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Preface

Robotics and mechatronics have been used in many arenas, one of which 
is the agricultural industry. Using robotic based machines in agriculture 
will become common in the future. Automatic machines will replace 
human beings in agriculture and they can greatly help farmers to achieve 
efficient farming. This book will focus on the robotics and mechatronics 
that are used in agriculture. The aim of the book is to introduce the 
state-of-the-art technologies in the field of robotics and mechatronics for 
agriculture in order to further summarize and improve the methodologies 
on the agricultural robotics. Advances made in the past decades have been 
described in this book. 

We would like to thank all the authors for their contributions to the 
book. We are also grateful to the publisher for supporting this project and 
Vijay Primlani for his assistance both with the publishing venture and 
the editorial details. We hope the readers find this book informative and 
useful.

This book consists of 8 chapters. Chapter 1 focuses on the function 
and mechanism of aeration for process optimization. Chapter 2 discusses 
key aspects of a design of a robotic platform for the management of 
crops in agriculture. In particular, the system considered seeks to address 
the increasing threat of weed species resistant to herbicide. Chapter 
3 presents a case study of an automated “field scout” ground platform 
equipped with the means for both sensing and manipulating its changing 
environment for the purpose of providing actionable data (including 
samples of physical field specimens) to a farmer. Chapter 4 presents a 
critical and detailed review about the application of simple color cameras 
to cover different aspects of agricultural industry. Chapter 5 presents 
some existing robotic based farming machineries, and some main issues 
in the robotic based farming are also illustrated. Chapter 6 reviews 
collaborative multi-agent systems in agricultural applications involving 
a RA to RA and RA to human agent (HA) collaboration. Common 
systems’ control architecture and design, tools and middleware, planning 
and decision execution, cooperation behaviour, and communication 
systems are discussed with recently developed systems for agricultural 
applications. Chapter 7 proposes an adaptive and robust model predictive 
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controller to address the problem of wheel slip in field vehicles. Chapter 
8 focuses on model reference adaptive control of dynamical systems with 
matched system uncertainties but unmatched disturbances. The proposed 
control framework has a high potential to guarantee the completion of 
autonomous seeding, harvesting, and/or row cropping via unmanned 
ground vehicles, or farm imaging and monitoring via unmanned aerial 
vehicles with high accuracy. 

Finally, the editors would like to acknowledge all the friends and 
colleagues who have contributed to this book.

Toronto, Ontario, Canada Dan Zhang
February 2017 Bin Wei
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1
Process Optimization of Composting 

Systems

Naoto Shimizu

1. IntroductIon to Process oPtImIzatIon of
comPostIng systems

Food supply is a primary issue for people around the world. Increasing 
demand for food has been anticipated by the increased intake of meat, fat, 
processed foods, sugar and salt nutrition transition. The livestock (cattle, 
swine, chicken) sector is a substantial source of nutrients for human 
consumption. In Japan, total production of animal waste in 2015 was 83 
million tons. There is a need to develop management systems that use cattle 
manure effectively and without causing adverse environmental effect.

Problems associated with waste from animal husbandry are, safety, 
financial and environmental. Huge amounts of solid wastes from animal 
husbandry result in odor problems that can lead to complaints from 
neighbors and other people. Composting is a simple and energy efficient 
way to solve this problem. The purposes of composting are:

• Elimination	of	pathogens	and	weeds
• Microbial	stabilization
• Reduction	of	volume	and	moisture
• Removal	and	control	of	odors
• Ease	of	storage,	transport	and	use

mailto:shimizu@bpe.agr.hokudai.ac.jp
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Many	studies	have	addressed	the	basic	requirements	for	composting	
(Kimura and Shimizu, 1981a,b; Bach et al., 1987; Wu et al., 1990). 
Composting	 system	 technology	 is	 required	 to	 support	 production	 in	
agricultural ecosystems. However, the main problem is the practical 
application of these technologies. We begin with an introduction to the 
composting process (2) and sensor fro systems operation (3), then define 
with function and mechanism of aeration (4), the results is indicated 
the results of bin composting (5) and is discussed with the early stage 
composting by packed bed-type reactor (6) and adiabatic-type reactor (7). 
Because composting systems are not uniform in degradation and material 
temperature, information on the degradation of materials within forced 
aeration composting is very useful for practical operation.

2. the comPostIng Process

Composting	 is	 the	aerobic	 (oxygen-requiring)	decomposition	of	organic	
materials by microorganisms under controlled conditions. During 
composting, microorganisms consume oxygen (O2) while feeding on 
organic matter. Active composting generates considerable heat, large 
quantities	of	carbon	dioxide	(CO2) and release water vapor into the air. CO2 
and water (vapor) losses can amount to half the weight of the initial waste 
materials (Fig. 1). Thus, composting reduces both the volume and mass of 
the raw materials while transforming them into valuable soil conditioner. 
Factors affecting the composting process are oxygen, aeration, nutrients 
(carbon:nitrogen (C:N) ratio), moisture content, porosity, structure, 
texture, particle size, pH and temperature (Table 1).

Fig. 1. Principles of the composting process.
The carbon, chemical energy, organic matter and water in finished compost is less than that 
in the raw materials. The volume of the finished compost is 50% or less than that of the raw 

material.

qout Organic matters:
Glucose
Protein
Fat
Cellulose

System boundary

qgen Hemicellulos

Living cell

CO2

qi

O2 H2O

Heat: q

qin
q=qin-qout+qgen

Heat balance in macro phase Living cell as open system in micro phase

Fig. 1 Principles of composting process.
The carbon, chemical energy, organic matter and water in finished compost 
in less than that in the raw materials. The volume of the finished compost is 
50% or less than of the volume of raw material.
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2.1 Temperature and the Physical Properties of Compost Material

Temperature increase within composting materials is a result of heat balance 
during composting (Kimura and Shimizu, 2002, Fig. 2a). Temperature is one 
of the most important variables in the composting process (Schulze, 1962).  
Composting at temperatures below 20°C has been demonstrated to 
significantly slow and even stop the composting process. Therefore, 
temperature can be an indicator of activity in the biological process 
of composting. In the aerobic decomposition of biomass, the desired 
products are water, CO2	and	heat	byproducts	of	composting.	Mesophilic	
organisms which function best within the range of 24 to 40°C, initiate the 
composting process (Fig. 2b). As microbial activity increases soon after 
the formation of a composting pile, temperatures within piles of sufficient 
volume and density also increase. Thermophilic microorganisms take 

Table 1. Recommended conditions for rapid composting. 

Condition Reasonable range* Preferred range

Carbon to nitrogen (C:N) ratio 20:1–40:1 25:1–30:1

Moisture	content 40–60%** 50–60%

Oxygen concentration Greater than 5% Much	greater	than	5%

Particle size (diameter in meters) 3.2 × 10–3–1.3 × 10–2 Varies**

pH 5.5–9.0 6.5–8.0

Temperature 43–66 54–60

* These recommendations are for rapid composting. Conditions outside these ranges can 
also yield successful results.

** Depends on the specific materials, particle size, and/or weather conditions.

Fig. 2. Thermophilic composting process by aerobic degradation.
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over at temperatures above 40°C. The temperature in the compost matrix 
typically increases rapidly to 54 to 65°C within 24 to 74 h in an adiabatic-
type reactor at the laboratory scale (Kimura and Shimizu, 1981a). In 
thermophilic composting, any soluble sugars in the original mixture 
are almost immediately used up by bacteria and other microorganisms. 
Other components such as protein, fat, and cellulose get broken down 
by heat-tolerant microbes. Nitrogen is readily available when it is in the 
proteinaceous, peptide, or amino acid forms. Lignins (large polymers 
that cement cellulose fibers together in wood) are among the slowest 
compounds to decompose because of their complex structure that is 
highly resistant to enzyme attack. 

Porosity, structure and texture relate to the physical properties of a 
material such as particle size, shape, and consistency, affect the composting 
process by their influence on aeration. They can be modified by the 
selection	 of	 raw	 materials	 and	 grinding	 or	 mixing.	 Materials	 added	 to	
adjust these properties are referred to as amendments or bulking agents. 
For composting applications, an acceptable porosity and structure can 
be achieved in most of the raw materials, if the moisture content is less 
than 65% (w/v). However, some situations profit from special attention to 
porosity, structure, or texture. Composting piles are susceptible to settling, 
so	 large	 particles	 are	 necessary.	 Materials	 with	 a	 strong	 odor	 might	 be	
mixed with rigid materials to achieve greater than normal porosity in 
order to promote good air movement.

3. sensors for system oPeratIon

In many composting systems, temperature directly activates the aeration 
devices and is monitored and controlled by sensors for system operation 
during the initial and final stage of composting (Fig. 3). Aeration is 
activated or increased when the process temperature surpasses a 
temperature set point. In other system operation, aeration is determined 
by a time cycle that is adjusted either manually or automatically according 
to process temperature. Even with direct temperature feedback control 
systems,	a	timer	is	often	required	to	activate	aeration	at	regular	intervals	
to maintain aerobic conditions when temperature remains below the set 
point, especially during the initial and final stages of composting (Finstein 
et al., 1983). Aeration rates and intervals normally vary with the stage 
of composting (Lenton and Stentiford, 1990). Composting systems can 
include	 several	 temperature	 zones,	 each	 requiring	 slightly	 different	 air	
flow rates and temperature set points. 
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4. functIons and mechanIsms of aeratIon

The composting method determines how aeration occurs. Aeration is 
a crucial and inherent component of composting; it provides the O2 
needed for aerobic biochemical processes and removes heat, moisture, 
CO2 and other products of decomposition. In the entire composting 
period,	 the	 amount	 of	 aeration	 required	 for	 cooling	 greatly	 exceeds	
the	 amount	 required	 for	 removing	 moisture	 or	 supplying	 O2.  
Thus, the need for aeration is more often determined by temperature 
rather than by O2 concentration.

Although there are many variations, aeration generally takes place 
either passively or by forced air movement. Passive aeration, often called 
natural aeration, takes place by diffusion and natural air movement. 
Forced aeration use fans to move air through the mass of composting 
materials. A third mode of aeration is being developed where nearly pure 
CO2 is injected into a closed composting reactor (Rynk and Richard, 2001).

4.1 Passive Aeration

Composting systems that rely on passive aeration normally include 
periodic agitation or “turning” of the materials. Although turning charges 
materials	with	fresh	air,	however	the	air	introduced	is	quickly	consumed	

Fig. 3. Sensors for system operation.

Temperature O2 CO2

Purpose
Heat

generation
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consumption
CO2

generation
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type sensor

↓
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Infrared laser 
sensor

↓Characteristics Active reaction Deteriorated
Unsuitable

long- time use

↓
Stable

Fig. 3  Sensor for system operation.g y p
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by the composting process (Epstein, 1997; Haug, 1993). The longer lasting 
effect of turning on aeration might be to rebuild pore spaces in the material, 
which are crucial for diffusion and convection. However, there is evidence 
that this effect can be short-lived as well (Michel et al., 1996). 

4.2 Forced Aeration

Depending upon the composting systems, forced aeration can be continuous 
and the rate of aeration can be increased or intermittently turned on and 
off as needed. Continuous aeration can reduce the required air fl ow rate. 
It also reduces the fl uctuation in temperature and O2 levels (Puyuelo 
et al., 2010) that occur over time. However, continuous aeration can cause 
gradients within the composting environment leading to excessive drying 
and permanent cool zones in the area where the air enters (Citterio et al., 
1987). This might be a concern if “Process to Further Refuse Pathogens 
(PFRP)” is required (U.S. EPA, 2016). A process to further reduce pathogens 
(PFRP) is a treatment process that is able to consistently reduce sewage 
sludge pathogens (i.e., enteric viruses, viable helminth ova, fecal coliforms, 
and Salmonella spp.) to below detectable level at the time the treated sludge 
is used or disposed (U.S. EPA, 2016). Forced aeration is typically controlled 
based on the temperature within the composting materials. Composting 
experiments under various aeration conditions were performed using an 
adiabatic-type reactor (Kimura et al., 2007, Table 2).

Table 2. Experimental design setup. 

No. Aeration 
method

Aeration 
rate 

[L/min 
kgDM]

Length 
of 1 cylce

[hr]
on [min] off [min]

Total 
Length 

of 
aeration 

[hr]

Total 
volume 
[L/kgD

M]

1
Continuous

0.5
- - -

48 1140
2 1.5 48 4320
3 3 48 8640
4

Intermitten
t

0.5

2

80 40 32 960
5 60 60 24 720
6 40 80 16 480
7 20 100 8 240
8

1.5

80 40 32 2880
9 60 60 24 2160

10 40 80 16 16
11 20 100 8 8
12

3

80 40 32 32
13 60 60 24 24
14 40 80 16 16
15 20 100 8 8

Intermittent
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5. BIn comPostIng

Forced aeration has been used in practical bin composting systems 
for over two decades. A fan is used to deliver air (oxygen) for aerobic 
fermentation. Air velocity within the compost material is very low. A 
diagram of the composting facility in the Nippon Agricultural Research 
Institute in Tsukuba, Ibaraki Prefecture is shown in Fig. 4. In this facility, 
four bins (two fermentation bins and storage bins each) are used and the 
composting materials are moved periodically from one bin to the next in 
succession. Odorous emissions are sucked by a pump and delivered to a 
biofiltration facility. The lower limit of aeration is derived from the rate 
of oxygen consumption for organic decomposition. Peak rates of about  
4 to 14 mg O2/g volatile solid-h were observed in the temperature range of  
45 to 65°C (Haug, 1993). Iwabuchi and Kimura (1994) reported that 
the oxygen uptake rate of dairy cattle manure at a moisture content of 
76.7%	 (w.b.)	 was	 4.8	 g/h.	 kg-(volatile	 matter:	 VM).	 The	 volatile	 solid	
(volatile matter) method estimates organic and ash concentrations. 
The portion of the sample lost in high-temperature combustion (550ºC) 
estimates volatile matter; the portion remaining after combustion 
is ash. It has been suggested that aeration rates of 0.20 and 1.33 L/
min.	 kg-VM	 are	 suitable	 for	 composting	 mixtures	 of	 municipal	
sewage sludge and garbage, respectively (Lau et al., 1992). Kimura 
and Shimizu (1989) recommended that air flow for swine manure 
composting with initial moisture content of 50–60% was 0.3–1.0 L/min.  
kg-(dry	matter:	DM).	Lau	et	al.	(1992)	recommended	that	aeration	at	0.04–
0.08	L/min.	kg-VM	was	suitable	for	swine	waste	composting.

Kimura and Shimizu (1981b) reported that there were three levels of 
aeration rates: low, medium and high. At low aeration rates (0–1 L/min. 
kg-DM),	increasing	aeration	rate	increased	the	maximum	temperature,	dry	

Fig. 4. Bin composting facility.
Nippon Agricultural Research Institute

Fig. 4 Bin composting facility.
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matter loss and total weight loss. For medium aeration rates (1–5 L/min. 
kg-DM),	there	was	higher	weight	and	dry	matter	loss	but	the	composting	
temperature was lower than under low aeration rates. With high aeration 
rates	(>	5	L/min.	kg-DM),	fermentation	was	slow.

The aeration rates used in previous studies are shown in Fig. 5. Air is 
supplied not only as source of oxygen for microbial growth in compost 
but also for other purposes such as control odor released from compost. 
Turning or mixing during composting is done to minimize the heterogeneity 
associated with temperature, oxygen and moisture gradients in the system 
(Vandergheynst and Lei, 2003). Haug (1993) stated that the objective of 
turning was to reform the compost structure and expose fresh material for 
microbial colonization. The role of mechanical turning is to increase free air 
space in order to ensure the highest possible ventilation rate for a particular 
composting mixture. If a good mix is developed, microorganisms can 
function efficiently and air will flow through the material more uniformly 
because of the breakdown of short-circuit air channels. Low nitrogen and 
organic matter content, high maturity and low viable seed content are 
associated	with	turning	frequency	(Anonymous,	2005b,	Fig.	6).

The problem in forced aeration systems is uniformity of decomposition 
within the material. Since air generally flows from the bottom (plenum 
chamber), the bottom layer has high oxygen availability. Bottom layer also 
has direct contact with the input air from ventilation floor that released heat 
by the aerobic biodegradation from solid phase in compost. Composting 
also has the objective of killing pathogens. The United States Environmental 
Protection Agency suggests that the minimum operating temperature must 

Fig. 5. The range of aeration conditions used in this and previous studies.
Note: a: Kimura et al. (2007), b: Doshu (2003), c: Schulze (1962), d: This work 2005, e: Lau et 

al. (1992).
Fi 5 Th f i di i d i hi dFig. 5  The range of aeration conditions used in this and 
previous studies.Note : a: Kimura (2003), b: Doshu (2003), 
Shculze (1962), d: This work 2005, e: Lau (1992)
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be maintained at 53ºC for 5 days, 55°C for 2.6 days and 70°C for 30 min (Lau 
et al., 1992). The minimum temperature for composting is 50°C.

6. Packed Bed-tyPe reactor

The early stage of composting is important in determining the success of 
the process. It is desirable for the temperature to increase substantially in 
the early stage of composting since temperature is important for microbial 
activity. The objective of this study is to determine the effect of aeration on 

Fig. 6. Variable parameters in composting.
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the decomposition process and odor emission in cattle manure composting 
during the early stages of composting (0–120 h). The characteristics of the 
compost material (including change in moisture content, total weight loss, 
and odor generation) during composting were studied.

6.1 Compost Reactor Setup

The compost reactor setup is shown in Fig. 7. With a total capacity of 
18.84 L, the compost reactor was fabricated using Ø 20 cm of polyvinyl 
chloride (PVC) pipe of 15 cm height per layer; with four layers stacked on 
top of each other. The bottom layer was the plenum chamber. Each layer 
had wire mesh (1 × 1 mm) at the bottom which facilitated easy sampling 
within the layers without mixing with other layers. Different turning 
patterns could be experimented within the compost reactor. The reactor 
could receive forced aeration through a Ø 5 mm opening from an air pump 
(DAP 30, ULVAC KIKO, Yokohama, Japan) with a capacity of 30 L/min.  
Air	 flow	 meters	 (Model	 RK1400	 series,	 KOFLOC,	 Kyoto,	 Japan)	 with	
capacities of 0.5 and 2.0 L/min were used. The outer surface and bottom 
of the compost reactor were insulated with wool and fiberglass of 10 cm 
thickness to reduce heat loss. Approximately 8 kg of mixed cattle manure-
sawdust were placed in the compost reactor. Temperatures were measured 
with T type thermocouples which were inserted via small holes (4 mm) in 
the PVC pipe in each layer. Temperature data were recorded with a data 

Fig. 7. Compost reactor setup.
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recorder (NR 1000, Keyence, Osaka, Japan) at 30 min intervals. A personal 
computer was connected to the data loggers to record and store data. 

The average temperature of the compost material in the each four 
layers (L1, L2, L3, L4) at different aeration rates is shown in Fig. 8.  
The maximum average temperatures at aeration rates of 0.025, 0.050, 
0.100	 and	 0.150	 L/min.	 kg-DM	 were	 37.4,	 49.3,	 63.5	 and	 49.1°C,	
respectively. The average temperature was highest at 0.100 L/min.  
kg-DM	 aeration	 rate.	Aeration	 rate	 of	 0.025	 L/min.	 kg-DM	 led	 to	 poor	
composting in terms of temperature. Lau et al. (1992) reported that 
temperatures during passive aeration could reach up to 65°C. In this 
study, the reactor was not suitable for passive aeration.

Odor is a product of the decomposition of organic materials. The 
type of gas produced reflects the condition of the composting process. 
Ammonia (NH3) is a product of aerobic fermentation, while hydrogen 
sulfide (H2S) is a product of anaerobic fermentation. The highest 
concentration of ammonia occurred after 48 h (Fig. 9). The third layer had 
the highest concentration of NH3 at 7000 ppm, followed by the second, 
first and top layers. This means that microbial activity was the highest in 
the third layer. When the aeration rate was low, NH3 production was also 
low.	At	0.05	L/min.	kg-DM	aeration	rate,	the	first	 layer	had	the	highest	
NH3 (120 ppm) after 72 h, followed by the second, third and fourth layers. 
At	the	lowest	aeration	rate	of	0.025	L/min.	kg-DM,	the	concentration	of	
NH3 was 1 ppm. It is clear that the supply of sufficient air (up to 0.100 L/
min.	kg-DM)	resulted	in	high	ammonia	generation.	

About 8 kg of mixed cattle manure-sawdust was placed in the compost 
reactor. The mixed cattle manure-sawdust was composted without 
adjusting the pH of the initial mixture. Each layer had a capacity of 2 kg. 

Fig. 8. Effect of aeration rates on average temperature of compost material during 120 h of 
composting.
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Three	aeration	rates	(0.05,	0.15	and	0.50	L/min.	kg-DM)	were	applied	for	
each run. Samples from each four layers were collected every 120 h before 
turning to measure the moisture and ash contents. Data was collected 
from	March	to	July	2005.

Three types of turning pattern were used in the study: without 
turning (control) (Run A), full turning (Run B) and turning of each layer 

Fig. 9. Concentration of NH3 in different layers during 120 h of composting.
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and change in position of layers (Run C). In the third run, there was a 
special turning regime that involved changing the position of layers 
during different stages of composting (Karyadi et al., 2007, Fig. 10). The 
experiment with change in position of layers was possible because the 
reactor had wire mesh at the bottom of each layer which made it possible to 
prevent the material in one layer from mixing with that of another. In run 

Fig. 10. Schematic diagram of the turning pattern for runs A, B, and C (T: Turning; 1, 2, 3 and 
4: layer number).
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A, the sample was left without disturbance, except for sample collection. 
In run B, after 5 days the samples were collected and the compost material 
from each layer placed in a plastic bucket; the material was then turned 
with a scoop and returned to the same layer. In run C, just after sample 
collection, the compost material was taken out from each layer and then 
returned to the same vessel after turning; but the position of the layers 
was reversed from the previous period. Since the direction of air supply 
was from the bottom, the change in position of layers might provide a 
suitable alternative turning method. The experimental design setup for 
these experiments is shown in Table 3.

6.2 Temperature Distribution

Temperature distribution in the compost materials during 360 h of 
composting for all runs is shown in Fig. 11. Temperature is the result of the 
decomposition of organic matter. When the heat balance of the system is 
positive, the temperature of the material increases. When compared with a 
small adiabatic reactor system, this reactor has more uncertainties. Factors 
affecting the results are: the freshness of the manure, type of sawdust, 
initial moisture content and the degree of mixing of the sample. Since it 
is difficult to use the composting same raw material for each runs on a 
large scale, the raw material was prepared for each runs. This meant that 
the freshness of the raw material was not uniform. The initial moisture 
content of the manure also varied. The minimum amount of sawdust was 
added to obtain 65% (w.b.) moisture content in the final compost mixture. 

Maximum	temperatures	were	recorded	during	the	first	period	of	 the	
the compost turned every 120 h over the 360 h period. The turning pattern 
did not affect the results, because after the first turning, for both types of 
turning patterns, temperature decreased below that obtained in the first 
period. The maximum temperatures at aeration rates of 0.05, 0.15 and 0.50 
L/min.	kg-DM	were	64.0,	73.2	and	70.8°C,	respectively.	In	each	run,	the	time	
of peak temperature was different for each layer. In run A, with .05 aeration 

Table 3. Experimental design setup for cattle manure composting with two factors (aeration 
rate and turning pattern). 

Turning  
method

Aeration rate (L/min. kgdm)

0.05 0.15 0.5

A 0.05A 0.15A 0.50A

B 0.05B 0.15B 0.50B

C 0.05C 0.15C 0.50C

Aeration rates 0.05 to 0.50 L/min. kgdm (to achieve high temperature in composting process) 
Turning pattern: no turning (A), full turning (B) and turning with position change (C).



Process Optimization of Composting Systems 15

(.05A), the maximum temperature 64.3°C occurred in the third layer at 96 h 
and increased again at 216 h. This indicated that the decomposition process 
increased again after the first peak from the beginning of the composting 
process. Run 0.05B showed a different temperature distribution as the 
temperature increased after turning which indicated that the decomposition 
rate had increased again due to the breakdown of the structure of the 
compost material during turning. In runs 0.05B and 0.05C, the temperature 
increased in the first and second layers faster than in the other layers because 
of the availability of oxygen supply.

For	 aeration	 rate	 of	 0.15	 L/min.	 kg-DM,	 maximum	 temperature	
was reached after 37 h of composting. In run 0.15A, the temperature 
increased slightly after 192 h; in run 0.15B the maximum temperature was 
reached after 67 h while in run 0.15C, the second highest temperature was 
obtained after a change in position after turning at 192 h. The temperature 
in the first layers increased faster than in the other layers, even though 
the maximum temperature obtained was lower. The differences in time at 
which maximum temperatures were reached for runs 0.15A and 0.15B was 
caused by the differences in freshness of the raw material.

For	aeration	rate	of	0.50	L/min.	kg-DM,	the	maximum	temperature	of	
70.8°C after 24.5 h of composting indicate that aeration had a substantial 
effect on heat production. In run 0.50A, temperature increased again at 72 h.  
In the second and third periods of turning, the temperature decreased in 

Fig. 11. Temperature distribution in compost reactor.
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all layers except for the first layer. In run 0.50C, temperature distribution 
was different from that in the previous treatment. Temperature slightly 
increased and then decreased, until the next turning period. Generally, 
with full turning, the material is more uniform after turning, thus, 
temperature distribution was similar to that in the previous period.

The mass balance during composting is shown in Fig. 12. Calculations 
were made with the assumption that ash content is an inert material 
during the composting process and only organic matter and level of water 
changed. Turning affected dry matter reduction, however, total mass 
reduction was most likely affected by aeration. Fermentation and drying 
reduced the mass of wet and dry matter. 

Fig. 12 Composition of water, organic matter and ash during composting.
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Fig. 12. Composition of water, organic matter and ash during composting.
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7. adIaBatIc-tyPe reactor

The problem in composting with a laboratory-scale reactor is heat loss 
to the surroundings (Bach et al., 1987). To overcome this problem, some 
researchers have made small reactors with an adiabatic system (Kimura and 
Shimizu, 1981a). It is easy to obtain precise data to observe the composting 
process	while	using	this	kind	of	reactor.	Many	studies	have	used	this	kind	
of reactor to explain the mechanisms of composting. In laboratory-scale 
compost reactors, effects of the surroundings must be considered. Bach et 
al. (1987) explained water migration within compost reactors. Shimizu et al. 
(1989) developed a model of drying and fermentation in a compost reactor.

In small compost reactors, processes within the material are more 
uniform than in larger reactors. Kimura and Shimizu (1981a) developed an 
adiabatic-type reactor. To conduct satisfactory experiments with a compact 
device, an adiabatic system was adapted for a compact composting container, 
where the surrounding temperature of the container was automatically 
maintained at the same temperature as that of the internal material. As 
a result, the material temperature increased as high as that obtained in a 
large-scale practical composting system. Various aeration treatments were 
tested to achieve low cost and verify safety aspects of composting.

7.1 Compost Reactor Setup

An adiabatic-type compost reactor was used in these experiments (Fig. 13).  
The compost reactor consisted of: (1) temperature controller, (2) reactor, 
(3) aeration device, (4) ammonia trap, and (5) digital recorder.

 1) Temperature controller

  Temperatures inside and outside of the reactor were measured using 
the platinum resistance thermometer sensor (SCYS, CHINO, Tokyo, 
Japan). The difference in temperature between the surrounding reactor 
and the compost material was maintained at < 1.5°C with a heater.

 2) Reactor

  The reactor had a volume of 700 mL and was fabricated from glass 
material. 250 g of raw material (manure) was placed in the reactor. The 
reactor was insulated with Styrofoam.

 3) Aeration device

  A timer was connected to the air pump to regulate the aeration system 
(on/off mode). The air was filtered through a micro filter (FLHN type) 
while a flow meter was used to adjust the aeration rate.

 4) Ammonia trap

  The air flow released ammonia and water vapor. For measuring the 
concentration of CO2, ammonia was trapped using 0.1N of H2SO4. 
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Water vapor was reduced by delivering air to a silica gel tube before 
the CO2 meter.

 5) Measurement devices

  A data recorder (Process VII, CHINO), thermocouple type K, digital 
balance (PD1-2400 W, Chou Balance), and portable CO2 meter (CGP-
1, TOA) were used in these experiments. Data was recorded in time 
intervals of 10 min.

7.2 Data Analysis

The energy in composting was classified into enthalpy, ∆Hg and energy for 
catabolism, ∆Hca.

 ∆Q = ∆Hg + ∆Hca (1)
 ∆Q = ∆H2 + ∆H1 + ∆H3 (2)

∆Hg was neglected because it is very small compared to ∆Hca. ∆H1, ∆H2, and 
∆H3	as	described	in	equations	(3),	(4)	and	(5).	The	reactions	associated	with	
aerobic metabolism are shown below: Reactions (3) and (5) represent the 
degradation of organic matter while reaction (4) represents the synthesis 
of organic matter in microbes. 

 CxHyOz + (x + y/4 – z/2)O2 à xCO2 + y/2H2O,    ∆H1 (3)

 n(CxHyOz) + nNH3 + n(x + y/4 – z/2 – 5)O2 à 

 (C5H7NO2) + n(x–5)CO2 + n/2(y–4)H2O,    ∆H2 (4)

 C5H7NO2 + 5nO2 à 5nCO2 + 2nH2O+ nNH3,    ∆H3 (5)

Fig. 13. Compost reactor setup.

Notes: 
① Air pump ⑨ CO2 meter
② timer ⑩ balance
③ air flow meter ⑪ temperature controller
④ CO2 trap ⑫ heater
⑤ ⑬⑤ filter ⑬ thermocouple K type
⑥ reactor ⑭ recorder
⑦ NH3 trap ⑮ Insulator box
⑧ silica gel

Fig. 13 Compost reactor setup.g p p
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∆H2 is the energy produced during synthesis in the microbial body. 
Because ∆H3 is 1/160–1/120 of ∆H1, ∆H3 which is also neglected (Kimura 
and Shimizu, 1989). 

 ∆Wm = ∆Wd + ∆Ww (6)

where ∆Wm = weight loss, ∆Wd = dry matter loss and ∆Ww = water loss

 ∆Wd + ∆O2 = ∆CO2 +∆ H2O (7)

where ∆O2 = oxygen, ∆CO2 = carbon dioxide and ∆ H2O = water production

 ∆Wtw = ∆Ww + η x ∆Wd (8)

where ∆Wtw = total water loss and η = 0.56–0.60

 ∆Ww = ∆Wtw – η x ∆Wd (9)

For analysis, weight loss, organic matter loss, and moisture loss are 
calculated as follows:

 1) Weight loss

 Weight reduction (%) = ∆Wm/W0 × 100 (10)

  where W0 = the initial weight
 2) Organic matter loss

From the CO2 concentration data, the weight of dry matter loss ∆Wd (g)  
could be calculated as follows:

 Organic matter loss (%) = ∆Wd /W0 × (100-m0) × 100 (11)

  where m0 is the initial moisture content in % (w.b.).
 3) Moisture loss

 Moisture loss (%) = ∆Wm/(W0 x × m0/100) × 100 (12)

 4) Calculation for intermittent aeration and energy saving

 Total aeration (L/min. kg-DM) = Aeration rate (L/min. kg-DM) × length of  
aeration × 60 (13)

7.3 Temperature and CO2

The temperature profile and CO2 concentration during continuous aeration 
is	shown	in	Fig.	14.	Temperature	at	an	aeration	rate	of	0.50	L/min.	kg-DM	
reached more than 60ºC (Kimura and Shimizu, 1981a). Two peaks of CO2 
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concentration indicated that two stages of composting (mesophilic and 
thermophilic) occurred in the composting process. The phase changes of 
these	stages	were	clear	at	aeration	rates	of	0.50	to	1.50	L/min.	kg-DM.	The	
thermophilic stage was associated with high microbial activity and refuse 
pathogen	aspect.	The	maximum	temperatures	and	times	required	to	reach	

Fig. 14. Changes in material temperature and CO2 concentration for composting with 
continuous ventilation. 
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the maximum temperature at aeration rates of 0.50, 1.50 and 3.00 L/min. 
kg-DM	were	71.4,	70.0	and	49.1ºC	and	24.0,	19.6	and	10.9	h,	respectively.	
Aeration	rates	of	0.50	and	1.50	L/min.	kg-DM	resulted	in	high	temperature	
composting.	The	time	required	to	reach	the	maximum	temperature	could	
be	reduced	by	increasing	the	aeration	rate	from	0.50	to	1.50	L/min.	kg-DM.	 
Excess	aeration	occurred	at	an	aeration	rate	of	3.00	L/min.	kg-DM	resulting	
in lower temperatures at other aeration rates. 

 This chapter focused on process optimization of composting system. 
Especially, forced aeration has been used in practical bin composting 
systems for over two decades. But ideal operational conditions of 
composting are still being researched. Thus, the works and challenges 
for the future are (1) to determine the appropriate strategy for cattle 
manure composting in packed bed reactor with forced aeration and (2) 
to examine the aeration conditions at early stage of composting influence 
decomposition of organic matter for compost and to combine sensor 
technique	 during	 the	 composting	 reaction	 with	 knowledge	 of	 aeration	
rate, aeration method (continuous, intermittent) and turning method to 
determine the optimal conditions of composting systems.

8. summary

Aerobic fermentation was chosen to solve the cattle manure waste problem 
because it is a simple low energy solution. The combination of different 
aeration rates and turning methods yielded different results. Studies using 
a packed-bed type reactor confirmed that degradation in forced aeration 
composting can be increased with a combination of full turning or turning 
with a position change. The huge amount of solid waste from animal 
husbandry results in odorous emissions, thus composting operations 
must be automated. However, composting systems are complicated 
by lack of uniformity in degradation and material temperature. Future 
research should focus on further development of sensors for composting 
system operations and control systems also in addition to basic research on 
composting processes to support the development of “smart agriculture”. 
Development of composting system technologies will contribute to the 
“sustainable development of agricultural production”.
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1. IntroductIon

This chapter discusses key aspects of a design of a robotic platform for the 
management of crops in agriculture. In particular, the system considered 
seeks to address the increasing threat of weed species resistant to herbicide. 
Many crop production systems in countries such as Australia, have 
moved onto non-tillage practices in order to reduce loss of soil moisture 
and soil nutrients to the atmosphere. These crop productions rely mostly 
on chemical agents as a means of weed management. Such a practice has 
contributed to the development of weed species for which chemical agents 
have lost they effectiveness—this is known as weed resistance.

The control of weeds is an important aspect of farming. A weed is 
any plant species in the paddock that is not the current crop. Weeds use 
soil moisture and nutrients and therefore compete with the crop. Some 
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weed species can even release chemicals that inhibit the crop growth. 
Furthermore, the presence of weeds at harvesting can affect the quality 
of the harvesting and that of the harvested crop. Historically, weed 
management has been conducted using mechanical means of removing 
the weeds.

A contribution of the development of machinery through and since the 
industrial revolution combined with the development of synthetic fertilisers 
and improved crop breeding programs during the green revolution (1960s 
to 1980s) have resulted in an increase in the size of fields or broadacre 
farming and the use of chemicals as the prevalent weed control agent. 
The development of herbicide resistant weed species is of great concern to 
farmers as it poses a threat to future crop production (International survey 
of herbicide resistant weeds, www.weedscience.org).

The use of robotic vehicles that can autonomously manage the weeds 
can offer a potential solution to this problem as they enable the use of 
alternative weed-control methods. Over the past twenty years there has 
been a small pocket of activity in research related to alternative methods 
for weed destruction; whether mechanical, thermal or radiation based. We 
could argue that this research has not evolved into widespread use due to 
both the effectiveness and the economics of chemical agents (Upadhyaya 
and Blackshaw, 2007). Nevertheless, weed resistance is changing this. 
Robotic weeders, can operate in groups and thus reduce the speed of 
each machine without increasing significantly the time required for the 
weeding operation. This reduction in speed creates an opportunity for 
alternative and energy efficient methods. Robotic weeders have another 
two key beneficial side effects.

The first is the reduction in robot size and weight, which leads to  
reduction in soil compaction that adversely affects the crop root 
development and subsequently its yield. The second, is that whilst 
traversing the paddock robotic weeders can carry sensors to collect data 
that can be used in other aspects of crop management; for example, 
nutrition, water stress, pest and diseases.

This chapter discusses aspects of mechatronic design of the robotic 
system for weed management depicted in Fig. 1. Such a system consists 
of a robotic platform, named AgBot II, which can autonomously navigate 
in the paddock, a vision-and-weeding implement sub-system to manage 
weeds, and a replenishment pod sub-system for energy and, in some cases, 
other inputs. This chapter concentrates only on aspects of design that 
involves a mechatronics approach—this is elaborated in the next section.

http://www.weedscience.org
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2. A MechAtronIc desIgn ApproAch

Mechatronic design deals with the complete design of a mechatronic 
system rather than single components. Mechatronic systems have a 
mechanical (physical) component whose desired motion behaviour is 
controlled through the use of force actuators commanded by a computer 
control system that processes information from data generated by sensors. 
This is illustrated in Fig. 2.

The main characteristic of a mechatronic design approach is that all 
components of the system (mechanical, actuators, sensors, computers, 
and control) are considered ab initio as part of the design. As such, this can 
address complex interactions among the decisions made in the sub-design 
of each of the system components, and lead to superior performance, 
economy, and safety. This requires a multi-disciplinary knowledge since 
the decisions made in each component of the system often affect that 
of the other components and together contribute as factors, of affecting 
overall performance, economy and safety. For example, decisions made 
about mechanical design affect the dynamical characteristics of the 
mechanical component, and hence the potential complexity of the motion 
controller structure. On the other hand, the desired closed-loop behaviour 
and the dynamics of the mechanical components determine the energy 

Fig. 1. Robotic system for weed and crop management. AgBotII robotic platform with 
underhanging weeding implement and replenishment pod.
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requirements and thus the necessary actuation, which can affect both the 
choice of materials and the need to distribute mass so as to avoid unwanted 
resonance frequencies of mechanical vibration and material fatigue. The 
dynamic response, the structure of the control system, and the required 
sensing modalities put a constraint on the computational speed at which 
information needs to be processed in order to compute and implement the 
control action and at the same time conduct condition monitoring of the 
system for adequate safety shutdown or fault-tolerance.

In the case of the robotic system shown in Fig. 1, there are two 
key mechatronic systems: the robot platform (vehicle) and weeding 
implement, the design of which are not independent of each other and 
have their own associated challenges. For example, the desired motion 
behaviour of the robotic platform is characterised by its speed and heading 
rate so it can follow desired paths as determined by an operation planning 
system that takes into account the geometry of the paddock, the number 
of robots in the paddock, and the orientation of the crop rows. The design 
of the platform wheel and driving-wheel configuration influence the 
number of actuators and complexity of the motion control architecture 
and control algorithms. The mass and mass distribution determine the 
dynamic response characteristics and the power requirements. The speed 
of the operation should be considered in conjunction with the design of 
the weeding implement’s capabilities in order to achieve high weeding 
efficiency and satisfy constraints on the computational time required by 
a computer vision system to process data from multiple images to detect 
and classify the weed species and then decide on the control method.

Fig. 2. Structure of a mechatronic system.
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The rest of the chapter elaborates the mechatronic design process and 
its components and highlights the interaction among the decisions made 
in each component.

3. systeM specIfIcAtIons

From the inception and throughout the project, our design team has been 
interacting with farmers in order to collect information and execute a 
design that properly addresses the crucial problems. The insights from 
potential users were used to establish the functional and operational 
requirements which must balance the complex demands of the system. 
The incorporation of a user-centred design methodology (Gulliksen et 
al., 2003) helped uncover key insights during the development of the 
platform, which we call AgBotII.

3.1 A Farmer’s Perspective

Redhead et al. (2015) reports our initial work in which growers (farmers) 
and agronomists participated in contextual interviews and observational 
studies at farm locations in the Darling Downs and Emerald regions in 
Queensland, Australia. The key findings are summarised below:

	 •	 AgBots are most suited for precision work that requires accuracy and 
is difficult to achieve using large machinery, such as 48-metre boom 
sprayers;

	 •	 Growers are interested and competent in thinking through problems 
related to building mechanical components, and participatory 
engagement of farmers in the design, testing, and evolution of AgBot 
prototypes would be beneficial to both the farming community and 
this research;

	 •	 The built of the mechanical components of the system should remain 
open for ongoing maintenance and adaptability;

	 •	 Varying levels of access to the interface system are necessary, with 
a simple level of control available for non-skilled labour, and more 
complex levels of administration by farm managers;

	 •	 Rural communication infrastructure can not be assumed to the 
adequate for reliable communication with the robots, and should be 
addressed as part of the design of robots;

	 •	 The data collected by AgBots should be relevant to the scale of the 
operation and should be stored in manageable data package sizes;
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	 •	 Growers welcome an open source community model for the software 
development of AgBots and this should be set up early and in a way 
to encourage participation from farmers;

	 •	 The number of AgBots monitored per operator needs to be manageable 
in terms of the workload of the operator;

	 •	 Remote views of AgBots should give adequate and easily interpreted 
visual information about the state of the machine and nature of failure 
modes.

3.2 Functional and Operational Specifications

From the research and insights gained from field studies with farmers, a 
list of Functional Requirements (FR) were identified (Bawden, 2015):

FR1—The robot must be a multi-role, lightweight platform suited for 
autonomous operations related to weed management, fertiliser 
application, and crop scouting;

FR2—The robot must be able to conduct weed destruction operations in-
fallow as well as in-crop, without damaging the crop;

FR3—The robot must be able to identify (detect and classify) weeds in order 
to select and apply the most appropriate weed treatment, which 
includes the integration of chemical and non-chemical destruction 
methods;

FR4—The robot must be able to conduct autonomous operations with 
appropriate levels of safety;

FR5—The robot must be able to conduct replenishment operations of 
energy and agricultural inputs with appropriate levels of safety;

FR6—The robot must be able to self-diagnose failure modes, and either 
reconsider operation or shut-down safely;

FR7—The robot must be able to provide adequate levels of communication 
and human-robot interactions. 

Also a list of Operational Requirements (OR) were identified (Bawden, 
2015):

OR1—The robots must be able to be transported safely using standard size 
road vehicles (trailer/truck);

OR2—The robots must be able to shut-down operation and stop motion if 
a human comes in close proximity;

OR3—The robots must be able to shut-down spraying operations if adverse 
weather conditions eventuate;



Overview of Mechatronic Design for a Weed-Management Robotic System 29

OR4—The robot must be able to sustain operations under appropriate 
environmental conditions (temperature, humidity, UV) and 
operational conditions (terrain gradient, soil conditions).

3.3 Technical Specifications

Based on the functional and operational requirements and input, we 
conducted a detailed trade-off study and determined the main technical 
specifications shown in Table 1.

Vehicle mass (without payload) (TS1): Consulted farmers suggested that 
all-terrain-vehicles (ATVs) used for farming should result in minimal soil 
disturbance when driven over fields in varying conditions. ATV’s range 
in sizes and mass from 200 to 600 kg; therefore, based on this and the 
required strength, we estimate the target mass to be 500 kg for the vehicle.

Payload mass (TS2): To determine the mass of the payload, we considered 
weed management with current spot-spraying technology. Based on a 3 m 
width, an operational speed of 5 km/h, and spray rate of 15 L/ha a 200 L  
tank would require refilling every 10 hours. Given the inclusion of the 
mechanical weeding array, we expect to use less than 15 L/ha, however, 
the payload must also account for the development of future implements, 
so a target weight for the payload of 200 kg was adopted.

Operational speed (TS3): The operational speed of 5 km/h was selected, 
keeping in mind safety, area under coverage (based on an operational 
cost model) and time required for the computer vision system to process 

Specification Magnitude (target) Unit

TS1
TS2

Vehicle mass
Payload mass

500
200

kg
kg

TS3
TS4

Operational speed
Maximum speed

5
10

km/hr
km/hr

TS5
TS6
TS7

Number of wheels
Drive wheels
Steering wheels

4
2
2

-
-
-

TS8
TS9
TS10
TS11

Wheel width
Width (wheel centre to wheel centre) 
Length total
Implement section clearance

0.3
3

2.5
0.75

m
m
m
m

TS12
TS13 
TS14

Operating gradient pitch
Operating gradient roll 
Handle emergency brake

15
10
-

%
%
-

Table 1. AgBotII Main Technical Specifications.
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data for weed detection and classification. The average walking speed 
of a human is 5 km/h, so humans could easily overtake the robots. The 
integration of a multi-mode weed management system, designed based 
on a requirement that the robot does not stop, was also taken into account 
for the specification of the operational speed.

Maximum speed (TS4): The maximum speed is selected for traveling 
to recharging/replenishment stations and to move from paddock to 
paddock. Given the operational speed, the maximum target speed has 
been determined based on potential use of gearboxes and hydraulic drive 
trains and the range of speeds of electrical motors, which are optimised 
for maximum efficiency at the selected operational speed.

Vehicle configuration (TS5−7): Analysis of vehicle configurations, shown in 
Fig. 3 took into account manoeuvrability, stability, locomotion type (tracks 
vs. wheels), the number of drive and steering motors, and motion control 
design. A four-wheel configuration, capable of bi-directional driving 
through the use of differential steering and caster wheels (configuration 9 
in Fig. 3) was selected for further development. This configuration offers 
an appropriate balance between driving performance, stability, payload 
capacity and complexity. In addition, this configuration simplifies the 
motion controller since the rotation about the vertical axis (vehicle 
heading) can be decoupled for control design purposes.

Vehicle dimensions (TS8−11): A standard row width of 0.5 m would be 
appropriate for a large portion of broadacre applications. With allowance 

Fig. 3. Twenty vehicle configurations tracked and wheeled variants.
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for overhanging leaves and drift in steering, a working width of 300 mm  
was considered safe for the wheel unit. Australian roads (NTC, 2015) 
specifies that the width of a vehicle to be moved must not be over 2.5 m.  
Hence, to move the AgBotII on a typical flatbed trailer the length (or width, 
depending upon the orientation of the AgBotII to the truck/trailer) needs to 
be less than 2.5 m. Based on current control traffic farming (CTF) practices 
a vehicle width (wheel centre to centre) of 3 m was chosen. This enables 
the AgBotII to take advantage of CTF layout already in place on many 
broadacre farms. Being wider than the width permissible for carriage on a 
public road means that the vehicle would need to be loaded perpendicular 
to the truck or trailer used for carrying the AgBotII. Broadacre crop 
heights vary according to region, crop variety, moisture availability, soil 
nutrients and weed competition. Based on average crop-heights of wheat, 
barley, sorghum, oats, cotton and chickpea, we determine that the vehicle 
clearance should be at least 0.75 m, with the option for small adjustments 
based on suspension settings.

Operation (TS12−14): Broadacre farming is generally undertaken on relatively 
flat terrain. Operating gradients of 0–3% are very common. Paddocks with 
5–10% gradients are less common because at this gradient the land acts 
more energy intensive to cultivate. Based on farm research, an operating 
gradient of 15% was estimated as the worst case the agricultural robot 
would see in field conditions. In terms of side constrain forces of wheels, 
a 10% gradient is considered to be worst case for roll angle operation. It 
is also a technical requirement that the vehicle must not tip over during 
emergency braking in gradients of ±15%.

4. AgBot II desIgn

As part of the design of AgBot II, we considered different subsystems as 
indicated in Fig. 4. Different options were analysed for each subsystem 
taking into consideration their impact on the complete design. In this 
section, we summarise the design process and some of the features of the 
AgBot II platform.

4.1 Chassis Design

AgBot II is based on two modular side assembly units joined by the 
implement unit—see Fig. 4. The side units are symmetrical (mirrored). 
These units house the battery and power systems and limed to the rear 
caster wheels as well as the swing arms that connects to the drive unit 
assembly.
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Based upon our interactions with farmers, a novel construction method 
was developed which takes advantage of the considerable manufacturing 
infrastructure that already exists on most large farms in Australia. The 
design incorporates CNC laser cutting, pressing and machining, at low 
volumes and low cost, to rapidly produce prototypes or kits that could 
be shipped to farms and assembled on-site by the farmers themselves. 
Using only a MIG welder, pneumatic rivet gun and simple hand tools, the 
mechanical portion of the robot chassis itself can be assembled in less than 
8 hours by two people.

The implement unit shown in Fig. 6 is designed to carry the weeding 
implements, which can incorporate a 200 L tank for herbicide to enable 
multi-mode weed operations and even a small fertiliser spreader. And the 
front part of the implement unit houses the electronics and computers.

Fig. 4. AgBotII platform rendering showing the major assemblies.

Fig. 5(a) Detail of the side unit assembly for the AgBotII. (b) Flat-pack components for the 
side unit prior to assembly by MIG welding.
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The main dimensions of the robot are summarised in Fig. 7. These are 
in agreement with Technical Specifications TS8−11 in Table 1. The width of 
implement unit is determined by a standard crop-row layout. The width 
of the side units and tyres are optimised with crop-inter-row spacing as 
a constraint. For an introduction to optimisation based design, the reader 
can refer to Arora (2004).

Fig. 6. Implement Unit.

Fig. 7. AgBot II dimensions.
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Design requires decision making, which relies on information obtained 
from analysis based on models, which can be either mathematical or mental 
models. The design based on knowledge from previous experiences—
namely, induction is used. In the case of the chassis design, one important 
consideration was, the location of the centre of mass and the potential 
for vehicle to tip over, in case of an emergency brake. In order to analyse 
this potential, we built a mathematical model based on the assumptions 
that vehicle is considered to be a rigid body with a known location of the 
centre of mass. At the point of braking, the front wheels are assumed not 
to slip. The effect of the suspension can be significant if the suspension 
is not stiff, which would allow a significant shift of the centre of mass 
forward and also down. This can be accommodated in a simplified model 
by introducing offsets on the actual location of the centre of mass that 
represent the fully compressed suspension.

Consider the scenario depicted in Fig. 8. The vehicle is traversing 
down on a slope, the point of contact between the front wheel and the 
ground is P. As an approximation, we consider that this is also the point 
about which the vehicle will pivot during a sudden braking—the motion 
of the point is neglected and thus P is assumed to be fixed. The centre of 
mass is at the point C and the vehicle is assumed to have a mass m. At 
the point of braking, the vehicle traverses along the slope at a velocity →v 
parallel to the slope.

Based on the modeling hypotheses, tipping occurs whenever point C 
moves forward of the point P. We consider two right-handed coordinate 
systems fixed to Earth frame, namely {0} and {1}. As a generalised 
coordinate and first state variable, it is easy to take the angle θ of rotation 
about the y-axis (out of the page) of the line segment P-C. Then, the 
condition for tipping becomes

θ > 3–
2
 π     (270º).

Fig. 8. Vehicle idealised physical system.



Overview of Mechatronic Design for a Weed-Management Robotic System 35

As a second state variable, we can choose the magnitude of the angular 
momentum of the centre of mass about the point P, namely L = |

→
L|. Then,

a state-space model for system is

θ
.
 = J–1 L, (1)

L
.
 = mgl cos θ – b J–1 L, (2)

where l = |→rC/P| is magnitude (distance) of the position of C relative to P, 
g is the acceleration of gravity, b is a damping coefficient, and J = ml2 is the 
moment inertia of the centre of mass about P. 

In order to simulate (1)-(2) and ascertain whether a vehicle may tip 
over, we set the initial conditions for θ and L based on the initial linear 
momentum of the vehicle and its operational speed. This simulation model 
was used to assess the risk of tipping given the location of the centre of 
mass. The model does not consider free-surface effects in the herbicide 
tank (which might alter the location of the centre of mass). It was also 
envisaged that the under-hanging weeding implement would contribute 
to lower the centre of mass thus reducing the risk of tipping relative to that 
provided by the model. So the model provides an idealised setting, and 
the decision as to whether the centre of mass is at the correct location has 
to be made under uncertainty, Tribus (1969).

4.2 Drive Unit and Power System

The main drive units for the AgBotII consist of a customised motor, 
gearbox and emergency brake assembly mounted inside a wheel hub. This 
is shown in Fig. 9. The design of this sub-system takes into consideration 
the vehicle drive and its power requirements, in conjunction with the 
torque, efficiency and load specification of the individual components.

A 5 kW, 48VDC electric motor, with an efficiency of 75–85% at 3200–
4500 rpm, was paired with a 61:1 two-stage planetary gearbox to provide 

Fig. 9. Swing arm and drive unit assembly.

(a) Detail swing arm with drive unit AgBotII. (b) Detail Drive Unit assembly.
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energy efficient locomotion at the desired speed range of 5–10 km/h. The 
motor output shaft was re-designed to allow for the addition of a fail–safe 
electric brake, which is mounted directly to the rear face of the motor via 
a modified friction plate. The entire drive unit assembly is mounted to the 
vehicle’s single-sided swing arm via a support cage, which transfers the 
load from the gearbox mounting flange to the swing arm.

The specification for the power-train follows from the vehicle’s 
technical specifications given in Table 1. In particular, the total vehicle 
mass, maximum speed, maximum inclination angle and maximum 
acceleration determines the output power and torque of the power-train. 
Furthermore, the wheel diameter is a critical factor in the selection of a gear 
reduction ratio. Table 2 summarises the vehicle’s specifications relevant to 
the power-train design.

One of the most critical factors affecting the selection of a power terrain 
is the rolling resistance coefficient. Agricultural vehicles operate in a wide 
variety of field conditions such as loose soil, compacted soil, paved roads 
and wet soil. Each of these surfaces have a different resistance coefficient 
shown in Table 3. The two coefficients of most interest are that of medium 
soil and the wet soil. The medium hard soil is the surface travelled on 
most often and has a steady-state power consumption. The wet soil is the 
worst surface the vehicle has to traverse and has the maximum power 
requirement.

Attribute Magnitude Units

Total Vehicle Mass 600 kg
Rated Speed 5 km/h
Maximum Speed 10 km/h
Acceleration 1 m/s2

E-Brake Deceleration 4.9 m/s2

Maximum Inclination 15 deg
Front Wheel Diameter 0.61 m

Table 2. Key vehicle parameters related to power-train design.

Surface Coefficient (Cr)

Smooth Concrete 0.01
Worn Asphalt 0.02

Gravel 0.02–0.03
Medium Soil 0.08
Loose Soil 0.1

Wet Soil, Mud 0.2

Sand 0.2–0.3

Table 3. Rolling Resistance Coefficients for different Surfaces.
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The mechanical power required to move the vehicle is given by:

P = Prolling + Pgradient + Pacceleration

P = (Crmg cos θ + mg sin θ + ma)v, (3)

where Cr is the coefficient of rolling resistance, m is the total vehicle mass, 
θ is the maximum gradient, a is the maximum acceleration and v is the 
vehicle speed. The mechanical torque is given by the following similar 
equation:

τ = (Crmg cos θ + mg sin θ + ma)r, (4)

where r is the radius of the drive wheels. We can calculate the steady-
state power and torque using (3) and (4) equation with no gradient, no 
acceleration and a speed of 5 km/h on medium soil. The required power 
is 660 W and the required torque is 180 Nm. The peak power and torque 
requirements occur when the vehicle accelerates up to its rated speed on 
wet soil up a slope. That is, when v = 5 km/h; a = 1.0 m/s2; θ = 15 deg and
Cr = 0.2. Under these conditions the required power increases significantly 
to 4.5 kW and the required torque increases to 1040 Nm.

The power efficiency of the drive unit is very important since AgBotII 
is powered by batteries. We can compute this efficiency as

ηu =  
Po—
Pi

  = 
Tu ωu

Vu Iu

, (5)

The output mechanical power Po is given by the product of the torque 
Tu generated by the unit and the angular rate ωu of the wheel. The input
power Pi is given by the product of the voltage Vu and current Iu of the 
battery feeding the unit. The efficiency, thus, calculated includes the 
efficiency of the power electronics that control the motor, the efficiency of 
the electrical motor itself, and the efficiency of the gear box since Po is the 
power at the low speed side of the gear box. Figure 10(a) shows a rig used 
for testing the drive unit. The low speed shaft out of the gear box connects 
to the shaft of a hydraulic pump of known efficiency. By measuring the 
differential pressure and the volumetric flow of the hydraulic pump we 
can estimate the efficiency of the drive unit:

ηu =
P D N ωm

ηh Vu Iu

, (6)

where P is the differential pressure at the hydraulic port, D is the 
displacement of the pump, N is the gear box ratio, and ηh is the known
power efficiency of the pump. Figure 10(b) shows some of the lab tests 
conducted under different loads.
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The final requirement of the power-train is the emergency braking 
torque. Emergency brakes apply a high constant torque to the wheels 
when they are engaged. We would like the emergency stopping distance 
of the vehicle to be as short as possible and for the wheels not to lock. Thus, 
we want the emergency brake torque to be as high as possible without 
locking the wheel. The vehicle will be required to operate on a wide 
range of surfaces with varying levels of available grip. At low speeds, the 
amount of available grip is characterised by the coefficient of friction, µ, 
between the tyre and the surface. The maximum deceleration on a surface 
with a given coefficient of friction is amax = µg. Gravel roads, wet grass 
and soil have coefficients of friction of 0.35, 0.20 and 0.60 respectively, 
which correspond to maximum decelerations of 0.35 g, 0.2 g and 0.6 g, 
respectively.

As the emergency brake can only apply a single constant torque we 
need to use the lowest deceleration to avoid locking a wheel, that is, the 
target deceleration for an emergency stop will be 0.2g (2.0 m/s2). If there 
is a single brake failure we still would like the vehicle to decelerate at 
1.0 m/s2 using the remaining brakes. Note that, it has been observed 
that during emergency braking a locked wheel has only a small effect on 
stopping distances on wet grass and actually decreases distances by 25% 
on deformable surfaces, such as gravel roads. Thus, if a wheel locks it 
should only have a small effect on the stopping distance.

The emergency braking (E-Brake) torque is given by:

τ = (mg sin θ + ma – Crmg cos θ)r, (7)

Fig. 10. Testing rig and drive unit test.

(a) Drive unit testing rig. (b) Drive unit power efficiency test.
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where m is the mass, a is the braking acceleration and r is the radius of 
the braking wheels. Note that, safety features ensure that the power-
train is disabled in an emergency stop so that the brake will not work 
against the motors. When we use the above equation in the case of an 
emergency down a slope of 15 deg, the emergency torque was 875 Nm. 
To achieve the degraded emergency braking of 1.0 m/s2, we need a torque 
of 438 Nm. Table 4 summarises the requirements for the power-train. The 
E-Brake torque places the greatest strain on the power-train and dictates
the strength and size of the gearbox required. While the peak power
requirement determines the size of the motor required.

4.3 Guidance, Navigation and Motion Control

Figure 11 shows a block diagram of the robot Guidance, Navigation, and 
Control (GNCC). In the following, we describe the attributes of the key 
subsystems.

Attribute Magnitude Units

Rated Power 0.66 kW

Rated Torque 180 Nm

Peak Power 4.5 kW

Peak Torque 1040 Nm

E-Brake Torque 875 Nm

Degraded E-Brake Torque 438 Nm

Table 4. Power–train Specifications.

Fig. 11. Robot guidance, navigation, and control.
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4.3.1 Navigation

The navigation system processes the data from the different motion sensors 
(RTK-GPS, IMU, wheel odometry) and fuses these data using observers 
to extract information about position and velocity of a particular point 
of reference on the robot and also the rate of turn about this point. The 
observers are built upon kinematic models that describe the geometric 
aspects of motion only.

4.3.2 Guidance

The mission planning of AgBotII sets the desired paths and triggers the 
turn and row-shift manoeuvres at the end of each crop row in the paddock. 
This is done through a user interface shown in Fig. 12(a).

Once the robot is on an active leg between two way points, the 
guidance system uses a standard line-of-sight guidance algorithm 
to provide a reference to the heading motion control system. In this 
algorithm the course to steer (or alternative the desired rate of turn) is 
computed based on the current position and heading so as the cross-track 
error—computed as the orthogonal projection of the point of reference 
on the robot onto the track. The configuration relevant to the line-of-sight 
guidance is shown in Fig. 12(b).

(a) User interface for operation planning. (b) Line-of-sight configuration for guidance.

Fig. 12. Operation planning and guidance system.

4.3.3 Motion control

For mechanical systems, it is convenient to consider control as the function 
that generates the desired generalised forces in the particular degrees of 
freedom in which we seek to move the system. For example, in the case 
of AgBotII, we have two degrees of freedom: longitudinal translation and 
rotation about its vertical axis.
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Based on the Lagrange-D’Alembert procedure for the formulation of 
equations of motion of non-holonomic systems, the following state-space 
model for the robot can be obtained:

u
. = –lω2 +  1—m R(u, ω) +  1—m FD, (8)

ω. =  
ml

( I + ml

2)
 ωu +

1
( I + ml

2)
TR(u, ω) +

1
( I + ml

2)
TD, (9)

ψ. = ω, (10)

x
. = u cos (ψ), (11)

y
.
 = u sin (ψ), (12)

where u is the forward speed, ω is the rate of turn, ψ is the heading angle, 
and x and y are the local cartesian coordinates with respect to the point of 
reference O—see Fig. 13(a). The thrust force, denoted by FD is produced by 
the drive train of the robot, and the rolling resistance force is denoted by 
R(u, ω). Similarly, in (9), we have added the driving torque TD produced
by the differential steering of the drive train, and the resistance friction 
torque TD(u, ω). The parameter m is the mass of the robot, I is the moment
of inertia about its centre of mass, and l is the offset of the centre of mass 
C relative to the point of reference P used to formulate the equations of 
motion. Details of the configuration space are depicted in Fig. 13(a).

Figure 13(b) shows a block diagram of a motion control system that 
is used in AgBotII. The speed controller takes the reference speed v* and 
the actual velocity v estimated by the navigation system, and provides a 
set point of thrust force τ1. The heading controller has two nested feedback
loops. The inner loop is an angular rate loop and the outer loop is the 
heading angle loop. The heading loop uses information about the desired 
heading ψ* and the actual heading ψ to generate a reference angular rate 

(a) AgBotII configuration.

Fig. 13. AgBotIIconfiguration space and motion control structure.

(b) Motion controller structure.
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ω* for the inner control loop. The latter uses this information together with 
the actual angular rate ω to generate the desired control torque τ*2 in the 
vehicle. Both, the speed and rate controllers have an integral action. In 
order to design the controllers, we can linearise the rate state-space model 
about the point u = u– given by the nominal speed and ω = ω– = 0. This,
decouples the model for design, but the robustness of the controller should 
be assessed in terms of the coupled nonlinear model. As we can see, a key 
advantage of the actuator configuration of AgBotII, from the point of view 
of control design, is that the two degrees of freedom of interest can be 
decoupled for control design. This simplifies the control design task. The 
control structure depicted in Fig. 13(b) has been successfully applied to 
marine and aerospace vehicles.

Note that once the vehicle reaches the end of the paddock and requires 
turning, the structure of the control system remains the same; it is the 
guidance system which switches modes.

Vehicles with wheels are subject to non-holonomic constraints; this 
means that although the vehicle can take any position and orientation on 
the plane (a configuration), the trajectories that take the vehicle from one 
configuration to another are restricted. For example, AgBotII cannot move 
sideways, but using a combination of forward, backward and turning 
motion it can be at a pose to the side of its initial pose. The guidance system 
must address the problem of generating feasible trajectories in agreements 
with the vehicle motion constraints.

4.4 Control Allocation

The use of control allocation is borrowed from aerospace and marine 
vehicles. In general, it provides two key features to motion design of 
vehicles. First, the motion controller is designed to output forces; and hence, 
the design of this controller is kept within the realm of mechanics. This has 
an advantage that concepts related to energy and passivity can be used in 
the design and demonstrate stability properties of the controller. Second, 
in systems that are overactuated (not the case of AgBotII though), control 
allocation provides a way of implementing tolerance to actuator failures, 
since, it can shut down a failed actuator and re-configure the remaining 
healthy ones to provide the desired control forces. This does not require 
re-tuning the controller or switching to a different set of control gains.

In order to describe the control allocation mapping, we need to 
understand how the actuators produce the generalised forces on the robot.

Each traction wheel of the robot is commanded by and electrical motor 
coupled to the wheel with a gearbox of ratio N > 0. If we assume that 
all the moments of inertia of the motor rotors and the wheels have been 
reflected and are lumped in the mass m of the robot, then we can consider 
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each gearbox and wheel as the combination of two ideal transformers—
thus, preserving power. For each gearbox, we then have the following 
balance of power:

 Tm ωm = Tw ωw, (13)

where Tm and ωm are the motor torque and angular rate and Tw and ωw are 
the wheel torque and angular rate. Hence, the torque on the wheel can be 
written as a function of the torque on the motor:

 Tω = 
ωm—ωw

 Tm = N Tm,     where, N = 
ωm—ωw

  (14)

For the ideal wheel (massless) of radius r,

 Twωw = Fwuw, (15)

where Fw is the thrust produced by the wheel and uw is the linear 
translational velocity of its axle. Hence,

 Fw = 
ωw—uw

 Tw = 1–r Tw,     where, r = 
uw—ωw

 (16)

Therefore, the combined relationship between the torque and the 
thrust of the wheel is

 Fw = N—r  Tm. (17)

The total driving force on the robot is the sum of thrust of the left and 
right wheel (FL, FR) namely,

 FD = FL + FR =  N—r  (TLm + TRm). (18)

where, TLm, TRm are the thrust on left and right wheel.

The torque due to the differential driving is given by

 TD = – dFL + dFR = dN—r  (–TLm + TRm), (19)

where d is the offset of the wheel from the vehicle’s centre line. Expressions 
(18) and (19) provide the inputs to the state-space model (8)–(12).

The control allocation function maps the desired generalised forces τ* 
that the motion controller demands into desired actuator commands δ*:

 δ* = fC(τ*). (20)

These actuator commands (voltage, currents, etc.) are the input to the 
local actuator controllers that implement the true actuator command δ.  
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The latter is then mapped into the actual generalised forces τ by the 
actuator configuration mapping:

 τ = fA(δ). (21)

Under perfect control allocation the composition fA ο fC should be the 
identity mapping, and thus τ* ↦ τ.

In the case of AgBotII, we consider the following vectors:

τ@ [ FD 

TD
] , δ @ [TLm 

TRm
] .

Then, the actuator configuration mapping fA: δ ↦ τ can be expressed as

[ FD 

TD
]  =  N—r  [ 1 1 

–d 1]  [TLm 

TRm
]

and the control allocation mapping fC: τ* ↦ δ* can be expressed as

[ T*Lm 

T*Rm
]  =   r—

N
  [ 1 1 

–d 1]
–1 

 [ F*D 

T*D ]
Due to the integral action of the speed and rate controllers, these 

should be implemented within a multivariable anti-wind up scheme. 
Such implementation is beyond the scope of this chapter.

5. WeedIng IMpleMent desIgn

The integrated multi-mode weed destruction system for AgBotII 
incorporates both a selective mechanical weeding system and selective 
spray system. Individual weed species can be targeted by either the 
mechanical or spray system depending on the result of the vision-based 
weed detection and classification system.

To identify weeds, we developed a vision-based on-board detection 
and classification system comprising of a ground facing camera and 
an image processing computer. Weeds are first detected using colour 
information in the image and then an algorithm determines the species. 
The prototype assembly for the weed detection and classification system 
is capable of working continuously throughout the night and during 
daylight periods of uniform lighting.

Once the weeds are detected and classified, the system determines the 
best method for weed destruction and triggers the actuation of either the 
mechanical or spray modules. The modules are attached to the underside 
of the AgBotII platform and for the purposes of the first prototype have 
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been designed to a width of 1 m. This can be extended to the full width of 
the robot in future designs. An overview of the weeding system attached 
to the AgBotII can be seen in Fig. 14.

The key aspects of the design in mechatronic are the inter-relations 
amongst:

	 •	 Processing speed of the vision-based weed detection and species 
classification system;

	 •	 Accuracy of the navigation and motion control system;

	 •	 The width of the individual mechanical implement and the speed of 
actuation.
The latency due to the processing speed of the vision-based weed 

detection and species classification system combined with the operational 
speed of the robot is used to determine the spatial separation between the 
camera and the weeding actuator and the speed of actuation. Whereas 
the number of actuators and the expeted number of actuators active 
determine the energy storage requirements of the robot as well the size 
of the accumulator of the pneumatic system that activate the mechanical 
weeding implements.

In order to assess these aspects of the design, we constructed 
a simulation model—shown in Fig. 15. This model together with a 
probabilistic model about the weed density was used in an iterative design 
to determine the dimensions and the speed of actuation of the weeding 
array.

Fig. 14. Weeding implement system modules.
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6. trIAls

A common task for an autonomous agricultural robot is to keep a 
fallow field free of weeds. To demonstrate the effectiveness of AgBotII 
in performing this task, an experiment was conducted on a small fallow 
field. AgBotII was run over the field twice per week and the weeds were 
removed using the mechanical weeding implement as they appeared.

A scale map of the field used for the trial is shown in Fig. 16, the 
field was approximately 1000 m2 (26 m by 38 m). The field was initially 
ploughed using a large tractor and then left alone to allow the weeds 
to emerge naturally. The field had a very large seed bank ensuring the 
growth of a large number of weeds when it rains.

The field was divided into one metre wide rows as shown in Fig. 16. 
One third of the field was selected to remain untouched as a control for the 
experiment, while the remaining two thirds had the weeds removed by 
the AgBotII. The rows to be used as control rows were selected at random 
and their distribution is also shown in Fig. 16.

The coverage of weeds (density per unit of area) in the control and 
treated rows were recorded on each iteration over 42 days. The amount 
of the soil tilled by the mechanical implements was also recorded on each 
iteration. There was a significant rain early in the experiment that caused 
a very large number of weeds to germinate at the same time; between day 
17 and 24 the weed density in the field increased from 0.12 weeds per m2 
to 37.3 weeds per m2.

Figure 17(a) shows the amount of weed coverage and the response 
of the autonomous weeding array throughout the field test. Figure 17(b) 
displays the percentage of weed coverage in the treated and control 
sections of the field. It is clear from the figure that after the rain, the 
amount of weed coverage in the control grows rapidly, however, the 
coverage in the treated area grows slowly and then starts to recede. The 
weed coverage in the treated area peaks at 4.5% while the weed coverage 

(a) Simulated weed camera and weed implements.

Fig. 15. Simulator used to assess design characteristics of weeding operations.

(b) Simulation of entire weed system.
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Fig. 16. Field used for mechanical weeding trials. Clear colour areas correspond to robotic 
weeding areas.

in the control area reaches 37%. At the conclusion of the trial, the weed 
coverage in the treated area is reduced to 1.5% demonstrating the efficacy 
of the AgBotII and the autonomous weeding array at weed management 
in a fallow field. The weed coverage is non-zero because new weeds are 
continuously germinating in the field due to the large seed bank and the 
summer weather.

Another way to measure weed coverage is to count the number of 
weeds. In the initial stages of the trial this was possible. However, as 
the weed density increased and the weeds grew larger counting was no 
longer possible in the control areas. Thus, the percentage area of weed 
coverage is used as a measure for the amount of weeds in the field. In the 

(a) Percentage of the field covered in weeds.

Fig. 17. Weed growth and subsequent weed treatment over time during the trial.

(b) Percentage of the field mechanically treated.
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treated sections of the field the weed density peaked at 11.3 weeds per m2 
on day 21.

We also conducted a showcase on the 7th December 2016 at 
“Glenwoon”, (Bowenville, Queensland). The system was transported to 
the property two days in advance of the showcase to allow time to set-
up and trial the systems performance in a broadacre farm environment. 
Two demonstrations were organised and were run throughout the day. 
The morning session was attended local farmers and representatives 
from the advanced manufacturing sector. Figure 18 shows some of the 
group members attending the morning session demonstrating the robot 
capabilities.

The feedback from the attendees was overwhelmingly positive, 
with many of the farmers impressed with AgBotII weed detection and 
mechanical removal capabilities. Farmers were most interested in the 
potential for the vision and mechanical weeding capabilities. Many of the 
farmers were also interested in the plans to market this technology, and 
were keen on being part of any future industrial trials and testing.

A particular situation of interest developed in both morning and 
afternoon sessions. As AgBotII was roaming the paddock mechanically 
weeding, a few farmers asked “Why is it activating the weeding implement 
when there are no weeds?” Upon inspecting the soil where the robot had 
been weeding, we found small weeds 5 mm to 10 mm diameter leaves and 
20 mm root. The farmers were very impressed. One farmer commented 
that if he sends people to chip weeds, they would rarely pick that.

Fig. 18. Demo trials conducted for farmers.
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7. conclusIon

In this chapter, we discuss key aspects of mechatronic design for a 
weed-management robotic system. We highlight the process going from 
functional and operational specifications to technical specifications 
under which a design is to be conducted and feasible designs are to be 
assessed. We also attempted to describe the key interactions among design 
decisions in mechanical components, dynamics, hardware, actuators and 
control. These design interactions are at the raison d’être of a mechatronics 
approach to design. Then, we proceed to specify various aspects of the 
design and the factors leading to particular decisions about the design of 
our prototype robot. We finish the chapter with the results of a six-week 
trial on mechanical weeding.
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1. INTRODUCTION

The farming industry faces many problems that threaten its sustainability. 
Among the most important are the detection, prevention, and control of 
devastating plant pests and diseases. Management of pests and diseases 
(in addition to water and nutrients) is based on scouting a field weekly. 
Farmers can spend between 10 to 40 US dollars per acre to have their fields 
inspected by a human field scout. Depending on the crop, detection of 
even a single insect can trigger an intensive pesticide spraying program. 
On the other hand, non-comprehensive scouting may miss populations 
of pests that sometimes congregate in localized areas or a disease that 
is asymptomatic until it has spread to many areas of the field. As a 
consequence of this inefficient and sometimes inaccurate method, farmers 
spray preventatively for many plant pathogens. If more extensive and 
efficient quantification of pest control, water stress, and nutrient needs 
were possible, a tremendous cost savings could be achieved by a decrease 
in unnecessary spraying. Currently, the only solution to potential pest 
problems is to spray at the first sight of pests and treat the entire field. 
This leads to an overuse of pesticide which is costly and environmentally 
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unfriendly. However, the risk of losing crops to pests is too high not to 
take necessary precautions.

The development of an automated field scout (AFS) would make it 
possible to determine the spatial and temporal distribution of pests and 
diseases, nutrient deficiencies, and water stress in a field. The AFS would 
help the farmer assess management strategies after they are implemented 
and help determine best management practices. This work describes a 
collaborative project among the Georgia Tech Research Institute, the Georgia 
Institute of Technology, and the University of Georgia in developing and 
fielding an AFS system composed of four main components: an autonomous 
ground vehicle, a vehicle-mounted 4-dimensional (4D) mapping system, a 
vehicle-mounted robot arm used for leaf and soil sampling, and a farmer/
consultant who will interact with the AFS system to meet the needs of each 
particular farm. The project focuses on peanuts, though the developed AFS 
could be adapted for any crop that requires intensive management.

In the following sections, the autonomous ground vehicle (referred 
to as the Red Rover) is first described, followed by a consideration of 4D 
mapping for agricultural applications. Robot arm control using visual 
servoing is then discussed for two particular scenarios: leaf sampling 
and apple picking (included here for its novel use of dual robot arms). 
Implementation results are described in their respective sections.

2. AUTONOMOUS GROUND VEHICLE

There are a few autonomous systems that have been developed around 
the world, and at least one is in commercial use. The Autonomous 
Tractor Corporation (Fargo, ND) offers a platform to connect multiple 
implements to their modular systems. This system is made specifically 
for planting seeds, but has been re-purposed for row crop inspection. 
Kinze manufacturing is testing a driverless tractor that pulls a grain cart 
in tandem with the grain combine for unloading during harvest. John 
Deere (Machine Sync) and CaseIH (V2V System) are developing similar 
systems but with a driver in the seat. The combine takes control of the 
tractor pulling the grain cart and matches speed and distance to unload 
automatically, reducing stress and need for highly experienced drivers. 

While companies like Google may be garnering all the publicity 
for autonomous vehicles, research has been robustly moving forward 
in development of operator-assisted and fully autonomous systems in 
agriculture. GPS-guided and steered tractors have shown incredible 
benefit in reduced planting and harvesting losses (Bergtold, 2009; Vellidis 
et al., 2013), reducing driver fatigue, and extending work hours in low 
visibility. Complete autonomy remains elusive due to safety concerns, but 
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the agricultural industry is moving in that direction. Autonomous vehicles 
for orchard operations in citrus have been proven (Subramanian, 2009). 

The use of unmanned aerial systems (UAS) has gained a lot of 
attention for scouting fields. However, it appears that any detection of 
plant stress from the air will require ground-truthing to isolate the cause 
and come up with a management strategy for the crop. The AFS would 
provide persistent and more comprehensive coverage of the field for this 
crucial ground-truthing.

2.1 Hardware

The Red Rover AFS (Fig. 1) is a custom-built articulated vehicle (West 
Texas Lee Corp.) with modifications to meet the harsh environmental, 
navigation, and obstacle avoidance requirements of a field that has both 
unstructured (open areas and end of rows) and structured elements (crops 
in rows are visible). The drive system is hydrostatic and the left and right 
turns are achieved using hydraulic actuators powered by a 0.45 cc/rev 
fixed displacement pump (Bucher Hydraulics, Italy) and a 4-port, 3-way 
closed center solenoid actuated DCV. The fixed gear pump is connected 
in tandem with an axial-piston variable-rate pump (OilGear, maximum 
displacement of 14.1 cc/rev) with swashplate for directing hydraulic fluid 
for forward and rearward movement, to all four wheels. The pump tandem 
is powered by the onboard Kohler 20 HP gasoline engine. The swashplate 
angle of the hydrostatic drive is controlled by a microcontroller using a 

Fig. 1. Red Rover and labeled systems.
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20 cm stroke electric linear servo. Each hydraulic wheel motor has a 240 
cc/rev hydraulic motor (Parker Hydraulics, USA). Maximum articulation 
angle is 45 degrees and the wheelbase is 180 cm. Height and width of 
the vehicle can be adjusted up to a maximum clearance of 122 cm and a 
maximum width of 234 cm.

A waterproof 90-degree rotation servo motor and microcontroller 
manages the engine RPM via the engine throttle. Engine RPM will be 
monitored for safety as well as for control of the speed and turning rate of 
the Red Rover. 

There are 2 electrical boxes on the rover. One holds the main server 
or Robot Operating System (ROS) Master and the other contains relays, 
microcontrollers, and two 12V DC to DC voltage converters. A forced 
air cooling system is used to keep each of these boxes within specific 
temperature limits (wide fluctuations can warp the electrical boards). A 
temperature feedback system was developed to pump air into the vortex 
tube and deliver it to the electrical boxes. A compressor and air tank is used 
to keep compressed air available at 100 psi and 10 cubic feet per minute.

To protect the Red Rover and its electronic systems, as well as  
pedestrians working in the vicinity of its operation, obstacle avoidance 
components and electrical overload protection have been incorporated. 
For example, in case of a detected obstacle, the controller will 
automatically send the swashplate to neutral and reduce engine RPM. If 
collision continues to be imminent, the system will shut itself off. This 
is accomplished using a combination of RGB camera, time-of-flight 
camera, and ultrasonic sensors to provide the Red Rover awareness of 
its surroundings. Each sensor represents a node that passes information 
to the ROS Master and data is processed using a Kalman filter to assess 
obstacles and assist GNSS/IMU navigation. Information from the filter 
will be passed back to ROS to ascertain if a controlled safety maneuvers 
is needed.

RTK-GPS is being integrated using the Piksi SWIFT navigation 
system (Swift Navigation, USA). This system is low-cost and highly 
accurate. Currently one receiver is being used as the base station and the 
other as the Rover. Future development will incorporate a cellular modem 
and NTRIP network communications from a continuously operating  
reference station. Rover navigation utilizes ROS and user-defined path-
following algorithms that incorporate the multiple awareness sensors 
(Rains et al., 2014).

2.2 Software

There are three main software components for control and navigation of 
the Red Rover. All 2D visual data captured through a RGB camera will 
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be processed by OpenCV machine vision algorithms for object detection 
and identification for obstacle avoidance, as well as crop identification for 
support of vehicle navigation. 3D depth of field data collected by the time-
of-flight camera will be processed by the OpenCV Point Cloud Library. 
The two data streams, along with GNSS data, will be given to ROS for 
mapping and control of the Rover’s maneuvers.

For further navigation from one location in the field to another, the 
paths of each crop row will already be stored on-board and an optimization 
routine is used to find the shortest path to relocate for data collection. 
Specific locations will be relayed manually by the farmer or crop consultant 
based on analysis of aerial data, ground data, and historical experience. 
Rover control and communications rely on Ethernet protocols and are 
integrated using ROS libraries. Ethernet is a standard communications 
protocol and a gigabit main switch is used to provide the communications 
speed required for real-time sensing and feedback controls. Diagnostic 
sensors (engine temperature, engine RPM, and hydraulic pressure) 
and navigation and avoidance sensors (GNSS, IMU, cameras) will each 
be defined as nodes within the ROS architecture. Remote control and 
observance of the system properties are available through a web-server 
on the ROS master and a cellular data modem. Control and observation 
of the on-board sensors will be accessible over multiple outlets for the 
farmer/consultant using the system. The on-board GUI will be available 
from the data modem on remote terminal, tablet, or smartphone interface. 
From any of these, a user will have access to the ROS nodes and sensor 
data from any of the cameras, GNSS, robot arm, and diagnostic sensors. 
This adds a level of observing ability, that may be beneficial for examining 
plants in real-time from a remote location or in diagnosing problems with 
the Red Rover system operations.

3. 4D MAPPING

Computer vision is a powerful tool for monitoring crops and estimating 
yields with low-cost image sensors (Hague et al., 2006; Nuske et al., 2014; 
Font et al., 2015; Sa et al., 2016). However, the majority of this work only 
utilizes 2D information in individual images, failing to recover the 3D 
geometric information from sequences of images. Structure from Motion 
(SfM) (Agarwal et al., 2009) is a mature discipline within the computer 
vision community that enables the recovery of 3D geometric information 
from images. When combined with Multi-View Stereo (MVS) approaches 
(Furukawa and Ponce, 2010), these methods can be used to obtain dense, 
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fine-grained 3D reconstructions. The major barrier to the direct use 
of these methods for crop monitoring is that traditional SfM and MVS 
methods only work for static scenes, which cannot solve 3D reconstruction 
problems with dynamically growing crops.

We address here the problem of time-lapse 3D reconstruction with 
dynamic scenes, to model continuously growing crops. We call the 3D 
reconstruction problem with temporal information, 4D reconstruction. 
The output of 4D reconstruction is a set of 3D entities (point, mesh, etc.), 
associated with a particular time or range of times. An example is shown 
in Fig. 2. A 4D model contains all of the information of a 3D model, e.g., 
canopy size, height, leaf color, etc., but also contains additional temporal 
information, e.g., growth rate and leaf color transition. We also collected a 
field dataset using a ground vehicle equipped with various sensors, which 
we will make publicly available. To our knowledge, this will be first freely 
available dataset that contains large quantities of spatio-temporal data for 
robotics applications targeting precision agriculture.

Fig. 2. Reconstructed 4D model of a peanut field by our approach. Each time slice shown has 
been reconstructed from a dense point cloud.
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We cite three main contributions of our 4D mapping research:

• Development	 of	 an	 approach	 of	 4D	 reconstruction	 for	 fields	 with
continuously changing scenes, mainly targeting crop monitoring
applications.

• Development	 a	 robust	 data	 association	 algorithm	 for	 images	 with
highly duplicated structures and significant appearance changes.

• We	collect	a	dataset	containing	ground	truth	crop	statistics	obtained
from a field vehicle for evaluating 4D reconstruction and crop
monitoring algorithms.

We begin by stating several assumptions related to crop monitoring, 
before specifying the details of our 4D reconstruction algorithm.

• The	scene	is	static	during	each	data	collection	session.
• The	field	may	contain	multiple	rows.

The first assumption is acceptable because we only focus on modeling
crops and ignore other dynamic objects like humans. The crop growth 
is also too slow to be noticeable during a single collection session.  
The second assumption is based on the geometric structure of a typical 
field. The 4D field model reflecting these two assumptions is illustrated 
in Fig. 3.

Our proposed system has three parts.

1. A multi-sensor Simultaneous Localization and Mapping (SLAM)
pipeline, used to compute camera poses and field structure for a
single row in a single session.

2. A data association approach to build visual correspondences between
different rows and sessions.

3. An optimization-based approach to build the full 4D reconstruction
across all rows and all sessions.

To generate the 4D reconstruction of the entire field, we first compute
3D reconstruction results for each row at each time session, by running 

Fig. 3. The field 4D model. The field contains multiple rows and there are multiple time 
sessions of the field.
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multi-sensor SLAM independently. Next, we use the data association 
approach to match images from different rows and sessions, building a 
joint factor graph that connects the individual SLAM results. Finally we 
optimize the resultant joint factor graph to generate the full 4D results.

3.1 Multi-Sensor SLAM

The SLAM pipeline used in this work has two parts, illustrated in Fig. 4. 
The first part of the SLAM system is a front-end module to process images 
for visual landmarks. SIFT (Lowe, 2004) features are extracted from each 
image and SIFT descriptor pairs in nearby image pairs are matched using 
the approximate nearest neighbor library FLANN (Muja and Lowe, 
2014). The matches are further filtered by 8-point RANSAC (Hartley and 
Zisserman, 2004) to reject outliers. Finally, a single visual landmark is 
accepted if there are more than 6 images that have corresponding features 
matched to the same landmark.

The second part of the SLAM system is a back-end module for 
estimating camera states and landmarks using visual landmark 
information from the front-end and other sensor inputs. Since the goal 
of the multi-sensor SLAM system is to reconstruct a single row during a 
single data collection session, the back-end module of the SLAM system 
estimates a set of N camera states X, at row ri and time ti, given visual 
landmark measurements from the front-end module, and other sensor 
measurements, including an Inertial Measurement Unit (IMU) and GPS.

Fig. 4. Overview of multi-sensor SLAM system.

3.2 Robust Data Association over Time and Large Baseline

The second key element of our approach is robust data association. Data 
association is a key technique to get reconstruction results of more than a 
single row at a single time; however, the data association problem between 
different rows or times is difficult, since there are significant appearance 
changes due to illumination, weather or view point changes. The problem 
is even more difficult in crop monitoring due to measurement aliasing 
(Indelman et al., 2016): fields contain highly periodic structures with little 
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visual difference between plants (see Fig. 2). As a result, data association 
problems between different rows and times is nearly impossible to solve 
by image-only approaches.

Rather than trying to build an image-only approach, we use single 
row reconstruction results output by SLAM as a starting point for data 
association across rows and time. The SLAM results provide camera pose 
and field structure information from all sensors (not just images), which 
helps us to improve the robustness of data association.

3.3 4D Reconstruction

The third and the last part of our pipeline is a 4D reconstruction module. 
The complete 4D reconstruction pipeline is illustrated in Fig. 5. We define 
the goal of 4D optimization as jointly estimating all camera states X and 
all landmarks L across all rows and times (sessions). The measurements 
Z includes all single row information as well as data association 
measurements Zcr that connect rows across space and time.

Data association is performed across different rows and times to get 
Zcr. Exhaustive search between all row pairs is not necessary, since distant 
rows are not visible from each other in the images, and large timespans 
makes matches between images difficult to calculate. In our approach we 
only match rows next to each other in either the space domain (nearby 
rows in the field), or the time domain (nearby date).

The point cloud estimate of L is relatively sparse, since it comes from 
a feature-base SLAM pipeline, where only points with distinct appearance 
are accepted as landmarks (in our system SIFT key points are accepted). 
An optional solution is to use PMVS (Furukawa and Ponce, 2010), which 
takes estimated camera states to reconstruct dense point clouds.

Fig. 5. Overview of 4D reconstruction pipeline. Dash box of PMVS dense reconstruction step 
means it is optional.
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3.4 Dataset

To evaluate the performance of our approach with real world data, we 
collected a field dataset with large spatial and temporal scales. Existing 
datasets with both large scale spatial and temporal information include 
the CMU dataset (Badino et al., 2011), the MIT dataset (Fallon et al., 2012), 
and the UMich dataset (Carlevaris-Bianco et al., 2016). However, all of 
these datasets are collected in urban environments, and are not suitable 
for precision agriculture applications.

The dataset was collected from a field located in Tifton, GA, USA. The 
size of the field is about 150 m × 120 m, and it contains total 21 rows of 
peanut plants. The map of the field is shown in Fig. 6. We use a ground 
vehicle (tractor) equipped with multiple sensors, shown in Fig. 6, to collect 
all of the sensor data. The equipped sensors include: (1) a Point Grey 
monocular global shutter camera, 1280 × 960 color images are streamed 
at 7.5 Hz, (2) a 9DoF IMU with compass, acceleration and angular rate 
are streamed at 167 Hz, and magnetic field data is streamed at 110 Hz, (3) 
a high accuracy RTK-GPS, and a low accuracy GPS, both of them stream 
latitude and longitude data at 5 Hz. No hardware synchronization is used. 
All data are stored in a SSD by an on-board computer.

We recorded a complete season of peanut growth which started 
May 25, 2016 and completed Aug 22, 2016, right before harvest. The data 
collection had a total of 23 sessions over 89 days, approximately two per 
week, with a few exceptions due to severe weather. Example images of 
different dates are shown in Fig. 7. Each session lasted about 40 minutes, 
and consisted of a tractor driving about 3.8 km in the field.

Fig. 6. Top left is the tractor collecting the dataset; Down left shows sensors and computer 
(RTK-GPS is not shown); Right is a sample RTK-GPS trajectory, and sites of manual 

measurements are taken, overlay on Google Maps.
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In addition to sensor data, ground truth crop properties (height and 
leaf chlorophyll) at multiple sampling sites in the field were measured 
weekly by a human operator. There were a total of 47 measuring sites, as 
shown in Fig. 6.

3.5 Results

We ran the proposed 4D reconstruction approach on the peanut field 
dataset. We implemented the proposed approach with the GTSAM 
C++ library. We used RTK-GPS data from the dataset as GPS input, and 
ignored lower accuracy GPS data. Since the peanut field contains two sub-
fields with little overlap (see Fig. 6), the two sub-fields were reconstructed 
independently and aligned by GPS. Since the tractor runs back and forth 
in the field, we only use rows in which the tractor driving south (odd 
rows), to avoid misalignment with reconstruction results from even rows. 
An example of densely reconstructed 4D results shown in Fig. 2.

Although Fig. 2 shows that the 3D reconstruction results for each 
single session qualitatively appear accurate, to make these results useful 
to precision agriculture applications, to precision agriculture applications 
they should be evaluated quantitatively as well. In particular we wanted 
to answer the following questions:

• Are	these	3D	results	correctly	aligned	in	space?
• Are	 these	 3D	 results	 useful	 for	 measuring	 geometric	 properties	 of

plants,	useful	for	crop	monitoring	(height,	width,	etc.)?

To answer the first question, we visualize the 4D model by showing all 
3D point clouds together. We visualize part of the 4D sparse reconstruction, 
result is shown in Fig. 8. Point clouds from different dates are marked in 
different colors. We can see from the cross section that the ground surface 
point clouds from different sessions are well aligned, which shows that all 
of the 3D point clouds from different dates are well registered into a single 
coordinate frame. This suggests that we are building a true 4D result. 
We can see the growth of the peanut plants, as the point cloud shows 

Fig. 7. Eight sample images taken at approximately same location in the field, dates are 
marked on images.
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“Matryoshka doll” like structure, earlier crop point clouds are contained 
within point clouds of later sessions.

To answer the second question, we show some preliminary crop analysis 
results using reconstructed 4D points and compare them to ground truth 
measurements we took manually. We setup a simple pipeline to estimate 
height of peanut plants from sparse reconstructed 4D point clouds at 
multiple sites, by first estimating the local ground plane by RANSAC 
from May 25’s point cloud (when peanuts are small and ground plane is 
well reconstructed), second separate peanut’s point clouds by color (using 
RGB values), and finally estimate the distance from peanut canopy’s top 
to ground plane. Preliminary height estimations of twelve sampling sites 
are shown in Fig. 9. With the exception of sites 22 and 25, which have 
slightly biased estimated heights due to poor RANSAC ground plane 
estimations, results of the sites meet the ground truth measurements well. 
This shows that we can compute reasonable height estimates even with 

Fig. 8. Cross-section of part of the sparse 4D reconstruction results at 3rd row. Only 4 
sessions are shown to keep figure clear.

Fig. 9. Estimated peanut heights at 12 sampling sites in blue, with ground truth manual 
measurements in black lines.
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a simple method, and proves that the 4D reconstruction results contain 
correct geometric statistics.

4. ROBOT ARM CONTROL USING VISUAL SERVOING

Robot arms work best in structured environments where their desired 
tasks are known before they need to be executed. However, the field 
of robotics is ever expanding out of factory-like environments and into 
broader applications. Thus, the demand for completing unstructured 
tasks, tasks that have elements that cannot be known ahead of time, is 
increasing. This research will focus on the unstructured task of having 
a robotic arm grasping a leaf from a plant. The challenges in this task 
involve both the identification of a leaf within the space of a camera image 
as well as locating the leaf in the 3D Cartesian world. While the type of 
leaf can be assumed to be known, and the approximate location of the 
plant is assumed to be known, neither the exact geometry of the leaf nor 
the approximate location of the leaf is known. The task for the arm is to 
search for the leaf, identify the leaf, and then, using 2D pixel information, 
grab the leaf with its manipulator.

Identifying and localizing a leaf is not a trivial problem. Leaves vary 
in size and appearance, and are susceptible to overlapping and occlusions. 
Moreover, the implementation should be robust to variations in natural 
illumination. Deep learning techniques have achieved great results in 
object detection, while demonstrating good computational performance 
by using modern GPU computing. Once information about the leaf can be 
determined in the 2D image space, the manipulator can attempt a routine 
to grasp the object.

Visual servoing is the process of controlling a robotic device using real-
time visual information in a feedback loop. Image Based Visual Servoing 
(IBVS) is a classical approach to visual servoing in robotics that attempts 
to converge on an object in 3D space by only using information about the 
objects 2D pixel geometry. IBVS does not assume any information about 
the object being viewed; instead, this method uses a given set of desired 
points in the image space that it uses for its error calculations (Chaumette 
and Hutchinson, 2006). IBVS is a widely studied topic that is often used in 
robotics applications.

Robotic arms typically have a virtue in their design that offer an 
alternative or supplement to the IBVS approach. Assuming that the 
kinematics of the arm and the rotation of the joint angles are known 
(a necessity for most joint control methods), the final position of the 
end-effector can be determined. Since the camera is rigidly attached to 
the manipulator, the position and orientation of the camera is always 
known in Cartesian space. Using the location of the camera and the pixel 
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coordinates of desirable feature points, the 3D location of images can be 
determined. Monoscopic Depth Analysis (MDA) uses multiple images 
and triangulation to deduce the position of feature points in Cartesian 
space relative to the camera. Although the method of visual triangulation 
is widely known, the implications of using the MDA approach for robotic 
manipulators has a vast potential. MDA is a simple routine that has been 
used in other visual applications (e.g., Kalghatgi and Sadegh, 2012) and 
holds promise in improving the control of robotic manipulators.

The task of picking a leaf can be separated into the following, 
unstructured sub-tasks: determining the position of the leaf in the image 
space and transforming its position into Cartesian space. The method of 
using Convolutional Neural Networks as a means of identifying the leaf 
in the image space will be examined. To demonstrate the effectiveness of 
MDA as a control scheme, the typical elements of classical IBVS approach 
as well as MDA will be discussed for the purpose of comparison. This 
approach to visual servoing was tested using an experimental setup and 
the results will be discussed.

4.1 Leaf Detection

Object detection—a fundamental problem in Computer Vision—consists 
of producing the bounding boxes around the objects of desired class on an 
image. Traditional Machine Vision techniques are generally not suitable 
for the detection of objects like leaves. First, the leaves on the plants have 
complex backgrounds that often include other leaves, which makes it hard 
to separate an individual leaf from the background. Second, leaves have 
complex shapes and appearances, thus creating a model and estimating 
the parameters is not computationally feasible for a real-time application. 
Finally, since the plants are located in the field there is a wide variation 
in natural illumination. That excludes many color-based approaches that 
have to be finely tuned to the lighting conditions. Hence, the problem 
of leaf detection requires use of Machine Learning algorithms. In recent 
years Convolutional Neural Networks have become a popular approach.

To train the model we accumulated a small dataset of leaves images 
cropped to 227 × 227, labeled with two classes (leaves and background). 
Our network is based on the AlexNet architecture (Krizhevsky et al., 2012) 
and consists of five convolutional layers and two fully-connected layers. 
The model was fine-tuned by initializing with weights trained on a large 
ILSVRC12 dataset (1.2 million images), and then trained on our task specific 
dataset of leaves. This common technique greatly improves the robustness 
and accuracy of the model. During deployment the algorithm treats fully-
connected layers as convolutional and, thus, gets the probability map for 
the target classes at once, instead of making many classification calls in a 
traditional sliding window approach.
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In our particular problem, we do not have to detect all the leaves in 
the frame, but rather identify a good candidate for subsequent sampling, 
i.e., the one in front of the camera, not occluded, and not having extreme
angles that are hard for the robotic arm to approach. That filtering is
incorporated in the dataset creation (leaves at extreme angles are excluded
from the dataset) and in selecting a candidate leaf processing (where
after estimating 3D coordinates it can be dropped if deemed unsuitable).
Figure 10 shows examples of leaf detections.

4.2 Leaf Tracking

To allow for successful execution of the leaf picking, there is a need to 
continuously track the target leaf from frame to frame as we move the 
robotic arm. Furthermore, triangulation of 3D coordinates requires 
precisely matched points within the target leaf for two consecutive 
frames. Since, during the execution, we have only one target leaf from the 
old frame and few candidate leaves in the new frame, we can efficiently 
obtain the SURF descriptors for these leaves (which would otherwise 
be computationally prohibitive). Then, to rule out the keypoints in the 
background we use green color thresholding on the leaf image; we also 
exclude the points in the corners, because they could belong to other 
leaves appearing within the bounding box.

For each pair of the old target leaf and a new candidate leaf, we 
perform quick matching with FLANN. We filter out the outliers with 
RANSAC algorithm that estimates the largest set of points that agrees with 
a perspective transformation. At the end of this procedure, the correct leaf 

Fig. 10. Examples of leaves detections. The number in the corner of a bounding box indicates 
the score of the detected leaf.
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has significantly higher number of matches and is updated as our target. 
If all the leaves have low number of matches, we assume that the target 
leaf is missing in the current frame. We continue searching for the leaf for 
an arbitrary number of frames, and if it is not found, we pick a new target. 
Refer to Fig. 11.

This approach, typically, produces over one hundred matched feature 
points within a leaf. The points, however, are consistent only between 
one pair of consecutive frames, which makes it not suitable for IBVS. 
Identifying consistent features on a leaf is difficult because for each frame 
a given leaf will change its position and orientation within the bounding 
box, and on some occasions parts of the leaf can be outside of the bounding 
box. The usage of bounding box regression (Kuo et al., 2015) and semantic 
segmentation-aware models (Gidaris and Komodakis, 2015) will provide 
more precise localization of the leaf and may allow for identification 
of the four corners of the leaf along the axes. The performance of the 
aforementioned approaches on leaves and the extent to which it may help 
to draw up a constant feature detection method will be evaluated in our 
future work.

4.3 Visual Servoing

Different forms of visual-servoing can be used which would allow a 
manipulator to interact with an unstructured object. However, each 
form has varying strengths and weaknesses which would affect the 
performance of the robotic arm. In this analysis, two forms of visual-
servoing were considered for implementation: Classical Image Based 
Visual Servoing and Monoscopic Depth Analysis (MDA). Some of the 
important factors in visual-servoing are formulation of the error vector, 
analysis of feature points, and control of the manipulator. These visual 
servoing methods will be introduced and then compared in the context of 
grasping a leaf from a plant.

Image Based Visual Servoing (IBVS) is a wide field of analysis that 
attempts to convert a Cartesian Space application into the image space. 
Numerous modifications of this method can be implemented to better fit a 
control scheme to achieve the desired task. The main strength of IBVS is that 

Fig. 11. Leaf tracking on several frames. Yellow bounding box indicates the target leaf that 
is being tracked; blue boxes indicate other detections in the frame; keypoints are highlighted 

on the leaves.
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camera calibration is not necessary, nor does it require a prior information 
about the object being viewed (Chaumette and Hutchinson, 2006). This 
method attempts to minimize the difference between the feature points of 
an image with a desired set of feature points, thus orienting the camera in 
some desirable fashion.

4.4 Monoscopic Depth Analysis

Using two images to determine a feature point’s Cartesian position has 
been well established in the field of image processing. Indeed, this method 
forms the basis of stereo cameras (Kalghatgi, 2012). In stereo-vision, two 
cameras, that are a known distance and orientation from one another, 
each take an image simultaneously. The images are compared, and, with 
information about the properties of the cameras, the 3D Cartesian position 
of corresponding feature points are determined. Typically, cameras used in 
stereo-vision will be pointed in the same direction and only be separated 
by a fixed distance between their optical axes; however, it can easily be 
shown that any known translation and rotation between cameras can be 
factored to determine corresponding feature point’s Cartesian position, 
relative to a camera (similar to the setup in Fig. 13).

4.5 Error Vector Formulation

In IBVS, the error vector exists in the image space. When visualizing an 
object, a set of feature points are identified and compared against a desired 
position, such as shown in Fig. 12. The relationship between the pixel 
velocities and Cartesian velocities can then be quantified as follows: ds/
dt = Jf d(pc)/dt, where ds/dt is the rate of change in pixels, Jf is the feature 
Jacobian, and pc is the velocity Twist vector of the camera in R6 space, 
concatenating the translational and rotational velocity vectors yields pc = 
[x y z Ɵx Ɵy Ɵz]

T .
Since the error vector is formulated in the image space, the geometric 

structure of the object need not be known. Also, the distance to the object 
is not a necessary condition for convergence, an estimated value can be 
used (Chaumette and Hutchinson, 2006); however, accurate estimates do 
help in convergence. The result is that IBVS is well suited for unstructured 
objects.

The error formulation process is quite different in MDA. In MDA, the 
error vector is the difference in 3D space between the end-effector location 
and a desired position. While in IBVS, the current position and the desired 
position were known in the image space relative to the target (leaf), MDA 
assumes that only the current position and rotation in Cartesian space 
is known. The desired position is determined through the process of 
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estimating the location of the feature points in Cartesian space. In this 
recursive process, the error vector is estimated after a pair of successive 
images are taken; simultaneously calculating a subsequent movement 
vector to minimize the error in the system. Figure 13 demonstrates the 
relevant variables in this triangulation process. Unlike IBVS, determining 
the exact depth of the object is critical in the process. However, like IBVS, 
the structure of the object does not need to be known ahead of time for 
convergence to be possible. MDA is also very applicable to unstructured 
visual-servoing applications.

4.6 Feature Points

Image Based Visual-Servoing and Monoscopic Depth Analysis both 
rely on distinguishable feature points determined by image processing 

Fig. 12. An object being seen by a camera in both its current position and desired position. 
When the object is in the desired location relative to the camera, it will have a specific pattern 

of feature points.

Fig. 13. Diagram depicting a stereo-vision camera set-up.
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methods. However, the constraints with which feature points can be used 
are widely different between the two methods. IBVS relies on a set of at 
least four distinguishable feature points that consistently exist in each 
frame for analysis. Furthermore, these feature points have to correspond 
to known aspects of the object being viewed. Examples of possible feature 
point in this application might include the stem of the leaf or the tip of 
the leaf. Since the error vector is a function of the desired feature points 
location and the known feature points location, the ability to correspond 
what is seen in the image with a known aspect of the object is essential.

In MDA, the constraints on the acceptable feature points are relaxed. 
In order to estimate the depth of a point, only a single feature point 
corresponded between two images is necessary. To estimate the location 
and rotation of an object, only three points are needed in two consecutive 
images. Furthermore, while having information about a feature point 
is always beneficial, MDA does not require the feature points to have a 
known relationship to the object ahead of time (beyond the assumption 
that the feature points belong to an object). Also, MDA does not require 
that the same feature points be identified in multiple successive images. 
MDA only requires that a set of feature points be corresponded in a pair of 
images; different sets of feature points can be used in each successive pair.

4.7 Robot Control

All visual-servoing techniques must address how the robotic arm is going 
to interpret information from the imaging routine. Both IBVS and MDA 
assume an eye-in-hand set-up of the camera and arm (indicating that the 
camera is rigidly attached to the end-effector of the robotic arm) and that 
the camera is the only sensor capable of detecting the object. However, 
just as the error vector domains differ between the two methods, so might 
the control domains. Controlling a system directed by IBVS allows for a 
certain level of flexibility. IBVS inherently lies in the image-space, but the 
control vector that is being manipulated is the Twist of the camera (and 
subsequently the end-effector). Thus, the commands of the control scheme 
can either be interpreted in the Cartesian space or the joint space of the 
arm. The ability to set the control domain allows for the best possible 
control of the arm to be chosen. Since the error vector of MDA exists in 
Cartesian space, the control of the arm must also exist in Cartesian space. 
This indicates that the arm control must be translated from joint space 
into Cartesian space, just as the feature points must be converted from 
image space into Cartesian space. While control can then be moved to 
a different domain, these initial conversions are necessary and impose a 
certain amount of limitations to the control.
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4.8 Results

Object detection algorithm was able to detect at least one leaf for every 
frame where the plant was present. Once a leaf was picked as a target, 
that same leaf was consistently tracked in subsequent frames while being 
approached by the robotics arm. The performance of tracking algorithm 
was less robust and at times it failed to find matched points on the detected 
leaf in the new frame, typically due to substantial horizontal motion. This 
issue was accommodated by adjusting the robotic arm’s search pattern.

The algorithms’ computational performance was tested on a laptop 
with Intel i7 x 8 CPU and NVIDIA GTX880M GPU. The images from 
the camera had a resolution of 1280 × 720. Image Processing took on an 
average 0.7s per frame if run on GPU, with tracking using most of the 
time; and 7.0s on CPU, with the detection running the longest.

Using the Mico arm from Kinova, a six degree-of-freedom serial 
actuator with two fingers, and a camera fitted with a custom mount 
attached to the end-effector, a series of trials were performed to 
demonstrate the effectiveness of Monoscopic Depth Analysis. The visual-
servoing approach can be divided into the following subtasks:

 (1) Search for target leaf
 (2) Approach target leaf
 (3) Grasp target leaf

In this process, “Searching” for the target leaf is a process of exploring the 
area where the plant is believed to be until the image processing algorithm 
identifies a suitable candidate, which will be referred to as a target leaf. 
During the “Approach”, the manipulator moves the camera to get various 
scene vantages in attempts to perform triangulation of desired feature 
points. If the target leaf is lost, or if correspondence cannot be performed, 
this step is canceled and the algorithm returns to the “Searching” stage. 
Finally, if the target leaf is identified, the manipulator attempts to grasp the 
leaf. The process of grasping the leaf is quite involved and beyond the scope 
of this experiment, as care has to be taken in how the manipulator grasps 
the leaf. If the approach does not take into consideration the orientation 
of the leaf or surrounding objects, it is possible to either miss the leaf 
entirely or accidentally push the leaf out of the way. For this experiment, 
the grasping stage is approximated by having the manipulator position its 
end effector at the location of the leaf without necessarily attempting to 
interact with the object.

In this experiment, it was considered a success if the manipulator 
was positioned less than a quarter inch away from the body of the leaf 
after the “Grasping” stage. A small number of trials were performed and 
are listed in Table 1. The trials were performed on a plastic, surrogate 
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plant in the following manner. Ten “Searches” were conducted; during 
each “Search”, the robotic arm was positioned to view the plant from a 
variety of perspectives. If a leaf was identified and found to be acceptable 
(in terms of estimated distance to the arm), the arm would enter the 
“Approach” stage and attempt to accurately locate the leaf. If the leaf 
could not be identified in a subsequent frame, or if the algorithm decided 
that the error vector was not converging, the “Approach” stage would be 
abandoned and the algorithm would return to the “Searching” stage. If 
the error vector to the leaf converged, the “Approach” stage was advanced 
to the “Grasping” stage, an open-loop routine based on estimates of the 
position of the leaf. Although the leaf was sometimes “grasped” in the 
traditional understanding (the fingers of the manipulator pinched the leaf, 
as seen in Fig. 14), this was not the stated goal of this experiment. For 
this experiment, the “grasp” was considered a success if the fingers of 
the robotic manipulator touched the desired leaf. Following these steps, 
multiple “Approaching” stages were performed for each “Searching” 
stage. Thus, even though each individual attempt at approach did not 
always lead to a success, each “Searching” stage did end with a leaf 
being “grasped” at least once. The average failure distance was difficult 
to measure; the value recorded is meant to give an impression as to the 
magnitude of failure rather than a precise average distance. Although the 
control algorithm for grasping the leaf can be refined, these initial results 
show the promise of the MDA technique for finding leaves in 3D space. 
The manipulator was able to demonstrate an ability to locate and interact 
with unstructured objects with consistency.

As we move forward, there is room for further improvement in 
perception and control algorithms. First, more robust detections can be 
achieved by using current state-of-the-art object detection approaches 
(e.g., Faster-RCNN), which use region proposals to classify the image 
patches that are likely to have objects. Then, the feature points required by 
IBVS could be approximated by the corners of the bounding box produced 
by object detection, thus enabling combining both control approaches 
previously discussed. In particular, IBVS can be used to quickly start 
approaching the leaf during first few iterations, while simultaneously 

Searches Performed: 10

Successful Searches: 10

Approaches Performed: 23

Successful Approaches: 16

Average failure distance: 2 in (approx.)

Table 1. Grasping performance.
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building the distance estimate; then switching to MDA will allow for 
accurate positioning and grasping.

4.9 Dual-Arm Visual Servoing for Fruit Picking

To conclude our discussion of visual servoing robot control, we include 
a brief description of a related agricultural application (apple picking) 
that, similar to field scouting, takes place in an unstructured environment. 
The shape of the branches of any given apple tree (see Fig. 15) is unique 
and difficult to characterize geometrically. In the context of apple picking, 
scattered fruit targets of interest are interspersed among the tree’s branches 
and the goal is to successfully reach the targets to grasp them.

We approach this problem by combining two serial manipulators, each 
equipped with an eye-in-hand camera, which examine the tree architecture 
to find a clear path to the fruit.  The two manipulators are designated as the 
“Search Arm” and the “Grab Arm” (Fig. 16).  The Search Arm is assumed 
further from the tree and clear of obstacles, while the Grab Arm is set 
among the branches where obstacles are present.  The Search Arm provides 

Fig. 14. Example of a successful leaf grasp by the robot arm. The leaf was located visually, 
its position estimated, and then the arm’s end-effector was commanded to the leaf position.
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a wider view of the scene and the grab arm has a narrower view, focusing 
on the fruit.  The two arms work together to navigate the branches of the 
tree and to bring the Grab Arm to the fruit.  The system operates by using 
machine vision to look for unobstructed views of the Grab Arm and the 
apples.  By compiling the clear volumes within the tree branches, the arms 
are able to find a navigable path to the fruit relatively quickly.  The tree is 
examined in sections, and the grab arm picks as many apples as possible 

Fig. 15. Simulation of apple picking using dual, coordinated robot arms controlled by eye-
in-hand visual servoing.

Fig. 16. Illustration of several iterative movements that allow the Grab Arm to explore the 
unstructured tree branch environment.

Search Arm 

1 I 

0 
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within its current section. Simulations demonstrate that with two arms 
working in tandem, each with a distinct but cooperative task, the arms 
are able to identify viable paths to pick apples set among the branches of 
a tree.  Field testing will be underway soon.

5. CONCLUSIONS

Agricultural robotic systems need to operate effectively in unstructured 
environments that vary both spatially and temporally. We have presented 
a case study of an automated “field scout” ground platform equipped with 
the means for both sensing and manipulating its changing environment 
for the purpose of providing actionable data to a farmer. The technical 
topics we have covered include: (1) 4-dimensional mapping using 
2-dimensional imaging and (2) robot arm end-effector manipulation
using visual servoing control for: (a) leaf picking in peanut plant rows
and (b) apple picking using two coordinated robot arms. Results from
both simulations and field experiments were described and evaluated,
showing successful outcomes that will serve as the foundation for future
work in this emerging field.
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Current and Future Applications of Cost-

Effective Smart Cameras in Agriculture
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1. INTRODUCTION

Relentless population increase will result in over 9 billion predicted 
population on the globe by 2050 (FAO, 2015). However, yield gain of major 
cereal crops, even with the help of a mechanization, farm enlargement 
and/or technology has plateaued in last two decades (Grassini et al., 
2013). Eighty four percent of the world farms are less than 2 hectares 
and many of these farms lack the financial ability to adapt emerging 
technologies (like, multispectral camera, hyperspectral camera, etc.) to 
increase their productivity (FAO, 2014). Another alarming situation facing 
the agricultural industry is that the total number of farm operators in the 
world are constantly declining and we are facing agricultural work force 
aging phenomenon (ILO, 2014).

A smart camera is an intelligent vision system that not only acquires 
images but also extracts useful information, applies algorithms and makes 
decisions for specific applications including automation (Belbachir and 
Göbel, 2009). Use of smart camera started in 1990s by many industrial 
sectors and it has also been studied for agricultural purposes, because it 
is non-destructive, rapid, efficient and cost-effective which will decrease 
human labor. The smart camera can be used for saving agro-chemicals, 
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non-invasive means of performing a particular task, minimizing the cost 
and labor associated with the sorting, etc. However, most of the studies on 
smart camera or machine vision in agriculture are focused on expensive 
hyperspectral or multispectral cameras, which are too expensive for most 
of small farmers. Therefore, current use and potential future use of cost-
effective smart camera in agriculture was reviewed in this chapter. 

The applications of cost-effective smart cameras for sorting of fruits, 
vegetables and grains by using color, shape and textural features are 
introduced in Section 3. Subsequently, hardware based image processing 
tools for minimizing the computational requirements are presented in 
Section 4. The Section 4 shows the potential of  digital signal processor 
(DSP), field programmable gate array (FPGA), advanced reduced 
instruction set computing machine (ARM) and graphic processing unit 
(GPU) for future agricultural applications. This chapter covers only 
the above mentioned applications of smart camera, other applications 
like yield monitoring, plant phenotyping, disease detection, etc. are not 
reviewed.

2. SMART CAMERAS FOR WEED—CROP SEGMENTATION

Weeds are one of the major yield limiting factors in almost all the 
cultivated and non-cultivated crops around the world. They can holdup 
the plant nutrients, compete with plants, harbor diseases and insects, and 
may hinder the harvesting operation (Kinsman, 1993). The most common 
and commercially available weed management protocols include the 
blanket spraying of herbicides across the entire field, thereby raising 
the environmental concerns (Kazmi et al., 2015) and cost of production 
(Meyer, 2011). The variability in the spatial distribution of weeds can be 
detected in non-invasive manner using the state-of-the-art cutting-edge 
sensing tools available commercially (Andújar et al., 2013). The ‘sensed’ 
information can be used to trigger the robust ‘controllers’ to target the 
individual weed canopy thereby, providing the means to minimize the 
cost of production. 

Weed locations and spatial variability within fields can either be 
coarsely ‘sensed’ using remote sensing platforms or ‘fine sensing’ 
procedures’ based on near-ground methods can be opted for real-time 
applications (Pérez et al., 2000). The remotely sensed aerial spectral scans 
can be used to develop the prescription maps in geo-statistical software 
to vary the application rates of pesticides according to the weed location 
(Michaud et al., 2008). However, these systems mainly rely on the good 
quality, up-to-date aerial data followed by the comprehensive data 
management and processing for weed spots detection (Chang et al., 2012) 
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thereby not suitable for the real-time field applications. Alternatively, 
optoelectronic sensors attached to ground vehicles can be used to develop 
the spectral signatures by using time of flight approach for the reflected 
optical beams from different crop and weed areas (Andújar et al., 2011). 
These sensors, however, were not able to discriminate between the crop 
and weeds of the same height and thus could only be used to discriminate 
the vegetative area from the bare soil (Andújar et al., 2013). Therefore, 
many researchers have used smart cameras for the segmentation of weeds 
from crops (Shearer and Holmes, 1990; Woebbecke et al., 1995a; Meyer 
et al., 1998; Burks et al. 2000; Lamm et al., 2002; Meyer and Neto, 2008; 
Ahmed et al., 2011; Guerrero et al., 2012; Kazmi et al., 2015). Figure 1 
shows the concept of the smart sprayer utilizing segmentation of weeds 
from crops (Tian, 2002). These cameras can be used with variety of image 
processing algorithms to exploit the color, shape and textural information 
contained in the acquired images. These algorithms can be used to explore 
the different traits related to plant and weed canopies along with bare soil 
information. Furthermore, unlike remotely sensed data, these methods are 
not influenced by the positional error and don’t require any pre-processing 
and prescription maps development. The following sub-sections explain 
the use of different image processing algorithms for sensing the spatial 
variability in the weed location and their advantages and drawbacks for 
real-time applications. 

Fig. 1. The Smart sprayer concept. The system includes a multiple-camera vision system, 
a ground speed sensor and a nozzle controller (Reprinted from Computers and Electronics 
in Agriculture. 36(2), Tian, Development of a sensor-based precision herbicide application 

system, 133–149. Copyright (2002), with permission from Elsevier).
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2.1 Color Based Weed—Crop Segmentation Systems

Analysis of the different vegetation by exploiting its color related spectral 
attributes is perhaps one of the easiest way to discriminate plants from 
background clutter. Color spectral information contained in an agronomic 
image can be utilized to discriminate the vegetative biomass and soil 
residues (Woebbecke et al., 1995a; Lamm et al., 2002; Hague et al., 2006; 
Meyer and Neto, 2008; Guijarro et al., 2011; Guerrero et al., 2012; Kazmi et 
al., 2015). An array of different vegetation indices has been evolved and 
tested over the years by using available information in different visible 
spectral channels and their combinations for weed-crop discrimination 
(Woebbecke et al., 1995a; El-Faki et al., 2000; Mao et al., 2003; Kataoka et 
al., 2003; Meyer, 2011; Montalvo et al., 2013; Chang et al., 2014; Esau et al., 
2014). Whilst most of these indices amplify the information contained in 
a respective color channel (Fig. 2); thereby accentuating the color of any 
particular region of interest (Meyer and Neto, 2008; Meyer, 2011). 

Earlier applications of vegetation indices involved the non-normalized 
red-green-blue (RGB) color coordinates. These coordinates were largely 
influenced by the camera parameters and amount of incident illumination 

Fig. 2. Comparison of vegetative indices (ExGExR, ExG, and NDI) and hand extracted 
mask (Reprinted from Computers and Electronics in Agriculture. 63(2), Meyer and Neto, 
Verification of color vegetation indices for automated crop imaging applications, 282–293. 

Copyright (2008), with permission from Elsevier).

NDI+Otsu Binary Image. ExG+Otsu Binary Image. ExG-ExR Binary Image. 
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on the terrain and were not very effective in discriminating green biomass 
from background residues (Woebbecke et al., 1995a). Woebbecke et al. 
(1995a) also normalized RGB chromatic coordinates by applying the 
variation in intensities uniformly across all three color channels (Cheng 
et al., 2001). The normalized color coordinates were successfully used to 
develop and compare the performance of different vegetation indices with 
the excess green (ExG) as an optimal selection for separating the plants 
from residues (Woebbecke et al., 1995a; Lamm et al., 2002; Mao et al., 2003; 
Guerrero et al., 2012; Kazmi et al., 2015). 

Meyer et al. (1998) adopted an alternative approach for identifying the 
soil and residue by amplifying the redness color image thus resulting in an 
excess red (ExR) index. An improved color based index (ExGExR, ExG-ExR 
or ExGR) was achieved by taking the difference of ExG and ExR (Camargo, 
2004; Meyer and Neto, 2008). This index generates binary images without 
using any manually defined threshold level and performed comparably 
to the ExG index (Meyer and Neto, 2008). Marchant et al. (2001) used a 
red/green ratio to detect vegetation against soil background and it was 
compared with red/Near Infra-Red (NIR) ratio and a new classification 
method (alpha-method). A color index of vegetation extraction (CIVE) 
was used to estimate the growth of soybean and sugar beet and was 
found to have a high degree of correlation with manually measured plant 
parameters (Kataoka et al., 2003). The same color index was reported 
in number of studies to identify the pixels containing background soil 
and crop residue from the plant pixels (Guijarro et al., 2011; Guerrero 
et al., 2012; Montalvo et al., 2013; Kazmi et al., 2015; Yang et al., 2015). 
The combination of this color index with ExR, ExGExR, NDI, GB, RBI, 
ERI, EGI, Rn and Gn resulted in a high classification accuracy of 97.83%  
(Kazmi et al., 2015). Hague et al. (2006) came up with a more intense 
and color illumination resistant vegetative index (VEG) by studying the 
physics of image formation with respect to cereal fields. 

The weighted average of four existing vegetation indices (ExG, 
ExGExR, CIVE and VEG) were combined to analyse the information 
regarding the greenness of agricultural field images (Guijarro et al., 2011). 
The results of these individual color indices for identifying the green weeds 
indicated that CIVE achieved the highest identification accuracy and was 
therefore given highest weight when combining these four color indices. 
A similar combination of ExG, CIVE and VEG was proposed as a solution 
to extract the green plant pixels masked by the red spectral component 
of soil (Guerrero et al., 2012). The binary image of green plant pixels was 
generated using Otsu’s thresholding algorithm (Otsu, 1979) followed by 
the support vector machine (SVM) based classification technique. An 
automated expert system (AES) used same color index based algorithm 
to delineate the green plants from the background (Montalvo et al., 2013). 
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The results of their study showed that AES outperformed an iterative 
approach of applying two different thresholds to differentiate between 
different classes (Demirkaya et al., 2008) and the SVM (Guerrero et al., 
2012). Burgos-Artizzu et al. (2011) modified the linear combination of 
coefficients of RGB color planes to improve the performance of the ExG. 
The resultant gray scale image was binarized by using the histogram 
mean intensity threshold followed by morphological opening and area 
threshold to identify inter-row weeds in maize fields. The results showed 
that this system was able to correctly identify 85.1% of the inter-row weeds 
and 68.9% of the maize crop rows. 

Golzarian and Frick (2011) developed four indices by combining 
different color characteristics of the RGB images for laboratory evaluation, 
however, none of these performed appropriately during the field 
application (Kazmi et al., 2015). Chang et al. (2014) reported green ratio 
(G-ratio) index to identify newly emerging green weeds (grasses) against 
soils and reddish pruned wild blueberry plants. Esau et al. (2014) used the 
same index to apply the fungicides on wild blueberry plants in real-time. 
Kazmi et al. (2015) used 14 different color indices for the identification of 
the creeping thistle in sugar beet field images. The ability of the individual 
index was compared with others followed by the combinations of different 
color indices for the weed identification. The results of this study indicated 
that linear discriminant analysis (LDA) with stepwise regression was able 
to correctly identify 97.83% of thistles.

In addition to the indices from RGB color space, other color spaces 
(Woebbecke et al., 1995a; Tang et al., 2000; Golzarian et al., 2012; Bai et 
al., 2013; Kim et al., 2015; Yang et al., 2015) and non-visible bands of 
electromagnetic spectrum (Haggar, 1983; Guyer et al., 1986; Shearer and 
Jones, 1991; Franz et al., 1991; Gerhards and Oebel, 2006; Hunt et al., 2011) 
were used to locate the position of the weeds within crop rows. Woebbecke 
et al. (1995a) used modified hue (MH) component of a RGB image to 
distinguish plants from its background and to identify the monocot from 
the dicot. The results indicated that the MH was able to delineate the 
plants from background but the monocot identification from the dicot 
was not successful. Tang et al. (2000) implemented a Hue, Saturation and 
Intensity (HSI) color space based genetic algorithm capable of finding the 
green plants by searching for the global optima. 

A real-time crop-residue segmentation algorithm was developed 
by analyzing the illumination effected field images under RGB, HSI, 
I1I2I3, YCbCr and CIE Lab color space along with the iterative threshold 
determination technique (Ji et al., 2007). The best segmentation of plant 
images was achieved by the H, a, I3 and Cr components of these color 
models for simple backgrounds. Two variants of environmentally 
adaptive segmentation algorithm (EASA) were developed using the HSI 
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color space for handling the sunflower images taken under complex field 
conditions (Ruiz-Ruiz et al., 2009). The performance of these variants in 
terms of the segmentation efficiency were not significant. A mean shift 
algorithm with back propagation neural network (BPNN) was applied on 
the color features extracted from the RGB and HSI color planes to classify 
between plant and non-plant regions (Zheng et al., 2009). A median of 
miss-segmentation was about 4.2%. 

A crop color model was developed in the CIE Lab color space for 
segmenting the rice crop images under complex illumination conditions 
(Bai et al., 2013). The mathematical morphology based learning technique 
was used to relate the color of the green plants to its mean pixel lightness 
(L) for developing a weed segmentation criterion. The comparison of 
this approach with other RGB based indices indicated the superiority of 
the proposed approach with mean segmentation rate of 87%. A similar 
approach, based on the combination of ExR and CIE Lab color space was 
used to segment the soybean plant pixels from residual pixels (Kim et 
al., 2015). The binary images were developed by using the Otsu’s and 
triangle threshold methods. The algorithm was capable of achieving a 
segmentation accuracy of 98%. 

2.2 Shape Based Weed—Crop Segmentation Systems

Identification of weed species and estimation of their densities on the 
basis of difference in spectral reflectivity may not yield the desired results 
due to the similar reflective signatures of crop and weed especially during 
the initial growing season (Andreasen et al., 1997). Another reason for 
relatively less reliable classification accuracies was found to be variation 
in luminance and color temperature caused by the varying outdoor 
illumination conditions (Tian and Slaughter, 1998). The presence of 
transmitted light and inter-reflections along with the day light illumination 
conditions may also decrease the ability of color based segmentation 
approaches (Hague et al., 2006). Therefore, a process of identifying the 
weeds on the basis of shape of individual leaf or plant canopy was studied 
in greater depth (Kincaid and Schneider, 1983; Guyer et al., 1986; Franz et 
al., 1991, 1995; Woebbecke et al., 1995b; Chaisattapagon and Zhang, 1995; 
Lee et al., 1999; Pérez et al., 2000; Tian et al., 2000; Mathanker et al., 2007; 
Golzarian and Frick, 2011; Shinde and Shukla, 2014). 

The geometrical orientation of individual plant leaf or canopy can be 
expressed by quantifying its shape descriptors such as length or width (Chi 
et al., 2003) and can ultimately lead to real-time pattern recognition and 
decision making. The supervised leaf shape signatures were developed by 
studying the leaf complexity and dissection index of reconstructed leaves 
using the normalized Fourier coefficients (Kincaid and Schneider, 1983). 
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Franz et al. (1991) studied the effect of leaf occlusion on the performance 
of a shape based weed detection system. The non-occluded leaves of 
soybean and different weeds were identified by aligning the leaf boundary 
curvature extracted at two leaf stage with respective curvature models. 
This study used Fourier-Mellin correlation to calculate resampling 
curvature functions for partially occluded leaves followed by their match 
with curvature models. 

Guyer et al. (1993) considered the leaf and overall plant canopy shapes 
and achieved 69% correct identification rate for 40 weeds and soybean crop. 
The authors reported that no single shape feature alone was sufficient to 
distinguish different plant species. Woebbecke et al. (1995b) found similar 
results and reported that any particular shape feature did not work 
efficiently as a plant classifier, because of greater phonological variance 
among plants of the same species. Two grass species were segmented from 
the narrow-leaf wheat using a combination of color, shape and texture 
images followed by the principal component analysis (PCA). Amongst the 
variables selected for developing the PCA model by using a correlation 
matrix indicated that the color features contributed more towards the 
identification of weeds (Golzarian and Frick, 2011). Pérez et al. (2000) used 
a set of five geometrical features and seven normalized Hu moments (Hu, 
1962) along with Bayesian and K-nearest neighbor classification rules. 
Both of them classified the crop successfully rather than weeds. 

Identification of leaves on the basis of their shape descriptors showed 
high (> 90%) classification accuracies (Guyer et al., 1986; Woebbecke 
et al., 1995b; VijayaLakshmi and Mohan, 2016). However, using this 
methodology in the real-field condition is not possible because of the 
commingled leaf and canopy structures. The simple shape parameters 
along with kernel based Particle Swarm Optimization and Fuzzy relevance 
vector machines were reported by VijayaLakshmi and Mohan (2016) with 
an accuracy of 99.87%, but its adaptability and suitability for the realistic 
field applications still needs to be analyzed in greater depth. Three studies 
reported the real-time application of their algorithm in the field. The 
real-time applications of shape based descriptors for weed identification 
showed comparatively poor (< 75%) performance (Lee et al., 1999; Tian et 
al., 2000; Gebhardt et al., 2006). The major bottleneck in achieving the high 
classification accuracies appears to be the classical Bayesian classification 
rule as compared to neural network and SVM counterparts (Lin, 2009;  
Li and Chen, 2010; Herrera et al., 2014).

The newly emerging feature selection/optimization procedures 
along with the modern classification techniques showed more potential 
for dealing with the field scale variability in real-time manner (Lin, 2009;  
Li and Chen, 2010; Herrera et al., 2014). These approaches have also shown 
their potential for dealing with the complexity associated with partially 
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occluded vegetative leaves. The cost associated with their computational 
complexities and overheads, however, needs to be handled properly in 
order to make them suitable candidates for real-time applications. 

2.3 Texture Based Weed—Crop Segmentation Systems

Despite achieving very high accuracies on a single leaf, shape features 
were not able to perform properly on the leaf canopy because of the sever 
overlapping between inter- or intra-class leaves (Lee et al., 1999; Tian  
et al., 2000; Meyer, 2011). Moreover, the variability in outdoor illumination 
condition may also overcast the images, thus not providing the proper 
contrast to determine the boundary of leave or canopy from which further 
shape features need to be extracted (Tian et al., 2000). The insect/pest 
attack or leave disease may also cause the geometrical irregularities in 
structure thereby influencing the classifying range of different shape 
based parameters. These limitations served as bottlenecks for real-time 
application ultimately leading towards the exploration of new techniques 
to describe the plant texture by undermining its botanical information 
(Meyer, 2011). These texture based weed-crop segmentation approaches 
have been widely adapted by the researchers as a tool for variable rate 
applications (Shearer and Holmes, 1990; Meyer et al., 1998; Burks et al., 
2000; Tang et al., 1999, 2003; Burks et al., 2005; Ghazali et al., 2007; Siddiqi 
et al., 2009; Bossu et al., 2009; Kiani and Kamgar, 2011; Ahmad et al., 2011; 
Chang et al., 2012; Ahmed et al., 2014; Kumar and Prema, 2016).

The texture of underlying terrain was first quantified by statistically 
estimating the probability of spatial distribution of an image pixel and 
its neighboring tonal variations at different orientations (Haralick et al., 
1973). An array of fourteen second order statistical features extracted from 
“spatial gray-tone dependence matrices” was used for aerial photographs 
and satellite imagery with accuracies of 82% and 83%, respectively 
(Haralick et al., 1973). Shearer and Holmes (1990) implemented the same 
idea on HSI color images for classifying the different cultivars of nursery 
stock with an accuracy of 91%. Three different matrices were developed 
for each color plane (H, S and I) and 33 textural features as suggested by 
Haralick et al. (1973) were extracted by repeating the procedure for each 
color plane. Meyer et al. (1998) also used the same matrices for gray scale 
images of plants and soil with a reduction of features to four. The results 
showed that canonical discriminant analysis best identified the differences 
between different classes. 

Burks et al. (2000) developed a weed discrimination system 
depending on color co-occurrence matrices (CCMs) followed by statistical 
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discriminant analysis and stated an overall accuracy of 93%. Burks et al. 
(2005) compared the performance of four different classification techniques 
(statistical discriminant analysis, counter-propagation, backpropagation 
and radial bias neural network) by feeding the textural features extracted 
from CCMs as an input. The results of this evaluation revealed that 
the backpropagation algorithm outperformed the others by correctly 
classifying 97% of the images included in the study. In addition to the HSI 
color space Chang et al. (2012) used the concept of CCM to discriminated 
weeds from wild blueberry. The highest classification accuracy of reduced 
features (94.9%) was achieved by HSI color space. The addition of the 
luminance did not show the promising results. 

Different transform based techniques characterize the multi-
scale textural feature of the weed/crop by treating their images as two 
dimensional modulating frequency with different spatial dimension 
and orientation. Tang et al. (2003) introduced a filter window function 
to Fourier transform at a fixed orientation. The translation of the filter 
window across the entire image resulted into the different textural 
features. The filtering operation was performed on the signals of green 
channel with an intensity modulating between zero to nine with different 
window size. Ishak et al. (2009) improved the efficiency of the Gabor 
wavelet by adapting the gradient field distribution and curve fitting 
approach. The intensity, dimension and the orientation of Gabor wavelet 
were fixed while the gradients distribution of gradient field distribution 
algorithm was rotated according to the leave direction. The results showed 
an accuracy of 93.7%. The analysis of other studies on the transform based 
textural analysis indicated that the Daubechies wavelet still has a greater 
potential to explore (Okamoto et al., 2007; Bossu et al., 2009). A relatively 
new approach used a combination of textures extracted from the wrapping 
based culvert transform at an intensity level of 2 and 5 to capture both 
coarse and fine textures of the image along with a set of tamura features 
(Kumar and Prema, 2016). Though they achieved very high accuracy of 
99% with random vector machines, the computational complexity of this 
algorithm, however, still needs to be evaluated. 

The statistical and transform based textural approaches have been 
widely used and studied for weed-crop segmentation. However, there 
is relatively less research done towards the model based application 
and using structural descriptors (Tuceryan and Jain, 1998) to define the 
agricultural textures. Moreover, no research has been thoroughly done on 
the gray level run length matrices and normalized gray tone difference 
matrices to statistically undermine the texture of weed-crop images. While 
these approaches have shown their good results in other agricultural 
applications (Tahir et al., 2007). 
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3. APPLICATION OF SMART CAMERAS FOR SORTING OF 
FRUITS, VEGETABLES AND GRAINS 

The relatively more reliable and subjective approach of inspecting the 
agricultural products enables the machine vision based grading systems 
to outperform their human counterparts (Cubero et al., 2011). Moreover, 
the high throughput capacity (Aleixos et al., 2002) and less involvement 
of human factors (Cubero et al., 2011) forced the commercial processing 
plants to opt for these systems (Du and Sun, 2006). The rapidly fostering 
awareness about the food quality over the last two decades resulted in an 
evolution of the machine vision based grading for different agricultural 
products (Aleixos et al., 2002; Blasco et al., 2003; Leemans and Destain, 
2004; Tahir et al., 2007; Jarimopas and Jaisin, 2008; Blasco, 2009a,b; Liming 
and Yanchao, 2010; Guevara-Hernandez and Gomez-Gil, 2011). Also 
the climatological effects on the physiological shape and structure of 
agricultural products invoked the interest of engineers, researchers and 
scientists across the world to develop custom grading systems according 
to the local needs and demands.

The external quality of both fresh and processed agricultural products 
can be defined by their shape, weight, color and presence of any blemishes 
or diseases (Cubero et al., 2011). Machine vision systems can correlate these 
external attributes of agricultural produce to its color, shape, size, volume 
and/or textural features (Fig. 3) and can aid in improving the efficiency 
of the grading process (Du and Sun, 2006). The different grading systems 
for fruits, vegetables and grains that emerged during the last two decades 
on the basis of these attributes are summarized in the next sections. The 
following sub-sections are categorical review of different grading systems 
and their targeted agricultural commodity. 

Fig. 3. Illustration of the image acquisition system used (Reprinted from Computers and 
Electronics in Agriculture. 75, Unay et al., Automatic grading of bi-colored apples by 
multispectral machine vision. Computers and Electronics in Agriculture, 204–212. Copyright 

(2011), with permission from Elsevier).

illumination 
tunnel 

m 
- "'"~-----)~.:3~~~~ 

frame grabber computer 
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3.1 Color Information for Grading

Color information can help to identify the current ripening stage of 
agricultural produce which in turn can be used as a quality predicator 
for fruit grading systems. Blasco et al. (2009b) used simple pixel-oriented 
algorithm by removing the background from pomegranate arils using an 
adjustable threshold switch for a Red channel. In addition to the color 
information, size and centroid information was used to separate out the 
large/small unwanted material. A similar approach was used to grade 
apples on the basis of their color features and organizing feature parameter 
algorithm (OFP) (Xiaobo et al., 2007). Mean and variance features from 
RGB color space along with the definition of hue between 0º to 80º were 
used to categorize apples into four classes. The results showed that OFP 
algorithm outperformed the BPNN with slightly lower performance than 
SVM.

A comparison between five different color spaces (RGB, HSI, LUV, 
Lab and XYZ) was performed to identify the citrus peel defects (Blasco 
et al., 2007b). The classification criterion on the basis of LDA indicated 
that all color spaces achieved good (> 80%) accuracy except XYZ color 
space. A strawberry grading system used the “a” coordinate of Lab color 
space with empirically selected threshold levels to categories the fruit into 
black-red, bright-red and light-red (Liming and Yanchao, 2010). An apple 
grading system used average color values (R, G and B), variances (Vr, Vg 
and Vb) and chromatic color values (r, g and b) with two neural networks 
to identify the apples on the basis of the percentage of red color (Nakano, 
1997). The grade judgment ratios of two out of five classes were found to 
be very low (65% and 32%), while the highest and mean judgment ratios 
were 95% and 70%, respectively. López-García et al. (2010) used RGB color 
data extracted from multi-resolution square window to define the reference 
Eigen-space. The reference space was used to build the PCA based model 
of pixel locations belonging to non-defected areas. The system was able to 
achieve a performance accuracy of 91.5% for different surface defects and 
100% for stem end detection.

The color based grading algorithms were also used for different 
vegetables including bell peppers, olives, mushrooms, tomatoes and 
potatoes. Shearer and Payne (1990) mapped the hue component for 
different primary and secondary colors to identify the different colored 
and defected bell peppers. Feature selection procedure and quadratic 
discriminant functions were developed to define the sets of optimum 
features for individual type of defect. A set of three statistical features, 
along with range and edges were extracted from the raw RGB, normalized 
RGB and intensity color space to identify the potato blemishes (Barnes  
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et al., 2010). The adaptive boost (AdaBoost) classifier was able to correctly 
identify the 89.6% and 89.5% blemishes on the white and red potatoes, 
respectively. Red band was used to calculate the mean reflectance spectra 
from 3 × 3 ROI, region of interest, from the center part of the mushroom 
surface to identify the defects caused by freezing and thawing (Gowen  
et al., 2009). PCA and LDA were able to correctly identify 76.2% of 
defected mushrooms. A color and color homogeneity descriptors were 
used to categories the tomato (Laykin et al., 2002). Mean and standard 
deviation of RGB channels, hue estimated from 40 × 40 pixels and average 
color on the basis of Quad Tree method were used to describe the color. 
The color homogeneity was estimated by dividing the fruit using virtual 
elliptical rings. The statistics including mean, median, mode and standard 
deviation of these individual rings were compared. The results showed 
that their system achieved 92% correct color homogeneity classification 
and 90% correct color detection. A standalone color based algorithm was 
used to differentiate between Canada western red spring (CWRS) wheat, 
Canada western amber durum (CWAD) wheat, barley, oats and rye with 
the help of LDA and K-nearest neighbor (K-NN) classifiers(Majumdar and 
Jayas, 2000a). The accuracies of 94.1, 92.3, 95.2 and 92.5%, were reported 
for the CWRS wheat, CWAD wheat, barley, oats and rye, respectively.. 

3.2 Shape and Size Estimation

In addition to the color information reflected by particular agricultural 
produce, size is also a major contributor to decide about its commercial 
fate. The size of the fruit in combination with its color can help the machine 
vision based sorting device to grade it according to the predetermined 
categories (Cubero et al., 2011). A size based apple grading system codified 
the extracted boundary of fruit using chain code to estimate the area and 
fruit size (Blasco et al., 2003). Additionally, the major damage length and 
total damage are also determined to avoid the influence of damages on 
final fruit grade. Leemans and Destain (2004) used the combination of 
size, color, texture and position attributes to correctly classify the apple 
fruit into two commercial grades. The results of their study showed a 
correct global classification rate of 73% from the combination of all these 
features. Unay et al. (2011) used perimeter as an estimator of size along 
with the circularity to define shape and defect ratio as a descriptor of 
defected surfaces along with other color and textural features to grade 
the apples in two and multiple classes. In addition to the linear models, 
several multi-factor non-linear approaches were also tested to achieve 
precise measurement of the defects and minimum confusion with calyx/
stem parts. The results of study showed that two-class grading approach 
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achieved more appropriate results compared to their multi-grade 
counterpart. 

Aleixos et al. (2002) used convolution mask, contour extraction and 
singularization as preprocess steps before extracting the geometrical 
features to define the fruit size. The shape of the fruit is estimated by 
using the circularity and relating the maximum diameter of the fruit. In 
addition to these parameters, external defects were also used to further 
guide the sorting device. The accuracy of the complete system was up 
to 94% for mandarins and 93% for lemons. The shape based descriptors 
are also used to categories the individual satsuma (mandarin) segments 
into whole and broken one for the real-time in-field applications at 
the sorting facility (Blasco et al., 2009a). The system was also capable 
of identifying the pieces of skin and other raw materials present in 
the segment batches by using simple Bayesian discriminant analysis 
approach. The shape of the segments was defined by using circularity, 
compactness, symmetry, elongation and Fourier descriptors, while the 
size was described using area and length of individual segment. Another 
real-time complete sorting solution was designed for the dates on the 
basis of their shape estimation and skin delamination criterion (Lee  
et al., 2008). The connected component analysis was performed to identify 
the presence of the date on the conveyor belt followed by the estimation of 
the fruit size either using length or area. The system showed an accuracy 
of 95% for Jumbo date. 

The shape of strawberry was described by using the sharing line 
method into long-taper, square, taper and rotundity (Liming and Yanchao, 
2010). Each strawberry was divided evenly using a set of seven horizontal 
and vertical lines with a condition of passing first line pair from the gravity 
center of the fruit. The difference between consecutive lengths was used as 
a descriptor of the fruit shape. The daimeter of the same fruit was estimated 
by using maximum horizontal line length. The system was able to correctly 
identify 90% of the shape in worst scenarios. Jarimopas and Jaisin (2008) 
used the curvature of the sweet tamarind pods to define the curved, slightly 
curved and straight shape based categories. The curvature was estimated 
by using a circle of 55-pixel radius in counter clockwise direction. This 
curvature was further used to draw a graph to locate the pulses indicating 
the presence of stem and tail of tamarind pod. The length of the pod was 
also estimated to with a maximum accuracy of 94.3%. 

3.3 Textural Traits 

Color and shape attributes can play major role in grading the fruit and 
vegetable, however, they alone may not be able to help in grading of the 
different grains because of the very similar color reflectance and shape 
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properties. One reason could be the small size of grains which could not 
be precisely estimated resulting into poor categorization. Furthermore, 
the variability in the moisture content can cause the grains to shrink or 
swell resulting in the change in size (Tahir et al., 2007). Therefore, different 
statistical descriptors in combination with shape and color information 
were used to quantify the texture of grain items, thereby helping in the 
sorting operation. Majumdar and Jayas (2000c) used textural features 
extracted from the gray level co-occurrence matrices (GLCM) and grey 
level run length matrix (GLRM) to identify between CWRS wheat, CWAD 
wheat, barley, oats and rye grains. The parametric and non-parametric 
methods were used to develop the identifying models and best results 
were achieved using K-nearest neighbor with a level of k = 5. 

Tahir et al. (2007) used the combination of color, shape and textural 
features to quantify the effect of moisture content on the grain kernel 
morphology and appearance. The images of CWRS, CWAD and barley 
were taken in individual and bulk fashion from the conditioned grains 
with moisture content varying from 12% to 20%. It was observed that 
the highest contribution towards the identification was from color 
followed by the textural features. Guevara-Hernandez and Gomez-Gil 
(2011) used a similar technique to classify wheat and barley kernels with 
discriminant analysis and K-NN. The GLCM and GLRM were developed 
in four different orientations and the similar features were extracted 
from different orientations. The authors concluded that the combination 
of shape, color and texture can provide the better accuracy as compared 
to any of these individually. The classification accuracy can be as high 
as 99% by carefully selecting a set from these pooled features (Guevara-
Hernandez and Gomez-Gil, 2011). 

4. HARDWARE BASED IMAGE PROCESSING TOOLS—A WAY 
FORWARD TO MINIMIZE THE COMPUTATIONAL EXPENSES

The application of sophisticated modern image processing algorithm 
demands a very high-end computationally efficient central processing 
unit for their real-time applications. Currently and most commonly used 
computational platforms in agricultural sector are based on personalized 
computers, because of the relatively easier image processing programming 
needed for them. These devices, however, were not able to match the 
processing speed needed for the real-time applications (Lee et al., 1999; 
Chang et al., 2012) and therefore limit the travel speed of the platform. 
Chang et al. (2012) concluded that using a personalized computer, a 
compromise between the accuracy of CCM algorithm for weed-crop 
segmentation and processing time is needed. The authors were able to 
achieve a high accuracy of 94.9%, but a travel speed of only 3.1 km hr–1 
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inhibits its real-time application. Aleixos et al. (2002) reported that use 
of traditional sorting systems can only handle the tasks requiring less 
computational time, thereby reducing the overall accuracy of the systems 
to achieve the required commercial grade sorting speed. In contrast to the 
traditional PCs, the hardware based embedded solutions including DSP, 
FPGA, ARM and GPU proved their capabilities for real-time machine 
vision based agricultural applications (Murphy et al., 2007; Pearson, 
2009; Pearson, 2010; Teixidó et al., 2012; Pearson et al., 2013; Singh, 2014; 
Mohan et al., 2016). The minimized computational time using hardware 
based embedded solutions can help to achieve higher accuracy and higher 
speed simultaneously with existing algorithms for real-time applications. 
The reduction in computational expenses can also help to include more 
features thereby allowing to craft more complex multi-feature algorithms 
for increased accuracy without having any limitations of delay caused by 
slow processing speed. 

A relatively less number of studies have been reported for FPGA 
based embedded systems in agricultural sector because of the much more 
challenging design and programming complexities. Murphy et al. (2007) 
implemented a fairly simple census transform algorithm on the grayscale 
images of two cameras for the FPGA based stereo-vision system. A color 
features based high speed sorting system was developed by raising a 
FPGA circuitry board directly on the image sensor board (Fig. 4). The 
system (Fig. 5) was responsible for separating the white wheat from red 
one and inspecting the popcorn for blue-eye damage. The throughput 
capacity of proposed system was 8 kg per hour of wheat and 40 kg per 
hour of popcorn. The detection accuracy for wheat was acceptable (88%–
90%), while for the popcorn it was low (74%). A relatively more complex 
image processing algorithm on the basis of color features and LDA was 
implemented on a prototype grain sorter (Pearson, 2010). An advanced 
FPGA board containing more logical elements and memory compared 
to Pearson (2009) was used to perform more rigorous tasks. This system 
achieved a higher throughput capacity (25 kg per hour) with information 
being processed more accurately. Similar results were reported by the 
other studies (Pearson et al., 2012; Pearson et al., 2013), however, none of 
them have reported the application of emerging algorithms on FPGAs. 

A multispectral machine vision system was developed using a pair 
of DSPs for inspecting and sorting the oranges (Aleixos et al., 2002). 
The system implemented a master/salve configuration of DSP devices 
for connecting two cameras. The master DSP extracted the geometrical 
features from a monochrome camera fixed with a NIR filter along with 
the salve DSP responsible for detecting the skin damages using RGBI 
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Fig. 4. Photo of the image sensor and FPGA boards connected together. The image sensor 
and lens are on the opposite side from the FPGA board (Reprinted from Computers and 
Electronics in Agriculture. 69(1), Pearson, Hardware-based image processing for high-speed 

inspection of grains, 12–18. Copyright (2009), with permission from Elsevier).

Fig. 5. End view of the sorter sensing system showing all three cameras, six light bulbs, air 
nozzle, and chute (Reprinted from Computers and Electronics in Agriculture. 69(1), Pearson, 
Hardware-based image processing for high-speed inspection of grains, 12–18. Copyright 

(2009), with permission from Elsevier).

Image sensor side with lens FPGA board side, the FPGA board is 
the smaller blue board raised above 
the image sensor board. 

Camera + FPGA 

lens 

lens tube 

lamps 

Air nozzle 
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information. The processed image information from the salve processor 
was transferred to the master which further shared the final results with 
control computer. This system was able to inspect the color, size and 
presence of the skin defects at a minimum rate of 5 fruits per second with 
the accuracy of 94%. Another embedded peach detection system used 
ARM Cortex™ based processor to create the 3D look up tables (LUTs) 
from both linear combinations and histograms of RGB color vectors. The 
system showed a least performance of 77% by correctly identifying the red 
peaches in orchards with occluded leaves.

The DSP, ARM and FPGA have the ability to tackle complex machine 
vision instructions because of parallel information handling approach 
compared to their sequential counterparts. However, the complication of 
programming these devices for texture and shape base analysis along with 
sophisticated decision making tools hampers their ability for the real-time 
application in agricultural sector. Therefore, programming gaps need to 
be filled in order to get the full advantage of their processing speed and 
accuracy.

Artificial neural network has been studied to process images but it 
needs large datasets which require tremendous human effort to collect, 
annotate and process to cover the full variability of the target (Guo  
et al., 2013). With a rapid progress of the GPU, deep neural nets [i.e., 
Deep Convolutional Neural Network (DCNN)] using the GPU have been 
recently introduced to overcome this constraint (Lee et al., 2016; Sa et al., 
2016; Sladojevic et al., 2016; Yalcin and Razavi, 2016) in agricultural sector 
(plant identification, fruit detection, disease detection, etc.). 

5. CONCLUSION

Since Thompson et al. (1991) showed the potential of weed detection for 
spot-application of herbicide, many different methods were used for real-
time detection of weeds rather than manual surveying and remote sensing. 
A cost-effective smart camera which comprises of a machine vision 
system with application-specific algorithm using color, shape and texture 
has been used for weed-crop segmentation. Segmentation by shape has 
many limitations such as, same leaf shapes can occur on crops and weeds 
thus rendering the algorithm ineffective. During the early stage of weed 
emergence, shape based algorithms showed better results. Segmentation 
by texture is promising, however, there has been much less research 
done and also it can be more affected by outside factors especially from 
variability in outdoor lighting. Also it requires higher processing time due 
to complicated computation. Therefore, currently weed-crop segmentation 
by color with neural network based classifiers can be considered as one of 
the most suitable candidate for real-time applications.
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A large number of studies have been done for agricultural product 
sorting using the cost-effective smart camera with color, shape and/
or texture based algorithms. When the cost-effective smart camera was 
used for sorting of agricultural products with several attributes, it showed 
positive results. Even though the wide variety of fruits and vegetables 
call for a wide variety of attributes, agricultural products sorting using 
the cost-effective smart camera are much better than human as they 
reduce human error and have a higher processing capacity. Even hyper-/
multi-spectral cameras were not discussed in this chapter. A cost-effective 
multispectral cameras using a double filter was used for plant detection 
(Dworak et al., 2013). 

These days machine learning methods, especially supervised machine 
learning such as SVM, K-NN and artificial neural network, are used to 
increase the accuracy of smart camera. However, the number of training 
data set critically affects the accuracy of these methods because variability 
of the training data set needs to cover the full variability of the target (Guo 
et al., 2013) which requires tremendous human effort for classification. 
Recently, deep neural nets application including DCNN using the GPU 
is emerging as it extracts feature automatically which may help to reduce 
tedious manual efforts.

With extensive calculation burden for extracting shape and/or textural 
features from images, these algorithms need powerful rugged computer 
and/or a front look-a-head position which can ensure distance and 
enough processing time for calculation while increasing the complexity. 
The use of DSP, ARM, FPGA and/or GPU may reduce these processing 
time constraints. 
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From Manual Farming to Automatic and 

Robotic Based Farming
An Introduction

Dan Zhang* and Bin Wei

1. IntroductIon

Human beings rely on the food to survive. How to achieve productive and 
efficient farming and therefore provide sufficiently food for human beings 
will always be an indispensable topic. After the development of advanced 
robotic machines, the automatic/robotic based farming has become a 
trend in the agricultural arena. Traditionally, there is dependence on man-
power for farming in agriculture. The downside of using man-power is 
that it relies on a large amount of people and has less efficiency. Shifting 
to automatic machines, can greatly help farmers in the farming field. 
Automatic and advanced robotic based farming will become a promising 
trend in the agricultural and farming areas. 

In this chapter, we briefly present the current farming machineries in use 
at the moment and some issues that we face. There may be other farming 
machineries also that exist and the authors did not cover in this manuscript. 
There are numerous sources dealing with the robotic based farming topics 
and issues. Available sources include books (Kondo et al., 2011; Pedersen et 
al., 2008), journal publications (Guyer et al., 1986; Mohan et al., 2016; Emmi et 
al., 2014; Tokekar et al., 2016; Nieuwenhuizen et al., 2007; Hague et al., 2006; 
Primicerio et al., 2012; Henten et al., 2003; Sa et al., 2006), and conference 
proceedings (Shibusawa et al., 2000; Werner et al., 2012; English et al., 2013), 
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etc. Only a few authors are listed here since there are so many. The following 
section presents some farming methods which are in use at large. 

2. Manual farMIng 

Farmers usually carry their tools and go farming. The downside of this 
traditional farming is that it consumes a large amount of manpower and also 
the farming efficiency is not sound. It is expected that the food demand in 
the next decade will continue to increase and therefore, efficiency farming is 
critical, for growing population. The manpower based farming cannot keep 
pace with the increasing food demand. With the development of modern 
machinery technology, it is quite possible to transform the manpower based 
farming fashion to the robotic based farming fashion so that the farming 
efficiency can be greatly improved and also the manpower can be greatly 
reduced. 

3. robotIc based farMIng 

3.1 Trackers

Trackers are the most widely used machines in the farming industry. It can 
perform numerous tasks, such as watering, spraying pesticides, spreading 
seeds, and harvesting. Trackers can be partially considered as robotic since 
a tracker needs to be driven by a driver unless the tracker is autonomous 
type. The advantage of using trackers in the farming field is that trackers can 
do tasks quickly, but they are usually not very good at precision farming. 

3.2 Robotic Gripper

The advantage of the robotic gripper is that it can perform precision 
farming, however, this type of robot, sometimes, is not quite dexterous as 

Fig. 1. A robot gripper.
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compared to human hands. How to design dexterous robot grippers that 
resemble human being’s hands will become one of the future works. 

3.3 Flying Drones

Nowadays, the flying drones are being used in the farming industry. The 
drones can carry water or seeds and spread them on the farming ground. 
The good aspect of using drones is that it can achieve quick watering 
and seed spreading. Furthermore, the drones can be used for spraying 
pesticides and monitoring, etc. The applications of flying drones not only 
can be seen in farming industry, but also they are seen in many other areas, 
such as sports, video shooting, and military. As the drones conduct, for 
example, watering or pesticides spraying, the weight of the water or the 
pesticides that the drones hold is changing, so how to control the drones 
along with the weight changing situation can be a challenging task. 

3.4 Indoor Farming

The concept of indoor vertical farming has been introduced recently, and 
robots have been used in the indoor farming. The advantages of the indoor 
farming are that it does not heavily rely on weather condition and also it 
occupies smaller space as compared to the traditional large space farming.

4. robotIc farMIng Issues 

There are some main issues in the robotic farming industry that we need to 
address. For example, sensing issues, robot mechanism design issues, and 
control issues. For the sensing aspect, how to develop a sensing system 
that can accurately sense the relative position between the robot and the 
plant is worth exploring. For the robot mechanism design aspect, we need 
to figure out how to design a dextrous robot (hands) that resembles the 
human being’s hands. With this robot we can have a more precise and 
efficient farming outcomes. For the control aspect, we need to figure out 
how to control the robot so that the precise motion can be achieved, or 
how to develop a control strategy to cope with the fact that when the robot 
conduct’s farming operations, the outside surroundings’ effect will affect 
the motion of the robot, and this effect should be taken into consideration. 

Regarding the control aspect, one can use the model reference adaptive 
control (MRAC) to address the above mentioned outside surroundings’ 
effect issue. The necessity to employ the MRAC method to a robot is that 
conventional control technique is not able to handle the load changes 
situation. During the process of robotic mechanism, end-effector takes 
different weights of loads, usually the joints’ output fluctuates along with 
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time, this phenomenon can deteriorate the end-effector’s positioning 
accuracy performance. However, if one employs the MRAC system, the 
above issue is effectively rectified and load changes impact is effectively 
addressed, as demonstrated in Figs. 2 and 3. For detailed studies of the 
above, please refer to (Zhang and Wei, 2016). The MRAC control system 
that was developed by scholar Horowitz and subsequently extended by 
other scholars consists of an adaptation mechanism structure and a position 
feedback loop structure that is able to detect the error among the joint’s 
ideal position and the joint’s real position. This error is then served through 
the integral section of a PID-like control system, after that the position and 
velocity feedback values are deducted. 

Fig. 2. A 2-DOF vegetable gripper. 

scholars consists of an adaptation mechanism structure and a position feedback loop structure
that is able to detect the error among the joint’s ideal position and the joint’s real position. This
error is then served through the integral section of a PID‐like control system followed by the
procedure the position and velocity feedback values being deducted from it.

Figure 2. A 2‐DOF vegetable gripper

Based on Fig. 2, and according to the Lagrange technique, the Lagrange of the 2‐DOF gripper
can be derived as the following,
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Based on Fig. 2, and according to the Lagrange technique, the Lagrange 
of the 2-DOF gripper can be derived as the following, 

2
2 2 2

1 2 1 1 2 2 1 2 2 1 2 2 1 1 2

1 2 1 1 2 2 1 2

1 1
2 2

θ θ θ θ θ θ θ

θ θ θ

• • • • • •

= −

= + + + + +

− + − +

( ) ( ) cos ( )

( ) sin sin( )

L K P

m m l m l m l l

m m gl m gl

 (1)

1
1

1

2 2 2
1 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2

2

2 1 2 2 1 2 2 1 2 2 2 1 2 1 1 2 2 1 2

2

2

τ
θθ

θ θ θ θ

θ θ θ θ θ θ θ θ

•

•• ••

• • •

∂ ∂
= −

∂∂

= + + + + +

+ − + − + + + +

(( ) cos ) ( cos )

( sin ) ( sin ) (( ) cos cos( ))

d L L
dt

m m l m l m l l m l m l l

m l l m l l m m l m l g

2
2

2
2

2 2
2 2 2 1 2 2 1 2 2 2 2 1 2 2 1 2 2 1 2

τ
θθ

θ θ θ θ θ θ θ

•

•• •• •

∂ ∂
= −

∂∂

= + + + + +( cos ) ( ) ( sin ) cos( )

d L L
dt

m l m l l m l m l l m l g

(2)

Applying the PID controller, the output from the controller equals to 
the torque, therefore, 
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where error e = rp – xp. One knows the 2-DOF gripper system’s M and N 
matrices, the accelerations of joint 1 and joint 2 of the gripper are solved 
by the following ways, 
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Accelerations of joint 1 and joint 2 are known, a time integral 
determines the velocities of joint 1 and joint 2, respectively, and second 
integral determines the positions of joint 1 and joint 2. 
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From the MRAC approach, we have the following equation: 
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where u = KI∫(rp – xp) – Kpxp – Kdxv

Since the dynamic formulation for the gripper mechanism is  
τ = Ma + V + Gg, the accelerations of joint 1 and joint 2 are solved as follows:
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Furthermore, the adaptive algorithm can be determined as the 
following,
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By observing the first term in equation (9), one needs to satisfy 
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By employing the same approach and applying to the other two terms, 
the following equation is obtained, 
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Similarly, we can determine the adaptive algorithm for N as the 
following, 
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In (Sharifi et al., 2014), a model reference based adaptive impedance 
controller was designed by combining the MRAC and impedance control 
for tracking control problem in human–robot interaction. In (Huh and Bien, 
2007), a sliding mode based MRAC was proposed for a robotic manipulator. 
By introducing the sliding model control approach to the MRAC, the 
control system allows the manipulator to follow its nominal dynamics. 
In (Kamalasadan and Ghandakly, 2008), a fuzzy multiple-reference-model 
generator-based MRAC scheme was proposed by combining a fuzzy logic 
switching strategy and a direct MRAC algorithm. In (Su, 2007), a model 
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reference was designed by inserting a PID controller to the feedback 
path for robot motion control. In (Suboh et al., 2009), a fuzzy MRAC was 
proposed by introducing the Takagi-Sugeno-fuzzification control and P-I 
control to the MRAC. Based on the studies in (Sharifi et al., 2014; Huh 
and Bien, 2007; Kamalasadan and Ghandakly, 2008; Su, 2007; Suboh et 
al., 2009), approaches for new controller design for robotic manipulators 
can be achieved by combining MRAC and other control system to design 
advanced MRAC system, so as to cope with the above mentioned control 
issues better and effectively in the farming industry. 

Regarding the robot mechanism design aspect, as shown in Fig. 4, the 
robot hand on the left side of the figure is very rigid and is not as dexterous 
as human hands, as shown on the right side of the figure. The next step 
would be is to design robotic hands that resemble human hands, in order 
to make the farming more precise. Another issue would be how to control 
the robotic hand to make its motion more adaptive, i.e., make it move like 
human hands. Learning control approach is one of the strategies that we 
can consider, so as to make the control system more intelligent. 

5. fInal reMarks

In this paper, some of the main robotic based machineries were presented, 
that are used in farming, i.e., trackers, robotic grippers, flying drones, and 
indoor farming. The robotic and automatic based farming will replace the 
manpower based farming in the near future, and the robots will become 
the main labour force in the agriculture and its applications. Some issues 
for the robotic farming are also briefly addressed. This paper can provide a 
general guideline for future research in the field of robotic based farming. 

Fig. 4. Dexterous robot hand design. Figure 4. Dexterous robot hand design

Regarding the robot mechanism design aspect, as shown in Figure 4, the robot hand on the
left side of the figure is very rigid and is not as dexterous as human hands, for example, as
comparing to the one on the right side of the figure. The next step one needs to do is to design
robotic hands that resemble human beings hands in order to make the farming more precise.
Another issue is that how to control the robotic hand to make its motion more adaptive, i.e.
make it move like human beings hands. Learning control approach is one of the strategies that
we can consider, so as to make the control system more intelligent.

Final Remarks

In this chapter, we presented some main robotic based machineries that are used in farming,
i.e. trackers, robotic grippers, flying drones, and indoor farming. The robotic and automatic
based farming will replace the manpower based farming and the robots will become the main
labour force in the agriculture and its applications. Some issues for the robotic farming are also
briefly addressed. This chapter can provide a general guideline for future research in the field of
robotic based farming.
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1. IntroductIon

The availability of skilled workers in agricultural areas such as greenhouses, 
orchards, plantations, and forestry are declining. Further, difficult working 
conditions in agricultural environments, has encouraged the automation 
of some tasks. Besides, current commercial agricultural practices are 
standard and systematic which could be easily represented into automation 
algorithms. A few crops which are being massively produced and have 
large plantation’s volume have been already automated such as cotton, 
corn, or wheat. Some agricultural activities require accurate and robust 
system due to their complex environments and challenging conditions like 
orchards or greenhouses (Wang et al., 2016). Fruits transportation during 
harvesting process in a commercial orchard is a feasible application to 
be automated in order to optimize the overall cost and harvesting time. 
A team of robotic agents (RAs) can collaboratively assist pickers and 
transport collected fruit bins to a loading station.

Coupled with automated systems’ sensible solutions, RAs should 
have intelligent tools in order to enable a robust response to new tasks 
with dynamic conditions (Barth et al., 2014). RAs can provide advanced 
controllability and flexible kinematics to overcome such complexity 
(Wang et al., 2016). RAs have been widely used to automate agricultural 
operations with the intention to overcome some challenging aspects such 
as dynamic environment, nonlinearity, complicated modeling, safety or 
collision avoidance, formation and configuration, technology limitation, 
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overall cost, and being user-friendly (Li et al., 2015). Series of actions 
must be considered when applying fully autonomous systems to ensure 
effectiveness, safe production, good localization, obstacle and point of 
interest detection, and communication (Emmi et al., 2014). 

Besides RAs’ proven capability, RAs have been given advantages of 
advanced sensors and actuators in order to be equipped with suitable 
agricultural tools. The sensing technologies developed in the last two 
decades have allowed accurate positioning and reliable performance. 
Utilizing multiple advanced electronics in robots not only improve RAs 
reliability but also increase their overall cost and complexity. However, 
previous studies concluded that simple hardware designs for RAs in 
agricultural minimize total cost and system’s complexity. Thus, simple 
RAs can be upgraded with an integrated implement which is an actuator 
to perform a certain task such as spraying, weeds removal, fertilizing, and 
seed planting (Emmi et al., 2014). 

Granted that an advanced RA has better performance and is more 
robust than a simple RA, however, researchers have ratiocinated that 
a cooperative team of simple RAs has better accuracy in localization, 
navigation, path planning, and optimal performance. The combination of 
two or more interacting intelligent agents is referred to as a multi-agent 
system. A multi-agent system is a swarm intelligence system having a 
smart team of agents effectively interacting with each other to complete 
common tasks. Multi-agent systems have the ability to resolve complicated 
tasks which are difficult or impossible for a single agent to accomplish 
(Barca and Sekercioglu, 2013). Multi-agent systems in cooperative 
environments allow more sophisticated agents to share their capabilities 
with other agents which have limited capabilities (Bailey et al., 2011). 
Multi-agent systems have the robustness of a single agent; thus, they have 
been applied successfully to agriculture and manufacturing applications. 

An equally important aspect to be considered when applying a multi-
agent system is its control architecture. The selection of a suitable control 
topology is an essential part of the multi-agent system. It can be categorized 
in two topologies which are centralized control and decentralized control. 
Each of these control strategies have several advantages and disadvantages. 
A hybrid system would combine both schemes’ advantages and overcome 
weaknesses (Barca and Sekercioglu, 2013). Multi-agent’s control structure 
within agriculture applications should allow its agents to be cognitive 
in order to maintain robustness, manage trajectories and predict other 
agents’ trajectories which are achieved simultaneously by updating 
and calculating the spatiotemporal trajectory of every collaborative 
agent in the fleet. The system’s control manages trajectory data mining 
which is defined as deriving, pre-processing, uncertainty managing via 
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map-matching, pattern mining, classifying, anomalies detecting, and 
transferring data to another representation (Zheng, 2015). 

Due to the complex data processing and background computations 
performed by the controller, robotic systems should have operating 
systems which can integrate multiple hardware and software modules. 
Besides their design complexity, a robotic system should be user-friendly 
with flexible programming interface and more crucially have a flexible 
middleware which can be customisable to different situations and 
applications. A middleware should meet design diversities and also 
be compatible with multiple sensors and actuators of different designs 
and manufactures, to process data and execute commands. It should 
be flexible to handle applications’ development since robots are made 
of heterogeneous components. They are also required to interact with 
different communications and processing mechanisms instruments, 
integration with other systems such as agricultural implements, existing 
software libraries or algorithms and have the ability to collaborate or share 
information with other systems. Previously developed middlewares are, 
Ocra, UPnP, RT-Middleware, ASEBA, Player/Stage, PEIS Kernel, ORiN, 
MARIE, RSCA, MARIE, Middleware of AWARE, Sensory Data Processing 
Middleware, Distributed Humanoid Robots Middleware, Layer for 
Incorporation, WURDE, OROCOS, and ROS which is a recent and widely 
used framework (Mohamed et al., 2008). ROS also is an open-sourced 
framework which is compatible with multiprogramming languages and 
provides standard operating functions such as hardware perception, low-
level actuators’ control, coding, and implemented operations, message and 
command communication between nodes, and packages’ management 
(Wang et al., 2016). 

The need for more sophisticated systems in industries led to the 
emergence of multi-agent control systems (Rodrigues et al., 2013). Given 
these points, studies on swarm intelligence and multi-agent systems 
have received significant attention recently, however, many aspects and 
research areas remain to be explored (Gautam and Mohan, 2012). The 
advantages of applying multi-agent systems in agriculture are propitious. 
Such system can redistribute complicated agricultural tasks into smaller 
and more practical parts for optimal performance (Pentjuss et al., 2011). 
The distribution of multiple operating agents could maintain a more 
accurate operation since an agent’s failure can be compensated by another 
available agent. A fault tolerant and a goal oriented system, utilizing a 
multi-agent system can increase agriculture production effectively (Pitla 
et al., 2010).

In this chapter, multi-agent systems in agricultural applications 
involving a RA to RA and RA to human agent (HA) collaboration are 
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reviewed. Common systems’ control architecture and design, tools and 
middleware, planning and decision execution, cooperation behaviour, 
and communication systems are discussed for recently developed systems 
for agricultural applications. A case study of a multi-agent collaborative 
system’s framework for transporting harvested fruit bins in orchards, 
which is investigated at the University of Canterbury, is presented. 

2. SyStemS’ ArchItecture And deSIgn

Having a single robot operating in an open space application, such 
as agriculture, requires human supervision in order to monitor its 
performance. Also, current legislations of many countries do not allow full 
autonomous machinery without direct or indirect human’s supervision. 
In such cases, a HA is required for each operating robot. Supervising each 
single RA increases the total cost and negates the need for automation. 
Utilizing a multi-agent system, with only one HA observing the whole 
fleet (Noguchi et al., 2004) would resolve the supervising issue with an 
optimal overall cost. The design of cooperative multi-agent systems is 
application- and functionality-based and include factors such as control 
structure, middleware, and navigation accuracy. 

2.1 Control Topology

The structure of a cooperative multi-agent system control and its features 
reflect its capability, level of cooperation, limitation, and ability to 
expand the number of its participating agents. Most widely used control 
architectures among cooperative systems are decentralized control and 
hybrid control system since they have the advantages of being more 
robust than a centralized control system (Cao et al., 1997). 

2.1.1 Centralized control 

A centralized control topology has an advanced robot or a computer with 
a powerful processor as a leader to plan for the entire fleet, applying 
series of algorithms to perform specific actions. The central controller is in 
charge of collecting and processing data of each individual agent to plan 
tasks’ execution on a global integrated level based on a prior knowledge 
of each agent’s current status (Garro et al., 2007). A centralized control 
system has the advantage of producing optimal plans by maintaining data 
communication and feedback from the entire system, directly controlling 
each agent, and thus can predict behaviour and result of the system. 
However, there are some disadvantages when applying centralized 
control systems such as, achieving an optimal communication coverage, 
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the computational cost of larger fleets, and total failure during the absence 
or failure of the leader. In addition, it is totally dependent on the leader’s 
direct communication range, which results in a temporary failure if leader 
is out of range (Dias and Stentz, 2000). 

Most common multi-agent agricultural centralized control 
architectures are in the form of a master to slave topology. This topology 
allows a sophisticated agent or computer to function as a master and the 
other robots as slaves. A master to slave multi-robot control structure 
was developed by Noguchi et al. (2004) for farming operations. It was 
powered by the GOTO algorithm which was developed as a motion 
algorithm to allow a slave robot to move from its current point to 
another point planned by the master. Another algorithm which was also 
developed is called the FOLLOW algorithm allowing a slave robot to 
mimic the master’s navigation with an offset distance as shown in Fig. 1.  
Both algorithms considered pathway planning, collision detection, and 
avoidance, besides speed and steering control. The proposed system can 
be used for harvesting and transporting hay or corn. The GOTO algorithm 
was computer simulated and a risk index was maintained in order to avoid 
a master and slave collision. The closest distance between the master and 
slave robot while decreasing speed of the slave robot is 12.5 m with a risk 
index of 0.46. Another method to avoid master and slave collision is to 
alter the slave’s path and a 12.6 m distance was achieved with a safety 
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index of 0.46. The FOLLOW algorithms has an overshoot of 0.134 m and 
0.184 m RMS error when applying the sliding mode controller and PD 
controller respectively. On the other hand, the sliding mode controller 
achieved a RMS error of 0.106 m than 0.131 m for PD controller. 

2.1.2 Decentralized control system

A decentralized or distributed control system is a control topology 
allowing each agent to operate on its local information to achieve a 
common task. It enhances agents’ autonomy by processing sensors’ 
data, maintaining tasks planning, managing communication coverage, 
and executing commands independently. This system is preferred over a 
centralized control system since it is more robust to central failure, has less 
communication coverage limitation within the system, can accommodate 
a larger number of agents, and resolves difficulties of the multi-agent 
tasks coordination problem. A distribution control not only overcomes 
central control’s disadvantages, but also enables the system to break a 
complicated task into sub-tasks allowing continuous and fast response 
to dynamic conditions and enhanced collaborative behavior (Fidan et al., 
2007). However decentralization would result in output oscillation and 
wastage of power due to the absence of central tracking to ensure stability 
(Ma and Yang, 2005). 

Considering the advantages, a smartweed treatment heterogeneous 
multi-agent system was designed (Kazmi et al., 2011) to investigate 
technological challenges of guiding and estimating a heterogeneous 
multi-agent system. A decentralized control structure was adapted to 
control two unmanned aircraft systems (UAS) and an unmanned ground 
vehicle (UGV) equipped with advanced vision sensors as shown in Fig. 2.  
A Weed detection process was achieved by processing images obtained 
by a Multispectral camera and Time-of-Flight camera. Its data exchange 
process allowed each agent to evaluate the overall task and handle their 
sub-tasks individually. The communication range limitation affected 
the data exchange process among the fleet, since UAS has a wider but 
distanced observation while UGV has a closer but narrow inspection. It 
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was concluded that having heterogeneous multi-agent is more complex 
but has a better flexibility towards wider ranges of applications and more 
customized solutions. 

2.1.3 Hybrid control systems

A hybrid control system is a result of integrating a centralized control with 
a decentralized control in a hierarchical structure to get advantages of a 
decentralized control flexibility along with a high-level control which have 
the ability to plan tasks and monitor the performance of the participating 
agents (Barca and Sekercioglu, 2013). A complex in-memory distributed 
computation involving very large data sets generated by each agent in a 
fleet can be stored on hard drives or larger memory computer to provide 
locality-aware scheduling, fault tolerance, recovery from failures, and 
load balancing. An advanced and powerful processor robot or computer 
collects data and keeps track of each agent while each agent which is 
decentralized control will have the awareness to manage individual 
tasks locally. The hybrid system can overcome the complication of pure 
centralized and decentralized structure; thus, it is a practical design for 
complicated multi-agent operations (Cheng et al., 2008). 

Emmi et al. (2014) developed a fully hybrid integrated control system 
architecture for individual robot and fleet of robots working together. 
It was designed by integrating autonomous vehicles and autonomous 
implements, which are devices carried or pulled by a vehicle to perform a 
certain function such as herbicide, pesticide booms, mechanical or thermal 
weed removal which have separate controllers and can be controlled 
externally. The vehicle used is CNH Boomer-3050 which was modified 
and equipped with a Weed Detection System, a crop row detection system, 
a laser range finder to detect obstacles, communication equipment, a two-
antenna global positioning system, an Inertial Measurement Unit (IMU), 
a vehicle controller which is in charge of computing steering control 
laws, throttle, braking for path tracking purposes, a central controller as 
a decision making system and fuel cell as an additional energy power 
supply. The Robot Fleets for Highly Effective Agriculture and Forestry 
Management (RHEA) topology consists of an external computer in a 
base station, user portable device to allow human supervision, wireless 
communication medium, and a fleet of mobile units as shown in Fig. 3. 
The integration of ground mobile unit controller (GMU) with the main 
controller, improved reaction capabilities to speed change and trajectories 
which were continuously evaluated and improved. The system was very 
efficient, easily integrated to new hardware and sensors, had sophisticated 
algorithms, and allowed full autonomy and better collaboration. The 
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proposed topology successfully minimized RHEA’s hardware and 
improved the processing time since image acquisition, image processing, 
and image sharing took 80–160 ms, 200–250 ms, and 1 ms respectively 
which was faster than the previous RHEA design. Additionally, these 
processing times were obtained while another four processes were being 
executed in parallel. However, the system is complex and has expensive 
instruments.

2.2 Middleware and Tools

Middleware is a user-friendly programming interface linking high level 
controller with operating low-level actuators. It supports integrating 
hardware and software modules efficiently. It is crucial for robotic 
middleware to have unique characteristics which would enable robust 
robotic applications, adapt to different scenarios, meet designs diversity, 
and enhance applications’ developments. Mohamed et al. (2008) and Min 
Yang et al. (2010) individually investigated common robotic frameworks 
developed for robotics application. Both studies concluded that robotic 
middleware should have flexible architecture and characteristics to deliver 
customized solutions in order to develop required applications. 

The most widely used open source framework defined as Robot 
Operating System (ROS), is a collection of software frameworks for robot 
software development, providing operating system-like functionality on a 
heterogeneous computer cluster (Wang et al., 2016). ROS is also currently 
preferred by robotics developers since it can manage command execution 
in Python or C++ language as messages in parallel through assigned nodes. 

Fig. 3. Hybrid control with a central base station and fleet autonomous vehicle with 
autonomous implements (Emmi et al., 2014). 
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In addition, ROS’s communication medium is either Ethernet or Wireless 
based on a common method such as publish-subscribe or event-driven 
communication to relevant generated data called topic. In these methods, 
the nodes communicate data continuously without earlier knowledge who 
communicates with whom as shown in Fig. 4. Another communication 
method based on a request which ROS software uses is called request-
reply communication which is support via services. The communication 
methods known as actions are used when a node is required to monitor or 
supervise certain actions. The node continuously gets feedback, therefore, 
can cancel or redirect an action. 

The most compelling evidence is that ROS works to a satisfactory 
level by supplying useful tools which enable inspection, visualization, 
debugging, mapping and localization, and integration such as Rviz and 
Gazebo with other open-source libraries such as OpenCV, PCL, and MoveIt. 
ROS has standard message’s formats with stable publishing frequency 
and accepts customized messages that publishers and subscribers agreed 
to. ROS user communities are very active, thus, solutions to different 
problems can be founded in ROS Wiki or online. ROS 3D visualization 
tool which is called Gazebo enables design visualization and helps 
in developing the platform, running algorithms, software testing and 
building modules. It also supports simulating sensors and actuators. 
Moreover, virtual sensors and actuators in Gazebo generate data which 
are similar to the real world generated data from actual sensors and 
actuators. ROS enables offline optimization since it can store all the 
generated data with a time stamp (Linz et al., 2014). As a result (Barth et 
al., 2014), investigated the experience of using ROS as a middleware for 
developing an agricultural robot. Technical aspects which were discussed 

measurement  unit  (IMU),  a  vehicle  controller  which  is  in  charge  of  computing  steering 
control  laws, throttle, braking for path tracking purposes, a central controller as a decision 
making system, and an additional energy power supply as a  fuel cell. The Robot Fleets  for 
Highly  Effective  Agriculture  and  Forestry  Management  (RHEA)  topology  consists  of  an 
external  computer  in  a  base  station,  user  portable  device  to  allow  human  supervision, 
wireless  communication  medium,  and  a  fleet  of  mobile  units  as  shown  in  fig.  3.  The 
integration of ground mobile unit controller (GMU) in the main controller improved reaction 
capabilities  to  speed  change  and  trajectories  which  were  continuously  evaluated  and 
improved. The  system was  very efficient, easily  integrated  to new hardware and  sensors, 
has  sophisticated  algorithms,  and  allowed  full  autonomy  and  better  collaboration.  The 
proposed  topology  successfully minimized RHEA’s hardware and  improved  the processing 
time since image acquisition, image processing, and image sharing took 80‐160 ms, 200‐250 
ms, and 1 ms  respectively which was  faster  than  the previous RHEA design. Additionally, 
these  processing  times  were  obtained  while  another  four  processes  were  executed  in 
parallel. However, the system is complex and has expensive instruments. 

2.2 Middleware and Tools 

Middleware  is  a  user‐friendly  programming  interface  linking  highly  level  controller  with 
operating  low‐level  actuators.  It  supports  integrating  hardware  and  software  modules 
efficiently.  It  is  crucial  for  robotic middleware  to  have  unique  characteristics  in  order  to 
enable  developing  robust  robotic  applications,  adapting  to  different  scenarios,  meeting 
designs diversity, and enhancing applications’ developments.  (Mohamed et al., 2008) and 
(Min  Yang,  Deguet,  &  Kazanzides,  2010)  investigated  common  robotic  frameworks 
developed for robotics application. Both studies concluded that robotic middleware should 
have  flexible  architecture  and  characteristics  to  deliver  customized  solutions  in  order  to 
develop required applications.  

The most  widely  used  open  source  framework  Robot  Operating  System  (ROS)  which  is 
defined as “Robot Operating System (ROS) is a collection of software frameworks for robot 
software  development,  providing  operating  system‐like  functionality  on  a  heterogeneous 
computer  cluster”  (Wang  et  al.,  2016).  ROS  is  also  currently  preferred  by  robotics 

developers  since  it  can  manage  commands  execution  in  Python  or  C++  language  as Fig. 4. Exchanging message of a topic in parallel between publisher and subscriber (Wang 
et al., 2016).
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are, sensing perception, manipulators, system framework and mission 
control. The study examined ROS’s design capability and methods by 
designing a tomatoes harvesting dual-arm robot which was tested in a real 
farming environment. The system’s 3D model was built and visualized by 
Rviz tool and a motion planning process was supported by Moveit library 
which is an integrated toolkit in ROS as shown in Fig. 5. 

ROS was found to have several disadvantages such as, learning 
ROS takes considerable time, newly developed versions of ROS lack 
compatibility with older versions, and older versions need to be 
customized with the newer release. The debugging process can be 
challenging since communication is handled through messages; thus, they 
require isolating and simulating each message. ROS does not support real-
time response to other external  softwares even if they are linked to it. 
It was however, concluded that ROS has wider and applicable roles in 
robotics’ development in the future.

2.3 Collaborative Navigation 

It is important for a RA to be able to navigate, build collision-free paths 
and find its next step such as where to go or what to do. A RA should 
manage its navigation’s subtasks which are self-localization, path 
planning, maps building, and map utilization irrespective of whether a 
robotic agent is located in an indoor or outdoor environment. Therefore, 
indoor or outdoor navigation can be generally categorized as completely 
known, partially known, and unknown. Current sensing technologies 
and powerful programming enhance locating a goal point, path planning, 

Fig. 5. Dual-arm tomatoes harvester in farm and the 3D simulation using Rviz Tool (Barth 
et al., 2014).

messages  in parallel through assigned nodes.  In addition, ROS’s communication medium  is 
either Ethernet or Wireless based on a common method such as publish‐subscribe or event‐
driven communication to relevant generated data called topic. In these methods, the nodes 
communicate data continuously without earlier knowledge who communicates with whom 
as shown in fig. 4. Another communication method based on a request which ROS software 
uses  is  called  request‐reply  communication  which  is  support  via  services.  The  third 
communication methods are known as actions are used when a node is required to monitor 
or supervise certain actions. The node continuously gets feedback, therefore, can cancel or 
redirect an action.  

The most compiling evidence  is  that ROS works  to a satisfactory  level by supplying useful 
tools  which  enable  inspection,  visualization,  debugging,  mapping  and  localization,  and 
integration such as Rviz and Gazebo with other open‐source libraries such as OpenCV, PCL, 
and MoveIt.  ROS  has  standard message’s  formats  with  stable  publishing  frequency  and 
accepts customized messages provided that publishers and subscribers agreed to. ROS user 
communities are very active,  thus, solutions  to different problems can be  founded  in ROS 
Wiki or online. ROS 3D visualization tool which is called Gazebo enables design visualization, 

developing the platform, running algorithms, software testing, and building modules. It also 
supports  simulating  sensors  and  actuators.  Moreover,  virtual  sensors  and  actuators  in 
Gazebo generate data which are similar to the real word generated data from actual sensors 
and  actuators.  ROS  enables offline optimization  since  it  can  store  all  the  generated  data 
with a time stamp (Linz, Ruckelshausen, Wunder, & Hertzberg, 2014). As a result, (Barth et 
al.,  2014)  investigated  the  experience  of  using  ROS  as  a middleware  for  developing  an 
agricultural  robot.  Technical  aspects  which  were  discussed  are  sensing  perception, 
manipulators,  system  framework,  and mission  control.  The  study  examined  ROS’s  design 
capability  and  methods  by  designing  a  tomatoes  harvesting  dual‐arm  robot  which  was 
tested  in a  real  farming environment. The  system’s 3D model was built and  visualized by 

Figure 5. Dual‐arm Tomatoes harvester in Farm and the 3D simulation using Rvis Tool (Barth et al., 2014) 
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and avoiding encountered obstacles (Khan and Ahmmed, 2016). Each 
navigation subtask can be categorized as deterministic or reactive, for 
example path tracking is deterministic while avoiding obstacles is reactive 
(Vougioukas et al., 2005). A RA’s movement in agricultural applications 
is straightforward due to the standard row plantation patterns either in 
outdoor farms and orchards or indoor plantations and greenhouses.

Accordingly, Mousazadeh (2013) reviewed the navigation process 
of autonomous agricultural vehicles and compared different navigation 
algorithms in terms of accuracy and speed. In the review, navigation 
systems were characterized in six categories which are, dead reckoning, 
image processing, statistically based developed algorithms, fuzzy logic 
control, neural network, genetic algorithm, and Kalman filter based 
algorithms. The current autonomous systems use sensors’ collected data 
to be fed to their navigation algorithms. The navigation algorithm plans 
and executes next step such as, moving, steering or stopping. The most 
commonly used sensors in agricultural navigation are vision based, 
Real Time Kinematic-Global Positioning System (RTK-GPS), mechanical 
sensor, inertial sensors, Geomagnetic Direction Sensors (GDS), ultrasonic, 
Fiber-optic Gyroscope (FOG), Laser Radar (LADAR), Light Detection and 
Ranging (LIDAR), optical encoder, Radio Frequency receiver (RF receiver), 
piezoelectric Yaw-rate sensor, Near Infra-Red (NIR), and Acoustic sensor 
as shown in Fig. 6. 

Fig. 6. Basic navigation control diagram (Mousazadeh, 2013).

Another  recent  study  conducted  by  (Sharifi,  Chen, &  Pretty,  2016) which  developed  and 
tested a Mobile Autonomous Robot for  Intelligent Operations (MARIO) at the University of 
Canterbury, New Zealand. The MARIO’s navigation system integrated visual odometry (VO) 
and inertial measurement unit (IMU) and fused their generated data to an Extended Kalman 
Filter and VO algorithms  in order to self‐localize the robot  in a GPS‐denied environment. A 
comparison  of  using  two  open  source  algorithms which  are  called  favis  and  Libviso was 
presented. It was concluded that Libviso achieved a better accuracy than favis. MARIO was 
developed  on  a  Robotic  Operating  System  (ROS)  middleware  which  enabled  simulating 
sensors’  data  and  visualizing  its  experimental  testing  in  Gazebo  and  Rviz  tools  (Mostafa 
Sharifi et al., 2016). 

In  a  like  manner,  collaborative  multi‐agent  system’s  navigation  utilizes  a  single‐agent 
navigation’s  ability.  In  other words,  it  is  basically  the  combination  of  each  single  agent 
navigation subtasks and  it  is also dependent on the control system architecture. There are 
two  common  scenarios  in  collaborative  navigation,  the  first  scenario  is  that  all  agents 
navigate to a single location while in the second scenario each agent navigates to a different 
targeted  location  with  the  aid  of  other  agents’  presence  (Bayndr,  2016).  The  second 
scenario  is more practical  in agricultural applications since autonomous agents either with 
or without an implement are designed for a specific task and to prevent plantations’ and soil 
damage. Thus, an iterative process requires a previous knowledge of a route from the agent 
current location to the desired target and the knowledge of other agents’ poses. 

 
Figure 6. Basic navigation control diagram (Mousazadeh, 2013) 

Likewise, a multi‐agent navigation process is more effective than single‐agent system due to 
the  information  exchange  mechanism  among  robots  which  establishes  a  previous 
knowledge  of  the  surrounding  environment.  A  good  communication  coverage  with 
appropriate  algorithms  and  consecutive  data  exchange  between  agents  are  essential  for 
accurate navigation. Collaborative navigation routing algorithms can be categorized as static 
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In addition, Keicher and Seufert (2000) analysed agricultural 
autonomous vehicles and implements navigation systems in Europe 
and listed the most widely used sensors such as mechanical sensors, 
laser triangulation, machine vision, ultrasonic, geomagnetic, and global 
navigation satellite (GPS) systems, which generate position, altitude, and 
direction of robots’ movement. 

Sharifi et al. (2016) developed and tested a Mobile Autonomous Robot 
for Intelligent Operations (MARIO) at the University of Canterbury, New 
Zealand. The MARIO’s navigation system integrated visual odometry 
(VO) and inertial measurement unit (IMU) and fused their generated data 
to an Extended Kalman Filter and VO algorithms in order to self-localize 
the robot in a GPS-denied environment. A comparison of using two open 
source algorithms which are called Favis and Libviso was presented. It 
was concluded that Libviso achieved a better accuracy than Favis. MARIO 
was developed on a Robotic Operating System (ROS) middleware which 
enabled simulating sensors’ data and visualizing its experimental testing 
in Gazebo and Rviz tools (Sharifi et al., 2016).

Collaborative multi-agent system’s navigation utilizes each agent’s 
navigation ability. In other words, it is the combination of navigation 
subtask of each single agent and it is also dependent on the control system 
architecture. There are two common scenarios in collaborative navigation, 
the first scenario is that all agents navigate to a single location while in the 
second scenario each agent navigates to a different targeted location with 
the aid of other agents’ presence (Bayındır, 2016). The second scenario is 
more practical in agricultural applications since autonomous agents either 
with or without an implement are designed for a specific task, without 
causing damage to plantation and soil. Thus, an iterative process requires 
a previous knowledge of a route from the agent’s current location to the 
desired target and also the knowledge of other agents’ poses.

Likewise, a multi-agent navigation process is more effective than 
single-agent system due to the information exchange mechanism among 
robots which establishes a previous knowledge of the surrounding 
environment. A good communication coverage with appropriate 
algorithms and consecutive data exchange between agents are essential 
for accurate navigation. Collaborative navigation routing algorithms 
can be categorized as static routing or dynamic routing. A static routing 
allows an agent to follow a sequence of fixed landmarks while dynamic 
routing depends on direct communication with another neighboring 
agent to determine a targeted location from a current location (Wurr and 
Anderson, 2004).

Notably, the hybrid control multi-agent application known as Robot 
Fleets for Highly Effective Agriculture and Forestry Management (RHEA) 
implemented three levels of navigation subsystems. Level one which is a 
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combination of navigation sensors namely RTK-DGPS, machine vision, 
LIDAR, and IMU. Level two is a navigation planner performing paths’ 
generation and obstacle avoidance. Level three is the navigation execution 
layer which has path following, steering, and throttle controllers (Emmi 
et al., 2014). 

Adamides et al. (2012) improved a HA to a RA collaborative system 
to execute spraying tasks and navigation by introducing a semi-automatic 
teleoperation. The design’s principles such as visibility, safety, simplicity, 
feedback, extensibility, and cognitive load reduction were introduced to 
allow a human agent to contribute to robot navigation, target selection, 
and spraying. Vougioukas et al. (2012) developed a multi-agent robotic 
system to transport bins of harvested fruits from a fixed position to a 
drop station. The Split Delivery Vehicle Routing Problem (SDVRP) which 
is a navigation and formation algorithm was used to route different size 
robotic agents to bin’s location and then to a drop station and it was 
developed using the Mixed Integer programming method. 

Furthermore, English et al. (2013) investigated and developed 
a robust pose estimation method to common sensors failures by 
combining multiple low-cost sensors on small and light robotic 
farming machinery. The used sensors are low-cost GPS, inertial sensors, 
and vision-based row tracking. The integration of GPS and inertial 
sensors with the vision-based row tracking sensor enabled the system 
to overcome long signals interruptions and repeated dropouts. It is 
also a lower cost option than expensive GNSS navigation systems. 
The added vision system allows robots to observe the visual features 
while driving in a way that mimics humans’ driving and following 
GPS’s directions as shown on the localization block diagram Fig. 7.  
Physical experimentations were carried out by a robot which covered 6 
hectares and resulted in 0.18 m root means square (RMS) pass-to-pass 
errors while 95th percentile error was 0.28 m and all errors were less than 
0.5 m wide side-spray. The missed out area was 2.6% and the repeatedly 
covered area was 9.7%. A correction on the IMU constant bias reduced 
RMS errors by 28% and percentile errors by 42%. 

Fig. 7. Localization system components (English et al., 2013).
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A HA to a RA cooperative agricultural system was also developed by 
Farangis Khosro et al. (2014) to aid a picker during a strawberry harvesting 
process by transporting filled tray from a picker location to a loading 
station. The RA also monitored picker’s posture since long and continuous 
bending during picking may result in a low back disorder (LBD). The 
designed platform allowed navigation in narrow strawberry furrows and 
it was equipped with ultrasonic sensors mounted in the front and back 
allowing collision avoidance, straight motion, and safe movement which 
was also feeding data to an Arduino microcontroller executing navigation 
and furrow path stabilization algorithms. 

Along with the above studies, Li et al. (2015) studied a hierarchical 
decision method and trajectory planning for a group of collaborative 
agricultural robots performing tasks such as citrus harvesting. A 
framework algorithm handled two levels which are a cooperative level 
and an individual level as shown in the algorithm architecture Fig. 8. 
In this algorithm optimization took place at the cooperative level for 
formation task assignment and at the individual level for agricultural 
robots’ trajectory planning. A rapid optimization of trajectories was 
achieved by the proposed algorithm and a performance index was added 
to the cooperative level to be decoupled from the individual level and 
control variables. The adoption of a re-planning strategy enabled robots 
to adapt to dynamically changing environments.

Fig. 8. Algorithm architecture (Li et al., 2015).
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3. robotIc cooperAtIve behAvIour

A multi-agent system cooperative behaviour is determined based on its 
communication ability, amount and type of exchanged data, designs’ 
similarities, and common tasks to be achieved. An artificial communication 
can be categorized into two types. The first type is via observation similar 
to biological stigmergy which is communicating through observing 
surrounding changes or signs (Holland and Melhuish, 1999). The second 
type is via messages which are passing packets of data containing specific 
information such as machine IDs, pose, time stamp, velocity, and the 
status of an assigned task. The messages’ communication is managed via 
Bluetooth, wireless, infrared, or 3G GSM internet depending on the team 
size and communication range. The type of information shared between 
agents specifies the degree of collaboration between them, for example, 
the simple exchanged information might contain only pose and time 
stamp and more complex information may contain commands, direction 
instructions, a request of a specific agent to do a specific task, or algorithms 
update (Capodieci and Cabri, 2013). 

A complicated inter-robot communication network has two basic 
concepts which are an implicit communication and explicit communication. 
The implicit communication is achieved when an agent broadcasts its 
status data to the whole fleet while an explicit communication is a point 
to point communication with a specific agent. Whether to use an implicit, 
explicit communication or both combined depends on the assigned task. 
The cooperation behaviour was divided into three categories such as 
no cooperation, modest cooperation, and absolute cooperation by Pitla 
et al. (2010). They investigated a multi-robot system control architecture 
(MRSCA) for agricultural production. The MRSCA tested the three 
cooperative behaviour categories supporting different tasks efficiently. 

3.1 No Cooperative Behaviour

A multi-agent system would have no cooperative behaviour if the system 
or its agents have implicit communication only. The system remains 
collaborative but has no or less cooperation behaviour. In other words, 
agents in the system still performed assigned tasks collaboratively, but 
do not have a point to point communication, nevertheless, they still 
broadcast their status. Most of the homogenous multi-agent applications 
in agricultural applications such as spraying, planting, and fertilizer 
require implicit communication only (Pitla et al., 2010). 

A safe collaborative navigation system in an orchard or in a farm to 
aid in transporting with the presence of HAs was introduced by He et al. 
(2014). A HA carrying a GPS and radio transmitter will have his pose tracked 
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by a RA. The radio transmitter will keep broadcasting HA’s data. Another 
study regarding path partition strategy was investigated by Acevedo et al.  
(2013) that performed a perimeter surveillance with a team of mobile 
robots. Each robot should cover a specific non-overlapping section of the 
total path covered by the whole team. Each robot propagated its spatial 
data within its communication coverage range and a decentralized control 
algorithm coordinated the robots, based on the exchanged data between 
neighboring agents. The whole team collaborated to cover the whole area 
by monitoring each other’s position and maintaining their subtasks as 
shown in Fig. 9. 

3.2 Modest Cooperation Behaviour

A modest cooperation behaviour is another form of collaborative systems 
which requires establishing an explicit communication and implicit 
communication between agents. Both explicit communication and 
implicit are a via message data communication. However, the explicit 
communication message’s data have a specific set of instructions such as 
requesting to dispatch a bale of hay, picking up fruit bins, or assisting 
another agent. 

A cooperative agricultural system which consists of a supporting unit 
(SU) as a transporting vehicle to assist an operative agent as a primary 
unit (PU) was discussed by Jensen et al. (2012). They investigated the 
transporting unit navigation optimization and path planning which also 
involved in-field and inter-field transportation. The system was simulated 

Fig. 9. Perimeter surveillance experimented by a team of robots (Acevedo et al., 2013).

strategy was investigated by (Acevedo, Arrue, Maza, & Ollero, 2013) to perform a perimeter 
surveillance  with  a  team  of  mobile  robots.  Each  robot  should  cover  a  specific  non‐
overlapping  section  of  the  total  path  which  is  covered  by  the  whole  team.  Each  robot 
propagated  its  spatial data within  its  communication  coverage  range  and a decentralized 
control  algorithm  would  coordinate  them  based  on  the  exchanged  data  between 
neighboring agents. The whole  team  collaborated  to  cover  the whole area by monitoring 
each other positions and maintain their subtasks as shown in fig.9.  

 
Figure 9. Perimeter surveillance experimented by a team of robots (Acevedo et al., 2013) 
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in MATLAB for a fertilizing operation when an autonomous tractor 
employed as a PU carrying a sprayer and required refilling its tank. The 
refilling operation was supported by a transporting vehicle working as a 
SU which arrives at the PU’s location and refills as shown in Fig. 10.

3.3 Absolute Cooperation Behaviour

An absolute cooperation behaviour requires a continuous point to point 
implicit and explicit communication. An uninterrupted data exchange is 
established between collaborative agents such as pose correction of two 
agents carrying an object designed by Bailey et al. (2011). They designed a 
hybrid control to fuse inter-robot measurements. A distributed algorithm 
for joint localization of RAs enabled sharing spatial information between 
an advanced sensing RA with a lower sensing ability RA. The localization 
information sharing was obtained which continuously corrected agent’s 
poses as a combined estimation method. The process allowed the advanced 
RA to help less equipped RAs. Each RA processed its own sensed data 
independently. 

Another agricultural application which was discussed by Pitla et al. 
(2010) is grain harvesting as shown in Fig. 11. The application is a hybrid 
control system which had a central processing station (CMS) as a central 
controller and a grain harvesting robot GHR accompanied with two 
autonomous grain wagon robots GWR I and GWR II. GHR and GWR I 
are working together and keeping a close distance to each other in order 
to allow GHR to keep on feeding harvested hay to GWR I. The GWR II is 
to replace GWR I when it gets full.

Fig. 10. The metric map and corresponding graph of a refilling of a PU unit simulation 
scenario (Jensen et al., 2012).

 
Figure 10.  The metric map and corresponding graph of a refilling of a PU unit simulation scenario (Jensen et al., 2012) 
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4. multI-Agent cooperAtIve hybrId control SyStem 
FrAmework 

In this section, the development of a Multi-agent Cooperative Hybrid 
Control System Framework for Agricultural Transportation Application 
in New Zealand is represented as a case study. This implementation 
investigates the optimization of the harvesting cost. A modest cooperative 
behaviour will be established within a team of RAs as fruit bins 
transporters, HAs as fruit pickers, and a computer base station as a 
central controller. The system structure is illustrated in Fig. 12. During 
a conventional harvesting process in commercial orchards, the picked 
fruits are collected in a fruit picking bag and emptied into a fixed bin 
placed on the orchard’s row by the picker. Then, the bin when it gets full 
is transported by a forklift tractor to a collection station and inspected 
by a supervisor. The unproductive traveling time from and to a fixed bin 
prolongs the harvesting process. 

Fig. 11. Grain harvesting absolute cooperative system (Pitla et al., 2010).
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An interactive monitoring of the human agents’ movement and fruit 
picking process in an orchard is performed by the central Controller. Thus, 
an implicit communication message will exchange data between RAs and 
HAs which contains their identification number, location, time stamp, 
carried weight, and status. The central controller which is a computer 
is processing data broadcasted by each agent. It will process data and 
translate them into executable commands for RAs to act upon. The data 
processing will include noise filtering, segmentation, map matching, and 
weight monitoring which essentially contributes to the decision when 
a RA navigates to a HA’s location and when the RA should navigate to 
a drop station. Therefore, a RA navigates to an HA’s location when its 

Fig. 12. Cooperative system framework for fruit harvesting.
 

Figure 12. Cooperative system framework for fruit harvesting 

The  weight  monitoring  process  combines  two  stages,  the  first  part  is  continuously 
measuring the picking bag’s weight by load cells and broadcast the measured weight value, 
location, and timestamp as a data set via implicit communication messages, the second part 
is when the weight builds up to reached a threshold,  it would be continually evaluated by 
the  central  controller.  The  central  controller would  decide which  RA  would  navigate  to 
which  HA  based  on  their  picking  bag’s  weight  and  location.  An  explicit  communication 
message will be established between a HA and the nearest RA requesting to dispatch a full 
picking bag.  It will be established also between  the central controller and a specific RA  to 
pick up bags or transport a full bin. The central controller will also manage global mapping, 
path planning, and updating collaborative agents’ maps. RAs are robust  to  the absence or 
failure of  the central controller since  they are decentralized controlled and can plan  tasks 
based on the previously exchanged data and latest uploaded maps by the central controller. 

During a site visit to a Plant and Food Company’s apple orchard in Motueka, New Zealand to 
investigate apples’ harvesting process and  the possibility  to automate bins’  transportation 
task.  It  was  concluded  that  automating  the  transportation  process  during  harvesting  is 
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picking bag is full or when requested while the RA will navigate to a drop 
station after collecting multiple full picking bags and its bin becomes full.

The weight monitoring process combines two stages, the first part 
is continuously measuring the picking bag’s weight by load cells and 
broadcast the measured weight value, location, and timestamp as a data 
set via implicit communication messages, the second part is when the 
weight reached a certain threshold value. This threshold is contentiously 
monitored by the central controller. The central controller would 
decide which RA would navigate to which HA, based on their picking 
bag’s weight and location. An explicit communication message will be 
established between a HA and the nearest RA requesting to dispatch a 
full picking bag. It will be established also between the central controller 
and a specific RA to pick up bags or transport a full bin. The central 
controller will also manage global mapping, path planning, and updating 
collaborative agents’ maps. RAs are robust to the absence or failure of the 
central controller since they are decentralized controlled and can plan 
tasks based on the previously exchanged data and latest uploaded maps 
by the central controller.

A site visit was made to a Plant and Food Company’s apple orchard 
in Motueka, New Zealand to investigate apples’ harvesting process and 
to explore the possibility of automating bins’ transportation task. It was 
concluded that automating the transportation process during harvesting 
is achievable because of the existing commercial and standard procedures 
followed by the apple plantation industry such as;

 1. Fruit pickers move within groups in systematic patterns from end to 
end in each block visiting each tree once during harvesting. Apples 
are picked into carried picking bags which are emptied to a fixed 
bin located in the middle of the row. This procedure makes HAs 
movement patterns predictable by a central controller.

 2. A commercial orchard consists of 7–12 blocks. Each block will have 
about 700–1100 apple trees depending on row plantation density and 
it has access from both ends allowing vineyard tractors to be driven 
through rows to perform spraying, fertilizing, transporting bins, etc. 
which will also allow RAs to access and exit easily and no need for 
complicated manoeuvres during navigation. 

 3. An apple tree with the height of 3 meters produces about 300–400 
apples and a normal picker would pick 2–3 tons in a single day while 
a skilled picker can pick up to 4 tons. This massive production of 
apples encouraged automating the transportation process. 

 4. Movement between apples’ trees are restricted since they are being 
supported by poles and steel wires; thus, pickers and tractors move 
through rows with a path clearance of 3 to 4 meters as shown in Fig. 13,  
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Fig. 13. Orchard’s block and its two ends access.
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4. Movement between apples’  trees are  restricted since  they are being supported by 
poles  and  steel wires;  thus,  pickers  and  tractors move  through  rows with  a  path 
clearance of 3 to 4 meters as shown  in fig.13, therefore, RAs’ navigation  is going to 
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5. Continuous monitoring of picking bags’ weight will enable collecting data from every 
HA and improve harvesting productivity and quality.  

6. Most  orchards  in  New  Zealand  have  internet  service  providers  or  cell  phone 
coverage and have a good infrastructure. 

 
Figure 13. Orchard's block and its two ends access 
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therefore, RAs’ navigation is going to be straightforward and easily 
managed.

 5. Continuous monitoring of picking bags’ weight will enable collecting 
data from every HA and improve harvesting productivity and quality. 

 6. Most orchards in New Zealand have internet service providers or cell 
phone coverage and have a good infrastructure.

Several algorithms would be integrated into the system in order to 
automate the process. Based on two level control hierarchy structure 
as shown in Fig. 14. A hybrid control has two collaborative algorithms 
layers which are, the first algorithms layer is cooperative algorithms 
processing received data from each agent, make and continuously update 
global maps, tasks’ decision making, and navigation planning. The 
second algorithms layer is based on the RA processor as a decentralized 
controller that follows central controller’s decision, take decisions during 
the absence of the central controller and execute local navigation. At the 
central controller layer, sorting algorithms will sort received data based 
on agents’ IDs, carried weight, and position. Another search algorithm 
will locate the most suitable RA to assist an HA who has their picking 
bag full or nearly full. Locating the most suitable RA will be handled by 
a search algorithm based on two constraints which are the relative RA’s 
location if available and the second is when all RAs are engaged, the 
search algorithm would look for a RA which will finish first to handle the 
request. The Dijkstra’s algorithm is applied to plan the shortest path to be 
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followed by the selected RA in order to reach the HA’s or drop station’s 
location. 

On the robot control layer, RAs receive instructions from the central 
controller and data from neighboring agents and perform local navigation 
to a goal point including trajectory optimization and collision avoidance. 
RA would build its own global map and build a smaller data structure of 
other agents in order to enable robustness to central controller’s failures 
and collaborate effectively with the rest of the team to execute commands.

5. Future work

Multi-agent cooperative systems are current and evolving research areas 
and several aspects need to be investigated. These opportunities are the 
framework modules, the whole system’s parts integration, operative 
algorithms, hardware’s design, prototyping developments, experimental 
implementations, and evaluation studies. 

One of the main challenges when applying a multi-agent systems 
is the prediction of HA’s mobility patterns. It has a crucial role during 

Fig. 14. Two-layer hybrid control system structure.

absence  of  the  central  controller,  and  execute  local  navigation. At  the  central  controller 
layer,  sorting algorithms will  sort  received data based on agents’  IDs,  carried weight, and 
statues. Another search algorithm will  locate the most suitable RA to assist an HA who has 
their picking bag  filled or nearly  filled. Locating  the most suitable RA will be handled by a 
search algorithm based on two constraints which are the relative RA’s  location  if available 
and the second is when all RAs are engaged, the search algorithm would look for a RA which 
will finish first to handle the request. The Dijkstra's algorithm is applied to plan the shortest 
path to be followed by the selected RA in order to reach the HA’s or drop station’s location.  

On  the  robot control  layer, RAs  received  instructions  from  the central controller and data 
from neighboring agents and perform  local navigation  to a goal point  including  trajectory 
optimization and collision avoidance. RA would build its own global map and build a smaller 
data structure of other agents  in order to enable robustness to central controller’s failures 
and collaborate effectively with the rest of the team to execute commands. 

 
Figure 14. Two‐layer hybrid control system structure 

5 Future work 

Multi‐agent  cooperative  systems are a  current and evolving  research area which  leads  to 
several  aspects  to  be  investigated.  These  opportunities  are  introduced  initially  by  the 
framework modules, the whole system’s parts integration, operative algorithms, hardware’s 
design, prototyping developments, experimental implementations, and evaluation studies.  
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harvesting and fruit transportation automation in this research. There 
are a few actively ongoing research studies in the arena of uncertainty 
and unpredicted behaviour of human’s movement. Human mobility 
tracking in an agricultural process is complex and requires selective data 
mining operations. Therefore, future research should focus on improving 
algorithms and methodologies for monitoring unpredicted human 
mobility in agricultural applications.

Navigation and localization of mobile robots are also active research 
areas. There are numerous topics being studied to improve multi-robot 
navigation under real application constraints such as challenging terrains, 
weather condition, surface texture, and design complexity. In addition, 
navigation and localization algorithms development is another research 
field, even though, many algorithms have already been developed and 
optimized but an avenue for future studies to optimize new and fast 
algorithms that improve multi-agent cooperative navigation still exists.

The Multi-agent Cooperative Hybrid Control System Framework 
for Agricultural Transportation Application proposed in this chapter 
is an endeavor to improve the collaborative system’s heterogeneity 
and optimization by including a HA as a functional team member. This 
design took an advantage of the existing standard mobility patterns in a 
commercial apple orchard to track HA’s mobility. The proposed system 
discussed the implementation of the RAs as Unmanned Ground Vehicles 
(UGV) with a central controller. Future research can include quadrotors 
or rovers as Unmanned Aerial Vehicles (UAV) to improve communication 
coverage, global mapping, machine vision, and prediction human agent’s 
mobility and which also can interact with one robot or several robots.

6. concluSIon

This chapter leads the reader through a review of cooperative multi-agent 
system applications in agriculture. The multi-agent collaborative concepts 
were introduced. The need for multi-agent systems in agriculture with 
existing designs and similar applications’ backgrounds was illustrated. 
The review highlighted the effectiveness of automating certain agricultural 
processes and also discussed design considerations such as control 
topology, middleware and tools, navigation, and cooperative behaviour. 
Previously reviewed collaborative systems support these consideration 
and provide practical assessments for future designs. 

HA to RA collaboration is a critical aspect of agriculture due to the 
tasks’ complexity which requires humans’ flexibility and intelligence. Thus, 
HA’s role is not only to supervise robots exclusively but also to participate 
collaboratively and effectively communicate with the whole system. The 
unpredictable HA’s mobility and tracking constraints is the reason for 
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researchers’ reluctance to employ HAs within cooperative multi-agent 
systems. The proposed study of the Reliable Multi-agent Cooperative 
Hybrid Control System Framework for Agricultural Transportation 
Application in New Zealand introduced HA’s participation as an operative 
agent while improving a methodology for accurate mobility prediction 
by investigating the movement patterns during a harvesting process. A 
weight and pose tracking device is used to broadcast picking bags’ weight 
and location which is received and processed by a central controller. 

This chapter has shown possibilities and advantages of using 
cooperative multi-agent systems in agricultural applications. Selecting 
the applicable system design, level of cooperation, HA’s and RA’s task, 
and appropriate communication enhances RA’s awareness and improves 
collaboration. Therefore, the development of multi-agent cooperation 
system in agricultural applications will be improved when RA and HA 
behave in more collaborative manners.
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1. IntroductIon

Developing highly accurate automatic guidance of agricultural vehicles 
can bring in immense benefits to the agricultural industry by way of 
cost savings. For example, autonomous agricultural vehicles that can 
accurately follow predefined paths can be used to plant the crop and then 
repeatedly revisit the growing crop accurately for crop management. Crop 
management includes growth monitoring and fertilizer, herbicides and 
pesticide application. Highly accurate autonomous machines can apply 
fertilizers, herbicides, and pesticides with greater spatial precision leading 
up to plant level care instead of field level care bringing in significant cost 
savings due to reduced fertilizer and chemical usage. In addition, use 
of autonomous systems address the skilled operator shortage, reduce 
the labor costs and improve occupational health and safety standards of 
operators (Van Henten et al., 2003).

Ensuring accurate operation of autonomous agricultural vehicles for 
path tracking is a challenging and complex task. The primary reason is 
that these vehicles operate on rough terrain, which at times can be sloping 
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and undulating (Janulevičius and Giedra, 2009). Moreover, they carry 
out ground engaging operations such as plowing. These conditions often 
lead to slips at the front and rear wheels in both lateral and longitudinal 
directions (Eaton et al., 2009). Wheel slip is the interaction between soil 
and wheels, and affected by tyres as well as speed of vehicles, terrain 
properties, and path curvatures. In agricultural applications, the accuracy 
of lateral offsets is required to be within the range of five centimetres 
with respect to the reference path, even if farm vehicles are moving on 
slope and undulating ground (Lenain et al., 2006). The slips are inevitable 
disturbances affecting the operation of autonomous vehicles and need 
to be considered in designing path tracking controllers. For example, as 
the experimental results shown in (Lenain et al., 2004), classical control 
without sliding, deviated the farm tractor from the desired path with the 
highest error of 30 cm during the slope. While errors during the curve 
were in the range of the lowest lateral offset 40 cm to the highest offset 60 
cm, during path tracking in the curve. The effect brought by wheel slip in 
field is significant, and can not be ignored. There are a few other researches 
while also highlighted the significant issue of wheel slip (Raheman and 
Jha, 2007; Pranav et al., 2010; Bevly et al., 2002). In this paper, one of the key 
aim is to investigate wheel slip. The autonomous technologies presented 
in this paper can be employed in other industries as well such as road 
construction in civil engineering and mining and defense.

The first step towards controller development is modeling. Two types 
of models can be used for controller development, the kinematic models 
or the dynamic models. Though dynamic models are more complex, they 
are more accurate than kinematic models especially when the vehicles 
operate with high accelerations. Dynamic models are also more specific to 
a given system than kinematic models, which are more general and easy 
to use. However, it has been shown that, for vehicles operating at low 
speeds with low accelerations such as farm vehicles, the kinematic models 
are accurate enough for designing path tracking controllers (Werner et al., 
2012). A number of kinematic models based on non-slip assumption have 
been derived. However, this is not a valid assumption in the agricultural 
environment because slip is significant and inevitable (Micaelli and 
Samson, 1993; Samson, 1993). Lenain et al. (2006) extended a kinematic 
model by incorporating a rear side slip angle, and a front side slip angle 
to take the slip effects into account. A more comprehensive kinematic 
model was introduced by Fang et al. (2004). In this model, a lateral slip 
velocity perpendicular to the velocity of the field vehicle is added to the 
front wheels as a steering bias. As a further extension, a kinematic model 
(Huynh et al., 2010) was derived with three slips—lateral slip velocity, 
longitudinal slip velocity and steering slip angle. Their kinematic model 
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can be used to obtain an offset model with respect to a reference path, the 
offsets being the lateral distance offsets and the heading offsets.

In this paper, the offset model of Huynh et al. (2010) is used to design 
the path tracking controller. Note that the kinematic models are nonlinear 
and, therefore, nonlinear controllers are recommended. Nonlinear 
approaches such as sliding mode control (SMC) and back stepping control 
(BSC) have been used for controlling mobile vehicles in many industrial 
applications (Yu and Kaynak, 2009; Taghia et al., 2015). Both control 
methods are based on Lyapunov stability analysis, and they are robust 
control methods that perform successfully in the presence of uncertainties 
and disturbances (Krstic et al., 1995). Both BSC (Huynh et al., 2012; Fang et 
al., 2006) and SMC (Taghia and Katupitiya, 2013) are found to be sensitive 
to unmatched uncertainties in the system model.

A very promising control method for achieving high precision 
path tracking is Model Predictive Control (MPC) due to its receding 
optimization and predictive ability. MPC has been successfully used in 
many industrial applications such as oil-refining and power systems 
(Qin and Badgwell, 2003; Richalet, 1993; Arnold and Andersson, 2011). 
In the recent past, researchers have shown an interest in applying MPC 
to path tracking. While there is an abundance of satisfactory research 
results, the majority of them use the assumption of pure rolling without 
sliding (Backman et al., 2009; Yaonan et al., 2010). As emphasized before, 
this assumption is invalid when it comes to the control of field vehicles 
in farming environments. Moreover, classical MPC is not inherently 
robust (Garcia et al., 1989), therefore it is necessary to design controllers 
taking the wheel slips into account. The work presented by Backman  
et al. (2010), took into account the wheel slip and used extended Kalman 
filter to compensate for the slippage, however, this approach is not robust 
due to the assumption of the Gaussian distribution of slip, which is not a 
reliable assumption. Lenain et al. (2005, 2006) used an extended kinematic 
model with two slip angles representing front and rear slip to design a 
control law and then created a sliding estimation algorithm to obtain the 
two slip angles. The results show acceptable performance, however, the 
noise levels on the two estimated slip angles were problematic.

This paper proposes adaptive and robust control approaches in such a 
way that the slip measurement or estimation is not required. Proposed min-
max MPC is a robust MPC method that considers all possible disturbances 
including the worst case (Campo and Morari, 1987). However, at times, 
this method may cause overcompensation because the worst case does 
not occur always. To avoid overcompensation, Scokaert et al. (1998) 
proposed a min-max feedback MPC control method for a linear system. 
Although this method leads to a better performance than min-max MPC, 
it is computationally more intense.
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In this paper, we propose a new MPC method called adaptive min-
max MPC (AMM-MPC) which can deal with inherent slip through 
adaptation. The proposed MPC is called adaptive min-max MPC (AMM-
MPC). This controller can deal with inherent slip through adaptation. 
In AMM-MPC, first a cost function is defined and then, the min-max 
technique is applied based on the bounds of the disturbances. The control 
law is adapted based on the curvature of the reference path and path 
offset feedback as the adaptive part. First, the derivation and stability 
of AMM-MPC are presented. Then, the performance of the proposed 
MPC is compared with the classical MPC in kinematic simulations and 
dynamic simulations. The dynamic simulation platform is developed to 
create a more realistic environment incorporating slip phenomena. Then, 
AMM-MPC and classical MPC are implemented on a tractor in the field, 
and results are compared and discussed. To compare the performance of 
the proposed controller with other types of controllers, the experiments 
were extended to include comparison of AMM-MPC with a SMC, which 
is presented under the title “Robust Adaptive Controller Design” (Fang, 
2004), and a BSC (Huynh et al., 2012).

The breakdown of sections in this paper are as follows. In Section 2, 
kinematic modeling and system description are presented. In Section 3, 
AMM-MPC’s derivation and stability analysis are provided. Evaluation 
of AMM-MPC in kinematic simulations, in dynamic simulations and field 
experiments are presented and discussed in Section 4. Then, the proposed 
AMM-MPC is compared with SMC and BSC in field experiments and the 
results are discussed in Section 5. Finally, the paper is concluded in Section 6.

2. SyStem deScrIptIon and modelIng

In this section, the kinematic model of a farm vehicle incorporating lateral 
and longitudinal wheel slips is described and an offset model is derived.

2.1 System Description

The field vehicle model is simplified into a bicycle model where two steered 
wheels are represented by a single steered wheel along the longitudinal 
axis of the field vehicle. The field vehicle is driven by rear wheels with a 
longitudinal speed v and steered at the front wheel with a steering angle δ. 
The vehicle kinematic model is shown in Fig. 1 and related variables and 
parameters are shown in Table 1.
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Fig. 1. Vehicle kinematic model and the reference path.
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Table 1. Description of variables and points.

Variables Description
 cd curvature of the reference path at P
 xt x coordinate of point O’ in the global coordinate frame 

yt y coordinate of point O’ in the global coordinate frame
	 θt orientation of the vehicle in the global coordinate frame

v driving velocity vector at point B in the global coordinate 
frame, v = ||v||

 vf front wheel velocity vector, vf = ||vf||
	 θd desired heading as per the reference path orientation
	 δ front wheel steering angle
 los path offset
	 θos heading offset
 vsr lateral slip velocity vector at B, vsr =||vsr||
 vlr longitudinal slip velocity vector at B, vlr = ||vlr||
	 βf front wheel slip angle
 lt vehicle wheelbase
Points Description

 A center of the front axle
 B center of the rear axle
 O origin of global coordinate frame
 O′ origin of local coordinate frame (coincides with B)
 P point of intersection of normal from B to the reference path
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2.2 Kinematic Model

The field vehicle’s states are defined by a vector pt = [xt, yt, θt]
T. The 

kinematic equations for the field vehicle in the presence of wheel slips are 
derived using the kinematic model (Huynh et al., 2010),

 ẋt = (v − vlr) cos θt − vsr sin θt ,

 ẏt = (v − vlr) sin θt + vsr cos θt , (1)

	 θ̇t = 
v − vlr 

lt

 tan(δ + βf) + 
vsr—
lt  

. 

2.3 Offset Model

The offset model is derived from the kinematic model in (1). Offset model 
consists of two states based on the position of the field vehicle with respect 
to the reference path, namely, the path offset los and the heading offset 
θos. The path offset los is defined as the distance O'P in Fig. 1 while θos is 
defined as the angle θos = θd − θt. Both los and θos are measurable based on 
the location of the vehicle obtained by RTK-GPS. The offset model is,

 l̇ os = −σ|v − vlr|sin θos − σζ	vsr cos θos,

	 θ̇os = 
v − vlr 

lt

 tan(δ + βf) + 
vsr—
lt

  – (2)

	 σ|v − vlr|
cd cos θos 

1 + cdlos

  + σζ vsr 
cd sin θos 

1 + cdlos

, 

where σ is a direction coefficient. If σ is +1, the vehicle tracks the reference 
path in a clockwise direction. If σ is –1, the vehicle tracks the reference 
path in a counterclockwise direction. Another coefficient added to the 
model is ζ which is +1 when the vehicle moves forward and –1 when the 
vehicle moves backward. In this paper, the field vehicle is assumed to 
move forward only, and therefore ζ is always +1.

3. control deSIgn

In this section, AAM-MPC is derived and the stability analysis is presented.
As mentioned before, classical MPC is a successful control method 

when the model is accurate, however, in farming environments wheel 
slips are significant resulting in unsatisfactory performance of the path 
tracking controller. To manage significant disturbances in the field, an 
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adaptive and robust AMM-MPC is derived, which is inspired by min-max 
MPC (Löfberg, 2003).

3.1 Feedback Linearization

The control design is based on the offset model in (2), and the objective of 
the control is to make the field vehicle follow the reference path accurately. 
Nevertheless, the offset model is highly nonlinear and directly using it 
in control design would be tedious. To simplify its use in control design, 
feedback linearization is carried out to convert the highly nonlinear system 
to a linear system (Khalil, 2002).

Assumption 3.1 We assume v > 0 and v > |vlr|, so we have

	 σ|v − vlr| = −σ(v − vlr). (3)

Assumption 3.1 is valid because we expect the tractor moves forward 
despite slipping.

Assumption 3.2 It is feasible to linearize tan(δ + βf) so that we have,

 tan(δ + βf) ≈ tan δ + tan βf . (4)

Assumption 3.2 is valid because the slip angle βf is generally small in 
practical situations, usually between 0º and 5º (Huynh et al., 2012; Fang 
et al., 2006). With Assumptions 3.1 and 3.2, we simplify (2), and we use 
d1 and d2 to represent the overall disturbances. Then the model can be 
rewritten as,

 l̇os = −σv sin θos + d1,

	 θ̇os = v–
lt

 tan δ − σv 
cd cos θos 

1 + cdlos

 + d2, (5)

where

 d1 = σvlr sin θos − σvsr cos θos,

 d2 = − 
vlr—
lt

   tan δ + 
v − vlr 

lt

 tan βf +  
vsr—
lt

  + σvlr 
cd cos θos 

1 + cdlos

 + σvsr 

cd sin θos 

1 + cdlos

. (6)

For canceling the nonlinearity in (5), we define two new state variables 
z1, z2 and one new control input uk, as;

 z1 = los,

 z2 = –σv sin θos,  (7)
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 uk = –σv cos θos(v–lt

 tan δ – σv 
cd cos θos 

1 + cdlos

).

Then the offset model becomes:

 z
.
1 =  z2 + ω1,

 ż2 = uk + ω2, (8)

where

	 ω1 = d1,

	 ω2 = −σv cos θosd2. (9)

Now, we define two vectors zk = [z1 z2]
T and ωk = [ω1 ω2]

T so that a linear 
model is obtained as,

 żk = Aczk + Bcuk + Dcωk, 

 yk = Cczk. (10)

where

 Ac = [ 0   1 

0   0 ] ,

 Bc = [ 0    
1 ] ,

 Cc = [ α sign(los)   γ sign(θos) ] ,

 Dc = [ 1    
1 ] .

We use yk in (10) to represent path tracking errors as the outputs, so 
the objective is to make yk as close as possible to zero, where yk depends 
on the values of α and γ which are gains on los and θos, respectively. For 
instance, if α = 1 and γ = 0, yk contains only los contribution, so the controller 
solely sends los to zero. Note that, sign() in Cc gurantees the combination 
between los and θos not to be diminished when their signs are opposite.

3.2 Augmented Model

The use of augmented models is to model uncertainties as disturbances 
acting on the system. The model in (10) is a continuous-time model and 
needs to be discretized as,
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 zk+1 = Adzk + Bduk + Ddωk, 

 yk = Cdzk, (11)

where Ad, Bd, Cd and Dd are discrete values for Ac, Bc, Cc and Dc.
We convert the linear state-space model in (11) to an augmented model 

with an embedded integrator (Wang, 2009). We define

∆zk = zk − zk−1,

 ∆uk = uk − uk−1, (12)

∆ωk = ωk − ωk−1

and we obtain the augmented model as,

[∆zk+1 

yk+1
] = [   Ad oT

d 

CdAd 1 ][∆zk

yk
] +[ Bd 

CdBd
] ∆uk + [ Dd

CdDd
] ∆ωk,

 yk = [ od    1 ][ ∆zk 

yk
] (13)

where od = [0 0]. To simplify, we define xk = [∆zT
k yk]

T and rewrite (13) as,

 xk+1 = Axk + B∆uk + D∆ωk,

 yk = Cxk, (14)

where,

 A = [   Ad oT
d 

CdAd 1 ],
 B = [ Bd    

CdBd
] ,

 C = [od   1] ,

 D = [ Dd    

CdDd
] .

In (14), xk ∈ R3×1, yk ∈ R1×1, ∆uk ∈ R1×1, ∆ωk ∈ R2×1 denote the state, 
the controlled output, the augmented control input and the external 
disturbances, respectively.

The stability of the augmented system can be seen by the eigen values 
of the characteristic equation of matrix A as,
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 det(λI – A) = det [ λI – Ad         o
T
d    

–CdAd       λ – 1]  (15)

 = (λ – 1) det(λI – Ad),

where I is an identity matrix. We can see that one obvious eigen value of A 
is 1 and other eigen values are decided by eigen values of matrix Ad. Note 
that the eigen value of 1 is the result of the integrator introduced to form 
the augmented model.

3.3 Adaptive Min-max Model Predictive Control Law

The novel contribution of this paper is the adaptive min-max MPC. The 
goal of this section is to derive the adaptive min-max MPC controller 
that explicitly considers the external disturbances based on (Wang et al., 
2016). The “max” in min-max refers to worst-case scenarios. However, 
it can cause overcompensation. The adaptation introduced will avoid 
the overcompensation and will make it perform as close as possible to 
the classical nominal MPC formulation and at the same time tackle the 
disturbances.

The basic idea of predictive control is to calculate the future outputs 
together with the future control inputs by using the current states that 
are measurable. Objective function is minimized to obtain the optimal 
control trajectory, however, as, per MPC method, only the first control 
input is applied to the physical system. To begin with, we assume that at 
the sampling time k, k ≥ 0, the current state is xk|k, which is the same as xk. 
Using xk|k, the future states are predicted for Np sample times which the 
prediction horizon. The state xk+n|k denotes the predicted state at k + n, 
predicted using xk|k at sampling instant k. The number of control inputs to 
obtain the future outputs are Nc which is the control horizon. Note that,  
Np ≥ Nc, preferably, Np > Nc.

To obtain a simple notation, we introduce vectors to denote future 
states X, future outputs Y, future control inputs ∆U and unknown 
disturbances ∆W as,

 X = (xk+1|k xk+2|k xk+3|k · · · xk+Np|k)
T

 Y = (yk+1|k yk+2|k yk+3|k · · · yk+Np|k)
T

 ∆U = (∆uk|k ∆uk+1|k ∆uk+2|k · · · ∆uk+Nc−1|k)
T

 ∆W = (∆ωk|k ∆ωk+1|k ∆ωk+3|k · · · ∆ωk+Np−1|k)
T.

Then we can obtain,

 Y = Fxk|k + Φ∆U + Λ∆W, (16)
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where

 F = [ CA
CA2

CA3

...
CANp

] ,

 Φ = [   CB 0 0 … 0
 CAB CB 0 … 0
 CA2B CAB CB … 0
    M M M O M

CANp–1B CANp–2B CANp–3B … CANp–NcB
] ,

 Λ = [  CD 0 0 … 0
CAD CD 0 … 0
CA2D CAD CD … 0
   M M M O M

CANp–1D CANp–2D CANp–3D … CD
] .

The objective of model predictive control is to find the optimal ∆U 
such that the predicted output Y is as close as possible to the reference Rs. 
This process is implemented by minimizing a cost function J defined as,

 J = (Rs − Y)T (Rs − Y) + ∆UT R– ∆U. (17)

Then achieve,
min
∆U

  J subject to

 ∆U ∈ ∆U*, (18)

where ∆U* is constraint set matrix, Y ∈ RNp×1 and ∆U ∈ RNc×1. For path 
tracking, Rs is always set to 0, as offsets are driven to zero. Moreover, 
the diagonal matrix R– is defined as R– = rwINc×Nc where rw ≥ 0 is a tuning 
parameter for penalizing the control input.

Next step is the management of the disturbances in the cost function, 
which is handled by a min-max method (Löfberg, 2003). Disturbances in 
the model (2) are all physical variables, thus they can be considered to 
have bounded values. Therefore we define,

sup||vlr|| ≤ v*lr , 

sup||vsr|| ≤ v*sr, 

sup||βf|| ≤ β*f ,
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where v*lr, v*sr and β*f are the bounds of the uncertainties, which are in fact 
the bounds of slip values. Now, substituting these bounds in (6) and (9), 
we obtain,

sup||ω1|| ≤ ω*1,

sup||ω2|| ≤ ω*2,

ωk ∈ ω*k ,

∆ωk ∈ ∆ω*k ,

∆W ∈ ∆W*,

where ω*k and ∆ω*k are bounded vectors of disturbances, and ∆W* is normally 
taken as a constant matrix that corresponds to the worst case scenario.

The idea of min-max is to take the worst-case scenario into 
consideration, which is implemented by computing the cost function J 
using the bounds of external disturbances and then minimizing the cost 
function to obtain the optimal control input. Hence, the cost function J can 
be represented as,

min
∆U

  max
∆W

   YT Y + ∆UT R– ∆U subject to

 ∆U ∈ ∆U*, (19)

 ∆W ∈ ∆W*. 

However, this will cause overcompensation in most cases as the worst 
case cannot occur all the time. Therefore, it is very important to consider 
the field conditions to determine ∆W*. For example, vsr is a significant 
factor that makes the field vehicle deviate from the reference path, and it 
is generally larger during travel through high curvature segments of the 
path. However, it is insignificant during travel along straight segments. 
Thus, we can relate ∆W* to (i) the curvature of the reference path to 
provide robustness and (ii) the amount of errors in offset values to provide 
adaptation. Hence, we define,

 ∆W* = 

{

[11… 1]T

Np
 (kpcd + kq + ktlos), (20)

where kp is a value based on the worst case scenario when the curvature 
is not zero. The parameter kq is a small positive constant at the worst case 
scenario representing zero curvature. The worst case scenario is decided 
by the bounds of vlr, vsr and βf. The parameter kt brings adaptive behavior, 
which is based on the amount of the path offset. The path offset is selected 
to contribute in the adaptive part of the controller due to the importance of 
the path offset in comparison to the heading offset in path tracking control.



AMM-MPC for Field Vehicle Guidance in the Presence of Wheel Slip 169

Through minimization of J, the control trajectory vector ∆U is 
obtained, however, only the first control increment ∆uk|k is applied as per 
MPC method, while other control inputs are ignored. Therefore,

∆uk  = {
[1 0 … 0]T

Nc
 ∆U

 = – K1xk – K2, (21)

where K1 = {

[10 … 0]T

Nc
 (ΦT Φ + R–)−1(ΦTF) and K2 = 

{
[10 … 0]T

Nc

 (ΦT Φ + 

R–)−1(ΦT Λ ∆W). 
Finally, from (7) and (12), the steering angle δ, which is the actual 

control input is calculated as,

 uk = ∆uk + uk−1,

	 δ	= arctan{(
lt

v − vlr
)(uk + σ|v|

cd cos θos

1 + cdlos

)}. (22)

3.4 Stability Analysis

The stability is proven using Lyapunov criterion based on the approach in 
Wang et al. (2009, 2016).

Theorem 3.3 Given that the cost function J is minimized subjected to ∆U ∈ ∆U* 
and the constraint on the final output yk+Np = 0 resulting from the control inputs 
∆uk, ...∆uk+Np−1, the closed loop MPC system is asymptotically stable.

Proof: From Subsection 3.3, we know that AMM-MPC is realized by 
receding optimization. The future control trajectory ∆uk, ...∆uk+Np−1 at time 
k is optimized by minimizing the cost function Jk, represented as,

 Jk = ∑
i=1

Np 

yT
k+i yk+i + ∑

i=0

Np–1

∆uT
k+irw∆uk+i, (23)

where Jk is subjected to constraints and rw ≥ 0 is a gain.
Now, we assume the Lyapunov function V (xk) is equal to the minimum 

of the cost function Jk with the optimal control trajectory ∆uk, ..., ∆uk+Np−1 
and corresponding outputs yk+1, ..., yk+Np

, represented as,

 V(xk) = min Jk

  = ∑
i=1

Np 

yT
k+i yk+i + ∑

i=0

Np–1

∆uT
k+irw∆uk+i . (24)
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The Lyapunov function V(xk) at sampling instant k is positive definite 
and V(xk) is infinite if xk is infinite. Similar to V(xk), the Lyapunov function 
V(xk+1) at time k + 1 is the minimum of the cost function Jk+1 with the optimal 
control trajectory ∆uk+1, ..., ∆uk+Np

 and corresponding outputs yk+2, ..., yk+Np+1, 
represented as,

 V(xk+1) =  = ∑
i=1

Np 

yT
k+1+i yk+1+i + ∑

i=0

Np–1

∆uT
k+1+irw∆uk+1+i. (25)

Now a function V
–
 will be introduced to relate V(xk) to V(xk+1). The 

optimal control trajectory of V(xk) is shifted one step forward and its last 
control input ∆uk+NP

 is set to zero. The function V
–
 is formed by evaluating 

V (xk+1) at the above mentioned time shifted control trajectory, which is a 
non-optimal control trajectory. For any non-optimal control trajectory the 
objective function has to be greater or equal to V (xk+1). Therefore,

 V(xk+1) ≤ V
–
 . (26)

Based on (14), V
–
 has the same control trajectory as V(xk) at sampling 

times k + 1, k + 2, ... , k + Np−1, thus,

 V(xk+1) − V(xk) ≤ V
–
 − V (xk), (27)

then,

 V
–
 − V(xk) = yT

k+Np
yk+Np  – yT

k+1yk+1 − ∆uT
k rw∆uk. (28)

Given that as per Theorem 3.3, yk+Np = 0,

 V
–
 − V(xk) = −yT

k+1yk+1 − ∆uT
krw ∆uk. (29)

Therefore, the derivative of the Lyapunov function is,

 V(xk+1) − V(xk) � −yT
k+1yk+1 − ∆uT

krw ∆uk < 0. (30)

This proves the asymptotic stability of the closed-loop system.

4. evaluatIon and comparISon of claSSIcal mpc  
and amm-mpc

4.1 Kinematic Simulation

In this section, the proposed AMM-MPC is used to control the kinematic 
model of the tractor to follow a predefined path and the performance is 
compared with the classical MPC (Wang, 2009).

A simulation platform has been developed to compare AMM-MPC 
with classical MPC. The kinematic model incorporates slip velocities in 
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lateral and longitudinal directions. In the kinematic platform, the lateral 
slip velocity vsr is considered to be 30 percent less than the field vehicle 
velocity and is generated by random numbers related to the curvature of the 
reference path as per vsr = −10 cd cos	δ − 0.3 v δ (5 Rand() − 5), where Rand() 
is a uniform random number generator, generating numbers between 0 
and 1. The longitudinal velocity vlr is considered less than 30 percentage of 
the field vehicle velocity and calculated as per vlr = 0.3 v (Rand() − 0.5) + sin 
δ. The steering slip angle βf is defined as random number within the range 
−5º to 5º, and calculated using βf = 10 (Rand() − 0.5).

For the controller, the matrix Cm is chosen as [1.5 0.75], that indicates 
the path offset is more important than the heading offset in the path 
tracking. Finally, we have a mechanical constraint for steering angle 
δ, which is defined as −45º ≤ δ ≤ 45º. Parameters for the tractor and the 
controller are listed in Table 2.

The reference path used in the simulation is shown in Fig. 2. The 
vehicle starts at the point marked by a star and runs in the clockwise 
direction. This path has straight and curved segments, and the curved 
segments have different curvatures.

The proposed controller, AMM-MPC, and the classical MPC are used 
to control the vehicle represented by a kinematic model. Path offsets and 
heading offsets are recorded for comparison.

In Fig. 3, the path offset obtained from AMM-MPC and classical MPC 
are plotted. As shown, at the corners the amount of path offset increased 
in classical MPC in contrast to AMM-MPC, which showed more consistent 
performance throughout the path. In Fig. 4, heading offsets for AMM-
MPC and MPC are shown. As can be seen, the performance of AMM-MPC 
is better than classical MPC.

To provide a better quantitative comparison, box plots are shown for 
the absolute value of path offsets and heading offsets in Figs. 5 and 6,  
respectively. The red points indicate the outliers and the red lines in the 
middle are the medians, which is better when it is closer to zero. The 
upper and lower quartiles are shown as blue lines. The better performance 
of AMM-MPC can be seen in the box plots.

Table 2. Parameters for simulation and experiment.

Parameters Value

 lt 1.7 m
 v 3 m/s
 rw 0.1
 Np 5
 Nc 2
	 α 1.5
	 γ 0.75
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Fig. 2. The reference path used in the evaluation of AMM-MPC and comparison with 
classical MPC.

Fig. 3. Path offset for AMM-MPC and classical MPC in kinematic simulation.
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4.2 Dynamic Simulation

Slip is a result of forces due to wheel-ground interaction. To investigate 
the performance of the controllers in the presence of slip forces, a more 
realistic simulation environment was created including the dynamic 
model of a tractor incorporating a wheel model generating the slip forces.

Fig. 4. Heading offset for AMM-MPC and classical MPC in kinematic simulation.

Fig. 5. Box plot for path offsets for AMM-MPC and classical MPC in kinematic simulation.
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Simulation is handled in C++ using the dynamic models of a tractor 
(Siew et al., 2009) and are solved using an explicit Runge-Kutta method 
(Trimbitas and Trimbitas, 2007) with a 8.33 µs time step. To model terrain 
uncertainty, a parametric noise map is introduced into the wheel-ground 
system in the form of simplex noise. Under each wheel, the contact surface 
is determined by evaluating the noise function across a small region of 
the contact patch, which is used to determine contact and slip forces in 
the wheel model based on the surface’s up-vector direction. These noise 
characteristics are configurable in the simulation platform, in such a 
manner that slips and disturbances fall within a specified bounded range.

The reference path for the dynamic simulation is the same as the 
kinematic simulation, which is shown in Fig. 2. The path offset and the 
heading offset obtained from the dynamic simulation are plotted for 
AMM-MPC and classical MPC in Figs. 7 and 8, respectively. Similar to the 
kinematic simulation results, accuracy in the path following for AMM-
MPC is significantly better at the corners in comparison to the classical 
MPC. Along the straight segments of the path, the improvements shown 
by the AMM-MPC are minor in comparison to the classical MPC.

Box plots are shown in Figs. 9 and 10 for the absolute value of 
path offsets and the heading offsets, respectively. The plots confirm the 
significant improvements brought about by the proposed AMM-MPC.

4.3 Field Experiment

The controllers were implemented on the autonomous tractor shown 
in Fig. 11. The tractor is a John Deere 4210 Compact Utility Tractor and 

Fig. 6. Box plot heading offset for AMM-MPC and classical MPC in kinematic simulation.
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was made an autonomous vehicle at the University of New South Wales, 
Australia. More details about software and hardware can be found in 
Matveev et al. (2013); Eaton et al. (2008) and Taghia et al. (2015).

The same reference path shown in Fig. 2 is used for this field 
experiment. The path offset and heading offset values obtained from the 
field experiment are plotted in Figs. 12 and 13 respectively. As before, the 
performance of AMM-MPC is superior when compared with classical 

Fig. 7. Path offset for AMM-MPC and classical MPC in dynamic simulation.

Fig. 8. Heading offset for AMM-MPC and classical MPC in dynamic simulation.
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MPC, especially at the segments with higher curvature. This conclusion is 
supported by the box plots in Figs. 14 and 15.

As it is noticeable in Figs. 3, 7 and 12, AMM-MPC performed more 
accurately and robustly in both curved and straight segments of the path. 
In addition, AMM-MPC dealt with slip adaptively, without requiring slip 
estimation, which is the main advantage of the proposed method.

Fig. 9. Box plot path offset for AMM-MPC and classical MPC in dynamic simulation.

Fig. 10. Box plot heading offset for AMM-MPC and classical MPC based on dynamic 
simulation.
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5. comparISon of amm-mpc wIth Smc and BSc

Based on the results obtained from the kinematic simulation, the dynamic 
simulation and the field experiment in Section 4, it can be concluded that our 
approach in dealing with slip as uncertainty in AMM-MPC is successful. 
The robust and adaptive behavior of AMM-MPC has improved over that of 

Fig. 11. John Deere 4210 Compact Utility Tractor used in field experiments.

Fig. 12. Path offset for AMM-MPC and classical MPC in field experiments.
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the classical MPC significantly. Note that, there is no measurement of slip 
directly or indirectly, which makes the proposed controller a general and 
reliable path tracking method. To verify further, the proposed AMM-MPC 
is compared with a successful SMC implementation, which is presented 
under the title “Robust Adaptive Controller Design” (Fang, 2004), and a 
BSC reported in literature that showed good performance (Huynh et al., 
2012).

In this field experiment, as the reference path, long farm path was 
selected. The path is shown in Fig. 16.

Fig. 13. Heading offset for AMM-MPC and classical MPC in field experiments.

Fig. 14. Box plot path offset for AMM-MPC and classical MPC in field experiments.
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Fig. 15. Box plot heading offset for AMM-MPC and classical MPC in field experiments.

Fig. 16. Reference path used in field experiments for comparison of AMM-MPC with SMC 
and BSC.
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The path offset values and heading offset values obtained from this 
experiment were recorded and are shown in Figs. 17 and 18 respectively. 
As we can see, the results show better performance with the proposed 
controller. Once again, improvement is more noticeable at the curved 
segments as shown, i.e., during 180 to 240 seconds.

For a more compact quantitative comparison, box plots and tables are 
presented showing absolute values, root mean square (RMS) values and 

Fig. 17. Path offset in field experiments for comparison of AMM-MPC with SMC and BSC.

Fig. 18. Heading offset in field experiments for comparison of AMM-MPC with SMC and 
BSC.
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standard deviation (SD) values for the three controllers. RMS value for 
path offset for AMM-MPC is about 12 cm that is significantly better than 
the respective values of BSC and SMC which are 26 cm and 30 cm. For 
the heading offset the difference is not significant. However, the heading 
accuracy is also better in AMM-MPC with RMS value of 10.44º and SD of 
10.1º compared to those of SMC and BSC, shown in Tables 3 and 4.

Fig. 20. Box plot of heading offset in field experiments for comparison of AMM-MPC with 
SMC and BSC.

Fig. 19. Box plot of path offset in field experiments for comparison of AMM-MPC with SMC 
and BSC.
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6. concluSIonS

This paper proposed a very novel and promising adaptive min-max 
model predictive controller for path tracking control of farm vehicles in 
the presence of slip. The proposed controller’s derivation and stability 
proof were presented. The performance of the proposed controller was 
evaluated with extensive simulation incorporating kinematic simulation, 
dynamic simulation and real field experiments in which the performance 
of the AMM-MPC was compared with classical MPC’s performance. 
The proposed controller was also compared with two successful 
implementations of other forms of robust nonlinear controllers, namely, a 
sliding mode controller and a back stepping controller in field experiments 
on a typical farm. The results obtained show significant improvements in 
the accuracy in path offsets and heading offsets, especially at the segments 
with higher curvatures, where slip is greater. AMM-MPC not only 
provided robustness but also dealt with wheel slip adaptively without 
requiring slip measurement or estimation, which is the major contribution 
of the proposed controller.
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Uncertain Dynamical Systems with 
Unmatched Disturbances

A Command Governor-Based Approach#

Ehsan Arabi, Tansel Yucelen* and Benjamin C. Gruenwald

1. IntroductIon

Numerous agriculture applications involving robotic and mechatronic 
systems require precise feedback control laws to accomplish given tasks 
with high accuracy. For example, tasks such as autonomous seeding, 
harvesting, and/or row cropping, unmanned ground vehicles have to 
precisely run parallel in the presence of disturbances and uncertainties 
resulting from variations in unknown ground frictions and potential 
unpredictable damages to the vehicle dynamics (Lenain et al., 2003; 
Cariou et al., 2009). Unmanned aerial vehicles, that have recently come 
in use for agriculture applications to maximize yields and minimize 
potential crop damages (Saari et al., 2011; Primicerio et al., 2012; Mäkynen 
et al., 2012; Tokekar et al., 2016), too need precision. It is often hard to 
autonomously operate these vehicles, especially the fixed-wing ones, in 

Laboratory for Autonomy, Control, Information, and Systems Department of Mechanical 
Engineering, University of South Florida, USA.

* Corresponding author: Engineering Building C 2209, 4202 East Fowler Avenue, Tampa,
Florida 33620, United States of America. Email: yucelen@lacis.team

# This research was supported by the National Aeronautics and Space Administration under 
Grant NNX15AM51A.

mailto:yucelen@lacis.team


186 Robotics and Mechatronics for Agriculture

challenging weather conditions in a precise close proximity to the ground 
(e.g., for farm imaging and monitoring) due to the increased uncertain 
lift forces and decreased uncertain aerodynamic drags (McRuer et al., 
2014; Stengel, 2015). Thus, one of the fundamental problems arising in 
control technologies for autonomous agriculture vehicle applications is to 
achieve a level of desired, precise closed-loop system performance in the 
presence of a broad class of disturbances and uncertainties. To this end, 
model reference adaptive control architectures provide promising system 
stability and desired performance when the nature of the disturbances 
and uncertainties are matched in the system dynamics.

Yet, in many agriculture applications like the above ones when 
the matching assumption does not hold, the design of model reference 
adaptive control laws becomes a challenge. Notable model reference 
adaptive control contributions addressing this challenge include (Cao 
and Hovakimyan, 2008; Xargay et al., 2010; Li and Hovakimyan, 2012; 
Leman et al., 2010; Che and Cao, 2012; Stepanyan and Krishnakumar, 
2015; Boskovic and Han, 2009; Stepanyan and Krishnakumar, 2012; Kristic 
et al., 1995; Heise and Holzapfel, 2015; Fravolini and Campa, 2011). In 
particular, the authors of (Cao and Hovakimyan, 2008; Xargay et al., 2010; 
Li and Hovakimyan, 2012; Leman et al., 2010; Che and Cao, 2012) use 
an adaptive control law based on a low-pass filter in the control channel 
and an estimation scheme. In the context of fault-tolerant adaptive flight 
control, the authors of (Stepanyan and Krishnakumar, 2015; Boskovic and 
Han, 2009; Stepanyan and Krishnakumar, 2012; Kristic et al., 1995) use 
certainty equivalence adaptive control as an indirect adaptive control 
design method for systems with unmatched uncertainties. The authors 
of (Heise and Holzapfel, 2015; Fravolini and Campa, 2011) proposed a 
model reference adaptive controller and obtained necessary conditions 
for achieving optimized performance with a uniform ultimate bounded 
solution using linear matrix inequalities (LMIs). The authors of (Yayla 
and Turker Kutay, 2016) proposed an indirect adaptive approach based 
on online identifications of matched and unmatched uncertainties, where 
the system performance may not be acceptable with this approach due to 
a modification to the reference model trajectories.

This chapter focuses on model reference adaptive control of dynamical 
systems with matched system uncertainties but unmatched disturbances. 
Departing from the above results, we propose a new, two-level design 
framework based on a command governor architecture to suppress the 
effect of matched uncertainties and unmatched disturbances and achieve 
a close tracking of the output of the reference system. Specifically, we first 
design an auxiliary state dynamics that allows not only the estimation 
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of the matched uncertainties but also the estimation of the unmatched 
disturbances. Then, we propose a command governor architecture 
through a backstepping procedure to modify the command signal of 
the desired reference system such that the system output error signal 
can be made arbitrarily small by tuning the constant design parameters. 
Two numerical examples are provided to demonstrate the efficacy of the 
proposed command governor-based adaptive control architecture.

The organization of this chapter is as follows. In Section 2, we present 
necessary mathematical preliminaries. We state the problem formulation 
in Section 3 and introduce an auxiliary state dynamics design in Section 
4. Section 5 presents a new command governor-based adaptive control 
architecture and two numerical examples are provided in Section 6 to 
demonstrate the efficacy of the proposed approach. Finally, we present 
conclusions in Section 7.

2. MatheMatIcal PrelIMInarIes

We first introduce the standard notation used in this chapter. R denotes 
the set of real numbers, Rn denotes the set of n×1 real column vectors, Rn×m 
denotes the set of n×m real matrices, R+ (R–+) denotes the set of positive 
(non-negative-definite) real numbers, Dn×n denotes the set of n × n real 
matrices with diagonal scalar entries, 0n×n denotes the n × n zero matrix, 
and “@” denotes equality by definition. In addition, we write (·)T for the 
transpose operator, (·)−1 for the inverse operator, tr(·) for the trace operator, 
||·||2 for the Euclidean norm, and ||A||2 @ √λmax(A

T A) for the induced 
2-norm of the matrix A ∈ Rn×m.

Let ψ : Rn → R be a continuously differentiable and convex function, and 

be given by ψ(θ) @ 

(εθ+1)θTθ−θ2
max 

εθθ
2
max

, where θmax ∈ R is a projection norm 

bound imposed on θ ∈ Rn and εθ > 0 is a projection tolerance bound. Then, 
the projection operator Proj : Rn × Rn → Rn is defined by:

 Proj(θ, y) @

y, if ψ(θ) < 0,

y, if ψ(θ) ≥ 0 and ψ'(θ) y ≤ 0,

y– 
ψ' T(θ) ψ'(θ)y 

ψ'(θ)ψ'T(θ)
 ψ(θ), if ψ(θ) ≥ 0 and ψ'(θ) y > 0,{  (1)

where y ∈ Rn. It then follows that,

 (θ − θ*)T [Proj(θ, y) − y] ≤ 0, θ* ∈ Rn, (2)
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holds (Pomet and Praly, 1992). The definition of the projection operator 
can be generalized to matrices as:

Projm(Θ, Y) = (Proj(col1(Θ), col1(Y)), . . . , Proj(colm (Θ), colm (Y))), (3)

where Θ ∈ Rn×m, Y ∈ Rn×m, and coli (·) denotes i th column operator. In this 
case, for a given Θ*∈ Rn×m, it follows from (2) that:

tr[(Θ − Θ*)T[Projm(Θ, Y) − Y ]] = ∑
m

i=1

 [coli(Θ − Θ*)T [Proj(coli(Θ), coli (Y)) − 

coli (Y)]] ≤ 0. (4)

Throughout this chapter, we assume without loss of generality that 
the projection norm bound imposed on each column of Θ ∈ Rn×m is θmax 
through the continuously differentiable and convex function ψ(θ) defined 
above.

3. Problem Formulation

We now introduce the problem considered throughout this chapter. For 
this purpose, consider the nonlinear uncertain dynamical system given 
by:

 ẋ(t) = Ax(t) + B (Λu(t) + δ(t, x(t))) + Dq(t),   x(0) = x0,   t ≥ 0, (5)

where x(t) ∈ Rn, t ≥ 0, is the measurable state vector, u(t) ∈ Rm, t ≥ 0, is the 
control input, A ∈ Rn×n is a known system matrix, B ∈ Rn×m is a known 
input matrix, δ : 

–
R+ × Rn → Rm is a system uncertainty, Λ ∈ R+

m×m ∩ Dm×m 

is an unknown control effectiveness matrix, D ∈ Rn×(n−m) is the unmatched 
disturbance input matrix such that DTB = 0 and rank([B, D]) = n (this 
condition can be satisfied even when D has columns less than (n−m) that 
is further discussed in Example 2 of Section 6), q(t) ∈ R(n−m) is a bounded 
unmatched disturbance vector (i.e., ||q(t)||2 ≤ q̄, t ≥ 0) with a bounded time 
rate of change (i.e.,||q

.(t)||2 ≤ q
.
¯, t  ≥ 0), and the pair (A, B) is controllable. 

We now introduce a standard assumption on system uncertainty 
parameterization (Narendra and Annaswamy, 2012; Ioannou and Sun, 
2012; Lavretsky and Wise, 2012).

Assumption 1. The system uncertainty given by (5) is parameterized as:

	 δ(t, x(t)) = WT
0(t)σ0(x(t)), (6)

where W0(t) ∈ Rs×m, t ≥ 0, is a bounded unknown weight matrix (i.e.,||W0(t)||2 
≤ w0, t ≥ 0) with a bounded time rate of change (i.e.,||Ẇ 0(t)||2 ≤ ẇ 0, t ≥ 0) 
and σ0 : Rn → Rs is a known basis function of the form σ0(x(t)) = [σ01(x(t)), 
σ02(x(t)), . . . , σ0s(x(t))]T.
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Now, we consider the ideal reference model dynamics which captures 
a desired closed-loop dynamical system performance and is given by:

 ẋr(t) = Arxr(t) + Brcd(t),   xr(0) = xr0,   t ≥ 0, (7)

where xr(t ) ∈ Rn, t ≥ 0, is the reference state vector, cd(t) ∈ Rnc is the desired 
uniformly continuous bounded command, Ar ∈ Rn×n is the Hurwitz 
reference model matrix, and Br ∈ Rn×nc is the command input matrix.

In this chapter, our goal is to drive a selected subset of system states 
given by:

 y(t) = Cx(t),   t ≥ 0, (8)

to a close neighborhood of the selected subset of the reference system 
states given by:

 yr(t) = Cxr(t),   t ≥ 0. (9)

For this purpose, the control design is presented in two sections. In 
Section 4, an auxiliary state is introduced to allow not only the estimation 
of the matched uncertainties but also the estimation of the unmatched 
disturbances and in Section 5 we present a command governor-based 
approach for achieving close tracking of selected system error states.

4. auxiliary State DynamicS anD aDaPtive control lawS

For the nonlinear uncertain dynamical system introduced in the previous 
section, we now introduce an auxiliary state dynamics in order to analyze 
the effect of the unmatched system disturbances on the system. To this 
end, using Assumption 1, one can rewrite (5) as:

 ẋ(t) = Ax(t) + B (Λu(t) + W T
0(t)σ0(x(t))) + Dq(t),   x(0) = x0,   t ≥ 0. (10)

Consider now, by adding and subtracting the terms BK1x(t), t ≥ 0 and 
BK2c(t), t ≥ 0, the following equivalent form of (10):

 ẋ(t) = Arx(t) + Brc(t) + BΛ(u(t) + WT(t)σ(x(t), c(t)) + Dq(t),   x(0) = x0,   t ≥ 0,  
(11) 

where Ar @ A−BK1, Br @ BK2, K1 ∈ Rm×n is a feedback gain matrix, K2 ∈ 
Rm×nc is a feedforward gain matrix, W (t) @ [Λ−1 WT

0(t), Λ
−1 K1, –Λ−1 K2]

T ∈ 
R(s+n+nc)×m, t ≥ 0, is an unknown aggregated weight matrix, and σ(x(t), c(t)) 
@ [σT

0(x(t)), xT(t), cT(t)]T ∈ Rs+n+nc, t ≥ 0, is a known aggregated basis function. 
Note that ||W(t)||2 ≤ w, t ≥ 0, and ||Ẇ (t)||2 ≤ ẇ, t ≥ 0, automatically holds as 
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a direct consequence of Assumption 1. In addition, we consider c(t) ∈ Rnc 
to be the actual applied command signal given by:

 c(t) @ cd(t) + cg(t),   t ≥ 0, (12)

with cg(t) ∈ Rnc, t ≥ 0, being a modification term to the ideal command cd(t), 
t ≥ 0. This modification term will be designed in Section 5.

We now define the auxiliary state dynamics as:

 ẋa(t) = Arxa(t) + Brc(t) + Dq̂(t),   xa(0) = xa0,   t ≥ 0, (13)

 ya(t) = Cxa(t),   t ≥ 0, (14)

where xa(t) ∈ Rn, t ≥ 0, is the auxiliary state, ya(t) ∈ Rny, t ≥ 0, is the auxiliary 
output signal, and q̂(t) ∈ R(n−m), t ≥ 0, is the estimation of the unmatched 
disturbance q(t), t ≥ 0, satisfying the update law:

 q̂̇(t) = γq Proj(q̂(t), DTPea(t)),    q̂(0) = q̂0,    t ≥ 0, (15)

with q̂max being the projection norm bound, and ea(t) @ x(t) − xa(t), t ≥ 0, 
being the auxiliary error. Considering (11), let the adaptive control law be 
given by:

 u(t) = −Ŵ T(t)σ(x(t), c(t)),   t ≥ 0, (16)

where Ŵ (t) ∈ R(s+n+nc)×m, t ≥ 0, is the estimate of W(t), t ≥ 0, satisfying the 
update law:

 W
˙̂
 (t) = γW Projm(Ŵ (t), σ(x(t), c(t))ea

T(t)PB),   Ŵ (0) = Ŵ 0,   t ≥ 0, (17)

with Ŵ max being the projection norm bound. In (15) and (17), γW, γq ∈ R+ and 
are the learning rates (adaptation gains), and P ∈ R+

n×n is a solution of the 
Lyapunov equation given by:

 0 = AT
rP + PAr + R, (18)

with R ∈ R+
n×n.

Using (11), (13), and (16), the auxiliary error dynamics can be written 
as:

 ėa(t) = Area(t) − B ΛW̃ T(t)σ(x(t), c(t)) − Dq̃(t),    ea(0) = ea0,    t ≥ 0, (19)

where W̃ (t) @ Ŵ (t) − W(t) ∈ R(s+n+nc)×m, t ≥ 0, is the weight estimation error, 
and q̃(t) @ q̂(t) − q(t) ∈ R(n−m), t ≥ 0, is the unmatched disturbance estimation 
error. Furthermore, using (15) and (17), one can write the unmatched 
disturbance estimation error and the weight estimation error dynamics as:
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 q̃̇(t) = γq Proj(q̂(t), DTPea(t)) − q̇(t),   q̃(0) = q̃0,   t ≥ 0, (20)

 W̃̇ (t) = γW Projm(Ŵ (t), σ(x(t), c(t))eT
a(t)PB) − Ẇ (t),   W̃ (0) = W̃ 0,   t ≥ 0. (21)

Theorem 1. Consider the uncertain dynamical system given by (5) subject 
to Assumption 1, the auxiliary state dynamics given by (13) and (14) along 
with the update law (15), and the feedback control law given by (16) along 
with the update law (17), then the closed-loop dynamical system given by 
(19), (20), and (21) are uniformly bounded.

Proof. To show boundedness of the closed-loop dynamical system given 
by (19), (20), and (21), consider the Lyapunov function candidate V : Rn × 
R(s+n+nc)×m × R(n−m) → 

–R+ given by:

 V(ea, W̃ , q̃) = eT
aPea + γW

−1tr-[(W̃ Λ1/2)T(W̃ Λ1/2)] + γq
−1q̃Tq̃. (22)

where P ∈ R+
n×n is a solution of the Lyapunov equation in (18) with R ∈ R+

n×n. 
Note that V(0, 0, 0) = 0, V(ea, W̃ , q̃) > 0 for all (e, W̃ , q̃) ≠ (0, 0, 0). The time 
derivative of (22) along the closed-loop system trajectories (19), (20), and 
(21) is given by:

V̇ (ea(t), W̃ (t), q̃(t)) = 2eT
a(t)PArea(t) − 2eT

a(t)PB ΛW̃ T(t)σ(x(t), c(t)) − 2eT
a(t)PD q̃(t)

  +2trW̃ T(t)Projm(Ŵ (t), σ(x(t), c(t))eT
a(t)PB) − 2γ−1

WtrW̃ T(t)Ẇ (t)Λ

  +2q̃T(t)Proj(q̂(t), DTPea(t)) − 2γq
−1q̃T(t)q̇(t)

 = −eT
a(t)Rea(t) − 2γ−1

W trW̃ T(t)Ẇ (t)Λ − 2γq
−1q̃T(t)q̇(t)

  +2trW̃ T(t)(Projm(Ŵ (t), σ(x(t), c(t))eT
a(t)PB)

  −σ(x(t), c(t))eT
a(t)PB)Λ + 2q̃T(t)(Proj(q̂(t), DTPea(t)B) − DTPea(t))

  ≤ −λmin(R)||ea(t)||
2
2 + 2γW

–1 w̃ ẇ ||Λ||2 + 2γq
–1 q̃0 q̄̇, (23)

where w̃  = Ŵ max + w, q̃0 = q̂max + q̄. Hence, V̇(e(t), W̃ (t), q̃(t)) < 0, t ≥ 0, outside 
of the compact set:

 Ω @ {(ea(t), W̃ (t), q̃(t)) :||ea(t)||2 ≤ η,  ||W̃ (t)||2 ≤ w̃,  and||q̃(t)||2 ≤ q̃0}, (24)

where η @ 
2γW

–1 w̃ ẇ ||Λ||2 + 2γq
–1 q̃0 q̄̇

λmin(R)√ . From (24), one can conclude 

uniform boundedness of the solution (ea(t), W̃ (t), q̃(t)) of the system 
dynamics given by (19), (20), and (21) for all (ea0, W̃ 0, q̃0) ∈ Rn × R(s+n+nc)×m × 
R(n−m).

Remark 1. Note that one cannot conclude boundedness of the auxiliary 
state, xa(t), t ≥ 0, using the analysis in this section. Theorem 1 only guarantees 
that the auxiliary error signal ea(t), t ≥ 0, is ultimately bounded. However, 
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it is possible that the auxiliary state signal xa(t), t ≥ 0, and the system state 
signal x(t), t ≥ 0, both grow to infinity such that their difference remains 
bounded. For the case where no modification is applied to the desired 
command signal (i.e., cg(t) ≡ 0, t ≥ 0), and also there are no unmatched 
disturbances in the system, the auxiliary state dynamics become:

 ẋa(t) = Arxa(t) + Brcd(t),   xa(0) = xa0,   t ≥ 0, (25)

 ya(t) = Cxa(t),   t ≥ 0. (26)

The auxiliary state dynamics given by (25) and (26) exactly capture 
the ideal reference system behavior given by (7) and (9). In this special 
case, the auxiliary state signal xa(t), t ≥ 0, is bounded, therefore the system 
state signal x(t), t ≥ 0, will be ultimately bounded as well. For the case 
where the unmatched disturbances are present, the next section applies 
a command governor signal to the desired command signal (i.e., cg(t ) ≢ 
0, t ≥ 0) such that a selected subset of the auxiliary state signal ya(t), t ≥ 0, 
can be kept within a close and adjustable neighborhood of the reference 
system output yr(t), t ≥ 0, which makes the proposed control architecture 
go beyond the results presented in (Yayla and Turker Kutay, 2016).

5. DeSign oF the commanD governor

In this section, we introduce and analyze a novel command governor-based 
adaptive control architecture to suppress the effect of matched system 
uncertainties and unmatched system disturbances. For this purpose, let 
er(t) @ xa(t)−xr(t), t ≥ 0, be the error signal between the auxiliary state and 
the ideal reference state, and let the modification term of the command 
signal be given by:

 cg(t) @ K2
−1ξ(t),   t ≥ 0, (27)

where ξ(t) ∈ Rm, t ≥ 0, is the command governor signal to be designed. One 
can write the system error dynamics between the auxiliary dynamics and 
the ideal reference system as:

 ėr(t) = Arer(t) + Bξ(t) + Dq̂(t),   er(0) = xa0 − xr0,   t ≥ 0, (28)

 ey(t) = Cer(t),   t ≥ 0, (29)

where ey(t) @ ya(t) − yr(t), t ≥ 0.
In what follows, we systematically show that one can employ the 

backstepping control methodology to design the command governor 
signal ξ(t), t ≥ 0, in (28) to guarantee the boundedness of the error signal 
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er(t), t ≥ 0. In addition, the norm of the output error signal ey(t), t ≥ 0, can be 
made arbitrarily small as desired. For this purpose, we consider (28) and 
(29) in the control canonical form with:

 Ar = [  0 1 0 … 0
 0 0 1 … 0
 M M M O M

 0 0 0 … 1
–k1 –k2 –k3 … –kn

],   ki∈ R,	 (30)

 B = [ 0(ρ–1)×m

B
– ],   B– = [ bρ1 … bρm

 M O M

bn1 … bnm

]   ∈ R(n–ρ+1)×m,   bi ∈ R, (31)

 C = [1 0 … 0 ],

 D = [ D
– 

0(n–ρ+1)×(n–m)
],   D– = [   d11 … d1(n–m)

  M O M

d(ρ–1)1 … d(ρ–1)(n–m)
] ∈ R(ρ–1)×(n–m),   di ∈ R. (33)

Now, let q̂f(t) ∈ R(n−m), t ≥ 0, be a low-pass filter estimate of q̂(t), t ≥ 0, 
given by:

 q̂̇f(t) = Γf[q̂(t) − q̂f(t)],   q̂f(0) = q̂f0,   t ≥ 0, (34)

where Γf ∈ ID(n−m)×(n−m) is a positive-definite filter gain matrix. Note that 
since q̂f(t), t ≥ 0, is a low-pass filter estimate of q̂(t), t ≥ 0, the filter gain 
matrix Γf is chosen such that λmax(Γf) ≤ γf,max, with γf,max > 0 being a design 
parameter.

Remark 2. Note that since q̂(t), t ≥ 0, is a bounded signal and the filter gain 
matrix Γf is positive-definite, it follows from (34) that q̂f(t), t ≥ 0 and q̂̇f(t), t 
≥ 0 are bounded.

Next, in order to obtain a recursive procedure using a backstepping 
control design, as standard, we start with the second-order system given 
by:

 ėr1(t) = er2(t) + d1q̂1(t),   er1(0) = er10,   t ≥ 0, (35)

 ėr2(t) = −k1er1(t) − k2er2(t) + b1ξ(t),   er2(0) = er20,   t ≥ 0, (36)

 ey(t) = er1(t),   t ≥ 0. (37)

Letting ε1(t) @ Γ0er1(t) + er2(t) + d1q̂1f(t), t ≥ 0, we design the command 
governor signal as:
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ξ(t) @ −b1
−1 [(Γ1 + Γ0  − k2)ε1(t)–(Γ2

0 − k2Γ0 + k1)er1(t) + Γ0d1(q̂1(t) − q̂1f(t))

 + k2d1q̂1f(t) + d1q̂
.
1f(t)] ,   t ≥ 0, (38)

where Γ0, Γ1 ∈ R are design parameters. Using the new state variable ε1(t), 
t ≥ 0, and the command governor signal given by (38), the system error 
dynamics in (35), (36), and (37) can be rewritten as:

 ėr1(t) = −Γ0er1(t) + ε1(t) + d1(q̂1(t) − q̂1f(t)), er1(0) = er10
,   t ≥ 0, (39)

	 ε̇1(t) = −Γ1ε1(t),   ε1(0) = ε10,   t ≥ 0, (40)

 ey(t) = er1(t),  t ≥ 0, (41)

which can be written in compact form as:

	 ζ̇(t) = A1ζ(t) + B1q̃1(t),   ζ(0) = ζ0,   t ≥ 0, (42)

 ey(t) = C1ζ(t),   t ≥ 0, (43)

with,

 A1 = [ –Γ0 1
 0 –Γ1

],   B1 = [ 1
0],   C1 = [ 1   0] , (44)

where ζ(t) = [er1(t), ε1(t)]
T, t ≥ 0, is the aggregated system state, and q̃1(t) @ 

d1(q̂1(t) − q̂1f(t)), t ≥ 0, is a bounded signal as noted in Remark 2. Therefore, 
it follows from (Haddad and Chellaboina, 2008) that er1(t), t ≥ 0, and ε1(t), t 
≥ 0, are bounded, and hence, the error signal er(t), t ≥ 0, is bounded which 
results in the boundedness of the auxiliary state xa(t ), t ≥ 0.

From a practical point of view, we are interested in analyzing how 
small is the output error signal in (43). Therefore, we write the L1-system 
norm of (42) and (43) by the equi-induced signal norm (Yucelen and 
Haddad, 2012; Chellaboina et al., 2000) as:

 |||G |||(∞,2),(∞,2) @ supq̃1∈L∞

|||ey|||∞,2 

|||q̃1|||∞,2

, (45)

which has an upper bound given by:

 |||G |||(∞,2),(∞,2) ≤ 
1 

√α
σ1/2

max(C1QαC1
T), (46)

where α > 0 is selected such that A1 + α–
2

I is Hurwitz, and Qα ∈ R2×2 is the 
unique, non-negative definite solution to the Lyapunov equation

 0 = A1Qα + Qα A
T
1 + αQα + B1B

T
1. (47)
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Remark 3. For the purpose of understanding the ability of the design 
parameters Γ0 and Γ1 in (42) and (43) to suppress the effect of q̃1(t), t ≥ 0, we 
consider q̃1(t), t ≥ 0, to be a unit step input. As depicted in Fig. 1, ey (t), t ≥ 0, 
decreases as Γ @ Γ0 = Γ1 increases from 1 to 10. Furthermore, the upper bound 
of the L1-system norm of (42) and (43) is shown in Fig. 2, where the L1-system 
norm can be made arbitrarily small by increasing the design parameter Γ.

The same procedure can be recursively employed due to the nature of 
the backstepping approach to obtain the command governor signal ξ(t),  
t ≥ 0, for the high-order dynamical systems to guarantee the boundedness 
of the auxiliary state signal xa(t), t ≥ 0 and to make the output of the 
auxiliary dynamics arbitrarily close to the output of the reference system 
by tuning the design parameters. To elucidate this point, consider the 
third order system given by:

 ėr1(t) = er2(t) + d11q̂1(t) + d12q̂2(t), er1(0) = er10,   t ≥ 0, (48)

 ėr2(t) = er3(t) + d21q̂1(t) + d22q̂2(t), er2(0) = er20,   t ≥ 0, (49)

 ėr3(t) = −k1er1(t) − k2er2(t) − k3er3(t) + b1ξ(t),   er3(0) = er30,   t ≥ 0, (50)

 ey(t) = er1(t),   t ≥ 0. (51)

Fig. 1. System response of (42) and (43) to step input of q̃1(t), t ≥ 0.

Remark 3. For the purpose of understanding the selection of the design parameters Γ0 and

Γ1 in (42) and (43) for suppressing the effect of q̃1(t ), t ≥ 0, let q̃1(t ), t ≥ 0, be a unit step input

as an example. As depicted in Figure 1, ey (t ), t ≥ 0, decreases as Γ� Γ0 = Γ1 increases from 1 to

10. Furthermore, the upper bound of the L1-system norm of (42) and (43) is shown in Figure 2,

where the L1-system norm can be made arbitrarily small by increasing the design parameter Γ.

0 1 2 3 4 5 6 7 8 9 10
t(sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
y
(t
)

Γ

Figure 1: System response of (42) and (43) to step input of q̃1(t ), t ≥ 0.

The same procedure can be recursively employed due to the nature of the backstepping ap-

proach to obtain the command governor signal ξ(t ), t ≥ 0, for the high-order dynamical systems

to guarantee the boundedness of the auxiliary state signal xa(t ), t ≥ 0 and to make the output

of the auxiliary dynamics arbitrarily close to the output of the reference system by tuning the

design parameters. To elucidate this point, consider the third order system given by

ėr1(t ) = er2(t )+d11q̂1(t )+d12q̂2(t ), er1(0) = er10 , t ≥ 0, (48)

ėr2(t ) = er3(t )+d21q̂1(t )+d22q̂2(t ), er2(0) = er20 , t ≥ 0, (49)

ėr3(t ) = −k1er1(t )−k2er2(t )−k3er3(t )+b1ξ(t ), er3(0) = er30 , t ≥ 0, (50)

ey (t ) = er1(t ), t ≥ 0. (51)

10
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Now, we let,

	 ε1(t ) @ Γ0er1(t) + er2(t) + d11q̂1f(t) + d12q̂2f(t),   t ≥ 0, (52)

ε2(t) @ (Γ1 + Γ0)ε1(t) − Γ0
2er1(t) + er3(t) + d21q̂1f(t) + d22q̂2f(t) 

 + d11q̂̇1f(t ) + d12q̂̇2f(t),   t ≥ 0, (53)

and we design the command governor signal as:

ξ(t) @ −b1
−1 [(Γ2 + Γ1 + Γ0 − k3)ε2(t) − (Γ1

2 + Γ1Γ0 + Γ2
0 − k3(Γ1 + Γ0) − k2)ε1(t) + (Γ3

0 − k3Γ
2
0

 +k2Γ0 − k1)er1(t) + Γ1Γ0(d11(q̂1(t) − q̂1f(t)) + d12(q̂2(t) − q̂2f(t))) + (Γ1 + Γ0)

 ·(d21(q̂1(t) − q̂1f(t)) + d22(q̂2(t) − q̂2f(t))) + k2(d11q̂1f(t) + d12q̂2f(t)) + k3(d21q̂1f(t)

 +d22q̂2f(t)) + (d11k3 + d21)q̂̇1f(t) + (d12k3 + d22)q̂̇2f(t) + d11q̂̈1f(t) + d12q̂̈2f(t)] ,   t ≥ 0, 
(54)

where Γ0, Γ1, Γ2 ∈ R are design parameters. Using the new state variables 
ε1(t), t ≥ 0, ε2(t), t ≥ 0, and the command governor signal given by (54), the 
system error dynamics in (48), (49), (50), and (51) can be rewritten as:

Fig. 2. The upper bound on the L1-system norm of (42) and (43) given in (46).
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Figure 2: The upper bound on the L1-system norm of (42) and (43) given in (46).

Now, we let

ε1(t ) � Γ0er1(t )+er2(t )+d11q̂1f(t )+d12q̂2f(t ), t ≥ 0, (52)

ε2(t ) � (Γ1 +Γ0)ε1(t )−Γ2
0er1(t )+er3(t )+d21q̂1f(t )+d22q̂2f(t )

+d11
˙̂q1f(t )+d12

˙̂q2f(t ), t ≥ 0, (53)

and we design the command governor signal as

ξ(t ) � −b−1
1

[
(
Γ2 +Γ1 +Γ0 −k3

)
ε2(t )− (

Γ2
1 +Γ1Γ0 +Γ2

0 −k3(Γ1 +Γ0)−k2
)
ε1(t )+ (

Γ3
0 −k3Γ

2
0

+k2Γ0 −k1
)
er1(t )+Γ1Γ0

(
d11

(
q̂1(t )− q̂1f(t )

)+d12
(
q̂2(t )− q̂2f(t )

))+ (Γ1 +Γ0)

·(d21
(
q̂1(t )− q̂1f(t )

)+d22
(
q̂2(t )− q̂2f(t )

))+k2
(
d11q̂1f(t )+d12q̂2f(t )

)+k3
(
d21q̂1f(t )

+d22q̂2f(t )
)+ (d11k3 +d21) ˙̂q1f(t )+ (d12k3 +d22) ˙̂q2f(t )+d11

¨̂q1f(t )+d12
¨̂q2f(t )

]
, t ≥ 0,

(54)

where Γ0,Γ1,Γ2 ∈R are design parameters. Using the new state variables ε1(t ), t ≥ 0, ε2(t ), t ≥ 0,

and the command governor signal given by (54), the system error dynamics in (48), (49), (50),

and (51) can be rewritten as

11
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ėr1(t) = −Γ0er1(t) + ε1(t) + d11(q̂1(t) − q̂1f(t)) + d12(q̂2(t) − q̂2f(t)),   er1(0) = er10,   t ≥ 0,
(55)

ε̇1(t) = −Γ1ε1(t) + ε2(t) + Γ0[d11(q̂1(t) − q̂1f(t)) + d12(q̂2(t) − q̂2f(t))] + d21(q̂1(t) − q̂1f(t))

 +d22(q̂2(t) − q̂2f(t)),   ε1(0) = ε10,   t ≥ 0, (56)

ε̇2(t) = −Γ2ε2(t),   ε2(0) = ε20,   t ≥ 0, (57)

ey(t) = er1(t),   t ≥ 0, (58)

which can be written in compact form as:

	 ζ̇ (t) = A2ζ(t) + B2q̃2(t),   ζ(0) = ζ0,   t ≥ 0, (59)

 ey(t) = C2ζ(t),   t ≥ 0, (60)

with,

 A2 = [ –Γ0 1 0
 0 –Γ1 1
 0 0     –Γ2

],   B2 = [ 1 0
Γ0 1
0 0

],   C2 = [ 1   0   0 ] , (61)

where ζ(t) = [er1(t), ε1(t), ε2(t)]
T, t ≥ 0 is the aggregated system state, and,

 q̃2(t) = [ d11(q̂1(t) − q̂1f(t)) + d12(q̂2(t) − q̂2f(t))
d21(q̂1(t) − q̂1f(t)) + d22(q̂2(t) − q̂2f(t)) ] ,   t ≥ 0, (62)

is a bounded signal as noted in Remark 2. Similar to the previous case, 
it follows from (Haddad and Chellaboina, 2008) that er1(t), t ≥ 0, ε1(t),  
t ≥ 0, and ε2(t), t ≥ 0, are bounded, and hence, the error signal er(t), t ≥ 0, 
is bounded which results in the boundedness of the state auxiliary state 
xa(t), t ≥ 0.

Similar to (45), one can write L1-system norm of (59) and (60) as:

 |||G |||(∞,2),(∞,2) @ supq̃2∈L∞

|||ey|||∞,2 

|||q̃2|||∞,2

 (63)

where it follows from (Yucelen and Haddad, 2012; Chellaboina et al., 2000) 
that:

 |||G |||(∞,2),(∞,2) ≤ 
1 

√α
σ1/2

max(C2QαC2
T), (64)

where α > 0 is selected such that A2 + α–2I is Hurwitz, and Qα ∈ R3×3 is the 
unique, non-negative definite solution to the Lyapunov equation:

 0 = A2Qα + Qα A
T
2 + αQα + B2B

T
2. (65)
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Remark 4. As depicted in Fig. 3, ey(t), t ≥ 0, decreases as Γ @ Γ0 = Γ1 = Γ2 
increases from 1 to 10, similar to the case in Remark 3. The upper bound 
of the L1-system norm of (59) and (60) is shown in Fig. 4, where one can 
decrease the L1-system norm by increasing the design parameter Γ.

Repeating the recursive procedure outlined above in this section 
(n−1)-times, the command governor signal ξ(t), t ≥ 0, can be obtained for 
the general error dynamical systems given in (28) and (29) to guarantee 
the boundedness of the auxiliary state signal xa(t), t ≥ 0 and to tighten 
the upper bound on the output error signal in (29) by tuning the design 
parameters Γ0, Γ1,... Γn−1.

Remark 5. It is worth noting that the selection of the canonical structure of 
the reference system in (30) to (33) is without loss of generality. Specifically, 
for different structures for the reference system, one can perform a 
similar recursive backstepping approach in order to design the command 
governor signal ξ(t), t ≥ 0.

Fig. 3. System response of (59) and (60) to step input of the first (top) and the second (bottom) 
components of q̃2(t), t ≥ 0, in (62).

Remark 4. As depicted in Figure 3, ey (t ), t ≥ 0, decreases as Γ� Γ0 = Γ1 = Γ2 increases from

1 to 10, similar to the case in Remark 3. Furthermore, the upper bound of the L1-system norm

of (59) and (60) is shown in Figure 4, where one can decrease the L1-system norm by increasing

the design parameter Γ.

Repeating the recursive procedure outlined above in this section (n−1)-times, the command

governor signal ξ(t ), t ≥ 0, can be obtained for the general error dynamical systems given in (28)

and (29) to guarantee the boundedness of the auxiliary state signal xa(t ), t ≥ 0 and to tighten the

upper bound on the output error signal in (29) by tuning the design parameters Γ0,Γ1, . . .Γn−1.

Remark 5. It is worth noting that the selection of the canonical structure of the reference

system in (30) to (33) is without loss of generality. Specifically, for different structures for the

reference system, one can perform a similar recursive backstepping approach in order to design

the the command governor signal ξ(t ), t ≥ 0.

6. Illustrative Numerical Example

In this section, we present two numerical examples to demonstrate the efficacy of the pro-

posed command governor-based adaptive control architecture.
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Figure 3: System response of (59) and (60) to step input of the first (top) and the second (bot-
tom) components of q̃2(t ), t ≥ 0, in (62).
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6. illuStrative numerical examPle

In this section, we present two numerical examples to demonstrate the 
efficacy of the proposed command governor-based adaptive control 
architecture.

Example 1. Consider the uncertain dynamical system given by:

 ẋ(t) =[ 0   1 

2   4 ]  x(t) +[ 0    
1 ]  (Λu(t) + δ(t, x(t))) +[ 1    

0 ]  q(t),   x(0) = 0,   t ≥ 0, (66)

where x(t) = [x1(t) x2(t)]
T is the system state, δ(t, x(t)) represents an 

uncertainty of the form given in (6) with:

 W0(t) = [sin(0.25t), −1, 1]T,   t ≥ 0,   σ0(x(t)) = [x1(t), x2(t), x1(t)x2(t)]
T,   t ≥ 0, 

(67)

Fig. 4. The upper bound on the L1-system norm of (59) and (60) given in (64).
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Figure 4: The upper bound on the L1-system norm of (59) and (60) given in (64).

Example 1. Consider the uncertain dynamical system given by

ẋ(t ) =
[

0 1
2 4

]
x(t )+

[
0

1

](
Λu(t )+δ(t , x(t ))

)
+

[
1

0

]
q(t ), x(0) = 0, t ≥ 0, (66)

where x(t ) = [
x1(t ) x2(t )

]T is the system state, δ(t , x(t )) represents an uncertainty of the form

given in (6) with

W0(t ) = [
sin(0.25t ), −1, 1

]T , t ≥ 0, σ0(x(t )) = [
x1(t ), x2(t ), x1(t )x2(t )

]T , t ≥ 0, (67)

q(t ) = 0.5sin(0.2t ), t ≥ 0, represents the unmatched disturbance, and Λ = 0.75 represents an

uncertain control effectiveness matrix. Linear quadratic regulator theory is used to design the

nominal feedback gain matrix as

K1 = [5.7, 9.7], (68)

and we pick K2 = 3.7.

For the adaptive controller in Section 4, we set the projection norm bound imposed on each

element of the parameter estimate to Ŵmax = 30 and q̂max = 5 and the learning rates to γq = 5

and γW = 30 and we use R = I to calculate P from (18) for the resulting Ar matrix. Figure 5

shows the closed-loop dynamical system performance with the standard adaptive controller in

Section 4. One can see from this figure that the standard adaptive controller cannot compensate

14
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q(t) = 0.5 sin(0.2t), t ≥ 0, represents the unmatched disturbance, and Λ = 
0.75 represents an uncertain control effectiveness matrix. Linear quadratic 
regulator theory is used to design the nominal feedback gain matrix as:

 K1 = [5.7, 9.7], (68)

and we pick K2 = 3.7.
For the adaptive controller in Section 4, we set the projection norm 

bound imposed on each element of the parameter estimate to Ŵ max = 30 
and q̂max = 5 and the learning rates to γq = 5 and γW = 30 and we use R = I  
to calculate P from (18) for the resulting Ar matrix. Fig. 5 shows the closed-
loop dynamical system performance with the standard adaptive controller 
in Section 4. One can see from this figure that the standard adaptive 
controller cannot compensate the effects of the unmatched disturbance 
and the system’s trajectories do not converge to the reference system 
trajectory.

Next, we apply the proposed command governor-based adaptive 
control architecture. For this purpose, we use Γ0 = Γ1 = 10 and set the filter 
gain in (34) to Γf = 0.5. It can be seen in Fig. 6 that desired performance 
is obtained and the first component of the state vector converges to a 
close vicinity of the reference state. Fig. 7 clearly shows the role of the 

Fig. 5. Command following performance with the standard adaptive controller.
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Figure 5: Command following performance with the standard adaptive controller.

the effects of the unmatched disturbance and the systems trajectories do not converge to the

reference system trajectory.

Next, we apply the proposed command governor-based adaptive control architecture, we use

Γ0 = Γ1 = 10 and set the filter gain in (34) to Γ f = 0.5. It can be seen in Figure 6 that desired

performance is obtained and the first component of the state vector converges to a close vicinity

of the reference state. Figure 7 clearly shows the role of the command governor signal to modify

the command signal such that the first component of the error signal er1(t ), t ≥ 0, gets arbitrarily

close to zero by tuning the design gains Γ0 and Γ1 as one can see in Figure 8. The evolution of

the unmatched disturbance estimation is depicted in Figure 9. Finally, the effect of the design

parameter Γ= Γ0 = Γ1 can be seen in Figures 10 and 11 where it is clear that a larger value of Γ,

leads to a better tracking performance of output signal of the reference system. �

Example 2. For this second example, we consider a third-order uncertain dynamical system

given by

ẋ(t ) =

⎡
⎢⎣

0 1 0
0 0 1
2 3 1

⎤
⎥⎦x(t )+

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦

�
Λu(t )+δ(t , x(t ))

�
+

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦q0(t ), x(0) = 0, t ≥ 0, (69)

where x(t ) = �
x1(t ) x2(t ) x3(t )

�T is the system state, δ(t , x(t )) represents an uncertainty of the
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command governor signal to modify the command signal such that 
the first component of the error signal er1(t), t ≥ 0, gets arbitrarily close 
to zero by tuning the design gains Γ0 and Γ1 as one can see in Fig. 8. 
The evolution of the unmatched disturbance estimation is depicted in  
Fig. 9. Finally, the effect of the design parameter Γ = Γ0 = Γ1 can be seen in 
Figs. 10 and 11 where it is clear that a larger value of Γ, leads to a better 
tracking performance of output signal of the reference system. 

Example 2. For this second example, we consider a third-order uncertain 
dynamical system given by:

 ẋ(t) = [ 0 1 0
0 0 1
2 3 1

] x(t) + [ 0
0
1

] (Λu(t) + δ(t, x(t))) + [ 1
0
0

]q0(t),   x(0) = 0,   t ≥ 0, 
(69)

where x(t) = [x1(t) x2(t) x3(t)]
T is the system state, δ(t, x(t)) represents an 

uncertainty of the form given in (6) with,

 W0(t) = [sin(0.25t), −0.25, 0.5, 0.5]T, t ≥ 0, (70)

 σ0(x(t)) = [x1(t), x2(t), x1(t)x2(t), x3(t)]
T, t ≥ 0, (71)

Fig. 6. Command following performance with the proposed command governor-based 
adaptive controller.
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adaptive controller.
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Fig. 7. Applied command signal c(t), t ≥ 0, and the command governor signal ξ(t), t ≥ 0.
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Fig. 10. The effect of increasing the design parameter Γ = Γ0 = Γ1 from 0.05 to 10 (light gray 
to black) on the system performance.

Fig. 9. The evolution of the unknown unmatched disturbance estimation.
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q0(t) = 0.5 sin(0.1t), t ≥ 0, represents the unmatched disturbance, and Λ = 
0.75 represents an uncertain control effectiveness matrix. Linear quadratic 
regulator theory is used to design the nominal feedback gain matrix as:

K1 = [5.7, 9.9, 6.1], (72)

and we pick K2 = 3.7. Now, in order to satisfy the condition rank([B, D]) = 
3, we rewrite (69) equivalently as:

ẋ(t) = [ 0 1 0
0 0 1
2 3 1

] x(t) + [ 0
0
1

] (Λu(t) + δ(t, x(t))) + [ 1 0
0 1
0 0

][q0(t) 

0 ] ,   x(0) = 0,   t ≥ 0.  
(73)

For the adaptive controller in Section 4, we set the projection norm 
bound imposed on each element of the parameter estimate to Ŵ max = 30 
and q̂max = 5 and the learning rates to γq = 2 and γW = 10 and we use R = I to
calculate P from (18) for the resulting Ar matrix. Figs. 12 and 13 show the 
closed-loop dynamical system performance with the standard adaptive 
controller in Section 4. One can see from this figure that the standard 
adaptive controller cannot compensate the effects of the unmatched 

Fig. 11. The effect of increasing the design parameter Γ = Γ0 = Γ1 from 0.05 to 10 (light gray to 
black) on the modified command signal using the command governor signal.
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Fig. 13. Control effort using standard adaptive controller.

Figure 12: Command following performance with the standard adaptive controller.
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disturbance and the systems trajectories do not converge to the reference 
system trajectory.

Next, we apply the proposed command governor-based adaptive 
control architecture, with Γ0 = Γ1 = Γ2 = 10 and the filter gain in (34) set to  
Γf = 0.5. It can be seen in Fig. 14 that desired performance is obtained and 
the first component of the state vector converges to a close vicinity of the 
reference state. Fig. 15 clearly shows the role of the command governor 
signal to modify the command signal such that the first component of 
the error signal er1(t), t ≥ 0, gets arbitrarily close to zero by tuning the 
design gains Γ0, Γ1 and Γ2 as one can see in Fig. 16. The evolution of the 
unmatched disturbance estimation is depicted in Fig. 17. Finally, the effect 
of the design parameter Γ = Γ0 = Γ1 = Γ2 can be seen in Figs. 18 and 19, 
which makes it clear that a larger value of Γ, leads to a better tracking 
performance of output signal of the reference system.

Fig. 14. Command following performance with the proposed command governor-based 
adaptive controller.

Figure 14: Command following performance with the proposed command governor-based
adaptive controller.
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Fig. 15. The control effort u(t), t ≥ 0, the applied command signal c(t), t ≥ 0, and the command 
governor signal ξ(t), t ≥ 0.

Figure 14: Command following performance with the proposed command governor-based
adaptive controller.
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Figure 16: The evolution of the error signal between the auxiliary and the reference system
er (t ), t ≥ 0.
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Fig. 18. The effect of increasing the design parameter Γ = Γ0 = Γ1 = Γ2 from 0.05 to 10 (light 
gray to black) on the system performance.

Fig. 17. The evolution of the unknown unmatched disturbance estimation.
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7. conclusIon

A challenge in the design of model reference adaptive control architecture 
is to cope with the effect of unmatched disturbances while dealing with 
matched uncertainties. To this end, we proposed a two-level design 
framework based on a command governor architecture to suppress the 
effect of matched uncertainties and unmatched disturbances and achieve 
a close tracking of the output of the reference system. In particular, an 
auxiliary state dynamics was first designed to allow for the estimation 
of both matched uncertainties and unmatched disturbances. We then 
proposed a command governor architecture through a backstepping 
procedure to modify the command signal of the desired reference system 
such that the system output error signal can be made arbitrarily small 
by tuning the constant design parameters. Two numerical examples 
demonstrated the efficacy of our two-level design framework.

Considering numerous agriculture applications when the nature of 
the environmental disturbances are unmatched, the proposed command 
governor-based model reference adaptive control framework of this paper 

Fig. 19. The effect of increasing the design parameter Γ = Γ0 = Γ1 = Γ2 from 0.05 to 10 (light 
gray to black) on the control effort and the modified command signal using the command 
governor signal.
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has a high potential to guarantee the completion of given tasks (e.g., 
autonomous seeding, harvesting, and/or row cropping via unmanned 
ground vehicles, or farm imaging and monitoring via unmanned aerial 
vehicles) with high accuracy. Future research will focus on applications 
of the proposed framework to real-world unmanned vehicles as well 
as on extensions to the dynamical systems with not only unmatched 
disturbances but also unmatched uncertainties.
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