ � I0 γð ÞK0 γ=qð Þ

9>>=
>>;
, ð4:12Þ

respectively, where I0 and K0 are the modified Bessel functions of the zeroth order

(Weinbaum et al. 1994).

On the other hand, denoting by vi(x) the i-th component of the average fluid

velocity vector at the position x in the RVE in Fig. 4.6a, the fluid flux component is

obtained as follows:

qi ¼
1

VRVE

Z
Vf

vi xð ÞdV, ð4:13Þ

where VRVE is the RVE volume and Vf is the volume of the interstitial fluid in the

RVE. Assuming that the geometry of the canaliculus and the osteocytic process

inside it is invariant with respect to the position x, the i-th component of the average

fluid velocity vector, vi(x), depends only on the local volume orientation of cana-

liculi n, i.e., vi(x)¼ vi(n). Under this assumption, Eq. (4.13) can be written by using

the local volume orientation frequency ρc(n) that was introduced in Sect. 4.3.1, in

the following form:

qi ¼ ϕf

Z 2π

0

dφ

Z π=2

0

vi nð Þρc nð Þ sin θdθ, ð4:14Þ

where ϕf is the volume fraction of the interstitial fluid, defined by Vf/VRVE. By

substituting Eq. (4.10) into Eq. (4.14) and by using Eq. (4.7), the fluid flux

component qi is given by
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qi ¼ �Wϕf Vijp, j ð4:15Þ

Comparing Eq. (4.15) with Darcy’s law described in Eq. (4.8) yields the

following relationship between the permeability tensor kij and the VO fabric tensor

Vij:

kij ¼ μWϕf Vij ð4:16Þ

By using this analytical relationship, we can estimate the components of the

permeability tensor kij.

4.4 Application to Confocal Laser Scanning Imaging

The presented method was applied to a two-dimensional image of a cylindrical

trabecular cross-section, acquired by using confocal laser scanning microscopy.

This section explains the results related to (1) the quantification of canalicular

anisotropy (Sect. 4.4.1), and (2) the estimation of canalicular bone permeability

(Sect. 4.4.2).

4.4.1 Quantification of Canalicular Anisotropy

For quantifying the canalicular anisotropy, we applied the VO method to a

54 μm � 54 μm square region of the binarized confocal laser scanning image of

canaliculi, obtained in Sect. 4.2, as shown in Fig. 4.7. The region of interest was

divided into 150� 150 square elements, with an edge size of 0.36 μm, based on the

pixels of the fluorescence image, and the local volume orientation was determined

at the center of each canalicular element. In two-dimensional analysis, the local

volume orientation n depends only on the angle between the x1-axis in the Cartesian
coordinate system (x1, x2) and the vector n, denoted by θ, and is given by n(θ)¼
cos θe1 + sin θe2 (0� θ� π). Figure 4.8 shows a polar-plotted histogram of the

local volume orientation frequency ρc(n) as a function of the angle θ. The profile of
the histogram was symmetric with respect to the origin because the direction �n is

equivalent to the direction n in the VO method. The canalicular orientation

exhibited a principal peak in the direction in which θ was slightly larger than 0 or

π, and a secondary peak in the direction perpendicular to the direction of the

principal peak. The principal peak was attributed to the connections between the

trabecular surface cells and osteocytes buried in the bone matrix. On the other hand,

the secondary peak is likely caused by the intercellular connections between the

trabecular surface cells in the process of bone formation.
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Fig. 4.7 Region of interest in the trabecular cross-section, for quantifying the canalicular anisot-

ropy (This figure was adapted from Kameo et al. (2010) with permission from Elsevier)
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Fig. 4.8 Polar-plotted histogram of the local volume orientation frequency ρc(n) as a function of

the angle θ (This figure was adapted from Kameo et al. (2010) with permission from Elsevier)
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By substituting the measurements of the local volume orientation frequency

ρc(n) into Eq. (4.7), we calculated the VO fabric tensor for the canalicular orien-

tation. Table 4.1 shows the VO fabric tensor, its eigenvalues, eigenvectors, and the

deviation angle θ1 of the eigenvector corresponding to the maximal eigenvalue. The

eigenvalues and the eigenvectors of the VO fabric tensor represent the intensities

and the principal directions of the canalicular orientation, respectively. The vectors

of the primary direction (0.990, 0.140) and the secondary direction (�0.140, 0.990)

were normal to each other owing to the orthotropic material assumption of the VO

method. The primary direction of the canalicular orientation was almost parallel to

the normal direction of the trabecular surface, as shown in the upper right corner of

Fig. 4.7, while the secondary direction roughly coincided with the longitudinal

direction of the trabecula. Recalling that individual trabeculae have a cylindrical

morphology, these results indicate that the canaliculi are predominantly oriented in

the radial direction of the trabecula. The canalicular anisotropy in the radial

direction was ~3.85 times stronger than that in the longitudinal direction, based

on the comparison of the two eigenvalues of the VO fabric tensor, shown in

Table 4.1 (V1 ¼ 0.794 and V2 ¼ 0.206).

4.4.2 Estimation of Trabecular Bone Permeability

As indicated by Eq. (4.16), the trabecular permeability tensor kij is expressed as the
product of four factors: the fluid viscosity μ, the constant W for determining the

fluid velocity, the volume fraction of the interstitial fluid ϕf, and the VO fabric

tensor Vij. We regarded the square region in Fig. 4.7 as the RVE for estimating the

trabecular bone permeability. It should be noted that in this study, the principal

value of the permeability tensor in the x3-axis direction was implicitly assumed to

be zero because the canalicular orientation in this direction was not considered in

our two-dimensional analysis.

The product of the fluid viscosity μ and the constant W does not in itself depend

on μ, as indicated by Eq. (4.11). For calculating the product μW, four parameters

associated with the dimensions of the canalicular microstructure are required: the

radius of the osteocytic process rp, the radius of the canaliculus rc, the radius of the

Table 4.1 Canalicular anisotropy quantification by using the VO method

VO fabric tensor Vij

Eigenvalues and
eigenvectors

(0.990, 0.140)
(−0.140, 0.990)

Deviation angle θ1 (degrees) 8.05

V1

V2

0.794
0.206

0.782 0.0815
0.0815 0.218
⎡ ⎤
⎢ ⎥
⎣ ⎦

This table was adapted from Kameo et al. (2010) with permission from Elsevier
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fiber in the pericellular space a0, and the spacing of the fiber matrix Δ. The radius of
the osteocytic process rp and the radius of the canaliculus rc were determined as

rp ¼ 52 nm, rc ¼ 129.5 nm, referring to the average values measured by You et al.

(2004). The fiber radius a0 and the fiber spacing Δ were set to a0 ¼ 0.6 nm and

Δ¼ 7 nm (Weinbaum et al. 1994). By using these four values, the other parameters

appearing in Eq. (4.11) were calculated as follows: q ¼ 2.490, γ ¼ 48.68,

A1 ¼ 1.259 � 10�20, and B1 ¼ 1.095 � 109. Eventually, the product μW was

derived as μW ¼ 6.591 � 10�18 m2.

The volume fraction of the interstitial fluid ϕf, defined as Vf/VRVE, can be

estimated from the binarized image in Fig. 4.7. Although osteocytic processes are

not explicit in Fig. 4.7, by assuming their presence based on the model of a single

canaliculus in Fig. 4.6b, the interstitial fluid volume Vf and the canalicular volume

Vc in the RVE satisfy the following relation:

Vf ¼
r2c � r2p

r2c
Vc ¼ 1� 1

q2

� �
Vc ð4:17Þ

By using this relation, the volume fraction of the interstitial fluid ϕf can be

rewritten as follows:

ϕf ¼
Vf

VRVE
¼ 1� 1

q2

� �
ϕc, ð4:18Þ

where ϕc is the volume fraction of the canaliculi, defined as Vc/VRVE. By using the

value of ϕc obtained from Fig. 4.7, the volume fraction of the interstitial fluid ϕfwas

estimated from Eq. (4.18) as ϕf ¼ 0.245.

Substituting the values of μW and ϕf obtained in this section and the VO fabric

tensor Vij obtained in Sect. 4.4.1 into Eq. (4.16) yields the trabecular permeability

tensor kij. The obtained permeability tensor and its eigenvalues are shown in

Table 4.2. It should be noted that the principal value of the permeability in the

primary direction, i.e., the trabecular radial direction, is larger than that in the

secondary, i.e., the trabecular longitudinal, direction.

4.5 Validation of the Estimated Bone Permeability

Bone permeability on the scale of lacuno-canalicular porosity is one of the most

important material properties for characterizing the interstitial fluid flow. Extensive

theoretical and experimental research has been performed to determine the perme-

ability. Smit et al. (2002) estimated the permeability of an osteon as 2.2� 10�22 m2,

by comparing the numerically calculated step response of the fluid pressure to the

experimentally determined relaxation curve reported by Otter et al. (1992). Oyen

(2008) estimated the permeability to be in the 10�26 m2 to 10�24 m2 range by
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combining a nanoindentation technique with poroelastic analysis. Weinbaum et al.

(1994) developed a theoretical method for estimating isotropic permeability by

using a microstructural model of lacuno-canalicular porosity, in which the total

number of canaliculi emanating from each osteocyte lacuna was considered.

The reported value of permeability based on their method ranged from 10�20 m2

to 10�19 m2 (Wang et al. 1999; Zhang et al. 1998).

Beno et al. (2006) extended the method of Weinbaum et al. (1994) to estimate

the anisotropic permeability by considering the difference between the number of

canaliculi in the three local principal directions. Using accurate microstructural

measurements of bones, they estimated the local lacuno-canalicular permeability to

range from 10�22 m2 to 10�19 m2. These researchers pointed out that building

anisotropic poroelastic finite element models that incorporate local permeability of

lacuno-canalicular porosity would require determining the orientation of each

osteocyte lacuna, and confocal microscopy could be used for achieving this goal.

Following these suggestions, we developed an extended method for estimating the

anisotropic permeability tensor based on the observed images of lacuno-canalicular

porosity. Applying our presented method to the lacuno-canalicular model of these

authors, which is a cuboidal periodic unit cell that surrounds the osteocyte lacuna,

the analytical relationship described by Eq. (4.16), reduces to the formulation

suggested by Beno et al. (2006). This result implies that our approach is more

general and valid for estimating the anisotropic permeability.

The estimated permeability values in Table 4.2 are several orders of magnitude

larger than those reported in the above-mentioned studies. Among the four param-

eters in Eq. (4.16), this discrepancy is most strongly associated with the volume

fraction of the interstitial fluid ϕf. As was explained above, the volume fraction of

the interstitial fluid used in this study, ϕf ¼ 0.245, was estimated from the binarized

image in Fig. 4.7. This value is considerably larger compared with the previously

reported lacuno-canalicular porosity of 0.042 (Morris et al. 1982) and 0.035 (in rats;

Baylink and Wergedal 1971). The main reasons for the overestimation of ϕf are

summarized as follows: (i) the image contains extra canaliculi in the out-of-focus

plane; (ii) the pixel resolution of the image (0.36 μm) is too low to resolve the

canaliculi; and (iii) the canaliculi appear larger owing to the image bleeding. Thus,

the characteristics of the fluorescence images acquired by using confocal laser

scanning microscopy could favor the overestimation of the permeability tensor.

In spite of such limitations, the obtained principal directions and the ratio of the

Table 4.2 Estimated anisotropic trabecular permeability

[×10-18 m2]

Permeability tensor kij

Eigenvalues

 [×10-18 m2]

1.27
0.332

k1

k2

1.26 0.131
0.131 0.351
⎡ ⎤
⎢ ⎥
⎣ ⎦

This table was adapted from Kameo et al. (2010) with permission from Elsevier
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principal values are considered to be sufficiently valid, because they are relatively

immune to the influence of the above three factors. For more precise permeability

estimation, it is indispensable to obtain more refined images of lacuno-canalicular

porosity by using ultra-high voltage electron microscopy (Kamioka et al. 2009), as

used in Chap. 2.

4.6 Characteristics of the Proposed Estimation Method

In our proposed method for estimating bone permeability, we assumed, for sim-

plicity, ideal lacuno-canalicular morphology, despite the actually complex geomet-

rical organization that is observed in vivo (Kamioka et al. 2001; Kamioka et al.

2009; McNamara et al. 2009). The interstitial fluid flow channels were regarded as

smooth and straight annular tubes without tortuosity, and the presence of osteocyte

lacunae was neglected. If the effects of the canalicular curvature and wall pro-

jections were taken into account, the fluid flow within the channels would be more

complicated. In particular, the flow of the interstitial fluid close to the junctions

between the canaliculi and osteocyte lacunae can be significantly influenced by the

local change in the flow channel size and the flow direction. According to the

theoretical formulation proposed by Cowin (2004), the relationship between the

permeability tensor Kij and the fabric tensor Aij can be generally expressed as

Kij ¼ q1δij + q2Aij + q3AikAkj when Kij is an isotropic function of Aij, where q1, q2,
and q3 are functions of the porosity and the three invariants of the fabric tensor. A

comparison of the above relationship with Eq. (4.16) yields q2 ¼ μWϕf and

q1 ¼ q3 ¼ 0. This result suggests that the permeability tensor is proportional to

the VO fabric tensor only in the special case in which the tortuosity and the wall

projections of the canaliculi are neglected.

To investigate the interstitial fluid flow in a lacuno-canalicular porosity with

complex geometry, computational fluid dynamics (CFD), as shown in Chap. 2,

would be a powerful tool (Anderson et al. 2005). Indeed, by using CFD analysis it

was determined that idealized pericellular flow channel geometry exerts a profound

influence on the fluid flow prediction (Anderson and Tate 2008). If a three-

dimensional morphology of a lacuno-canalicular porosity can be reconstructed in
silico by using the observed images, performing CFD analysis aided by high

performance computing would help in determining the anisotropic permeability

tensor reflecting the microstructure.

The estimation method developed in this study makes it possible to derive the

principal values and the principal directions of the anisotropic permeability tensor

based on the observed images of lacuno-canalicular porosities. Therefore, our

method would be useful for constructing poroelastic finite element models of

bone considering the lacuno-canalicular anisotropy, because the region of interest

for the permeability estimation can be arbitrarily chosen and the principal directions

of the obtained anisotropic permeability tensor in the bone tissue can be easily

determined. The poroelastic finite element analysis of bone tissue, incorporating the
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anisotropic permeability, would enable us to investigate the interstitial fluid flow in

response to external mechanical loading. Computational approaches, such as finite

element analysis, are useful for understanding the interactions between mechanical

and biochemical factors associated with bone remodeling (Adachi et al. 2001;

Gerhard et al. 2009; Tsubota et al. 2009). Identifying the effect of the complex

lacuno-canalicular morphology on the cellular mechanotransduction via the fluid

flow through computational approaches will help clarify the mechanism of bone

remodeling, as we shall see later in Chaps. 5, 6, and 7.

4.7 Conclusion

In this chapter, we developed a theoretical method for estimating trabecular bone

permeability by using the images of lacuno-canalicular porosity in the trabecular

cross-section. This method is based on the derivation of the analytical relationship

between the VO fabric tensor, which characterizes the canalicular orientation, and

the permeability tensor. Introducing idealized lacuno-canalicular models with

different levels of scale, in which the microscopic flow is governed by the

Brinkman equation and the macroscopic flow is governed by Darcy’s law, the

permeability tensor was shown to be proportional to the VO fabric tensor. We

applied the proposed method to a binarized confocal laser scanning image of

canaliculi, for evaluating the canalicular anisotropy and the trabecular permeability.

The obtained results indicated that the canaliculi are predominantly oriented in the

radial direction of the trabecula, and the permeability depends largely on the

canalicular morphology and dimension. Our method is likely to be useful for

deriving the anisotropic bone permeability referring to the actually observed can-

alicular morphology.
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Chapter 5

Modeling Trabecular Bone Adaptation

Induced by Flow Stimuli to Osteocytes

Abstract In this chapter, we provide a mathematical model for trabecular bone

remodeling that incorporates the possible mechanisms of cellular mechanosensing

and intercellular communication. This model postulates that osteocytes, as

mechanosensory cells, are stimulated by interstitial fluid flow to regulate bone

adaptation. The morphological changes in trabeculae, in response to the mechanical

environment, are demonstrated with the help of a voxel finite element method. The

validity of the proposed mathematical model is tested through a remodeling sim-

ulation for a single trabecula subjected to cyclic uniaxial loading at various

frequencies.

Keywords Trabecular bone adaptation • Remodeling simulation • Mathematical

model • Flow stimulus • Osteocyte

5.1 Introduction

Individual trabeculae that make up cancellous bones can change their morphology

by remodeling to adapt to the mechanical environment (Wolff 2010). This trabec-

ular bone remodeling is induced by the collaboration of bone-resorbing osteoclasts

and bone-forming osteoblasts at the trabecular surface (Parfitt 1994). The metabolic

activities of these effector cells are believed to be orchestrated by mechanosensory

osteocytes embedded in the bone matrix through their intercellular network via

slender cell processes (Adachi et al. 2009a, b, c; Bonewald 2011; Cowin et al. 1991;

Tatsumi et al. 2007), as shown in Chap. 4. However, it is still unclear how bone

tissue adaptation is appropriately regulated by numerous bone cells under the

influence of an external load.

Computer simulations are useful for exploring the mechanism of bone adapta-

tion. A number of mathematical models of bone remodeling that consider cellular

mechanosensing have been developed to predict the evolution of bone microstruc-

ture (Gerhard et al. 2009). While the majority of previous remodeling models

postulate that the change in bone mass is associated with the mechanical condition

at the tissue level, it has been proposed that osteocytes, as mechanosensory cells,

are activated by the interstitial fluid flow in a lacuno-canalicular porosity (Burger

This Chapter was adapted from Kameo et al. (2011) with permission from Elsevier.
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and Klein-Nulend 1999; Fritton and Weinbaum 2009; Knothe Tate et al. 1998;

Weinbaum et al. 1994), as explained in Chap. 3. Unfortunately, little is known

about the relationship between the flow stimuli at the cellular level and bone

adaptation at the tissue level.

In this chapter, we construct an original mathematical model for trabecular bone

remodeling based on a theoretical framework that links the microscopic cellular

activities to macroscopic bone tissue adaptation through mechanical hierarchy. The

flow of interstitial fluid inside the lacuno-canalicular porosity is explicitly consid-

ered as the mechanical stimulus for the osteocytes that initiate bone remodeling. In

addition, the process of intercellular signal transmission from osteocytes to effector

cells, such as osteoclasts and osteoblasts, is incorporated. Combining this model

with the voxel finite element method, we numerically simulate the morphological

changes in a single trabecula under cyclic uniaxial loadings at various frequencies

in order to test the validity of the proposed remodeling model.

5.2 Mathematical Model of Trabecular Bone Remodeling

A mathematical model of trabecular bone remodeling that incorporates the cellular

response to interstitial fluid flow and intercellular communication is explained in

this section. This model can provide a theoretical bridge between the microscopic

cellular activities and macroscopic bone tissue adaptation.

5.2.1 Theoretical Framework

The mathematical model of trabecular bone remodeling was developed according

to the theoretical framework shown in Fig. 5.1. This model is based on the

assumption that the change in bone mass is caused by osteoclastic bone resorption

and osteoblastic bone formation on the trabecular surface, which are regulated by

mechanosensory osteocytes in response to interstitial fluid flow. The process of

trabecular bone remodeling is postulated to consist of three parts: (i) cellular

mechanosensing, (ii) intercellular signal transmission, and (iii) trabecular surface

movement.

When the bone tissue is subjected to mechanical loading, bone matrix deforma-

tion induces interstitial fluid flow in canaliculi. The fluid flow can be characterized

by the fluid pressure p and its gradient∇p. The osteocytes buried in the mineralized

bone matrix are activated by flow-induced shear stress on their dendritic processes,

and transduce the mechanical stimulus into the biochemical signal Soc. Then, the
produced signal is transmitted from the osteocytes to the osteoclasts and osteoblasts

on the trabecular surface through an intercellular network, and is integrated as the
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total stimulus Ssf. Finally, the rate of trabecular surface remodeling _M , i.e. the rate

of bone resorption and formation on the trabecular surface, is determined by the

stimulus Ssf. The details of each remodeling process are explained in the following

subsections.

5.2.2 Cellular Mechanosensing

Osteocytes are believed to be major mechanosensory cells and known to be

sensitive to shear stress caused by interstitial fluid flow over their slender processes.

The shear stress is evaluated based on the microstructure model of Weinbaum et al.

(1994), shown in Fig. 5.2 and introduced in Sect. 4.3.2, where the interstitial fluid

flow in the annular canaliculus is assumed to be governed by the Brinkman

equation. The flow-induced shear stress τp(n) acting on the osteocyte process

aligned in direction n is derived, using the fluid pressure gradient at the trabecular

level ∇p, as:

M

Mechanical 
loading

Change in 
morphology Ssf Soc

(i) Cellular mechanosensing

(ii) Intercellular 
      signal transmission

(iii) Trabecular 
       surface movement

 p∇

Trabecula Osteocyte

Lacuna

Canaliculus

Cell process

Bone matrix

Interstitial fluid

~ 100 μm ~ 10 μm ~ 1 μm

Fig. 5.1 Theoretical framework for trabecular bone remodeling considering the mechanical

hierarchy from the microscopic activities of bone cells to the macroscopic changes in trabecular

morphology. The process of trabecular bone remodeling consists of the following three parts: (i)
cellular mechanosensing, (ii) intercellular signal transmission, and (iii) trabecular surface move-

ment (This figure was adapted from Kameo and Adachi (2014) with permission from Springer)
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τp x; nð Þ ¼ qrp
γ

A1I1
γ

q

� �
� B1K1

γ

q

� �� �
∇p xð Þ � n, ð5:1Þ

where all the constants are as defined in Sect. 4.3.2. The fluid pressure gradient is

numerically calculated by poroelastic finite element analysis (Manfredini et al.

1999).

In the modeling of cellular mechanotransduction, we assumed that osteocytes

are susceptible to the value of flow-induced shear stress averaged over a day, and

the biochemical signal produced by them is proportional to the shear force on their

dendritic processes. Using the local volume orientation frequency of canaliculi

ρc(n) introduced in Sect. 4.3.1, the signal Soc(x) produced by the osteocytes per

unit bone volume at the spatial position x can be defined as:

Soc xð Þ ¼
Z 2π

0

dφ

Z π=2

0

α
2rp
r2c

ρc nð Þ τp x; nð Þ�� �� sin θdθ, ð5:2Þ

where θ is the angle between the vector n and the x3-axis in the arbitrarily assigned
Cartesian coordinate system, φ the angle between the x1-axis and the projection of n
onto the x1x2-plane measured counterclockwise, α the mechanosensitivity of the

osteocytes, and τp nð Þ�� �� the time-averaged shear stress over a day. For simplicity,

here we ignored individual variability in osteocyte mechanosensitivity by setting

α ¼ 1 and assumed the isotropic orientation of canaliculi by setting ρc(n)¼ϕ/2π,
where ϕ is the porosity of the trabeculae.

Osteocyte process

τp(n)rp rc Δ

Proteoglycan Interstitial fluid

Fig. 5.2 Microstructure model of annular canaliculus, in which the interstitial fluid flow in the

pericellular space is governed by the Brinkman equation (This figure is modified from Weinbaum

et al. (1994). This figure was adapted from Kameo et al. (2011) with permission from Elsevier)
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5.2.3 Intercellular Signal Transmission

The biochemical signals produced by the osteocytes are modeled to be transmitted

to the osteoclasts and osteoblasts on the trabecular surface, through the intercellular

network. The cell located on the surface position xsf receives the signals from the

osteocytes within a limited influence region Ω, as shown in Fig. 5.3. Assuming that

the intercellular communication capability is dependent on the distance l¼ |xsf� x|,
the total stimulus Ssf located on the trabecular surface xsf is expressed, using a

weight function w(l ) that describes the decay in the signal intensity relative to the

distance l, as the following integral form:

Ssf xsfð Þ ¼
Z
Ω
w lð ÞSoc xð ÞdΩ, w lð Þ ¼ 1� l=lL l � lLð Þ, ð5:3Þ

where lL is the maximum distance for intercellular communication. The total

stimulus Ssf is a positive scalar function that represents the activity of the surface

cell.

5.2.4 Trabecular Surface Movement

The self-regulation of bone mass on the trabecular surface is achieved by the

osteoclastic bone resorption and the following osteoblastic bone formation. For

l

lL

Trabecula

Osteocyte, x

Surface cell, xsf

Influence region, Ω

Fig. 5.3 Modeling of

intercellular signal

transmission. The surface

cell receives mechanical

signals from the osteocytes

within the influence region.

The signal intensity decays

with increasing distance

between the surface cell and

the osteocyte (This figure

was adapted from Kameo

et al. (2011) with

permission from Elsevier)
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modeling the time-averaged change of the trabecular surface as a result of

remodeling, we introduced a piecewise sinusoidal function, as shown in Fig. 5.4,

which describes the relationship between the rate of trabecular surface remodeling
_M and the total stimulus Ssf, as follows:

_M Ssfð Þ ¼

_M max SU
sf < Ssf

� �
_M max

2
sin π

Ssf � SO
sf þ SZ

sf=2
� �

SU
sf � SO

sf þ SZ
sf=2

� �� 1

2

( )
þ 1

" #
SO
sf þ

SZ
sf

2
< Ssf � SU

sf

� �
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SZ
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2
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sf þ
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2

� �
,

�
_M max

2
sin π

Ssf � SO
sf � SZ

sf=2
� �

SL
sf � SO

sf � SZ
sf=2

� �� 1

2
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þ 1
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sf � Ssf < SO

sf �
SZ
sf

2

� �
� _M max Ssf < SL

sf

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5:4Þ

where SU
sf is the upper threshold for bone formation, SL

sf the lower threshold for bone

resorption,SO
sf a stimulus at the remodeling equilibrium, andSZ

sf the width of the lazy

zone. The maximum resorption/formation rates in the direction along the outward

normal to the trabecular surface are denoted by� _M max and _M max, respectively. The

physiological interpretation of _M is discussed in detail in Chap. 8. This empirical

function indicates that bone resorption is caused by stimuli below the remodeling

equilibrium, while bone formation is caused by stimuli exceeding the equilibrium.

As a numerical technique to represent trabecular surface movement, the level set

method (Osher and Sethian 1988), which was used also in Sect. 4.2, was incorpo-

rated in the remodeling simulation.

Mmax

−Mmax

Z
sfS

O
sfS U

sfS

L
sfS

sfS

Lazy zone
Formation

Resorption

M

O

Fig. 5.4 Relationship between the rate of trabecular surface remodeling and the total stimulus

received by the surface cell (This figure was adapted from Kameo et al. (2011) with permission

from Elsevier)
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5.3 Voxel Modeling of a Single Trabecula under Cyclic

Uniaxial Load

A three-dimensional computational model of a single trabecula for the remodeling

simulation was constructed as shown in Fig. 5.5. The whole region for analysis was

a1� a2� a3¼ 0.8� 1.6� 1.2 mm3, discretized by 20� 40� 30 cubic voxel finite

elements with an edge size of 40 μm. A cylindrical trabecula with an initial

diameter of 240 μm was set at the center of the region with a skew angle of 30�.
The trabecula was assumed to be a homogeneous and isotropic poroelastic material

(Cowin 1999; Kameo et al. 2008, 2009) with the material properties listed in

Table 5.1 (Beno et al. 2006; Smit et al. 2002). To impose external loadings, two

40 μm-thick plates were placed at the upper and lower surfaces of the region. These

plates have the same material properties as the trabecula, but they are not subjected

to morphological changes throughout the remodeling simulation.

As mechanical and fluid boundary conditions, a shear-free condition was applied

to the lower plane, and a drained condition on the trabecular surfaces was assumed

by setting the fluid pressure as p ¼ 0. A cyclic uniaxial load σ(t) ¼ σ3sin2πft.
(σ3 ¼ 0.07 MPa) was imposed on the upper plate in the x3-direction for 1.0 s per

day, keeping the displacement along the x3-direction u3 uniform. To investigate the

effect of the rate of the applied load, three different values of loading frequency

were determined as f ¼ 1, 5, and 10 Hz, which are within the physiological range.

The settings of the physiological parameters used in the proposed remodeling

model are specified in Table 5.2. The values of four parameters required for the

σ(t) = σ3sin2πft

a1 = 0.8 mm
x1

x2

x3 Trabecula

Plate

a2 = 1.6 mm

a3 = 1.2 mm

u3 : Uniform

30°

240 μm

Fig. 5.5 Voxel finite element model of a cylindrical single trabecula with an initial diameter of

240 μm and a skew angle of 30�. A cyclic uniaxial load was imposed on the upper plate in the x3-
direction for 1.0 s per day, maintaining the uniform displacement u3 along the x3-direction (This

figure was adapted from Kameo et al. (2011) with permission from Elsevier)
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Table 5.1 Poroelastic material properties of the trabecula

Symbol (unit) ValueDescription

k  (m2)

μ  (Pa·s)

Ks  (GPa)

Intrinsic permeability

Fluid viscosity

Shear modulus

Drained Poissonʼs ratio

Solid bulk modulus

Fluid bulk modulus

Porosity

1.1 × 10−21

G  (GPa)

ν

Kf  (GPa)

φ

1.0 × 10−3

5.94

0.325

17.66

2.3

0.05

Permeability was estimated by the method presented in Beno et al. (2006), and other constants

were taken from Smit et al. (2002)

This table was adapted from Kameo et al. (2011) with permission from Elsevier

Table 5.2 Parameter settings for the trabecular remodeling simulation

Symbol (unit) ValueDescription

rp  (nm)

rc  (nm)

 U
sfS (μN)

 L
sfS (μN)

 O
sfS (μN)

 Z
sfS (μN)

Radius of osteocyte process

Radius of canaliculus

Upper threshold for bone formation

Lower threshold for bone resorption

Stimulus at remodeling equilibrium

Width of lazy zone

52a

129.5a

0.5

1.5

1.0

0.2

lL  (μm) Maximum distance for 
intercellular communication

200c,d

 
maxM (μm/day) Maximum remodeling rate 40e

a0  (nm)

Δ  (nm)

Radius of fiber

Spacing of fiber matrix

0.6b

7b

aYou et al. (2004)
bWeinbaum et al. (1994)
cHuo et al. (2008)
dAdachi et al. (2009b)
eJaworski and Lok (1972)
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derivation of the flow-induced shear stress Eq. (5.1), i.e., the radius of the osteocyte

process rp and the radius of the canaliculus rc, the fiber radius a0, and the fiber

spacing Δ, were set as in Sect. 4.4.2 (Weinbaum et al. 1994; You et al. 2004). The

maximum distance for intercellular communication lL was determined in reference

to the in vitro experiments on the propagation of calcium signaling between bone

cells (Adachi et al. 2009b; Huo et al. 2008). The maximum remodeling rate _M max

was determined from the resorption rate of osteoclasts (Jaworski and Lok 1972).

The remaining four parameters associated with the mechanical stimulus,SU
sf ,S

L
sf ,S

O
sf ,

and SZ
sf , were arbitrarily set.

5.4 Adaptation of a Single Trabecula to Cyclic

Uniaxial Load

This section explains simulation results regarding morphological changes in tra-

becula (Sect. 5.4.1), and quantitative evaluation of remodeling process (Sect. 5.4.2).

5.4.1 Morphological Changes in Trabecula

By incorporating the proposed mathematical model of trabecular bone remodeling

into the voxel finite element method, we simulated the morphological changes in a

single trabecula in response to an external cyclic uniaxial load. Figure 5.6a–c show

the progress of the distribution of the 1-day average flow-induced shear stress

acting on the osteocyte processes at the loading frequency f ¼ 1, 5, and 10 Hz,

respectively.

When the loading frequency f ¼ 1 Hz, as shown in Fig. 5.6a, large flow-induced

shear stress was observed at the inner surfaces near both ends of the trabecula in the

initial state. This means that the trabecular surface cells received large mechanical

stimuli from neighboring osteocytes. As a result, bone formation was promoted

around both ends, while at the middle of the trabecula, the morphology was almost

unchanged. During the period from 3 to 6 days, bone resorption occurred on the

outer surfaces near both ends owing to small flow-induced shear stress. After

30 days, the concentration of flow-induced shear stress observed in the initial

state was relaxed, and the single trabecula reoriented parallel to the loading

direction, i.e. x3-direction.
As the frequency of the applied cyclic loading increased, the flow-induced shear

stress close to the trabecular surfaces became larger in the initial state, as shown in

Fig. 5.6b, c. In both cases f ¼ 5 Hz and f ¼ 10 Hz, bone formation was induced on

the entire trabecular surface for the first 3 days because the mechanical stimuli to

the surface cells exceeded the physiological equilibrium value. As a result of this

remodeling, the trabecular diameter was enlarged, while maintaining the original
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longitudinal direction. The subsequent remodeling process was similar to that in the

case f ¼ 1 Hz, and the single trabecula aligned along the loading direction after

30 days. The diameter of the trabecula in the equilibrium state increased with the

increase in the loading frequency.

5.4.2 Quantitative Evaluation of Remodeling Process

For the quantitative evaluation of the morphological changes in the trabecula

through the remodeling process, we investigated the temporal variation of the

bone volume fraction and apparent stiffness. The bone volume fraction represents

the ratio of the trabecular volume to the total volume of the region for analysis, and

the apparent stiffness is defined as the ratio of the loading amplitude σ3 to the

apparent strain u3/a3. Figure 5.7a, b show the changes in the bone volume fraction

and apparent stiffness, respectively. Regardless of the loading frequency, the bone

volume fraction increased in an early stage, and then slightly decreased to converge

to the specific value, as shown in Fig. 5.7a. On the other hand, the apparent stiffness

Fig. 5.6 Change in trabecular morphology and 1-day average flow-induced shear stresses under

the loading frequencies (a) f¼ 1 Hz, (b) f¼ 5 Hz, and (c) f¼ 10 Hz (This figure was adapted from

Kameo et al. (2011) with permission from Elsevier)
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increased monotonically for the first 10 days and reached a plateau value for all

cases of the loading frequency, as shown in Fig. 5.7b. The convergence values of

both the bone volume fraction and the apparent stiffness increased with an increase

in the applied loading frequency. The relationship between the loading frequency

and the bone volume fraction at 30 days is shown in Fig. 5.8. In this figure the
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Fig. 5.7 Quantitative evaluation of morphological changes in trabeculae under various loading

frequencies. (a) Change in bone volume fraction, (b) Change in apparent stiffness (This figure was

adapted from Kameo et al. (2011) with permission from Elsevier)
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results for f ¼ 3 Hz and f ¼ 20 Hz are additionally plotted. Figure 5.8 indicates that

the bone volume fraction in the equilibrium state is not proportional to the loading

frequency, and tends to converge to a certain value with increasing the loading

frequency.

5.5 Characteristics of the Proposed Remodeling Model

The modeling approach for trabecular bone remodeling has progressed with the

advancement in experimental studies at the organ, tissue, and cellular level. A

variety of computational remodeling models considering cellular mechanosensing

have been developed, in which the change in bone mass is assumed to be regulated

by either the strain energy density (Huiskes et al. 2000; Mullender and Huiskes

1995; Mullender et al. 1994; Ruimerman et al. 2005), the accumulation of micro-

damage (McNamara and Prendergast 2007; Mulvihill and Prendergast 2008;

Prendergast and Taylor 1994), or the nonuniformity of the local stress on the

trabecular surface (Adachi et al. 1997, 2001; Tsubota and Adachi 2004, 2005,

2006; Tsubota et al. 2002, 2009). The common feature of these mathematical

models is that they are based on the phenomenological hypothesis that bone

remodeling is driven by the mechanical condition at the tissue level. While the

previous models can successfully express bone adaptation to the external loading,

investigating the mechanical state at the cellular level is essential for understanding
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Fig. 5.8 Relationship between the applied loading frequency and the bone volume fraction at

30 days (This figure was adapted from Kameo et al. (2011) with permission from Elsevier)
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the mechanism of bone remodeling. The novelty of our mathematical model lies in

the consideration of the mechanical hierarchy from the microscopic activities of

bone cells to the macroscopic changes in trabecular morphology by quantifying the

flow-mediated stimulus to the osteocytes.

The proposed remodeling model requires a total of ten parameters to describe the

three processes of trabecular bone remodeling without considering the seven

poroelastic material properties of the trabecula listed in Table 5.1: four parameters

for (i) cellular mechanosensing (rp, rc, a0, and Δ), one parameter for

(ii) intercellular signal transmission (lL), and five parameters for (iii) trabecular

surface movement ( _M max, S
U
sf , S

L
sf , S

O
sf , and S

Z
sf). Of the above parameters, the setting

of the last four associated with the mechanical stimulus, i.e. SU
sf , S

L
sf , S

O
sf and S

Z
sf , is an

important issue in the remodeling simulation because the change in bone mass on

the trabecular surface is virtually governed by these empirical parameters. The

stimulus at the remodeling equilibrium SO
sf regulates the balance between bone

resorption and formation. The increase in SO
sf promotes bone resorption if the

external loading condition is constant. The width of the lazy zone SZ
sf is based on

the remodeling rate sensitivity to the stimulus in the neighborhood of the point of

remodeling equilibrium. As SZ
sf increases, the change in bone mass becomes more

insensitive to the variation in the stimulus. The morphological changes in a

trabecula are more sensitive to the parameter set of SO
sf and SZ

sf than that of SU
sf

and SL
sf , which is responsible for the remodeling rate sensitivity to the stimulus

around the lazy zone. Although these parameters should be determined through a

comparison with the experimental findings, there is as yet no way to conduct this

because of the difficulty in observing a single trabecula under a controlled mechan-

ical condition. In the present study, we set them arbitrarily in order to demonstrate

trabecular bone remodeling under physiological conditions. By choosing the appro-

priate values of the parameters, this simulation has the potential to represent

pathological bone remodeling, such as osteoporosis and osteopetrosis.

5.6 Validity of the Simulated Remodeling Process

To demonstrate the validity of the simulated remodeling process, we first focus on

the results when the loading frequency f ¼ 1 Hz. As shown in Fig. 5.7a, the bone

volume fraction at 30 days was approximately equal to that at the initial state,

despite the reorientation of the single trabecula. Although there is generally a

positive correlation between the volume of material and the stiffness of the struc-

ture, the apparent stiffness of the trabecula increased initially and then converged to

the constant value owing to bone remodeling, as shown in Fig. 5.7b. These results

imply that the trabecula actively adapted its own morphology to the applied load in

order to satisfy the mechanical demands. Figure 5.7b further indicates that the

increase in the loading frequency derives the increase in the apparent stiffness of the

single trabecula in the state of the remodeling equilibrium. Considering that a cyclic

5.6 Validity of the Simulated Remodeling Process 77



loading with higher frequency increases the risk of fatigue fracture of the trabec-

ulae, this behavior can also be regarded as a functional adaptation of the trabecula in

order to avoid the risk of fracture. The results qualitatively agree with the exper-

imental findings that a more significant bone ingrowth was induced under a higher

loading rate condition (Goldstein et al. 1991). As shown in Fig. 5.8, in the high

loading frequency range, the bone volume fraction in the equilibrium state is

insensitive to the variation in the frequency. This is because the interstitial fluid

around the center of trabecula cannot flow through easily under high-frequency

conditions, and only the osteocytes embedded near the surfaces contribute to

mechanosensing (Kameo et al. 2008, 2009). From a physiological point of view,

this behavior seems reasonable for preventing excess bone deposition.

In our modeling, we idealized a single trabecula as a homogeneous and isotropic

poroelastic material for simplicity. However, it is well known that the mechanical

properties of the bone matrix depend on the degree of calcification and have

anisotropy owing to the component mineral crystals and collagen fibers. In addi-

tion, the lacuno-canalicular porosity inside trabeculae also has a highly anisotropic

structure, as shown in Chap. 4 (Kameo et al. 2010). To investigate such effects of

microstructure of individual trabeculae, it will be necessary to extend our mathe-

matical model by incorporating the contributions of the heterogeneity and anisot-

ropy of material properties into the finite element models. In spite of the above

limitations, we showed that the proposed mathematical model for trabecular bone

remodeling can predict bone functional adaptation successfully at the single tra-

becular level. Here we investigated the fundamental characteristics of the mathe-

matical model through the remodeling simulation of a single trabecula subjected to

uniaxial loading. As a next step, it is important to identify the influence of the types

of external loadings on the process of trabecular adaptation via remodeling.

5.7 Conclusion

In this chapter, we developed a mathematical model of trabecular bone remodeling

that considers cellular mechanosensing and intercellular signal transmission. In the

proposed model, osteocytes embedded in a bone matrix were assumed to be

activated by the flow of interstitial fluid in a lacuno-canalicular porosity to regulate

osteoclastic bone resorption and osteoblastic bone formation on the trabecular

surface. To identify the fundamental characteristics of the mathematical model,

we demonstrated morphological changes in a single trabecula in response to cyclic

uniaxial loading with the help of a voxel finite element method. The simulation

results showed that the single trabecula reoriented to the applied loading direction

as a result of bone remodeling. Furthermore, the diameter of the trabecula in the

remodeling equilibrium state increased with an increase in the loading frequency.

These results imply that our remodeling model has the potential to represent the

process of bone functional adaptation to the surrounding mechanical environment

at the single trabecular level.
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Chapter 6

Effects of Local Bending Load on Trabecular

Bone Adaptation

Abstract This chapter investigates the relationship between the individual trabec-

ular morphology in cancellous bone and the types of load applied. In particular, to

understand the effects of a bending load on trabecular bone adaptation, we conduct

remodeling simulations for a single trabecula subjected to a cyclic bending load

based on our original remodeling model. It is shown that the bending load influ-

ences not only the formation of the plate-like trabecula but also the changes in its

topology. The results suggest the possibility that the characteristic morphology of

an individual trabecula is determined by the local mechanical environment in the

overall cancellous bone.

Keywords Trabecular bone adaptation • Remodeling simulation • Plate-like

trabecula • Bending load • Topological change

6.1 Introduction

Trabecular architecture in the cancellous bone is dynamically reorganized via

remodeling to satisfy the mechanical demands. Owing to the continual osteoclastic

bone resorption and osteoblastic bone formation at the trabecular surface, cancel-

lous bone maintains a three-dimensional network structure consisting of rod-like

and plate-like trabeculae (Basaruddin et al. 2012; Carbonare et al. 2005). The

characteristic morphologies of the individual trabeculae vary depending on their

position within the cancellous bone. While it is widely accepted that trabecular

morphology is related to the surrounding mechanical environment, the determinant

remains elusive.

Trabeculae within a living body are usually subjected to low-frequency cyclic

loading from daily activities, which consists of axial and bending components

(Weinbaum et al. 1994). We hypothesized that the unique morphology of trabec-

ulae is formed as a result of their functional adaptation to different types of

loadings. To test this hypothesis, we used the mathematical model of trabecular

bone remodeling developed in Chap. 5, which considers the osteocytic mechanical

response to the interstitial fluid flow (Adachi et al. 2010). As we mentioned in

Chap. 5, the application of a uniaxial load to a single trabecula produced a rod-like

This Chapter was adapted from Kameo and Adachi (2014) with permission from Springer.
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form aligned along the loading direction (Kameo et al. 2011). In this chapter, we

investigate the effects of a bending load on trabecular morphology. By applying our

original remodeling model to the voxel finite element model of a trabecula, we

performed a bone remodeling simulation for a single trabecula under a cyclic

bending load.

6.2 Voxel Modeling of a Single Trabecula under a Cyclic

Bending Load

For a computational investigation of the role of the local bending load on the

trabecular bone adaptation, we prepared a voxel finite element model of a single

upright trabecula as shown in Fig. 6.1. The region for analysis was

a1 � a2 � a3 ¼ 0.8 � 1.6 � 1.2 mm3 and the voxel element size was 40 μm;

both the parameters are the same as in Sect. 5.3. A rod-like poroelastic trabecula

with an initial diameter of 240 μm was set at the center of the region along the x3-
direction. Two parallel 40 μm-thick plates were placed at the top and bottom of the

trabecula to impose external loading. The material properties of the trabecula and

plate are shown in Table 5.1 (Beno et al. 2006; Smit et al. 2002).

The upright trabecula was subjected to a cyclic bending load, which was linearly

distributed along the x2-direction σ (t) ¼ (2σ3x2/a2) sin2πft. ( f ¼ 1 Hz), through the

upper plate in the x3-direction for 1.0 s per day. A shear-free condition on the lower

plane and a drained condition on the trabecular surfaces were applied. To investi-

gate the effects of the magnitude of the bending load, we set σ3 ¼ �0.10 and

�0.15 MPa in reference to a previous remodeling simulation study (Tsubota and

Adachi 2005). The physiological parameters used in the present simulations are

specified in Table 6.1 (Adachi et al. 2009; Huo et al. 2008; Jaworski and Lok 1972;

Weinbaum et al. 1994; You et al. 2004). These parameter values, other than SZ
sf , are

the same as used in Chap. 5 (see Table 5.2). As mentioned in Sect. 5.5, the changes

in trabecular morphology are greatly influenced by the width of the lazy zone SZ
sf

(see Fig. 5.4) that represents the remodeling rate sensitivity to the stimulus near the

remodeling equilibrium. Hence, two different lazy zone width values were selected:

SZ
sf ¼ 0.6 and 0.4 μN.

6.3 Adaptation of a Single Trabecula to a Cyclic

Bending Load

Based on the mathematical bone remodeling model developed in Sect. 5.2, we

investigated the functional adaptation of a single upright trabecula to a cyclic

bending load through remodeling simulations. Figures 6.2 and 6.3 show the

changes in the trabecular morphology and distribution of the 1-day average flow-
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Table 6.1 Parameter settings for the trabecular remodeling simulation. Two different values for

the width of the lazy zone were chosen

Symbol (unit) ValueDescription

rp  (nm)

rc  (nm)

U
sfS (μN)
L
sfS (μN)
O
sfS (μN)
Z
sfS (μN)

Radius of osteocyte process

Radius of canaliculus

Upper threshold for bone formation

Lower threshold for bone resorption

Stimulus at remodeling equilibrium

Width of lazy zone

52a

129.5a

0.5

1.5

1.0

0.6 or 0.4

lL  (μm) Maximum distance for 
intercellular communication

200c,d

maxM (μm/day) Maximum remodeling rate 40e

a0  (nm)

Δ  (nm)

Radius of fiber

Spacing of fiber matrix

0.6b

7b

This table was adapted from Kameo and Adachi (2014) with permission from Springer
aYou et al. (2004)
bWeinbaum et al. (1994)
cHuo et al. (2008)
dAdachi et al. (2009)
eJaworski and Lok (1972)

σ(t) = (2σ3x2/a2)sin2πft

a1 = 0.8 mm
x1

x2

x3

a2 = 1.6 mm

Trabecula

Plate

a3 = 1.2 mm
240 μm

Fig. 6.1 Voxel finite element model of an upright single trabecula with an initial diameter of

240 μm. A cyclic bending load, which was linearly distributed along the x2-direction, was applied
on the upper plate in the x3-direction for 1.0 s per day (This figure was adapted from Kameo and

Adachi (2014) with permission from Springer)
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induced shear stress acting on the osteocyte processes when the width of the lazy

zone SZ
sf is 0.6 and 0.4 μN, respectively. In these figures, part (a) corresponds to the

results for the bending load σ3 ¼ �0.10 MPa and part (b) corresponds to the results

for σ3 ¼ �0.15 MPa.

Fig. 6.2 Changes in the trabecular morphology and 1-day average flow-induced shear stresses

when the width of the lazy zone SZ
sf ¼ 0.6 μN: (a) σ3 ¼ �0.10 MPa and (b) σ3 ¼ �0.15 MPa (This

figure was adapted from Kameo and Adachi (2014) with permission from Springer)

Fig. 6.3 Changes in the trabecular morphology and 1-day average flow-induced shear stresses

when the width of the lazy zone SZ
sf ¼ 0.4 μN: (a) σ3 ¼ �0.10 MPa and (b) σ3 ¼ �0.15 MPa (This

figure was adapted from Kameo and Adachi (2014) with permission from Springer)
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As shown in Fig. 6.2a, when the loading magnitude is σ3 ¼ �0.10 MPa, bone

formation along the x2-direction was triggered in the initial state because the

applied bending load was linearly distributed along that direction. The bone depo-

sition for 10 days formed a plate-like trabecula whose length in the x2-direction is

larger than that in the x1-direction. Although the morphology of the trabecula was

almost unchanged after this stage, the single trabecula was perforated close to the

upper end owing to the local bone resorption. The obtained asymmetric trabecular

morphology along the x3-direction is due to the asymmetry of the imposed bound-

ary conditions.

The increase in the magnitude of the applied bending load generated larger flow-

induced shear stress on the trabecular surfaces. When σ3¼�0.15 MPa, as shown in

Fig. 6.2b, bone formation was promoted on the entire trabecular surface in the

initial state owing to the increased flow-induced shear stress. The significant bone

deposition formed a plate-like trabecula with an enlarged width and thickness. After

20 days, a local bone resorption was triggered around the upper end near the neutral

axis of bending because the flow-induced shear stress in the region decreased owing

to the prior bone formation along the x2-direction. As a result of successive bone

erosion, the Y-shaped trabecula with a bifurcation was formed.

As the width of the lazy zone SZ
sf decreases, the change in bone mass generally

becomes more sensitive to the change in the total stimulus Ssf near the remodeling

equilibrium, which will be discussed in Chap. 9. A comparison of the morpholog-

ical changes in the trabeculae for the two different parameter settings of SZ
sf , shown

in Figs. 6.2 and 6.3, indicates that both the remodeling processes during the first

10 days are similar. However, when the lazy zone is comparatively small, large

bone volume was lost owing to the subsequent bone resorption around the central

region of the plate-like trabecula. In particular, under a large bending load, as

shown in Fig. 6.3b, the plate-like trabecula separated towards double rod-like

trabeculae.

6.4 Role of Local Bending Load in Bone Remodeling

Individual trabeculae that constitute cancellous bone in vivo are usually subjected to
cyclic loading, consisting of both axial and bending components, due to locomotion

and maintenance of posture (Weinbaum et al. 1994). Because the magnitude and

ratio of each loading component depend on the region of interest in cancellous

bone, we simulated the effects of uniaxial and bending loads on the trabecular bone

adaptation separately to understand their fundamental roles. In Chap. 5, it was

identified that a uniaxial load is responsible for the formation of a rod-like trabecula

oriented toward the loading direction (Kameo et al. 2011). On the other hand, the

present study showed that the application of the bending load is associated with not

only the formation of the plate-like trabecula but also the change in trabecular

6.4 Role of Local Bending Load in Bone Remodeling 87



topology. These results suggest that the characteristic morphology of an individual

trabecula can be determined by the local mechanical environment in an overall

cancellous bone.

Whether the plate-like morphology is maintained or the bifurcation is formed

depends on the magnitude of the applied bending load and the cellular activity on

the trabecular surface. As shown in Figs. 6.2 and 6.3, the application of a larger

bending load caused more significant bone erosion in the neighborhood of the

neutral axis of bending, owing to an insufficient flow of stimuli to osteocytes. In

addition, the decrease in the width of the remodeling lazy zone enhanced the motion

of the bifurcation towards the lower edge. The lazy zone has been introduced in the

Frost’s mechanostat theory (Frost 1987, 2003) as the “adaptive window” and it

represents the ability of the surface cells to detect changes in the local stimuli. Thus,

the decrease in the lazy zone corresponds to the increase in the cellular sensitivity to

the mechanical stimuli. Considering the biological implications of the lazy zone,

the simulation results can be interpreted as indicating the plate-like trabecula to be

maintained under the condition that the mechanical response of the surface effector

cells is stable against the change in the local mechanical stimuli.

Through Chap. 5 and here, we have investigated the fundamental characteristics

of our mathematical model of trabecular bone remodeling at the level of a single

trabecula. Although not quantitatively validated, the remodeling simulations based

on the proposed model could successfully express reasonable changes in trabecular

morphology to adapt to various loading conditions. In the future, through a possible

in silico reconstruction of the three-dimensional trabecular bone architecture for the

entire bone with the aid of high-resolution scanners (Badilatti et al. 2016;

Majumdar et al. 1998; Muller et al. 1994; Schulte et al. 2013), an image-based

finite element analysis could help us investigate the state of stress in the arbitrary

region and identify the relationship between the trabecular microstructure and the

local mechanical environment. It will be essential for such future work to show the

validity of our remodeling model at a more macroscopic level, such as a cancellous

bone specimen comprising multiple trabeculae.

6.5 Conclusion

In this chapter, we applied our original remodeling model proposed in Sect. 5.2 to

the voxel finite element model of a single upright trabecula and demonstrated its

morphological adaptation to a cyclic bending load. The remodeling simulations

showed that a plate-like trabecula was formed owing to the bone deposition that

occurred in the early phase of the simulation. The width and thickness of the plate-

like trabecula increased with the increase in the magnitude of the applied bending

load. Furthermore, the subsequent bone resorption around the central region of the

plate-like trabecula contributed to the bifurcation and separation of the single
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trabecula. These simulation results suggest that the unique morphology of an

individual trabecula, such as a rod-like or plate-like form, can be formed depending

on the local mechanical environment in an overall cancellous bone.
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Chapter 7

Cancellous Bone Adaptation Predicted by

Remodeling Simulations

Abstract This chapter describes a functional adaptation of cancellous bone at the

macroscopic level by considering the microscopic cellular activities through a

computational approach. We simulate the morphological changes in a cancellous

bone specimen consisting of multiple trabeculae in response to external loadings.

The remodeling simulation predicts the reorientation of trabeculae parallel to the

loading direction, leading to the uniformalization of the mechanical state in the

cancellous bone. This result implies that our model of remodeling, in which flow

stimuli to osteocytes are assumed to be a driving force of bone remodeling, can

represent the phenomenological law of bone transformation toward a locally

uniform state of stress or strain at the trabecular level.

Keywords Cancellous bone adaptation • Remodeling simulation • Mechanical

hierarchy • Cellular activity • Stress uniformalization

7.1 Introduction

Cancellous bone is porous bone composed of rod-like and plate-like trabeculae, as

shown in Chap. 6, forming a well-arranged three-dimensional network structure.

The architecture of the trabeculae is continually reorganized via bone remodeling to

functionally adapt to the mechanical environment, a phenomenon referred to as

Wolff’s law (Brand 2010; Duda et al. 2010; Wolff 1870, 2010). This process has a

hierarchical structure from the microscopic cellular level to the macroscopic tissue

level. The apparent changes in density and orientation of cancellous bone result

from bone remodeling on the individual trabecular surfaces. Further the changes in

a single trabecular morphology are caused by the coupling of cellular activities,

including bone-resorbing osteoclasts and bone-forming osteoblasts, which is called

the remodeling cycle (Parfitt 1994), under the regulation of mechanosensing oste-

ocytes (Bonewald 2011; Knothe Tate et al. 2004). In order to understand the

mechanical nature of bone remodeling, it is indispensable to focus on the hierarchy

of bone structure and function in the multiscale analysis.

In this chapter, we investigate the functional adaptation of cancellous bone

achieved by the collaboration of osteoclasts, osteoblasts, and osteocytes through a

This Chapter was adapted from Kameo and Adachi (2014) with permission from Springer.

© Springer Japan KK 2018
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computational approach. We applied the mathematical model for trabecular bone

remodeling developed in Chap. 5, which enables the interconnection of the cellular

activities at the microscopic scale and the trabecular morphological changes at the

macroscopic scale through the mechanical hierarchy, to model a cancellous bone

specimen comprising multiple trabeculae. Through the remodeling simulations, we

demonstrated the changes in cancellous bone morphology in response to uniaxial

and bending loads and compared the results obtained with experimental findings

and the previous simulation results based on the phenomenological law of bone

transformation.

7.2 Voxel Modeling of a Cancellous Bone Cube

A three-dimensional computational model of a cancellous bone cube consisting of

multiple trabeculae was prepared, as shown in Fig. 7.1. The region for analysis was

set to a1 � a2 � a3 ¼ 3.2 � 3.2 � 3.2 mm3 by reference to previous remodeling

simulation studies (Adachi et al. 2001; Ruimerman et al. 2005), and was discretized

by 80� 80� 80 cubic voxel finite elements with an edge size of 40 μm. To produce

a homogeneous and isotropic porous structure as the initial configuration of can-

cellous bone, many pieces of torus-like trabeculae, with an outer diameter of

0.36 mm and inner diameter of 0.28 mm, were scattered at random throughout

the entire analysis region (Jang and Kim 2008; Tsubota et al. 2002, 2009). As a

result of this procedure, a bone volume fraction BV/TV in the initial state was given

as 0.4, which is within the physiological range. Two 0.2 mm-thick plates were

added to the upper and lower surfaces of the region to apply external loadings. The

individual trabeculae and the plate have the same poroelastic properties, as shown

in Table 5.1 (Beno et al. 2006; Smit et al. 2002).

To investigate the effects of different loading scenarios on cancellous bone

adaptation, two types of monotonously increasing loads σ(t) ¼ σ3(x1, x2)t were
imposed through the upper plate in the x3-direction for 0.25 s per day: (i) a uniaxial
load σ3 ¼ �8 MPa/sec and (ii) a bending load linearly distributed along the x2-
direction from �12 to 12 MPa/sec, i.e., σ3 ¼ �24x2/a2 (MPa/sec). A shear-free

condition on the lower plane and free leakage of interstitial fluid on all trabecular

surfaces were applied. The settings of the physiological parameters for the present

remodeling simulation are listed in Table 7.1 (Adachi et al. 2009; Huo et al. 2008;

Jaworski and Lok 1972; Weinbaum et al. 1994; You et al. 2004). All parameter

values except SU
sf , S

L
sf , S

O
sf , and SZ

sf were the same as in Chaps. 5 and 6; these four

parameters associated with the mechanical stimulus were adjusted with the enlarge-

ment of the model scale.
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Cancellous
bone

Plate

a3 = 3.2 mm

a1 = 3.2 mm a2 = 3.2 mm
x1

x2

x3

(i) Uniaxial load

(ii) Bending load

σ3 = −8 MPa/sec

σ3 = −24x2/a2 [MPa/sec]

Loading: σ(t) = σ3(x1, x2)t

x1

x2

x3

Fig. 7.1 Voxel finite element model of a cancellous bone cube, where all of the trabeculae are

randomly oriented in the initial configuration. The sample was subjected to two different types of

monotonously increasing loading through the upper plate: (i) uniaxial loading and (ii) bending
loading (This figure was adapted from Kameo and Adachi (2014) with permission from Springer)

Table 7.1 Parameter settings for the trabecular remodeling simulation

Symbol (unit) ValueDescription

rp  (nm)

rc  (nm)

U
sfS (μN)
L
sfS (μN)
O
sfS (μN)
Z
sfS (μN)

Radius of osteocyte process

Radius of canaliculus

Upper threshold for bone formation

Lower threshold for bone resorption

Stimulus at remodeling equilibrium

Width of lazy zone

52a

129.5a

1.0

13

7.0

10

lL  (μm) Maximum distance for 
intercellular communication

200c,d

maxM (μm/day) Maximum remodeling rate 40e

a0  (nm)

Δ  (nm)

Radius of fiber

Spacing of fiber matrix

0.6b

7b

This table was adapted from Kameo and Adachi (2014) with permission from Springer
aYou et al. (2004)
bWeinbaum et al. (1994)
cHuo et al. (2008)
dAdachi et al. (2009)
eJaworski and Lok (1972)
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7.3 Adaptation of a Cancellous Bone Cube to External

Loads

This section explains simulation results regarding (1) morphological changes in

cancellous bone (Sect. 7.3.1), and (2) spatial distribution of mechanical quantities

(Sect. 7.3.2).

7.3.1 Morphological Changes in Cancellous Bone

According to the bone remodeling algorithm developed in Sect. 5.2, we simulated

the mechanical adaptation of a cancellous bone cube to uniaxial and bending loads.

Figure 7.2 shows the morphological changes in cancellous bone (a) under uniaxial

loading and (b) under bending loading. The color contour indicates the one-day

average of the flow-induced shear stress acting on the osteocyte processes, which is

regarded as a driving force of bone remodeling.

As shown in Fig. 7.2a, the application of a uniaxial load triggered bone resorp-

tion on all trabecular surfaces in the initial state, owing to the small flow-induced

shear stress, which resulted in a decrease in the BV/TV. After 3 days, despite the

ongoing loss of the horizontal trabeculae, bone formation was promoted on the

surfaces of the vertically oriented trabeculae, where the flow-induced shear stress

was comparatively large. Successive bone remodeling gradually reduced the degree

of trabecular connectivity, and the trabeculae consisting of cancellous bone

reoriented in the loading direction.

When the cancellous bone cube was subjected to a bending load, as shown in

Fig. 7.2b, for the first 3 days, significant bone volume was lost around the central

Fig. 7.2 Change in cancellous bone morphology and one-day average flow-induced shear

stresses: (a) under uniaxial loading and (b) under bending loading (This figure was adapted

from Kameo and Adachi (2014) with permission from Springer)
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region for analysis, which is close to the neutral axis of bending, owing to

insufficient mechanical stimuli to osteocytes. During the period from 3 to 6 days,

bone erosion in the central region and bone deposition near the sides of the cuboidal

region proceeded simultaneously. After this stage, the trabeculae around the central

region were completely absorbed, and the remaining trabeculae aligned along the

loading direction.

In both loading scenarios, the cancellous bone architecture reached a state of

remodeling equilibrium by the end of 30 days. It should be noted that individual

trabeculae in the remodeling equilibrium state had approximately circular cross-

sections even though the cancellous bone cube at the starting point was composed

of random-shaped trabeculae.

7.3.2 Spatial Distribution of Mechanical Quantities

It is widely accepted that the spatial distribution of the mechanical quantities of the

trabeculae is one of the most important structural determinants of cancellous bone.

In the previously published mathematical model for bone remodeling, several

mechanical quantities were assumed as mechanical factors that drive bone resorp-

tion and formation (Gerhard et al. 2009). In order to understand the relationship

between the trabecular architecture in cancellous bone and the mechanical state of

individual trabeculae, we investigated the distribution of von Mises equivalent

stress σeq and strain energy density (SED) U under the maximum load during one

day and considered these as representative mechanical quantities. Here we intro-

duced the deviation of both mechanical quantities defined as

�Q ¼ Q�Mean Qð Þ, ð7:1Þ

where Q is either an equivalent stress, Q ¼ σeq, or a SED, Q ¼ U. Mean(Q) denotes
the mean value of Q in the cancellous bone cube at a specific stage of remodeling.

The distributions of the volume fractions corresponding to the deviation of

equivalent stress σeq are shown in Fig. 7.3, where the bin width of the plots is Δσeq
¼ 0:8 (MPa). Figure 7.3a is the result for uniaxial loading and Fig. 7.3b is the result

for bending loading. The mean value and standard deviation (s.d.) of the equivalent

stress at different stages of remodeling are shown in Table 7.2 in the form:

mean � s.d. Regardless of the loading scenarios, the initial distributions were

asymmetric with respect to σeq ¼ 0, although differing in kurtosis values slightly.

Their distribution profiles shifted to almost symmetrical curves by the end of

30 days. As shown in Table 7.2, the standard deviation of the equivalent stress

decreased by 32% through the 30-day remodeling in both loading cases.

As for the deviation of SED �U, Fig. 7.4 shows the distributions of the volume

fractions under uniaxial loading (Fig. 7.4a) and bending loading (Fig. 7.4b), where

the bin width of the plots is Δ �U ¼ 0:8 (kJ/m3). The mean value and standard
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deviation of the SED during the process of bone remodeling are shown in Table 7.3.

The initial distribution profiles in both loading cases exhibited similar characteris-

tics, e.g., strong asymmetry with respect to �U ¼ 0, and sharp peaks and fat tails in

the positive direction. As a result of bone adaptation to external loadings, the

kurtosis decreased and the peak position shifted toward the mean value. In contrast

to the result for the equivalent stress, as shown in Table 7.2, the standard deviation

of the SED increased by 47% under uniaxial loading even though it decreased by

43% under bending loading.

eqσDeviation of equivalent stress,       [MPa] eqσDeviation of equivalent stress,       [MPa]
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Fig. 7.3 Distributions of the volume fraction corresponding to the deviation of equivalent stress:

(a) under uniaxial loading and (b) under bending loading. The bin width of the plots isΔσeq ¼ 0:8
(MPa) (This figure was adapted from Kameo and Adachi (2014) with permission from Springer)

Table 7.2 Mean value and standard deviation (s.d.) of von Mises equivalent stress during the

process of bone remodeling

Uniaxial load Bending load

Initial state

3 days

6 days

30 days

7.24 ± 4.93 5.89 ± 5.46

20.4 ± 16.9 24.0 ± 20.7

13.1 ± 7.15 14.5 ± 9.62

9.80 ± 3.36 9.94 ± 3.72

von Mises equivalent stress, σeq  [MPa]

(mean ± s.d.)

This table was adapted from Kameo and Adachi (2014) with permission from Springer
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7.4 Validity of the Simulated Remodeling Process

As shown in Fig. 7.2, the remodeling simulations indicated that imposing external

loads on cancellous bone with randomly arranged trabeculae resulted in the align-

ment of multiple trabeculae along the loading direction, leading to a well-organized

architecture specific to the type of external loads. Such trabecular reorientation can

be regarded as a functional adaptation to satisfy mechanical demands and agrees

qualitatively with the in vivo experimental studies where the remodeling process of

U
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Fig. 7.4 Distributions of the volume fraction corresponding to the deviation of strain energy

density (SED): (a) under uniaxial loading and (b) under bending loading. The bin width of the

plots is Δ �U ¼ 0:8 (kJ/m3) (This figure was adapted from Kameo and Adachi (2014) with

permission from Springer)

Table 7.3 Mean value and standard deviation (s.d.) of strain energy density (SED) during the

process of bone remodeling

Uniaxial load Bending load

Initial state

3 days

6 days

30 days

3.30 ± 4.92 2.77 ± 6.05

30.6 ± 78.4 44.4 ± 130

9.43 ± 15.5 12.5 ± 23.7

4.35 ± 7.25 4.19 ± 3.46

(mean ± s.d.)

SED, U  [kJ/m3]

This table was adapted from Kameo and Adachi (2014) with permission from Springer
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cancellous bone was observed under controlled mechanical conditions (Goldstein

et al. 1991; Guldberg et al. 1997a, 1997b). When the cancellous bone cube was

subjected to a bending load, the BV/TV decreased, owing to erosion of trabeculae

around the central region for analysis, which corresponds to the neutral axis of

bending. Although this phenomenon has not yet been experimentally validated, a

trabecular remodeling simulation based on the phenomenological rule that

remodeling progresses toward a locally uniform state of equivalent stress produced

a similar pattern (Tsubota and Adachi 2005), as shown in Chap. 9.

Under both uniaxial and bending loading conditions, after 30 days, the individ-

ual trabecula in cancellous bone had approximately circular cross-sections. This is

because the interstitial fluid velocity and, thus, the flow stimulus to osteocytes are

uniform in the neighborhood of the cylindrical trabecula surfaces. These results

indicate that our mathematical model for trabecular bone remodeling developed in

Chap. 5 can successfully predict the changes in cancellous bone architecture at the

macroscopic level by considering the cellular response to flow stimuli at the

microscopic level.

7.5 Fluid Flow as a Candidate of Remodeling Stimulus

We identified the characteristics of interstitial fluid flow as a mechanical stimulus

for bone remodeling by investigating the spatial distributions of von Mises equiv-

alent stress and SED, both of which are representative remodeling stimuli in the

previous mathematical simulations (Adachi et al. 1997; Huiskes et al. 1987). The

distributions of these mechanical quantities at the trabecular level are, in general,

non-uniform, owing to the complexity of cancellous bone architecture (Tsubota and

Adachi 2006). As shown in Table 7.2, the standard deviation of the equivalent stress

decreased as a result of the 30-day remodeling regardless of the loading types. This

implies that our model of remodeling that considers the flow stimuli to osteocytes

can represent the phenomenological law of bone transformation toward a locally

uniform state of stress or strain at the trabecular level. On the other hand, comparing

the distribution profiles for equivalent stress and SED, as shown in Figs. 7.3 and 7.4,

reveals that the distribution of SED is more sensitive to the slight changes in

cancellous bone morphology because SED is expressed as the quadratic form of

stress or strain. Consequently, the standard deviation of the SED decreased under

bending loading, but increased under uniaxial loading at the end of the 30-day

simulation, as shown in Table 7.3. This suggests that the uniformalization of the

local SED may not be indispensable for trabecular bone remodeling.

The physical characteristic of our mathematical model lies in the fact that bone

remodeling is triggered not by the hydrostatic pressure, but by the gradient of

interstitial fluid pressure. This means that the balance of bone resorption and

formation on the trabecular surfaces is assumed to be governed by the local

variation in the specific mechanical quantity. In this sense, our model of remodeling

has a similar property to the model of remodeling driven by the local nonuniformity
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of equivalent stress (Adachi et al. 2001), which is discussed in the following

chapters, rather than the previous models in which remodeling was designed to

reach the global reference value of the specific mechanical quantity (Huiskes et al.

2000; McNamara and Prendergast 2007). Considering that the former model,

despite its basis on the phenomenological rule, can successfully reproduce a

trabecular network pattern similar to that in the human proximal femur (Tsubota

et al. 2009), as shown in Chap. 12, it is possible that bone remodeling is regulated

not by the magnitude of mechanical quantities, but by their local variation in the

trabeculae.

7.6 Conclusion

In this chapter, we simulated the morphological changes in a cancellous bone

specimen under uniaxial and bending loads based on a model of remodeling that

incorporates the possible mechanisms of cellular mechanosensing and intercellular

communication. The remodeling simulation showed that multiple trabeculae in a

cancellous bone cube reoriented in the external loading direction and exhibited a

unique trabecular pattern depending on the type of applied loads. These behaviors

are qualitatively in agreement with the remodeling process of cancellous bone

observed in vivo under controlled mechanical conditions, indicating that our math-

ematical model for trabecular bone remodeling can successfully predict the func-

tional adaptation of cancellous bone architecture. Regardless of the loading

scenarios, the progress of bone remodeling reduced the standard deviation of the

von Mises equivalent stress in cancellous bone, in contrast to that of the strain

energy density. This result suggests that our model of remodeling developed in

Chap. 5, in which flow stimuli to osteocytes are assumed to trigger bone

remodeling, has the potential to represent the phenomenological law of bone

transformation toward a locally uniform state of stress or strain at the trabecular

level.
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Chapter 8

Trabecular Surface Remodeling Toward
Uniform Local Stress State

Abstract This chapter describes a rate equation of trabecular surface remodeling

and its two-dimensional computer simulation to investigate changes in trabecular

structure due to bone remodeling toward uniform local stress state. Nonuniformity

in the local stress distribution on the trabecular surface is assumed to be the driving

force of the remodeling. The trabecular structure is computationally modeled with

an assemblage of pixel finite elements, and their morphological changes are sim-

ulated by removal/addition of the elements from/to the trabecular surface. The basic

features of the proposed rate equation are investigated through remodeling simula-

tions for trabecular-level and cancellous-bone-level structures. Simulated changes

in the trabecular structure, represented by orientation, thickness, and connectivity,

demonstrate the capability of the proposed rate equation to computationally predict

the mechanical adaptation of the cancellous bone structure.

Keywords Cancellous bone • Trabecular surface remodeling • Adaptation •

Uniform stress

8.1 Introduction

Mathematical modeling and computational simulation of bone functional adapta-

tion by remodeling started with modeling its rate equations using macroscopic

mechanical quantities such as stress/strain and strain energy density based on

phenomenological hypotheses (Carter 1984; Carter et al. 1987; Cowin and Hegedus

1976; Huiskes et al. 1987; Ruimerman et al. 2005). In vivo and in vitro experiments

contributed to the significant advancement in our understanding of the bone adap-

tation mechanism from tissue level down to the cellular and molecular levels. As

discussed in Chaps. 5, 6, and 7, microscopic mechanical phenomena such as

interstitial fluid flow in the lacuna-canalicular system (Han et al. 2004; Weinbaum

et al. 1994) and responses from osteocytic mechanosensory network were involved

in the rate equations of bone adaptation (Adachi et al. 2010; Kameo and Adachi

2014a, b; Kameo et al. 2011).

This Chapter was adapted from Adachi et al. (1997) with permission from The Japan Society of

Mechanical Engineers.
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The approach to understanding bone adaptation breaks down the phenomena—

in this book volume, the correspondence of trabecular orientation to the local

loading direction—into its key players, which include the mechanosensing osteo-

cytes, the bone resorbing osteoclasts, and the bone forming osteoblasts. We

conducted a series of in vitro experiments to characterize the osteocyte calcium

signaling response to mechanical stimuli and their communication. The results

showed that (1) osteocytes embedded in the bone matrix can respond to the matrix

deformation (Adachi et al. 2009a), (2) osteocytic dendritic processes are sensitive

to the mechanical stimuli (Adachi et al. 2009c), and (3) the calcium signaling

response significantly propagates asymmetrically from the osteocytes to the oste-

oblasts (Adachi et al. 2009b). Therefore, the mechanical signals sensed by

osteocytic cellular processes occupying the canaliculae are transmitted to the

osteoblasts on the bone surfaces. Based on these experimental evidences, micro-

scopic interstitial fluid flow and cellular communication among osteocyte networks

were mathematically modeled, and computational simulation demonstrated that a

single trabecula under uniaxial loading changes its morphology to align with the

loading direction as shown in Chap. 5, resulting in a uniform stress distribution on

the trabecular surface.

Similar to the experiment, the more detailed mechanism have been clarified, the

more complexity as a system is recognized in modeling and simulation. Thus, this

reminds us again an importance of the contraction in mathematical modeling with

reduction of the model parameters to extract and capture the essential features of the

complex system. In this chapter, we will propose a simple remodeling rate equation

for trabecular surface remodeling that contains only two model parameters: one for

spatial and one for temporal regulation, based on the phenomenological hypothesis

that the cellular-level mechanical stimuli are related to the trabecular surface

remodeling to achieve local uniform stress condition at the remodeling equilibrium.

In addition, the proposed rate equation is applied to a two-dimensional finite

element simulation to investigate morphological changes in the trabecular struc-

ture, and the correspondence of their principal direction to the principal stress

direction is discussed. Finally, we notice that the local uniform stress distribution

on the trabecular surface attained in Chap. 5, which considers a microscopic lacuna-

canalicular network of osteocytes, is consistent with the phenomenological hypoth-

esis proposed in this chapter.

8.2 Model of Trabecular Surface Remodeling

At a local point on the trabecular surface, the surface movement by bone

remodeling is related to the local mechanical stimulus based on the uniform stress

hypothesis.
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8.2.1 Morphological Change of Trabecula by Surface
Movement

On the trabecular surfaces in cancellous bone, a cycle of five successive stages of

quiescence, activation, resorption by the osteoclasts, reversal, and formation by the

osteoblasts (Parfitt 1994), as illustrated in Fig. 8.1, results in trabecular surface

remodeling. The relative difference between downward erosion by resorption and

upward refilling of a cavity by formation in a single cycle determines the local

movement of the trabecular surface in the direction perpendicular to the surface.

After repetitive cycles, macroscopic changes in the trabecular architecture in

cancellous bone are observed, which correspond to cancellous bone remodeling.

Because of the cyclical nature of this process, a trabecular surface remodeling

rate equation was expressed at two different hierarchical time scales, t and T, as
shown in Fig. 8.1, where t denotes the time on the cellular activity scale and

T denotes a time longer enough than ΔT of the characteristic period of one

remodeling turnover cycle. Let _m ¼ ∂m=∂tð Þ denote the rate of the surface

movement by remodeling in the outer direction perpendicular to the surface; i.e.,

_m ¼ 0: quiescence, _m < 0: resorption, and _m > 0: formation. Averaging _m
over the period ΔT for one remodeling cycle, the trabecular surface remodeling rate

in the outer direction perpendicular to the surface _M ¼ ∂M=∂tð Þ is defined as

_M ¼ 1

ΔT

Z
ΔT

_mdt ð8:1Þ

In the following sections, the expression of _M is discussed for trabecular surface

remodeling as a local stress regulation process.

8.2.2 Local Stress Nonuniformity

Osteoclastic bone resorption and osteoblastic bone formation at local sites are

regulated by two different-scale mechanisms; systematic regulation by hormones

and local regulation by signaling molecules. We assume that the former mechanism

is related to the volumetric and/or mass changes in the bone, whereas the latter is

associated with local morphological changes in the trabecular architecture. To

discuss how the microscopic mechanical conditions relate to the trabecular surface

remodeling and how the macroscopic trabecular architecture emerges from the

local surface remodeling, we employ local mechanical conditions as stimuli regu-

lating the trabecular surface remodeling based on the fact that a cell-to-cell network

and communication exist (Cowin et al. 1991). Thus, we consider that the positive

scalar function a as a mechanical stimulus that bone cells (i.e., the osteocytes

embedded in the bone matrix and/or the osteoblasts on the trabecular surface) can

sense, and assume that local nonuniformity is a driving force for remodeling.
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Fig. 8.1 Surface movement of trabecula in hierarchical time scale due to remodeling cellular

activities (This figure was adapted from Adachi et al. (1997) with permission from The Japan

Society of Mechanical Engineers)
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To express the nonuniformity of the scalar function in space, the differential

form using the Laplacian operator or the integral form with suitable weight

functions may be used. In this study, we use the latter integral form considering

the stresses σc(xc) and σr(xr) at point xc and at its neighbor point xr (Fig. 8.2).
Averaging σr with the weight function w(l ), the representative stress σd is deter-
mined as

σd ¼
Z
S

w lð ÞσrdS
Z
S

w lð ÞdS,
,

ð8:2Þ

where S denotes the trabecular surface, l¼ jxr� xcj, and the weight function w(l )
takes a non-zero value at the neighbor point (l < lL). When the mechanosensory

osteocytes in bone matrix are considered, the integrated area S can be replaced by

volume V. As the driving force of the local trabecular remodeling, we use the

relative value of σc to σd, that is defined as

Γ ¼ ln σc=σdð Þ ð8:3Þ

This function Γ, which expresses the nonuniformity of the stress distribution,

takes a positive value for a convex stress distribution and a negative value for a

concave distribution. Therefore, the function Γ allows expressing the

nonuniformity of the stress distribution with a small number of parameter. In

Eq. 8.3, only one model parameter lL is introduced that has a spatial unit. The

characteristics of the function Γ will be discussed in detail in Chap 10.

8.2.3 Rate Equation of Trabecular Remodeling

For a mechanical load-bearing structure, the uniform stress condition on the

trabecular surface is the optimal criterion that leads to the uniform strength.

S: Surface

c

r
l

lL

MarrowTrabecula

xc σc,

xr σr,

Fig. 8.2 Stress

nonuniformity at point c on
trabecular surface (This

figure was adapted from

Adachi et al. (2001) with

permission from The

American Society of

Mechanical Engineers)
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Based on the uniform stress hypothesis in the remodeling equilibrium, we propose a

new rate equation for trabecular surface remodeling as a stress regulation process

toward its uniform distribution on the surface. Using the stress nonuniformity

function Γ in Eq. (8.3), the remodeling rate equation is written as

_M Γð Þ ¼ F Γð Þ ¼ � 0 Γ � 0ð Þ : Formation

< 0 Γ < 0ð Þ : Resorption

�
, ð8:4Þ

by which the formation at the site with a convex stress distribution and the

resorption with a concave distribution are expressed. In this equation, the local

remodeling rate is determined using only local mechanical conditions evaluated by

Γ without considering the prescribed systematic global stresses such as the goal or

the optimal stress. In this sense, the proposed remodeling rate Eq. (8.4) is different

from the equation in the optimization problem that seeks the global minimum/

maximum conditions and provides a history-dependent process of the bone adap-

tation by remodeling.

8.3 Computer Simulation Method with Pixel FE Models

This section describes a two-dimensional simulation method of trabecular surface

remodeling based on the mathematical model of Sect. 2 combined with pixel finite

element (FE) models.

8.3.1 Pixel FE Model of Trabecular Structure

The trabecular architecture is discretized by two-dimensional pixel FE elements, as

shown in Fig. 8.3. The trabecular surface movement by remodeling is expressed by

adding and removing the square (pixel) elements on the surface, as shown in

Fig. 8.4, in response to the mechanical conditions determined through finite element

analysis. The element size should be smaller than the dimension of the basic

multicellular unit. In the remodeling simulation, the trabecular thickness is

discretized with at least three elements as an initial shape. The trabecular bone

part is assumed to be a homogeneous and isotropic elastic material with Young’s
modulus Et¼ 20 GPa and Poisson’s ratio nt¼ 0.3. The marrow is considered to be a

cavity, and thus neglected in the finite element analysis.
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8.3.2 Calculation of Stress Nonuniformity on Trabecular
Surface

The stress nonuniformity Γ on the trabecular surface in Eq. (8.3) is determined for

the trabecular pixel FE elements, as follows. For the surface element c,

Γc ¼ ln σc
XN
i

w lci
� � XN

i

w l ci
� �

σi

, ! 
ð8:5Þ

is determined where N is the total number of trabecular surface elements, and σi is
the stress at the surface element i at the distance l ci , as illustrated in Fig. 8.5. In a

simple case, the weight function w(l ) is assumed to be

w lð Þ ¼ 1� l

lL
0 � l < lLð Þ,

0 lL � lð Þ

8<
: ð8:6Þ

representing a monotonic linear decrease with l to zero at l¼ lL as shown in Fig. 8.5.
Thus, the cell at xc is assumed to be able to sense the mechanical conditions in the

neighboring region of l� lL.

Marrow
Trabecula Trabecular elements

Marrow elements
Fig. 8.3 Discretization of

trabecula with pixel

elements in two

dimensional problem (This

figure was adapted from

Adachi et al. (1997) with

permission from The Japan

Society of Mechanical

Engineers)

Resorption
(Mc = 1)

.Formation
(Mc = 1)

.

Fig. 8.4 Trabecular surface movement due to bone formation and resorption expressed by

addition and removal, respectively, of bone pixel element
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8.3.3 Rate of Surface Movement for Pixel FE Model

The trabecular surface movement is discretely expressed by adding and removing the

finite element on the trabecular surface, as illustrated in Fig. 8.4. Therefore, the rate of

the surface movement for each simulation step assumes the value _M c ¼ l, 0, �1

(elem./step). However, because _M is naturally continuous in time, as illustrated in

Fig. 8.1, we introduce the continuous probability function P _M c
in the range

Γl�Γc�Γu, as is shown in Fig. 8.6, where Γl and Γu denote the lower and upper

threshold values, respectively. The ranges Γl�Γc� 0 and 0�Γc�Γu are interpolated

by sine functions. As the remodeling progresses, the nonuniformity of the surface stress

becomes smaller, i.e., jΓcj approaches zero. The remodeling probability j P _M c
j also

approaches zero, which represents the lazy zone (dead zone) of remodeling (Carter

1984; Huiskes et al. 1987) around the equilibrium state ( _M c ¼ 0).

8.3.4 Remodeling Simulation Procedure

The trabecular surface remodeling simulation is conducted through the following

procedures:

1. The initial shape of the trabecular architecture and the model parameters are

defined.

Marrow

Trabecula

0

l

l

w

lL

lL
l ic

x i ,σi

xc, σc

Surface

Fig. 8.5 Calculation of

stress nonuniformity Γc at

element c of trabecular
surface (This figure was

adapted from Adachi et al.

(1997) with permission

from The Japan Society of

Mechanical Engineers)

0

PM. c

−1

1

ΓcΓuΓl

Fig. 8.6 Probability

function of remodeling rate

(This figure was adapted

from Adachi et al. (1997)

with permission from The

Japan Society of

Mechanical Engineers)
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2. The stress of the trabecular surface elements is analyzed by a pixel FEM under

the given boundary conditions.

3. The surface stress nonuniformity Γc in Eq. (8.5) is calculated for all surface

elements.

4. The rate of the surface movement _M c is determined by the calculated Γc based

on the relationship expressed in Fig. 8.6, and a surface element is added or

removed, as shown in Fig. 8.4.

5. If a remodeling equilibrium is not attained, the process is repeated from proce-

dure (2).

Procedures (2)–(5) form a single step of the simulation. Moreover, the equiva-

lent stress is used as the scalar function σ of the stress, as discussed in Chap.10. The

two-dimensional pixel FE analysis assumes a plane-strain condition. The volumet-

ric change of cancellous bone because of remodeling may be maintained constant at

every step by shifting the equilibrium point of Γc in Fig. 8.6, assuming that the

volumetric change is caused by global systematic regulation and not by local

regulation.

8.4 Remodeling at Trabecular Level

The primary features of the trabecular structural changes predicted by the proposed

remodeling rate equation were investigated with a model of a single trabecula under

compressive loading.

8.4.1 Model of Single Trabecula Under Compressive
Loading

Referring to the basic trabecular structures as introduced by Frost (1988), the

simulation of trabecular surface remodeling was performed for a single trabeculae

with characteristic shapes Z, Y, and X under compressive loading, as shown in

Figs. 8.7 and 8.8. Rigid plates were attached to the upper and lower surfaces. A

uniform compressive stress of 2.0 MPa was applied to the upper plate, while the

lower plate remained fixed. The entire area, including the rigid plates, was

discretized by 40 � 40 pixel FEs, as shown in Fig. 8.7; each element was

12.5 μm in length and the whole region was 500 � 500 μm. The parameter lL in

the weight function w(l ) of Eq. (8.6) was set to 200 μm, equal to the length of

16 elements. The remodeling threshold values (Fig. 8.6) were set to Γu, Γl¼�0.05.

The effects of these model parameters on the trabecular remodeling process of

cancellous bone will be discussed in Chap. 9.
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8.4.2 Morphological Changes of a Single Trabecula

The morphological changes of a single trabeculae and the regulation of the distri-

bution of equivalent stress by surface remodeling under compressive loading are

shown in Fig. 8.8, where each column shows the progress from the original shape

(left) to the final equilibrium shape (right). For an initially Z-shaped trabecula

(Fig. 8.8a), the center of trabecula was subject to bending. The trabecula grew

near the rigid plates, where the equivalent stress σ was higher than that in the

neighbors, while the bone resorbed in the middle in a few initial steps due to the low

σ. At the 4th step, the trabecular surface at the compression side still had higher

stress, whereas on the tensed surface, the equivalent stress σ decreased and the

surface remodeling turned to resorption by approximately the 20th step. Gradually,

the stress distribution on the trabecular surface was regulated and became uniform;

the trabecula was reoriented to the loading direction and reached its equilibrium

shape at the 40th step.

For an initially X-shaped trabecula (Fig. 8.8b), the upper and lower corners of

the crossing region exhibited low σ, and the right and left corners had high σ. The
original X shape changed to an H shape by remodeling at the 4th step. The

horizontal trabecula between two vertical trabeculae became thinner at the 8th

step, and then, disappears. Finally, it changed to two parallel trabeculae at the

remodeling equilibrium by the 20th step.

For an initially Y-shaped trabecula (Fig. 8.8c), the trabecula grew at the lower

corners of the branch, whereas it resorbed at the upper corner because of its

2.0 MPa

0 20 elem.

0 250 μm

Fig. 8.7 Model of single

trabecula under

compressive loading

condition (This figure was

adapted from Adachi et al.

(1997) with permission

from The Japan Society of

Mechanical Engineers)
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nonuniform stress distribution. The original Y shape changed to a V shape at the 4th

step. These two trabeculae moved closer to each other by remodeling at the 16th

step. Finally, the remodeling reached an equilibrium state at the 32th step, the two

trabeculae did not fuse together because of the existence of the lazy zone around the

remodeling equilibrium.

In all models, a trabecula changed its shape in order to orientate in the loading

direction, which successfully expresses the bone structure adaptation by

remodeling to support the mechanical loading. Even if the same boundary condi-

tions and model parameters were applied to the simple compressed trabecular

structure, a simulated trabecular structure at an equilibrium depends on the initial

trabecular shape. If there was no lazy zone in the remodeling equilibrium, the

trabecular structure with a Y shape (Fig. 8.8c) would become a single trabecula

(Fig. 8.8a) by fusion of two trabeculae in the upper half region, and or a parallel

trabecular structure (Fig. 8.8b) by separation into two trabeculae in the lower half

region.

Fig. 8.8 Results of remodeling simulation for single trabecula under compressive loading: (a)
Model Z; (b) Model X; (c) Model Y (This figure was adapted from Adachi et al. (1997) with

permission from The Japan Society of Mechanical Engineers)
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8.5 Remodeling at Cancellous Bone Level

The primary features of cancellous-bone-level structural changes by remodeling

were investigated using a square cancellous bone model under biaxial stress.

8.5.1 Model of Square Cancellous Bone

A two-dimensional square region of cancellous bone under a uniform stress field

was considered. This region was assumed as an infinitesimal area of the cancellous

bone but with a sufficient number of the trabeculae.

In order to construct the initial morphology of cancellous bone model, circular

trabeculae were randomly pasted in the square region (Fig. 8.9a). This initial

cancellous bone has an isotropic trabecular structure that can be quantitatively

evaluated from the measurement of the fabric ellipse (Harrigan and Mann 1984),

as shown in Fig. 8.9b, that was determined by the mean intercept length. The square

region of the cancellous bone was surrounded by three-layered dummy elements

with Young’s modulus Ed (¼ E/10)¼ 2.0 GPa and Poisson’s ratio νd ¼ 0.3 to apply

uniformly distributed external loads as a boundary condition in the uniform stress

field with the corresponding normal and shearing stresses. The entire square region

was discretized using 150 � 150 pixel elements. The side of an element was 60 μm
long, and, thus, the side of the square region was 9 mm long. The sensing distance lL
was set to 600 μm (¼ 10 elements), and the threshold values for the remodeling

were set to Γu, Γl ¼ �0.5.

As a boundary condition, two cases of uniform stress field with principal stresses

σ1 and σ2 were assumed (Fig. 8.10): (a) σ1 ¼ �1.0, σ2 ¼ �2.0 MPa (compression-

compression) and (b) σ1 ¼ 1.0, σ2 ¼ �2.0 MPa (tension-compression). The

principal stresses σ1 and σ2 in the two cases had the same magnitudes with (a) the

same signs and (b) opposite signs. The angle θp between the principal direction of

σ1 and the horizontal axis was varied.

8.5.2 Morphological Changes of Cancellous Bone

The remodeling process in the cancellous square region and its fabric ellipses,

which were caused by the rotation of the principal direction of the stress from

θp¼ 0� to 45� at intervals of 15�, are shown in Fig. 8.11, in which a and b denote the
principal radii of the fabric ellipses. For each direction of θp, the changes in the

trabecular architecture for eight remodeling steps were calculated. It was thus

confirmed that 15 simulation steps were enough to reach an equilibrium state.
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In the case of the same signs for the compression-compression principal stresses

at θp ¼ 0�, the originally isotropic trabecular architecture changed its morphology

to an anisotropic architecture aligned to the direction of the principal stress σ2,
which is indicated by the principal direction of the fabric ellipse (Fig. 8.11a). The

thickness of the trabeculae aligning along the direction of σ2 increased, whereas that
along the direction of σ1 decreased. Following the rotation of the principal stress

direction from θp ¼ 0� to 15�, 30�, and 45�, the trabeculae were gradually

reoriented, resulting in the rotation of the principal direction of the fabric ellipse,

as shown in the lower column of Fig. 8.11a. The disappearance of the trabeculae

aligned to the principal direction of σ1 caused the principal radius a to become

longer, whereas b did not changed significantly. Accordingly, the aspect ratio of the
fabric principal radii a/b increased from 1.02 to 1.46.

(a) Initial morphology (b) Fabric ellipse

a = 4.49
b = 4.41

-10−10

10 elements10 elements

1010
elementselements

-10−10 0

0
50

 e
le

m
.

0
3 

 m
m

Fig. 8.9 Model of square cancellous bone: (a) Initial morphology; (b) Fabric ellipse (This figure
was adapted from Adachi et al. (1997) with permission from The Japan Society of Mechanical

Engineers)

(a) comp. - comp.

θ p

σ1 = −1.0MPa

σ2 = −2.0MPa
(b) tens. - comp.

θ p

σ1 = 1.0MPa

σ2 = −2.0MPa

Fig. 8.10 Boundary conditions of biaxial stress for model of square cancellous bone: (a)
compression-compression; (b) tension-compression (This figure was adapted from Adachi et al.

(1997) with permission from The Japan Society of Mechanical Engineers)
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In the case of the opposite signs for the tension-compression principal stresses at

θp ¼ 0�, the morphology of the originally isotropic trabecular architecture also

changed to anisotropic architecture aligned to the directions of the principal stresses

σ1 and σ2, as shown in Fig. 8.11b. However, the trabecular architecture became

obviously different from that for the case with the same signs for the principal stress

in Fig. 8.11a. When the principal stresses had the same signs, as shown in

Fig. 8.11a, the trabeculae were interconnected at rounded corners. However,

when they had opposite signs, the trabeculae were interconnected at right angles

(Fig. 8.11b). As a result, the trabeculae in the direction of σ1 did not disappear as

much in Fig. 8.11b, and the ratio of the trabecular thicknesses became approxi-

mately 1: 2, corresponding to |σ1|: |σ2|. Following the rotation of the principal stress
direction from θp¼ 0� to 15�, 30�, and 45�, the trabeculae were gradually reoriented
in the same manner as in the case with the same signs. The aspect ratio of the fabric

principal radii changes from 1.02 to 1.30.
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Fig. 8.11 Simulated morphological changes of trabecular structure in square cancellous bone

under biaxial stress: (a) compression-compression (σ1 ¼ �1.0, σ2 ¼ �2.0 MPa); (b) tension-
compression (σ1 ¼ 1.0, σ2 ¼ �2.0 MPa) (This figure was adapted from Adachi et al. (1997) with

permission from The Japan Society of Mechanical Engineers)
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8.5.3 Relationships Between Cancellous Bone Structure
and Apparent Stress

The change of the trabecular architecture as predicted by the simulation can be

characterized by the fact that individual trabeculae were reoriented into the loading

direction. That is, the trabeculae changed their morphology to align to the direction

of the principal stress. This reorientation of the trabecular architecture is reasonable

for the bone tissue structure as a load bearing system. The evolution equation

proposed by Cowin (1992) (Cowin et al. 1992) also leads to a reorientation of the

trabecular architecture that supports the hypothesis by Wolff (1892, 1986) (Wolff

1892, 1986), according to which the principal stress axes coincide with the principal

trabecular direction at the remodeling equilibrium.

Depending on the signs of the principal stresses σ1 and σ2, the corresponding

trabecular architecture patterns at the remodeling equilibrium differed as shown in

Figs. 8.11a, b. The difference between the architecture with rounded corners in

Fig. 8.11a and that with right-angled corners in Fig. 8.11b is because the

remodeling rate equation employed the equivalent stress σ as a mechanical stimulus

that always has a positive value. When the principal stresses σ1 and σ2 have the

same signs (Fig. 8.12a), the stress in the direction of σ2 became convex, and that in

the direction of σ1 became concave, leading to growth and resorption, respectively,

and resulting in the rounded corners of the trabecular architecture. In contrast, if the

principal stresses assumed opposite signs (Fig. 8.12b), the stress σ in both the

directions of σ1 and σ2 became convex, leading to growth that resulted in the

0
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θσ1

σ2

1.0MPa

−2.0MPa

(a)  σ1 = −1.0MPa,  σ2 = −2.0MPa,  θ p = 0

(b)  σ1 = 1.0MPa,  σ2 = −2.0MPa,  θ p = 0

Fig. 8.12 Schematic

drawings of normal stress

distribution in square

cancellous bone model

(θp ¼ 0�): (a) compression-

compression (σ1 ¼ �1.0,

σ2 ¼ �2.0 MPa);

(b) tension-compression

(σ1 ¼ 1.0, σ2 ¼ �2.0 MPa)

(This figure was adapted

from Adachi et al. (1997)

with permission from The

Japan Society of

Mechanical Engineers)
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interconnection of the trabeculae at right angles. This result was due to the

evaluation of the mechanical stimulus as a positive definite value, so the same

results can be expected if other positive values, such as strain energy density, were

used as mechanical stimuli for the rate equation in trabecular surface remodeling. In

actual cancellous bone, orthogonality of the trabecular architecture is observed in

the frontal section of the proximal femur (Wolff 1892, 1986) and in the sagittal

plane of patella (Hayes and Snyder 1981), where the principal stresses have

opposite signs.

8.6 Conclusion

In this chapter, we proposed a rate equation for trabecular surface remodeling as a

regulation process of the nonuniform stress distribution on the trabecular surface to

a uniform distribution. In this rate equation, the local stress nonuniformity was

employed as the driving force of the remodeling, which did not employ any

prescribed goal or optimal stress as a global constraint of the systematic regulation.

Using a pixel finite element method for the discretized trabecular architecture,

two-dimensional simulations of trabecular surface remodeling were conducted for

trabecular-level and cancellous-bone-level structures. In these simulations, the

morphologies of the trabeculae were changed in response to the mechanical con-

ditions by changing the trabecular orientation, thickness, and connectivity. The

results indicated that the proposed model of trabecular surface remodeling is

capable of predicting trabecular structural adaptation by cellular activities driven

by cellular-level mechanical stimuli.
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Chapter 9

Spatial and Temporal Regulation of Cancellous
Bone Structure by Trabecular Surface
Remodeling

Abstract This chapter describes the application of a computer simulation of

trabecular surface remodeling (proposed in Chap. 8) for investigating the spatial

and temporal changes in the trabecular structure caused by remodeling. Two model

parameters, the threshold value of the lazy zone and the sensing distance of the

mechanical environment, are introduced into the remodeling rate equation to

express the sensitivity of bone cells to mechanical stimuli. A two-dimensional

rectangular cancellous bone model under non-uniform compressive loads is

constructed using pixel finite elements. A simulation result revealed that the

trabecular structure underwent temporal and spatial changes depending on the

loading condition. Sensing distance regulates the spatial distribution of the trabec-

ular structure, while the threshold value of the lazy zone regulates the rate of

structural changes in time. The results indicate that these model parameters are

important in controlling the spatial and temporal regulation of the trabecular

structure that depends on the sensitivities of bone cells to mechanical stimuli.

Keywords Cancellous bone • Trabecular surface remodeling • Adaptation •

Uniform stress

9.1 Introduction

In a bone remodeling computer simulation, model parameters in a remodeling rate

equation are keys to determining the spatial and temporal changes in bone structure

(Cowin et al. 1985), as well as the trabecular mechanical environment determined

by external loading condition, cortical bone shape, and internal trabecular structure,

as described in Chaps. 11, 12, and 13. In a surface remodeling rate equation

described in Chap. 8, we introduced two model parameters in the model for

trabecular surface remodeling in order to express the sensitivity of bone cells to

mechanical stimuli. Therefore, these model parameters are important not only for

the accurate prediction of the actual trabecular structure (Adachi et al. 2001;

This Chapter was adapted from Tsubota and Adachi (2005) with permission from Institute of

Physics and Engineering in Medicine.
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Tsubota et al. 2002, 2009), but also for giving an insight into the regulation

mechanism of the trabecular structure caused by cellular response to the mechanical

stimuli.

In this chapter, we clarify the effects of the model parameters on trabecular

structural changes in both space and time. 2D simulations of trabecular surface

remodeling are conducted with a large-scale pixel finite element model of rectan-

gular cancellous bone under simple and nonuniform compressive loads. In addition,

the spatial and temporal regulation processes of cancellous bone are discussed on

the basis of the simulation results, in terms of the mechanical adaptations resulting

from cellular responses to local mechanical stimuli.

9.2 Simulation Model of Cancellous Bone

A rectangular cancellous bone model was created using a large number of pixel

finite elements (Sect. 9.2.1). Simple and non-uniform compressive loads were

applied to the model (Sect. 9.2.2), and it was used to simulate trabecular structural

changes by a trabecular surface remodeling model described in Chap. 8.

9.2.1 Rectangular Cancellous Bone Model

A rectangular cancellous bone model was constructed using pixel finite elements, as

shown in Fig. 9.1. The initial morphology of the cancellous bone was created by

randomly pasting circular trabeculae with outer and inner diameters of 500 μm and

300 μm, respectively. The dimensions of the model were W¼ 10 mm in the X1

direction andW/2¼ 5 mm in the X2 direction. The pixel elements numbered 800 in

the X1 direction and 400 in the X2 direction, and size of each pixel was 12.5 μ
m. The structural parameters of the cancellous bone (Parfitt et al. 1987) were: bone

volume fraction BVF¼ 0.57, trabecular bone thickness Tb .Th¼ 73 μm and

W
/ 2

 =
 5

 m
m

W = 10 mm

σ
1 MPa

0 MPa

X2

X1

Fig. 9.1 Simulation model

of a cancellous bone under

non-uniform compressive

loads (This figure was

adapted from Tsubota and

Adachi (2005) with

permission from Institute of

Physics and Engineering in

Medicine)
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connectivity CON¼ 27.9 mm�2. In this simulation method, the time scale of each

simulation step was not explicitly considered, although it can be determined by

comparing the simulation results with the experimental ones (Adachi et al. 2001,

1997). Stress was analyzed by the finite element method with the element-by-

element preconditioned conjugate gradients (EBE/PCG) method (Hughes et al.

1987; van Rietbergen et al. 1995). Trabeculae were assumed to be a homogeneous,

isotropic material with Young’s modulus of Et¼ 20 GPa and Poisson’s ratio of

νt¼ 0.3, while the marrow was regarded as a cavity, and was neglected in the finite

element analysis.

9.2.2 Boundary Condition for Nonuniform Compressive
Loads

As a boundary condition, compressive load in the X2 direction, which was linearly

distributed along the X1 direction from 0 to 1 MPa, was applied through a thin bone

layer that was placed around the cancellous part to smoothly distribute the force

applied to the cancellous part (Fig. 9.1). The bone layer was 8 elements thick and its

Young’s modulus was one-hundredth that of the trabeculae.

9.3 Regulation of Cancellous Bone Structure

This section describes the effects of model parameters threshold values of lazy zone

(Sect. 9.3.1) and sensing distance of mechanical stimuli (Sect. 9.3.2) on cancellous

bone structure. It also discusses that the spatial and temporal regulation of the

trabecular structure is determined by the sensitivities of bone cells to mechanical

stimuli (Sect. 9.3.3).

9.3.1 Effects of Threshold Values of Lazy Zone

Threshold values Γu and Γl are the parameters that relate remodeling driving force

Γ to the rate of surface movement _M in Fig. 8.6, and affect the activation of the

remodeling. To clarify the effects of threshold values Γu and Γl on trabecular

structural changes, remodeling simulation was conducted for different values of

|Γ| (¼Γu¼ �Γl) from 0 to 10, where sensing distance lL (Eq. (8.6)) was set

constant at 2.0 mm.

The trabecular structures at the 10th and 20th steps for |Γ| ¼ 2.0, 3.0, 5.0, and

10.0 are shown in Fig. 9.2. Trabeculae reorganized and aligned along the compres-

sive loading direction, which expressed the functional adaptation as is observed in
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the actual bone. The smaller threshold value |Γ| led to a faster alignment of the

trabeculae. To evaluate the effect of the threshold value |Γ| on the structural

changes quantitatively, changes in structural parameters BVF, Tb . Th and CON
were calculated as shown in Fig. 9.3a–c. BVF was decreased by remodeling

because the number of trabecular surface elements activated to form new bone

Γ|   | = 2.010th step 20th step

Γ|   | = 3.010th step 20th step

Γ|   | = 5.010th step 20th step

Γ|   | = 10.010th step 20th step

Fig. 9.2 Trabecular structures obtained by the remodeling simulation at the 10th and 20th steps

for different threshold values of |Γ|¼ 2.0, 3.0, 5.0, and 10.0 (This figure was adapted from Tsubota

and Adachi (2005) with permission from Institute of Physics and Engineering in Medicine)
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was less than that activated for resorption. Tb .Th and CON also decreased correspon-

ding to the decrease in BVF. The calculations of the curve slopes in Fig. 9.3a by linear

fitting showed the magnitude of the rate in volumetric changes | BVF
�

| decreases with

increasing threshold value |Γ|, as shown in Fig. 9.3d.
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Fig. 9.3 Temporal changes in structural parameters depending on the threshold value |Γ|: (a)
Bone volume fraction BVF, (b) Trabecular bone thickness Tb .Th, and (c) Connectivity CON. (d)

Rate of volumetric change |BVF
�

| as a function of threshold value |Γ| (This figure was adapted from
Tsubota and Adachi (2005) with permission from Institute of Physics and Engineering in

Medicine)
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9.3.2 Effects of Sensing Distance of Mechanical Stimuli

Sensing distance lL in Eq. (8.6) represents the area where cells can sense mechanical

stimuli. To clarify the effects of sensing distance lL on trabecular structural changes,
remodeling simulation was conducted for different values of lL normalized by the

width of the cancellous bone model W from 0.05 to 1.0, where the threshold value

|Γ| was set constant at 5.0.
Trabecular structures at the 30th step for lL/W¼ 0.05, 0.3, 0.6, and 1.0 are shown

in Fig. 9.4. The larger sensing distance lL caused a more distributed trabecular

structure in accordance with the spatial distribution of the compressive loads. As a

result, the largest loss of trabeculae occurred on the left side of the cancellous bone

with less compressive loads for lL/W¼ 1.0. To evaluate the effect of sensing

distance lL on the spatial distribution of the bone structure quantitatively, the

distributions of BVF with respect to the normalized coordinate ξ (¼X1/W ) and its

linear fitting line were calculated as shown in Fig. 9.5a. The gradients ΔBVF of the

fitting lines, which represented the spatial distribution of BVF, were 0.03 for lL/
W¼ 0.05 and 0.52 for lL/W¼ 1.0. ΔBVF for other lL/W values at the 30th step were

further calculated, and it was shown that ΔBVF increased with lL/W, as shown in

Fig. 9.5b.

lL /W = 0.05 lL /W = 0.3

lL /W = 0.6 lL /W = 1.0

Fig. 9.4 Trabecular structures obtained by remodeling simulation at the 30th step for different

normalized sensing distances of lL/W¼0.05, 0.3, 0.6, and 1.0 (This figure was adapted from

Tsubota and Adachi (2005) with permission from Institute of Physics and Engineering in

Medicine)
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9.3.3 Structural Changes According to Sensing Mechanical
State

A temporal and spatial change in the trabecular structure was obtained by the

remodeling simulation. By studying the model parameters, it was found that the

threshold value of the lazy zone |Γ| regulated the rate of structural changes with

time, and that the sensing distance lL regulated the spatial distribution of the bone

structure. The findings indicate that these parameters regulate the sensitivities of

remodeling to mechanical stimuli in time and space. Therefore, the results demon-

strate the possibility that the sensitivity of bone cells to mechanical stimuli is one of

the critical factors in determining the spatial and temporal regulation of a trabecular

structure.

Threshold value |Γ| played a role similar to that of the rate coefficient used in a

linear remodeling rate equation (Cowin et al. 1985). When the threshold value |Γ|
was small, a decrease in trabecular connectivity occurred in the less compressive

region (on the left side of the cancellous bone region shown in Fig. 9.2). Subse-

quently, trabeculae were isolated due to the loss of connectivity and lack of loading,

and the isolated trabeculae were resorbed because they were no longer loaded, as

predicted in stochastic simulations of bone remodeling (Langton et al. 1998; Tabor

and Rokita 2002). Finally, the trabeculae were completely lost. That is, the small

threshold value |Γ| led to a large loss of trabeculae in the less compressive region.

This result can be regarded as an “over-adaptation” of the trabecular structure, as

suggested by Weinans (1998), and thus indicates that excessive sensitivity of bone

cells to mechanical stimuli is one of the candidate causes of osteoporosis.
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Fig. 9.5 Spatial distribution of bone volume fraction at the 30th step depending on the sensing

distance lL. (a) Bone volume fraction BVF to normalized coordinate ξ (¼X1/W ). (b) Spatial

gradient of bone volume fraction ΔBVF to normalized sensing distance lL/W (This figure was

adapted from Tsubota and Adachi (2005) with permission from Institute of Physics and Engineer-

ing in Medicine)
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Sensing distance lL was shown to affect the spatial distribution of the trabecular

structure. A large sensing distance led to the trabecular structure becoming more

adapted to the spatial distribution of compressive loads, and to a large loss of

trabeculae in the less compressive region. This can also be regarded as an over-

adaptation of the trabecular structure, as in the case of the threshold value |Γ|. The
parameter lL corresponds to the distance in the cellular communication such as

observed in calcium propagation (Xia and Ferrier 1992) and is thus expected to be a

few hundred micrometers. On the basis of the characteristics of the model param-

eters clarified in this study, the appropriate values of the model parameters should

be investigated by comparing the trabecular structures between the simulations and

the experiments, as will be shown in Chap. 11. The identified model parameters will

represent the cellular activities in vivo, and will thus provide an insight into the

mechanism of bone remodeling at the cellular level.

9.4 Conclusion

In this chapter, the spatial and temporal regulation of the cancellous bone structure

caused by bone cellular activities in response to a local mechanical environment

were investigated by computer simulations of trabecular surface remodeling. In

simulations, two model parameters, the threshold value of the lazy zone and the

sensing distance of the mechanical environment, were used to express the sensitiv-

ity of bone cells to mechanical stimuli in time and space. 2D simulation using a

rectangular cancellous bone model under simple and nonuniform compressive

loads revealed that the trabecular structure underwent a temporal and spatial change

depending on the loading condition. It was found that the threshold value of the lazy

zone regulates the rate of structural changes in time, and that sensing distance

regulates the spatial distribution of the trabecular structure. The results demonstrate

the possibility that the spatial and temporal regulation of the trabecular structure is

determined by the sensitivities of bone cells to mechanical stimuli.
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Chapter 10

Comparison of Mechanical Quantities as Bone
Remodeling Stimuli

Abstract In this chapter, different trabecular-level mechanical quantities are com-

pared for determining their appropriateness as bone remodeling stimuli. Distribu-

tion functions of the mechanical quantities were evaluated by using digital image-

based finite element models of rat vertebral bodies subject to physiological loading

conditions. Strain energy density (SED) and von Mises equivalent stress were

considered as local mechanical quantities, while SED integration and stress

non-uniformity were considered as integral mechanical quantities. The analysis

demonstrated that the mechanical quantities were non-uniformly distributed over

the trabecular surface owing to the three-dimensionally complex trabecular struc-

ture. The distribution patterns of the four mechanical quantities were compared in

terms of the skewness of their distribution functions. The results support the notion

that the integral formalism, proposed for bone remodeling stimuli on the basis of the

process of bone cells to sense mechanical stimuli, corresponds to trabecular struc-

tural adaptation to its mechanical environment.

Keywords Cancellous bone • Trabecular surface remodeling • Adaptation •

Uniform stress

10.1 Introduction

One of the key issues in computer simulation of trabecular remodeling is quantify-

ing the mechanical stimuli, to account for the biological response to mechanical

factors during remodeling (Burr 2002). On the basis of the experimental and

clinical observations, the mechanical stimulus of bone remodeling has been for-

mulated using the intensity of the mechanical quantity in the macroscopic mathe-

matical models for bone remodeling in which the trabecular bone is regarded as a

continuum. Developing the theory of adaptive elasticity (Cowin and Hegedus

1976), which is one of the first bone remodeling models based on macroscopic

continuum mechanics, Sadegh et al. (1993) have related surface remodeling-

induced trabecular structural changes to the local strain intensity on the trabecular

surface. They showed that a trabecular structural change occurs as the trabecular-

This Chapter was adapted from Tsubota and Adachi (2006) with permission from The Japan

Society of Mechanical Engineers.
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level adaptation to the trabecular mechanical environment. In an extension of their

work (Luo et al. 1995), the authors considered mechanical stimuli at different strain

rate, and demonstrated that the strain rate affects the rate of trabecular structural

change but not the final shape of the trabeculae in the remodeling equilibrium.

These studies suggest that in determining the trabecular structure in the remodeling

equilibrium, the spatial distributions of the mechanical quantities are more impor-

tant than the temporal changes in the mechanical quantities.

The spatial distributions of the mechanical quantities have been investigated in

detail to explain the actual biological systems, such as intercellular communication

networks. Mullender et al. (1994) and Mullender and Huiskes (1995) have

accounted for the role of osteocytes as mechanosensors and formulated the

remodeling stimulus as the integral of the strain energy density over the bone

volume around the remodeling site. In Chap. 8, we have proposed a stress

nonuniformity for determining the spatial sensitivity of the bone cells to mechanical

stimuli, assuming a uniform stress hypothesis in the remodeling equilibrium

(Adachi et al. 1997, 1998). These spatially integrated mechanical quantities can

explain the physiological mechanism of bone remodeling, and, therefore, are

expected to be key parameters governing bone remodeling from cellular responses

up to trabecular structural changes (Huiskes et al. 2000; Mullender et al. 1998).

In this chapter, we demonstrate the spatial distributions of mechanical quantities

in the trabecular bone as remodeling stimuli around the remodeling equilibrium

state. We then consider the more appropriate quantities as remodeling stimuli

among the quantities at the remodeling site (namely, local mechanical quantities)

and those integrated over the space around the remodeling site (namely, integral

mechanical quantities). Considering the three-dimensionally complex structure of

the trabecular bone, the mechanical quantities on the trabecular surface were

estimated by using digital image-based finite element models of five specimens

of normal rat vertebral bodies, subject to physiological loading conditions. The

difference between the distribution functions was evaluated for the local mechan-

ical quantities and for the integral ones, for which the strain energy density (SED)

(Huiskes et al. 1987) and the von Mises equivalent stress (Carter et al. 1987) were

examined as representative local mechanical quantities, while spatial integration of

SED with a decay function (Mullender and Huiskes 1995) and spatial

non-uniformity of the von Mises equivalent stress (Chaps. 8 and 9) were examined

as representative integral mechanical quantities.

10.2 Methods for Comparison of Mechanical Quantities

A digital image-based voxel FE model was created for the vertebral bodies of

normal rats (Sect. 10.2.1). The use of mechanical quantities as remodeling stimuli is

explained in Sect. 10.2.2. A method for evaluating the distributions of mechanical

quantities in a cancellous bone is described (Sect. 10.2.3).
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10.2.1 Digital Image-Based Finite Element Models of Rat
Vertebral Bodies

Serial images of the cross-section of a vertebral body were measured for five

specimens of normal L1 vertebral bodies harvested from healthy Wistar rats

(female, 10 weeks) using X-ray micro-computed tomography. Based on these

images, a digital image-based finite element model of each specimen was

constructed to describe the central part of a vertebral body, as shown in

Fig. 10.1a. The model size was approximately 4.3 mm in the bilateral direction,

2.7 mm in the anteroposterior direction, and 2.6 mm in the axial direction. Each
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Fig. 10.1 Digital image-based finite element model of a L1 vertebral body of a normal rat. (a)
Overview of the model. The load was applied to the upper plane, while the lower plane was fixed.

(b) Three loading scenarios of axial compression (C) and lateral (LR) and anteroposterior (AP)
bending. (c) The central hexahedral region of 2� 1� 2 mm3 in the cancellous bone (This figure

was adapted from Tsubota and Adachi (2006) with permission from The Japan Society of

Mechanical Engineers)
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voxel had the volume of 12.8� 12.8� 12.8 μm3, corresponding to the pixel area of

12.8 � 12.8 μm2 and to the inter-slice distance of 12.8 μm. There were approxi-

mately 4.6 million bone elements. The X1 axis corresponded to the bilateral

direction, the X2 axis to the anteroposterior direction, and the X3 axis to the axial

direction, as shown in Fig. 10.1a. The bone was assumed to be homogeneous and

isotropic, with Young’s modulus Et ¼ 20 GPa and Poisson’s ratio νt ¼ 0.3. The

marrow was regarded as a cavity, and was neglected in the finite element analysis.

The element-by-element preconditioned conjugate gradients (EBE/PCG) method

(Hughes et al. 1987; van Rietbergen et al. 1995) was used for the finite element

analysis.

Considering the mechanical function of a vertebral body as a load-bearing

structure, three loading scenarios with axial compression (C) of Fc ¼ 10 N and

lateral (LR) and anteroposterior (AP) bending of MLR ¼ MAP ¼ 5 N �m were

assumed as the physiological loading conditions of a normal rat, as shown in

Fig. 10.1b. These loads were applied to the upper plane of the vertebral model

via a one-voxel-thick dummy bone layer that was placed for uniformly transferring

the loads to the vertebral body. The lower plane of the model was fixed.

10.2.2 Mechanical Quantities on the Trabecular Surface
as Remodeling Stimuli

Local mechanical quantities at a specific point on the trabecular surface were

defined as the corresponding mechanical quantities at that point, while integral

mechanical quantities were defined as the spatial integrals or averages of the

corresponding mechanical quantities over the bone volume around the considered

point. SED U [J/m3] and von Mises equivalent stress σ [MPa], which have been

used since introducing the pioneering mathematical and computational models of

bone remodeling (Carter et al. 1987; Cowin and Hegedus 1976; Huiskes et al.

1987), were considered as representative local mechanical quantities. Two types of

integral mechanical quantities, in which the cellular network system in bone

remodeling is considered, were considered, and are summarized in what follows.

One of the integral mechanical quantities considered here was SED integration

with a decay function (Huiskes et al. 2000; Mullender and Huiskes 1995):

P ¼
Xn
i¼1

f i xð ÞμiUi J=m3
� �

, ð10:1Þ

which accounts for the role of osteocytes as mechano-sensors. In Eq. (10.1), Ui is

the SED at the location of an osteocyte i, μi is the mechano-sensitivity of the

osteocyte i, fi(x) is an exponentially decaying function describing the strength of

the effect of the osteocyte i on a point x on the surface, and n is the number of
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osteocytes around the point x on the surface. The exponentially decaying function

fi(x) is given by:

f i xð Þ ¼ e� di xð Þ=Dð Þ, ð10:2Þ

where di(x) is the distance between the osteocyte i and the surface location x, and
D is the spatial decay constant (Mullender et al. 1994).

Another integral mechanical quantity is the spatial non-uniformity of equivalent

stress, described in Sect. 8.2:

Γ ¼ ln σc=σdð Þ, ð10:3Þ

in which surface remodeling is assumed to yield a state with uniformly distributed

mechanical stimulus in the remodeling equilibrium. In Eq. (10.3), σc is the stress at
a point xc on the trabecular surface, and σd is the representative stress around the

point xc, defined as:

σd ¼
Z

w lð ÞσrdV=
Z

w lð ÞdV, ð10:4Þ

where σr is the stress at a point xr, l is the distance between the points xc and xr, and
dV is the trabecular volume. In this chapter, spatial integration was performed over

the trabecular volume in Eq. (10.4) for considering osteocytes as mechano-sensors,

instead of the trabecular surface in Eq. (8.2). The weighting function w(l ) [w(l )>
0 (0� l< lL)] decreases linearly with the distance l, similar to what is described in

Eq. (10.2) for the SED integration model. The sensing distance lL, which indicates

the area in which osteocytes can sense mechanical stimuli, determines the area for

evaluating the stress non-uniformity Γ (Sect. 8.2).

The model parameters included in the integral mechanical quantities were set as

the number of osteocytes n ¼ 10,000 mm�3 in Eq. (10.1) and the spatial decay

constant D ¼ 100 μm in Eq. (10.2) for the SED integration P (Mullender et al.

1996), and the sensing distance lL ¼ 200 μm in Eq. (10.4) for the stress

non-uniformity Γ (Donahue 1998; Xia and Ferrier 1992).

10.2.3 Evaluation of the Spatial Distributions of Mechanical
Quantities

The four mechanical quantities U, σ, P, and Γ were considered as remodeling

stimuli S and their spatial distributions were evaluated under the following assump-

tions. First, in a normal rat subject to physiological loadings (that is, the bone is in

the remodeling equilibrium), the extent of the trabecular bone formation was

assumed to be equal to that of the bone resorption. Second, the rate of the trabecular

surface movement _M , which determines the structural changes in the trabeculae,
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was assumed to be a function of the mechanical stimulus S (Cowin 1993). Third,

since we focused on the bone in and around the remodeling equilibrium, the rate of

the trabecular surface movement _M Sð Þ was approximated by a simple linear rate

equation (first order Taylor expansion of the function _M Sð Þ):
_M Sð Þ ¼ C S� Sref

� �
, ð10:5Þ

where C was the rate coefficient of trabecular surface remodeling, and Sref was the
reference stimulus in the remodeling equilibrium (Cowin 1993). With C and Sref

being constant in time and non-site specific (constant in space), the third assump-

tion implies that the distribution function of the mechanical stimulus is symmetric

with respect to the reference stimulus Sref (if not, the ammount of the bone

formation would no longer be equal to that of the bone resorption). Considering

these assumptions, the magnitudes of the distribution functions’ skewness were

calculated for the four mechanical quantities U, σ, P, and Γ for evaluating the

distribution function symmetry. Because a more symmetric distribution of a certain

mechanical quantity increases the likelihood of using this quantity as a stimulus for

remodeling, mechanical quantities with lower skewness were considered to be more

likely candidates to serve as stimuli for remodeling.

In summary, the spatial distributions of the mechanical quantities were evaluated

by employing the following procedures:

1. For the five specimens of the rat vertebral bodies, the mechanical quantitiesU, σ,
P, and Γ on the trabecular surface were calculated for each of the three loading

scenarios by using digital image-based models, as shown in Fig. 10.1. To neglect

the artificial effects associated with the boundary conditions, we discuss only the

simulation results for the central hexahedral region of 2� 1� 2 mm3 in the

cancllous bone, as shown in Fig. 10.1c. In the stress/strain calculation for the

trabecular structure, a finite element analysis was conducted by using an

element-by-element preconditioned conjugate gradients approach (Hughes

et al. 1987; van Rietbergen et al. 1995).

2. To compare the distribution functions of the four mechanical quantities U, σ, P,
and Γ that have different scales of magnitude, the mechanical quantities,

regarded as bone remodeling stimuli S, were normalized as

Ŝ ¼ S� Sref

σS
, ð10:6Þ

where σS is the standard deviation of a stimulus S in the center hexahedral region
of the cancellous bone. The mean value �S of the stimulus S in the center

hexahedral region was used as the reference stimulus Sref, considering that the

trabecular bone volume was the same in the remodeling equilibrium (see

Appendix. 10.A for details).
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3. The trabecular surface area A was calculated as a function of the normalized

stimulus Ŝ and normalized by the total trabecular surface area, Atotal. The

normalized area Â
�
Ŝ
� ¼ A

�
Ŝ
�
=Atotal was defined as the distribution function of

the stimulus Ŝ.

4. The magnitude of the skewness j bβ j of the distribution function Â
�
Ŝ
�
was

calculated as:

j bβ j¼
R
Â3

�
Ŝ
�
dŜ

σ3
Â

R
dŜ

�����
�����, ð10:7Þ

and compared among the four mechanical quantities. In Eq. (10.7), σÂ is the

standard deviation of the distribution function Â
�
Ŝ
�
.

10.3 Comparison of Mechanical Quantities

In this section, we describe the distributions of the mechanical quantities and

compare the quantities (Sect. 10.3.1). Limitations of the employed simulation

model are discussed as well (Sect. 10.3.2), along with the appropriateness of the

analyzed mechanical quantities as remodeling stimuli.

10.3.1 Spatial Distributions of Mechanical Quantities
in Cancellous Bone

The values of the SED U, the equivalent stress σ, the SED integration P, and the

stress non-uniformity Γ on the trabecular surface in the central hexahedral region of

the cancellous bone were obtained for the five specimens, for each of the three

loading scenarios of axial compression (C) and lateral (LR) and anteroposterior

(AP) bending. The three-dimensionally complex structure of the trabeculae yielded

non-uniform distributions of the mechanical quantities on the trabecular surface,

even though the vertebral body was only subjected to a simple external loading, as

shown in Fig. 10.2, in which the mechanical quantities of one of the five specimens

for the loading scenario C are shown as examples.

The distribution function Â
�
Ŝ
�
of the normalized mechanical stimulus Ŝ on the

trabecular surface was calculated for the four mechanical quantities, as shown in

Fig. 10.3, in which the result obtained for one of the five specimens is shown as an

example. In the case of SED U, equivalent stress σ, and SED integration P, the
corresponding distribution functions Â

�
Ŝ
�
, characterized by the distribution’s
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mode, kurtosis, and skewness, were affected by the loading conditions, whereas no

such dependence was observed in the case of stress non-uniformity Γ.
The magnitude of the skewness j bβ j of the distribution function Â

�
Ŝ
�
was

different for the different mechanical quantities and loading conditions, as shown in

Fig. 10.4. Among the four mechanical quantities, the skewness j bβ j¼ 0:23� 0:15
(mean � s.d.) of the SED integration P was the smallest in the compressive loading

scenario C, and the skewness magnitude j bβ j of the stress non-uniformity was the

smallest in the bending loading scenarios of LR (j bβ j¼ 1:19� 0:14) and AP (j bβ j
¼ 1:20� 0:13). The skewness magnitude values j bβ j of the SED U and equivalent

stress σ in all of the loading scenarios were smaller than those of the SED

Fig. 10.2 Mechanical quantities on the trabecular surface in the central hexahedral region of the

cancellous bone, for the loading scenario C of axial compression. (a) Strain energy density (SED)

U, (b) von Mises equivalent stress σ, (c) SED integration P, and (d) stress non-uniformity Γ (This

figure was adapted from Tsubota and Adachi (2006) with permission from The Japan Society of

Mechanical Engineers)
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integration P and stress non-uniformity Γ, respectively, except for the loading

scenario C, in which the skewness of the equivalent stress σ was smaller than that

of the stress non-uniformity Γ. It was also revealed that the skewness magnitude

j bβ j varied with external loading conditions, as shown in Table 10.1. In all of the

loading scenarios, the changes in the skewness mean and standard deviation for the

SED integration P and stress non-uniformity Γ were smaller than those for the SED

U and equivalent stress σ.
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Fig. 10.3 Distribution function Â
�
Ŝ
�
of the normalized mechanical stimulus Ŝ for the strain

energy density (SED)U, equivalent stress σ, SED integration P, and stress non-uniformity Γ in the

three loading scenarios of axial compression (C) and lateral (LR) and anteroposterior (AP) bending

(This figure was adapted from Tsubota and Adachi (2006) with permission from The Japan Society

of Mechanical Engineers)
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10.3.2 Candidate Mechanical Quantities to Serve
as Remodeling Stimuli

10.3.2.1 Model Assumptions

Digital image-based models combined with large-scale finite element analysis were

used for determining the distributions of mechanical quantities in a rat vertebral

body subject to physiological loading conditions. Considering the spinal structure

function and the arrangement of the tissue surrounding vertebra, the loading

condition of the spinal structure is likely to be similar to the human one, consisting

of compression and bending. Therefore, three loading scenarios, corresponding to

axial compression and anteroposterior and lateral bending, were assumed as the

physiological loading scenarios of the rat vertebral body. In addition, we assumed

that mechanical quantities with more symmetric distributions are better candidates

to serve as remodeling stimulus, based on the linear rate equation of bone
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magnitude j bβ j of the
distribution function Â
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�
,

for the distributions of strain

energy density (SED) U,
equivalent stress σ, SED
integration P, and stress

non-uniformity Γ, the three
loading scenarios of axial

compression (C) and lateral

(LR) and anteroposterior

(AP) bending (This figure

was adapted from Tsubota

and Adachi (2006) with

permission from The Japan

Society of Mechanical

Engineers)

Table 10.1 Changes in the magnitude of skewness j bβ j of the distribution function Â
�
Ŝ
�
of

different quantities, for the changes in external loading conditions

Quantity type Change in mean value of j bβ j Change in s.d. of j bβ j
SED U 5.81 3.36

Equivalent stress σ 1.10 0.30

SED integration P 1.30 0.20

Stress nonuniformity Γ 0.17 0.01

This table was adapted from Tsubota and Adachi (2006) with permission from The Japan Society

of Mechanical Engineers
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remodeling with a non-site specific rate coefficient (Cowin 1993). In this study, a

non-site specific model was adopted based on the fact that non-site specific

remodeling models successfully predicted realistic changes in bone structure

resulting from the distribution of mechanical quantities such as that denoted by

the function of stress/strain (Cowin 1993).

10.3.2.2 Dependence of the Distribution of Mechanical Quantities

on the Quantity Type

Comparison of the skewness values of the distribution functions of the mechanical

quantities has revealed that the distribution characteristics are quantity type-

dependent, as shown in Fig. 10.4. Spatial distributions of mechanical quantities

have been suggested to play an important role in maintenance and adaptation by

bone remodeling. Fyhrie et al. (2000) suggested that the average value of shear

stress in a cancellous bone region is related to the stress standard deviation: these

studies also suggested that such dependence might be related to the structural

adaptation of trabeculae. In the present study, the distributions of the considered

mechanical quantities were estimated from the viewpoint of the balance between

bone amount during the bone formation and bone resorption in the remodeling

equilibrium. In all of the three loading scenarios, the skewness of the SED distri-

bution function (indicating a highly asymmetric distribution because SED is

expressed in a quadratic form) decreased when the SED was integrated. This result

reflects the fact that the distribution functions of the considered mechanical quan-

tities became more symmetric when the quantities were integrated over larger

volumes (i.e., imagine that the integral quantities become closer to their

corresponding spatial mean values with increasing the integration volume).

10.3.2.3 Local vs. Integral Mechanical Quantities as Remodeling

Stimuli

The distribution functions of equivalent stress and SED became more symmetric

when integrated in the two bending loading scenarios; however, this did not occur

in the compressive loading scenario. Spatial integration of mechanical quantities is

likely to affect the distributions of the mechanical quantities in two ways. One

effect would be to symmetrize the distribution pattern, as noted in the previous

paragraph on SED and its integration. Another tendency would be reduce the

distribution pattern symmetry, which would result from amplifying local fluctua-

tions of mechanical quantities on the trabecular length scale. The latter effect would

yield specific relationships between global and local distributions of mechanical

quantities, such as the observed relationships between spatially averaged shear

stress and its standard deviation (Fyhrie et al. 2000; Yeni et al. 2003); these

relationships may determine the morphological properties of a trabecular structure,
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such as trabecular thickness and separation (Mullender and Huiskes 1995; Yeni

et al. 2003). In the case of equivalent stress, the degree of the distribution function

symmetry is so high in the scenario of compressive loading that the net effect of

spatial integration would be to make the corresponding distribution function asym-

metric rather than symmetric. On the other hand, the skewness of the stress

non-uniformity is more consistent with the changes in the loading conditions than

the equivalent stress, as shown in Table 10.1. This result suggests that the stress

non-uniformity may be more appropriate as a mechanical stimulus than the equiv-

alent stress, with respect to homeostasis when subject to physiological loading

conditions.

The results obtained in this study may indicate that integral mechanical quanti-

ties are stronger candidates for stimuli than local mechanical quantities, with

respect to the following two points: (1) the balance between bone amount during

the bone formation and bone resorption, for maintaining the bone mass in the

remodeling equilibrium, and (2) the homeostasis in the presence of varying external

loading conditions. This supports the integral formalism proposed for the bone

remodeling stimuli (Mullender and Huiskes 1995; Mullender et al. 1994),

corresponding not only to cellular communication in actual biological systems

(Ruimerman et al. 2005), but also to the observed phenomenon of trabecular

structural adaptation to its mechanical environment. On the other hand, equivalent

stress but not SED, as a local mechanical quantity, still appears to be the leading

candidate stimulus with respect to (1) a satisfactory balance between bone forma-

tion and resorption, but not with respect to (2) homeostasis in the presence of

varying loading conditions.

10.4 Conclusion

In this chapter, distribution functions of mechanical quantities on trabecular sur-

faces were estimated by using digital image-based finite element models of five

specimens of rat vertebral bodies subject to physiological loading conditions. As

the representative quantities that have been used as mechanical stimuli in the

remodeling rate equation, strain energy density (SED) and von Mises equivalent

stress were considered as local mechanical quantities, and SED integration and

stress non-uniformity were considered as integral mechanical quantities. These

mechanical quantities were demonstrated to be non-uniformly distributed over

the trabecular surface owing to the three-dimensionally complex trabecular struc-

ture, even though only simple external loading was applied to the vertebral body.

The skewness values of the distribution functions of these quantities were calcu-

lated for comparing the distribution patterns of the four mechanical quantities. For

all of the considered loading scenarios, excluding the axial compression scenario,

the skewness values for the SED integration and stress non-uniformity were smaller

than those for the SED and equivalent stress. In the case of axial compression, the

skewness for the equivalent stress was smaller than that for the stress
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non-uniformity. It was also revealed that the skewness varied with changes in the

external loading conditions, and that changes in the skewness mean and standard

deviation for the SED integration and stress non-uniformity were smaller than those

for the SED and equivalent stress. The results support the understanding that the

integral formalism proposed for the bone remodeling stimuli corresponds not only

to the actual biological system but also to the observed phenomenon of trabecular

structural adaptation to its mechanical environment.

Appendix: A Remodeling Equilibrium Around Mean
Stimulus

The rate of the trabecular surface movement _M was assumed to be a simple linear

function of the mechanical stimulus S, as shown in Eq. (10.5). If C and Sref do not

depend on time and are non-site specific, the extent of the net change in the total

bone mass _M total is expressed by the rate coefficient C, the reference stimulus Sref,
the mean stimulus �S in the trabecular bone region, and the total trabecular surface

area
R
dA, as:

_M total ¼ R
_M dA

¼ R
C S� Sref
� �

dA

¼ C
R
SdA� R

SrefdA
� �

¼ C
�
�S� Sref

� R
dA

�
,

R
SdA ¼ �S

R
dA

� ð10:8Þ

Because _M total should be zero in a normal trabecular bone in the remodeling

equilibrium, Eq. (10.8) indicates that the reference stimulus Sref is equivalent to the
mean stimulus �S of a normal trabecular bone.
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Chapter 11

Trabecular Surface Remodeling Simulation
of Cancellous Bone Using Image-Based Voxel
Finite Element Models

Abstract This chapter describes a three-dimensional computer simulation of tra-

becular surface remodeling using voxel finite element models. The rate equation

and the simulation method for the trabecular surface remodeling described in

Chap. 8 are extended to the three-dimensional problems of trabecular-level and

cancellous-bone-level structures under compressive loading. While Z, X, and Y

shaped trabeculae are constructed as models of simplified trabecular-level structure,

a cancellous-bone-level structure is modeled on the basis of digital images obtained

from X-ray microcomputed tomography (μCT). Remodeling simulations predict

the increasing apparent stiffness against the applied load by the trabecular

reorientation to the loading direction, in both models of trabecular-level and

cancellous-bone-level structures. This demonstrates functional adaptation to the

applied load. Simulated structural changes in cancellous bone are anisotropic,

although the loading condition is that of simple compression, and thus, changes

in the structural and mechanical properties of cancellous-bone-level structures are

essentially anisotropic and should be expressed by tensorial quantities. Changes in

the structural indices of the trabecular architecture coincide well with reported

experimental data.

Keywords Image-based model • Voxel finite element model • Cancellous bone •

Trabecular surface remodeling • Functional adaptation

11.1 Introduction

Anisotropic modeling and simulations (Adachi et al. 1997; Cowin et al. 1992;

Huiskes et al. 2000; Jacobs et al. 1997; Luo et al. 1995; Mullender et al. 1994;

Sadegh et al. 1993; Tsubota and Adachi 2005; Tsubota et al. 2002, 2009) are

essential to relate local mechanical stimuli at the trabecular level with bone

remodeling by cellular activities (Cowin et al. 1991; Guldberg et al. 1997b).

Therefore, the detailed modeling of complex trabecular microstructures is essential.

Digital-image-based high resolution voxel models of cancellous bone, which can be

This Chapter was adapted from Adachi et al. (2001) and Tsubota and Adachi (2004) with

permission from The American Society of Mechanical Engineers and Taylor & Francis Ltd.,

respectively.
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obtained by X-ray μCT scanning (Feldkamp et al. 1989), as shown in Chap. 10,

enable modeling and stress analysis (Hollister et al. 1994; van Rietbergen et al.

1995; Badilatti et al. 2016) of the trabecular microstructure. In addition, this voxel

finite element modeling technique is a useful tool for predicting microstructural

changes in cancellous bone caused by remodeling; for example, structural changes

in the case of osteoporosis were predicted by solving the evolution of bone relative

density as a continuum (Mullender et al. 1998). However, since trabecular

remodeling is due to cellular activities on the trabecular surface (Parfitt 1994), the

morphological changes due to surface movement should be directly modeled and

simulated at the trabecular level.

In this chapter, we present a three-dimensional computer simulation of trabec-

ular surface remodeling by using image-based voxel finite element models. Here,

the trabecular structure of a cancellous bone cube is created on the basis of digital

images obtained by X-ray μCT scanning, and compressive loading is applied. A

remodeling simulation predicts adaptive changes of the trabecular structure in

response to the compressive loading, and successfully reproduces trabecular struc-

tural changes in reported experiments (Guldberg et al. 1997b).

11.2 Remodeling at the Single Trabecular Level

The primary features of trabecular structural changes by three-dimensional

remodeling simulation are investigated by using models of single trabecula under

compressive loading. The simulation model (Sect. 11.2.1) and results (Sect. 11.2.2)

are described in this section.

11.2.1 Model of Single Trabecula Under Compressive
Loading

Referring to the basic trabecular structures as introduced by Frost (1988), the

simulation of trabecular surface remodeling was conducted for single trabeculae

with characteristic shapes Z, X, and Y under a compressive load, as shown in

Figs. 11.1 and 11.2. The initial diameter of the trabecula was set to 100 μm,

considering that the trabecular thickness (Tb.Th) measured by μCT scanning of

cancellous bone was approximately 100 μm (Guldberg et al. 1997b). The total

volume for the analysis was a1� a2� a3¼ 700� 700� 500 μm3. This region was

discretized into voxel elements at a resolution of 10 μm, and represented by

70� 70� 50¼ 245,000 voxel elements of which 11,664 (Model Z), 10,984

(Model X), and 7492 (Model Y) represented the trabecular bone.

A uniform displacement U3(<0) was controlled at every simulation step on the

upper plane at 500 μm to apply the apparent stress σ3¼F3/(a1a2)¼�1.0 MPa,
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Fig. 11.1 Voxel finite element model of single trabecula under compressive loading, σ3¼F3/

(a1a2) (This figure was adapted from Adachi et al. (2001) with permission from The American

Society of Mechanical Engineers)

Fig. 11.2 Simulated structural changes of single trabecula under compressive loading: (a) Model

Z; (b) Model X; (c) Model Y (This figure was adapted from Adachi et al. (2001) with permission

from The American Society of Mechanical Engineers)
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where F3(<0) is the total force applied on the plane, and the lower plane was fixed

at X3¼ 0. The apparent strain in this direction was defined as ε3¼U3/a3. The
trabeculae were assumed to be a homogeneous, isotropic material with Young’s
modulus of Et¼ 5.33 GPa and Poisson’s ratio of νt¼ 0.3. The marrow was

regarded as a cavity, and was neglected in the finite element analysis. The element-

by-element preconditioned conjugate gradients (EBE/PCG) method (Hughes et al.

1987; van Rietbergen et al. 1995) was used for the finite element analysis. The

sensing distance lL (Chap. 9) was set to 250 μm, equal to the length of 25 voxel

elements, and the threshold values of remodeling (Chap. 9) were set to Γu¼ 0.1 and

Γl ¼ �0.2.

11.2.2 Structural Changes of Single Trabecula

The progress in morphological changes of trabeculae and regulation of the equiv-

alent stress distribution on the trabecular surface, caused by remodeling under

compressive load, are shown in Fig. 11.2 for Models Z, Y and X at the initial,

8th, 20th and 50th steps, respectively.

For Model Z, as shown in Fig. 11.2a, the stress concentrated on the inner surface

of the acute angles in the middle trabecula, subject to bending in the initial step. The

surface near both ends of the middle trabecula with higher equivalent stress was

activated to form new bone, while that with the lower stress started resorbing. The

stress distribution on the trabecular surface was gradually regulated to become

uniform. Then, the trabecula reoriented to align along the loading direction, and

reached its equilibrium shape at approximately the 50th step. The trabeculae at the

top and bottom of the model were subject to low stress, and therefore these

trabeculae disappear in the initial steps.

For Model X, as shown in Fig. 11.2b, the upper and lower corners of the

intersection region had lower stress, and both the right- and left-hand corners had

higher stress. As the remodeling progressed, the original X-shape became an

H-shape, and the horizontal trabecula between the two vertical trabeculae became

thinner. Finally, the H-shaped trabecula became two parallel trabeculae at the

remodeling equilibrium at approximately the 50th step.

For Model Y, as shown in Fig. 11.2c, the stress in the lower single trabecula was

higher than that in the upper two trabeculae, such that the lower trabecula increased

in diameter through formation. The surface at the upper corners of the branches

resorbed, whereas that at the lower corners grew due to the nonuniformity of the

stress. The remodeling around the branching region was less active than that

observed in the intersection region of Model X due to the lower degree of

nonuniformity of the stress. The two upper trabeculae remodeled and grew closer

to each other. The original Y-shape became a V-shape, and finally the remodeling

reached an equilibrium state at approximately the 50th step, before the upper

trabeculae fused due to the existence of the lazy zone around the remodeling

equilibrium.
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In all models, the stress nonuniformity was reduced on the trabecular surface,

and the trabeculae changed their morphology to align along the loading direction.

Moreover, the trabecular bone volume decreased as a result of remodeling under

compressive load, as shown in Fig. 11.3a, however, the apparent stiffness, defined

as σ3/ε3, increased through the early stages of remodeling, and then became a

constant, as shown in Fig. 11.3b.

11.3 Model of Cancellous Bone Cube

A voxel finite element model of the trabeculae (Hollister et al. 1994; Hollister and

Kikuchi 1994; Ulrich et al. 1998; van Rietbergen et al. 1995) enables the direct

estimation of the stress and strain at the trabecular level, as shown in Chap. 10.

Here, the simulation model of trabecular surface remodeling in Chap. 8 is applied to

the three-dimensional microstructural voxel finite element models reconstructed

from digital images obtained by microcomputed tomography (μCT).

11.3.1 Digital-Image-Based Model

The experimental observation of the trabecular bone adaptation adjacent to porous-

coated platen implants embedded within canine distal femoral metaphyses has been

reported (Goldstein et al. 1991; Guldberg et al. 1997b). In the present study,

adaptive changes of the trabecular bone architecture underneath the 6 mm diameter

platen were simulated, and compared with the experimental results. A digital-
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Fig. 11.3 Changes in (a) bone volume fraction BV/BV0, and (b) apparent stiffness σ3/ε3 of single
trabecula under compressive loading due to trabecular surface remodeling
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image-based model of a 5 mm cancellous bone cube was obtained from canine

distal femoral metaphyses based on three-dimensionally reconstructed CT data, as

shown in Fig. 11.4. The voxel element size was 25 μm, the same as the resolution of

the μCT data, and thus the total volume contained 8 million voxel elements, of

which approximately 2.3 million elements were trabecular bone elements. The

structural indices (Feldkamp et al. 1989) and the fabric ellipsoid (Cowin 1985) of

the trabecular architecture can be directly calculated from the binarized three-

dimensional data.

The trabeculae were assumed to be a homogeneous, isotropic material with

Young’s modulus of Et¼ 5.33 GPa and Poisson’s ratio of νt¼ 0.3. The marrow

was regarded as a cavity, and was neglected in the finite element analysis with

EBE/PCG (Hughes et al. 1987; van Rietbergen et al. 1995).
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Fig. 11.4 Image-based voxel finite element model of cancellous bone cube, constructed from

X-Ray μCT images obtained from a canine distal femur. (a) 3D trabecular structure

(200� 200� 200 voxel elements) and its fabric ellipsoid and (b) X1�X3 cross-section and its

fabric ellipse (This figure was adapted from Adachi et al. (2001) with permission from The

American Society of Mechanical Engineers)
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11.3.2 Boundary Condition

The uniform displacement U3 was controlled at every simulation step on the upper

plane at X3¼ 5.0 mm to apply the experimental value of apparent stress σ3¼F3/a
2

¼ 1.24 MPa (Guldberg et al. 1997b), as shown in Fig. 11.4, where F3(<0) is the

total force applied on the plane, and ε3¼U3/a is defined as the apparent strain in the
X3 direction. On the other five planes, shear-free boundary conditions were applied,

that is, the displacements perpendicular to the plane were fixed. The sensing

distance lL (Chap. 9) was set to 500 μm, equal to the length of 20 voxel elements,

and the threshold values of remodeling (Chap. 9) were set to Γu¼ 4.0 and

Γl¼�5.0.

11.3.3 Calculation of Fabric and Compliance Tensors
of Cancellous Bone

To clarify the anisotropic mechanical properties of cancellous bone, the fabric and

compliance tensors were determined for the trabecular structures obtained by

remodeling simulations. At each simulation step, the fabric tensor and orthotropic

compliance tensor of the resulting trabecular structure were determined for the

core cube. The fabric tensor was determined from the mean intercept length

(Harrigan and Mann 1984), in which the principal values Hi (i¼ 1, 2, 3) of the

fabric tensor were sorted such that H1�H2�H3. A compliance tensor with

21 independent components was obtained by the homogenization method (Guedes

and Kikuchi 1990; Hollister et al. 1994; Hollister and Kikuchi 1994; van Rietbergen

et al. 1996), in which the marrow was considered to be a homogeneous, isotropic

material with Young’s modulus of Em¼Et/1000¼ 5.33 MPa and Poisson’s ratio of
νm¼ 0. Therefore, a finite element analysis for 1603¼ 4 , 096 , 000 elements was

performed 1200 times (six analyses per simulation step for 200 steps) to obtain the

compliance tensor. The best orthotropic elastic symmetries were found using an

optimization procedure (van Rietbergen et al. 1996) to determine the nine constants

of the orthotropic compliance matrix: 1/E1, 1/E2, 1/E3, ν12/E1, ν23/E2, ν13/E1, 1/G23,

1/G13 and 1/G12, where Ei is Young’s modulus, Gij is shear modulus, and νij is
Poisson’s ratio (i , j¼ 1, 2, 3). Young’s modulus Ei was sorted such that

E1�E2�E3.

The difference angle αi (i¼ 1, 2, 3) between the principal direction of the

fabric tensor with principal value Hi and the orthotropic principal direction of the

compliance tensor with Young’s modulus Ei, was calculated to investigate the

relationship between the fabric and compliance tensors (Cowin 1986; Odgaard

et al. 1997; van Rietbergen et al. 1998). In addition, the correlations between the

structural parameters (the normalized principal value of the fabric tensor Hi/

(H1 +H2 +H3) and the bone volume fraction BV/TV) and the mechanical parameters

(the nine constants of the orthotropic compliance tensor: 1/Ei, νij/Ei and 1/Gij)
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during the trabecular structural changes were calculated using the equations pro-

posed by Cowin (1986; van Rietbergen et al. 1998). The number of observations

was set at 1800 (9 equations for 200 remodeling simulation steps) when calculating

a goodness of fit criteria R2
adj (van Rietbergen et al. 1998), assuming the joint

dependence of all nine orthotropic constants for 200 simulation steps.

11.4 Remodeling at Cancellous Bone Level

This section explains the simulation results regarding trabecular structural changes

(Sect. 11.4.1), functional adaptation (Sect. 11.4.2), fabric and compliance tensors of

cancellous bone (Sect. 11.4.3), as well as the comparison to the in vivo experiment

(Sect. 11.4.4).

11.4.1 Trabecular Structural Changes

Morphological changes in the trabecular architecture of a cancellous bone cube due

to remodeling under compressive loading at the 10th, 20th, and 50th steps are

represented in Fig. 11.5, in which fabric ellipsoids of the three-dimensional archi-

tecture and fabric ellipses of the X1�X3 cross-section show the development of the

trabecular anisotropy. The initial morphology, shown in Fig. 11.4, adapted to the

applied compressive load by resorption and formation on the trabecular surface to

reduce the nonuniformity of the stress. The degrees of anisotropy, defined as H1/H3

where Hi (H1�H2�H3) is the principal value of the fabric ellipsoid, increased

from 1.33 (initial) to 1.39 (50th step) upon alignment of the trabecular architecture

along the compressive loading axis; this can be observed in the rotation of the

principal direction of the fabric ellipsoid from Fig. 11.4 to Fig. 11.5. The preferen-

tial loss of horizontal trabeculae, indicated by open rectangles in the cross-sectional

image in Fig. 11.5, and the preservation and increase in thickness of vertically

oriented trabeculae directed along the compressive loading axis, indicated by open

circles, contribute to the development of trabecular anisotropy.

Changes in structural indices are plotted in Fig. 11.6. The indices were measured

using voxel finite elements at every simulation step for the center core cube of

4.0� 4.0� 4.0 mm3 from the whole volume of 5.0� 5.0� 5.0 mm3 to eliminate

numerical errors adjacent to the boundary. As a result of remodeling, a decrease of

21.2% in the bone volume fraction (BV/TV), 19.3% in the trabecular thickness (Tb.
Th), and 2.2% in the trabecular number (Tb.N) were found at the 50th step

compared with the initial values, which resulted in a 10.0% increase in the trabec-

ular separation (Tb.Sp). The increase in Tb.Sp is because the resorption of the
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horizontal trabeculae is more remarkable than the formation of the vertical trabec-

ulae. The angle Θi3 between the i-th principal direction of the fabric ellipsoid and

the loading axis X3 changed upon the reorientation of the trabecular architecture.

The angle Θ13 monotonically decreased from 73.6
�
toward zero; in contrast, Θ23

and Θ33 increased toward 90
�
. These changes in the structural indices and angles

indicate that the trabecular orientation changes to align along the compressive

axis X3, which exhibits adaptive remodeling to support uniaxial compressive

load.
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Fig. 11.5 Changes in three-dimensional architecture of a cancellous bone cube and fabric

ellipsoid; X1�X3 cross-section and fabric ellipse, due to trabecular surface remodeling under

compressive loading: (a) 10th step, (b) 20th step, and (c) 50th step (This figure was adapted

from Adachi et al. (2001) with permission from The American Society of Mechanical

Engineers)
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11.4.2 Functional Adaptation

The apparent stiffness of the core cube of 4.0� 4.0� 4.0 mm3 in the direction of the

three orthogonal axes X1, X2, and X3 were numerically measured by uniaxial

compression testing at each simulation step. The applied boundary conditions

were similar to those in the remodeling simulation, that is, uniform displacement
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Fig. 11.6 Changes in structural indices of trabecular architecture of cancellous bone cube due to

remodeling under compressive loading: (a) bone volume fraction (BV/TV); (b) trabecular bone
thickness (Tb.Th); (c) trabecular bone number (Tb.N); (d) trabecular bone separation (Tb.Sp); and
(e) angle Θi3 between principal direction of Hi and loading axis X3 (This figure was adapted from

Adachi et al. (2001) with permission from The American Society of Mechanical Engineers)
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was applied to the upper surface, while the remaining surfaces were fixed under

share-free conditions. Changes in the apparent stiffness σi/εi in the direction of

coordinate axes Xi are plotted in Fig. 11.7. In the compressive loading direction, X3,

in the remodeling simulation, the apparent stiffness σ3/ε3 gradually increased by

29.4%; however, both σ1/ε1 and σ2/ε2, in the direction perpendicular to the loading

axis, decreased by approximately 60% due to remodeling. Thus, remodeling

resulted in functional changes in the trabecular architecture and increases in the

degree of anisotropy in the mechanical properties. Although the average bone

volume fraction decreased by remodeling, as shown in Fig. 11.6a, the stiffness as

a structure increased, demonstrating the adaptive response in order to support the

compressive load through the reorganization of the trabecular architecture.

In general, a reduction in bone mass is responsible for the decrease in the

stiffness as a structure; however, although the trabecular bone volume decreased,

the apparent stiffness as a structure increased, through the reorganization of the

trabeculae aligned along the compressive loading axis. These results, obtained

under the assumption of the uniform stress hypothesis, can be understood as a

functional adaptation, by remodeling, to the applied mechanical load.

11.4.3 Fabric and Compliance Tensors of Cancellous Bone

Details of the fabric tensor of cancellous bone and compliance tensors are illus-

trated in Figs. 11.8 and 11.9 up to the 200th simulation step, at which the anisotropy

of the trabecular structure further increased from that at the 50th step (Fig. 11.5).

The diameter of the fabric ellipsoid, which is a graphical representation of the fabric

tensor (Cowin 1986), increased, and its first principal direction changed to the

direction of compressive loading, as shown in Fig. 11.8. The principal values of Hi

(i¼ 1, 2, 3) changed from H1¼ 387 μm to 556 μm, H2¼ 311 μm to 413 μm,

and H3¼ 291 μm to 321 μm between the initial and 200th simulation steps. The

degree of structural anisotropy increased from H1/H2¼ 1.24 to 1.34 for the first and

second axes, and from H1/H3¼ 1.33 to 1.73 for the first and third axes. As denoted

in Sect. 11.4.1 and in Fig. 11.6, angle Θi3 (i¼ 1, 2, 3) approached zero, while
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angles Θ23 and Θ33 approached 90∘, and bone volume fraction BV/TV decreased

from 0.28 to 0.15.

The changes in the component of the compliance tensor that relates nominal

stress to nominal strain are shown in Fig. 11.9, in which the inverse of the

600 μm
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Fig. 11.8 Changes in fabric ellipsoid of cancellous bone due to trabecular structural changes.

Plotted is the fabric ellipsoid with its principal axes (This figure was adapted from Tsubota and

Adachi (2004) with permission from Taylor & Francis Ltd)
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Fig. 11.9 Changes in stiffness of cancellous bone caused by trabecular structural changes.

Stiffness is plotted in polar coordinates with the orthotropic principal axes (This figure was

adapted from Tsubota and Adachi (2004) with permission from Taylor & Francis Ltd)
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component is plotted in polar coordinates with the orthotropic principal directions.

The radius of the plot, which expresses stiffness in the corresponding direction,

decreased as a result of the decrease in the bone volume fraction BV/TV. The
inverses of the nine constants of the orthotropic compliance tensor (Ei, Ei/νij and
Gij) also decreased, as shown in Figs. 11.10a–c. If we assume that cancellous bone

is isotropic with Young’s modulus Eiso subjected to the square power law of the

bone volume fraction (Eiso¼Et (BV/TV)
2), the modulus Eiso would decrease by

71% (from Eiso¼ 418 MPa with BV/TV¼ 0.28 to Eiso¼ 210 MPa with BV/
TV¼ 0.15). The decrease in the stiffness, however, was different for each direction

due to the anisotropic changes in trabecular structure. The decreases in E1 (47%),

E1/ν12 (71%) and G12 (69%) were smaller than that of the isotropic assumption,

while they were greater for the remaining directions (84% for E2, 91% for E3, 77%

for E2/ν23, 86% for E1/ν13, 86% for G23 and 74% for G13). The first principal

direction changed to the direction of the compressive load, as shown in Fig. 11.9, as

is the case of the fabric tensor shown in Fig. 11.8. That is, angle Φ13 between the

principal direction with Young’s modulus E1 and loading axis X3 decreased
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Fig. 11.10 Changes in the stiffness of cancellous bone: (a) Young’s modulus Ei (i¼ 1 , 2 , 3);
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& Francis Ltd)
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monotonously toward zero, while angles Φ23 and Φ33 for the E2 and E3 directions,

respectively, increased toward 90∘, as shown in Fig. 11.10d.

The difference angle αi (i¼ 1, 2, 3), shown in Fig. 11.11a, indicates that the

principal directions of the fabric and compliance tensors did not always correspond.

The difference angle αi is larger for the first and second principal directions than for
the third. Angles α1 and α2 decreased with increasing structural anisotropy H1/H2,

as shown in Fig. 11.11b. The nine constants of the orthotropic compliance tensor

1/Ei, νij/Ei and 1/Gij were well correlated with structural parameters Hi and

BV/TV during the trabecular structural changes with goodness of fit criteria

R2
adj ¼ 0:998.

11.4.4 Comparison to Experimental Data

In the simulation, the initial digital-image-based model was produced based on the

control trabecular bone cube from the contralateral side in the experiment

(Guldberg et al. 1997b), and the simulation results were compared with the exper-

imental, within the same animal. The structural indices for the control and exper-

imental canine bones, and the simulation results are listed in Table 11.1. In the

simulation, the trabecular bone volume fraction (BV/TV) and the angle Θ13 of the

principal axis of the trabecular architecture decreased, and the trabecular separation

(Tb.Sp) increased by remodeling under compressive load. These results qualita-

tively coincide with experimental observations, in which changes in BV/TV, Θ13,

and Tb.Sp were statistically significant compared with the control data in the

experiment. The trabecular number (Tb.N) decreased slightly, while that in the

experiment significantly decreased. For the trabecular thickness (Tb.Th), the
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Fig. 11.11 Differences in the principal directions of the fabric and compliance tensors: (a)
Changes in the difference angle αi (i¼ 1 , 2 , 3) between the fabric and compliance tensors for

first (i¼ 1), second (i¼ 2), and third (i¼ 3) principal directions; (b) Difference angles α1 and α2
versus the degree of structural anisotropy H1/H2 (This figure was adapted from Tsubota and
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simulation result showed a decrease by remodeling; however, in the experiment,

Tb.Th did not show a significant change.

The discrepancy between the experiment and simulation results in Table 11.1 is

because the comparison is made for only one set of canine data, and another

simulation with a different initial trabecular structure is expected to yield qualita-

tively the same results. To develop models that can predict the details of the

remodeling phenomenon, the model parameters Γu, Γl, and lL have to be quantita-

tively determined through comparison with experimental observations for multiple

specimens. However, to date, because of the difficulty in observing the changes in

trabecular architecture under a controlled mechanical environment in vivo, only a

small number of remodeling experiments (Goldstein et al. 1991; Guldberg et al.

1997a, 1997b; Schulte et al. 2011, 2013) have been performed to obtain quantitative

results regarding bone remodeling controlled by the mechanical environment.

11.5 Conclusion

In this chapter, the potential of the simulation method using image-based finite

element model is demonstrated as a technique for representing the morphological

changes in trabeculae due to trabecular surface remodeling. The remodeling to

achieve a uniform stress state brings about the functional adaptive response of the

bone as a load-bearing structure. The changes in mechanical properties of cancel-

lous bone under the loading conditions applied in this study are essentially aniso-

tropic, and thus should be expressed by tensorial quantities. The simulated

structural indices coincide with reported experimental data.

Quantitative comparison of the changes in the trabecular structure, demonstrated

by the computer simulation with the experimental observations obtained under a

controlled mechanical environment, would enable us to develop more detailed

models. In addition, one of the noteworthy features of the proposed simulation

method is the capability to handle a large-scale three-dimensional voxel model with

a regular finite element mesh for complex trabecular architecture. This offers many

practical advantages, such as enabling us to create voxel finite element models

based on digital images, such as those obtained by μCT scanning, and allowing us to

analyze a variety of cancellous using images obtained from in vivo experiments.

Table 11.1 Structural indices of trabecular architecture for control, experiment, and simulation:

The control cancellous bone cube is sourced from the contralateral side in the experiment, and used

as the initial model in the simulation

BV/TV Tb.Th (μm) Tb.N (mm�1) Tb.Sp (μm) Θ13 (deg.)

Control 0.282 112 2.52 286 73.6

Experiment 0.230 121 1.88 421 47.9

Simulation 0.222 90 2.47 317 31.9

This table was adapted from Adachi et al. (2001) with permission from The American Society of

Mechanical Engineers
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Chapter 12

Functional Adaptation of Cancellous Bone
in Human Proximal Femur

Abstract This chapter describes a two-dimensional computer simulation of tra-

becular structural changes in a human proximal femur. As described in Chap. 8,

local stress nonuniformity is assumed to drive trabecular structural change by

surface remodeling to seek a uniform stress state. A large-scale pixel finite element

model is constructed for simulating structural changes of individual trabeculae over

the entire bone. In the simulation, the initial structure of trabeculae changes from

isotropic to anisotropic because of the trabecular microstructural changes according

to the mechanical environment in the proximal femur. The apparent structural

properties evaluated by fabric ellipses correspond to the apparent stress state in

cancellous bone. As observed in the actual bone, a distributed trabecular structure is

obtained under a multiple-loading condition. These results demonstrate that trabec-

ular surface remodeling leading towards a local uniform stress state at the trabec-

ular level results in a functional adaptation phenomenon at the apparent tissue level.

The proposed simulation model is capable of providing insight into the hierarchical

mechanism of trabecular surface remodeling from the microstructural level up to

the apparent tissue level.

Keywords Human proximal femur • Cancellous bone • Surface remodeling •

Functional adaptation • Pixel FE model

12.1 Introduction

The characteristic anisotropic trabecular structure of the human proximal femur has

been extensively investigated in the computer simulation of bony structure adapta-

tion by remodeling (Adachi et al. 1997; Bagge 2000; Beaupré et al. 1990; Carter

et al. 1987, 1989; Doblare and Garcia 2001, 2002; Garcia-Aznar et al. 2005;

Huiskes et al. 1987; Jacobs et al. 1997; McNamara and Prendergast 2007; Skedros

and Baucom 2007; Turner et al. 1997; Wolff 1892, 1986). In the human proximal

femur, the mechanical environment is complex due to the trabecular architecture,

the external shape of cortical bone, and various external-loading conditions (van

Rietbergen et al. 1999). At the apparent tissue level, relationships between bone

structure, such as bone density, and stress/strain have been identified in previously

This Chapter was adapted from Tsubota et al. (2002) with permission from Elsevier.
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reported simulation studies (Beaupré et al. 1990; Carter et al. 1987, 1989; Huiskes

et al. 1987; Jacobs et al. 1997); however, multi-scale structure adaptation by

remodeling over the entire size range, from bone cells (~10 μm) to entire bone

(~10 cm) has not been sufficiently researched.

In this chapter, we present a two-dimensional computer simulation of trabecular

surface remodeling in a human proximal femur. To evaluate the mechanical

environment at the trabecular level over the entire bone, the architecture of each

trabecula is directly modeled using a large number of pixel finite elements (FEs).

The pixel FE model is combined with a trabecular surface remodeling model

(presented in Chap. 8) in which local stress nonuniformity is assumed to drive

trabecular structural change by surface remodeling to seek a uniform stress state.

Trabecular structural changes are simulated under both single and multiple

external-loading conditions to clarify the relationships between the local regulation

process at the trabecular level, and the functional adaptation phenomenon at the

apparent tissue level.

12.2 Pixel FE Model of Human Proximal Femur

A two-dimensional FE model was created with a large number of pixel elements to

simulate trabecular remodeling in a human proximal femur. This model was

combined with the simulation model shown in Chap. 8 to express the structural

changes of the individual trabeculae over the entire proximal femur.

12.2.1 Pixel FE Model

A computational model of a human proximal femur was created using approxi-

mately 0.67 million pixel FEs, as shown in Fig. 12.1a. Assuming an isotropic

trabecular structure at the initial stage, the cancellous bone part was filled with a

random pattern of circular trabeculae, as shown in Fig. 12.1b. The external and

internal diameters of each trabecula were 1680 and 1120 μm, respectively. The

principal values of the fabric ellipse of the trabecular structure (Cowin 1985),

Hi (i¼ 1, 2, H1>H2), were H1¼ 714 μm and H2¼ 713 μm, resulting in a degree

of structural anisotropy H1/H2 nearly equal to unity. The bone was assumed to be a

homogeneous, isotropic material with Young’s modulus of Et¼ 20 GPa and

Poisson’s ratio of νt¼ 0.3. The marrow was regarded as a cavity, and was neglected

in the finite element analysis. The element-by-element preconditioned conjugate

gradients (EBE/PCG) method (Hughes et al. 1987; van Rietbergen et al. 1995) was

used for the finite element analysis.
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12.2.2 Loading Condition

As a representative daily loading condition, three loading cases, namely one-legged

stance (L1), extreme ranges of motion of abduction (L2), and adduction (L3) were

assumed (Beaupré et al. 1990), as shown in Fig. 12.1c. These external loadings

were modeled as distributed forces generated using a sine function to the joint

surface and the greater trochanter. The lower boundary corresponding to the

diaphysis was fixed. Simulation results are discussed only for the proximal region

of the finite element model, above the line A-A0 shown in Fig. 12.1a, to neglect the
artificial influence of the fixed boundary condition. The sensing distance lL
(Chap. 9) in the weight function w(l ) was set to 1 mm, equal to the length of

20 voxel elements, and the threshold values of remodeling (Chap. 9) were set to

Γu¼ 1.0 and Γl¼�2.0.

Simulations were conducted for both single-loading and multiple-loading con-

ditions. For multiple-loading conditions, remodeling driving force Γi for a single

loading case Li was averaged over three single-loading cases with weighting

depending on the loading frequency ni:
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Fig. 12.1 Simulation model for trabecular surface remodeling in a human proximal femur using

large-scale pixel finite elements: (a) Overview of the finite element model; (b) Initial trabecular
structure and its fabric ellipse; (c) Boundary condition considering daily loading history (Beaupré

et al. 1990) (This figure was adapted from Tsubota et al. (2002) with permission from Elsevier)
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Γmlt ¼
X3

ι¼1

wiΓi, where wi ¼ ni
n1 þ n2 þ n3

, ð12:1Þ

and the averaged driving force Γmlt was used as Γ in Eq. (8.3) (Beaupré et al. 1990).

12.3 Trabecular Structural Changes in a Human Proximal
Femur

This section explains the simulation results regarding trabecular structural changes

under the single-loading (Sect. 3.1) and multiple-loading (Sect. 3.2) conditions.

12.3.1 Structural Change Under Single-Loading Condition

The trabecular structural change under single loading at the 16th simulation step

was obtained for each loading case, as shown in Fig. 12.2. In the one-legged stance

loading case (L1), shown in Fig. 12.2a, the trabeculae are aligned with the com-

pressive joint reaction force in the femoral head, represented by region 1, and with

the tensile abductor force in the greater trochanter, represented by region 2. On the

other hand, an orthogonal trabecular pattern emerged in the lateral side of the

femoral neck, represented by region 3. This orthogonal pattern consists of com-

pressive trabeculae from the medial to the lateral side near the greater trochanter,

and tensile trabeculae from the lateral side to the neck of the femoral head.

In the abduction loading case (L2), the joint reaction force caused bending loads

at the femoral neck, resulting in an arcuate trabecular structure from the lateral

cortical diaphysis to the femoral head, as shown in Fig. 12.2b. These arcuate

trabeculae configured orthogonal trabecular patterns in the femoral head,

represented by region 1, combined with the compressive trabeculae along the

joint reaction force. An orthogonal trabecular pattern also emerged in the lateral

side of the femoral neck, represented by region 3. In the greater trochanter,

represented by region 2, trabeculae are aligned with the tensile abductor force.

The structural changes in regions 2 and 3 are similar to those obtained in the

L1 case.

In the adduction loading case (L3), shown in Fig. 12.2c, unidirectional trabec-

ulae can be identified in the femoral head, represented by region 1, because the

compressive joint reaction force did not cause bending loads at the femoral neck.

This compressive trabecular pattern spread to the lateral side of the femoral neck,

represented by region 3, and to the greater trochanter, represented by region 2. An

orthogonal trabecular pattern appeared in region 2 because the trabeculae were also

formed along the tensile abductor force direction.
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The distribution of apparent bone density was obtained over the entire cancel-

lous region. In loading cases L1 and L2, a higher density emerged in the center of

the femoral head, represented by region 1, and in the lateral side of the femoral

neck, represented by region 3. The regions with lower densities are the greater

trochanter, represented by region 2, and the femoral neck. Compared to these two

loading cases, the density distribution was not significant in loading case L3.

A structural property at the apparent tissue level, quantified by fabric ellipses,

corresponds to the apparent stress state, as shown in Fig. 12.3. In loading case L1,

the degree of structural anisotropy is H1/H2¼ 1.44 and the principal direction of the

fabric ellipse is ΘH¼ 30∘ in region 1, H1/H2¼ 1.60 and ΘH¼ 11∘ in region 2, and

H1/H2¼ 1.06 and ΘH¼ � 66∘ in region 3, as shown in Fig. 12.3a. Calculating the

apparent principal stresses jσ1j and jσ2j (jσ1j > jσ2j) by averaging the stress

components over the cancellous area, the ratio of magnitude of two principal

stresses is jσ1j/jσ2j ¼ 14.6 and the principal direction of the stresses is Θσ¼ 24∘ in

region 1, jσ1j/jσ2j ¼ 10.6 and Θσ¼ 12∘ in region 2, and jσ1j/jσ2j ¼ 1.4 and

Θσ¼ � 56∘ in region 3, as shown in Fig. 12.3b. Comparing the fabric ellipses to

the apparent principal stresses, it was shown that a unidirectional trabecular pattern

emerged in the regions of a uniaxial compressive stress state (region 1) or a tensile

stress state (region 2), and that an orthogonal trabecular pattern emerged in the

Fig. 12.2 Trabecular structural change in the proximal femur due to remodeling under single

loading, at the 16th step: (a) One-legged stance (L1); (b) Abduction (L2); (c) Adduction (L3) (This
figure was adapted from Tsubota et al. (2002) with permission from Elsevier)
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regions of a biaxial compressive-tensile stress state (region 3). This point was also

confirmed by the fabric ellipses and the apparent principal stresses in loading cases

L2 and L3 (data not shown).

12.3.2 Structural Change Under Multiple-Loading
Condition

An anisotropic trabecular architecture was obtained under multiple loading at the

16th step, as shown in Fig. 12.4. Because the one-legged stance loading (L1) was

the most frequent (60%) of the three loading cases, the apparent trabecular orien-

tation and density distribution are similar to those obtained under the single-loading

condition of case L1 (Fig. 12.2a). Functional adaptation at the apparent tissue

level was also exhibited, as in the case of the single-loading condition. That is,

the fabric ellipses, as shown in Fig. 12.5a, correspond to the apparent principal

stress state, as shown in Fig. 12.5b. The degree of structural anisotropy is H1/

H2¼ 1.32 and the principal direction of the fabric ellipse is ΘH¼ 33∘ in region

1,H1/H2¼ 1.51 andΘH¼ 11∘ in region 2, andH1/H2¼ 1.06 andΘH¼ 75∘ in region

3. In evaluating the apparent principal stresses under multiple loading, the stresses
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Fig. 12.3 Correspondence between structural property and mechanical environment at the appar-

ent tissue level in regions 1, 2, and 3 at the 16th step under the single-loading condition of

one-legged stance (L1): (a) Fabric ellipses; (b) Apparent principal stresses (This figure was

adapted from Tsubota et al. (2002) with permission from Elsevier)
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for the three loading cases were averaged with weight factors, depending on the

loading frequency, in the same manner as calculating the driving force Γmlt in

Eq. (12.1). The ratio of the two principal stresses is jσ1j/jσ2j ¼ 27.5 and the principal

direction is Θσ¼ 21∘ in region 1, jσ1j/jσ2j ¼ 13.2 and Θσ¼ 10∘ in region 2, and jσ1j/
jσ2j ¼ 1.39 and Θσ¼ � 57∘ in region 3. These characteristic parameters for the

structure and mechanical environment are similar to those obtained under the

single-loading condition of case L1.

As a result of adaptation to the multiple external loading, the orientation of the

trabeculae has a greater distribution than that obtained under the single-loading

condition. For instance, the trabecular structure and distribution of the von Mises

equivalent stress are illustrated for the center of region 1 in Fig. 12.6. The equiv-

alent stress of the trabeculae was variable up to a value of 10 MPa, and is dependent

on the loading case. Driven by the various mechanical stimuli at the trabecular

level, the surface remodeling resulted in a distributed trabecular orientation

corresponding to each loading direction. The trabeculae mainly supporting the

loadings varied according to the external-loading cases, as indicated by arrows in

Fig. 12.6. Thus, multi-directional trabeculae were formed to support the multiple

loadings.

Region 1

Region 2

Region 3

Fig. 12.4 Trabecular structural change in the proximal femur due to remodeling under multiple

loading, at the 16th step (This figure was adapted from Tsubota et al. (2002) with permission from

Elsevier)
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12.4 Validity of Simulation Model

12.4.1 Changes in Trabecular Structure to Seek Uniform
Stress State

Under the single-loading condition, surface remodeling driven by local stress

nonuniformity caused the structural changes of trabeculae, resulting in an aniso-

tropic trabecular structure dependent on the applied loadings. Because the structural

changes at the trabecular level resulted in the apparent structural properties that

corresponded to the apparent mechanical environment, it was suggested that the

surface remodeling model based on the uniform stress hypothesis could explain the

functional adaptation in cancellous bone under a realistic mechanical environment.

For example, the correspondence of the principal directions of the fabric ellipses to

those of the apparent stresses agrees with the mathematical expression of Wolff’s
law denoted by Cowin (1986). Moreover, the predicted density pattern and trabec-

ular orientation at the apparent tissue level are consistent with those predicted by

the remodeling model that described the evolution of bone density and structural

anisotropy (Jacobs et al. 1997). These results demonstrate the capability of the

Region 1

H1 = 718 μm

ΘH = 33°
H2 = 546 μm

1000 μm

1000 μm

1

2 ΘH

H1 = 641 μm

ΘH = 75°
H2 = 606 μm

1000 μm

1000 μm

1

2

Region 3

H1 = 783 μm

ΘH = 11°
H2 = 519 μm

1000 μm

1000 μm

1

2

Region 2

a

2

σ1 =    3.29 MPa

Θσ = 10°
σ2 = − 0.25 MPa

1

10 MPa

10 MPa

Region 2

2

σ1 = − 6.87 MPa

Θσ = 21°
σ2 =    0.25 MPa 1

10 MPa

10 MPa

Θσ

Compression
Tension

Region 1

2

σ1 = −1.67 MPa

Θσ = − 57°
σ2 =   1.20 MPa

1

10 MPa

10 MPa

Region 3

b

Fig. 12.5 Correspondence between structural property and mechanical environment at the appar-

ent tissue level in regions 1, 2, and 3 at the 16th step under the multiple-loading condition: (a)
Fabric ellipses; (b) Apparent principal stresses (This figure was adapted from Tsubota et al. (2002)

with permission from Elsevier)
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surface remodeling model investigated in this study to predict the adaptive change

in cancellous bone at both the trabecular and the apparent tissue levels.

Under the multiple-loading condition, the trabeculae adapted to the various

mechanical environments in the three cases of external loadings. The obtained

trabecular structure is distributed as predicted by the remodeling simulation that

focused on the evolution of apparent bone density under multiple loading condi-

tions (Carter et al. 1989). One of the novel developments of this study was that the

distributed structure of each trabecula was predicted simultaneously with the

apparent structural properties corresponding to the apparent principal stresses.

Fig. 12.6 Trabecular structure and distribution of von Mises equivalent stress at the centre of

region 1 under multiple loadings at the 16th step: (a) One-legged stance (L1); (b) Abduction (L2);
(c) Adduction (L3) (This figure was adapted from Tsubota et al. (2002) with permission from

Elsevier)
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These results successfully predicted the trabecular structure observed in the actual

bone, indicating the validity of the surface remodeling simulation based on the

uniform stress hypothesis using a large-scale pixel finite element model.

12.4.2 Changes in Trabecular Structure by Sensing
Mechanical Stress in Space

The obtained principal values of the fabric ellipses were larger than those of actual

bone (Ciarelli et al. 2000) due to the trabecular size used in the simulation at the

initial stage. This larger size of the trabeculae was the reason why the sensing

distance lL was chosen to be 1.0 mm, which might be significantly larger than the

physiological range of a few hundred micrometers (Mullender et al. 1994; Xia and

Ferrier 1992). To discuss an appropriate value of the sensing distance, the charac-

teristic size of the initial trabecular structure should be refined to be of the same size

as that in the actual bone. In addition, quantitative comparison of the trabecular

structure obtained by three-dimensional remodeling simulation to experimental

observation is necessary to determine the sensing distance.

Considering that the cellular activities are influenced by local mechanical

stimuli, the local stress nonuniformity, which was equivalent to the convexity and

concavity of the scalar function of stress/strain, was used as a remodeling driving

force, as shown in Eqs. (8.2) and (8.3). In terms of the uniform stress hypothesis, the

difference from the reference value of stress/strain (Turner et al. 1997) or the first-

order gradient could be responsible for the fluid flow that would activate bone cells.

Because the distribution of apparent bone density obtained in this study did not

emerge clearly compared to the remodeling models that seek a reference value of

the stress/strain, the model using local stress nonuniformity as a remodeling driving

force is less sensitive to the global distribution of the mechanical stimulus. A

clearer density distribution is expected to be obtained by choosing the larger

sensing distance, as shown in Chap. 9. However, if the determined parameter lL is

out of the physiological range, it might be better to explicitly introduce the

sensitivity to the global distribution of the mechanical stimulus into the surface

remodeling model in addition to the local mechanical stimulus.

12.4.3 Large-Scale FE Models for Bone Remodeling
Simulation

To clarify the mechanism of bone remodeling driven by a local mechanical

stimulus at the microstructural level, it is necessary to consider a heterogeneously

distributed trabecular structure under complicated external loadings. In investigat-

ing the functional adaptation of cancellous bone as a result of trabecular structural
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changes under such a complicated mechanical environment, a direct simulation

method with a large-scale computation is advantageous compared to the models

using a unit cell trabecular structure, as was used in the lattice continuum model

proposed by Adachi et al. (1999) or in the homogenization method introduced by

Fernandes et al. (1999) and Bagge (2000). In this respect, it was found that the

external-loading condition affected the stress distribution of each trabecula, as

shown in Fig. 12.6. These figures illustrate the ability of a large-scale pixel finite

element model to predict the micro-macro relationships in cancellous bone with a

hierarchical structure. Exploring the mechanical stimulus at the cellular level might

be possible by considering the internal structure of each trabecula. Therefore, it

should be noted that the large-scale computational simulation of bone remodeling is

an effective tool not only for clarifying the relationships between the functional

adaptation at the apparent tissue level and the local regulation process at the

trabecular level, but also for providing insight into cellular response to the mechan-

ical stimuli in vivo.

12.4.4 Limitations of 2D Study

Following prior computational studies on bone remodeling (Carter et al. 1987,

1989; Huiskes et al. 1987; Jacobs et al. 1997; Turner et al. 1997), a

two-dimensional model of human proximal femur was used in this study. This

was based on the fact that two-dimensional models can represent the characteristic

mechanical environment and trabecular structure of the proximal femur. This

model was sufficient for investigating basic and qualitative relationships between

trabecular structural changes and the mechanical environment. However, the sim-

ulation results obtained using the two-dimensional model do not quantitatively

express the three-dimensional structure and the mechanical environment in actual

bone. The fabric ellipse and apparent bone density predicted in this study, which are

characteristic quantities of the trabecular structure, might be different from those

obtained in the three-dimensional simulation, although the trabecular structural

orientation would correspond to the mechanical environment, as was predicted in

this study. Thus, in the next Chap. 13, we will extend this work to three dimensions

for quantitative evaluation of trabecular structural changes in the proximal femur.

12.5 Conclusion

In this chapter, a mechanism of a trabecular structure adaptation in a human

proximal femur is illustrated by a two-dimensional simulation model of trabecular

surface remodeling (Chap. 8) combined with a large-scale pixel finite element

model. As a result of the simulation, the anisotropic trabecular structure was

obtained by surface remodeling of trabeculae according to the mechanical
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environment in the proximal femur. Under a single-loading condition, the apparent

structural properties evaluated by fabric ellipses corresponded to the apparent stress

state in cancellous bone. A distributed trabecular structure was obtained under a

multiple-loading condition. Through these studies, it was concluded that trabecular

surface remodeling leading towards a local uniform stress state at the trabecular

level could naturally bring about a functional adaptation phenomenon at the

apparent tissue level. The proposed simulation model is capable of providing

insight into the hierarchical mechanism of trabecular surface remodeling from the

microstructural level up to the apparent tissue level.
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Chapter 13

3D Trabecular Remodeling in Human
Proximal Femur: Approach to Understanding
Wolff’s Law

Abstract This chapter describes a large-scale three-dimensional (3D) computer

simulation of trabecular remodeling in a human proximal femur in order to under-

stand the mechanism of the Law of Bone Transformation, proposed by Wolff in the

nineteenth century. A large-scale voxel finite element model is constructed to

simulate the 3D structural changes of individual trabeculae over a cancellous

bone. As a simple remodeling model that considers bone cellular activities regu-

lated by the local mechanical environment, the nonuniformity of local stress is

assumed to drive the trabecular surface remodeling to seek a uniform stress state

(Chap. 8). In the simulation, cell-scale (10 μm) remodeling in response to mechan-

ical stimulation creates complex 3D trabecular structures at the entire bone-scale

(10 cm), as observed by Wolff in an actual femur. It is indicated that in a complex

mechanical environment of a hierarchical bone structure with a length scale of

greater than 104 (from 10 μm to 10 cm), a simple remodeling at the cellular/

trabecular levels creates a highly complex and functional trabecular structure, as

characterized by bone density and orientation.

Keywords Human proximal femur • Cancellous bone • Surface remodeling •

Functional adaptation • Voxel FE model

13.1 Introduction

A trabecular structural adaptation to a mechanical environment (Wolff 1892, 1986)

can be traced back to the bone formation and resorption process called remodeling

(Parfitt 1994); however, little is known regarding the manner in which this cellular-

level process is linked to the mechanism of the three-dimensional (3D) structural

adaptation of the entire bone. This is because, while the mechanical environment of

the trabecular structure and corresponding functions are of concern to the overall

bone scale (centimeter scale), the mechanism determining structural adaptation

changes the functions at considerably smaller cell levels (micrometer scale).

In Chap. 12, a two-dimensional (2D) computer simulation study demonstrated

that the trabecular surface remodeling, in response to local mechanical stimuli, can

produce the characteristic anisotropic trabecular structure in the human proximal

This Chapter was adapted from Tsubota et al. (2009) with permission from Elsevier.
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femur. However, the mechanical conditions of the proximal femur are 3D due to its

complex external shape and loading conditions (van Rietbergen et al. 1999). In this

chapter, we extend the 2D computer simulations to 3D in order to investigate the

functional adaptations caused by trabecular remodeling under the influence of the

complex mechanical environment of the hierarchical bone structure of the femur.

The simulation results demonstrate how simple remodeling at the cellular and

trabecular levels creates a highly complex and functional trabecular structure of

the entire human proximal femur in 3D.

13.2 Model of Human Proximal Femur

A voxel finite element (FE) model was created to simulate trabecular remodeling in

a human proximal femur with a large number of elements. This model was

combined with a simulation model, shown in Chap. 8, to express structural changes

of individual trabeculae over the entire proximal femur.

13.2.1 Voxel FE Model

A 3D computational model of a human proximal femur was created using approx-

imately 93 million voxel finite elements with a resolution of 87.5 μm, as shown in

Figs. 13.1a–c. An isotropic and uniform initial structure was useful in explaining

the effects of the mechanical environment on the trabecular structural changes that

emerge from adaptive remodeling (Beaupré et al. 1990; Huiskes et al. 1987; Jacobs

et al. 1997; Jang and Kim 2008; Tsubota et al. 2002). Thus, the cancellous bone of

the femur model is filled with an isotropic and uniform porous bone structure with a

degree of anisotropy H1/H3¼ 1.04, where H1 and H3 are the first and third principal

values of the fabric ellipsoid H of the trabecular structure (Cowin 1985, 1986).

The bone volume fraction (BV/TV) ¼ 0.37 is within the physiological range of the

cancellous bone. This initial structure is generated by laying many pieces of torus-

shaped trabeculae in random positions, in a manner similar to that in the 2D study

of Chap. 12. The bone was assumed to be a homogeneous, isotropic material with

Young’s modulus of Et¼ 20 GPa and Poisson’s ratio of νt¼ 0.3. The marrow was

regarded as a cavity, and was neglected in the finite element analysis. The

element-by-element preconditioned conjugate gradients (EBE/PCG) method

(Hughes et al. 1987; van Rietbergen et al. 1995) was used for the finite element

analysis.
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13.2.2 Simulation Conditions

For typical daily loading conditions, three loading cases (a one-legged stance, and

extreme ranges of motion for both abduction and adduction) were assumed

(Beaupré et al. 1990), as shown in Fig. 13.1d, as with the two-dimensional study

in Chap. 12. The lower boundary that corresponded to the diaphysis was fixed. The

simulation results were discussed only for the proximal region to neglect the

artificial influence of the fixed boundary condition.

In simulations based on single loading conditions, the model was coarse-grained

and calculated at a resolution of 175 μm/voxel in order to qualitatively determine
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Fig. 13.1 3D simulation model of trabecular structural adaptation in human proximal femur with

large-scale voxel FEs. (a) The assembly of voxel elements at a resolution that can express the

morphologies of individual trabeculae demonstrates the overall morphology of the femur from (b)
the cancellous bone, to (c) the entire femur, discretely. (d) External loading conditions applied to

the hip joint considering the daily loading history (Beaupré et al. 1990) (This figure was adapted

from Tsubota et al. (2009) with permission from Elsevier)
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the effects of the loading conditions on the trabecular structure that was formed. In

simulations based on multiple loading conditions, the calculations were performed

at a resolution of 87.5 μm/voxel with the aim of accurately reproducing the actual

trabecular structures in the model; the three loads were applied at a ratio of 3:1:1

(Beaupré et al. 1990), as shown in Fig. 13.1d.

The parameters of the remodeling model (Chap. 9) were set to be constant, with

threshold values Γu¼ 0.6 and Γl¼�0.4, and the sensing distance lL ¼ 1 mm, to

provide reasonable trabecular structures, which best fit the figures of Wolff (Carter

et al. 1987; Wolff 1892, 1986). In simulations of multiple loadings, the stimulus

Γmlt (Eq. 12.1) weighted by the loading frequency (Beaupré et al. 1990) was used

for remodeling.

13.3 Trabecular Structures Obtained by Remodeling
in a Human Proximal Femur

This section explains the simulation results regarding 3D anisotropic trabecular

structure in human proximal femur (Sect. 13.3.1), and functional adaptation of the

trabecular structure (Sect. 13.3.2).

13.3.1 Trabecular Structure with 3D Anisotropy

The various trabecular structures of the femoral head under the three single-loading

conditions were oriented in the direction of the load applied to the articular surface

(Fig. 13.2). The trabecular orientations in the femoral head depended on the loading

direction applied to the articular surfaces (white arrows in Fig. 13.2). An orthogonal

trabecular pattern appeared in the femoral neck (white circles in Fig. 13.2) in

Fig. 13.2 Trabecular structures in the coronal section under loading conditions of (a) one-legged
stance, (b) abduction, and (c) adduction, predicted by the remodeling simulation. The color

indicates the equivalent stress value of the bone part (This figure was adapted from Tsubota

et al. (2009) with permission from Elsevier)
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loading cases (a) and (b), because the loading of articular surface causes a bending

load in the clockwise direction around the neck. This pattern did not emerge in

loading case (c) because the loading of the articular surface oriented to the femoral

neck and did not generate bending loads in this region. These results are attributed

to the hip joint load determining the cellular-level mechanical stimulus, which

changed the trabecular structure accordingly.

In the simulation based on multiple-loading conditions similar to actual loading

conditions, the trabecular structure appeared similar to that observed in the cross-

sectional photograph of the human proximal femur (Beaupré et al. 1990; Wolff

1892, 1986), as shown in Fig. 13.3. As shown in the coronal section (Fig. 13.3a), the

Fig. 13.3 The trabecular structure reproduced by computer simulation (left) and a photograph of

an actual femur (right) from Wolff (1892, 1986). (a) The coronal cross-section, (b) the cross-

section through the middle of the femoral head, and (c) the transverse section around the lesser

trochanter. (d) A series of 2D slices to illustrate the 3D distributed trabecular structure (The

proximal femur photograph is used from Wolff (1986) with the kind permission of Prof. Paul

Maquet and of Springer Science and Business Media) (This figure was adapted from Tsubota et al.

(2009) with permission from Elsevier)
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trabecular bone was orientated in the direction of the compressive load applied to

the articular surface in the femoral head (region 1), and orientated in the direction of

the abduction tensile load in the greater trochanter (region 2). On the other hand, in

the area of the femoral neck (region 3), an orthogonal pattern of the trabecular bone

formed in the biaxial compression and tension load state in accordance with the

bending load. In the cross-section through the middle of the femoral head,

(Fig. 13.3b), as well as in the transverse section near the lesser trochanter

(Fig. 13.3c), the trabecular structures were more isotropic than those in the coronal

section, where an anisotropic structure clearly emerged. These trabecular structures

correspond to the mechanical environment of the cross-section, i.e. the mechanical

environments in the planes shown in Figs. 13.3b, c are more isotropic than those

shown in Fig. 13.3a.

13.3.2 Functional Adaptation of Trabecular Structure

To investigate the functional adaptation of the trabecular structure, which differs by

a region of the femur, the trabecular structure and the mechanical state were

quantified and compared. The spatial averaged trabecular bone structural charac-

teristics H, fabric ellipsoid (Cowin 1985, 1986), and mechanical stress σ were

calculated for the femoral head region (region 1) and the greater trochanter (region

2), in which a one-directional trabecular pattern was formed, and for the area near

the femoral neck, in which an orthogonal pattern was formed (region 3), as shown

in Fig. 13.4a–c. These results showed good correspondence between H and σ, i.e.,
the principal directions of the trabecular structure H matched those of the principal

stress σ. In the entire proximal femur, the anisotropy of the structural characteristics

H1/H3 increased with the principal stress ratio jσ1/σ3j (Fig. 13.4d). H1/H3 also

increased with the anisotropy of the stiffness, indicating that the mechanical

characteristics were such that the trabecular bone deforms uniformly (Chap. 11).

In this way, bone remodeling based on mechanical stimulus at the cellular level

resulted in functional adaptive changes in load support, and quantitatively created a

trabecular structure corresponding to the direction and magnitude of H and σ
(Cowin 1986) in three dimesions. In addition, the relationship between the anisot-

ropy of the structural characteristics H1/H3 and the principal stress ratio jσ1/σ3j
exhibited a dispersion (Fig. 13.4e). This was due to a lazy zone (dead zone) in

which a small mechanical stimulus did not produce a significant remodeling

response (Carter 1984), indicating that cellular-level remodeling creates various

trabecular structures in a variety of responses to the mechanical environment.
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13.3.3 Bone Remodeling in 3D Structural Hierarchy

The simulation results revealed that complex 3D trabecular structures form to adapt

to the mechanical environment in accordance with the cellular-level simple

remodeling law, which aims to achieve a uniform mechanical stimulus state. This

quantifies the series of relations linking cellular-level mechanical stimulus Γ,
determined by the mechanical stress σ of the trabecular structure, the rate of

trabecular surface movement according to the stimulus _M Γð Þ, and the overall

trabecular structure H, constructed according to _M Γð Þ, in three dimensions.

These factors are affected by mechanical conditions determined by the trabecular

structure, cortical bone structure, loading conditions etc., and the 3D characteristics

are essential conditions in each case (Ulrich et al. 1999; van Rietbergen et al. 1999).

The bone structures in the coronal cross-sections predicted by the 3D simulation

depend on the loading conditions. The basic characteristics of the structures are
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Fig. 13.4 The apparent structural and mechanical properties of cancellous bone. (a) The trabec-
ular structure, (b) fabric ellipsoid and (c) principal stress of the cancellous bone cube in the

femoral head (region 1 of Fig. 13.3a), greater trochanter (region 2) and femoral neck (region 3).
The size of the cancellous bone cube is 6.6 mm on each side. (d) The ratio of the maximum

principal stress value to the minimum, jσ1/σ3j, and (e) the difference angle, θ, of the principal

directions between the fabric ellipsoid and principal stress as a function of the structural anisotropy

H1/H3. These plots correspond to 122 sampling bone cubes in the entire proximal femur (This

figure was adapted from Tsubota et al. (2009) with permission from Elsevier)
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similar to those obtained in the 2D study in Chap. 12. In the remaining cross-

sections, the trabecular structure is relatively isotropic, corresponding to the actual

femur photograph by Wolff (1892, 1986). Thus, the 3D femur shape, as character-

ized by the anteversion angle (approximately 10� in this study), would not cause

anisotropy of the trabecular structure in the normal state. On the other hand, degrees

of anisotropy in the mechanical stress σ and trabecular structure H are different

from those obtained in the 2D simulation of Chap. 12. For example, in regions 1 and

3, the H1/H3 values of the 3D results are larger than those of the 2D, and vice versa

in region 2. This demonstrates that in trabecular bone remodeling, the mechanical

and structural quantities of 3D differ from those of 2D, suggesting that consider-

ation of the 3D is essential in characterizing of trabecular structural adaptation in a

human proximal femur with a hierarchical 3D structure (Lakes 1993).

13.4 Conclusion

In this chapter, trabecular structure adaptation in a human proximal femur was

simulated by a large-scale voxel FE model. The simulation results revealed that

complex 3D trabecular structures form to adapt to the mechanical environment in

accordance with the cellular-level simple remodeling law, which aims to achieve a

uniform mechanical stimulus state. This quantifies the series of relations linking

cellular-level mechanical stimulus Γ determined by mechanical stress σ of the

trabecular structure (~10 μm), the rate of trabecular surface movement according

to the stimulus _M Γð Þ, and the overall trabecular structure H (~10 cm), constructed

according to _M Γð Þ, in three dimensions with a length scale greater than 104. These

factors are affected by mechanical conditions determined by the trabecular struc-

ture, cortical bone structure, loading conditions etc., and the 3D characteristics are

essential conditions in each case. As a result of contemporary computer simulation,

we can quantify and understand the trabecular structure adaptation in a human

proximal femur with a hierarchical 3D structure (Boyle and Kim 2011).
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Chapter 14

Trabecular Structural Changes in a Vertebral
Body with a Fixation Screw

Abstract This chapter describes the effects of a spinal fixation screw on trabecular

structural changes in a vertebral body, predicted by a three-dimensional simulation

of trabecular remodeling. The entire vertebral body with a fixation screw and bone-

screw interface were modeled using voxel finite elements. In the vertebral body, the

implantation of the fixation screw caused a change in the mechanical environment

of the cancellous bone, leading to trabecular structural changes at the cancellous

bone level. The effects of the screw on the trabecular orientation were stronger in

the regions above and below the screw compared to those in front of the screw. In

the proximity of the bone-screw interface, the trabecular structural changes

depended on the direction of the load applied to the screw. The bone resorption,

predicted in the pull-out loading, is a candidate cause of screw loosening. The

results indicate that the effects of implanted screws on trabecular structural changes

are more important for long-term fixation.

Keywords Bone structural adaptation • Trabecular surface remodeling • Spinal

fixation • Bone implant • Voxel FE model

14.1 Introduction

To predict and evaluate the trabecular structural changes by bone remodeling,

computational simulation methods have been used as a powerful tool in the

orthopaedic and orthodontics fields (Huiskes and Hollister 1993; Prendergast

1997; Hasegawa et al. 2016). To date, simulations of remodeling, based on the

macroscopic continuum model, have predicted changes in the apparent bone den-

sity around the hip joint stem (Doblare and Garcia 2001; Huiskes et al. 1987; van

Rietbergen et al. 1993) and knee prosthesis (Orr et al. 1990). Furthermore, surface

remodeling simulations have been used for predicting trabecular microstructural

changes at screw threads and on porous coated surfaces of bone implants (Luo et al.

1999; Sadegh et al. 1993). These computational methods are also applicable to the

design of bone implants with desired shapes, where remodeling-induced bone

structural changes are taken into consideration (Kuiper and Huiskes 1997).

This Chapter was adapted from Tsubota et al. (2003) with permission from Springer.
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For spinal fixation with a screw, the biomechanical viewpoint is important in

order to avoid loosening of a fixation screw and to attain mechanical stability of the

reconstructed spinal structure (McCullen and Garfin 2000; Vaccaro and Garfin

1995). As a candidate mechanism underlying screw loosening, fatigue fracture of

the bone at the bone-screw interface has been investigated using a quantitative

experimental technique. On the contrary, mechanical remodeling-induced bone

structural changes have been suggested to play an important role in the loosening

phenomenon (Dalenberg et al. 1993; Lu et al. 2000).

In this chapter, the effects of a fixation screw on three-dimensional trabecular

structural changes in a vertebral body were investigated using computer simulations

of the trabecular surface remodeling. First, a remodeling simulation was conducted

for a vertebral body, for examining the effects of the implanted screw on structural

changes occurring on level of the cancellous bone. Second, trabecular microstruc-

tural changes in the proximity of the bone-screw interface were simulated for

investigating the relationships between the screw loosening and the loads applied

to the screw. Third, referring to the simulation results, important mechanical factors

related to the screw implantation are discussed from the viewpoint of mechanical

bone remodeling.

14.2 Model of a Vertebral Body with a Fixation Screw

The entire vertebral body and bone-screw interface were modeled using voxel finite

elements (FEs) to simulate trabecular remodeling of the cancellous bone. Simula-

tion models (Sects. 14.2.1 and 14.2.2), simulation conditions (Sect. 14.2.3), and

data analysis methods (Sect. 14.2.4) are described below.

14.2.1 Model of an Entire Vertebral Body with a Fixation
Screw

Spinal fixation screws, such as those used in internal fixation for fusion (McCullen

and Garfin 2000; Vaccaro and Garfin 1995) and in total en bloc spondylectomy for

vertebral tumors (Tomita et al. 1997), play an important role in maintaining the

mechanical integrity of the reconstructed spinal structure. In this study, a half-

model of a human L3 vertebral body with a fixation screw (model S) was created

using approximately 0.79 million voxels as finite elements, as shown in Fig. 14.1,

by assuming structural symmetry with respect to the central sagittal plane. The

model consisted of the cortical bone, the cancellous bone, and a fixation screw. The

cortical and cancellous bone parts were taken from the model of a normal vertebral

body (model N), described in Appendix. The model vertebral body had a diameter

of 50 mm in the bilateral and anteroposterior directions, and a height of 25 mm in
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the axial direction, as shown in Fig. 14.1a. The X1 axis corresponded to the bilateral

direction, the X2 axis to the anteroposterior direction, and the X3 axis to the axial

direction. The initial trabecular structure was taken from the trabecular remodeling

simulation of a normal vertebra, described in Appendix. The trabeculae were

aligned along the axial direction based on the compressive load of the body weight,

as shown in the images of X2�X3 and X1�X3 cross-sections in Fig. 14.1b. The

screw diameter was 4 mm, and the screw length was 50 mm, of which 24 mm

was implanted into the vertebral body. The volume of each element was 250 μ
m � 250 μm � 250 μm.

X1 - X3 cross section
X1

X2

X3

X2 - X3 cross section

50.0mm

Cancellous bone

Cortical bone

Fixation
  screw

F1 

25
.0

m
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4.0mm

X1 X2

X3

26.0mm

X1

X2

X3

24.0mm

b

a

Fig. 14.1 Voxel finite element model of half of the vertebral body with a fixation screw (model S),

assumed to be symmetric with respect to the central sagittal plane. (a) An overview of the model

and the loading condition and (b) the X2�X3 and X1�X3 cross-sections (This figure was adapted

from Tsubota et al. (2003) with permission from Springer)
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As a boundary condition of the vertebral body under the compressive load of the

body weight, a uniform compressive displacement U3 was applied to the upper

plane at X3¼ 25 mm to apply the total load F1¼ 588 N, as shown in Fig. 14.1a.

The lower plane at X3¼ 0 mm was fixed. When a compressive load is applied to

the vertebral body, the displacement constraint U3 is equivalent to the force

constraint F1, which is advantageous for computational efficiency, especially

when performing large-scale finite element simulations (Hughes et al. 1987; van

Rietbergen et al. 1995). As the load transferred from the fixation device, the

bending load F2¼ 58.8 N was applied to the end of the screw. The bone and the

screw were assumed to be homogeneous and isotropic materials, and Young’s
modulus E and Poisson’s ratio ν were set to Et¼ 20 GPa and νt¼ 0.3 for the

bone, and Es¼ 200 GPa and νs¼ 0.29 for the screw, which was assumed to be

made of stainless steel (An 1999; Zioupos et al. 1999).

14.2.2 Model of the Bone-Screw Interface

The trabecular structure adjacent to the bone-screw interface is important for the

proper fixation of a screw to the cancellous bone (Orr et al. 1990). As a model of the

bone-screw interface, a 7� 7� 14 mm3 cancellous bone hexahedron was created

(model I) using approximately 0.91 million voxels, as shown in Fig. 14.2a, in which

the volume of each voxel was 70 μm�70 μm�70 μm. The cancellous bone part

of model I was filled with toroidal trabeculae by assuming that the initial trabecular

structure was isotropic. The external and root diameters of the screw were 4.9 mm

and 3 mm, respectively, and the pitch was 1.8 mm. The coordinate axes were set

as shown in Fig. 14.2a, in which the X2 axis corresponded to the screw axis.

Assuming the screw was subjected to the body weight and pull-out load, two

cases of simple loading, namely, compressive loading (Ic) and shear loading (Is),

were considered in the remodeling simulations, as shown in Fig. 14.2b. As a

boundary condition, uniform compressive displacement along the X3 axis was

applied to the upper surface of the screw in case Ic, while uniform shear displace-

ment along the X2 axis was applied in case Is, as shown in Fig. 14.2b. The

displacements were controlled for applying an apparent stress of 1 MPa to the

upper plane of the screw. The displacement constraint was advantageous for saving

computational efficiency of the finite element analysis. On the bottom and side

planes of the cancellous bone, shear-free boundary conditions were applied; in

other words, the displacements normal to the plane were fixed. In what follows, we

disregard the artefacts associated with the model boundary conditions and only

discuss the simulation results for the internal region of the finite element model,

delineated by the white box in Fig. 14.2a.
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Fig. 14.2 Voxel finite element model of cancellous bone adjacent to the bone-screw interface

(model I). (a) An overview of the model and (b) the two cases of simple loading, compression

(Ic) and shear (Is), applied to the screw (This figure was adapted from Tsubota et al. (2003) with

permission from Springer)
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14.2.3 Simulation Conditions

For models S and I, trabecular structural changes were simulated using the surface

remodeling simulation method in Chaps. 8 and 11. The model parameters in the

remodeling model (Chaps. 8 and 9) were set constant as threshold values Γu¼ 1.0

and Γl¼ � 1.25, and sensing distance lL¼ 2.5 mm for model S, and Γu¼ 1.5,

Γl¼ � 1.88, and lL¼ 700 μm for model I. With regard to the bone-screw interface

in the stress analysis, it was assumed that the tensile load normal to the interface

was not transferred from the screw to the bone.

14.2.4 Data Analysis

The simulation results were evaluated for regions F (in front of the screw tip), A

(above the screw), and B (below the screw) for model S (Fig. 14.3), and regions C

(below the screw), S1 (on the negative side on the X1 axis), and S2 (on the positive

side) for model I (Figs. 14.4 and 14.5). In these regions, a fabric ellipsoid (Cowin

1985) was measured as an anisotropic structural parameter. The degree of structural

anisotropy was defined as the ratio of the maximum principal value of the fabric

ellipsoid H1 to the minimum value H3. The trabecular orientation angle Θi

(i¼ 1, 2, 3) was defined as the angle between the maximum principal direction of

the fabric ellipsoid nH1 and the coordinate axis Xi. For model I, the contact area

between the bone and the screw threads S, normalized by the initial contact area S0,
was measured for determining the structural changes in the trabeculae adjacent to

the screw threads (Fig. 14.6).

14.3 Trabecular Structural Changes Induced by the Screw
Implantation

This section describes the simulation results related to the trabecular structural

changes (1) on the cancellous bone level, induced by the screw implantation (Sect.

14.3.1) and (2) on the trabecular level, at the bone-screw interface (Sect. 14.3.2).

14.3.1 Structural Changes on the Cancellous Bone Level

In the case of a vertebral body with a fixation screw (model S), the trabeculae

adapted their structure to the mechanical environment that was changed by the

implanted screw, as shown in Fig. 14.3. The load applied to the end of the screw
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induced larger trabecular structural changes in regions A and B than in region F,

where the effect of the screw on the mechanical environment was smaller.

In region F, the trabeculae grew thick in the axial direction and were resorbed in

the transverse direction owing to the compressive load of the body weight, as shown

in the image of the X2�X3 cross-section in Fig. 14.3a. The degree of structural

anisotropy H1/H3 and the trabecular orientation angle Θi (i¼ 1, 2, 3) were

H1/H3¼ 1.89 and (Θ1,Θ2,Θ3)¼ (89∘, 88∘, 2∘), respectively. The structural

1

2
3 4.

0 
m

m 1

2
3

1

2 3

Region F Region A Region B

b

a

X1 X2

X3

X1
X2

X3

X1

X2

X3

X1 - X3 cross section

X2 - X3 cross section

F

A

B

X1 X2

X3

Θ1 = 87°
Θ2 = 79°
Θ3 = 11°

H1 / H3 = 1.41
Θ1 = 89°
Θ2 = 88°
Θ3 =   2°

H1 / H3 = 1.89
Θ1 = 90°
Θ2 = 83°
Θ3 =   7°

H1 / H3 = 1.46
nH1 Xi

Qi

Fig. 14.3 Trabecular structural changes in a vertebral body with a fixation screw (model S)

obtained from the simulation. (a) A three-dimensional image and the X2�X3 and X1�X3 cross-

sections. (b) The fabric ellipsoids of the trabecular structure in regions F, A, and B (This figure was

adapted from Tsubota et al. (2003) with permission from Springer)
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parameters and the fabric ellipsoid in Fig. 14.3b indicates that the trabeculae in

region F are oriented along the axial direction.

The degree of structural anisotropyH1/H3 and the trabecular orientation angleΘi

were, respectively, H1/H3¼ 1.46 and (Θ1,Θ2,Θ3)¼ (90∘, 83∘, 7∘) in region A, and

H1/H3¼ 1.41 and (Θ1,Θ2,Θ3)¼ (87∘, 79∘, 11∘) in region B. In these two regions,

the structural parameter H1/H3 was smaller and Θ3 was larger than the

corresponding parameter values in region F. This result shows that the trabecular

structure is more distributed in regions A and B than in region F. For example, the

trabeculae in region B were formed both from the screw tip and from the pedicle to

the lower cortical shell, as indicated by the open arrows in the image of the X2�X3

cross-section in Fig. 14.3a. Part of these trabeculae connected with each other and

formed an arcuate structure, as indicated by the closed arrow in the image of the

X2�X3 cross-section in Fig. 14.3a.

Because changes in the trabecular orientation affect the mechanical integrity of

the vertebral body, the simulation method is likely to be useful for evaluating

trabecular bone remodeling-induced temporal changes in the mechanical integrity

of a vertebral body with an implanted screw.
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14.3.2 Trabecular Level Structural Changes
at the Bone-Screw Interface

In the case of the bone-screw interface (model I), the isotropic trabecular structure

shown in Fig. 14.2a changed to the anisotropic one shown in Figs. 14.4 and 14.5.

The extent of surface remodeling of the trabecular structure depended on the loads

applied to the screw.

In the case of compressive loading (Ic), the trabeculae were aligned along the

direction of compressive load below the screw, as indicated by the arrows in the

image of the X2�X3 cross-section in Fig. 14.4a, and were formed radially from the

screw, as indicated by the arrows in the X1�X3 cross-section image. The degree of

structural anisotropy H1/H3 and trabecular orientation angle Θi (i¼ 1, 2, 3) were

H1/H3¼ 1.24 and (Θ1,Θ2,Θ3)¼ (86∘, 90∘, 4∘) in region C, H1/H3¼ 1.23 and

(Θ1,Θ2,Θ3)¼ (54∘, 90∘, 36∘) in region S1, and H1/H3¼ 1.22 and (Θ1,Θ2,Θ3)¼
(65∘, 88∘, 25∘) in region S2, as shown in Fig. 14.4b. This result shows that different

regions have the same degree of structural anisotropy but different structural

orientation.
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Fig. 14.5 Trabecular structural changes adjacent to the bone-screw interface in the case of shear

loading (case Is). (a) A three-dimensional image and the X1�X3 and X2�X3 cross-sections. (b)
The fabric ellipsoids of the trabecular structure in regions C, S1, and S2 (This figure was adapted

from Tsubota et al. (2003) with permission from Springer)

14.3 Trabecular Structural Changes Induced by the Screw Implantation 195



In the case of shear loading (Is), some of the trabeculae below the screw were

aligned along the directions oriented at 45� relative to the shear load, as indicated

by the arrows in the image of the X2�X3 cross-section in Fig. 14.5a. The degree of

structural anisotropy H1/H3 and the trabecular orientation angle Θi were, respec-

tively, H1/H3¼ 1.17 and (Θ1,Θ2,Θ3)¼ (85∘, 12∘, 79∘) in region C, H1/H3¼ 1.12

and (Θ1,Θ2,Θ3)¼ (52∘, 88∘, 38∘) in region S1, and H1/H3¼ 1.15 and

(Θ1,Θ2,Θ3)¼ (78∘, 12∘, 90∘) in region S2, as shown in Fig. 14.5b. The smaller

H1/H3 values obtained in this case (compared with Ic) indicate a more distributed

trabecular structure, as shown in the image of the X1�X3 cross-section in

Fig. 14.5a.

The change in the contact area S/S0 depended on the site of the screw threads, as

shown in Fig. 14.6. In the Ic case, the contact area S/S0 increased after initially

decreasing at the top of the screw threads (Tt), and decreased on both sides (Ts1 and

Ts2) and at the root (Tr), as shown in Fig. 14.6a. In the Is case, the entire contact area

S/S0 decreased, as shown in Fig. 14.6b. The rates of decrease in the contact area
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S/S0 at the root (Tr) and on the tensile side (Ts1) were higher than those at the top

(Tt) and on the compressive side (Ts2), and the areas S/S0 at Tr and Ts1 were zero in

the final state.

While the trabeculae remained near the screw threads with compressive load

(case Ic), the bone was resorbed on the tensile side (Ts1) and at the root (Tr) of the

threads with shear load (case Is). These results show that the direction of the load

applied to the screw is one of the critical factors in determining bone resorption at

the bone-screw interface, and that pull-out loading is a candidate cause of screw

loosening. The bone resorption predicted by the simulation depended on the site of

the screw threads, which indicates that the screw threads are important in the

remodeling-induced loosening of the fixation screw. In fact, the remodeling simu-

lation by using model S did not predict any trabecular structural changes that would

cause screw loosening, because the screw threads were not modeled in detail. In

addition, the temporal evolution of the structural changes, as shown in Fig. 14.6,

demonstrates that remodeling around the spinal fixation screw is more important for

longer-term fixation.

14.4 Trabecular Structural Changes as Causes of Screw
Loosening

Trabecular structural changes induced by mechanical bone remodeling were

suggested to be important for the proper fixation of bone implants, such as hip

joint stems in the proximal femur (Doblare and Garcia 2001; Huiskes et al. 1987;

van Rietbergen et al. 1993) and dental implants in the mandible (Stanford and

Brand 1999). However, it has not been reported whether the trabecular structure

changes when a fixation screw is implanted into a vertebral body. One reason is the

difficulty associated with simultaneously observing the trabecular structural

changes around the fixation screw in vivo and simulating the trabecular structural

changes around the screw, by using previously developed computational tech-

niques. In this study, the trabecular structural changes around the screw were

simulated using voxel finite element models of trabecular surface remodeling. By

using the model S for a vertebral body with a fixation screw, we were able to predict

changes in the trabecular orientation in the pedicle region induced by changes in the

mechanical environment caused by the implanted screw. Because a change in the

trabecular orientation affects the mechanical integrity of the vertebral body, the

simulation method is likely to be useful for evaluating trabecular bone remodeling-

induced temporal changes in the mechanical integrity of a vertebral body with a

screw.

Model S was constructed for investigating the basic effects of the screw implan-

tation on the trabecular structural changes in the vertebral body. For accurate

prediction of the trabecular structural changes in the future, it is necessary to

develop a model of the ligamentous motion segment in which intervertebral discs
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play an important role in transferring the body weight to the vertebral body. For

example, if a model of intervertebral discs that consist of annulus fibrosus and

nucleus pulposus is developed to precisely capture the vertebral body loading

conditions, the predicted trabecular structural changes by using model N for a

normal vertebral model (see Appendix. 14.A) would be smaller in the pedicle

part than in the central part, as was predicted by Goel et al. (1995). This might

lead to the formation of denser trabeculae at the vertebral body center after

implanting the fixation screw, because the trabeculae in the pedicle region will

provide less support to the load applied to the screw, compared with the trabeculae

in the central region.

For model I, the initial trabecular structure was isotropic rather than anisotropic

one that was used in model S. The loading conditions that were applied to the screw

corresponded to the two cases of simple loading, namely, compressive and shear

loading. Despite these simplifications, the bone resorption around the screw thread,

observed in the Is case, indicates that the stress-shielding phenomenon can occur in

a vertebral body with a fixation screw, as well as in the case of other bone implants

(Stanford and Brand 1999; van Rietbergen et al. 1993). The effects of structural

anisotropy and realistically complex loading conditions will be taken into account

by coupling the two models S and I (describing different structural scales) in

future work.

Based on the previous experimental and computational studies of trabecular

structural changes around implants (Guldberg et al. 1997; van Rietbergen et al.

1993), the structural changes obtained in the present study can be thought of as

occurring on the temporal scale ranging from a few months to a few years. On this

time scale, it would be necessary, in spinal fixation, to consider trabecular

remodeling, for evaluating the vertebral body with the fixation screw as a load-

bearing structure. For example, an experimental result obtained using a canine

spine surgery model, in which L1-L5 were immobilized for 9 months by using an

instrument with transpedicular screws placed bilaterally at the L1, L3 and L5

pedicles, indicated that loosening of the screw was more pronounced for L1 and

L5 than for L3 (Dalenberg et al. 1993). In the immobilized spinal structure, the

screws at L1 and L5 outside of the instrument are more affected by the bending load

transferred from the fixation device than those placed at L3 in the middle of the

instrument. Because the bending load of the screw would cause a pull-out load of

the screw, screw loosening at the L1 and L5 obtained in the animal experiment

might be owing to the pull-out load applied to the screw. This point corresponds to

the simulation result of model I for the bone-screw interface, which indicates that

the pull-out load is a candidate cause of the screw loosening.

The simulation method that uses the voxel model is effective for predicting

patient-specific remodeling phenomena, the voxel model of the bone structure can

be easily constructed from medical imaging data (van Rietbergen et al. 1998;

Hasegawa et al. 2016). Thus, the voxel-based simulation method is likely to enable

testing various combinations of bone and spinal fixation screws, and can provide

useful information for choosing the screw type. In addition, considering that voxel

models of a musculoskeletal system, including that of a spinal system, can be
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constructed using recently developed imaging techniques (Beuf et al. 2001; Zankl

and Wittmann 2001), voxel models of a bone-implant system for various types of

implants can be constructed by superimposition of the digital implant data (that is,

CAD data) on the spinal voxel model. With this voxel model, the remodeling

simulation method is likely to be useful for designing patient-specific spinal

fixation systems. Combining the bone remodeling simulations that use the voxel

model with advanced techniques for medical imaging and structural optimization is

likely to provide a novel computational design system for bone-implant devices.

14.5 Conclusion

In this chapter, fixation screw implantation-induced trabecular structural changes in

a vertebral body were investigated by conducting 3D trabecular surface remodeling

simulations. By using voxel FEs, computational models of the bone and screw were

constructed on two structural scales of the entire vertebral body with the implanted

screw and the bone-screw interface. In the simulation of the entire vertebral body,

the implantation of the fixation screw induced changes in the mechanical environ-

ment of the cancellous bone, leading to trabecular structural changes at the cancel-

lous bone level. The effects of the screw on trabecular orientation were more

significant in the regions above and below the screw compared with those in front

of the screw. In the case of the bone-screw interface, trabecular structural changes

depended on the direction of the load applied to the screw. It was suggested that the

bone resorption predicted in the pull-out loading case is a candidate mechanism of

screw loosening. The results indicate that the effects of implanted screws on

trabecular structural changes are more important for longer-term fixation.

Appendix: Cancellous Bone Remodeling in a Normal
Vertebral Body

In the case of a normal vertebral body, the trabecular surface remodeling simulation

was conducted using a half-voxel model of a human L3 vertebral body (model N),

as shown in Fig. 14.7a. The cortical shape of the model in the midsagittal plane was

determined based on the photograph of the cross-section of the human vertebral

body, available in the literature (Mosekilde 1990), as shown in Fig. 14.7b. Rotating

the midsagittal section with regard to the central longitudinal axis, the three-

dimensional shape of the cortical bone was constructed as an axisymmetric shell.

The vertebral body diameter was 50 mm in the bilateral and anteroposterior

directions, and its height was 25 mm in the axial direction.

The cancellous bone part was filled with toroidal trabeculae to a bone volume

fraction of BVF¼ 0.46 and the degree of structural anisotropy of H1/H3¼ 1.04, in
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which H1 and H3 were the maximum and minimum principal values of the fabric

ellipsoid (Cowin 1985), respectively. As indicated by the fabric ellipsoid and by the

image of the X2�X3 cross-section in Fig. 14.7a, the trabecular structure was

initially isotropic. The number of voxels for describing the bone was approximately

0.85 million, and the volume of each element was 250 μm � 250 μm � 250 μm.

The bone part was assumed to be homogeneous and isotropic, and Young’s
modulus E and Poisson’s ratio ν were set as Eb¼ 20 GPa and νb¼ 0.3 (An 1999;

Zioupos et al. 1999). As a boundary condition, uniform compressive displacement

U3 was applied to the upper plane at X3¼ 25 mm to apply the total load F1¼ 588

N as a body weight. The lower plane at X3¼ 0 mm was fixed. The model
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Fig. 14.7 Voxel finite element model of half of a normal vertebral body (model N), assumed to be

symmetric with respect to the central sagittal plane. (a) A three-dimensional image and compres-

sive loading condition owing to the body weight (left), the fabric ellipsoid of the trabecular
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and cancellous bones, constructed by rotating the midsagittal section (This figure was adapted

from Tsubota et al. (2003) with permission from Springer)
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parameters in the remodeling rate equation (Chap. 9) were set constant as threshold

values Γu¼ 1.0 and Γl¼ � 1.25, and the sensing distance was lL¼ 2.5 mm.

In remodeling simulation, an anisotropic trabecular structure was obtained

owing to the trabecular formation and resorption for converging to a local state of

uniform stress, as indicated by the image of the X2�X3 cross-section and fabric

ellipsoid of the trabecular structure in Fig. 14.8. The angle Θ3 between the maxi-

mum principal direction of the fabric ellipsoid and the X3 axis was 3
∘, consistent

with the observation that the trabeculae in the vertebral body are oriented along the

axial direction (Mosekilde 1990). The bone volume fraction BVF decreased to 0.37,

and the degree of structural anisotropy H1/H3 increased to 1.47. The structural

parameters BVF and H1/H3 obtained in the simulation better captured the experi-

mental observation (Beuf et al. 2001) than the parameters of the initial isotropic

structure.
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