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Preface

Acoustic biomedical signal, electric biomedical signals, magnetic biomedical 
 signals, mechanical biomedical signals, optical biomedical signals, and chemical 
biomedical signals are different types of the biomedical signals used in several 
healthcare monitoring applications. In these applications, it is indispensable to ana-
lyze and process the acquired biomedical signals for different diseases’ prediction, 
detection, and monitoring. Acoustic biomedical sensors have a significant role to 
acquire the different acoustic biosignals from the human body [1–5]. Typically, 
acoustics is considered a well-developed scientific domain based on physics and 
expanding its scope over time into biomedical signal processing, speech, and hear-
ing sciences. One of the vital forms of the acoustic biomedical signals is the phono-
cardiogram (PCG), which records the heart sound in a waveform for further visual 
inspection. This acoustic biomedical signal requires preprocessing stage for the sig-
nal enhancement based on automatic biomedical signal processing techniques. 
Furthermore, multichannel signal processing requires indispensable techniques for 
biomedical signal processing [6–14]. Manual investigation of these signals is time 
consuming and complex. Biomedical signal processing has several outstanding 
techniques based on either time or frequency domain that depends on the biomedi-
cal signal characteristics. Automated monitoring of the biomedical signal becomes 
crucial. Several applications in the acoustical realm, including the speech acoustic 
and the biomedical signal acoustic, are combined with signal processing and soft 
computing techniques to improve the biomedical signal processing.

The book supports designers, engineers, researchers, and physicians in several 
interdisciplinary areas to support healthcare based on the different applications of 
the acoustic biomedical sensors. The book presents an overview of the different 
biomedical signal types, while focusing on the acoustic biomedical signal and the 
body sounds. The book emphasizes a brief outline of the different medical sensors 
for biomedical signal acquisition with extensive study of the acoustic biomedical 
sensor applications. This book is considered the milestone in providing an overview 
on the development of the PCG biosignal and its analysis. The book includes several 
applications and real-life acoustic biomedical sensors for supporting the healthcare. 
Furthermore, the book reports the challenges facing the acoustic biomedical signal 
processing techniques in healthcare.
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The book’s inimitable features include the following:

• Offers a cutting-edge platform on the concepts and types of the biomedical 
 signals, especially the acoustic biomedical signal

• Emphasizes the diverse approaches to analyze the heart sound signals and the 
different body sounds

• Provides a brief outline of the acoustic biomedical sensors as well as the other 
different biomedical sensors and devices

• Discovers the role of biomedical signal processing in healthcare
• Presents the heart sound detection using the acoustic biomedical sensors for fur-

ther analysis to support the clinical diagnosis
• Introduces the different techniques of the biomedical signal processing for 

healthcare monitoring
• Discusses some applications of acoustic biomedical sensors and signal process-

ing for prediction, detection, and monitoring of some diseases from the phono-
cardiogram (PCG) signal analysis

• Presents the new technologies for the design and fabrication of the acoustic bio-
medical sensors

• Introduces the challenges of acoustic biomedical signals as well as the gaps 
between the contemporary approaches of the heart sound signal analysis and 
their applications for clinical diagnosis

West Bengal, India Nilanjan Dey
Tanta, Egypt Amira S. Ashour
Tanta, Egypt Waleed S. Mohamed
Da Nang, Vietnam Nhu Gia Nguyen
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Abstract

The interdisciplinary acoustic biosignals nature and the biomedical sensors are 
challenging. In this book, application-related studies to the acoustic biomedical sen-
sors are covered in depth. This book attracts engineers, designers, researchers, and 
physicians in innumerable interdisciplinary areas, including acoustic biomedical 
signal analysis, engineering, healthcare, biomedical signal processing, and patient 
monitoring. The book hosts the concept of a wide spectrum of different biomedical 
signals, including acoustic biomedical signals as well as the thermal biomedical 
signals, magnetic biomedical signals, and optical biomedical signals to support 
healthcare. The signal processing approaches, such as filtering, Fourier transform, 
spectral estimation, and wavelet transform, to the biomedical signals are also 
explored and discussed, for example, the analysis of cardiac signals, breathing 
cycle, and the heart sound. The book provides global outstanding research and 
recent progress in some applications of acoustic biomedical sensors and biosignal 
processing for prediction, detection, and monitoring of some diseases from the pho-
nocardiogram (PCG) signal analysis. Several challenges and future perspectives 
related to the acoustic sensor applications are highlighted in this book.
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Chapter 1
Introduction

The interface between the physical sciences, electronics, and life sciences becomes 
inhabited by several researchers to fulfill the needs of the medical/life scientist in 
the biomedical community. Based on the chemical, biological, and physical princi-
ples, the instruments improvement burgeoned. Conversely, the analytical instru-
ments require several types of sensors extending from elementary devices for 
temperature and flow measurements, nonionizing and ionizing radiation to biologi-
cal, chemical, ultrasound, and acoustic sensing transducers [1–9].

Monitoring real-time biomedical signals is the clue for superior management, 
earlier detection, prediction, and diagnosis of chronic diseases, including strokes 
and heart attacks. Different biomedical signals can be acquired from different medi-
cal sensors, which require real-time biomedical signal processing and analysis for 
improving healthcare and managing critical care situations. Different types of bio-
medical signals can be acquired to reflect the patient’s status. These biomedical 
signals include temperature records, voltage record by an electrode placed on the 
scalp, phonocardiogram (PCG) acoustic, electrocardiogram (ECG) showing the 
heart’s electrical activity, and the electroencephalogram (EEG) signals, which show 
the electrical activity of the brain. Several obtained parameters are unreliable, which 
become challenging for the electronics’ designers to process and deploy these sig-
nals. However, there are common characteristics of the biomedical signals even 
with their variation in terms of the environmental conditions, including the design 
of the equipment, electrode positioning, and the existence of the fats and/or blood 
vessels under which they are obtained. Advancement in technology, electronic 
device design/fabrication, and sensors provided more biomedical signals for moni-
toring, predicting, and detecting different diseases, according to the acquired bio-
medical signal characteristics, from the specific associated sensors, for further 
signal processing, which is the energetic phase. Multichannels of the biomedical 
signals are produced from the different sensors that are connected to the patient for 
acquiring specific information about certain diseases [10–18].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92225-6_1&domain=pdf
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In medical, industrial, and engineering applications, there is an emerging need 
for reliable, small, inexpensive, and disposable sensors. Sensors are one of the wild-
est rising markets. Especially, the biosensor market is progressively promising due 
to their application in biotechnology, healthcare, and medical applications, such as 
in the early cancer detection, glucose testing, and physiologically/pathogen detec-
tion as a prevailing tool for early disease diagnosis and treatment.

A sensor can be defined as a device that reacts to an input under concern as it 
measures or detects certain property, records, or condition according to the received 
information [19]. Generally, the device which only detects some property or condi-
tion based on the absence or presence of a physical amount is a detector not a sensor. 
Detectors have a vital role in medicine, particularly alarms. In biomedical applica-
tions, a sensor is known as a responding device to a physical input of interest record-
ing the related optical/electrical output. The physical and biomedical input includes 
biochemical concentrations/quantities and any medical vital signs from the patients. 
The sensors’ system is a device with an electrical output that indicates/records or 
indicates the electrical signals, which are amplified and processed for further final 
output to a chart recorder, displaying monitor or input to a storage system. However, 
numerous widely used sensors do not display a linear performance. Both transducer 
and sensor are synonymous terms; nevertheless, the transducer is known as a trans-
formation device of the energy from one form to another. Sometimes, the transduc-
ers can be considered components of the sensors, such as the diaphragm in a 
microphone that converts the sound energy into strain energy, and then a second 
transducer is essential to convert this energy to a recordable electrical energy to 
produce the whole sound sensor [20–24].

Biosensors are analytical devices that use a biological identification system to tar-
get macromolecules or molecules. They include a physiochemical sensor (transducer) 
that transforms the biological signal from the bio-recognition system to an assessable 
and measured signal. A biosensor consists of three modules, namely, the detector to 
identify the stimulus, the transducer to convert the stimulus to an output, and the out-
put system to amplify and display the output in a proper format. The piezoelectricity 
is a phenomenon that appears in specific crystals, such as Rochelle salt and quartz, 
where the mechanical stress convinces voltage generation and vice versa [25, 26].

One of the most imperative sensors is the acoustic sensor, which detects/collects 
the acoustic biosignals (bioacoustic). These acoustic biosignals ascend from the 
body’s vital functions conveying physiological data that indicates the state of health 
and the cardiorespiratory pathologies. Several acoustic biosignals are initiated 
inside the human body, such as the snoring sounds, lung sounds, and heart sounds, 
where any vibrating structure in the body produces acoustic sounds. These acoustic 
sounds are inhibited during the propagation via the tissues of the skin. The dissimi-
lar sounds of the body interfere together inducing mechanical skin vibrations that 
are observed by the sound sensor for further conversion into the electrical signal. 
From clinical and engineering point of view, it is highly informative to study the 
origin of the sounds. Extensive studies related to sound physics as well as biology 
have been conducted.

1 Introduction
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In order to observe and record the acoustic biosignals, biosensors, which are 
analytic transducer devices, can convert the biomedical information into a detect-
able signal. These acoustic biosensors consist of (i) a detector for identifying the 
stimulus, (ii) transducer for converting the stimulus to an output, and (iii) the output 
system for amplifying and displaying the output. The acquired biosignals by the 
acoustic biomedical sensors are then processed using biomedical signal-processing 
techniques for extracting the valuable information from the measured data (bio-
medical signals) after de-noising and enhancement. In addition, biomedical signal 
conditioning, pattern recognition, classification, and biomedical signal compression 
can be performed for accurate diagnosis [27–34].

An acoustic wave biosensor employs mechanical or acoustic waves as a recogni-
tion mechanism to attain biophysical, biochemical, and medical information. It 
senses changes in conductivity, elasticity, mass, and dielectric properties of the elec-
trical or mechanical variations. Such biosensors employ the piezoelectric effect to 
stimulate electrically the acoustic waves at the input transducer and then to receive 
the generated waves at the output transducer. In the piezoelectricity effect, a voltage 
is produced on the surface of the piezoelectric material due to the compression of 
several piezoelectric crystals. Acoustic biosensors can be prepared using piezoelec-
tric crystals, such as lithium tantalite, lithium niobate, or quartz, as they are environ-
mentally stable and robust. Furthermore, such sensors can detect several versatile 
biomolecules. Acoustic wave sensors can be classified based on the generated waves 
into surface or bulk acoustic waves. Each of them has advantages/disadvantages 
based on applications under consideration [35–38]. Acoustic wave devices have 
marvelous features to be employed in sensor systems for medical diagnosis. Such 
acoustic wave sensors are configurable to many applications, sensitive, easily por-
table, and utilized as actuators.

The organization of the remaining chapters is as follows. Chapter 2 contains 
a broad description of the biomedical signals, including their characteristics and 
classification, as well as the definition of the biosensors and the biomedical signal 
acquisition process is also mentioned. Chapter 3 introduces the concept of the 
acoustic wave technology and the fundamentals of acoustics and psychoacoustics. 
In addition, the different sources of the acoustic biosignals in the human body 
are reported, including the heart sounds, breath sound, gurgling/intestinal sound, 
Korotkoff sounds, vascular sounds, and the friction rub sounds. Chapter 4 pro-
vides a brief highlight on the different acoustic sensors and the related concepts 
and requirements. In this chapter the piezoelectricity effect, the acoustic sensor 
design, and the acoustic stethoscope sensor are introduced. The principle of the 
acoustic wave sensors, including the difference between the bulk acoustic wave 
sensors and the surface acoustic wave sensors, is presented. Chapter 5 discussed in 
brief the acoustic sensors for biomedical applications, such as the acoustic wave-
guide sensor for chemical detection and the stethoscopic sensor for respiratory 
sound recording. Furthermore, the role of the signal analysis is highlighted briefly 
under a heart sound analysis in clinical diagnosis discussion. Finally, the book 
concludes in Chap. 6.

1 Introduction
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Chapter 2
Biomedical Signals

Abstract In our daily life, sensors are corporate in several devices and  applications 
for a better life. Such sensors as the tactile sensors are included in the touch screens 
and the computers’ touch pads. The input of these sensors is from the environment 
that converted into an electrical signal for further processing in the sensor system. 
The sensor’s main role is to measure a specific quantity and create a signal for 
interpretation. The human bodies continuously communicate health information 
that reflects the status of the body organs and the overall health information. Such 
information is typically captured by physical devices that measure different types 
of information, such as measuring the brain activity, blood glucose, blood pres-
sure, heart rate, nerve conduction, and so forth. According to these measurements, 
physicians decide the diagnosis and treatment decisions. Engineers are realizing 
new acquiring devices to measure noninvasively the different types of signals for 
further analysis using mathematical algorithms and formulae. This chapter includes 
classifications of the biosignals based on several principles. In addition, the differ-
ent biosensors are highlighted including the role of the biopotential amplifier stage 
within the sensor system. Finally, the biomedical signal acquisition and processing 
phases are also included.

2.1  Classifications and Characteristics of Biomedical Signals

All biomedical systems produce signals to influence the human body or analyze 
biosignal to extract useful information about the functioning of the human body. 
The signal can be defined generally as the observed parameter from any object; 
specifically the biomedical signal represents the physiological phenomenon descrip-
tion of any living objects. Biomedical signal/biosignal is the signal that conveys 
biological information about the state or behavior of the living objects. The extracted 
information in the biomedical signal can be simple, such as the human blood pres-
sure and the wrist pulse, or complex, such as the information obtained from the 
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analysis of the internal soft tissues’ structure using ultrasound scanner. Biosignals 
are used to realize the underlying physiological mechanisms of certain biological 
system or event.

The main biomedical signal types include the signal, carotid pulse (CP) signal, 
electrocardiogram (ECG) signal, electroencephalogram (EEG) signal, phonocar-
diogram (PCG) signal, and speech signals. Mostly, there are five sources of noise 
that affect the biosignals, including the aliasing, interference, thermal noise, sam-
pling noise, instrument noise, and power line alternative current (AC) [1–10]. 
Several classifications are raised to categorize the biosignals, according to biosignal 
source, number of channels, dimensionality, biosignal model, and nature as illus-
trated in Fig. 2.1.

Figure 2.1 illustrates the different classifications of the biosignals, according to 
certain criteria, which is explained as follows [11–20]:

 (i) Based on the system of the biosignal origin, where the biosignals vary from 
any other signals in terms of the application as the biosignals originate from 
different sources. Thus, the biosignals can be categorized into the signals from 
auditory system, nervous system, cardiovascular system, endocrine system, 
circulatory system, musculoskeletal system, vision system, gastrointestinal 
system, and respiratory system.

 (ii) Based on the required number of channels to acquire a specific biosignal, 
which can be one channel to display the pulse wave, three channels to display 
the accelerometer data, or multichannel with the electroencephalography 
(EEG) signals, for example.

 (iii) Based on the dimensionality, the biosignals can be 1D (one-dimensional), such 
as the phonocardiogram (PCG) signal, the electrocardiogram (ECG) signal, 
and the electroencephalogram (EEG) signal; 2D (two-dimensional), such as 
the temperature map; 3D (three-dimensional), such as the magnetic resonance 
(MR) images; or 4D (four-dimensional), such as the functional magnetic reso-
nance (fMR) images.

 (iv) Based on the signal models (analysis approach), the biosignal can be determin-
istic or stochastic. The deterministic biosignal is either periodic (sinusoidal or 
complex) or nonperiodic (transient), which is predictable. The stochastic bio-
signal is nondeterministic, where its state is determined by a random element 
and predictable actions. It can be stationary or nonstationary.

 (v) Based on the physical nature of the signal, the biosignals can be categorized 
into chemical, optical, magnetic, electric, thermal, or acoustic (mechanical).

 1. Chemical biosignals provide information about various chemical agents’ con-
centration in the human body, such as the blood oxygen level, glucose level, 
breathing airflow, and gases in the blood.

 2. Optical biosignals use optical approaches to sense the biochemical analyses. The 
biooptical signals reflect the biologic system’s optical functions stirring naturally 
or induced by the certain measurement. Recently, the progress of the fiber-optic 
technology opened massive applications of the biooptical signals.

2 Biomedical Signals
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Fig. 2.1 Biosignal 
classification
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 3. Magnetic biosignals are produced due to the weak magnetic fields produced by 
different cells and organs, such as the lungs, heart, and brain. The measurements 
of these magnetic fields offer significant information. Examples of such biomag-
netic signals include the magnetoencephalogram (MEG) signal and the magne-
toneurogram (MNG) signal produced from the neural cells as well as the 
magnetomyogram (MMG) signal and the magnetocardiogram (MCG) signal, 
e.g., produced from the muscle cells.

 4. The electric signals result from the electric field due to the intra- and extracel-
lular ionic currents produced in the organs or cells (muscle/nerve). This electric 
biosignal which is called also bioelectric signals or biopotentials is generated 
from the electrochemical mechanism in the single ionic channels that generates 
an action potential. Such biosignals result from the neural cells, such as the elec-
troretinogram (ERG) signal, the electroneurogram (ENG) signal, and the elec-
troencephalogram (EEG) signal, or from the muscle cells, such as the 
electromyogram (EMG) and the electrocardiogram (ECG) signal, or from other 
cells, such as the galvanic skin response (GSR) signal and the electrooculogram 
(EOG) signal [21, 22].

 4.1. ECG signal is a graphical presentation of the heart electrical activity of 
overtime, which is recorded by an electrocardiograph. It shows the voltage 
difference between the attached electrode pairs and the heart muscle 
activity.

 4.2. EEG signal reflects the brain electrical activity recorded from the placed 
electrodes on the scalp to sense pathologies related to stimulus-directed 
performance.

 4.3. EMG signal represents the muscles’ physiologic properties of contraction 
and rest by detecting the electrical potential produced by the muscle cells 
using the electromyography.

 4.4. EOG signal is recorded using the electrooculography to measure the retina 
resting potential. It records the dissimilarity in the electrical charge between 
the back and front of the eye associated with the movement of the eyeball. 
The EOG signal is acquired by the electrodes positioned on the skin near 
the eye.

Simple transducers are used to acquire the bioelectric signals. Microelectrodes are 
used as sensors for single-cell measurements, where the measured action potential 
represents the biosignal. However, surface electrodes are involved as sensors to 
measure the electric field generated by the many cells’ action for more unrefined 
measurements. Generally, the obtained bioelectric signals from the electrodes can 
be considered an interface between the body and the measurement instrument. Due 
to the specific bioelectric signals’ characteristics and the device-related interfer-
ences, designing readout circuits for bioelectric signal measurements in real-time 
monitoring inspires several engineers to cope with various problems and to design 
wearable bioelectric acquisition systems.

 5. The bioimpedance (IMP) signals are also produced due to the tissue’s impedance 
that conveys information concerning the automatic nervous system activity, 
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endocrine activity, blood distribution, and the blood volume. The IMP measure-
ment assists the body’s properties assessment by measuring the body tissue’s 
reaction to an induced tension. Four electrodes are generally used to measure the 
IMP measurements. Specifically, the position of the measuring electrode (probe) 
on the body surface is challenging [23–27].

 6. Thermal biosignals, including the body temperature and temperature maps based 
on the heat absorption and heat loss in the body, or the distribution of the tem-
perature on the body surface [28].

 7. Mechanical biosignals replicate the body parts’ mechanical functions, such as 
the chest movements during respiration process, the blood pressure, the acceler-
ometer signals, and the phonocardiogram (PCG) signal, which reflects the heart-
beats’ sounds. Biomechanical signals originated from mechanical functions of 
the biologic system, including flow signals, tension/pressure signals, and dis-
placement/motion signals. The biomechanical signals’ measurement involves 
different sensors/transducers, where the mechanical phenomenon does not prop-
agate the acoustic, magnetic, and electric fields [29–31].

 8. Acoustic biosignals are defined as the biosignals produced from the respiratory 
sounds, cough sounds, squawk, wheeze, and snoring sounds [32, 33]. Typically, 
several biomedical phenomena generate acoustic noise, which offers significant 
information about this phenomenon. For example, the air flow in the lungs pro-
duces acoustic sounds, muscle contraction produces an acoustic noise, the blood 
flow in the heart produces acoustic noise, and the sounds generated in the diges-
tive tract. These produced sounds are extensively used in medicine. Generally, 
the acoustic biosignals describe the acoustic sound produced by the body 
(motion/vibration), which is considered a subset of the mechanical biosignals. 
Bioacoustic signals access different body sounds, including swallowing and 
snoring, respiratory sounds, the cardiac sounds (phonocardiography), and the 
crackles of the muscles/joints. This acoustic energy transmits through the bio-
logic medium; thus, acoustic transducers, such as the accelerometers and micro-
phones, are used to acquire such bioacoustics signal.

Another classification of the biosignals is illustrated in Fig. 2.2.
The continuous physiological signal acquisition allows the detection and preven-

tion of the different diseases, such as the neurological pathologies or the 
 cardiovascular diseases. In order to acquire any of the preceding biomedical signals, 
different types of sensors/transducers are used according to the biomedical applica-
tion as illustrated in Fig. 2.3. Biosignal acquisition is the main role of any biomedi-
cal instrument toward the most sympathetic of the human physiology using 
hardware, portable, and wireless acquisition transducers/sensors. However, the bio-
signal acquisition is insufficient, where further biomedical signal processing is 
compulsory to process the attained signal in order to acquire the significant infor-
mation from the noisy biosignal [34–40].

The biomedical signal processing poses some complications due to the underly-
ing system’s complexity and the required noninvasive, indirect measurements. 
Several biosignal processing techniques are developed based on the underlying sig-

2.1 Classifications and Characteristics of Biomedical Signals
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nal’s characteristics, the aim of the biomedical signal processing, and the test condi-
tions. Biosignal processing consists mainly of the feature extraction phase step to 
extract the points of interest in the biosignal that indicates the body conditions, such 
as the onset of the EMG signal and the heart rate variability from the ECG signal. 
Over the years, several biosignals that reflect the human body conditions have been 
characterized and studied to transform the ways for various disease diagnoses. All 
the preceding biosignals are acquired using transducers/sensors of different types 
according to the required detected biosignal.

2.2  Biomedical Sensors

Sensors can be classified based on their sensing principle into biosensors, mechani-
cal sensors, magnetic sensors, optical sensors, and thermal sensors. In all measure-
ment systems and medical devices, sensors (transducers) are considered the critical 
components that provide a practical, electrical output in response to a definite mea-
surand. This output reflects information about the human body. Biomedical sensors 

Categories of biomedical signals

Depending on number of points Depending on potential

Time varying signals,
ECG, EEG, EMG

Single value signals,
temperature, pressure

Action potential signals,
ECG, EEG, EMG,ENG

Event-related potential,
EGG,PCG, CP, VMG, VAG,

oto-acoustic emission,
speech signals

Fig. 2.2 Other biosignal classifications

Fig. 2.3 Biosignal 
acquisition
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are categorized into biosensor, chemical sensor, and physical sensor as illustrated in 
Fig. 2.4. Biosensors are considered a type of the chemical sensors to sense antibody, 
antigen, hormone, enzyme, and microbes and detect biological signals [41–47]. 
Chemical sensors are used to detect the concentration and ingredient of liquids in 
the body. Physical sensors are used to measure thermal, geometric, hydraulic, and 
mechanical variables, such as the body temperature, blood pressure, blood flow, 
blood viscosity, blood flux, bone growth velocity, and muscle displacement.

Generally, the biosensors can be well-defined as analytical devices which use a 
biological identification system to target macromolecules or molecules. In order to 
convert the obtained signals from the recognition system to detectable signals, a 
physiochemical transducer should be included in the biosensors. The main 
 components of the biosensors include the detector to identify the stimulus, the trans-
ducer to convert the stimulus to an output, and the output system including the 
amplification and display processes of the output.

There are several common characteristics that should be fulfilled in the biomedi-
cal sensors, where they should be soft, reliable, and safe as they touch the patient’s 
inner organs or the skin. Additionally, implantable biosensor must be compatible 
with the human body and has a long operational lifetime. Consequently, evaluating 
the biomedical sensor performance and their stringent design specifications has a 
great impact on the accurate medical diagnosis. Several metrics are measured in 
order to describe the characteristics of the sensor for further selection according to 
the application. Such metrics include (i) the sensitivity, which is the relationship 
between the output change for a given input change; (ii) accuracy, which is the dif-

Biomedical sensors

Physical sensors Chemical sensors

Electrical
(Electrodes) Optical Electrochemical Photometric

chemical

Others

resonant

thermal

electrochemical

bioluminescence

Nucleic acide-
based

nanobiosensors

Fig. 2.4 Biomedical sensor categories

2.2 Biomedical Sensors
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ference between the true and actual measured values by the sensor; (iii) the mea-
surement range, which refers to the expected maximum/minimum operation limits 
of the sensor; (iv) the linearity, which refers to the maximum deviance between the 
calibration and the fitting curves of the sensor’s measurements; (v) the hysteresis, 
which is the measurement’s delay due to the variation direction of the measured 
signal; (vi) the sensor’s frequency response, which represents the sensitivity varia-
tion with frequency; (vii) the signal-to-noise ratio (SNR), which represents the mea-
sured signal power ratio to the power of the noise; (viii) the drift, which is the 
change in the reading of the sensor with constant input; (ix) the response time, 
which refers to the time reserved by the sensor to reach a percent of its steady state, 
when its input change; (x) the resolution, which is the smallest detected discernible 
input change; and (xi) the offset, which refers to the output value with zero input 
value [48–52].

Specifically, biosensor can be classified based on the biological sensing compo-
nent into immune sensors, tissue sensors, cell sensors, microbe sensors, and enzyme 
sensors. Another classification can be considered in terms of the biosensors’ used 
signal converter, namely, optical biosensors, bioelectrode sensors, thermal biosen-
sors, piezoelectric biosensor, and semiconductor biosensor. In terms of the interac-
tion between the measured material and the sensing component, the biomedical 
sensors can be classified into catalytic biosensors or affinity biosensors. The fore-
most applications of the biomedical sensors are (i) detecting control parameters, 
such as measuring the concentration of enzymes to control the food fabrication; (ii) 
detecting clinical information, such as the blood pressure and the body temperature; 
and (iii) monitoring biological parameters inside/outside the body, such as the heart 
sound, the brain activity, and the heart activity.

Biomedical signals are recorded as voltages, electrical field strengths, and poten-
tials that are generated by muscles/nerves. Thus, the sensors have a vital role in the 
various biomedical instruments to convert the acquired body signal into an electri-
cal signal, where the electrical components and electrical circuits are used to detect 
the biosignal by different sensors. The bioinstrumentation is then formed after con-
necting the electrical components and the biosignal sensors. However, the measured 
biomedical signal has very low voltage levels ranging from 1 μV to 100 mV, for 
example, the magnitude of the EEG is in microvolt and that of the ECG is in 
 millivolts. In addition, a high level noise and high source impedance exist and inter-
pret the biosignal. Thus, the biosignals require amplification to be compatible with 
the medical instruments/devices, including the A/D (analog to digital) converters, 
the recorders, and the displays. In order to perform such task, amplifiers, known as 
biopotential amplifiers, are included to measure the biosignals and offer selective 
amplification to the physiological signal, interference signals, and, the reject super-
imposed noise [53–58]. Figure 2.5 illustrates the position of the biopotential ampli-
fier in the medical instrument.

This assures the biosignal protection from compensations through current and 
voltage flow for both the electronic equipment and the patient. The accurate design 
of the biopotential amplifier rejects the signal interferences’ large portion, espe-
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cially the line-frequency interference with strong common-mode signal rejection. In 
addition, the biopotential amplifier has to offer suitable gain range and signal-to- 
noise ratio.

Generally, the operational amplifier is an electronic device including multi- 
resistors, capacitors, and transistors. It is the foundation of any bioinstrumentation 
as it has a significant role to amplify the weak biosignal and adjust the current or 
voltage in the detecting circuit. In order to retain the current down from the mea-
sured, the used amplifiers should have a very high input impedance. The preampli-
fier sets the phase for the biosignal quality as it eliminates/minimizes the interfering 
signals during the measurement of the biopotentials as shown in Fig. 2.5. After pre- 
amplifying the biosignals, several filters are included, such as the high-pass filter 
(HPF) and low-pass filter (LPF) to eliminate the useless signal and highlight the 
beneficial biosignal based on the desired signal frequency range [59–62].

Generally, the sensors entail three modules, namely, the detection element, trans-
ducer, and signal processor. Once the source to be detected contacts the detection 
element, the detection element changes and converted into a signal by the trans-
ducer. This signal is then processed by the signal processor. In order to select the 
suitable sensor, the detection element is considered the most significant component. 
Thus, for functional biosensor, the sensor should have a discerning detection ele-
ment according to the human body signal to be detected. Then, the transducers can 
be thermal, piezoelectric, optical, and electrochemical transducers. Finally, the sig-
nal processing can be a meter or a simple circuit to control the data acquisition.

Fig. 2.5 Biopotential amplifier stages
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2.3  Biomedical Signal Acquisition

Biosignals are tiny and contain unwanted interference or noise that obscures the 
relevant information in the measured biosignal. Thus, refined bioinformation acqui-
sition equipments/methods are used to extract the significant information from the 
biomedical signals. The essential components of the biomedical signal acquisition 
systems include data acquisition, amplifiers, sensors, analog signal conditioner, 
digital signal processing circuit, and bioinformation data storage as demonstrated 
in Fig. 2.6.

Figure 2.6 includes the sensors that detect the biosignal under observation that is 
amplified and then converted into digital biosignal to adapt the data acquisition 
system requirements and for storage and decision making. For noise reduction and 
significant bioinformation extraction, digital signal processing methods are con-
ducted to improve the physiological understanding from the captured biosignal. 
These phases are used in almost all medical instruments, where the employed sen-
sors selected according to the type of the captured biosignal. One of the most 
 essential permanent biosignals is the acoustic biosignal that creates internally in the 
human body, such as the snoring sounds, the lung sounds, and the heart sounds, that 
arise in the course of the vital functions of the body and provides physiological 
[63–67]. Typically, in the human body, vibrating structures produce acoustic sounds, 
which are damped during their propagating through the thoracic tissues to the skin. 
Dissimilar body sounds interfere at the skin and make the mechanical vibration of 
the skin that can be observed by sound sensors, which convert the acoustic biosignal 
into electric signals. Different interdisciplinary acoustic biosignal nature and acous-
tic sensors are challenging to cope with the technology advancement.

Sensor Amplifier &
Filter

A/D
conversion

Feature
extraction

Feature
selection

Detection

Prediction

classification

Signal Acquisition

Signal Processing

Patient

Decision
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Interpreted
signal

Fig. 2.6 Bioinformation acquisition and processing phases
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Chapter 3
Acoustic Wave Technology

Abstract Sound is the generalized name of the acoustic waves that have  frequencies 
within the range of one to tens of thousands Hertz, where the maximum human 
hearing ability is 20 kHz. The main role of the sound sensors/transducers is to use 
electrical energy for creating mechanical vibrations that disturb the surrounding air 
to produce sound at the inaudible or audible frequencies, which requires a transmis-
sion medium. The sound waveform can be characterized by the velocity (m/s), the 
frequency (ƒ), and the wavelength (λ), like the electrical waveform. The sounds 
wave shape and frequency are determined by the vibration/origin that created the 
sound, while the velocity depends on the sound wave transmission. Discovery of the 
quartz resonator to stabilize the electronic oscillators leads to the detection of the 
piezoelectricity. Piezoelectricity can be defined as the electrical charges production 
by the mechanical stress imposition. This creates a revolution in the acoustic wave 
sensors and devices using a piezoelectric material for generating acoustic waves. 
Applying a fluctuating electric field by the piezoelectric acoustic wave sensors, a 
mechanical wave is created that propagates via the substrate and transformed to 
electric field for further measurements. This chapter reveals about the fundamentals 
of the acoustics with a detailed explanation of the several body acoustic sounds 
sources.

3.1  Fundamentals of Acoustics and Psychoacoustics

Sound is the produced wave by vibrating entities. It travels via a medium from one 
point to another one. It is a mechanical wave as it produced due to the traveling 
motion of the sound vibration via a non-vacuous (conductive) medium where the 
mechanical sound wave travels. It results from a longitudinal motion of the medi-
um’s particles. The wave’s physics explains the process of the sound generation, 
traveling, and reception, where the sound waves carry the vibration (disturbance) 
from one position to another that originated from the wave source. The initiating 
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source may be a stereo speaker or vocal chords. The particle interaction leads to the 
sound traveling, which lets the vibrating waves to transport from one position to 
another [1–17]. Conversely, the mechanical sound waves require a receiver to 
widespread. The general characteristics are required for the acoustic sound waves 
to be transmitted:

• The acoustic waves are mechanical waves that need a medium to carry their 
energy from any position to another.

• The acoustic waves, which are mechanical waves, are incapable to travel over a 
vacuum.

• The acoustic waves are longitudinal waves, which consist of repeating rarefac-
tions/compressions patterns.

There are several methods to measure the sound waves, namely, the (i) frequency; 
(ii) wavelength, where the distance that the disturbance travels via the medium rep-
resents a complete wave cycle; (iii) amplitude which is related to the sound volume, 
loudness, and intensity; (iv) phase; and (v) speed of sound that depends on the 
medium state/type, which is affected by the elasticity and the inertia.

Consequently, the sound represents the wave motion with different pressure 
due to a vibrating source that sets particles in motion only one sound tone. The 
discrete particles travel about their relaxing point at the same tone frequency. 
Vibrating particles during their movement push adjacent other ones and put them 
in motion. This creates a chain effect producing areas of low and high pressure. 
The interchange between the high and low pressure areas transfers away from the 
sound source generating sound waves. On a membrane, the mechanical effect is 
used to sense the sound waves, such as the membrane of a microphone or a dia-
phragm of a stethoscope. For a real-world example, say there is a trumpet playing 
in the room [18–20].

The actual sound may be an acoustic wave from a single sound pulse, mechanical 
vibration, noise, or a continuous frequency sound wave. Audio sound sensors (trans-
ducers) include input sensors to transform the sound waves to electrical signal and 
output actuators to transform back into the electrical signals to sound. Acoustic 
(sound) sensors can detect and transmit vibrations and sound waves from infra-
sound (very low frequencies) up to ultrasound (very high frequencies). Acoustic 
wave sensors detect acoustic or mechanical waves produced by the human body. 
During the propagation of the acoustic wave through the body, the propagation path 
characteristics change, which affect the amplitude/velocity of the acoustic wave. 
Measuring the phase/frequency characteristics of sensed signals reflects the occurred 
changes in the velocity, which is correlated to the consistent physical measured 
quantity. Several expressive biosignals are carried by the body sounds to state the 
patient’s health. The mechanical waves within the body generate the body sounds 
due to the mechanical vibrations of blood/tissues, airway walls oscillation, and the 
heart valve vibrations. These body sounds composed of several spectral varying 
frequency/intensity components due to the existence of the noises. The heart sounds 
auscultation is useful for detecting the cardiac pathologies, while the snoring/lung 
sounds auscultation are used for detecting the respiratory disorders [21–26]. 
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Figure 3.1 illustrates the electrical circuit model of the body sound formation and 
sensing phases of the acoustic biosignals.

The formation of the body sounds includes their origination and transmission 
through the tissue. The body sounds acoustical path initiates at the sound source, 
which vibrates the volumes of the blood, and oscillates the biological structures. In 
the biological medium, the body sound propagates with velocity v, which equals 
the sound propagation. In addition, in the time domain, the body sound oscillates 
with the sound frequency f. It also oscillates with wavelength λ along its propaga-
tion path.

3.2  Acoustic Biosignal Sources

There are several body sounds that lead to acoustic biosignals.

3.2.1  Heart Sounds

The cardiac system’s contractile activity influences the heart sounds (HS), which 
produce direct information on the closure of the heart’s valves. The HSs provide 
information on myocardial, hemodynamic, and valvular activities weakening. The 
normal heart sounds include the sounds related to the atrioventricular valves clos-
ing to prevent the blood backward flow. Induced mechanical vibrations are obvi-
ous as the first HS due to blood flow deceleration, ventricular myocardium jerky 
contraction, and any abrupt tension changes. This first HS is the longest and loudest 
compared to all other HSs. It includes relatively low-frequency spectral components 
with duration of about 140 ms. The semilunar valves closing produce the second 
HS, which prevents the blood backward flow. In the second HS, during the inspira-
tion, the left-sided sounds lead by about 40 ms, while with expiration both the right- 
sided/left-sided sounds are overlaid or still marginally split by <30 ms [27–32].

Figure 3.2 illustrates the different heart’s sound waveforms. The normal first HS 
is louder than the second HS in the mitral valve [33–38]. The normal minimally split 
first HS is a normal variation of the first HS (Fig. 3.2b). Abnormal right bundle 
branch block can be detected if the first heart sound splitting takes>50 milliseconds. 

Body sound sources

Propagation losses equivalent

(a)

A

(b)

Conversion losses equivalent

Acoustic biosignal
registration

Fig. 3.1 Electrical circuit model of the acoustic biosignal formation and sensing processes
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In the tricuspid area, the splitting is obviously heard. In addition, due to several 
heart abnormalities, a decreased intensity first HS can be produced as shown in 
Fig. 3.2d. Figure 3.2e shows an aortic ejection click abnormality caused by stiffness 
and thickened of the aortic valve cusps.

The second HS has about 110 ms duration with more snapping quality, higher 
frequency components, and lower intensity compared to the first HS. Other various 
HSs occur based on the existence of abnormality or the age effect, such as:

 (i) The HS due to the rapid filling of the ventricle, which is comparatively short 
and comprises very low-frequency components of 25–50 Hz range.

Fig. 3.2 Heart sounds different waveform (a) normal first heart sound, (b) normal minimally split 
first heart sound, (c) abnormal markedly split first heart sound, (d) decreased intensity first heart 
sound, and (e) abnormal first heart sound plus aortic ejection click
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 (ii) The HS due to the active ventricular filling and the atrial contraction. This 
sound contains 20–30 Hz very low-frequency spectral components.

 (iii) The ejection sounds due to the semilunar valve opening, where a HS is gener-
ated from the abrupt valves opening or the occurrence of sudden tensing lead-
ing to the clicky sounds of high frequency.

 (iv) The opening sounds due to the atrioventricular valves opening.
 (v) The murmurs are abnormal sounds due to the convinced turbulent blood flow 

in the backward regurgitation progress, which are high-frequency noisy 
sounds.

Figure 3.2 illustrates the different waveforms of the heart sounds.

3.2.2  Breath Sound

The lungs and the large airways produce in/out breath sounds (BSs) that can be 
received by stethoscope, which can be normal or abnormal. Lung sounds provide 
information about the ventilation/dynamics of the upper airways. Abnormal BSs 
specify a lung problem, including infection, inflammation, asthma, obstruction, and 
fluid in the lungs. Identifying such medical conditions requires listening to the BSs. 
The lung sounds’ time amplitude plots can be represented by expanding or unex-
panding ways, where the expanded time scales (at 800 mm/sec) illustrate distinct 
patterns not appearing in the unexpanded speed plots (at 100 mm/sec) as demon-
strated in Fig. 3.3 [39–43]. The right waveforms in Fig. 3.3 represent the expanded 
form, while the left waveforms represent the unexpanded form, where the amplitude 
and time are represented on the Y- and X-axis, respectively.

Figure 3.3 shows more details of the acoustic phenomena in the time expanded 
analysis waveforms compared to the unexpanded ones as they are stretched out to 
provide an overall view of the acoustic characteristics of the inspiratory sounds in 
the real time. However, the unexpanded display is similar to the phonocardiographic 
presentation. Figure 3.3 illustrates different normal and abnormal inspiration sound 
waveforms. Generally, the lung sounds cannot be recognized clearly in the time 
domain, while the heart sounds can be easily observed due to their comparatively 
high intensity. The HSs are about 30 dB stronger compared to the inspiratory sounds 
when auscultated on the chest. The tracheobronchial normal sounds happen during 
both the inspiration and expiration processes, although the vesicular sounds domi-
nate during the inspiration process only. Figure 3.3 reveals that the tracheobronchial 
sounds have wider frequencies which range up to 1 kHz compared to the vesicular 
sounds that have components up to 500 Hz. Typically, the normal breathing sound 
is similar to the air sound, which can be categorized according to the sound source 
location as follows [44–47]:

 (i) Tracheobronchial sounds are originated in the tracheal and bronchial tracts and 
heard close to the large airways. They are dominated on the neck. The source 
of this sound is given by the air turbulence that flow in the trachea and bronchi 
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due to high airflow velocity causing air vibrations. The sounds’ propagation 
distance near the skin is comparatively short. Thus, the produced sounds are 
relatively loud similar to the air blown over a tube and hold up to 1 kHz fre-
quency components, where the amplitude component at the baseline has fre-
quency 1.2–1.8 kHz.

 (ii) Vesicular sounds are heard distant positions from the large airways, where the 
sources of this sounds are spread through the lungs and create in air turbu-
lences. They are dominated at the chest. During the inspiration, the vesicular 
sounds are originated mainly when the air moves through gradually smaller 
airways, where the inspiratory airflow hits the airway branches creating the air 
turbulences. Directional fluctuations of the local airflow occur due to the air 
turbulences that convinced by branching and bronchospasm of the airways. 
Nevertheless, the air movements through gradually larger airways occur dur-
ing the expiration leading to less turbulence and hence less sound during the 
expiration. The propagation of the vesicular sounds through the lung toward 
the skin experiences a comparatively large damping, which emits soft sound. 
The vesicular sounds contain frequency components in the range of 100–
400 Hz and mainly at about 100 Hz. The vesicular sounds have narrower spec-
tral range and lower intensity compared to the tracheobronchial sounds.

 (iii) Bronchovesicular sounds have intermediate characteristics between the vesic-
ular and tracheobronchial sounds.

Fig. 3.3 Inspiratory sounds: (a) normal vesicular inspiratory sound, (b) normal tracheal inspira-
tion, (c) abnormal inspiratory crackles, (d) abnormal sonorous rhonchus, and (e) abnormal inspira-
tory wheeze
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However, the abnormal BSs may include a (i) high-pitched BS (Crackles), (ii) 
low-pitched BS (rhonchi), (iii) vibratory sound due to the contraction of the upper 
airway (stridor), and (iv) high-pitched whistling sound due to the bronchospasm of 
the bronchial tubes (wheezing).

3.2.3  Gurgling/Intestinal Sound

Auscultation abdominal sounds are produced by blood flow, friction rubs, and peri-
stalsis. The intestine produces abdominal sounds known as the rumbling, gurgling, 
high-pitched, and growling sounds. These sounds are related to the movement of 
liquids, food, juices, digestive process, and air through the intestines. The peristalsis 
causes rumbling sound after eating. Hunger sends signals through the brain to the 
intestines and stomach resulting in the muscle contraction causing sounds. 
Abdominal sounds can be categorized as normal, hyperactive, or hypoactive [48–
51]. Hyperactive bowel sounds are louder sounds than the normal that indicate the 
increased intestinal activity. Conversely, the hypoactive bowel sounds occur with 
the slowed down intestinal activity. Hypoactive, hyperactive, or absent bowel 
sounds may indicate one of the following diseases: digestive tract infection, trauma, 
hernia, less blood flow to the intestines, tumor, abnormal potassium/calcium level in 
the blood, perforated ulcers, and intestinal movement temporary reducing.

The stethoscope is used to hear any abnormal bowel sounds, which is called 
auscultation [52–54]. However, bowel obstructions yield high-pitched, very loud 
sounds. These sounds can often be heard without using a stethoscope. Bowel sounds 
are variable; thus the stethoscope diaphragm is used mainly to hear the bowel 
sounds to note their character and frequency, where the gurgling sounds occur at a 
frequency of 5–34 per min. Abnormal hyperactive bowel sounds have high-pitched 
and increased bowel sounds.

3.2.4  Korotkoff Sounds

The Korotkoff sounds are the sounds heard during the blood pressure measurements 
using the stethoscope. These sounds are different than the heart sounds “dub” and 
“lub” as they are due to vibrations inside the ventricles during the valves’ snapping 
shut, which are heard with the stethoscope. The first Korotkoff sound is heard if the 
pressure in the cuff decreases to the level of the patient’s systolic blood pressure 
level produced by the heart due to the occurred turbulence. Thumping sounds have 
been heard since the pressure in the cuff is permitted to fall more. Ultimately, the 
sounds’ quality changes as the pressure in the cuff falls more till they disappear, 
where decreasing the pressure lower than the diastolic blood pressure will cancel 
the control of the cuff on the blood flow. This returns the blood flow to be again 
smooth without turbulence leading to no more audible sound [55–57].
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3.2.5  Other Body Sounds

3.2.5.1  Vascular Sounds

Audible vascular (bruits) sounds are heard due to the turbulent of the blood flow in 
the large arteries, namely, the iliac, renal arteries, femoral arteries, and aorta. These 
sounds can be heard at different vascular locations for at least 5 sec each. Swishing 
sounds may be produced during the auscultation bruits indicating abdominal aortic 
aneurism, iliac/femoral artery stenosis, and renal artery stenosis [58].

3.2.5.2  Friction Rub Sounds

The stethoscope is used to hear the friction rubs over the liver and spleen. Friction 
rub indicates peritoneal surface’s inflammation of the organ due to tumor, infarct, or 
infection. Generally, from the preceding reporting of the human body sounds, we 
can conclude that the airways and lungs require different instruments/sensors to 
detect them than those used to hear the heart sounds. The stethoscope is used to 
detect such sounds, which is placed over the chest while breathing in/out slowly and 
deeply. Through the bell in the stethoscope, the listener will hear different sounds at 
the different positions of the chest. Afterward, in the same way, the diaphragm is 
used. In normal lung sounds, there will be no crackles or wheezes. Crackles are 
heard when the lung rubs against the chest wall, creating friction and rubbing sound. 
Wheeze is a whistling, high-pitched sound that is heard with the constricted airways 
with the existence of fluid in the lungs. In addition, the stethoscope is used to hear 
by the small intestines and stomach gurgling/intestinal sounds when placed over the 
abdomen upper left part below the ribs. However, the borborygmi noise due to the 
movement of the fecal material, gas, or food is also heard [59–61].

The overall human hearing ranges from 20 to 20,000 Hz. The human HSs have a 
frequency within the 20–200  Hz range, and the human lung sounds have a fre-
quency range of 25–1500 Hz. Acoustic wave sensors are essential to sense such 
frequencies, especially with the existence of the different sources of noise [61–65]. 
These sensors are sensitive with varying levels to the alarms/changes from many 
physical parameters. The advancement in the electronics and sensor/transducer fab-
rication leads to rapid progress in the acoustic medical devices.
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Chapter 4
Acoustic Sensors

Abstract An acoustic wave biosensor employs mechanical or acoustic waves as a 
detection instrument to attain biochemical, biophysical, and medical information. It 
senses changes in elasticity, mass, dielectric properties, and conductivity from the 
electrical or mechanical variations. At an input transducer, the piezoelectric effect is 
employed in these devices to stimulate the acoustic waves electrically and to obtain 
the waves at the output transducer. Acoustic biosensors are implemented with robust 
piezoelectric crystals such as lithium tantalite, lithium niobate, or quartz that can 
detect various biomolecules. Sound waves are generated by different compression 
and expansion of the medium at specific frequencies. For auscultation and listening 
to body sounds, the stethoscope instrument is used to hear the sounds produced 
from the heart, intestinal tract, lungs, stomach, the blood flow in the exterior vessels, 
venous, arterial, uterine, and the sound of human’s/animal fetuses. Acoustic wave 
sensors are convenient in several applications as predominantly mass sensitive 
devices capable of the respond to small environmental perturbations. New surface 
acoustic wave devices using different materials for chemical and biological sensing 
are developed. The improvement of a broad sensor system for biomarker and chemi-
cal sensing attracts several researchers. This chapter introduces in details the piezo-
electricity effect as well as the acoustic sensor design and the acoustic stethoscope. 
Finally, the acoustic wave sensors including the bulk acoustic wave sensors, the 
surface acoustic wave sensors, and the acoustic wave propagation modes are 
introduced.

4.1  Piezoelectricity Effect

Acoustic sound is a mechanical, longitudinal wave with rarefactions and 
 compressions produced by vibrating the sound source. This motion travels through 
a  non- vacuous medium. In order to quantity the acoustic sound, the frequency, 
amplitude, speed, wavelength, phase, and time are measured. Accordingly, in order 
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to measure these parameters of the acoustic (mechanical) sounds, the piezoelec-
tricity defined as the capability of specific materials to generate a voltage due to 
applying mechanical stress is considered. In addition, the shape of the piezoelectric 
materials can slightly change with the subject to an external applied voltage.

On the surface of the piezoelectric material, electric charges are produced due to 
applying any mechanical stress, such as the one applied from the sound waves. In 
the direct piezoelectric effect, the convinced charges are proportional to the mechan-
ical stress. This piezoelectricity effect has a wide application in detecting the acous-
tic sound and electronic frequency/high voltage generation. The negative and 
positive electrical charges are divided in the piezoelectric crystal leading to electri-
cally neutral overall crystal. This symmetry is disturbed with applying a stress to the 
piezoelectric materials, and the asymmetry of the charge produces a voltage. The 
piezoelectric material can be categorized according its cutting procedure, namely, 
shear, longitudinal, and transverse, which are defined as follows [1–8].

 (i) Shear effect: due to this effect, the generated charges are independent of the ele-
ment’s shape/size and proportional to the applied forces. The charge is given by

 C d A mS xx x= 2  (4.1)

where m is the number of elements, which are electrically in parallel and mechani-
cally in series. By applying a force in the x-direction, the piezoelectric coefficient is 
represented by dxx, where Ax is the applied.

Longitudinal effect: due to this effect, the displaced amount of charge is indepen-
dent of the piezoelectric element’s shape/size and proportional to the applied forces. 
The released charge due to such configuration can be expressed as

 C d A mS xx x=  (4.2)

 (ii) Transverse effect: due to this effect, the applied force along the y-axis transfers 
charges along the x-direction, which is perpendicular to the force line. Thus, the 
generated charge can be expressed by

 
C d A a bx xy y= /

 
(4.3)

where b is the line dimension and a is in line with the charge generating axis. The 
transverse effect enables fine-tuning of the element dimension and the applied force.

The piezoelectric materials’ status can be piezoceramics, single-crystal  materials, 
piezocomposites, piezofilms, and piezopolymers. The piezoelectric ceramic mate-
rial is considered the most broadly used type in several applications. However, in 
surface acoustic devices and frequency-stabilized oscillators, the single-crystal 
material is still having a significant performance. The polycrystalline materials, 
such as the barium titanate (BaTiO3), are considered of the most extensively used 
piezoelectric materials.

Furthermore, the lithium niobate (LiNbO3), the lithium tantalite (LiTaO3), and the 
quartz are the most prevalent single-crystal piezoelectric materials. The single crystals 
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are anisotropic, presenting dissimilar material characteristics based on the materials’ 
cutoff and the surface wave propagation direction. Moreover, the piezoelectric 
Pb(Ti,Zr)O3 solid solutions “PZT” ceramics have superior piezoelectric properties. 
Thus, they are used mainly in the surface acoustic wave device applications.

In piezoelectrics, there are several figures of merit, namely, the piezoelectric 
voltage constant, the piezoelectric strain constant, the mechanical quality factor, the 
electromechanical coupling factor, and the acoustic impedance. In surveillance 
devices, hearing aids, industrial monitoring, and biometrics, the micromachined 
acoustic sensors that imply the piezoelectric material are used. These sensors can be 
integrated with on-chip circuits and reduces the acoustic sensors’ size compared to 
the conventional sensors [9]. For surface acoustic wave (SAW), the thin film zinc 
oxide shows outstanding piezoelectric properties [10]. In order to transform the 
diaphragm mechanical deflection into a piezoelectric charge distribution, the sput-
tered piezoelectric ZnO layer can be used. Furthermore, a square silicon diaphragm 
can be included by anisotropic-oriented silicon wafer etching to fix the silicon mem-
brane’s final thickness [11].

4.2  Acoustic Sensor Design

Extensively, the piezoelectricity is used in various devices fabrication, including 
surface acoustic wave devices, transducers, and actuators. The piezoelectric sensor/
transducer can be modeled as a set of filters and a voltage source to represent its 
very high output impedance. The sensor’s voltage source is directly proportional to 
the applied pressure or force. Then, the output signal is associated with this mechan-
ical force. The effect of the mechanical construction of the sensor is also modeled. 
The inertia/mass of the sensor as well as an infinite size inertial mass can be repre-
sented by an inductance and static capacitance of the sensor, respectively, within the 
transducer’s model [12–14].

In sensors’ design, the piezoelectric voltage constant “w” is considered the most 
important figures of merit, where:

 E w X=  (4.4)

here E is the induced electric field, and X is the external stress over w [15–17]. In 
addition, the acoustic impedance parameter is considered in order to evaluate the 
acoustic energy transfer between two materials, which is given by:

 
M

Pressure

Volume velocityz
2 =

 
(4.5)

In order to use the piezoelectric material as a sensor, the frequency response’s flat 
region between the resonant peak and the high-pass cutoff is used. The equivalent 
circuit for the piezoelectric actuator model can be represented by a grouping of R, 
C, and L.

4.2 Acoustic Sensor Design
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In surface acoustic wave (SAW) and bulk acoustic devices, the ZnO has thin 
films, and large piezoelectric coupling is widely used. Ultrasonic waves are now 
used in various fields. Magnetostrictive materials and piezoelectric ceramics are 
involved mainly in the design of the sound sources. Piezoceramics are superior in 
size/efficiency compared to magnetostrictive materials, where a liquid medium is 
efficient for sound energy transfer.

4.3  Acoustic Stethoscope

Blood flow, friction rubs, and peristalsis produce auscultation abdominal sounds. For 
auscultation, an acoustic medical device called the stethoscope is used to hear the 
internal body’s sounds. The stethoscope is used as the main tool to diagnose the 
sounds produced in the abdomen, heart, and thoracic. The conventional stethoscope 
was monoaural consisting of a chest piece, tube, and earpiece. It transmitted the sound 
from the chest piece through the tubes to the listener. The chest piece contains two 
sides: at one of them, a diaphragm is located; and on the other side, a bell exists to 
listen to the different body sounds. The body sounds vibrate the diaphragm once the 
diaphragm is placed on the body. These sound waves travel via the tubes to the lis-
tener. Instead, if the bell is placed on the body, sound waves are produced due to the 
vibrations on the skin. Generally, the diaphragm and the bell are used to transmit high- 
and low-frequency sounds, respectively. Nevertheless, the acoustic stethoscopes’ 
major problem is the effect of the noisy environment on the low intensity sound level.

Afterward, a binaural stethoscope was used, and then the electronic stethoscope 
was developed to hear the heart sounds. The electronic stethoscope has the similar 
function of the conventional stethoscope with converting the sound to an electronic 
signal for further transmutation to the listener through the wire. Its functionalities 
include the sound signal amplification, which filters imitating the diaphragm/bell 
functions, and storage ability for the recorded sound signals [18, 19]. Thus, the digi-
tal electronic stethoscope amplifies the body sounds to strengthen the low sound 
levels with an economical recordable ability. The hardware design of the electronic 
stethoscope includes a power supply, acoustic sensor, preamplifier, low-pass filter, 
and power amplifier. In addition, an audio output can be included to display the 
phonocardiogram, if it will be used to hear the heart sounds.

4.4  Acoustic Wave Sensors

Piezoelectricity is a coupling between electric polarization and elastic deformation, 
which occurs in definite crystals, such as sapphire, lithium niobate, and quartz. 
Acoustic wave sensors are commonly designed using quartz crystal microbalance. 
The quartz crystal microbalance’s fundamental principle uses piezoelectricity to 
convert mechanical and electrical signals. The surface acoustic wave (SAW) devices 
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are enormously common in several electronics forms as band-pass filters. Entirely, 
the acoustic wave devices are sensors, which are sensitive to several physical param-
eter perturbations. A change in the output occurs with the change in the path char-
acteristics through which the acoustic wave propagates. Several acoustic wave 
sensors generate propagating waves in shear-horizontal (SH) wave. The SH motion 
does not emit substantial energy into liquids, which prevents the damping during the 
liquid operation. However, the SAW sensor has an extensive displacement on the 
surface-normal direction, which releases compression waves producing extreme 
damping. This rule is applied in all cases except in the case of the devices that use 
propagating waves at a velocity lesser than the velocity of sound in the liquid. 
Generally, there are different acoustic waves that can be used for sensors, including 
Lamb wave, surface-skimming bulk wave, and the flexural plate wave [20–22].

One of the important factors during the selection of the suitable sensor is the sen-
sor’s sensitivity, which is relative to the amount of energy in the disturbed path of 
propagation. From the surface, the bulk acoustic wave (BAW) sensors scatter the 
energy via the bulk material to the further surface. This energy distribution mini-
mizes the energy density on the surface at which the sensing occurs. Conversely, on 
the surface, the SAW sensors concentrate their energy leading to sensitive surfaces. 
Several phenomena can be detected using acoustic wave devices after coating these 
devices with materials of changed conductivity, elasticity, and mass. Under an 
applied stress, these sensors can be force, torque, pressure, and shock detectors. 
When the particles contacted the propagation medium, they become gravimetric or 
mass sensors. The detector can be a biosensor if the coating absorbs definite organic 
chemicals in the liquids. Furthermore, by choosing the precise orientation of propa-
gation, a wireless temperature sensor can be formed, where the output is affected by 
the temperature that changes the propagating medium [23].

4.4.1  Bulk Acoustic Wave Sensors

A bulk wave is defined as the propagating wave via the substrate. The shear- 
horizontal acoustic plate mode (SH-APM) sensor and thickness shear mode (TSM) 
resonator are the most used BAW devices. The TSM is known as a quartz crystal 
microbalance (QCM), which consists of AT-cut quartz thin disk with parallel cir-
cular electrodes on both sides. The crystal shear deformation occurs by applying a 
voltage between the electrodes. Since the crystal resonates as electromechanical, 
standing waves are produced; thus, this device is considered a resonator. At the 
crystal faces, the displacement is maximized, which makes the device sensitive to 
surface interactions. The TSM resonator is considered a biosensor, which is able 
to detect and measure the liquids due to its shear wave propagation component 
that operates in the range of 5 and 30 MHz. At higher frequencies, designing a 
very thin device raises the mass sensitivity. However, thinning the sensors further 
than its normal range leads to fragile devices, which are challenging fabrication 
issue [24–27].

4.4 Acoustic Wave Sensors
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The SH-APM device uses a thin plate/piezoelectric substrate acting as an acous-
tic waveguide to limit the energy between the plate’s lower and upper surfaces. The 
detection can happen to both surfaces which undergo displacement, where one side 
encloses the interdigital transducers, which are isolated from the conducting gases/
fluids, whereas the other side is used as the sensor.

The BAW biosensors engage either shear or longitudinal waves. However, in the 
medium of interest, the shear-based acoustic wave biosensors are desired as they 
reduce the acoustic radiation. The BAW devices entail parallel electrodes located on 
the both sides of the crystal’s thin piece. The BAW sensors can precisely use any 
piezoelectric element, especially the quartz due to its inexpensive costs and its sim-
ple synthesizes. Moreover, at high temperatures, the quartz thin disks are more sta-
ble compared to other piezoelectric materials. Between the biosensor two electrodes, 
potential differences and the crystal shear deformation occur, when applying an 
alternating electric field.

Consequently, across the quartz bulk, a mechanical standing wave oscillation 
occurs with a vibration frequency that depends on the quartz properties, including 
the phase, size, and density. Recently, the SH-APM sensor, the TSM resonator, the 
flexural plate wave sensors, and the thin rod acoustic wave sensors are the most 
prevalent BAW sensors [28].

4.4.2  Surface Acoustic Wave Sensors

The SAW travels near/along the piezoelectric material surface dissimilar to the 
BAW, which interacts only with the environment at the material opposite surface 
by traversing via it. The SAW sensors are used to measure the viscosity, tempera-
ture, chemical/biological entities, acceleration, pressure, and concentration. This 
acoustic wave sensor consists of piezoelectric substrate, electrodes (micrometal-
lization patterns), active thin films, and interdigital transducers (IDT). The piezo-
electric device senses small changes in the mass at the sensor surface, where the 
electrodes on the piezoelectric substrate surface transmit/receive acoustic waves. 
These waves are limited to the piezoelectric substrate surface, and the excited 
wave propagates along the crystal surface. Thus, the velocity of the surface wave 
changes due to the viscosity or mass changes. The SAW device’s operating range 
depends on the crystal substrate acoustic velocity and IDT wavelength, which is 
ranging from MHz to the GHz.

A surface wave is the propagating wave on the substrate surface. The surface 
transverse wave (STW) sensor and the surface acoustic wave sensor are the broadly 
used surface wave devices. The Rayleigh waves have vertical and longitudinal shear 
components, which can be coupled with the contacting medium to the device sur-
face. This coupling affects the velocity and amplitude of the wave, which empowers 
directly the SAW sensors to sense the mechanical and mass properties. Additionally, 
the SAW device can be used as microactuators due to its surface motion. The veloc-
ity of the generated wave has less magnitude compared to the consistent electro-
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magnetic wave by about five times. This makes the Rayleigh surface wave propagates 
in solid, where the wave amplitudes are about 10 Å with wavelength within the 
1–100 microns range. The SAW sensor operates at frequencies from 25 to 500 MHz. 
However, its disadvantage is due to the Rayleigh waves, which are surface-normal 
waves that make the SAW sensors poorly suitable for liquid sensing, when con-
tacted by a liquid as excessive surface wave attenuation occurs [29–32].

The technology of the SAW filter design is predominately fitted the infrastruc-
ture industry. Figure 4.1 illustrates the simple structure of the SAW device. It entails 
a IDTs pair of input/output transduction, and a delay path in the middle, which is 
coated with a sensing film to propagate the acoustic wave.

The SAW devices are used individually or in arrays as sensors in several applica-
tions including gas, vapor, and biological systems. Several acoustic wave devices 
are explicit to their operational phase. The SAW sensor’s operating frequency is 
from 25 to 500 MHz. The main disadvantage of such devices is their unsuitability 
for liquid sensing due to the Rayleigh waves, which are surface-normal waves. 
Consequently, once the SAW sensor is contacted with liquid, an extreme surface 
wave attenuation occurs [33–35].

4.5  Acoustic Wave Propagation Modes

Commercially, acoustic wave filters/devices are widely used in medical applica-
tions, base stations, and mobile cell phones. In the transceiver electronics, the SAW 
devices can be considered as band-pass filters in both the intermediate frequency 
and radio frequency ranges. Sensors are one of the evolving applications of the 
SAW, including medical applications using chemical sensors, automotive applica-
tions using pressure sensors, and commercial/industrial applications using mass/
temperature sensors. Acoustic wave sensors are very sensitive, intrinsically rugged, 
and essentially reliable. In addition, some of them can be wirelessly interrogated 
without any required sensor power.

The wave propagation mode is considered the descriptive characteristic of the 
acoustic wave devices. These waves are the ones that path over or on the piezoelec-
tric material. Mainly, the acoustic waves are recognized by their displacement direc-
tions and velocities. Several arrangements are potential based on the boundary 
conditions and used material [36–40]. The integrated device technology (IDT) of 
each sensor offers the necessary electric field to relocate the material (substrate) for 
forming the acoustic wave. At the IDT on the other side, the wave transformed back 
into an electric field once it propagates through the substrate.

Fig. 4.1 Layout of the SAW sensor
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Chapter 5
Acoustic Sensors in Biomedical Applications

Abstract The biomedical engineering domain is concerned with physiological 
modeling, biomaterials, biomechanics, control and simulation, etc. Biomedical sen-
sors are considered the most vital parts in the biomedical engineering. These sen-
sors enable the biologic events detection and conversion to signals. The biomedical 
sensors receipt signals that represent the biomedical measurements and convert 
them into optical or electrical signals. Thus, the biomedical sensor acts as an inter-
face between the biological feature and the electronic system. Sensor specialists and 
biomedical engineers are interested to process and design sensors for several appli-
cation problems. This chapter introduces some examples of the acoustic sensors in 
different biomedical applications.

5.1  Acoustic Waveguide Sensor for Chemical Detection

Biosensors can detect chemicals in the body liquids, which are fabricated using the 
thickness shear mode (TSM) resonator, which is a BAW device, and the SH-SAW 
sensors. This is due to the fact that the SAW device has attenuated waves and poor 
performance in liquids as the propagating wave’s vertical component will be blocked 
by the liquid. Additionally, for liquid sensing, the Love wave acoustic sensor, which 
is the superior class of the SH-SAW, has the maximum sensitivity [1]. In addition, a 
complete biosensor is formed by placing a bio-recognition coating on the wave-
guide coating. Gizeli et al. [2] designed a direct immuno-sensor using a transducer 
based on acoustic wave device of acoustic waveguide geometry supporting the Love 
wave. A gold layer was used, where the bio-recognition surface formed on. The 
adapted surface was employed as an immuno-sensor model, which effectively 
sensed rabbit anti-goat IgG in the 3  ×  10–8–10–6  M concentration range. Each 
binding step’s specificity has been considered by the acoustic wave device.

In the Love wave device, on a substrate, the shear wave transmits in the low shear 
acoustic velocity material (upper layer) with a higher shear acoustic velocity, thus, 
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representing bilayer geometry. At a specific frequency, the Love wave device pro-
vides huge design suppleness, where the energy limitation is determined by depos-
ited overlayer thickness and the acoustic properties. The inelastic polymer layer on 
top of the quartz substrate guarantees the sensitivity of the waveguide surface struc-
ture. This device can work in the liquid existence without losses owing to the mode 
conversion of the wave shear nature. In the liquid sample, within about 60 nm from 
the device surface, the evanescent field of the shear acoustic wave probes’ electric, 
viscosity, and mass changes occurs. Consequently, by monitoring the acoustic wave 
propagation characteristics, including the frequency, phase, and amplitude, it is 
probable to detect the binding kinetics and obtain the corresponding acoustic to the 
optical immuno-sensor.

5.2  Stethoscopic Sensor for Respiratory Sound Recording

On the chest surface, the respiratory sounds can be recorded for diagnosis within the 
frequency ranges from 70–80 to 1000  Hz. For recording the respiratory sounds, 
there are three acoustic sensor types that can be in contact with the body surface, 
namely, the so-called contact sensors [3], stethoscopic sensors with microphones 
[4], and the acoustic accelerometers [5, 6], where a sensitive piezo-element is placed 
between the chest’s surface and the housing. Adequate accurate mechanic- acoustical 
undistorted conversion of the phase-frequency and amplitude-frequency characteris-
tics of the used acoustic sensors is essential. Such required characteristics in the 
100–700 Hz frequency range can be achieved by employing an oscillatory displace-
ment receivers founded on heavy stethoscopic sensors. This arrangement is sup-
ported with a microphone to be fixed in the neck along with a dynamic force receivers 
founded on heavy sensors with a longitudinal deformed piezo-transducer between 
the sensor housing and the body surface as proposed by Korenbaum et al. [3]. The 
authors analyzed a theoretical model, including a receiver and a vibrational system 
representing the biological tissues with concentrated parameters. A comparison 
between the model estimations and the results of the sensor’s characteristics on the 
surface of the chest was conducted. There are different components of the proposed 
system for the respiratory sounds recording using the stethoscopic sensor [3].

Korenbaum et al. designed a stethoscopic sensor of the following parts: (a) the 
stethoscopic sensor device, including a microphone with preamplifier and stetho-
scopic attachment; (b) the light accelerometer device, including the bimorphic 
piezo-element, the base, the cable input, the preamplifier, and the housing; (c) the 
contact sensor device with longitudinal piezo-element, including the ring bearing 
element, the ring piezo-transducer, the heavy housing, and the housing lid; and (d) 
the contact sensor device with bent piezo-element, including the elastic plate, the 
round piezoplate, the housing, the cable input, and the preamplifier [3].

The stethoscopic sensor operation according to its parts can be explained as 
follows: a medical stethoscope is working with a built in microphone at frequen-
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cies of f >  > f0. A longitudinal wave travels from the chest due to the wave dimen-
sions compactness of the chest-piece-ringed edge on the body surface as well as 
the biological tissues’ small viscosity. The light accelerometer includes a bimor-
phic flexural piezo-element as a sensitive element, where this acoustic sensor 
under the resonance condition of its sensitive element during the operation at 
f <  f0/(1.5 – 2) will produce accelerating vibrations with the chest surface. The 
contact acoustic sensor is displayed, where a sensitive piezo-element is placed 
between the chest surface and the sensor housing. Thus, sensors are created with a 
longitudinally deformed and flexural piezo-element, which represents a light sen-
sor atf >  > f0 [3].

Generally, a common characteristic of all acoustic receivers’ types is the deter-
mined deferment resonance, which depends on the sensor’s mass and the biologi-
cal tissues’ hardness at the contact with the chest surface. Furthermore, the 
physical accuracy of the used acoustic sensors is owing to the following: (i) at 
frequencies higher than the suspension resonance, the stethoscopic receiver with a 
microphone acts as an oscillatory displacement receiver; (ii) at frequencies lower 
than the suspension resonance, the accelerometer acts as an oscillatory accelera-
tion receiver; and (iii) at frequencies lower than the piezo-element’s natural reso-
nance and higher than the suspension resonance, the contact sensor acts as a 
dynamic force receiver.

5.3  Heart Sound Analysis in Clinical Diagnosis

The acoustic stethoscope is the main device to hear the HS. For diagnosing the car-
diac disease, the direct auscultation is considered a conventional method. However, 
the HS interpretation requires sufficient physiologic knowledge about the cardio-
vascular system. The HS recording as a waveform form is called phonocardiogram 
(PCG) for visual inspect of the heart sounds. Valvular cardiac dysfunctions detec-
tion can be done using auscultation based on advanced signal processing techniques 
for acquisition to collect the HS samples and analysis of the HSs to diagnose the 
heart pathologic conditions [7].

Clinical diagnosis requires effective computer modeling of the diagnosis based 
on digital signal processing procedures to measure the data and its samples for fur-
ther analysis as an overall system that shows what happens after acquiring such 
signals. The cardiovascular processes complexity is limitless, which requires math-
ematical models. Essentially, these processes rely on several transformations to 
characterize the system. The mechanical body processes create sounds that indicate 
the individual’s health status to diagnose the patients with cardiovascular condi-
tions. Any noteworthy variation in the PCG waveform is considered a sign or symp-
tom of pathology [8].

During the heart valve closure, the normal heart sounds are produced, while 
the murmurs are produced by turbulent blood flow due to the leaking/narrowed 
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valves, which is a public abnormal heart phenomenon. The murmurs are recog-
nized from the basic HSs as they have a longer duration. Thus, the interpretation 
of the PCG waveform is essential to identify the heart abnormality cases. The 
phonocardiogram interpretation is a very challenging task owing to the param-
eters, which influence the HS generation and transmission along with the heart 
pathological condition that may not be identified in the raw time domain PCG 
signal, where for clinical diagnosis, the limitations of the PCG include [9] (i) the 
presence of noise and artifacts that mask the weak HSs, (ii) failed presentation of 
the HS information in the frequency components, (iii) absence of the energy varia-
tion information in the different sounds and the incapability to distinguish between 
the separated frequencies of different sounds, and (iv) complex identification of 
specific HS boundaries.

However, the PCG signals comprise features, such as the S1 representing the 
heart sound and S2 representing the location, the number of the sound components, 
and their time interval and frequency contents. These features can be measured 
using digital signal processing procedures. The HS analysis includes three phases, 
namely, (i) segmentation to identify the complete heartbeat borders, (ii) feature 
extraction to compute the distinctive parameters/characteristics of the cardiac cycle, 
and (iii) classification to determine the HS nature based on the distinct characteris-
tics. Since the frequency spectrum characterizes the signal frequency components, 
the Fourier transform is used to determine the frequency-amplitude representation 
of a signal. Several studies have been conducted for clinical diagnosis of the heart 
sound signal analysis based on the Fourier transform [10]. Nevertheless, there is 
an overall consensus, lack of the research studies, and the inter-patient flexibility 
of signal processing procedures. In addition, the clinical validation of the analysis 
methods is insufficient, where measurement processes and data integrity are still in 
doubt. Consequently, several machine learning and soft computing techniques are 
raised to solve the different medical signal processing stages.
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Chapter 6
Conclusion

This book introduces the basic definitions of the sensors, the biosensors and their 
features, and the equivalent components, amplifiers, filters, and bio-measurement 
systems for further circuit design. It describes and categorizes the mainstream 
acoustic wave biosensors, including the utilization of the bulk acoustic waves and 
analysis devices, which imply surface acoustic waves. In addition, the use of the 
piezoelectric substrates of the acoustic sensors design is included. The different 
types of the biosensors are presented. Several applications of the acoustic biosen-
sors are introduced.

Biomedical signals represent physiological activities and observations of the dif-
ferent living organisms extending from protein/gene sequences to cardiac rhythms, 
tissues, and organs. Biosignal is any signal that transduced from a medical or bio-
logical source ranging from the cell level, molecular level, or organic/systemic 
level. In the clinics and laboratories, a broad diversity of such signals is usually 
encountered. Such biosignals include the speech signals, the ECG, the EEG, the 
electroneurogram, and the EMG. These biomedical signals are clinically acquired 
to monitor (detect/estimate) a specific physiological/pathological conditions for 
diagnosis and therapy. Furthermore, acquisition of multiple biosignal channels is 
available leading to extra challenges in the biosignal processing methods to measure 
the physiological meaning of the interactions between the different channels.

The processing of these biosignals aims to extract the imperative information 
from the biosignals after filtering to remove noise using biomedical signal process-
ing algorithms. Since the organisms are multifaceted systems as their subsystems 
interact together, the measured biosignals typically hold the other subsystems’ sig-
nals. Thus, removing the unwanted signal components is essential. The ultimate 
techniques for noise cancelation analyze the signal spectra to suppress the unwanted 
frequency components. Generally, the noise that affects the biosignals arises from 
the biological systems under study, the electronic instruments, and the power line 
interference.
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For remote monitoring, sensors without operating power requirements are 
extremely desirable while measuring and sensing temperature, for example. 
Typically, sensors have different applications including measuring viscosity, angu-
lar rate, shock, acceleration, force, blood flow, and the displacement. Additionally, 
the sensors have an acoustoelectric sensitivity to detect the ionic contaminants, the 
electric fields, and the pH levels. In healthy and diseased situations, the only infor-
mation source to describe the human body functionality is the biosensors to detect 
and convert the physiological measurements to electrical ones. The obtained biosig-
nals are natural and original. Researchers are interested to develop new biosensors 
for processing, measurement, interpretation, and analysis. Typically, a biosensor 
can be defined as any hardware component which interacts with the physiological 
or biological system to obtain a medical signal for diagnosis and therapy. After 
gathering the medical data using the biosensors, processing phases are applied using 
biosignal processing methods toward automated interpretation. Since the body 
sends out weak electrical signals that are captured and transformed into informa-
tion, researchers are interested to isolate the noisy signal that affected by other body 
signals to deliver a real-time display of the biosignal under concern.

Acoustic wave sensors are enormously adaptable devices, which are very sensi-
tive, intrinsically reliable, inherently rough, and can be interrogated wirelessly and 
passively. Generally, the SAW sensors have verified to be the most sensitive due to 
their large energy density on the surface. However, for liquid sensing, the SH-APM 
sensors called the Love wave sensors demonstrated to be the most sensitive. 
Recently, several studies and extensive research work are continuing to develop 
these sensors for future medical applications and to design sensors with less power 
consumption with long battery lifetime and to handle the high attenuation caused by 
the body tissues.

There are numerous applications of the sensors in all domains. The SAW tech-
nology was used initially in the pressure sensor fabrication, where their velocities 
are affected strongly by applying stress to the piezoelectric substrate through which 
the wave is propagating. These SAW pressure sensors are rugged, extremely small, 
wireless, and do not require power (passive). In addition, the temperature sensor can 
be fabricated from crystalline material, where the surface wave velocities depend on 
the temperature and can be determined according to the used material type and ori-
entation. Based on the SAW delay line oscillators, this sensor can have low hyster-
esis, high resolution of millidegrees, and good linearity. Nevertheless, this 
temperature sensor is very sensitive to the mass loading. Recently, the, surface- 
skimming, ST-cut quartz bulk wave proved its efficiency as a temperature sensor 
with less sensitivity to the mass loading compared to the SAW sensors.

In the medical domain and healthcare, the acoustic sensors have a vital role. The 
acoustic monitoring technology has several applied applications in the wearable 
devices and to monitor the patients acoustically [1–3]. Furthermore, the wireless 
acoustic sensors have been used in the phonocardiograph, which is an instrument 
for recording the heart sounds of the pumping action. Wireless phonocardiography 
sensors in the heart sound acquisition become essential [4–6]. The acoustic sensors 
have also another medical application for detecting the coronary artery diseases 
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acoustically [7] and in the hearing aid application [8–11]. The machine learning 
techniques play an imperative role in the processing phases of the captured signals 
by the acoustic sensors in the different applications [12–17].
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