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Preface

Robotics and mechatronics have been used in many arenas, one of which
is the agricultural industry. Using robotic based machines in agriculture
will become common in the future. Automatic machines will replace
human beings in agriculture and they can greatly help farmers to achieve
efficient farming. This book will focus on the robotics and mechatronics
that are used in agriculture. The aim of the book is to introduce the
state-of-the-art technologies in the field of robotics and mechatronics for
agriculture in order to further summarize and improve the methodologies
on the agricultural robotics. Advances made in the past decades have been
described in this book.

We would like to thank all the authors for their contributions to the
book. We are also grateful to the publisher for supporting this project and
Vijay Primlani for his assistance both with the publishing venture and
the editorial details. We hope the readers find this book informative and
useful.

This book consists of 8 chapters. Chapter 1 focuses on the function
and mechanism of aeration for process optimization. Chapter 2 discusses
key aspects of a design of a robotic platform for the management of
crops in agriculture. In particular, the system considered seeks to address
the increasing threat of weed species resistant to herbicide. Chapter
3 presents a case study of an automated “field scout” ground platform
equipped with the means for both sensing and manipulating its changing
environment for the purpose of providing actionable data (including
samples of physical field specimens) to a farmer. Chapter 4 presents a
critical and detailed review about the application of simple color cameras
to cover different aspects of agricultural industry. Chapter 5 presents
some existing robotic based farming machineries, and some main issues
in the robotic based farming are also illustrated. Chapter 6 reviews
collaborative multi-agent systems in agricultural applications involving
a RA to RA and RA to human agent (HA) collaboration. Common
systems’ control architecture and design, tools and middleware, planning
and decision execution, cooperation behaviour, and communication
systems are discussed with recently developed systems for agricultural
applications. Chapter 7 proposes an adaptive and robust model predictive
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controller to address the problem of wheel slip in field vehicles. Chapter
8 focuses on model reference adaptive control of dynamical systems with
matched system uncertainties but unmatched disturbances. The proposed
control framework has a high potential to guarantee the completion of
autonomous seeding, harvesting, and/or row cropping via unmanned
ground vehicles, or farm imaging and monitoring via unmanned aerial
vehicles with high accuracy.

Finally, the editors would like to acknowledge all the friends and
colleagues who have contributed to this book.

Toronto, Ontario, Canada Dan Zhang
February 2017 Bin Wei
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1

Process Optimization of Composting
Systems

Naoto Shimizu

1. INTRODUCTION TO PROCESS OPTIMIZATION OF
COMPOSTING SYSTEMS

Food supply is a primary issue for people around the world. Increasing
demand for food has been anticipated by the increased intake of meat, fat,
processed foods, sugar and salt nutrition transition. The livestock (cattle,
swine, chicken) sector is a substantial source of nutrients for human
consumption. In Japan, total production of animal waste in 2015 was 83
million tons. There is a need to develop management systems that use cattle
manure effectively and without causing adverse environmental effect.

Problems associated with waste from animal husbandry are, safety,
financial and environmental. Huge amounts of solid wastes from animal
husbandry result in odor problems that can lead to complaints from
neighbors and other people. Composting is a simple and energy efficient
way to solve this problem. The purposes of composting are:

* Elimination of pathogens and weeds
e Microbial stabilization

e Reduction of volume and moisture

e Removal and control of odors

* Ease of storage, transport and use

Field Science Center for Northern Biosphere, Research Faculty of Agriculture, Hokkaido
University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
Email: shimizu@bpe.agr.hokudai.ac.jp
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Many studies have addressed the basic requirements for composting
(Kimura and Shimizu, 1981a,b; Bach et al.,, 1987; Wu et al.,, 1990).
Composting system technology is required to support production in
agricultural ecosystems. However, the main problem is the practical
application of these technologies. We begin with an introduction to the
composting process (2) and sensor fro systems operation (3), then define
with function and mechanism of aeration (4), the results is indicated
the results of bin composting (5) and is discussed with the early stage
composting by packed bed-type reactor (6) and adiabatic-type reactor (7).
Because composting systems are not uniform in degradation and material
temperature, information on the degradation of materials within forced
aeration composting is very useful for practical operation.

2. THE COMPOSTING PROCESS

Composting is the aerobic (oxygen-requiring) decomposition of organic
materials by microorganisms under controlled conditions. During
composting, microorganisms consume oxygen (O,) while feeding on
organic matter. Active composting generates considerable heat, large
quantities of carbon dioxide (CO,) and release water vapor into the air. CO,
and water (vapor) losses can amount to half the weight of the initial waste
materials (Fig. 1). Thus, composting reduces both the volume and mass of
the raw materials while transforming them into valuable soil conditioner.
Factors affecting the composting process are oxygen, aeration, nutrients
(carbon:nitrogen (C:N) ratio), moisture content, porosity, structure,
texture, particle size, pH and temperature (Table 1).

Organic matters:

qout Glucose
Protein
Fat
System b d:
Cellulose ystem boundary
Hemicellulos
0,
Heat: ¢
qin Living cell as open system in micro phase

Heat balance in macro phase
Aq ZQin_qout+qgen

Fig. 1. Principles of the composting process.
The carbon, chemical energy, organic matter and water in finished compost is less than that
in the raw materials. The volume of the finished compost is 50% or less than that of the raw
material.
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Table 1. Recommended conditions for rapid composting.

Condition Reasonable range* Preferred range
Carbon to nitrogen (C:N) ratio 20:1-40:1 25:1-30:1

Moisture content 40-60%** 50-60%

Oxygen concentration Greater than 5% Much greater than 5%
Particle size (diameter in meters) 3.2 x 10°-1.3 x 10~ Varies**

pH 5.5-9.0 6.5-8.0

Temperature 43-66 54-60

* These recommendations are for rapid composting. Conditions outside these ranges can
also yield successful results.
** Depends on the specific materials, particle size, and/or weather conditions.

2.1 Temperature and the Physical Properties of Compost Material

Temperature increase within composting materialsisaresult of heatbalance
during composting (Kimura and Shimizu, 2002, Fig. 2a). Temperature is one
of the most important variables in the composting process (Schulze, 1962).
Composting at temperatures below 20°C has been demonstrated to
significantly slow and even stop the composting process. Therefore,
temperature can be an indicator of activity in the biological process
of composting. In the aerobic decomposition of biomass, the desired
products are water, CO, and heat byproducts of composting. Mesophilic
organisms which function best within the range of 24 to 40°C, initiate the
composting process (Fig. 2b). As microbial activity increases soon after
the formation of a composting pile, temperatures within piles of sufficient
volume and density also increase. Thermophilic microorganisms take

80 8
]
0 f 19
. material L
deCOmpOSlthl’l D— temperature O . g
0 50 5 ~
Ef &
w40 S
B E
3
= 20 2
heat > | heat
generation balance loss L Aeration rate: 1.50 L/min.kgdm L
[ ] 0 o— : . 0
0 ] 12 18 24 30 36 42 48
Time (h)
(@ b -
Schematic dla%ram of aerobic biodegradation Example of composting process using an adiabatic
(Kimura and Shimizu 2002) type reactor; mesophilic phase 10°C-40°C.

thermophilic phase > 40°C.

Fig. 2. Thermophilic composting process by aerobic degradation.
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over at temperatures above 40°C. The temperature in the compost matrix
typically increases rapidly to 54 to 65°C within 24 to 74 h in an adiabatic-
type reactor at the laboratory scale (Kimura and Shimizu, 1981a). In
thermophilic composting, any soluble sugars in the original mixture
are almost immediately used up by bacteria and other microorganisms.
Other components such as protein, fat, and cellulose get broken down
by heat-tolerant microbes. Nitrogen is readily available when it is in the
proteinaceous, peptide, or amino acid forms. Lignins (large polymers
that cement cellulose fibers together in wood) are among the slowest
compounds to decompose because of their complex structure that is
highly resistant to enzyme attack.

Porosity, structure and texture relate to the physical properties of a
material such as particle size, shape, and consistency, affect the composting
process by their influence on aeration. They can be modified by the
selection of raw materials and grinding or mixing. Materials added to
adjust these properties are referred to as amendments or bulking agents.
For composting applications, an acceptable porosity and structure can
be achieved in most of the raw materials, if the moisture content is less
than 65% (w/v). However, some situations profit from special attention to
porosity, structure, or texture. Composting piles are susceptible to settling,
so large particles are necessary. Materials with a strong odor might be
mixed with rigid materials to achieve greater than normal porosity in
order to promote good air movement.

3. SENSORS FOR SYSTEM OPERATION

In many composting systems, temperature directly activates the aeration
devices and is monitored and controlled by sensors for system operation
during the initial and final stage of composting (Fig. 3). Aeration is
activated or increased when the process temperature surpasses a
temperature set point. In other system operation, aeration is determined
by a time cycle that is adjusted either manually or automatically according
to process temperature. Even with direct temperature feedback control
systems, a timer is often required to activate aeration at regular intervals
to maintain aerobic conditions when temperature remains below the set
point, especially during the initial and final stages of composting (Finstein
et al., 1983). Aeration rates and intervals normally vary with the stage
of composting (Lenton and Stentiford, 1990). Composting systems can
include several temperature zones, each requiring slightly different air
flow rates and temperature set points.
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Heat o, co,
generation consumption generation
Galvanic cell
type sensor Infrared laser
High temp.# l sensor
Active reaction | Deteriorated l
Unsuitable Stable
long- time use

Fig. 3. Sensors for system operation.

4. FUNCTIONS AND MECHANISMS OF AERATION

The composting method determines how aeration occurs. Aeration is
a crucial and inherent component of composting; it provides the O,
needed for aerobic biochemical processes and removes heat, moisture,
CO, and other products of decomposition. In the entire composting
period, the amount of aeration required for cooling greatly exceeds
the amount required for removing moisture or supplying O,.
Thus, the need for aeration is more often determined by temperature
rather than by O, concentration.

Although there are many variations, aeration generally takes place
either passively or by forced air movement. Passive aeration, often called
natural aeration, takes place by diffusion and natural air movement.
Forced aeration use fans to move air through the mass of composting
materials. A third mode of aeration is being developed where nearly pure
CQ, is injected into a closed composting reactor (Rynk and Richard, 2001).

4.1 Passive Aeration

Composting systems that rely on passive aeration normally include
periodic agitation or “turning” of the materials. Although turning charges
materials with fresh air, however the air introduced is quickly consumed



6  Robotics and Mechatronics for Agriculture

by the composting process (Epstein, 1997; Haug, 1993). The longer lasting
effect of turning on aeration might be to rebuild pore spaces in the material,
which are crucial for diffusion and convection. However, there is evidence
that this effect can be short-lived as well (Michel et al., 1996).

4.2 Forced Aeration

Depending upon the composting systems, forced aeration can be continuous
and the rate of aeration can be increased or intermittently turned on and
off as needed. Continuous aeration can reduce the required air flow rate.
It also reduces the fluctuation in temperature and O, levels (Puyuelo
et al., 2010) that occur over time. However, continuous aeration can cause
gradients within the composting environment leading to excessive drying
and permanent cool zones in the area where the air enters (Citterio et al.,
1987). This might be a concern if “Process to Further Refuse Pathogens
(PFRP)” is required (U.S. EPA, 2016). A process to further reduce pathogens
(PFRP) is a treatment process that is able to consistently reduce sewage
sludge pathogens (i.e., enteric viruses, viable helminth ova, fecal coliforms,
and Salmonella spp.) to below detectable level at the time the treated sludge
is used or disposed (U.S. EPA, 2016). Forced aeration is typically controlled
based on the temperature within the composting materials. Composting
experiments under various aeration conditions were performed using an
adiabatic-type reactor (Kimura et al., 2007, Table 2).

Table 2. Experimental design setup.

' Aeration Length Lgﬁ’;; Total
No, ~Aeration  rate oy 0o on[min] off[min]  of  \O4Me
method [L/min [hr] aeration [L/kgD
kgDM] [hr] M]
1 0.5 48 1140
2 Continuous 1.5 - - - 48 4320
3 3 48 8640
4 80 40 32 960
5 05 60 60 24 720
6 ' 40 80 16 480
7 20 100 8 240
8 80 40 32 2880
9 Intermittent 15 ’ 60 60 24 2160
10 40 80 16 16
11 20 100 8 8
12 80 40 32 32
13 60 60 24 24
14 3 40 80 16 16
15 20 100 8 8
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5. BIN COMPOSTING

Forced aeration has been used in practical bin composting systems
for over two decades. A fan is used to deliver air (oxygen) for aerobic
fermentation. Air velocity within the compost material is very low. A
diagram of the composting facility in the Nippon Agricultural Research
Institute in Tsukuba, Ibaraki Prefecture is shown in Fig. 4. In this facility,
four bins (two fermentation bins and storage bins each) are used and the
composting materials are moved periodically from one bin to the next in
succession. Odorous emissions are sucked by a pump and delivered to a
biofiltration facility. The lower limit of aeration is derived from the rate
of oxygen consumption for organic decomposition. Peak rates of about
4 to 14 mg O, /g volatile solid-h were observed in the temperature range of
45 to 65°C (Haug, 1993). Iwabuchi and Kimura (1994) reported that
the oxygen uptake rate of dairy cattle manure at a moisture content of
76.7% (w.b.) was 4.8 g/h. kg-(volatile matter: VM). The volatile solid
(volatile matter) method estimates organic and ash concentrations.
The portion of the sample lost in high-temperature combustion (550°C)
estimates volatile matter; the portion remaining after combustion
is ash. It has been suggested that aeration rates of 0.20 and 1.33 L/
min. kg-VM are suitable for composting mixtures of municipal
sewage sludge and garbage, respectively (Lau et al., 1992). Kimura
and Shimizu (1989) recommended that air flow for swine manure
composting with initial moisture content of 50-60% was 0.3-1.0 L/min.
kg-(dry matter: DM). Lau et al. (1992) recommended that aeration at 0.04—
0.08 L/min. kg-VM was suitable for swine waste composting.

Kimura and Shimizu (1981b) reported that there were three levels of
aeration rates: low, medium and high. At low aeration rates (0-1 L/min.
kg-DM), increasing aeration rate increased the maximum temperature, dry

Side wall Hj

Ait changer space

Exhaust
-

W ater sprinkder

Curtain roll
A —a Fock
= @ £ O :
5 e
Bhovel loader Ventilation floor Adrpump = S
© pump
Forced aeration composting facility Odor absorption facility

Fig. 4. Bin composting facility.
Nippon Agricultural Research Institute
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L 2

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30

Aeration rate L/min.kgdm

Fig. 5. The range of aeration conditions used in this and previous studies.
Note: a: Kimura et al. (2007), b: Doshu (2003), ¢: Schulze (1962), d: This work 2005, e: Lau et
al. (1992).

matter loss and total weight loss. For medium aeration rates (1-5 L/min.
kg-DM), there was higher weight and dry matter loss but the composting
temperature was lower than under low aeration rates. With high aeration
rates (> 5 L/min. kg-DM), fermentation was slow.

The aeration rates used in previous studies are shown in Fig. 5. Air is
supplied not only as source of oxygen for microbial growth in compost
but also for other purposes such as control odor released from compost.
Turning or mixing during composting is done to minimize the heterogeneity
associated with temperature, oxygen and moisture gradients in the system
(Vandergheynst and Lei, 2003). Haug (1993) stated that the objective of
turning was to reform the compost structure and expose fresh material for
microbial colonization. The role of mechanical turning is to increase free air
space in order to ensure the highest possible ventilation rate for a particular
composting mixture. If a good mix is developed, microorganisms can
function efficiently and air will flow through the material more uniformly
because of the breakdown of short-circuit air channels. Low nitrogen and
organic matter content, high maturity and low viable seed content are
associated with turning frequency (Anonymous, 2005b, Fig. 6).

The problem in forced aeration systems is uniformity of decomposition
within the material. Since air generally flows from the bottom (plenum
chamber), the bottom layer has high oxygen availability. Bottom layer also
has direct contact with the input air from ventilation floor that released heat
by the aerobic biodegradation from solid phase in compost. Composting
also has the objective of killing pathogens. The United States Environmental
Protection Agency suggests that the minimum operating temperature must
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Fig. 6. Variable parameters in composting.

be maintained at 53°C for 5 days, 55°C for 2.6 days and 70°C for 30 min (Lau
et al., 1992). The minimum temperature for composting is 50°C.

6. PACKED BED-TYPE REACTOR

The early stage of composting is important in determining the success of
the process. It is desirable for the temperature to increase substantially in
the early stage of composting since temperature is important for microbial
activity. The objective of this study is to determine the effect of aeration on
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the decomposition process and odor emission in cattle manure composting
during the early stages of composting (0-120 h). The characteristics of the
compost material (including change in moisture content, total weight loss,
and odor generation) during composting were studied.

6.1 Compost Reactor Setup

The compost reactor setup is shown in Fig. 7. With a total capacity of
18.84 L, the compost reactor was fabricated using & 20 cm of polyvinyl
chloride (PVC) pipe of 15 cm height per layer; with four layers stacked on
top of each other. The bottom layer was the plenum chamber. Each layer
had wire mesh (1 x 1 mm) at the bottom which facilitated easy sampling
within the layers without mixing with other layers. Different turning
patterns could be experimented within the compost reactor. The reactor
could receive forced aeration through a & 5 mm opening from an air pump
(DAP 30, ULVAC KIKO, Yokohama, Japan) with a capacity of 30 L/min.
Air flow meters (Model RK1400 series, KOFLOC, Kyoto, Japan) with
capacities of 0.5 and 2.0 L/min were used. The outer surface and bottom
of the compost reactor were insulated with wool and fiberglass of 10 cm
thickness to reduce heat loss. Approximately 8 kg of mixed cattle manure-
sawdust were placed in the compost reactor. Temperatures were measured
with T type thermocouples which were inserted via small holes (4 mm) in
the PVC pipe in each layer. Temperature data were recorded with a data

© 20 cm
>
ottt
15 cmi 14 ®
L f
= 1l @
e —
® —] :
b ON &
| || @ ®
@ —4 8 P L
Notes:
®Compost material ~ ©®Thermocouple
@A:ir flow meter (DData acquisition
® Air pump ®Computer

@®Plenum chamber —> Airflow direction
(®Heat insulator

Fig. 7. Compost reactor setup.
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recorder (NR 1000, Keyence, Osaka, Japan) at 30 min intervals. A personal
computer was connected to the data loggers to record and store data.

The average temperature of the compost material in the each four
layers (L1, L2, L3, L4) at different aeration rates is shown in Fig. 8.
The maximum average temperatures at aeration rates of 0.025, 0.050,
0.100 and 0.150 L/min. kg-DM were 37.4, 49.3, 63.5 and 49.1°C,
respectively. The average temperature was highest at 0.100 L/min.
kg-DM aeration rate. Aeration rate of 0.025 L/min. kg-DM led to poor
composting in terms of temperature. Lau et al. (1992) reported that
temperatures during passive aeration could reach up to 65°C. In this
study, the reactor was not suitable for passive aeration.

Odor is a product of the decomposition of organic materials. The
type of gas produced reflects the condition of the composting process.
Ammonia (NH,) is a product of aerobic fermentation, while hydrogen
sulfide (H,S) is a product of anaerobic fermentation. The highest
concentration of ammonia occurred after 48 h (Fig. 9). The third layer had
the highest concentration of NH, at 7000 ppm, followed by the second,
first and top layers. This means that microbial activity was the highest in
the third layer. When the aeration rate was low, NH, production was also
low. At 0.05 L/min. kg-DM aeration rate, the first layer had the highest
NH, (120 ppm) after 72 h, followed by the second, third and fourth layers.
At the lowest aeration rate of 0.025 L/min. kg-DM, the concentration of
NH, was 1 ppm. It is clear that the supply of sufficient air (up to 0.100 L/
min. kg-DM) resulted in high ammonia generation.

About 8 kg of mixed cattle manure-sawdust was placed in the compost
reactor. The mixed cattle manure-sawdust was composted without
adjusting the pH of the initial mixture. Each layer had a capacity of 2 kg.

80

o 60 e -

~ vz AN

g / R il
Sol TR

Qg’* 0.025 L/min.kgdm

S 5y FET T 0.050 L/min.kgdm

= — — —0.100 L/min.kgdm

— - —-0.150 L/min.kgdm
0 —--—0.200 L/min.kgdm |
0 24 48 72 96 120
Time (h)

Fig. 8. Effect of aeration rates on average temperature of compost material during 120 h of
composting.
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Three aeration rates (0.05, 0.15 and 0.50 L/min. kg-DM) were applied for
each run. Samples from each four layers were collected every 120 h before
turning to measure the moisture and ash contents. Data was collected
from March to July 2005.

Three types of turning pattern were used in the study: without
turning (control) (Run A), full turning (Run B) and turning of each layer

10 10
g 81 —e—LI 18 ’g
e &
Z —a12 16 g
g —a-13 &
3 ——14 @
a 4 : 14 =
pA —¥—Top
% 2 {2 %
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Fig. 9. Concentration of NH, in different layers during 120 h of composting.
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and change in position of layers (Run C). In the third run, there was a
special turning regime that involved changing the position of layers
during different stages of composting (Karyadi et al., 2007, Fig. 10). The
experiment with change in position of layers was possible because the
reactor had wire mesh at the bottom of each layer which made it possible to
prevent the material in one layer from mixing with that of another. In run

A. No turning
0~120h ~240h ~360h

4 |——>4 |—>|4
3 |—=>3 |—>|¢
2] BN z
1 1 1
B. Full turning
0~120h ~240h ~360h
4 4 4
3 et} 3 -1 3
T —XT
217/ T2 1N 2
1 1 1
C. Turning and position change
0~120h
4
3
2

Fig. 10. Schematic diagram of the turning pattern for runs A, B, and C (T: Turning; 1, 2, 3 and
4: layer number).
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Table 3. Experimental design setup for cattle manure composting with two factors (aeration
rate and turning pattern).

Turning  Aeration rate (L/min. kgdm)

method "~ 5 0.15 05
A 0.05A  015A  050A
B 005B 0158  0.50B
C 005C  015C  0.50C

Aeration rates 0.05 to 0.50 L/min. kgdm (to achieve high temperature in composting process)
Turning pattern: no turning (A), full turning (B) and turning with position change (C).

A, the sample was left without disturbance, except for sample collection.
In run B, after 5 days the samples were collected and the compost material
from each layer placed in a plastic bucket; the material was then turned
with a scoop and returned to the same layer. In run C, just after sample
collection, the compost material was taken out from each layer and then
returned to the same vessel after turning; but the position of the layers
was reversed from the previous period. Since the direction of air supply
was from the bottom, the change in position of layers might provide a
suitable alternative turning method. The experimental design setup for
these experiments is shown in Table 3.

6.2 Temperature Distribution

Temperature distribution in the compost materials during 360 h of
composting for all runs is shown in Fig. 11. Temperature is the result of the
decomposition of organic matter. When the heat balance of the system is
positive, the temperature of the material increases. When compared with a
small adiabatic reactor system, this reactor has more uncertainties. Factors
affecting the results are: the freshness of the manure, type of sawdust,
initial moisture content and the degree of mixing of the sample. Since it
is difficult to use the composting same raw material for each runs on a
large scale, the raw material was prepared for each runs. This meant that
the freshness of the raw material was not uniform. The initial moisture
content of the manure also varied. The minimum amount of sawdust was
added to obtain 65% (w.b.) moisture content in the final compost mixture.

Maximum temperatures were recorded during the first period of the
the compost turned every 120 h over the 360 h period. The turning pattern
did not affect the results, because after the first turning, for both types of
turning patterns, temperature decreased below that obtained in the first
period. The maximum temperatures at aeration rates of 0.05, 0.15 and 0.50
L/min. kg-DM were 64.0, 73.2 and 70.8°C, respectively. In each run, the time
of peak temperature was different for each layer. In run A, with .05 aeration
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Fig. 11. Temperature distribution in compost reactor.

(.05A), the maximum temperature 64.3°C occurred in the third layer at 96 h
and increased again at 216 h. This indicated that the decomposition process
increased again after the first peak from the beginning of the composting
process. Run 0.05B showed a different temperature distribution as the
temperature increased after turning which indicated that the decomposition
rate had increased again due to the breakdown of the structure of the
compost material during turning. In runs 0.05B and 0.05C, the temperature
increased in the first and second layers faster than in the other layers because
of the availability of oxygen supply.

For aeration rate of 0.15 L/min. kg-DM, maximum temperature
was reached after 37 h of composting. In run 0.15A, the temperature
increased slightly after 192 h; in run 0.15B the maximum temperature was
reached after 67 h while in run 0.15C, the second highest temperature was
obtained after a change in position after turning at 192 h. The temperature
in the first layers increased faster than in the other layers, even though
the maximum temperature obtained was lower. The differences in time at
which maximum temperatures were reached for runs 0.15A and 0.15B was
caused by the differences in freshness of the raw material.

For aeration rate of 0.50 L/min. kg-DM, the maximum temperature of
70.8°C after 24.5 h of composting indicate that aeration had a substantial
effect on heat production. Inrun 0.50A, temperature increased againat 72 h.
In the second and third periods of turning, the temperature decreased in
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all layers except for the first layer. In run 0.50C, temperature distribution
was different from that in the previous treatment. Temperature slightly
increased and then decreased, until the next turning period. Generally,
with full turning, the material is more uniform after turning, thus,
temperature distribution was similar to that in the previous period.

The mass balance during composting is shown in Fig. 12. Calculations
were made with the assumption that ash content is an inert material
during the composting process and only organic matter and level of water
changed. Turning affected dry matter reduction, however, total mass
reduction was most likely affected by aeration. Fermentation and drying

reduced the mass of wet and dry matter.
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7. ADIABATIC-TYPE REACTOR

The problem in composting with a laboratory-scale reactor is heat loss
to the surroundings (Bach et al., 1987). To overcome this problem, some
researchers have made small reactors with an adiabatic system (Kimura and
Shimizu, 1981a). It is easy to obtain precise data to observe the composting
process while using this kind of reactor. Many studies have used this kind
of reactor to explain the mechanisms of composting. In laboratory-scale
compost reactors, effects of the surroundings must be considered. Bach et
al. (1987) explained water migration within compost reactors. Shimizu et al.
(1989) developed a model of drying and fermentation in a compost reactor.

In small compost reactors, processes within the material are more
uniform than in larger reactors. Kimura and Shimizu (1981a) developed an
adiabatic-type reactor. To conduct satisfactory experiments with a compact
device, anadiabatic system was adapted for a compact composting container,
where the surrounding temperature of the container was automatically
maintained at the same temperature as that of the internal material. As
a result, the material temperature increased as high as that obtained in a
large-scale practical composting system. Various aeration treatments were
tested to achieve low cost and verify safety aspects of composting.

7.1 Compost Reactor Setup

An adiabatic-type compost reactor was used in these experiments (Fig. 13).
The compost reactor consisted of: (1) temperature controller, (2) reactor,
(3) aeration device, (4) ammonia trap, and (5) digital recorder.

1) Temperature controller

Temperatures inside and outside of the reactor were measured using
the platinum resistance thermometer sensor (SCYS, CHINO, Tokyo,
Japan). The difference in temperature between the surrounding reactor
and the compost material was maintained at < 1.5°C with a heater.

2) Reactor

The reactor had a volume of 700 mL and was fabricated from glass
material. 250 g of raw material (manure) was placed in the reactor. The
reactor was insulated with Styrofoam.

3) Aeration device

A timer was connected to the air pump to regulate the aeration system
(on/off mode). The air was filtered through a micro filter (FLHN type)
while a flow meter was used to adjust the aeration rate.

4) Ammonia trap

The air flow released ammonia and water vapor. For measuring the
concentration of CO,, ammonia was trapped using 0.1N of H,SO,.
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Notes:

D Air pump © CO, meter

@ timer (@ balance

@ air flow meter 1) temperature controller
@ CO, trap @ heater

® filter @ thermocouple K type
© reactor @ recorder

@ NHj, trap @ Insulator box

® silica gel

Fig. 13. Compost reactor setup.

Water vapor was reduced by delivering air to a silica gel tube before
the CO, meter.

5) Measurement devices
A data recorder (Process VII, CHINO), thermocouple type K, digital
balance (PD1-2400 W, Chou Balance), and portable CO, meter (CGP-
1, TOA) were used in these experiments. Data was recorded in time
intervals of 10 min.

7.2 Data Analysis

The energy in composting was classified into enthalpy, AH and energy for
catabolism, AH_.

AQ=AH +AH, (1)
AQ=AH,+AH, + AH, (2)

AH_was neglected because it is very small compared to AH .AH,, AH,, and
AH ,as described in equations (3), (4) and (5). The reactions associated with
aerobic metabolism are shown below: Reactions (3) and (5) represent the
degradation of organic matter while reaction (4) represents the synthesis
of organic matter in microbes.

CH,O, + (x+y/4-2/2)0,> xCO,+y/2H,0, AH, 3)
n(CHO)+nNH,+ n(x +y/4-z/2-5)0, >
(C,H.NO,) + n(x-5)CO, + n/2(y—4)H,O, AH, 4)

C,H,NO, + 510, > 51CO, + 2nH,0+ nNH,, AH ©)

3
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AH, is the energy produced during synthesis in the microbial body.
Because AH, is 1/160-1/120 of AH,, AH, which is also neglected (Kimura
and Shimizu, 1989).

AW =AW, +AW (6)
where AW = weight loss, AW, = dry matter loss and AW = water loss
AW, + AO, = ACO, +A H,O (7)
where AO, = oxygen, ACO, = carbon dioxide and A H,O = water production
AW, =AW +nx AW, (8)
where AW, = total water loss and n = 0.56-0.60
AW =AW, -nxAW, 9)

For analysis, weight loss, organic matter loss, and moisture loss are
calculated as follows:
1) Weight loss
Weight reduction (%) = AW /W, x 100 (10)
where W, = the initial weight

2) Organic matter loss

From the CO, concentration data, the weight of dry matter loss AW  (g)
could be calculated as follows:

Organic matter loss (%) = AW, /W, x (100-m,) x 100 (11)

where m, is the initial moisture content in % (w.b.).

3) Moisture loss
Moisture loss (%) = AW, (W, x x m,/100) x 100 (12)

4) Calculation for intermittent aeration and energy saving

Total aeration (L/min. kg-DM) = Aeration rate (L/min. kg-DM) x length of
aeration x 60 (13)

7.3 Temperature and CO,

The temperature profile and CO, concentration during continuous aeration
is shown in Fig. 14. Temperature at an aeration rate of 0.50 L/min. kg-DM
reached more than 60°C (Kimura and Shimizu, 1981a). Two peaks of CO,
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Fig. 14. Changes in material temperature and CO, concentration for composting with
continuous ventilation.

concentration indicated that two stages of composting (mesophilic and
thermophilic) occurred in the composting process. The phase changes of
these stages were clear at aeration rates of 0.50 to 1.50 L/min. kg-DM. The
thermophilic stage was associated with high microbial activity and refuse
pathogen aspect. The maximum temperatures and times required to reach
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the maximum temperature at aeration rates of 0.50, 1.50 and 3.00 L/min.
kg-DM were 71.4, 70.0 and 49.1°C and 24.0, 19.6 and 10.9 h, respectively.
Aeration rates of 0.50 and 1.50 L/min. kg-DM resulted in high temperature
composting. The time required to reach the maximum temperature could
be reduced by increasing the aeration rate from 0.50 to 1.50 L/min. kg-DM.
Excess aeration occurred at an aeration rate of 3.00 L/ min. kg-DM resulting
in lower temperatures at other aeration rates.

This chapter focused on process optimization of composting system.
Especially, forced aeration has been used in practical bin composting
systems for over two decades. But ideal operational conditions of
composting are still being researched. Thus, the works and challenges
for the future are (1) to determine the appropriate strategy for cattle
manure composting in packed bed reactor with forced aeration and (2)
to examine the aeration conditions at early stage of composting influence
decomposition of organic matter for compost and to combine sensor
technique during the composting reaction with knowledge of aeration
rate, aeration method (continuous, intermittent) and turning method to
determine the optimal conditions of composting systems.

8. SUMMARY

Aerobic fermentation was chosen to solve the cattle manure waste problem
because it is a simple low energy solution. The combination of different
aeration rates and turning methods yielded different results. Studies using
a packed-bed type reactor confirmed that degradation in forced aeration
composting can be increased with a combination of full turning or turning
with a position change. The huge amount of solid waste from animal
husbandry results in odorous emissions, thus composting operations
must be automated. However, composting systems are complicated
by lack of uniformity in degradation and material temperature. Future
research should focus on further development of sensors for composting
system operations and control systems also in addition to basic research on
composting processes to support the development of “smart agriculture”.
Development of composting system technologies will contribute to the
“sustainable development of agricultural production”.
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Overview of Mechatronic Design
for a Weed-Management
Robotic System*

T. Perez,"** O. Bawden,' J. Kulk,' R. Russell,' C. McCool,'
A. English' and F. Dayoub'

1. INTRODUCTION

This chapter discusses key aspects of a design of a robotic platform for the
management of crops in agriculture. In particular, the system considered
seeks to address the increasing threat of weed species resistant to herbicide.
Many crop production systems in countries such as Australia, have
moved onto non-tillage practices in order to reduce loss of soil moisture
and soil nutrients to the atmosphere. These crop productions rely mostly
on chemical agents as a means of weed management. Such a practice has
contributed to the development of weed species for which chemical agents
have lost they effectiveness—this is known as weed resistance.

The control of weeds is an important aspect of farming. A weed is
any plant species in the paddock that is not the current crop. Weeds use
soil moisture and nutrients and therefore compete with the crop. Some
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weed species can even release chemicals that inhibit the crop growth.
Furthermore, the presence of weeds at harvesting can affect the quality
of the harvesting and that of the harvested crop. Historically, weed
management has been conducted using mechanical means of removing
the weeds.

A contribution of the development of machinery through and since the
industrial revolution combined with the development of synthetic fertilisers
and improved crop breeding programs during the green revolution (1960s
to 1980s) have resulted in an increase in the size of fields or broadacre
farming and the use of chemicals as the prevalent weed control agent.
The development of herbicide resistant weed species is of great concern to
farmers as it poses a threat to future crop production (International survey
of herbicide resistant weeds, www.weedscience.org).

The use of robotic vehicles that can autonomously manage the weeds
can offer a potential solution to this problem as they enable the use of
alternative weed-control methods. Over the past twenty years there has
been a small pocket of activity in research related to alternative methods
for weed destruction; whether mechanical, thermal or radiation based. We
could argue that this research has not evolved into widespread use due to
both the effectiveness and the economics of chemical agents (Upadhyaya
and Blackshaw, 2007). Nevertheless, weed resistance is changing this.
Robotic weeders, can operate in groups and thus reduce the speed of
each machine without increasing significantly the time required for the
weeding operation. This reduction in speed creates an opportunity for
alternative and energy efficient methods. Robotic weeders have another
two key beneficial side effects.

The first is the reduction in robot size and weight, which leads to
reduction in soil compaction that adversely affects the crop root
development and subsequently its yield. The second, is that whilst
traversing the paddock robotic weeders can carry sensors to collect data
that can be used in other aspects of crop management; for example,
nutrition, water stress, pest and diseases.

This chapter discusses aspects of mechatronic design of the robotic
system for weed management depicted in Fig. 1. Such a system consists
of a robotic platform, named AgBot II, which can autonomously navigate
in the paddock, a vision-and-weeding implement sub-system to manage
weeds, and a replenishment pod sub-system for energy and, in some cases,
other inputs. This chapter concentrates only on aspects of design that
involves a mechatronics approach—this is elaborated in the next section.
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Fig. 1. Robotic system for weed and crop management. AgBotll robotic platform with
underhanging weeding implement and replenishment pod.

2. A MECHATRONIC DESIGN APPROACH

Mechatronic design deals with the complete design of a mechatronic
system rather than single components. Mechatronic systems have a
mechanical (physical) component whose desired motion behaviour is
controlled through the use of force actuators commanded by a computer
control system that processes information from data generated by sensors.
This is illustrated in Fig. 2.

The main characteristic of a mechatronic design approach is that all
components of the system (mechanical, actuators, sensors, computers,
and control) are considered ab initio as part of the design. As such, this can
address complex interactions among the decisions made in the sub-design
of each of the system components, and lead to superior performance,
economy, and safety. This requires a multi-disciplinary knowledge since
the decisions made in each component of the system often affect that
of the other components and together contribute as factors, of affecting
overall performance, economy and safety. For example, decisions made
about mechanical design affect the dynamical characteristics of the
mechanical component, and hence the potential complexity of the motion
controller structure. On the other hand, the desired closed-loop behaviour
and the dynamics of the mechanical components determine the energy
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Fig. 2. Structure of a mechatronic system.

requirements and thus the necessary actuation, which can affect both the
choice of materials and the need to distribute mass so as to avoid unwanted
resonance frequencies of mechanical vibration and material fatigue. The
dynamic response, the structure of the control system, and the required
sensing modalities put a constraint on the computational speed at which
information needs to be processed in order to compute and implement the
control action and at the same time conduct condition monitoring of the
system for adequate safety shutdown or fault-tolerance.

In the case of the robotic system shown in Fig. 1, there are two
key mechatronic systems: the robot platform (vehicle) and weeding
implement, the design of which are not independent of each other and
have their own associated challenges. For example, the desired motion
behaviour of the robotic platform is characterised by its speed and heading
rate so it can follow desired paths as determined by an operation planning
system that takes into account the geometry of the paddock, the number
of robots in the paddock, and the orientation of the crop rows. The design
of the platform wheel and driving-wheel configuration influence the
number of actuators and complexity of the motion control architecture
and control algorithms. The mass and mass distribution determine the
dynamic response characteristics and the power requirements. The speed
of the operation should be considered in conjunction with the design of
the weeding implement’s capabilities in order to achieve high weeding
efficiency and satisfy constraints on the computational time required by
a computer vision system to process data from multiple images to detect
and classify the weed species and then decide on the control method.
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The rest of the chapter elaborates the mechatronic design process and
its components and highlights the interaction among the decisions made
in each component.

3. SYSTEM SPECIFICATIONS

From the inception and throughout the project, our design team has been
interacting with farmers in order to collect information and execute a
design that properly addresses the crucial problems. The insights from
potential users were used to establish the functional and operational
requirements which must balance the complex demands of the system.
The incorporation of a user-centred design methodology (Gulliksen et
al., 2003) helped uncover key insights during the development of the
platform, which we call AgBotIL

3.1 A Farmer’s Perspective

Redhead et al. (2015) reports our initial work in which growers (farmers)
and agronomists participated in contextual interviews and observational
studies at farm locations in the Darling Downs and Emerald regions in
Queensland, Australia. The key findings are summarised below:

® AgBots are most suited for precision work that requires accuracy and
is difficult to achieve using large machinery, such as 48-metre boom
sprayers;

® Growers are interested and competent in thinking through problems
related to building mechanical components, and participatory
engagement of farmers in the design, testing, and evolution of AgBot
prototypes would be beneficial to both the farming community and
this research;

¢ The built of the mechanical components of the system should remain
open for ongoing maintenance and adaptability;

® Varying levels of access to the interface system are necessary, with
a simple level of control available for non-skilled labour, and more
complex levels of administration by farm managers;

¢ Rural communication infrastructure can not be assumed to the
adequate for reliable communication with the robots, and should be
addressed as part of the design of robots;

® The data collected by AgBots should be relevant to the scale of the
operation and should be stored in manageable data package sizes;
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® Growers welcome an open source community model for the software
development of AgBots and this should be set up early and in a way
to encourage participation from farmers;

® Thenumber of AgBots monitored per operator needs to be manageable
in terms of the workload of the operator;

® Remote views of AgBots should give adequate and easily interpreted
visual information about the state of the machine and nature of failure
modes.

3.2 Functional and Operational Specifications

From the research and insights gained from field studies with farmers, a
list of Functional Requirements (FR) were identified (Bawden, 2015):

FR,—The robot must be a multi-role, lightweight platform suited for
autonomous operations related to weed management, fertiliser
application, and crop scouting;

FR,—The robot must be able to conduct weed destruction operations in-
fallow as well as in-crop, without damaging the crop;

FR,—The robot mustbe able to identify (detect and classify) weeds in order
to select and apply the most appropriate weed treatment, which
includes the integration of chemical and non-chemical destruction
methods;

FR,—The robot must be able to conduct autonomous operations with
appropriate levels of safety;

FR,—The robot must be able to conduct replenishment operations of
energy and agricultural inputs with appropriate levels of safety;

FR,—The robot must be able to self-diagnose failure modes, and either
reconsider operation or shut-down safely;

FR,—The robot must be able to provide adequate levels of communication
and human-robot interactions.

Also alist of Operational Requirements (OR) were identified (Bawden,
2015):

OR,—The robots must be able to be transported safely using standard size
road vehicles (trailer/truck);

OR,—The robots must be able to shut-down operation and stop motion if
a human comes in close proximity;

OR,—The robots must be able to shut-down spraying operations if adverse
weather conditions eventuate;
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OR,—The robot must be able to sustain operations under appropriate
environmental conditions (temperature, humidity, UV) and
operational conditions (terrain gradient, soil conditions).

3.3 Technical Specifications

Based on the functional and operational requirements and input, we
conducted a detailed trade-off study and determined the main technical
specifications shown in Table 1.

Vehicle mass (without payload) (TS,): Consulted farmers suggested that
all-terrain-vehicles (ATVs) used for farming should result in minimal soil
disturbance when driven over fields in varying conditions. ATV’s range
in sizes and mass from 200 to 600 kg; therefore, based on this and the
required strength, we estimate the target mass to be 500 kg for the vehicle.

Payload mass (TS,): To determine the mass of the payload, we considered
weed management with current spot-spraying technology. Based ona 3 m
width, an operational speed of 5 km/h, and spray rate of 15 L/ha a 200 L
tank would require refilling every 10 hours. Given the inclusion of the
mechanical weeding array, we expect to use less than 15 L/ha, however,
the payload must also account for the development of future implements,
so a target weight for the payload of 200 kg was adopted.

Operational speed (TS,): The operational speed of 5 km/h was selected,
keeping in mind safety, area under coverage (based on an operational
cost model) and time required for the computer vision system to process

Table 1. AgBotIl Main Technical Specifications.

Specification Magnitude (target) Unit

TS, Vehicle mass 500 kg
TS, Payload mass 200 kg
TS, Operational speed 5 km/hr
TS, Maximum speed 10 km/hr
TS, Number of wheels 4 -
TS, Drive wheels 2 -
TS, Steering wheels 2 -
TS, Wheel width 0.3 m
TS, Width (wheel centre to wheel centre) 3 m
TS, Length total 2.5 m
TS, Implement section clearance 0.75 m
TS, Operating gradient pitch 15 %
TS, Operating gradient roll 10 %
TS, Handle emergency brake - -




30  Robotics and Mechatronics for Agriculture

data for weed detection and classification. The average walking speed
of a human is 5 km/h, so humans could easily overtake the robots. The
integration of a multi-mode weed management system, designed based
on a requirement that the robot does not stop, was also taken into account
for the specification of the operational speed.

Maximum speed (TS,): The maximum speed is selected for traveling
to recharging/replenishment stations and to move from paddock to
paddock. Given the operational speed, the maximum target speed has
been determined based on potential use of gearboxes and hydraulic drive
trains and the range of speeds of electrical motors, which are optimised
for maximum efficiency at the selected operational speed.

Vehicle configuration (TS, ): Analysis of vehicle configurations, shown in
Fig. 3 took into account manoeuvrability, stability, locomotion type (tracks
vs. wheels), the number of drive and steering motors, and motion control
design. A four-wheel configuration, capable of bi-directional driving
through the use of differential steering and caster wheels (configuration 9
in Fig. 3) was selected for further development. This configuration offers
an appropriate balance between driving performance, stability, payload
capacity and complexity. In addition, this configuration simplifies the
motion controller since the rotation about the vertical axis (vehicle
heading) can be decoupled for control design purposes.

Vehicle dimensions (TS, ): A standard row width of 0.5 m would be
appropriate for a large portion of broadacre applications. With allowance

AGRICULTURAL ROBOT - VEHICLE CONFIGURATIONS
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Fig. 3. Twenty vehicle configurations tracked and wheeled variants.
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for overhanging leaves and drift in steering, a working width of 300 mm
was considered safe for the wheel unit. Australian roads (NTC, 2015)
specifies that the width of a vehicle to be moved must not be over 2.5 m.
Hence, to move the AgBotll on a typical flatbed trailer the length (or width,
depending upon the orientation of the AgBotll to the truck/ trailer) needs to
be less than 2.5 m. Based on current control traffic farming (CTF) practices
a vehicle width (wheel centre to centre) of 3 m was chosen. This enables
the AgBotll to take advantage of CTF layout already in place on many
broadacre farms. Being wider than the width permissible for carriage on a
public road means that the vehicle would need to be loaded perpendicular
to the truck or trailer used for carrying the AgBotll. Broadacre crop
heights vary according to region, crop variety, moisture availability, soil
nutrients and weed competition. Based on average crop-heights of wheat,
barley, sorghum, oats, cotton and chickpea, we determine that the vehicle
clearance should be at least 0.75 m, with the option for small adjustments
based on suspension settings.

Operation (TS , |):Broadacre farmingis generally undertaken onrelatively
flat terrain. Operating gradients of 0-3% are very common. Paddocks with
5-10% gradients are less common because at this gradient the land acts
more energy intensive to cultivate. Based on farm research, an operating
gradient of 15% was estimated as the worst case the agricultural robot
would see in field conditions. In terms of side constrain forces of wheels,
a 10% gradient is considered to be worst case for roll angle operation. It
is also a technical requirement that the vehicle must not tip over during
emergency braking in gradients of +15%.

4. AGBOT II DESIGN

As part of the design of AgBot II, we considered different subsystems as
indicated in Fig. 4. Different options were analysed for each subsystem
taking into consideration their impact on the complete design. In this
section, we summarise the design process and some of the features of the
AgBot II platform.

4.1 Chassis Design

AgBot II is based on two modular side assembly units joined by the
implement unit—see Fig. 4. The side units are symmetrical (mirrored).
These units house the battery and power systems and limed to the rear
caster wheels as well as the swing arms that connects to the drive unit
assembly.
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Fig. 4. AgBotll platform rendering showing the major assemblies.
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Fig. 5(a) Detail of the side unit assembly for the AgBotlIl. (b) Flat-pack components for the
side unit prior to assembly by MIG welding.

SWINGARM AXLE —
ATTACHMENT POINT

Based upon our interactions with farmers, anovel construction method
was developed which takes advantage of the considerable manufacturing
infrastructure that already exists on most large farms in Australia. The
design incorporates CNC laser cutting, pressing and machining, at low
volumes and low cost, to rapidly produce prototypes or kits that could
be shipped to farms and assembled on-site by the farmers themselves.
Using only a MIG welder, pneumatic rivet gun and simple hand tools, the
mechanical portion of the robot chassis itself can be assembled in less than
8 hours by two people.

The implement unit shown in Fig. 6 is designed to carry the weeding
implements, which can incorporate a 200 L tank for herbicide to enable
multi-mode weed operations and even a small fertiliser spreader. And the
front part of the implement unit houses the electronics and computers.
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Fig. 7. AgBot II dimensions.

The main dimensions of the robot are summarised in Fig. 7. These are
in agreement with Technical Specifications TS, |, in Table 1. The width of
implement unit is determined by a standard crop-row layout. The width
of the side units and tyres are optimised with crop-inter-row spacing as
a constraint. For an introduction to optimisation based design, the reader
can refer to Arora (2004).
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Design requires decision making, which relies on information obtained
from analysis based on models, which can be either mathematical or mental
models. The design based on knowledge from previous experiences—
namely, induction is used. In the case of the chassis design, one important
consideration was, the location of the centre of mass and the potential
for vehicle to tip over, in case of an emergency brake. In order to analyse
this potential, we built a mathematical model based on the assumptions
that vehicle is considered to be a rigid body with a known location of the
centre of mass. At the point of braking, the front wheels are assumed not
to slip. The effect of the suspension can be significant if the suspension
is not stiff, which would allow a significant shift of the centre of mass
forward and also down. This can be accommodated in a simplified model
by introducing offsets on the actual location of the centre of mass that
represent the fully compressed suspension.

Consider the scenario depicted in Fig. 8. The vehicle is traversing
down on a slope, the point of contact between the front wheel and the
ground is P. As an approximation, we consider that this is also the point
about which the vehicle will pivot during a sudden braking—the motion
of the point is neglected and thus P is assumed to be fixed. The centre of
mass is at the point C and the vehicle is assumed to have a mass m. At
the point of braking, the vehicle traverses along the slope at a velocity 7
parallel to the slope.

Based on the modeling hypotheses, tipping occurs whenever point C
moves forward of the point P. We consider two right-handed coordinate
systems fixed to Earth frame, namely {0} and {1}. As a generalised
coordinate and first state variable, it is easy to take the angle 6§ of rotation
about the y-axis (out of the page) of the line segment P-C. Then, the
condition for tipping becomes

0> % T (270°).

Fig. 8. Vehicle idealised physical system.
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As a second state variable, we can choose the magnitude of the angular
momentum of the centre of mass about the point P, namely L = | L|. Then,
a state-space model for system is

0=J"L, 1
L= mglcos O-b 'L, (2)

where [ = 17,1 is magnitude (distance) of the position of C relative to P,
g is the acceleration of gravity, b is a damping coefficient, and | = m[*is the
moment inertia of the centre of mass about P.

In order to simulate (1)-(2) and ascertain whether a vehicle may tip
over, we set the initial conditions for 8 and L based on the initial linear
momentum of the vehicle and its operational speed. This simulation model
was used to assess the risk of tipping given the location of the centre of
mass. The model does not consider free-surface effects in the herbicide
tank (which might alter the location of the centre of mass). It was also
envisaged that the under-hanging weeding implement would contribute
to lower the centre of mass thus reducing the risk of tipping relative to that
provided by the model. So the model provides an idealised setting, and
the decision as to whether the centre of mass is at the correct location has
to be made under uncertainty, Tribus (1969).

4.2 Drive Unit and Power System

The main drive units for the AgBotIl consist of a customised motor,
gearbox and emergency brake assembly mounted inside a wheel hub. This
is shown in Fig. 9. The design of this sub-system takes into consideration
the vehicle drive and its power requirements, in conjunction with the
torque, efficiency and load specification of the individual components.

A 5 kW, 48VDC electric motor, with an efficiency of 75-85% at 3200-
4500 rpm, was paired with a 61:1 two-stage planetary gearbox to provide

_— GEARBOX
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(a) Detail swing arm with drive unit AgBotIIL. (b) Detail Drive Unit assembly.

Fig. 9. Swing arm and drive unit assembly.
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energy efficient locomotion at the desired speed range of 5-10 km/h. The
motor output shaft was re-designed to allow for the addition of a fail-safe
electric brake, which is mounted directly to the rear face of the motor via
a modified friction plate. The entire drive unit assembly is mounted to the
vehicle’s single-sided swing arm via a support cage, which transfers the
load from the gearbox mounting flange to the swing arm.

The specification for the power-train follows from the vehicle’s
technical specifications given in Table 1. In particular, the total vehicle
mass, maximum speed, maximum inclination angle and maximum
acceleration determines the output power and torque of the power-train.
Furthermore, the wheel diameter is a critical factor in the selection of a gear
reduction ratio. Table 2 summarises the vehicle’s specifications relevant to
the power-train design.

One of the most critical factors affecting the selection of a power terrain
is the rolling resistance coefficient. Agricultural vehicles operate in a wide
variety of field conditions such as loose soil, compacted soil, paved roads
and wet soil. Each of these surfaces have a different resistance coefficient
shown in Table 3. The two coefficients of most interest are that of medium
soil and the wet soil. The medium hard soil is the surface travelled on
most often and has a steady-state power consumption. The wet soil is the
worst surface the vehicle has to traverse and has the maximum power
requirement.

Table 2. Key vehicle parameters related to power-train design.

Attribute Magnitude Units
Total Vehicle Mass 600 kg
Rated Speed 5 km/h
Maximum Speed 10 km/h
Acceleration 1 m/s,
E-Brake Deceleration 4.9 m/s,
Maximum Inclination 15 deg
Front Wheel Diameter 0.61 m

Table 3. Rolling Resistance Coefficients for different Surfaces.

Surface Coefficient (C)
Smooth Concrete 0.01
Worn Asphalt 0.02
Gravel 0.02-0.03
Medium Soil 0.08
Loose Soil 0.1

Wet Soil, Mud 0.2

Sand 0.2-0.3
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The mechanical power required to move the vehicle is given by:

P=P +P  +

rolling gradient Paccelemfion

= (C,mg cos 0 + mg sin 6 + ma)v, (3)

where C is the coefficient of rolling resistance, m is the total vehicle mass,
0 is the maximum gradient, a2 is the maximum acceleration and v is the
vehicle speed. The mechanical torque is given by the following similar
equation:

t=(C mg cos 6 + mg sin 6 + ma)r, 4)

where 7 is the radius of the drive wheels. We can calculate the steady-
state power and torque using (3) and (4) equation with no gradient, no
acceleration and a speed of 5 km/h on medium soil. The required power
is 660 W and the required torque is 180 Nm. The peak power and torque
requirements occur when the vehicle accelerates up to its rated speed on
wet soil up a slope. That is, when v =5 km/h;a=1.0m/s,; =15 deg and
C,=0.2. Under these conditions the required power increases significantly
to 4.5 kW and the required torque increases to 1040 Nm.

The power efficiency of the drive unit is very important since AgBotlII
is powered by batteries. We can compute this efficiency as

PO 7-;.[ wu
nu_F_Vqu’ (5)

i

The output mechanical power P is given by the product of the torque
T generated by the unit and the angular rate w_of the wheel. The input
power P, is given by the product of the voltage V and current I of the
battery feeding the unit. The efficiency, thus, calculated includes the
efficiency of the power electronics that control the motor, the efficiency of
the electrical motor itself, and the efficiency of the gear box since Po is the
power at the low speed side of the gear box. Figure 10(a) shows a rig used
for testing the drive unit. The low speed shaft out of the gear box connects
to the shaft of a hydraulic pump of known efficiency. By measuring the
differential pressure and the volumetric flow of the hydraulic pump we
can estimate the efficiency of the drive unit:

PDNw,
n,= Tr (6)
where P is the differential pressure at the hydraulic port, D is the
displacement of the pump, N is the gear box ratio, and 7, is the known
power efficiency of the pump. Figure 10(b) shows some of the lab tests
conducted under different loads.



38  Robotics and Mechatronics for Agriculture

Power-train Efficiency

e—e low load
e—e steady load
e—e peak load

Efficiency (%)

40,

3 4 5
Speed (km/h)

(a) Drive unit testing rig. (b) Drive unit power efficiency test.

Fig. 10. Testing rig and drive unit test.

The final requirement of the power-train is the emergency braking
torque. Emergency brakes apply a high constant torque to the wheels
when they are engaged. We would like the emergency stopping distance
of the vehicle to be as short as possible and for the wheels not to lock. Thus,
we want the emergency brake torque to be as high as possible without
locking the wheel. The vehicle will be required to operate on a wide
range of surfaces with varying levels of available grip. At low speeds, the
amount of available grip is characterised by the coefficient of friction, y,
between the tyre and the surface. The maximum deceleration on a surface
with a given coefficient of friction is a,, = pug. Gravel roads, wet grass
and soil have coefficients of friction of 0.35, 0.20 and 0.60 respectively,
which correspond to maximum decelerations of 0.35 g, 0.2 g and 0.6 g,
respectively.

As the emergency brake can only apply a single constant torque we
need to use the lowest deceleration to avoid locking a wheel, that is, the
target deceleration for an emergency stop will be 0.2¢ (2.0 m/s?). If there
is a single brake failure we still would like the vehicle to decelerate at
1.0 m/s? using the remaining brakes. Note that, it has been observed
that during emergency braking a locked wheel has only a small effect on
stopping distances on wet grass and actually decreases distances by 25%
on deformable surfaces, such as gravel roads. Thus, if a wheel locks it
should only have a small effect on the stopping distance.

The emergency braking (E-Brake) torque is given by:

7= (mg sin 0 + ma — C mg cos 0O)r, (7)
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Table 4. Power-train Specifications.

Attribute Magnitude | Units
Rated Power 0.66 kW
Rated Torque 180 Nm
Peak Power 4.5 kW
Peak Torque 1040 Nm
E-Brake Torque 875 Nm
Degraded E-Brake Torque 438 Nm

where m is the mass, a is the braking acceleration and r is the radius of
the braking wheels. Note that, safety features ensure that the power-
train is disabled in an emergency stop so that the brake will not work
against the motors. When we use the above equation in the case of an
emergency down a slope of 15 deg, the emergency torque was 875 Nm.
To achieve the degraded emergency braking of 1.0 m/s? we need a torque
of 438 Nm. Table 4 summarises the requirements for the power-train. The
E-Brake torque places the greatest strain on the power-train and dictates
the strength and size of the gearbox required. While the peak power
requirement determines the size of the motor required.

4.3 Guidance, Navigation and Motion Control

Figure 11 shows a block diagram of the robot Guidance, Navigation, and
Control (GNCC). In the following, we describe the attributes of the key
subsystems.
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Fig. 11. Robot guidance, navigation, and control.
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4.3.1 Navigation

The navigation system processes the data from the different motion sensors
(RTK-GPS, IMU, wheel odometry) and fuses these data using observers
to extract information about position and velocity of a particular point
of reference on the robot and also the rate of turn about this point. The
observers are built upon kinematic models that describe the geometric
aspects of motion only.

4.3.2 Guidance

The mission planning of AgBotll sets the desired paths and triggers the
turn and row-shift manoeuvres at the end of each crop row in the paddock.
This is done through a user interface shown in Fig. 12(a).

Once the robot is on an active leg between two way points, the
guidance system uses a standard line-of-sight guidance algorithm
to provide a reference to the heading motion control system. In this
algorithm the course to steer (or alternative the desired rate of turn) is
computed based on the current position and heading so as the cross-track
error—computed as the orthogonal projection of the point of reference
on the robot onto the track. The configuration relevant to the line-of-sight
guidance is shown in Fig. 12(b).

(a) User interface for operation planning. (b) Line-of-sight configuration for guidance.

Fig. 12. Operation planning and guidance system.

4.3.3 Motion control

For mechanical systems, it is convenient to consider control as the function
that generates the desired generalised forces in the particular degrees of
freedom in which we seek to move the system. For example, in the case
of AgBotll, we have two degrees of freedom: longitudinal translation and
rotation about its vertical axis.
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Based on the Lagrange-D’Alembert procedure for the formulation of
equations of motion of non-holonomic systems, the following state-space
model for the robot can be obtained:

1=l +-L R, 0) + L F, ®)
. me

w= mwu +mTR(u, a)) +mTD, (9)
Y=o, (10)

x=1u cos (), (11)

y=usin (p), (12)

where u is the forward speed, w is the rate of turn, y is the heading angle,
and x and y are the local cartesian coordinates with respect to the point of
reference O—see Fig. 13(a). The thrust force, denoted by F ) is produced by
the drive train of the robot, and the rolling resistance force is denoted by
R(u, ). Similarly, in (9), we have added the driving torque T, produced
by the differential steering of the drive train, and the resistance friction
torque T, (1, w). The parameter m is the mass of the robot, I is the moment
of inertia about its centre of mass, and ¢ is the offset of the centre of mass
C relative to the point of reference P used to formulate the equations of
motion. Details of the configuration space are depicted in Fig. 13(a).
Figure 13(b) shows a block diagram of a motion control system that
is used in AgBotll. The speed controller takes the reference speed v* and
the actual velocity v estimated by the navigation system, and provides a
set point of thrust force z,. The heading controller has two nested feedback
loops. The inner loop is an angular rate loop and the outer loop is the
heading angle loop. The heading loop uses information about the desired
heading y* and the actual heading y to generate a reference angular rate

. *
“ R it
Heading w Rate
Control [ |Control
v v
0*® i
(a) AgBotlI configuration. (b) Motion controller structure.

Fig. 13. AgBotllconfiguration space and motion control structure.
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w* for the inner control loop. The latter uses this information together with
the actual angular rate  to generate the desired control torque 7} in the
vehicle. Both, the speed and rate controllers have an integral action. In
order to design the controllers, we can linearise the rate state-space model
about the point u = # given by the nominal speed and w = @ = 0. This,
decouples the model for design, but the robustness of the controller should
be assessed in terms of the coupled nonlinear model. As we can see, a key
advantage of the actuator configuration of AgBotll, from the point of view
of control design, is that the two degrees of freedom of interest can be
decoupled for control design. This simplifies the control design task. The
control structure depicted in Fig. 13(b) has been successfully applied to
marine and aerospace vehicles.

Note that once the vehicle reaches the end of the paddock and requires
turning, the structure of the control system remains the same; it is the
guidance system which switches modes.

Vehicles with wheels are subject to non-holonomic constraints; this
means that although the vehicle can take any position and orientation on
the plane (a configuration), the trajectories that take the vehicle from one
configuration to another are restricted. For example, AgBotIl cannot move
sideways, but using a combination of forward, backward and turning
motion it can be at a pose to the side of its initial pose. The guidance system
must address the problem of generating feasible trajectories in agreements
with the vehicle motion constraints.

4.4 Control Allocation

The use of control allocation is borrowed from aerospace and marine
vehicles. In general, it provides two key features to motion design of
vehicles. First, the motion controller is designed to output forces; and hence,
the design of this controller is kept within the realm of mechanics. This has
an advantage that concepts related to energy and passivity can be used in
the design and demonstrate stability properties of the controller. Second,
in systems that are overactuated (not the case of AgBotlI though), control
allocation provides a way of implementing tolerance to actuator failures,
since, it can shut down a failed actuator and re-configure the remaining
healthy ones to provide the desired control forces. This does not require
re-tuning the controller or switching to a different set of control gains.

In order to describe the control allocation mapping, we need to
understand how the actuators produce the generalised forces on the robot.

Each traction wheel of the robot is commanded by and electrical motor
coupled to the wheel with a gearbox of ratio N > 0. If we assume that
all the moments of inertia of the motor rotors and the wheels have been
reflected and are lumped in the mass m of the robot, then we can consider
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each gearbox and wheel as the combination of two ideal transformers—
thus, preserving power. For each gearbox, we then have the following
balance of power:

T o =T w

mm w o w

(13)

where T and o, are the motor torque and angular rate and T and w_ are
the wheel torque and angular rate. Hence, the torque on the wheel can be
written as a function of the torque on the motor:
2} 2}
T =T =NT , where, N=—" (14)
w m m w

[9)
w w

For the ideal wheel (massless) of radius 7,

Tw =Fu (15)

w o w w w

where F is the thrust produced by the wheel and u  is the linear
translational velocity of its axle. Hence,
u
where, r = = (16)
®

w

w
F=cvr =lp

u w_ oy w
w

Therefore, the combined relationship between the torque and the
thrust of the wheel is

r =Nt (17)

w r m

The total driving force on the robot is the sum of thrust of the left and
right wheel (F , F,) namely,

N
Fy=F +F,= 2T

ot 1o (18)
where, T, , T, are the thrust on left and right wheel.

The torque due to the differential driving is given by
T,=—dF, +dF; = dTN(_TLm +T,), (19)

where d is the offset of the wheel from the vehicle’s centre line. Expressions
(18) and (19) provide the inputs to the state-space model (8)—(12).

The control allocation function maps the desired generalised forces *
that the motion controller demands into desired actuator commands J*:

0* = f (7). (20)

These actuator commands (voltage, currents, etc.) are the input to the
local actuator controllers that implement the true actuator command d.
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The latter is then mapped into the actual generalised forces r by the
actuator configuration mapping:

= f4(9). (21)

Under perfect control allocation the composition f, 0 f. should be the
identity mapping, and thus o* ~ t.
In the case of AgBotll, we consider the following vectors:

D

T

D

o0&

A
T=

Then, the actuator configuration mapping f,: = 7 can be expressed as

F

D

T

D

TLm
TRm

_N
Tr

11
-d 1

and the control allocation mapping f . 7* - J* can be expressed as
-1

T%,

T>{-

Rm

Fy
T3

=L
N

1 1
- 1

Due to the integral action of the speed and rate controllers, these
should be implemented within a multivariable anti-wind up scheme.
Such implementation is beyond the scope of this chapter.

5. WEEDING IMPLEMENT DESIGN

The integrated multi-mode weed destruction system for AgBotll
incorporates both a selective mechanical weeding system and selective
spray system. Individual weed species can be targeted by either the
mechanical or spray system depending on the result of the vision-based
weed detection and classification system.

To identify weeds, we developed a vision-based on-board detection
and classification system comprising of a ground facing camera and
an image processing computer. Weeds are first detected using colour
information in the image and then an algorithm determines the species.
The prototype assembly for the weed detection and classification system
is capable of working continuously throughout the night and during
daylight periods of uniform lighting.

Once the weeds are detected and classified, the system determines the
best method for weed destruction and triggers the actuation of either the
mechanical or spray modules. The modules are attached to the underside
of the AgBotll platform and for the purposes of the first prototype have
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SPRAY MODULE MECHANICAL WEEDING MODULE LIGHTING MODULE VISION MODULE

Fig. 14. Weeding implement system modules.

been designed to a width of 1 m. This can be extended to the full width of
the robot in future designs. An overview of the weeding system attached
to the AgBotlIl can be seen in Fig. 14.

The key aspects of the design in mechatronic are the inter-relations
amongst:

® Processing speed of the vision-based weed detection and species
classification system;

® Accuracy of the navigation and motion control system;

¢ The width of the individual mechanical implement and the speed of
actuation.

The latency due to the processing speed of the vision-based weed
detection and species classification system combined with the operational
speed of the robot is used to determine the spatial separation between the
camera and the weeding actuator and the speed of actuation. Whereas
the number of actuators and the expeted number of actuators active
determine the energy storage requirements of the robot as well the size
of the accumulator of the pneumatic system that activate the mechanical
weeding implements.

In order to assess these aspects of the design, we constructed
a simulation model—shown in Fig. 15. This model together with a
probabilistic model about the weed density was used in an iterative design
to determine the dimensions and the speed of actuation of the weeding
array.
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(a) Simulated weed camera and weed implements. (b) Simulation of entire weed system.

Fig. 15. Simulator used to assess design characteristics of weeding operations.

6. TRIALS

A common task for an autonomous agricultural robot is to keep a
fallow field free of weeds. To demonstrate the effectiveness of AgBotll
in performing this task, an experiment was conducted on a small fallow
tield. AgBotll was run over the field twice per week and the weeds were
removed using the mechanical weeding implement as they appeared.

A scale map of the field used for the trial is shown in Fig. 16, the
field was approximately 1000 m? (26 m by 38 m). The field was initially
ploughed using a large tractor and then left alone to allow the weeds
to emerge naturally. The field had a very large seed bank ensuring the
growth of a large number of weeds when it rains.

The field was divided into one metre wide rows as shown in Fig. 16.
One third of the field was selected to remain untouched as a control for the
experiment, while the remaining two thirds had the weeds removed by
the AgBotll. The rows to be used as control rows were selected at random
and their distribution is also shown in Fig. 16.

The coverage of weeds (density per unit of area) in the control and
treated rows were recorded on each iteration over 42 days. The amount
of the soil tilled by the mechanical implements was also recorded on each
iteration. There was a significant rain early in the experiment that caused
a very large number of weeds to germinate at the same time; between day
17 and 24 the weed density in the field increased from 0.12 weeds per m?
to 37.3 weeds per m?.

Figure 17(a) shows the amount of weed coverage and the response
of the autonomous weeding array throughout the field test. Figure 17(b)
displays the percentage of weed coverage in the treated and control
sections of the field. It is clear from the figure that after the rain, the
amount of weed coverage in the control grows rapidly, however, the
coverage in the treated area grows slowly and then starts to recede. The
weed coverage in the treated area peaks at 4.5% while the weed coverage
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current: clearichonge.

Fig. 16. Field used for mechanical weeding trials. Clear colour areas correspond to robotic
weeding areas.
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(a) Percentage of the field covered in weeds. (b) Percentage of the field mechanically treated.

Fig. 17. Weed growth and subsequent weed treatment over time during the trial.

in the control area reaches 37%. At the conclusion of the trial, the weed
coverage in the treated area is reduced to 1.5% demonstrating the efficacy
of the AgBotll and the autonomous weeding array at weed management
in a fallow field. The weed coverage is non-zero because new weeds are
continuously germinating in the field due to the large seed bank and the
summer weather.

Another way to measure weed coverage is to count the number of
weeds. In the initial stages of the trial this was possible. However, as
the weed density increased and the weeds grew larger counting was no
longer possible in the control areas. Thus, the percentage area of weed
coverage is used as a measure for the amount of weeds in the field. In the
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treated sections of the field the weed density peaked at 11.3 weeds per m?
on day 21.

We also conducted a showcase on the 7th December 2016 at
“Glenwoon”, (Bowenville, Queensland). The system was transported to
the property two days in advance of the showcase to allow time to set-
up and trial the systems performance in a broadacre farm environment.
Two demonstrations were organised and were run throughout the day.
The morning session was attended local farmers and representatives
from the advanced manufacturing sector. Figure 18 shows some of the
group members attending the morning session demonstrating the robot
capabilities.

The feedback from the attendees was overwhelmingly positive,
with many of the farmers impressed with AgBotll weed detection and
mechanical removal capabilities. Farmers were most interested in the
potential for the vision and mechanical weeding capabilities. Many of the
farmers were also interested in the plans to market this technology, and
were keen on being part of any future industrial trials and testing.

A particular situation of interest developed in both morning and
afternoon sessions. As AgBotll was roaming the paddock mechanically
weeding, a few farmers asked “Why is it activating the weeding implement
when there are no weeds?” Upon inspecting the soil where the robot had
been weeding, we found small weeds 5 mm to 10 mm diameter leaves and
20 mm root. The farmers were very impressed. One farmer commented
that if he sends people to chip weeds, they would rarely pick that.

Fig. 18. Demo trials conducted for farmers.
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7. CONCLUSION

In this chapter, we discuss key aspects of mechatronic design for a
weed-management robotic system. We highlight the process going from
functional and operational specifications to technical specifications
under which a design is to be conducted and feasible designs are to be
assessed. We also attempted to describe the key interactions among design
decisions in mechanical components, dynamics, hardware, actuators and
control. These design interactions are at the raison d’étre of a mechatronics
approach to design. Then, we proceed to specify various aspects of the
design and the factors leading to particular decisions about the design of
our prototype robot. We finish the chapter with the results of a six-week
trial on mechanical weeding.
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Robotics for Spatially and Temporally
Unstructured Agricultural Environments
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1. INTRODUCTION

The farming industry faces many problems that threaten its sustainability.
Among the most important are the detection, prevention, and control of
devastating plant pests and diseases. Management of pests and diseases
(in addition to water and nutrients) is based on scouting a field weekly.
Farmers can spend between 10 to 40 US dollars per acre to have their fields
inspected by a human field scout. Depending on the crop, detection of
even a single insect can trigger an intensive pesticide spraying program.
On the other hand, non-comprehensive scouting may miss populations
of pests that sometimes congregate in localized areas or a disease that
is asymptomatic until it has spread to many areas of the field. As a
consequence of this inefficient and sometimes inaccurate method, farmers
spray preventatively for many plant pathogens. If more extensive and
efficient quantification of pest control, water stress, and nutrient needs
were possible, a tremendous cost savings could be achieved by a decrease
in unnecessary spraying. Currently, the only solution to potential pest
problems is to spray at the first sight of pests and treat the entire field.
This leads to an overuse of pesticide which is costly and environmentally
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unfriendly. However, the risk of losing crops to pests is too high not to
take necessary precautions.

The development of an automated field scout (AFS) would make it
possible to determine the spatial and temporal distribution of pests and
diseases, nutrient deficiencies, and water stress in a field. The AFS would
help the farmer assess management strategies after they are implemented
and help determine best management practices. This work describes a
collaborative project among the Georgia Tech Research Institute, the Georgia
Institute of Technology, and the University of Georgia in developing and
fielding an AFS system composed of four main components: an autonomous
ground vehicle, a vehicle-mounted 4-dimensional (4D) mapping system, a
vehicle-mounted robot arm used for leaf and soil sampling, and a farmer/
consultant who will interact with the AFS system to meet the needs of each
particular farm. The project focuses on peanuts, though the developed AFS
could be adapted for any crop that requires intensive management.

In the following sections, the autonomous ground vehicle (referred
to as the Red Rover) is first described, followed by a consideration of 4D
mapping for agricultural applications. Robot arm control using visual
servoing is then discussed for two particular scenarios: leaf sampling
and apple picking (included here for its novel use of dual robot arms).
Implementation results are described in their respective sections.

2. AUTONOMOUS GROUND VEHICLE

There are a few autonomous systems that have been developed around
the world, and at least one is in commercial use. The Autonomous
Tractor Corporation (Fargo, ND) offers a platform to connect multiple
implements to their modular systems. This system is made specifically
for planting seeds, but has been re-purposed for row crop inspection.
Kinze manufacturing is testing a driverless tractor that pulls a grain cart
in tandem with the grain combine for unloading during harvest. John
Deere (Machine Sync) and CaselH (V2V System) are developing similar
systems but with a driver in the seat. The combine takes control of the
tractor pulling the grain cart and matches speed and distance to unload
automatically, reducing stress and need for highly experienced drivers.
While companies like Google may be garnering all the publicity
for autonomous vehicles, research has been robustly moving forward
in development of operator-assisted and fully autonomous systems in
agriculture. GPS-guided and steered tractors have shown incredible
benefit in reduced planting and harvesting losses (Bergtold, 2009; Vellidis
et al., 2013), reducing driver fatigue, and extending work hours in low
visibility. Complete autonomy remains elusive due to safety concerns, but
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the agricultural industry is moving in that direction. Autonomous vehicles
for orchard operations in citrus have been proven (Subramanian, 2009).

The use of unmanned aerial systems (UAS) has gained a lot of
attention for scouting fields. However, it appears that any detection of
plant stress from the air will require ground-truthing to isolate the cause
and come up with a management strategy for the crop. The AFS would
provide persistent and more comprehensive coverage of the field for this
crucial ground-truthing.

2.1 Hardware

The Red Rover AFS (Fig. 1) is a custom-built articulated vehicle (West
Texas Lee Corp.) with modifications to meet the harsh environmental,
navigation, and obstacle avoidance requirements of a field that has both
unstructured (open areas and end of rows) and structured elements (crops
in rows are visible). The drive system is hydrostatic and the left and right
turns are achieved using hydraulic actuators powered by a 0.45 cc/rev
fixed displacement pump (Bucher Hydraulics, Italy) and a 4-port, 3-way
closed center solenoid actuated DCV. The fixed gear pump is connected
in tandem with an axial-piston variable-rate pump (OilGear, maximum
displacement of 14.1 cc/rev) with swashplate for directing hydraulic fluid
for forward and rearward movement, to all four wheels. The pump tandem
is powered by the onboard Kohler 20 HP gasoline engine. The swashplate
angle of the hydrostatic drive is controlled by a microcontroller using a

1. Control System
2 Drive System

3. Electrical System

4. Manuel Override/Controls

5. Emergency Shutdown
6. 2D HD Camera

7.3D TOF Camera

8 RTK GPS

$-14. Ultrasound Range Sensors

Fig. 1. Red Rover and labeled systems.
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20 cm stroke electric linear servo. Each hydraulic wheel motor has a 240
cc/rev hydraulic motor (Parker Hydraulics, USA). Maximum articulation
angle is 45 degrees and the wheelbase is 180 cm. Height and width of
the vehicle can be adjusted up to a maximum clearance of 122 cm and a
maximum width of 234 cm.

A waterproof 90-degree rotation servo motor and microcontroller
manages the engine RPM via the engine throttle. Engine RPM will be
monitored for safety as well as for control of the speed and turning rate of
the Red Rover.

There are 2 electrical boxes on the rover. One holds the main server
or Robot Operating System (ROS) Master and the other contains relays,
microcontrollers, and two 12V DC to DC voltage converters. A forced
air cooling system is used to keep each of these boxes within specific
temperature limits (wide fluctuations can warp the electrical boards). A
temperature feedback system was developed to pump air into the vortex
tube and deliver it to the electrical boxes. A compressor and air tank is used
to keep compressed air available at 100 psi and 10 cubic feet per minute.

To protect the Red Rover and its electronic systems, as well as
pedestrians working in the vicinity of its operation, obstacle avoidance
components and electrical overload protection have been incorporated.
For example, in case of a detected obstacle, the controller will
automatically send the swashplate to neutral and reduce engine RPM. If
collision continues to be imminent, the system will shut itself off. This
is accomplished using a combination of RGB camera, time-of-flight
camera, and ultrasonic sensors to provide the Red Rover awareness of
its surroundings. Each sensor represents a node that passes information
to the ROS Master and data is processed using a Kalman filter to assess
obstacles and assist GNSS/IMU navigation. Information from the filter
will be passed back to ROS to ascertain if a controlled safety maneuvers
is needed.

RTK-GPS is being integrated using the Piksi SWIFT navigation
system (Swift Navigation, USA). This system is low-cost and highly
accurate. Currently one receiver is being used as the base station and the
other as the Rover. Future development will incorporate a cellular modem
and NTRIP network communications from a continuously operating
reference station. Rover navigation utilizes ROS and user-defined path-
following algorithms that incorporate the multiple awareness sensors
(Rains et al., 2014).

2.2 Software

There are three main software components for control and navigation of
the Red Rover. All 2D visual data captured through a RGB camera will
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be processed by OpenCV machine vision algorithms for object detection
and identification for obstacle avoidance, as well as crop identification for
support of vehicle navigation. 3D depth of field data collected by the time-
of-flight camera will be processed by the OpenCV Point Cloud Library.
The two data streams, along with GNSS data, will be given to ROS for
mapping and control of the Rover’s maneuvers.

For further navigation from one location in the field to another, the
paths of each crop row will already be stored on-board and an optimization
routine is used to find the shortest path to relocate for data collection.
Specificlocations will be relayed manually by the farmer or crop consultant
based on analysis of aerial data, ground data, and historical experience.
Rover control and communications rely on Ethernet protocols and are
integrated using ROS libraries. Ethernet is a standard communications
protocol and a gigabit main switch is used to provide the communications
speed required for real-time sensing and feedback controls. Diagnostic
sensors (engine temperature, engine RPM, and hydraulic pressure)
and navigation and avoidance sensors (GNSS, IMU, cameras) will each
be defined as nodes within the ROS architecture. Remote control and
observance of the system properties are available through a web-server
on the ROS master and a cellular data modem. Control and observation
of the on-board sensors will be accessible over multiple outlets for the
farmer/consultant using the system. The on-board GUI will be available
from the data modem on remote terminal, tablet, or smartphone interface.
From any of these, a user will have access to the ROS nodes and sensor
data from any of the cameras, GNSS, robot arm, and diagnostic sensors.
This adds a level of observing ability, that may be beneficial for examining
plants in real-time from a remote location or in diagnosing problems with
the Red Rover system operations.

3. 4D MAPPING

Computer vision is a powerful tool for monitoring crops and estimating
yields with low-cost image sensors (Hague et al., 2006; Nuske et al., 2014;
Font et al., 2015; Sa et al., 2016). However, the majority of this work only
utilizes 2D information in individual images, failing to recover the 3D
geometric information from sequences of images. Structure from Motion
(StM) (Agarwal et al., 2009) is a mature discipline within the computer
vision community that enables the recovery of 3D geometric information
from images. When combined with Multi-View Stereo (MVS) approaches
(Furukawa and Ponce, 2010), these methods can be used to obtain dense,
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fine-grained 3D reconstructions. The major barrier to the direct use
of these methods for crop monitoring is that traditional SfM and MVS
methods only work for static scenes, which cannot solve 3D reconstruction
problems with dynamically growing crops.

We address here the problem of time-lapse 3D reconstruction with
dynamic scenes, to model continuously growing crops. We call the 3D
reconstruction problem with temporal information, 4D reconstruction.
The output of 4D reconstruction is a set of 3D entities (point, mesh, etc.),
associated with a particular time or range of times. An example is shown
in Fig. 2. A 4D model contains all of the information of a 3D model, e.g.,
canopy size, height, leaf color, etc., but also contains additional temporal
information, e.g., growth rate and leaf color transition. We also collected a
field dataset using a ground vehicle equipped with various sensors, which
we will make publicly available. To our knowledge, this will be first freely
available dataset that contains large quantities of spatio-temporal data for
robotics applications targeting precision agriculture.

June 23

Fig. 2. Reconstructed 4D model of a peanut field by our approach. Each time slice shown has
been reconstructed from a dense point cloud.
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We cite three main contributions of our 4D mapping research:

* Development of an approach of 4D reconstruction for fields with
continuously changing scenes, mainly targeting crop monitoring
applications.

* Development a robust data association algorithm for images with
highly duplicated structures and significant appearance changes.

* We collect a dataset containing ground truth crop statistics obtained
from a field vehicle for evaluating 4D reconstruction and crop
monitoring algorithms.

We begin by stating several assumptions related to crop monitoring,
before specifying the details of our 4D reconstruction algorithm.

® The scene is static during each data collection session.
¢ The field may contain multiple rows.

The first assumption is acceptable because we only focus on modeling
crops and ignore other dynamic objects like humans. The crop growth
is also too slow to be noticeable during a single collection session.
The second assumption is based on the geometric structure of a typical

field. The 4D field model reflecting these two assumptions is illustrated
in Fig. 3.
Our proposed system has three parts.

1. A multi-sensor Simultaneous Localization and Mapping (SLAM)

pipeline, used to compute camera poses and field structure for a
single row in a single session.

2. Adata association approach to build visual correspondences between
different rows and sessions.

3. An optimization-based approach to build the full 4D reconstruction
across all rows and all sessions.

To generate the 4D reconstruction of the entire field, we first compute
3D reconstruction results for each row at each time session, by running

Space (Rows)

Fig. 3. The field 4D model. The field contains multiple rows and there are multiple time
sessions of the field.

Time
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multi-sensor SLAM independently. Next, we use the data association
approach to match images from different rows and sessions, building a
joint factor graph that connects the individual SLAM results. Finally we
optimize the resultant joint factor graph to generate the full 4D results.

3.1 Multi-Sensor SLAM

The SLAM pipeline used in this work has two parts, illustrated in Fig. 4.
The first part of the SLAM system is a front-end module to process images
for visual landmarks. SIFT (Lowe, 2004) features are extracted from each
image and SIFT descriptor pairs in nearby image pairs are matched using
the approximate nearest neighbor library FLANN (Muja and Lowe,
2014). The matches are further filtered by 8-point RANSAC (Hartley and
Zisserman, 2004) to reject outliers. Finally, a single visual landmark is
accepted if there are more than 6 images that have corresponding features
matched to the same landmark.

The second part of the SLAM system is a back-end module for
estimating camera states and landmarks using visual landmark
information from the front-end and other sensor inputs. Since the goal
of the multi-sensor SLAM system is to reconstruct a single row during a
single data collection session, the back-end module of the SLAM system
estimates a set of N camera states X, at row r, and time t, given visual
landmark measurements from the front-end module, and other sensor
measurements, including an Inertial Measurement Unit (IMU) and GPS.

SIFT Feature
Extraction/Matching

Factor Graph

- = Optimization
Images with iISAM?2
. : > o
A 2
& \ 3D Map and
GPS IMU e/ CameraPoses

Fig. 4. Overview of multi-sensor SLAM system.

3.2 Robust Data Association over Time and Large Baseline

The second key element of our approach is robust data association. Data
association is a key technique to get reconstruction results of more than a
single row at a single time; however, the data association problem between
different rows or times is difficult, since there are significant appearance
changes due to illumination, weather or view point changes. The problem
is even more difficult in crop monitoring due to measurement aliasing
(Indelman et al., 2016): fields contain highly periodic structures with little



58  Robotics and Mechatronics for Agriculture

visual difference between plants (see Fig. 2). As a result, data association
problems between different rows and times is nearly impossible to solve
by image-only approaches.

Rather than trying to build an image-only approach, we use single
row reconstruction results output by SLAM as a starting point for data
association across rows and time. The SLAM results provide camera pose
and field structure information from all sensors (not just images), which
helps us to improve the robustness of data association.

3.3 4D Reconstruction

The third and the last part of our pipeline is a 4D reconstruction module.
The complete 4D reconstruction pipeline is illustrated in Fig. 5. We define
the goal of 4D optimization as jointly estimating all camera states X and
all landmarks L across all rows and times (sessions). The measurements
Z includes all single row information as well as data association
measurements Z_ that connect rows across space and time.

Data association is performed across different rows and times to get
Z_. Exhaustive search between all row pairs is not necessary, since distant
rows are not visible from each other in the images, and large timespans
makes matches between images difficult to calculate. In our approach we
only match rows next to each other in either the space domain (nearby
rows in the field), or the time domain (nearby date).

The point cloud estimate of L is relatively sparse, since it comes from
a feature-base SLAM pipeline, where only points with distinct appearance
are accepted as landmarks (in our system SIFT key points are accepted).
An optional solution is to use PMVS (Furukawa and Ponce, 2010), which
takes estimated camera states to reconstruct dense point clouds.
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Fig. 5. Overview of 4D reconstruction pipeline. Dash box of PMVS dense reconstruction step
means it is optional.
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3.4 Dataset

To evaluate the performance of our approach with real world data, we
collected a field dataset with large spatial and temporal scales. Existing
datasets with both large scale spatial and temporal information include
the CMU dataset (Badino et al., 2011), the MIT dataset (Fallon et al., 2012),
and the UMich dataset (Carlevaris-Bianco et al., 2016). However, all of
these datasets are collected in urban environments, and are not suitable
for precision agriculture applications.

The dataset was collected from a field located in Tifton, GA, USA. The
size of the field is about 150 m x 120 m, and it contains total 21 rows of
peanut plants. The map of the field is shown in Fig. 6. We use a ground
vehicle (tractor) equipped with multiple sensors, shown in Fig. 6, to collect
all of the sensor data. The equipped sensors include: (1) a Point Grey
monocular global shutter camera, 1280 x 960 color images are streamed
at 7.5 Hz, (2) a 9DoF IMU with compass, acceleration and angular rate
are streamed at 167 Hz, and magnetic field data is streamed at 110 Hz, (3)
a high accuracy RTK-GPS, and a low accuracy GPS, both of them stream
latitude and longitude data at 5 Hz. No hardware synchronization is used.
All data are stored in a SSD by an on-board computer.

We recorded a complete season of peanut growth which started
May 25, 2016 and completed Aug 22, 2016, right before harvest. The data
collection had a total of 23 sessions over 89 days, approximately two per
week, with a few exceptions due to severe weather. Example images of
different dates are shown in Fig. 7. Each session lasted about 40 minutes,
and consisted of a tractor driving about 3.8 km in the field.

— GPS+IMU
'

Camera

- el
e AN ——GPS trajectory

- @\ + Measurement sites
g p/Computer \

Fig. 6. Top left is the tractor collecting the dataset; Down left shows sensors and computer
(RTK-GPS is not shown); Right is a sample RTK-GPS trajectory, and sites of manual
measurements are taken, overlay on Google Maps.
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Fig. 7. Eight sample images taken at approximately same location in the field, dates are
marked on images.

In addition to sensor data, ground truth crop properties (height and
leaf chlorophyll) at multiple sampling sites in the field were measured
weekly by a human operator. There were a total of 47 measuring sites, as
shown in Fig. 6.

3.5 Results

We ran the proposed 4D reconstruction approach on the peanut field
dataset. We implemented the proposed approach with the GTSAM
C++ library. We used RTK-GPS data from the dataset as GPS input, and
ignored lower accuracy GPS data. Since the peanut field contains two sub-
tields with little overlap (see Fig. 6), the two sub-fields were reconstructed
independently and aligned by GPS. Since the tractor runs back and forth
in the field, we only use rows in which the tractor driving south (odd
rows), to avoid misalignment with reconstruction results from even rows.
An example of densely reconstructed 4D results shown in Fig. 2.

Although Fig. 2 shows that the 3D reconstruction results for each
single session qualitatively appear accurate, to make these results useful
to precision agriculture applications, to precision agriculture applications
they should be evaluated quantitatively as well. In particular we wanted
to answer the following questions:

* Are these 3D results correctly aligned in space?

e Are these 3D results useful for measuring geometric properties of
plants, useful for crop monitoring (height, width, etc.)?

To answer the first question, we visualize the 4D model by showing all
3D point clouds together. We visualize part of the 4D sparse reconstruction,
result is shown in Fig. 8. Point clouds from different dates are marked in
different colors. We can see from the cross section that the ground surface
point clouds from different sessions are well aligned, which shows that all
of the 3D point clouds from different dates are well registered into a single
coordinate frame. This suggests that we are building a true 4D result.
We can see the growth of the peanut plants, as the point cloud shows
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Fig. 8. Cross-section of part of the sparse 4D reconstruction results at 3rd row. Only 4
sessions are shown to keep figure clear.
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Fig. 9. Estimated peanut heights at 12 sampling sites in blue, with ground truth manual
measurements in black lines.

“Matryoshka doll” like structure, earlier crop point clouds are contained
within point clouds of later sessions.

Toanswer thesecond question, weshow some preliminary crop analysis
results using reconstructed 4D points and compare them to ground truth
measurements we took manually. We setup a simple pipeline to estimate
height of peanut plants from sparse reconstructed 4D point clouds at
multiple sites, by first estimating the local ground plane by RANSAC
from May 25’s point cloud (when peanuts are small and ground plane is
well reconstructed), second separate peanut’s point clouds by color (using
RGB values), and finally estimate the distance from peanut canopy’s top
to ground plane. Preliminary height estimations of twelve sampling sites
are shown in Fig. 9. With the exception of sites 22 and 25, which have
slightly biased estimated heights due to poor RANSAC ground plane
estimations, results of the sites meet the ground truth measurements well.
This shows that we can compute reasonable height estimates even with
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a simple method, and proves that the 4D reconstruction results contain
correct geometric statistics.

4. ROBOT ARM CONTROL USING VISUAL SERVOING

Robot arms work best in structured environments where their desired
tasks are known before they need to be executed. However, the field
of robotics is ever expanding out of factory-like environments and into
broader applications. Thus, the demand for completing unstructured
tasks, tasks that have elements that cannot be known ahead of time, is
increasing. This research will focus on the unstructured task of having
a robotic arm grasping a leaf from a plant. The challenges in this task
involve both the identification of a leaf within the space of a camera image
as well as locating the leaf in the 3D Cartesian world. While the type of
leaf can be assumed to be known, and the approximate location of the
plant is assumed to be known, neither the exact geometry of the leaf nor
the approximate location of the leaf is known. The task for the arm is to
search for the leaf, identify the leaf, and then, using 2D pixel information,
grab the leaf with its manipulator.

Identifying and localizing a leaf is not a trivial problem. Leaves vary
in size and appearance, and are susceptible to overlapping and occlusions.
Moreover, the implementation should be robust to variations in natural
illumination. Deep learning techniques have achieved great results in
object detection, while demonstrating good computational performance
by using modern GPU computing. Once information about the leaf can be
determined in the 2D image space, the manipulator can attempt a routine
to grasp the object.

Visual servoing is the process of controlling a robotic device using real-
time visual information in a feedback loop. Image Based Visual Servoing
(IBVS) is a classical approach to visual servoing in robotics that attempts
to converge on an object in 3D space by only using information about the
objects 2D pixel geometry. IBVS does not assume any information about
the object being viewed; instead, this method uses a given set of desired
points in the image space that it uses for its error calculations (Chaumette
and Hutchinson, 2006). IBVS is a widely studied topic that is often used in
robotics applications.

Robotic arms typically have a virtue in their design that offer an
alternative or supplement to the IBVS approach. Assuming that the
kinematics of the arm and the rotation of the joint angles are known
(a necessity for most joint control methods), the final position of the
end-effector can be determined. Since the camera is rigidly attached to
the manipulator, the position and orientation of the camera is always
known in Cartesian space. Using the location of the camera and the pixel
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coordinates of desirable feature points, the 3D location of images can be
determined. Monoscopic Depth Analysis (MDA) uses multiple images
and triangulation to deduce the position of feature points in Cartesian
space relative to the camera. Although the method of visual triangulation
is widely known, the implications of using the MDA approach for robotic
manipulators has a vast potential. MDA is a simple routine that has been
used in other visual applications (e.g., Kalghatgi and Sadegh, 2012) and
holds promise in improving the control of robotic manipulators.

The task of picking a leaf can be separated into the following,
unstructured sub-tasks: determining the position of the leaf in the image
space and transforming its position into Cartesian space. The method of
using Convolutional Neural Networks as a means of identifying the leaf
in the image space will be examined. To demonstrate the effectiveness of
MDA as a control scheme, the typical elements of classical IBVS approach
as well as MDA will be discussed for the purpose of comparison. This
approach to visual servoing was tested using an experimental setup and
the results will be discussed.

4.1 Leaf Detection

Object detection—a fundamental problem in Computer Vision—consists
of producing the bounding boxes around the objects of desired class on an
image. Traditional Machine Vision techniques are generally not suitable
for the detection of objects like leaves. First, the leaves on the plants have
complex backgrounds that often include other leaves, which makes it hard
to separate an individual leaf from the background. Second, leaves have
complex shapes and appearances, thus creating a model and estimating
the parameters is not computationally feasible for a real-time application.
Finally, since the plants are located in the field there is a wide variation
in natural illumination. That excludes many color-based approaches that
have to be finely tuned to the lighting conditions. Hence, the problem
of leaf detection requires use of Machine Learning algorithms. In recent
years Convolutional Neural Networks have become a popular approach.

To train the model we accumulated a small dataset of leaves images
cropped to 227 x 227, labeled with two classes (leaves and background).
Our network is based on the AlexNet architecture (Krizhevsky et al., 2012)
and consists of five convolutional layers and two fully-connected layers.
The model was fine-tuned by initializing with weights trained on a large
ILSVRC12 dataset (1.2 millionimages), and then trained on our task specific
dataset of leaves. This common technique greatly improves the robustness
and accuracy of the model. During deployment the algorithm treats fully-
connected layers as convolutional and, thus, gets the probability map for
the target classes at once, instead of making many classification calls in a
traditional sliding window approach.
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Fig. 10. Examples of leaves detections. The number in the corner of a bounding box indicates
the score of the detected leaf.

In our particular problem, we do not have to detect all the leaves in
the frame, but rather identify a good candidate for subsequent sampling,
i.e., the one in front of the camera, not occluded, and not having extreme
angles that are hard for the robotic arm to approach. That filtering is
incorporated in the dataset creation (leaves at extreme angles are excluded
from the dataset) and in selecting a candidate leaf processing (where
after estimating 3D coordinates it can be dropped if deemed unsuitable).
Figure 10 shows examples of leaf detections.

4.2 Leaf Tracking

To allow for successful execution of the leaf picking, there is a need to
continuously track the target leaf from frame to frame as we move the
robotic arm. Furthermore, triangulation of 3D coordinates requires
precisely matched points within the target leaf for two consecutive
frames. Since, during the execution, we have only one target leaf from the
old frame and few candidate leaves in the new frame, we can efficiently
obtain the SURF descriptors for these leaves (which would otherwise
be computationally prohibitive). Then, to rule out the keypoints in the
background we use green color thresholding on the leaf image; we also
exclude the points in the corners, because they could belong to other
leaves appearing within the bounding box.

For each pair of the old target leaf and a new candidate leaf, we
perform quick matching with FLANN. We filter out the outliers with
RANSAC algorithm that estimates the largest set of points that agrees with
a perspective transformation. At the end of this procedure, the correct leaf
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Fig. 11. Leaf tracking on several frames. Yellow bounding box indicates the target leaf that
is being tracked; blue boxes indicate other detections in the frame; keypoints are highlighted
on the leaves.

has significantly higher number of matches and is updated as our target.
If all the leaves have low number of matches, we assume that the target
leaf is missing in the current frame. We continue searching for the leaf for
an arbitrary number of frames, and if it is not found, we pick a new target.
Refer to Fig. 11.

This approach, typically, produces over one hundred matched feature
points within a leaf. The points, however, are consistent only between
one pair of consecutive frames, which makes it not suitable for IBVS.
Identifying consistent features on a leaf is difficult because for each frame
a given leaf will change its position and orientation within the bounding
box, and on some occasions parts of the leaf can be outside of the bounding
box. The usage of bounding box regression (Kuo et al., 2015) and semantic
segmentation-aware models (Gidaris and Komodakis, 2015) will provide
more precise localization of the leaf and may allow for identification
of the four corners of the leaf along the axes. The performance of the
aforementioned approaches on leaves and the extent to which it may help
to draw up a constant feature detection method will be evaluated in our
future work.

4.3 Visual Servoing

Different forms of visual-servoing can be used which would allow a
manipulator to interact with an unstructured object. However, each
form has varying strengths and weaknesses which would affect the
performance of the robotic arm. In this analysis, two forms of visual-
servoing were considered for implementation: Classical Image Based
Visual Servoing and Monoscopic Depth Analysis (MDA). Some of the
important factors in visual-servoing are formulation of the error vector,
analysis of feature points, and control of the manipulator. These visual
servoing methods will be introduced and then compared in the context of
grasping a leaf from a plant.

Image Based Visual Servoing (IBVS) is a wide field of analysis that
attempts to convert a Cartesian Space application into the image space.
Numerous modifications of this method can be implemented to better fit a
control scheme to achieve the desired task. The main strength of IBVSis that
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camera calibration is not necessary, nor does it require a prior information
about the object being viewed (Chaumette and Hutchinson, 2006). This
method attempts to minimize the difference between the feature points of
an image with a desired set of feature points, thus orienting the camera in
some desirable fashion.

4.4 Monoscopic Depth Analysis

Using two images to determine a feature point’s Cartesian position has
been well established in the field of image processing. Indeed, this method
forms the basis of stereo cameras (Kalghatgi, 2012). In stereo-vision, two
cameras, that are a known distance and orientation from one another,
each take an image simultaneously. The images are compared, and, with
information about the properties of the cameras, the 3D Cartesian position
of corresponding feature points are determined. Typically, cameras used in
stereo-vision will be pointed in the same direction and only be separated
by a fixed distance between their optical axes; however, it can easily be
shown that any known translation and rotation between cameras can be
factored to determine corresponding feature point’s Cartesian position,
relative to a camera (similar to the setup in Fig. 13).

4.5 Error Vector Formulation

In IBVS, the error vector exists in the image space. When visualizing an
object, a set of feature points are identified and compared against a desired
position, such as shown in Fig. 12. The relationship between the pixel
velocities and Cartesian velocities can then be quantified as follows: ds/
dt=]Jfd(p)/dt, where ds/dt is the rate of change in pixels, ], is the feature
Jacobian, and p_is the velocity Twist vector of the camera in R°® space,
concatenating the translational and rotational velocity vectors yields p_ =
[xyz©6,6 6] .

Since the error vector is formulated in the image space, the geometric
structure of the object need not be known. Also, the distance to the object
is not a necessary condition for convergence, an estimated value can be
used (Chaumette and Hutchinson, 2006); however, accurate estimates do
help in convergence. The result is that IBVS is well suited for unstructured
objects.

The error formulation process is quite different in MDA. In MDA, the
error vector is the difference in 3D space between the end-effector location
and a desired position. While in IBVS, the current position and the desired
position were known in the image space relative to the target (leaf), MDA
assumes that only the current position and rotation in Cartesian space
is known. The desired position is determined through the process of
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Fig. 12. An object being seen by a camera in both its current position and desired position.
When the object is in the desired location relative to the camera, it will have a specific pattern
of feature points.
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Fig. 13. Diagram depicting a stereo-vision camera set-up.

estimating the location of the feature points in Cartesian space. In this
recursive process, the error vector is estimated after a pair of successive
images are taken; simultaneously calculating a subsequent movement
vector to minimize the error in the system. Figure 13 demonstrates the
relevant variables in this triangulation process. Unlike IBVS, determining
the exact depth of the object is critical in the process. However, like IBVS,
the structure of the object does not need to be known ahead of time for
convergence to be possible. MDA is also very applicable to unstructured
visual-servoing applications.

4.6 Feature Points

Image Based Visual-Servoing and Monoscopic Depth Analysis both
rely on distinguishable feature points determined by image processing
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methods. However, the constraints with which feature points can be used
are widely different between the two methods. IBVS relies on a set of at
least four distinguishable feature points that consistently exist in each
frame for analysis. Furthermore, these feature points have to correspond
to known aspects of the object being viewed. Examples of possible feature
point in this application might include the stem of the leaf or the tip of
the leaf. Since the error vector is a function of the desired feature points
location and the known feature points location, the ability to correspond
what is seen in the image with a known aspect of the object is essential.
In MDA, the constraints on the acceptable feature points are relaxed.
In order to estimate the depth of a point, only a single feature point
corresponded between two images is necessary. To estimate the location
and rotation of an object, only three points are needed in two consecutive
images. Furthermore, while having information about a feature point
is always beneficial, MDA does not require the feature points to have a
known relationship to the object ahead of time (beyond the assumption
that the feature points belong to an object). Also, MDA does not require
that the same feature points be identified in multiple successive images.
MDA only requires that a set of feature points be corresponded in a pair of
images; different sets of feature points can be used in each successive pair.

4.7 Robot Control

All visual-servoing techniques must address how the robotic arm is going
to interpret information from the imaging routine. Both IBVS and MDA
assume an eye-in-hand set-up of the camera and arm (indicating that the
camera is rigidly attached to the end-effector of the robotic arm) and that
the camera is the only sensor capable of detecting the object. However,
just as the error vector domains differ between the two methods, so might
the control domains. Controlling a system directed by IBVS allows for a
certain level of flexibility. IBVS inherently lies in the image-space, but the
control vector that is being manipulated is the Twist of the camera (and
subsequently the end-effector). Thus, the commands of the control scheme
can either be interpreted in the Cartesian space or the joint space of the
arm. The ability to set the control domain allows for the best possible
control of the arm to be chosen. Since the error vector of MDA exists in
Cartesian space, the control of the arm must also exist in Cartesian space.
This indicates that the arm control must be translated from joint space
into Cartesian space, just as the feature points must be converted from
image space into Cartesian space. While control can then be moved to
a different domain, these initial conversions are necessary and impose a
certain amount of limitations to the control.
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4.8 Results

Object detection algorithm was able to detect at least one leaf for every
frame where the plant was present. Once a leaf was picked as a target,
that same leaf was consistently tracked in subsequent frames while being
approached by the robotics arm. The performance of tracking algorithm
was less robust and at times it failed to find matched points on the detected
leaf in the new frame, typically due to substantial horizontal motion. This
issue was accommodated by adjusting the robotic arm’s search pattern.

The algorithms’ computational performance was tested on a laptop
with Intel i7 x 8 CPU and NVIDIA GTX880M GPU. The images from
the camera had a resolution of 1280 x 720. Image Processing took on an
average 0.7s per frame if run on GPU, with tracking using most of the
time; and 7.0s on CPU, with the detection running the longest.

Using the Mico arm from Kinova, a six degree-of-freedom serial
actuator with two fingers, and a camera fitted with a custom mount
attached to the end-effector, a series of trials were performed to
demonstrate the effectiveness of Monoscopic Depth Analysis. The visual-
servoing approach can be divided into the following subtasks:

(1) Search for target leaf
(2) Approach target leaf
(3) Grasp target leaf

In this process, “Searching” for the target leaf is a process of exploring the
area where the plant is believed to be until the image processing algorithm
identifies a suitable candidate, which will be referred to as a target leaf.
During the “Approach”, the manipulator moves the camera to get various
scene vantages in attempts to perform triangulation of desired feature
points. If the target leaf is lost, or if correspondence cannot be performed,
this step is canceled and the algorithm returns to the “Searching” stage.
Finally, if the target leaf is identified, the manipulator attempts to grasp the
leaf. The process of grasping the leaf is quite involved and beyond the scope
of this experiment, as care has to be taken in how the manipulator grasps
the leaf. If the approach does not take into consideration the orientation
of the leaf or surrounding objects, it is possible to either miss the leaf
entirely or accidentally push the leaf out of the way. For this experiment,
the grasping stage is approximated by having the manipulator position its
end effector at the location of the leaf without necessarily attempting to
interact with the object.

In this experiment, it was considered a success if the manipulator
was positioned less than a quarter inch away from the body of the leaf
after the “Grasping” stage. A small number of trials were performed and
are listed in Table 1. The trials were performed on a plastic, surrogate
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Table 1. Grasping performance.

Searches Performed: 10

Successful Searches: 10

Approaches Performed: 23

Successful Approaches: 16

Average failure distance: 2 in (approx.)

plant in the following manner. Ten “Searches” were conducted; during
each “Search”, the robotic arm was positioned to view the plant from a
variety of perspectives. If a leaf was identified and found to be acceptable
(in terms of estimated distance to the arm), the arm would enter the
“Approach” stage and attempt to accurately locate the leaf. If the leaf
could not be identified in a subsequent frame, or if the algorithm decided
that the error vector was not converging, the “Approach” stage would be
abandoned and the algorithm would return to the “Searching” stage. If
the error vector to the leaf converged, the “Approach” stage was advanced
to the “Grasping” stage, an open-loop routine based on estimates of the
position of the leaf. Although the leaf was sometimes “grasped” in the
traditional understanding (the fingers of the manipulator pinched the leaf,
as seen in Fig. 14), this was not the stated goal of this experiment. For
this experiment, the “grasp” was considered a success if the fingers of
the robotic manipulator touched the desired leaf. Following these steps,
multiple “Approaching” stages were performed for each “Searching”
stage. Thus, even though each individual attempt at approach did not
always lead to a success, each “Searching” stage did end with a leaf
being “grasped” at least once. The average failure distance was difficult
to measure; the value recorded is meant to give an impression as to the
magnitude of failure rather than a precise average distance. Although the
control algorithm for grasping the leaf can be refined, these initial results
show the promise of the MDA technique for finding leaves in 3D space.
The manipulator was able to demonstrate an ability to locate and interact
with unstructured objects with consistency.

As we move forward, there is room for further improvement in
perception and control algorithms. First, more robust detections can be
achieved by using current state-of-the-art object detection approaches
(e.g., Faster-RCNN), which use region proposals to classify the image
patches that are likely to have objects. Then, the feature points required by
IBVS could be approximated by the corners of the bounding box produced
by object detection, thus enabling combining both control approaches
previously discussed. In particular, IBVS can be used to quickly start
approaching the leaf during first few iterations, while simultaneously
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Fig. 14. Example of a successful leaf grasp by the robot arm. The leaf was located visually,
its position estimated, and then the arm’s end-effector was commanded to the leaf position.

building the distance estimate; then switching to MDA will allow for
accurate positioning and grasping.

4.9 Dual-Arm Visual Servoing for Fruit Picking

To conclude our discussion of visual servoing robot control, we include
a brief description of a related agricultural application (apple picking)
that, similar to field scouting, takes place in an unstructured environment.
The shape of the branches of any given apple tree (see Fig. 15) is unique
and difficult to characterize geometrically. In the context of apple picking,
scattered fruit targets of interest are interspersed among the tree’s branches
and the goal is to successfully reach the targets to grasp them.

We approach this problem by combining two serial manipulators, each
equipped with an eye-in-hand camera, which examine the tree architecture
to find a clear path to the fruit. The two manipulators are designated as the
“Search Arm” and the “Grab Arm” (Fig. 16). The Search Arm is assumed
further from the tree and clear of obstacles, while the Grab Arm is set
among the branches where obstacles are present. The Search Arm provides
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Fig. 15. Simulation of apple picking using dual, coordinated robot arms controlled by eye-
in-hand visual servoing.

Branches
Apple
1

Search Arm

Grab Arm

Fig. 16. Illustration of several iterative movements that allow the Grab Arm to explore the
unstructured tree branch environment.

a wider view of the scene and the grab arm has a narrower view, focusing
on the fruit. The two arms work together to navigate the branches of the
tree and to bring the Grab Arm to the fruit. The system operates by using
machine vision to look for unobstructed views of the Grab Arm and the
apples. By compiling the clear volumes within the tree branches, the arms
are able to find a navigable path to the fruit relatively quickly. The tree is
examined in sections, and the grab arm picks as many apples as possible
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within its current section. Simulations demonstrate that with two arms
working in tandem, each with a distinct but cooperative task, the arms
are able to identify viable paths to pick apples set among the branches of
a tree. Field testing will be underway soon.

5. CONCLUSIONS

Agricultural robotic systems need to operate effectively in unstructured
environments that vary both spatially and temporally. We have presented
a case study of an automated “field scout” ground platform equipped with
the means for both sensing and manipulating its changing environment
for the purpose of providing actionable data to a farmer. The technical
topics we have covered include: (1) 4-dimensional mapping using
2-dimensional imaging and (2) robot arm end-effector manipulation
using visual servoing control for: (a) leaf picking in peanut plant rows
and (b) apple picking using two coordinated robot arms. Results from
both simulations and field experiments were described and evaluated,
showing successful outcomes that will serve as the foundation for future
work in this emerging field.
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Current and Future Applications of Cost-
Effective Smart Cameras in Agriculture

Young K. Chang"* and Tanzeel U. Rehman®

1. INTRODUCTION

Relentless population increase will result in over 9 billion predicted
population on the globe by 2050 (FAO, 2015). However, yield gain of major
cereal crops, even with the help of a mechanization, farm enlargement
and/or technology has plateaued in last two decades (Grassini et al.,
2013). Eighty four percent of the world farms are less than 2 hectares
and many of these farms lack the financial ability to adapt emerging
technologies (like, multispectral camera, hyperspectral camera, etc.) to
increase their productivity (FAO, 2014). Another alarming situation facing
the agricultural industry is that the total number of farm operators in the
world are constantly declining and we are facing agricultural work force
aging phenomenon (ILO, 2014).

A smart camera is an intelligent vision system that not only acquires
images but also extracts useful information, applies algorithms and makes
decisions for specific applications including automation (Belbachir and
Gobel, 2009). Use of smart camera started in 1990s by many industrial
sectors and it has also been studied for agricultural purposes, because it
is non-destructive, rapid, efficient and cost-effective which will decrease
human labor. The smart camera can be used for saving agro-chemicals,
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non-invasive means of performing a particular task, minimizing the cost
and labor associated with the sorting, etc. However, most of the studies on
smart camera or machine vision in agriculture are focused on expensive
hyperspectral or multispectral cameras, which are too expensive for most
of small farmers. Therefore, current use and potential future use of cost-
effective smart camera in agriculture was reviewed in this chapter.

The applications of cost-effective smart cameras for sorting of fruits,
vegetables and grains by using color, shape and textural features are
introduced in Section 3. Subsequently, hardware based image processing
tools for minimizing the computational requirements are presented in
Section 4. The Section 4 shows the potential of digital signal processor
(DSP), field programmable gate array (FPGA), advanced reduced
instruction set computing machine (ARM) and graphic processing unit
(GPU) for future agricultural applications. This chapter covers only
the above mentioned applications of smart camera, other applications
like yield monitoring, plant phenotyping, disease detection, etc. are not
reviewed.

2. SMART CAMERAS FOR WEED—CROP SEGMENTATION

Weeds are one of the major yield limiting factors in almost all the
cultivated and non-cultivated crops around the world. They can holdup
the plant nutrients, compete with plants, harbor diseases and insects, and
may hinder the harvesting operation (Kinsman, 1993). The most common
and commercially available weed management protocols include the
blanket spraying of herbicides across the entire field, thereby raising
the environmental concerns (Kazmi et al., 2015) and cost of production
(Meyer, 2011). The variability in the spatial distribution of weeds can be
detected in non-invasive manner using the state-of-the-art cutting-edge
sensing tools available commercially (Anddjar et al., 2013). The ‘sensed’
information can be used to trigger the robust ‘controllers’ to target the
individual weed canopy thereby, providing the means to minimize the
cost of production.

Weed locations and spatial variability within fields can either be
coarsely ‘sensed’ using remote sensing platforms or ‘fine sensing’
procedures’ based on near-ground methods can be opted for real-time
applications (Pérez et al., 2000). The remotely sensed aerial spectral scans
can be used to develop the prescription maps in geo-statistical software
to vary the application rates of pesticides according to the weed location
(Michaud et al., 2008). However, these systems mainly rely on the good
quality, up-to-date aerial data followed by the comprehensive data
management and processing for weed spots detection (Chang et al., 2012)
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Fig. 1. The Smart sprayer concept. The system includes a multiple-camera vision system,

a ground speed sensor and a nozzle controller (Reprinted from Computers and Electronics

in Agriculture. 36(2), Tian, Development of a sensor-based precision herbicide application
system, 133-149. Copyright (2002), with permission from Elsevier).

thereby not suitable for the real-time field applications. Alternatively,
optoelectronic sensors attached to ground vehicles can be used to develop
the spectral signatures by using time of flight approach for the reflected
optical beams from different crop and weed areas (Andujar et al., 2011).
These sensors, however, were not able to discriminate between the crop
and weeds of the same height and thus could only be used to discriminate
the vegetative area from the bare soil (Anddjar et al., 2013). Therefore,
many researchers have used smart cameras for the segmentation of weeds
from crops (Shearer and Holmes, 1990; Woebbecke et al., 1995a; Meyer
et al., 1998; Burks et al. 2000; Lamm et al., 2002; Meyer and Neto, 2008;
Ahmed et al., 2011; Guerrero et al., 2012; Kazmi et al., 2015). Figure 1
shows the concept of the smart sprayer utilizing segmentation of weeds
from crops (Tian, 2002). These cameras can be used with variety of image
processing algorithms to exploit the color, shape and textural information
contained in the acquired images. These algorithms can be used to explore
the different traits related to plant and weed canopies along with bare soil
information. Furthermore, unlike remotely sensed data, these methods are
not influenced by the positional error and don’t require any pre-processing
and prescription maps development. The following sub-sections explain
the use of different image processing algorithms for sensing the spatial
variability in the weed location and their advantages and drawbacks for
real-time applications.
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2.1 Color Based Weed—Crop Segmentation Systems

Analysis of the different vegetation by exploiting its color related spectral
attributes is perhaps one of the easiest way to discriminate plants from
background clutter. Color spectral information contained in an agronomic
image can be utilized to discriminate the vegetative biomass and soil
residues (Woebbecke et al., 1995a; Lamm et al., 2002; Hague et al., 2006;
Meyer and Neto, 2008; Guijarro et al., 2011; Guerrero et al., 2012; Kazmi et
al., 2015). An array of different vegetation indices has been evolved and
tested over the years by using available information in different visible
spectral channels and their combinations for weed-crop discrimination
(Woebbecke et al., 1995a; El-Faki et al., 2000; Mao et al., 2003; Kataoka et
al., 2003; Meyer, 2011; Montalvo et al., 2013; Chang et al., 2014; Esau et al.,
2014). Whilst most of these indices amplify the information contained in
a respective color channel (Fig. 2); thereby accentuating the color of any
particular region of interest (Meyer and Neto, 2008; Meyer, 2011).

Earlier applications of vegetation indices involved the non-normalized
red-green-blue (RGB) color coordinates. These coordinates were largely
influenced by the camera parameters and amount of incident illumination

$3f| Original Color Digital Image:

> P J
RGB Ch 1 1 Hand Generated
Template Image.

v r

Nermalized Difference Excess Green (ExG) Tonal
Index (NDI) Tonal Image. Excess Red (ExR) Tonal Image.

Image.
Otsu Threshold Otsu Threshold [ ExG - ExR H Positive Threshold

)

NDI+Otsu Binary Image. ExG+Otsu Binary Image. ExG-ExR Binary Image.

Fig. 2. Comparison of vegetative indices (EXGExR, ExG, and NDI) and hand extracted

mask (Reprinted from Computers and Electronics in Agriculture. 63(2), Meyer and Neto,

Verification of color vegetation indices for automated crop imaging applications, 282-293.
Copyright (2008), with permission from Elsevier).
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on the terrain and were not very effective in discriminating green biomass
from background residues (Woebbecke et al., 1995a). Woebbecke et al.
(1995a) also normalized RGB chromatic coordinates by applying the
variation in intensities uniformly across all three color channels (Cheng
et al., 2001). The normalized color coordinates were successfully used to
develop and compare the performance of different vegetation indices with
the excess green (ExG) as an optimal selection for separating the plants
from residues (Woebbecke et al., 1995a; Lamm et al., 2002; Mao et al., 2003;
Guerrero et al., 2012; Kazmi et al., 2015).

Meyer et al. (1998) adopted an alternative approach for identifying the
soil and residue by amplifying the redness color image thus resulting in an
excess red (ExR) index. Animproved color based index (ExGExXR, ExG-ExR
or ExGR) was achieved by taking the difference of ExG and ExR (Camargo,
2004; Meyer and Neto, 2008). This index generates binary images without
using any manually defined threshold level and performed comparably
to the ExG index (Meyer and Neto, 2008). Marchant et al. (2001) used a
red/green ratio to detect vegetation against soil background and it was
compared with red/Near Infra-Red (NIR) ratio and a new classification
method (alpha-method). A color index of vegetation extraction (CIVE)
was used to estimate the growth of soybean and sugar beet and was
found to have a high degree of correlation with manually measured plant
parameters (Kataoka et al., 2003). The same color index was reported
in number of studies to identify the pixels containing background soil
and crop residue from the plant pixels (Guijarro et al., 2011; Guerrero
et al., 2012; Montalvo et al., 2013; Kazmi et al., 2015; Yang et al., 2015).
The combination of this color index with ExR, ExGExR, NDI, GB, RBI,
ERI, EGI, Rn and Gn resulted in a high classification accuracy of 97.83%
(Kazmi et al., 2015). Hague et al. (2006) came up with a more intense
and color illumination resistant vegetative index (VEG) by studying the
physics of image formation with respect to cereal fields.

The weighted average of four existing vegetation indices (ExG,
ExGExR, CIVE and VEG) were combined to analyse the information
regarding the greenness of agricultural field images (Guijarro et al., 2011).
The results of these individual color indices for identifying the green weeds
indicated that CIVE achieved the highest identification accuracy and was
therefore given highest weight when combining these four color indices.
A similar combination of ExG, CIVE and VEG was proposed as a solution
to extract the green plant pixels masked by the red spectral component
of soil (Guerrero et al., 2012). The binary image of green plant pixels was
generated using Otsu’s thresholding algorithm (Otsu, 1979) followed by
the support vector machine (SVM) based classification technique. An
automated expert system (AES) used same color index based algorithm
to delineate the green plants from the background (Montalvo et al., 2013).
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The results of their study showed that AES outperformed an iterative
approach of applying two different thresholds to differentiate between
different classes (Demirkaya et al., 2008) and the SVM (Guerrero et al.,
2012). Burgos-Artizzu et al. (2011) modified the linear combination of
coefficients of RGB color planes to improve the performance of the ExG.
The resultant gray scale image was binarized by using the histogram
mean intensity threshold followed by morphological opening and area
threshold to identify inter-row weeds in maize fields. The results showed
that this system was able to correctly identify 85.1% of the inter-row weeds
and 68.9% of the maize crop rows.

Golzarian and Frick (2011) developed four indices by combining
different color characteristics of the RGB images for laboratory evaluation,
however, none of these performed appropriately during the field
application (Kazmi et al., 2015). Chang et al. (2014) reported green ratio
(G-ratio) index to identify newly emerging green weeds (grasses) against
soils and reddish pruned wild blueberry plants. Esau et al. (2014) used the
same index to apply the fungicides on wild blueberry plants in real-time.
Kazmi et al. (2015) used 14 different color indices for the identification of
the creeping thistle in sugar beet field images. The ability of the individual
index was compared with others followed by the combinations of different
color indices for the weed identification. The results of this study indicated
that linear discriminant analysis (LDA) with stepwise regression was able
to correctly identify 97.83% of thistles.

In addition to the indices from RGB color space, other color spaces
(Woebbecke et al., 1995a; Tang et al., 2000; Golzarian et al., 2012; Bai et
al., 2013; Kim et al., 2015; Yang et al., 2015) and non-visible bands of
electromagnetic spectrum (Haggar, 1983; Guyer et al., 1986; Shearer and
Jones, 1991; Franz et al., 1991; Gerhards and Oebel, 2006; Hunt et al., 2011)
were used to locate the position of the weeds within crop rows. Woebbecke
et al. (1995a) used modified hue (MH) component of a RGB image to
distinguish plants from its background and to identify the monocot from
the dicot. The results indicated that the MH was able to delineate the
plants from background but the monocot identification from the dicot
was not successful. Tang et al. (2000) implemented a Hue, Saturation and
Intensity (HSI) color space based genetic algorithm capable of finding the
green plants by searching for the global optima.

A real-time crop-residue segmentation algorithm was developed
by analyzing the illumination effected field images under RGB, HSI,
LLL, YC,C and CIE Lab color space along with the iterative threshold
determination technique (Ji et al., 2007). The best segmentation of plant
images was achieved by the H, a, I3 and Cr components of these color
models for simple backgrounds. Two variants of environmentally
adaptive segmentation algorithm (EASA) were developed using the HSI
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color space for handling the sunflower images taken under complex field
conditions (Ruiz-Ruiz et al., 2009). The performance of these variants in
terms of the segmentation efficiency were not significant. A mean shift
algorithm with back propagation neural network (BPNN) was applied on
the color features extracted from the RGB and HSI color planes to classify
between plant and non-plant regions (Zheng et al., 2009). A median of
miss-segmentation was about 4.2%.

A crop color model was developed in the CIE Lab color space for
segmenting the rice crop images under complex illumination conditions
(Bai et al., 2013). The mathematical morphology based learning technique
was used to relate the color of the green plants to its mean pixel lightness
(L) for developing a weed segmentation criterion. The comparison of
this approach with other RGB based indices indicated the superiority of
the proposed approach with mean segmentation rate of 87%. A similar
approach, based on the combination of ExR and CIE Lab color space was
used to segment the soybean plant pixels from residual pixels (Kim et
al., 2015). The binary images were developed by using the Otsu’s and
triangle threshold methods. The algorithm was capable of achieving a
segmentation accuracy of 98%.

2.2 Shape Based Weed—Crop Segmentation Systems

Identification of weed species and estimation of their densities on the
basis of difference in spectral reflectivity may not yield the desired results
due to the similar reflective signatures of crop and weed especially during
the initial growing season (Andreasen et al., 1997). Another reason for
relatively less reliable classification accuracies was found to be variation
in luminance and color temperature caused by the varying outdoor
illumination conditions (Tian and Slaughter, 1998). The presence of
transmitted light and inter-reflections along with the day light illumination
conditions may also decrease the ability of color based segmentation
approaches (Hague et al., 2006). Therefore, a process of identifying the
weeds on the basis of shape of individual leaf or plant canopy was studied
in greater depth (Kincaid and Schneider, 1983; Guyer et al., 1986; Franz et
al.,, 1991, 1995; Woebbecke et al., 1995b; Chaisattapagon and Zhang, 1995;
Lee et al., 1999; Pérez et al., 2000; Tian et al., 2000; Mathanker et al., 2007;
Golzarian and Frick, 2011; Shinde and Shukla, 2014).

The geometrical orientation of individual plant leaf or canopy can be
expressed by quantifying its shape descriptors such as length or width (Chi
et al., 2003) and can ultimately lead to real-time pattern recognition and
decision making. The supervised leaf shape signatures were developed by
studying the leaf complexity and dissection index of reconstructed leaves
using the normalized Fourier coefficients (Kincaid and Schneider, 1983).
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Franz et al. (1991) studied the effect of leaf occlusion on the performance
of a shape based weed detection system. The non-occluded leaves of
soybean and different weeds were identified by aligning the leaf boundary
curvature extracted at two leaf stage with respective curvature models.
This study used Fourier-Mellin correlation to calculate resampling
curvature functions for partially occluded leaves followed by their match
with curvature models.

Guyer et al. (1993) considered the leaf and overall plant canopy shapes
and achieved 69% correctidentification rate for 40 weeds and soybean crop.
The authors reported that no single shape feature alone was sufficient to
distinguish different plant species. Woebbecke et al. (1995b) found similar
results and reported that any particular shape feature did not work
efficiently as a plant classifier, because of greater phonological variance
among plants of the same species. Two grass species were segmented from
the narrow-leaf wheat using a combination of color, shape and texture
images followed by the principal component analysis (PCA). Amongst the
variables selected for developing the PCA model by using a correlation
matrix indicated that the color features contributed more towards the
identification of weeds (Golzarian and Frick, 2011). Pérez et al. (2000) used
a set of five geometrical features and seven normalized Hu moments (Hu,
1962) along with Bayesian and K-nearest neighbor classification rules.
Both of them classified the crop successfully rather than weeds.

Identification of leaves on the basis of their shape descriptors showed
high (> 90%) classification accuracies (Guyer et al., 1986; Woebbecke
et al,, 1995b; VijayaLakshmi and Mohan, 2016). However, using this
methodology in the real-field condition is not possible because of the
commingled leaf and canopy structures. The simple shape parameters
along with kernel based Particle Swarm Optimization and Fuzzy relevance
vector machines were reported by VijayaLakshmi and Mohan (2016) with
an accuracy of 99.87%, but its adaptability and suitability for the realistic
field applications still needs to be analyzed in greater depth. Three studies
reported the real-time application of their algorithm in the field. The
real-time applications of shape based descriptors for weed identification
showed comparatively poor (< 75%) performance (Lee et al., 1999; Tian et
al., 2000; Gebhardt et al., 2006). The major bottleneck in achieving the high
classification accuracies appears to be the classical Bayesian classification
rule as compared to neural network and SVM counterparts (Lin, 2009;
Li and Chen, 2010; Herrera et al., 2014).

The newly emerging feature selection/optimization procedures
along with the modern classification techniques showed more potential
for dealing with the field scale variability in real-time manner (Lin, 2009;
Liand Chen, 2010; Herrera et al., 2014). These approaches have also shown
their potential for dealing with the complexity associated with partially
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occluded vegetative leaves. The cost associated with their computational
complexities and overheads, however, needs to be handled properly in
order to make them suitable candidates for real-time applications.

2.3 Texture Based Weed—Crop Segmentation Systems

Despite achieving very high accuracies on a single leaf, shape features
were not able to perform properly on the leaf canopy because of the sever
overlapping between inter- or intra-class leaves (Lee et al., 1999; Tian
et al., 2000; Meyer, 2011). Moreover, the variability in outdoor illumination
condition may also overcast the images, thus not providing the proper
contrast to determine the boundary of leave or canopy from which further
shape features need to be extracted (Tian et al., 2000). The insect/pest
attack or leave disease may also cause the geometrical irregularities in
structure thereby influencing the classifying range of different shape
based parameters. These limitations served as bottlenecks for real-time
application ultimately leading towards the exploration of new techniques
to describe the plant texture by undermining its botanical information
(Meyer, 2011). These texture based weed-crop segmentation approaches
have been widely adapted by the researchers as a tool for variable rate
applications (Shearer and Holmes, 1990; Meyer et al., 1998; Burks et al.,
2000; Tang et al., 1999, 2003; Burks et al., 2005; Ghazali et al., 2007; Siddiqi
et al., 2009; Bossu et al., 2009; Kiani and Kamgar, 2011; Ahmad et al., 2011;
Chang et al., 2012; Ahmed et al., 2014; Kumar and Prema, 2016).

The texture of underlying terrain was first quantified by statistically
estimating the probability of spatial distribution of an image pixel and
its neighboring tonal variations at different orientations (Haralick et al.,
1973). An array of fourteen second order statistical features extracted from
“spatial gray-tone dependence matrices” was used for aerial photographs
and satellite imagery with accuracies of 82% and 83%, respectively
(Haralick et al., 1973). Shearer and Holmes (1990) implemented the same
idea on HSI color images for classifying the different cultivars of nursery
stock with an accuracy of 91%. Three different matrices were developed
for each color plane (H, S and I) and 33 textural features as suggested by
Haralick et al. (1973) were extracted by repeating the procedure for each
color plane. Meyer et al. (1998) also used the same matrices for gray scale
images of plants and soil with a reduction of features to four. The results
showed that canonical discriminant analysis best identified the differences
between different classes.

Burks et al. (2000) developed a weed discrimination system
depending on color co-occurrence matrices (CCMs) followed by statistical
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discriminant analysis and stated an overall accuracy of 93%. Burks et al.
(2005) compared the performance of four different classification techniques
(statistical discriminant analysis, counter-propagation, backpropagation
and radial bias neural network) by feeding the textural features extracted
from CCMs as an input. The results of this evaluation revealed that
the backpropagation algorithm outperformed the others by correctly
classifying 97% of the images included in the study. In addition to the HSI
color space Chang et al. (2012) used the concept of CCM to discriminated
weeds from wild blueberry. The highest classification accuracy of reduced
features (94.9%) was achieved by HSI color space. The addition of the
luminance did not show the promising results.

Different transform based techniques characterize the multi-
scale textural feature of the weed/crop by treating their images as two
dimensional modulating frequency with different spatial dimension
and orientation. Tang et al. (2003) introduced a filter window function
to Fourier transform at a fixed orientation. The translation of the filter
window across the entire image resulted into the different textural
features. The filtering operation was performed on the signals of green
channel with an intensity modulating between zero to nine with different
window size. Ishak et al. (2009) improved the efficiency of the Gabor
wavelet by adapting the gradient field distribution and curve fitting
approach. The intensity, dimension and the orientation of Gabor wavelet
were fixed while the gradients distribution of gradient field distribution
algorithm was rotated according to the leave direction. The results showed
an accuracy of 93.7%. The analysis of other studies on the transform based
textural analysis indicated that the Daubechies wavelet still has a greater
potential to explore (Okamoto et al., 2007; Bossu et al., 2009). A relatively
new approach used a combination of textures extracted from the wrapping
based culvert transform at an intensity level of 2 and 5 to capture both
coarse and fine textures of the image along with a set of tamura features
(Kumar and Prema, 2016). Though they achieved very high accuracy of
99% with random vector machines, the computational complexity of this
algorithm, however, still needs to be evaluated.

The statistical and transform based textural approaches have been
widely used and studied for weed-crop segmentation. However, there
is relatively less research done towards the model based application
and using structural descriptors (Tuceryan and Jain, 1998) to define the
agricultural textures. Moreover, no research has been thoroughly done on
the gray level run length matrices and normalized gray tone difference
matrices to statistically undermine the texture of weed-crop images. While
these approaches have shown their good results in other agricultural
applications (Tahir et al., 2007).
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3. APPLICATION OF SMART CAMERAS FOR SORTING OF
FRUITS, VEGETABLES AND GRAINS

The relatively more reliable and subjective approach of inspecting the
agricultural products enables the machine vision based grading systems
to outperform their human counterparts (Cubero et al., 2011). Moreover,
the high throughput capacity (Aleixos et al., 2002) and less involvement
of human factors (Cubero et al., 2011) forced the commercial processing
plants to opt for these systems (Du and Sun, 2006). The rapidly fostering
awareness about the food quality over the last two decades resulted in an
evolution of the machine vision based grading for different agricultural
products (Aleixos et al., 2002; Blasco et al., 2003; Leemans and Destain,
2004; Tahir et al., 2007; Jarimopas and Jaisin, 2008; Blasco, 2009a,b; Liming
and Yanchao, 2010; Guevara-Hernandez and Gomez-Gil, 2011). Also
the climatological effects on the physiological shape and structure of
agricultural products invoked the interest of engineers, researchers and
scientists across the world to develop custom grading systems according
to the local needs and demands.

The external quality of both fresh and processed agricultural products
can be defined by their shape, weight, color and presence of any blemishes
or diseases (Cubero etal., 2011). Machine vision systems can correlate these
external attributes of agricultural produce to its color, shape, size, volume
and/or textural features (Fig. 3) and can aid in improving the efficiency
of the grading process (Du and Sun, 2006). The different grading systems
for fruits, vegetables and grains that emerged during the last two decades
on the basis of these attributes are summarized in the next sections. The
following sub-sections are categorical review of different grading systems
and their targeted agricultural commodity.

filters ==

conveyor belt

illumination frame grabber
tunnel

computer

Fig. 3. Illustration of the image acquisition system used (Reprinted from Computers and

Electronics in Agriculture. 75, Unay et al., Automatic grading of bi-colored apples by

multispectral machine vision. Computers and Electronics in Agriculture, 204-212. Copyright
(2011), with permission from Elsevier).
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3.1 Color Information for Grading

Color information can help to identify the current ripening stage of
agricultural produce which in turn can be used as a quality predicator
for fruit grading systems. Blasco et al. (2009b) used simple pixel-oriented
algorithm by removing the background from pomegranate arils using an
adjustable threshold switch for a Red channel. In addition to the color
information, size and centroid information was used to separate out the
large/small unwanted material. A similar approach was used to grade
apples on the basis of their color features and organizing feature parameter
algorithm (OFP) (Xiaobo et al., 2007). Mean and variance features from
RGB color space along with the definition of hue between 0° to 80° were
used to categorize apples into four classes. The results showed that OFP
algorithm outperformed the BPNN with slightly lower performance than
SVM.

A comparison between five different color spaces (RGB, HSI, LUV,
Lab and XYZ) was performed to identify the citrus peel defects (Blasco
et al., 2007b). The classification criterion on the basis of LDA indicated
that all color spaces achieved good (> 80%) accuracy except XYZ color
space. A strawberry grading system used the “a” coordinate of Lab color
space with empirically selected threshold levels to categories the fruit into
black-red, bright-red and light-red (Liming and Yanchao, 2010). An apple
grading system used average color values (R, G and B), variances (Vr, Vg
and Vb) and chromatic color values (1, g and b) with two neural networks
to identify the apples on the basis of the percentage of red color (Nakano,
1997). The grade judgment ratios of two out of five classes were found to
be very low (65% and 32%), while the highest and mean judgment ratios
were 95% and 70%, respectively. Lopez-Garcia et al. (2010) used RGB color
data extracted from multi-resolution square window to define the reference
Eigen-space. The reference space was used to build the PCA based model
of pixel locations belonging to non-defected areas. The system was able to
achieve a performance accuracy of 91.5% for different surface defects and
100% for stem end detection.

The color based grading algorithms were also used for different
vegetables including bell peppers, olives, mushrooms, tomatoes and
potatoes. Shearer and Payne (1990) mapped the hue component for
different primary and secondary colors to identify the different colored
and defected bell peppers. Feature selection procedure and quadratic
discriminant functions were developed to define the sets of optimum
features for individual type of defect. A set of three statistical features,
along with range and edges were extracted from the raw RGB, normalized
RGB and intensity color space to identify the potato blemishes (Barnes
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et al., 2010). The adaptive boost (AdaBoost) classifier was able to correctly
identify the 89.6% and 89.5% blemishes on the white and red potatoes,
respectively. Red band was used to calculate the mean reflectance spectra
from 3 x 3 RO], region of interest, from the center part of the mushroom
surface to identify the defects caused by freezing and thawing (Gowen
et al., 2009). PCA and LDA were able to correctly identify 76.2% of
defected mushrooms. A color and color homogeneity descriptors were
used to categories the tomato (Laykin et al., 2002). Mean and standard
deviation of RGB channels, hue estimated from 40 x 40 pixels and average
color on the basis of Quad Tree method were used to describe the color.
The color homogeneity was estimated by dividing the fruit using virtual
elliptical rings. The statistics including mean, median, mode and standard
deviation of these individual rings were compared. The results showed
that their system achieved 92% correct color homogeneity classification
and 90% correct color detection. A standalone color based algorithm was
used to differentiate between Canada western red spring (CWRS) wheat,
Canada western amber durum (CWAD) wheat, barley, oats and rye with
the help of LDA and K-nearest neighbor (K-NN) classifiers(Majumdar and
Jayas, 2000a). The accuracies of 94.1, 92.3, 95.2 and 92.5%, were reported
for the CWRS wheat, CWAD wheat, barley, oats and rye, respectively..

3.2 Shape and Size Estimation

In addition to the color information reflected by particular agricultural
produce, size is also a major contributor to decide about its commercial
fate. The size of the fruit in combination with its color can help the machine
vision based sorting device to grade it according to the predetermined
categories (Cubero et al., 2011). A size based apple grading system codified
the extracted boundary of fruit using chain code to estimate the area and
fruit size (Blasco et al., 2003). Additionally, the major damage length and
total damage are also determined to avoid the influence of damages on
final fruit grade. Leemans and Destain (2004) used the combination of
size, color, texture and position attributes to correctly classify the apple
fruit into two commercial grades. The results of their study showed a
correct global classification rate of 73% from the combination of all these
features. Unay et al. (2011) used perimeter as an estimator of size along
with the circularity to define shape and defect ratio as a descriptor of
defected surfaces along with other color and textural features to grade
the apples in two and multiple classes. In addition to the linear models,
several multi-factor non-linear approaches were also tested to achieve
precise measurement of the defects and minimum confusion with calyx/
stem parts. The results of study showed that two-class grading approach
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achieved more appropriate results compared to their multi-grade
counterpart.

Aleixos et al. (2002) used convolution mask, contour extraction and
singularization as preprocess steps before extracting the geometrical
features to define the fruit size. The shape of the fruit is estimated by
using the circularity and relating the maximum diameter of the fruit. In
addition to these parameters, external defects were also used to further
guide the sorting device. The accuracy of the complete system was up
to 94% for mandarins and 93% for lemons. The shape based descriptors
are also used to categories the individual satsuma (mandarin) segments
into whole and broken one for the real-time in-field applications at
the sorting facility (Blasco et al., 2009a). The system was also capable
of identifying the pieces of skin and other raw materials present in
the segment batches by using simple Bayesian discriminant analysis
approach. The shape of the segments was defined by using circularity,
compactness, symmetry, elongation and Fourier descriptors, while the
size was described using area and length of individual segment. Another
real-time complete sorting solution was designed for the dates on the
basis of their shape estimation and skin delamination criterion (Lee
etal., 2008). The connected component analysis was performed to identify
the presence of the date on the conveyor belt followed by the estimation of
the fruit size either using length or area. The system showed an accuracy
of 95% for Jumbo date.

The shape of strawberry was described by using the sharing line
method into long-taper, square, taper and rotundity (Liming and Yanchao,
2010). Each strawberry was divided evenly using a set of seven horizontal
and vertical lines with a condition of passing first line pair from the gravity
center of the fruit. The difference between consecutive lengths was used as
a descriptor of the fruit shape. The daimeter of the same fruit was estimated
by using maximum horizontal line length. The system was able to correctly
identify 90% of the shape in worst scenarios. Jarimopas and Jaisin (2008)
used the curvature of the sweet tamarind pods to define the curved, slightly
curved and straight shape based categories. The curvature was estimated
by using a circle of 55-pixel radius in counter clockwise direction. This
curvature was further used to draw a graph to locate the pulses indicating
the presence of stem and tail of tamarind pod. The length of the pod was
also estimated to with a maximum accuracy of 94.3%.

3.3 Textural Traits

Color and shape attributes can play major role in grading the fruit and
vegetable, however, they alone may not be able to help in grading of the
different grains because of the very similar color reflectance and shape
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properties. One reason could be the small size of grains which could not
be precisely estimated resulting into poor categorization. Furthermore,
the variability in the moisture content can cause the grains to shrink or
swell resulting in the change in size (Tahir et al., 2007). Therefore, different
statistical descriptors in combination with shape and color information
were used to quantify the texture of grain items, thereby helping in the
sorting operation. Majumdar and Jayas (2000c) used textural features
extracted from the gray level co-occurrence matrices (GLCM) and grey
level run length matrix (GLRM) to identify between CWRS wheat, CWAD
wheat, barley, oats and rye grains. The parametric and non-parametric
methods were used to develop the identifying models and best results
were achieved using K-nearest neighbor with a level of k = 5.

Tahir et al. (2007) used the combination of color, shape and textural
features to quantify the effect of moisture content on the grain kernel
morphology and appearance. The images of CWRS, CWAD and barley
were taken in individual and bulk fashion from the conditioned grains
with moisture content varying from 12% to 20%. It was observed that
the highest contribution towards the identification was from color
followed by the textural features. Guevara-Hernandez and Gomez-Gil
(2011) used a similar technique to classify wheat and barley kernels with
discriminant analysis and K-NN. The GLCM and GLRM were developed
in four different orientations and the similar features were extracted
from different orientations. The authors concluded that the combination
of shape, color and texture can provide the better accuracy as compared
to any of these individually. The classification accuracy can be as high
as 99% by carefully selecting a set from these pooled features (Guevara-
Hernandez and Gomez-Gil, 2011).

4. HARDWARE BASED IMAGE PROCESSING TOOLS—A WAY
FORWARD TO MINIMIZE THE COMPUTATIONAL EXPENSES

The application of sophisticated modern image processing algorithm
demands a very high-end computationally efficient central processing
unit for their real-time applications. Currently and most commonly used
computational platforms in agricultural sector are based on personalized
computers, because of the relatively easier image processing programming
needed for them. These devices, however, were not able to match the
processing speed needed for the real-time applications (Lee et al., 1999;
Chang et al., 2012) and therefore limit the travel speed of the platform.
Chang et al. (2012) concluded that using a personalized computer, a
compromise between the accuracy of CCM algorithm for weed-crop
segmentation and processing time is needed. The authors were able to
achieve a high accuracy of 94.9%, but a travel speed of only 3.1 km hr
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inhibits its real-time application. Aleixos et al. (2002) reported that use
of traditional sorting systems can only handle the tasks requiring less
computational time, thereby reducing the overall accuracy of the systems
to achieve the required commercial grade sorting speed. In contrast to the
traditional PCs, the hardware based embedded solutions including DSP,
FPGA, ARM and GPU proved their capabilities for real-time machine
vision based agricultural applications (Murphy et al.,, 2007; Pearson,
2009; Pearson, 2010; Teixid6 et al., 2012; Pearson et al., 2013; Singh, 2014;
Mohan et al., 2016). The minimized computational time using hardware
based embedded solutions can help to achieve higher accuracy and higher
speed simultaneously with existing algorithms for real-time applications.
The reduction in computational expenses can also help to include more
features thereby allowing to craft more complex multi-feature algorithms
for increased accuracy without having any limitations of delay caused by
slow processing speed.

A relatively less number of studies have been reported for FPGA
based embedded systems in agricultural sector because of the much more
challenging design and programming complexities. Murphy et al. (2007)
implemented a fairly simple census transform algorithm on the grayscale
images of two cameras for the FPGA based stereo-vision system. A color
features based high speed sorting system was developed by raising a
FPGA circuitry board directly on the image sensor board (Fig. 4). The
system (Fig. 5) was responsible for separating the white wheat from red
one and inspecting the popcorn for blue-eye damage. The throughput
capacity of proposed system was 8 kg per hour of wheat and 40 kg per
hour of popcorn. The detection accuracy for wheat was acceptable (88%-—
90%), while for the popcorn it was low (74%). A relatively more complex
image processing algorithm on the basis of color features and LDA was
implemented on a prototype grain sorter (Pearson, 2010). An advanced
FPGA board containing more logical elements and memory compared
to Pearson (2009) was used to perform more rigorous tasks. This system
achieved a higher throughput capacity (25 kg per hour) with information
being processed more accurately. Similar results were reported by the
other studies (Pearson et al., 2012; Pearson et al., 2013), however, none of
them have reported the application of emerging algorithms on FPGAs.

A multispectral machine vision system was developed using a pair
of DSPs for inspecting and sorting the oranges (Aleixos et al., 2002).
The system implemented a master/salve configuration of DSP devices
for connecting two cameras. The master DSP extracted the geometrical
features from a monochrome camera fixed with a NIR filter along with
the salve DSP responsible for detecting the skin damages using RGBI
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Image sensor side with lens FPGA board side, the FPGA board is
the smaller blue board raised above
the image sensor board.

Fig. 4. Photo of the image sensor and FPGA boards connected together. The image sensor

and lens are on the opposite side from the FPGA board (Reprinted from Computers and

Electronics in Agriculture. 69(1), Pearson, Hardware-based image processing for high-speed
inspection of grains, 12-18. Copyright (2009), with permission from Elsevier).

Camera + FPGA

lens

lens tube

chute

lamps

Air nozzle

Fig. 5. End view of the sorter sensing system showing all three cameras, six light bulbs, air

nozzle, and chute (Reprinted from Computers and Electronics in Agriculture. 69(1), Pearson,

Hardware-based image processing for high-speed inspection of grains, 12-18. Copyright
(2009), with permission from Elsevier).
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information. The processed image information from the salve processor
was transferred to the master which further shared the final results with
control computer. This system was able to inspect the color, size and
presence of the skin defects at a minimum rate of 5 fruits per second with
the accuracy of 94%. Another embedded peach detection system used
ARM Cortex™ based processor to create the 3D look up tables (LUTs)
from both linear combinations and histograms of RGB color vectors. The
system showed a least performance of 77% by correctly identifying the red
peaches in orchards with occluded leaves.

The DSP, ARM and FPGA have the ability to tackle complex machine
vision instructions because of parallel information handling approach
compared to their sequential counterparts. However, the complication of
programming these devices for texture and shape base analysis along with
sophisticated decision making tools hampers their ability for the real-time
application in agricultural sector. Therefore, programming gaps need to
be filled in order to get the full advantage of their processing speed and
accuracy.

Artificial neural network has been studied to process images but it
needs large datasets which require tremendous human effort to collect,
annotate and process to cover the full variability of the target (Guo
et al., 2013). With a rapid progress of the GPU, deep neural nets [i.e.,
Deep Convolutional Neural Network (DCNN)] using the GPU have been
recently introduced to overcome this constraint (Lee et al., 2016; Sa et al.,
2016; Sladojevic et al., 2016; Yalcin and Razavi, 2016) in agricultural sector
(plant identification, fruit detection, disease detection, etc.).

5. CONCLUSION

Since Thompson et al. (1991) showed the potential of weed detection for
spot-application of herbicide, many different methods were used for real-
time detection of weeds rather than manual surveying and remote sensing.
A cost-effective smart camera which comprises of a machine vision
system with application-specific algorithm using color, shape and texture
has been used for weed-crop segmentation. Segmentation by shape has
many limitations such as, same leaf shapes can occur on crops and weeds
thus rendering the algorithm ineffective. During the early stage of weed
emergence, shape based algorithms showed better results. Segmentation
by texture is promising, however, there has been much less research
done and also it can be more affected by outside factors especially from
variability in outdoor lighting. Also it requires higher processing time due
to complicated computation. Therefore, currently weed-crop segmentation
by color with neural network based classifiers can be considered as one of
the most suitable candidate for real-time applications.
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A large number of studies have been done for agricultural product
sorting using the cost-effective smart camera with color, shape and/
or texture based algorithms. When the cost-effective smart camera was
used for sorting of agricultural products with several attributes, it showed
positive results. Even though the wide variety of fruits and vegetables
call for a wide variety of attributes, agricultural products sorting using
the cost-effective smart camera are much better than human as they
reduce human error and have a higher processing capacity. Even hyper-/
multi-spectral cameras were not discussed in this chapter. A cost-effective
multispectral cameras using a double filter was used for plant detection
(Dworak et al., 2013).

These days machine learning methods, especially supervised machine
learning such as SVM, K-NN and artificial neural network, are used to
increase the accuracy of smart camera. However, the number of training
data set critically affects the accuracy of these methods because variability
of the training data set needs to cover the full variability of the target (Guo
et al., 2013) which requires tremendous human effort for classification.
Recently, deep neural nets application including DCNN using the GPU
is emerging as it extracts feature automatically which may help to reduce
tedious manual efforts.

With extensive calculation burden for extracting shape and /or textural
features from images, these algorithms need powerful rugged computer
and/or a front look-a-head position which can ensure distance and
enough processing time for calculation while increasing the complexity.
The use of DSP, ARM, FPGA and/or GPU may reduce these processing
time constraints.
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From Manual Farming to Automatic and
Robotic Based Farming

An Introduction

Dan Zhang™ and Bin Wei

1. INTRODUCTION

Human beings rely on the food to survive. How to achieve productive and
efficient farming and therefore provide sufficiently food for human beings
will always be an indispensable topic. After the development of advanced
robotic machines, the automatic/robotic based farming has become a
trend in the agricultural arena. Traditionally, there is dependence on man-
power for farming in agriculture. The downside of using man-power is
that it relies on a large amount of people and has less efficiency. Shifting
to automatic machines, can greatly help farmers in the farming field.
Automatic and advanced robotic based farming will become a promising
trend in the agricultural and farming areas.

In this chapter, we briefly present the current farming machineries in use
at the moment and some issues that we face. There may be other farming
machineries also that exist and the authors did not cover in this manuscript.
There are numerous sources dealing with the robotic based farming topics
and issues. Available sources include books (Kondo et al., 2011; Pedersen et
al., 2008), journal publications (Guyer et al., 1986; Mohan et al., 2016; Emmi et
al., 2014; Tokekar et al., 2016; Nieuwenhuizen et al., 2007; Hague et al., 2006;
Primicerio et al., 2012; Henten et al., 2003; Sa et al., 2006), and conference
proceedings (Shibusawa et al., 2000; Werner et al., 2012; English et al., 2013),
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etc. Only a few authors are listed here since there are so many. The following
section presents some farming methods which are in use at large.

2. MANUAL FARMING

Farmers usually carry their tools and go farming. The downside of this
traditional farming is that it consumes a large amount of manpower and also
the farming efficiency is not sound. It is expected that the food demand in
the next decade will continue to increase and therefore, efficiency farming is
critical, for growing population. The manpower based farming cannot keep
pace with the increasing food demand. With the development of modern
machinery technology, it is quite possible to transform the manpower based
farming fashion to the robotic based farming fashion so that the farming
efficiency can be greatly improved and also the manpower can be greatly
reduced.

3. ROBOTIC BASED FARMING
3.1 Trackers

Trackers are the most widely used machines in the farming industry. It can
perform numerous tasks, such as watering, spraying pesticides, spreading
seeds, and harvesting. Trackers can be partially considered as robotic since
a tracker needs to be driven by a driver unless the tracker is autonomous
type. The advantage of using trackers in the farming field is that trackers can
do tasks quickly, but they are usually not very good at precision farming.

3.2 Robotic Gripper

The advantage of the robotic gripper is that it can perform precision
farming, however, this type of robot, sometimes, is not quite dexterous as

Fig. 1. Arobot gripper.
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compared to human hands. How to design dexterous robot grippers that
resemble human being’s hands will become one of the future works.

3.3 Flying Drones

Nowadays, the flying drones are being used in the farming industry. The
drones can carry water or seeds and spread them on the farming ground.
The good aspect of using drones is that it can achieve quick watering
and seed spreading. Furthermore, the drones can be used for spraying
pesticides and monitoring, etc. The applications of flying drones not only
can be seen in farming industry, but also they are seen in many other areas,
such as sports, video shooting, and military. As the drones conduct, for
example, watering or pesticides spraying, the weight of the water or the
pesticides that the drones hold is changing, so how to control the drones
along with the weight changing situation can be a challenging task.

3.4 Indoor Farming

The concept of indoor vertical farming has been introduced recently, and
robots have been used in the indoor farming. The advantages of the indoor
farming are that it does not heavily rely on weather condition and also it
occupies smaller space as compared to the traditional large space farming.

4. ROBOTIC FARMING ISSUES

There are some main issues in the robotic farming industry that we need to
address. For example, sensing issues, robot mechanism design issues, and
control issues. For the sensing aspect, how to develop a sensing system
that can accurately sense the relative position between the robot and the
plant is worth exploring. For the robot mechanism design aspect, we need
to figure out how to design a dextrous robot (hands) that resembles the
human being’s hands. With this robot we can have a more precise and
efficient farming outcomes. For the control aspect, we need to figure out
how to control the robot so that the precise motion can be achieved, or
how to develop a control strategy to cope with the fact that when the robot
conduct’s farming operations, the outside surroundings” effect will affect
the motion of the robot, and this effect should be taken into consideration.

Regarding the control aspect, one can use the model reference adaptive
control (MRAC) to address the above mentioned outside surroundings’
effect issue. The necessity to employ the MRAC method to a robot is that
conventional control technique is not able to handle the load changes
situation. During the process of robotic mechanism, end-effector takes
different weights of loads, usually the joints” output fluctuates along with
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time, this phenomenon can deteriorate the end-effector’s positioning
accuracy performance. However, if one employs the MRAC system, the
above issue is effectively rectified and load changes impact is effectively
addressed, as demonstrated in Figs. 2 and 3. For detailed studies of the
above, please refer to (Zhang and Wei, 2016). The MRAC control system
that was developed by scholar Horowitz and subsequently extended by
other scholars consists of an adaptation mechanism structure and a position
feedback loop structure that is able to detect the error among the joint’s
ideal position and the joint’s real position. This error is then served through
the integral section of a PID-like control system, after that the position and
velocity feedback values are deducted.
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Fig. 2. A 2-DOF vegetable gripper.
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Based on Fig. 2, and according to the Lagrange technique, the Lagrange
of the 2-DOF gripper can be derived as the following,

L=K-P
1 . o2 1 S « o
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Applying the PID controller, the output from the controller equals to
the torque, therefore,

er+KiJ.edt+Kd:3:E'} 3)

2

where error ¢ = 7 — x,. One knows the 2-DOF gripper system’s M and N
matrices, the accelerations of joint 1 and joint 2 of the gripper are solved
by the following ways,
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Accelerations of joint 1 and joint 2 are known, a time integral
determines the velocities of joint 1 and joint 2, respectively, and second
integral determines the positions of joint 1 and joint 2.

‘9.1 J‘ é
= dt,
_92_ L72 ]
01 o]
91 = [ (6)
ReN o,

From the MRAC approach, we have the following equation:
ControllerOut =t = ]\A/Iu + YA/— Ppe - Fvé (7)
where u = K,j(rp - xp) - prp -Kpx,

Since the dynamic formulation for the gripper mechanism is
7=Ma + V + Gg, the accelerations of joint 1 and joint 2 are solved as follows:
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Furthermore, the adaptive algorithm can be determined as the
following,
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By observing the firﬁt term in equation (9), one needs to satisfy
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By employing the same approach and applying to the other two terms,
the following equation is obtained,
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Similarly, we can determine the adaptive algorithm for N as the
following,
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In (Sharifi et al., 2014), a model reference based adaptive impedance
controller was designed by combining the MRAC and impedance control
for tracking control problem in human-robot interaction. In (Huh and Bien,
2007), a sliding mode based MRAC was proposed for a robotic manipulator.
By introducing the sliding model control approach to the MRAC, the
control system allows the manipulator to follow its nominal dynamics.
In (Kamalasadan and Ghandakly, 2008), a fuzzy multiple-reference-model
generator-based MRAC scheme was proposed by combining a fuzzy logic
switching strategy and a direct MRAC algorithm. In (Su, 2007), a model
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Fig. 4. Dexterous robot hand design.

reference was designed by inserting a PID controller to the feedback
path for robot motion control. In (Suboh et al., 2009), a fuzzy MRAC was
proposed by introducing the Takagi-Sugeno-fuzzification control and P-I
control to the MRAC. Based on the studies in (Sharifi et al., 2014; Huh
and Bien, 2007; Kamalasadan and Ghandakly, 2008; Su, 2007; Suboh et
al., 2009), approaches for new controller design for robotic manipulators
can be achieved by combining MRAC and other control system to design
advanced MRAC system, so as to cope with the above mentioned control
issues better and effectively in the farming industry.

Regarding the robot mechanism design aspect, as shown in Fig. 4, the
robot hand on the left side of the figure is very rigid and is not as dexterous
as human hands, as shown on the right side of the figure. The next step
would be is to design robotic hands that resemble human hands, in order
to make the farming more precise. Another issue would be how to control
the robotic hand to make its motion more adaptive, i.e., make it move like
human hands. Learning control approach is one of the strategies that we
can consider, so as to make the control system more intelligent.

5. FINAL REMARKS

In this paper, some of the main robotic based machineries were presented,
that are used in farming, i.e., trackers, robotic grippers, flying drones, and
indoor farming. The robotic and automatic based farming will replace the
manpower based farming in the near future, and the robots will become
the main labour force in the agriculture and its applications. Some issues
for the robotic farming are also briefly addressed. This paper can provide a
general guideline for future research in the field of robotic based farming.
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Cooperative Robotic Systems in Agriculture

Khalid Salah™* and XiaoQi Chen

1. INTRODUCTION

Theavailability of skilled workers inagricultural areas such as greenhouses,
orchards, plantations, and forestry are declining. Further, difficult working
conditions in agricultural environments, has encouraged the automation
of some tasks. Besides, current commercial agricultural practices are
standard and systematic which could be easily represented into automation
algorithms. A few crops which are being massively produced and have
large plantation’s volume have been already automated such as cotton,
corn, or wheat. Some agricultural activities require accurate and robust
system due to their complex environments and challenging conditions like
orchards or greenhouses (Wang et al., 2016). Fruits transportation during
harvesting process in a commercial orchard is a feasible application to
be automated in order to optimize the overall cost and harvesting time.
A team of robotic agents (RAs) can collaboratively assist pickers and
transport collected fruit bins to a loading station.

Coupled with automated systems’ sensible solutions, RAs should
have intelligent tools in order to enable a robust response to new tasks
with dynamic conditions (Barth et al., 2014). RAs can provide advanced
controllability and flexible kinematics to overcome such complexity
(Wang et al., 2016). RAs have been widely used to automate agricultural
operations with the intention to overcome some challenging aspects such
as dynamic environment, nonlinearity, complicated modeling, safety or
collision avoidance, formation and configuration, technology limitation,

The University of Canterbury, Department of Mechanical Engineering, Christchurch, New
Zealand.

Email: xiaoqgi.chen@canterbury.ac.nz

* Corresponding author: khalid.salah@pg.canterbury.ac.nz


mailto:xiaoqi.chen@canterbury.ac.nz
mailto:khalid.salah@pg.canterbury.ac.nz

132 Robotics and Mechatronics for Agriculture

overall cost, and being user-friendly (Li et al., 2015). Series of actions
must be considered when applying fully autonomous systems to ensure
effectiveness, safe production, good localization, obstacle and point of
interest detection, and communication (Emmi et al., 2014).

Besides RAs’ proven capability, RAs have been given advantages of
advanced sensors and actuators in order to be equipped with suitable
agricultural tools. The sensing technologies developed in the last two
decades have allowed accurate positioning and reliable performance.
Utilizing multiple advanced electronics in robots not only improve RAs
reliability but also increase their overall cost and complexity. However,
previous studies concluded that simple hardware designs for RAs in
agricultural minimize total cost and system’s complexity. Thus, simple
RAs can be upgraded with an integrated implement which is an actuator
to perform a certain task such as spraying, weeds removal, fertilizing, and
seed planting (Emmi et al., 2014).

Granted that an advanced RA has better performance and is more
robust than a simple RA, however, researchers have ratiocinated that
a cooperative team of simple RAs has better accuracy in localization,
navigation, path planning, and optimal performance. The combination of
two or more interacting intelligent agents is referred to as a multi-agent
system. A multi-agent system is a swarm intelligence system having a
smart team of agents effectively interacting with each other to complete
common tasks. Multi-agent systems have the ability to resolve complicated
tasks which are difficult or impossible for a single agent to accomplish
(Barca and Sekercioglu, 2013). Multi-agent systems in cooperative
environments allow more sophisticated agents to share their capabilities
with other agents which have limited capabilities (Bailey et al., 2011).
Multi-agent systems have the robustness of a single agent; thus, they have
been applied successfully to agriculture and manufacturing applications.

An equally important aspect to be considered when applying a multi-
agent system is its control architecture. The selection of a suitable control
topology is an essential part of the multi-agent system. It can be categorized
in two topologies which are centralized control and decentralized control.
Each of these control strategies have several advantages and disadvantages.
A hybrid system would combine both schemes” advantages and overcome
weaknesses (Barca and Sekercioglu, 2013). Multi-agent’s control structure
within agriculture applications should allow its agents to be cognitive
in order to maintain robustness, manage trajectories and predict other
agents’ trajectories which are achieved simultaneously by updating
and calculating the spatiotemporal trajectory of every collaborative
agent in the fleet. The system’s control manages trajectory data mining
which is defined as deriving, pre-processing, uncertainty managing via
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map-matching, pattern mining, classifying, anomalies detecting, and
transferring data to another representation (Zheng, 2015).

Due to the complex data processing and background computations
performed by the controller, robotic systems should have operating
systems which can integrate multiple hardware and software modules.
Besides their design complexity, a robotic system should be user-friendly
with flexible programming interface and more crucially have a flexible
middleware which can be customisable to different situations and
applications. A middleware should meet design diversities and also
be compatible with multiple sensors and actuators of different designs
and manufactures, to process data and execute commands. It should
be flexible to handle applications” development since robots are made
of heterogeneous components. They are also required to interact with
different communications and processing mechanisms instruments,
integration with other systems such as agricultural implements, existing
software libraries or algorithms and have the ability to collaborate or share
information with other systems. Previously developed middlewares are,
Ocra, UPnP, RT-Middleware, ASEBA, Player/Stage, PEIS Kernel, ORIN,
MARIE, RSCA, MARIE, Middleware of AWARE, Sensory Data Processing
Middleware, Distributed Humanoid Robots Middleware, Layer for
Incorporation, WURDE, OROCOS, and ROS which is a recent and widely
used framework (Mohamed et al., 2008). ROS also is an open-sourced
framework which is compatible with multiprogramming languages and
provides standard operating functions such as hardware perception, low-
level actuators’ control, coding, and implemented operations, message and
command communication between nodes, and packages’” management
(Wang et al., 2016).

The need for more sophisticated systems in industries led to the
emergence of multi-agent control systems (Rodrigues et al., 2013). Given
these points, studies on swarm intelligence and multi-agent systems
have received significant attention recently, however, many aspects and
research areas remain to be explored (Gautam and Mohan, 2012). The
advantages of applying multi-agent systems in agriculture are propitious.
Such system can redistribute complicated agricultural tasks into smaller
and more practical parts for optimal performance (Pentjuss et al., 2011).
The distribution of multiple operating agents could maintain a more
accurate operation since an agent’s failure can be compensated by another
available agent. A fault tolerant and a goal oriented system, utilizing a
multi-agent system can increase agriculture production effectively (Pitla
et al., 2010).

In this chapter, multi-agent systems in agricultural applications
involving a RA to RA and RA to human agent (HA) collaboration are
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reviewed. Common systems’ control architecture and design, tools and
middleware, planning and decision execution, cooperation behaviour,
and communication systems are discussed for recently developed systems
for agricultural applications. A case study of a multi-agent collaborative
system’s framework for transporting harvested fruit bins in orchards,
which is investigated at the University of Canterbury, is presented.

2. SYSTEMS’ ARCHITECTURE AND DESIGN

Having a single robot operating in an open space application, such
as agriculture, requires human supervision in order to monitor its
performance. Also, current legislations of many countries do not allow full
autonomous machinery without direct or indirect human'’s supervision.
In such cases, a HA is required for each operating robot. Supervising each
single RA increases the total cost and negates the need for automation.
Utilizing a multi-agent system, with only one HA observing the whole
fleet (Noguchi et al., 2004) would resolve the supervising issue with an
optimal overall cost. The design of cooperative multi-agent systems is
application- and functionality-based and include factors such as control
structure, middleware, and navigation accuracy.

2.1 Control Topology

The structure of a cooperative multi-agent system control and its features
reflect its capability, level of cooperation, limitation, and ability to
expand the number of its participating agents. Most widely used control
architectures among cooperative systems are decentralized control and
hybrid control system since they have the advantages of being more
robust than a centralized control system (Cao et al., 1997).

2.1.1 Centralized control

A centralized control topology has an advanced robot or a computer with
a powerful processor as a leader to plan for the entire fleet, applying
series of algorithms to perform specific actions. The central controller is in
charge of collecting and processing data of each individual agent to plan
tasks” execution on a global integrated level based on a prior knowledge
of each agent’s current status (Garro et al., 2007). A centralized control
system has the advantage of producing optimal plans by maintaining data
communication and feedback from the entire system, directly controlling
each agent, and thus can predict behaviour and result of the system.
However, there are some disadvantages when applying centralized
control systems such as, achieving an optimal communication coverage,
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the computational cost of larger fleets, and total failure during the absence
or failure of the leader. In addition, it is totally dependent on the leader’s
direct communication range, which results in a temporary failure if leader
is out of range (Dias and Stentz, 2000).

Most common multi-agent agricultural centralized control
architectures are in the form of a master to slave topology. This topology
allows a sophisticated agent or computer to function as a master and the
other robots as slaves. A master to slave multi-robot control structure
was developed by Noguchi et al. (2004) for farming operations. It was
powered by the GOTO algorithm which was developed as a motion
algorithm to allow a slave robot to move from its current point to
another point planned by the master. Another algorithm which was also
developed is called the FOLLOW algorithm allowing a slave robot to
mimic the master’s navigation with an offset distance as shown in Fig. 1.
Both algorithms considered pathway planning, collision detection, and
avoidance, besides speed and steering control. The proposed system can
be used for harvesting and transporting hay or corn. The GOTO algorithm
was computer simulated and a risk index was maintained in order to avoid
a master and slave collision. The closest distance between the master and
slave robot while decreasing speed of the slave robot is 12.5 m with a risk
index of 0.46. Another method to avoid master and slave collision is to
alter the slave’s path and a 12.6 m distance was achieved with a safety

Master Indications

By arera i i N
Path generation el Slave

Velocity & steering control  _ . =—

(a) GOTO algorithm

Indications

Master —~ . =

e Velocity & steering control

(b) FOLLOW algorithm

Fig. 1. Centralized control system and the proposed GOTO and FOLLOW algorithms for a
master—slave robot system (Noguchi et al., 2004).
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index of 0.46. The FOLLOW algorithms has an overshoot of 0.134 m and
0.184 m RMS error when applying the sliding mode controller and PD
controller respectively. On the other hand, the sliding mode controller
achieved a RMS error of 0.106 m than 0.131 m for PD controller.

2.1.2 Decentralized control system

A decentralized or distributed control system is a control topology
allowing each agent to operate on its local information to achieve a
common task. It enhances agents’ autonomy by processing sensors’
data, maintaining tasks planning, managing communication coverage,
and executing commands independently. This system is preferred over a
centralized control system since it is more robust to central failure, has less
communication coverage limitation within the system, can accommodate
a larger number of agents, and resolves difficulties of the multi-agent
tasks coordination problem. A distribution control not only overcomes
central control’s disadvantages, but also enables the system to break a
complicated task into sub-tasks allowing continuous and fast response
to dynamic conditions and enhanced collaborative behavior (Fidan et al.,
2007). However decentralization would result in output oscillation and
wastage of power due to the absence of central tracking to ensure stability
(Ma and Yang, 2005).

Considering the advantages, a smartweed treatment heterogeneous
multi-agent system was designed (Kazmi et al., 2011) to investigate
technological challenges of guiding and estimating a heterogeneous
multi-agent system. A decentralized control structure was adapted to
control two unmanned aircraft systems (UAS) and an unmanned ground
vehicle (UGV) equipped with advanced vision sensors as shown in Fig. 2.
A Weed detection process was achieved by processing images obtained
by a Multispectral camera and Time-of-Flight camera. Its data exchange
process allowed each agent to evaluate the overall task and handle their
sub-tasks individually. The communication range limitation affected
the data exchange process among the fleet, since UAS has a wider but
distanced observation while UGV has a closer but narrow inspection. It

-

Fig. 2. Heterogeneous and autonomous agents (from left): Vario XLC, Maxi Joker-3 and
robuROC-4 by (Kazmi et al., 2011).



Cooperative Robotic Systems in Agriculture 137

was concluded that having heterogeneous multi-agent is more complex
but has a better flexibility towards wider ranges of applications and more
customized solutions.

2.1.3 Hybrid control systems

Ahybrid control system is a result of integrating a centralized control with
a decentralized control in a hierarchical structure to get advantages of a
decentralized control flexibility along with a high-level control which have
the ability to plan tasks and monitor the performance of the participating
agents (Barca and Sekercioglu, 2013). A complex in-memory distributed
computation involving very large data sets generated by each agent in a
fleet can be stored on hard drives or larger memory computer to provide
locality-aware scheduling, fault tolerance, recovery from failures, and
load balancing. An advanced and powerful processor robot or computer
collects data and keeps track of each agent while each agent which is
decentralized control will have the awareness to manage individual
tasks locally. The hybrid system can overcome the complication of pure
centralized and decentralized structure; thus, it is a practical design for
complicated multi-agent operations (Cheng et al., 2008).

Emmi et al. (2014) developed a fully hybrid integrated control system
architecture for individual robot and fleet of robots working together.
It was designed by integrating autonomous vehicles and autonomous
implements, which are devices carried or pulled by a vehicle to perform a
certain function such as herbicide, pesticide booms, mechanical or thermal
weed removal which have separate controllers and can be controlled
externally. The vehicle used is CNH Boomer-3050 which was modified
and equipped with a Weed Detection System, a crop row detection system,
a laser range finder to detect obstacles, communication equipment, a two-
antenna global positioning system, an Inertial Measurement Unit (IMU),
a vehicle controller which is in charge of computing steering control
laws, throttle, braking for path tracking purposes, a central controller as
a decision making system and fuel cell as an additional energy power
supply. The Robot Fleets for Highly Effective Agriculture and Forestry
Management (RHEA) topology consists of an external computer in a
base station, user portable device to allow human supervision, wireless
communication medium, and a fleet of mobile units as shown in Fig. 3.
The integration of ground mobile unit controller (GMU) with the main
controller, improved reaction capabilities to speed change and trajectories
which were continuously evaluated and improved. The system was very
efficient, easily integrated to new hardware and sensors, had sophisticated
algorithms, and allowed full autonomy and better collaboration. The
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Fig. 3. Hybrid control with a central base station and fleet autonomous vehicle with
autonomous implements (Emmi et al., 2014).

proposed topology successfully minimized RHEA’s hardware and
improved the processing time since image acquisition, image processing,
and image sharing took 80-160 ms, 200-250 ms, and 1 ms respectively
which was faster than the previous RHEA design. Additionally, these
processing times were obtained while another four processes were being
executed in parallel. However, the system is complex and has expensive
instruments.

2.2 Middleware and Tools

Middleware is a user-friendly programming interface linking high level
controller with operating low-level actuators. It supports integrating
hardware and software modules efficiently. It is crucial for robotic
middleware to have unique characteristics which would enable robust
robotic applications, adapt to different scenarios, meet designs diversity,
and enhance applications’” developments. Mohamed et al. (2008) and Min
Yang et al. (2010) individually investigated common robotic frameworks
developed for robotics application. Both studies concluded that robotic
middleware should have flexible architecture and characteristics to deliver
customized solutions in order to develop required applications.

The most widely used open source framework defined as Robot
Operating System (ROS), is a collection of software frameworks for robot
software development, providing operating system-like functionality on a
heterogeneous computer cluster (Wang et al., 2016). ROS is also currently
preferred by robotics developers since it can manage command execution
in Python or C++ language as messages in parallel through assigned nodes.
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Fig. 4. Exchanging message of a topic in parallel between publisher and subscriber (Wang
etal., 2016).

In addition, ROS’s communication medium is either Ethernet or Wireless
based on a common method such as publish-subscribe or event-driven
communication to relevant generated data called topic. In these methods,
the nodes communicate data continuously without earlier knowledge who
communicates with whom as shown in Fig. 4. Another communication
method based on a request which ROS software uses is called request-
reply communication which is support via services. The communication
methods known as actions are used when a node is required to monitor or
supervise certain actions. The node continuously gets feedback, therefore,
can cancel or redirect an action.

The most compelling evidence is that ROS works to a satisfactory
level by supplying useful tools which enable inspection, visualization,
debugging, mapping and localization, and integration such as Rviz and
Gazebo with other open-source libraries such as OpenCV, PCL, and Movelt.
ROS has standard message’s formats with stable publishing frequency
and accepts customized messages that publishers and subscribers agreed
to. ROS user communities are very active, thus, solutions to different
problems can be founded in ROS Wiki or online. ROS 3D visualization
tool which is called Gazebo enables design visualization and helps
in developing the platform, running algorithms, software testing and
building modules. It also supports simulating sensors and actuators.
Moreover, virtual sensors and actuators in Gazebo generate data which
are similar to the real world generated data from actual sensors and
actuators. ROS enables offline optimization since it can store all the
generated data with a time stamp (Linz et al., 2014). As a result (Barth et
al., 2014), investigated the experience of using ROS as a middleware for
developing an agricultural robot. Technical aspects which were discussed



140  Robotics and Mechatronics for Agriculture

O Binocular camera
Lifting joint

Right arm
rotating joint,
Left arm
rotating joint

Rotating platform

Fixed base

Fig. 5. Dual-arm tomatoes harvester in farm and the 3D simulation using Rviz Tool (Barth
etal., 2014).

are, sensing perception, manipulators, system framework and mission
control. The study examined ROS’s design capability and methods by
designing a tomatoes harvesting dual-arm robot which was tested in a real
farming environment. The system’s 3D model was built and visualized by
Rviz tool and a motion planning process was supported by Moveit library
which is an integrated toolkit in ROS as shown in Fig. 5.

ROS was found to have several disadvantages such as, learning
ROS takes considerable time, newly developed versions of ROS lack
compatibility with older versions, and older versions need to be
customized with the newer release. The debugging process can be
challenging since communication is handled through messages; thus, they
require isolating and simulating each message. ROS does not support real-
time response to other external softwares even if they are linked to it.
It was however, concluded that ROS has wider and applicable roles in
robotics’ development in the future.

2.3 Collaborative Navigation

It is important for a RA to be able to navigate, build collision-free paths
and find its next step such as where to go or what to do. A RA should
manage its navigation’s subtasks which are self-localization, path
planning, maps building, and map utilization irrespective of whether a
robotic agent is located in an indoor or outdoor environment. Therefore,
indoor or outdoor navigation can be generally categorized as completely
known, partially known, and unknown. Current sensing technologies
and powerful programming enhance locating a goal point, path planning,
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Fig. 6. Basic navigation control diagram (Mousazadeh, 2013).

and avoiding encountered obstacles (Khan and Ahmmed, 2016). Each
navigation subtask can be categorized as deterministic or reactive, for
example path tracking is deterministic while avoiding obstacles is reactive
(Vougioukas et al., 2005). A RA’s movement in agricultural applications
is straightforward due to the standard row plantation patterns either in
outdoor farms and orchards or indoor plantations and greenhouses.

Accordingly, Mousazadeh (2013) reviewed the navigation process
of autonomous agricultural vehicles and compared different navigation
algorithms in terms of accuracy and speed. In the review, navigation
systems were characterized in six categories which are, dead reckoning,
image processing, statistically based developed algorithms, fuzzy logic
control, neural network, genetic algorithm, and Kalman filter based
algorithms. The current autonomous systems use sensors” collected data
to be fed to their navigation algorithms. The navigation algorithm plans
and executes next step such as, moving, steering or stopping. The most
commonly used sensors in agricultural navigation are vision based,
Real Time Kinematic-Global Positioning System (RTK-GPS), mechanical
sensor, inertial sensors, Geomagnetic Direction Sensors (GDS), ultrasonic,
Fiber-optic Gyroscope (FOG), Laser Radar (LADAR), Light Detection and
Ranging (LIDAR), optical encoder, Radio Frequency receiver (RF receiver),
piezoelectric Yaw-rate sensor, Near Infra-Red (NIR), and Acoustic sensor
as shown in Fig. 6.
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In addition, Keicher and Seufert (2000) analysed agricultural
autonomous vehicles and implements navigation systems in Europe
and listed the most widely used sensors such as mechanical sensors,
laser triangulation, machine vision, ultrasonic, geomagnetic, and global
navigation satellite (GPS) systems, which generate position, altitude, and
direction of robots” movement.

Sharifi et al. (2016) developed and tested a Mobile Autonomous Robot
for Intelligent Operations (MARIO) at the University of Canterbury, New
Zealand. The MARIO’s navigation system integrated visual odometry
(VO) and inertial measurement unit (IMU) and fused their generated data
to an Extended Kalman Filter and VO algorithms in order to self-localize
the robot in a GPS-denied environment. A comparison of using two open
source algorithms which are called Favis and Libviso was presented. It
was concluded that Libviso achieved a better accuracy than Favis. MARIO
was developed on a Robotic Operating System (ROS) middleware which
enabled simulating sensors’ data and visualizing its experimental testing
in Gazebo and Rviz tools (Sharifi et al., 2016).

Collaborative multi-agent system’s navigation utilizes each agent’s
navigation ability. In other words, it is the combination of navigation
subtask of each single agent and it is also dependent on the control system
architecture. There are two common scenarios in collaborative navigation,
the first scenario is that all agents navigate to a single location while in the
second scenario each agent navigates to a different targeted location with
the aid of other agents’ presence (Bayindir, 2016). The second scenario is
more practical in agricultural applications since autonomous agents either
with or without an implement are designed for a specific task, without
causing damage to plantation and soil. Thus, an iterative process requires
a previous knowledge of a route from the agent’s current location to the
desired target and also the knowledge of other agents’ poses.

Likewise, a multi-agent navigation process is more effective than
single-agent system due to the information exchange mechanism among
robots which establishes a previous knowledge of the surrounding
environment. A good communication coverage with appropriate
algorithms and consecutive data exchange between agents are essential
for accurate navigation. Collaborative navigation routing algorithms
can be categorized as static routing or dynamic routing. A static routing
allows an agent to follow a sequence of fixed landmarks while dynamic
routing depends on direct communication with another neighboring
agent to determine a targeted location from a current location (Wurr and
Anderson, 2004).

Notably, the hybrid control multi-agent application known as Robot
Fleets for Highly Effective Agriculture and Forestry Management (RHEA)
implemented three levels of navigation subsystems. Level one which is a
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combination of navigation sensors namely RTK-DGPS, machine vision,
LIDAR, and IMU. Level two is a navigation planner performing paths’
generation and obstacle avoidance. Level three is the navigation execution
layer which has path following, steering, and throttle controllers (Emmi
et al., 2014).

Adamides et al. (2012) improved a HA to a RA collaborative system
to execute spraying tasks and navigation by introducing a semi-automatic
teleoperation. The design’s principles such as visibility, safety, simplicity,
feedback, extensibility, and cognitive load reduction were introduced to
allow a human agent to contribute to robot navigation, target selection,
and spraying. Vougioukas et al. (2012) developed a multi-agent robotic
system to transport bins of harvested fruits from a fixed position to a
drop station. The Split Delivery Vehicle Routing Problem (SDVRP) which
is a navigation and formation algorithm was used to route different size
robotic agents to bin’s location and then to a drop station and it was
developed using the Mixed Integer programming method.

Furthermore, English et al. (2013) investigated and developed
a robust pose estimation method to common sensors failures by
combining multiple low-cost sensors on small and light robotic
farming machinery. The used sensors are low-cost GPS, inertial sensors,
and vision-based row tracking. The integration of GPS and inertial
sensors with the vision-based row tracking sensor enabled the system
to overcome long signals interruptions and repeated dropouts. It is
also a lower cost option than expensive GNSS navigation systems.
The added vision system allows robots to observe the visual features
while driving in a way that mimics humans’ driving and following
GPS’s directions as shown on the localization block diagram Fig. 7.
Physical experimentations were carried out by a robot which covered 6
hectares and resulted in 0.18 m root means square (RMS) pass-to-pass
errors while 95th percentile error was 0.28 m and all errors were less than
0.5 m wide side-spray. The missed out area was 2.6% and the repeatedly
covered area was 9.7%. A correction on the IMU constant bias reduced
RMS errors by 28% and percentile errors by 42%.
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Fig. 7. Localization system components (English et al., 2013).
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A HA to a RA cooperative agricultural system was also developed by
Farangis Khosro et al. (2014) to aid a picker during a strawberry harvesting
process by transporting filled tray from a picker location to a loading
station. The RA also monitored picker’s posture since long and continuous
bending during picking may result in a low back disorder (LBD). The
designed platform allowed navigation in narrow strawberry furrows and
it was equipped with ultrasonic sensors mounted in the front and back
allowing collision avoidance, straight motion, and safe movement which
was also feeding data to an Arduino microcontroller executing navigation
and furrow path stabilization algorithms.

Along with the above studies, Li et al. (2015) studied a hierarchical
decision method and trajectory planning for a group of collaborative
agricultural robots performing tasks such as citrus harvesting. A
framework algorithm handled two levels which are a cooperative level
and an individual level as shown in the algorithm architecture Fig. 8.
In this algorithm optimization took place at the cooperative level for
formation task assignment and at the individual level for agricultural
robots’ trajectory planning. A rapid optimization of trajectories was
achieved by the proposed algorithm and a performance index was added
to the cooperative level to be decoupled from the individual level and
control variables. The adoption of a re-planning strategy enabled robots
to adapt to dynamically changing environments.
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3. ROBOTIC COOPERATIVE BEHAVIOUR

A multi-agent system cooperative behaviour is determined based on its
communication ability, amount and type of exchanged data, designs’
similarities, and common tasks to be achieved. An artificial communication
can be categorized into two types. The first type is via observation similar
to biological stigmergy which is communicating through observing
surrounding changes or signs (Holland and Melhuish, 1999). The second
type is via messages which are passing packets of data containing specific
information such as machine IDs, pose, time stamp, velocity, and the
status of an assigned task. The messages’ communication is managed via
Bluetooth, wireless, infrared, or 3G GSM internet depending on the team
size and communication range. The type of information shared between
agents specifies the degree of collaboration between them, for example,
the simple exchanged information might contain only pose and time
stamp and more complex information may contain commands, direction
instructions, a request of a specific agent to do a specific task, or algorithms
update (Capodieci and Cabri, 2013).

A complicated inter-robot communication network has two basic
concepts which are animplicitcommunicationand explicitcommunication.
The implicit communication is achieved when an agent broadcasts its
status data to the whole fleet while an explicit communication is a point
to point communication with a specific agent. Whether to use an implicit,
explicit communication or both combined depends on the assigned task.
The cooperation behaviour was divided into three categories such as
no cooperation, modest cooperation, and absolute cooperation by Pitla
et al. (2010). They investigated a multi-robot system control architecture
(MRSCA) for agricultural production. The MRSCA tested the three
cooperative behaviour categories supporting different tasks efficiently.

3.1 No Cooperative Behaviour

A multi-agent system would have no cooperative behaviour if the system
or its agents have implicit communication only. The system remains
collaborative but has no or less cooperation behaviour. In other words,
agents in the system still performed assigned tasks collaboratively, but
do not have a point to point communication, nevertheless, they still
broadcast their status. Most of the homogenous multi-agent applications
in agricultural applications such as spraying, planting, and fertilizer
require implicit communication only (Pitla et al., 2010).

A safe collaborative navigation system in an orchard or in a farm to
aid in transporting with the presence of HAs was introduced by He et al.
(2014). AHA carryinga GPSand radio transmitter will have his pose tracked
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Fig. 9. Perimeter surveillance experimented by a team of robots (Acevedo et al., 2013).

by a RA. The radio transmitter will keep broadcasting HA’s data. Another
study regarding path partition strategy was investigated by Acevedo et al.
(2013) that performed a perimeter surveillance with a team of mobile
robots. Each robot should cover a specific non-overlapping section of the
total path covered by the whole team. Each robot propagated its spatial
data within its communication coverage range and a decentralized control
algorithm coordinated the robots, based on the exchanged data between
neighboring agents. The whole team collaborated to cover the whole area
by monitoring each other’s position and maintaining their subtasks as
shown in Fig. 9.

3.2 Modest Cooperation Behaviour

A modest cooperation behaviour is another form of collaborative systems
which requires establishing an explicit communication and implicit
communication between agents. Both explicit communication and
implicit are a via message data communication. However, the explicit
communication message’s data have a specific set of instructions such as
requesting to dispatch a bale of hay, picking up fruit bins, or assisting
another agent.

A cooperative agricultural system which consists of a supporting unit
(SU) as a transporting vehicle to assist an operative agent as a primary
unit (PU) was discussed by Jensen et al. (2012). They investigated the
transporting unit navigation optimization and path planning which also
involved in-field and inter-field transportation. The system was simulated
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Fig. 10. The metric map and corresponding graph of a refilling of a PU unit simulation
scenario (Jensen et al., 2012).

in MATLAB for a fertilizing operation when an autonomous tractor
employed as a PU carrying a sprayer and required refilling its tank. The
refilling operation was supported by a transporting vehicle working as a
SU which arrives at the PU’s location and refills as shown in Fig. 10.

3.3 Absolute Cooperation Behaviour

An absolute cooperation behaviour requires a continuous point to point
implicit and explicit communication. An uninterrupted data exchange is
established between collaborative agents such as pose correction of two
agents carrying an object designed by Bailey et al. (2011). They designed a
hybrid control to fuse inter-robot measurements. A distributed algorithm
for joint localization of RAs enabled sharing spatial information between
an advanced sensing RA with a lower sensing ability RA. The localization
information sharing was obtained which continuously corrected agent’s
poses as a combined estimation method. The process allowed the advanced
RA to help less equipped RAs. Each RA processed its own sensed data
independently.

Another agricultural application which was discussed by Pitla et al.
(2010) is grain harvesting as shown in Fig. 11. The application is a hybrid
control system which had a central processing station (CMS) as a central
controller and a grain harvesting robot GHR accompanied with two
autonomous grain wagon robots GWR I and GWR II. GHR and GWR I
are working together and keeping a close distance to each other in order
to allow GHR to keep on feeding harvested hay to GWR I. The GWR 1l is
to replace GWR I when it gets full.
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4. MULTI-AGENT COOPERATIVE HYBRID CONTROL SYSTEM
FRAMEWORK

In this section, the development of a Multi-agent Cooperative Hybrid
Control System Framework for Agricultural Transportation Application
in New Zealand is represented as a case study. This implementation
investigates the optimization of the harvesting cost. A modest cooperative
behaviour will be established within a team of RAs as fruit bins
transporters, HAs as fruit pickers, and a computer base station as a
central controller. The system structure is illustrated in Fig. 12. During
a conventional harvesting process in commercial orchards, the picked
fruits are collected in a fruit picking bag and emptied into a fixed bin
placed on the orchard’s row by the picker. Then, the bin when it gets full
is transported by a forklift tractor to a collection station and inspected
by a supervisor. The unproductive traveling time from and to a fixed bin
prolongs the harvesting process.
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An interactive monitoring of the human agents’ movement and fruit
picking process in an orchard is performed by the central Controller. Thus,
an implicit communication message will exchange data between RAs and
HAs which contains their identification number, location, time stamp,
carried weight, and status. The central controller which is a computer
is processing data broadcasted by each agent. It will process data and
translate them into executable commands for RAs to act upon. The data
processing will include noise filtering, segmentation, map matching, and
weight monitoring which essentially contributes to the decision when
a RA navigates to a HA’s location and when the RA should navigate to
a drop station. Therefore, a RA navigates to an HA’s location when its
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picking bag is full or when requested while the RA will navigate to a drop
station after collecting multiple full picking bags and its bin becomes full.

The weight monitoring process combines two stages, the first part
is continuously measuring the picking bag’s weight by load cells and
broadcast the measured weight value, location, and timestamp as a data
set via implicit communication messages, the second part is when the
weight reached a certain threshold value. This threshold is contentiously
monitored by the central controller. The central controller would
decide which RA would navigate to which HA, based on their picking
bag’s weight and location. An explicit communication message will be
established between a HA and the nearest RA requesting to dispatch a
full picking bag. It will be established also between the central controller
and a specific RA to pick up bags or transport a full bin. The central
controller will also manage global mapping, path planning, and updating
collaborative agents’ maps. RAs are robust to the absence or failure of the
central controller since they are decentralized controlled and can plan
tasks based on the previously exchanged data and latest uploaded maps
by the central controller.

A site visit was made to a Plant and Food Company’s apple orchard
in Motueka, New Zealand to investigate apples’ harvesting process and
to explore the possibility of automating bins’ transportation task. It was
concluded that automating the transportation process during harvesting
is achievable because of the existing commercial and standard procedures
followed by the apple plantation industry such as;

1. Fruit pickers move within groups in systematic patterns from end to
end in each block visiting each tree once during harvesting. Apples
are picked into carried picking bags which are emptied to a fixed
bin located in the middle of the row. This procedure makes HAs
movement patterns predictable by a central controller.

2. A commercial orchard consists of 7-12 blocks. Each block will have
about 700-1100 apple trees depending on row plantation density and
it has access from both ends allowing vineyard tractors to be driven
through rows to perform spraying, fertilizing, transporting bins, etc.
which will also allow RAs to access and exit easily and no need for
complicated manoeuvres during navigation.

3. An apple tree with the height of 3 meters produces about 300-400
apples and a normal picker would pick 2-3 tons in a single day while
a skilled picker can pick up to 4 tons. This massive production of
apples encouraged automating the transportation process.

4. Movement between apples’ trees are restricted since they are being

supported by poles and steel wires; thus, pickers and tractors move
through rows with a path clearance of 3 to 4 meters as shown in Fig. 13,
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Fig. 13. Orchard’s block and its two ends access.

therefore, RAs’ navigation is going to be straightforward and easily
managed.

5. Continuous monitoring of picking bags” weight will enable collecting
data from every HA and improve harvesting productivity and quality.

6. Most orchards in New Zealand have internet service providers or cell
phone coverage and have a good infrastructure.

Several algorithms would be integrated into the system in order to
automate the process. Based on two level control hierarchy structure
as shown in Fig. 14. A hybrid control has two collaborative algorithms
layers which are, the first algorithms layer is cooperative algorithms
processing received data from each agent, make and continuously update
global maps, tasks’ decision making, and navigation planning. The
second algorithms layer is based on the RA processor as a decentralized
controller that follows central controller’s decision, take decisions during
the absence of the central controller and execute local navigation. At the
central controller layer, sorting algorithms will sort received data based
on agents’ IDs, carried weight, and position. Another search algorithm
will locate the most suitable RA to assist an HA who has their picking
bag full or nearly full. Locating the most suitable RA will be handled by
a search algorithm based on two constraints which are the relative RA’s
location if available and the second is when all RAs are engaged, the
search algorithm would look for a RA which will finish first to handle the
request. The Dijkstra’s algorithm is applied to plan the shortest path to be
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Robot control (second laver)

followed by the selected RA in order to reach the HA’s or drop station’s
location.

On the robot control layer, RAs receive instructions from the central
controller and data from neighboring agents and perform local navigation
to a goal point including trajectory optimization and collision avoidance.
RA would build its own global map and build a smaller data structure of
other agents in order to enable robustness to central controller’s failures
and collaborate effectively with the rest of the team to execute commands.

5. FUTURE WORK

Multi-agent cooperative systems are current and evolving research areas
and several aspects need to be investigated. These opportunities are the
framework modules, the whole system’s parts integration, operative
algorithms, hardware’s design, prototyping developments, experimental
implementations, and evaluation studies.

One of the main challenges when applying a multi-agent systems
is the prediction of HA’s mobility patterns. It has a crucial role during
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harvesting and fruit transportation automation in this research. There
are a few actively ongoing research studies in the arena of uncertainty
and unpredicted behaviour of human’s movement. Human mobility
tracking in an agricultural process is complex and requires selective data
mining operations. Therefore, future research should focus on improving
algorithms and methodologies for monitoring unpredicted human
mobility in agricultural applications.

Navigation and localization of mobile robots are also active research
areas. There are numerous topics being studied to improve multi-robot
navigation under real application constraints such as challenging terrains,
weather condition, surface texture, and design complexity. In addition,
navigation and localization algorithms development is another research
field, even though, many algorithms have already been developed and
optimized but an avenue for future studies to optimize new and fast
algorithms that improve multi-agent cooperative navigation still exists.

The Multi-agent Cooperative Hybrid Control System Framework
for Agricultural Transportation Application proposed in this chapter
is an endeavor to improve the collaborative system’s heterogeneity
and optimization by including a HA as a functional team member. This
design took an advantage of the existing standard mobility patterns in a
commercial apple orchard to track HA’s mobility. The proposed system
discussed the implementation of the RAs as Unmanned Ground Vehicles
(UGV) with a central controller. Future research can include quadrotors
or rovers as Unmanned Aerial Vehicles (UAV) to improve communication
coverage, global mapping, machine vision, and prediction human agent’s
mobility and which also can interact with one robot or several robots.

6. CONCLUSION

This chapter leads the reader through a review of cooperative multi-agent
system applications in agriculture. The multi-agent collaborative concepts
were introduced. The need for multi-agent systems in agriculture with
existing designs and similar applications” backgrounds was illustrated.
The review highlighted the effectiveness of automating certain agricultural
processes and also discussed design considerations such as control
topology, middleware and tools, navigation, and cooperative behaviour.
Previously reviewed collaborative systems support these consideration
and provide practical assessments for future designs.

HA to RA collaboration is a critical aspect of agriculture due to the
tasks’ complexity which requires humans’ flexibility and intelligence. Thus,
HA's role is not only to supervise robots exclusively but also to participate
collaboratively and effectively communicate with the whole system. The
unpredictable HA’s mobility and tracking constraints is the reason for
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researchers’ reluctance to employ HAs within cooperative multi-agent
systems. The proposed study of the Reliable Multi-agent Cooperative
Hybrid Control System Framework for Agricultural Transportation
Application in New Zealand introduced HA's participation as an operative
agent while improving a methodology for accurate mobility prediction
by investigating the movement patterns during a harvesting process. A
weight and pose tracking device is used to broadcast picking bags” weight
and location which is received and processed by a central controller.

This chapter has shown possibilities and advantages of using
cooperative multi-agent systems in agricultural applications. Selecting
the applicable system design, level of cooperation, HA’s and RA’s task,
and appropriate communication enhances RA’s awareness and improves
collaboration. Therefore, the development of multi-agent cooperation
system in agricultural applications will be improved when RA and HA
behave in more collaborative manners.
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Adaptive Min-max Model Predictive Control
for Field Vehicle Guidance in the
Presence of Wheel Slip

Xu Wang,* Javad Taghia and Jay Katupitiya

1. INTRODUCTION

Developing highly accurate automatic guidance of agricultural vehicles
can bring in immense benefits to the agricultural industry by way of
cost savings. For example, autonomous agricultural vehicles that can
accurately follow predefined paths can be used to plant the crop and then
repeatedly revisit the growing crop accurately for crop management. Crop
management includes growth monitoring and fertilizer, herbicides and
pesticide application. Highly accurate autonomous machines can apply
fertilizers, herbicides, and pesticides with greater spatial precision leading
up to plant level care instead of field level care bringing in significant cost
savings due to reduced fertilizer and chemical usage. In addition, use
of autonomous systems address the skilled operator shortage, reduce
the labor costs and improve occupational health and safety standards of
operators (Van Henten et al., 2003).

Ensuring accurate operation of autonomous agricultural vehicles for
path tracking is a challenging and complex task. The primary reason is
that these vehicles operate on rough terrain, which at times can be sloping
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and undulating (Janulevi¢ius and Giedra, 2009). Moreover, they carry
out ground engaging operations such as plowing. These conditions often
lead to slips at the front and rear wheels in both lateral and longitudinal
directions (Eaton et al., 2009). Wheel slip is the interaction between soil
and wheels, and affected by tyres as well as speed of vehicles, terrain
properties, and path curvatures. In agricultural applications, the accuracy
of lateral offsets is required to be within the range of five centimetres
with respect to the reference path, even if farm vehicles are moving on
slope and undulating ground (Lenain et al., 2006). The slips are inevitable
disturbances affecting the operation of autonomous vehicles and need
to be considered in designing path tracking controllers. For example, as
the experimental results shown in (Lenain et al., 2004), classical control
without sliding, deviated the farm tractor from the desired path with the
highest error of 30 cm during the slope. While errors during the curve
were in the range of the lowest lateral offset 40 cm to the highest offset 60
cm, during path tracking in the curve. The effect brought by wheel slip in
field is significant, and can not be ignored. There are a few other researches
while also highlighted the significant issue of wheel slip (Raheman and
Jha, 2007; Pranav et al., 2010; Bevly et al., 2002). In this paper, one of the key
aim is to investigate wheel slip. The autonomous technologies presented
in this paper can be employed in other industries as well such as road
construction in civil engineering and mining and defense.

The first step towards controller development is modeling. Two types
of models can be used for controller development, the kinematic models
or the dynamic models. Though dynamic models are more complex, they
are more accurate than kinematic models especially when the vehicles
operate with high accelerations. Dynamic models are also more specific to
a given system than kinematic models, which are more general and easy
to use. However, it has been shown that, for vehicles operating at low
speeds with low accelerations such as farm vehicles, the kinematic models
are accurate enough for designing path tracking controllers (Werner et al.,
2012). A number of kinematic models based on non-slip assumption have
been derived. However, this is not a valid assumption in the agricultural
environment because slip is significant and inevitable (Micaelli and
Samson, 1993; Samson, 1993). Lenain et al. (2006) extended a kinematic
model by incorporating a rear side slip angle, and a front side slip angle
to take the slip effects into account. A more comprehensive kinematic
model was introduced by Fang et al. (2004). In this model, a lateral slip
velocity perpendicular to the velocity of the field vehicle is added to the
front wheels as a steering bias. As a further extension, a kinematic model
(Huynh et al., 2010) was derived with three slips—lateral slip velocity,
longitudinal slip velocity and steering slip angle. Their kinematic model
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can be used to obtain an offset model with respect to a reference path, the
offsets being the lateral distance offsets and the heading offsets.

In this paper, the offset model of Huynh et al. (2010) is used to design
the path tracking controller. Note that the kinematic models are nonlinear
and, therefore, nonlinear controllers are recommended. Nonlinear
approaches such as sliding mode control (SMC) and back stepping control
(BSC) have been used for controlling mobile vehicles in many industrial
applications (Yu and Kaynak, 2009; Taghia et al., 2015). Both control
methods are based on Lyapunov stability analysis, and they are robust
control methods that perform successfully in the presence of uncertainties
and disturbances (Krstic et al., 1995). Both BSC (Huynh et al., 2012; Fang et
al., 2006) and SMC (Taghia and Katupitiya, 2013) are found to be sensitive
to unmatched uncertainties in the system model.

A very promising control method for achieving high precision
path tracking is Model Predictive Control (MPC) due to its receding
optimization and predictive ability. MPC has been successfully used in
many industrial applications such as oil-refining and power systems
(Qin and Badgwell, 2003; Richalet, 1993; Arnold and Andersson, 2011).
In the recent past, researchers have shown an interest in applying MPC
to path tracking. While there is an abundance of satisfactory research
results, the majority of them use the assumption of pure rolling without
sliding (Backman et al., 2009; Yaonan et al., 2010). As emphasized before,
this assumption is invalid when it comes to the control of field vehicles
in farming environments. Moreover, classical MPC is not inherently
robust (Garcia et al., 1989), therefore it is necessary to design controllers
taking the wheel slips into account. The work presented by Backman
et al. (2010), took into account the wheel slip and used extended Kalman
filter to compensate for the slippage, however, this approach is not robust
due to the assumption of the Gaussian distribution of slip, which is not a
reliable assumption. Lenain et al. (2005, 2006) used an extended kinematic
model with two slip angles representing front and rear slip to design a
control law and then created a sliding estimation algorithm to obtain the
two slip angles. The results show acceptable performance, however, the
noise levels on the two estimated slip angles were problematic.

This paper proposes adaptive and robust control approaches in such a
way that the slip measurement or estimation is not required. Proposed min-
max MPC is a robust MPC method that considers all possible disturbances
including the worst case (Campo and Morari, 1987). However, at times,
this method may cause overcompensation because the worst case does
not occur always. To avoid overcompensation, Scokaert et al. (1998)
proposed a min-max feedback MPC control method for a linear system.
Although this method leads to a better performance than min-max MPC,
it is computationally more intense.
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In this paper, we propose a new MPC method called adaptive min-
max MPC (AMM-MPC) which can deal with inherent slip through
adaptation. The proposed MPC is called adaptive min-max MPC (AMM-
MPC). This controller can deal with inherent slip through adaptation.
In AMM-MPC, first a cost function is defined and then, the min-max
technique is applied based on the bounds of the disturbances. The control
law is adapted based on the curvature of the reference path and path
offset feedback as the adaptive part. First, the derivation and stability
of AMM-MPC are presented. Then, the performance of the proposed
MPC is compared with the classical MPC in kinematic simulations and
dynamic simulations. The dynamic simulation platform is developed to
create a more realistic environment incorporating slip phenomena. Then,
AMM-MPC and classical MPC are implemented on a tractor in the field,
and results are compared and discussed. To compare the performance of
the proposed controller with other types of controllers, the experiments
were extended to include comparison of AMM-MPC with a SMC, which
is presented under the title “Robust Adaptive Controller Design” (Fang,
2004), and a BSC (Huynh et al., 2012).

The breakdown of sections in this paper are as follows. In Section 2,
kinematic modeling and system description are presented. In Section 3,
AMM-MPC’s derivation and stability analysis are provided. Evaluation
of AMM-MPC in kinematic simulations, in dynamic simulations and field
experiments are presented and discussed in Section 4. Then, the proposed
AMM-MPC is compared with SMC and BSC in field experiments and the
results are discussed in Section 5. Finally, the paper is concluded in Section 6.

2. SYSTEM DESCRIPTION AND MODELING

In this section, the kinematic model of a farm vehicle incorporating lateral
and longitudinal wheel slips is described and an offset model is derived.

2.1 System Description

The field vehicle model is simplified into a bicycle model where two steered
wheels are represented by a single steered wheel along the longitudinal
axis of the field vehicle. The field vehicle is driven by rear wheels with a
longitudinal speed v and steered at the front wheel with a steering angle o.
The vehicle kinematic model is shown in Fig. 1 and related variables and
parameters are shown in Table 1.
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Global Corrdinate Reference Path

Fig. 1. Vehicle kinematic model and the reference path.

Table 1. Description of variables and points.

Variables Description
c, curvature of the reference path at P
X, x coordinate of point O” in the global coordinate frame
Y, y coordinate of point O” in the global coordinate frame
0, orientation of the vehicle in the global coordinate frame
v driving velocity vector at point B in the global coordinate
frame, v = Ilvll
\7 front wheel velocity vector, v, = Ilv,||
0, desired heading as per the reference path orientation
0 front wheel steering angle
I path offset
0, heading offset
v, lateral slip velocity vector at B, v_ =Ilv_II
v, longitudinal slip velocity vector at B, v, = llv, Il
B front wheel slip angle
I, vehicle wheelbase
Points Description
A center of the front axle
B center of the rear axle
(0] origin of global coordinate frame
o’ origin of local coordinate frame (coincides with B)
P point of intersection of normal from B to the reference path
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2.2 Kinematic Model

The field vehicle’s states are defined by a vector p, = [x, vy, 6]". The
kinematic equations for the field vehicle in the presence of wheel slips are
derived using the kinematic model (Huynh et al., 2010),

%, =(@-v)cosf -v_sind,
y,=(@-9,)sinf,+v_cosd, (1)

. U-T,
0, = ]

v
tan(o + /)’f) + T

t t
2.3 Offset Model

The offset model is derived from the kinematic model in (1). Offset model
consists of two states based on the position of the field vehicle with respect
to the reference path, namely, the path offset /| and the heading offset
0. The path offset [ is defined as the distance O'P in Fig. 1 while 0 _is
defined as the angle & = 0, - 6,. Both | and ¢ are measurable based on
the location of the vehicle obtained by RTK-GPS. The offset model is,

l . =-clv-ov,Isinf —olv cosf,

0:

1 U= Ulr Usr
0. = i tan(d + ﬂf) + 7 ()
t t
c,cos 0 c,sin 6
olo-ov | —F7= + LA
"o l+cl T l+cl

where o is a direction coefficient. If ¢ is +1, the vehicle tracks the reference
path in a clockwise direction. If ¢ is -1, the vehicle tracks the reference
path in a counterclockwise direction. Another coefficient added to the
model is { which is +1 when the vehicle moves forward and -1 when the
vehicle moves backward. In this paper, the field vehicle is assumed to
move forward only, and therefore {'is always +1.

3. CONTROL DESIGN

In this section, AAM-MPC is derived and the stability analysis is presented.

As mentioned before, classical MPC is a successful control method
when the model is accurate, however, in farming environments wheel
slips are significant resulting in unsatisfactory performance of the path
tracking controller. To manage significant disturbances in the field, an
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adaptive and robust AMM-MPC is derived, which is inspired by min-max
MPC (Lofberg, 2003).

3.1 Feedback Linearization

The control design is based on the offset model in (2), and the objective of
the control is to make the field vehicle follow the reference path accurately.
Nevertheless, the offset model is highly nonlinear and directly using it
in control design would be tedious. To simplify its use in control design,
feedback linearization is carried out to convert the highly nonlinear system
to a linear system (Khalil, 2002).

Assumption 3.1 We assume v>0and v > lv,1, so we have
olv-v | =-0(v-0,). (3)
Assumption 3.1 is valid because we expect the tractor moves forward
despite slipping.
Assumption 3.2 It is feasible to linearize tan(d + ,b’f) so that we have,
tan(d + [)’f) ~ tan J + tan /)’f. 4)

Assumption 3.2 is valid because the slip angle £, is generally small in
practical situations, usually between 0° and 5° (Huynh et al., 2012; Fang
et al., 2006). With Assumptions 3.1 and 3.2, we simplify (2), and we use
d, and d, to represent the overall disturbances. Then the model can be
rewritten as,

| =-ovsin0 +d,,
0s 0s 1
. c,cos 0
0 .=ctand-ov——-—+d, (5)
os ] 1+cl
t d os
where
d, =ov, sinf —ov_cosd,
r 0s Ssr 08’
v V-0 v c,cos b c,sin @
1 d S d
d,=--"tand + “tan f,+ -+ 00, =+ o0, = (6)
l, ro 1+c]l T l+cl

For canceling the nonlinearity in (5), we define two new state variables
z,, z, and one new control input u,, as;
z, =1,

1 08

z,=-0ovsind, 7)



164  Robotics and Mechatronics for Agriculture

v c,cos 0
U, =—00 Cos Hos(l—t tan § — ov T% .
Then the offset model becomes:
Z,=z,+ 0,
Z,= U, + o, 8)
where
o =d,
®,=—0vcos 0 d, )

Now, we define two vectors z, = [z, z,|" and o, = [0, ®,]" so that a linear
model is obtained as,

7, = Aczk + Bcuk + Dcwk,

v, =Cz,. (10)
where
01
<~ 0 o)
B - 0
¢ 1 4
C_=|asign(l) ysign(d,) l ,
D =[1 |
< |1

We use y, in (10) to represent path tracking errors as the outputs, so
the objective is to make y, as close as possible to zero, where y, depends
on the values of a and y which are gains on [ and 6 , respectively. For
instance, if « = 1 and y = 0, y, contains only [ contribution, so the controller
solely sends [ to zero. Note that, sign() in C_gurantees the combination
between [ and 0 not to be diminished when their signs are opposite.

3.2 Augmented Model

The use of augmented models is to model uncertainties as disturbances
acting on the system. The model in (10) is a continuous-time model and
needs to be discretized as,
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z, ., =Az +Bu +Daow,
Y= Czy (11)

where A , B, C, and D, are discrete values for A, B, C_and D..
We convert the linear state-space model in (11) to an augmented model
with an embedded integrator (Wang, 2009). We define

Az, =7 -2 ,
Au, =u, —u,, (12)
Aw, = o, — o,
and we obtain the augmented model as,
Az,
Y«

Bd
’ CdBd

)

d
Au, + CdDd A

[ ]/ k+1
Az,
Y

where o, = [0 0]. To simplify, we define x, = [Az} y,]" and rewrite (13) as,

o, 1

d

(13)

Y=

X,,, = Ax, + BAy, + DAw,,

¥ =Cx, (14)
where,
WA
“1CA, 1Y)
<[, |
CdBd
C=lo, 1],
D= D,
CdDd

In (14), x, € R*, y, € R™, Au, € R™, Aw, € R*! denote the state,
the controlled output, the augmented control input and the external
disturbances, respectively.

The stability of the augmented system can be seen by the eigen values
of the characteristic equation of matrix A as,
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M-A, of

—CA, -1
= (A-1) detQI-A),

det(\ - A) = det [ (15)

where I'is an identity matrix. We can see that one obvious eigen value of A
is 1 and other eigen values are decided by eigen values of matrix A .. Note
that the eigen value of 1 is the result of the integrator introduced to form
the augmented model.

3.3 Adaptive Min-max Model Predictive Control Law

The novel contribution of this paper is the adaptive min-max MPC. The
goal of this section is to derive the adaptive min-max MPC controller
that explicitly considers the external disturbances based on (Wang et al.,
2016). The “max” in min-max refers to worst-case scenarios. However,
it can cause overcompensation. The adaptation introduced will avoid
the overcompensation and will make it perform as close as possible to
the classical nominal MPC formulation and at the same time tackle the
disturbances.

The basic idea of predictive control is to calculate the future outputs
together with the future control inputs by using the current states that
are measurable. Objective function is minimized to obtain the optimal
control trajectory, however, as, per MPC method, only the first control
input is applied to the physical system. To begin with, we assume that at
the sampling time k, k > 0, the current state is x, ,, which is the same as x,.
Using x, ,, the future states are predicted for N sample times which the
prediction horizon. The state x, , denotes the predicted state at k + n,
predicted using x, ,, at sampling instant k. The number of control inputs to
obtain the future outputs are N_ which is the control horizon. Note that,
Np > N, preferably, Np >N.

To obtain a simple notation, we introduce vectors to denote future
states X, future outputs Y, future control inputs AU and unknown
disturbances AW as,

X=(_, X, X S X

T
kel lk “ka2lk “ka31k k+Np\k)

Y = Wy i1 Yisoie Yiwain - - - yk+NpIk)T
AU = (Au,,, Au Au -Au

k+11k k+21k © "

AW = (Aw,,, Aw Aw

ket D%rs1k "

)T
k+Ne-11k
- Aw

T
k+Np-1 W'

Then we can obtain,

Y =Fx, , + AU + AAW, (16)
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where
CA
CA?
F=| CA3 |,
CAM
" CB 0 0 0
CAB CB 0 0
O =| CA’B CAB CB 0 ,
LCAMN-1B CAM2B CAMSB ... CAMNB
" CD 0 0 0
CAD CD 0 0
A=| CAD CAD CD 0
L CAMD CAM?D CAMD ... CD

The objective of model predictive control is to find the optimal AU
such that the predicted output Y is as close as possible to the reference R .
This process is implemented by minimizing a cost function | defined as,

J=R -Y)" (R -Y)+AU" RAU. 17)

Then achieve,
min | subject to
AU

AU € AU%, (18)

where AU* is constraint set matrix, Y € R"" and AU € R". For path
tracking, R is always set to 0, as offsets are driven to zero. Moreover,
the diagonal matrix R is defined as R=r] __ where r >0 is a tuning
parameter for penalizing the control input.

Next step is the management of the disturbances in the cost function,
which is handled by a min-max method (Lofberg, 2003). Disturbances in
the model (2) are all physical variables, thus they can be considered to
have bounded values. Therefore we define,

supllo |l <of

Ir’

*
sup | Ivsrl | < v¥,

sup | Iﬁfll s,b’;,
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where v}, v* and f7are the bounds of the uncertainties, which are in fact

the bounds of slip values. Now, substituting these bounds in (6) and (9),
we obtain,

supl lo || <o},
supl lo,| | <w},
o, € 07,
Aw, € Aw?,
AW € AW¥,

where o} and Aw? are bounded vectors of disturbances, and AW* is normally
taken as a constant matrix that corresponds to the worst case scenario.

The idea of min-max is to take the worst-case scenario into
consideration, which is implemented by computing the cost function |
using the bounds of external disturbances and then minimizing the cost
function to obtain the optimal control input. Hence, the cost function J can
be represented as,

min max Y’ Y + AU” RAU subject to
AU AW
AU € AU*, (19)
AW € AW*,

However, this will cause overcompensation in most cases as the worst
case cannot occur all the time. Therefore, it is very important to consider
the field conditions to determine AW*. For example, v_ is a significant
factor that makes the field vehicle deviate from the reference path, and it
is generally larger during travel through high curvature segments of the
path. However, it is insignificant during travel along straight segments.
Thus, we can relate AW* to (i) the curvature of the reference path to
provide robustness and (ii) the amount of errors in offset values to provide
adaptation. Hence, we define,

N

P

W = 1 1]T(kpcd +k +kl), (20)
where k is a value based on the worst case scenario when the curvature
is not zero. The parameter k_is a small positive constant at the worst case
scenario representing zero curvature. The worst case scenario is decided
by the bounds of v, v_and f. The parameter k, brings adaptive behavior,
which is based on the amount of the path offset. The path offset is selected
to contribute in the adaptive part of the controller due to the importance of
the path offset in comparison to the heading offset in path tracking control.
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Through minimization of ], the control trajectory vector AU is
obtained, however, only the first control increment Au, , is applied as per
MPC method, while other control inputs are ignored. Therefore,

NC
u, = AU
[10 --- 0]
=-Kx -K, (21)
N, _ N,
where K, = (®T @ + R)}(®TF) and K, = (OT @ +
Y[o--- 07 2 [10--- 0]

R)(®TAAW).
Finally, from (7) and (12), the steering angle J, which is the actual
control input is calculated as,

u, = Auk +u,,

L, c,cos 0,
0= arctan{(v—)(u +olvl m
I

d os

=)} (22)

3.4 Stability Analysis

The stability is proven using Lyapunov criterion based on the approach in
Wang et al. (2009, 2016).

Theorem 3.3 Given that the cost function | is minimized subjected to AU € AU*
and the constraint on the final output .\, = 0 resulting from the control inputs
Au, ... Ay, o, the closed loop MPC system is asymptotically stable.

Proof: From Subsection 3.3, we know that AMM-MPC is realized by
receding optimization. The future control trajectory Au,, ...Au,y, , at time
k is optimized by minimizing the cost function J,, represented as,

Np-1

Z ViV + Z Aug v Auy (23)

where ], is subjected to constraints and r > 0 is a gain.
Now, we assume the Lyapunov function V' (x,) is equal to the minimum
of the cost function ], with the optimal control trajectory Au,, ..., Auy,y,

and corresponding outputs y, , ..., Yiany represented as,

Vix) = min I,

Np-1

= Zykﬂykﬂ + zAukHrwAu (24)
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The Lyapunov function V(x,) at sampling instant k is positive definite
and V(x,) is infinite if x, is infinite. Similar to V(x,), the Lyapunov function

V(x,,,) attime k + 1is the minimum of the cost function ], , with the optimal
control trajectory Au, , ..., Aty and corresponding outputs y, ,, ..., Yionyerr
represented as,
Np Np-1
Vix,)= = Zyznﬂ‘ykan + Z Auy 1 Al (25)
i=1 i=0

Now a function V will be introduced to relate V(x,) to V(x, ). The
optimal control trajectory of V(x,) is shifted one step forward and its last
control input Au,y, is set to zero. The function V'is formed by evaluating
V (x,,,) at the above mentioned time shifted control trajectory, which is a
non-optimal control trajectory. For any non-optimal control trajectory the
objective function has to be greater or equal to V (x, ,). Therefore,

Vix,)<V. (26)

Based on (14), V has the same control trajectory as V(x,) at sampling
timesk+1,k+2,...,k+ Np—l, thus,

V(x,)-V(x)<V-V(x), (27)
then,
‘7 - V(xk) = y£+prk+Np - y;—lykﬂ - Au—i 7"wAuk' (28)

Given that as per Theorem 3.3, ., = 0,
V- Vix) =~y .y, — M Au,. (29)
Therefore, the derivative of the Lyapunov function is,
Vix,,) - Vx) < -y, —Aujr, Au <0. (30)

This proves the asymptotic stability of the closed-loop system.

4. EVALUATION AND COMPARISON OF CLASSICAL MPC
AND AMM-MPC

4.1 Kinematic Simulation

In this section, the proposed AMM-MPC is used to control the kinematic
model of the tractor to follow a predefined path and the performance is
compared with the classical MPC (Wang, 2009).

A simulation platform has been developed to compare AMM-MPC
with classical MPC. The kinematic model incorporates slip velocities in
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lateral and longitudinal directions. In the kinematic platform, the lateral
slip velocity v_ is considered to be 30 percent less than the field vehicle
velocity and is generated by random numbers related to the curvature of the
reference path as per v_=-10c, cos 6 — 0.3 v 6 (5 Rand() - 5), where Rand()
is a uniform random number generator, generating numbers between 0
and 1. The longitudinal velocity v, is considered less than 30 percentage of
the field vehicle velocity and calculated as per v, = 0.3 v (Rand() - 0.5) + sin
0. The steering slip angle f, is defined as random number within the range
-5°to 5° and calculated using ﬁf =10 (Rand() — 0.5).

For the controller, the matrix C  is chosen as [1.5 0.75], that indicates
the path offset is more important than the heading offset in the path
tracking. Finally, we have a mechanical constraint for steering angle
0, which is defined as —45° < ¢ < 45°. Parameters for the tractor and the
controller are listed in Table 2.

The reference path used in the simulation is shown in Fig. 2. The
vehicle starts at the point marked by a star and runs in the clockwise
direction. This path has straight and curved segments, and the curved
segments have different curvatures.

The proposed controller, AMM-MPC, and the classical MPC are used
to control the vehicle represented by a kinematic model. Path offsets and
heading offsets are recorded for comparison.

In Fig. 3, the path offset obtained from AMM-MPC and classical MPC
are plotted. As shown, at the corners the amount of path offset increased
in classical MPC in contrast to AMM-MPC, which showed more consistent
performance throughout the path. In Fig. 4, heading offsets for AMM-
MPC and MPC are shown. As can be seen, the performance of AMM-MPC
is better than classical MPC.

To provide a better quantitative comparison, box plots are shown for
the absolute value of path offsets and heading offsets in Figs. 5 and 6,
respectively. The red points indicate the outliers and the red lines in the
middle are the medians, which is better when it is closer to zero. The
upper and lower quartiles are shown as blue lines. The better performance
of AMM-MPC can be seen in the box plots.

Table 2. Parameters for simulation and experiment.

Parameters Value
, 1.7m
v 3m/s
T, 0.1
N 5
N 2
o 1.5
y 0.75




172 Robotics and Mechatronics for Agriculture

15 F T T T
— Reference
* Start Point
10 - 7
st 4
0 |- -
£ 5¢ |
>
=10 + 4
5 F 4
-20 - 7
225 £ L L L
-40 -30 -20 -10 0 10
X{m)
Fig. 2. The reference path used in the evaluation of AMM-MPC and comparison with
classical MPC.
16 T T T T ] T
| :
14 N ‘HH’: —— AMM-MPC
1
12 fri o .

Path Offset (cm)

Time (s)

Fig. 3. Path offset for AMM-MPC and classical MPC in kinematic simulation.
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Fig. 5. Box plot for path offsets for AMM-MPC and classical MPC in kinematic simulation.

4.2 Dynamic Simulation

Slip is a result of forces due to wheel-ground interaction. To investigate
the performance of the controllers in the presence of slip forces, a more
realistic simulation environment was created including the dynamic
model of a tractor incorporating a wheel model generating the slip forces.
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Fig. 6. Box plot heading offset for AMM-MPC and classical MPC in kinematic simulation.

Simulation is handled in C++ using the dynamic models of a tractor
(Siew et al., 2009) and are solved using an explicit Runge-Kutta method
(Trimbitas and Trimbitas, 2007) with a 8.33 us time step. To model terrain
uncertainty, a parametric noise map is introduced into the wheel-ground
system in the form of simplex noise. Under each wheel, the contact surface
is determined by evaluating the noise function across a small region of
the contact patch, which is used to determine contact and slip forces in
the wheel model based on the surface’s up-vector direction. These noise
characteristics are configurable in the simulation platform, in such a
manner that slips and disturbances fall within a specified bounded range.

The reference path for the dynamic simulation is the same as the
kinematic simulation, which is shown in Fig. 2. The path offset and the
heading offset obtained from the dynamic simulation are plotted for
AMM-MPC and classical MPC in Figs. 7 and 8, respectively. Similar to the
kinematic simulation results, accuracy in the path following for AMM-
MPC is significantly better at the corners in comparison to the classical
MPC. Along the straight segments of the path, the improvements shown
by the AMM-MPC are minor in comparison to the classical MPC.

Box plots are shown in Figs. 9 and 10 for the absolute value of
path offsets and the heading offsets, respectively. The plots confirm the
significant improvements brought about by the proposed AMM-MPC.

4.3 Field Experiment

The controllers were implemented on the autonomous tractor shown
in Fig. 11. The tractor is a John Deere 4210 Compact Utility Tractor and
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was made an autonomous vehicle at the University of New South Wales,
Australia. More details about software and hardware can be found in
Matveev et al. (2013); Eaton et al. (2008) and Taghia et al. (2015).

The same reference path shown in Fig. 2 is used for this field
experiment. The path offset and heading offset values obtained from the
field experiment are plotted in Figs. 12 and 13 respectively. As before, the
performance of AMM-MPC is superior when compared with classical



176  Robotics and Mechatronics for Agriculture

25 n

]
o
T
1

Path Offset (cm)
v

o
T
|

| |
Classical MPC AMM-MPC

Fig. 9. Box plot path offset for AMM-MPC and classical MPC in dynamic simulation.

T
+
30 [ | i
I
i
I
25 i T
— i 4
| i
520 - } —_— n
[ 1 |
pei | !
g ! i
o | |
g 15 | |
o I
c I
T i
310" I |
T
5k N
0 - —_— -
| |
Classical MPC AMM-MPC

Fig. 10. Box plot heading offset for AMM-MPC and classical MPC based on dynamic
simulation.

MPC, especially at the segments with higher curvature. This conclusion is
supported by the box plots in Figs. 14 and 15.

As it is noticeable in Figs. 3, 7 and 12, AMM-MPC performed more
accurately and robustly in both curved and straight segments of the path.
In addition, AMM-MPC dealt with slip adaptively, without requiring slip
estimation, which is the main advantage of the proposed method.
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Fig. 11. John Deere 4210 Compact Utility Tractor used in field experiments.
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Fig. 12. Path offset for AMM-MPC and classical MPC in field experiments.

5. COMPARISON OF AMM-MPC WITH SMC AND BSC

Based on the results obtained from the kinematic simulation, the dynamic
simulation and the field experiment in Section 4, it can be concluded that our
approach in dealing with slip as uncertainty in AMM-MPC is successful.
The robust and adaptive behavior of AMM-MPC has improved over that of
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the classical MPC significantly. Note that, there is no measurement of slip
directly or indirectly, which makes the proposed controller a general and
reliable path tracking method. To verify further, the proposed AMM-MPC
is compared with a successful SMC implementation, which is presented
under the title “Robust Adaptive Controller Design” (Fang, 2004), and a
BSC reported in literature that showed good performance (Huynh et al.,

2012).

In this field experiment, as the reference path, long farm path was

selected. The path is shown in Fig. 16.
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The path offset values and heading offset values obtained from this
experiment were recorded and are shown in Figs. 17 and 18 respectively.
As we can see, the results show better performance with the proposed
controller. Once again, improvement is more noticeable at the curved
segments as shown, i.e., during 180 to 240 seconds.

For a more compact quantitative comparison, box plots and tables are
presented showing absolute values, root mean square (RMS) values and
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standard deviation (SD) values for the three controllers. RMS value for
path offset for AMM-MPC is about 12 cm that is significantly better than
the respective values of BSC and SMC which are 26 cm and 30 cm. For
the heading offset the difference is not significant. However, the heading
accuracy is also better in AMM-MPC with RMS value of 10.44° and SD of
10.1° compared to those of SMC and BSC, shown in Tables 3 and 4.
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Table 3. Path offset root mean square (RMS) values and standard deviation (SD) values.

Path Offset (cm) SMC BSC AMM-MPC
RMS 30.33 26.88 11.42
SD 27.74 25.04 11.39

Table 4. Heading offset root mean square (RMS) values and standard deviation (SD) values.

Heading Offset (°) SMC BSC AMM-MPC
RMS 12.48 11.50 10.44
SD 12.47 11.46 10.10

6. CONCLUSIONS

This paper proposed a very novel and promising adaptive min-max
model predictive controller for path tracking control of farm vehicles in
the presence of slip. The proposed controller’s derivation and stability
proof were presented. The performance of the proposed controller was
evaluated with extensive simulation incorporating kinematic simulation,
dynamic simulation and real field experiments in which the performance
of the AMM-MPC was compared with classical MPC’s performance.
The proposed controller was also compared with two successful
implementations of other forms of robust nonlinear controllers, namely, a
sliding mode controller and a back stepping controller in field experiments
on a typical farm. The results obtained show significant improvements in
the accuracy in path offsets and heading offsets, especially at the segments
with higher curvatures, where slip is greater. AMM-MPC not only
provided robustness but also dealt with wheel slip adaptively without
requiring slip measurement or estimation, which is the major contribution
of the proposed controller.
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Model Reference Adaptive Control for
Uncertain Dynamical Systems with
Unmatched Disturbances

A Command Governor-Based Approach”

Ehsan Arabi, Tansel Yucelen® and Benjamin C. Gruenwald

1. INTRODUCTION

Numerous agriculture applications involving robotic and mechatronic
systems require precise feedback control laws to accomplish given tasks
with high accuracy. For example, tasks such as autonomous seeding,
harvesting, and/or row cropping, unmanned ground vehicles have to
precisely run parallel in the presence of disturbances and uncertainties
resulting from variations in unknown ground frictions and potential
unpredictable damages to the vehicle dynamics (Lenain et al., 2003;
Cariou et al.,, 2009). Unmanned aerial vehicles, that have recently come
in use for agriculture applications to maximize yields and minimize
potential crop damages (Saari et al., 2011; Primicerio et al., 2012; Mdkynen
et al., 2012; Tokekar et al., 2016), too need precision. It is often hard to
autonomously operate these vehicles, especially the fixed-wing ones, in
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challenging weather conditions in a precise close proximity to the ground
(e.g., for farm imaging and monitoring) due to the increased uncertain
lift forces and decreased uncertain aerodynamic drags (McRuer et al,,
2014; Stengel, 2015). Thus, one of the fundamental problems arising in
control technologies for autonomous agriculture vehicle applications is to
achieve a level of desired, precise closed-loop system performance in the
presence of a broad class of disturbances and uncertainties. To this end,
model reference adaptive control architectures provide promising system
stability and desired performance when the nature of the disturbances
and uncertainties are matched in the system dynamics.

Yet, in many agriculture applications like the above ones when
the matching assumption does not hold, the design of model reference
adaptive control laws becomes a challenge. Notable model reference
adaptive control contributions addressing this challenge include (Cao
and Hovakimyan, 2008; Xargay et al., 2010; Li and Hovakimyan, 2012;
Leman et al., 2010; Che and Cao, 2012; Stepanyan and Krishnakumar,
2015; Boskovic and Han, 2009; Stepanyan and Krishnakumar, 2012; Kristic
et al., 1995; Heise and Holzapfel, 2015; Fravolini and Campa, 2011). In
particular, the authors of (Cao and Hovakimyan, 2008; Xargay et al., 2010;
Li and Hovakimyan, 2012; Leman et al., 2010; Che and Cao, 2012) use
an adaptive control law based on a low-pass filter in the control channel
and an estimation scheme. In the context of fault-tolerant adaptive flight
control, the authors of (Stepanyan and Krishnakumar, 2015; Boskovic and
Han, 2009; Stepanyan and Krishnakumar, 2012; Kristic et al., 1995) use
certainty equivalence adaptive control as an indirect adaptive control
design method for systems with unmatched uncertainties. The authors
of (Heise and Holzapfel, 2015; Fravolini and Campa, 2011) proposed a
model reference adaptive controller and obtained necessary conditions
for achieving optimized performance with a uniform ultimate bounded
solution using linear matrix inequalities (LMIs). The authors of (Yayla
and Turker Kutay, 2016) proposed an indirect adaptive approach based
on online identifications of matched and unmatched uncertainties, where
the system performance may not be acceptable with this approach due to
a modification to the reference model trajectories.

This chapter focuses on model reference adaptive control of dynamical
systems with matched system uncertainties but unmatched disturbances.
Departing from the above results, we propose a new, two-level design
framework based on a command governor architecture to suppress the
effect of matched uncertainties and unmatched disturbances and achieve
a close tracking of the output of the reference system. Specifically, we first
design an auxiliary state dynamics that allows not only the estimation
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of the matched uncertainties but also the estimation of the unmatched
disturbances. Then, we propose a command governor architecture
through a backstepping procedure to modify the command signal of
the desired reference system such that the system output error signal
can be made arbitrarily small by tuning the constant design parameters.
Two numerical examples are provided to demonstrate the efficacy of the
proposed command governor-based adaptive control architecture.

The organization of this chapter is as follows. In Section 2, we present
necessary mathematical preliminaries. We state the problem formulation
in Section 3 and introduce an auxiliary state dynamics design in Section
4. Section 5 presents a new command governor-based adaptive control
architecture and two numerical examples are provided in Section 6 to
demonstrate the efficacy of the proposed approach. Finally, we present
conclusions in Section 7.

2. MATHEMATICAL PRELIMINARIES

We first introduce the standard notation used in this chapter. R denotes
the set of real numbers, R” denotes the set of nx1 real column vectors, R
denotes the set of nxm real matrices, R, (R) denotes the set of positive
(non-negative-definite) real numbers, D" denotes the set of n x n real
matrices with diagonal scalar entries, 0, denotes the n x n zero matrix,
and “£” denotes equality by definition. In addition, we write (-)" for the
transpose operator, ()™ for the inverse operator tr(-) for the trace operator,
II-1I, for the Euclidean norm, and Il All, £ 4 (AT A) for the induced
2-norm of the matrix A € R™".

Let y : R — R be a continuously differentiable and convex function, and
(e,+1)0"0-0?

max
2
09 max

A

be given by w(0) = , where ¢ € R is a projection norm

bound imposed on 6 € R" and ¢, > 0 is a projection tolerance bound. Then,
the projection operator Proj : R* x R* — R" is defined by:

y, if w(0) <0,
N ’ if y(0) 2 0and y'(0) y <0,
Proj(6, ) 2 | 0O if y(6) = 0 and y'(0) y < O
y—————— " y(0), if w(0) = 0and y(6) y >0,
w'(O)y"(0)

where y € R". It then follows that,

© — 097 [Proj(6, y) - y| <0, 6* e R, @)
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holds (Pomet and Praly, 1992). The definition of the projection operator
can be generalized to matrices as:

Proj, (0, Y) = (Proj(col (®), col (Y)), . .., Proj(col (®), col, (Y))), 3)

where ® € R*", Y € R™", and col, (-) denotes i th column operator. In this
case, for a given ®*€ R™", it follows from (2) that:

tr[(@ 0%)"[Proj, _(©,Y) - ] Z[col (® — 09! [Pro](col (@), col (Y)) -

col, (V)] <o0. )

Throughout this chapter, we assume without loss of generality that
the projection norm bound imposed on each column of ® € R™" is
through the continuously differentiable and convex function y(6) defined
above.

3. PROBLEM FORMULATION

We now introduce the problem considered throughout this chapter. For
this purpose, consider the nonlinear uncertain dynamical system given

by:
x(t) = Ax(t) + B (Au(t) + d(t, x(t))) + Dq(t), x(0)=x, t=0, (5)

where x(t) € R", t > 0, is the measurable state vector, u(t) € R", t >0, is the
control input, A € R”" is a known system matrix, B € R*>" is a known
input matrix, 6 : R, x R* — R" is a system uncertainty, A € R"™" N D"
is an unknown control effectiveness matrix, D € R™"- is the unmatched
disturbance input matrix such that D'B = 0 and rank([B, D]) = n (this
condition can be satisfied even when D has columns less than (n—m) that
is further discussed in Example 2 of Section 6), 4(f) € R®™ is a bounded
unmatched disturbance vector (i.e., 1 g(t) I, <g, t > 0) with a bounded time
rate of change (i.e., ll4(t)Il, < g, t >0), and the pair (A, B) is controllable.
We now introduce a standard assumption on system uncertainty
parameterization (Narendra and Annaswamy, 2012; loannou and Sun,
2012; Lavretsky and Wise, 2012).

Assumption 1. The system uncertainty given by (5) is parameterized as:
o(t, x(t)) = Wi(t)a,(x(1)), (6)

where W,(t) eR>",t>0,isabounded unknown weight matrix (i.e., Il W () I,
= 0) with a bounded time rate of change (i.e., Il W DI <w, t> 0)
and o, : R" — R° is a known basis function of the form ¢, (x(t)) = [o—m(x(t)),

aoz(x(t)), e, O ()]
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Now, we consider the ideal reference model dynamics which captures
a desired closed-loop dynamical system performance and is given by:

i() = Ax(t) +Be,(h), x(0)=x, £>0, 7)

0/

where x (t) € R", t > 0, is the reference state vector, c (t) € R is the desired
uniformly continuous bounded command, A € R™" is the Hurwitz
reference model matrix, and B, € R"" is the command input matrix.

In this chapter, our goal is to drive a selected subset of system states
given by:

y(t) =Cx(t), t=0, 8)

to a close neighborhood of the selected subset of the reference system
states given by:

y.(t) = Cx(h), t>0. 9)

For this purpose, the control design is presented in two sections. In
Section 4, an auxiliary state is introduced to allow not only the estimation
of the matched uncertainties but also the estimation of the unmatched
disturbances and in Section 5 we present a command governor-based
approach for achieving close tracking of selected system error states.

4. AUXILIARY STATE DYNAMICS AND ADAPTIVE CONTROL LAWS

For the nonlinear uncertain dynamical system introduced in the previous
section, we now introduce an auxiliary state dynamics in order to analyze
the effect of the unmatched system disturbances on the system. To this
end, using Assumption 1, one can rewrite (5) as:

i(t) = Ax() + B (Aut) + Wi(Ho(x(t))) + Dg(t), x(0)=x, t>0. (10)

Consider now, by adding and subtracting the terms BK x(t), t > 0 and
BKc(t), t > 0, the following equivalent form of (10):

x(t) = A x(t) + Bc(t) + BA(u(t) + Wi(t)a(x(t), c(t)) + Dq(t), x(0)=x, t=0,

(11)
where A £ A-BK,, B, £ BK,, K, € R™" is a feedback gain matrix, K, €
R"™" is a feedforward gain matrix, W (t) = [A™ Wit), A"K,-AT K" €
RO > (), is an unknown aggregated weight matrix, and o(x(t), c(t))
2 [oh(x(8)), x"(t), c"(H]" € R™™™, t >0, is a known aggregated basis function.
Note that | W(t) I, <w, t>0,and Il W(t) I, <, t >0, automatically holds as
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a direct consequence of Assumption 1. In addition, we consider c(t) € R™
to be the actual applied command signal given by:

o(t) Zcy(h) + ¢, t20, (12)

with cg(t) € R™, t >0, being a modification term to the ideal command c(t),

t > 0. This modification term will be designed in Section 5.
We now define the auxiliary state dynamics as:

i(t)= Ax(t) + Be(t) + D), x(0)=x, t>0, (13)
y.(H=Cx(h), t>0, (14)

where x _(t) € R", t > 0, is the auxiliary state, y_(t) € R", t > 0, is the auxiliary
output signal, and 4(t) € R®™, t > 0, is the estimation of the unmatched
disturbance q(t), t > 0, satisfying the update law:

4(t) =y, Proj(§(t), D"Pe,(t)), §(0) =3, 20, (15)

with §__ being the projection norm bound, and e (f) £ x(t) — x(t), t = 0,
being the auxiliary error. Considering (11), let the adaptive control law be
given by:

u(t) = =Wi(Bo(x(), c(t)), t>0, (16)

where W(t) € Re#0xn ¢ > 0, is the estimate of W(t), t > 0, satisfying the
update law:

W(t)zywprojm(ﬁv(t), o(x(t), c(H)e’(HPB), W(O)=W,, t>0, (17)

with Wmax being the projection norm bound. In (15) and (17), y,,, 7, € R, and
are the learning rates (adaptation gains), and P € R"*" is a solution of the
Lyapunov equation given by:

0=ATP + PA +R, (18)

with R € R,
Using (11), (13), and (16), the auxiliary error dynamics can be written
as:

é () = Ae () — BAWI(B)o(x(t), c(t)) - Di(t), e(0)=e, t=0, (19)

where W(f) £ W(t) — W(f) € Re##m0xm ¢ > (), is the weight estimation error,
and () £ 4(t) — g(t) e R"™, t > 0, is the unmatched disturbance estimation
error. Furthermore, using (15) and (17), one can write the unmatched
disturbance estimation error and the weight estimation error dynamics as:
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4(t) = , Proj(d(t), D"Pe () - 4(t), §(0) =4, t=0, (20)
W(t) = ,, Proj, (W(b), o(x(t), c(t))e’()PB) — WIt), W(0) = £>0.(21)

OI

Theorem 1. Consider the uncertain dynamical system given by (5) subject
to Assumption 1, the auxiliary state dynamics given by (13) and (14) along
with the update law (15), and the feedback control law given by (16) along
with the update law (17), then the closed-loop dynamical system given by
(19), (20), and (21) are uniformly bounded.

Proof. To show boundedness of the closed-loop dynamical system given
by (19), (20), and (21), consider the Lyapunov function candidate V' : R" x
R(s+n+nc)xm % R(n—m) — R given by

Vie, W, q) = elPe, + pr-[(WAV2T(WAA)] + 71374, (22)

where P € R”" is a solution of the Lyapunov equation in (18) with R € R?*".
Note that V(O 0,0)=0, V(e, W, g) >0 for all (e, W, g) # (0, 0, 0). The tlme
derivative of (22) along the closed-loop system trajectories (19), (20), and
(21) is given by:

Ve (B, W(t), §() = 2¢(t)PA e (t) — 2¢(t)PB AW (t)a(x(t), c(t)) — 2¢"(1)PD 7(t)
+2t W (#)Proj, (W(H), o(x(t), c(D)e'(H)PB) — 2y, tr W () MHA
+24"(H)Proj(q(t), D™Pe (1)) — 2y,'q"(H)q(t)

= —¢I(ORe,(t) = 2y, T WO WA - 27,74"()4(0)
+2trW(t)(Proj, (W(t), a(x(t), c(t))e’(t)PB)
—o(x(t), c(t))el(t)PB)A + 24" (t)(Proj @G, D'Pe (t)B) — D"Pe (1))
<-2 (R)IIe(t)II2+2y;VlzDu')IIA||2+2yq*1c70é7, (23)

min

where @ =W __ + w,q,= émax +g. Hence, V(e(t), W(t), q4(t)) <0, t >0, outside

max

of the compact set:

2 (e, Wb, §(t) :lle, (D1l <, W11, <@, and 13(1)11,<3,), (24)

2w A, +2y7G 4

where y £ \/ Y : 7 " From (24), one can conclude
AinR)

uniform boundedness of the solution (e (t), W(t) 4(t)) of the system

dynamics given by (19), (20), and (21) for all (e, W, §,) € R" x RE+mehm

R(n—m)‘

Remark 1. Note that one cannot conclude boundedness of the auxiliary
state, x_(t),t>0, using the analysisin this section. Theorem 1 only guarantees
that the auxiliary error signal e (t), t > 0, is ultimately bounded. However,
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it is possible that the auxiliary state signal x (), t > 0, and the system state
signal x(t), t > 0, both grow to infinity such that their difference remains
bounded. For the case where no modification is applied to the desired
command signal (i.e., cg(t) =0, t 2 0), and also there are no unmatched
disturbances in the system, the auxiliary state dynamics become:

% ()= Ax (D) +Be(h), x(0)=x, t>0, (25)
y.(H=Cx (), t>0. (26)

The auxiliary state dynamics given by (25) and (26) exactly capture
the ideal reference system behavior given by (7) and (9). In this special
case, the auxiliary state signal x (t), t > 0, is bounded, therefore the system
state signal x(t), t > 0, will be ultimately bounded as well. For the case
where the unmatched disturbances are present, the next section applies
a command governor signal to the desired command signal (i.e., c (t ) #
0, t > 0) such that a selected subset of the auxiliary state signal y (), t > 0,
can be kept within a close and adjustable neighborhood of the reference
system output y (t), t > 0, which makes the proposed control architecture
go beyond the results presented in (Yayla and Turker Kutay, 2016).

5. DESIGN OF THE COMMAND GOVERNOR

In this section, we introduce and analyze a novel command governor-based
adaptive control architecture to suppress the effect of matched system
uncertainties and unmatched system disturbances. For this purpose, let
e(t) = x (t)=x(t), t > 0, be the error signal between the auxiliary state and
the ideal reference state, and let the modification term of the command
signal be given by:

c,(t) £ K, t=0, (27)

where &(t) € R™, t 2 0, is the command governor signal to be designed. One
can write the system error dynamics between the auxiliary dynamics and
the ideal reference system as:

e(t)=Age(t) + B&(t) + Da(t), e(0)=x,-x, t>0, (28)
ey(t) =Cef(t), t=0, (29)

where e (t) Ly -y ), t=0.

In what follows, we systematically show that one can employ the
backstepping control methodology to design the command governor
signal &(t), t > 0, in (28) to guarantee the boundedness of the error signal
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e (t),t > 0. In addition, the norm of the output error signal ey(t), t>0, can be
made arbitrarily small as desired. For this purpose, we consider (28) and
(29) in the control canonical form with:

0 1 0 0
0 0 1 0
0 0 0 1
_k1 _kz _ks M ®
_ O(P—l)xm n_ bpl . bpm n—p+1)xm
B=| ™| B=| i . 1| €R"UM bER, (31)
bnl ’ bnm

1 o dl(n—m)
} p=| + - P |eRevem, deR. (33)

d(p—l)l o d(p—l)(n—m)

D

O(n—p+1)><(n—m)

Now, let 4(t) € R"™, t > 0, be a low-pass filter estimate of {(t), t > 0,
given by:

q.(h =T[at) - 401, 40)=d, t>0, (34)

where I', € ID"*(* is a positive-definite filter gain matrix. Note that
since z?f(t), t >0, is a low-pass filter estimate of é(t), t > 0, the filter gain
matrix I is chosen such that 4 (') <y, ., withy, >0 being a design
parameter.

max(

Remark 2. Note that since 4(t), t > 0, is a bounded signal and the filter gain
matrix I', is positive-definite, it follows from (34) that §(t), t > 0 and §(t), t
>0 are bounded.

Next, in order to obtain a recursive procedure using a backstepping
control design, as standard, we start with the second-order system given

by:

e()y=e (t)+dqg(t), e, (0)=e,, t>0, (35)
e (t)=—ke (t) ke, (t) +bd(t), e,0)=e,, t=0, (36)
ey(t) =e (), t=0. (37)

Letting ¢ (t) = Le,(t) + e, (t) +dg (), t >0, we design the command
governor signal as:
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A2 b |(T, +T, — ke, (D~(T2 = k,T, + ke, (1) + T, (,(t) - §,(£)
+d g, (0 + d g m], =0, (38)

where I', I'| € R are design parameters. Using the new state variable ¢ (t),
t >0, and the command governor signal given by (38), the system error
dynamics in (35), (36), and (37) can be rewritten as:

e (t)=-Te (t)+et)+d @Gt -q4,b) e, 0 =e,, t=0, (39)
&t)y=-Te), ¢0)=¢, t=0, (40)
e(t)=e,(h), t 20, (41)

which can be written in compact form as:
(B =Adn+Bg,t), (0)=¢, t=0, (42)
e(t)=CJL(®), t=0, (43)

with,

= [1 o], (44)

-, 1 1
Al:[o —rl]' Blzlo’ ¢

where ((t) = [e, (1), €,(H)]", t > 0, is the aggregated system state, and 4,(t) e
d (q,(t) — q,(1), t >0, is a bounded signal as noted in Remark 2. Therefore,
it follows from (Haddad and Chellaboina, 2008) that e (t), t >0, and &,(t), t
> 0, are bounded, and hence, the error signal e (t), t > 0, is bounded which
results in the boundedness of the auxiliary state x (¢ ), t > 0.

From a practical point of view, we are interested in analyzing how
small is the output error signal in (43). Therefore, we write the £ -system
norm of (42) and (43) by the equi-induced signal norm (Yucelen and
Haddad, 2012; Chellaboina et al., 2000) as:

lle Il

Y )
G 2y = UPiee, Tz T, (45)
which has an upper bound given by‘
NG 2,00 S =’ 12(CQ.C (46)

max

where a > 0 is selected such that A1 + %1 is Hurwitz, and Q, € R**is the

unique, non-negative definite solution to the Lyapunov equation

0=AQ +Q AT+aQ +BBI. (47)
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0 1 1 1 1 1 1 1 1 1

t(sec)

Fig. 1. System response of (42) and (43) to step input of (), t > 0.

Remark 3. For the purpose of understanding the ability of the design
parameters I' ) and I'; in (42) and (43) to suppress the effect of g,(t), t > 0, we
consider ql(t) t >0, to be a unit step input. As depicted in Fig. 1, ¢, (¢), £ =0,
decreases asI' £ T, =T, increases from 1 to 10. Furthermore, the upper bound
of the £ -system norm of (42) and (43) is shown in Fig. 2, where the £ -system
norm can be made arbitrarily small by increasing the design parameter I'.

The same procedure can be recursively employed due to the nature of
the backstepping approach to obtain the command governor signal &(t),
t >0, for the high-order dynamical systems to guarantee the boundedness
of the auxiliary state signal x (), t > 0 and to make the output of the
auxiliary dynamics arbitrarily close to the output of the reference system
by tuning the design parameters. To elucidate this point, consider the
third order system given by:

e () =e (t) +d.q,t) +d,g,t), e 0)=e,, t>0, (48)
e, (t) = e (t) +d,q,t) +d,q,b), e,(0)=e,, t>0, (49)
e (t)=—ke, (t) —ke,(t) - ke (t) +bL(t), e, (0)=e,, t=0, (50)
ey(t) =e(t), t=0. (51)
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0.9 1
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1G] (00.2),(00.2)

031 .

0.2 1

0.1 1 1 1 1 1 1 1

Fig. 2. The upper bound on the £ -system norm of (42) and (43) given in (46).

Now, we let,

e(t)2Te (B)+e (B) +d,g.()+d i), t=0, (52)
£,(8) = (T, + Tye, () = Tie, () + e,(t) + ., (£) + doydl (1)
+ dllalf(t ) + dlZéZf(t)’ t= O’ (53)

and we design the command governor signal as:

)2 -0 (T, + T, + T, = k)ey(t) - (2 + T T, + 2=k (I, + T) — ke, () + (5 — kT2
+k2F0 = ke, () + F1F0(d11(ﬁ1(t) - élf(t)) + dlz(éz(t) - ézf(t))) + (I, + lﬁo)
'(le(él(t) - élf(t)) + dzz(‘?z(t) - L?Zf(t))) + kz(dn%f(t) + dlzqu(t)) + kS(d21glf(t)

o0 + (@, + )0 + K+ (0 + 45,0+ A0, 120,
(54)
where I', ', T', € R are design parameters. Using the new state variables
g(t), t=0,¢&,t), t 20, and the command governor signal given by (54), the
system error dynamics in (48), (49), (50), and (51) can be rewritten as:
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e (t)=-Te (t) +e(t)+d, (@G, —q,0) +d,G,t) - 4,1), e, 0)=e, t>0,

(55)
£(0) = ~Tye,(t) + &,(8) + T [d, @,(5) = 4,(5) + d,(G,(1) = Gar))] + dy 3,(8) = 4,(5)
+d,(@,(H) = 4,(t), £(0) =g, t>0, (56)
&(t)=-Te(t), &(0)=¢,, t=0, (57)
e(t) =e,(t), £20, (58)
which can be written in compact form as:
(B =ALH+Ba,b, (0)=¢, t20, (59)
e(t) = CL(H), t=0, (60)
with,
-, 1 0 10
A={0 -r, 1| B=|r, 1| ¢,=[1 00 (61)
0 0 -T 0 0

where ((t) = [e,(t), &,(t), &,(t)]", t > 0 is the aggregated system state, and,

dy(@,(5) = 4,() +d1,(3,(0) = 1,(0) |
dm@l(t) - quf(t)) + dzz(’?z(t) - ‘?zf(t))

is a bounded signal as noted in Remark 2. Similar to the previous case,
it follows from (Haddad and Chellaboina, 2008) that e_(t), t > 0, (t),
t >0, and ¢(t), t > 0, are bounded, and hence, the error signal e (t), t > 0,
is bounded which results in the boundedness of the state auxiliary state
x (f),t=0.

Similar to (45), one can write £ -system norm of (59) and (60) as:

G,(b) = >0, (62)

lle, i
A y o2
1G22 = SUPger =7 (63)
I2'"eo2

where it follows from (Yucelen and Haddad, 2012; Chellaboina et al., 2000)
that:

1G] 20,02 S \/_ c2(CQC (64)

where o > 0 is selected such that A, + %1 is Hurwitz, and Q, € R¥is the
unique, non-negative definite solutlon %o the Lyapunov equation:

0=A,0Q0,+Q Al+aQ +B,B. (65)
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Fig. 3. System response of (59) and (60) to step input of the first (top) and the second (bottom)
components of 4,(t), t >0, in (62).

Remark 4. As depicted in Fig. 3, e (t), t 2 0, decreases as I' £ r,=T =T,
increases from 1 to 10, similar to the case in Remark 3. The upper bound
of the £ -system norm of (59) and (60) is shown in Fig. 4, where one can
decrease the £ -system norm by increasing the design parameter I'.
Repeating the recursive procedure outlined above in this section
(n—1)-times, the command governor signal &(f), t > 0, can be obtained for
the general error dynamical systems given in (28) and (29) to guarantee
the boundedness of the auxiliary state signal x (t), t > 0 and to tighten
the upper bound on the output error signal in (29) by tuning the design
parameters I', T ,... T

n-1°

Remark 5. It is worth noting that the selection of the canonical structure of
the reference system in (30) to (33) is without loss of generality. Specifically,
for different structures for the reference system, one can perform a
similar recursive backstepping approach in order to design the command
governor signal &(t), t 0.
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1 2 3 4 5 6 7 8 9 10

Fig. 4. The upper bound on the £ -system norm of (59) and (60) given in (64).

6. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we present two numerical examples to demonstrate the
efficacy of the proposed command governor-based adaptive control
architecture.

Example 1. Consider the uncertain dynamical system given by:

x(t) + 0 (1) q(t), x(0)=0, t=0, (66)

. (Au(t) + ot x(t))) +

) 01
x(t) = 2 4
where x(t) = [x,(t) x,(t)]" is the system state, o(t, x(t)) represents an

uncertainty of the form given in (6) with:

W (#) = [sin(0.25¢), =1, 1]%, t20, a,(x(t)) = [x,(), x,(), x,(Hx,B)], >0,
(67)



200  Robotics and Mechatronics for Agriculture

q(t) = 0.5 sin(0.2t), t > 0, represents the unmatched disturbance, and A =
0.75 represents an uncertain control effectiveness matrix. Linear quadratic
regulator theory is used to design the nominal feedback gain matrix as:

K, =157,97], (68)

and we pick K, = 3.7.

For the adaptive controller in Section 4, we set the projection norm
bound imposed on each element of the parameter estimate to W __ = 30
and q__ =5 and the learning rates to y,=5andy, =30 and we use R = |
to calculate P from (18) for the resulting A matrix. Fig. 5 shows the closed-
loop dynamical system performance with the standard adaptive controller
in Section 4. One can see from this figure that the standard adaptive
controller cannot compensate the effects of the unmatched disturbance
and the system’s trajectories do not converge to the reference system
trajectory.

Next, we apply the proposed command governor-based adaptive
control architecture. For this purpose, we use I') = I', = 10 and set the filter
gain in (34) to I', = 0.5. It can be seen in Fig. 6 that desired performance
is obtained and the first component of the state vector converges to a
close vicinity of the reference state. Fig. 7 clearly shows the role of the

m—neIN
1 (t)
........ a1 ()

Zao(t) 21 (t), 21(t), za1(t)

Tg(f)

.’I?,.Q(t),

1 1 1 1 1 1
0 10 20 30 40 50 60 70
t (sec)

Fi

=

g. 5. Command following performance with the standard adaptive controller.
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command governor signal to modify the command signal such that
the first component of the error signal e_(t), t > 0, gets arbitrarily close
to zero by tuning the design gains I') and I'| as one can see in Fig. 8.
The evolution of the unmatched disturbance estimation is depicted in
Fig. 9. Finally, the effect of the design parameter I' = I') = I', can be seen in
Figs. 10 and 11 where it is clear that a larger value of I, leads to a better
tracking performance of output signal of the reference system.

Example 2. For this second example, we consider a third-order uncertain
dynamical system given by:

010 0 1
) =[0 0 1|x(t)+| 0| [Au(t) +d(t, x(t)| +| 0 |g,(t), x(0)=0, t=0,
2 31 1 0 (69)

where x(t) = [x,(t) x,(t) x,(t)]" is the system state, J(t, x(t)) represents an
uncertainty of the form given in (6) with,

W, () = [sin(0.25), -0.25, 0.5, 0.5]", £ > 0, (70)
a,(x(D) = [x,(8), x,(t), x,(Hx,(), x,(B]F, £ >0, (71)

La1 (f)

Taa(t) xm(l), 21(),

Tro (f), T2 (t)-

.
0 10 20 30 40 50 60 70
t (sec)

Fig. 6. Command following performance with the proposed command governor-based
adaptive controller.
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1 1 1 1 1
0 10 20 30 40 50 60 70
t (sec)

Fig. 7. Applied command signal c(t), t = 0, and the command governor signal &(t), t = 0.

€r9 (t)

€r1 (t)

0 10 20 30 40 50 60 70
t (sec)

Fig. 8. The evolution of the error signal between the auxiliary and the reference system
e (), t=0.
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15 I I I I I I
0 10 20 30 40 50 60 70

t (sec)

Fig. 9. The evolution of the unknown unmatched disturbance estimation.

Tr1 (t), T (t)

0 10 20 30 40 50 60 70
t (sec)

Fig. 10. The effect of increasing the design parameter I' = ') =T, from 0.05 to 10 (light gray
to black) on the system performance.
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q,(t) = 0.5 sin(0.1¢), t > 0, represents the unmatched disturbance, and A =
0.75 represents an uncertain control effectiveness matrix. Linear quadratic
regulator theory is used to design the nominal feedback gain matrix as:

K, =157,99,6.1], (72)

and we pick K, = 3.7. Now, in order to satisfy the condition rank([B, D]) =
3, we rewrite (69) equivalently as:

010 0 10 a0
AB)=10 0 1|x(t)+]|0 Au(t)+5(t,x(t)))+ 01 [ 00 ] x(0)=0, t>0.
231 1 00 (73)

For the adaptive controller in Section 4, we set the projection norm
bound imposed on each element of the parameter estimate to W__ = 30
and g __ =5 and the learning rates to 7, =2 and y,, =10 and we use R =1 to
calculate P from (18) for the resulting A_matrix. Figs. 12 and 13 show the
closed-loop dynamical system performance with the standard adaptive
controller in Section 4. One can see from this figure that the standard

adaptive controller cannot compensate the effects of the unmatched

3 T T T T T T

c(t), ca(t)

0 10 20 30 40 50 60 70
t (sec)

Fig. 11. The effect of increasing the design parameter I' =T =T, from 0.05 to 10 (light gray to
black) on the modified command signal using the command governor signal.
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t (sec)

Fig.

1 1 1 1 1 1
0 10 20 30 40 50 60 70
t (sec)

Fig. 13. Control effort using standard adaptive controller.
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disturbance and the systems trajectories do not converge to the reference
system trajectory.

Next, we apply the proposed command governor-based adaptive
control architecture, with I') =", =T, = 10 and the filter gain in (34) set to
I, = 0.5. It can be seen in Fig. 14 that desired performance is obtained and
the first component of the state vector converges to a close vicinity of the
reference state. Fig. 15 clearly shows the role of the command governor
signal to modify the command signal such that the first component of
the error signal e_(t), t > 0, gets arbitrarily close to zero by tuning the
design gains I'), I', and ', as one can see in Fig. 16. The evolution of the
unmatched disturbance estimation is depicted in Fig. 17. Finally, the effect
of the design parameter I' = I') = I' = T, can be seen in Figs. 18 and 19,
which makes it clear that a larger value of T, leads to a better tracking
performance of output signal of the reference system.

=
~ T T
8 S B0
o ()
<~osrey x4 Zar(t)
o 4
S
= ‘ ]
~
) 40 50 60 70
S
e T T T
3 ; E——0)
. 4 \\ To(t) |
S 7 R P Zao(t)
§ T~
= 4
= 1 1 I
8 40 50 60 70
=
-4 T T T
i~
5] ———=25(t) | o
= z5(t)
= TEE EY O e za3(t) | 7
- I
§ Va
=
\:E 1 1 1 | I |
8 20 30 40 50 60 70

t (sec)

Fig. 14. Command following performance with the proposed command governor-based
adaptive controller.
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0 10 20 30 40 50 60 70
t (sec)

Fig. 15. The control effort u(t), t 2 0, the applied command signal c(t), t > 0, and the command
governor signal &(t), t > 0.

e (t)
- = en(t)
25 FRNSNPING)

€r2 (t)7 €r3 (t)

en(t),

1 1 1 1 1
0 10 20 30 40 50 60 70
t (sec)

Fig. 16. The evolution of the error signal between the auxiliary and the reference system
e (t),t=0.
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Fig. 17. The evolution of the unknown unmatched disturbance estimation.
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Fig. 18. The effect of increasing the design parameter I' =T =T', =T, from 0.05 to 10 (light

gray to black) on the system performance.

70
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c(t), ca(t)

“ |
0 10 20 30 40 50 60 70
t (sec)

Fig. 19. The effect of increasing the design parameter I' = ') = I', = I, from 0.05 to 10 (light
gray to black) on the control effort and the modified command signal using the command
governor signal.

7. CONCLUSION

A challenge in the design of model reference adaptive control architecture
is to cope with the effect of unmatched disturbances while dealing with
matched uncertainties. To this end, we proposed a two-level design
framework based on a command governor architecture to suppress the
effect of matched uncertainties and unmatched disturbances and achieve
a close tracking of the output of the reference system. In particular, an
auxiliary state dynamics was first designed to allow for the estimation
of both matched uncertainties and unmatched disturbances. We then
proposed a command governor architecture through a backstepping
procedure to modify the command signal of the desired reference system
such that the system output error signal can be made arbitrarily small
by tuning the constant design parameters. Two numerical examples
demonstrated the efficacy of our two-level design framework.
Considering numerous agriculture applications when the nature of
the environmental disturbances are unmatched, the proposed command
governor-based model reference adaptive control framework of this paper
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has a high potential to guarantee the completion of given tasks (e.g.,
autonomous seeding, harvesting, and/or row cropping via unmanned
ground vehicles, or farm imaging and monitoring via unmanned aerial
vehicles) with high accuracy. Future research will focus on applications
of the proposed framework to real-world unmanned vehicles as well
as on extensions to the dynamical systems with not only unmatched
disturbances but also unmatched uncertainties.
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