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Ever since man walked on the face of this earth, he has consumed food to
survive, to maintain his body and mind, and later for pleasure too. In the early
days, he had to gather his food wherever he found it. Gradually man started to
understand how to grow and cultivate his own food, and he gained more and
more control over his environment. All this time, man was curious about what he
observed and the mechanisms behind it, longing to understand what happened,
what happens to himself, to his food and to his environment.

In the current age of highly developed science and technology, the modern
aid to analyse, interpret and understand our surrounding world is modelling.
Modelling can be regarded as bringing together the concepts developed by
product and process experts into a coherent and consistent entity. By
subsequently translating such conceptual models into their mathematical
equivalents and by implementing these into computer programs, such models
can be used for quantitative analyses and, ultimately, for making predictions.
Sometimes expert and modeller are united in one person. In that situation,
dedicated models will emerge. When they are different people, the model will
often include views that are more generic in nature.

Modelling can be conducted on an almost infinite number of levels, reflecting
different degrees of real life, ranging from the purely theoretical to the
completely empirical. Nowadays modelling is used in almost every discipline by
an ever-increasing number of people. Few of these modellers had a dedicated
education in this area, and most of them had to learn the trade the hard way, in
daily practice by trial and error, without being aware of the pitfalls of this
powerful tool.

In this book, we have attempted to bring some order and rules to the jungle of
techniques available for modelling the processes and phenomena that play a part
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in our daily food. We need to realise that what we taste and perceive in our food
and that what we like in our food, is the result both of processes that occur
naturally in our food and processes that we apply to it. On top of that, the
techniques used for modelling are applied processes as well. The title of this
book,Food Process Modelling, has, therefore, to be understood in terms of those
three types of processes:

• Processes occurring in food
• Processes applied to food
• Processes applied to model food behaviour.

This book is subdivided into five major parts, each covering a selected area from
theory or practice, either involving modelling techniques, or involving particular
food processes to which the models are applied.

In Part I the principles and procedures of fundamental, deductive approaches
of modelling are explained and discussed. The essence of deductive modelling is
the conversion of theories and concepts into mathematical and computer
formulations, virtually without applying information contained in the measured
data. Data are only used to calibrate and validate the developed models.

In Part II the principles and procedures of empirical, inductive approaches of
modelling are explained and discussed. The essence of inductive modelling is to
extract as much useful information contained in the measured data as possible,
without a priori knowledge of the processes involved. Data, for this type of
modelling, are the only source of information available. Of course, reality is
never that black or white, so models are not purely black or white either. In each
of the chapters in Parts I and II some combination of the two types of modelling
approaches will be found.

In Parts III and IV of this book, practical examples are provided in the area of
production, processing and storage of fresh foods. Models discussed range from
almost purely deductive to almost purely inductive. Part III covers the
agricultural production, from fruits and vegetables to the dairy and meat
sectors. Part IV looks at a range of processing technologies.

The last part of the book discusses aspects of quality and safety. It is not
dedicated to one product or process, but to the conglomerate of actions the food
industry has to take to bring food to consumers. The emphasis lies on quality and
safety throughout the entire food chain, from production, through storage,
transport and handling to retail, and finally to the consumer’s place to maintain
his body and mind, and hopefully to be enjoyed as well.

We would like to thank the staff of Woodhead Publishing Ltd for all their
help and guidance.

Pol Tijskens
Maarten Hertog

Bart Nicolaı̈
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Introduction

In modern science, all simple problems have been solved by now. What remains
are problems that are so complex, one cannot unravel their mysteries by simple
experiments and deductions. To tackle these complex problems, we have to
decompose them into their constituting processes and each of these processes
has to be studied, analysed and modelled separately. As a consequence,
experimental research and analysis of resulting data relies more and more on
theoretical, fundamental and generic models. These types of models are deduced
from views and theories currently available. These deductive models possess the
intrinsic opportunity of reusability and parameter transfer. This means that, for
the same product, the same model and the same model structure can be used
over and over again, in different situations for different problems while keeping
the attached parameters and the parameter values actually the same. At the same
time, this approach ensures that the models built and applied are firmly rooted
into the contemporary views and theories of chemistry, biochemistry, physics
and physiology as applied in agriculture.

So, it is a logical choice to start this book on food process modelling with an
overview of the fundamental techniques of modelling.

In Chapter 1 an overview is given of the powers and pitfalls of deductive
modelling based on three examples of processes frequently encountered in our
food systems. This chapter describes the problems one encounters in making
models useful for practical application, in terms of generic modelling and
parameter estimation and parameter transfer.

Chapter 2 devotes its attention to the difficulties and rules of decomposing
problems into their constituting processes. In the realm of artificial intelligence,

Part I
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this technique has been known for a long time. In this discipline the processes
are, based on the subject at hand, more or less defined by the researchers
themselves. In food and agricultural research, the choice of processes is not free
at all, and the main problem reduces to finding the processes occurring in nature,
and to finding appropriate simplifications for these problems. One should
include all processes necessary to describe adequately the problem but definitely
not more. This chapter covers the translation of the rules and techniques,
developed in artificial intelligence, to make them applicable for food and
agricultural research.

In Chapter 3, the basic and fundamental rules of chemical and biochemical
kinetics are described and made available for modelling food behaviour in the
pre- and postharvest period. Many of the changes occurring in our food are of a
chemical nature. Application of these rules and techniques are therefore of
utmost importance for developing generic and applicable models for food and
agricultural research.

In Chapter 4, the attention is devoted to modelling physical processes that
frequently occur in our food or that are frequently applied to it. Heat and mass
transfer are the processes most commonly occurring. Since heat and mass
transfer are three-dimensional problems, describing and modelling the
distribution in space and time inherently results in three-dimensional solutions.
This constitutes an additional problem for fundamental modelling and results in
most cases in very complex models and time consuming simulations.

Chapter 5 is a warm plea for the recognition of parallelism. Everything in
daily life is the result of interacting parallel processes. This interaction between
parallel processes typically results in discrete time events. As long as modellers
limit themselves to model single continuous processes, discrete events can often
be avoided. Other cases, like logistic problems, can be largely defined in terms
of discrete events, neglecting minor continuous processes. Due to former
technical problems in coping with continuous processes and discrete time events
at the same time, the two modelling approaches developed separately for years.
Using his experience as modeller and developer of modelling software, the
author shows how the barrier between discrete and continuous modelling
techniques can be removed to model real world systems fully utilising
parallelism.

Pol Tijskens
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1.1 Introduction

The dictionary defines the word ‘deduction’ as ‘inference from the general to the
particular’, as opposed to ‘induction’, which is the ‘inference of the general law
from particular instances’. In its idealized form, deductive modelling of food
processing therefore starts with the general laws of (chemical-)physics, and uses
them to build realistic mathematical models of food processing operations. The
power and pitfalls of this deductive modelling approach are best illustrated with
a real-world example that is familiar to most food scientists, namely the
commercial drying of pasta. During the manufacture of pasta, such as spaghetti,
the extrusion step is followed by drying in a hot airstream so that the spaghetti
can be packed and stored as the familiar bundles of straight, hard spaghetti
cylinders. The drying step has to be optimized very carefully because drying at
too fast a rate sets up severe moisture gradients in the pasta, which causes
differential shrinkage, bending and stress cracking. On the other hand, drying
too slowly in a hot, humid atmosphere permits the growth of spoilage
microorganisms. One way of optimizing the drying conditions is to develop
mechanistic deductive models describing the radial mass transport of water
through the spaghetti cylinders as a function of air velocity, humidity and
temperature. To do this ‘deductively’ we could start by referring to a classic
physics textbook such as Crank’s The Mathematics of Diffusion, and
hypothesize that the drying process can be modelled as radial isothermal
Fickian diffusion of water through the cylindrical pasta matrix together with a
constant water diffusion coefficient. Crank presents many analytical solutions
for this problem corresponding to various boundary conditions. Unfortunately,
none of these solutions would be of real value for optimizing pasta drying
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because they fail to take account of important aspects of the phenomenon. In
particular no account is taken of

• the dependence of the local water diffusivity on the local water content
• the non-uniform radial shrinkage as water is lost
• the stress fields set up by the non-uniform shrinkage
• the fact that the surface boundary conditions will be time dependent because

the surface dries and
• it ignores the possibility that the drying may not be truly isothermal so that

the coupled equations of heat and mass transport would need to be solved.

These are formidable theoretical problems that have not yet been fully solved
and they illustrate nicely some of the strengths and weaknesses of the
mechanistic deductive modelling approach.

The strengths of deductive modelling include the following.

1. The models are based on established physical principles, in this example the
equations describing mass and heat transfer. The models are therefore
internally consistent and unphysical values for fitting parameters can be
eliminated quickly.

2. Because the models are based on established physical principles, additional
complexities such as stress cracking can, in principle, be incorporated
systematically.

3. The effects of changing ingredients, such as from hard to soft wheat
varieties, and processing conditions can, in principle, be given a rational
explanation in terms of altered parameters such as transport coefficients.

4. Deductive modelling drives us ever deeper into fundamental science as we
seek answers to questions such as how transport coefficients depend on
ingredient modification, microstructure and composition.

5. Once a model has been shown to be satisfactory on a simple system it is
merely a computational exercise to adapt it to different processing
conditions and more complex sample geometry.

The last point emphasizes that the ‘universality’ of a deductive model is a
meaningful test of its usefulness. If a model is deduced from established,
fundamental laws then it should be widely applicable within the space of
variables and systems described by the model. This is a major advantage of
deductive modelling over empirical or inductive modelling.

On the other hand, there are some obvious difficulties in the deductive
modelling approach. For example, consider the following points.

1. To be solvable as analytic solutions or, in some cases, to avoid numerical
instabilities, the model sometimes has to be simplified by neglecting
complications such as stress fields, non-isothermal diffusion and multi-
component diffusion, non-linear effects and the like. The question then
arises as to whether the model is sufficiently realistic to be useful.

2. Removing these simplifications greatly increases the number of unknown
parameters that need to be independently measured or estimated and
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increases the computing time. This, in turn, endangers the ‘universality’ and
hence usefulness of the model.

3. Limits to our knowledge and/or resources usually place a limit on the depth
to which deductive modelling can be applied in real food processing
problems. It is then usual to introduce empirical parameters or parameters
that are adjusted by comparison with experiment. For example, in pasta
drying one could always probe ever deeper into fundamental aspects by
developing models predicting the dependence of the moisture diffusion
coefficient on pasta composition and microstructure. This would be
important if the optimization included, for example, choosing the right
combination of hard and soft wheat varieties in the extrusion step. Usually
the price paid for ever deeper deductive modelling is an increasing number
of molecular and microstructural parameters such as pore sizes, starch
granule sizes and amylopectin branching structures. More usually an
arbitrary cut-off point is chosen where empirical relationships are
introduced into the model. In the case of pasta drying this could be an
empirical relationship describing the dependence of the moisture diffusion
coefficient on moisture content, composition and temperature. Of course,
this often destroys the fundamental character of the deductive model so it is
always better to postpone the introduction of empirical relationships as long
as possible. In the limiting case where parameters have to be measured or
determined for every new system or set of conditions the model has
essentially zero predictive value.

It is also worth bearing in mind that spatially dependent deductive models
need to be tested with spatially resolved experimental data. For example, it is
quite possible to obtain reasonable fits to the drying curve for pasta (i.e. the total
mass loss versus drying time) with a simple Fickian diffusion model with a
moisture-dependent diffusion coefficient. But this apparent agreement does not
show that the model is valid because important factors, such as shrinkage and
stress, are not being modelled. In this example the space-time resolved moisture
profiles obtained with MRI (Magnetic Resonance Imaging) provide a far more
stringent test of the drying models, and highlight their inadequacy. In fact MRI
is proving to be an invaluable technique in food processing science as it is
capable of monitoring non-invasively the space-time evolution of mass
transport, phase transitions, temperature and many important quality factors.1

Having listed some of the strengths and weaknesses of deductive modelling
we now need to consider the more general issue of the role of this type of
modelling in food manufacturing.

1.2 Deductive modelling and process optimization

The possibility of optimizing a food manufacturing operation by developing
deductive models and computer simulations of all aspects of the production,
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packaging, storage, cooking and consumption stages is a pipe-dream of every
food engineer. While certain aspects of production and storage can be modelled
realistically, many cannot, either because we are still ignorant of the underlying
physico-chemical processes or because of the shear complexity of the computing
problem. It is also important that we take a unified approach to the problem
because there is little point in optimizing one aspect, such as a processing step, if
the final product has an unacceptably short microbial ‘keeping time’ (or, more
loosely, ‘shelf-life’) or if some other quality factor, such as its flavour or texture,
is altered detrimentally. Yet there are few, if any, theoretical models which
attempt to optimize more than one quality or processing aspect at a time, and
developing an integrated approach must remain high on any future modelling
agenda.

To illustrate the importance of this integrated approach we will, in what
follows, discuss three separate mechanistic deductive models concerned with
differing aspects of the whole food manufacturing operation. In the last section
the shortcomings of this piecemeal approach to modelling will be discussed. The
first model involves optimizing a processing operation such as baking,
extrusion, drying or freezing and involves minimizing energy expenditure
while retaining acceptable quality of the end-product. This requires detailed
knowledge of the mass and heat transfer as well as the space-time evolution of
any associated reactions and/or phase changes affecting food quality. As
mentioned, this information can be supplied by non-invasive techniques such as
magnetic resonance imaging (MRI), but modelling the MRI data with
conventional heat and mass transport models presents several challenges and
these will be discussed.

The second aspect involves predicting the ‘keeping-quality’ of the product of
the processing operation. At least three interrelated processes need to be
considered in keeping-quality and shelf-life prediction, namely microbial
spoilage, spoilage by slow chemical reactions and spoilage by mass transport
and phase changes. Several new deductive probabilistic models for the survival
and growth of microorganisms in spatially heterogeneous food matrices will be
presented and future developments outlined.

The third aspect to be considered concerns the eating stage, namely the
challenge of modelling quality factors such as flavour release in the mouth.
What is required here is the ability to predict the effect of changing a food
formulation on the time-intensity flavour release profiles in the mouth. Each of
these aspects will be considered in turn beginning with the processing stage.

Figure 1.1 shows a schematic of a typical industrial process, in this case an
oven arrangement typical of a roasting, baking, drying or toasting operation. In
this and all other types of food processing the manufacturing operation has to be
optimized to produce the desired food quality with minimum cost. Process
design and analysis attempts to do this by combining a theoretical simulation of
the whole process with selective measurement of parameter values. Parameters
in the simulation enter at various levels that are indicated in Fig. 1.1. There are
those associated with the equipment design, such as the size of the air nozzles
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and the oven area to volume ratio. Others characterize the process design, such
as air velocity, temperature and relative humidity. Then there are parameters
characterizing the food surface such as the moisture and heat transfer
coefficients. Finally there are parameters characterizing the macroscopic state
inside the food, including the time dependent moisture content distribution,
w�r� t�, temperature distribution, T�r� t� and food quality factors, Qi�r� t� as well
as their associated transport parameters such as the moisture diffusivity, thermal
diffusivity, solute diffusivities and chemical reaction rates. These parameters are
functions of time, t, and of the position r (which denotes the coordinate x� y� z)
within the food sample.

If one starts with the hypothesis that the heat and mass transport obey
diffusion kinetics, then finite element simulations of the coupled heat and mass
transport are possible. Ignoring the complications of stress cracking (called
‘checking’ in the case of biscuits) we can write, from first principles,

�W �r� t���t � ���D�r� t��W �r� t�� �1�1�
�T�r� t���t � ���K�r� t��T�r� t�� � Cp��W�r� t���t� �1�2�

Here Cp is the heat of vaporization and the last term in equation (1.2) is the
heat required to evaporate the water, which couples the two equations together.
Of course, the diffusion coefficient, D�r� t� and the thermal diffusion coefficient,

Fig. 1.1 A schematic of a dry cooking process in an industrial oven. The various types
of parameter needed to simulate the cooking process are listed.
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K�r� t�, also couple the equations because both are dependent on the local values
of W�r� t� and T�r� t�:

D�r� t� � F1�W �r� t�� T�r� t�� �1�3�
K�r� t� � F2�W�r� t�� T�r� t�� �1�4�

Unfortunately the form of the functions F1�� � �� and F2�� � �� is not, in general,
known and have to be determined either independently or by fitting
experimental data. The alternative is to go deeper in the deductive mode and
work at the molecular and microstructural levels trying to derive the functional
forms F1 and F2 from the basic physics of molecular diffusion including aspects
such as restriction by microstructural obstructions, multicompartment diffusion,
percolation theory and the like. These are non-trivial problems that would deter
most researchers interested in process optimization and would mark the limit of
the deductive mode of reasoning.

Of course, equations (1.1) to (1.2) need to be solved with appropriate surface
boundary conditions involving changing surface moisture content, surface
temperature and surface topology if there is non-uniform shrinkage.
Unfortunately, in many real foods, even this scheme is inadequate because
mass transfer does not necessarily proceed by diffusion. Indeed, the
heterogeneous and porous structure of many real foods means that capillary
forces can dominate liquid transport and fast transport via the vapour phase
cannot be neglected.

Experimental input from non-invasive techniques such as MRI can help us
identify the transport mechanism by providing real-time measurements of
moisture distributions W�r� t� and temperature distributions T�r� t� and, in some
cases, the changes in certain quality factors, Qi�r� t�, both in the bulk food and at
the food surface.1 As more MRI data becomes available, it is apparent that many
of our current transport models are failing to describe the real space-time
behaviour of the processing operation. Moreover, the MRI data can often be
acquired on a range of distance scales from the microscopic to macroscopic and
here also the data highlights our inability to predict macroscopic transport
behaviour from underlying changes in food microstructure and in the
microscopic distribution of phase changes and mass distribution.

1.3 Modelling the keeping-quality and shelf-life of foods

Optimizing a processing operation such as drying or freezing is only the first of
many aspects to be considered in food manufacture. If the end-product of the
process has an unacceptably short shelf-life for whatever reason, then we can
hardly say that the manufacturing process has been ‘optimized’. Space does not
permit a detailed analysis of all the physico-chemical aspects of food shelf-life,
such as retrogradation and Maillard reactions. Instead we will focus on the
microbiological aspects of food stability. The empirical modelling approach,
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such as the popular food micromodel11 is useful for first estimating the survival
and growth behaviour of a food-borne pathogen in a food of known pH, water
activity and temperature. However, being empirical, the predictions are merely
intrapolations of measured survival, lag and doubling times, and cannot be
extrapolated outside the experimental parameter space. Deductive approaches,
such as that described in Hills et al.2 and Hills and Wright,3 do not suffer from
this shortcoming, and are capable of including probabilistic aspects of survival
and growth.

Probabilistic aspects are of profound importance when attempting to model
the microbial stability of foods. Most food matrices are sufficiently viscous or
rigid to immobilize bacterial cells. If a cell exits the lag or resuscitation phase
and enters the exponential growth phase it will form an isolated (micro-)colony
in the food matrix. The observation that a gelatine gel growth medium
inoculated with a stationary phase culture gives rise to microcolonies differing in
size is therefore indicative of a distribution of lag times and/or doubling times
within the population. In these circumstances it is not the average lag time that
determines the microbial shelf-life of the food, but rather the cell with the
shortest lag time. It is therefore essential to develop probabilistic models of the
survival and growth of food-borne pathogens in heterogeneous foods. One
approach to the development of probabilistic deductive models, which is being
researched at the author’s laboratory, is to define various sub-populations of
bacterial cells within a culture and assume a Poisson random process
characterized by a constant transition probability per unit time for transitions
between the sub-populations. The following outlines this development for the
case of lagged exponential growth. Generalizations to injury and resuscitation
are also being developed.

Figure 1.2 is a schematic of microcolonies in a food matrix, in this case, a
gelatine gel containing the synthetic growth medium, MOPS. The total number
of cells in the food, N�t), can be regarded as the sum of two sub-populations, the
first are the single cells that are still in the lag phase, nlag(t), the second are all
the cells in the exponential growth phase, nexp(t),

N�t� � nlag�t� � nexp�t� �1�5�
where, initially, nlag�0� � N�0� and nexp�0� � 0. We can derive a lagged growth
expression for N(t) by postulating a Poisson random process such that the
probability that a particular cell has a lag time � is given as:

p��� � e	������
� � � �� 0 � � � � �1�6�
� 0 otherwise

Here � � � is the mean lag time. Clearly the probability, plag(t), that a cell is
still in the lag phase after time t is,

plag�t� �
��

t
p���d� � e	�t����
 �1�7�
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nlag�t� � N�0�plag�t� � N�0�e	�t����
 �1�8�
dnlag�dt � �knlag where k � 1� � � � �1�9�

An equation for nexp(t) can be derived in an analogous way. Let A be the
probability per unit time that a cell in the exponential phase divides; then

dnexp�dt � �knlag � Anexp�� �1�10�
The equation of evolution of N(t) is obtained by solving these equations with the
result,

N�t� � nexp�t� � nlag�t� �1�11�
N�t� � N�0��keAt � Ae�kt���k � A� �1�12�

where td � 1n 2�A is the doubling time. Equation (1.12) is remarkable because it
was first derived from kinetic considerations of the cell cycle in Hills and
Wright.3 It has the typical form of a lagged exponential shown schematically in
Fig. 1.3.

In the limit of t �� k�1 only exponential growth occurs, so that

N�t� � N�0�eA�t�teff � �1�13�

Fig. 1.2 A schematic showing the existence of a colony size distribution in a gelled
growth medium.

Fig. 1.3 A schematic of the lagged exponential predicted by equation (1.12) showing
the effective population lag time, teff .
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where

teff � �1�A�ln	1� A � � �
 �1�14�
Here teff is the effective lag time measured for the whole population; whereas
� � � is the average lag time per cell. Clearly these two quantities are not, in
general, the same. In fact equation (1.14) permits us to derive a novel
relationship between the effective lag time and the mean doubling time:

teff�td � ln	1� A � � �
�ln2 �1�15�
The same probabilistic formulation permits us to derive an expression for the
colony size distribution in the food matrix. The derivation is somewhat lengthy
so we merely quote the result. If p�Nit� is the probablity that there is a colony
of Ni cells in the ith colony at time t, then,

p�Nit� � e	�t����
N 	1�A����1

i Ni � 1 �1�16�

(in the growth phase)

� e	�t����
 Ni � 1 �1�17�
(in the lag phase)

This distribution provides an important experimental test of the theory, because
the colony size distribution is a readily accessible quantity. These tests are now
under way using a laser-gel cassette scanner.2

By defining appropriate sub-populations of cells the same probabilistic
approach can be used to derive the time evolution for injury, sublethal injury,
resuscitation and preadaption:

N�t� � nlag�t� � nexp�t� � ninj�t� � nres�t� � � � � �1�18�
where there is a probability for transition between the physiological states. For
example, the simple case of injury and death is treated by postulating that the
probability of a given cell in the inoculum suffering an injury after time tinj is a
Poisson random process:

p�tinj� � �1� � tinj ��e	�tinj��tinj�
 �1�19�
where � tinj � is the mean injury time. It follows that

dlnN�dt � �1� � tinj �� �D�ln10 �1�20�
where D is the conventional D number for death.

The effect of the changing environment surrounding the cells can be included
by defining the dependence of the transition probabilities for lag, growth, injury
and resuscitation on those variables, such that,

A � f1�	O
� pH� aw� T � 	C
� 	N 
 � � �� �1�21�
� � �� f2�	O
� pH� aw� T � 	C
� 	N 
 � � �� �1�22�
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� �inj �� f3�	O
� pH� aw� T � 	C
� 	N 
 � � �� �1�23�
� �res �� f4�	O
� pH� aw� T � 	C
� 	N 
 � � �� �1�24�

One of the outstanding challenges is to discover the appropriate functional forms
of f1� f2 � � � f4. Several functional forms have been proposed in Hills and Wright3

but all involve a number of unknown parameters that can only be determined by
fitting experimental data. In Barker and Grimson4 the changes in N(t), pH,
glucose and oxygen concentrations during the batch fermentation of Salmonella
typhimurium were used to determine these parameters, but the important
question as to the universality of these parameter values remains to be explored.

This example highlights again one of the essential criteria for the value of a
deductive, mechanistic model. The functional forms, fi {� � �} and their associated
parameter values should, ideally, be universally valid for all types of
microorganisms, physiological states and medium compositions. The less this
is true, the weaker the model. In the opposite extreme, the model will be
essentially of zero predictive value if experiments must first be done for every
situation in order to determine parameter values or functional forms in the
model, which is always the case for completely empirical models.

The growth model outlined above makes no explicit mention of the
physiological state of the cells. Yet this aspect is known to have a powerful
influence on survival and growth. For example, the lag time of many
microorganisms when subjected to a stress situation, such as low water activity,
can be shortened by ‘pre-stress adaption’, whereby the microorganism is first
cultured in a growth medium of reduced water activity. One possible way of
introducing the effects of physiological states would be to introduce new sub-
populations of cells differing in their physiological state, such as unadapted and
pre-adapted cell populations with a transition probability for passing from the
unadapted to preadapted state. This approach also requires further experimental
fitting to determine parameters, which weakens its fundamental deductive nature.

1.3.1 The effects of microgradients in food systems
One major advantage of deductive models is the ease with which they can be
generalized to incorporate new phenomena. For example, it is known that
microorganisms consume nutrients from the surrounding food matrix and also
liberate metabolic end-products into the surrounding matrix. The implication is
that the actual values of environmental variables, such as pH, and the
concentration of carbon and nitrogen sources as well as the oxygen
concentration experienced by the growing microorganisms will vary and this
will feed back onto the growth behaviour. Empirical models cannot describe
this phenomenon, but it is easily incorporated into the previous mechanistic
model by converting a set of ordinary differential equations into partials,
including diffusive transport terms. By way of illustration the set of coupled
partial differential equations used in Hills et al.2 and Hills and Wright3 are:
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�m�r� t���t � Am

�n�r� t���t � kn�m� n�
�o�r� t���t � �y0Am� Div	D0 Grado

�c�r� t���t � �ycAm� Div	Dc Gradc

�h�r� t���t � �khhm� Div	Dh Gradh
 �1�25�

where the variables are dimensionless quantities such that m (r,t) is a biomass,
n (r,t) a viable cell number, o (r,t) the oxygen concentration, c (r,t) the
concentration of carbons sources, h (r,t) is the concentration of hydrogen ions
at a certain location r and at time t, so is, of course, related to pH as 10(7�pH) (see
also Chapter 3). Details can be found in Hills and Wright.3

Various methods are available for solving these equations numerically. Apart
from the obvious finite element method, the equivalent cellular automaton can be
designed4, 12 and this has the advantage of flexibility in defining irregular spatial
boundary conditions. The results show that microgradients are rapidly established
around the growing colonies, as illustrated schematically in Fig. 1.4. The existence
of microgradients means that the actual values of environmental variables, such as
pH, experienced by the exponential phase cells may not be the pH of the bulk
medium. The model represented by equations (1.25) also predicts that the micro-
colony itself has an internal structure, such that cells in the centre are more stressed
than those in the surface layer. This, in turn, implies that even when the total plate
count of the viable cell population in a food matrix, N(t) is in the exponential
growth phase, there may actually be sub-populations of viable and non-viable as
well as stationary phase and exponential phase cells present within the colonies.
Very similar ideas can be used to model the structure and development of biofilms
which can be a major source of contamination in production plants.

1.3.2 The effect of food microstructure and the microscopic water
distribution
So far we have considered statistical variations arising from sub-populations of
cells. However, the spatial heterogeneity of the food matrix can also give rise to

Fig. 1.4 A schematic showing microgradients surrounding a spherical colony.

The power and pitfalls of deductive modelling 13



statistical variations in the local environment and therefore in the survival and
growth behaviour of the cells distributed within it. Such microstructural effects
are of interest because recent data shows that varying the food microstructure can
have dramatic effects on the survival of microorganisms. For example, Fig. 1.5
compares the survival of an innoculum of 107 cells/ml of E.coli when added to a
synthetic growth medium (MOPS) poised at a water activity of 0.94, which is
sufficiently low to stress the organism osmotically and prevent growth. In the
upper curve in Fig. 1.5 the water activity was poised at 0.94 by addition of
sucrose, which, of course dissolved and formed a spatially homogeneous
solution. In the lower curves the water activity was lowered to 0.94 by addition of
Sephadex microspheres and inert silica powder respectively. These formed a
structured inert matrix having heterogeneity on the distance scale of tens to
hundreds of microns.5 The ‘microstructural stress’ effect for Sephadex results in
complete death after about 100 hours; in contrast to the unstructured medium
where substantial numbers of cells survive. The results suggest that a
microstructured food matrix, such as a partially saturated packed bed of
Sephadex microspheres, has a distribution of microscopic environments that
differ in their local water content (and hence water activity),5 nutrient availability
and oxygen concentration so that if, by chance, a bacterial cell happens to be
located in an unfavourable environmental ‘niche’, it will suffer stress and injury

Fig. 1.5 The microstructural stress effect. Challenge test of E.coli K-12 (frag 1) in
sucrose solution, Sephadex G25-50 and silica all poised at a water activity of 0.94, 20ºC.
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and possible loss of viability. The implication for food safety and shelf-life
prediction is obvious, yet, at the present time, no theoretical models are capable
of predicting this ‘microstructural stress effect’. The cellular automaton
approach4 offers considerable promise here, since it permits microstructure to
be incorporated directly into the automaton. In effect, this places the spatial
dependence on the environmental variables in equations (1.21) to (1.24).

It is surprising, at least to this writer, that so many fundamental questions
concerning the microbial safety of foods still remain to be answered. These
issues will clearly need to be addressed before deductive mechanistic modelling
can be used in a genuinely predictive way to predict microbial shelf-lives.

We now turn to another, equally complicated, issue affecting food quality,
namely food flavour. This is also of vital importance because there is little point
in optimizing the processing stage and maximizing microbial stability if the end-
product tastes and smells awful!

1.4 Deductive modelling of flavour release from foods

The past few years have seen rapid progress in the development of deductive
mechanistic models of flavour release from foods in the mouth based on the
fundamental physics of interfacial mass transfer.6–9 The ultimate goal of these
efforts is to be able to predict mathematically the effect of varying food
composition, food structure and mastication behaviour on the perceived time-
intensity flavour release profile. If successful, it would then be possible to use
computer simulations to formulate foods for a desired flavour profile, taking
account of individual or group differences in mastication behaviour.

There are several steps in the development of this simulation package:

1. Understanding the physical mechanism of aroma release from a food into
the saliva and mouth headspace

2. Modelling the effects of in-the-mouth mastication. This, in turn, involves
modelling several processes, namely,
• Saliva flow
• Chewing, which involves the selection of food particles and their

fragmentation behaviour
• Swallowing, which removes saliva and some food particles
• Partitioning of aroma between saliva, mucus and air
• Transport of aroma to the olefactory epithelium

3. Modelling the relationship between the actual aroma concentration-time
profile and the perceived, physiological response of the consumer.

In principle each step needs to be applied to every conceivable food, which is, of
course, an enormous and daunting task. However, the problem can be made
more tractable by developing fundamental models for various general release
mechanisms and then adapting and calibrating them to particular foods. These
general models include flavour release from solid foods by
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• Dissolution (e.g. of a boiled sweet)
• Diffusion-melting (e.g. of a jellied sweet comprising a gelatin-pectin matrix

containing sucrose and flavour)
• Fragmentation (e.g. of a crumbly biscuit)
• Bolus formation (e.g. from chewing gum or bread) and
• flavour release from liquids (soft drinks and liquid emulsions).

The effects of mastication are being simulated using a computer model9

which incorporates effects listed above. This model can be adapted to each of
the food release mechanisms listed above. Figure 1.6 shows a typical output
from the simulation, and is reproduced from Harrison et al.9

The third step, the relationship between the perceived response and the actual
physical concentration-time profile, is less well developed and much research
remains to be done in understanding and modelling this relationship. This takes
us from modelling food behaviour in the mouth (physics) to the physiological
response on the tongue and nose (physiology) to modelling the consumer
behaviour and appreciation while eating the food (psychology and sensory
science). Recent advances in functional magnetic resonance imaging (MRI) of
the physiological responses of the brain to flavour and aroma perception may
help in this endeavour.

Fig. 1.6 The theoretical flavour release profiles for several flavour compounds released
from aqueous solution in the mouth.
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1.5 Future trends

It is clear from the previous examples that although considerable progress is
being made in the rules that govern the building of fundamental models and in
using the deductive mechanistic approach to model various aspects of
processing, spoilage and flavour release, these models should not be treated in
isolation. Extending the microbial shelf-life of a food by, for example,
increasing its porosity and increasing the concentration of preservatives is
useless if the food then has an unacceptable flavour profile. The development of
integrated computer simulations capable of optimizing several different aspects
of a food’s production and quality must therefore be considered an outstanding
future challenge. Invariably, the process of developing these models will
highlight gaps in our knowledge about the underlying physics and chemistry
controlling food production and quality. As an example, consider the
introduction of new crops (e.g. by genetic modification). Quite apart from the
safety issues, it is not yet possible to predict the effect of modifying a raw
material on its subsequent processing response because we lack a quantitative
understanding of the fundamental relationships between the raw material’s
biomolecular structure, its microstructure and its macroscopic behaviour which
characterizes the food quality factors such as texture and rheology. Under-
standing how macroscopic processing and storage responses are controlled by
microscopic and molecular factors therefore remains another outstanding
problem in food science. Modifying raw ingredients such as starch or flour by
GM, chemical means or otherwise could also affect both the microbial stability
by changing ‘water availability’ as well as the flavour release profile by altering
starch-protein-flavour binding coefficients and flavour transport coefficients
which once again highlights the huge amount of basic research required when
developing realistic deductive models.

Although we have focused the discussion on the quality of processed foods,
very similar considerations apply when developing models for optimizing the
production of raw foods in the field. Here environmental factors such as
irrigation patterns, harvesting times, soil types and differences in climate affect
the quality of the raw food materials. An example would be cassava starch
where the processing response of the cassava starch and the rheological
properties of the cassava starch pastes and gels depends critically on the granule
structure which, in turn, is affected by rainfall patterns and harvesting times.10

Understanding and optimizing these relationships ‘from field to fork’ will
present many exciting future research possibilities.
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2.1 Introduction

Almost all food processes are too complex to be modelled in one step.
Therefore, a modeller will analyse the phenomenon under study to divide the
complex problem into smaller problems that are easier to solve or for which
solutions are already available. Just dividing the phenomenon into smaller
problems does not take advantage of the full potential that can be reached with a
conscious and complete decomposition. A conscious and thorough decomposi-
tion of the complex phenomenon may lead to a better understanding of the
problem at hand, enabling the modeller to make sound decisions about where to
make the simplifications needed to arrive at a practical model for the
phenomenon under study.

In information technology, this technique has already proved to be invaluable
for modelling physical systems. Because such systems are composed of well-
defined components, decomposition of these systems is generally easy and
straightforward. However, when applying the same technique to modelling
complex phenomena in food products, two main difficulties arise. First, the
fundamental subprocesses are not completely understood or described. Second,
the interactions between these processes are complex and even less understood.

In this chapter two methods will be discussed that are widely used in
information technology for decomposing a complex system into manageable
units. The first method is task decomposition and models the system as a
collection of interacting tasks. The second method is called object-oriented
analysis and design. This method models the system as a collection of
interacting objects, where each object represents a concept or entity in the real-
world system.

2

Problem decomposition
M. Sloof, Everest B. V., ‘s-Hertogenbosch



It is shown how and where these decomposition methods can be used in
modelling food processes. A number of modelling cases will be presented to
illustrate the rules and the possible pitfalls of the decomposition methods.
Knowledge of these rules and pitfalls will enable the modeller to develop sound
and complete decompositions of the problems under study. It is only with such a
complete decomposition of the problem under study that simplifications,
necessary to formulate a model, are made correctly and understood thoroughly.

2.2 Decomposition in information technology

In information technology two techniques are widely used to decompose a
complex system into manageable subproblems. The first technique is called task
decomposition and focuses on the tasks performed by the system. The second
technique is called object-oriented analysis and design. With this technique the
system is decomposed into a number of objects, where each object is responsible
for one or more tasks performed by the system.

The aim of both techniques is to divide a complex problem into a number of
so-called building blocks. Task decomposition uses tasks and subtasks as the
building blocks to construct a model for the system. In object-oriented analysis
and design the building blocks are the objects. Each building block must
describe a well-defined part of the complex system that can be studied and
understood independent of other building blocks. In this way parts of the
complete behaviour can be studied in isolation and may be redesigned without
affecting other parts of the model.

When several models have been developed for different phenomena in a
particular problem domain, it may appear that some building blocks have been
reused in some of these models. These building blocks have been abstracted from
the particular problem for which they were originally developed. These building
blocks can be used as a starting point for a more extensive analysis of the
problem domain to identify a collection of generic building blocks that can be
used to build models for phenomena in that domain. A generic building block is a
model of a well-defined piece of behaviour, independent of the problem or
system for which this building block was originally developed. When such a
collection of generic building blocks is available, decomposition of any problem
in that domain should aim at selecting the generic building blocks that are
relevant for the problem at hand rather than inventing problem-specific solutions.

2.2.1 Task decomposition
The task decomposition method describes the system under study as a collection
of interacting tasks or processes. Each task represents a piece of behaviour
performed by the system. A task has an effect on one or more attributes of the
system, and may itself be influenced by other attributes in the system or by
external attributes.
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If a task is too complex to be described immediately, it can be decomposed
into a sequence of two or more subtasks that are easier to describe. The first
subtask in the sequence will have the same input variables as the complex task
and the last task will have the same output variables as the complex task. The
subtasks in the sequence are connected through intermediate variables. The
sequence of subtasks must exert at least the same behaviour as the complex task.

The intermediate variables introduced in the decomposition of the complex
task were hidden in the original, more abstract, task. Hence, by decomposing a
task into subtasks some variables that were implicit in the abstract task are made
explicit. Hence, task decomposition will enhance the understanding of the task
and, more importantly, will provide handles to include additional interactions
between tasks.

Task decomposition produces a task decomposition tree of the system under
study. At the top of this tree is the complex task to be modelled, below this are
the subtasks into which the complex task is decomposed, and at the bottom of
the tree are the subtasks that cannot, or need not, be further decomposed into
subtasks. When all tasks in a phenomenon under study are decomposed into
subtasks until the tasks cannot be decomposed further, the resulting task
decomposition tree can be seen as a comprehensive model of that phenomenon.
When developing a model for the phenomenon the modeller will select subtasks
from the decomposition tree at the appropriate level of detail. Subtasks may be
selected on different levels of detail. In this way only that part of the
comprehensive model is reused that is relevant for the phenomenon under study.
Processes that are irrelevant and models for processes that are described in too
much detail are left out.

2.2.2 Object-oriented analysis and design
A second important method to decompose a complex system is object-oriented
analysis and design. An object-oriented analysis and design results in a
description of the system as a collection of interacting objects, where each object
has attributes that together define the state of the object, and methods that
implement the behaviour of the objects.

Object-oriented analysis starts with an investigation into the main processes
in the system under study. For each process in the system under study it has to be
decided which object will be responsible for this process. In the design phase a
method will be developed in the responsible object to implement this process. If
the object needs information from other objects to perform the process, methods
must be designed in the other objects to provide this information. In this way a
pattern of collaboration between the objects is designed and the complex
behaviour of the system under study is decomposed into a number of processes
distributed over the objects. The collection of objects with attributes and
methods and the collaboration patterns between the objects form the conceptual
model for the system under study. The conceptual model is the input for the
construction of an object-oriented simulation model.
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An object-oriented simulation model consists of classes and instances of
classes. A class is a template for one or more objects in the conceptual model
with the same behaviour. Each instance of a class represents one object in the
conceptual model. The classes are usually organized in a class hierarchy. Classes
higher in the hierarchy are more generic than classes lower in the hierarchy. A
class inherits all members (attributes and methods) from its ancestors in the
hierarchy and adds new members to represent the specialized behaviour. New
members hide members with the same name from the ancestor classes.

For example, a class hierarchy for modelling the behaviour of apples could
consist of a generic class containing generic models for the processes that occur
in all apple cultivars. To model the behaviour of a specific apple cultivar, the
generic class can be specialized and one or more methods can be adapted to
describe the behaviour of this cultivar that differs from the generic behaviour as
described in the generic class.

A class hierarchy for a particular domain can be seen as a template model for
the construction of specific models for systems or phenomena in that domain.
The generic classes in the class hierarchy contain methods for the generic
processes that may be relevant in the phenomenon under study. In the analysis
and design of a conceptual model for the phenomenon under study the modeller
should use as many generic classes as possible. In cases where the observed
behaviour cannot be described with one of the generic classes, the modeller must
design a new class that is a specialization of one of the generic classes and add
new members to represent the observed behaviour. In this way the class
hierarchy can be used as a collection of reusable models for the processes in the
domain of interest, thereby reducing development time and effort and reducing
the risk of errors in the models.

More extensive discussions of object-oriented analysis and design can be
found in the literature, together with descriptions of the Unified Modelling
Language (UML) that has emerged as the standard notation for (object-oriented)
modelling, and descriptions of various design patterns that are ‘best practice’
solutions for common problems in object-oriented design.1, 2, 3

2.3 Modelling food processes

Modelling starts with a specification of the phenomenon under study. The
specification generally implies a limitation of the area of interest. When
modelling food processes, this specification may include the product in which
the phenomenon is studied, the conditions the product is likely to be subjected
to, the aspects of the product behaviour that have to be included and, most
difficult, those that may be excluded.

The following sections describe a comprehensive view on the modelling of
behaviour of food products during post-harvest distribution. During distribution
the product may be traded several times. Each time the product is traded the
quality of the product will be evaluated. Furthermore, a product may be

22 Food process modelling



distributed together with other products that may influence the behaviour of the
product under study. Therefore, modelling the behaviour of a food product may
involve modelling quality change, an object-oriented decomposition to identify
products with similar behaviour, and modelling the physiological behaviour of
these products.

2.3.1 Modelling quality change
To describe the changes in the quality of the distributed product, models are
developed for the processes that may affect the product attributes that are used to
assess the quality. The behaviour of a quality attribute not only depends on the
physiological processes occurring in the food product, but also on the user
assessing the quality attribute, and may even depend on the market situation (see
Chapter 17).4, 5

For example, to assess the quality of a tomato a consumer may evaluate the
firmness, the colour, the price and the origin of the tomato. Furthermore, a
consumer may compare the product with other tomatoes.

Firmness and colour are quality attributes that depend on the concentrations
of various biochemical substances. When assessing the firmness the consumer
will also take into account the intended use of the tomato. A firm tomato may
have a high quality for use in salads, whereas the same tomato may have a low
quality for use in tomato soup. Hence, whereas the firmness depends solely on
the concentrations of various biochemical substances, the value assigned to the
quality attribute firmness depends on the intended use. The biochemical
substances that are responsible for the observed firmness are called intrinsic
product properties. When these properties change, the state of the product will
change also, leading to a different quality. The quality of a product that is
determined by taking into account only quality attributes that depend solely on
intrinsic product properties, is called the assigned quality.

Price and origin of the tomato are called extrinsic product properties.
Extrinsic properties can change without affecting the state of the product and are
therefore not important for the assigned quality of the product.

Furthermore, a user may compare the quality of the product with the quality
of competing products. The combination of assigned quality, the extrinsic
product properties and the market situation yields the acceptability of a product:
an assessment of the product in relation to its price and to other products.
Independent of the assigned quality of the product, the acceptability will
decrease or increase if other products are assigned a better or worse quality,
respectively. The process of determining the assigned quality and the
acceptability of a product is depicted in Fig. 2.1. The grey bars in this figure
indicate the active role the user plays in this process. By defining criteria for the
intrinsic product properties the user determines what quality is assigned to the
product. The second grey bar represents socio-psychological factors, such as
quality-awareness, status-awareness and previous experiences, that may
influence the user when deciding whether or not to buy the product.
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From this discussion it becomes evident that it is important to separate clearly
these effects in a model for the food process. A model describing the quality
change of agricultural products should consist of three submodels:

1. an environment model describing the changes in the immediate environ-
ment of the product,

2. a dynamic product model describing the reaction of intrinsic properties of
the product on changes in the environment, and

3. a quality assignment model describing the relation between the quality of
the product and the values of the product properties.4, 5

An example of an environment model is a model for a Modified Air package
(see Chapter 14), describing the relation between the conditions outside the
package, the package material, and the resulting conditions inside the package.

The advantages of separating the environment and quality assignment from
the product behaviour can be seen when considering a distribution chain. A
distribution chain contains a number of ‘quality assessment points’, at which
different definitions of ‘good quality’ are applied. For example, early in the
distribution chain tomatoes must be reddish, hence unripe, whereas in a
supermarket tomatoes must be red and firm. The quality definitions differ, but
the physiological processes causing the quality change are the same. Following
the generic structure for a quality change model, the model for the distribution
chain would consist of two quality assignment models connected to one dynamic
product model. However, if the quality attributes colour and firmness were
modelled as influenced directly by the processes in the tomato, the models for
the physiological processes would differ because of the differing quality
definitions, even though the underlying physiological processes are the same.

Fig. 2.1 Assigned quality of a food product depends solely on the evaluation of intrinsic
product properties by the user. The acceptability of a food product depends on the

assigned quality and on extrinsic product properties and the market situation.
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Models in which quality assignment and product behaviour are not clearly
separated can have good prediction performance, as is shown by the FLORES
model that is widely used to predict the keeping quality of cut flowers in
distribution chains.6 The FLORES model is a generic model describing the loss
in the keeping quality of FLOwers in RESponse to various and varying external
conditions. The model is applicable to more than twenty different flower
cultivars. The keeping quality is the number of days during which the flowers
remain acceptable when kept at an optimal condition. In FLORES the keeping
quality is called the vase-life of the cut flowers. Loss of vase-life occurs with the
passing of time and if the environmental conditions are in some way suboptimal.
The FLORES model consists of seven submodels. Each submodel describes the
loss in vase-life due to one effect. The total loss in vase-life is the sum of the
losses calculated by these submodels. The first submodel describes the basic
decrease of vase-life over a period of time and a certain temperature path. This
effect occurs continuously, also at optimal conditions. The other submodels
describe external effects that further decrease vase-life: dry storage, infection by
fungi, bacteria growth, suboptimal temperatures, exposure to ethylene, and
absence of flower preservative in the vase water. These effects occur if the
flowers are in some way subject to suboptimal conditions.

The FLORES model is a generic model based on a decomposition of the
complex phenomenon of quality change into processes. However, the fact that
the functions in FLORES describe direct relationships between the environ-
mental conditions and the loss of the quality attribute vase-life, and the fact that
these functions do not explain the effects in terms of underlying physiological
processes, makes it impossible to reuse the functions in FLORES for other
products. For example, not only flowers but also a lot of fruits are sensitive to
ethylene exposure. However, as the ethylene function in FLORES is a direct
relation between ethylene concentration and loss of vase-life, the function
cannot be used in other models to calculate the effect of ethylene exposure in
other products. As a consequence, the models describe the effects of
environmental conditions on the product using an implicit definition of ‘good
quality’. This combination of physiology and quality assignment has two
consequences. Firstly, a model for one product cannot be reused for another
product with a similar physiology, because the other product has a different
definition of quality. Secondly, a model can be used only to simulate quality
change according to one definition of quality. If different definitions of quality
can be applied to the same product, then different models have to be developed
for each definition of quality.

2.3.2 Object-oriented analysis of the phenomenon
When the quality assignment is clearly separated from the product behaviour,
the modeller can focus on modelling the product behaviour. Before focusing on
the processes that lead to the observed product behaviour, it has to be decided
whether an object-oriented analysis may be necessary. Applying an object-
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oriented analysis will describe the phenomenon as a collection of interacting
objects. The behaviour of each individual object may then be described as a
collection of interacting processes by decomposing the behaviour of each object
into processes.

An object-oriented analysis may be applied to the following cases. These
cases are described in more detail in the sections below.

1. When studying the effects of a distribution chain on the quality of the
distributed product. Each activity in the distribution chain can be modelled
as an object that changes the environment of the product, thereby affecting
the physiological processes in the product.

2. When the phenomenon under study involves different products and the
interactions between the products are important. Each product can then be
modelled as an object with its own physiological behaviour. The
physiological processes in one product may cause changes in the immediate
environment of that product. These changes may affect the physiological
processes in the adjacent products. With an object-oriented design of the
model these changes can be described explicitly. The object-oriented model
may contain one object representing the environment and objects represent-
ing the individual products. Through interactions between the latter objects
and the environment object, the environmental conditions are changed
thereby affecting the physiological processes occurring in the products.

3. When the phenomenon involves a batch of one type of product, with
different external conditions at different locations in the batch, or with
differing initial quality. The complete batch is modelled as a collection of
objects. Each object represents an area in the batch where the products are
subjected to similar external conditions.

Modelling a distribution chain
A distribution chain is a sequence of activities performed to deliver a product at
a destination with the highest possible quality. Usually, the ‘behaviour’ of an
activity leads to a change in the environment of the distributed product. In some
cases the behaviour of an activity may have an immediate impact on the product.
An example of the latter is recutting of cut flower stems.

An object-oriented model of a distribution chain may contain objects
representing the individual handling activities and an object representing the
distributed product. Activities that change the environment of the distributed
product are modelled by interactions between the activity objects and an object
representing the environment. For example, a temperature-controlled transport
can be modelled as follows: the object representing the transport sends a
message to the environment object to set a new temperature. To determine the
physiological behaviour during the transport the product object interacts with the
environment object to retrieve the temperature during the transport.

In cases where the activity leads to a direct change in the product, there will
be a direct interaction between the activity object and the product object.
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Recutting a flower stem would be modelled as follows: the activity object sends
a message to the product object to reduce the bacteria concentration. Upon
receipt of this message the product object will use the new bacteria
concentration in the simulation of the physiological behaviour.

The advantage of using an object-oriented model for a distribution chain is
the clarity of the model. Normally the effects of a distribution chain are
modelled as a sequence of environmental conditions at different time points
during the distribution. By using an object-oriented model the activities causing
these changes in the environment are made explicit. With an object-oriented
model it becomes easier to add or remove activities from the distribution chain.
Finally, the objects representing the activities may be reused to model
distribution chains for other products.

Modelling interactions between products
When a product is stored in a container with other products, not only the
interaction between the product and its environment is important, but also the
interactions between the products become important. In such a mixed load
situation, the different products have to be modelled separately and the
environmental conditions between the products have to be modelled explicitly.

An object-oriented model describing the behaviour of products in a mixed load
may contain objects representing the individual products in the container and an
object representing the environmental conditions inside the container. Each object
representing a product implements a dynamic product model describing the
physiological processes occurring in the product. These processes are affected by
the conditions in the immediate environment of the product. The processes may
themselves affect the immediate environment. The single object representing the
container environment monitors all changes in the environmental conditions.

The advantage of using an object-oriented model for a mixed load is that
products can be added or removed easily without the need to adapt the model for
the container environment. The products interact with the environment rather
than directly with the adjacent products. Not only is this a more accurate
description of the real-world situation, it also allows reuse of product models
that originally were not designed to be used in mixed load situations.

Modelling a batch of products
When the phenomenon involves a batch of one type of product, the modeller has
to decide whether all products in the batch have the same initial quality and
whether the external conditions are the same at all locations in the batch. If this
assumption can be made, then the batch can be modelled as a single product with
a single environment and a further object-oriented analysis is not necessary. If
this assumption cannot be made, then the batch has to be divided into smaller
units such that the products in each unit have the same initial quality and are
subject to the same external conditions.

An object-oriented model describing the behaviour of products in the batch
may contain an object for each area in the batch in which the products have a
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similar initial quality and are subject to the same environmental conditions. Each
object describes the behaviour of part of the products in the batch.

The advantage of using an object-oriented model for describing the behaviour
of a batch of products is that the physiological processes occurring in the
products can be modelled once for all areas in which the batch is divided. The
division in areas of the complete batch can be manipulated easily by creating or
deleting instances of the class that implement the model of the products in the
batch.

2.3.3 Process decomposition
In the previous steps the phenomenon under study has been analysed to separate
quality assignment from the product behaviour and to identify relevant objects in
the phenomenon. The last step in the analysis is to describe the product
behaviour as a collection of interacting processes, such that their combined
action describes the observed phenomenon and that each of the subprocesses can
be fully understood in their own description. The type of subprocesses is largely
defined by the fundamental laws and the generally accepted rules in a particular
discipline.

Each process influences one or more quantities of the product, and may itself
be influenced by other quantities. Hence, the interactions between the processes
occur at the quantities. To be able to combine effects of several processes on one
quantity, to add processes to the model, or to remove processes from the model,
the processes must be described in terms of changes imposed on the affected
quantities. Therefore, the processes have to be formulated in terms of differential
equations rather than in terms of algebraic equations. An algebraic equation
calculates a new value of the output quantity, which makes it impossible to
include other effects on that quantity other than by reformulating the model
equations.

Process decomposition may start with identifying high-level processes that
may occur in the phenomenon. One way to find these processes is by starting
from the intrinsic product properties that correspond with the quality attributes
in the phenomenon under study. By using knowledge about the food product the
modeller derives high-level processes that influence these product properties.
Only those high-level processes are included that are affected by one or more of
the external influences on the food product identified in the phenomenon under
study. The result is a first decomposition of the phenomenon into abstract or
high-level processes, describing how the attributes of interest are affected by the
external influences on the food product. This process decomposition will contain
several high-level variables through which the processes interact.

The next step is to develop a model for each abstract process, either by a
further refinement into subprocesses, or by selecting an existing model for the
process. For example, a model for a chemical process can be composed into at
least three submodels: one model describing the changes in the concentration of
the consumed reactant, one model describing the changes in the concentration of
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the produced reactant, and one model describing the influence of temperature on
the chemical process. An example of the latter model is Arrhenius’ law.

As seen above in the example of the FLORES model, process decomposition
must be aimed at finding the generic physiological processes in the product. This
is illustrated with a model describing the occurrence of chilling injury in
cucumber fruits and bell peppers.7

Chilling injury is a general term for visible forms of damage that may occur
when products are stored at too low temperatures. The injury normally appears
after a chilling period, when the product may already be stored at optimal
conditions. This deferred appearance makes chilling injury difficult to
comprehend and to model. However, by making a number of assumptions and
by using generic processes, it proved possible to develop a quantitative simulation
model for the complex phenomenon of chilling injury. This model also correctly
explains chilling injury phenomena that were not accounted for in the
development of the simulation model, which proves the validity of the approach.
The complex phenomenon was decomposed into the following processes:

1. Chilling injury is the visible effect of too many free radicals that are
generated by reactions in the living cells of the product. The occurrence of
chilling injury was modelled as a chemical reaction that consumes the
generated radicals. Hence, a higher concentration of free radical increases
the visible chilling injury.

2. The generation of radicals was modelled as an autocatalytic process with
respect to the amount of free radicals.

3. At normal conditions no chilling injury is observed, so that the free radicals
must be removed or inactivated in some way. This radical scavenging
process was assumed to be an enzymatic process, affected by the amount of
free radicals and by the enzyme activity.

4. The enzyme in the radical scavenging process was assumed to denaturate
irreversibly at low temperatures. This accounts for the fact that chilling
injury only occurs after a period of too low temperatures.

Modelling interactions between processes
Decomposing a process into more detailed subprocesses will introduce
additional variables in the model. For each variable it has to be decided which
processes have an effect on the variable, and whether these processes should be
included in the model. For example, including an enzymatic process into the
model will also introduce a quantity representing the enzyme. Normally, the
enzymatic process itself does not affect the enzyme concentration. However,
other processes may influence the enzyme concentration. It has to be decided
whether such processes are relevant and have to be included in the model.
Including processes that influence the enzyme concentration increases the
applicability of the model, but also increases the complexity of the model.

When reusing a model for a process, it must be investigated whether the
variables in the model are combinations of other variables. A combined variable
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hides an interaction between variables at a more detailed level that was assumed
to be constant in the situation for which the model was originally developed.
Such an interaction may, however, not be constant in the current situation for
which the model is reused. Examples of such variables are Vmax and Km in the
Michaelis Menten equation (2.1):

dS
dt
� � VmaxS

Km � S
�

dAC
dt
� 0�P � S0 � P0 � S �2�1�

The above equation is a well-known model for an enzymatic process that can
be applied when the enzymatic process can be modelled as an equilibrium
reaction forming an active complex (AC) that in turn decays into product P and
free enzyme E, according to equation (2.2) (see also Chapter 3).

S � E
ks1
��
��
ks2

AC �kp
P � E �2�2�

The variables Vmax and Km in the Michaelis Menten equation are combined
variables: Km is a function of ks1, ks2 and kp. Vmax is a combination of the initial
amount of enzyme E0 and the specific rate of the enzymic reaction kp (see
equation (2.3)).8, 9

Vmax � kpE0 Km � ks2 � kp

ks1
�2�3�

Using the laws of fundamental kinetics, the specific reaction rate kp is likely
to depend on temperature. The amount of enzyme is determined by the amount
initially present and by the changes conceivably occurring during the process.
Combining the variables E0 and kp into Vmax obscures this interaction. As long
as the exact meaning and relation between the original variables and the
combined variable is recognized and acknowledged, no problem arises.
However, if temperatures are allowed to vary, the situation changes drastically.
The apparent rate of reaction (Vmax) will increase with increasing temperature,
but at still higher temperatures the rate will decrease with increasing
temperature. This complex process can be decomposed into two separate
processes:

1. a normal temperature-dependent increase of the rate constant kp, as for all
(bio)chemical reactions, and

2. an increasingly important decrease in amount of active enzyme by
inactivation at higher temperatures.

A similar line of reasoning holds for the variable Km. This variable is a
combination of reaction rates kp, ks1 and ks2 that each will, most probably,
change with temperature according to Arrhenius’ law (equation 2.4):

k � kref e
Ea
R

�
1
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� 1
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�
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Finally, the standard Michaelis Menten equation (equation 2.1) is formulated
for a non-denaturating enzyme. The amount of enzyme is hidden in Vmax

(equation 2.3). When enzyme denaturation is taken into account the constant
amount of enzyme E0 has to be replaced with the variable amount of still active
enzyme.

From this example it becomes evident that it may be hazardous to combine
different variables (kp and E0), constant for a certain situation, into one variable
(Vmax). Unless its meaning remains clear and evident, further development of
theory and application can be seriously hampered. Therefore, it is recommended
to keep all variables separated in the mathematical formulation, to encourage the
proper use of their separate and individual meanings and to allow for extending
the model to new applications and situations.

2.4 Benefits for modelling food processes

In this chapter two methods for problem decomposition were described. Task
decomposition divides a complex task into easier to solve subtasks. Object-
oriented analysis and design identifies concepts and entities in the system under
study and models them as separate objects. Each object is made responsible for
one or more tasks in the system under study.

When modelling food processes the emphasis lies on the task decomposition
to find the generic processes underlying the observed behaviour. Object-oriented
analysis and design is seen as a step before this task decomposition. A
decomposition into objects can reveal aspects of the phenomenon under study
that may not be recognized easily when only task decomposition is applied.
Once the objects are known, the modeller can focus on the behaviour of each
object. An object-oriented design of the model has the advantage that the model
can be easily extended, and that parts of the model can be reused more easily.
Object-orientation facilitates reusability and extendibility, but it is still the
modeller who has to keep in mind that an object that may be reused in the future
must already be designed for reuse. An object can only be reused if the
behaviour of the object is modelled independent of the actual phenomenon under
study and if the assumptions underlying the model are explicitly documented.

The major benefit of a complete decomposition of the phenomenon under
study into processes is that the modeller gains insight into the complex
behaviour of the system. Because all interactions between the processes are
made explicit, the modeller can make a sound decision about which processes
have to be included in the model and which processes can be ignored. These
decisions should be documented with the model to enable a future reuse of the
model. For each variable that connects two processes the modeller should
investigate whether other processes are relevant that also affect that variable. In
this way additional behaviour and processes may be found that the modeller did
not anticipate in a first analysis of the problem. Hence, by working towards a
complete decomposition of the phenomenon under study a comprehensive
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model for the complex process can be derived. Whether all processes are indeed
included in the actual model depends on the required level of detail and on the
availability of sufficient experimental data to calibrate the model.

A model formulation that is based on a thorough decomposition of the
complex phenomenon into fundamental process also has advantages in the
statistical analysis of experimental results. As explained earlier, the model
should be formulated as a set of differential equations to be able to combine
effects from different processes on one variable. Whenever an analytical
solution of this set of differential equations can be obtained for constant external
conditions, that analytical solution can be applied to the experimental data in
nonlinear regression analysis. The estimated parameters constitute a reliable
calibration of the formulated model. Furthermore, application of complex,
multidimensional nonlinear regression with, for example, time and temperature
as simultaneous explaining variables provides the statistical system with more
information than is otherwise possible. With this technique the statistical system
is able to place the measuring uncertainties where they belong according to the
model.10, 11 If the developed model accurately describes the observed
phenomenon an explained part (R2

adj) of up to 95% can frequently be obtained.7

Decomposing a complex process into subprocesses might result in the
introduction of intermediate state variables that cannot yet be measured in the
real world. In these cases the modeller must apply his knowledge about the
problem domain and the fundamental laws applied to validate that the behaviour
predicted by the model is correct. It constitutes on the one hand a disadvantage
of problem decomposition, certainly at the level of model implementation. On
the other hand, it may guide and force experimental research to new and
unexplored areas.

2.5 Future trends

Application of the problem decomposition methods for modelling food
processes described in this chapter may help to improve knowledge about the
mechanisms underlying the observed behaviour of food products. Not only
knowledge of the physiological processes and their interactions may improve,
but also knowledge about which mathematical models can be used for these
processes in various situations. Problem decomposition as described in this
chapter will lead to detailed models with a high explanatory value. This level of
detail may not always be needed. In that case, a detailed, fundamental and
comprehensive model that was derived from a complete decomposition of a
complex process, may be simplified in different ways for different dedicated
purposes, yielding several models for the complex process at different levels of
detail.

Knowledge about physiological, physical-chemical and biochemical pro-
cesses, their interactions and the applicable mathematical models can be stored
in some sort of library to facilitate reuse. With such a library, developing a
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model for a phenomenon under study may evolve into describing the
phenomenon as a collection of interactions between (generic) processes,
followed by selecting the appropriate mathematical models for these processes.
This two-stage approach to modelling complex processes has been applied in a
system for automated modelling of post-harvest physiological behaviour.4, 12

The discussion about object-oriented analysis and design shows that in some
cases the observed behaviour of a phenomenon under study can be described as
interactions between objects in the real world. For example, the behaviour of a
packaged product may be modelled as the result of interactions between an
object representing the product and an object representing the package. The
latter object will contain a model describing how the environment inside the
package is related to conditions outside the package and the package material
(see also Chapter 14). As proper model development based on proper problem
decomposition is very much an expert task that requires a lot of knowledge of
the problem domain, it is likely that the product model and the package model
are developed by different persons or research groups. Hence, a proper
decomposition of a phenomenon may also enable the distribution of the model
development to different modellers.

In order to use the product model and the package model in one system, both
models must have a specification of the interfaces and of the assumptions
underlying the model formulation. The specification of the model interface
defines which variables in the model can be varied from outside and which
variables can be output from the model. The specification of the underlying
assumptions can be used to evaluate whether the model is suitable for the
phenomenon under study.

Such models together with their specifications of the interfaces and the
underlying assumptions can be seen as reusable components. In information
technology, building reusable software components is common practice. A
recent method for software development that aims to facilitate the reuse of such
off-the-shelf software components is component-based development.13 A
component is defined as a piece of software together with clear specifications
of its functions, its interfaces and the requirements it needs to operate. The idea
of component-based development is that this specification of the interfaces and
requirements forms a kind of contract between the user and the developer of the
component. The developer may adapt the internal implementation of the
component as long as the component still adheres to this contract. In this way a
component can be changed without affecting the functionality of the complete
software system. Component-based development leads to software systems that
are more flexible and can be maintained better.

Although component-based development focuses on building large software
systems, the concepts may also be applied to modelling food processes. If
models describing physiological behaviour of different products would adhere to
a common interface, those models could be exchanged and easily used in
different systems. It would then be possible to develop generic systems to
simulate the effects of distribution chains on the distributed product or to
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develop generic systems to simulate the effects of a package on the quality of the
packaged product. A further advantage of using a component-oriented approach
to developing simulation models concerns the update of simulation models with
results from research into the mechanisms underlying the observed behaviour of
food products. If the submodels of a simulation model are developed as reusable
components, submodels can be replaced easily with new versions containing
improved descriptions for the represented processes.
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3.1 Introduction

Kinetic modelling is a technique that is very useful in relation to food processing
and food quality. The reason is twofold. First, changes in foods as a result of
processing and storage lead to a change in quality (usually a quality loss). The
processes involved are mainly (bio)chemical and physical reactions. Such
changes proceed at a certain rate and with certain kinetics. Kinetic modelling
enables us to describe these changes and their rates quantitatively. Second, with
kinetic modelling we have a powerful tool that can help to unravel basic reaction
mechanisms. The understanding of the basic mechanisms is vital for quality
modelling and quality control.

To understand the progress of reactions, knowledge of thermodynamics and
kinetics is required. Thermodynamics is helpful in describing and understanding
in which direction a reaction will proceed and the energy and entropy changes
that are involved. Thermodynamics thus explains the driving force for a
reaction. However, thermodynamics cannot tell anything about the speed at
which a reaction proceeds. This is the domain of kinetics. The rate with which a
reaction proceeds is the resultant of the driving force and the resistance against
change. There is thus an intimate link between thermodynamics and kinetics.

The field of chemical kinetics originated in the second half of the nineteenth
century, for instance by scientists such as Arrhenius and van ‘t Hoff. In the early
twentieth century Ball,1 Stumbo2 and Bigelow pioneered kinetic principles in
food processing (mainly the canning industry). They introduced parameters such
as the D-value (decimal reduction time, a measure for reaction rates) and the z-
value (a parameter characterizing temperature sensitivity). These D- and z-value
parameters are still used by industry and legislation, despite the known deviance
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from reality. The use of kinetics is not limited to (bio)chemical reactions; it is
also applicable to microbiological as well as physical changes such as
crystallization, aggregation and coalescence.3

Nowadays numerical procedures are so reliable and computers so fast that it
has also become possible to model very complicated reactions in foods. A basic
rule in modelling should, however, not be forgotten, namely that a model should
be as simple as possible (‘Ockham’s Razor’),4 but nevertheless comply with the
occurring processes. So, even in the era of computer-aided modelling, models
should not be overparameterized. Kinetics has developed into a powerful tool
for modelling of quality attributes in foods. Nevertheless, (bio)chemical and
physical insight is a prerequisite for correct application of food quality
modelling and kinetic parameters have to be extracted from experiments to
calibrate the models. It is thus of utmost importance to establish a fundamental
reaction mechanism and to derive kinetic parameters in the most accurate way.
Correct application of kinetic principles is essential. In this chapter we will go
deeper into these principles in relation to food and food processing.

3.2 Key principles and methods

3.2.1 Simple kinetics
Chemical reactions are basically monomolecular or bimolecular, very rarely
termolecular. A monomolecular reaction results from an internal change in a
molecule, and a bimolecular reaction is the resultant from two interacting
molecules. The fundamental principles of kinetic modelling are based on the
conversion of chemical reaction mechanisms into the constituting differential
equations, applying the law of mass action. The rules of this conversion can be
found in any good textbook on chemical or enzyme kinetics.5–8

The most simple example is an irreversible first order (monomolecular)
decay or conversion reaction:

A��k B �3�1�
This mechanism results in the following set of differential equations.

d�A�
dt
� �k�A�

d�B�
dt
� k�A� �3�2�

Zero-order formation, where a product B is formed out of reactant A present in
excess, can be represented by the same reaction mechanism:

A��k B �3�3�
The constituting differential equation, assuming an excess and therefore constant
concentration of component A, is:
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d�B�
dt
� k�A� � k� �3�4�

with k� the (pseudo) zero order rate constant; the rate is seen effectively to be
independent on concentration of B. The rate will, however, depend on the
constant concentration of A. In this model simplification, already a steady-state
approximation is applied to the concentration of component A.

For an irreversible second order (bimolecular) reaction the following
representation applies:

2 A��k B �3�5�
with the constituting differential equations:

d�A�
dt
� �2k�A�2

d�B�
dt
� k�A�2 �3�6�

All these sets of differential equations can be solved easily at constant external
conditions (mainly temperature and pH).

3.2.2 Complex kinetics
Reversible reactions are already more complex. Suppose we have the following
reversible reaction (not yet at equilibrium)

A
k1
��
	�
k2

B �3�7�

The differential rate equations are:

d�A�
dt
� �k1�A� 
 k2�B�

d�B�
dt
� k1�A� � k2�B� �3�8�

The integrated rate equations, assuming an initial concentration of A�A0 and of
B� 0, are:

�A� � �A�0
k1 
 k2

�k2 
 k1e��k1
k2�t�

�B� � �A�0k1

k1 
 k2
�1� e��k1
k2�t� �3�9�

At a certain stage, the rates for the forward and the reverse reaction become
equal, equilibrium is reached and the equilibrium constant Keq is given by
equation (3.10):
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Keq � k1

k2
� �B��A� �3�10�

An example of a reversible reaction relevant for foods is the mutarotation of
reducing sugars.

Even more complex reactions are consecutive and parallel reactions.
Consecutive reactions are reactions in which products are formed as
intermediates, which then react further. The simplest example is:

A��k1 B��k2 C �3�11�
The differential rate equations for this case are:

d�A�
dt
� �k1�A�

d�B�
dt
� k1�A� � k2�B�

d�C�
dt
� k2�B� �3�12�

The analytical solution at constant external conditions or integrated rate
equations are:

�A� � �A�0e�k1t

�B� � �B�0e�k2t 
 k1�A�0
e�k1t � e�k2t

k2 � k1

�C� � �C�0 
 �B�0�1� e�k2t� 
 �A�0
�

1
 k1e�k2t � k2e�k1t

k2 � k1

�
�3�13�

Figure 3.1 gives an example of a (hypothetical) consecutive reaction
A� B� C at various temperatures, assuming an activation energy of 5000
for the step A� B and 15000 for B� C (see section 3.2.5 for a further
discussion on activation energy).

Parallel reactions imply that a reactant is subject to two or more different
elementary reactions at the same time:

A
 B
k1��	�
k2

P

A��Q

�3�14�

The differential equation for component A is

� d�A�
dt
� k1�A��B� 
 k2�A� �3�15�

but an analytical solution for the integrated rate equation is not found easily; one
has to resort to a numerical solution in this case. An example of such a parallel
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Fig. 3.1 Time course of a hypothetical consecutive reaction A�B�C for components
B and C as a function of temperature with Ea � 5000 for the first reaction and

Ea � 15000 for the second reaction (arbitrary units)
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reaction in foods is the simultaneous isomerization of glucose and its
participation in the Maillard reaction.9 Maillard reactions may occur during
sterilization of foods and result in colour and flavour changes.

There are many examples of parallel and consecutive reactions in foods, for
instance, again, the Maillard reaction,9 or degradation of chlorophyll during
heating.10 Another practical example is the change in activity of the enzyme
polygalacturonase (PG) during storage.11 Parallel and consecutive reactions are
particularly amenable to multiresponse analysis, which has distinct advantages,
as discussed in section 3.2.7.

Even for relatively simple cases, the analytical solutions of the constituting
differential equations at constant conditions can be quite complicated. Many
more possibilities of complex reactions exist. However, for more complex
reactions than the ones given, it will be very tedious, if not impossible (for
instance in cases such as equation (3.15), to derive analytical solutions. The only
option that is left is numerical integration of the differential equations. For-
tunately, this is no problem any more with modern computers and software.12–16

Bimolecular reactions require that molecules will have to come together
before they can interact. Encounters may occur due to temperature-induced
movement, diffusion and flow. If particles would react immediately upon an
encounter, the rate of reaction is controlled by diffusion; such reactions are
called diffusion controlled. On theoretical considerations, one can deduce that
for the fastest bimolecular reaction rate possible in water at 20ºC the reaction
rate constant is 6.6� 109 dm3 mol�1 s�1 and at 100ºC 3� 1010 dm3 mol�1 s�1.
These should be roughly the upper limits for bimolecular reaction rates at the
temperature indicated.3 For monomolecular dissociation in solution, the rate is
determined by the rate at which the products can diffuse away. The upper limit
for monomolecular reaction rate constants (uncharged reactions)3 would then be
roughly 1012 s�1.

3.2.3 Steady-state approach
In the literature, one frequently approximates kinetic equations for consecutive
reactions by assuming the so-called steady-state, or quasi-steady-state
approximation (QSSA). In the above example of the consecutive reaction
mechanism (equation (3.13)), intermediate B could be very reactive and have a
fast turn-over rate. This effectively comes down to the situation that after some
initial induction period, d[B]/dt� 0. Such an assumption greatly simplifies the
resulting rate equations, and that is the very reason for introducing steady-state
assumptions. Another advantage of a steady-state approximation is that it gives a
‘feel’ for the most important steps, and probably makes it more comprehensible.
QSSA could also be helpful in ‘mechanism reduction’, i.e. reduction of the
number of species and therefore reduction in the number of differential
equations. To achieve this, it is necessary to identify reactants and products as
important (those for which accurate calculation of concentrations is the aim), as
necessary (those which are necessary to calculate the concentrations of the
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important ones), or as redundant (those that can be omitted without appreciable
effect on the reaction network). However, a steady-state approach should not
really be necessary any more, because, as mentioned above, differential
equations can be solved easily by numerical integration, should analytical
integration appear to be impossible. Steady-state assumptions need not be made
any more in this computer age, at least not from the standpoint that rate
equations can otherwise not be derived any more. Some examples of software
packages that work with differential rate equations rather than integrated rate
equations are given in Stewart et al.15 and Kuzmic.16

3.2.4 Enzyme kinetics
Enzyme kinetics are an example where the steady-state approach is used,
namely in the famous Michaelis-Menten equation. Michaelis-Menten kinetics
accounts for the kinetic properties of many enzymes but certainly not all. It
provides, however, more a line of reasoning to deduce possible mechanisms and
to develop useful models than a prescription of the mechanism. It is the most
simple approach to enzyme kinetics. A relation is sought between the rate of
product formation (rate of catalysis) and the concentration of enzyme and
substrate. The development of Michaelis-Menten kinetics as it is used today was
actually due to more researchers than Michaelis and Menten.8 The first proposal
came from Henry, later refined by Michaelis and Menten who assumed the
establishment of a rapid equilibrium between enzyme E and substrate S leading
to the formation of an enzyme-substrate complex ES. The active complex ES is
then converted into product P liberating the enzyme E again:

E
 S

k1
��
	�
k

2

ES��k3 E
 P �3�16�

(Equation (3.16) describes, in fact, a consecutive reaction, discussed above.)
There is also the Van Slyke equation, which differs from equation (3.16) in that
the formation of the ES complex is assumed to be irreversible (k2� 0). It leads
eventually to the same equation but with a slightly different meaning of the
constants involved. Another assumption was that products do not revert to
substrate, so the reaction E+P does not result in ES. That means that the rate of
product formation v is:

v � k3�ES� �3�17�
which is a ‘normal’ first-order rate process. Later, Briggs and Haldane8

introduced the assumption that the rate of formation of the ES complex equals
that of its breakdown (steady-state assumption):

k1�E][S� � �k2 
 k3��ES� �3�18�
and hence an expression for [ES] is:
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�ES� � �E][S�
�k2 
 k3��k1

�3�19�

The Michaelis constant KM is now introduced:

KM � k2 
 k3

k1
�3�20�

and equation (3.19) can be written as:

�ES� � �E][S�
KM

�3�21�

Meanwhile, the total concentration of the enzyme ([ET]) can be written as:

�ET � � �E� 
 �ES� �3�22�
Substituting for [E] in equation (3.21) and solving for [ES] gives:

�ES� � �ET � �S��KM

1
 �S��KM
� �ET � �S�

�S� 
 KM
�3�23�

Combining equation (3.23) with equation (3.17) gives:

v � k3�ET � �S�
�S� 
 KM

�3�24�

The expression k3[ET] represents the maximal rate vmax, namely when [S] is
much greater than KM and consequently [S]/([S]+KM) in equation (3.23)
becomes unity so that:

vmax � k3�ET � �3�25�
Hence, equation (3.25) can be written as:

v � vmax
�S�

�S� 
 KM
�3�26�

and this is the famous Michaelis-Menten equation. Equation (3.26) describes the
hyperbolic curve for the relation between rate v and [S] that is found with many
(but certainly not all) enzymes (Fig. 3.2). The physical significance of KM is that
it represents the substrate concentration at which v � 0�5vmax.

Some interesting features follow from equation (3.26). When [S]�� KM :

v � vmax �3�27�
and the result is a zero-order reaction for this condition. On the other hand, when
[S]�� KM :

v � �S� vmax

KM
�3�28�

Since vmax and KM are constants, the rate is directly proportional to [S], i.e. a
first-order reaction appears under this condition.
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3.2.5 Effects of temperature
Many foods are, for various reasons, heat treated or stored in chilled rooms and
the effect of heat treatment on food quality is a very important issue. Temperature
is also of importance with regard to keeping quality23 or shelf-life. In general,
temperature is the most important of all external factors. Therefore, knowledge of
how the kinetics of reactions are affected by temperature is essential. Most food
scientists would tend to use Arrhenius’ law and derive activation energy from it.
Arrhenius derived his equation empirically. Later on it was put into a theoretical
perspective, especially for gas reactions, based on the collision theory, which
incorporates time via molecular velocities and the number of favourably-oriented
high-energy collisions (kinetic theory of gases). Arrhenius’ equation appears to
fit many reactions and is therefore used frequently. Although it may be a
perfectly good choice in many cases (but not all), it seems appropriate to start at a
somewhat more fundamental level by explaining relevant aspects of transition
state theory, also referred to as the activated complex theory or absolute rate
theory. This theory bridges the gap between thermodynamics and kinetics by
postulating an equivalence between energy E and frequency of atomic motions �,
making it possible to deduce rate data from energy data (using the Planck
expression E � h�, with h Planck’s constant).

The transition state theory forms a theoretical basis to deduce more practical
equations (such as Arrhenius’ law). The theory is well suited for reactions in
solutions and is not concerned with rates of encounters (like in gas reactions) but
considers thermodynamic and statistical mechanics principles to predict how

Fig. 3.2 Graphical depiction of Michaelis-Menten kinetics (arbitrary units).

Kinetic modelling 43



many combinations of reactants will be present in the so-called transition state.
This is a type of high-energy state in which molecules can be present in an
unstable but activated condition; they will either turn back into reactants or
undergo some molecular change to return as products. Consider the reactants A,
B that are transformed into products P, Q via a transition state AB, as follows,

A
 B��	�AB � P
 Q �3�29�

Figure 3.3 shows schematically how the potential energy of the system changes
with the reaction coordinate, i.e., the path along the potential energy curve. The
reaction coordinate indicates the state of the molecules in the transition from
reactants to products. When they start to interact the potential energy increases,
and a maximum is reached in the activated, or transition state. It decreases again
when products are formed.

The first step is considered to be a (quasi) equilibrium between the transition
state and the reactant molecules, characterized by a practical equilibrium
constant K with dimension concentration�1 (hence not a thermodynamic one)

K � �AB�
�A][B� �3�30�

The rate at which this equilibrium is established is fast compared to the rate of
conversion of AB to P, Q, so the position of the equilibrium is not perturbed

Fig. 3.3 Schematic presentation of the potential energy of reactants A, B, transition state
AB and products P, Q along the reaction coordinate. The energy barrier is the activation
enthalpy �H (in the case of transition state theory) or the activation energy Ea (in the

case of Arrhenius’ equation).
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significantly. To be explicit: [AB] is not an intermediate that can be isolated,
because of its instability. The second step, the formation of products, is
considered to be unimolecular with a rate constant k without any barrier, and
considerations based on statistical mechanics result in

k � kBT
h

�3�31�

in which kB is Boltzmann’s constant (1.3807� 10�23 J K�1), h is Planck’s con-
stant (6.626� 10�34J s) and T the absolute temperature (K). k


has dimension of

frequency (s�1). The rate of formation of products is thus

d[P]
dt
� k�AB� � kBT

h
�AB� � kBT

h
K[A][B] �3�32�

Comparing equation (3.32) with a ‘normal’ rate equation for a bimolecular one
shows that the rate constant k can be expressed as

k � kBT
h

K �3�33�

The equilibrium constant relates to the Gibbs energy, and consequently the
enthalpy and entropy, of activation, as follows,

K
�c��1�m � e

�G
RT � e

�S
R e

��H
RT �3�34�

The factor �c��1�m is necessary to turn the practical equilibrium constant K into
a thermodynamic one, i.e., dimensionless. c� is the concentration in the standard
state, usually chosen as mol dm�3, and m is the molecularity (in this case 2, see
equation (3.29)). Combination of equations (3.33) and (3.34) then gives

k � kBT
h

e
��S

R e
�H

RT �c��1�m �3�35�

Equation (3.35) has the correct units for a rate constant of any order because of
the factor �c��1�m, the concentration in the standard state to which the thermo-
dynamic parameters are referred. This equation is referred to as the Eyring
equation, after one of the developers of the transition state theory. The
importance of this equation is that it relates the effect of temperature on the
reaction rate constant to fundamental terms of enthalpy and entropy changes. If,
for instance, a high enthalpy of activation exists, this would make the reaction
quite slow at moderate temperatures, but this may be compensated by an increase
in activation entropy such that the reaction can still proceed at a measurable rate.
A striking example of such a phenomenon is the unfolding of proteins. This
indeed requires a high activation enthalpy because of the high number of bonds
being broken simultaneously upon unfolding but, at the same time, the entropy of
the unfolded chain increases enormously. In other words, high activation
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enthalpies and entropies are characteristic for protein unfolding. On the other
hand, bimolecular reactions usually have a negative activation entropy (because
of bond rearrangements and bond formation, entropy of the two reactants is lost),
and a moderate activation enthalpy (breaking old bonds will release energy, but
forming new ones will cost energy). Unimolecular reactions are usually
characterized by a moderate activation entropy (either slightly negative or
positive, depending on intramolecular changes, the exception being protein
unfolding) and an activation enthalpy depending on the type of mechanism.

The activation enthalpy and entropy are usually assumed to be independent of
temperature, which in general is probably not true, but for the heat treatment of
foods the temperature range is mostly not so large, so the approximation may
hold. A notable exception is, again, protein unfolding in an aqueous
environment, because interaction with water comes into play. Upon unfolding,
hydrophobic groups are exposed and cause increased structuring of water. There
is thus also a contribution of enthalpy and entropy changes of the solvent water
which may oppose the positive enthalpy and entropy for protein unfolding. The
ordered solvent structure around hydrophobic groups is broken down as
temperature increases. Hence the difference in heat capacity between unfolded
and folded (native) proteins is quite large, resulting in temperature dependency
of (activation) enthalpy and entropy.

Arrhenius’ law was derived empirically, but it found its roots in the kinetic
theory of gases. It has proven to be very worthwhile in chemical kinetics.
Arrhenius’ law states that

k � Ae�
Ea
RT �3�36�

in which A is the so-called pre-exponential factor (sometimes also called the
frequency factor), and Ea the activation energy. It is very instructive to compare
Arrhenius’ law equation (3.36), with the expression derived from transition state
theory equation (3.35). The dimension of A should be the same as that of the rate
constant k; it therefore does have units of frequency only in the case of a first-
order reaction. In fact A represents the rate of reaction at infinite temperature. To
get rid of this rather undetermined factor, in practical applications the Arrhenius
equation is often reparameterized in the reference form:

k � kref e
�Eq

R

�
1

Tref
�1

T

�
�3�37�

where the index ref refers to an arbitrarily chosen value of T, preferably in the
middle of the studied temperature region.

Obviously, Ea relates to the activation enthalpy �H and the exact
relationship is found as follows. From equation (3.35) it follows that,

ln�k� � ln

�
kB

h

�
� ln

�
1
T

�

 ln

�
K
�c��1�m

�
�3�38�

hence,
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dln�k�
d�1�T� � �T 


dln

�
K
�c��1�m

�

d�1�T� �3�39�

and combining the temperature effect on K (the van ‘t Hoff equation):

dln�k�
d�1�T� � �T ��H

R
�3�40�

From the Arrhenius equation (3.36), it follows that

dln�k�
d�1�T� � �

Ea

R
�3�41�

and consequently combination of equations (3.40) and (3.41) results in

Ea � �H 
 RT �3�42�
Likewise it can be deduced that the pre-exponential factor A is related to the
activation entropy �S. This makes the factor A much more comprehensible.
(The physical meaning of A as such seems to be experienced as somewhat
vague, which probably accounts for the fact that the factor A is very often not
reported as a result in food science literature. It gives however as much useful
information as does Ea.)

Another difference between Arrhenius’ and Eyring’s expressions is that the
temperature T appears in the pre-exponential factor in Eyring’s equation (3.35).
This has a consequence in the way results are presented and analysed. Very
often, Arrhenius’ law is presented as a plot of ln(k) versus 1/T, which should
result in a straight line (if the relationship holds). With Eyring’s relationship,
ln(k/T ) versus 1/T should be plotted. We would like to remark here that it is not
a good idea to derive the activation energy parameters from linear regression of
ln(k) or ln(k/T ) versus 1/T because of the weighting of data points through
logarithmic transformation; rather, non-linear regression should be used.18

Another remark in this respect is that the two-step procedure of first deriving
rate constants at several constant temperatures and then regressing them versus
temperature usually results in very wide confidence intervals when only a
limited number of temperatures have been studied, as is frequently the case. A
better approach is to substitute expressions (3.35), (3.36) and (3.37) directly into
the appropriate rate equations and perform a non-linear regression. In this way,
all data are used to estimate the activation parameters and an estimate of these
parameters of much higher precision is obtained. For representation purposes, it
probably remains a good idea to provide Arrhenius’ or Eyring’s expression in
the form of a plot of ln(k) or ln(k/T ) versus 1/T because any deviation of the data
from these expressions becomes immediately apparent. In doing so, however,
the values of the parameters estimated by non-linear regression should be used
to construct the plot. Deviations of Arrhenius’ and Eyring’s relationship are
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indeed possible, but very unlikely. It probably indicates that another reaction
influences the one under study, and that problem decomposition is conducted
improperly. It is the responsibility of the researcher to check this. In the case that
Arrhenius’ or Eyring’s equations are not applicable (for instance, because an
undetected change in mechanism occurs at the higher temperatures), the
resulting parameter estimates are worthless. The undetected changes in
mechanism have to be incorporated first (see Chapter 2 on problem
decomposition) to obtain reliable estimates. So, the first step should always
be to check the validity of the laws of Arrhenius/Eyring, and only if they appear
to be correct would the next step be the estimation of the activation parameters.
Obvious as this may seem, this rule is not always obeyed.

3.2.6 pH effects in kinetic modelling
In many reactions systems pH is of utmost importance. Avoiding interference of
changing pH is one of the reasons many experiments are conducted in buffered
systems. By the buffering capacity of the applied solutions, the pH remains
almost constant at the desired level.

Although the fundamentals of the effects of hydrogen ions on buffering
solutions are well understood (as can be taken from almost any textbook on
physical chemistry, e.g. Chang7), the effects of pH on reactions are still mostly
modelled with empirical models. Especially in modelling microbial growth,
enzyme activity and quality behaviour in agricultural products, polynomials are
frequently used to incorporate the effects of constant but different levels in pH
values.24, 25 The major disadvantage of these models and their estimated
parameters is, of course, the fact that it is almost impossible to transfer the
values of parameters determined in one experiment to another situation. This
limits drastically the application of such models.

The essential action for incorporating the effects of pH on various reaction
systems is, again, to find the appropriate reaction mechanism for that system. As
with the effect of temperature on the behaviour of reaction rate constants, when
the effects of pH are not described by a basic mechanism, one has to attempt to
postulate a mechanism, and not just a mathematical fit function.

To incorporate pH into kinetic modelling, one has to realize that pH is
defined as �log([H+]). The concentration of H+ ions is thus what is important,
and all anticipated effects of pH have to be incorporated as H+ ions. The
simplest example is a H+ catalysed conversion:

A
 H
��k B
 H
 �3�43�
The constituting differential equations that can be derived from this mechanism
are:

d[A]
dt
� �k

�
H+

�
�A� �3�44�
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As the hydrogen ions are not consumed, the concentration of H+ can be
considered constant, and the analytical solution becomes:

[A] = [A]0e�k
�
H


0

�
t �3�45�

Exchanging [H+] for the appropriate pH expression gives:

[A] = [A]0e
�
�k10�pHt

�
�3�46�

So, with this fundamental approach, it becomes not only clear what the effects of
pH are, but also by what type of functions: in this mechanism it is effective via a
double exponential function.

Another example is when the hydrogen ions are used up in a reaction:

A
 H
��k B �3�47�
The differential equation for [A] is the same as in the previous example. Now,
when the pH is kept constant by buffering action, exactly the same solution as
for the previous example emerges: the actual pH does not change. However, in
unbuffered systems, the hydrogen ions are used up. By using the mass
conservation law, that is [H+]�[A] is constant at any time, the analytical
solution now becomes:

�A� � �A�0
�H�0 � �A�0

�H�0ek��H�0��A�0�t � �A�0
�3�48�

Here one can see that a relatively small change in the reaction mechanism
studied has a tremendous impact on the behaviour of the reaction components
and on deduced equations.

These principles of applying the concentration of hydrogen ions instead of pH
directly, has recently been used for describing the combined effects of pH and
activating and denaturing temperatures on the activity of the enzyme phytase
from various sources.26 The principles and basic equations had previously been
deduced,5, 6, 7 separately for temperature and for pH, but it was not applied to
experimental data hitherto. The combined effects of temperature and pH were
validated on seven sets of independently measured data. The fit of the model on
the obtained data was remarkable (see Fig. 3.4).

3.2.7 Multiresponse modelling
As indicated above, reactions in foods are usually quite complicated and the use
of simple uniresponse kinetics, in which only one response is analysed, can only
be an approximation of the underlying mechanism. A very useful technique for
studying more complex changes in foods is the multiresponse modelling
technique. If it is possible to measure more reactants and/or products simul-
taneously rather than taking one reactant or one product, one can apply
multiresponse modelling. The major advantages of this are that proposed reaction
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models can be tested much more rigorously, and that resulting parameter
estimates are much more precise. The reason for these advantages is that the
information that can be extracted from data is increased considerably. A
disadvantage is that another regression criterion than the familiar least squares
must be used, namely the determinant criterion. This is in itself not more difficult,
but there are only a few software packages that handle this criterion. It is however
very rewarding to apply multiresponse modelling in appropriate cases.10, 20, 21

An important aspect for multiresponse modelling is to take variances and
covariances of the various responses into account. To clarify this point, a
hypothetical reaction scheme is discussed first. Suppose three reactions take
place at the same time, and we are able to measure all six components during the
course of the reaction:

A
 B��k1 C
 D

C��k2 E

D
 B��k3 F �3�49�

Fig. 3.4 Measured (symbols) and simulated (lines) activity for phytase produced by
E. coli.
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with ki as reaction rate constants. Then the following differential equations can
be set up:

d�A�
dt
� �k1[A][B]

d�B�
dt
� �k1[A][B]� k3[D][B]

d�C�
dt
� k1[A][B]� k2[C]

d�D�
dt
� k1[A][B]� k3[D][B]

d�E�
dt
� k2[C]

d�F�
dt
� k3[D][B] �3�50�

These coupled ordinary differential equations (ODEs) can be solved by
numerical integration. A well-suited algorithm is, for instance, the Gear routine,
especially designed for so-called stiff differential equations (in which the
parameters may have largely different values, which is frequently the case for
kinetic rate constants).12 Following this approach we can find a numerical
solution describing the evolution of our six compounds over time.

Next, the model (i.e. the numerically integrated rate equations) should be
fitted to the experimental data points. The question is how to do that properly.
The ‘natural’ procedure for this would seem to be the method of least squares,
for instance to minimize for component A:

	n

u�1

�yA � �yA�2 �3�51�

in which u (1� � � n) is the number of experimental runs, yA the experimental data
points for component A, and y�A the predictions of component A by the model (as
predicted by numerical integration). In the above example, there are several
responses at the same time (the concentrations of components A, B, C, D, E, F at
each time interval studied). The question is now whether the best fit criterion in
the above example is simply to minimize the combined sum of squares for all
responses (like for component A in (equation 3.51). There are several, rather
strict, requirements for application of least squares, and these turn out to be very
strict, especially in the case of multiresponse modelling. It is not always
appreciated by researchers that the fit criterion to be used depends on the
experimental error structure: the covariance matrix of the experimental errors,
Covee, is of importance. For our hypothetical example, this matrix is
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Covee �

�AA �AB �AC �AD �AE �AF

�BA �BB �BC �BD �BE �BF

�CA �CB �CC �CD �CE �CF

�DA �DB �DC �DD �DE �DF

�EA �EB �EC �ED �EE �EF

�FA �FB �FC �FD �FE �FF



���������


���������

�3�52�

The diagonal elements in the matrix Covee represent the variances of each
response (i.e., �AA � �A

2 and the off-diagonal elements the covariances (i.e.,
�AB � ��A�B with � the correlation coefficient). The point is that in most cases
the covariance matrix of the experimental errors will be unknown. It would be
reasonable to assume for multiresponse measurements that measurements in
different runs are not correlated, but components measured within one run are
expected to be correlated (for instance because several components are
determined in one sample). Hence, the covariances �� 0 within a run; then the
best-fit criterion is not least squares minimization, but minimization of the
determinant of the so-called dispersion matrix C with elements

cij �
	n

u�1

�yi
u � �yi

u� � �yj
u � �yj

u� �3�53�

in which i, j is the index of responses (i, j� 1 . . r) and u the index of
experimental runs (u� 1 . . n). It is perhaps worth noting that the diagonal
elements of matrix C correspond to the sum of squares for each of the responses.
The point is that not only the sum of squares for each of the responses is taken
into account but also the crossproducts of the responses. This analysis is due to
Box and Draper,17 and since then further developed by several authors. See, for
instance, the review article by Stewart et al.15

If the covariance matrix, equation (3.52), happens to be known, the best-fit
criterion is minimization of

	r

i�1

	r

j�1

�ijcij �3�54�

in which �ij are the elements of the inverse of the matrix Covee. If, in addition,
no correlation exists between responses (�ij � 0 for i �� j) and the variances of
the responses are known, minimization of the following is appropriate

	r

i�1

�ii
	n

u�1

�yi
u � �yi

u�2 �3�55�

Equation (3.55) represents the case of weighted least squares. Finally, if �ii is
equal for all responses the minimization criterion is:

	r

i�1

	n

u�1

�yi
u � �yi

u�2 �3�56�
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and this is actually the least squares criterion for all responses, analogous to
equation (3.51) for one component. Coming back now to the question whether or
not least squares is the best fit criterion, the answer appears to be: only under the
(rather strict) conditions that all variances are the same and that covariances
within a run are zero. This is a situation normally not encountered in practice if
several responses are measured at the same time. In conclusion, it turns out that
in multiresponse modelling the determinant criterion, i.e., minimization of the
determinant of matrix (3.53), is the alternative for least squares. In other words,
the method of least squares is not well suited for dealing with multiresponse
data.15

There are two major advantages of multiresponse modelling. The first is that
kinetic models can be tested much more rigorously because all the information
contained in the data is linked and used. The second advantage is that the
resulting estimates of the parameters (once a model is acceptable in terms of
goodness of fit and scientific understanding) are much more precise than with
uniresponse modelling. Several examples have been given for multiresponse
analysis of reactions occurring in foods.9, 18–21

3.2.8 The engineering approach
Above, we have described how kinetic equations can be derived from postulated
chemical mechanisms. Mathematically, reactions can also be described in terms
of the change in concentration c of a component over time t without considering
an actual reaction mechanism:

� dc
dt
� kcn �3�57�

with n the order of the reaction and k the reaction rate constant. This applies to
an irreversible reaction of one component (in this case a decomposition, but
formation is of course also possible). Integration of equation (3.57) at constant
external conditions, gives:

c1�n
t � c1�n

0 
 �n� 1�kt �n �� 1�
c � c0 exp��kt� �n � 1� �3�58�

with c0 the initial concentration. There are in fact two types of orders, the first
one is found if one determines initial rates �dc�dt for various concentrations
and then one can determine the order nc from equation (3.57), which is called the
order with respect to concentration. The second possibility is to use equation
(3.58) and follow the change in concentration over time, and find the best fit for
the order nt, called the order with respect to time.3, 18, 22

When the reaction mechanism reflects the processes occurring in reality, the
two orders are necessarily the same. However, when the reaction mechanism
applied is a simplification of the reaction process, both orders need not be the
same. If nt� nc then the reaction rate increases as the reaction moves on (auto-
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catalysis); if nt� nc the reaction rate decreases as the reaction progresses (auto-
inhibition). This indicates that it is useful to determine both types of orders
because the comparison of their values should make clear whether or not the
mechanism used in the modelling effort changes during the course of the
reaction when, for example, autocatalysis or inhibition occurs. If both orders
appear to be the same, one can conclude that the reaction under investigation
seems to be a simple one and does reflect the occurring processes. However, if
both orders show discrepancies, this could be a starting point for further
mechanistic investigation.

The value of the order n is usually reported to be between 0 and 3; it need not
be an integer value. However, if the order is not integer, it is a clear indication
that one should dig deeper into the mechanism at work. It is important to note
that equations (3.57) and (3.58) only give a mathematical description, not a
mechanistic description of what is going on. In mechanistic terms, a reaction is
either monomolecular or bimolecular (very rarely termolecular). An order of 1
or 2 may thus be an indication of a mono- or a bimolecular reaction, but not
necessarily. An order that is not 1 or 2 indicates a more complex behaviour,
usually because one observes a combination of several reactions. Strictly
speaking, the above analysis is only valid for simple irreversible reactions with
only one reactant. This is not very realistic for foods. We call this approach the
‘engineering approach’ because it comes down to mathematical modelling rather
than kinetic modelling and is useful only for calculation of conversion rates and
the like, which is relevant for engineering purposes, but not for obtaining insight
into reaction mechanisms. One should thus realize that it is a crude
approximation of the underlying physical or chemical mechanism. It is certainly
not valid to deduce mechanistic conclusions and it would be most dangerous to
extrapolate beyond the experimental region for which the relation was
established. In any case, it may be a starting point for further kinetic analysis.
If one wants to dive into more basic reaction mechanisms, one has to take more
complex kinetic equations into account, as discussed above.

3.3 Areas of application

Kinetics are very useful in describing changes occurring during food processing
and storage. Processing almost always requires a compromise because besides
the desired changes, undesired changes will also occur. For instance, during heat
sterilization, enzymes and microorganisms are inactivated (desired reactions)
but at the same time nutrients such as vitamins and amino acids are degraded
(undesired reactions) and undesirable flavour and colour compounds may be
formed. Especially during the heating up phase, activation and denaturation of
enzymes occur in the intermediate temperature regions.27–29

When the effect of temperature on reactions in foods has been established,
preferably in the form of the parameters discussed, i.e., activation energy/
enthalpy and activation entropy/pre-exponential factor, the value of the
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parameters needs some discussion. Occasionally, there seems to be some
misunderstanding regarding interpretation. For instance, if a high activation
energy is found, the conclusion is sometimes drawn that the reaction will
proceed slowly or with difficulty. This is a wrong conclusion, because the
reaction may actually proceed quite fast, namely at high temperature. The point
is that a high activation energy indicates a strong temperature dependence, that
is to say it will run very slowly at low temperature, but very fast at high
temperature. Such differences in activation energy are exploited in processes
such as HTST (high temperature short time pasteurization) and UHT (ultra-high
temperature processing). These processes are designed based on kinetic
knowledge, and result in products with the same shelf-life as their traditional
counterparts but with a better quality.

The background of these processes is as follows. Chemical processes leading
to quality loss usually have an activation energy in the range of 100 kJ/mol,
whereas the inactivation of enzymes and microorganisms has a much higher
activation energy of, say, between 200 and 500 kJ/mol. This means that
chemical reactions are less temperature sensitive than inactivation of enzymes/
microorganisms, in other words by employing a high temperature, microorgan-
isms are inactivated rapidly in a short time, whereas this time is too short to
result in appreciable chemical changes.3 Figure 3.5 illustrates this. Temperatures
employed in UHT processing are in the range of 140–150ºC and the times
needed are then in the order of a few seconds. Another consequence of
importance for foods is that reactions with a relatively low activation energy will
proceed at a measurable rate at low temperatures, for instance during storage at
low and moderate temperature. In other words, chemical reactions do not stop at
low temperature. To prevent spoilage due to chemical reactions in such cases,
other measures need to be taken such as drying and induction of glassy states
(preventing diffusion of reactants) or by taking away a reactant (e.g. oxygen to
prevent chemical oxidation).

When kinetics are applied in food processing, it is necessary to consider
additional aspects such as the residence time distribution in equipment, the type

Fig. 3.5 Schematic presentation of the temperature dependence of a chemical reaction
and microbial inactivation.

Kinetic modelling 55



of flow (laminar v. turbulent) and heating-up and cooling-down effects in heat
exchangers. These are typical scaling-up engineering problems. These problems
are dealt with in Chapters 15 and 16.

When kinetics are applied to foods and living materials, a typical problem is
that of compartmentalization, meaning that reactants are physically separated in
different compartments or cells, so that they cannot interact. When foods are
subsequently processed or damage of cells occurs, the reactants may come
together and the reaction proceeds. This can be both desirable and undesirable.
In any case it makes the application of kinetics more complicated.

3.4 Pros and cons of kinetic modelling

The advantages of kinetic modelling are manifold.

• The rules for building kinetic models are well rooted in the theories on
chemical kinetics and thermodynamics. Consistent application of these rules
leads to fundamental and generic models.

• The vast knowledge and information available in the literature and the
expertise of experimental researchers can be applied in a way that is
consistent with the prevailing and accepted theories.

• With generic models, extrapolations in areas outside the testing area are
allowed, provided the processes are governed by the same mechanisms. This
also means that model parameters can be validated on separate data sets,
obtained for example in favourable laboratory circumstances, and applied in
practical situations. Transfer of parameter values is then possible without any
difficulty.30

• Consistent application of kinetic modelling will avoid, or at least diminish,
the burden of scaling-up problems.

• A distinction can be made between kinetic parameters (all rate constants and
energies of activation) for fundamental processes and batch parameters
(depending on the material in which the reactions take place, i.e. matrix
effects). Kinetic parameters are specific for a certain process and therefore have
the same value for each repetition or duplication. Batch parameters will depend
strongly on the composition of actual batches of agricultural products.31

Some disadvantages of kinetic modelling are as follows.

• It is often difficult, if not impossible, to detect and deduce the mechanism at
work. Problem decomposition is a major assisting technique to overcome this
disadvantage.

• Simplifying the mechanism, without including unnecessary processes and
without excluding necessary processes is often very difficult, which is
probably the reason that the ‘engineering approach’ is still widely popular.

• Correct application of kinetic modelling in foods requires insight in chemical
kinetics, biochemistry, physics, mathematics and statistics and engineering,
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as well as knowledge of the food matrix. It may be difficult to unite all this
knowledge in one researcher. It may therefore be better to work in a team
with specialists in each of these fields.

3.5 Future trends

One future trend in kinetic modelling is definitely that more complex models
will be developed and applied; both developments in software (numerical
methods) and in hardware (processor speed) make it possible to construct,
analyse and apply very complex models. The bottleneck will, in fact, not be the
modelling part, but the experimental validation of models. This remains, of
course, a very important issue. The situation calls for far more intense
cooperation between specialists in experimental design, experiment conduction,
kinetic modelling and statistical analysis. A future trend should be that more
attention is paid to the accuracy and precision of experimental determinations, to
the precision of the parameters obtained, and to the precision of predictions. In
other words, the statistical aspects of modelling and modelling applications
should receive more attention. It makes no sense to have very fancy models
incapable of making reliable predictions.

Another upcoming trend is molecular modelling with which it becomes
possible to predict (bio)chemical changes based on the simulation of molecular
behaviour. Although it is not yet possible, one could imagine the possibility of
predicting chemical reactivity from the outcome of molecular modelling.
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4.1 Introduction

Heat and mass transfer processes are among the most important physical
phenomena that occur during production and processing of foods. As a
consequence of these processes, several important variables such as the
temperature and the moisture concentration inside the food depend on time as
well as on the position inside the food system. Since many product properties
and quality attributes of foods (see Chapter 17 for definitions), such as microbial
load, nutritional value, texture and organoleptic quality, are affected by these
variables, they also depend on both time and space. The product properties and
quality attributes of the food can, hence, no longer be considered as lumped
variables which are homogeneous inside the food. For example, during thermal
sterilisation of canned foods in steam retorts, the temperature close to the
boundary of the can is higher than that in the centre of the can; as a consequence,
the inactivation of pathogenic microorganisms such as Clostridium botulinum
will be less advanced in the centre of the can. The design of the thermal process
is, therefore, always based on the temperature course in that position in the can
which receives the least intense heat treatment.

The objective of this chapter is to give an overview of mathematical models
and principles for describing the transport of heat and mass in foods and their
environment. Although the underlying physics of these processes have been well
understood for many years, the governing partial differential equations cannot
be solved analytically except for simple but unrealistic cases. However, several
software packages are now available to solve realistic heat and mass transport
problems by numerical means. These methods will be discussed as well.

4
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The outline of the chapter is as follows. In Section 4.2. the Fourier equation
for conduction heat transfer will be introduced, along with its corresponding
boundary and initial conditions. Some analytical solutions will be given. It will
be shown that mass diffusion is governed by the same equation, which is then
called Fick’s equation. The general transport equations – the continuity
equation, the momentum equation and the enthalpy equation will be described
in Section 4.3. It will be shown how the transport equations can be modified to
take into account turbulence effects. Several types of boundary conditions which
are relevant to food processes will be described as well.

In Section 4.4 Luikov’s equations for coupled heat and mass transfer will be
introduced. These equations are basically coupled diffusion equations which
have been proposed to model heat and moisture transfer in porous media. In
Section 4.5 several numerical methods to solve heat and mass transfer problems
will be introduced. Special attention will be paid to the finite difference, finite
element and finite volume method. An overview will be given of commercially
available software packages. Applications in the area of thermal processing
(heating, cooling and freezing) will be discussed in Chapters 15 and 16.

4.2 The diffusion equation

4.2.1 Derivation
In 1811 the French Académie de Sciences initiated a scientific contest with the
following question: ‘Donner la théorie mathématique des lois de la propagation
de la chaleur et comparer le résultat de cette théorie à des expériences exactes’
(To establish the mathematical theory of the laws that describe the propagation
of heat, and to compare the results of this theory with exact experiments).

Joseph Fourier submitted on 28 September a study which consisted of a
memoir, which was previously submitted (in 1807) to the Académie and which
was partly published in 1808, and some additional notes. The jury, which
included some famous mathematicians such as Lagrange, Laplace and Legendre,
awarded him the prize at a public event on 6 January 1812, although they
expressed their reservation because of the lack of mathematical rigor of
Fourier’s theory. Nevertheless, the study, which was in 1822 reprinted under the
title Théorie analytique de la Chaleur (The Analytical Theory of Heat), is now
considered as one of the most important scientific works of mathematical
physics.1

Fourier considered only heat conduction processes in which heat is
transported by molecular diffusion processes. Under this assumption, transient
heat conduction in an isotropic object � with boundary � is governed by the
equation which now bears his name and which is given by the following partial
differential equation

�c
�T
�t
� �k�T � Q on � �4�1�
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where

� � density (kg m�3)
c � heat capacity (J kg�1ºC�1)
k � thermal conductivity (W m�1ºC�1)
Q � volumetric heat generation (W m�3)
T � temperature (ºC)
t � time (s)

The thermophysical parameters k, � and c may be temperature dependent so
that the problem becomes nonlinear. Thermophysical properties of various
agricultural and food products are compiled in various reference books (e.g., the
compilation made by the ASHRAE).2 Further, equations have been published
which relate the thermophysical properties of agricultural products and food
materials to their chemical composition. In general, both the heat capacity and
the density can be calculated with sufficient accuracy, but the models for the
thermal conductivity require some assumptions about the orientation of the
different main chemical constituents with respect to the direction of heat flow
which is not always obvious.

In conventional thermal food processes the heat generation Q is zero.
However, in the case of volumetric heating techniques such as microwave and
ohmic heating, Q is the driving force of the heat transfer. The modelling of these
techniques is a very active research area.3–6

The initial condition for the Fourier equation can be described as a spatial
dependent function at time t� 0:

T�x� y� z� t� � T0�x� y� z� at t � 0 �4�2�
At the boundary � of the heated or cooled object, fixed temperature (Dirichlet),
convection or radiation conditions may apply:

T�x� y� z� t� � f �x� y� z� t�
on �

k
�

�n�
T � h�T� � T� � ���T4

� � T4� �4�3�

with f (x, y, z, t) a known function (e.g., it was measured, or it is known from
control procedures), n� the outward normal to the surface, h the convection
coefficient (W/m2 ºC), T� the (known) ambient temperature, � the emission
coefficient, and � the Stefan-Boltzmann constant. The surface heat transfer
coefficient h must be considered as an empirical parameter.

Diffusion also occurs during the transport of species (water, gases) in tissue
or food materials. It is governed by Fick’s second law for diffusion mass
transfer:7

�Ca

�t
� �Da�Ca � ra on � �4�4�
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where

Ca� molar concentration of component a (mol m�3)
Da� mass diffusion coefficient of component a (m2 s�1)
ra � rate of production of component a (mol m�3 s�1)
t � time (s).

Note that the above equation is only valid for diffusion in solids or stationary
liquids with the assumptions of constant density � and zero mass velocity.
Therefore, the above equation is only valid for slow pure diffusion of a single
species with negligible changes in the total density. For other conditions, more
complex transport equations should be applied.7, 8 In general, the mass diffusion
coefficient Da is not a constant but depends on the temperature and the
concentration of the components in the mixture, as well as on pressure in gas
systems. The production rate ra depends on the metabolic activity of the product,
which is a function of temperature and composition.

The initial condition for Fick’s equation can be described as a spatial
dependent function at time t � 0:

Ca�x� y� z� t� � Ca0�x� y� z� at t � 0 �4�5�
At the boundary � of the object, a fixed concentration (Dirichlet) or convection
conditions may apply:

Ca�x� y� z� t� � f �x� y� z� t�

Da
�

�n�
Ca � hma�Ca� � Ca�

on �

�4�6�

with hma the empirical surface mass transfer coefficient (m s�1), which, for
water vapour in air, can be related to the surface heat transfer coefficient under
the condition of low mass transfer rates or in a turbulent flow.2 The Lewis
relation then applies:

h
hma�c

�
�

k
�cDa

�2
3

� Le
2
3 �4�7�

The ambient concentration Ca� can be obtained from the perfect gas law.

4.2.2 Analytical solutions
Equations (4.1) and (4.4) can be solved analytically under a limited set of initial
and boundary conditions for simple geometries only. Several solution techniques
such as separation of variables, Green functions and variational methods are
discussed in the many books on partial differential equations.9, 10 A large
number of analytical solutions of the Fourier equation were compiled by
Carslaw and Jaeger.11
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Usually the Fourier equation is rewritten in dimensionless coordinates by
introducing a dimensionless temperature � and a dimensionless time Fo which is
called the Fourier number

� � T � T�
T0 � T�

�4�8�

Fo � kt��cL2 �4�9�
with L a characteristic length, e.g., the half-thickness of a slab. For different
geometries such as slab, cylinder and sphere, it can be shown that there exists a
linear relationship between the logarithm of � and Fo. For example, for a slab of
half-thickness L subjected to convection boundary conditions, � is given by

� �
��
n�1

4 sin �	n�
2	n � sin �2	n� exp��
2

n Fo�cos�
n x
L
� �4�10�

and the discrete values of 	n are positive roots of the transcendental equation

	n tan �	n� � Bi �4�11�
where the Biot number Bi is defined as

Bi � hL
k

�4�12�

For Fo 	 0�2, it can be shown that the infinite series in equation (4.10) can be
approximated by the first term of the series. The graphical representation of the
resulting relationship is commonly known as a Heissler chart and can be found
in any standard textbook on heat transfer.12

4.3 The Navier-Stokes equations

4.3.1 Conservation equations
In fluids, transport of heat and mass is more complicated than in solid foods, as
besides diffusion also convective transport of liquid particles may take place.
The driving force behind convective transport is a pressure gradient in the case
of forced convection, e.g. due to a fan in an oven, or density differences because
of, e.g. temperature gradients. Navier and Stokes independently derived the
equations for convective transport which now bear their names. For simplicity
we will restrict the discussion to a single Newtonian fluid system. This means
that we will only consider fluids for which there is a linear relationship between
shear stress and velocity gradient, such as water or air. More complicated fluids
such as ketchup, starch solutions, etc., are so-called non-Newtonian fluids, and
the reader is referred to standard books on rheology for more details.13

When we apply the conservation principle to a fixed infinitesimal control
volume dx1dx2dx3 we obtain the continuity, momentum and energy equations,
written in index notation for Cartesian coordinates xi (i� 1, 2, 3 for the x-, y- and
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z-direction, respectively), and whenever an index appears twice in any term,
summation over the range of that index is implied (for example, ���uj��xj�
becomes ���u1��x1� � ���u2��x2� � ���u3��x3�� �

��

�t
� ��uj

�xj
� 0 �4�13�
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� ��ujui

�xj
� �

�xj
�

�
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�xi
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�xj
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�xj

�
� �p
�t
� Q �4�15�

where

ui�i � 1� 2� 3� � Cartesian components of the velocity vector U (m s�1)
T � temperature (ºC)
H � static enthalpy (J kg�1)
p � pressure (Pa)
� � density (kg m�3)
K � thermal conductivity (W m�1 ºC�1)
� � dynamic viscosity (kg m�1 s�1)
fi � external body forces (N m�3)
Q � heat source or sink (W m�3)

For a full derivation of these equations we refer to any textbook on fluid
mechanics.14, 15

The system of five equations ([4.13]–[4.15], three equations for the velocity
components plus the continuity and the energy equation) contains seven
variables (u1, u2, u3, p, h, T, �). We therefore need additional equations to close
the system. The thermodynamic equation of state gives the relation between the
density � and the pressure p and temperature T. The constitutive equation relates
the enthalpy h to the pressure and the temperature. For an ideal gas we can use
the following equations:

� � pM
RT

�4�16�

c �
�
�H
�T

�
p

�4�17�

with M the molecular weight of the fluid (kg mol�1) and R the universal gas
constant (J mol�1 K�1). When the heat capacity is assumed constant, the
constitutive equation reduces to a linear relation between H and the difference
between the actual temperature T and a reference temperature. Since only
relatively low velocities are encountered in the food processes under
consideration, the flow is often assumed incompressible and these equations
can be applied.
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For isothermal fluids we can assume that the density � is constant so that the
continuity equation vanishes. In the case of non-isothermal flows the Boussinesq
approximation is often applied, in which it is assumed that density is the only
parameter which depends on the temperature.15

4.3.2 Turbulence
Many heat transfer processes in food operations often involve turbulent flow of
air or water. Turbulence can be induced by the presence of flow obstructions
such as baffles, shelves and the foods themselves. Turbulence is a state of the
flow which is characterised by fluctuations of the flow variables (eddies) over a
large range of scales, both in time and space. This complex pattern of motion
enhances heat transfer rates considerably but also causes additional pressure
drops which must be taken into account in the design of the equipment.
Turbulence must therefore be incorporated in the governing models unless a
laminar flow regime can be guaranteed.

Although the Navier-Stokes equations are general conservation equations
which are equally well applicable to turbulent flow, the large variation of spatial
scales introduces severe numerical problems, and only for simplified cases and
low Reynolds numbers is it currently possible to perform such direct numerical
simulations on supercomputers.16 Simulation shortcuts are possible at different
levels of complexity and approximations. The least approximations are needed
in large eddy simulations, in which case the largest eddies are resolved but the
effects of smaller eddies are estimated by additional models.15 This approach is
now being used more widely, since it is almost within reach of current computer
power.

The most popular approach is based on the Reynolds Averaged Navier-
Stokes (RANS) equations, which are obtained from averaging out the governing
equations (Eqns 4.13–4.15) and including the effect of the turbulent fluctuations
by additional models for the new terms appearing in the RANS equations. In the
Boussinesq approach, the turbulence is accounted for by a turbulent ‘viscosity’
which is incorporated in the viscous and thermal diffusion transport terms. In
K � � models, originally proposed by Jones and Launder, the turbulent viscosity
�t is obtained as a function of the turbulent variables K, which represents the
turbulent kinetic energy associated with the fluctuating components of the flow
velocities, and �, the turbulent energy dissipation rate:17

�t � �C�
K2

�
�4�18�

The constant C� may be assumed constant for equilibrium conditions, where the
turbulence production nearly equals the turbulence dissipation.

Additional transport equations have been derived for these turbulent flow
variables. Several undefined constants appear in the model equations, which
together with several assumptions and the specific near-wall treatment render
this model empirical. There are three popular K�� models, namely the standard
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K�� model, a RNG (Renormalisation Group) K�� model and a LRN (Low
Reynolds Number) K�� model.17–19 Verboven et al. compared these three
turbulence models for a typical forced convection heating process of complexly
shaped foods, and concluded that the boundary layers are badly represented by
the wall function approach and the departure from local equilibrium is not
accounted for.20 A correction function can be added to correct for the latter
behaviour in conjunction with the Low Reynolds Number model (see the work
of Yap).21 Nevertheless, it was found that experimental input for these
corrections is needed in order to determine important constants.

More complex closures for the RANS models are based on dynamic
equations for the Reynolds stresses and fluxes themselves in the RANS
equations. In addition to the equations for the mean flow, this approach results in
seven more partial differential equations. These models are believed to be more
accurate but require a better insight into the process of turbulence and care must
be taken with their numerical solution. Finally, it must be noted that new
turbulence models are constantly proposed and tested.

4.3.3 Initial and boundary conditions
Unlike the diffusion equations, there are no conclusive general rules for the
implementation of boundary conditions for the Navier-Stokes equations in order
to have a well-posed problem because of their complex mathematical nature. For
a full account, we refer to Hirsch.22 For incompressible and weakly
compressible flows, it is possible to define Dirichlet boundary conditions (fixed
values of the variables, mostly upstream), Neumann boundary conditions (fixed
gradients, mostly downstream) and wall boundary conditions (a wall function
reflecting the behaviour of the flow near the wall). Initial values must be
provided for all variables.

Difficulties arise when the exact conditions are unknown. This is especially true
in turbulent flows, where the exact values of the turbulence energy and energy
dissipation rate are often unknown at the inlet, and need to be guessed using
information about the velocity and the flow geometry. The direction of the flow at
boundaries may be difficult to specify, but may have considerable influence when
the flow contains swirls. The effect of the pressure resistance (e.g. in a cool room)
on the fan flow rate may be considerable and cannot always be taken into account
appropriately. In any case a sensitivity analysis can be useful to obtain an error
estimate associated with approximate or guessed boundary conditions.

4.3.4 Additional equations
In the case of an air flow through a bulk of products (e.g. cooling of horticultural
products), or a flow of multiple fluids (e.g. the dispersion of disinfectants in a
cool room or the injection of water for air humidification), the separate phases
need to be considered. Depending on the flow conditions, a multi-phase
modelling or a mixed-fluid modelling approach can be applied.

Modelling of heat and mass transfer 67



The mixed-fluid modelling approach is the least complicated and assumes
that the mixture shares the same velocity, total pressure and temperature field.
This is valid for moist air flow, where the water vapour transport is considered
by means of an additional convection-diffusion conservation equation for the
mass fraction of water vapour:

��Xa

�t
� �

�xj
�ujXa � �

�xi
�Da

�

�xi
Xa � r 
a �4�19�

with Xa the mass fraction of water vapour, and r 
a [kg m�3 s�1] a source/sink of
water vapour (e.g. evaporation or condensation). Note that this equation is the
full conservation form of equation (4.4), considering a variable density and
allowing a mass flow of the mixture.

In the case of a dispersion of particles (e.g. water droplets from a humidifier,
a spray of moist particles that need to be dried or the dispersion of disinfectants),
the mixed model approach should include the particle-fluid interaction. The
simplest approach is to include a Langrangian model for the individual particle
motion, directly from Newton’s second law:

mp
dupi

dt
� Fi �4�20�

with mp (kg) the particle mass, upi (m/s) a component of the velocity of the
particle and Fi (N) the total force on the particle. The major component of this
force is due to drag on the particle exerted by the moving fluid. Other
contributions arise from a pressure gradient force, a buoyancy force and an
added mass force. In addition, mass and heat may be exchanged between the
particle and the fluid (consider exchange of a single mass component and a
lumped system):

dmp

dt
� �Aphma�Xap � Xa�

mpcp
dTp

dt
� �Aph�Tp � T� � dmp

dt
hfg �4�21�

where Ap (m2) is the surface area of the particle, Xap is the mass fraction of
transferred component on the surface of the particle in equilibrium with the air,
cp (J/kgºC) is the specific heat of the particle, Tp (C) its temperature and hfg (J/
kg) the latent of evaporation of the transferred component.

The above exchanges of momentum, mass and heat are of course sources to
the continuum fluid phase, which have to be included in the system of
conservation equations (4.13)–(4.15). In a turbulent flow, the effect of eddies on
the dispersion of the particles has to be taken into account. One straightforward
solution is to randomly sample the turbulent components of the fluid velocity
and calculate the effect on the particle motion. The disadvantage of this method
is the large number of particles that has to be tracked to obtain a meaningful
result. Variability in particle size can be taken into account by means of
appropriate size distributions from which particles are sampled.
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When the different phases have distinct velocity and temperature fields (e.g.
two viscous liquids that are mixed or the airflow through a bulk of apples), the
above approach is not valid and a multi-phase approach should be applied. In
this case, the Navier-Stokes equations need to be solved for the separate phases.
The coupling of momentum, mass and heat transfer remains and appropriate
empirical formulations should be introduced for these inter-phase transfers.
Furthermore, a volume fraction is assigned to each phase, which can vary in
time (in the case of a mixed flow of fluids) or is a known fixed parameter (in the
case of a bulk of products). In both cases, the volume fraction can vary with the
spatial coordinates.

Finally, the problem may contain chemical kinetics (e.g. microbial activity
and active components of disinfectants in cool rooms). In this case, the active
species have to be tracked by means of a transport equation similar to equation
(4.19). In addition, the chemical reaction must be solved. Therefore the reaction
rates, property changes and heat releases must be calculated as part of the
solution. Consider the following reaction:

A� B��C �4�22�
The reaction rate Rc (mol s�1) is defined as

Rc�� d
dt
�A�� d

dt
�B� d

dt
�C� kf �An�Bm�Co� kb�Ap�Bq�Cr �4�23�

with kf the forward rate constant and kb the backward rate constant. The rate
constants can be modelled by the following Arrhenius-like expression:

kf� b � aTbe�E�RT � �4�24�
with a and b empirical constants and E the empirical activation energy.

The heat of reaction can be calculated from the heats of formation of the
species and depends on temperature. The reaction leads to sources/sinks in the
species conservation and energy equations.

4.4 Heat and mass transfer in porous media: Luikov’s
equations

Because most solid foods contain moisture, the heat that is applied to it forces
the moisture to evaporate inside the porous product and causes moisture
gradients. Hence, heat is also transferred due to moisture transfer and vice versa.
The Fourier equation does not apply in this case. More complicated models
should be introduced to take into account the simultaneous transfer of heat and
mass inside foods and their surroundings.

Luikov’s approach to heat and mass transfer in capillary-porous bodies is
based on irreversible thermodynamics. Luikov considered a system consisting of
a capillary-porous body and a bound substance, as shown in Fig. 4.1. In the
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range of positive temperatures, the substance bound with the capillary-porous
body can be in the form of liquid, vapour or gas. In a capillary-porous body
transfers of the bound substance take place simultaneously in different states.23

Setting up for each bound substance the differential equations of heat and
mass transfer, applying the principles of irreversible thermodynamics and taking
the overall sum, results in Luikov’s coupled system of partial differential
equations.
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where

c11 � �c c22 � �cm

k11 � k � 	hfgkm�

cm
k12 � 	hfgkm

k21 � km�

cm
k22 � km �4�27�

In Table 4.1 the thermophysical parameters and variables appearing in
equations (4.25)–(4.27) are compiled.

Fig. 4.1 Scheme of a capillary-porous body.
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Luikov conducted a large number of investigations to validate the theory and
to determine experimentally the values of the parameters for a number of
materials. The approach appeared to model the physical process well.24

At the boundary of the capillary-porous object, two types of boundary
conditions can be applied, namely specified potentials of heat and mass transfer,

T � T� on �T� � � �� on �� �4�28�
or convection heat and mass transfer,

kq
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cm

�T
�n

�T
�n
� hm������ � 0

on �C

�4�29�

The thermophysical parameters and variables related to the boundary conditions
are compiled in Table 4.2.

Although Luikov’s model has been applied successfully to thermal food
processes, few parameter sets are available in the literature.25–28 Moreover,
some parameters have no clear physical meaning and it is, hence, difficult to
assign reasonable values to them without prior knowledge.

Table 4.1 Thermophysical properties and variables appearing in Luikov’s model

cm moisture capacity kg kg�1 ºM�1

c heat capacity J kg�1 ºC�1

� thermo gradient ºC�1

	 ratio of vapour diffusion to total moisture diffusion
km moisture conductivity kg m�1 s�1 ºM�1

k thermal conductivity W m�1 ºC�1

hfg latent heat J kg�1

� density kg m�3

t time s
T temperature ºC
� moisture potential ºM

Table 4.2 Thermophysical properties and variables related to the boundary conditions
applied to Luikov’s model

hm convective mass transfer coefficient kg m�2 s�1 ºM�1

h convective heat transfer coefficient W m�2 ºC�1

n� outward normal to the surface
T� ambient temperature ºC
�� ambient moisture potential ºM
�C convective heat transfer boundary
�T specified temperature boundary
�� specified moisture potential boundary
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4.5 Numerical methods

4.5.1 Numerical discretisation
For realistic – and thus more complicated – heat and mass transfer problems
usually no analytic solution is available, and a numerical solution becomes
mandatory. For this purpose the problem is reduced significantly by requiring a
solution for a discrete number of points (the so-called grid) rather than for each
point of the space-time continuum in which the heat and mass transfer proceed.
The original governing partial differential equations are accordingly transformed
into a system of difference equations and solved by simple mathematical
manipulations such as addition, subtraction, multiplication and division, which
can easily be automated using a computer. However, as a consequence of the
discretisation the obtained solution is no longer exact, but only an approxima-
tion of the exact solution. Fortunately, the approximation error can be decreased
substantially by increasing the number of discretisation points at the expense of
additional computer time.Various discretisation methods have been used in the
past for the numerical solution of heat conduction problems arising in food
technology. Among the most commonly used are the finite difference method,
the finite element method, and the finite volume method. It must be emphasised
that – particularly in the case of nonlinear heat transfer problems – the numerical
solution must always be validated. It is very well possible that a plausible,
convergent but incorrect solution is obtained. At least a grid dependency study
must be carried out to verify whether the solution basically remains the same
when the computational grid is refined.

4.5.2 The finite difference method
Principle
The finite difference method is the oldest discretisation method for the
numerical solution of differential equations and had been described as long ago
as 1768 by Euler. The method is based on the approximation of the derivatives
in the governing equations by the ratio of two differences. For example, the first
time derivative of some function T(t) at time ti can be approximated by

dT
dt

����
ti

� T�ti�1� � T�ti�
�t

�4�30�

with �t � ti�1 � ti. This expression converges to the exact value of the derivative
when �t decreases. The power of �t with which the so-called truncation error
decreases is called the order of the finite difference approximation, and can be
obtained from a Taylor series approximation of T at time ti.

Equation (4.30) is called a forward difference as it uses the future value of the
function and it is of order 1. A backward difference of order 1 is given by

dT
dt

����
ti

� T�ti� � T�ti�1�
�t

�4�31�
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Equations (4.30) and (4.31) are also called forward and backward Euler
schemes. Likewise, finite difference formulas can be established for second
order derivatives. The so-called central difference formula is of order 2 and is
defined by

d2T
dt2

����
ti

� T�ti�1� � 2T�ti� � T�ti�1�
�t2

�4�32�

The finite difference method will be illustrated for a 2D heat conduction
problem. For this purpose the computational domain is subdivided in a regularly
spaced grid of lines which intersect at common nodal points (Fig. 4.2).
Subsequently, the space and time derivatives are replaced by finite differences.
For example, if central differences are used it is easy to see that the following
expression is obtained for the Fourier equation:

�Ti�j

�t
� k�t

�c

�
Ti�1� j � 2Ti� j � Ti�1� j

��x�2 � Ti� j�1 � 2Ti� j � Ti� j�1

��y�2
�

�4�33�

Similar equations can be established for all interior nodes of the grid, and
special procedures are available to discretise the boundary conditions in the
nodes which are on the boundary of the grid. The large number of equations
(equal to the number of nodal points) can conveniently be ordered into a
differential system of the general form

C
d
dt

u�Ku � f �4�34�

with u� [u1 u2 � � � uN]T the nodal temperature vector. This vector differential
equation can be discretised in time, and typically leads to a system of algebraic

Fig. 4.2 Finite difference grid of a two-dimensional rectangular region. The nodes
which are involved in the computation of the temperature at position (i� j) are indicated by

dots.
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equations which must be solved by appropriate means. The system matrices
contain many zeros, and this feature can be exploited advantageously to reduce
the required number of computations.

Applications
The finite difference method has been used for the prediction of the temperature
course in the centre of canned foods in cylindrical containers, and rectangular
bricks under various processing conditions.29–31

4.5.3 The finite element method
Principle
The mathematical foundations of the finite element method were established at the
beginning of the twentieth century by Ritz and Galerkin. Based on variational
calculus, Ritz developed in 1909 a method for the solution of partial differential
equations.32 He assumed that an approximate solution of the governing
differential equation could be represented by a series of analytical functions
(trial functions), with unknown coefficients. He then determined these coefficients
by minimising a functional with respect to these coefficients. The method is
restricted to problems for which such an equivalent minimisation problem (the so-
called variational principle) can be established, which is not always the case.

In 1915 the Russian engineer Galerkin presented a related method for the
computation of the elastic equilibrium of rods and thin plates. As in Ritz’s
method, he expressed the approximate solution of the partial differential
equation as a function series with unknown coefficients. Substitution of the
approximate solution in the differential equation produces in general a non-zero
residual. Galerkin determined the unknown coefficients of the series by
orthogonalisation of this residual with respect to another set of analytical
functions (the test functions). The same functions were used for both the test as
well as the trial functions. The Galerkin method is applicable to problems (e.g.,
nonlinear conduction heat transfer) for which no variational principle can be
found. However, it can be proven that for each Ritz solution always a
corresponding Galerkin solution can be found, as shown by White.33

The first application in the Western literature of the Galerkin method to solve
transient heat conduction problems can be attributed to Bickley.34 The Galerkin
method was later generalised to the method of weighted residuals by using any
set of linearly independent and complete functions as test functions, see
Crandall.35 Other popular choices are Dirac functions (the collocation method)
and power series of the spatial coordinates the (method of moments).

In the traditional weighted residual and Ritz method the trial functions are
often trigonometric functions or polynomials that span the whole computational
domain. This introduces severe difficulties that limit the applicability of the
Galerkin method (for a discussion, see Chapter II in Fletcher36). Most of these
difficulties were eliminated by the introduction of the concept of finite elements
by Clough.37 He suggested representing a given domain as a collection of a

74 Food process modelling



number of finite elements, subdomains of variable size and shape, which are
interconnected in a discrete number of nodes. The solution of the partial
differential equation is approximated in each element by a low-order polynomial
in such a way that it is defined uniquely in terms of the (approximate) solution at
the nodes. The global solution can then be written as a series of low-order
piecewise polynomials with the coefficients of the series equal to the
approximate solution at the nodes. The weighted residual or Ritz method is
then applied using these low-order polynomials as trial and test functions,
resulting in a system of algebraic or ordinary differential equations which can be
solved using the well-known techniques. These methods are now bundled under
the common denominator of finite element method.

The Galerkin finite element method
A first step in the construction of a finite element solution of a partial differential
equation is the subdivision of the computational domain in a grid of finite
elements, which are interconnected at a discrete number of common nodal
points. The elements may be of arbitrary size and shape. A large number of
element shapes have been suggested in the literature and are provided in most
commercial finite element codes. Typical 2D and 3D element shapes are shown
in Fig. 4.3, and a finite element grid of a food container is shown in Fig. 4.4.

The unknown solution is expressed in each element as a piecewise continuous
polynomial in the space coordinates with the restrictions that (i) continuity
between elements must be preserved and (ii) any arbitrary linear function could
be represented.38 In general, the unknown temperature field T�x� y� z� t� can then
be approximated by

T�x� y� z� t� � NT�x� y� z�u�t� �4�35�
with N a vector of so-called shape functions and uj a vector containing the
temperatures at the nodes of the finite element grid. In general the approximate
temperature field T is not identical to T, and when T is substituted in the
diffusion equation, a non-zero residual � is obtained:

r � �c
�T
�t
��k�T � Q �4�36�

This residual is subsequently orthogonalised with respect to the shape functions
N: �

�

N
�
�c
�T
�t
��k�T � Q

�
d� � 0 �4�37�

It can be shown that after the application of Green’s theorem and some matrix
algebra a system of the form (4.34) is obtained.38–40 C and K are now called the
capacitance matrix and the stiffness matrix, respectively; f is the thermal load
vector. The matrices C, K and f are constructed element-wise. As in the case of
the finite difference method, the system (4.34) is solved using traditional finite
difference methods. Note that K and C are positive definite, symmetric and
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banded. These very important features can be exploited advantageously to
significantly reduce the computational effort and memory requirements.

Comparison of finite differences versus finite elements
Puri and Anantheswaran reviewed the use of the finite element method in food
processing.41 They listed the following key advantages of the finite element
method compared with the finite difference method:

• spatial variation of material properties can be handled with relative ease
• irregular regions can be modelled with greater accuracy
• it is better suited to nonlinear problems
• element sizes can be easily varied
• spatial interpolation is much more meaningful
• problems with mixed boundary conditions are easier to handle.

Some of the disadvantages are:

Fig. 4.3 Typical 2D and 3D finite element shapes.
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• the discretised equations are usually mathematically more complex
• the method can require more computer resources for the same problem.

Because of the dramatic increase in computer power during the last decade, most
conduction heat transfer problems can now be solved in a reasonable amount of
time by means of the finite element method.

Applications
The finite element method was applied first to heat conduction problems by
Zienkiewicz and Cheung, Visser, and Wilson and Nickell.42–44 Early
applications to thermal food processing problems were described by Comini
et al., Singh and Segerlind, and De Baerdemaeker et al.45–47 Most commercial
finite element codes are now based on the Galerkin finite element method.

Applications of the finite element method include the simulation of
conduction heat transfer in foods with complicated geometrical shapes such as
chicken legs,47 a baby food jar,48 broccoli stalks,49 tomatoes,50 and lasagna.51

Special attention has been paid recently to stochastic finite element methods
which were developed to take into account random variability of product and
process parameters.51–54

4.5.4 The finite volume method
Principle
The finite volume method of discretisation is most widely used in commercial
CFD (computational fluid dynamics) codes at the moment. It owes its popularity
to the fact that it obeys the clear physical principle of conservation on the

Fig. 4.4 3D finite element grid for a food container. Because of symmetry reasons only
a quarter of the food container needs to be modelled.
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discrete scale. The concepts of the method are easy to understand and have
physical meaning.

The system of general conservation equations can be written in coordinate-
free notation and integrated over a finite control volume V with surface A.
Applying Gauss’s theorem to obtain the surface integral terms, the equations
have the following form, with � the transported quantity:

�
V

���

�t
dV �

�
A
��U���ndA�

�
A
������ndA �

�
V

S�dV �4�38�

This equation states the conservation principle on a finite scale for all relevant
quantities in the system when the surface integrals are the same for volumes
sharing a boundary. Moreover, the finite volume form of the model becomes
independent on the coordinate system. When the physical domain is subdivided
into control volumes, a grid only defines the boundaries of the volumes. This is
advantageous for modelling complex geometries.

The volume integrals are approximated in terms of the volume-centered value
of � The values at the volume faces are required for solving the surface integrals
in equation (4.38). This requires interpolation in terms of volume-centered
values. Some interpolation schemes may be highly accurate, but produce
unbounded solutions when grids are too coarse. Others are unconditionally
stable, but have a low accuracy and produce erroneous results called numerical
or false diffusion. The reader is referred to the literature for a more elaborate
discussion about the limits and benefits of different approximating formu-
las.14, 15 The time discretisation in the control volume method is carried out
using finite differences in the time domain, explained above.

Solution of the discretised equations
Discretisation results in the following set of equations, in matrix-vector notation:

A� � Q �4�39�
where A is a square sparse matrix containing the coefficients resulting from the
discretisation, � is a vector containing the unknowns at the control volume
centres and Q is a vector containing the variable-independent source terms.
Equation (4.39) is still non-linear: the flow variables appear in the coefficients.
An iterative method is therefore required in which the non-linear terms have to
be linearised. The least expensive and most common approach is the Picard
iteration. In this method coefficients are updated using the most recent solution
of the system. This approach requires more iterations than Newton-like methods,
which use a Taylor series expansion, but do not involve the computation of
complex matrices and are found to be much more stable.

The solution of the linearised equations can be performed by direct methods,
which are computationally very costly and generally do not benefit from the
mathematical properties of the linear system. It is therefore advantageous to use
an iterative method.
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The iterative method should have certain properties in order to guarantee a
valid solution. The main requirement for convergence of the solution is that the
matrix A be diagonally dominant, which has been shown by Scarborough:55

���Anp

����AP

��
�
� 1 at all P
� 1 at one P at least

�4�40�

where np are the neighbouring nodes of the node P. Several iterative solvers are
available. A detailed discussion is given by Ferziger and Peric.15

To verify the validity of the mathematical solution, the solution change
during the iterative procedure should be monitored. One can then stop the
iteration process, based on a predefined convergence criterion and be assured of
a convergent solution of the discretised equations. The convergence error �n

c can
be defined as:15

�n
c � �� �n �4�41�

where � is the converged solution of equation (4.39) and �n is the approximate
solution after n iterations. It is not possible to obtain �n directly and it is even
hard to calculate a suitable estimation of the value. In practice, the residual rn

can be used to test for convergence:

A�n � Q� r n �4�42�
When the residual goes to zero, the convergence error will be forced to decrease
as well, because:

A �n
c � r n �4�43�

The reduction of the norm of the residual is a convergence criterion to stop the
iterations. The residual should be reduced by three to five orders of magnitude.
It may happen that the residual decreases much faster than the actual
convergence error, in which case care should be taken and the iteration
procedure continued.

Applications
The finite volume method is most popular for solving transport equations and is
the core of most commercial so-called computational fluid dynamics packages.
It combines the flexibility of the finite element method with the execution speed
of the finite difference method. Early examples are the work of van Gerwen and
van Oort, and Wang and Touber, modelling the airflow in cool rooms.56–58 More
elaborate works were published in the mid 1990s. Mirade and co-workers
invested considerable validation efforts for the calculated velocity field in a
meat chiller and reported an average accuracy of 20–40% for the calculated
velocity magnitudes compared to measured ones.59, 60 Also modelling the
airflow in a storage room, under working conditions with blockages, Hoang et
al. found an agreement of 20–30%.61 Further developments in storage rooms
have been made by Chen and Li, Tassou and Xiang and Xu and Burfoot, who
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studied the airflow in the room and the heat and mass transfer in porous stacks of
agricultural produce.62–65 Important studies have been performed on modelling
the flow of liquid foodstuffs in cans.66–69 Verboven et al. used CFD to predict
the air flow and temperature fields inside a force convection oven.70, 71

4.5.5 Commercial software
Most commercial CFD codes for fluid flow analysis are available on UNIX as
well as NT platforms. Parallel versions are often available as well. Some of the
commercial codes dedicated to CFD analysis are described below. Some
general-purpose numerical codes, like ANSYS (Swansee, USA) also include
CFD features, but are mainly intended for structural and conduction heat transfer
analysis.

CFX/TASCflow (http://www.aeat.com/cfx/)
CFX (formerly CFDS-FLOW3D) covers a group of commercial CFD codes. The
main solvers are CFX-4, CFX-5, CFX-TASCflow and CFX-Radiation, which
are individually supported and each has special features. The software is menu-
structured and problems are defined by means of command files containing
simple keywords. Additional input can be programmed by means of FORTRAN
subroutines. CFX-4 uses block-structured finite volume meshes, while CFX-5
uses a fully unstructured mesh of tetrahedral control volumes. CFX-TASCflow
allows unmatched hexahedral meshes, which makes it particularly suited for the
analysis of rotating machinery.

Fluent/FIDAP/Polyflow (http://www.fluent.com/)
Fluent Inc. (Lebanon, NH, USA) is the world leader in the rapidly growing field
of CFD software. Fluent recently acquired Polyflow, S.A., as well as Fluid
Dynamics International Inc. (FDI), the developer of the FIDAP CFD software
package. Fluent is a multi-purpose finite volume based menu-structured CFD
code and allows either body-fitted structured meshes (FLUENT 4.5) or solution-
adaptive unstructured meshes (FLUENT 5). User-defined subroutines are
accessible through FORTRAN. FIDAP is a general-purpose finite element CFD
code, which allows unstructured meshing in a straightforward way. A special
feature of FIDAP is the capability to deal with fluid-structure interactions.
POLYFLOW is a finite-element based CFD package for the analysis of polymer
processing, including extrusion die design, blow moulding, and fibre spinning,
as well as other materials processing applications.

PHOENICS (http://www.cham.co.uk/)
PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code
Series) appeared in the 1980s as the first general-purpose code after integration
of different problem-specific codes. It claims to be the most widely used CFD
code in the world, partly because of the availability of a shareware version.
PHOENICS is available on MS-DOS, WINDOWS and LINUX in addition to
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NT and UNIX platforms. Mesh generation capabilities are limited as only multi-
block structured grids are possible. The PHOENICS structure allows users to
access more than 50% of the source code (unlike other packages) and supplies
entry to a FORTRAN library with new physical or numerical content. This has
resulted in, for example, a wide range of turbulence models (mixing-length
models, k�� models, stress models and more exotic types). The open-source
coding requires some programming skills and experience from the user with the
PHOENICS Input Language.

STAR-CD (http://www.cd.co.uk/)
STAR-CD is developed by Computational Fluid Dynamics Ltd, which was
originally dedicated to the automotive industry but today aims at all sectors of
industry. STAR-CD is a multi-purpose control volume based CFD code. STAR-
CD provides a LINUX version in addition to the common UNIX and NT
platforms. The code STAR-HPC has been developed for parallel machines. It is
capable of dealing with unstructured meshes containing cell shapes ranging from
tetrahedra and prisms to general polyhedra in any hybrid unstructured mesh with
arbitrary interfaces.

4.6 Conclusions

Many software tools are now readily available for solving realistic heat and mass
transfer problems. The reliability of the numerical solution, however, largely
depends on the availability of suitable thermophysical properties and the
complexity of the governing models. The numerical solution of convective
transport problems described by Navier-Stokes equations remains a difficult
task, particularly when turbulence is involved. The empirical constants involved
in the most popular turbulence models necessitate a careful validation of the
obtained results.
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Modelling of heat and mass transfer 85



‘Computational fluid dynamics modelling and validation of the isothermal
airflow in a forced convection oven’, J Food Eng, 2000 43(1) 41–53.

71. VERBOVEN P, SCHEERLINCK N, DE BAERDEMAEKER J, NICOLAÏ B M,
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5.1 Introduction: the big gap

All modellers claim that they model real world systems most accurately in order
to predict the status of some specified aspects of that system. This does not
imply that modellers create their models according to a common methodology.

If, for instance, the system concerns apples and the aspects are related to quality
(colour, juiciness) then, for sure the model is of the type continuous. However, if
these aspects concern logistics (availability in a supermarket, the use of storage
facilities) then the model will be of the type discrete. More than 90% of all models
are either continuous or discrete. Moreover most modellers can be classified that
way and for a long time the two groups were completely separated. That gap has
nothing to do with religion but everything with the way they handle parallelism.

5.1.1 How do continuous modellers deal with parallelism?
The answer is most simple: They do not.

A continuous model consists of:

• Endogenous variables, describing inside processes needed to explain the
quality aspects of the apple to be studied; for instance enzymes,
concentrations and extractions.

• Exogenous variables, describing the surroundings. Such as the change in
temperature and humidity during an experiment.

• A set of functions and/or differential equations, stipulating the relations
between these variables, containing

• Parameters to be estimated using series of simulations of well registered
experiments.
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The variables are time dependent, related to each other and supposed to
operate simultaneously. Simultaneous calculation of the changes of the
endogenous variables is troublesome; therefore, these calculations are performed
one by one over small time steps.

Evaluation of a differential equation of one of these variables normally
involves other variables, which values are supposed to be known. That can be
true for the exogenous variables, however, the values of the endogenous
variables should be estimated. Modern techniques will perform these estimations
extremely well, maintaining almost any accuracy stipulated by the modeller, but
only if all variables behave continuously. From the moment computers could be
used to run continuous models, the modellers became more and more happy
with this situation because the improving techniques offered more and more
splendid and user friendly tools.

The bad thing is that, due to the demand for continuous variables only, these
continuous modellers became prisoners in their own continuous field.

5.1.2 How do discrete modellers deal with parallelism?
They cannot use the trick with small time steps because discrete varying values
cannot be estimated from previous values. These modellers had to solve the
problem of parallelism by themselves, until software producers started offering
tools for it. There is only one way: all parallel processes in a system must be
replaced by just one process in the model being the process of successive
evaluations of discrete time events. I have to demonstrate this event description
method first, just to prove that it only works for trivial problems.

Let us consider the system of the counters in a supermarket in order to find a
relation between the number of customers waiting to pay for their shopping and
the number of active counters. The first step is to define the state variables. In
this case the state variables are the numbers of waiting customers N_WAIT[I] for
each counter I and a logical variable BUSY[I] to express whether the counter is
busy or not. The second step is to find the events depending on time that cause
the change of at least one of these state variables. In our case there will be two
types:

1. The arrival of a customer wanting to pay.
2. A leaving customer.

Note that the event ‘a counter starts working’ is not a time event, because it is
always a result of one of the two mentioned.

The moment of (future) occurrence of a time event is called its eventtime. The
eventtimes concerning leaving customers are kept in the variables LEAVE_TIME[I]

where I denotes the counter from which a customer will leave. LEAVE_TIME[I] will
be 1010 if BUSY[I] = false. NEXT_ARRIVALTIME will be used to keep the eventtime of
the next arriving customer.

To complete the model we need the distributions IAT (interarrivaltime
between successive customers) and PAYTIME. The procedure SAMPLE_FROM will be
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used to get samples from these distributions. The following program explains the
replacement trick.

SEQUENTIAL MECHANISM: (time advance calculation)

Let LEAVE_TIME[IO] BE THE SMALLEST OF ALL LEAVE_TIME[I].

If NEXT_ARRIVAL < LEAVE_TIME[IO]

NOW�NEXT_ARRIVAL

goto ARRIVAL EVENT

end

NOW�LEAVE_TIME[IO]

goto DEPARTURE EVENT

ARRIVAL EVENT:

Let N_WAIT[IO] BE THE SMALLEST OF ALL N_WAIT[I]

N_WAIT[IO]�N_WAIT[IO] + 1

NEXT_ARRIVAL�NOW + SAMPLE_FROM IAT

goto FINISHING

DEPARTURE EVENT:

BUSY[IO]�FALSE

LEAVE_TIME[IO]�1010

goto FINISHING

FINISHING:

IF BUSY[IO] = FALSE & N_WAIT[IO] > 0

N_WAIT[IO]�N_WAIT[IO]–1

BUSY[IO]�TRUE

LEAVETIME[IO]�NOW + SAMPLE FROM PAYTIME

end

repeat from SEQUENTIAL MECHANISM

It looks rather simple. Why doesn’t it work? You have to experience it
yourself. From here to the end of this paragraph, you have to manage a milk
factory. Your factory has two major production departments:

1. The cows’ milk receiving department where the milk is temporarily stored
in tanks (not longer than a day) to be centrifuged (to get the cream out) and
pasteurised to become half-products (product milk and consumers’ milk) for
the next department. The production in this department is pushed by the
daily, almost equal, production of the same set of cows.

2. The ready product department where, in several production lines, the half-
products are transformed in different kinds of milk, buttermilk, yoghurts
and custards. This production is pulled by the behaviour of the consumers,
filling their refrigerators on Friday to survive the weekend. This is done so
successfully that they hardly need anything before Tuesday.

All the milk you deliver to the supermarket chain should be fresh every day,
which does not allow buffering in half products. Therefore you buffer in the
buttermilk, yoghurt and custard products having longer production times and
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later expiry dates. Consequently, your production schedule will be different for
each day of the week. Nothing special so far. However, next month one of your
four yoghurt production tanks must be replaced by a new one, which will take
exactly four days. The standard solution is sending the surplus of product milk to
other milk factories. Of course, you want to find out if the problem can be solved
without these intra transports. For studying all alternatives, you need a model.

What was the first step? Specifying the state variables! Say you survive that,
what is the second step? Finding the time events. Just imagine what that means!
Long before you have to help the modeller with the second step, you will
conclude that solving the yoghurt problem without a model will be easier.

In conclusion: modelling parallel discrete processes needs special tools too,
which are available nowadays as general modelling languages or as packages for
special groups of systems. These modelling languages solve the problem of
parallel processes by monitoring the model created by the user.

The purpose of the tools for discrete modellers is therefore different in
comparison with the tools for continuous modellers. So, modellers are separated
from each other by the use of their tools.

The model language PROSIM (PROSIM bv, Zoetermeer, The Netherlands) and
a few more are equipped with tools for continuous processes, allowing combined
discrete/continuous modelling. Theoretically, the gap can be closed, however
most continuous modellers are so tied to their tools that they rather avoid
discrete processes than face parallelism. If we want to control systems, getting
fresh food on the supermarket shelves in an optimal condition and in acceptable
amounts, we need the cooperation of all specialists involved. Parallelism is too
important to be denied. The next paragraph will demonstrate why.

5.2 The power of parallel processes

We, human beings, are not able to control more than five interacting processes.
We already have trouble in finding the number of people in a room if there are
more than five. We need to count. Even counting becomes troublesome if these
people are walking around. Complexity is mostly due to parallelism.

Let us enter the world of parallelism carefully considering a simple road map.
There are junctions connected by road sections forming a network. Each section
has a direction and a length; it goes from one junction to another. In case there
can be traffic in both directions we use two sections.

At the entrance of each section, there is a dog. If a dog is activated it will
carry out the following process:

1. Run to the junction at the other end of the section with the speed of
electricity.

2. Activate each dog that can be found there.
3. Return to the entrance of the section with the much slower speed of

sound.
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Furthermore, each dog will remember how it was activated (which dog or
otherwise). (The differences in speed prevent a dog being activated twice in one
experiment.)

Now, just choose one of the junctions and activate all the dogs at that
junction. Try to figure out what happens before reading the next sentence.

Within a split second, all the dogs will be back in their starting positions. You
can choose another junction randomly and ask some dog there: ‘Who activated
you?’ That dog will point to another dog. The questioning can be repeated until
some dog answers: ‘You did’. At that moment, the chain of dogs questioned
stipulates the shortest route from the first junction to the second one.

There are three remarkable issues:

1. The dogs only perform a most simple task. There is no further logic, ruling
or whatsoever. The fact that the dogs operate simultaneously solves the
shortest route problem!

2. There are a lot of shortest-route-solving methods not based on parallelism.
The efficiency of all these methods were compared ages ago, by counting
the average number of calculations needed for a solution. Neglecting the
effort to simulate parallelism, this ‘method’ is the most efficient one.

3. The method is robust. Even if several dogs are not willing to run, you will
still get a fair result.

The next step is to forget about the dogs and to make the sections alive
instead. The sections will be called neurones now. Each neurone has a head and
a tail and at the junctions, heads and tails are joined together. In this way, our
road map is transformed into a very simple model of a neural network. Instead of
being activated, a neurone can be triggered. If a neurone is triggered it will fire.
In our simple model, it means that the neurone triggers the neurones which tails
are connected to its head. After firing, a neurone will be insensitive for
triggering for some time. In fact, the neurones in our new model have almost the
same process description as the dogs in the road map, but now it makes sense. If
we trigger a neurone from the outside, all other accessible neurones in the
network are informed where it happened in a split second. Again: most
efficiently, no special control or intelligence, and robust. Our body is full of
neural networks. These networks have special tasks, causing for instance, that
you withdraw your hand immediately if you touch something very hot. These
special tasks are realised by differences in the process descriptions of the
neurones and their threshold values for being triggered. Conclusion: the most
fundamental activities in all that lives are based on parallelism.

In all cases, it turns out that the network is far more ‘intelligent’ than its
components. The next step will be that the components do not need to be
physically connected. A weaker form of being connected is being related.
Without that physical bond, the possibilities for parallelism are manifold, as are
the ways for ‘triggering’. That can be just smell and/or sound and then we get
swarm intelligence as known from ants and bees colonies.
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The final step makes the network into a community, where the components
are human beings related with each other in the most complex ways, triggering
their relations using money, power, love or friendship. The community can
reach almost everything based on simultaneous performance of activities.

This paragraph started with an example showing how the shortest-route-
problem could be solved using parallelism. Nowadays, the power of parallelism
is more and more discerned, leading to the construction of computer
configurations not being based on the almighty central processor.

More people discover the power of parallelism, creating software tools for
solving combinatorial problems based on simultaneous activities.

Modelling languages like PROSIM can be helpful this way, for instance to find
an efficient solution for the problem of parameter estimation.

Suppose, we have a model correctly describing the processes causing
juiciness (J) of an apple. This model contains the parameters P1, P2, . . , P6

which values are unknown so far. The model is valid if we can find correct
values for the parameters. To find these values we need data from one or more
experiments that can be compared against simulation by the model. During each
experiment the values for the exogenous variables are known and the values for
the endogenous variables are measured regularly during the experiments.

A simple way to estimate the parameters P1, P2, . . , P6 could be by trying to
find their values one by one. Thus, repeat the simulation of the experiments,
varying one of the parameter values as long as the difference between measured
and calculated juiciness decreases. Then start with the next parameter. Due to
the correlations between the parameters, coming from their functional relation-
ships, normally the problem still cannot be solved by treating all six parameters
this way.

Fortunately, Levenberg-Marquard provides a much better method. This
method can be used if all partial derivatives �2J��Pi�Pj are known for all
combinations of i, j. The problem is how to find these derivatives when the
parameters are directly or indirectly coefficients of differential equations, which
they normally are. That problem can be solved using parallelism by making
seven copies C0, C1, . . , C6 of the model and have them all run simultaneously to
simulate the experiments. The models are all equal except for one parameter
value. Model copy C0 has the best parameter estimates found so far, say E1, . . ,
E6. In model copy C1, the parameter P1 has the value E1 � �. In model copy C2

the value of P2 equals E2 � �, and so on. Each time the seven models reach the
time of a measurement (all simultaneously of course), the differences in
simulated juiciness shown with each other and with the value measured give
estimates of the partial derivatives to be merged with the results obtained from
the previous measurement. At the end of the run the method of Levenberg-
Marquard will deliver new estimates for the parameters and the whole method
can be repeated until the best fit is found.
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5.3 The ‘world view’ of system theory

Dear Descartes,
When you are thinking, you have to formulate your thoughts in words,
sentences, abstracts and conceptions as you learnt from the community
that raised you. So, your thinking proves the existence and even more
the functioning of that community. That community is timeless and if
your spirit survived your dead body, you may still be a part of it.

Starting in 1975 Bernard Zeigler tried to convince modellers all over the world
that each system can be considered as a set of related components. These
components simultaneously perform processes but should be described one by one
because humans cannot do better. According to their relationships the components
form a network. Because the relations may change and components may die or be
created, the structure of the network is time dependent. That concept should be the
base of all modelling. Nobody ever denied it, only a few followed him.

Nowadays, we know that nature is composed in this way and we can only
conclude that ‘can be considered’ is an understatement that should be replaced
by ‘is’. The concept forms the basis of what is called the ‘system theory’ being
lectured in most universities of technology.

The next example demonstrates some fundamental concepts of this theory. It
concerns the supermarket again but with a more interesting goal. We need a
model to investigate the effect of logistics rules on missing sales and overload.
Overload may cause overcode being the amounts of an article that must be
removed from the shelves because the last day for selling has expired.

The supermarket is a network of related components. The first modelling step
concerns the question: ‘Which of these components do we need in the model?’ It
is obvious that we need articles. Most supermarkets deal with 3000 to 6000
different articles. Not all of them will be interesting to be used in each run.
Suppose, we are just interested in articles that can cause overcode. This will
reduce the scope of the model to about 600 articles. In modelling terms the
chosen articles form a class of components. That means: the way to specify an
article will rule for all of them. Components of the same class differ from each
other because their specifications have other values.

Do we need customers? No, we only need a class of sales. Introducing
customers would create the need for a shopping list for each of them. That may
be interesting for marketing purposes but will be a burden to our goal. Instead of
a class of customers we introduce one single component, the sales generator, to
create all the sales at the beginning of each day as explained below.

Sales will remove items from the shelves but not overcode. That will be done
by the single component chief at the end of each day. The sales and the chief will
cause empty shelves, so we need some more components taking care of
stockpiling new goods. The single component chief (or his computer) will cause
distribution centres to deliver supplies by trucks. Because our model is meant to
inspect the logistics rules and not to simulate a distribution centre, distribution
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centres are assumed to work perfectly. Only the trucks are modelled delivering
all that is ordered at schedule.

As shown, single components and classes of components are chosen
according to the goal of the investigation. Although this is called ‘the first
step’, it does not mean that this step should be completed before starting the
second one. Generally, modelling is a cyclic activity.

The second step concerns the specifications of the components, by linking
attributes to each of them. As all components of one class have similar
specifications it is sufficient to define attributes for each class and for each
single component. This example shows how this can be done for the articles.
Each article will at least have the following attributes:

code: containing a unique series of figures identifying the article.
in_units: having the value TRUE if the article is sold in units instead of

weight
n_sales: the number of sales of the article during the current day
m_quantum: the mean number of units in a sale if in_units and the mean

weight in a sale differ
missed: the amount (units or weight) of missed sales so far because the

article was out of stock
overcode: units or weight
stock: the available amount (units or weight)
sold: the amount sold on the current day so far
shelfcode: the number of days (including the delivery day) the article can

be sold
out[30]: out[1] the amount that must removed at the end of the current

day when not sold; out[2] the amount to be removed to-
morrow, etc.

overload: the amount of stock still available at the moment of delivery

These attributes give a rough idea about the meaning of the second step and
illustrate some further features outlined below. A complete supermarket model
needs at least hundred attributes for each article. Do not even try to get all
attributes together at once. Just start with enough components and classes to get
something working, to let the sales generator create sales and to let the chief
create orders to be delivered by trucks. That will allow the development of a
working model to start with. Afterwards, you will find out:

• that more sophisticated logistics rules will ask for more attributes,
• that articles should be grouped according to delivery schemes
• that articles should be grouped together to solve problems about substitution,
• that articles are related because they only differ in packing,
• that articles need more attributes describing their behaviour during sales

actions,
• that sales of articles can depend on weather conditions,
• . . . . . . .
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As you see, one hundred attributes is not extreme! However, it also shows
another aspect; the amount of data involved with running the model will need
special attention. At the start of every simulated day, the number of sales of
each article must be obtained from outside. Furthermore, every article will
produce time series for output purposes. As a consequence, the model has to
interact with data-bases. Modelling tools should be equipped for that purpose.
For instance, the amount of software in PROSIM needed for the data handling
concepts is much bigger than the amount of software needed for all of the
continuous concepts.

The third step in creating a model concerns the process descriptions of the
single components and a process description for each class component
containing ‘living’ components. Components not performing activities (includ-
ing decision-making) on their own do not need a process description because
their processes will be caused by the activities of the living components. As the
articles do nothing on their own behalf they do not need a process description.

As an example of a process description we use the sales generator. This
component has to deal with articles and sales. So we need to specify some
attributes of a sale first:

shop_art: referring to the article being sold
quantum: the number of items or the weight
sale_time: the moment of the sale

That will be enough to explain the description of the process of the sales
generator. This fictive component represents all shopping customers. At first
sight we may try to model this component as follows:

Wait until the supermarket opens this day
While the supermarket is open

wait some time
create a sale

end

The first activity is simple. In the next one we have to specify the value of ‘some
time’ by sampling from some distribution function of ‘inter sales time’. The
problem is that such a distribution function does not exist because in some way
it should express the variation in the arrival density of customers (see Fig. 5.1)
belonging to that day of the week. If we try to use a distribution while varying
the mean during the day, we are guilty of committing sin number four of the
pitfalls (see section 5.5) by introducing a false variance in the number of sales. If
we still continue we commit sin number four again in the next statement when
selecting the SHOP_ART of the sale by introducing a false variance in the number
of sales of that article.

For realistic results, the creation of sales must be modelled more carefully.
The sales generator will start its activities each day at time 00.00. First of all, the
number of sales (N_SALES) of each article for that day must be obtained from an
external data-base. That may be historical data or data based on statistics, the
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model has nothing to do with. Besides the N_SALES, each article has a M_QUANTUM,
representing the average amount (items or weight) in a sale. It is not realistic to
expect that this number is known for each day of the week. That could be
possible for some ‘fast runners’ only. Therefore, this figure is supposed to be
independent of the day of the week, because with the data available we cannot
do better. The best way to obtain the number of items in a sale is by keeping the
variance as low as possible. Let, for instance, the M_QUANTUM of a milk product
be 1.7 packs. R is a random number equally distributed between 0 and 1. If R is
smaller than 0.7 the QUANTUM of the sale will be 2 packs and 1 otherwise.

The sales generator will use the function of arrival densities as a distribution
function. Each sample from this distribution represents the time during the day
of a sale. The process description of the sales generator could be as follows:

• obtain the N_SALES for each component of the class article

• for each article

for count�1 to N_SALES

create a sale

SHOP_ART� THIS ARTICLE

QUANTUM� M_QUANTUM if IN_UNITS = false

calculate QUANTUM as shown above otherwise

SALE_TIME�sample from arrival_density

activate this sale at SALE_TIME this day

end

end

• wait until next morning

• repeat from top

Fig. 5.1 Average number of sales per 10 minutes during the opening hours (08–21) of a
series of Fridays.
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When a sale comes alive it will update the attributes of the article SHOP_ART

points to, according to the sufficiency of the value of STOCK OF SHOP_ART.
On arrival, a truck will update the attributes of the articles it delivers, not

forgetting to increase OUT[SHELFCODE] with the delivered amount. At the end of
each day the chief will compare the value of OUT[1] with SOLD. If OUT[1] is greater
than SOLD, the amount OUT[1] – SOLD must be subtracted from stock and added to
the overcode. Otherwise the amount SOLD – OUT[1] must be subtracted from OUT[2].
After that the chief will set the value of SOLD to 0 and OUT[1] takes the place of
OUT[2], OUT[2] that of OUT[3], etc. In this way the modeller describes the processes
of the living components. These descriptions are added to the model and the
software takes care that all processes are simulated simultaneously.

Be aware that the concepts of system theory do not burden the physical
constraints of computers. It just tells us to describe the behaviour of components
one by one, regardless whether our computers are able to or not. That is the
problem for the software producer; the modeller should be free to use the concepts.

5.4 Combined modelling

If we want to model real world systems concerning food processing,
manufacturing or logistic elements, the possibility of handling multiple
components simultaneously is far more important than bothering about whether
processes are continuous or not. In the fundamentals of the system theory the
terms discrete and continuous do not even occur.

So, if we model the milk factory as described above, we are dealing with a
network of tanks, pipes and machines. All these components are working
simultaneously, causing products to flow.

What are you thinking of? Continuous modelling? Discrete modelling? It is
too ridiculous that a choice like this should be made at all. Just start modelling
according to the concepts of system theory, finding out what the components
are. A class of tanks for example. What are the attributes of a tank? A tank can
hold a product, so the tank needs an attribute referring to that product. That
attribute is discrete because the product in the tank can be replaced by another
one; for instance a cycle of milk, air and water. The tank will have the attribute
FILLING LEVEL, which value will vary continuously depending on the in and out
flow. A differential equation will be attached to the attribute FILLING LEVEL

specifying that relation. In other words, real world systems should be described
most naturally using combined modelling tools.

When a model is running several data streams will be generated. Most of
these streams are needed for output purposes as graphics, animation and
statistics. Other data streams are created to be used as functions in the model,
such as tabulated functions and distributions like the arrival pattern of customers
in the supermarket example.

Nowadays those different kinds of data sets are covered by just one common
concept called point stream. Every ‘point’ in the stream is an equally sized data
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structure containing a code indicating how the information in the structure must
be interpreted. For instance, as a table or as a discrete step function or as a
continuous function holding zero or more derivatives. The uniformity enables
point streams to be moved to and from hard disks (virtual memory) with a
minimum of accesses. In fact the integration mechanism is just one more
generator of point streams; one for each continuous attribute. Due to the
possibility of derivatives in the ‘points’ the history of each continuous value is
available at all levels without loss of accuracy. So, in models of dynamic control
systems historical values of continuous attributes can be used directly as
coefficients in differential equations.

In conclusion: combined modelling is just modelling. Practically, the feature
of continuous attributes fits perfectly in the concepts of modelling tools based on
system theory.

Some final remarks:

• As a consequence of the combination of discrete and continuous processes a
tool for combined modelling offers the concept of ‘continuous state event’. If,
for instance, mother starts the oven in the kitchen she has to wait while the
temperature in the oven reaches 180 degrees before putting in the chicken.
Due to the point stream concept, the moment that mother will be triggered to
proceed can be found with any desired accuracy.

• The integration mechanism will never create an integration step passing the
next discrete event. Therefore, discontinuities caused by discrete processes
will not harm the integration stability.

• The method of finite elements for solving partial differential equations fits
extremely well in the modelling concept. Just consider elements to be
components and their connections as a network.

5.5 Pitfalls

There are many ways to make a mess out of a model and there are no exceptions
for models on food and food processing. Some sins are rather stubborn. Based
on my experience I will show you the top four.

1. Violating the goal of the model
It is impossible to create a virtual duplicate of a real world system. We have
to limit ourselves to special aspects of the system according to a well-
defined goal. Our supermarket model was intended to investigate the
influence of logistic rules on specific aspects of the system. So, there are no
customers in the model and no special storage for deliveries. By adding
such a storage place, the shelves in the shop and the people filling these
shelves (including their working schedules) have to be added as well. If
these people are not alert there will be more missing sales. But that cannot
be a reason for changing logistic rules. Why is this rule violated so much?
Mostly by the influence of outsiders. The boss wants an animation for
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political reasons. That would be terrible of course if you need to process
millions of sales in a few minutes. Another wants to extend the model to
investigate the influence of missing goods (either by error or theft). If there
is no detection it will be obvious what will happen. An investigation of
detection methods asks for a quite different model. If we include extensions
like that, the model results will become cloudy.

My advice would be never to extend the model beyond what is necessary.
If you are forced to do so, create a duplicate for each outside wish and adapt
it for the specific goal.

2. More levels of aggregation in one model
We can model a packing machine in different ways:

• As a device that will pack a given amount of a product in a time that is,
for instance, normally distributed with an average and deviation being
attributes of that product.

• As a component with the following process description: take a pack from
a pile, unfold it, bring it to the outlet of a tank, etc.

The aggregation level of the first way of modelling is higher. We should use
the first way if we create a model of the factory in order to solve the yoghurt
problem of paragraph 1. In case the distribution function mentioned is not
available and cannot be obtained by measurement, just create a model of the
package machine first to find that distribution.

Why is this rule violated so much? The packing machines are the most
striking components in the factory. The rest of the factory looks rather dull
and normally causes less trouble. So, these packing machines look
important. However, not for the purpose of the model. Certainly not if
such lower aggregated part takes 95% of the computer power.

3. Too many conditions in a process description
If there is a series of 10 not nested conditions in a process description, the
component involved has 1024 ways to do its job. Would you ever verify so
many routes? Murphy is waiting! If the process is really that complex, go for it.
However, if these conditions are there to reach data needed to describe an
activity, we commit a sin. Conditions like these are caused by missing or
wrong directed references defining the network of relations of the components,
and/or by attributes being attached to other components than they should be
attached to. So, the conditions are the result of clumsiness in step 2. Assume,
an operator has to select a packing machine to pack an amount of some
product, but not all machines are suitable for each product. Therefore step 2
must contain information about possible assignments of products to machines.
Because there is a direction in the activity of the operator (from a product to a
machine) that information should be attached to the products. If you give each
product an attribute specifying the suitable machines, no conditions are needed
for the assignment. But, if you provide each machine with an attribute
stipulating the suitable products for it then you are asking for trouble.
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4. Introducing false deviations
Suppose we have to model the arrivals of vehicles at the start of a road and
we know that 20% of the vehicles are trucks. An example like this occurs in
any modelling textbook. The almost trivial solution is: sample a number R
from the uniformly 0,1 distribution and if R� 0.2 the next vehicle will be a
truck. If 100 vehicles are generated, we get an average of 20 trucks with a
deviation of 4. Nothing wrong so far.

However, if we model the arrival of trucks early in the morning at the
milk factory in the same ‘almost trivial’ way, knowing that the milk factory
owns 32 small trucks and 8 big trucks, we commit this sin. By applying the
sample approach we get an average of 8 big trucks with a deviation of 2.5
instead of 0, as there are only 8 big trucks, nothing more, nothing less. To
avoid this sin, we have to schedule the arrivals of the 8 big trucks and the 32
small ones beforehand. See paragraph 3 for an example.

5.6 Conclusions and trends

Computers more and more control our world. The supply of water and
electricity are controlled by computers already. A next step will be food supply.
Nowadays, many production processes are (partially) controlled by computers
and we are working on the logistics as well. It makes no sense to be afraid of
automated control. It just happens and we can only hope that it will be done
well. Modellers become more and more important in this process. All control
starts with models. We need to know how real world systems work before we
can control them. In the case of electricity (or water) supply, the modellers are
raised in similar technological environments. They are able to communicate in
terms of their models. That will be different in food supply. The modellers
involved generally come from totally different disciplines and the confusion
will be sky high. It even happens that similar terms are used for different
concepts. Modellers have to be aware of that. The principles of system theory
and a common attitude about the way nature is composed may form a base for
mutual understanding.

In the first place models are used to explain the world. More than 50 defi-
nitions of the term ‘model’ are based on that goal. Afterwards models are used
for control purposes as components of an information system (being a network
of course). The function of a model is different then. It will amplify the value of
data needed for decision making. However it is not a matter of ‘either or’.

As shown in the example of the supermarket, models must interact with
databases, other models and people. As a consequence, facilities for using a
model in a network are at least as important as facilities for creating models.

The trends are clear in this respect. Computers will grow better and faster,
however still based on one single extremely powerful but expensive processor.
Trusting that nature always strives after efficiency there must be possibilities for
computers with many cheap processors that can be freely connected to form
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networks. People are working in this direction and some results look promising
but will take time.

The development of software tools for modelling and using models will grow
slower because of the variety of users, which has everything to do with the worst
trend: the education of modellers. Courses on modelling and simulation are still
not settled in universities. What has to be modelled is still considered to be more
important than what modelling is about. Maybe, this book will be helpful this
way.
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Introduction

It is not always feasible to unravel complex problems into their constituting
processes, as, quite often, the current level of knowledge is not adequate. In
other cases, decomposition could result in a complex model definition that
cannot be parameterised in full, or which complexity is not warranted given the
intended application of the model. In these cases, modellers may revert to the
use of empirical approaches.

The development of this type of model is typically data driven and requires
minimal knowledge of the products or processes involved. The resulting model
converting model inputs into outputs is often referred to as a ‘black box’ as there
is no relation whatsoever with the real underlying mechanism.

This complete absence of expert knowledge is accounting for both the main
advantage and disadvantage of empirical approaches; models can be developed
relatively quickly and give good results even when there is insufficient
understanding of the processes involved, but at the same time, empirical models
will not be able to increase the understanding or generate new knowledge on the
underlying mechanism.

Chapter 6 offers a practice driven introduction into developing inductive
models (models induced by the data). It outlines the general approach
followed by most inductive modelling techniques; how to select and represent
your data, how to select and search the space of possible models, and how to
validate the final model to assess its accuracy. Several inductive techniques
are described in more or less detail and applied to four case studies ranging
from recipe planners for the process industry, to postharvest physiology.
Chapter 7 covers the same subjects in a less formal way providing a broad
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facial overview of inductive modelling techniques, referred to by the authors
as data mining.

The predictive microbiology has developed a large number of inductive black
box models with parameters that could be, a posteriori, interpreted in a
biological meaningful way. The microbial environment is, almost by definition,
prone to all kind of stochastic elements. Chapter 8 describes how these
stochastic elements can be introduced into predictive models, generating
predictions in terms of probability density functions rather than absolute values.
The authors thoroughly discuss the statistical technique of accurate parameter
estimation including their uncertainty.

Maarten Hertog
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6.1 Introduction

Modelling a process can be accomplished with varying degrees of background
knowledge. If the underlying physical principles of the system to be modelled
are well understood, it is possible to build mechanistic models of the process,
which require little additional data (perhaps a few parameters to be estimated).
The starting point for this kind of model is a hypothesis about the underlying
process. This hypothesis, the basic understanding of that process, is translated in
a, possibly parameterised, formalism that maps hypothesised mechanisms onto
model elements. Parameters in the model represent qualitative or quantitative
aspects of the hypothesised processes (in food processes, e.g. reaction rates).
Actual parameter values are obtained from theory, from experts or they can be
derived from real-world data by curve fitting.

However, in food processing as elsewhere, we are often confronted with a
situation where there is very little relevant pre-existing background knowledge
about a process to be modelled. In this situation, it may still be possible to use
data describing the process and its various possible outcomes to induce a good
model – perhaps even leading to the formulation of a testable hypothesis about
the mechanisms involved. Traditional statistical approaches test a single
hypothesis, focusing on linear and non-linear regression for continuous output
variables, and discriminant analysis for classification problems. These
approaches are powerful and widely used, but require as a prerequisite a
general understanding of the causal relationships underlying the process to be
modelled in order to generate the particular hypothesis to be tested.

Recent advances in various disciplines, including statistics and machine
learning, have loosened the required prerequisites for data-driven modelling. It is
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now possible to not only test particular hypotheses about a process, but to search
among an entire family of related hypotheses to find the one that best describes the
process. The innovations that have led to this ability relate to the development of
less severe (and more appropriate) penalties for testing multiple hypotheses, which
are not independent of each other. Despite the mathematical framework, which
allows the testing of multiple hypotheses, and the computer power to automate the
otherwise impossibly tedious repetition, we can never have enough data to test all
possible hypotheses for the explanation of a phenomenon of interest. By
restricting our search of the space of possible hypotheses to the areas that make
the most sense, we can take full advantage of the induction process.

Practical induction methods require the modeller to make decisions about
three general classes of issues:

• the selection and representation of the data used to induce the model
• the class of models to be considered, and the search method deployed to find

the best particular model
• the validation plan that is used to generate an accurate assessment of the

accuracy of the final model.

We will consider each of these tasks in more detail below. Briefly, the selection of
training data is important because no induction method is capable of telling an
investigator that some particular relevant aspect of the process was left out. The
investigator must ensure that all of the relevant factors (and not too many irrelevant
factors) are presented to the induction program. The term ‘data representation’
alludes to details of how data is presented to the program. The particular choices an
investigator makes in representing data have an important effect on the outcome of
the induction process, and unfortunately there is no easy method to ensure that the
best possible choice has been made. Finally, the creation of a validation plan at the
outset of the induction process is crucial in ensuring that the accuracy (and other
aspects) of the induced model are accurately assessed at the end. Errors in the
validation plan can easily lead to overly optimistic assessments of model accuracy
and disappointment later on when the model is deployed.

The development of an inductive model is more than simply binding the three
aspects of representation, search and validation. An investigator must also make
good choices about the selection of processes to be modelled, and how a
resulting induced model will be used in the field. Subsidiary considerations here
might include breaking down the process to be modelled into several sub-
processes and modelling each of those individually, or deciding that a
mechanistic model might be appropriate for some aspect of the overall task.
We call this process the application methodology. Major steps in the design of
inductive models are:

• the decomposition of the required total application functionality into
appropriate (sub)tasks

• selection and application of one or more of the above-mentioned techniques
to create accurate models for each required task. (Often, sub-tasks find other
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than inductive implementations, e.g. deductive models or expert heuristics.
Designing these functions, far from trivial, falls outside the scope of this
chapter.)

• Integrating the resulting models into process control or otherwise taking full
advantage of the predictive abilities of the new model.

Inductive models find their origin in a wide variety of disciplines. The origin
of the techniques manifests in these aspects. Specific representations indicate the
origin of techniques, e.g. decision rules (cognitive science and artificial
intelligence), neural networks (neuro-psychology, neuro-physiology and phy-
sics), non-parametric and bayesian techniques (statistics) and evolutionary
techniques (biology). Similarly, search methods and estimation criteria can be
indicative of the roots of some techniques. Inductive techniques form a main
research topic of machine learning, a sub-field of Artificial Intelligence.

Induction is generally taken to mean the prediction of a particular outcome
(the ‘dependent’ variable) from a set of inputs (the ‘independent’ variables).
Classically, the prediction of continuous dependent variables is called
regression, and the prediction of discrete dependent variables is called
discrimination (in the binary case) or classification (in the multiple value case).
These tasks are grouped together under the rubric ‘supervised learning’, since
the program is always provided with an outcome. For completeness, we point
out that machine learning can also be used for induction in other circumstances,
for example, when there is no particular outcome and we just wish to discover
patterns and relationships among a set of independent variables (e.g., association
mining or clustering; see Mitchell1 for a discussion). Inductive models can be
used for a variety of tasks. The MLNet ontology of machine learning2, 3 defines
eleven different learning tasks where machine learning can play a role. Part of
the task structure is shown in Table 6.1. One of the subtasks is classification. In
classification, all records in a data set belong to one of a (predefined) set of
classes. Learning a classification function means that the function maps a data
record onto a single class, being one out of a finite set of classes. When we talk
about inductive models in this chapter, we address models for supervised
learning of classification tasks, unless explicitly stated otherwise.

Table 6.1 A non-exhaustive overview of learning tasks and techniques that can be
deployed for these tasks. The terminology stems from the MLNet ontology2

Learning tasks Techniques

Characterisation (descriptive setting) Decision tree learners, rule learners, . . .
Clustering (unsupervised learning) k-means clustering, Kohonen maps, LVQ, . . .
Concept learning Decision trees, rule learners, AQ, . . .
Function approximation Neural networks, regression functions, . . .
Reinforcement learning Q-learning, . . .
Time series analysis Hidden Markov models, . . .
. . . . . .
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In this chapter we will elaborate the two aspects of inductive techniques
(section 6.2.1) and the methodology for applying inductive models (section
6.2.2). Then we will attend the pros and cons of inductive modelling (section
6.3). This will result in some guidelines that help to recognise opportunities for
applying these kinds of models and to avoid the pitfalls. The chapter ends with
sketching some future trends in section 6.4.

6.2 Key principles and methods
6.2.1 Inductive techniques
Often, inductive techniques are grouped according to the originating technical
paradigm. This grouping of techniques, however, ignores common character-
istics of techniques. We will organise our discussion in terms of representations,
search and validation, noting differences among the various inductive techniques
only when they are significant. For a complete introduction in inductive
techniques, the reader is referred to Mitchell,1 Michie et al.4 and Langley.5

Data selection and representation
Data selection
It is often the case that an investigator building a model must work with
whatever data is available. However, the quantity and quality of available data
has a significant impact on the quality of the induced model. Just as statisticians
are generally consulted in the early stages of the design of a hypothesis test, it is
best if the investigator building an inductive model is involved in the data
gathering. The goals of data selection are to:

• capture all of the relevant features of the process to be modelled,
• gather enough data to ensure that the search and validation processes are not

constrained by lack of data, and
• ensure that the data gathered is both unbiased and representative of the

important aspects of the process being modelled.

The first goal is obvious: if relevant aspects of the process being modelled are
not included in the inputs to the induction system, the quality of the resulting
model will be suboptimal. Since by assumption we are working in a situation
with incomplete background knowledge, it is hard to know what aspects are
relevant. Fortunately, unlike classical statistical modelling, current inductive
approaches are relatively insensitive to irrelevant data. That makes it incumbent
on the investigator to use all potentially relevant data whenever possible.

We speak of one set of independent variable values and the associated
dependent variable value as an instance or example. In general, an investigator
should collect as many instances as is practical. Many of the pitfalls of inductive
modelling involve the use of too few instances. However, there is generally a
cost to gathering instances, so it is important to know how many instances is
enough? There is no simple answer to this question. We can offer a few
heuristics; note that there is no good mathematical support for these suggestions;
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they come primarily from experience. In the simplest situation, there are a set of
binary input variables and one binary output variable. In that case, a bare
minimum would be three times as many instances as there are input variables.
As the data representations become more complex (discrete values, continuous
values), the number of instances required goes up. In general, ten times as many
instances as there are input features is a reasonable minimum in most situations.

These suggestions take note of the theoretical results showing that there is a
trade-off between the number of input variables used and the number of
instances required.6 A natural consequence of this relationship is that when the
number of instances available for induction is small, the investigator must use
other means to focus in on the input variables most likely to be relevant.
Fortunately, a variety of methods have been developed for identifying relevant
features before the induction begins; see Liu and Motada7, 8 for more details.

It is rarely the case that an investigator has too many training instances, but
since the computer time (and memory) required for induction is generally
proportional to the number of instances used, it is possible. In that case, there are
simple methods that can be used to get the most out of the plethora of available
data. One obvious approach is random sampling. Various kinds of biased sampling
can also be valuable; for example, if the outcomes are unequally distributed (e.g.
one interesting outcome is very rare), one may want to sample so that the rare
outcome is over-represented compared to the raw data. A variety of more
sophisticated ‘resampling’ approaches have been developed recently. For example,
one might want to induce an initial model, and then resample the training data to
include more of the kinds of data upon which the model is not performing well. A
more elaborate version of that basic approach, called ‘boosting’, has found wide
acceptance.9 Another popular type of resampling is known as Gibbs sampling.10

Data representation
Knowledge representation has been a central issue in Artificial Intelligence over
the past decades. Much of the general work in knowledge representation has been
concerned with deductive inference and efficiency in storage. The representational
criteria involved in induction are somewhat different. We will first discuss some
general concerns in data representation, and then look at the interaction between
particular representational choices and particular inductive methods.

Most inductive techniques operate on attribute-value representations (see
Table 6.2), basically a single data table. Each column in the table represents an
attribute. Each row in the table represents an instance. The simplest attribute
type is binary (or Boolean). In fruit classification, the presence of specific
diseases, such as spots on the fruits may be indicated as a true/false or spots/
nospots value. Nominal attributes allow several mutual exclusive values; a
nominal attribute soil type may take values like sand, clay, or sandy clay.
Numeric attributes can take values from ordinal, integral or real domains;
attributes like days to maturity or number of days with humidity > 90% may take
values such as 24 and 30. An attribute-value representation for a hypothetical
crop now may look like the one shown in Table 6.2.
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There often are several alternative ways to represent a particular feature;
some features can be reasonably represented as binary, nominal or numeric! The
particular choice for data representation should be determined in two steps. In
acquiring the data it is important to collect data in a format that is sufficiently
informative for solving the problem.

Consider the issue of how to describe the colour of an object to a program.
Objectively, colour is best represented by a high-resolution spectrum indicating
light intensity for a large number of frequencies. Many measurement devices
deliver data of lower resolution, represented in Red-Green-Blue (RGB) of Hue-
Saturation-Intensity (HSI) measures (both 3D numerical formats). For many
problems, however, the required data can have a much lower resolution. In
assessing colour development of ripening fruits, 5-, 7- or 9-point scales may be
applicable. Alternative representations for the nominal soil type attribute
mentioned above may be a detailed chemical analysis, resulting in a high
dimensional numerical representation (e.g. pH, fractions for different particle
sizes, compound concentrations, etc.). Or it may be summarised in silt fraction,
being one numerical. Or it may be from the nominal domain mentioned above.

Table 6.2 Data representation and the concept to learn. The table shows (a) an attribute-
value of representation in the domain of plant breeding, with data types numeric (e.g. days to
maturity), nominal (e.g. soil type) and binary (spots). Part (b) shows part of the table in a
relational representation. Part (c) shows the concept that underlies the ‘spots’ column in the
table. It can be learnt from the relational representation (b) with inductive logic programming,
but will never be the outcome when learning from the attribute-value representation (a).

(a) Attribute value of representation

Product Soil Days to # Days Humidity Parent 1 Parent 2 Spots
type maturity � 90%

1 s 23 33 73 74 s
2 c 23 37 56 64 n
3 sc 21 36 52 63 n
4 s 21 29 52 77 s
5 sc 20 28 68 96 s
6 sc 22 29 54 85 n
7 s 21 33 2 1 n
8 s 22 29 4 3 s
9 sc 21 31 6 5 n

10 sc 19 32 8 7 s
11 c 19 30 10 9 s

(b) Relational representation
Soiltype(1, s); DaysToMaturity(10, 19); DaysHumidityAbove90 (9, 31);
Parent1(1, 73); Parent2(7, 1); Spots(8);

(c) Represented concept
Spots(I):–

Parent1 (I, IP1), Parent1 (IP1, IGP1),
Parent2 (I, IP2), Parent2 (IP2, IGP2),
Spots (IGP1), Spots (IGP2).
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When designing the actual inductive solution, the data representation may be
adapted optimally to suit the inductive technique to be used. For example, when
there is sufficient training data to support a complex neural network, in general
the performance is best using representations that spread the input variables over
several binary input nodes. Various schemes, such as grey coding are used to
ensure that the binary values used to represent semantically nearby attribute
values are close to each other in Hamming distance. Many symbolic rule
learning and decision tree learners, on the other hand, perform best on nominal
domains. For such techniques, discretising data before learning may pay off.
Here again, there are few clear rules, and it is often worth experimenting with
alternative choices. In one medical application that we are familiar with, the re-
representation of age from a continuous variable to a nominal variable with five-
year bins resulted in a dramatic increase in predictive accuracy.

Some inductive techniques, generally called ‘relational learners’ can take
advantage of logical assertions and relational database tables. As is generally the
case, learning from these more expressive representations requires both more train-
ing data and more computer time. However, relational representations are strictly
more expressive than attribute-value representations, so there are some concepts that
can be expressed relationally that cannot be expressed in attributes and values.

Suppose that a classification label spots is determined by the following relation:
‘A crop has spots when both its grandmother from mother’s side and grandfather
from father’s side had spots’. When this relation is represented in an attribute-value
representation as shown in Table 6.2, there is no way an inductive technique can
learn that relation. When, however, the same data content is represented in a
relational format, inductive techniques that operate on logical representations are
able to induce the correct relation (see Table 6.2). This type of complex relation
often occurs in agricultural, biological and industrial domains. Examples are plant
breeding,11 and structure analysis of large molecules.12

Class of models and search methods
The quality and representation of data is only one of the important factors for the
quality of induced models. An equally important aspect of the induction process
is the types of models that are tested, and how the induction process proceeds.

Although modern techniques allow us to soften the statistician’s injunction
against ‘fishing expeditions’, it is still the case that we cannot test all possible
models effectively. The set of models that our learning programs will consider
must be constrained a priori, and we must determine how to search through the
set of possible models we have decided to consider. By looking at the class of
possible models that can be induced, and by considering the search methods, we
can provide an ordered framework for considering the many alternative machine
learning technologies that are available.

The space of possible models that is searched by any of these methods is most
easily defined by considering the possible outputs of the modelling process. This
is why the space of possible models is also sometimes called the hypothesis
space – it is the complete collection of hypotheses that it is possible for the
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induction method to consider. For example, if the induction process produces
additive combinations of individual input features, we can see that it is searching
through the space of possible linear splits of the data space; this is what the
classical discriminant analysis approach accomplishes. If the output of the
induction process produces hierarchical decision trees, the space of possible
models that it searches consists of axis-parallel splits of the data space. This
difference is illustrated in Figs 6.1, 6.2 and 6.3.

Some methods, such as Mitchell’s ‘Version spaces’1 explicitly manipulate the
hypothesis space. Others, such as artificial neural networks do not, and sometimes
it is difficult to envision their hypothesis space. However, it is possible to
characterise the set of functions that such networks can learn, which in effect
defines their hypothesis space. In addition to discriminant analysis and classical
regression, naı̈ve Bayes and perceptron neural networks also learn linear models
(in higher dimensional spaces, linear models effectively identify hyperplanes that
divide the space). Discrimination trees and hierarchical regression (e.g. Breiman
et al.13) explore a somewhat more complex hypothesis space that allows multiple
splits. Nonlinear regression, association mining, support vector machines and
hidden layer neural networks all work in hypothesis spaces that admit curved and/
or multiple discriminations, and therefore explore the largest hypotheses spaces.

For best results, the space of possible models should include a model that fits
the data reasonably well. Consider the differences between the space of linear
discrimination models and the space of univariate decision tree models. If the true
process underlying the data creates a linear discrimination that is not axis-parallel,
then no univariate decision tree model can capture that very well; see Fig. 6.3 for
an illustration. This illustrates the need for assessing class distributions in the data
set in order to select a matching inductive technique. Sometimes the class distr-
ibution can be derived from available domain knowledge; more often it cannot. In
those situations, the underlying distribution may sometimes be obtained from the
available data. Note that the illustrations in Figs 6.1, 6.2 and 6.3 are very simple
two-dimensional examples. In the more general case with many input features
which may be correlated, it is not easy to tell what the class distribution looks like.

The more different kinds of models that a space can admit, the more difficult it
is to find the best (or even a good) one during a search. For that reason, it often
makes sense to start with relatively simple model spaces and move progressively
to more complex ones until adequate accuracy is reached. Weiss and Kulikowski14

develop a stepwise approach for solving problems with unknown distributions by
exploring technique performances in order of increasing computational complex-
ity (and increasing expressive power). As a first step, they advise linear dis-
criminant methods. As long as the classification performance is not satisfactory,
they apply as next steps more powerful techniques: subsequently linear
discriminants, k-nearest neighbour,4 decision tree45 and back propagation neural
networks.15 As this is a blind strategy, success is not guaranteed. In their words, if
you want the best performance, you should try all available techniques.

Another useful approach is to be aware of the signs of a mismatch between a
model space and the training data other than just poor predictive performance.
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Figure 6.3 In panel (a), a linear discriminant is the best way to divide the light pluses
from the dark circles; as shown with a dashed line; an axis parallel decision tree must

make repeated splits in the same dimension to approximate a linear split (solid lines). In
panel (b), an axis parallel decision tree easily divides the two classes of data, but no

accurate linear discriminator exists.

Figure 6.1 A simple decision tree and the partitioning of the data space that is
represented by this tree. A branching node in the tree (i.e. X1� 5) implements a test on a
data tuple. In case of a positive test result, the left branch is analysed, in case of a negative
test result, the right branch is analysed. Analysis continues until a node is reached that

predicts a class membership.

Figure 6.2 A concept space (left) with a linear discriminant function to separate the
classes � and �. The definition and rule interpretation of this discriminant function is

shown on the right.
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For example, in decision trees, if the same variable is used repeatedly at various
places in the tree, that is a sign that an approach not requiring axis parallel splits
would be more appropriate. Or, when training a neural network, if the test
performance is significantly worse than the training performance (see validation
section below), then that is a sign of overfitting.1 Accidental peculiarities of the
training data, not meaningful for the concept to learn, have been learned as
meaningful by the neural model. This suggests that the investigator should
change the training procedure, or reduce the number of hidden nodes being used.

Searching the model space
Induction involves not only the definition of the possible hypotheses, but also
the selection of one of these hypotheses based on the available training data. No
learning method employs an exhaustive search through all the possible
hypotheses defined by the model space, since that would be prohibitive in
terms of computational time. The alternative to looking at every possible
hypothesis is to try to identify the best (or at least a good one) by searching.

Search methods define how, and with what bias, models are searched. Fayyad
et al.16 distinguish between model search and parameter search. Model search is
the selection of the detailed model configuration within a formalism. Within a
representation and with an estimation criterion, a learning technique performs a
structured search through the space of possible models (within the representa-
tion). The result of that search is a model that performs best according to the
estimation criterion and the available data.

In the previous section we discussed the representation formalism the model
is expressed in. But within a formalism model design can be expressed in model
variants. Let us take the neural network as an example. Yang and Batchelor17

use a neural network to predict the severity of soybean rust as a number between
0 and 100%. The network takes seven continuous inputs, and uses three layers.
Their final network configuration counts seven input nodes and one output node.
In the model search phase, they experimented with different numbers of hidden
nodes in the middle layer, to determine the best configuration of the hidden
layer. In Fig. 6.4(a) and (b) two model configurations with three and five hidden
nodes, respectively, are indicated. Given the configuration of the hidden layer,
the parameter search searches in the weight space of the configuration, to find
the optimal weight values (in terms of the estimation criterion; see below) for
the connections between nodes.

The model variants of Fig. 6.4(a) and (b) only differ in the configuration of
the hidden nodes. Model search could have been more fundamental. Different
input-output configurations could also have been considered during model
search, e.g. transforming the continuous output into a nominal output (e.g. 0–
30%, 31–60%, 61–100%), mapping each range on a separate output node (Fig.
6.4(c) and (d)). Doing so of course also influences the data representation and
underlying distributions, consequently influencing the mappings to be induced.

In practice, model selection is not often realised as a systematic and rational
search process. There may be constraints on resources, such as available
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software implementations or computational resources, or limitations on the
experience or comfort of the system designer which constrain the model search
process. However, it is generally worthwhile to be as systematic and
comprehensive as is practical in any particular situation.

Each particular induction approach embodies its own search through the
space of possible hypotheses that might explain the data. Some general search
strategies in inductive modelling are illustrated in Fig. 6.5. In greedy search,
alternative next steps are locally assessed, and the best one is selected. No
decision is ever revisited, so that if in retrospect it might have been better to
make a different choice, greedy methods will fail to make the optimal set of

Figure 6.4 Some possible model configurations (not all connections are represented)
for neural networks for predicting soybean rust. Models search iterates over these

configurations, parameter search estimates optimal weight values for links within one
configuration. Configuration (a) and (b) fall within the data representation that Yang and
Batchelor used in their work, configuration (c) and (d) would have required a change in

data representation.

Figure 6.5 Some often used search strategies. (a) and (b) show two different concepts
for exhaustive search: depth first and breadth first. In general, these methods are not

applicable because of the size of the search space. Greedy search (c) expands the locally
best solution in each search step. Beam search (d) expands a group of best solutions.
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choices. The most popular types of decision tree induction generally use
greedy search: each input variable is considered, and the one that seems to
make the best division of the training data (often evaluated by ‘information
gain’, an entropy-like measure from communications theory) is selected. Then
the training data is split based on that variable, and then for each subset, the
next best variable is selected recursively. Hill climbing is a continuous variant
of greedy search where a series of adjustments to a current state are evaluated
to see which gives the greatest improvement in outcome. A step in the best
direction is then taken, and the process is repeated. The gradient descent
methods used to train neural networks do this sort of optimisation of an error
function to select the best weights for the neural network. As with climbing
real hills, sometimes the route to the top requires going down a valley, and if
one only heads upward, then one gets stuck on a subsidiary hilltop (a local
optimum) rather than the final peak (the global optimum). It is also the case
that greedy and hill climbing methods require some reasonable measure of
progress (or, equivalently, error) so that reasonable choices can be made along
the way.

Another general search method that is widely used is called ‘beam search’.
The idea of beam search is to avoid the local optimum problem by keeping
around a small number of good candidate decisions during the search process,
rather than just a single best candidate as greedy search does. Beam search is
frequently used in genetic algorithms.18 Another approach to avoiding local
optima is to use simulated annealing.19 Simulated annealing is a global
optimisation method that is similar to hill climbing, but every so often a step is
taken in a ‘downward’ direction. The downward steps are taken fairly often at
the beginning of the search, but their frequency decreases exponentially as the
search continues (hence the metaphor with annealing). Simulated annealing is
very expensive computationally, but within certain limits can be guaranteed to
provide the best possible answer.

In addition to these particular search methods, there are alternative
approaches to generating the next subset of hypotheses that the search methods
might select among. We mentioned the decision tree induction approach that
uses information gain to pick the next feature to add. The step for neural
networks being trained with gradient descent is to calculate the partial
derivative of each weight in the network with respect to the overall output error.
The weights are all moved a little bit (how little is set by a ‘training rate’
parameter) in the direction that reduces the contribution to the error. In genetic
algorithms, the next set of hypotheses considered is generated by two random
processes. One process takes a current hypothesis (recall, that due to beam
search, there are always several active hypotheses being considered) and
mutates it, making a small random change. The other process is to take two
active hypotheses and recombine them to make two new hypotheses that each
embody some of each parent hypothesis. Then the newly generated hypotheses
are evaluated by a user-supplied fitness function, and the best are kept for the
next round.
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Other inductive techniques
The previous sections described several specific learning techniques (neural
networks, decision tree induction, genetic algorithms, linear discriminants) and
mentioned several others, but the main goal was to describe the common
underlying techniques of model space representation and search. For complete-
ness sake, in this section, we briefly introduce several other induction methods
of interest. For more details on each particular method, consult the references
above, or the documentation that comes with a particular system.

• Lazy learning techniques: most inductive techniques generalise a classifica-
tion model from the learning data. Lazy learning techniques simply store the
training data. In other words the knowledge representation is the same as the
data representation. Consequently, learning time reduces to storing a record
in the database. When classifying an unseen instance the database has to be
searched for matching cases on the basis of a similarity criterion. The most
commonly used similarity criterion is based on an Euclidean distance
measure between two instances X and Y:����������������������������������������

f � Features

�Xf � Yf �2�
�

In principle all cases in the memory have to be assessed, which makes the
classification time grow with the size of the training set. Smart indexing
mechanisms can reduce this time requirement. Knowledge based indexes,
defining a weak domain theory onto the search space, have been developed in
case-based reasoning.20 Other indexes to reduce the search space are based on
statistical properties of the data, e.g. by deploying a clustering mechanism.21 To
obtain a class for a new case, either the class of the k best matching solutions can
be used as-is (k-nearest neighbour4), or one or more cases are interpreted and
used for further processing (instance-based learning;22 case-based reasoning20).

• Support vector machines. Support vector machines are related to nearest
neighbour techniques, but they do some computation ahead of time. They
require the user to supply a kernel function (similar to a similarity metric, but
with a loosening of some mathematical constraints), and the induction method
finds the maximum margin hyperplane (one that does the best job dividing the
positive and negative examples) using the kernel. Only the training examples
near the dividing hyperplane need be considered when classifying a new
example, saving some time in the classification step. Also, these methods have
good statistical properties, such as the ability to estimate accuracy on unseen
data with empirical techniques like cross-validation (see next section).

• Naı̈ve Bayesian learning. A classical statistical method called Bayes rule1 can
be used to calculate the probability of the hypothesis given a set of data
relevant to it. This can be used as a method to search some particular types of
hypothesis spaces for the most likely hypothesis given a set of data. The
probability of a set of data given a hypothesis p (D|H) is a straightforward
calculation for many kinds of hypotheses, such as those that assume mixtures
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of Gaussian distributions of independent inputs. Bayes rule says that the
probability of a hypothesis given a set of data p (H|D) is proportional to the
product of the data given the hypothesis p (D|H) times the prior probability of
the hypothesis p (H). We can select a space of hypotheses for which such
probabilities are computable, define a reasonable set of priors on those
hypotheses (e.g., hypotheses that involve fewer input variables are more
likely than ones that involve more), and then search for the most probable
hypothesis. The ‘naı̈ve’ approach assumes that all of the input variables are
independent of each other (e.g. they have no significant correlations) which
greatly simplifies the calculations and reduces the amount of data required.
Although this assumption is almost always false, this approach, particularly
when combined with boosting (see above), often performs quite well.

Clustering, grouping data on the basis of some similarity measure, is another
important task in inductive modelling. In this case learning data comprises
instances (e.g. product characteristics) and the learner identifies groups in that
data. In this case, only the input data is given; the instances are ungrouped and
unclassified. Therefore this type of learning is called unsupervised learning (in
contrast to supervised learning, see above). However, many other tasks exist.2

Some of these tasks and matching techniques can be found in Table 6.1.

Validation of induced models
A model is never the truth. All models are incomplete and at least partially
incorrect. So, for any model we are going to put to effective use, we must have a
reasonable characterisation of its limits. Generally, the most important
evaluation of a predictive model is an estimate of its accuracy. We will address
this issue in some detail below, but we want to start by taking a broader view,
including other factors that might make a difference in the practical
effectiveness of an induced model.

Performance of inductive model
In addition to raw predictive accuracy, there are several other factors that can
make a difference in the quality of an induced model:

• The learning time: for many techniques, the learning time depends on the size
of the dataset to learn from, and the model complexity (e.g. neural networks);
for others, it is independent thereof. An induction system that takes a very
long time to train may exceed the resources available to a project using
inductive modelling, or it may provide a correct answer that is too late to be
of any use. A more subtle problem with induction methods that take a long
time to learn is that they discourage experimentation with alternative input
representations or parameter settings. In general, induction methods that are
fast (like greedy decision tree induction) are preferable to ones that are slow
(simulated annealing to train neural networks).

• Classification time: some techniques, especially techniques that store large
models, require substantial classification times. This is particularly a problem
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with nearest neighbour methods like support vector machines, although these
classification times are almost always a good bit faster than most training
times. Nevertheless, if real time performance (say, for process control) is a
planned use of the induced model, then this should be considered.

• Comprehensibility of the learned model: it is often the case that the results of
an induced model must be accepted by people other than the ones who
created the model. The ability to explain how the model works is often
helpful in getting support from others in an organisation. A ‘black box’ model
with higher predictive accuracy may be less acceptable to decision makers
than a slightly less accurate predictor that is more comprehensible. In general,
genetic algorithms and decision trees produce models that are more
comprehensible than neural networks and discriminant methods.

Estimating classification accuracy
Although the above considerations are important, classification accuracy is a
crucial issue. A model that is fast and comprehensible is of no use if it is not
reasonably accurate. Statistical techniques (such as linear regression) have
underlying theory that allows the expected error to be estimated directly from
the input data (e.g. R2). However, most induction methods described here do not
have the equivalent formal properties, and their accuracy must be estimated
empirically. Generating unbiased estimates of the accuracy of an induced
classifier using empirical methods is fraught with potential pitfalls. For example,
it is trivial to generate a learning method that is always perfectly correct on the
data it was trained on: just build a lookup table of the training data and memorise
the correct answers. The goal of induction, however, is to generalise on the
training data and to be able to make accurate predictions on future instances.

The memorisation problem is formalised in the idea of overfitting the training
data. In order to get the best possible predictive accuracy on future instances, the
training method should fit a model to the data, but not overfit the model too
specific of the training data that will not be true of future instances.

When we estimate the accuracy of an induced model, we want to know how well
it will do on future instances. Since we, by definition, do not have ‘future’ data, we
can use various techniques to make unbiased estimates of that performance. The
idea underlying all of these estimation methods is to hold some data out of the
training process, and to test the induced model on the withheld (or ‘unseen’) data.
The simplest way to achieve this is the train-and-test approach. In this situation, the
original data set is randomly divided into a training set and a testing set. A model is
induced from the training set. To estimate the model accuracy, the model is used to
predict the classes for the records in the testing set. The performance of the model
on the test data gives an unbiased estimate of the performance on the model on
future data. Train-and-test does not make use of all training data. This might be
considered as an inefficiency of data usage. More serious is that if the data set is
small, the variation in error estimate for different samplings increases. Michie et
al.4 advise using the train-and-test approach only when the size of the data set is
large enough (�� 1000 records).
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But what if the number of records is smaller then 1000? Cross validation is a
good alternative. Cross validation is basically a repeated variant of train-and-test.
However, the test sets of the different trials are mutually exclusive, and cover the
total data set (see Table 6.3). The model to apply can now be obtained from the
total data set, with its error estimate being the average of the error rates of the cross
validation runs. A special case of cross validation is obtained when each record is
used as a test-set (leave-one-out). The statistics of estimating classification per-
formance have been well explored (see, for example, Mitchell1 and Michie et al.4).

A common method of selecting among various induction methods (e.g.
between neural networks and decision trees, or among different numbers of
hidden nodes in a neural network) is to run cross-validation on each alternative,
and then select the method that gives the best cross-validation results. Although
this is a fine method for selecting among alternatives, the estimate of accuracy
for the best method is likely to be overoptimistic, since the estimate of accuracy
was itself used to make a choice. If an accurate estimate of accuracy is required
in such a situation, then the best approach is a second set of unseen data (often
called the ‘validation set’) that is used only to report on the estimated accuracy
(and never to make decisions about the inductive hypothesis).

6.2.2 Application approach
Inductive techniques generalise models from data. The role of learning may
differ from situation to situation. On one side, in stable domains where abundant
data is available, a model can be generated in a one-time event. In Example 6.1

Table 6.3 Schematic set-up for n-fold cross validation. A data set is randomly divided
in n parts, each containing 1/nth of records of the data set. In cv-trial I, set I serves as test
set, all others serve as train set
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Example 6.1 Product treatment support system23

Fruit selection with decision rules and prediction of treatment requirement
with a neural network.

System functionality
The Product Treatment Support System supports a fruit-ripening expert in
designing a recipe for fruit treatment. Fruit treatment is the process of
transferring agricultural produce from an unripe stage into a stage of
ripeness that the client wants. Applying the proper temperature and gas
conditions enforces product ripening. It is accepted practice to apply
standard recipes, and react during treatment on the actual development of
the produce. However, regular quality variances combined with the
reactive nature of this approach cause produce losses to be fairly high. It
was the goal of the project to reduce the losses and increase the quality of
the treatment process, by applying a more proactive recipe generator.

Product selection
Given a product batch, an expert manually selects products that represent
the average physiological development of the batch. These products are
further assessed as part of the product treatment planner (see Fig. 6.6). The
sample size needs to be small in order to be feasible in practice. Random
sampling requires a samples size of approx. 80–200 samples. Compre-
hensible selection guidelines are required to be applicable for the expert.

Figure 6.6. Functional overview of PTSS. A product batch enters the treatment
facility. Human expert select products on the basis of static selection rules

generated with a decision tree learner. The selected products are measured to
assess the product quality. This measured quality serves as input to predict the

recipe requirement with a neural network, which is transformed into a recipe in the
recipe generator that deploys a constraint satisfaction model. The light gray area
represents the data set, the dark grey area represents a manual process, and the

medium gray area represents the planning module.
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decision trees are used in a one-time learning event to provide a human expert
with knowledge on selecting products for fruit quality assessment.23

At the other extreme, in some domains every new fact generates the need to
re-learn the model. This occurs not only in evolving domains, but also in
domains where scarce data trickles in slowly over time, and where decisions
cannot await availability of a complete data set (e.g. in the case of control
problems and robot learning). Then it is not possible to learn a model in a one-
time event, but an incremental or adaptive strategy is appropriate. By using new
data facts to refine or retrain the model, performance may improve over time,
and a model can gradually adapt in accordance with a drifting concept. Example
6.224 describes a situation where learning occurs under data limitations such as
in the agro-industrial environment of mashing. Mashing recipes depend on a
multitude of raw material and process parameters. Every new mashing run
provides new information that may lead to adjustment of models. In the planning
of mashing recipes, recipe planning is a case-based process. New cases are
stored for later reference. New cases at the same time may lead to adjustments of
the knowledge model that is used to adapt cases. Verdenius and Broeze discuss a
control problem in water purification with concept drift.21

In between is a mixed setting where one learning process is rerun with
different data sets (cf. knowledge acquisition strategy25). This is shown in
Example 6.326 when analysing the functional divergence of homologous
proteins. Another example of this setting can be found in marketing applications,
where the learning goal is to identify and characterise prospects for a specific
product from a client database (e.g. MLNet3 and the COIL27 and KDD28

competitions). This is presumably a repetitive process that occurs every few

Product selection is a simple binary function, indicating whether a product
is suitable for measurement or not. Data is obtained from 105 products
from 8 different batches. The data set includes easy to assess external
product characteristics, such as shape, size, maturity, etc. Class labels
indicate whether a specific measurement value indicating ripeness is close
to the batch mean. Given product characteristics, decision rules are
derived from a decision tree. Application of these rules allows a sample
size of approx. 5–10.

Recipe requirement
Given batch data, measured batch quality and the due date, a recipe
requirement is demanded for the constraint satisfaction module. The
required function is to provide a treatment recipe (prescription of
condition values for a number of conditions, e.g. temperature, ethylene
concentration, gas conditions, relative humidity). The process is decom-
posed in several steps. Global recipe specification are obtained from a
neural network module.
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Example 6.2 Planning of mashing recipes24

Batch specific planning of a bio-process.

Introduction
Aarts24 describes a knowledge-based planner for planning mashing
recipes. Mashing is the process where proteins and starch components
from the malt are converted into fermentable sugars and smaller proteins
to facilitate the fermentation process. In his planner, Aarts combines case-
based reasoning20 with qualitative reasoning to plan complete recipes
(including temperature settings, recommendations for the amounts of
adjuncts, the malt (blend) to be used, etc.).

Case-based reasoning
The case-based reasoning approach realises mashing in four steps:

• Process specification (situation assessment). The malt analysis (raw
material) and the wort specification (end-product quality) specify the
mashing process; represented in a structured data format, this situation
assessment serves as the functional specification of recipe.

• Finding the ballpark solution. The recipe specification is used for a
fuzzy search in the case base, a database containing annotated recipes
that have been realised in the past. Realised batches with similar recipe
specification are identified and ordered according to their degree of
success and the similarity with the current recipe specification. The
most similar case is then selected as the ballpark solution.

• Adapting the ballpark solution. The new recipe specification and the
recipe specification of the ballpark solution will normally differ in
some aspects. The applied recipe of the ballpark solution serves as a
starting point for the new recipe. Differences between the new process
specification and the ballpark solution � its annotations (see below) are
analysed with a qualitative model of the mashing process. Based on the
identified differences, the ballpark recipe is adapted such that,
according to the qualitative model, the new process results in the
required specification. With the adapted process, the process is run, and
the process results are fed back into the planner.

• Evaluation of the realised recipe. Process results, i.e. the wort analysis
and process performance data, are used to annotate the applied recipe.
Annotations serve as guideline to accompany cases in the case base,
e.g. a guideline that a certain temperature phase was too long in the
applied recipe and should be shortened. When such an annotation is
encountered in a ballpark solution during planning, the adaptation
module takes it into account when adapting a recipe.
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months on the same type of data. Consequently the process is standardised, but
the data set is different for every iteration, and so is the learned model.

When inductive models are considered for solving a modelling problem,
many questions arise. How can inductive models best be applied? Do different
types of applications require different approaches? Does the kind of application
influence the process of constructing it, or can we distinguish generic elements?
Much work in machine learning and statistics concentrates on the technical
aspects. The underlying assumption is that inductive models are suitable for the
problem at hand.

Early work on applying machine learning techniques explored a technical
view of the application process, e.g. in the Machine Learning Toolbox project.29

The toolbox brings a large number of inductive (machine learning) techniques
together. It is accompanied by a set of taxonomies, relating techniques to
problem characteristics.30, 31

With the rise of data-mining (searching for patterns of interest with a
particular inductive technique) and knowledge discovery in databases (KDD:
‘. . . the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data . . ’,16), a more process-oriented view
on developing inductive models has gained interest. In the literature there is a
growing inter-expert agreement on the phases in the development of KDD

Qualitative reasoning
The qualitative process model contains the available understanding of the
mashing process at the enzyme level. Knowledge on enzymatic reactions
was obtained from experts, from the literature, and from experiments.
Knowledge chunks relate concepts such as concentrations, enzymatic
reactions, etc. A detailed kinetic model nor numerical procedure for
deriving process settings are present (as available knowledge does not
allow such accurate calculations). Instead, advice such as ‘increase �-
amylase activity to increase the concentration of fermentable sugars’ are
‘guessed’ on the basis of the case base content. During operational use of
the system, the qualitative model can improve due to detailed feedback on
qualitative effects in the actual running of the process. Moreover, the
qualitative knowledge can also be used to refine human insight in
enzymatic behaviour during mashing.

Effects
Applying this planner, a more constant quality of wort is realised in the
realm of variable quality of the raw material. The system supports
proactive planning. This improves the traditional approach, where
constant recipes are used until the process quality becomes beyond
specification. Consequently, proactive planning reduces the number of
processing problems.
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Example 6.3 Identification of divergent functions in homologous
proteins by induction over conserved modules26

Knowledge refinement in microbiology.

Introduction
The proteins that underlie biochemical functions are related to each other
by evolutionary descent, i.e. are homologous. Homologous proteins do not
necessarily exhibit identical biochemical function; in fact, functional
divergence is required for organismal evolution. In practice, however,
local or global sequence similarity between proteins is used widely as an
indication of functional identity.

A general problem in mapping sequence to functional class is that of
false positives, that is, sequences which are similar to a query, but have a
different functional class. Inspection of specific errors suggests that in
some cases it may be possible to identify automatically regions of a
sequence that must be conserved in order for that function also to be
conserved. Supervised machine learning was used to identify protein
modules, which can be used to discriminate among functional classes of
similar proteins. The target of the study was the set of protein groups that
had significant sequence similarity to at least one protein outside its group.

Data design
A protein class is defined as a group of homologous proteins within a class
of the enzyme commission classification. For each protein class an
experiment is conducted. Positive class labels are assigned to all members
of a group. Negative class labels are assigned to all non-positive proteins
that have any significant sequence similarity to any positive example.
Totally 251 training sets could be composed for the total domain.
Homologous proteins are represented as binary vectors as indicated in Fig.
6.7.

Inductive approaches
Two different inductive techniques were used to generate classifiers able
to recognise positive and negative examples: decision trees (C4.5,45) and
naı̈ve Bayesian discrimination (Mitchell,1 chapter 6). For each protein
class a tenfold cross validation experiment was conducted. Figure 6.8
shows the typical results of the Bayesian classifier and the decision tree for
learning to classify the short chain alcohol dehydrogenases. Table 6.4
totalises the results for both techniques. From this table it shows that a
combination of modular representations of proteins with sequence
similarities improves the ability to infer function from sequence over
similarity scores alone.
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Figure 6.7 Representing protein sequences on conserved modules. (i) A set of
(hypothetical) homologous proteins with conserved modules shown as boxes.
There are a total of five modules: a, b, c, d and e. (ii) A representation of the

proteins on the basis of the modular attributes. Each protein is shown as a vector of
attribute values. Modules which occur more than once in a sequence are called
repeats. The second occurrence of module b is treated as a separate attribute b�.

Figure 6.8 The probabilities used by the naive Bayesian classifier (a) and a
decision tree (b) for a specific data-set EC 1.1.1.1. In (a), the relative contribution
to classifying a protein as a member (LP+) or a non-member (LP�) of a specific
group. The top rows indicate the module number, and their presence or absence.
So, the absence of module 36 gives 0.778 support for membership of the group,
and 1.632 for non-membership. In (b) the numbers at the nodes refer to ProDom

modules, the branches are labelled ‘+’ for module present and ‘�’ for module
absent. The leaves are labelled ‘same’ if the function is the same, and ‘different’ if

the function is different.
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applications. Although differences exist in the detail, some steps are often
encountered, as shown by a comparison of the work by Fayyad et al. and
Adriaans and Zantinge.32

Fayyad et al. Adriaans and Zantinge

Data definition Data selection
Data selection Cleaning
Pre-processing and transformation Enrichment
Data mining Coding
Interpretation and evaluation Reporting and application

Both approaches state that a data-mining problem requires proper deployment
of a data-mining algorithm. But how do we know that the problem at hand is at
all suitable for applying an inductive technique? In the case of supporting an
expert in fruit selection (see Example 6.1), this may seem straightforward (but
even here it is not!), and possible design decisions may seem obvious. But what
if a complex classification system for functionality of homologous proteins
(Example 6.326) or a system for planning complex plant breeding processes11

have to be designed? Such systems can be designed in many ways, some with
and some without inductive components, some with one-time induction modules
and some with full adaptive functionality. Consequently, an important extension
to these approaches offers a systematic analysis of the functional requirements
of the total application, including other than learning solutions.

Table 6.4 Summary of learning performance for 251 data sets. The
performance results are summarised by learners from top to bottom, and
accuracy range from left to right. The first column labelled L shows the learners;
naive Bayes (NB) and C4.5. The next column shows performance (P):Pt (total),
P+ (same function), and P� (different function). Each cell shows the number of
data sets with performance P, for a given measure and learner, and the percentage
of data sets that represents.

L P Accuracy range

� 0�9 � 0�9 � 0�95 1

P� 71 (28%) 180 (72%) 155 (62%) 140 (56%)
NB P� 8 (3%) 243 (97%) 225 (90%) 160 (64%)

Pt 11 (4%) 240 (96%) 223 (89%) 132 (53%)

P� 85 (34%) 166 (66%) 145 (58%) 129 (51%)
C4.5 P� 1 (0%) 250 (100%) 236 (94%) 177 (71%)

Pt 10 (4%) 241 (96%) 227 (90%) 134 (53%)
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MLNet3

Problem definition: unambiguous definition of input, output, and their relation.
Data design: definition of the input and output data, including data typing and

value ranges
Data cleansing: data-set with meaningful data, a set of procedures to transform raw

data into meaningful data
Implementation: definition and configuration of machine learning technique that

solves the defined problem
Evaluation: assessment of the performance of the learning technique from step 4

By including an explicit problem definition step in the development process,
where the full extent of the task at hand is analysed,3 this problem can be partially
overcome. Even then, however, the solutions under study are predominantly
machine learning/inductive solutions. Hunter25 introduces knowledge goals as a
leading principle of the functional definition of the application. Several authors
have proposed more elaborate approaches to applying inductive techniques.33

Verdenius and Engels,34 Engels35 and Verdenius and van Someren36 have
emphasised the importance of task analysis during the functional definition of the
application, a process guided by the problem solving methods and techniques that
can be made available. Starting with the functionality of the total system,
opportunities for applying inductive components are derived from available or
acquirable data sets in a top down process.36 Verdenius and van Someren sketch this
process for the fruit treatment planner of Example 6.1.23 Subsequently functional
and non-functional requirements for the inductive components are defined.
Functional requirements describe input and output attributes for the inductive
component, and define constraints on the relations between input and output. Non-
functional requirements include (but are not limited to) representation, accuracy,
train and response times, required training set-up (e.g. one-time, incremental, etc.).

Another aspect in designing inductive solutions is that of technique selection.
For each type of problem numerous techniques will be suited for the job in
principle, while others seem less well suited. In many real-world projects the
deployed inductive techniques were elected on the basis of heuristics, personal
preferences and circumstantial availability (see also Verdenius and van
Someren37). Moreover, tools and instruments to support the inductive system
developer in a rational selection process are scarce. An often-used approach is to
test the performance of several techniques on the same data set. By using cross
validation unbiased estimates for the performance of the techniques can be
obtained. The best performing technique is then used for the actual application.
This approach may give suitable results but it has several disadvantages. First, it
is time-consuming to test a large number of techniques. In principle, as there is
no guidance on which technique is best, all available techniques should be
included in such an approach. Second, testing a large number of techniques and
selecting the best performing gives little insight as to the underlying problem
and data distributions. Consequently, when a solution based on inductive
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techniques has to be reused for a slightly different problem, the technique
selection problem should be repeated. After all, because no insight has been
gained in the justification of the selected technique, one cannot be sure that the
same technique will perform best on this new problem. Finally, the experimental
approach is no answer to the question whether a slightly different
parameterisation of the technique would have improved the results.

Experimental comparisons (e.g. StatLog,4 and also Lim et al.38) and problem
solving competitions27, 28, 39 suggest that the competence of the learning
technique for a specific problem determines the quality of the inductive
solution. This implies that selecting the best technique for the job is a crucial
step in maximising the performance of the solution, but does not reveal what
criteria should be used for selection.

During rational technique selection the characteristics of the data space and
the classification function are surveyed, and the technique that is known to
perform well for the found characteristics is selected. It is not always easy to
determine the type of distribution in the data. In the StatLog project and adjacent
studies,40, 41 statistical descriptors of data sets (e.g. the numbers of examples,
attributes, classes; mean, minimum, maximum skewness of attributes, etc.) have
been defined and correlated to the performance of inductive techniques. This
results in applicable relations that give some guidance to the process of
technique selection. On the other hand, the resulting guidelines display
apparently arbitrary relations between the descriptors and the performance,
and only partially explain the relations found.

Representation determines the class of underlying concept distributions that
can be expressed. Univariate decision trees can correctly represent concepts with
concept boundaries that are orthogonal towards the attribute axis. Linear
discriminant functions allow linear combinations of attributes to form the class
boundaries, while neural networks impose no constraints on the shape of class
boundaries. Search methods determine characteristics of the concept space
shape. Hill climbing works well in a smooth error landscape under absence of
local extrema, but performs poorly in bumpy or flat error landscapes (e.g. the
kangaroo metaphor32). Statistical descriptors of the data set as indicated before
do not (necessarily) relate to these aspects.

This illustrates the need to relate concept characteristics to properties of
representation search methods and, maybe also, evaluation criteria, instead of
data descriptors. Recently it has been suggested42 that the applicability of
machine learning techniques that apply orthogonal partitions, such as univariate
decision tree learners, can be assessed at the data set level. In this approach
distribution characteristics in the data set are matched in the wavelet domain
against prototypical patterns in orthogonal distributions. A satisfactory match
supports the application of decision trees. This matching process plays the role
of a guard for univariate decision tree techniques. When the guard confirms
applicability, the actual technique can be applied (see Fig. 6.9).

Although in theory similar approaches can be developed for other
combinations of machine learning techniques/data distributions, in the current
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practice the assessment of the type of distribution in the data set is still based on
craftsmanship. In specific situations, domain knowledge enables the inference of
the type of data distribution.

6.3 Pros and cons of inductive modelling

Currently, inductive techniques do not play a major role in the modelling of food
processes. Many of the modelling efforts in this domain are initiated from
fundamental or applied science. Researchers in this area emphasise the structural
accuracy of their models, i.e. they want their models to fit onto (possibly
hypothetical) phenomena in the real world. Many inductive techniques, or more
accurately, the data representations where inductive techniques are applied,
cannot easily be interpreted in terms of these real-world phenomena. In several
biological and food domains however, inductive techniques can offer insight in
real-world phenomena. Shah and Hunter26 (Example 6.3) apply inductive
techniques to bring to light the relations between protein structure and protein
functionality, while Aarts’ data driven approach for planning mashing recipes
(Example 6.2) results, as a side effect, in insight into the roles of enzymes during
the mashing process.

Also, in scientific environments, data is mostly obtained from experiments on
small populations. This results in relatively small data sets. Putting data sets
together is hindered as every data set may come from an experiment with a
different set-up; consequently, data design differs for each set. Mechanistic
modelling is known to be less data consuming, and can therefore be applied on
the smaller data sets resulting from experiments. In real-world environments
data is generated in routine processes, for instance in production, distribution

Figure 6.9 Rational technique selection by guards. A guard is a small software
procedure that assesses the suitability of one inductive technique for analysing a data set.
The guard results in a quantitative assessment of suitability. For decision trees, such a

guard has been descibed in Verdenius.42
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and growth. It is, however, good to realise that many modern analysis techniques
that are applicable in food processes are capable of generating huge amounts of
data, for instance in multi-spectral analysis, micro-arrays, on-line process
measurements and tracing and tracking data. Environments where such analysis
equipment is deployed are promising for the deployment of inductive
techniques.

Inductive techniques are not the panacea for solving every modelling
problem. Still, when facing a new modelling problem it pays off to consider
inductive techniques as an option. Often inductive techniques bear clear
advantages. In many domains, detailed knowledge is scarcer than exemplary
data. Consequently, mechanistic and qualitative modelling approaches are not
applicable, as these require a hypothesis to support such models. When both are
missing, collecting appropriate data in many cases is less costly than acquiring
the required process knowledge. Moreover, an explicitly formulated model with
structural accuracy does not add value in many situations. Note, however, that
an inductive approach depends on the identification of data attributes; in other
words, a basic understanding of the domain is required, even if no full domain
theory is available.

When the functionality of a model has been defined, exemplary data is the
main requirement for inducing a model. When working on real-world
applications, the required functionality does not always have a theoretical
counterpart that may serve as the basis for a mechanistic approach. In the case of
Example 6.1, fruit selection was a complete new function that did not exist
before. Moreover, the classification question of separating prototypical fruits
from atypical ones on the basis of external appearance had never been posed, not
in post-harvest sciences and not in practice. Therefore expert knowledge was not
available. Similarly in Example 6.3, the ruling practice in analysing functional
identity of proteins is based on local or global sequence similarity. Again there
was not an off-the-shelf domain theory available.

Not only will the inductive approach often be cheaper, it is also more flexible.
If the process set-up changes, a new data acquisition phase will suffice for
deriving a new model. Also, it is easier to include new insights into the
application. A further development of the planning system of Example 6.1,
developed for the support of a product distribution chain, uses a similar set-up of
the planning process as illustrated for the system of Fig. 6.6. However, the
planning process aims at a different product; consequently the models represent
completely different mappings. Also, different inductive techniques have been
used to realise the different tasks for both functional and non-functional
requirements. Had a mechanistic approach been followed, then a new hypothesis
would have been needed from fundamental product research. In the followed
approach, renewing the inductive models and adaptation to the new product
domain proved sufficient.

The flexibility of inductive models also appears from the ease of re-
instantiating models. In numerous food processes, including raw produce, food
processing and biotechnology, permanent innovation as well as development of
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crops, logistics, feedstock and raw materials may lead to evolving behaviour of
products. The quality development of fruits today is not the same as that of thirty
years ago. Inductive models in general can easily adapt to such evolving
behaviour. Moreover, several inductive techniques have adaptive variants
available, where the learning set-up allows for permanent adaptation to evolving
domains. This is, among others, the case in the so-called lazy learning
techniques.

It is important to note that all the advantages of inductive systems in some
domains will turn into disadvantages in other domains. Scientists may strive for
insight in fundamental processes, and models are a useful means to get and
refine such insight. This is illustrated in the application on cucumber quality
development (Example 6.4),43 where the main aim of the project was to
understand mechanisms responsible for quality decay. The NN model as such
would not have offered a sufficient structural explanation for the observed
behaviour (although a cucumber grower would be satisfied by the result).
Moreover, when models are to be applied in a domain with highly educated
experts (e.g. biotechnology), structural accuracy of models may be of uttermost
importance for the acceptance of the model outcome by experts (even if it can be
proven that predictive accuracy of inductive models is as good).

6.4 Future trends

Some recent developments in agriculture and food processing will change the
assessment of inductive approaches in modelling these processes. In science,
new analysis techniques such as micro-arrays, DNA analysis, and techniques
such as visual image processing generate bulk data.44 Several modern logistic
and management trends such as tracking and tracing, total quality management,
and HACCP also generate bulk data. For both the scientific and application
aspects, the theoretical understanding is scarce and not always applicable to
support modelling.

Furthermore, there are several technical developments in the world of
inductive and mechanistic modelling that may help the proliferation of inductive
techniques in food process modelling. First of all, as argued in section 6.2.2,
research interest in inductive modelling is shifting from a technology orientation
towards a real-world application. One consequence of this shift is an increasing
interest in the application methodology. Early experiences with application of
inductive techniques illustrate the importance of structuring the application
process. This means, among others, a complete design of the solution in which
inductive techniques are to be applied, the definition of an interface between the
inductive technique and the embedding system and rational technique selection
based on data factors and application requirements.33 Here, we see an emerging
integration of inductive modelling techniques with principles from software
engineering and knowledge acquisition.

Take all these developments together, and a further proliferation of inductive
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techniques to new areas in food process modelling is to come. As indicated
elsewhere in this chapter, potential application areas are found in the total
production and distribution chain for agricultural produce, i.e. in growth,
processing and distribution, but also as a tool to support and direct research.
Relatively young areas such as microbiology, biochemistry and genetic
techniques heavily rely on data processing. These areas are therefore especially
interesting from an inductive technique perspective.

Example 6.4 Modelling cucumber quality development43

Verification of the underlying data assumptions of a scientific model with
a neural network.

Project motivation
A main quality indicator of cucumbers is the colour. When stored,
enzymatic degradation of chlorophyll in cucumbers results in a colour
change from dark green to light yellow. In most cases colour is the
limiting quality factor. A research project tested the hypothesis that
photosynthetic parameter measurement can help describe the process of
colour change. Photochemical and photo system measurements are used as
indicators of the quality. The keeping quality for cucumbers is defined as
the time for a cucumber to reach a certain predefined colour limit. In an
experiment 2000 cucumbers of different cultivars and growing conditions
were stored and colour development was monitored. A simple enzymatic
model was developed. To assess the hypothetical power of photosynthetic
colour measurements, the cucumbers were divided into four keeping
quality classes. Two different neural network models were developed,
using both initial colour and photosynthetic measurements, respectively.

Model design
After initial data pre-processing, the data of approximately 500 cucumbers
was suitable for neural network analysis. Two neural models were
developed, one using initial colour only (NN-colour), and one using initial
colour and photosynthetic measurement (NN-photosynthetic). For both
models, the optimal design was determined in a ten-fold cross-validation
experiment. This resulted in a two-layer network for NN-colour, with four
input and four output nodes, and a three-layer network for NN-
photosynthetic, with four input nodes, two input nodes, four output nodes.
The neural network model NN-photosynthetic outperforms other models
(both the neural and enzymatic models) in terms of the realised R2

adj (0.84/
unknown v. 0.88). This indicates that photosynthetic measurements
include the required information for proper classification. Also, it
indicates that the enzymatic model needs further refinement.
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Finally, proliferation of inductive techniques also extends to standard
development environments and analysis tools. Software environments for micro-
array analysis offer neural network techniques as a standard option, statistical
tools (e.g. SPSS) migrate towards data-mining, integrating inductive techniques
from neural networks and machine learning, etc. In a sense, inductive techniques
are subject to a paradox: the more developed the area becomes, the more it is
integrated in standard available tools, and the less visible it is as a separate
discipline. Being a benefit for the proliferation of inductive techniques, for the
time being inductive modelling will have its own position within food process
modelling, and its own merits.

A very promising development is the combination of inductive and
mechanistic techniques in one single application. Several modes of application
are possible. In the example on cucumber quality modelling, inductive and
mechanistic models have been used in parallel. The mechanistic model
implements a domain theory. Testing this mechanistic model results in a
predictive accuracy. When the accuracy is reasonable, it is hard to assess
whether the remaining inaccuracy is due to data quality problems, or that the
model lacks quality. By applying an inductive model in parallel, the potential
accuracy as present in the data set is assessed. When the performance of the
mechanistic model stays substantially behind the performance of the inductive
model, the quality of the mechanistic model can be questioned.
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7.1 Introduction

7.1.1 What is data mining?
Data is often recorded in spreadsheets and databases as a set of facts. In food
process modelling those facts could come from an experiment designed to
determine if a hypothesis holds or to find out if certain measurements contribute
to a given outcome. Either way, researchers record data and attempt to extract
information, a set of patterns or expectations that underlie the data.

Sometimes you may know what you are looking for and as such you will not
be doing data mining because data mining involves the automatic extraction of
implicit, previously unknown, and potentially useful information from data. It is
particularly relevant, therefore, when applied to very large databases, as
evidenced by its growing popularity with database researchers and large
institutions with terabyte size collections of data.

In order to discover and evaluate patterns in data, data mining employs a
wide range of techniques from machine learning, statistics and databases. In
what follows we will attempt to present some of the most widely used
techniques from these areas.

7.1.2 Why do data mining?
Serious applications of data mining involve thousands or millions of examples
but in order to demonstrate some data mining techniques it is instructive to work
with a small fictitious data set (adapted from Quinlan1).

Consider a series of subjective and objective measurements related to
mushroom quality. Weight and firmness measured with appropriate instruments
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and dirt, stalk damage and quality assigned by expert mushroom inspectors.
These measured variables constitute features or attributes of the data. The
complete data set is presented in Table 7.1 and we will make use of it throughout
this chapter. Our aim is to construct a model (set of patterns) of the data that
accounts for each of the fourteen examples, called instances, in the table. One
such model might be comprised of a set of rules describing relationships
between attributes in each instance in the data set. The first line of Table 7.1, for
instance, could be expressed with the rule

if the mushroom is heavy and has high stalk damage and is mildly dirty
and is firm then its quality is poor

and a comprehensive account of the entire data set could be formulated as a list
of rules describing each instance. The goal of data mining, however, is to try and
capture relationships between attributes in a more general and useful way. It
may be that the quality of a mushroom in these instances depends only on, say,
its weight and firmness, and that one or two very general rules are sufficient to
characterize the complete set of instances.

The objective of data mining is thus to derive automatically a model that will
tell us things about the data, such as which variables are more important than
others in determining the quality of a mushroom. We could find out if the
objective measurements are as good as the subjective measures in determining
the quality. Finally, we could use the model to make predictions about the
quality of mushrooms whose weight, stalk damage, dirt and firmness are known.

7.1.3 How is data mining done?
A key concept in finding a model that describes and generalizes some data is the
notion of search. If we produce rules as the set of patterns for Table 7.1 then

Table 7.1 The mushroom data

Weight Stalk damage Dirt Firmness Quality

heavy high mild hard poor
heavy high mild soft poor
normal high mild hard good
light medium mild hard good
light clear clean hard good
light clear clean soft poor
normal clear clean soft good
heavy medium mild hard poor
heavy clear clean hard good
light medium clean hard good
heavy medium clean soft good
normal medium mild soft good
normal high clean hard good
light medium mild soft poor
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there are 4� 4� 3� 3� 2� 288 possibilities for each rule. That is, a rule can
involve any of the three possible values for Weight (heavy, normal or light) or it
may be an irrelevant attribute, thus there are four ways it might factor into a rule.
Similarly, there are four ways Stalk damage might be used, and three each for
Dirt and Firmness, giving 288 permutations for combining these attributes
within each rule.

Ideally, a single rule may be sufficient to characterize all fourteen of the
instances, but it may turn out that no generalization is possible and each instance
requires its own rule. This means there are 28814 (about 1034) possible rule sets
(i.e. models) that must be tested in an exhaustive search for the best one. Even
the fastest computers available cannot perform searches of this magnitude in a
reasonable amount of time, making it necessary to use heuristics as a guide to
find a good, but very likely not optimal, solution.

Because choices have to be made in searching for the best description a bias
will inevitably be introduced. This search bias is one way in which data mining
tools differ. Further, different data sets may be more suited to one method over
another. Consequently, many data mining tools offer a suite or workbench of
methods for processing the same data.

7.1.4 Data mining in food process modelling
Data mining is an emerging technology that has not penetrated the agricultural
sciences to any great extent. As this book demonstrates, there are a number of
modelling techniques that can be used to analyse data and so with education and
the availability of software it seems likely that these techniques will form part of
the agricultural researcher’s armoury.

In machine learning, one of the earliest successes was the identification of
rules for diagnosing soybean diseases by Michalski and Chilausky.2 Since then
there have been some applications, for example, Holmes et al.,3 who have
applied inductive techniques to determine the factors that influence apple
bruising and more recently a study of grower and consumer perceptions of
mushroom quality (Bollen et al.4). However, the uptake of this technology in the
agricultural domain has not matched the plethora of applications in business.5

7.1.5 Benefits for food process modelling
Data mining techniques offer scientists in food process modelling a number of
benefits. It should be emphasized that the technology is not a panacea, but can
be used to determine the relative importance of features (perhaps measurements
from an experiment). It is possible to determine if an attribute is redundant and if
there is noise in data which could assist experimental design. The models
induced from data often quantify a relationship quite precisely, especially when
dealing with numeric attributes (see Chapters 2 and 3). Again this can provide
valuable insight.
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7.2 Input characteristics

7.2.1 Raw data
Table 7.1 contains fourteen instances which each contain characteristic values
from four attributes (independent variables) and a special attribute called the
class attribute (dependent variable). From these instances we hope to induce a
concept description which implies that in some sense the data defines
collectively a concept to be learned.

The attributes in Table 7.1 are all nominal in that their values come from a finite
set. Each attribute could have been numeric, corresponding to perhaps the
mushrooms’ real weight and firmness with a percentage figure for the amount of
dirt and stalk damage. Similarly, the class attribute is nominal in this case and as
such we define the concept learning task to be classification learning. Had the class
attribute been an integer or real value then the concept learning task would have
been numeric learning. Both forms of learning will be discussed in this chapter.

7.2.2 Data preparation
For most agricultural scientists their experimental data will be stored in either a
spreadsheet or database. Spreadsheets encourage exactly the format that most
learning algorithms require; rows of instances and columns of attribute values.
Databases are more work in the sense that they typically store data across
several files. In order to apply a learning algorithm it is often necessary to first
apply a query to retrieve a single file of data to learn from. This is where
database research comes into the data mining picture – extending existing
database query languages to include data mining techniques and developing new
data models that provide better support for data mining.

Whatever the source of the data it is often necessary to attempt to clean it up
before trying to learn from it. This might mean detecting and removing parts that
are missing or erroneous. For databases, the process of gathering data together
from different sources can be challenging, time consuming and prone to error.
Great care must be taken at this stage because the quality of the data has a high
correlation with a successful outcome.

7.2.3 Data problems
Data is not always collected perfectly. Measurements can be made by faulty
equipment, the design of the experiment can change during its course, or fields
within a survey may not be filled in by all respondents. In this last case we are
faced with the problem of missing values. Most data mining tools anticipate that
data will be missing and each deals with such occurrences differently. They
may, for example, replace a missing value with the most commonly observed
value for that attribute, or they may treat the missing value as a separate value
altogether. Either way it is important to acknowledge the reasons why data is
missing and reflect on any models produced under such circumstances.
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Data can be erroneously entered into a spreadsheet or database and this
generates ‘noise’ that can lead to problems. The noise can be ‘attribute noise’ due
to incorrect values being recorded for attributes or ‘class noise’ where two
instances with the same attribute values receive different class labels. Data needs to
be checked for typographical errors, values outside the reasonable range for an
attribute, duplicate entries or attributes in the data that may have no connection
with the concept that is being learned. Data mining tools often provide graphical
means, such as histograms and sorted plots of numeric ranges, for examining data –
typically on an attribute or attribute pair basis, and as the next section
demonstrates, there are data engineering tools that can prepare data automatically.

7.3 Data engineering methods

Techniques to improve the chances of a successful outcome from a data mining
application by manipulation of the data prior to learning are commonly
described as data engineering methods.

7.3.1 Attribute selection
If some of the recorded attributes are irrelevant or redundant, or the data is noisy
and unreliable, then the concept learner can become confused and may struggle
to determine the true underlying concept. Attribute selection is the process of
identifying and removing as much of the irrelevant and redundant information as
possible (see Chapter 2). Some learning algorithms perform attribute selection
as part of the learning process but even then it is still possible to improve
learning by first removing attributes.

Attribute selection methods can be classified into two groups: wrapper
methods and filter methods. Wrapper methods6 use a learning method and a
statistical re-sampling technique to evaluate the usefulness of attributes. A
search technique is employed to guide the selection of attributes. One wrapper
method, called forward selection, starts with an empty set of attributes then
generates all single attribute models with the learning method and evaluates
their performance. The attribute with the best performance is chosen and then
combined with all the rest, and the procedure is repeated to find the best pair of
attributes, then the best three, and so on. If there is no improvement from the
best combination at any stage, then the search can be terminated or the next best
can be revived and the process continued from there. While useful, forward
selection is extremely slow and does not scale well to larger problems.

An alternative and less expensive approach to attribute selection is to use a
filter. Filter methods7 operate independently of the learning algorithm by
dealing with undesirable attributes before learning commences. They work in a
variety of ways: using heuristics to rank attributes according to relevancy;
eliminating attributes whose information content is subsumed by others;
calculating the correlation between an attribute and the class and the correlation
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between the attributes themselves; and so on. Most filter methods work quickly
through the data, typically returning a substantially smaller subset of the
attributes for the learning algorithm to work with.

7.3.2 Discretization
Numeric data can present problems for some data mining tools. Some tools do
not deal with numeric data while others make assumptions about the distribution
of the data that may not hold. In such cases it is necessary to discretize the data
into a number of ranges such that each range can be treated as a nominal value.

Discretization can be unsupervised, that is, the correlation between an
attribute value and a class label cannot be taken into account – this is the case
when clustering data. For all other forms of learning the class labels are
available and so supervised discretization can be employed. Unsupervised
methods include dividing the range of values into a fixed number of ‘bins’, or on
the basis of having the same number of instances in each range. Both methods
are problematic but can still yield good results in practice.

Successful discretization is more likely when the class label is available and
several sophisticated entropy-based techniques have been developed to take
advantage of this situation.8

7.4 Output representations

An understanding of how knowledge is represented and interpreted is a useful
insight into how data mining works. Below we discuss the most popular forms of
output representation for those methods that produce output in section 7.5. We
assume that the data from Table 7.1 has been used as input and show the various
forms that the results of learning can take.

7.4.1 Decision trees
One method of learning is to determine a test on an attribute that will
discriminate between the instances in a data set. This test has the effect of
splitting the data into two (or more) smaller data sets. By repeatedly splitting
these smaller data sets we can obtain a series of attribute tests that represent the
original data as a tree (Fig. 7.1). Note that although the mushroom data has only
nominal values, numeric values can be handled with tests on ranges of values,
for example, Weight �3.0. The output representation of Table 7.1 has achieved
data reduction and covers all fourteen instances. The figure shows that weight is
the most important attribute for discriminating between samples. All mushrooms
with normal weight are classified as good mushrooms. The classification of
heavy mushrooms depends on how dirty they are, mild are poor mushrooms
whereas clean are good. Light mushrooms, on the other hand, require their
firmness to be determined before a classification can be made.
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This output representation encapsulates knowledge and can be used to
classify ‘new’ or ‘unknown’ mushrooms. Suppose we were given values for the
four variables for a mushroom which was not one of the original fourteen used to
build the model and asked to classify it, say, for example: light, high, mild, soft.
The model predicts that this is a poor mushroom (light and soft). Decision trees
can contain the repeated use of the same attribute further down in the tree – all
variables are considered at every level of the tree.

7.4.2 Classification rules
An alternative to a decision tree is to represent knowledge as a set of rules. Rule
sets can be either induced directly or produced from a decision tree. For
example, the tree in Fig. 7.1 can be readily transformed into the rule set in Fig.
7.2 by generating a rule for each of the leaves of the tree. The conditions of the
rule are the tests encountered from the leaf to the root of the tree (combined as
conjunctions) and the classification given by the rule is the class label of the
leaf.

Decision trees form well-behaved rule sets in that they are mutually
exclusive. Each rule will only fire once for each instance. In general, rules may
overlap (provide multiple classifications) requiring a vote to be taken on the
classification or taking the classification given by the first rule that is triggered.
These strategies will clearly lead to different results. Rule sets can establish
default rules that are applied when all others fail. These rules can make the rule
representation more compact than, say, a decision tree because the default rule
‘tidies up’ large numbers of instances not covered elsewhere.

7.4.3 Association rules
So far we have assumed a situation where a number of independent attribute
values are combined in a model involving tests on those values to establish a

Fig. 7.1 Decision tree for the mushroom data.
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relationship with a class label. Association rules generalize this idea to include
relationships between single or composite attributes. This notion gives rise to a
very large number of possible attribute combinations. From this large set we are
interested in those associations that cover or support a large number of instances.

Accuracy or confidence is established for an association by calculating the
proportion of the total number of instances that a rule predicts correctly. The
Apriori algorithm9 is the most commonly used association rule learner. Figure
7.3 shows some of the ‘best’ sets of associations using Apriori for the mushroom
data of Table 7.1. The number before the implication symbol ��� is the
support (in the first rule, the number of instances covered by dirt � clean and
firmness � hard). The first number at the end of the rule is the number of
instances that also satisfy the consequent (quality � poor) and the number in
brackets is the confidence (the number after the consequent divided by the
support). The rules are ordered first by confidence and second by support. The
first association rule of Fig. 7.3 is a ‘standard’ classification rule whereas the
second associates stalk damage with dirt. The final two rules show how
composite associations can be drawn.

7.4.4 Numeric prediction representations
Let us suppose that the mushroom data quality was determined on an integer
scale rather than a binary scale. Methods for predicting numeric quantities
perform regression. The simplest establish a linear relationship between the
attributes of a problem and a numeric quantity by estimating coefficients for
each attribute. This idea can be combined with a decision tree to produce a
model tree.10 Model trees have standard decision tree tests at interior nodes of
the tree and linear models at the leaves.

Fig. 7.2 Rule set for the mushroom data.

Fig. 7.3 Apriori associations for the mushroom data.
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Using the technique described earlier it is possible to generate a set of
regression rules from the model tree. An example set of rules together with their
linear models is shown in Fig. 7.4 for an apple bruising problem3 – unfor-
tunately, there is insufficient data in Table 7.1 to induce a useful set of rules.
Interpreting the first rule with linear model LM1, if the energy level is one
(equivalent to a drop height of 10 mm) the apple is predicted to bruise to a
maximum of 0.251 when dropped on locations 2 and 4 (calyx shoulder and large
cheek, respectively). Apples bruise to a maximum of 0.251 + 0.193 if dropped
on location 3 (small cheek), and when dropped on their stem shoulder we get the
largest degree of bruising (0.251 + 0.193 + 0.0936).

7.5 Data mining methods

Many algorithms have been developed for data mining, and what follows is a
survey of some of the basic methods. More advanced techniques are available,
along with optimization schemes to deal with possible complications that might
arise when analysing real data sets, but it can be surprising how often even the
simplest approach produces a good result.

7.5.1 Rule induction
One quick and easy way to formulate classification rules for a given set of
instances is to identify the attribute with the highest co-occurrence rate with each
class and generate a corresponding one-level decision tree. This simple algorithm,
called 1R,11 produces a very small set of rules that is often quite good at making
accurate classification decisions for even quite large data sets, presumably
because underlying relationships in real data are frequently uncomplicated. The

Fig. 7.4 Rules generated from a model tree for an apple bruising data set.
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algorithm proceeds by considering each value of each attribute and counting how
often it co-occurs with each distinct class attribute value. A tentative rule is
formed which predicts the most frequent class on the basis of the attribute value in
question, and then an error rate is calculated for that rule. After all values for all
attributes have been trialled, the rules with the lowest error rates are chosen.

A good way to see how 1R works is to apply it to the example data in Table
7.1. When the value of Weight is ‘heavy’, the class ‘poor’ occurs three times
while ‘good’ occurs twice; thus a rule is formed to say ‘if Weight is heavy then
Quality is ‘poor’ and its probability of error is calculated as 2/5 for the two times
it is wrong out of the five times it can be tested. The procedure then iterates
using the next value for Weight to produce the rule ‘if Weight is normal then
Quality is good’ with an error rate of zero.

Table 7.2 summarises the complete 1R rules for the mushroom data. Note
that the rules for high Stalk damage and soft Firmness have fifty percent error
rates, in which case the complement class can be predicted with equal accuracy.
When two rules perform equally well then either one can be chosen. The same
goes when it comes time to select the final rule set. Decision rules for both
Weight and Dirt have equally low error rates so either can be retained. Thus the
very simple set of rules

Dirt: mild � poor
clean � good

is sufficient to predict the quality of a mushroom correctly more than 71% of the
time.

7.5.2 Statistical models
1R derives a rule set which makes classification decisions based on just one
attribute. It is quite possible to factor all attributes into the decision-making
process using a simple statistical approach based on Bayes’ rule of conditional
probability. The idea is to assign probabilities to each class in light of the

Table 7.2 1R rule sets for the mushroom data

Attribute Rule Error rate Total error rate

Weight heavy� poor 2/5 4/14
normal� good 0/4
light� good 2/5

Stalk damage high� poor 2/4 5/14
medium� good 2/6
light� good –

Dirt mild� poor 3/7 4/14
clean� good 1/7

Firmness hard� good 2/8 5/14
soft� poor 3/6
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combined evidence afforded by all other attributes, then select the most likely
classification.

The algorithm proceeds by counting how many times each value of each
attribute occurs with each class value. The independent probability for a
particular attribute-value/class-value pair is estimated as the number of times the
attribute value is observed with the class value divided by the number of times
the class value is observed.

Table 7.3 summarizes the independent probabilities for the mushroom data of
Table 7.1. We observe that poor Quality occurs for five of the fourteen
instances, and for three of those instances Weight is heavy, thus the probability
of a mushroom being of poor Quality when it is heavy is 3/5. Note that the
probabilities under the Quality attribute are simply the number of times each
value is observed out of the total number of instances.

Given Table 7.3 it is now possible to estimate the likelihood that a novel
instance belongs in any class. Consider the situation where a new mushroom
instance is encountered with the following attribute values:

Weight� light AND Stalk damage� high AND Dirt�mild AND Firmness� soft

The likelihood that this instance is of poor Quality is estimated as the product of
the independent probabilities for each of its attribute values co-occurring with
poor Quality, or

likelihood of poor Quality� 2/5� 2/5� 4/5� 3/5� 0.0768

and the likelihood that its Quality is good is estimated as

likelihood of good Quality� 3/9� 2/9� 3/9� 3/9� 0.0082.

A comparison of these two values indicates that the new instance is much more
likely to be of poor Quality than good. As it is usual for all possible outcomes to
have combined probability of 1, the likelihood estimates can be normalized to
probabilities by dividing each by the sum, giving

Pr[poor]� 0.0768 / (0.0768 + 0.0082)� 90.35%
Pr[good]� 0.0082 / (0.0768 + 0.0082)� 9.65%.

This technique is called Naı̈ve Bayes because it assumes all attributes are
independent of each other and of equal importance when making a classification
decision. Such an assumption is seldom valid with real data sets, but the method

Table 7.3 Independent probabilities for the mushroom data

Weight Stalk damage Dirt Firmness Quality

poor good poor good poor good poor good poor good

heavy 3/5 2/9 high 2/5 2/9 mild 4/5 3/9 hard 2/5 6/9 5/14 9/14
normal 0/5 4/9 medium 2/5 4/9 clean 1/5 6/9 soft 3/5 3/9
light 2/5 3/9 clear 1/5 3/9
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nevertheless does quite well in practice. Note that there is some danger that some
attribute-value pairs will not be observed in the sample data, like normal Weight
with poor Quality in the mushroom data. This results in a zero probability, and
because any product of probabilities that includes a zero term will itself be zero
this creates the possibility that even overwhelming evidence from other attributes
may be completely discounted. The problem is well known in Bayesian analysis
and is avoided by assigning very small probabilities to all unseen events.

7.5.3 Decision tree induction
Decision trees can be developed directly from data using a ‘divide and conquer’
approach. One-level decision trees are constructed for each attribute, splitting
the data into groups according to their values for that attribute. The best of these
is retained and another set of one-level decision trees is constructed for each of
its groups using each of the remaining attributes, and so on. Only groups with
more than one class value in them are split, and the process stops when no
further splitting is possible. This is the basic idea behind the ID3 induction
procedure12 and the C4.5 system.1

Figure 7.5 shows the initial four decision trees that result when each attribute
of the mushroom data is trialled. Only one of these is to be refined further if the
algorithm is to avoid an exhaustive search. The question remains then, how can
we tell which is the best one? Any group that has more than one class value
represented in it must be split. But the ultimate goal is to have as shallow a tree
as possible, meaning as few splits as possible. Therefore we select the tree
whose groups are the most ‘pure’ – that is, groups that require the least number
of additional splits to get all class values into separate subgroups.

It is not obvious how one might measure the purity of a group, but it turns out
it can be done by determining how much information is gained by each split.
This is much like the game of twenty-questions, where some number of yes-no
questions must be asked to determine what is unknown at the outset. Some
questions are better than others and lead you to the right answer more quickly
than less prudent ones. A good question is generally one that reveals the most
information and therefore reduces our search space the most. So it is with
decision tree induction that we select the attribute that best partitions the data so
that the fewest number of additional questions must be asked to determine the
class value exactly.

The exact formula for calculating information gain is the entropy function
from communications theory, and it is beyond the scope of this brief survey to
outline the details. For more information, the reader should consult Shannon and
Weaver.13

7.5.4 Covering rules
The decision tree and rule induction methods outlined above attack the problem
of data mining by combining attribute tests together and testing the accuracy of
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the ensuing prediction. An alternative strategy is to start with the desired
prediction and add attribute tests in such a way that the accuracy of the
prediction is kept as high as possible. This approach is called covering because
rules are constructed to cover as many instances of the data as possible.

For the mushroom data, we want to form rules to cover the two possible
classifications: good and poor. Thus we might begin by seeking a rule of the form

if ? then Quality� good.

There are ten possible attribute tests we could use to complete this covering rule.
These are listed in Table 7.4 along with the accuracy each would provide given
the evidence of the fourteen instances.

To complete the rule we simply choose the test that gives the highest
number of correct classifications. If more than one test gives the best result, as

Fig. 7.5 Initial one-level decision trees for the mushroom data.
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in this case, then the choice is arbitrary. Thus our covering rule can be
completed as

if Firmness� hard then Quality� good.

This rule is the best we can make from a single test, but it is not all that good. It
makes the correct classification for fewer than half the instances, and of the eight
times the condition is true it gives the wrong classification twice. To remedy
incorrect classifications the algorithm tries to find another condition that can be
added to give a more accurate rule of the form

if Firmness� hard AND ? then Quality� good.

There are eight other attribute tests available to complete the rule and these are
listed in Table 7.5 along with their accuracy levels for the eight instances where
the first test is successful. We choose the best of these to complete the covering
rule as:

if Firmness� hard AND Dirt� clean then Quality� good.

This rule applies to four of the nine instances in the sample data where Quality is
good, and it gives the correct classification each time. To complete the rule set

Table 7.4 Possible attribute tests to complete the initial covering rule

Attribute test Accuracy

Weight� heavy 2/14
Weight� normal 4/14
Weight� light 3/14
Stalk damage� high 2/14
Stalk damage�medium 4/14
Stalk damage� clear 3/14
Dirt�mild 3/14
Dirt� clean 6/14
Firmness� hard 6/14
Firmness� soft 3/14

Table 7.5 Attribute tests that can be added to the covering rule

Attribute test Accuracy

Weight� heavy 1/8
Weight� normal 2/8
Weight� light 3/8
Stalk damage� high 2/8
Stalk damage�medium 2/8
Stalk damage� clear 2/8
Dirt�mild 2/8
Dirt� clean 4/8
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we remove those four instances and repeat the process. Once an entire class is
covered, a new search is started for the next class value using the complete data
set.

This method of rule construction underlies the PRISM algorithm14 but
because it only generates rules that are 100% accurate it is susceptible to
generating large overfitting rules when the training instances contain errors.
INDUCT15 is a modification to the algorithm that uses a statistical measure of
‘goodness’ to produce approximate rules from noisy data.

7.5.5 Association rules
The algorithms outlined above address the problem of finding classification
rules; that is, they seek to characterize the conditions under which a particular
class can be predicted based on the values of other attributes. Often the objective
of data mining is more uncertain that this, and the goal is simply to discover
which attributes exhibit dependencies or structural patterns of any type. In the
case of the mushroom data, for example, it may be the case that heavy Weight
coincides with high Stalk damage, or mild Dirt frequently accompanies soft
Firmness, and uncovering associations like these can suggest to the data miner
possible causative relationships.

One way to find association between other attributes is simply to ignore the
class attribute and treat one of the others as the class, then use one of the
algorithms given above. A more efficient method is to look for interesting item
sets, a term that derives from the idea of items in a supermarket shopping basket.
An item is an attribute-value pair and an item set is some number of items. The
APRIORI16 algorithm looks for item sets with notable frequency and translates
them into association rules. How frequently an item set must be observed in
order for it to be ‘notable’ is a parameter to the algorithm, but it must occur
twice at least.

The algorithm proceeds by generating all one-item sets, then all two-item
sets, then all three-item sets, and so on, where the same attribute is not allowed
to appear more than once in any item set. Item sets with more than one item that
occur more than once are translated into association rules where some number of
items in the set predict the others, then the rules are tested against the data for
accuracy.

While this sounds like it requires an exhaustive search of all possible
attribute-value combinations, there is a fundamental principle that greatly
reduces the number that must be considered. An n-item set can only occur more
than once if all of its (n�1)-sets also occur more than once. Candidate n-item
sets are obtained simply by taking the union of all pairs of (n�1)-item sets and
keeping those with n items.

Association rules are often useful when seeking an initial characterization of
a very large data set without class values. Large databases can lead to excessive
computation, but this can be reduced by increasing the minimum frequency
required for an item set to be considered interesting.
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7.5.6 Mining from numeric data
The data mining techniques described above work well for data sets with
nominal values, and can be applied to numeric data after discretization. But
there are algorithms that are ideally suited to numeric data.

Linear regression is a standard statistical method that works well for data
mining. The idea is to apply a membership function that calculates the class for a
given instance using a linear combination of its attributes. For n attributes, a set
of n weights is defined to produce a formula of the form

f �x� � w0 � w1a1 � w2a2 � � � �� wnan

where f (x) is the membership function, a1, a2, � � �, an are the attributes of
instance x, and w0, w1, � � �, wn are weights. The weights are calculated from the
training data by finding coefficients that minimize the sum of the squares of the
differences over all instances – an operation that is standard in commercial
statistics software.

Another good data mining technique for numeric data is instance-based
learning. The underlying idea is to treat instances as points in multi-dimensional
space with the attribute values as their coordinates. To classify a novel instance,
the algorithm calculates its Euclidian distances to the other instances and assigns
it the same class as its nearest neighbour. Because some attributes may be
assigned values from much greater scales than others, they have the potential to
dominate the distance calculation. It is therefore necessary to normalize attribute
values to between zero and one with respect to where they lie on a number line
between the minimum and maximum values observed for that attribute.

7.6 Output evaluation

The objective of data mining algorithms is to develop a characterization of data
sufficient to identify hidden relationships or support future decisions. Individual
algorithms may vary in terms of the results they give; thus an important step in
data mining is evaluating the usefulness of the result.

7.6.1 Predictive accuracy
It is quite natural to measure the performance of a classification scheme simply
by calculating its rate of error or success, say, as a percentage of the number of
times it assigns the correct class to novel instances. But there are a number of
problems that can arise. For one thing, new instances may not be in large supply,
and by the time enough evidence has been seen to indicate something has gone
wrong it may be too late. Furthermore, the success rate is usually only an
approximate measure of a model’s accuracy. How close is close enough for a
classification scheme? For example, if a model is inferred to explain the
outcome of tossing a fair coin, but during testing a rare sequence of ten
consecutive ‘heads’ is observed, should the model be dismissed as invalid? And
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what if the training data is rife with exceptional instances? How can we tell the
difference between 1) a model trained on poor data and tested on good data, and
2) a model trained on good data and tested on poor? To avoid this it is usual to
express the estimate of success in terms of a confidence level, just like we would
for any conclusion based on limited observations.

7.6.2 Cross-validation
There are two aspects to data mining that can influence evaluation of the
outcome from any given learning algorithm: training and testing. In the best of
all possible situations there would be a large representative data set available for
training and another for testing. In practice there is just one big data set that has
to be partitioned into a training set and test set.

There is always some danger that the data is not partitioned well, such that
either the training data or the test data contains a high number of unusual
instances, leading to poor performance either way. One way to guard against this
is to train with one data set and test with the other, then swap the data sets, re-
test and compare the results. If the results are significantly different the data can
be partitioned another way and the experiments repeated. This procedure is
called cross-validation and it is an important statistical technique for avoiding
accidental bias in the data.

7.6.3 N-fold cross-validation
A more general technique for mitigating the possibility of bias is to divide the
data into three or more separate sets. One set is put aside for testing and the
remaining sets are combined to form the training set. Cross-validation tests are
performed by repeating the experiments with each subset being withheld for
testing. This technique is called n-fold cross-validation where n is the number of
data subsets. Empirical studies have shown that tenfold cross-validation is
generally sufficient to garner reliable results.

7.6.4 Leave-one-out
When data is in short supply, as is often the case, it may be desirable to keep as
much data as possible for training. Leave-one-out cross-validation is n-fold
cross-validation taken to the extreme, such that only one instance is withheld for
testing and experimentation is carried out n times. This approach has the added
advantage of minimizing the potential for bias introduced during partitioning.

7.7 Concluding remarks

There is tremendous potential for food process modelling to benefit from data
mining. Computer control and monitoring have made the collection of data all
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too easy, but it is nearly impossible for people to keep up with the analysis
required to turn that data into information and knowledge. Data mining provides
a solution by getting computers to do the analysis as well.

It is not necessary for one to become an expert in automated reasoning
systems to start data mining. All the methods we have described here are readily
available on the Internet ready to run. In fact the Weka System, developed at the
University of Waikato in New Zealand, has combined most of the standard
learning algorithms together under a single user interface, complete with built-in
tools for data preparation and results visualization. Weka has been tested under
Windows, Macintosh and Linux systems and is freely available through the
Internet from several sites.

This chapter has necessarily been a very brief discussion of the principles and
issues of data mining. For a more thorough treatment that is easy to understand,
we recommend the textbook by Witten and Frank.17
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8.1 Introduction

In recent years the interest in the concepts and applications of predictive
microbiology by the food industry and retailers has increased considerably.30

Mathematical models describing the impact of processing, distribution and
storage conditions on the microbial load have proved to be useful tools in the
framework of risk assessment and risk management.7, 8, 10 More precisely,
applications of these models are in predicting the likely number of hazardous
and/or spoilage microorganisms at a certain point in time within a food product’s
life cycle (in, e.g., exposure assessment, HACCP-systems (Hazard Analysis and
Critical Control Points)).

At present, these models are almost exclusively deterministic. It is tacitly
assumed that the kinetic parameters, the initial states and the process controlling
conditions are accurately known. Hence, the predicted microbial load at a
certain point in time can be calculated exactly and is therefore fully
deterministic. However, predictive modelling mostly takes place in an uncertain
environment; thus relating stochastic properties to predictions.21 Predicted
values must be understood as random values characterised by a probability
density function. Usually, a distinction can be made between uncertainty and
variability.15 Factors of imprecision and inaccuracy which limit the ability to
quantify a variable exactly are referred to as uncertainties, whereas inherent
heterogeneity results in variability. Sources of uncertainty and variability in
predictive microbiology include the following:2, 15, 21, 23

• In general, the initial microbial load or its composition is not precisely
known. Moreover, initiation of growth (or inactivation) is usually preceded
by an adaptation phase (lag) which is largely dependent on the previous
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growth stage and the difference between the previous and the new growth
conditions. Such effects may be well defined during laboratory experiments,
whereas, in real life, the initial physiological state of the cells and its
influence on the microbial evolution are highly uncertain and variable.

• In real operation mode, the extrinsic and intrinsic process conditions
determining the microbial behaviour, e.g., temperature and product
composition, usually vary within the same product, between products and
between subsequent batches.

• Uncertainties may be due to the limited number of monitoring points or the
inability to perform these measurements. This may concern measurements of
both the independent variable(s) and the dependent variable(s). The lack of
observations might be overcome by the use of other models. Schellekens et
al., for example, combine heat transfer models – predicting the (local)
temperature – with inactivation models in order to forecast the effectiveness
of a heat processing step of a lasagne.25 Note that the model uncertainties are
accumulated.

• Moreover, measurements, e.g., cell density counts, are generally corrupted by
random noise, yielding model parameters with a random character as well.24

With respect to the practical application of predictive models, understanding
and quantification of uncertainties and errors coupled with these models is of
utmost importance. As stated above, sources of uncertainty and variability may
enter into the modelling process at various points causing prediction
uncertainties. During model building and at the level of real-life implementa-
tion, the user should be aware of the effects of uncertainties, their consequences
and how to deal with them.

This chapter discusses the model building process in the context of identifying
and quantifying model uncertainties. Generally, model building starts with
collecting (i) data from preliminary experiments, (ii) a priori knowledge from the
literature and experience, and (iii) model design requirements. Initial data
processing may be necessary to improve the statistical properties of the data and
to remove possible outliers. These issues are addressed in section 8.2. Next, an
appropriate mathematical relation (i.e., the model structure) between the
manipulated variable(s) (i.e., input) and the measured variable(s) (i.e., output)
needs to be defined. The constants within this mathematical expression, i.e., the
model parameters, are determined during parameter estimation. Note that
structure characterisation and parameter estimation are usually closely entwined.
Finally, the model should be tested against (i) new experimental data obtained
under similar conditions (mathematical validation) and, if passed successfully,
(ii) data obtained in real-life situations, e.g., within a food product (product
validation).27 Structure characterisation, parameter estimation and model
validation, are repeated within an iterative process until a suitable model is
obtained. Quite often additional data are to be collected (i) to distinguish between
model structures, or (ii) to improve parameter estimation quality. Careful
(optimal) experiment design is indispensable at this point.
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Model structure characterisation is briefly discussed in section 8.3. Model
parameter estimation together with the characterisation of uncertainties
(including identifying parameter distributions and confidence limits) are
addressed in section 8.4. In section 8.5, the uncertainty related with the predicted
model output is assessed. General conclusions are formulated in section 8.6.

8.2 Data (pre)processing

Many regression techniques and statistical analysis tools assume that the
measurements of a process variable consist of the true process output and some
independently and identically distributed zero-mean Gaussian random error.
Correct use of the classical least sum of squared errors criterion for parameter
estimation, for example, is based on this assumption (see section 8.4).
Consequently, the use of appropriate data transformations to stabilise the
measurement error variance is strongly recommended. Similarly, outliers are to
be removed as occasional erroneous observations within the experimental data
may induce biased parameter estimates. General references on these subjects
include Coleman et al.,9 Martens and Naes,18 and Neter et al.20

8.2.1 Variance stabilising transformations
In order to determine the stochastic properties of the measurement errors,
replicate observations at various values of the dependent variable are required.
Repeated sampling (or experimentation) will not yield identical measurements
of the dependent variable due to experimental errors and/or (biological) process
variability. The randomness of these measurement errors (defined as the
difference between the ith replicate observation and the mean of all replicates) is
characterised by some probability density function. Commonly, a normal error
distribution is assumed. According to the central limit theorem, random noise
will tend to be normally distributed when the sample size tends to infinity.20

However, non-normality of the error terms together with unequal error variances
frequently appear in practice. In this case, the use of variance stabilising
transformations is required as explained before.

A simple method to test for the most appropriate data transformation for
variance stabilisation (equally normalising the distribution) is based on the
dependence of the error variance (or standard deviation) on the mean value of
the dependent variable.19, 20 Some well-known data transformations are listed in
Table 8.1. Note that to obtain an estimate for the original non-transformed
variable, a correction for bias has to be introduced.19 The latter is illustrated in
section 8.5.

Examples of variance stabilising transformations in predictive microbiology
can be found in Jarvis16 and McMeekin et al.19 The former discusses the well-
known logarithmic transformation of the microbial population density N (colony
forming units per volume unit) as a function of time which is based on the
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heteroscedastic property of the error variance. It is namely observed that the
error variance increases more or less quadratically with increasing values of N
(i.e., the measurement errors exhibit a negative binomial distribution). Here, the
case is illustrated with some unpublished experimental results (Bernaerts K.).
Replicate samples of a growing cell culture (Escherichia coli K12) were
analysed on the cell density N (CFU/mL) by plate counting obtained via serial
dilution of the sample aliquot and surface-plating of the appropriate dilution on
the enumeration medium using a spiral plater. The measurement errors, i.e.,
N � Nmean (with Nmean the mean cell density of the replicate measurements at a
certain value of N ) are depicted in the upper left plot of Fig. 8.1. The upper right
plot in Fig. 8.1 contains the measurement error variance at each level of the
dependent variable. (The measurement error variance may be approximated by
the mean sum of squared residuals, i.e.

�nr
i�1�yi � y���nr � 1� with yi the ith

observation of nr replicate measurements, and y the mean of the replicate
measurements (see also section 8.4.1). The square root of the mean sum of
squared residuals yields the error standard deviation.) Clearly, the error variance
increases with increasing values of N . After logarithmic transformation, the
error variance here s2

lnN is stabilised as shown in Fig. 8.1 (lower plots).
If a variance stabilising data transformation is not performed, a weighted sum

of squared errors should be considered during parameter estimation (see section
8.4.1).

8.2.2 Removing outliers
Observations which deviate much more from the other measured values than
would be expected from the statistical properties of the stochastic value, are

Table 8.1 Variance stabilising data transformation and the appropriate back-
transformation of the predicted dependent variables (partly adopted from McMeekin et
al.)19

Distribution (*) Property Variance stabilising Back-transformation
continuousc or data of predictions
discreted type) transformation (corrected for bias)

Normalc s2
y � C � �

Poissond

s2
y � C � y r � ���

y
�

�y � ��r�2 � s2
rBinomiald

Gammac

s2
y � C � y2 r � lny �y � exp��r � �1�2� � s2

r �Negative binomiald

Inverse Gammac s2
y � C � y3 r � 1�

���
y
�

�y � ��r��2 � �1� 3s2
r���r�2�

(*) Distribution of the output y, or equally, the error term (y� y).
s2

y : the variance on the output y; y: the sample mean
C : some proportionality constant; r: the transformed output
s2

r : the variance on the transformed output r
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called outliers and can cause great difficulty.9, 18, 20 A major reason for
discarding outliers is that under the use of the least sum of squared errors method
for parameter estimation, a fitted line may be pulled disproportionately towards
an outlying observation to minimise accumulative quadratic cost (see section
8.4). This could cause a misleading fit if indeed the outlier observation resulted
from a mistake or other extraneous cause.

A safe rule is to discard outliers only if there is direct evidence that these
represent an error in recording, a miscalculation, a malfunctioning of equipment,
or a similar type of circumstances.20 However, the more common situation is
when there is no obvious or verifiable reason for the large deviation of these data
points. In this case, a statistical criterion is to be used to identify points that
might be considered for rejection. The selected model is then fitted to the
remaining data.

In a standardised residual plot, the residual errors (i.e., the difference between
the model prediction and the measured output) divided by the error standard
deviation are plotted with respect to the observations.20 Outlying points lie far
beyond the scatter of remaining residues (e.g., more than three times the
standard deviation). This simple graphical method, however, is not easily
applied for the identification of outliers in multi-variable regression. Another

Fig. 8.1 Logarithmic transformation of cell density counts in order to stabilise the error
variance (unpublished results).
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test for identifying an outlier involves fitting the model again to the other n� 1
observations.20 The suspect observation can now be considered as a new
observation, of which one can calculate the chance to be observed in n
observations. If the probability is sufficiently small, the outlier can be rejected as
not originating from the same population as the other n� 1 observations.
Otherwise, the outlier is retained.

More time-consuming is the construction of a deleted residual plot.20 The
deleted residual for the ith data point is calculated as follows. The experimental
data without the ith observation are fitted by the model. The difference between
the model prediction and the omitted observation then corresponds to the ith
deleted residual. If the model is appropriate, the n deleted residuals should be
normally distributed. Extreme deviation from the mean of the deleted residuals
could indicate the presence of an outlier.

8.3 Model structure characterisation

As there is a lack of generally applicable structure characterisation techniques
for non-linear systems, the structure characterisation problem is usually
formulated as a model selection problem: the most suitable model has to be
selected out of a pre-specified (finite) set of candidate models.

Structural errors related with the chosen model structure contribute to the
overall modelling error. A structure characterisation error results in a bias
between model predictions and output measurements expressing the components
of dynamic processess that are not accounted for by the model.

8.3.1 Defining a set of candidate models
The set of candidate models can be chosen based on (i) a priori knowledge, (ii)
results of historical modelling attempts, and (iii) the aim of the model with
associated model features (see also Chapter 2). For example, a model for
simulation could be much more complex than a model which will be used for
process control or risk analysis purposes afterwards.

Depending on the level of built-in mechanistic, biological and/or physical a
priori knowledge, model structures can be subdivided into three classes (see, e.g.,
Ljung17). White box models are constructed based on physical/(bio-)chemical laws
and the (full) knowledge of all underlying mechanisms. Such models commonly
result from a deductive modelling approach. Black box models are their
counterpart. They define a purely empirical mathematical relation between the
input and output variables based on (informative) experimental data. Black box
model parameters do not reflect physical considerations a priori. In this book,
black box models are classified as inductive models. In between, grey box models
try to combine the best of both worlds.

In predictive microbiology, a large number of available model types belongs
to the black box models category, although the a posteriori biological
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interpretation associated with (some of) their parameters and/or state variables
facilitates their use (see, e.g., Baranji and Roberts1 and Rosso22).

8.3.2 Selection criteria
Theoretical analysis
Once the candidate models are selected, it is of use to study the structural properties
of the proposed models. (Model properties are termed structural if they are valid for
any parameter combination within the parameter space.) Structural identifiability
(or theoretical parameter identifiability) deals with the possibility to (uniquely)
estimate the model parameters on the basis of the planned (perfect) measure-
ments.14, 31 The study might reveal parameter correlation inherently associated
with the (highly non-linear) model structure. In such cases, no experimental effort
needs to be put into estimation of those parameters, and changing of the model
structure is recommended. Furthermore, proper selection between feasible models
structures can only be guaranteed when the model structures are distinguishable.
Two competing model structures M and �M are distinguishable if, for all feasible
parameters p of the model structure M , there are no feasible values �p of a
competing model structure �M such that �M��p� � M�p�. In other words, competing
distinguishable models cannot generate identical predictions.

Mathematical frames for checking both the conditions of identifiability and
distinguishability are provided in the literature (e.g., Godfrey and Distefano14,
Walter and Pronzato31). However, none of the methods presented in the
literature so far provides generic properties for specific classes of non-linear
models, which is an important handicap in view of structure characterisation of
food (bio-)process models.

Case-specific model features
Generally, it is worthwhile to define a set of model design requirements that a
candidate model type should fulfill. Examples of model design requirements are:
simplicity, biological significance of all model parameters, minimum number of
parameters, applicability, quality of fit, minimum correlation between
parameters and easy to obtain initial parameter estimations. An example in
predictive microbiology is the development of the cardinal values models. An
important member of this class is the CTMI-model, the Cardinal Temperature
Model with Inflection Point.22 This model, describing the maximum specific
growth rate �max of microorganisms as a function of temperature, was
constructed taking into account the following additional properties (based on
experimental results):

1. the model should allow an inflection point between the minimum and
optimum temperature for growth, (i.e., the optimum temperature for
growth),

2. the value of �max should be zero at the boundaries of the temperature range
of growth,
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3. the model should have horizontal tangent lines near the minimum and
optimum temperature for growth, and

4. the model should describe a steep decrease of �max within the super-optimal
growth temperature range.

The minimum number of parameters, needed to fulfill these requirements, is
four: Tmin, Topt, Tmax, i.e., the theoretical minimum, optimum and maximum
temperature for growth, respectively, and �opt, the maximum specific growth
rate at Topt.

Needless to say that by such an approach, the set of candidate model types
will be reduced easily to a limited set of model structures fulfilling the model
design requirements as defined above.

Another, more recent example in predictive microbiology can be found in
Geeraerd et al.13 Geeraerd et al. formulate a set of model design requirements by
which a suitable model structure for microbial inactivation during a mild heat
treatment could be selected.

Some comments on the model design requirements as stated above are the
following. An important property of any model is to realise a trade-off between
flexibility and parsimony. It is obvious that the capability of the model to
describe different possible process conditions (flexibility) increases with the
number of model parameters. However, over-parameterisation of the model is to
be avoided. In such a case, the model (parameters) adjust to features of the
particular realisations of the noise yielding a more or less perfect fit of the
experimental data at hand (lack of model robustness or overfitting11), whereas
good modelling practice should aim at following the general – usually quite
smooth – trend hidden in the data. Furthermore, non-linear models require
iterative optimisation procedures for parameter estimation which may become
computationally tedious or even more unfeasible when the number of model
parameters is (too) high. (The term non-linearity here denotes non-linearity in
the parameters. As such, the polynome y � ax3 � bx2 � cx � d is a linear
model, whereas the exponential y � a exp �bx� is a non-linear model. For a non-
linear model, some sensitivities (i.e., the partial derivatives of the model output
with respect to one of its parameters) depend on at least one of the other
parameters.)

Model discrimination
Further discrimination among candidate models (which all satisfy all model
design requirements as discussed in the previous section) may be based on a
statistical hypothesis test. The F-test is probably the most frequently used test.20

Although F-tests are in principle only valid for linear models, they may provide
some indication about suitability of the competing models.26 Zwietering et al.,
for example, use the F-test to discriminate between several microbial growth
models32 and between models describing the temperature dependence of the
maximum specific growth rate.33 Other discrimination criteria can be found in
Appendix A.
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8.4 Model parameter estimation

Once a suitable candidate model structure has been selected, the model is
adjusted (fitted) to the experimental data for estimation of the model parameters.
These parameter estimates are the result of the minimisation of some
identification cost �I which quantifies the deviation between the model
predictions and the measured output. Often model parameters are assumed
deterministic implying that a unique (true) parameter vector describes the
system under study. Due to the random character of the measurement error,
however, the parameter estimates will be statistically distributed. Models
inferring an a priori distribution on the model parameters are termed stochastic
models. The (individual) parameter uncertainty can be characterised by the
parameter variance and the confidence limits. The joint uncertainty of
(correlated) model parameters can be evaluated by the construction of (joint)
confidence regions.

The main source of information during parameter estimation is the available
set of the experimental data. It has been demonstrated that the use of optimal
experiment design for parameter estimation can reasonably contribute to an
improvement of the parameter estimation accuracy (see, e.g., Walter and
Pronzato31). In the field of predictive microbiology, promising examples of
optimal experiment design for parameter estimation are reported by Versyck et
al.29 and Bernaerts et al.6 In the respective publications, optimal temperature
profiles have been designed such that the thermal inactivation and growth
kinetic parameters are accurately estimated from the cell density data. The
methodology of optimal experiment design for parameter estimation can also be
used to optimally position sampling times (or sensors) during an experiment.
Opposed to dynamic experiments applying time-varying inputs, the influencing
factors are kept constant during static experiments. Here, the set of treatments
(i.e., combinations of controlling factors) included in the study should be
selected carefully. Typical (static) experiment designs include factorial designs,
fractional factorial designs, and central composite design (see, e.g., Neter et
al.20). Observe that proper experiment design may also facilitate the model
structure discrimination problem.

Let us consider a time-dependent system with one measured output. The
experimental data set, i.e., the (column) vector of the observations
[ yexp�t1� yexp�t2� � � � yexp�tnt�	T with nt the total number of data points, is used
to estimate the vector of model parameters p yielding the model predictions, i.e.,
the vector with the model outputs 
ymod�t1� p� ymod�t2� p� � � � ymod�tnt � p�	T . To
illustrate the techniques of parameter estimation (section 8.4.1), the assessment
of parameter estimation quality (section 8.4.2), and the quantification of the
model output uncertainty (see section 8.5), Example 8.1 is considered.
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Example 8.1
Growth of Escherichia coli K12 at 35ºC has been determined
experimentally. The culture was grown in a flask containing 50 mL Brain
Heart Infusion (initial pH 7.3). The cell density at different time instants,
N�t� (colony forming units per mL) was determined by surface-plating of
appropriate serial dilutions of sampled aliquots on Plate Count Agar. As
mentioned in section 8.2.1, a logarithmic transformation of the cell density
data (��N�t�) stabilises the measurement noise. The experimental data are
plotted in Fig. 8.2.

The Baranyi and Roberts growth model has been chosen as a suitable
model structure.1 Under constant environmental conditions (i.e., not
deliberately changed), the growth model can be written as follows

n�t� � n0 � �maxA�t� � ��

�
1� e�maxA�t� � 1

e�nmax�n0�

�

with A�t� � t � 1
�max

��

�e��maxt � 1
e��max � 1

1� 1
e��max � 1

�
�8�1�

where n0 (�) and nmax (�) denote the natural logarithm of the initial and
asymptotic cell density, respectively, �max (h�1) is defined as the
maximum specific growth rate, and � (h) represents the lag time.

Fig. 8.2 Cell density counts measured during growth of Escherichia coli K12 at
35ºC.
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8.4.1 Parameter estimation criteria
Probably, the most widely used identification cost is the sum of squared errors
SSE which calculates the cumulative quadratic error between the model
predictions ymod�ti� p� and the experimental observations yexp�ti� j�:

SSE �
�nts

i�1

�nri

j�1

�yexp�ti� j� � ymod�ti� p��2 �8�2�

with nts the number of sampling moments, and nri the number of replicate
measurements at the sampling moment ti. Minimisation of the SSE by optimal
choice of the parameter vector p, yields the so-called least-squares estimate �pls.
The model predictions are obtained by evaluation of the model for the optimum
parameters �pls, with SSE��pls� the corresponding least sum of squared errors, or
LSE.

Correct use of this (unweighted) parameter estimation criterion (8.2) implies
that the noise is normally distributed N�0� �2� with a constant variance �2.31 In
this case and given the model structure is error-free, the residuals resemble the
measurement noise on the experimental data, the variance of which can be
approximated by the mean sum of squared errors MSE:

MSE �
�nts

i�1

�nri
j�1�yexp�ti� j� � ymod�ti� �pls��2

nt � np
�8�3�

where the nominator corresponds with the LSE and the denominator is equal to
the degrees of freedom being the total number of data points (nt), i.e.,

�nts
i�1 nri ,

minus the number of estimated model parameters (np).
When the measurement error distribution is known, the problem can be

solved in a maximum likelihood sense. A maximum likelihood estimator
maximises the likelihood of the experimental data being generated by the model
with the parameters p. Under the above-stated error conditions, the maximum
likelihood criterion reduces to an ordinary least sum of squared errors problem.
For the interested reader, the basic principles of maximum likelihood estimators
are given in Appendix B. In order to complete the overview of parameter
estimation criteria, Bayesian estimators are also mentioned in this appendix.

Observe that whenever error terms are not constant, a variance stabilising
data transformation as discussed in section 8.2.1, or the application of a
weighted SSE is recommended.

SSEw �
�nts

i�1

�nri

j�1

wi� j � �yexp�ti� j� � ymod�ti� p��2 �8�4�

The choice of wi� j will express the relative confidence in the various experi-
mental data. A relative identification is obtained by choosing wi� j equal to the
squared inverse of the corresponding output measurement, i.e., 1�
yexp�ti� j�	2.
Use of the relative identification cost will improve the fit at small output values,
which is of interest when outputs with very different amplitude are to be fitted
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simultaneously, or when the error variance increases proportionally with
increasing output values (see Table 8.1).

Division of the SSE by the total number of experimental data allows
comparison of costs obtained with different number of data points.

8.4.2 Assessing uncertainty on parameter estimates
The quality of an estimator can be assessed by its parameter covariance matrix:

P � E���p� p����p� p��T �8�5�
where E denotes the expectation value, p� represents the true parameter vector,
��p� p�� is the vector of estimation errors, and T denotes the transpose.
However, other methods can be used in assessing the parameter uncertainty as
will be pointed out in the following paragraphs. The emphasis will be put on the
case that measurement noise can be presented as an additive random variable
which is independently and identically distributed according to a zero-mean
Gaussian law with variance �2. The model structure is assumed perfectly known.

Analysis of parameter covariance matrix
Given data perturbated by an independently and identically distributed random
noise and structural identifiability of the model, it can be shown that maximum

Example 8.2
For the current example, the model parameters have been estimated by
non-linear regression in SAS (SAS Institute Inc., North Carolina, Release
6.12) based on the minimisation of the sum of squared errors. Results are
stated in Table 8.2, first two columns.

Table 8.2 Evaluation of the approximate uncertainty on the growth model
parameter estimates for the data of E. coli K12 depicted in Fig. 8.2

Parameter Estimate Asymp. St. Dev. 95% confidence interval

n (0) (�) 7.541 0.412 [6.634, 8.448]
nmax (�) 21.848 0.340 [21.099, 22.598]
�max (h�1) 1.771 0.082 [1.591, 1.592]
� (h) 1.061 0.373 [0.239, 1.883]

Asymptotic Correlation Matrix

n (0) nmax mmax �
n (0) 1.000
nmax �0.0474 1.000
�max 0.323 �0.230 1.000
� 0.842 �0.110 0.715 1.000
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likelihood estimators �p are asymptotically efficient, asymptotically unbiased,
and asymptotically Gaussian distributed (see, e.g., Walter and Pronzato31).

The maximum likelihood estimator is said to be an unbiased estimator of p�

when

E��p � p�

which means that if it were possible to replicate the same experiment and
estimate �p an infinite number of times, the mean of these estimates would
coincide with the true value p�. Maximum likelihood estimators are unbiased
when the number of data nt tends to infinity, but are generally biased for a
limited number of data points.

According to the Cramér-Rao inequality, the inverse of the Fisher
information matrix F provides the lower bound on the parameter covariance
matrix P for any absolutely unbiased estimator (see, e.g., Ljung17 for the
elaborated proof):

F�1�p�� � P �8�7�
with

F�p� � Eys�p

��
�

�p
ln�y�ys�p�

��
�

�p
ln�y�ys�p�

�T	
�8�8�

where �y�ys�p� represents the conditional probability density of the observed
data set ys given the parameter vector p. An estimator that reaches the Cramér-
Rao lower bound is called efficient. If nt tends to infinity and the model is linear
in its parameters, the maximum likelihood estimator is efficient, thus yielding
the smallest parameter covariance that can be achieved.

Further, it can be demonstrated that the distribution of �p tends to a Gaussian
distribution N�p��F�1�p��� with the true parameters p� as the mean value, and
the inverse of the Fisher information matrix F (8.8) as the covariance matrix.

Given a zero-mean Gaussian error distribution with variance �2, the Fisher
information matrix can be written as follows.31

F�p�� � 1
�2

�nt

i�1

�
�ymod�ti� p�

�p

�
�p�p�

�
�ymod�ti� p�

�p

�T

�p�p�
�8�9�

When using the matrix � in equation (8.9) to quantify the quality of the
parameter estimates of a particular experiment, besides the assumption on the
measurement error and the commonly small set of data points, further
approximations are made by replacing the true parameter vector by the
estimated parameters, and the error variance �2 by the mean sum of squared
errors MSE. Especially with highly non-linear models, the results should be
interpreted with caution.31

In some textbooks and statistical software packages, the approximate
parameter covariance matrix is calculated as

�JT � J�1 �MSE �8�10�
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with J the (nt by np) Jacobian matrix containing the partial derivatives of the
model output with respect to the model parameters evaluated at each
measurement point, and MSE the mean sum of squared errors (equation 8.3).

Calculation of the inverse of the Fisher information matrix for the model
parameter estimates, F�1��p�, yields approximate values for the variances on the
parameter estimates s2� �pi� (main diagonal), and also the covariance between
two parameter estimates s� �pi� �pj� (off-diagonal elements), which can be used to
construct confidence intervals and to calculate correlation coefficients.

• An approximate �1� 	� � 100% confidence interval on the estimated value of
the ith parameter can be formulated:


 �pi � t�1�	2�nt�np� �
������������
s2��pi�



� �pi � t�1�	2�nt�np� �

������������
s2��pi�



	 �8�11�

where t represents the Student t-value for nt � np degrees of freedom at a
confidence level �1� 	� (which can be read from statistical tables).

• An approximate correlation coefficient between the ith and jth parameter is
defined by:

�1 � s��pi� �pj�
s��pi� � s��pj� � 1 �8�12�

Joint confidence regions
Consider the case of a maximum likelihood parameter estimation problem.
Given independent observations and an output linearised with respect to the
parameters, the errors on the simultaneously estimated parameters can be
assessed by the construction of joint confidence regions which are defined by the
following inequality:5

SSE�p� � SSE��pls� � 1� np

nt � np
F�np� nt � np� 1� 	�

� �
�8�13�

with SSE�p� the sum of squared errors for a parameter vector p, SSE��pls� the least-
squares error (corresponding to the best-fit estimates �pls), np the number of
parameters estimated simultaneously, nt the number of observations, and F the
value of the Fisher-Snedecor F-distribution with np and nt � np degrees of
freedom and a confidence level of 1� 	. The F-values are tabulated in statistical
textbooks, e.g., Neter et al.,20 or can be provided by statistical software.

In the case of np 
 2, it is impossible to visualise correctly the np-
dimensional hypervolume constituted by the joint confidence region (8.13). On

Example 8.3
The approximate covariance matrix of the parameter estimates is
calculated according to equation (8.9). Note that this matrix is a side-
product of the parameter estimation (optimisation) algorithm. The results
are stated in Table 8.2.
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the one hand, a projection on the state plane of two parameters results in an
overestimation of the confidence limits (marginal region). On the other hand, a
two-dimensional representation of the confidence region for two parameters can
be obtained by calculating the SSE�p� only varying the respective two
parameters and keeping the other np � 2 model parameters at their optimum
value (conditional region). This may result in an underestimation of the
confidence regions. Examples in predictive microbiology can be found in the
literature.12, 22

Monte Carlo method
The procedure is as follows.31

• First, the model parameters of a model M are estimated based on the
experimental data.

• Second, fictitious data are generated. Hereto, the model M is evaluated at
each sampling point using the estimated model parameters (i.e., simulation)
and artificially generated experimental noise is added to the model output.
This procedure is repeated yielding a series of fictitious experimental data.

Example 8.4
The 95% joint confidence regions of the parameter estimates for the
Baranyi and Roberts growth model, using the experimental data of E. coli
presented in Fig. 8.2, are depicted in Fig. 8.3.

Fig. 8.3 Projection of the four-dimensional hypervolume on the two-dimensional
parameter space.
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Note that the experimental uncertainty needs to be characterised completely a
priori, though a normal error distribution is no prerequisite in this case. The
jack-knife and bootstrap methods make it possible to avoid estimating the
distribution of the noise from residuals.31

• Third, fictitious parameters are estimated from each fictitious data set.
• Finally, the statistical properties (e.g., probability density function, mean,

covariance matrix) can be determined for the set of (fictitious) parameter
estimates.

A major drawback of the Monte Carlo method is that it is computationally
intensive. A large number of repetitive simulations is necessary to determine the
parameter estimates distribution accurately. Moreover, a high level optimisation
algorithm is required in order to converge to the best parameter set starting from
other sets. This is not evident for problems with a strong correlation between the
parameters.

Example 8.5
A Monte Carlo analysis is performed for the example of E. coli K12. A
constant Gaussian noise on the natural logarithm of the cell density counts
with variance 0.25 is assumed. After 10 000 runs, the frequency distribution
for each model parameter as depicted in Fig. 8.4 is obtained. For each model
parameter, a normal probability function is plotted on the histograms. The
corresponding mean values and variances are listed in Table 8.3.

Fig. 8.4 Frequency plots for the growth model parameters determined by
application of the Monte Carlo method to the experimental data given in Fig. 8.2.
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8.5 Model output uncertainty assessment

The final objective of mathematical modelling is the prediction of future
responses at given conditions (or time instances). Hereto, the model is evaluated
using the estimated model parameters. Owing to the random nature of the model
parameters, the model outputs cannot be predicted in a deterministic sense.
Instead, the predicted model output is also a random variable, characterised by
means of some probability density function.

At this point, the following should be noted. To fulfil the requirement of
normally distributed error terms, a data transformation may be necessary as
explained in section 8.2.1. Consequently, any statistical analysis is to be
established for the transformed data. The use of an appropriate back
transformation (see Table 8.1) yields untransformed predictions and the
accompanying confidence limits.

The Monte Carlo method is the most general way to determine the stochastic
properties of the model predictions. A sample of the random parameter set p is
generated on the computer and the model is solved numerically. After a
reasonable amount of repetitions, the mean ymod�ti� p� and the variance on
ymod�ti� p� can be estimated using common statistical techniques.24

Major drawbacks of the Monte Carlo method are (a) the large number of
repetitive simulations necessary to obtain an acceptable level of accuracy and
(b) the fact that the stochastic parameter set must be specified completely in a
probabilistic sense.24

An alternative approach to determine the uncertainty on the predicted
model output assumes a Gaussian distributed prediction error and makes a
linear approximation of the model output to derive the prediction error
variance (see, e.g., Bard3 and Walter and Pronzato31). In this case, the mean
value of the predicted model output ymod�ti� p� is set equal to ymod�ti� p� i.e.,
the model evaluated at time ti with p the mean of the model parameter
distribution. The latter may be replaced by the estimated model parameters �p if
an unbiased estimator has been used. Note however that the parameter
estimates of non-linear models are usually slightly biased due to the non-
linearity of the model. The prediction error variance at an arbitrary time ti can
be approximated by

Table 8.3 Mean growth model parameters and their standard deviation
determined by the Monte Carlo method applied to the data in Fig. 8.2

n0��� nmax��� �max�h�1� ��h�

Mean 7.529 21.863 1.782 1.066
Standard deviation 0.412 0.347 0.084 0.376
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�2
y�ti�p� � E

��
ymod�ti� p� � ymod�ti� p�

��
ymod�ti� p� � ymod�ti� p�

�T	

�
�
�

�p
ymod�ti� p��p�p

�
P
�
�

�p
ymod�ti� p��p�p

�T

�8�14�

with P the parameter covariance matrix which can be obtained as explained in
section 8.4.2.3, 4, 24

Given the stochastic properties, the confidence limits on the predicted model
output can be defined. These limits define a confidence interval for the expected
value of the model output. In the case of a Gaussian distribution of the predicted
model output, a confidence interval on the (mean) predicted model output with a
(1� 	) certainty level is given by

ymod�ti� p� � t�1�	2�nt�np� � sy�ti�p� �8�15�
where t represents the Student t-value and sy�ti�p� denotes the approximate
standard deviation of the prediction error which can be derived from a Monte
Carlo analysis or approximated by the square root of equation (8.14).

If the outcome of a new experiment is to be predicted, measurement noise
should be taken into account.3, 20 A so-called prediction interval for the actual
model output at time ti is written as

ymod�ti� p� � t�1�	2� nt�np� �
������������������������
s2

y�ti�p� � s2
y�t�

�
�8�16�

where the variance on the measured output s2
y�t� is usually given by the mean

sum of squared errors (equation 8.3).
Note that here the independent variable ti is assumed perfectly known. In

general, however, these measurements are also corrupted by a random error.
Inaccuracies associated with the independent variable will yield an additional
uncertainty on the model parameters, as well as on the model output predictions
(see, e.g., Bard3).

Example 8.6
Figure 8.5 depicts the 95% approximate confidence and prediction
intervals on the predicted growth n�t� �p��� �n�t�� of E. coli K12 calculated
according to equation (8.15) (making use of equation (8.14)) and equation
(8.16), respectively.

To conclude, estimates for the non-transformed output can be calculated
using the back-transformation formula presented in Table 8.1 (section
8.2.1). Remember that an appropriate back-transformation is necessary in
order to account for the bias induced by applying a non-linear data
transformation. Here, the natural logarithm of the cell density n�t� � lnN
has been modelled. An estimate for the cell density N at a time-instant ti is
then given by
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8.6 Conclusions

In view of revealing and dealing with modelling uncertainties, the basic steps of
model building have been discussed in this chapter. In summary, the following
conclusions are to be remembered.

• Due to the incomplete (mechanistic) knowledge of the process and/or its
complexity, it is difficult – if not impossible – to find a perfect mathematical
relation between the process input and output (section 8.3). During model
structure characterisation (or selection), the user should keep in mind some
general model design requirements. The definition of case-specific features
may further facilitate the model structure selection process.

• When the most appropriate model structure has been selected, the objective
of parameter estimation is to find unbiased parameters, i.e., estimates that
coincide with the true process parameters. Correct use of the (classical)
parameter estimation criterion is indispensable here (section 8.4). Hereto,
data (pre)processing involving variance stabilisation and the removal of
outlying erroneous observations might be necessary (see section 8.2).

• Measurement noise superimposed on the dependent variable(s) yields
parameter estimates with a random character described by some probability
density function. Methods to assess the parameter estimation uncertainty are

�N�ti� � exp��n�ti� � �1�2� � s2
n�t��

where the variance on the transformed data (s2
n�t�) may be approximated by

the mean sum of squared errors (see section 8.4.2).

Fig. 8.5 Approximate 95% confidence (� � �) and prediction (��) interval on
the predicted growth n�t� �p� of E. coli K12 with �p the model parameter estimates

stated in Table 8.2. Circles (o) represent the experimental data points.
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explained in section 8.4.2. Note that the results of each method should always
be interpreted with caution (as many presumptions and approximations are
made).

• Because of the random nature of the parameter estimates, model output
predictions are stochastic variables as well. In section 8.5, confidence limits
on the expected values of the output are defined. Whenever predictions are
made, appropriate confidence limits should be established. Here, it is
important to note that measurement uncertainties on the independent
variable(s) will augment the final prediction errors as well.3

Within the complete modelling cycle, the proposed model – after selection of
a suitable model structure and parameter estimation – should be validated. Here,
two validation steps can be distinguished.27 During mathematical validation, the
model is tested on new experimental data generated under conditions similar to
those applied during the experiment yielding the identification data. If the
modelling capacity is not acceptable, the model structure or the model
parameters should be re-identified. An iterative process of structure character-
isation, parameter estimation and model validation may be necessary to obtain
the desired descriptive quality. In the field of predictive microbiology, most
modelling exercises are performed based on laboratory scale experiments under
conditions sometimes quite different from real food product conditions.
Consequently, it is not always trivial to apply the developed model to real
food products. Therefore, a product validation step is to be performed. Model
predictions are compared with the outcome of experimental trials in food
products under real-life conditions. As a result, product validation can be seen as
a way to investigate the appropriateness of the laboratory medium as model
system for the real food product conditions. An adaptation of the laboratory
medium could be a first step towards product validation.

8.7 Appendix A

The Final Prediction Error, Akaike’s Information Criterion and the Bayesian
Information criterion are examples of model selection criteria different from the
F-test. These criteria measure the quality of the model by means of the number
of model parameter np and the sum of squared errors SSE.17 Two basic forms
can be distinguished:28

SSE
nt

1� ��nt� np�	 �8�17�

ntlog

�
SSE
nt

�
� ��nt� np� �8�18�

In both cases, the first term decreases with increasing nt while the second
term penalises too complex models. The Final Prediction Error is given by
equation (8.17) if ��nt� np� � 2 � np��nt � np�. Replacing ��nt� np� by 2 � np in
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equation (8.18) results in the Akaike’s Information Criterion. Unfortunately,
these criteria are not consistent, i.e., they do not guarantee that the probability of
selecting the wrong model tends to zero as the number of data points tends to
infinity. A consistent criterion is the Bayesian Information Criterion in which
��nt� np� equals np � log�log�nt��. For more information, reference is made to
Ljung,17 and references within that text.

8.8 Appendix B

8.8.1 Maximum likelihood estimators
A maximum likelihood estimator maximises the likelihood, i.e., the probability
density function �, of the random variable ys being generated by a model with
the parameters p.31 The random variable ys is a vector containing a series of
experimental observations yexp�ti� j�.

�pml � arg max �y�ys�p� �8�19�
In practice, it is often easier to look for �pml by maximising the log-likelihood
function

�ml�p� � ln �y�ys�p� �8�20�
which yields the same estimate since the logarithmic function is monotonically
increasing.

Given the model output is disturbed by an additive, independent Gaussian
zero-mean random noise with a known or constant variance �2

i , the maximum
likelihood estimate �pml�ys� of p is the minimiser of the quadratic cost

�ml�p� � �wls�p� �
�nt s

i�1

�nri

j�1

wi� j � �yexp�ti� j� � y�ti� p��2 �8�21�

with the weights wi� j � 1��2
i . This estimator can be used if the noise does not

follow a normal law, provided that the variance is known at any time ti. In this
case, it is called the Gauss-Markov estimator. For models linear within the
parameters, minimisation of equation (8.21) yields the best linear unbiased
estimator for p.31 Choosing the weights equal to one, the maximum likelihood
estimator reduces to a common least squares estimator (see section 8.4.1).31

Given certain assumptions, e.g., no structure characterisation error, data
corrupted by an independently identically distributed noise, the maximum
likelihood estimators have the following interesting properties (full details are
given in Walter and Pronzato).31

• They are consistent, i.e., they converge to the true parameters when the
number of data points tends to infinity.

• Moreover, the estimator is asympotically efficient meaning that no consistent
estimator with a smaller variance exists if nt ��.

• A third property is given in section 8.4.2 (equation 8.7).
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8.8.2 Bayesian criteria
If the model parameters are characterised by a distribution with an a priori
known probability function �p�p�, this information should be included in the
parameter estimation criterion.31 The joint probability is given by

�y�ys� p� � �y�ys�p� � �p�p� � �p�p�ys� � �y�ys�
Hence, the a posteriori probability of p, given the data ys, can be calculated by

�p�p�ys� � �y�ys�p� � �p�p�
�y�ys� �8�22�

which is termed Bayes’ rule. Bayesian estimators will maximise the posterior
probability function for p. Like the maximum likelihood estimators, Bayesian
estimators are consistent and asymptotically efficient given that �p�p� is
continuous and non-zero at �pml�ys�.31
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Introduction

Nothing in life is purely black or white, as, at close inspection, a whole gradation
of grey colours is revealed. In the same way, models are often a mixture of
fundamental and empirical approaches. Depending on the preference of the
modeller one of the sides may be emphasised, but the other side does not need to
be concealed. At this stage, it should be clear that both approaches have their
own benefits and drawbacks, and can be combined to strengthen each other.
After having discussed the basic principles of modelling (Parts I and II) it is now
time to see how these approaches can be applied. This part will deal with four
examples from agricultural production. The basic principle applied throughout
the development of all four models discussed was to complete the mass and
energy balances of the studied systems.

Chapters 9 and 10 deal with the important principles of simulation models for
greenhouse and field cultivated vegetables, illustrated using cucumber and
tomato. Both authors present hybrid models, closely linked to photosynthetic
activity of the crop, using varying levels of fundamental and empirical
relationships. In both cases, this resulted in valuable models for use in decision
support systems, for greenhouse climate control and for production planning and
crop management.

Chapters 11 and 12 deal with models on dairy and beef cattle production.
These models start from the same type of crop growth models outlined in
Chapters 9 and 10, as grassland production forms the base for the lifecycle of
cows. Grassland production is linked to cow and dairy production via intake
models. The efficiency of animal and dairy production strongly depends on the
digestibility of the food. To be able to assess the profitability of the production
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system, economic costs and values are included. The developed models can be
used to test alternative scenarios and to assess the impact of management
changes on the efficiency of the production systems.

Maarten Hertog
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9.1 Introduction

Fruit vegetables such as cucumber as well as many cut flowers and pot plants are
often grown in greenhouses. Greenhouses enable growers to control climate
conditions and nutrition to a large extent in order to optimize the production.
Despite this high level of control, a constant production throughout the year or
immediate response of production to market demand is still impossible at
individual farms. There are several factors causing large variation in quantity
and quality of production. First, solar radiation, which is the most important
growth factor, may strongly fluctuate from day to day. In the Netherlands
(latitude: 52º), the daily radiation during summertime is about ten times higher
than that during wintertime. These fluctuations have a strong impact on
production, which can only partly be compensated for by controlling other
growth conditions. Other climate conditions may vary as well, leading to
variations in production. Besides environmental conditions, the developmental
stage of the crop influences the production; young crops are usually not yet
productive while older crops may become less productive because of ageing.
This problem could be overcome by starting the growth of a crop at different
times of the year.

Nowadays, the market demands guaranteed prices, guaranteed quality and
continuous supply of horticultural products. For a good price setting, logistic
arrangements and marketing in advance of harvest, it is of utmost importance to
be certain of supply at a specific time. Modern farm management implies that
quantity and quality of produce can be predicted and controlled.

The quantity of production of fruit vegetables, such as cucumber, sweet
pepper and tomato, is determined by the growth of the fruits. Growth of fruits is

9
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the result of dry matter production, dry matter partitioning among the plant
organs and dry matter content of the fruits. An important quality aspect is the
fresh weight of the individual fruits with each size grading having a different
market price. Besides size, important quality aspects are shape, shelf-life and
taste. In cucumber both young and old fruits have a short shelf-life due to
respectively softening and yellowing.1–3 Therefore, the developmental stage of
the fruit at harvest is a main determinant of shelf-life.

Mechanistic models for simulation of crop growth have been developed
successfully for a number of crops.4 Such models might be powerful tools for
prediction of production and product quality. In this paper the key principles of
simulation models for greenhouse grown vegetables are presented. Possibilities
for applying these models, their generic nature, and some of the future trends are
discussed. Most of the examples used refer to a cucumber crop.

9.2 Key principles and methods

Often, a distinction is made between descriptive and explanatory models.
Descriptive models, also called statistical, regression, empirical or black-box
models, reflect little or none of the mechanisms that are the cause of the
behaviour of a system, whereas explanatory models contain a quantitative
description of these mechanisms and processes.5 Explanatory models contain
submodels at least one hierarchical level deeper than the response to be
described, e.g. crop growth is described at the level of crop photosynthesis and
leaf area expansion. At the lowest hierarchical level, submodels in an
explanatory model are often descriptive again. The model’s ability to explain
is limited by its number of hierarchical levels.6 Although the explanatory crop
growth models in horticulture do, to some extent, reflect physiological
structures, they do not incorporate the complete current knowledge of the
biochemical relationships that we have for many of the mechanisms at the
cellular level. If they did, the models would be impossible to manage and to use
for predictions and analysis at the crop level.

Descriptive models are fast and usually have few parameters, which is important
if crop models are to be used in on-line greenhouse climate control.6, 7 Furthermore,
model parameters are relatively easy to estimate.6 Although the predictive value of
descriptive models can be high, because they take into account implicitly all
unknown effects as well, there are important limitations. When descriptive models
are used outside the range of input data on which they are based, predictions
usually become unreliable. Furthermore, extrapolation of these models to other
species or locations is often impossible, and adding new input factors to such a
model means building a new model based on an extended data set.

Explanatory models, more than descriptive models, allow for testing
hypotheses, synthesizing knowledge and a better understanding of complex
systems. Most explanatory models for crop growth are photosynthesis-based
models.
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9.2.1 Mechanistic crop models (photosynthesis-based models)
Crop production is the result of a complex system of interacting processes with
both short-term and long-term responses (Fig. 9.1). Photosynthesis is often
considered as the driving force for crop production. In photosynthesis-based
models the interception of light by the leaf area is calculated first to simulate the
gross photosynthesis (production of photosynthates) (Fig. 9.2). The rate of dry
matter production (dW/dt) can be described by

dW�dt � Y �g �Pg � Rm�
where Yg is the growth conversion efficiency, which is the weight of dry mass
formed per unit weight of assimilates; Pg is canopy gross photosynthesis; Rm is
maintenance respiration. Subsequently, the partitioning of dry matter among the
different plant organs is calculated and finally the fresh weight can be estimated
from the dry weight. For greenhouse grown vegetables many photosynthesis-
based models have been developed.4

Although vegetables are usually sold on a fresh weight basis, most of the
photosynthesis-based models simulate growth in terms of dry mass rather than
fresh weight yield. Moreover, quality is seldom addressed by these models. Most

Fig. 9.1 A typical relational diagram for a growth model of a horticultural crop. Boxes
are state variables, circles are parameters and valves are rate variables. Solid lines

represent carbon flow and dashed lines represent information flow (DM� dry matter).
From Marcelis et al. (1998).
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mechanistic crop models have to be fed by a large number of input parameters,
which is not feasible for large-scale commercial applications.

Recently Marcelis and Gijzen8,9 developed a mechanistic model (KOSI 1.0)
for prediction of the weekly fresh weight yield of cucumber fruits and the fresh
weight and developmental stage of the individual fruits at harvest, the latter two
being major criteria of fruit quality.

9.2.2 A model for crop growth and yield prediction of cucumber (KOSI)
The model (KOSI 1.0), as described by Marcelis and Gijzen,8, 9 is primarily
based on the model INTKAM for simulation of dry matter production10 and the
model of Marcelis11 for simulation of dry matter partitioning and fruit growth.
The model consists of modules for greenhouse climate, greenhouse light
transmission, light interception by the crop, leaf and canopy photosynthesis,
assimilate partitioning, dry matter production, fruit growth, fruit dry matter
content and fruit harvest.

Greenhouse climate and greenhouse light transmission, light interception and
photosynthesis are calculated at five moments during the day. These moments
are selected such that from these data the daily photosynthesis can be calculated
using the Gaussian integration method.12 The time step for the modules for
assimilate partitioning, dry matter production, fruit growth, dry matter content
and fruit harvest is one day.

A simple module for greenhouse climate calculates the daily temperature and
daytime CO2 concentration as a function of outside radiation, outside
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Fig. 9.2 Calculation steps of a photosynthesis-driven growth model.
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temperature and set-points for temperature and CO2. Light transmission is
calculated for Venlo-type glasshouses according to Bot,13 assuming 70%
transmission of diffuse light. Light interception and canopy gross photosynthesis
are calculated for a multi-layered uniform canopy according to the SUCROS
model,12, 14 while leaf gross photosynthesis is calculated for the various layers in
the canopy with the biochemical model of Farquhar et al.15 as described by
Gijzen.16

Leaf area index (LAI) is calculated as a function of the daily temperature sum
after planting. Net assimilate production results from the difference between
canopy gross photosynthesis and maintenance respiration. Maintenance respira-
tion is calculated as a function of fruit dry weight, vegetative dry weight and
temperature, according to Spitters et al.17

Assimilate partitioning between vegetative parts and individual fruits is
simulated on the basis of the concept of sink strengths, as described by
Marcelis.11 In this concept the fraction of assimilates partitioned into an organ is
calculated proportional to the ratio between its potential growth rate (sink
strength) and that of all plant parts. Dry matter production of the organs is
calculated as the amount of assimilates partitioned into each organ divided by
the assimilate requirement for dry matter production.

Flower formation is calculated as a function of temperature and radiation.11

Fruit set is a function of the source/sink ratio (ratio between total dry matter
production and total potential growth rate), according to Marcelis.11 Fresh
weight of the fruits is calculated from the dry weight and dry matter content.
According to Marcelis18 and Marcelis et al.4 the dry matter content (DMC, %) is
calculated as a function of temperature sum after anthesis of the fruit,
temperature, fruit weight and the source/sink ratio of the past five days.

A fruit is harvested when its fresh weight exceeds a threshold value, which
value depends on the season (380 g in summer and 300 g in winter) and
decreases with increasing temperature sum after anthesis of that fruit. This
reflects that growers are used to harvesting a fruit when it has reached a certain
size, but that they harvest older fruits at a smaller size. When fruits grow slowly
they attain a high temperature sum from anthesis before they reach the threshold
weight for harvest. When the temperature sum of a fruit increases, the threshold
weight for harvest decreases, leading to harvest of smaller fruits when growth
rates are low. Moreover, at a high fruit growth rate the average weight will
exceed the threshold weight more than at a low growth rate, because the weight
increase between two successive harvests is bigger when the fruit growth rate is
high. A random error (coefficient of variation was 0.1) is added to the threshold
weight, as it is assumed that growers do not estimate the fruit weight exactly.
Fruits are harvested three times a week.

Second-class fruits are fruits with undesired shape or colour or with
abnormalities. The fraction of second-class fruits mainly depends on the age of
the crop.9 The model, in fact, simulates an average plant, although there is a
great variation among plants. To overcome this to some extent, simulation
results are the average of calculations for a plant receiving 90% and a plant
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receiving 110% of the average net assimilate production. Moreover, as the
simulated harvested fresh weight per week of one plant fluctuated much more
than the average of a whole crop as measured by the growers, the modelled
harvested fresh weight is smoothed by calculating moving averages of three
weeks.

KOSI 1.0 outputs the total weekly harvest yield at individual farms (kg m�2

week�1 and number m�2 week�1), the weight and developmental stage of the
individual fruits at harvest and the percentage second class fruits. As Marcelis
and Baan Hofman-Eijer19 have shown a close relationship between temperature
sum and developmental stage of a cucumber fruit, temperature sum after
anthesis (base temperature was 10ºC) is used as a measure for developmental
stage of a fruit. At the planting of the crop KOSI can already predict the harvest
yield for the whole growing period. It is possible to adjust these predictions
every week using actual weather data of the previous week or forecast weather
for the coming week.

The minimum data required by KOSI for harvest prediction are date of
planting of the crop and scheduled date for the last harvest. When only this
minimum data set is used, calculations are based on long-term average Dutch
weather data, i.e. weekly global radiation and temperature outside the
greenhouse. When the distance to the Dutch coast is provided, weather data
will be corrected for higher radiation levels close to the coast. Instead of using
long-term average weather data, predicted or measured weather data can be
provided as input. To keep the use of the model as simple as possible, average
values are assumed for all other factors, e.g. climate control (set-points for
temperature and CO2 of the greenhouse air), light transmission of the greenhouse,
harvest strategy (frequency of harvesting and whether small-, medium- or large-
sized fruits are harvested), plant density, number of fruits retained on the main
stem, plant size at planting, cultivar properties and ratio between total and
cropped greenhouse area. Depending on the objective or availability of data, the
model calculations can be based on more or less input data.

9.2.3 Crop models including water and nutrient relationships
For yield predictions a time step of one day is suitable (but using a Gaussian
integration method during the day) and leads to reliable results. For optimization
of the greenhouse climate and water and nutrient relationships a shorter time
step (minutes or hours) is desired. However, climate input data are not always
available for shorter time intervals. The above described model for yield
prediction assumes no limitations in plant water or plant nutrient relations. For
modern greenhouses these assumptions seem to hold very well as long as we
only consider the quantity of production. However when we are dealing with
energy saving or preventing nutrient and water losses, the model should also
consider plant water and nutrient relationships. Moreover, when more
sophisticated models for product quality are developed, the simulation of water
and nutrient relationships will be essential.
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We have developed models comparable to the KOSI model where, in parallel
to the leaf photosynthesis, the leaf transpiration is calculated using the Penman-
Monteith equation,10, 20, 21 and where water content of the plant follows from the
difference in transpiration and water uptake.20 Incorporation of nutrient
relationships in growth models of greenhouse crops has, until recently, not
had that much attention from modellers.22 Marcelis et al.21 described a
preliminary crop growth model that included uptake and plant content of all
macronutrients. In the model the nutrient demand of each plant organ is
calculated as the product of dry weight growth and a demanded nutrient
concentration. This is comparable to the approach of Mankin and Fynn.23 The
demanded or maximum nutrient concentration is the concentration the plant
itself aims at when there would be no limitation in the nutrient supply. The
uptake process of anions (NO3, PO4, SO4) is actively regulated by the plant.
When there is no limitation in nutrient supply, the simulated uptake by the plant
will be according to its demand: for these ions, limitation usually only occurs
when they are completely depleted from the root surface (see, e.g., Ingestad24).

The uptake of cations (K, Ca, Mg, Na) is to a great extent related to the
cation-anion balance of the plant, activity (concentration) in the root medium
and water uptake.25–27 Total uptake of cations is simulated as a function of anion
uptake. As a first approximation the uptake of Ca2+ and Mg2+ is modelled as a
function of the water uptake and cation concentration in the solution at the root
surface. Uptake of K+ and Na+ is a function of the calculated total cation uptake,
Ca2+ and Mg2+ uptake and their concentration in the nutrient solution.

9.3 Areas of application

Models are powerful tools to increase efficiency of experiments, to test
hypotheses, to synthesize knowledge, to describe and understand complex
systems, to compare different scenarios and to teach students about complex
systems. Moreover, models may be used in decision support systems,
greenhouse climate control and production planning. Consequently, the interest
in modelling of growth and yield of horticultural crops is still increasing as
indicated by the increasing number of horticultural publications that are dealing
with models, as listed in the CAB Abstract Database.

In general, a successful introduction of models in horticultural practice is
only possible on a step-by-step basis.28 Users of the models must be involved
from the very start of the effort. Information should be represented in a simple,
straightforward way. However, a step-by-step approach is not always possible,
e.g. when a complete new concept is introduced. An example is the shift from
traditional climate control where the grower supplies set-points to the computer,
towards climate control based on controlling processes and set-point generation
by a model. In such situations, the step-by-step approach may be reflected in
using the new concept first as a learning tool: the model shows the grower what
the alternative control system would do in the present situation and the grower
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can decide to take over this strategy or to follow his old strategy. Hence, the new
control concept runs in ‘background mode’ only, giving advice. When
confidence is gained, the new control concept may replace the old one.

Model applications in horticulture have been discussed extensively by
Lentz.29 He states that in order to implement models for decision support, it is
not sufficient to know the potential problems, but it is also necessary to
understand the decision-making process. Furthermore, he concludes that the use
of models in practice will only increase if the models deal with problems faced
by the decision makers, and if it becomes obvious to the farmers that they can
derive answers to their problems in a more efficient way.

9.3.1 Decision support to the grower
Three levels of decision are often distinguished depending on time scale:
strategic (one–many years), tactical (months–one year) and operational
decisions (minutes–24 h).30, 31 At the strategic level, models may be used to
decide on capital investments in durable equipment, e.g. energy screens,
artificial lighting or heat storage tanks for CO2 enrichment.32 At the tactical
level, before the start of a new cultivation, models can help a grower to decide
on, for example, planting date, plant density and the amount of labour needed.
The tactical plan should provide the framework for the operational level. At the
operational level, control of climate, water and nutrient supply and operation of
artificial lighting may be supported by models. Crop photosynthesis is a major
(fast reacting) yield determining process and therefore it is a suitable criterion to
evaluate short-term effects of climate control in greenhouses. Van Henten33 and
Van Willigenburg et al.34 showed how a photosynthesis-based model can be
used for optimum control of the greenhouse climate.

9.3.2 Prediction of yield and quality
To test whether the results of the model KOSI correspond to reality, the weekly
cucumber production of commercial Dutch growers (ten growers in 1996 and
fourteen in 1997) was calculated using actual climate data. The average harvest
for all growers calculated by the model agreed closely with the actual harvest:
the actual average production of ten growers in 1996 was 71.8 kg m�2, while the
model calculated 72.0 kg m�2, an error of only 0.3%. The average weekly error
was 0.17 kg m�2, or 12.6%. A more detailed validation of the model when actual
climate data were used as input to the model was presented by Marcelis and
Gijzen.8

Subsequently, the accuracy of the model’s predictions for the same group of
growers was tested when only the first and last week of each crop cycle and
distance from the Dutch coast were input. For outdoor temperature and
radiation, long-term weather data (average of 30 years data from De Bilt, The
Netherlands, corrected for distance to the coast) were used. Average values were
assumed for climate set-points and farm management. The average production
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Fig. 9.3 Predicted and measured weekly harvest in 1996 and 1997. Measured data are the means of ten (1996) or fourteen (1997) commercial growers.

A. Fruit number B. Percentage of fruits in size class 310–360 g fresh weight per fruit C. Percentage of fruits in size class 510–610 g fresh weight
per fruit D. Percentage of second class fruits Fig. 9.3A and 9.3D are from Marcelis and Gijzen.9
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of number of fruits and total fresh weight by the group of growers corresponded
well with the model’s predictions (Fig. 9.3A). The average production in 1996
was 71.8 kg m�2, while the model predicted 73.8 kg m�2, an error of 2.8%. The
average weekly error in 1996 was 0.19 kg m�2, or 14.9%. The production
between week numbers 33 and 36 was overestimated by the model, because the
start of production for some growers was not predicted correctly by the model.
One factor contributing to this error was that during this period of the year the
initial production is quite different depending on whether the crop is planted on
a Monday or a Friday, while only the week number was provided as input for the
model. As discussed by Marcelis and Gijzen,8 discrepancies between model and
measurement for individual growers were larger than for the average of all
growers. For a reliable prediction at individual farms more input data are
necessary.

The average fresh weight of the individual fruits was predicted well by the
model KOSI, except for a distinct underestimation at the end of the growing
season (October–November). Probably the harvest strategy of growers changed
towards the end of the year (two instead of three harvest days per week), while
the model assumed the same harvest strategy throughout the year. Further
analyses of harvest strategy and fruit growth in this period are needed to improve
these predictions. The average weekly error of average fruit weight was 6.5%.
As an example, the percentage of fruits in two of the main size classes is
presented in Fig. 9.3B and 9.3C.

The amount of second-class fruits, which changes markedly during a year
was predicted quite well by the model (Fig. 9.3D). The average weekly error of
the percentage of second-class fruits was 5.3% in 1996. In the same period (the
end of the growing season) when the average fresh weight was underestimated,
the percentage of second-class fruits was underestimated.

The results show that a mechanistic photosynthesis-based dynamic growth
model can be applied for accurate predictions of cucumber yield and fruit size.
Such predictions can be used for optimizing the price setting, logistic
arrangements and marketing of the produce. As growth as well as farm-specific
conditions are variables of the model, such a model is also a promising tool to
control the quantity and quality of the produce such that the production better
fits to the demand by retailers or consumers. For instance, effects of future
cultivation measures and climate set-points on crop growth and harvest can be
calculated, so that the most appropriate strategy can be chosen.

To keep the use of the model as simple as possible, average values were
assumed for most model parameters, as described before. If values of more
parameters are available for individual growers, predictions could be improved.
A cost-benefit analysis of gathering more input data for the model is an
important step towards practical application of the model. The accuracy of the
model might be improved further by combining model calculations with on-line
measurements of crop status.
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9.3.3 Combination of models and sensors
In specific situations, model results may deviate from actual data. This has
hampered the introduction of (crop) models in control systems. By supplying the
model feedback information from the actual system on some crucial plant
parameters (e.g. light interception, leaf photosynthetic rate), the reliability of the
model can be increased substantially.21

Sensor information per se is of limited importance for control of crop growth
unless the consequences of the value of a measured parameter are quantified; for
this a model is an ideal tool. Effects of a change in a value of a measured plant
parameter on the final production or nutrient uptake may depend on many
factors. For instance, an increase in temperature may lead to a decrease in net
leaf photosynthesis. However, in young plants the simultaneous effects on leaf
area expansion lead to a distinct increase in crop growth (Challa et al.35;
Schapendonk, unpublished data). A crop model can be used to quantify these
effects. Furthermore, measurements of crop status like photosynthetic
parameters or leaf temperature may be used to indicate the occurrence of stress
in the crop, by comparing the measured value to the value calculated by a crop
model for the prevailing climate conditions.

9.3.4 Closed system for water and nutrient management
In greenhouses water and nutrients are supplied in excess in order to ensure no
shortage. This procedure leads to large losses of water and nutrients to the
environment. Therefore, closed greenhouse systems are being developed to
nullify losses of water and nutrients. As described in Marcelis et al.,21 several
research groups at Wageningen University and Research Centre (Plant Research
International, ATO, IMAG, WU-Agricultural Engineering and Physics, WU-
Horticultural Production Chains) and the private companies Van Vliet Pijnacker
and Hydrion Wageningen have combined efforts in an ambitious multi-
disciplinary research project on an on-line monitoring and control system for
process water and crop growth in closed greenhouse systems. A schematic
representation of the system being developed is presented in Fig. 9.4. In this
system a dynamic crop model predicts, based on environmental conditions and
crop properties, both crop growth as well as the demand of the crop for water
and individual ions. The model considers physiological processes and gets
feedback from actual on-line measurements of crop status. For this purpose,
non-invasive sensors that measure important parameters of the crop model are
being developed. These parameters include photosynthetic activity and capacity,
light interception by the crop, leaf area index, water use and fresh weight growth
of the crop. The crop model is linked to a substrate model. The latter model
predicts the strategy of fertigation to meet the demand of the roots without
creating an undesired accumulation of nutrients. This model gets feedback
information from ion-selective sensors in the rooting medium. For this an on-
line robust multi-ion sensor unit (for measurement of Na+, K+, Ca2+, NH4

+, Cl�,
NO3

�, H2PO4
�/HPO4

2� and SO4
2�) is being developed. To supply the
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individual ions in proportion to the dynamically varying crop demand, an
installation is being developed that enables real-time adaptations of the supply
of the different ions. The system aims at minimizing pollution by controlling the
input of resources rather than by end-of-pipe measures. As a safeguard, a
purification system for selectively removing ions from the recirculating nutrient
solution is being developed. All aspects mentioned above will be integrated in a
hardware and software platform enabling a real-time control system and an off-
line data-management system.

9.4 How generic are crop models?

The photosynthesis-based models described in this paper have a modular
structure and are based on physiological processes. This allows these models to
be adapted to other crops relatively easily. In many cases this can be done by
changing model parameters. Modelling of canopy photosynthesis is largely
independent of plant species.4 Plant type comes in at the parameter values of leaf
photosynthetic properties and of radiation interception such as extinction
coefficient and leaf angle distribution. In contrast to canopy photosynthesis,
there seems to be a great diversity in the way a crop partitions its assimilates,4 in
developmental aspects (such as formation of organs) and in quality.
Consequently, the simulation models available at the moment are rather species
specific with respect to dry matter partitioning and developmental aspects.

Fig. 9.4 Schematic representation of an on-line monitoring and control system for
process water and crop growth in closed greenhouse systems.
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Fruit vegetables such as cucumber, sweet pepper, tomato and eggplant have
comparable growth habits; therefore only minor modifications are needed to
adapt the model to each crop. In fact model adaptation is a matter of
parameterization for these crops. Differences between cultivars of the same
species can usually be modelled by changing a few model parameters. That
similar models work very well for the different fruit vegetables has been
illustrated by several authors (e.g. Gijzen10; De Koning36; Heuvelink37, 38;
Marcelis and Gijzen8; Marcelis et al.4, 21).

A model is a simplified description of part of reality and for several variables
it assumes average conditions. Consequently, in specific situations, model
results may deviate from actual data. As discussed before, by supplying the
model with on-line sensor information on some crucial plant parameters (e.g.
light interception, leaf photosynthetic rate), the reliability of the model can be
increased substantially. In addition, self-learning techniques can be adopted in
order to ensure not only feedback from on-line sensors, but also from databases
containing historic data sets on production at individual farms.

Almost all crop models are deterministic models simulating one average
plant while there might be a large variation among individual plants of a canopy.
For most purposes the average plant will do perfectly. If we need information on
the variation it is obvious that simulation of the average plant is not that useful.
In order to consider plant to plant variation, a population of plants with different
values for some key parameters (for instance parameters on fruit set and fruit
harvest) could be simulated. Then an average of these plants and confidence
intervals could be calculated. Examples of models considering the plant to plant
variation are still rare. Pearson et al.39 considered the variation among plants in
their stochastic model of fruit set in tomato. As discussed before, the model
KOSI considers some aspects of plant to plant variation.

9.5 Some future trends

Techniques to provide crop models with feedback information of the actual
situation will gain increasing interest. For optimal control of the production
process in greenhouses, the growth conditions should be controlled such that they
fulfil the demands of the plant. The demands of the plant can be quantified by the
combined use of plant sensors and models. In fact, this refers to the speaking plant
concept, a concept that was first discussed some years ago.40–42 Only now have
sensor technology and models reached a stage that enables actual application of
the speaking plant concept. Not only on-line sensors but also manual registrations
(e.g. recording dates of flowering or counting of numbers of leaves) and historic
data sets will be used to provide models with feedback information. Then self-
learning techniques will be adopted to improve model predictions.

The modelling of quality of horticultural products is still in its infancy,
especially with respect to internal quality aspects. The problem for modelling
quality is that there are very many different quality attributes, they are often
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species specific, not well defined or cannot be measured easily in a quantitative
and objective way. Due to our increasing understanding of quality and because
of the importance of product quality, it is expected that the number of
(mechanistic) models simulating quality aspects will increase rapidly.

Most of the process-based models lack a description of plant topology and
geometry. Techniques to generate 3D virtual plants by morphogenetic models
have also been developed.43, 44 There might be good opportunities to link these
two types of models. This might be especially relevant for floriculture where
morphology is an important quality feature.

Most of the photosynthesis-based models simulate growth in terms of dry
mass rather than fresh weight yield, while vegetables are usually sold on a fresh
weight basis. Often a constant conversion coefficient from dry to fresh weight is
used. However, the water content of crops may vary substantially.4 Future
research should pay more attention to the regulation of water content as it is
important for an accurate simulation of fresh weight production as well as an
important quality attribute.

Production of produce is part of a chain from breeding to consuming.
Growers can only produce profitably when their production is well embedded in
a production chain. Consequently, models should not be limited to the growth of
the crop, but linked also to other parts of the chain. It is striking that the
development of models for product quality is still quite separate for pre- and
post-harvest. In future, focus should be on models simulating the product quality
as a continuous process throughout the production chain.

In general, Internet techniques and applications are developing rapidly. In the
near future we may expect a rapid increase in Internet applications in
horticulture as well. Some possible Internet applications have been described
recently with respect to Internet integrated decision support systems to assist
growers,45 image databases for remote control of plant growth,46 or virtual
greenhouses for training, controlling and managing.47

9.6 Summary

Modern farm management implies that quantity and quality of produce can be
predicted and controlled. Mechanistic models for simulation of crop growth
have been developed successfully for a number of crops. Such models might be
powerful tools for prediction of production and product quality. In this paper the
key principles of simulation models for greenhouse grown vegetables, with
special emphasis on cucumbers, are presented. Mechanistic crop models are
described, consisting of modules for greenhouse climate, greenhouse light
transmission, light interception by the crop, leaf and canopy photosynthesis,
assimilate partitioning, dry matter production, fruit growth, fruit dry matter
content and fruit harvest as well as modules for plant water relations and plant
nutrient relations. The application of crop models is discussed with special
emphasis on yield and quality prediction, decision support to growers and
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minimizing of nutrient and water losses to the environment. The importance of
feedback information from sensors or manual registrations and also of
minimizing the number of input data is discussed. Mechanistic models that
have a modular structure can be adapted relatively easily to different species.
The modelling of canopy photosynthesis is largely independent of plant species,
but dry matter partitioning, developmental aspects and quality attributes tend to
be species specific. Some future trends in crop modelling are discussed
including the combination of models and sensors, self-learning techniques,
mechanistic models for product quality, virtual plants, Internet applications and
crop models integrated in models for the entire production chain.
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10.1 Introduction: the contexts of tomato production

Tomato is the most popular fruit vegetable crop: a large range of cultivars enable
the production of various fruit types. These can be consumed either as fresh
vegetables or as processed products. The per capita consumption is increasing:
its world average was 13.4 kg/pers/year in 1997.1 The yearly world production
in 1995 to 1999 ranged between 86 and 95 million metric tonnes per year.1 On
average, 28% of the crop is processed.2

10.1.1 Greenhouse versus field production
The double use of tomatoes (fresh and processed) has led to two major
cultivation systems, one under cover and one in the field. Protected cultivation is
specific to production for the fresh market. Its rationale is a gain in productivity.
This goal can be achieved through application of transparent cover (plastic or
glass) to reduce convective and radiative heat losses,3 which increases the
temperature around the growing crop. Productivity can be increased by
extending the production period and by reducing the number of limiting factors
through a better control of the physical and biological environment of crops.

A greenhouse can comprise various types of equipment to control the
environment.4 The temperature can be increased by heating, for example by
burning natural gas, oil or coal, or by using thermal screens during the night. The
temperature can be reduced by natural (vents) or forced (fans) ventilation, or by
absorbing heat through evaporation of water applying cooling pads or fog
systems, or by cooling the cover material by water sprinklers. The light level can
be controlled with shading screens, by whitening the cover; by using roof
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materials having a higher light transmission (light transmission of plastics
decreases with ageing) and by applying supplementary lighting. Water vapour is
released by crop transpiration. The air humidity can be decreased by ventilation,
sometimes in combination with heating. It can be increased by evaporation of
water using, for example, a fog system. The CO2 concentration in the air can be
increased (or maintained at normal level when greenhouses are closed and crop
photosynthesis is active) by the injection of either industrial CO2 or flue gases
from the boiler. The latter option is only applicable if the flue gases are clean,
for example, when the fuel is natural gas.5 Some of these techniques (such as
supplementary light, fog system, injection of industrial CO2) are expensive and
seldom used for tomatoes. It should be noted that the transpiration of the crop
itself very effectively reduces the air temperature and increases the air humidity.
In this respect, a proper management of the development of the canopy is a
major contributor in controlling the climate.

In soilless culture, the root environment is continuously monitored and
controlled (ion concentration, pH, no soil diseases). Roots may develop either in
mineral (rock wool) or organic (coco peat) substrates or directly in the nutrient
solution (Nutrient Film Technique). As the substrate can be replaced (mineral
substrate can be recycled and organic substrate used as soil amendment), no soil
disinfection is needed. In order to limit environmental pollution, growers are
now encouraged to close the fertigation systems: the drained nutrient solution is
pumped, disinfected and brought back to set point by replenishing the water and
the nutrients.

Finally, protected cultivation facilitates the control of pests and diseases. The
use of pesticides can be reduced or suppressed thanks to biological control. For
greenhouse tomato crops, some natural enemies of the most damaging pests
have been identified. The development of some diseases such as Botrytis can be
avoided with proper control of humidity and temperature thereby limiting
condensation on the foliage.

In contrast to greenhouse cultivation systems, the field cultivation system
permits much less control of the physical and biological environment. The
timing of operations can be adapted to allow the crop to grow at the most
favourable climate conditions. The required nutrients can be provided either in
one run before plantation or several times during crop growth. If necessary,
water (possibly together with nutrients) is supplied by irrigation. Plasticulture
systems equipped with drip irrigation allow the highest control of water and
nutrient availability: a plastic cover spread out on the soil keeps rainfall off and
limits soil evaporation. There is, of course, a large range of intermediate
cultivation systems between the most sophisticated glasshouse and the most
basic field cultivation system. For example, significant areas of tomato crops are
cultivated on soil under cover. In this particular case, growers still have some
control on the climate but the conditions of water and nutrient supply are close
to those encountered in the field.

Different cultivars are used for the two cultivation systems. For long-season
production under greenhouses (up to one year), indeterminate (with a vine
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shape) cultivars are grown with all side shoots removed. New inflorescences
continuously appear. As a consequence, irrespective of the season, mature fruits
can be harvested two to three times per week and delivered to the fresh market.
Determinate (with a bushy shape) cultivars are preferred in the field when the
growing season is short or when the pest pressure is high. These plants have a
grouped flowering and fruiting. This latter characteristic makes such crops
suitable for mechanical harvesting.

10.1.2 The uses of crop modelling in greenhouse and field production
All the physical and biological processes involved in both cultivation systems can
be formalized in different ways to carry out simulations, make predictions, or
optimize their management. In practice, the modelling effort has been proportional
to the ability to control the cultivation system, that is, much higher for greenhouse
than for field production. In greenhouse production, models have a much wider
range of applications. Yield prediction is needed to match the market requirements.
Models of the greenhouse climate and of the crop carbon, water and nutrient
balances are designed for the optimization of the climate and for the control of
fertigation. Simulation of crop growth and development makes it possible to
evaluate policies of crop management. In field production, modelling has been
more dedicated to predict harvest date, to achieve a steady supply of product to the
factories (organization of plantation schedules), and to estimate water and nutrient
requirements (for scheduling irrigation and fertilization).

In this chapter we will review the processes that have been described and the
methods that have been used for modelling tomato crops in relation to their
environment. We will then consider the various areas of application of these
models in the protected and field cultivation systems. Of course, a modelling
approach (see also Chapter 2) is often closely linked to a specific type of
application.6

10.2 Processes and methods of modelling tomato crops

The crop models presently available are based on two different approaches. On the
one hand, new models appear with progressing knowledge as a mathematical
formalization of observed phenomena and their related processes. Such models can
be called research models. On the other hand, models can be designed to be part of
procedures aimed at solving practical problems. In that case, they can be called
engineering models.7 Research models are evaluated on their scientific value
(realism). They are explanatory or process-oriented models, as the behaviour of a
simulated system at a particular hierarchical level is the result of processes
described at lower hierarchical levels. The engineering models are evaluated on
their operational value (effectiveness). They can be more descriptive, being built
from statistical relations (‘black-box’ models) or knowledge-based (heuristic
models).
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In the literature, the majority of publications on modelling in horticulture
report work on the processes of plant growth and development. The processes of
water and nutrient uptake, of quality formation, the interactions between crops
and pests or fungi have received much less attention.6

10.2.1 Mass and energy balances of tomato crops
Carbon
Basically, the production of biomass by a canopy relies on the net assimilation
of atmospheric CO2. The net assimilation is the balance between gross
photosynthesis and respiration. It depends on the amount of available energy
(light) and carbon substrate (CO2), and on the ability of the canopy to intercept
light and assimilate CO2. In greenhouses, the assimilation of CO2 is not only
important for crop growth, it interacts strongly with the composition of the
atmosphere. The daily consumption of carbon by a tomato canopy can be up to
ten times the amount of carbon available in the greenhouse atmosphere.5 It must
be balanced by either ventilation or CO2 enrichment.

Longuenesse et al.8 and Gijzen9 have reviewed extensively models on
photosynthesis of horticultural species at leaf and canopy levels. Experiments on
tomato have often been used to develop photosynthesis models. The leaf gross
photosynthesis responds to light by a saturation-type curve. Various mathematical
formulations have been proposed and tested on tomato data, for example the
rectangular hyperbola,10 the non-rectangular hyperbola11 and the negative
exponential.12 Despite their slight difference in shape, all these functions include
two important parameters: the maximum rate of leaf photosynthesis (Pmax) and the
initial (close to darkness) light use efficiency (�). Pmax increases with CO2

concentration and with the conductance to CO2 transfer from the atmosphere to the
chloroplasts. It is limited at low and high temperatures (see examples of
parameterization for tomato in Bertin and Heuvelink13). Initial light use efficiency
� is positively affected by CO2 concentration and negatively by temperature. The
conductance to CO2 transfer gets lower at low light intensity, high CO2

concentration, high vapour pressure deficit (VPD) and under water stress.14

Gross photosynthesis has been integrated at canopy scale in different ways.
The simplest approach is to multiply the unit leaf activity by the leaf area index
or by the projected leaf area (‘big leaf’ approach). Other models take the
transmission of light in the canopy into account using an exponential law of
extinction.15 When the leaf light response curve is a rectangular hyperbola,
analytical integration at canopy scale is possible (for example, in Jones et al.16

for tomato crops). More sophisticated models provide a detailed simulation of
light scattering and transmission through leaves, and of the distribution of
diffuse and direct light based on a thorough description of the spatial distribution
of the leaf area and leaf angle.17 The specific case of row crops such as tomato
has been addressed and reviewed by Critten.15

The respiratory efflux of CO2 is significant: on a daily basis, it can represent a
quarter to a half of the gross photosynthesis of a developed greenhouse tomato
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crop.9, 5 Respiration of plants has been divided functionally in two components:
maintenance respiration and growth respiration. Maintenance respiration
corresponds to the energy needed to maintain the ionic gradients across
biological membranes and the pools of macromolecules such as proteins.
Growth respiration corresponds to the energy involved in the synthesis of new
biomass from assimilates and minerals. Maintenance respiration is calculated as
the product of the plant or organ dry weight times a maintenance coefficient.
Growth respiration is calculated as the product of the plant or organ growth rate
times a CO2 production factor. In crop models, maintenance and growth
respiration are summed up to estimate total respiration, generally on a daily
basis. Respiration rate increases exponentially with temperature. Since this
conceptual framework was proposed in the late 1960s, most research has been
carried out on the accuracy and determination of the parameter values. The
maintenance coefficient has been related to the tissue metabolic activity. For
tomato, Heuvelink18 has hypothesized that the maintenance coefficient
decreases with ageing. The CO2 production factor is proportional to the energy
cost of biomass synthesis. It varies among organs and with ageing (see Gary et
al.19 for tomato). The modelling of plant respiration has recently been re-
examined by various authors20, 21 looking for more mechanistic connections
between the production of respiratory energy and ongoing processes in the
growing plant (biosyntheses, translocation, ion uptake, N assimilation, protein
turnover, ion-gradient maintenance).

The crop carbon balance includes the carbon exchanges between the
atmosphere and the canopy (net photosynthesis), and the partitioning of carbon
in the plant between one or several pools of photoassimilates and the growing
organs. Gent and Enoch22 put together simple formulations for gross
photosynthesis and respiration, and provided a relation between availability of
photoassimilates and growth, that is, production of the elaborate compounds of
the plant tissues from the photoassimilates. With these simple formulations the
24-hour dynamics of CO2 exchanges and assimilate pool of young tomato plants
can be simulated.23, 24 Such a simple carbon balance model (Fig. 10.5) was
reshaped for control purposes by Seginer et al.25

Water
The water balance in the crop is an important crop property in various respects.
Water import contributes to the plant growth, as water status influences cell
extension in growing organs and water flow conveys nutrients to growing or
storage organs. Water status also partly controls the stomatal conductance and
may therefore affect photosynthesis. At last, the evaporation of water during
transpiration is connected to the absorption of latent heat: it strongly determines
the temperature of the canopy and therefore, of the air in a greenhouse.3

The modelling of water relations of horticultural crops has been reviewed by
Jones and Tardieu,26 van de Sanden27 and Jolliet.28 Research in this domain has
been motivated by two main concerns:
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(1) simulating the water status and its relation with various physiological
functions (organ extension, stomatal opening, water flux) and

(2) simulating the water flux through the canopy to estimate the water
requirements of crops.

The basic framework that has generally been adopted is an analogue of Ohm’s
law: the water volume flux along a certain path is proportional to the gradient
of water potential and to the inverse of a flow resistance. For tomato, van
Leperen29 designed a model describing the pathway of water from the root
environment to the atmosphere through one root compartment and three shoot
layers within a vegetative plant, and the dynamics of water potential in roots,
stems and leaves. Premises of modelling the water fluxes to the tomato fruit
through the phloem and xylem vessels can be found in Guichard et al.30 These
premises are based on Fishman and Génard’s model.31 The dominating phloem
fluxes depend on the concentration of carbohydrates in the phloem vessels and
on the ability of the fruit to unload these carbohydrates.31 The xylem flux varies
with the water potential in the stem, since the fruit water potential remains
fairly stable in time and in different environmental conditions.30 Due to a high
resistance to water flux in its epidermis, the transpiration of the tomato fruit is
limited. Recently, it was modelled as a function of irradiance and VPD by
Leonardi et al.32

At the canopy scale, the transpiration in tomato crop has been modelled
applying the classical Penman-Monteith approach33 as the sum of a radiative
component, proportional to the global radiation absorbed by the canopy, and of a
convective component, proportional to the VPD. The canopy resistance to
transfer water vapour comprises the aerodynamic resistance that depends on
wind speed and air and leaf temperatures, and the stomatal resistance that
depends on radiation, leaf air saturation deficit and leaf temperature (see, for
example, Boulard et al.34 for tomato crops). For operational purposes, the
complete analytical model has been simplified to a two-parameter formula, the
parameters being either derived from the complex model or identified in situ.35

Energy
A crop canopy can be compared to a solar collector. The absorbed radiation is the
balance between incident, reflected and transmitted global radiation. In their study
of light interception by glasshouse crops, Warren Wilson et al.36 measured for a
tomato canopy an average reflectance of 13% and an average transmittance of
23.5% of the incident light in the photosynthetic active radiation (PAR) waveband.
Light absorption was improved by about 10% when the soil was covered with a
white plastic sheet. Light absorption increased also with the foliage development to
almost complete with a leaf area index (LAI) of 4 or above. It is also related to
plant density and row spacing as it tends to increase when the plant distribution is
more uniform.37 The distribution of light and its absorption by rows of canopies
such as tomato crops has been modelled by using several approaches (see review
by Critten15). Among these are the exponential extinction curve, and various
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models that take light scattering and the distribution of diffuse and direct light,38

and leaf angle distribution into account.17

Part of the absorbed radiation is used by photosynthesis for carbon
assimilation and biomass production. This proportion is estimated by the
radiation use efficiency (RUE), that is, the ratio between the energy equivalent
of biomass and the absorbed (or incident) global (or PAR) radiation. For a
tomato crop, Aikman39 estimated it to be about 7% when based on the absorbed
PAR or 1.6% when based on the global radiation outside the greenhouse.

A significant part of the absorbed energy is actually dissipated by the crop as
latent heat by transpiration. As a consequence, the temperature of a transpiring
canopy is lower than the air temperature. This difference generates a flux of
sensible heat from the air to the canopy. In a greenhouse, depending on the LAI,
50 to 70% of the solar energy input is used for evapotranspiration.3 This justifies
that the crop water requirements are estimated from the absorbed or incident
global radiation.

Minerals
Nutrients are essential components of the plant tissues. Fertilization is a very
basic cultivation technique to avoid any limitation of growth by the availability
of minerals and to gain some control on yield and product quality. As for carbon
and water, both mechanistic and black-box models have been designed (see the
extensive review of Le Bot et al.40). The mechanistic models are research
models describing specific processes like nutrient uptake, transport and
assimilation. Even for nitrogen, the most studied element, the regulation and
integration of these processes at a whole-plant scale are still in discussion. For
tomato, two main approaches of mechanistic modelling have been proposed.
According to Le Bot et al.,40 the time-course of nitrate uptake is related to the
translocation of carbohydrates to the roots to cover the energy cost of nutrient
uptake. According to Cardenas-Navarro et al.,41 nitrate uptake is related to the
maintenance of a steady internal ion concentration.

More general (black-box) models link the demand of nutrients directly to the
growth rate. It has been established for several elements (nitrogen, potassium,
phosphorus) that a critical concentration in plant tissues should be maintained to
approach the potential growth based on total intercepted radiation. For nitrogen,
this critical concentration gradually declines with the accumulation of biomass
during the vegetative phase.42 Le Bot et al.43 parameterized this relation for
tomato plants. To explain this decline in nitrogen content, Caloin and Yu44

suggested two compartments in the biomass, one mostly active for growth and
having a high nitrogen content, and another dedicated to structures and storage
having a lower nitrogen content. With crop development, the second
compartment tends to dominate the first. This model was calibrated for a
greenhouse tomato crop by Bellert et al.45 A comparable approach of the
nitrogen demand by processing tomatoes has been implemented in the EPIC
model to evaluate different fertilization policies in terms of crop growth and
nitrogen dynamics in the soil.46
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Few models are presently available for other nutrients.47 Only recently, a first
model simulating the flux of calcium in pepper fruit and its relation to quality,
measured as the occurrence of blossom-end-rot, was reported.48

10.2.2 Yield formation
Tomato has been a pioneer vegetable species for crop modelling. The formation
of yield (organ appearance, dry matter production and partitioning) has been
studied thoroughly and formalized with various approaches, again either
empirical or mechanistic. The approach of fruit growth has been based on
models of dry matter production. Water fluxes towards the fleshy tomato fruits
(around 95% water) have been studied and modelled only recently.

Production of biomass
Different approaches to modelling biomass production have been developed for
different crop species including tomato. In the ‘photosynthesis-driven’ models,
integration of net photosynthesis and conversion of the resulting photoassimi-
lates into biomass are used to compute the accumulation of dry matter. As
already mentioned, net photosynthesis is the balance of photosynthesis minus
respiration. The coefficient of conversion of assimilates into biomass depends on
the energy value of the synthesized tissues. Gary et al.19 have estimated its
ontogenetic variation for the different types of tomato organs. Challa and
Bakker49 estimated the potential production of greenhouse crops in various
regions of the world using this approach. It is also the first step in most of the
tomato crop models.16, 18, 50 Bertin and Heuvelink13 compared the dry matter
production estimated by Jones et al.’s16 and Heuvelink’s18 models.

In the RUE approach, the production of biomass is considered as a sequence
of energy conversions from the incident radiation to the energy content of
biomass. Interception of (photosynthetically active) incident radiation is linked
to the leaf area index by a saturation type curve; the coefficient of conversion of
intercepted light into biomass is higher for C4 (e.g. maize) than for C3 (e.g.
tomato) species and it increases at high CO2 concentration. This approach was
validated at different conditions for greenhouse tomato crops.51–53 A similar
approach has been used for different species including tomato in the STICS
modelling platform.54

Timing of development
Development processes include the formation of new organs and their ageing and
phase transitions at whole plant (e.g. vegetative vs. generative periods) or organ
(e.g. fruit setting) scales. Formation and ageing of organs depend mainly on
temperature,55 following a bell-shaped curve that can be described by the
Arrhenius equation.56 Such a response curve has been calibrated for the formation
of new leaves and trusses and for fruit development from flowering to maturity,
and introduced in most tomato crop models (e.g. De Koning57). Under the
hypothesis that the response of development rate to temperature can be considered
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as linear in a limited range of temperature, daily temperatures can be summed to
calculate a ‘thermal time’ expressed in degree-days that is, by definition,
independent of the temperature regime.58 (Tijskens and Verdenius59 recently
revisited the modelling of biological processes that depend on temperature.)

In tomato plants, fruit setting is the phase transition from flowering to fruit
growth. It has been observed that the higher the source-sink ratio (that is, the
fraction of the plant potential growth rate that can be covered by the current
production of photoassimilates), the more successful fruit setting.60 This relation
was formalized in the TOMGRO model.61 In this model, the dynamics of
flowering, fruit setting and fruit ageing determines the age structure of the
populations of vegetative and generative organs at any time during production.

Dry matter partitioning
The dry weight of harvested organs depends on the fraction of dry matter that is
allocated to them. In the case of fruit species such as tomato, the vegetative-
generative dry weight balance is a key component of crop models. This ratio can
change with the plant development stage, and dynamically with the strength of
vegetative and generative sinks. The sink strength of an organ or a group of
organs is their ability to attract photoassimilates. It is the potential growth rate
when no competition for carbon resources exists among organs.62 It varies with
the stage of development of the organ and increases with temperature. It is not
affected by the availability of assimilates themselves. Heuvelink63 demonstrated
that, in tomato, the relative position of leaves and fruits on the plant does not
affect dry weight ratio. In other words, all the organs of a tomato plant have the
same access to the carbon resources. Consequently, (1) the vegetative-generative
dry weight allocation ratio depends on the number and age structure of leaves,
stem internodes and fruits, and (2) when the source activity (net photosynthesis)
is lower than the sink demand, the actual growth rate of all organs is limited in
the same proportions. These concepts have been implemented in the tomato crop
models, designed for indeterminate cultivars. Heuvelink and Bertin64 have
compared two of them. Until now, only a few attempts65 have been made to
verify and validate this theory for determinate cultivars.

Dry matter content of fruit
Like most vegetable species, tomato fruits contain a high content of water at
harvest. This water content is the result of xylem and phloem influxes and
transpiration efflux during fruit growth. As mentioned earlier, the modelling of
lateral fluxes within the plant (from stems to fruits) and of the fruit transpiration
has only been studied quite recently. These processes will be introduced in a
tomato crop model provided carbon and water fluxes can be coupled. To this
end, the dynamics of water potential in the stem and of carbohydrate content in
the phloem and the possible variations in water transport resistance in the fruit
peduncle and epidermis have to be determined.

At present, tomato crop models are based on the assimilation and partitioning of
carbon only. The dry weight of harvested fruits is calculated and converted into
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fresh weight by applying a coefficient of dry matter content that is either fixed16 or
variable with the season.57 In the latter case, the fruit dry matter content is higher in
summer than in winter as the environmental conditions in summer tend to favour
water stress (when radiation, VPD or salt concentration in the nutrient solution are
high). The dry matter content of mature fruits is also genetically determined: it is
generally higher in cultivars with small (cherry, cocktail) than with large fruits.

10.2.3 Other processes
Quality formation
The quality of tomato fruits covers a number of different characteristics. Which
are the most important depends on the use of the products, whether for the fresh
market or for the industry (Table 10.1) (see also Chapter 17). The average fruit
fresh weight can be modelled based on the weight and number of harvested
fruits. The fruit sink strength or potential growth rate is a genetic parameter. In
tomato, it increases from cherry over cocktail cultivars to round and beefsteak
cultivars. Within the range of genetically determined fruit sizes, the actual fruit
grade obtained can be controlled in greenhouses by climate and crop
management. Larger fruits can be obtained by increasing the source activity
with, for example, CO2 enrichment or by decreasing the competition for
assimilates, for example by fruit pruning to a lower total fruit load. At present
within the growing area, fruit grade is the only quality attribute that is properly
simulated. For example, the SIMULSERRE simulator, based on the TOMGRO
model, enables the evaluation of different strategies of climate and crop
management in terms of yield, fruit grade, and energy and CO2 consumption.66

Table 10.1 The quality variables of tomato fruits, their major sources of variability and
their significance (* low to *** high) for the fresh market and the industry

Quality variable Sources of variation Fresh market industry

Genetics Climate Fertigation Crop
management

Fruit grade x x x *** *
Uniform colour x x *** ***
Cracking x x x *** *
Blossom end rot x x x *** **
Shelf-life x *** *
Dry matter content x x x x * ***
Sugar content x x x x ** **
Acid content x x x x ** **
Aroma content x x x ** **
Texture x x x *** *
Health value x x x ** **
(antioxidants)
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Ongoing research is conducted on the formation of the tomato fruit quality in
terms of chemical composition (sugar, acid, aroma contents), appearance
(colour, cracking, blossom-end-rot) and health promoting compounds (anti-
oxidants). For these quality variables models are still largely unavailable,
although some can be related to the carbon, water or mineral fluxes to the fruit.
The sugar content could be linked to the carbon availability but acid or aroma
contents could not.67 The frequency of cracking of the fruit epidermis has been
linked to the crop water status.67 The occurrence of blossom-end-rot has been
related to the calcium flux transported by the xylem network.68

Interactions with pests and diseases
Even though the effects of pests and diseases on crop behaviour is of major
importance to tomato cultivation systems (especially in relation to environmental
and health concerns), few simulation models of plant disease are available. Seghi et
al.69 reviewed some empirical models that forecast diseases (Alternaria solani,
Phytophtora infestans) in tomato crop from climatic data. The effect of disease,
induced by Septoria lycopersici, on tomato yield was estimated. In their review on
the control of Botrytis cinerea in greenhouse tomato, Nicot and Baille70 identified
only a small number of models for greenhouse vegetables, one designed to forecast
the fungus epidemics in cucumber under unheated greenhouse and another to
simulate spore germination on tomato leaves. More generally, epidemiological
models developed for field crop and often based on the occurrence of free water on
the canopy, could be generic enough to be adapted to greenhouses. However, the
development of mechanistic models on epidemiology or population dynamics in
relation to the environment and crop status is a complex task. An example of a
research model simulating the parasitoid-host relation between Encarsia formosa
and the greenhouse whitefly on tomato crops was published by van Roermund et
al.71 Such a model can be used to evaluate release strategies under various climate
conditions.

10.3 Areas of application

One of the ideas about model application most widely shared within the crop
modeller’s community (but maybe not so among scientists involved in control or
management), is that crop or plant process models can readily be adapted to
design control or management systems for decision support. Along with
teaching, management and support are probably the two main areas of
application for the models described in the previous sections of this chapter.
Management can be defined as the sequence of three operations: planning,
implementation and control. The planning operation sets up the strategy which
encompasses the goals assigned to the cultivation and the means to achieve these
goals. Implementation performs the translation from the strategy into actions,
while control ensures the proper applications of these actions by constantly
monitoring the process and revising the mode of application of the action.
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Being a management task, crop management (and hence climate or
fertigation control) requires identification and execution of suitable actions to
obtain the desired crop behaviour and to reach the assigned goals. The decision
process leading to the determination of the actions to be taken is a difficult task.
It depends on:

• uncontrolled and uncontrollable external factors
• several complex interactions between the crop and its environment (both

physical and economical)
• knowledge of the crop state.

While crop models can help to determine the crop state, models of the crop
environment (not discussed so far) can also be used to clarify the state of the
crop environment and to identify the interactions between the crop and its
environment.

In view of these remarks, the first obvious application of crop models is as
information providers, providing information that is otherwise not readily
accessible to the grower, either because no measurement system is available or
because the cost of obtaining the information would be prohibitive. Remarkably
enough, most of the reported applications of models in the field of climate or
fertigation control in greenhouses go one step further. As will be seen, models
are used in optimization routines as representations of the crop processes (not of
its states). This shift deserves a more detailed explanation. When using models
as information providers, the interest is focused on the output, whatever the
expression of the model may be. Accuracy of the results is paramount, especially
when these results are predictions, that is, expected values of one or more crop
states. Whether the model formulation represents the actual crop processes or
not is irrelevant here. On the contrary, when models are used in optimization
routines, and more specifically within the optimal control theory, the emphasis is
on the formulation itself. For example, representing data with a parabola or a
sine function may give numerical results which will differ little while the
derivatives will be very different, and derivatives are used heavily in
optimization procedures. Different expressions can lead to different control
actions, which implies that the choice of the model to be used will not only
depend on its accuracy in terms of prediction or simulation, but also on the
actual equations that make the model. With respect to this use of models, they
are process representations.

In the following subsections we present an overview of current works using
models as information providers (teaching and crop management applications)
and as process representations (climate and fertigation control).

10.3.1 Teaching
Crop models are interesting tools for teaching horticulture. They can fulfil
different goals. They give an insight to the processes that together result in the
crop behaviour. They provide a faster means than real experimentation to
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demonstrate the effect of management on the crop. They can, of course, not
replace the experience one gains from observing a real crop growing. In the
SIMULSERRE project,66 embedded in a user-friendly interface, the TOMGRO
model was coupled to a greenhouse climate model and to a model of a simplified
greenhouse climate controller. In the virtual experimentation, the user defines
the climate control strategy (heating, ventilation, CO2 set-points) and the truss
pruning plan for the growing season. The results of these simulations are stored
in extended details (from hourly values for all matter fluxes within the plant and
between the crop and the environment to daily values of various state variables
of the crop such as LAI, fruit load, harvest, etc.). Results can be viewed and
compared with several types of plots (hourly, daily, cumulative values). For
example, CO2 enrichment policies can be compared and the differences in yield
as well as in photosynthetic fluxes can be tracked. Demonstration of the role of
key elementary processes is therefore straightforward and helps the student in
obtaining an integrated view of the crop and management.

10.3.2 Yield prediction and crop management
The demand for yield prediction varies with the tomato cultivation system. In
field production, determinate cultivars are selected to get fruits ripe for a single
harvest. The expected time of harvest and expected amount of product are
predicted to enable an integrated planning of production and processing. For
example, Wolf et al.72 estimated, the times of emergence, flowering, turning
stage and harvesting of tomatoes for processing based on the heat sums. McNeal
et al.73 went a step further and predicted the mass of fruits at harvest using a
greenhouse tomato crop model (TOMGRO) adapted to field conditions.

In greenhouse production, yield is planned for a long period of time. In
Europe, there is strong competition between the various regions of production.
In negotiations with the product buyers, growers must be able to announce their
weekly production for the next couple of months. For this purpose, a simple
tomato crop model named TOMPOUSSE was developed.51 To be useful for
practical operation, it had to respect a set of requirements:

• run with data commonly available in commercial conditions (plantation date,
duration of the crop cycle, cultivar, weekly average values of radiation,
temperature, CO2 concentration and policy of fruit pruning and stem density);

• simulate the effect of the major cultivation techniques of climate control and
crop management;

• deliver the weekly yield and average fruit weight.

Within this framework, the simplest formulations were retained in the model.
The RUE approach was adopted to simulate the production of biomass. Every
week, the dry matter allocated to fruits is partitioned among different age
groups, according to the box-car-train technique.74 The integration of fruit
growth and development permits the estimation of the weekly number and dry
weight of mature fruits. The dry weight is converted into fresh weight using a
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dry matter content varying along the year. Such a simple model enabled the
simulation of the time-course of production of greenhouse tomatoes in various
regions and production systems (Fig. 10.1). It was also possible to estimate the
effect on potential production of limiting operational factors (see previous
sections).

In commercial conditions, yield forecast can be produced for the next weeks
by running the model several times with weather inputs taken from a radiation
database recorded in the region, and for the planned cultivation strategy
(management of temperature, CO2 concentration, truss pruning, stem density).
Interestingly, due to the indeterminate development of greenhouse cultivars, the
variation in the short-term predicted yield is low because the possible variations
in global radiation affect only the last stages of fruit development (Fig. 10.2b).
Another attempt to estimate the potential production of greenhouse tomato crops
has been based on the calculation of the daily crop photosynthesis in response to
the available radiation depending on season and latitude.49 The difference
between the potential and actual production in various parts of the world helps
analysing the importance of different limiting factors.

Different parts of the TOMPOUSSE model reflect the different cultivation
techniques. The efficiency of light interception depends on the leaf area index.
Stem density and leaf pruning can affect the leaf area index. RUE increases with
CO2 concentration.75 The dry weight allocation ratio to fruits responds with a
hyperbolic curve to the fruit load per plant.76 The appearance and ageing of
organs is strongly affected by temperature.57 The TOMPOUSSE model can be

Fig. 10.1 Cumulated yield of greenhouse tomatoes in various locations and production
systems. (a) Brittany (Brest, France), plantation in January 1994, observed yield without
(❑ ) and with (■ ) CO2 enrichment, simulated yield with continuous CO2 enrichment (—),

with CO2 enrichment until week 23 only (�����), without CO2 enrichment (—). (b)
South France (Alenya), plantation in January 1994, observed yield with CO2 enrichment
(■ ), simulated yield with continuous CO2 enrichment (—), with CO2 enrichment until
week 15 only (�����), with CO2 enrichment until week 15 and roof whitening from

week 25 (—). Note the differences between potential and actual yield in summer, due to
the interaction between CO2 enrichment and ventilation, and to roof whitening in

Mediterranean areas.
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used as a simulator to evaluate different strategies of crop management. In the
example presented in Fig. 10.3a to d, various policies of truss pruning are
evaluated with respect to the fruit grade. De Koning57 used a similar approach in
a model of dry matter partitioning to optimize shoot density and number of fruits
per plant.

These crop models, used to evaluate the biological consequences of policies
of crop management, are still far from real decision support systems (DSS). For
this purpose, the models should describe not only the dynamics of the crop and
of its physical environment (greenhouse climate and/or soil), but also the
decision-making process itself and its interactions with the biophysical system.
For example, the GX/Sim system77 is a greenhouse simulating platform that can
specify the decision rules the grower uses to adapt the climate settings to the
current climate conditions.

In the CONSERTO project,78 a dynamic model of the greenhouse production
system has been designed with three components: the decision system, the
instructions-to-actions system and the biophysical system (Fig. 10.4). The
decision system describes the management strategy applied over a cultivation
period to realize production objectives. A management strategy consists of
several conditional plans the realization of which is conditioned to the
occurrence of specific events. In CONSERTO, it deals with climate and
fertigation management, and manual operations such as fruit and leaf pruning,
training and harvesting. A conditional plan comprises a nominal plan of
instructions and a trajectory of desirable states and appropriate reactions that
permits adjustments along the crop cycle. A nominal plan is a sequence of tasks
assigned to a worker team.

The instructions-to-actions system converts these decisions into actions via
automatons (the climate and fertigation control system) and workers. Because of

Fig. 10.2 Simulated potential yield of a greenhouse tomato crop based on the mean global
radiation (measured in Avignon, France from 1969 to 1992) until week 1 (a) or 25 (b), and
on the different 24 years (1969 to 1992) from week 2 (a) or 26 (b). Mean (—), maximum
and minimum yields (—), relative variation ((max�min)/mean, �����). The variability of
yield prediction is higher when carried out from the vegetative (a) than from the generative
(b) phase. It stabilises at a lower level in (b) than in (a) because, in this particular region, the

weekly global radiation varies less during the second half of the year.
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Fig. 10.3 Simulated effect of two strategies of truss pruning on the tomato fruit grade
along a crop cycle. In this example, the objective is to keep the fruit grade constant after
planting mid-September in the south of France, even though global radiation (—, mean of
weekly values measured in Avignon, France from 1969 to 1992) goes down in winter then
up in spring. (a), (b): when the number of fruits per truss (—) and consequently the fruit
load (● ) vary together with the radiation level, then the fruit grade (�) varies little. (c), (d):
when the number of fruits and the fruit load are not regulated, some fruits do not set (x)
during the shortest days but this natural regulation is not enough to control the fruit grade.

Fig. 10.4 The greenhouse production system as formalized in CONSERTO.78 Dotted
arrows represent the information each sub-system gets from the environment whereas full

arrows represent control inputs.
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limited resources (e.g. workforce or capacity of the heating system), what is
actually realized may not fit with what was prescribed in the framework of the
nominal plan, and alarms may be raised. Information on the actual use of
resources is sent back to the decision system.

The biophysical system comprises a greenhouse climate and a tomato crop
model. Actions and climatic events control it. The tomato crop model is a
redesigned version of TOMGRO16, 61 implemented in an object-oriented
framework.79 The outputs provide not only information on physical and
biological performances of the system under a set of actions but also indicators
(for example, the plant vigour or predictions of important events such as
flowering or fruit maturity) useful for the decision system.

10.3.3 Climate control
Climate control is an operational management task which includes the activities
of determining the crop and system states, choosing the set of goals to pursue
within the more general set of goals defined by the strategic management of the
crop and finally deciding upon which climate modifications are needed for the
day at hand. Crop and greenhouse models can be useful in different ways for the
grower to perform this task, either by giving an estimate of the crop state or by
performing the decision task and offering a ready-to-use solution.

Models as information source
We are aware of very few model applications in this way for tomato, although a
successful application on cotton is reported.80 Attempts to provide information
on diseases have also been reported for tomatoes, however, with only minor
connections to the climate management problem.81, 82 Finally the work of
Harazono et al.83 and Harazono84 can be mentioned: a model for photosynthesis
is used to provide information to a climate control system on this difficult to
monitor flux. The task of the controller (based on rule inference) is to adapt
environmental conditions (temperature, humidity and CO2) to maintain an
appropriate photosynthetic flux, as predicted by the model. None of these
systems apply on-line parameter estimation, a technique widely used in
computerized industrial process control. The goal of on-line parameter
estimation is to assure that the model, through adequate parameterization,
always describes the process as closely as possible.

Model-based climate control
Our understanding of model-based climate control encompasses all the
approaches where new climate set-points are determined using either
information output by the model or the knowledge contained in the model
itself. Within this scope most approaches are designed for the ultimate goal to
control directly the greenhouse climate. However, Schotman85 argues that some
of the drawbacks of such a conception of climate control are that:
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• the grower has no control over the objectives assigned to the control
generating routine;

• information needed by the model-based control system often has no
agronomic or relevant meaning to the grower.

Optimal control is probably the most widely used method to exploit available
models and determine ‘optimal’ crop environmental conditions. The optimal
control theory, either based on Pontryagin’s minimum principle86 or on Bellman’s
principle of optimality87 develops as follows. Noting that scalars are denoted with
italics and vectors with bold, let dx/dt� f (x (t), u (t), p (t)) be a dynamical model
of the plant (plant is taken here in its industrial meaning of factory, the factory
being in our case the crop!), where dynamical model means differential equations,
x (t) is the state vector of the plant, u (t) is the control vector (quantities that can be
manipulated to modify the plant behaviour), p (t) is the perturbation (or
uncontrolled) vector and t denotes time. Optimizing the plant behaviour implies
that an objective function J () has been defined which measures how well the
system performs. J () is classically the sum of two terms. The first, �(x (tf ), tf ),
denotes requirements on the end-point of the control horizon (expressed through a
weighting function) which allows for optimization in time (minimum time
problems where tf is let free and must be as low as possible), or for the
specification of desired final state, x (tf). For example, a combined problem could
be to produce lettuces of a given fresh weight in the shortest time possible so as to
maximize the number of crop batches during the season. The second term in J () is
an integral which accounts for all running costs or gains relevant to the plant
processes and is often written as

�
L�x(t), u(t), p(t))dt. In the previous example,

L() would cumulate all the costs of growing the lettuces related to the controllable
inputs u(t). For greenhouse tomatoes, where no final state is required because
tomatoes are produced continuously, the function L() would accumulate both the
costs of controls u(t) and the gains obtained from the crop represented by its states
x(t). The optimal control theory provides means to solve the problem of
optimising J() with respect to u, under the constraint represented by f(). For a
more thorough presentation of the optimal control theory, one can refer to
Pontryagin et al.,86 Bellman and Dreyfus87 and Lewis.88 Climate control
application of crop models or crop processes models within the framework of
optimal control also requires a model of the greenhouse climate because the
control variables directly modify the climate. The plant behaviour is driven
indirectly through its responses to the modifications of the environment.

In one of its simplest forms, the climate optimization problem is defined as:
using a crop dry matter accumulation model and an algebraic expression of the
greenhouse climate model, find the day- and night-time temperatures that
maximize a cost function balancing the relative growth rate and the heating
costs. CO2 enrichment can also be included. Gal et al.,89 Seginer,90, 91 Seginer et
al.92 and Critten93 showed that under the hypothesis that the dry matter
evolution can be written as dw/dt� s�w)� f(u) the optimal solution can be
expressed as a direct function of the external climate conditions for each time-
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instant independently. In practice this allows for the off-line computation of
lookup tables that indicate what actions should be taken at current conditions.
However, no real experiments have put these results to the test. Seginer et al.25

have studied the temperature optimization problem, only based on plant need.
They used a dynamic model of the carbon balance of the crop (Fig. 10.5) with a
temporary carbohydrate pool to derive the day and night temperatures that
maximize the relative growth rate for a given daily radiative flux. The results are
that young crops need higher temperatures than old ones where maintenance
respiration is more important and that for a given situation, several couples of
day and night temperatures are optimal (Fig. 10.6). Tchamitchian et al.94 and
Tap et al.95 have used a dynamical greenhouse model instead of an algebraic one
to introduce the damping of temperature due to the structures in the greenhouse.
Solving the climate problem, either for tomato or for lettuce, respectively,
proved to be a rather difficult numerical problem.

More complex crop models have also been used within the scope of the
optimal control theory to determine optimal daily climate set-points under the
constraints of long-term crop production optimization. The first attempt to
mention is the work of Marsh and Albright96, 97 who tried to determine by
simulation the optimal temperature set-points for lettuce production using a crop
growth model. Seginer and McClendon98 addressed the same problem but using

Fig. 10.5 Dynamic model of the crop carbon balance. The crop is divided into two
compartments, the ‘C-pool’ or temporary photosynthetic assimilates and the ‘structures’ or
the crop itself. In this model, Rm{T,s} is a compulsory flux driven by the temperature which
will take its necessary carbon in the structural compartment when the pool is empty and

P{Q,C,LAI} is too low. If possible (remaining carbon in the pool, P{} high enough),
Rg{T,LAI} and growth occur. Growth is proportional to Rg{}. Q: photosynthetic photon
flux density; C: air CO2 concentration; LAI: crop leaf area index; T: plant (air) temperature;

s: weight of structural dry matter.
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Pontryagin’s minimum principle to solve the very same problem and found
similar results. Later, Seginer and Sher99 used the TOMGRO model to solve the
problem for tomatoes. It should be noticed that these approaches hardly used a
greenhouse model at all: the goal is to define optimal set-points trajectory along
the crop cycle, namely to optimize the blue-prints already available for these
crops. Coupling a dynamical model of the greenhouse climate to a lettuce
growth model, van Henten100 used the singular perturbation approach101 to
tackle the problem of models with different magnitudes of time constants. A
new development in this area (Tap, pers. comm.) applies the same method to a
simplified tomato crop model. Daily optimization of the climate (so-called fast
processes) under the constraint of long-term optimisation of the crop production
(so-called slow processes) can then be solved.

The lettuce case, being simpler to study than the tomato case, has often been
used as a preliminary case study before addressing the more complex case of
tomato where growth, development and harvest occur at the same time. One
important remark to be made is that although many theoretical applications of
models to climate control have been studied, none or very few have been put to
the test in practice. The reasons might be first because control engineering
groups lacking the greenhouse facilities have done these studies and second
because optimal control produces time-varying set-points which cannot be
implemented on commercial greenhouse climate computers.

Fig. 10.6 Optimal day and night temperatures for a tomato crop, as determined from the
tomato carbon pool model (see Fig. 10.5). The simulation is for a crop of LAI� 3.5,

submitted to constant day and night temperatures and to a constant level of photosynthetic
photon flux density (PPFD) during the day. Daylight period is 14 hours. The hypothesis for

this simulation is that the C-pool level must be the same at t� 0 and t� 24 hours.
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10.3.4 Fertigation control
In both field and greenhouse production, there is an increasing pressure to
improve the policies of irrigation and fertilization, that should both satisfy the
plant demand for water and nutrients and avoid losses of nutrients in the
environment. At present, empirical methods are used; they should be improved
with mechanistic models in development.

The supply of water to the crop must fit its water requirements. In soilless
culture, irrigation is usually calculated based on radiation measurements.
Several relations have been established between the crop water uptake and the
incident radiation for tomato as well as for other vegetable crops (formulae
reviewed by Jolliet28). The VPD should also be taken into account when
radiation and VPD are uncoupled, for example in changing climatic conditions
and when using systems of climate control such as thermal screens or fog
systems.35 The water demand also depends on a crop coefficient that increases
with the leaf area development. In soil culture, the availability of water in the
soil compartment must also be considered. It depends on the hydraulic
properties of the soil and on the root development. In the field, the rain flux must
enter in the water balance.

In greenhouses, computers are used to monitor radiation and to control the
quantity of water that is provided to open systems (on soil or soilless), that is, the
calculated evapotranspiration plus about 25% run-off to avoid salt concentration
in the root substrate. In closed soilless systems, the water input must fit the crop
demand to maintain the total volume of circulating nutrient solution. In the field,
new decision support systems are designed to calculate the proper water supply.
For example, the IRRIGERE software, designed for field tomato, estimates the
daily evapotranspiration from climate and crop development and the soil water
reserve from the soil characteristics and the root depth.102 Irrigation will not
meet crop demand when water stress is needed to increase the dry matter content
of fruits. In that case, the objective is to exhaust the water available in the root
zone at fruit harvest. With these constraints, irrigation is proposed when the
watering dose gets higher than a threshold value of 3 mm.

Few attempts have been made to build fertilization strategies using models of
crop requirement, even in soilless culture. In this cultivation system, nutrients
are usually supplied in excess together with water. Therefore there is no way to
control the crop growth or product quality through the regulation of fertigation.
Recently, Marcelis et al.103 proposed the combination of models and sensors to
optimize the nutrient supply in closed systems.

10.4 Discussion of the methods and future trends

In the last decades, most of the modelling effort on tomato crop has been put on
the carbon fluxes and development processes in relation to the crop
environment. To a lesser extent, the plant–water relationship has received some
attention. It should be noted that the results of these studies for the grower are far
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from proportional to the invested time: practical applications to irrigation are
more numerous and more successful than yield prediction or automated climate
control systems.

Fruit quality, nitrogen runoff, and sustainable cropping techniques are
nowadays the focus of tomato crop modelling, using the same physiological
approaches that have been successful up to now. The expected results are
explanatory models that could help to estimate crop nutrient demand or harvest
quality. Although this trend will widen the number of processes that will be
represented, model-based plant management will still suffer from the limited
scope of available models, and from the time needed to obtain these models. For
example, fruit quality is defined by several criteria (see Table 10.1), but only
some of them are addressed in modelling studies. Other processes are hardly
addressed, such as plant architecture which determines its ability to intercept
light and which is also part of the grower’s perception of the state of the plant.
Models on the effect of diseases or pest attacks are also largely unavailable, not
to mention models predicting when and where the probability of physiological
or pathological disorders is the highest.

To overcome these drawbacks, other modelling approaches can be successful.
The SERRISTE project104, 105, 106 has opted to use artificial intelligence
techniques to represent both the knowledge involved in the daily climate
management task and in the crop’s response. Agronomical know-how, obtained
from experts, is represented through a set of variables, which are constrained
within a fuzzy domain and through a set of constraints relating these variables.
For example, the target daily mean temperature domain is obtained by:

• computing an optimal temperature from the forecasted available radiation;
• making adjustments for the variety;
• positioning a 1ºC window around this value according to the vigour status of

the crop.

A constraint is expressed as a linear combination of variables, the result of
being forced to belong to a fuzzy domain. As an example, the temperature
difference between day and night (a linear combination) must belong to a domain
extending from 2 to 5C, values which may be changed depending on the current
conditions (for example, switch from 5 to 3 if Botrytis has been observed). A
constraint satisfaction algorithm determines the sets of variable values which
satisfy all the constraints. Declarative knowledge and numerical models are mixed
in what is called a knowledge base (see Chapter 5). Two years of experiments in
extension services facilities in three different regions of France have proven the
feasibility and the real agronomic success of this approach.

As proven by Guerrin et al.,107 the combination of declarative and numerical
models broadens the scope of the system that can be represented and thus may
be a way to overcome the limitations of numerical models. Moreover, building a
declarative model may on many occasions be faster and cheaper than the
experimental and theoretical work that would be needed to obtain a numerical
model of the same processes. However, design of hybrid models mixing
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declarative and numerical knowledge and use of Artificial Intelligence
techniques for crop management support is still limited.
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‘Simulation of environmental effects on Ca content in pepper fruit’, Acta
Hortic, 1999 507 253–62.

49. CHALLA H, BAKKER M, ‘Potential production within the greenhouse
environment’ In: Z Enoch and G Stanhill (eds), Greenhouse Ecosystems.
Amsterdam, Elsevier, 1999, 333–48.

Modelling and management of fruit production: the case of tomatoes 225



50. KANO A, VAN BAVEL C H M, ‘Design and test of a simulation model of tomato
growth and yield in a greenhouse’, J Jpn Soc Hortic Sci, 1988 58 406–16.

51. GARY C, BAILLE A, NAVARETTE M, ESPANET R, ‘TOMPOUSSE, un modèle
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québécoise’, Csae/Scgr (Canadian Society for Engineering in Agricultur-
al, Food, and Biological Systems) Paper No. 97–602, 1997, 1–8.

53. ANDRIOLO J L, DUARTE T DA S, LUDKE L, SKREBSKY E C, ‘Avaliação da
produtividade do tomateiro em cultivo protegido através de um modelo de
simulação da produção’, Hortic Bras, 1998 16 13–18.

54. BRISSON N, MARY B, RIPOCHE D, JEUFFROY M H, RUGET F, NICOULLAUD B,
GATE P, DEVIENNE-BARRET F, ANTONIOLETTI R, DURR C, RICHARD G,
BEAUDOIN N, RECOUS S, TAYOT X, PLENET D, CELLIER P, MACHET J M,
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Plant Surface Microbiology, New York, Plenum Press, 1996, 169–89.

71. VAN ROERMUND H J W, VAN LENTEREN J C, RABBINGE R, ‘Biological control
of greenhouse whitefly with the parasitoid Encarsia Formosa on tomato:
an individual-based simulation approach’, Biol Control, 1997 9 25–47.

72. WOLF S, RUDICH J, MARANI, REKAH Y, ‘Predicting harvesting date of
processing tomatoes by a simulation model’, J Am Soc Hortic Sci, 1986
111 11–16.

73. MCNEAL B L, SCHOLBERG J M S, JONES J W, STANLEY C D, CSIZINSZKY A A,
OBREZA T A, ‘Application of a greenhouse tomato-growth model
(TOMGRO) to field-grown tomato’, Soil Crop Sci Soc Fla Proc, 1995
54 86–93.

74. GOUDRIAAN J, ‘Box-car-train methods for modelling of ageing, develop-
ment, delays and dispersion’, In: J A J Metz and O Diekman (eds) The
Dynamics of Physiologically Structured Populations, Berlin, Springer-
Verlag, 1986, 453–73.

75. NEDERHOFF E, Effects of CO2 concentration on photosynthesis, transpira-
tion and production of greenhouse fruit vegetable crops, Thesis,
Wageningen Agricultural University, 1994.

76. HEUVELINK E, ‘Effect of fruit load on dry matter partitioning in tomato’,
Scientia Hortic, 1997 69 51–9.

77. GAUTHIER L, ‘GX: a Smalltalk-based platform for greenhouse environment
control. 1. Modeling and managing the physical system. 2. Supporting and
implementing control strategies’, Trans ASAE 1992 35 2003–20.

78. RELLIER J P, MARTIN-CLOUAIRE R, NAVARRETE M, JEANNEQUIN B, GARY C,
MONTBROUSSOUS B, TCHAMITCHIAN M, BAILLE A, ‘Modeling and simulat-
ing decision making for greenhouse tomato production: the Conserto
project’, Acta Hortic, 1998 456 485–92.

Modelling and management of fruit production: the case of tomatoes 227



79. GAUTHIER L, GARY C, ZEKKI H, ‘GPSF: a generic and object-oriented
framework for crop simulation’, Ecol Model, 1999 116 253–68.

80. MCKINION J M, BAKER D N, WHISLER F D, LAMBERT J R, ‘Application of the
GOSSYM/COMAX system to cotton crop management’, Agric Syst, 1989
31 55–65.

81. KOZAI T, ‘Ideas of greenhouse climate control based on knowledge
engineering techniques’, Acta Hortic, 1985 174 365–73.

82. GUAY R, GAUTHIER L, ‘Knowledge representation in a tomato disorder
diagnosis system’, Comput Electron Agric, 1991 6 21–32.

83. HARAZONO Y, KAMIYA H, YABUKI K, ‘A control method based on artificial
intelligence technique and its application for controlling plant environ-
ment’, Acta Hortic, 1988 230 209–14.

84. HARAZONO Y, ‘Artificial intelligence technology to control plant environ-
ments’, In: Y P S Bajaj (ed.) High-tech and Micro-propagation, vol. 1,
Berlin, Springer-Verlag, 1991, 432–51.

85. SCHOTMAN P J, Improving support for greenhouse climate management.
Thesis, Wageningen Agricultural University, 2000.

86. PONTRYAGIN L S, BOLTYANSKII V G, GAMKRELIDZE R V, MISHCHENKO E F,
The Mathematical Theory of Optimal Processes, New York, John Wiley
Interscience, 1962.

87. BELLMAN R E, DREYFUS S E, Applied Dynamic Programming, Princeton,
Princeton University Press, 1962.

88. LEWIS F L, Optimal Control, New York, John Wiley Interscience, 1986.
89. GAL S, ANGEL A, SEGINER I, ‘Optimal control of greenhouse climate:

methodology’, Eur J Oper Res, 1984 17 45–56.
90. SEGINER I, ‘Optimising greenhouse operation for best aerial environment’,

Acta Hortic, 1980 106 169–78.
91. SEGINER I, ‘Optimal greenhouse production under economic constraints’,

Agric Syst 1989 29 67–80.
92. SEGINER I, ANGEL A, GAL S, KANTZ D, ‘Optimal CO2 enrichment strategy

for greenhouses: a simulation study’, J Agric Engng Res, 1986 34 285–
304.

93. CRITTEN D L, ‘Optimisation of CO2 concentration in greenhouse crops: a
modelling analysis for the lettuce crop’, J Agric Engng Res, 1991 48 261–
71.

94. TCHAMITCHIAN M, VAN WILLIGENBURG L G, VAN STRATEN G, ‘Optimal
control applied to tomato crop production in a greenhouse’, ECC’93,
European Control Conference, Groningen, 1993.

95. TAP R F, VAN WILLIGENBURG L G, VAN STRATEN G, VAN HENTEN E, ‘Optimal
control of greenhouse climate: computation of the influence of fast and
slow dynamics’, IFAC Conference, Sydney, IFAC, 1993.

96. MARSH L S, ALBRIGHT L D, ‘Economically optimum temperatures for
greenhouse hydroponic lettuce production. Part I: a computer model’,
Trans ASAE, 1991 34 550–6.

97. MARSH L S, ALBRIGHT L D, ‘Economically optimum temperatures for

228 Food process modelling



greenhouse hydroponic lettuce production. Part II: results and simula-
tions’, Trans ASAE, 1991 34 557–62.

98. SEGINER I, MCCLENDON R W, ‘Methods for optimal control of the
greenhouse environment’, Trans ASAE, 1992 35 1299–1307.

99. SEGINER I, SHER A, ‘Optimal greenhouse temperature trajectories for a
multi-state-variable tomato model’, In: The Computerized Greenhouse,
New York, Academic Press, 1993.

100. VAN HENTEN E J, Greenhouse climate control: an optimal control approach.
Thesis, Wageningen Agricultural University, 1994.

101. KOKOTOVIC P V, KHALIL H K, O’REILLY J, Singular Perturbation Methods in
Control: Analysis and Design, New York, Academic Press, 1986.
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11.1 Introduction

The political and economic environment in which dairy farmers operate have
changed significantly over the past two decades. From a time where policy
measures encouraged expansion in production and hence supported capital
investment, circumstances have changed to a situation where policy seeks to
control production by, for example, the introduction in 1984 of constraints on
the volumes of milk produced. More recently, public concerns about the impact
of agriculture on the environment has raised issues relating to water quality and
other forms of environmental degradation. Increasingly, European agricultural
support measures include cross-compliance elements. Accordingly, agricultural
policy increasingly demands farmers to observe environmental criteria to benefit
from support payments. Nevertheless, in the long-term farmers will only survive
if they can guarantee sufficient financial surplus to allow for reinvestment,
personal living expenses of those working on the farm and some financial
returns for risks taken. Consequently, dairy farmers face the dual challenge of
establishing a financially and environmentally sustainable production system. It
is therefore becoming increasingly important from a farm management
viewpoint to understand the inter-relationships between improving the
efficiency of lowland livestock production systems and minimising the effects
of this production on the environment.

One way of helping farmers and researchers to improve their understanding
of the financial and environmental consequences of changes in their manage-
ment is to make use of computer models of the dairy enterprise to evaluate the
different management scenarios. To achieve this requires an holistic approach to
the development of an integrated systems model of the dairy production
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enterprise, which combines these elements in order to understand the
environmental and economic viability. Such a model requires the integration
of the key components of the production system; namely forage production and
utilisation, animal production and an economic evaluation component.

In order for the model to be relevant to the farmer, the inputs and outputs
must either relate to the management practices or are describing the site. Hence,
the driving variables of the integrated model are determined by farm
management practices, and the outputs from the model must also be relevant
to the farmer. The driving variables and the outputs from the model are
illustrated in Fig. 11.1. Any model developed must be applicable to any site. As
a consequence, the systems model will need to be process based, and hence a
mechanistic model has been developed to describe the system. Accordingly, the
behaviour of the system is based on the next lower level in the hierarchical
system, and the description at the lower level may be mechanistic or empirical
(France and Thornley 1984).

11.2 The model structure

11.2.1 Introduction
The systems model structure developed in this chapter is based on an integrated
modelling approach (Fig. 11.2), and describes the following key factors:

• nitrogen use and its associated environmental effects
• grassland production

Fig. 11.1 The driving variables and outputs from the systems model.
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• grassland utilisation
• economic factors.

Within the model, time is measured in days from 1 January.

11.2.2 Nitrogen use and its associated environmental effects
The soil nitrogen sub-model describes the nitrogen transformations that are
occurring in the soil, and hence the nitrogen that is available for crop growth and
that which is lost through nitrogen leaching and denitrification (Fig. 11.3).
Within the systems model, the major processes, transformations and outputs of
nitrogen in agricultural soils are described in the SOILN model (Johnsson et al.
1987; Bergström et al. 1991), and the rates of transformations are affected by the
soil temperature and soil water content, which are derived from running the
SOIL model (Jansson 1996). The soil in the sub-model is divided into layers on
the basis of physical and biological characteristics, and the organic and

Fig. 11.2 A schematic diagram of the integrated model.
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inorganic pools are replicated for each layer. The soil nitrogen is described in
terms of three organic pools, namely litter, humus and faeces, and two inorganic
pools, which are ammonium and nitrate. The fertiliser nitrogen is added into the
inorganic pool, while the manure and slurry nitrogen is added to the faecal and
litter organic pools and the inorganic pools.

The linkage between the soil nitrogen model and the grass growth model is
through the uptake of nitrogen. The demand for nitrogen by the plant is dependent
on the maximum nitrogen concentration of the leaf, stem and root material
(Eckersten and Jansson 1991), and it is therefore dependent on the quantity of new
biomass produced during that time period. Following Angus and Moncur (1985),
the maximum and minimum nitrogen concentration of the leaves is dependent on
the stage of development of the crop, which is a function of the average daily
temperature and the photoperiod (Gustavsson et al. 1995). The uptake of nitrogen,
assuming the available nitrogen is less than the plant requires, is dependent on the
quantity of nitrogen available within each layer of the soil. In the model,
Eckersten and Jansson (1991) have assumed that the priority for allocating the
nitrogen is roots, stem and then leaves. Consequently, the requirement of the roots
for nitrogen is satisfied before nitrogen is allocated to the stem. The senescent
sward material releases nitrogen into the litter pool within the soil.

The nitrogen excreted by the dairy cow impacts not only on pasture
production, but also on the nitrogen losses from the system. This sub-model
within the systems framework is based on the model developed by the
Agricultural and Food Research Council (AFRC) (1993). The protein in the diet
of the dairy cow is composed of quickly degradable protein (QDP, g kg�1),
slowly degradable protein (SDP, g kg�1), effective rumen degradable protein
(ERDP, g kg�1) and undigestible protein (UDP, g kg�1). A proportion of the
UDP is digested in the lower intestines (DUP, g kg�1). This is a function of the
UDP and the acid detergent insoluble nitrogen within the feed. The ERDP
available is a function of the fermentable metabolisable energy (FME,
MJ head�1 day�1), crude protein contents (CP, g head�1 day�1) and the

Fig. 11.3 A schematic diagram of the N sub-model.
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degradability of the feed, which are predefined for a fresh grass and a dairy
concentrate (AFRC 1993). The microbial crude protein (MCP, g head�1 day�1)
that is available is the minimum of the ERDP and the microbial crude protein
yielded from the FME (MCPFME, g head�1 day�1). The microbial true protein
content (MTP, g head�1 day�1) is 75% of the MCP, as 25% of the MCP is in the

Fig. 11.4 A schematic diagram of the intake of crude protein and the production of
microbial protein (MP).
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form of nucleic acids and non-protein nitrogen. Within the sub-model, the
requirements of the grazing dairy cow for digestible true protein (DMTP,
g head�1 day�1) that is required for maintenance, pregnancy, milk production
and live weight change are determined. The losses of nitrogen through faecal
production are shown schematically in Figs. 11.4 and 11.5. It has been assumed
that 15% of the urine nitrogen and 3% of the faecal nitrogen (Whitehead 1995)
are volatilised in the field.

In the model, it is assumed that the urine and faecal nitrogen are distributed
homogeneously across the sward, although it is recognised that the distribution
of urine and faeces is non-uniform (Haynes and Williams 1993). In addition, the
excreta can be concentrated where the livestock tend to congregate (Hilder 1966,
MacDiarmid and Watkin 1972). Nevertheless, the urine and dung patches can
cover between 25–35% of the sward (Haynes and Williams 1993). Each
urination event is estimated to cover between 0.16 and 0.49 m2 (Haynes and
Williams 1993), with an estimated effective area of 0.5 to 0.7 m2 (Richards and
Wolton 1976, Lantinga et al. 1987). The surface area covered by a dung patch is
between 0.05 and 0.09 m2, but the effective area in wet areas including south-
west Scotland can be up to six times greater than the area covered by the dung
patch. Consequently, the area affected by the urine and faecal nitrogen will be
greater than the base area covered.

11.2.3 Grassland production
The sub-model of the sward assumes that it is pure grass and a schematic
diagram of the model is shown in Fig. 11.6. Forage production is calculated on a
daily basis, and is presumed to be dependent on herbage mass, temperature,
radiation, atmospheric carbon dioxide (CO2) concentration, available water and
nutrients. There are eight state variables, namely,

Fig. 11.5 A schematic diagram of the use of the microbial protein.
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Fig. 11.6 A schematic diagram of the forage growth model.
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1. leaf dry matter
2. leaf nitrogen pool
3. stem dry matter
4. stem nitrogen pool
5. root dry matter
6. root nitrogen pool
7. dead material
8. the leaf area index of the crop.

There are also five driving variables, namely the mean daily temperature, the
level of photosynthetically active radiation, the atmospheric concentration of
CO2, the available moisture and the available nitrogen. Essentially temperature,
photosynthetically active radiation and atmospheric CO2 concentration are
presumed to modify the rates of gross photosynthesis. Net photosynthesis is then
derived by deducting respiration losses. The available moisture and nitrogen
modify the net photosynthate, which is then partitioned between leaf, stem and
root. The nitrogen taken up by the plant is then partitioned between the leaf,
stem and root. The resultant leaf, stem and root materials are then either
harvested or pass into the dead pool through decomposition, with the nitrogen
being released into the litter pool within the soil. The ‘stem’ comprises tillers
and latent developing leaves as well as true stem.

Given the structure of the model, it is convenient to divide its description into
five sub-models concerned with (i) photosynthesis, (ii) respiration, (iii) water
and nutrient stress, (iv) assimilate partitioning and senescence, and (v) herbage
accumulation under cutting.

Photosynthesis
The canopy gross photosynthesis is described for a monoculture by the non-
rectangular hyperbolae (Johnson and Thornley 1984). It is a function of the
irradiance intercepted by the leaves, described by Beer’s law, the photochemical
efficiency and the leaf photosynthetic rate. The leaf photosynthetic rate is
considered to be a function of the leaf area index (Johnson et al. 1989), and the
mean daily temperature (Johnson and Thornley 1983). It is assumed that the
photosynthetically active radiation and temperature do not vary throughout the
day. Thus, the daily rate of photosynthesis can be calculated by multiplying the
maximum hourly rate of leaf photosynthesis by the effective day length, where
day length is based on nautical twilight. In addition to temperature affecting the
rate of photosynthesis, the atmospheric concentration of CO2 also modifies the
rate as described by Thornley et al. (1991).

Respiration
The total respiration requirement of the sward can be divided into growth and
maintenance components. The growth respiration is related to the gross
photosynthate, and the maintenance respiration is related to the mass of the plant
and the growth conversion efficiency (Thornley 1976). Following Johnson and
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Thornley (1983), the maintenance respiration requirement increases linearly
with temperature.

Water and nutrient stress
The effect of a reduction in the availability of water or plant nutrients will be to
reduce the rate of net photosynthate of each component, either by reducing the
efficiency of photosynthesis or by reducing the length of the growing period.
The effect of water and nutrient stress on photosynthesis has been modelled by
reducing the net photosynthesis in proportion to the stress experienced by the
crop.

The principal limiting nutrient for pasture in Scotland is nitrogen. The degree
of nitrogen stress experienced by the crop is the leaf nitrogen concentration
expressed as a proportion of the maximum leaf nitrogen concentration.
Similarly, the available soil water is expressed as a proportion of the soil water
required for maximum growth. Empirically derived relationships expressing the
effect of water and nutrient stress on the photosynthate for grass, have been
estimated from part of the GM23 data (J. Gilbey, personal communication). The
amount of nitrogen that is available to the sward is dependent on the available
pool of nitrogen determined by the SOILN model.

Assimilate partitioning and senescence
The net photosynthesis expressed as kg CO2 ha�1 (ground) day�1 is converted to
dry matter by multiplying the net photosynthesis by the efficiency of converting
CO2 to dry matter. Following Doyle et al. (1989), pasture growth occurred when
there is photosynthate surplus to requirements for tissue maintenance and
growth respiration. A fixed proportion of the photosynthate is assumed to be
partitioned to the root (Johnson et al. 1983), and the remaining photosynthate is
partitioned between the leaves and the stem. Losses, through senescence, offset
the production of new leaf and stem material. The senescent material passes into
the pool of dead material, where it remains until it decomposes.

Sheehy et al. (1980) observed that, for grass, the physiological stage of
development affects the proportion of photosynthate partitioned to the leaves
and the rate of leaf senescence. In spring, during the reproductive phase, less
assimilate is partitioned to the leaves. The apparent life of the leaf is increased,
implying a lower rate of leaf loss. The commencement of the reproductive phase
of each species varies with temperature and light (Cooper 1960). However, for
simplicity, the changes in physiological states are assumed to occur on
designated days.

Herbage accumulation under cutting
In the grass sward, the actual quantity of grass harvested under cutting is equated
with the quantity of leaf and stem material in the sward less some predefined
residual quantity of material that remains on the paddock.
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11.2.4 Grassland utilisation
Within the model, it is assumed that half the area will be set aside for the first
conservation cut and a third of the area for the second. However, if there is a
shortage of pasture for grazing, the paddocks set aside for conservation are
grazed. Any paddock that has not been grazed during the thirty days prior to the
date of cutting is cut for conservation.

The interaction between the herbage growth and the grazing sub-models is
through the removal of leaf area by the grazing animal. This removal of leaf
affects the rate of photosynthesis and consequently the growth rate of the crop.
This, in turn, affects the crop’s morphology in terms of the leaf-to-stem ratio,
which regulates the digestibility of the herbage on offer and therefore influences
the herbage intake by the grazing animal.

At low herbage allowances, once the available herbage had been consumed,
the animals abandon any attempt to graze closer to the ground (Le Du et al.
1979). Hence, in the model, it has been assumed that the dairy cows will not
graze below a predefined herbage mass. The start of the grazing season is
controlled by the availability of grass, and the quantity of herbage on the
paddock must have increased. On the other hand, the grazing season is
considered to end when one of the following criteria is met:

• the metabolisable energy from dry matter intake does not meet the
metabolisable energy requirements of maintenance; or

• the predicted dry matter intake falls to less than 20% of the potential level; or
• the soil moisture availability would result in the animals poaching the

paddocks.

However, grazing can still occur after the growing season has ended. Through-
out the grazing season the rotation of the dairy cows around the paddocks is
determined solely by the quantity of herbage on each paddock.

Basically a spring-calving dairy herd, rotationally grazed during the summer
period on a pure grass sward, is simulated. The pasture is divided into a number
of equal-sized paddocks. Herbage production is calculated for each paddock on
a daily basis and is dependent on the existing herbage mass, the availability of
nutrients, temperature, radiation and CO2 concentration. The herd is represented
in the model by the ‘average dairy cow’, which is assumed to comprise 25%
first-year heifers, 25% second lactation cows and 50% cows in later lactations.
Thus, each year 25% of the cows are presumed to be culled and replaced.

The intake of dry matter by the grazing dairy cow is assumed to be regulated
by three factors (Loewer et al. 1983), namely

• the feed availability
• the physiological limit on intake
• the physical ability of the animal to consume feed.

Feed availability
When the quantity of herbage available for consumption is less than that
required for 95% of maximum daily intake, the daily allowance of green herbage
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regulates intake. The green herbage allowance is taken to be the green herbage
mass above the minimum herbage mass of 900 kg DM ha�1 required for grazing.
Zemmelink (1980) described the relationship for tropical grasses between
herbage intake as a function of the daily allowance of green herbage and the
maximum daily intake in kg DM per head per day. In the absence of any
established relationships for temperate grasses, this relationship has been
adopted. Consequently, the model has been calibrated using the assumption that
the maximum daily intake of herbage is related to the metabolic live weight of
the cow and is presumed to increase by 136 g DM for every kg of metabolic
weight (McDonald et al. 1988).

Physiological limit to intake
The physiological limit to intake is considered to be regulated by the daily
metabolisable energy (ME) requirements of the animal. Energy requirements by
the dairy cow are divided into those for maintenance, pregnancy, milk
production, and growth and fattening. The description of the maintenance
requirements is based on Hulme et al. (1986). The net utilisation efficiency of
ME for maintenance is related to the metabolisability of the feed, while the
mean age of the ‘average dairy cow’ is assumed to be four. Daily energy
requirements for pregnancy have been derived using relationships specified in
Agricultural Research Council (ARC) (1980).

The potential energy requirement for lactation has been derived from
estimates of the potential milk yield based on a Wood’s lactation curve (Wood et
al. 1980). The potential daily milk yield of the ‘average dairy cow’ is taken to be
the weighted average of the potential daily milk yield of each age cohort.
Finally, the estimates of the daily energy requirements for growth and fattening
assume that the potential growth of an animal can be described by a Gompertz
equation (Taylor 1968).

The physiological energy requirements of the ‘average dairy cow’ are then
obtained in the model by summing the four elements, namely maintenance,
pregnancy, lactation and growth energy requirements. As the energy retention of
the cow is not linearly related to intake (Schiemann et al. 1971, van Es 1976),
the physiological intake has been corrected for feeding level (ARC 1980).

Physical limit to intake
With feeds having a low digestibility, the actual intake may be lower than the
physiological requirement. Feed intake is controlled by the rate of passage of
undigested material through the digestive tract, and the rate is positively related
to the digestibility of the feed (Conrad et al. 1964). It is also considered that the
capacity of the digestive tract of the cow is influenced by the stage of lactation.
Following Kahn and Spedding (1984), the ability of the digestive tract to process
and void undigested residues was increased linearly up to a maximum value on
day 150 of lactation, and then decreased linearly back to the base level at the end
of lactation. At the same time, following the recommendations of the ARC
(1980), the physical limit to herbage intake is corrected for the effects of

240 Food process modelling



concentrate feeding. This is because as the level of concentrates increases, the
intake of herbage decreases, so that the net effect of supplementing the diet only
results in a small increase in the dry matter intake (Mayne 1990).

Components of intake
The actual daily intake is described by the most limiting factor of the
physiological, the physical and the herbage limitations to intake (Fig. 11.7).
However, this provides no information on the composition of the diet in terms of
leaf, stem or dead material. Observations by Jamieson and Hodgson (1979) have
shown that grazing lambs and calves preferentially select green material and
hence the same has been assumed for dairy cows. The proportions of leaf, stem
and dead material in the sward are also known to differ from the proportions in
the diet (Rattray and Clark 1984). Accordingly, following Doyle et al. (1989)
the mean daily intakes of leaf and stem are functions of the proportions of leaf
and stem in the sward plus an intake of dead material. In the model, the
proportionate digestibilities of the leaf and stem material have been assumed to
decrease as the season progresses (Osbourn 1980).

Fig. 11.7 A schematic representation of the factors limiting intake.
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11.2.5 Economic considerations
It is crucial within the systems model to assess the impact of changing the
management system on the profitability of the system, as well as on the
environment. As a consequence, two common indicators, namely margin over
concentrates and margin over forage, which allow comparisons to be made
between different systems, are determined within the systems model. These two
indicators require the determination of the expenditure on concentrates and
fertilisers, and revenue from milk, and hence the milk yield.

The user enters the milk price, while the milk yield is determined within the
modelling framework. The fertiliser usage is determined by the management
strategy adopted and hence the user enters the quantity of fertiliser applied per
hectare, as well as the price per unit of fertiliser. The user of the model can
determine whether the concentrate-feeding regime adopted is flat rate or
whether the cows are fed to yield. Accordingly, the user enters the concentrates
fed either per litre of milk produced or per day and the cost per unit of
concentrates. The level of milk production is a function of the herbage available
and the concentrates fed, and the energy requirement of the dairy cow.

Dairy cow production
Within the model, the energy intake is partitioned between maintenance,
pregnancy, live weight gain and milk production. The energy requirements for
maintenance and pregnancy are considered to have priority. If there is
insufficient energy available to meet the potential energy requirements of the
animal, it is assumed that the potential energy requirements for milk and growth
are reduced by an equal amount (Bruce et al. 1984), illustrated in Fig. 11.8. In
the event of the maternal body being catabolised to meet maintenance and
pregnancy requirements, the energy available for milk production may become
less than zero. If this occurs, no milk is produced and the quantity of maternal
body catabolised is restricted to the shortfall in energy requirements for
maintenance and pregnancy.

11.2.6 Validation of the model
The herbage production model has been validated for several sites in the UK
(Topp 1999a, Topp and Doyle 1996a, Topp and Hameleers 1998) and Northern
Europe (Topp 1999b). In addition, milk production produced from the dairy cow
model has been validated against data for an indoor feeding system (Topp
1999a) and a rotationally grazed pasture in Ireland (Topp 1999a, Topp and
Doyle 1996b). Topp and McGechan (2000) have described the validation of the
herbage production linked to the environmental consequences of the systems
model. The model was validated against herbage yield, nitrogen concentration of
the herbage and nitrogen leaching data, which was collected from lysimeters for
the Crichton Royal dairy farm, Dumfries, Scotland for 1993 to 1996 (Hooda et
al. 1998). This required the calibration of the SOIL (McGechan et al. 1997) and
SOILN models (Wu et al. 1998) for the site.
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The statistical technique used to assess the ability of the forage and livestock
models to simulate production is Theil’s inequality coefficient (u), which was
defined by Theil (1970) as:
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Fig. 11.8 A schematic diagram of the partitioning of metabolisable energy in the dairy
cow.
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where pred and obs are the predicted and observed values respectively and n is
the number of observations. The numerator of this equation is the root mean
square error, while the denominator scales Theil’s inequality statistics so that it
always falls between zero and one, with zero indicating a perfect fit. As the
difference between the actual and the simulated values are squared, large errors
are penalised more than small errors. This technique also assesses the model’s
ability to duplicate turning points or rapid changes in the data. Theil’s inequality
coefficient can be decomposed into the bias, variance and covariance
proportions. The bias proportion is an indication of the systematic error, while
the variance proportion represents the ability of the model to replicate the degree
of variability in the observed data. The covariance proportion represents the
error remaining after accounting for the bias and variance proportions.

The grass production element of the model was validated using three sites at a
range of fertiliser application rates in the UK (Morrison et al. 1980) and a large
number of sites across Northern Europe during the period 1982–1986 (Corrall
1988, Peeters and Kopec 1996). The results of the validation, tested using
Theil’s inequality coefficient, suggest that the systems model can predict grass
production over the growing season across a large number of sites in the UK
(Topp and Doyle 1996a, Topp and Hameleers 1998, Topp 1999a) and Northern
Europe for irrigated and non-irrigated situations (Topp 1999b), as shown in
Tables 11.1–11.3. However, Table 11.4 reveals that the ability of the model to
predict varies with the level of nitrogen fertiliser applications (Topp 1999a). The
model tends to under-predict at low nitrogen application rates and over-predict

Table 11.1 Theil’s inequality coefficient and bias, variance and covariance proportions
of the coefficients for three sites in the UK

Site Inequality Bias Variance Covariance
coefficient proportion proportion proportion

High Mowthorpe 0.23 0.225 0.205 0.570
Seale Hayne 0.18 0.000 0.015 0.985
Rosemaund 0.18 0.009 0.042 0.949

Table 11.2 Theil’s inequality coefficient and bias, variance and covariance proportions
for the FAO sites which were irrigated

Site Inequality Bias Variance Covariance
coefficient

Crossnacreevy, UK 0.19 0.13 0.19 0.69
Hurley, UK 0.35 0.39 0.19 0.43
Uppsala, Sweden 0.42 0.31 0.27 0.42
South Savo, Finland 0.31 0.23 0.19 0.58
North Pohjannaa, Finland 0.29 0.13 0.16 0.71
North Wyke, UK 0.34 0.39 0.23 0.39
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at high nitrogen application rates. Nevertheless, the error is mainly due to
random variations, as the bias and variance proportions of the coefficient tend to
be small.

The model predicted reasonably well milk production in the indoor
production system, with a Theil inequality coefficient of 0.037 and bias and
variance proportions accounting for 0.363 and 0.087 respectively (Topp 1999a).
The grazing dairy cow model was validated for low (2.36-2.49 cows ha�1) and
high (3.1–3.23 cows ha�1) stocking densities for the period 1985–1987 at
Johnstown Castle, Ireland (Ryan 1988, 1989). Although Theil’s inequality
coefficient suggests reasonable predictions for the grazing herd (Table 11.5), the
model tends to over-predict milk production towards the end of the grazing
season as illustrated in Fig. 11.9 (Topp 1999a, Topp and Hameleers 1998).

When the herbage production model is validated for herbage yield and the
impact on nitrogen leaching, the predictions for herbage production are

Table 11.3 Theil’s inequality coefficient and bias, variance and covariance proportions
for the FAO sites which were non-irrigated

Site Inequality Bias Variance Covariance
coefficient

Braunschweig, Germany 0.31 0.19 0.07 0.74
Plas Gogerddan, UK 0.39 0.41 0.25 0.34
Crossnacreevy, UK 0.20 0.04 0.08 0.88
Johnstown Castle, UK 0.29 0.12 0.07 0.82
Grange, Eire 0.27 0.15 0.22 0.63
Moorpark, Eire 0.24 0.01 0.02 0.98
Hurley, UK 0.35 0.34 0.13 0.54
Uppsala, Sweden 0.51 0.32 0.28 0.41
South Savo, Finland 0.31 0.18 0.11 0.72
North Pohjannaa, Finland 0.27 0.03 0.02 0.96
MacRobert, UK 0.25 0.19 0.01 0.80
Auchincruive, UK 0.23 0.18 0.12 0.71
Kiel, Germany 0.24 0.00 0.00 1.01
North Wyke, UK 0.33 0.37 0.20 0.43
Bronydd Kawt, UK 0.37 0.32 0.22 0.48

Table 11.4 The ratio of the predicted yield: observed yield averaged nitrogen level at
three sites in the UK

Nitrogen level High Rosemaund Seal Hayne
(N kg ha�1 yr�1) Mowthorpe

0 0.79 0.38 0.30
150 0.90 0.76 0.96
300 1.17 1.07 1.03
450 1.78 1.28 1.31
600 2.24 1.68 1.35

Total 1.38 1.03 0.99
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reasonably good, with the bias and variance proportions of the Theil’s inequality
coefficient being relatively small. However, the Theil’s inequality coefficient for
nitrogen leaching suggests poor levels of fit. Nevertheless, the model does
predict the general trends in nitrogen leaching production throughout the year,
although there is a tendency for the predicted levels of leaching to be lower than
measured, as illustrated in Fig. 11.10.

Fig. 11.9 Observed and predicted daily milk yields for the ‘average cow’ at An Foras
Taluntais, Johnston Castle, 1985–1987.
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11.3 Conclusions

The holistic model of the dairy enterprise is dynamic and deterministic and
hence is applicable across a wide range of sites, which has been demonstrated as
part of the validation process. The model describes not only milk and herbage
production, but also the nitrogen flows within the system, and hence the losses
through leaching and denitrification. The model also considers the economic
impacts of changing the management system. Accordingly, the dairy enterprise
model can be used for scenario planning and asking ‘what if’ questions of the
management system. However, the model does not determine the optimum
management system, and hence it is unable to propose an optimum grazing
regime or fertiliser application regime.

The model has been used to explore the consequences on herbage yield
throughout the growing season and leaching losses of different fertiliser
application rates and dates coupled with varying application rates and dates of
slurry. Similarly, the impact of fertiliser and slurry on the availability of herbage
for grazing and hence milk yield has also been explored. In addition, the impact of

Table 11.5 Theil’s inequality coefficient and bias, variance and covariance proportions
of the coefficients

Stocking Year Theil Bias Variance Covariance
density statistic

Low 1985 0.069 0.575 0.020 0.405
1986 0.070 0.470 0.184 0.346
1987 0.051 0.291 0.131 0.578

1985–1987 0.064 0.443 0.084 0.473
High 1985 0.082 0.494 0.168 0.338

1986 0.053 0.154 0.141 0.705
1987 0.075 0.622 0.000 0.378

1985–1987 0.071 0.418 0.075 0.507

Fig. 11.10 The cumulative observed and predicted N leaching for the Crichton Royal
Farm, Dumfries.
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grazing dairy cows returning nutrient to the pasture through urine and faecal
deposits on the system has been assessed (Topp and Hameleers 1999).
Furthermore, by running the model over a number of years, the interaction
between the climate and the management factors on the production and viability
of the dairy system can be explored. However, daily climate data, describing the
average temperature, rainfall, radiation and evapotranspiration, are required. Thus
to run the model for a series of years requires large quantities of climatic data.
This data requirement and the limitations of current personal computer power
currently limit the use of the model as an on-farm decision support system.
However, this limitation will be reduced as computer power increases. Never-
theless, the model was developed to understand the system as opposed to being
used as a decision support system. However, the model can be used to assess the
impact of changing the management system on the efficiency of the system.
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12.1 Introduction

This chapter refers to computer models that simulate beef cattle production.
Such models consist of mathematical equations and instructions which mimic
the roles, interactions and influences of the various inputs to beef cattle
production. The chapter recognises that modelling is a term which refers to both
building and using models, and that beef cattle production includes the complex
interactions between the physical environment, financial environment, manage-
ment, feed supply, and animal reproduction and growth. The chapter considers
the challenge faced by model builders in dealing with such complexity,
overviews possible applications, and gives an example of a simple beef
production model.

Pasture and animal scientists started to model beef cattle production after
computers first became available for research in the 1960s. A rapid expansion in
the range, scope and role of models followed in response to the even more rapid
expansions in the power and accessibility of computers. Insight into the progress
and philosophy of modelling pasture and animal production are obtained from
recent reviews.1, 2 Models have been a valuable aid to research, extension, and
management at the farm, industry or government levels because of the following
three attributes.

1. If each equation in a model is regarded as a hypothesis pertaining to a
specific process or component, then a model can be regarded as a collection
of hypotheses, derived from past research that can be further modified and
developed through new research. In this way, a model becomes a repository
for past research and a precursor for future research.3, 4 Model construction
is now a common activity that gives research direction and focus.
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2. Models provide a quantitative description of the many interacting
components which may have conflicting responses in a beef production
system.4 This is a powerful and unique attribute that greatly exceeds the
analytical capacity of the human mind. For example with beef cattle, as
stocking rate increases (the number of animals per unit area of land), the
liveweight and value per animal decrease, variable costs increase and
production per hectare at first increases and then decreases.5 A manager
must balance the trade-offs between profit, risk, pasture degradation and
premium prices.6 Similar trade-offs between productivity, stability and
sustainability are common in farming systems7 and a model allows users to
experience ‘virtual’ reality in managing grazing systems.

3. Models can give a quantitative extrapolation in space and time of
information derived from past research and experiences. For example, by
processing historical records of daily weather data, estimates of variability
in output can be expressed as probability distributions.8 Similarly, by
processing the historical weather for different land units in a region, and
thereby estimating spatial and temporal variations in forage production,
estimates of safe stocking rates can be compared against trends in actual
regional stocking rates to indicate periods of overgrazing.9 Further, if the
spatial model uses current weather data as input, the output is a near real-
time display of pasture and/or animal production10 that can influence
government or industry policies. All of these applications rely on a model’s
ability to extrapolate information in temporal and spatial dimensions, and
this attribute is fundamental to the role of models in information transfer.11

Today a wide range of models on different aspects of plant and animal
production are being used as aids to research, farm management, and to
determine government or industry policies.1

12.2 Elements of beef cattle production

Beef cattle production deals with the conversion of climatic and edaphic inputs
into plant products, which are consumed by various classes of animals in a beef
cattle herd to give meat for human consumption. This beef production system
consists of four interacting biophysical and bioeconomic subsystems, which are
manipulated through the management subsystem in response to the climate
subsystem (Fig. 12.1). The structure and significance of the various subsystems
are described in more detail below.

The climate subsystem is largely outside the management subsystem but it
directly affects the four subsystems influenced by a manager. For example,
rainfall supplies soil water for plant growth, may cause soil erosion, and
influences the rate of waste decomposition in soil. Further, prevailing
temperature, humidity and radiation influence plant growth, and the incidence
of plant and animal pests and diseases. Climatic inputs also display seasonal and
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year-by-year variations and a manager must devise strategies to cope with these
variations. Indeed, matching the farming system to the level and variability of
climate inputs is a big challenge for a farm manager.12 Seasonal variations in
climate give rise to seasonal variations in quality and type of forage which may
trigger fodder conservation (e.g. hay) to offset periods of forage deficiency.
Wide year-by-year variations in climate inputs, often expressed as droughts or
floods which lead to major perturbations in forage supply and market prices,
need to be handled through skillful and resourceful management.13 However,
long-term weather forecasts now give managers prior warning of likely climatic
extremes. For example, in northern Australia seasonal forecasts indicate the
probability of rainfall in the forthcoming three to six months exceeding the
historical median value, thereby permitting managers to make an early response
to a likely distribution of rainfall.14 Also extremely hot or cold temperatures can
cause deaths in plants and animals, and computer models such as GRAZ-
PLAN,15 coupled to weekly weather forecasts, give early warning of likely
mortalities in susceptible classes of animals. In both cases, recent improvements
in the reliability and skill of weather forecasting are helping farmers to cope
with wide variations in climate.

The land subsystem supplies water and nutrients for plant growth. Since it
includes many of the ecological processes that sustain the whole system, both
the manager and interest groups in the wider community are keen to keep the

Fig. 12.1 Interrelationships between biophysical and bioeconomic subsystems
(rectangles) with the management subsystem of the farmer. The biophysical and

bioeconomic subsystems contain processes that determine their status. The interface
between two subsystems (arrows) represents a conversion of materials into a new form.
The manager is constantly responding to the climate subsystem, which impacts to varying

degrees on the soil, pasture, animal and economic subsystems.
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land subsystem in good condition. Land degradation through soil erosion,
desertification, salinisation, acidification and nutrient decline is a major concern
in many of the world’s grazing lands and has led to the notion of landscape
management. With this approach, managers in a region with a common attribute,
such as a river catchment, are encouraged to adopt strategies that enhance
sustainable development rather than exploitation of the land subsystem.
Landscape management also recognises that grazing lands produce food as
well as ecosystem services, such as water and biodiversity that are needed to
sustain the cities where most people live. Preferred management strategies for a
landscape may arise through different management options being assessed by
government agencies or local communities, and computer models are often
useful tools in this process.16

Plants within the forage subsystem supply digestible nutrients when grazed by
cattle. Forage accumulates through plant growth and forage not eaten, together
with faeces and urine from cattle, return to the soil subsystem through the detritus
food chain. The quality of forage on offer varies with the growing conditions and
type of plant species in the system. New growth is the most digestible and there is
a steady decline in quality as plant parts age, die and senesce. Since temperate
grasses have a higher digestibility than tropical grasses, grazing systems in
temperate zones tend to display higher animal performance than tropical zones,
Leguminous species tend to have higher digestibility than gramineous species.17 If
a grazing system is based on sown pastures the manager may select to grow a
mixed-pasture which usually consists of a few species that are well suited to a
particular situation. This contrasts with native rangelands where the system
consists of many different species, often including trees. Here a manager aims to
keep the pasture in good condition by maintaining adequate plant cover to reduce
soil erosion and a predominance of desirable rather than undesirable plant
species.18 In both sown pasture production systems and native rangelands, forage
condition and animal performance can be manipulated by management options
such as the choice of stocking rate, type and amount of fertiliser application,
periods of grazing and conservation, level of supplementary feeding, and fire in
the case of rangelands.19, 20

The cattle subsystem produces animals for sale through the processes of
reproduction and growth within a herd consisting of different animal classes.
The number of different animal classes on a farm largely depends on the quality
of the pasture subsystem and on the objectives of a manager. In essence,
breeding cows produce calves and after weaning these move into different
classes as they grow and age (Table 12.1). Usually young female cattle (heifers)
are selected to replace aged or culled cows and are mated for the first time when
they reach maturity and a specific weight that depends on the breed and
prevailing nutrition. Under good nutrition, heifers may be mated first at 15–18
months of age, but with the poorer nutrition in extensive rangelands, mating
usually takes place at 24–30 months. Heifers that are not required for replacing
cows might be sold for slaughter or for breeding purposes elsewhere. Male cattle
are commonly castrated before weaning although a small number of high-
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performing males may be retained to replace aged bulls. Depending on the
prevailing nutrition and markets, male cattle may be retained for one to three
years after weaning, to be sold for slaughter or for finishing elsewhere on
another farm or in a feedlot. Thus, which market to target, and how the cattle
should be fed to meet the market, are key strategic decisions for a manager.
Deciding when to sell specific groups of cattle is a key tactical decision for a
manager.

The different classes of cattle in a beef herd have different nutritional
requirements because they differ in weight and age. The term adult equivalent
(AE) relates the energy requirement of different classes to a common base, the
energy requirement for maintenance of an adult animal, such as a non-lactating
cow. The AEs of Table 12.1 can be determined from feeding tables but a first
approximation for growing cattle is given by:

AE � LW 0�75�105�7 �12�1�

Table 12.1 Classes of cattle commonly found in beef cattle herds in extensive grazing
systems. Adult equivalent, being the ratio of the energy requirement of a class to the
energy requirement of an adult animal, is a coefficient for equating animal numbers in
each class to a common base. Intensive grazing systems with a higher level of nutrition
will have fewer classes since cattle are sold at a younger age.

Animal class Adult Age Comments
equivalent years

Cows and 1.3 2–12 Managers aim to have breeding cows calve
calves annually. Calves are usually weaned at about 6

months of age.

Yearling 0.55 0.5–1.5 Heifers are females that have not had one calf.
heifers When mature at 1.5 to 2.5 years, depending on
2-year-old 0.75 1.5–2.5 breed and growing conditions, some are mated
heifers to replace culled cows. Surplus heifers may be

sold for slaughter or as breeding stock.

Yearling 0.55 0.5–1.5 Steers, or castrated males, are sold for finishing
steers elsewhere, or for slaughter. Age and weight at
2-year-old 0.8 1.5–2.5 sale depends on the level of nutrition they experi-
steers ence, the specifications of available markets, and
3-year-old 1.0 2.5–3.5 on the price advantage of different markets.
steers Within limits set by prevailing climatic and
4-year-old 1.1 3.5–4.5 economic conditions, a manager can target a
steers specific market by manipulating feed supplies in

the pasture subsytem.

Culled cows 1.0 3–12 Cows no longer suitable for breeding due to age
or infertility. Usually conditioned and sold for
slaughter.

Bulls 1.1 3–7 Male animals for mating with cows. One bull is
required for every 20 to 25 cows.
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where LW and LW0.75 are the liveweight and metabolic weight of animals in a
specific class and 105.7 is the metabolic weight of a non-lactating bovine with a
liveweight of 500 kg/head.21

The market subsystem refers to the different markets for beef cattle available
to a manager along with the prices and profit margins associated with each
market. Specifications for markets vary with location. In an extreme case there
is no specification, and all cattle are sold as beef with no separation of cuts at
retail outlets. At the other extreme, individual animals are prepared for a specific
market and traced through the supply chain, with carcasses being graded for
quality and various cuts of meat separated and sold at prices that reflect
consumer preferences and the grade. Farmers in countries that export beef, such
as USA, Australia, Canada and New Zealand, commonly have a range of market
options that are specified in terms of age, gender, weight and fat thickness of a
carcass. However, the classification scheme is not standardised internationally,
although there is an international trend to reduce the allowable limits for
residues of pesticide and growth promotants in export beef. Penalties for farmers
in not meeting specifications for chemical residues are usually severe, including
condemnation of all meat in the case of excess chemical residues.

12.3 Challenges for modellers

The above description of beef production is deceptively simple. In practice a
model builder is faced with the challenge of expressing the complex interactions
between components of the system (Fig. 12.1). Specific challenges include

• how to match the primary purpose of the model to the most appropriate
structure

• how to handle natural variability in the biophysical components and the
interface between the subsystems, and

• how to validate the completed model.

Answers to these questions are interrelated and reflect back to the history and
philosophy of model building.

12.3.1 Matching purpose and structure
Models of beef production systems are commonly built as aids to research, farm
management or policy evaluation and their structure may be mechanistic,
empirical or a combination of both.1 Empirical models estimate outputs by
empirical equations developed from experimental observation of output in
relation to one or more influencing variables, while mechanistic models reflect a
theoretical understanding of the factors that control outputs. The relative merits
of mechanistic and empirical structures have been hotly debated and the choice
of structure is a critical and often difficult decision for a model builder.2, 4, 22, 23

Mechanistic models, because of their stronger theoretical base, tend to be more
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versatile and are more likely to explain responses than empirical models, but
they may not be more accurate and often contain parameters that are difficult to
determine in practical situations. Conversely, the robustness of an empirical
model depends on the range of experimental data used in its derivation, and
spurious results might occur if it is applied outside this range. Thus model
builders should specify the derivation and application of an empirical model,
and users should adhere to these specifications. As a variation on the above
distinction, some models combine both empirical and mechanistic elements,
such as an empirical model being used to process and interpret the results
previously stored from many simulation experiments with a mechanistic model.

Research models are built by researchers to analyse the complex interactions
in beef production systems. They can be regarded as a repository for past
research since they collate and integrate information from past research. They
are also a precursor for future research since gaps in knowledge and
understanding are highlighted. Because research models focus on processes
and their interactions, they are often mechanistic in structure and have a limited
distribution. However, GRAZE is an exception to this statement, being a
comprehensive mechanistic model of forage and animal growth that is widely
distributed and well documented.24 Sometimes a research model evolves into a
management or policy model, thereby reducing development costs.

Models for farm management are usually designed to evaluate management
options pertaining to one or more components of the system. They aid
management by evaluating different scenarios thereby allowing preferred
strategies to be identified, but importantly, a manager is free to accept or reject
the output. Developing this type of model requires considerable time and effort,
since to be accepted by potential users, the package needs to operate in a
convenient and reliable manner, have a high degree of validity or skill, and have a
commercial arrangement for distribution and after-sales service.1 FEEDMAN25 is
an example of many commercial decision support systems that focus on farm
management. However, history suggests that experienced farmers do not readily
use such software for common routine decisions unless its use is clearly beneficial
and it is promoted by a trusted product champion.26–28 On the other hand,
professional farm advisors who are paid to recommend preferred management
options are likely to use the software to justify a recommendation. Because a farm
advisor may have many clients, decision support software that is regularly used by
a few farm advisors may still have a big impact on farm management. Both
mechanistic and empirical sub-models are widely used in management software.

Policy models serve government or industry leaders by estimating outcomes to
possible scenarios and initiatives in policy. Both mechanistic and empirical sub-
models are used in policy models dealing with pasture and animal production.
Policy models range from those that provide a one-off analysis of a specific
problem to those that provide a regular ongoing service. An example of a one-off
analysis that influenced policy was the rejection of a plan, based on results from
field research over ten years, to construct farm dams and use the stored water to
irrigate crops to improve the forage supply in north western Queensland.
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Simulation studies based on long-term records of climate showed that the plan was
not viable because rainfall was too variable.29 Apparently the field study that
supported the plan coincided with a run of high-rainfall years. An example of a
regular ongoing service is the monthly maps of relative pasture yield, adjusted for
prevailing stocking rates, which are derived from a pasture production model
operating on a 5� 5 km grid for the State of Queensland.30 The maps provide an
objective assessment of drought status for government and industry. Constructing
and maintaining a policy model of this scale requires an integrated team of
scientists, programmers and support staff. As with management models, a policy
model’s credibility depends on its scientific base and validity.

12.3.2 Coping with linkages between components
With regard to Fig. 12.1, the status of each subsystem is expressed by several
different terms, which reflect the purpose of the overall model and the structure
of the sub-models that simulate each subsystem. Since the subsystems are
interdependent, they need to be linked in an appropriate manner, an issue in
model building that is often called the interface problem. As an illustration,
simple expressions of the status of each subsystem might be:

1. climate subsystem – inputs of solar radiation and/or temperature on plant
growth and rainfall on soil water supply;

2. land subsystem – amount of soil water (mm) available for plant growth in
response to daily rainfall runoff, drainage and evapotranspiration;

3. pasture subsystems – yield (kg/ha) of leaf and stem, potentially for each
plant species in the pasture, in response to daily plant growth less
consumption and senescence;

4. animal subsystem – liveweight (kg/head) of each animal class, in response
to an initial liveweight and accumulated daily liveweight gain; and

5. economic subsystem – farm profit ($ or $/ha) in response to value of
animals sold less variable costs.

Interface between climate, land and pasture subsystems
Mechanistic models often estimate plant growth as the product of intercepted
solar radiation and radiation use efficiency. Intercepted radiation depends on
leaf area of the forage, and radiation use efficiency links the soil and climate
subsystems, being dependent on prevailing climate, soil nutrient status and soil
water supply.31 In practice, radiation interception and radiation use efficiency
are difficult to simulate in pastures in rangelands that are a mixture of C3 and C4
species growing as spaced plants under trees in a semi-arid environment, and are
grazed selectively by cattle. Under these complex circumstances an empirical
model based on field observations can be a useful tool. For example, pasture
growth (PG kg/ha) can be estimated as:

PG � WUE �WU �12�2�

260 Food process modelling



where WUE is water use efficiency, another term that links the two subsystems
for a specified site (kg/mm), and WU is water use over a specified time step (e.g.
mm/day).

Equation (12.2) avoids the difficulties associated with radiation interception
by recognising the strong direct relationship between water use via transpiration
and forage growth via photosynthesis, two gaseous transfer processes that are
controlled by leaf stomata. It can be applied at different temporal and spatial
scales.32 On a daily time step, WUE becomes transpiration efficiency and WU is
daily transpiration estimated by a sub-model of soil water balance, but on
monthly or seasonal time step, WUE becomes rainfall use efficiency and
effective rainfall (actual rainfall less runoff) is an approximation of WU.
Although WUE varies with fertility status of the soil, seasonal conditions and the
number of trees present, it is a parameter that can be determined simply for a site
from measurements of plant growth in relation to WU. The FEEDMAN decision
support system estimates monthly plant growth through this approach and the
default values of WUE for many different soil-forage combinations were either
obtained from field experiments or by integrating output from a daily plant
growth model. In either case, the default values can be customised to reflect
local conditions.

Interface between pasture and animal subsystems
This interface must account for nutritional demands of different classes of
animals, all of which have the ability to move and select a preferred diet from a
pasture that exhibits wide spatial and temporal variation in yield and quality.

In mechanistic terms, animal production is dependent on intake of digestible
nutrients, and once the amount and quality of diet is known, models for
estimating different forms of production (e.g. liveweight change, milk
production, wool growth) in different animal classes already exist.33 Thus the
interface problem becomes how to estimate, either directly or indirectly, two
interdependent terms, the amount (intake) and quality (digestibility) of diet.
Actual intake is usually less than a potential intake, which depends on the breed
and liveweight of animals, due to constraints arising from the amount and
quality of forage on offer. Forage digestibility declines with age, is greater in
leaf than stem, and varies across species. Mechanistic models commonly
simulate diet selection by partitioning the forage on offer into digestibility or age
categories with animals then selecting progressively from high to low categories
until their appetite is satisfied.34 Whilst this approach tends to mimic diet
selection in temperate pastures reasonably well, the descriptive functions are
essentially empirical relationships derived from field experiments. The approach
has been less successful in rangelands with a more heterogeneous botanical
composition and sward structure.35 However, a more realistic algorithm for diet
selection in heterogeneous forages places plant species into broad preference
categories (e.g. preferred, desirable, undesirable, toxic, emergency and non-
consumed) and then computes the proportion of each preference class in the
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diet.36 The algorithm assumes that an animal has experience with the vegetation,
and has learned to avoid toxic species and non-consumed species. The
‘emergency’ category accounts for species that are only eaten after the preferred,
desirable and undesirable species are depleted.

The above ‘mechanistic’ models are essentially based on ‘empirical’
expressions derived from diet selection studies with parameters that are rather
abstract and site specific. To avoid these difficulties, the FEEDMAN package
used the notion of potential liveweight gain to characterise the seasonal variation
quality of different forages. Potential liveweight gain is the monthly liveweight
gain of a standard animal (a 200 kg cross-bred steer, Bos taurus by Bos indicus)
grazing the forage at a low stocking rate in a good season. It is a bioassay for
forage quality that can be measured, but more importantly, it is meaningful to
farmers and can be adjusted to reflect local experience and knowledge. With
potential liveweight gain for a standard animal given, the energy concentration
of the forage can be estimated and applied to different animal classes, after
taking account of the impact of high stocking rate on reducing intake and dry
conditions reducing forage quality.25 Because this approach uses a bioassay to
characterise forage quality, and a mechanistic model to estimate animal
performance, it can be readily adapted to herds of different species, breeds and
classes of livestock.

Interface between animal and economic subsystems
Operating profit of a beef cattle enterprise on a farm is given by:

Gross profit�Number sold��Animal value�Variable costs���� �12�3�
where Number_sold is the number of animals sold, Animal_value is the average
value of sale animals, Variable_costs are average variable or operating costs per
animal associated with different management options. Comparison of the gross
profit for different management options indicates the relative profitability of the
options.

Estimation of Variable_costs is a simple arithmetic exercise, but since there
is wide variation in local costs, a model must allow a user to modify and recall
this information, and a user must update the information as required. On the
other hand, estimation of Animal_value is a two-step process where animals are
first allocated to a market category (if more than one exists), each with a
corresponding sale price that usually exhibits spatial and temporal variation.
Thus, tables of market prices for use in the calculation of Animal_value need to
be updated regularly. The determination of market categories is location specific
since there is wide national and international variation in the title and
specifications for each category. In countries with well developed beef markets,
categories may be specified by age, sex and breed of cattle, by weight expressed
as liveweight or carcass weight, and by an indication of the degree of ‘finish’
expressed as a condition score in live cattle or fat thickness for carcasses.
However, markets are not necessarily mutually exclusive in that while a
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premium market may have narrow specifications, cattle suited to a premium
market may also be suited to a lower-priced market with wider specifications.
Mechanistic models attempt to estimate animal growth and development, and
the associated fat deposition.37, 38 Condition score has been derived empirically
from the history and status of animal performance,39 but neither approach has
been applied to a full range of market specifications. FEEDMAN uses a simple
approach to estimate Animal_value in that the characteristics of each herd are
compared against entries in a table of markets, specified in terms of monthly sale
price, and breed, age, class and liveweight of cattle. The highest price match is
then selected and used to calculate Animal_value.

12.3.3 Coping with natural variability
On-farm complexity
Creating a ‘user friendly’ presentation of software that mimics pasture and
animal production on a farm is a challenge because a multi-dimensional scenario
must be described through a keyboard and monitor. The multi-dimensional
scenario might consist of descriptions of fields in the farm, pastures in the fields,
number and class of animals in herds, grazing management of herds, and period,
type, and amount of supplementary feeding (Fig. 12.1). In addition, potential
users commonly prefer the software to have keystrokes and a screen layout
similar to other familiar software. Also, outputs must be clear, easily understood,
and suitable for further analysis or storage. One approach used by model
builders to meet these requirements is to consult with a panel of potential users
on a regular basis and progressively modify the software in response to
suggestions from the panel.11 Such ‘interactive prototyping’ is a time-
consuming task that can lead to major changes in the layout of screens for
entering data and displaying results, but experience has shown that model
builders, who know a package intimately, are not experts in ‘user friendly’
presentations. In practice, there are tradeoffs between the capacity of a decision
support package to handle wide variations in farm production systems and the
need for the package to be ‘user friendly’. Extensive help notes, default values
for input parameters, and training exercises and examples all assist a novice user
in mastering a package. In addition to complexity due to on-farm variations
mentioned above, climate and prices are off-farm inputs that display wide spatial
and temporal variations.

Climate
In the case of climate a user may wish to evaluate management options over a
range of seasonal conditions contained in historical records of climate. One
approach is to use all historical data as an input and then express key outputs,
such as farm profit, as a probability distribution. Another approach is to use a
probability distribution of historical annual rainfall to establish categories of
‘seasons’ that reflect natural variations, such as:
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very dry, rainfall likely to be less than this category in 10% of years;
dry, rainfall likely to be less than this category in 30% of years;
median, rainfall likely to be less than this category in 50% of years;
wet, rainfall likely to be less than this category in 70% of years; and
very wet, rainfall likely to be less than this category in 90% of years.

The former approach demands access to a large database of historical records of
climate, particularly if a model is to apply to a wide range of locations, each with
a different climate history. The second approach, to select from the same
comprehensive database a relatively small number of typical climate categories
for each location, thereby eliminates the need for regular access to a large
database of historical records. Both approaches are an attempt to assess
management options simulated by the model in terms of the risk or likelihood of
certain outcomes. This is a key attribute of models of beef production in variable
climates, which is not obtained by using average or median climate data. Indeed,
if only median climate data is used, animal production at high stocking rates is
overestimated because year-by-year variations and interactions are ignored.8

In addition to analysing historical records of climate, model users are
frequently interested in evaluating management options in relation to the current
status of cattle and forage on a farm and future climate scenarios that are based
on long-term weather forecasts.13 Currently long-term weather forecasts indicate
the probability of rainfall in the next three or six months being above or below
median rainfall, and the skill of the forecasts is improving.40 To cater for this
requirement, models must allow users to enter potential future rainfall.

12.3.4 Verification and validation
Model verification ensures that the computer programs on which a model is
based are free of ‘bugs’ and perform properly within specific limits. Usually a
model builder uses special input data and parameters to test components of a
model and their interactions under a wide range of operating conditions. The
program needs to be corrected if values of the various variables and processes
exceed an acceptable range. Problems may arise from a flaw in the algorithm
describing a process, particularly as upper or lower limits are approached, or
from a typing error in the program code. A sensitivity analysis is another
component of verification that indicates the relative importance of accuracy in
model inputs. Here a simulation experiment is designed to test the relative
sensitivity of inputs and parameters that influence a system. Obviously accuracy
is more important with sensitive than with insensitive inputs. The relative
sensitivity of different inputs is indicated by comparing the change in output
caused by a specific change in the different inputs (e.g. percent change in output
after a 5, 10 or 20% change in an input parameter). Whilst verification is
primarily the responsibility of model builders, simple exercises on these lines
give model users a good appreciation of the operation and limitations of a
model.
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Model validation refers to how well a model mimics the system it is meant to
represent. Validation is commonly demonstrated by first instructing a model to
mimic a wide range of scenarios that have been actually observed, and then by
comparing predictions from a model against the observations. The validation data
should be independent of the data used in developing a model. Linear regressions
of observations against predictions are commonly used to make the comparisons.
The closer the slope and coefficient of determination for a regression are to unity,
and the intercept to zero, the better the validity of a model. However, there are
theoretical and practical problems with validation based on regression analysis,41

and the confidence of the model builders should be recognised as a model
undergoes development and modification.42, 43 Of course, serious users also
develop confidence in a model through less formal validations as they compare
predictions against their own observations and experiences. In practice, validation
is an ongoing activity that warrants considerable effort by the model builders and
independent experts, particularly when the model attempts to mimic large
variation in production systems and is used as an aid to politically or financially
sensitive decisions.44 In essence a model is ‘valid’ when it sufficiently mimics the
real world to fulfill its objectives, and when decisions based on the model are
superior to those made without the model.45

12.4 Simple model of herd structure

It is obvious from Fig. 12.1 and Table 12.1 that for a given farm, the number and
class of cattle in the animal subsystem depends on the amount and quality of
growth in the forage subsystem. These interactions are captured in the following
simple empirical model of herd structure in relation to broad management
options. It also illustrates how a model that incorporates a few basic parameters
can be a powerful analytical tool.

The notion of farm carrying capacity (CC) is a good starting point. This is the
long-term safe stocking rate for a farm, one that does not cause ecological
deterioration of the production system. It is a vital concept for managed grazing
systems that incorporate the biological, commercial and social elements
pertaining to good land care. It is commonly used to quantify a farm for sale
or leasing in Australia and the USA, and because different classes of cattle have
different nutritional requirements, it is commonly expressed as adult equivalents
(see equation (12.1)).

In rangelands where forage growth is dependent on rainfall, carrying capacity
is largely dependent on the amount of forage growth and on the proportion of
growth that can be eaten (utilisation, U) without causing degradation of the
pasture. Thus, based on the report by Johnston et al.32

CC � R �WUE � A � U�I �AE� �12�4�
where CC is farm carrying capacity, R is effective rainfall (mm/year, in
subtropical climates this is annual rainfall less runoff), WUE is water use
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efficiency (e.g. 5 kg/ha/mm), A is area of the farm (ha), U is safe utilisation (e.g.
0.25) and I is annual intake for an adult animal (e.g. 4000 kg/year). Whilst WUE
varies with the inherent fertility of the soil, fertiliser applications and presence of
trees, it is simple to measure. On the other hand U is not simply measured but
studies have shown it ranges from about 0.1 in arid infertile environments to
about 0.5 in moist fertile environments. Although equation (12.4) demonstrates
the derivation of CC from first principles, in practice farm CC is usually
determined from local knowledge and experience.32 The next task is to
determine herd structure or the distribution of carrying capacity across the
various animal classes.

When all cattle on a farm originate from the breeding cows (i.e. no off-farm
purchases) the system is characterised by three performance indicators, which
underpin a simple but versatile mathematical model of herd structure.

(1) Weaning rates refer to the number of calves weaned per hundred cows
mated. This key indicator depends on the nutritional health status of cows
and on the number and fertility of bulls. It commonly ranges from 95% in
high-performing herds to less than 50% in herds of poor performance, a
value that will not sustain the herd in the long term.

(2) Survival rates refer to the proportion of each class of cattle that survive a
year. Mortality from poor health, accident or predators is common,
particularly in extensively-managed beef production systems. The animal
classes most prone to mortality are breeding cows and calves soon after
weaning. Clearly high survival rates are desirable and susceptible classes of
cattle commonly receive special feeding to avoid mortality from poor
nutrition.

(3) Culling rates refer to the proportion of breeding cows culled annually for
age, infertility, or other imperfections. Hence, if the effective breeding life
of a beef cow is about ten years, culling helps to maintain high weaning
rates. The rate of culling, plus the mortality of breeding cows defines the
number of replacement heifers required to maintain a constant number of
breeding cows.

The following model, which is suitable for a spreadsheet, provides a ‘steady
state’ estimate of number in the various classes of cattle in a herd (herd structure,
Table 12.1), in response to a few key assumptions and parameters, and local
knowledge of performance criteria. The model depends on four assumptions.46

First, all animal classes on a farm with breeding and growing cattle can be
specified by a manager, and are related numerically to the number of cows
mated, provided extra animals are not purchased. Second, the overall carrying
capacity (CC) of a farm, in terms of number of adult equivalents, is either known
or can be estimated by equation (12.4). Third, for simplicity, cows and calves
are regarded as a single animal class until the calves are weaned. Fourth, the
number of cows mated (CM) is fixed for each situation because if one dies or is
culled from the breeding herd it is replaced with a heifer. Thus the ‘n’ classes of
cattle on a farm can be represented as
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CC � A1�CM � A2�CM � A3�CM � � � � � � � � � �An�CM �12�5�
and after collection of terms and simplification

CM � CC�
�

Ai �12�6�
where Ai is a coefficient that relates the number of animals in the ‘i’ th class of
cattle to CM, the numbers of cows mated. Ai is the product of four factors:

Ai � PFi � CFi � SRi � BRi �12�7�
where PFi is a flag to indicate if the i th class of animal is present (1, present; 0,
absent); CFi is a factor to convert the i th class of animal to adult equivalents
(Table 12.1); SRi is the proportion of the original number surviving in the i th
class; and BRi is the ratio of the number of animals in the i th class to the number
of breeders when survival in the class is 100%.

WR is weaning rate, expressed as a percentage of the number of calves
weaned to number of cows mated. If half the weaners are assumed to be female,
it follows that BRi�WR/2 for each class of steers in the herd, and for heifer
cattle BRi is similar to steers until replacement heifers enter the breeding herd.

Replacement heifers enter the breeding herd when two or three years of age
by adjusting PFi accordingly. First dead cows are replaced (DEATHS� percen-
tage of CM dying each year), then culled cows are replaced according to a
specified culling policy (CULL� preferred percentage of CM replaced each
year). If there are too few heifers for the culling policy, all available heifers are
used as replacements and the shortfall is noted by the lack of surplus heifers for
subsequent sale and a reduced ratio for culling. If there are too few heifers to
replace the dead cows the herd cannot be sustained. Thus for culled cows:

BRcull cows � MAX �0�MIN�CULL�WR�2� DEATHS��100� �12�8�
and for any surplus females

BRsurplus females � MAX �0� �WR�2� CULL� DEATHS��100� �12�9�
Once the number of cows mated have been calculated using equation (12.6),

the number of cattle in the remaining animal classes is given by

Ni � CM � PFi � SFi � Bri �12�10�
where i� 1 since for cows, being class 1, Ni�CM.

Table 12.2 illustrates the application of this model to four scenarios
pertaining to breeding and growing beef cattle on extensive rangelands. Case 1
represents a herd where disease and/or poor nutrition severely restricts
performance of the breeding herd and this limitation is removed in Case 2.
Case 3 is similar to Case 2 except for a 50% increase in farm carrying capacity,
which might occur through farm development options such as buying more land,
controlling woody weeds or sowing improved pasture. Case 4 illustrates the
effects on herd structure of a further improvement in performance of breeding
cows along with a reduction in age of selling steers and mating heifers, as might
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occur from a further improvement in herd nutrition and management. Whilst
Table 12.2 is a static representation that ignores the transitional states that would
occur when changing from Case 1 to Case 4, it shows the broad implications of
management options on herd structure and number of cattle for sale. It also
illustrates that simple ‘spreadsheet’ models can be a useful first step in selecting
broad management options that warrant a more detailed evaluation.

12.5 Future developments

Modelling pasture and animal production has come a long way in three decades.
Its future as an aid to research is assured since it provides direction and context
to research programs.

While farmers have been slow to adopt decision support packages that aid
routine decisions, professional advisors who need to give good advice to many
clients are more receptive to new tools that assist in evaluating management
options within complex systems across a wide range of environments. Future
developers of farm management models will probably regard farm advisors or
service agencies rather than farmers as the primary customers. Also, the models
will be more user-friendly through the use of improved graphics and
visualisation techniques, and the provision of support and upgrades via the
World Wide Web.

The scope and range of policy models are expanding rapidly because they
provide policy makers with an objective assessment of complex problems. This

Table 12.2 Herd structures generated by the simple model given above in response to
changes in key parameters that might occur as heath, nutrition and management improves
in a ‘closed’ herd consisting of breeding and growing cattle on extensive rangeland.

Key parameters Case 1 Case 2 Case 3 Case 4

Farm carrying capacity (CC) adult equivalents 1000 1000 1500 1500
Weaning ratio (WR) (% of cows mated) 50 80 80 90
Cow mortality rate (DEATHS) (%) 15 5 5 3
Ideal culling ratio for cows (CULL) (%) 20 20 20 20
Age of steers at sale: years 4 4 4 3
Age of surplus heifers at sale: years 3 3 3 2

Simulated results
Total number of cattle in herd 1088 1121 1682 1700
Number of breeding cows 421 303 455 532
Proportion of herd as breeding cows (%) 39 27 27 31
Number of culled cows 42 61 91 106
Proportion of breeding cows culled (%) 10 20 20 20
Number of surplus heifers sold 0 44 66 112
Number of steers sold 99 114 171 227
Total number of cattle sold 141 219 328 446
Proportion of sale cattle in herd (%) 13 20 20 26

268 Food process modelling



trend will continue, but policy models are likely to expand from the traditional
biophysical base to include socioeconomic components and estimates of the
impact of policies on the ‘triple bottom line’ – ecological sustainability,
profitability and social acceptability.47–49 Indeed, a future challenge will be how
to better integrate the technologies pertaining to hard and soft systems, such as
pasture and animal production models being part of participatory action research,
and thereby involving stakeholders in defining and evaluating policies.16, 50

A global network of information for model development and proven software
modules is expanding through the World Wide Web. Model developers will
have increasing access to libraries of algorithms, and computer operating
environments which will encourage more rapid development of new models and
a rich set of shared applications and experiences. However, since models are
repositories for information and results from past research, there remains a
global need for scientists and government agencies to organise creditable
databases of information, which are critical to the future development of
decision support systems and integrated policy models.51
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Introduction

Mathematical models have been used for a long time in food process design to
ensure microbiologically safe and tasty food. In fact, sterilization processes are
one of the few production processes in industry which rely on a mathematical
model to ensure the safety of the process. Although initially most models were
empirical, gradually this has changed and many generic models are now used in
practice to improve food processes. The advent of cheap high speed computers
has been substantial in furthering progress in this area given the often high
complexity of the models. In this part it will be shown how models can be used
successfully in a wide range of processing applications including fermentation
technology, modified atmosphere package design, and thermal processing
including heating, cooling and freezing of foods.

In Chapter 13, model-based design of fermentation processes will be
discussed. This involves the combination of a wide range of models describing
growth and inactivation of micro-organisms, transport phenomena, down-stream
unit operations and, last but not least, economic models to calculate the profit of
the operation.

Modified atmosphere packaging is now widely used to extend the shelf life of
various foods. Whereas still often a purely experimental approach is taken to
select the packaging foil, the advantages of using mathematical models are now
well recognized. In Chapter 14 an overview will be given of how conceptual
models can be used to improve modified atmosphere packaging processes.

Thermal processes are certainly amongst the most important processes in the
food processing industry, and the state of the art in modelling of these processes
is reviewed in Chapter 15. The key issue in most thermal processes is to achieve
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sufficient inactivation of micro-organisms with as little damage to other quality
attributes of the food as possible. For some applications, such as sterilization of
conduction heated foods, an appropriate generic modelling methodology is
available. However, in most cases the heat transfer processes are quite
complicated, and although the governing models are known well, their
numerical solution remains a challenging task.

Cooling and freezing operations are widely used in the food industry, and the
prediction of cooling or freezing time, product temperature, heat load and
moisture loss is very important for a proper process design. Numerous empirical
and semi-empirical formulas have been suggested in the literature to predict
these process variables, but more complicated generic models are now available.
An extensive overview of these models will be given in Chapter 16.

Bart Nicolaı̈

274 Food process processing



13.1 Introduction

In the food industry, models are used for exactly the same purpose as in the
scientific world. The most important reason to use models is to structure ideas
and concepts to be able to prove or disprove those ideas. In this way knowledge
is developed about the relevant processes.

The practical application of models in industrial processes is very important
for the development of new processes, and for communication between people
with different backgrounds. For this reason, models of very different levels of
complexity are used. Some models are used to describe qualitatively the
situation in the process, without too much accuracy. Other models describe in
great detail the situation, and are used for in-depth study of the process.

This chapter describes the application of models using the development of
processes in the fermentation industry as an example. Using this example the
possible types of models are demonstrated. This example is chosen because
fermentation is the most important production technology at DSM Food
Specialties, and it shows how models can be used across a multi-disciplinary
team. The description of a fermentation process will always be a rough
simplification of reality, since detailed knowledge about what exactly happens
in a cell under fermentation conditions is not available, as fermentation
processes are generally too small to justify the research required to develop this
knowledge. This means that complete knowledge of the process will probably
never become available.

The development of models is probably the most important part of the work
people do in research and development, because models help them to think
about processes that are too complicated to understand in every detail.

13
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Simplifying reality in models will help to focus on the relevant issues of the
process, and to communicate among co-workers. Apart from that it is very
important to develop knowledge that is more generally applicable than to just
one single fermentation process. Although computers make it possible nowadays
to develop very complex models, in the end people must be able to translate the
results of those models into practical changes in the process.

13.2 What is a fermentation process?

For those people that are not familiar with fermentation processes, typical
properties of the process are given in this brief explanation.

13.2.1 Types of products produced
A wide range of products is made using fermentation processes. Traditionally
beer, wine and cheese are important products in which fermentation plays a
major role. This chapter will focus on single strain processes as used for the
production of antibiotics and enzymes.

13.2.2 The microorganism
The core of the process is the microorganism that will produce the desired
product. The production capacity of that microorganism will ultimately
determine whether a certain process can be performed economically. For that
reason the selection of the strain is very important, and is normally one of the
most important parts of a development process. Traditionally, only fungi, yeasts
and bacteria were used in these processes. Nowadays also cells from other
organisms are used for production.

13.2.3 The medium
Since the microorganism must produce the product, it is important that all the
organism’s needs for growth and production are met. This means that not just all
the desired nutrients must be available, also the temperature, pH, etc., must be
controlled. Since some organisms may have very special needs, the development
of media can be very laborious. Media normally contain a carbon and nitrogen
source, trace elements and vitamins. To avoid the growth of undesired
organisms, the medium and the equipment are sterilized before the process
starts.

13.2.4 Control strategies
To be able to produce large amounts of products, the concentration of organisms
and product must be as high as possible. To achieve that, the environment of the
organism must be controlled. This means that corrective agents are added to
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control pH, the temperature is controlled by cooling, and depleted medium
components are added separately.

13.2.5 Scale of the process
Products with high added value (e.g. vaccines) are sometimes made in small
fermentors several litres in volume. Large, low added value products must be
made in much bigger volumes to be able to use the economy of scale to get the
cost price down. These products are normally made in fermentors up to several
hundred cubic metres in volume (see Fig. 13.1).

13.2.6 Organization
Development of a fermentation process requires the cooperation of different
disciplines, e.g. biochemistry (enzymology), molecular biology (genetics),

Fig. 13.1 Size and geometry of a production fermentor.
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microbiology, reaction technology (fermentation), downstream processing
(recovery) and, last but not least, integration with economic evaluation from
the very beginning. For optimal results, these people have to work closely
together during the development of a new process. The use of models that
simplify reality is an essential tool that allows people to contribute in fields that
are outside their main expertise.

13.3 Models used during process development

13.3.1 Biological models
Genetic models
Genetic models are used to describe processes applied during genetic
modification of genes. These models are not mathematical models, but rather
verbal descriptions of the processes. The use of these verbal models is necessary
to enable discussion of the processes between people familiar with the work as
well as between people from different backgrounds. The most obvious model is
the use of the words ‘cut’ and ‘paste’ for changing the positions of genes. This
description of the process is a very rough simplification of a complex enzymatic
treatment of the DNA.

The disadvantage of such a simplification is, of course, that it does not say
much about the actual process. The (very large) advantage of such a model is
that it can be used to explain the process to outsiders in terms that everybody can
understand. Today many different ways are used to visualize this transformation
of genes. These visualizations are models that are used to describe the process
qualitatively. These models cannot be used for quantitative descriptions.

Another ‘model’ that should be mentioned here is also not a mathematical
model, but has been proven to be very useful in the past. This is the model for
the spatial structure of DNA, represented by the double helix. This image made
it possible for everybody to understand that structure, without the necessity of
long biochemical training.

Metabolic pathway engineering
A fairly recent development is the use of metabolic pathway engineering for the
optimization of processes. This technique requires detailed knowledge of the
metabolic pathway that leads to the final product. Not only qualitative
knowledge is required, but also quantitative knowledge is being put into the
model. This leads to estimates of the fluxes of all the steps involved, and finally
it will give information on the rate-limiting step of the production process.
Normally a lot of reactions are involved in the production of a certain product.
Also, the rates of the reactions involved are determined by concentrations of
substrates, precursors and enzymes. Modelling such a process takes much more
than just the mathematical development of a model. The model will only be
useful if:
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• Proper parameter estimation can be done. This means that knowledge has to
be acquired on all the reactions involved. Estimating the reaction rates can do
this, but also a lot of high-level biochemical analyses will be necessary to
determine concentrations, enzyme activities, etc.

• The tools are available to make controlled changes in the cell to remove
bottlenecks for production.

Because of the last reason this technique was only developed when genetic tools
became available to change the genetics of the organism. The model will give
information on how to change the genes of an organism for optimal results.

This new tool has already proven to be very successful. It is used for the
optimization of existing processes, and also for the development of processes
that could not be done without this technique. A major disadvantage of this tool
is that it cannot be used easily. High-level knowledge and experience in
modelling, genetics and biochemistry are essential to do this successfully.
Because of the complexity of this tool, one of the pitfalls is that a lot of time can
be lost acquiring basic knowledge on the fluxes of the pathway, before any
actual results are achieved.

Growth models
Models to determine growth of microorganisms are very important in the
fermentation industry, since the growth ultimately determines the number of
organisms, and therefore productivity of a process. A model that is very often
used is the Monod model describing the influence of the concentration of a
limiting substrate on the growth rate of an organism. The limiting substrate can
be sugar or a nitrogen source.

� � �max � Cs

Cs � Ks
�13�1�

where � is the specific growth rate of the organism (1/h); �max is the maximum
specific growth rate of the organism (1/h); Cs is the actual substrate
concentration (mmol/l); and Ks is the affinity constant for the substrate
(mmol/l).

Figure 13.2 gives the growth rate for various values of Ks. Models like this
have several advantages. First of all, both extremes are definitely predicted
correctly. When the substrate is not limiting the growth is Umax, and when no
substrate is available the growth rate is zero. The second advantage of the model
is that only one parameter is required to calculate the substrate concentration as
function of the growth rate. Finally the model is mathematically very simple.

On the other hand a disadvantage of this model is that the value of the affinity
constant can be very low (in the order of several mmol/l). To measure the value of
the affinity constant, normally a chemostat is used. This allows organisms to grow
at a controlled specific growth rate. Measuring the substrate concentrations at
various growth rates will give the affinity constant. When the affinity constant is
very low, however, it cannot be determined accurately, since the organism will
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consume the little bit of substrate before a proper analysis is done. Even though
this means that in that case the growth control is almost on/off, this kind of
equation is still used with low values of Ks, because calculation is simpler.

Killing-off models
A very important aspect of fermentation is sterility. Sterility is required to
maintain a single strain culture of the desired production organism. Sterility can
be achieved in several ways. Heat treatment, filtration and radiation are
commonly used.

Models are used for killing-off by using heat treatment, because heat
treatment should be applied carefully. In most media the quality of the medium
decreases when it is at high temperature for a long time. Therefore, the ideal heat
treatment is just sufficient to kill all the organisms, and not more than that. This
requires a proper model for the death rate of the organisms. Much research has
been carried out to describe the killing-off, and this is normally described as the
time required for a decimal reduction of a certain type of organism at a certain
temperature. When the infectious organisms are counted in the material that has
to be sterilized, a minimal sterilization time can be calculated. This model is a
very powerful tool to determine the sterilization time and temperature, and the
results are normally very close to reality. For more detailed information see the
chapter on inactivation in this book.

On the other hand, the financial consequences of contamination are too large
to take any risks in this field. So even when a proper estimate of the sterilization
can be made, normally a large excess of sterilization time is used to avoid any
risk. This is an example where proper models are available, but they are not used
properly in practice to avoid any risk.

Fig. 13.2 Specific growth rate v. substrate concentration for various values of Ks.
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Production models
When the product is not the microorganism itself, but, for instance, some protein
or secondary metabolite, growth models are not sufficient to describe the
production process. In that case a model is required to describe the amount of
biomass in the process, and a second model should describe the amount of
product the biomass produces over time. Two different models are given here,
including the consequences for optimizing the process based on those models.

Constant production rate
This is the simplest model imaginable for description of the production. The
model simply states that the biomass starts production at a certain rate as soon as
it is formed, and keeps producing at that rate until the process is stopped. In
other words, the specific production rate is constant, and independent of the
physiological state of the organism. If experiments show this model to be correct
for a certain process, optimization is very simple. Just grow as much biomass in
as short a period as you can, and then keep that biomass at a low growth, and
keep it producing.

Not many processes can be described by this model, but serious efforts are
being made to design processes according to this model. When the growth and
production can be uncoupled by adding a component essential for growth, but
not for production, during the early stages of the process, this model can be
realized in practical processes. If this can be done successfully, high yielding
processes can be developed. This shows the strength of the use of models. Use of
this simple model actually led to the idea of uncoupled growth, a more practical
model.

Production coupled to growth
A model that is more applicable can be derived when the specific production
rate of the organism is coupled to the growth rate of the cells. This model
actually states that the production rate is coupled to growth because the limiting
step for both processes is identical. This can be understood when, for instance,
the limiting step is the amount of sugar that is used by the microorganism. The
sugar is used by the microorganism for growth and production at a certain ratio.

If such a model describes a certain process (and only experimental work can
prove whether this is true or not), optimization of the process leads to
completely different results than the process in the last paragraph. When growth
and production are coupled, it is important to keep the organisms growing,
because otherwise the production rate will decrease. This means that the
biomass concentration in the process will increase continuously during the
process. Since some of the essential component for growth can only be added in
limiting amounts (like oxygen), the amount of biomass that can be produced in a
certain amount of time is limited. In that case a higher biomass concentration
means a lower specific growth rate. Optimizing such a process requires delicate
balancing of growth and production. Therefore it is very important to determine
the actual relation between growth and production accurately.
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13.3.2 Technological models
The genetic properties and the physiological state of the production organism
determine how much product an organism produces. After that the productivity
of the process is determined by the amount of organisms that can contribute to
the production. Optimizing the biomass in the process gives some technological
challenges. This can be illustrated by comparing the concentration of biomass
and the biological activity of the process to situations in normal life.

In a production fermentor high concentrations of biomass are present. This
can only be done when the environment is kept constant, and all necessary
media components are available at all times. Normally in a production process
the biomass concentration can be up to 100 g of dry biomass per litre, growing at
a rate of 0.1 per hour (this is a 10% increase per hour). In doing this, the biomass
consumes 20 g of substrate per litre per hour. The problems in maintaining that
activity can be shown by comparing these data with human biological activity,
i.e. to obtain the same concentration of people you need about four persons in
one cubic metre! Apart from that these four people should be fed with around
20 kg of sugar every hour, i.e. 5 kg of sugar per person per hour!

Maintaining the correct temperature and making sure the nutrients are
available is the subject of the technological work required to run a fermentation
process. The major technological problems in fermentation are related to:

• heat transfer
• oxygen transfer
• mixing.

Heat transfer
Heat transfer is essential for fermentation processes, since heat is generated by the
biological activity of the cells. If that heat is not removed, the temperature will
increase, which will slow down production, or even kill the organism. The heat
generated is removed by using cooling water in coils inside the fermentor (see Fig.
13.1). This is one of the classical examples of a scale-up problem, as the volume
(and, therefore, the total heat produced) increases by the third power of the scale,
whereas the surface area through which the heat is removed increases by only the
second power of the scale. This means that a limit will be reached at a certain
scale. Practical solutions are available to increase the surface area by adding
cooling to the outside of the fermentor, the baffles, and even to the shaft.

Instead of modelling the cooling process, a standard model for heat
exchangers is often used for estimating the heat transfer capacity of a fermentor.
When this is not accurate enough, the process is adjusted slightly when it
appears that heat exchange becomes limiting.

Oxygen transfer models
A lot of models are developed for the description of oxygen transfer in large-scale
fermentors. These models describe the transfer of oxygen through a thin boundary
layer around the bubble: the oxygen transfer increases when the surface area

282 Food process modelling



increases (or when the bubble size decreases), and when thickness of the boundary
layer decreases. Since each of these properties as such cannot be determined
easily, the oxygen transfer is often described by the combined parameter kla,
representing both the specific surface area a and the resistance for oxygen kl.

The main advantage of this model is that the whole process is described by
only one parameter that can be determined experimentally. This means that the
influence of changes in the process on the oxygen transfer can be studied easily.
In practice, empirical relations are available for the determination of the oxygen
transfer as a function of, e.g., fermentor geometry, stirrer speed, airflow, and
viscosity with prediction accuracy of �10–20%. The reason is that these models
do not describe the very complex reality inside a large-scale fermentor. In reality
there are positions inside the fermentor that have a very high oxygen transfer,
especially in the stirrer zone, whereas near the wall and near the surface have
only very low oxygen transfer. In the case of a large-scale fermentor the oxygen
concentration in the gas phase is not constant either. This means that the
organism that is transferred through the fermentor experiences moments of high
and low oxygen transfer.

As there is no generally accepted oxygen transfer model available for large-
scale fermentations, the oxygen transfer rate has to be determined experimen-
tally for a specific process in specific equipment. This situation is not very likely
to change in the near future, since experimental work is very expensive.

Mixing models
Mixing models are probably the best developed technological models used in the
fermentation industry. These models are of paramount importance, since they
describe the variation the organism experiences in the fermentor.

Models using mixing time
The first models were developed based on concentration measurements after
small pulses of salt or acid additions in water. These models described the
mixing, as the time tm required to realize 95% of the final concentration in the
liquid (see Fig. 13.3). In the same way as for oxygen transfer experimental
correlations are available to determine this time.

The advantage of such a model is that the effect of changing the process
properties on the mixing can be studied by determining the effect of the change
on this mixing time. The disadvantage is that it says nothing about the maximum
and minimum concentration the organism may experience when chemicals are
added into the fermentor. This is very relevant, since during fermentation very
aggressive chemicals like concentrated sulfuric acid are added for pH control. If
an organism experiences too high local concentrations of these components for
too long a time, it will die.

Compartment models
When describing mixing in terms of mixing times is not sufficient, the use of
compartment models is a better way of describing mixing. The idea behind these
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compartment models is to divide the fermentor into compartments that are
supposed to be ideally mixed. For every compartment a description is made for
production and consumption of various components, and for the interaction
between the different compartments. This description may be based on very
thorough experimental work, or may be based on a priori knowledge. With such
a model better results can be obtained than by just using mixing times. In
particular, when the compartments are chosen cleverly, proper estimates of
concentrations at certain places in the fermentor can be made. Also the effect of
small changes of geometry can be investigated.

In the past much research was carried out to validate these models. This was
accomplished by dividing the fermentor into two or more compartments with
different properties. For instance all the feed was added to one compartment, and
all the oxygen in the other. The production organism was pumped from one
compartment into the other, mimicking the fluctuations present in the actual
fermentor. The effect of poor mixing in the production fermentor on the
production can be determined by comparing these results to a process where
mixing is very fast. In this way the mixing effect of scaling-up is separated from
other scale-up effects. These kinds of system are still in use for estimating the
effect of poor mixing on the actual outcome of the fermentation.

Computational fluid dynamics
One step further from the compartment models is the use of computational fluid
dynamics. When modelling the flow in a vessel like a fermentor, an obvious
approach is to use the knowledge developed in fluid dynamics (see Chapter 4).
In fact the differential equation describing fluid flow has been known for a long
time as the Navier-Stokes equation. In principle the flow of liquids can be
calculated with this equation in very fine detail. This is done by dividing the
content of the vessel into small volume elements, and by solving the Navier-
Stokes equation numerically for every volume element. The amount of
calculations required increases considerably when the size of the volume

Fig. 13.3 Concentration measurement to determine mixing time.
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elements decreases. On the other hand, small elements are necessary to be able
to calculate the effect of small eddies. There will always be a trade-off between
the calculation power available and the level of detail required.

This technique is currently developing very fast. Standard software is
available to do this work. Also many scientific groups are working on further
development of this software. The most important advantage of this technique is
that basically all the information required of the liquid flow is available after the
calculations are done. This not only includes average flows, but also the
fluctuation of the flow, the local energy dissipation, local concentrations, etc.
These models are very useful in relatively simple systems. In one-phase systems
these calculations give results that match very well to the actual flow, and can be
used for determining mixing times. For this reason this technique is widely used
in industry when one-phase flow is applied.

Inside a fermentor the situation is much more complex. Often a lot of air is
sparged into the liquid, and the properties of the liquid are not well defined and
continuously changing. Apart from that, the response of the microorganism to
certain environmental conditions is not known, and can be changed by the
physiological state of the organism. Also, the actual size of industrial fermentors
makes the number of volume elements very large, and therefore the amount of
calculations required to obtain useful results is also very large.

Since the development of very fast computers will continue in the future, this
modelling will give better results and will be used in more complex systems in
the future. It will be very hard, however, to describe the interaction between the
rheology and physics of the system and the organism.

13.3.3 Downstream processing models
The recovery of the product out of the fermentation broth normally requires
several processing steps. A typical downstream process contains process steps
for cell removal, concentration and purification of the product. The fermentation
broth should have a low concentration of the product, and contain cells and
undesired components in the final product of the proper quality. What kinds of
steps are used is dependent on the type of product, and the purity in which the
product can be sold. For some products cell removal and concentration may be
sufficient to get the desired quality, for others several purification steps are used
to get the proper product. To be able to design an optimal downstream
processing system, modelling is performed on two different levels.

Modelling of separate unit operations
It is known how to handle the different unit operations with standard materials.
Most of these unit operations are well described in the literature for the chemical
engineer. However, the product from fermentation can be rather complex, and
may vary during the process. For this reason the unit operation must be tested
with the proper medium, to make sure this particular process step can run
without any problems, and determine the deviations when the unit operation is
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run with real broth compared with when it is run with model liquids. Modelling
this knowledge will not lead to results. To do this, normal equipment is tested
with the actual fermentation broth. To reduce costs of this experimental work,
the equipment required is rented when possible.

Modelling of the entire recovery factory
When all unit operations are tested and designed, a model for the entire factory
must be developed. This model will describe how the scheduling in the factory
can be done, and how the interaction between the various processing steps is
organized. It will also be used for the sizing of the equipment. This work will
include estimates of workload of the operators in the factory, and what to do
when disturbances occur. This part of the design of the factory is of paramount
importance for proper functioning of the factory.

Both applications of the models are essential for the design of a proper
downstream processing factory. If one of the unit operations is badly designed,
the process may not work, resulting in a product of undesired quality or in no
product at all. If the modelling of the entire factory is done poorly, the factory
will not operate optimally, leading to long processing times and disturbances.
Errors in the design of the process will lead to large costs and delays in process
development if they have to be corrected afterwards. Proper modelling of the
process can avoid these problems.

13.3.4 Economic models
Although not of scientific or technological nature, economics and, therefore,
reliable financial models, are very important in the development of industrial
fermentation processes. This aspect is very often forgotten by scientists and
technicians during the development of a process, while most of the time money
was the reason for the development or optimization of a process in the first
place!

The similarity of economic models to the other models is that the actual result
of the development of the process will improve when the models are improved.
Close co-operation of scientists and technicians with financial experts during the
execution of the development work is crucial, and mutual understanding of the
incorporated technical and financial models is an important aspect. An
integrated business and R&D approach offers the right condition for such a
way of working and modelling.

13.3.5 Mixed models
Of course the result of any model improves the more information is used.
Current computer systems are capable of running very complex models in real
time. Because of that, models are being developed that use all information
available for controlling and optimizing processes. This information does not
only imply the models mentioned above, but also other obvious things that
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create useful information. The use of elemental balances for all the elements in
the process gives very useful information on what part of the input is used for the
production of essential products.

These combined models can also use so-called fuzzy logic on the features of
the process on which no other information is available, and for parameter
estimation. In this way the model may learn from historical results to make even
better predictions in the future. This structured way of developing models has
already been shown to be very effective in various industrial processes.

13.4 Future trends

More and better models will be built for further development of processes and
knowledge. There is very little doubt that these models will become more
complex, because of increasing computing power. Building models will be the
main task of people working in this field of development. However, while
making these complex models, the development of very simple models should
not be neglected. Simple models will give the opportunity to explain what
happens in the process to outsiders to the discipline. These outsiders can be very
important since very often the people who pay for the work that has been done
are a part of that outsider group. A proper understanding of the process results
by managers and customers is probably the most important thing that can be
achieved by using models. If that understanding can be created, a developed
process can be transferred from a technological and scientific success into a
business success. This will be essential to develop future processes and models.
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14.1 Introduction

Conceptual models are descriptions of our understanding of a system that are used
to shape the implementation of solutions to problems.1 The quality and quantum
of innovation that will occur in development of modified atmosphere packaging
(MAP) strongly depends upon the insights gained from robust conceptual models
of components of MAP. In this chapter, we outline a number of simple principles
about modified atmosphere (MA) systems that we believe will assist industries
that apply MA technology to move beyond the rather empirical ‘pack-and-pray’
approach that still predominates in commercial practice.

MA is generally used as a technique to prolong the keeping quality2 of fresh
and minimally processed fruits and vegetables.3 In the widest sense of the term,
MA technology includes controlled atmosphere storage, ultra low oxygen
storage, gas packaging, vacuum packaging, passive modified atmosphere
packaging and active packaging.4–7 Each of these techniques is based on the
principle that manipulating or controlling the composition of the surrounding
atmospheres affects the metabolism of the packaged product, such that the
ability to retain quality of the product can be optimised. The different techniques
come with different levels of control to realise and/or maintain the composition
of the atmosphere around the product. While controlled atmosphere storage can
rely on a whole arsenal of machinery for this purpose, active packages rely on
simple scavengers and/or emitters of gases such as oxygen, carbon dioxide,
water or ethylene either integrated in the packing material or added in separate
sachets. Passive MA packaging, as an extreme, relies solely on the metabolic
activity of the packaged product to modify and subsequently maintain the gas
composition surrounding the product.
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Although much research has been done to define optimum MA conditions for
a wide range of fresh food products,8 the underlying mechanisms for the action
of MA are still only superficially understood. The application of MA generally
involves reducing oxygen levels (O2) and elevating levels of carbon dioxide
(CO2) to reduce the respiratory metabolism.6 Parallel to the effect on the
respiratory metabolism, the energy produced to support other metabolic
processes, and consequently these processes themselves, will be affected
accordingly.9 This still covers only part of the story of how MA can affect the
metabolism of the packaged produce. The physiological effects of MA can be
diverse and complex.10 In MAP, the success of the package strongly depends on
the interactions between the physiology of the packaged product and the
physical aspects of the package; MAP is a conceptually demanding technology.
Much of the work in the area of MAP has been, and still is, driven by the
practical needs of industry.11 This has enabled commercial development based
upon pragmatic solutions but has not always contributed substantially to
advancing the conceptual basis upon which future innovation in MA
technologies depends. As a result, there is a substantial potential for models
to contribute to the field of MAP by making the complex and vast amount of,
sometimes fragmental, expert knowledge available to packaging industries.

In this chapter, we bring together existing concepts, models and sub-models
of MAP to build an overall conceptual model of the complex system of MAP.
Starting from this overall model, dedicated models can be extracted for specific
tasks or situations. The benefits and drawbacks of the modelling approach are
discussed, together with an identification of the future developments needed to
create advantage to MAP commercial operations.

14.2 Key principles and methods

14.2.1 A general conceptual approach
The ideal model integrating all critical aspects of MAP would inevitably have a
multidisciplinary nature and a complexity that, at least in its mathematical form,
is far beyond the scope of this chapter. Here we attempt to provide a sound
conceptual model to assist understanding of the underlying mechanisms.

Going in aggregation level from the macro (palletised packs) via the meso
(individual packs) to the micro level (packaged product) the emphasis shifts
from physics and engineering to include more and more biology, physiology and
microbiology. In parallel to this shift, the level of complexity and uncertainty
increases.

Macro level
The macro level is schematically presented in Fig. 14.1. Much research has been
undertaken on heat and mass transfer, the effects of boundary layers and
different flow patterns given different geometries, types of cooling and
ventilation.12, 13 The same techniques have been applied to the storage of living
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and non-living food and non-food products all over the world. These techniques
enable, in general, a good understanding of the storage environment of palletised
or stacked packs, whether or not MA packs. Cooling is needed to remove heat
from the packages and to counteract continuously the heat produced by the
living product. Both forced airflow and turbulent convection are at this level
major contributors to the transport of heat, water, gases and volatiles, to and
from the packs.

Meso level
At the level of individual packs (Fig. 14.2) the emphasis moves towards natural
convection and diffusion processes driven by concentration and thermal
gradients. Heat produced by the product is conducted directly, or through the

Fig. 14.1 A schematic outline at the macro level of MAP where forced airflow and
turbulent convection are responsible for heat and mass transfer to and from the individual

MA packs.
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atmosphere in the package, to the packaging material and, eventually, is released
to the air surrounding the pack. Water vapour, respiratory gases, ethylene and
other volatiles are exchanged between the package atmosphere and the
surrounding atmosphere by diffusion through (semi-)permeable packaging
materials. Those packaging films can be either selective semi-permeable films
or perforated films. Especially in the case of perforated films, the diffusion rate
of a gas can be influenced by a concurrent diffusion of a second gas.14 A
countercurrent generally hinders the diffusion while a current in the same
direction promotes the diffusion of the first gas.

Inside the package, the metabolic gases are either consumed (O2) or produced
(H2O, CO2, C2H4 and other volatiles) by the product. Each of these gases may
promote or inhibit certain parts of the product’s metabolism. In the end, the
overall metabolism of the packaged product is responsible for maintaining the
product’s properties. As long as the product properties relevant for the quality as
perceived by the consumer stay above satisfactory levels the product remains
acceptable.

The steady state gas conditions realised inside an MA pack are the result of
both the influx and the efflux through diffusion and the consumption and
production by the product which are themselves strongly dependent on the
composition of the package atmosphere.15 For instance, water loss by the

Fig. 14.2 A schematic outline at the meso level of MAP where heat and mass transfer
from and to the packaged product are ruled by natural convection and diffusion processes.
The packaging film acts like a selective semi-permeable barrier between the package and
the surrounding atmosphere. Temperature has a marked effect on all processes going on

at the meso level.
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product is the main source for water accumulating in the pack atmosphere. The
product elevates humidity levels within the pack to an extent that depends upon
relative water vapour permeances of film and product. This elevated humidity
inhibits further water loss to a progressively greater extent as relative humidity
approaches saturation. This substantial benefit carries a risk of condensation that
is exacerbated by temperature fluctuations. Condensation creates favourable
conditions for microbial growth that will eventually spoil the product and also
depress the permeance of the packaging film.

The time needed for a package to reach steady state is important as from that
moment on, the maximum benefit from MA being realised. In the extreme
situation, the time to reach steady state could outlast the shelf-life of the
packaged product. A typical example of how the atmospheric composition in an
MA pack and gas exchange of the packaged product can change during time is
illustrated in Fig. 14.3. The dynamics of reaching steady state depends upon the

Fig. 14.3 A typical example of the dynamics of MA. Due to the gas exchange, CO2

starts to accumulate while the O2 level starts to decrease (bottom). In response to the
changing gas conditions, gas exchange rates are inhibited (top). Driven by the increasing
concentration gradients between package and surrounding atmosphere, O2 and CO2 start
to diffuse through the packaging film. In combination, this slows down the change in gas
conditions. Eventually, gas exchange by the product and diffusion through the film reach
steady state levels at which the consumption and production of O2 and CO2 equals the

influx and efflux by diffusion.

292 Food process modelling



rates of gas exchange and diffusion and upon the dimensions of the package in
relation to the amount of product packaged. Packages with large void volumes
take longer to reach steady state levels. Temperature has a major effect on the
rates of all processes involved in establishing these steady state levels16 and
hence on the levels of the steady state themselves.

Micro level
Gas exchange
The complexity of the biological system inherent in each fruit (Fig. 14.4)
contributes significantly to the uncertainties in current knowledge on issues
critical to the outcome of MA treatments. One of the central issues is the impact
of MA upon the product’s gas exchange, its consumption of O2 and production

Fig. 14.4 A schematic outline at the micro level of MAP where the product is
considered to generate its own MA conditions due to the resistance of the skin. The

internal gas conditions are responsible for affecting large parts of the metabolism either
directly or via the gas exchange. This will influence quality related product properties

determining the quality (Q) as perceived by the consumer. Depending on the MA
conditions, microbes can interact with the product’s physiology influencing its final

quality.
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of CO2 (Fig. 14.5). Total CO2 production consists of two parts, one part coming
from the oxidative respiration in parallel to the O2 consumption and the other
part originating from the fermentative metabolism.17 At high O2-levels, aerobic
respiration prevails. In this situation, the respiration quotient (RQ; ratio of CO2

production to O2 consumption), influenced by the type of substrate being
consumed, remains close to unity. At lower oxygen levels, fermentation can
develop, generally causing a substantial increase in RQ. This is due to an
increased fermentative CO2 production relative to an O2 consumption declining
towards zero. Besides the effect of O2 on respiration and fermentation, CO2 is
known to inhibit gas exchange in some produce as well.

Although it would be convenient to consider gas exchange to be constant
with time, there can be considerable ontogenetic drift in rates of gas exchange.18

Especially in so-called climacteric fruits, a respiration burst can be observed
when the fruit starts to ripen. In addition, freshly harvested, mildly processed or
handled fruit generally shows a temporarily increased gas exchange rate.9

Microbial infections can also stimulate gas exchange.19

Gas diffusion
When one considers gas exchange as a function of O2 and CO2 levels, one is
generally inclined to look at the atmospheric composition surrounding the
product as the driving force. However, the actual location of gas exchange is
inside the cells, in the mitochondria. Depending on the type of product, this

Fig. 14.5 A typical example of gas exchange as a function of O2 partial pressures (PO2

in kPa). (rO2
) is related to the oxidative part of CO2 production (rCO2

) via the respiration
quotient. Additionally, at low O2 levels fermentative CO2 production can take place

resulting in an increased CO2 production as compared to the decreasing O2 consumption.
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means that an O2 molecule has to diffuse through the boundary layer
surrounding the product, through a wax layer, cracks, pores or stomata, through
intercellular spaces, has to dissolve in water, and has to pass the cell membrane
to get into the cell.10 The CO2 molecule produced by the gas exchange has to
travel the same way in the opposite direction. The driving force for the diffusion
comes from the partial pressure difference for O2 and CO2 between the fruit’s
internal and external atmospheres generated by the gas exchange. The
intracellular, in situ, O2 and CO2 concentrations are much more relevant for
the gas exchange than the fruit external gas conditions. Generally, it is assumed,
however, that the largest resistance in the diffusion pathway from the
surroundings into the fruit exists at the skin of the fruit.20, 21 Therefore, the
largest gradient in concentration occurs at the skin while the concentration
differences within a fruit are small.

Even at identical external atmospheres, different species of fruit will have
completely different internal gas compositions due to their different skin
permeances. Fruits with a wax layer, like apples, have a much lower permeance
than leafy vegetables like cabbages, which generally have a large amount of
stomata present.22 The skin permeance of different apple varieties will be
strongly affected by thickness of their natural wax layers. Due to such a wax
layer, the skin of tomato and bell pepper is relatively impermeable, forcing all
the gas exchange through the stem end of the fruit.23 Consequently, some fruits
go internally anaerobic at conditions where others are still aerobic.

Water diffusion and water loss
The diffusion of water vapour is limited by skin permeance in the same way as
the diffusion of O2 and CO2. The slight difference is that the diffusion of O2 and
CO2 is mainly going through pores connected to intercellular spaces while water
vapour is more easily released through the whole skin surface.24, 25 Water loss is
driven by the partial pressure difference for water vapour between the fruit’s
internal (close to saturation) and external atmospheres. Water loss is an
important issue in relation to the overall mass loss, firmness loss and shrivelling
or wilting of the product. Inside an MA pack, water loss can also be responsible
for generating conditions favourable for microbial growth (high RH).

Ethylene effects
Being a plant hormone, ethylene takes a special place among the gases and
volatiles produced by the product because of its potential impact on the
product’s own metabolism. The pathways of biosynthesis and bio-action of
ethylene are still the subject of extensive study.26 Most of the climacteric fruits
show a peak of ethylene production at the onset of ripening. In most of these
fruits, ripening can be triggered by exogenous supplied ethylene. This creates
the situation that one ripening fruit in an MA pack will trigger the other fruit to
ripen simultaneously, due to the ethylene accumulating in the pack. MA can
inhibit the normal development and ripening of products postponing the
climacteric ethylene production thus extending the keeping quality of the
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product. With kiwifruit, however, advanced softening of the fruit occurs before
ethylene is being produced.27 Although the fruit is not producing any ethylene
yet, the softening process is extremely susceptible for exogenous applied
ethylene.

Product quality
The quality of the packaged product is based on some subjective consumer
evaluation of a complex of quality attributes (like taste, texture, colour,
appearance) which are based on specific product properties (like sugar content,
volatile production, cell wall structure) (see also Chapter 17).28 These product
properties are generally changing as part of the normal metabolism of the
product. Those developmental changes that are directly influenced by O2 or CO2

or driven by the energy supplied by respiration or fermentation will all be
affected by applying MA conditions, potentially extending the keeping quality
of the product. Some processes are more affected than others due to the way they
depend on atmospheric conditions. To understand the mode of action of MAP
for a specific product, a good understanding of how the relevant product
properties depend on gas conditions and temperature is required.

Spoilage and pathogenics
MA conditions can also provide conditions favourable for the growth of
microbes potentially limiting the keeping quality of the packaged product due to
rot (see also Chapter 18).This is especially the case for soft fruits or minimally
processed fruit and vegetable salads when high humidity levels are combined
with a tasty substrate.29 Some microbes are known to be opportunistic, waiting
for their chance to invade the tissue when ripe, damaged or cut. In this case, MA
conditions inhibiting the ripening of fruit in combination with a proper handling
and disinfection can prevent some of the problems. Other microbes are more
actively invading the tissue, causing soft patches on the fruit. More insight is
needed into how MA can inhibit not only the metabolism of the product but also
that of the microbes present on the products. High CO2 levels are generally
believed to suppress the growth of microbes, although sometimes the CO2 levels
needed to suppress microbial growth exceed the tolerance levels of the vegetable
produce packaged.29, 30

Variation
Although the general concept of MAP is now almost complete, there remains
one thing that affects all the other issues outlined so far, and that is variation (see
also Chapter 8). Variation can occur on different levels, like time and spatial
variation in temperature control in storage, irregularities in the stacking of
cartons influencing ideal flow patterns, irregularities in the thickness or
perforation of films or differences between batches of film used. However, the
most important non-verifiable one is biological variation. Besides the more
obvious differences between cultivars, distinct differences exist between
produce from different harvests, years, soils or locations.31 Even within one
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batch, considerable variation between individual items can occur.32 The amount
of biological variation that can be expected generally depends on the
organisation level examined. Within packages, product is generally coming
from one grower resulting in a relatively homogeneous batch with limited fruit-
to-fruit variation. Comparing different pallets involves product potentially
originating from different growers and harvest dates resulting in a much larger
variation.

When developing small consumer MA packages, variation in the rate of gas
exchange is almost impossible to take into account. The larger the package, the
more these differences tend to average out. However, in case of fruit
interactions, individual outliers can affect the other fruit in a pack, as with the
spreading of rots, the onset of ripening through C2H4 production or with off-
flavour development.

14.2.2 Sub-models
Over the years, different elements of what has been discussed above have been
the subject of mathematical modelling. Other subjects are still to be explored.
Models describing the physics of MAP are usually more fundamental than the
ones describing the physiology of MAP. This is due to the increased complexity
and the lack of knowledge on the underlying mechanisms. For this reason,
empirical ‘models’ (arbitrary mathematical equations fitted to experimental
data) are still prevailing in post harvest physiology. This section gives an
overview of the type of MAP-related models available in the literature with the
emphasis on the physiological aspects of MAP.

Macro level
With the strong development of computers, rapidly increasing computational
power becomes available to food and packaging engineers. Associated with this,
engineers can add new numerical tools to their standard toolkit such as
Computational Fluid Dynamics, infinite elements and finite differences. In
general, when modelling heat and mass transfer, conservation laws are applied
to formulate energy and mass balances (see Chapter 4).12 The space under study
is subdivided in a number of defined elements. Each of them is represented by
one point within the three-dimensional space and is assumed to exchange mass
and heat with its neighbouring elements according to the heat and mass balances
defined. The accuracy of such a model strongly depends on the number and size
of elements defined and the knowledge of system input parameters. To improve
both accuracy and computational time, smaller elements can be defined in areas
with steep gradients and larger elements in the more homogeneous areas.

Theoretically, this approach is applicable at both the macro level to describe
airflow in a cold room, at the meso level to describe diffusion within a pack, and
at the micro level to describe gradients within the product. The main application
is, however, at the macro level and to a lesser extent at the meso level when
large bulk packages are involved.33 For small consumer size packages the
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simplification of treating the pack atmosphere as one homogeneous unit is
generally acceptable. At the micro level, there are too many system inputs still
undefined to enable formulation of such a model, not to mention to parameterise
and validate it.

Meso level
At the level of small consumer size packages the physics simplifies to relatively
easy diffusion equations based on Fick’s law describing gradient driven fluxes
from point A to point B through a medium with a certain resistance. Gas
permeates into (or out of) the package faster with increased film area, with
thinner films and with larger concentration differences.34 The permeance of a
film typically depends on the material used. With the current range of polymers
available, a wide range in permeability can be realised. Most films are selective
barriers with different permeances to the different gases.35

The standard industry test for determining permeance of a specific film is
done at the single temperature of 23ºC using dry air conditions. The conditions
at which a film is exposed in MAP of fresh produce, ranges however from zero
to 25ºC and high humidity levels (� 90%). Depending on the actual temperature,
the permeance of the film changes accordingly. This temperature dependence is
generally described using an Arrhenius equation (see Chapter 3). This is an
exponential relationship originating from chemistry where it is used to describe
the rate of chemical reactions as a function of temperature. The central
parameter quantifying the temperature dependence is the activation energy. The
higher the activation energy the faster permeance increases with increasing
temperatures. An activation energy of zero means that the permeance does not
change with temperature. The activation energy is characteristic for the film
material used and is different for the different gases.

The effect of humidity and condensation on the permeance of films is widely
recognised and still the subject of study. At high humidities, water can be
absorbed by the film changing the permeance for other gases as well.
Furthermore, due to temperature changes, water can condensate on the film
forming an extra barrier for diffusion. Both aspects are still to be modelled.

When perforated films are considered, the diffusion through the film can be
decomposed into two processes: diffusion through the film polymer and
diffusion through the pores. Perforations are generally much less selective as this
involves just diffusion through air. In addition, the effect of temperature on
diffusion through pores (air) is much less compared to its effect on diffusion
through the polymer. As diffusion through the pores accounts for most of the
total diffusion through a perforated film, the activation energies for perforated
films are close to zero. Due to the effect of boundary layers, diffusion through
pores is not linearly related to pore area and film thickness and some corrections
have to be made depending on pore size and pore density. Models, originally
developed to describe stomatal resistance in leaves, have been applied for this.36

The effect of concurrent diffusions has been modelled using Stefan-Maxwell
equations.14 These equations take into account the effect of collisions between
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countercurrents of different species of molecules on their final diffusion rates
and can explain some of the observed diversions from Fick’s law of diffusion.

The effect of pack volume on the dynamics of MAP is something that does
not need to be modelled explicitly. As both diffusion and respiration are defined
as a function of partial gas pressures, and as these partial pressures depend by
definition on the amount of molecules present per unit of volume, the volume is
already incorporated implicitly. For instance, doubling the void volume of an
MA pack means that twice the amount of oxygen molecules are available. To
reduce the oxygen concentration in the void volume to a certain level, twice the
number of molecules have to be removed, which takes about twice as long.

Micro level
Several attempts have been made to model the gas exchange by either empirical
models, or strongly simplified fundamental or kinetic models using, for instance,
a single Arrhenius equation.37, 38 A more fundamental approach was used by
Chevillotte39 who introduced Michaelis Menten kinetics to describe respiration
on the cell level. Lee40 introduced and extended this approach in the postharvest
field to describe the respiration of whole fruit. After him, several other authors
successfully applied this Michaelis Menten approach to a wide range of
products41, 42 and extended the original Michaelis Menten equation to include
different types of CO2 inhibitions17 and to account for the effect of
temperature.43–45 Traditionally, the effect of temperature was described using
the Q10 system. More recently, the use of the Arrhenius equation is being
favoured. The general applicability of the Michaelis Menten approach is
probably due to the fact that it is simplified enough to enable parameterisation,
and that it is detailed enough to account for the different phenomena observed.

Driven by dissatisfaction with the Michaelis Menten approach, as it may not
describe the respiration of fresh produce because actual respiration is composed
of many steps of metabolic reactions, Makino et al.46, 47 felt the need to develop
an even more simplified model. Based on Langmuir’s absorption theory, an O2

consumption model was developed which, in the end, appears to be an exact
copy of the Michaelis Menten approach, with parameters meaning the same,
only labelled differently. Instead of developing an alternative for the Michaelis
Menten approach, Makino unintentionally reinvented it and validated its
assumptions via an analogous mechanistic approach.

Although proven extremely applicable for practical use and indispensable for
enhancing the understanding and interpretation of gas exchange data, the
Michaelis Menten type of formulation is a considerable simplification of the
biochemical reality. This stimulates the ongoing research to generate models
that are more detailed.48 The developmental effect on gas exchange has not been
modelled so far, except for some empirical corrections for an assumed drift of
respiration during time.9

Burton10 added a whole new dimension to MA research by stimulating
research on internal atmosphere compositions of products as a key concept in the
responses of fruits and vegetables to MA. He emphasised the concept of the skin
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being a barrier between external and internal atmospheres. The same way film
permeance alters the gas conditions inside the package, the skin alters the
internal gas atmospheres.49 Basically, the fruit can be considered as the smallest
possible MA package. The mathematics behind modelling internal atmospheres
is the same as that applied in modelling pack atmospheres. Assuming the largest
resistance in the diffusion pathway exists at the skin of the fruit, diffusion from
the pack atmosphere to the fruit internal atmosphere can be described with a
simple diffusion equation using the permeance and area of the skin. The relation
between fruit internal and external atmosphere conditions can be understood
completely from the combined effect of skin permeance and gas exchange
characteristics. However, the gas exchange model now has to be parameterised
as a function of fruit internal gas conditions instead of pack atmosphere
conditions.

With regard to gas exchange, the combination of diffusion equations and
Michaelis Menten type kinetics resulted in generally accepted and applicable
models. As far as product specific issues are concerned, models are completely
lacking or only available in a rudimentary form. However, to complete the
overall MAP model we do need sub-models on how MAP is influencing the
physiology of the packaged product beyond their gas exchange. How do the
quality determining product properties depend on the gas conditions, either
direct or via the changed gas exchange? The development of such models is
severely hampered by the lack of physiological knowledge and complete sets of
data for validation. Though empirical or statistical models can be useful to
describe simple relationships found in a specific experiment, robust mechanistic
models are needed to develop predictive models that can be applied under a
wide range of conditions.

A relatively simple problem like shrivelling of apples due to water loss can be
understood easily from the diffusion of water from the fruit internal into their
external atmosphere.50 The analysis of the results is hampered, though, by the
large biological variation in skin permeance.51 However, due to its generic
mechanistic approach, the model can be integrated easily within the larger MAP
model for a wide range of products.

The colour change of some products (tomatoes,52 cucumber53) has been
modelled successfully. What remains to be investigated, is how these colour
changes are affected by the gas conditions. With the colour change of broccoli
buds, MA conditions were shown to have an effect on the rate of colour
change.54 Whether this was directly related to the reduction in gas exchange was
not tested. In the case of rot development in strawberries, Hertog et al.55

assumed that the metabolic rate was the direct driving force for the progress of
ripening enabling microbes to develop rot. Reduction of spoilage under MA
could be explained from this reduction of gas exchange.

An extremely complex, and relevant issue of how ripening of (climacteric)
fruits is affected by gas conditions has not been unravelled, let alone been
modelled. However, based on some general concepts, Tijskens et al.56

developed a simplified mechanistic model describing the softening of apples
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under MA including some of those climacteric developmental changes.
Although this model is a strong simplification of the physiological reality, it
shows the generic potential of well formulated mechanistic models.

Understanding the mode of action of MAP for a specific product requires
knowledge of how the relevant product properties depend on the gas conditions
(composition and temperature). This is what makes MAP a laborious exercise as
each product can have different quality determining product properties
responding in slightly different ways to the MA conditions applied. One way
to get around this is by developing generic models describing phenomena like
shrivelling, softening, sweetening, mealiness, flesh browning or skin colour
change that can be validated independently for a wide range of products.

Another option that has already proved itself successful is to stick to a more
general level, describing keeping quality independent of the underlying product
properties. This generic approach was originally developed by Tijskens and
Polderdijk2 to describe the effect of temperature on keeping quality for a wide
range of commodities. This approach was extended to include the effect of MA,
assuming all quality decay is driven by the metabolic rate.54, 57 Some further
refinement would be needed to discriminate, for instance, between respiration
and fermentation driven quality decay processes. This approach can give insight
into how much MAP is able to extend keeping quality without the need to
unravel the exact mechanism of how, for instance, firmness of apple is
influenced by MA conditions at the biochemical level.

Modelling in microbiology has always been important. Usually growth
curves are described as a function of temperature, pH, water activity and in
response to the presence of competing microbes at well-defined growth media
(see also Chapter 18).58 The relevance of microbes for MAP increased with the
increasing demand for convenience foods stimulating the markets for MA
packaged cut and slightly processed fruit and vegetable mixes. Low numbers of
microbes in foods may already result in hazardous situations. However, the
currently available models in predictive microbiology are not set up to deal with
these low numbers.58 Instead of modelling actual numbers, probability of
presence should be taken into account. In addition, the composition of the
natural growth medium in MA packages (being the fruit and vegetables) is not
well defined and highly variable. To predict growth of microbes in MA
packages, both the biological interaction between produce and microbes and the
direct effect of changed atmospheric conditions on the growth rates of microbes
should be taken into account. Research in this field is still developing29 and
given its complex nature, mechanistic models integrating the outlined microbial
aspects will not be readily available.

Although (biological) variation is hard to model, the effect of variation in a
system can be easily demonstrated once a model of that system is available. By
simply running the model multiple times, taking randomly distributed values for
one or more of the model parameters, the effect of variation becomes clear. Such
a so-called Monte-Carlo approach can be applied to a MAP model by drawing
randomly distributed values for, for instance, film thickness or the product’s
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respiration rate. Based on the results, a 95% confidence interval for the gas
conditions inside an MA pack can be formulated (Fig. 14.6). Variation can
induce certain risks, especially when package atmospheres are targeted close to
what is feasible. When desired O2 levels are close to the fermentation
threshold,59 the risk is that some of the packages, depending on the variation in
gas exchange rate, result in O2 levels dropping below the fermentation
threshold.60 This results in packages with unacceptable fermented produce.
Biological variation is generally much larger (�25% is not exceptional) than the
physical sources of variation (generally less than �10%) as the physical factors
are generally easier to control. Biological variation also comes back in the initial
quality of the packaged product resulting in different length of keeping quality
or shelf-life. Some quality change models try to account for these sources of
variation.53, 55

14.2.3 Dedicated models
Though it is possible to develop a model covering all facets of MAP at all levels,
such a model would be impossible to operate. Before one is able to use such a
model it needs to be fully parameterised. Generally, this information is not
available in all situations. Moreover, it is not always relevant to go to such a
level of completeness. Depending on the specific issues involved in a particular
application, dedicated MAP models can be extracted from the overall conceptual
model. Some elements need to be worked out in more detail while others can be
simplified or assumed constant, depending on the dedicated application.

Fig. 14.6 For a given MA package the effect of �25% biological variation on gas
exchange and �10% variation in packaged biomass were calculated. The average MA

conditions developing during time (solid lines) and their 95% confidence intervals (dotted
lines) were plotted based on 200 simulations.
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A retailer trying to deliver the best for the end users is mainly interested in
consumer size packs and how keeping quality develops during display in retail
and after purchase at the consumer’s place (shelf-life). In this case, the emphasis
would be on a product-specific keeping quality model linked to the change in
pack atmosphere conditions. The surrounding conditions are taken as they are. A
large exporting company sending off wrapped pallets with product would be
interested in whether the MA conditions stay within some given target limits.
The emphasis is now on how to control the conditions inside a container to
maintain constant MA conditions and how to optimise package design and pallet
stacking to promote homogeneous flows and heat exchange throughout the bulk
load. When developing packages for minimally processed salads, the emphasis
is on incorporating predictive models on microbial growth together with specific
models on the product’s physiology.

14.3 Areas of application

The previous section already mentioned some potential applications for MAP
models. In this section, we explore some of the potential of MAP models to
enhance the practical implementation of MAP and to lift it beyond the phase of
‘pack-and-pray’.

14.3.1 Dimensioning MAP
There is more than one ‘right’ solution to the search for a suitable MA package
for a specific product. Assuming the product is known, including its gas
exchange characteristics and some optimum target MA conditions, and the
external storage conditions are set but beyond control, there is still a number of
degrees of freedom through which the MA package can be manipulated for
better or for worse.

To realise the target MA conditions the total permeance of the package has to
be dimensioned in relation to the amount of product packaged. Besides choosing
a different film material with a higher or lower permeability, film thickness and
film area can be chosen. A film that is too permeable to be used as a wrapping
can give good results when used to seal the top of an impermeable tray because
of the reduced diffusion area. A film that is suitable for a small consumer pack
can be too impermeable to be used as a liner in a carton because of the increased
amount of biomass per unit of available diffusion area. Trying to influence this
ratio, by packing less produce in a package, results in an increased void volume.
This increases the time needed for the product to bring the package gas levels to
the target MA conditions. This is not favourable, as it takes longer before the
product gets the maximum benefit of the optimum MA conditions. However, the
buffering capacity of a relatively large void volume can have its positive effects
when the MA package has to survive short periods of suboptimal conditions.
During a short warm period, a package with a small void volume could rapidly
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generate anaerobic conditions while a package with a large void volume is
already transferred back to cooler conditions before becoming anaerobic.

Even optimal dimensioning an MA package appears to be complex due to the
different interactions. A MAP model can considerably enhance this search for a
package with a fast enough dynamic phase, resulting in steady state values close
to the target gas conditions and enough buffering capacity to be applicable in
practice.

14.3.2 Developing new films
In case a company wants to bring a new MA pack on the market for a specific
product with the package dimensions already set by other market requirements,
one needs to search for the right film to complete the MA pack.

Normally, film permeance is used as an input in the MAP model. However,
the model formulation can be turned around and film permeance needed can be
calculated based on the product’s gas exchange characteristics, assuming some
known optimum target MA conditions, and given the external storage
conditions. As the storage and transport conditions throughout a chain will
not be constant, this exercise should be repeated over a range of temperatures or
a number of different temperature scenarios. MA conditions that are optimal at
one temperature do not need to be optimal at another temperature. For instance,
the tolerance to low oxygen levels decreases with increasing temperature.59, 61

Once models are available to describe the effect of humidity and
condensation on film permeance, they can be used to predict humidity levels
inside the package and to predict how film permeability is affected by this. This
will help to set detailed specifications to films with regard to this aspect. This
will be especially usefully in the MAP of minimally processed produce, soft
fruits and leafy vegetables because of the high humidity levels occurring in these
packages.

14.3.3 Optimising logistic chains
Given the ultimate MA package for a certain product, its eventual success
mainly depends on the temperature control between the moment of packing and
the moment of opening the package at the consumer’s place. In a logistic chain
where temperature is not controlled throughout, application of MAP is a waste
of time, money and produce. Using a MAP model to simulate a package going
through a logistic chain will give insight in the strong and weak parts of that
chain.15 It will make clear which parts of the chain are responsible for the largest
quality losses of the packaged product and need improvement. It enables the
optimisation of a whole chain considering the related costs and benefits.

To get the most out of such an exercise, a MAP model should be used that
includes a keeping quality or quality change model. Assessing the benefits and
losses in terms of product quality gives much more insight than just the
observation that the MA conditions dropped below or above their target levels.
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The question that should always be asked is how these deviations affect the
quality and keeping quality. The product quality gives static information on the
status of the product at a certain moment, for instance at the point of sale.
Keeping quality provides dynamic information on how long a product can be
stored, kept for sale, transported to distant markets or, after sale, remain
acceptable at the consumer’s place.

14.3.4 Sensitivity studies
Generally, an MA package is developed based on some average product
characteristics, assuming an average amount of product packaged, using the
specifications of an average sample of film and assuming the MA pack will be
handled and stored at certain average conditions. As the average MA pack does
not exist, the question arises how the non-average package will behave at non-
average conditions and how far the MA conditions will diverge from the ideal
target levels. Sensitivity studies are ideal to test how sensitive a system of MAP
is to changes in one or more parameters or conditions. Using a MAP model,
sensitivity studies can be conducted easily by running the model multiple times,
using a range of values for the different conditions under study. This will help to
identify which aspects of MAP should be controlled more strictly because of
their potential impact on the system as a whole.

The results strongly depend on the MA pack under study. For instance,
depending on the gas exchange rate the same change in packaged biomass will
have different effects on the steady state MA conditions. So, it cannot be stated
in general that MAP is insensitive to a change in biomass. Also, the gas
conditions in an MA pack where film and produce have comparable temperature
dependencies are insensitive to temperature. Using this same pack for packaging
a produce with a different temperature dependency can result in gas conditions
extremely sensitive to temperature. Even if the MA conditions in an MA pack
are insensitive to temperature due to the balanced combination of film and
product, this does not mean that the quality of the packaged product is
insensitive to temperature. These are just two different ways of assessing MAP.
If a good quality change model is lacking, the ‘optimum MA conditions’ are the
only criteria to apply when judging MA packs. When a good quality change
model is available, sensitivity studies can be performed on the really important
product quality.

14.4 Pros and cons

Applying models to improve MAP has, like every technique, its pros and cons.
Some of the advantages are already implicitly mentioned in the previous
sections describing the areas of application. By applying models, the
development phase of MAP can be shortened. Huge experiments can be done
behind the laptop checking all possible situations that would take weeks to test
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in practice. With a good conceptual model in mind and the mathematical
equivalent at the fingertips, developing MAP can be lifted beyond the phase of
‘pack-and-pray’.

When developing a model, continued balancing should be going on between the
completeness and relevance of the described phenomena and the level of detail and
complexity of the model needed to realise this. For scientific purposes, the ultimate
model would be a mechanistic one describing all relevant underlying processes.
For practical purposes, one should start from such a detailed mechanistic approach
and simplify as far as possible without affecting the explanatory power of the
model for that specific dedicated application. In the practice of postharvest
physiology, that detailed mechanistic model is not available and the best one can do
is to develop a hypothetical mechanism in agreement with the observed phenomena
and in agreement with current general physiological and biochemical concepts.
Such a mechanistic model can still be extremely valuable to develop concepts by
verifying or falsifying hypotheses. Developing, for instance, a quality change
model forces the expert to formulate a conceptual model and to realise where the
gaps in his knowledge are. This is probably the most valuable and general profit of
developing mechanistic models as it enhances the understanding of a complex
system and directs future research to fill the gaps.

In spite of the advantages, one should remain aware of some potential traps.
One of them is the risk of forgetting about real life, simply because not
everything goes according to the model. The books can prescribe transport at
2ºC but cannot prevent the driver from turning off the cooler unit when
delivering early in the morning in an urban region, not wanting to wake up its
inhabitants. Kiwifruit could last another week according to the developed
firmness model, but in practice are already lost due to spoilage.

This brings us to the fact that you cannot get anything out of a model you did not
include to start with. When condensation is not included it is impossible to assess
sudden temperature drops on their potential to induce condensation with all the
consequences for the omnipresent microbes. If a quality change model leans
heavily on one single limiting quality attribute, the user of the model should be
aware of specific situations turning another quality attribute into the limiting factor.
At the same time it should be recognised that it is impossible to include everything
into the model as it would be impossible to validate it completely.

To end with, one should always be alert when applying models outside the
range they were validated. Especially in case of empirical models, this can result
in unrealistic predictions. A model can easily process unrealistic data without
getting into a moral conflict. The user should always stay alert to recognise such
anomalies.

14.5 Future trends

Some of the trends needed to safeguard the future of MAP are very basic while
others are on the level of refining existing knowledge. One of the most
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embarrassing gaps in the current knowledge is a good database on permeance
data of packaging films that includes their temperature dependency. The
packaging film industry should develop a standard certificate for this that comes
along with each film they produce for MAP.

To enable a fundamental approach to MAP the gas exchange of the different
products should also be systematically characterised as a function of at least O2,
CO2 and temperature. This knowledge, essential for the success of MAP, is still
very fragmented.

To improve the models on MAP of minimally processed produce involving
high humidity levels, a better understanding is needed of the effect of humidity
and condensation on film permeances. Lots of work has still to be done to
integrate the expertise from microbiology within the field of MAP.

Although models on gas exchange are becoming well established, models on
how the physiology underlying quality is linked to the metabolism are not
readily available. Their development is hampered by gaps in the knowledge of
postharvest physiology. However, to assess MA packages on the quality of their
actual turnout, quality change models are needed. The ultimate goal would be to
develop generic models that can be validated to a wide range of commodities.

The last issue that needs to be covered in the near future is the
characterisation of biological variation and its impact on product behaviour in
general and on MAP in particular. Although this issue is important for the
postharvest industry as a whole, MAP would benefit quite a lot from a more
fundamental approach.
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15.1 Introduction

Refrigeration is the most widely used method for preserving the quality of fresh
foods, especially meat, fish, dairy products, fruit, vegetables and ready-made
meals. Refrigeration can be costly in terms of equipment and energy, and if not
done correctly will fail to achieve its objectives and lower the quality and safety
of the product. To ensure that refrigeration is effective, we need to be able to
calculate processing times, product temperatures, heat loads and water diffusion
into and out of the product. These are influenced by both operating conditions
(environmental temperature, humidity, air velocities, etc.) and product
parameters (type, size, shape, composition). Not surprisingly a lot of research
has been carried out to quantify these relationships.

Early works on food refrigeration models concentrated on the prediction of
freezing or chilling time based on the mean or centre temperature of the food.
Plank’s1 simplified equations for the freezing time of foods were presented in
1913, and more recent efforts have concentrated on removing his rather limiting
assumptions on the properties and geometry of the product. Other workers
developed models to predict moisture loss from food undergoing refrigeration.
For a long time, processing time and moisture loss were the major concern of
researchers. With the advent of computers, numerical methods were introduced
into food research and the whole temperature field inside the product could be
modelled. It was quickly realised that this would enable the prediction of many
other quantities of interest related to the quality of the food such as shelf-life,
microbial growth, appearance, flavour and texture. At the same time, the use of
computers in plant design stimulated research into the prediction of dynamic
heat load from food, and integrated models are being developed to take into
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account the interactions of the food with the processing equipment.2 More
powerful computers enable the effect of variations in the product and the
environment to be explored.

There is not enough space in this chapter to cover all the developments in the
field, so a decision has been made to concentrate on some important problems
that have occupied researchers in recent years. Our concern will be with heat and
mass transfer aspects only, and the modelling of product quality will not be
looked at; it can be assumed that chemical and biological changes that happen
concurrently do not significantly affect temperature and moisture changes in
food, at least at low temperatures (clearly this would not be the case in, say, the
cooking of meat or the baking of bread), so a quality model can be readily
‘grafted’ on a heat and mass transfer model without changing the latter. A large
amount of work has been done on the development of simple analytical models
for predicting cooling and freezing times: these will also not be covered here,
since there have been several reviews of this topic.3–5

Even with these self-imposed limitations, the simulation of food cooling and
freezing is a vast area with many problems and challenges for the modeller.
Calculation of the heat removal process may be complicated by phase change,
during which the product’s thermal properties undergo large changes over a small
temperature range. The product undergoing cooling often has very complex shape
and composition. Heat transfer may be coupled with moisture transfer and the
equations governing the two processes should be solved simultaneously. The heat
transfer coefficient is often difficult to determine for the infinite variety of real-life
situations such as packaged products, cryogenic cooling, highly turbulent flow,
swirling and non-parallel flow, etc., and within the same chiller the heat transfer
coefficient will vary greatly from place to place. The heat transfer coefficient may
also vary along the surface of a product due to the complex turbulent flow pattern
and the development of the flow boundary layer, a problem still largely unsolved
even by the most advanced computational fluid dynamics packages. Food
products often have inconsistent compositions, shapes and sizes, which lead to
variable thermal behaviour and quality after processing, so that it is difficult to
quantify accurately the effects of different processing practices.

Refrigeration system designers want fast, reasonably accurate product load
calculation methods as their computers may have to carry out this calculation
hundreds or thousands of times in a simulation or optimisation task. For such
purposes, simplified methods using ordinary differential equations (ODEs) have
been developed. In other situations, an ability to predict accurately the whole
temperature and moisture fields in a product is desirable as it would allow the
food technologist to optimise the economic and product quality factors. Thus,
microbial growth, physical change (such as weight loss), biochemical changes
(such as those determining the tenderness of meat or ripeness and flavour of
fruit) and subjective factors (such as surface appearance) are often highly
sensitive to temperature and moisture changes. Such a predictive ability is as yet
beyond us, although steady progress is being made with recent advances in
computer software and hardware.
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The variety of problems faced by the modeller is too large to be adequately
treated in this chapter, therefore we will concentrate on only a few specific
aspects that are of particular importance to the modeller and/or the industrial
user of simulation software, and discuss these topics in some depth. The chapter
starts with methods for modelling foods with complex shapes, from highly
simplified models to detailed numerical models. It goes on to discuss models
that are used to predict the dynamic heat load during chilling and freezing. In
many situations involving fresh foods, water loss (or gain) will accompany heat
transfer, and models for these situations will be described. Underlying all
models is the need for accurate estimation of transfer coefficients for heat and
mass, which will be discussed. A few typical industrial applications of
modelling are described, involving the use of models in plant control and in
process optimisation. Finally, the areas that most need further investigation are
identified and discussed.

15.2 Modelling product heat load during cooling

In order to design an efficient refrigeration system, product heat load must be
known. With batch processes, the heat load varies strongly with time, displaying
a peak at the beginning of cooling and whenever there is a sharp drop in
environment temperatures. It is important to be able to calculate the variations in
heat load with time, since overdesign is inefficient and costly, while underdesign
may cause hygiene problems and failure to comply with specifications.

A refrigeration plant may process a large number of products of different
shapes, sizes and compositions, entering the chillers or freezers at different times
and under different conditions. The system may need to be optimised, which
involves repeated calculations. The refrigeration system designer needs a simple
method that can be applied repeatedly to calculate the product heat load. The
rigorous solution to the heat transfer equation for a solid body, even in the
absence of any complication such as variable thermal properties or complex
geometry is an infinite series expression which is unsuitable for routine use.
Various attempts have therefore been made to derive simpler and faster
approximate solutions.

Ordinary differential equations (ODE) models, lumped parameter models or
stirred tank models are those where an object undergoing thermal changes is
represented by a small number of components, each of which is at uniform
temperature. Because of the simplification of the physical situation that this
entails, ODE models usually have to incorporate empirical parameters to
improve prediction accuracy. ODE models are often used to calculate the
variation of product heat loads with time because they are much faster than more
rigorous partial differential equation (PDE) models such as finite differences.
ODE models are not suitable for product temperature calculations, except in the
case of very low Biot numbers (uniform product temperature).
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15.2.1 The single tank model
The simplest ODE model is obtained by considering the object being cooled as a
‘stirred tank’ at uniform temperature. This is permissible when the Biot number,
which measures the ratio of internal to external resistance to heat transfer, is
small (Bi� 1), resulting in a nearly uniform internal temperature. Since most
foods have medium-to-low thermal conductivity (of the order 1 Wm�1 K�1 or
less), the above condition is satisfied only for small pieces of food (a few mm
across) being cooled slowly, smallish-sized food wrapped in insulating
packaging, or liquid food undergoing stirring.

15.2.2 The tank network model
A slightly more complex model is the tank network model6 in which a solid food
of complex shape such as a beef leg or carton undergoing chilling is represented
by a set of stirred tanks connected by heat conductances (Fig. 15.1). The heat
flows between the tanks and from each tank to the environment are proportional
to the respective temperature differences, while within each tank the temperature
is uniform. The thermal conductances of the heat transfer paths and thermal
capacities of the tanks are determined by curve-fitting empirical or numerically
generated data. For each tank i the temperature Ti is calculated from

mic
dTi

dt
� Ki�a�Ta � Ti� �

�
j ��i

Ki�j�Tj � Ti� �15�1�

where Kij is the thermal conductance (in WK�1) between tanks j and i and Ki, a

that between tank i and the environment.
With n tanks there are n + �n� 1�� . . .�1 � n (n� 1)/2 thermal resistances

and n thermal capacities, so a small number of tanks (two or three) is sufficient
in most cases to correlate the data. Energy conservation requires that the sum of
thermal capacities must equal the total thermal capacity of the physical object,
which is usually known, hence in practice the number of curve-fitted variables is
reduced by one.

Fig. 15.1 Tank network model with two tanks.

Modelling thermal processes: cooling and freezing 315



Superficially the tank network model resembles finite volume or finite
difference models which are discretisations of the partial differential equations.
However, an important difference is that while the parameters of the finite
difference model are derived from the physical situation, each node representing
a specific location within the object, no such physical association is assumed in
the tank network model. Also, while each node of a finite difference model
exchanges heat only with its neighbours, each tank in the network model
exchanges heat with all other tanks and the environment. The model is
reminiscent of neural networks used in artificial intelligence.

To test the adequacy of the tank network model, Davey and Pham6

partitioned their beef carcass chilling dataset into two groups, using the first
group to find the model’s parameters and regress them against the operating
variables (carcass size, fat cover, air velocity), then using the resulting model to
predict the dynamic heat load in the second group of data. They found that with
as few as two tanks (four curve-fitted parameters) the predictive accuracy was
very good (average error 1.5%, well within experimental uncertainty) and
significantly better than either their finite difference model or finite element
model. The model was also successful in predicting the effects of variations in
environmental temperature (which is as expected, since these effects were
linear) and heat transfer coefficients (which was somewhat more surprising).

15.3 Modelling product heat load during freezing

The ODE derived by Plank1, 7 for calculating the freezing front position in
simple shapes can be used as a basis for calculating dynamic product load in
more complex shapes. Cleland8 proposed a single parameter model based on
Plank’s equation that will predict the dynamic heat load during freezing. This
model does not adequately take into account the change in shape of the freezing
front during the freezing of an irregular shaped object. Lovatt et al.’s9 two-
parameter model is the most accurate to date, and a slightly simplified version of
this model (obtained by lumping the freezing and post-cooling heat load
together) will be presented here. By considering the velocity of the freezing
front and associated latent heat release, an approximate equation for heat load is
obtained:

Q � ��H2
drf

dt
dVf

drf
�15�2�

where �H2 is the latent plus post-cooling heat, drf /dt is the freezing front
velocity and dVf /drf the change of frozen volume with frozen depth. drf /dt can
be derived from

drf

dt
� ��Ta � Tf �

�H2rf
E�1

�
1

hRE�1
� rf

2�E � R2�E

kf �2� E�
� �15�3�
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where R is the product’s smallest half-dimension, h the heat transfer coefficient,
kf the frozen thermal conductivity and E (the EHTD) is defined as the ratio of the
freezing time of an infinite slab of same thickness as the smallest dimension of
the object to the freezing time of the object. dVf /drf is a function of geometry
and can be calculated from

dVf

drf
� Z

V
R

�
rf

R

�Z�1

�15�4�

where V is the product volume and Z a geometric parameter. Equation (15.2) can
be shown to hold rigorously for the three basic shapes (infinite slabs, infinite
cylinders and spheres) when sensible heat effects are neglected, and will also
hold for ellipses and ellipsoids if the freezing front remains self-similar. For
simple shapes, E and Z are given by:

slab: E � Z � 1

infinite cylinder: E � Z � 2

sphere: E � Z � 3

For other shapes, there has been numerous analytical and empirical formulae
proposed for E.5 Z can be found from

Z � AR�V �15�5�
For very irregular shapes with protrusions AR/V may be larger than 3, which
would give unrealistic results, hence the following upper limit is imposed:

Z 	 3 �15�6�
Lovatt et al.’s method has been tested against finite difference computations and
experimental data for the freezing of cartons and lamb carcasses. Agreement to
within about 10% is obtained for most of the cooling process (and certainly
during the first half, where most of the heat release occurs).

15.4 Modelling foods with complex shapes

Most heat transfer modelling works in food refrigeration have concentrated on
the cooling of solid foods with complex shapes, in particular meat products and
to a lesser extent horticultural products. Animal carcasses or parts thereof have
some of the most complex shapes that have been modelled, not excluding
airplanes, boats or cars. The first task of the modeller is therefore to decide how
to take into account these shapes. In the early days when computing power was
limited and the main preoccupation was to bring the thermal centre down to a
given temperature, an equivalent shape approach was the most common – thus
an animal carcass or leg could be replaced by an equivalent slab, cylinder or
sphere whose dimension was a function of product weight.10, 11 An alternative
approach is to use empirical geometric factors, by which the cooling or freezing
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time must be multiplied. The most well known of these geometric factors is the
equivalent heat transfer dimensionality (EHTD) introduced by Cleland and co-
workers,12 which was given a rigorous analytical basis by McNabb et al.13, 14

In modelling a complex shape by a simpler shape, an equivalent size for the
latter must be defined. The equivalent size can be worked back from the EHTD,
for which analytical and empirical formulae are available for a wide variety of
situations.3, 15 The application of this method requires complete information on
the geometry of the object being modelled. Crocombe et al.16 reported a laser
scanner with integrated software to calculate geometric factors and EHTD
directly from scanned data. Alternatively the equivalent size can be found
directly from cooling data by an error minimisation method. Pham and Coulter17

used direct curve fitting of temperature data for the centre and surface of pig legs
to calculate their equivalent diameters, using an evolutionary error minimisation
method. Because the differences between surface and centre temperature are
highly dependent on the product’s size, the equivalent diameter could be
obtained with precision to give a model with very good prediction accuracy,
partly because errors in the other inputs (heat transfer coefficients, thermal
properties, initial temperature profile) are automatically compensated for.

To obtain more accurate predictions, the equations of change for heat transfer,
mass transfer and fluid flow must be solved by a numerical method. The most
popular methods for the rigorous solution of the Fourier heat conduction equation
are finite difference and finite element, while the finite volume method is widely
used in computational fluid dynamics code. To assist in the understanding of the
modifications necessary to deal with freezing problems, a brief, user-oriented
review of these methods will be given (a full description of the methods and their
theoretical bases can be found in Chapter 4).

The finite difference method represents temperatures in an object by a set of
nodal temperatures. For example, in one dimension, the Fourier conduction
equation

�c
�T
�t
� �

�x

�
k
�T
�x

�
�15�7�

is discretised into

�c�TNew
i � TOld

i � �
�t
�x2

k��Tm

i�1 � Tm
i � � k��Tm

i�1 � Tm
i �� �15�8�

where the subscript i denotes the ith node (or control volume) and the superscript
denotes the time level (Old is at beginning of a time step, New is at the end, m is
some intermediate value). � denotes the density, c the specific heat, k the
thermal conductivity, k+ its value between nodes i and i + 1, k- that between
nodes i and i�1. The temperatures Tm on the right-hand side represent some
weighted average nodal temperatures over the time interval, and different
stepping schemes have been used with different weighting methods. Two of the
most common are the explicit or Euler scheme, which calculates Tm at the
beginning of the time interval (Ti

m = Ti
Old ), and the Crank-Nicolson or central

318 Food process modelling



difference scheme, which uses the mean between old and new temperatures
(Ti

m = (Ti
Old + Ti

New)/2).
The finite element method differs from finite difference in one major respect:

whereas finite difference assumes that thermal capacities are lumped at the
nodes, in finite element the thermal capacity is normally distributed over the
volume according to some weighting rule. A finite element model starts by
division of the object into elements, each containing a number of nodes (each
vertex is a node, but there may be more). Heat conduction within each element is
first considered separately to obtain a set of equations relating the temperatures
of all the nodes belonging to the element. The procedure is repeated for all
elements and the equations obtained are assembled into a matrix equation for the
nodal temperature vector T:

CdT�dt � KTm � f m �15�9�
C is called the global capacitance matrix, K the global conductance (or stiffness)
matrix and f the thermal load vector. The above matrix equation is then solved
by a matrix solving procedure.

The finite volume method is widely used nowadays in commercial
computational fluid dynamics (CFD) codes. In this method the conservation
equations are solved over finite control volumes of arbitrary shapes. The volume
integrals are approximated in terms of the volume-centred value of the field
variables, while surface integrals are calculated by some averaging method. The
final set of discrete equations to be solved are similar to those obtained for finite
difference and finite element methods and solved in the same way.

To model simultaneously product temperature, heat load and weight loss
during beef chilling, Davey and Pham18 used a multi-region finite difference
approach. A beef side was divided into seven regions: leg shank, rump, loin,
ribs, shoulder, foreleg and neck, each represented by a simple shape such as an
infinite cylinder or slab, with dimensions found from a regression equation.
With such a technique it was possible to calculate the heat load during the first
two hours of a twenty-hour chilling cycle with an average error of 12.6% and the
weight loss with an average relative error of 1.25%.

Finite element and unstructured mesh finite volume techniques can be used to
model any shape, but two-dimensional (2D) models are much easier to handle
than three-dimensional (3D) models, which demand special graphics software
and a large amount of time and effort. 2D models have been used for beef
sides19–21 and lamb loins.22 In such models, heat conduction along the third
dimension is ignored, a valid approximation for elongated shapes. Full 3D
cooling models have been reported for lamb,23 pork,24 bread and turkey,25 and
beef side.26 The recent advent of CFD packages and huge computer memories
have allowed very detailed 3D representations of complex shapes: while a
maximum grid size of 800 pseudo-cubic elements was specified for the PC-
version of the BERTIX and BAKTIX programs in 1993, a 100 000 node finite
volume representation for a beef side was recently constructed using the Gambit
software on a PC.26
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In spite of the ability to model in 3D, it is likely that 1D and 2D models will
remain popular for some years to come for industrial simulation and for many
research applications. The number of dimensions required to represent an object
can often be reduced by using axial or spherical symmetry, in combination with
appropriate approximations. For elongated shapes, longitudinal conduction and
end effects may be neglected. The errors involved in such approximations are
often smaller than those caused by uncertainties and statistical variations in
shape, size and operating conditions. It is likely that full 3D models will be used
mostly as references against which simpler models can be compared and
calibrated (of course, the 3D models must themselves be thoroughly checked
against experiment).

15.5 Numerical solution of the heat conduction equation with
phase change

Special problems arise in the application of finite difference and finite element
methods to freezing and thawing, due to the release of latent heat over a small
range of temperatures (Fig. 15.2) and to a step change in the thermal
conductivity over the same range (Fig. 15.3). These changes make the problem
highly non-linear and special techniques are required for their solution.

Variations in thermal conductivity can be dealt with in a mathematically
rigorous manner in both finite difference and finite element methods by using
the Kirchhoff transformation27

� �
�T

k� dT �15�10�

The heat conduction equation then becomes
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�T
�t
� �

2�

�x2
�15�11�

Fig. 15.2 Apparent specific heat of typical water-rich food around freezing point.
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In spite of its mathematical elegance, the Kirchhoff function formulation does
not guarantee better accuracy than, say, the simple approximation of an
arithmetic mean k-value, i.e.

kij � 
k�Ti� � k�Tj���2 �15�12�
This is because there is no guarantee that the Kirchhoff function is linear when
there is a phase change front in the vicinity – in fact, if sensible heat effects are
neglected then the temperature profile will be a broken line and so will the
Kirchhoff function’s profile. Since the finite difference procedure (and the
simplest version of finite element) implicitly assumes a linear Kirchhoff
function profile between nodes, it will cause an error. This error is reduced to
acceptable levels by using small nodal spacings (normally, ten to twenty nodes
over each dimension of the object).

15.5.1 Treatment of phase change in finite difference models
The steep change in enthalpy v. temperature, which can also be visualised as a
sharp, narrow peak in the effective specific heat at the freezing point, is a more
difficult problem. Two main approaches have been proposed to take into
account the phase change: front tracking methods and fixed grid methods. In
front tracking methods, a node or a control volume boundary is placed at the
phase change front, and the temperature fields in the frozen and unfrozen
regions are solved separately (but connected by thermal equilibrium at the front)
while the movement of the front is calculated from a heat balance. As the front
moves so does the grid. In fixed grid methods, the front is not explicitly
considered; if its position is required, it is calculated from the nodal
temperatures or enthalpies. Front tracking methods are difficult to implement
in complex shapes and in any case for foodstuffs there may not be a clear ‘phase
change front’, since latent heat is released over a temperature range. It has also

Fig. 15.3 Thermal conductivity of typical water-rich food around freezing point.
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been shown28, 29 that fixed grid methods can give good prediction of front
location. Therefore, the rest of this discussion will be concerned with fixed grid
methods only.

A large amount of latent heat is released over a small temperature range
during freezing. This latent heat can be treated either as a heat source, which has
to be accounted for separately, or as a peak in the ‘apparent specific heat’ curve
(Fig. 15.2). With either approach, it is easy to miss this peak when a nodal
temperature crosses the freezing point too quickly. An effective remedy is the
use of the enthalpy method, in which the rate change of nodal enthalpy is the
calculated variable:
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where

H �
�T

Tref

�c�dT �15�14�

Each calculation cycle yields a set of nodal enthalpies Hi from which the nodal
temperatures Ti are back-calculated (or simultaneously calculated in an iterative
procedure), thus it is impossible to ‘jump’ over the latent heat peak. Equation
(5.13) can be solved explicitly using the Euler method30 or implicitly. If an
implicit stepping method is used, both unknown nodal temperatures Ti and nodal
enthalpies Hi appear in the equation, hence an iteration has to be performed at
each time step until Hi and Ti agree.

To avoid the need for iteration, Pham28 proposed the ‘temperature-enthalpy
correction method’, a hybrid temperature-enthalpy method (Fig. 15.4). At each

Fig. 15.4 Illustration of the temperature-enthalpy correction method.28
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time step, the conduction equation (expressed in terms of �Ti��t) is solved by an
implicit method such as Crank-Nicolson (the original paper used Lees’ three-
level method) in the usual manner. The heat gained by the node is assumed to be
correct, hence the new nodal enthalpy is

HNew
i � �ci�TNew

i � TOld
i � � HOld

i �15�15�
and the resulting nodal temperature array is corrected according to

�TNew
i �Corrected � T�HNew

i � �15�16�
In Equation (15.15), ci is the apparent specific heat used for the node during the
temperature calculation. (Pham also suggested a method to get a good first
estimate of this nodal apparent specific heat, but this was later found not to have
a large bearing on the method’s speed.) The temperature correction step could be
considered as the first step in an iterative solution, but is sufficient on its own to
bring about a dramatic improvement in accuracy and/or computing time
compared to previous methods.31

15.5.2 Treatment of phase change in finite element
In contrast with finite difference, finite element methods make use of some
distribution (weight) function to calculate the nodal capacitances: the heat gain
over each time interval �c�Tdv of each infinitesimal volume in the element is
distributed to the nodes of that element, node i receiving a fraction wi which
depends on the location of the infinitesimal volume. To calculate the distribution
of the heat gain over the whole element requires a numerical integration of c�T
over the same area, which can be performed only very roughly (using a small
number of sampling points). It can be seen that if a freezing front is passing
through the element, the integration-by-sampling procedure can easily miss it.

To circumvent this difficulty, Pham29 suggested the use of lumped
capacitances, in which all the thermal capacitance of the element is concentrated
at the nodes, rather than being distributed over the element. (For ‘simplex’
elements, i.e. triangles in 2D or tetrahedrons in 3D, this simply means attributing
the thermal capacitances equally to each vertex.) This enables the latent heat
peak problem to be dealt with in the same manner as in the finite difference
method, for example by the use of the explicit enthalpy method or Pham’s
temperature-enthalpy correction method. Integration of the heat gain over the
element is no longer necessary. Subsequently Comini et al.32 showed that
Pham’s temperature-enthalpy correction method can also be applied to
distributed-capacitance (i.e. conventional) finite elements, although the physical
interpretation is less clear.

Using well-known test problems, Pham33 compared ten of the most advanced
fixed-grid finite element methods to date (after eliminating dozens of others) in
terms of accuracy (agreement with analytical solution where available), time
interval for convergence to within 1% of the converged solution (i.e. the solution
obtained as �t � 0), heat balance error (percentage difference between heat
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flows through boundaries and total heat gain of product – a measure of whether
the latent heat load peak has been missed), and computing time as measured by
the number of matrix inversions required. The test problems use both materials
with a sharp phase change (heat released over 0.01 K) and a material with food-
like properties. He concluded that the (non-iterative) lumped capacitance
method with Pham’s temperature-enthalpy correction performed best in terms of
most of the above criteria. A further advantage of non-iterative methods is that
the heat balance, which is easily checked, can serve as a useful indication of
whether the time step is sufficiently small: a heat balance error of less than 1%
generally indicates that convergence has been reached. Iterative methods tend to
be time-consuming, and because they ensure a good heat balance at all time
steps, this cannot be used as a check on accuracy or convergence to the low-�t
limit.

15.6 Modelling combined heat and mass transfer

Simultaneous heat and mass transfer arises when there is water movement as
well as heat flow between product and surroundings. This frequently occurs in
the cooling and freezing of unwrapped or loosely wrapped products such as
meat, fruit and vegetables, where evaporative cooling can be similar or larger
than sensible heat transfer, and also during immersion or spray cooling/freezing
of unwrapped product when water or solutes diffuse from the freezing medium
into the product.

During cooling, water evaporates from the surface, causing it to dry and
water to diffuse from inside the product. If freezing occurs, internal diffusion
stops, but the ice at or near the surface will sublime or ‘freeze-dry’ and the ice
front gradually recedes into the product. These phenomena have important
practical implications.

• Temperature changes and product heat loads are strongly affected by
evaporative cooling effects. Indeed, evaporative cooling may be more
important than sensible heat (cooling due to temperature difference alone) at
least during the initial period, when warm, wet product is exposed to cold dry
air.

• Water loss from unwrapped product is an important economic loss; a 1% loss
(in terms of total product weight) means a 1% loss in sales value, much more
in terms of loss of profit. Typical losses in meat chilling, freezing and cold
storage are about 2–3% of product weight.

• Product appearance and surface feel or texture is strongly affected by water
evaporation. Food may suffer from ‘freezer burn’ appearance, a glassy or
desiccated look due to freeze drying and subsequent structural changes in the
surface tissue.

• Most importantly, microbial growth is strongly dependent on both surface
temperature and surface water activity, the latter being determined by a
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balance between evaporation and internal water diffusion. It has been found
experimentally34, 35 that surface water activity during meat chilling changes
in a complex manner, first falling as water evaporates strongly from a warm
surface, then rising again as the surface cools and is re-wetted by moisture
diffusing from inside.

15.6.1 Combined heat and mass transfer in food with impermeable skin
With some fruit such as apples and with moist food wrapped in semi-permeable
films, the product is covered by a relatively impermeable skin which, together
with the air film resistance, accounts for all the resistance to mass transfer. The
moisture of the product under the skin can be assumed to be constant. This
situation can be described by a ‘lumped parameter’ model. The product can be
incorporated in a generalised model describing the whole food/package/stack
system as a network of heat and moisture sinks linked by heat and mass transfer
paths.36

15.6.2 Combined heat and mass transfer in non-porous food
With products that have no low-permeability skin or wrap, the partial
differential equations describing heat and mass transfer in the solid must be
solved simultaneously. An explicit (Euler) time-stepping scheme is the easiest to
use and can account automatically for interactions between moisture diffusion
and heat conduction, provided the time step is sufficiently small. Implicit
stepping schemes often use large time steps and some iteration is necessary.

Moisture diffusion inside the product is governed by the PDE
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which can be discretised in a manner similar to the heat conduction equation. In
this equation, w is the moisture content and Dw the diffusivity of moisture in the
food. At the surface, the heat conducted to the surface is balanced by
evaporation and convective cooling:

Hfgky�Ya � awY sat�Ts�� � h�Ta � Ts� � k
�T
�x
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where Hfg is the latent heat of evaporation, ky the mass transfer coefficient based
on Y, Y the absolute humidity, Ysat the saturation humidity, aw the surface water
activity, h the heat transfer coefficient and the subscripts a and s refer to air and
surface respectively. The water diffusing to the surface must be balanced by
evaporation:

ky�Ya � awY sat�Ts�� � �dmDw
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�x

����
s

� 0 �15�19�
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where the surface water activity is related to surface moisture by the equilibrium
relationship

aw � aw�ws� Ts� �15�20�
and the convective heat and mass transfer coefficients are related by the Chilton-
Colburn analogy:37
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Radford et al.38 were the first to present a finite difference model of
simultaneous heat and mass transfer in thin slabs of meat. For large products
such as beef carcasses, the numerical solution of the heat and mass transfer
equations is difficult to carry out efficiently because the thermal and moisture
diffusion coefficients in the food differ by several orders of magnitude (typically
1.010�7 m2/s for thermal diffusivity and 1.010�10 m2/s for moisture
diffusivity). Hence heat diffuses much faster and on a much larger scale than
moisture. For instance, during meat chilling, heat is lost throughout a block of
meat while moisture loss is confined to a surface layer a few mm thick. This
means that when using a numerical method such as finite difference, the grid for
mass transfer needs to be much finer than that for heat transfer. Because of this
difficulty, an empirical approach has often been used, preventing accurate
computation of the cooling rate, evaporation rate and surface moisture. Usually a
constant surface water activity is assumed. Davey and Pham18 modelled a
complete beef side assuming a constant surface water activity of 85%.

Pham and Karuri35 used separate discretisation grids for temperature and
moisture calculations. The temperature grid covers the whole object while a one-
dimensional moisture grid covers the near-surface regions (up to a depth of
20 mm), which are affected by mass transfer. This approach gave reasonable
predictions for the heat load and weight loss from a beef carcass during chilling,
and also correctly predicted the surface drying and re-wetting process during
chilling (Fig. 15.5). A major problem is the lack of accurate data on the
equilibrium relationship aw(w, T) of fresh foods.

15.6.3 Combined heat and mass transfer in porous food
In most food, the interaction between heat and mass transfer in the product is
largely one-way, moisture diffusion being strongly influenced by the
temperature field but not the other way round. In porous food such as bread
or fermented dough, there is strong two-way interaction, since heat transfer
inside the product may be enhanced by evaporation-condensation effects:39

moisture evaporates from the warmer parts of each pore and condenses on the
cooler parts, as in a heat pipe. If one is concerned only with heat transport, an
effective thermal conductivity can be used, where the increase in thermal
conductivity of the pores due to evaporation-condensation can be calculated
from:40, 41
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kevap�cond � aw�HfgDwa
d�sat

w

dT
�15�22�

where � is a mass flow correction factor (�1 at medium to low temperatures), L
the latent heat of vaporisation, Dwa the diffusivity of water vapour in air and �sat

w
the saturated water vapour density. In the temperature range 0–40ºC the
conductivity of the air-filled pores can be increased by a factor 2 to 9 by this
contribution.41 Because the pores form only a fraction of the total product
volume, the resulting enhanced pore thermal conductivity must be combined
with that of the solid matrix by means of a composite model such as the
Maxwell-Eucken model or the EMT model.

A more rigorous approach is to solve both the heat and mass transfer
equations. The program BAKTIX42 uses this approach to calculate temperature
and moisture profiles in bread being cooled and frozen. Water is assumed to
move in the vapour phase, as governed by the equation

�m � Dwa

�
��w �15�23�

where �m is the water flux and � a mass transfer resistance factor. The heat flux
due to mass transfer consists of a sensible heat and a latent heat component:

q � k�T � �m�cpwT � Hfg� �15�24�
where cpw is the specific heat of water vapour. Using this approach, BAKTIX
was able to predict qualitatively the movement of moisture towards the crust of
bread during cooling, an important phenomenon which may cause a layer of ice
to form under the crust during freezing and subsequent crust detachment.

15.6.4 Combined heat and mass transfer from frozen food
Food with a frozen surface loses moisture not by internal diffusion and
evaporation from the surface but by sublimation from a receding ice front. The

Fig. 15.5 Predicted surface water activity for rump and loin sections.35
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ice front can be assumed to have the vapour pressure of pure ice, but as it
recedes into the product a dehydrated layer forms which will slow down the
sublimation rate.43 Two phase change phenomena are involved, sublimation and
freezing. The problem was modelled by Campanoñe et al.44, 45 for 1D
geometries using a front-tracking finite difference method. The dehydrated
zone is modelled by a flexible grid with distance increments increasing
proportionately to the depth of the freezing zone. The undehydrated zone (both
frozen and unfrozen) was modelled by a fixed grid, except that the last node
moves with the sublimating interface (and hence the last space increment of the
undehydrated zone decreases with time). An apparent heat capacity method
appeared to have been used to deal with the freezing front.

15.6.5 Combined heat and mass transfer from food undergoing cooling
and freezing
In the problems considered in the previous sections, moisture is in either
unfrozen or frozen form. In practical freezing, two distinct mechanisms apply:
during the precooling period, moisture diffuses from the inside to the surface
where it evaporates; once the surface has frozen, moisture is immobilised as ice,
which sublimes and recedes under a dehydrated layer. The two mechanisms are
of similar importance: during the cooling and freezing of lamb carcasses, for
example, about 1% of the total product weight is lost during each period.46

Different solution procedures must be applied in each period. Although this
poses no fundamental problem, a full numerical model has yet to be
implemented and tested for that situation.

15.7 Estimation of transfer coefficients

All heat and mass transfer models require the heat/mass transfer coefficient as an
input. The importance of this parameter is measured by the Biot number,
Bi� hR/k. To be efficient, a food cooling process should be designed for a Biot
number higher than 1, say by increasing the air velocity in blast chillers and
freezers or by using immersion or spray chilling, and thus it is quite important to
know the transfer coefficient accurately. Unfortunately, this is one of the
quantities least amenable to prediction and most subject to variations in practice.

Most food cooling models use a mean transfer coefficient over the whole
product. This is unrealistic as in practice the coefficient varies from place to
place with the development of the flow boundary layer, being higher where the
latter is thinner (at the spot where the cooling air stream hits the product) and
decreasing downstream. Minima and maxima may occur as the boundary layer
is disturbed, detaches or reattaches, or recirculation zones occur near the surface.
Where natural convection is the dominant effect or interacts with forced
convection, the situation is even more complex since the effect of natural
convection will gradually decrease as the product cools.
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The effect of air turbulence has been a neglected area, due probably to the
difficulty of measuring turbulence parameters in industrial situations. Yet
turbulent intensity has a large effect on heat transfer, an increase in turbulence
intensity from 6–31% having the same effect as an increase in air velocity from
0.5 m/s to 1.5 m/s during the cooling of pork.47

In the past, transfer coefficients have been obtained mostly from empirical
relationships or direct experimentation. Recently computational fluid dynamics
(CFD) is gaining attention as a tool for taking into account the variations in heat
transfer coefficients. CFD has been used to simulate the airflow in and/or around
display cabinets, cold stores, freezers, transport containers, and around products
of various shapes. Some commercial CFD codes have an automatic grid
refinement feature, the grid at locations where the velocity gradient is highest
being automatically refined during computation to increase the accuracy of the
prediction.48 Perhaps the most complex food shape yet modelled by CFD is a
beef side, modelled with a grid consisting of 100 000 nodes26 (Fig. 15.6).

In principle, a CFD program can solve the whole problem in one go, giving
both the temperature field inside the product and the velocity and temperature
field outside it. This approach has been tested on a cylindrical piece of meat
inside a chilling cabinet and produced good agreement between measured and
predicted meat temperatures.49 There are practical difficulties with this
approach, however, due to the present limitations of CFD packages. In the
modelling of the cooling of a beef side mentioned above, it was found difficult
to model radiative heat transfer and simultaneous heat and mass transfer in the
product and the air. Even without the mass transfer equation, it took a week of
computation (on a Pentium II-300 MHz), with frequent manual interventions to
vary the time step, to simulate a twenty-hour chilling process. A quicker if less
rigorous approach is to use a steady-state version of CFD to compute surface
transfer coefficients, then use these values in a heat-conduction only calculation
of product temperatures; as long as the transfer coefficient is not very dependent
on product temperature, the approach can give good results50 (Fig. 15.7).

CFD programs solve the partial differential equations that describe the mass,
momentum and energy balance, and for laminar flows exact solutions can be
obtained. For turbulent flows the situation is less clear. The velocity fluctuations
must be averaged, which give rise to a turbulent viscosity �t that depends on the
intensity and scale of turbulence. Additional partial differential equations with
empirical parameters must be solved in order to calculate this turbulent viscosity
and its companions, the turbulent thermal and mass diffusivities. The most
popular turbulence model is the k � 	 model, in which conservation equations
for the turbulence intensity k and turbulent energy dissipation rate 	 are solved.
There is a lack of reliable model parameters for swirling flows, flows with
recirculation or boundary layer detachment and natural convection, precisely the
situations for which knowledge is most needed. Pham and Nguyen50 found
significant differences in the calculated heat transfer coefficient, especially at
low velocities, when the standard k � 	 model and the so-called RNG model are
used to calculate turbulence effects. It can be said, therefore, that while CFD can
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provide a qualitative picture of the flows, precise heat transfer coefficient
calculation for most situations is still beyond its capabilities.

The effect on heat transfer of voidage in loose packages of refrigerated
products is a problem of some importance. If the air gap is very small, heat flows
through it by pure conduction, but for gaps more than a few millimetres thick,
convection sets in and increases the heat transfer. Both CFD51 and experimental
techniques52 have been applied to determine the magnitude of these effects in
cartons of meat.

Fig. 15.6 Grid representation of a beef side for a CFD calculation.26 The grid shown
consists of about 10 000 nodes but will be automatically refined to 100 000 nodes by the

CFD program.
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15.8 Application of models

15.8.1 Model-based control of food refrigeration processes
The ultimate purpose of modelling is to control and optimise real processes.
Examples of such applications are relatively few in food refrigeration, but can be
expected to become more and more common with recent advances in computer
speed and software. Wee et al.53 presented a computerised fan speed control
system for a batch lamb freezer that has been implemented in New Zealand’s
meat plants. Data on the range of carcass weight entering the freezer, the loading
time and the product wrapping used are entered manually (a process which can
also be automated), and the freezer air temperature is monitored continuously.
The fan speed is adjusted continuously to ensure that the product is frozen to
specification (�18ºC deep leg) at the end of the allocated time, but no earlier, to
ensure maximum tenderness of the meat and compliance with regulations. The
calculation of the required fan speed is based on a Plank-type analytical model
of the freezing time, modified to take into account variations in boundary
conditions.54

15.8.2 Optimisation of food refrigeration processes
Experimental optimisation of food processing operations is time consuming and
often difficult due to the variability of the product, errors in measurements and
random variations in conditions. Computer models that can predict accurately
the effects of operating parameters are therefore a powerful tool for
optimisation. Such models usually make use of numerical methods that are
time consuming and subject to rounding errors, making them difficult to

Fig. 15.7 Leg centre and surface temperatures of a beef side. ����� calculated using
CFD-generated heat transfer coefficients, ■ ● measured.50
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optimise by conventional mathematical methods. However, rapid advances in
computer speed and the development of new stochastic optimisation methods
are helping to overcome these obstacles.

The cooling of foods must satisfy often contradictory objectives. From the
hygiene point of view, faster cooling is always better than slow cooling. Loss of
water from unwrapped product is also minimised by fast cooling, due to the
rapid chilling and drying of the surface. However, energy consumption is
increased, while food quality factors can be affected in different ways. With
fresh meat, fast cooling may lead to ‘cold shortening’55 and toughness, and there
is a limited operating window which will produce meat of acceptable tenderness
and hygiene. Other food quality aspects benefit from faster cooling or freezing.
Mallikarjunan and Mittal56 used Box’s method to optimise the chilling of beef
with respect to weight loss and chilling time. They suggested a two- or three-
period chilling regime.

Pham and Lovatt57 used an evolutionary optimisation method (genetic
algorithm) to optimise the thawing of meat blocks and the chilling of beef
carcasses. The problem was to design a temperature regime to chill a beef
carcass within sixteen hours, keeping the potential growth of E. coli on the
surface of the leg (the slowest cooling part) to within three generations (about
one log increase), while allowing enough time to maximise the tenderness of the
faster-cooling loin muscle. The air temperature is allowed to vary between
+15ºC and �10ºC, due to regulatory and design constraints. The E. coli growth
rate is assumed to follow Gill’s58 model, which describes the variation in lag
time and growth rate as functions of temperature. The temperature dependence
of the rate of development of tenderness is given by an Arrhenius-type
equation.59, 60 The objective function is the sum of the tenderness score and a
stiff penalty function for exceeding the three-generation E. coli growth
constraint. Both the leg and the loin are represented by finite-difference models.
The numerical models produce small rounding errors, which make derivative-
based optimisation methods unsuitable, hence a stochastic genetic-algorithm
type method proved ideal for the task. The optimisation produced a complex air
temperature regime, gradually decreasing from 15ºC to 0.8ºC then rising to
5.3ºC in the last hours. The tenderness score showed a significant improvement
compared with conventional cooling regimes.

A model-based optimising controller for beef chilling is described by Lovatt
and Pham,61 in which the computer calculates the weight loss, meat ageing
(development of tenderness) and potential for microbial growth. Each of these
factors is assigned a unit cost or value. The controller then sets the air
temperature, air velocity and relative humidity to maximise the total value of the
product. These variables are not held constant, but change over time for two
reasons. First, the optimum temperature, velocity and humidity profiles are not
generally flat. Second, the profiles later in the process depend upon what
happened earlier in the process. Thus, if there is some sort of disruption during
the run, the controller will take that into account in its decision-making process
for the latter part of the run.
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Recently, there have been developments in multi-objective optimisation
techniques62 using evolutionary algorithms, which would be ideal for food
refrigeration processes where weight loss, tenderness, microbial growth and
other factors must be optimised simultaneously.

15.9 Summary and future developments

The cooling and freezing of solid foods is a challenging topic for modellers. In
the last few decades, they have taken advantage of advances in mathematical
techniques and computer technology to solve many problems, but much more
research is still needed in a number of areas. Modellers would like to see their
models used in the prediction, control and optimisation of process objectives.
However, such applications have not been as widespread in industry as hoped
for, and even when used they should be regarded with caution, due to
weaknesses in the models. Further research needs to be carried out on ‘weak
links’ in the modelling of food refrigeration processes, some of which are listed
below.

15.9.1 Heat transfer coefficient estimation
The knowledge of heat transfer coefficients for complex flow patterns and
complex geometries is still very inadequate. Data have been reported only for a
few very simple situations, and mostly on average heat transfer coefficients
only. Yet accurate knowledge of local heat transfer coefficients is essential for
the calculation of product temperature and moisture near the product’s surface,
which in turn governs essential variables such as microbial growth and
appearance. In most reported experimental work, the effect of turbulence has
been ignored, although it could be a major factor.63 The measurement of
turbulence has until now been difficult but new, reasonably-priced turbulence
sensors are coming on the market. Ideally, it should be possible to calculate heat
transfer coefficients from first principles using CFD programs, but we lack a
sufficiently accurate and fast model of turbulence for doing this. Although the
fundamental fluid flow equation (Navier-Stokes equation) can be used in
principle to model turbulence of any kind, it requires massive computing power
even for the simplest problems, and is unlikely to be used in industry in the
foreseeable future. Thus the prediction of heat and mass transfer coefficients is
likely to remain a long-term problem in the modelling of food refrigeration
processes.

15.9.2 Food properties estimation
There is now a good collection of data and calculation methods for the thermal
properties (calorimetric properties, thermal conductivity) of a range of foods.
However, water-related properties (moisture diffusivity, equilibrium isotherms)
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are still insufficiently documented and there is a lack of general methods for
their prediction. As a result, the prediction of weight loss and surface water
activity, and hence microbial growth, is still fraught with uncertainties.

15.9.3 Modelling complex product shape
The availability of fast computers and advanced CAD-type geometric modelling
software should make 2D and even 3D models more popular in the next few
years, as part of CFD models or otherwise. Although building a 2D or 3D model
requires special skills and software, there will be scalable models of standard
products such as beef carcasses, bread loaves, etc., developed by specialists,
models which the user can tailor by changing a few inputs such as product grade
or dimensional ratios.

15.9.4 Modelling of mass transfer controlled freezing
In very fast freezing situations such as the immersion or cryogenic freezing of
small foodstuffs, mass transfer (ice nucleation and crystal growth) rather than
heat transfer may be the rate controlling factor. The microstructure of the frozen
food and hence its quality indicators such as appearance, drip and denaturation
will be highly sensitive to the rate of cooling. In some cases, slow cooling results
in smaller ice crystals due to the effect of supercooling.64 Cooling food below
their glass transition temperature will exhibit massive increases in solution
viscosity, which will dramatically reduce recrystallisation and other diffusion-
controlled processes, including quality deterioration.65 There has been little
quantitative modelling work done to predict the freezing rate and quality
changes in mass transfer-controlled situations.

15.9.5 Handling of statistical variations
Food products and processes are often subjected to much wider variations in
shape, size, compositions and operating conditions than other manufactured
products. This has traditionally imposed limitations on the usefulness of
accurate models. Given the rapid increase in computer speed, the application of
statistical simulation techniques such as Monte Carlo would appear desirable for
many processes. While a 2D finite element simulation may still take several
minutes to run and a 3D CFD simulation may take hours or days, a 1D finite
difference simulation takes only a few seconds on a fast PC and thus Monte
Carlo followed by statistical analysis is a feasible approach. The quality factors
of the processed food can then be characterised fully by frequency distributions.
We can expect that the statistical approach will be used more frequently in the
evaluation of processes and the setting up of regulations.
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16.1 Introduction

16.1.1 Types of thermal process
Thermal processing is a ubiquitous operation in food processing. Many of the
commonest food processing operations, such as canning, baking and
pasteurisation, rely on heating:

• In a number of cases the effect of heat is intended for preservation alone, i.e.
to kill bacteria and inactivate enzymes, such as in the pasteurisation of milk
and the sterilisation of canned food. In this case the aim is to deliver the
required microbial kill with as little damage to the structure of the food as
possible.

• In the processing of foods, such as meats and vegetables, heat acts also to
develop taste and flavour, so that in addition to sterilisation heat is required to
carry out physical changes to the food.

• However, in many other situations food is heated to develop the structure of
the material, such as in baking of bread or biscuits, where heating acts both to
change the starch structure and function and also to develop the bubble
structure within the material (for examples, see Campbell et al., 1999)

• There are also situations, such as drying and frying, in which heat transfer is
accompanied by mass transfer, and the two effects must be considered as
coupled; evaporation of moisture in drying requires heat transfer to provide
the necessary heat.

Each of the above points has been the subject of whole books! – to attempt a full
summary is impossible. The modelling of each type of process has followed the
same general trend:

16
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• purely empirical correlations or graphical solutions
• models based around very simple approximations, such as simple geometries

(spheres or cylinders) and uniform physical properties
• finite difference models, in which the basic equations are discretised on a

simple grid system
• finite element (FE) and finite volume models, in which more complex

geometries can be used.

As computer power has increased, FE models have become easier to solve, the
codes have become more robust and more accurate, and the computers on which
the codes run have become cheaper.

For simplicity, this review will concentrate on the case of heating for
microbial cook alone, and will not consider taste or texture development. It will
show how modelling is being used and how modelling techniques can be applied
in this area. The problem with using heat for sterilisation is in demonstrating that
the material is safe; models are critical in minimising the amount of experiments
that have to be done and in convincing regulatory bodies.

16.1.2 Basic equations
Microbiological and quality kinetics
The rate of thermal processing is commonly quantified through the integrated
lethality of a thermal process calculated using equation (16.1) (from the work of
Ball, 1923):

F �
�t

0
10

�
T�t� � Tref

z

�
dt �16�1�

where z is the increase in temperature that gives an increase in rate of a factor of
10, and Tref is a reference temperature. F has the units of time; it is the length of
time that the food would have to be held at the reference temperature to obtain
the same effect as the actual process with T. The thermal history of the processed
product may equally be applied to product sterility or nutritional quality (where
z will become a rate of cooking and not microbial lethality). Equation (16.1) is
difficult to justify other than as an experimental fit; it is a local approximation to
the Arrhenius expression, only accurate over a narrow temperature range, and it
is not clear whether the death of microorganisms follows the Arrhenius kinetics.

Thermal transport equations
Heat is transferred by three mechanisms: conduction through solids or stationary
liquids or gases, convection through flowing fluids, and radiation. For
conduction and convection the rate of heat transfer is proportional to the
temperature difference, whilst for radiation it is the difference between the
fourth power of the temperatures. There are a multitude of good books on heat
transfer, amongst them Incorpera (1981), Özi �sik (1993) and Carslaw and Jaeger
(1980). The reader is also referred to Chapter 4 for a more comprehensive
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overview of models for heat and mass transfer and methodologies for their
numerical solution.

For products where conduction is the sole mechanism of heat transfer the
temperature profile may be estimated from the partial differential equation:

�cp
�T
�t
� ����T� �16�2�

the solution of which requires knowledge of the spatial variation, and
temperature dependence of the thermal conductivity, �, the density, �, and the
specific heat, cp, of the product. At the edges of the solid, different boundary
conditions may apply. The simplest is constant temperature; however, a heat
transfer boundary condition is often necessary, in which the flux to the surface is
given by, for example, a convective heat transfer coefficient, or by radiation.
The overall rate of heating of a solid will depend on consecutive processes; heat
must move to the product and then within it. The relationship between external
and internal thermal transport can be estimated using the Biot number:

Bi � hd
�

�16�3�

where h is the interfacial heat transfer coefficient and d some characteristic
dimension of the body being heated. The higher the Biot number, the greater is
the effect of heat transfer coefficient; in practice, a Bi � 10 implies that the
slowest heat transfer process will be conduction within the solid particle. For a
low Biot number (�0.1) the process is controlled externally, with the solid
essentially isothermal.

The heating of fluids is more complex because of fluid motion, so that both
thermal and fluid transport equations need to be solved. Solution of the Navier-
Stokes equation is needed for the flow field. Simplified equation sets are often
used; for example, in a tubular geometry the partial differential equations
describing the heat and momentum transport are (Bird et al., 1964):

Equation of continuity:
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Equation of energy:
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The assumptions used in deriving these equations are:

• that the flow is axisymmetric
• there is negligible thermal generation by viscous dissipation
• the effects of natural convection are also negligible
• the liquid is homogeneous
• constant density, specific heat and thermal conductivity

The types of boundary conditions usually applied are: for both velocity and
temperature, a known profile at the inlet of the heater, with a known temperature
profile at the wall of the heater and cooler, with a no-slip boundary for the
velocity. In the case where a holding tube is used an adiabatic boundary
condition is applied at the wall.

The next sections review the modelling of heat transfer to packed and flowing
foods using both conduction/convection and heat generation models.

16.2 Processing of packed and solid foods

16.2.1 Introduction
The classical method of thermal preservation is canning, still the basis of a very
large industry, despite the reduced quality of many canned products. Canned food
is not sterile when it is packed; filled cans are exposed to a temperature-time
profile sufficient to give a safe product. However, any process within which heat
is applied externally will cause the centre of the product to lag the surface and
bulk product temperatures. Therefore, estimates of temperatures at the slowest
heating point are required if equation (16.1) is to be used effectively and, more
importantly, safely. The heating rate at the slowest heating point may also be
used to ensure that a product is not over processed and therefore experience an
impractical, in terms of quality and process costs, thermal history. Estimates of F
values using equation (16.1) to describe integrated lethality were first proposed
by Ball (1923). Within this work with canned low acid foods (pH� 4.5), the
proposed reference temperature (Tref) was 121.1ºC and a Z value of 10 was used.
The Z value was determined from the slope of a decimal reduction time against
temperature graph for the thermally tolerant spores of the spoilage pathogen
Clostridium botulinum. A thermal process was then considered to be safe if the
slowest heating point of a can reached an F value of three minutes.

Mathematical modelling allows estimation of temperature at the slowest
heating point. In addition, using a model it is possible to explore processing
variation upon the calculation of a desired F value and therefore process
operation. This is particularly true if a new product or processing method is to be
established, especially where a priori knowledge of the product and process
variability is not available.

Although tables exist to predict the measured temperature responses and
thermal diffusivities of various foods and packages (e.g., in Tucker and
Holdsworth, 1991), many practical and theoretical investigations have involved
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the examination of simplified regular geometries, such as cylinders or spheres
(e.g. Kim and Teixeira, 1997). It was proposed that for conducting solids, and
for non-flowing conducting liquids, a geometric simplification was valid as the
thermal diffusivity (�) need only be estimated across the diameter of a cylinder
describing the shortest chord of the original solid. Paramount to successful
modelling is availability of accurate physical data with which models can be
constructed and used for process simulations. In addition to static isothermal
estimates of parameters, such as density, viscosity, thermal conductivity and
specific heat capacity, knowledge of how these parameter change with heating
and process time must also be used. For example, it is difficult to estimate the
thermal diffusivity (�) and the surface heat transfer coefficient h in the same
experiment; � should be inferred from heating curves where an infinite surface
heat transfer coefficient can be assumed, i.e. with condensing steam (Kim and
Teixeira, 1997).

16.2.2 Conduction in simple solids: solutions of the conduction equation
Before personal computers became commonplace, calculating the integrated
lethality was complex and time consuming even for geometrically simplified
conduction cooked products. In place of the repetitive manual calculations
‘simpler’ methods were used, for example, F value estimates could be made by
first measuring temperature (using a thermocouple), calculating the lethality and
then examining the area under a lethality rate versus process time graph, which
could be directly correlated with F (for examples of this see Lopez, 1987).
However, for products where conduction is the sole mechanism of heat transfer
the temperature profile can be estimated using equation (16.2). Graphical
solutions for this partial differential equation can be produced for various
situations of simple-shaped solids and constant thermal diffusivity, e.g. the
Heisler and Gurney-Lurie charts, examples of which can be seen in Toledo
(1991). These charts plot dimensionless temperature (	) against Fourier number
(�t
R2) for the inverse of various Biot numbers (1/Bi). Solutions for the
appropriate geometry allows the temperature at the geometric centre to be
estimated. However, these methods employ simplifying assumptions:

• internal heat transfer is solely by conduction: external heat transfer is by
uniform external heat transfer coefficient or wall temperature

• only simple shapes (spheres, cubes, cylinders) can be solved
• the product is homogeneous and isotropic
• the initial temperature is uniform.

Akterian (1999) summarised the application of equation (16.2) to conductive
heat transfer in terms of a partial differential equation, incorporating a shape
factor G to account for a product with symmetrical geometry (equation 16.7a).
Equation (16.7b) describes the boundary conditions for surface convection and
equation (16.7c) is the boundary condition for the line of symmetry.
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where TM is the temperature of the heating medium.
Such a simplified modelling approach has been employed to examine the
thermal inactivation of bacteria in model foods, for example Bellara et al. (1999)
modelled the growth of pathogenic bacterial species after thermal treatment
within agar cylinders. Investigations modelled the inactivation of the bacteria
and explored the notion that slow heating rates (� 2ºC/min) may increase
thermotolerance in potentially pathogenic bacteria (Mackey and Derrick, 1987;
Quintavalla and Campanini, 1991). The model could predict successfully the
rate and position of bacterial destruction across the radius of the model sausage,
using equation (16.8) and predict the reduction in bacterial numbers, N.

dN
dt
� 2�303

Dref
10�T�Tref �
zN �16�8�

Hendrickx et al. (1993) describe how thermal processing of solids might be
optimised, using computer-based finite difference calculations. Early attempts
using digital computers include Timbers and Hayakawa (1967), Hayakawa
(1969) and Teixeira et al. (1969). Hendrickx et al. (1993) then extended the
discussion and development of a model for variable sterilisation temperatures.
Numerical simulations could be used to examine and explore varying factors
such as the target F value, Z value, product quality (Zq), initial product
temperature and retort come up time. However, the model of Hendrickx et al.
(1993) still used simple product geometries, i.e. infinite cylinder, slab and
spheres, and the assumed simplifications, detailed above, for the exploration of
various process parameters.

16.2.3 More complex models: non-uniformity and convective flows
Real products are rarely of a regular geometry, have thermal properties which
vary with temperature and have different heat resistances along the boundary.
For example, in retorts, where condensing steam is used as the heating method,
condensation may adversely affect the uniformity of heat transfer to the product
surface; heat transfer to a dry surface will be very high, but the presence of a
film of liquid will reduce the heat transfer rate (Verboven et al., 1997).

Non-isotropic aspects of conductive cooking have been addressed, for
example, by Pan et al. (2000) in the modelling of the cooking of frozen
hamburgers. Their approach, which involved unequal cooking to both the major
external surfaces of the patty, considered the enthalpy changes associated with
the melting of ice and fat as well as resulting mass transfer effects. The base
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equation used in the model (equation 16.9) was considered to be valid
throughout the whole structure of the hamburger patty regardless of whether it
was frozen or not, or whether it was a surface crust or the bulk of the patty.

�H
�t
� �

�x

�
��H� �T�H�

�x

�
�16�9�

where � and T are both functions of the enthalpy. It was claimed that considera-
tion of both enthalpy changes and of mass transfer effects made the proposed
final model more accurate than obtainable with a heat transfer model alone.

FE methods of examining heat transfer now allow partial differential
equations to be explored in complex geometries. For example, Tewkesbury et al.
(2000) used a computational model to predict the cooling of chocolate within a
polycarbonate mould. The use of commercially available software, in this case
FIDAP (Fluid Dynamics International Inc., Evanston, Illinois), allowed the
authors to model the conduction cooling of chocolate through the mould, and
took into account the different thermophysical properties of each component,
particularly the change in the effective specific heat capacity of chocolate as a
function of temperature and cooking rate. The model developed by Tewkesbury
et al. (2000) gave a solution for a non-isotropic system, although the properties
of each of the components were constant, and was able to predict accurately the
heat conduction between the chocolate, the mould and to the environment.

FE techniques no longer require very complicated packages; Fig. 16.1 shows
the solution of the conduction equation for heat transfer for a complex product

Fig. 16.1 Partial differential equation solution for heat transfer into a complex product.
The key indicates the final temperature after 100 seconds.
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geometry using the PC package Matlab (The MathWorks Inc., Natick, MA). The
two-dimensional solution (i.e. assuming a transverse section of an infinite slab)
assumes that the product has the thermal properties of water, an initial
temperature of 20ºC and a boundary temperature of 100ºC. The simulation is
over 100 seconds and the temperature profile takes only five seconds to calculate.

Importantly, for a large proportion of commercially processed products,
heating is rarely by pure conduction. A prime example of this is canning, where
liquids or soft solids of varying viscosities are routinely processed in batch
retorts; heat transfer occurs by a combination of conduction and natural
convection within the can. Computational fluid dynamics (CFD) can be used to
solve for the flow field. A large body of literature exists to describe this complex
situation. Reviewed here are several recent papers that demonstrate progression
to the current limit of understanding of such systems. All of the papers cited
contain useful broad introductions to the area.

Kumar et al. (1990) and Kumar and Bhattacharya (1991b) describe the
heating of canned viscous liquids that have temperature dependent viscosity.
Within their CFD model an initial conductive heat transfer phase reduces the
viscosity of the liquid at the periphery of the can. This less viscous and more
buoyant hot liquid rises and then re-circulates to the centre of the can. The
equations that describe this action (continuity – equation (16.4), energy
conservation – equation (16.6) and momentum in the radial direction – equation
(16.5)) and the effects of these phenomena are discussed more fully below in the
context of fluid movement within pipes. In naturally convecting cans the
momentum equation for the liquid movement incorporates a natural convection
term (i.e. the density driving force �g; Abdul Ghani et al., 1999a):
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Through their model Abdul Ghani et al. (1999a) provided an estimate of the
axial velocity of fluid elements. In carboxy-methyl cellulose it was estimated to
be 10-4�10-5 ms-1 and for water: 10�2�10�1 ms�1. The differences in magni-
tude were explained by the ratio of the buoyancy force to the viscous force in
each case (expressed as the Grashof number). However, the rates quoted for
water have not been observed by these authors when using a positron emission
tomography method to study can heating, albeit at lower temperatures than those
reported (unpublished results: Bakalis, Cox and Fryer; also see section 16.5).

Additionally, Abdul Ghani et al. (1999b) introduced a rate for bacterial
inactivation within convecting liquids, combining convection and reaction terms
within a single equation:

�C
�t
� v

�C
�r
� u

�C
�z
� De

�
1
r
�

�r

�
r
�C
�r

�
� �

2C
�z2

�
� ktC �16�11�

All cans contain some headspace, i.e. air above the surface of the fluid. As
Kumar et al. (1990) pointed out headspace may perform one of two roles. When
water is heated within a can containing a headspace the free space may quickly
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become saturated and give a high heat transfer rate as if it were condensing
steam. In contrast, the space above a viscous liquid may not become wholly
saturated and therefore the heat transfer rate would be reduced (� 70 Wm�2 K�1).
Abdul Ghani et al. (1999a) suggest that the headspace acts as an insulator, and
that natural convection within a can may induce a temperature difference of
approximately 10�12ºC depending on the rate of liquid movement and
headspace insulation. A secondary point was made that the bottom surface of
a can – resting on a retort crate, for example – may not receive as much heat as
the side wall increasing the temperature difference. As a consequence of
convection and fluid displacement the slowest heating point is no longer the
geometric centre; it was found to be within the bottom tenth of the can height
and not on the axis of symmetry.

Differences in external heat transfer have prompted the simulation of the
temperature distributions throughout batch retorts. As pointed out above, the
boundary conditions experienced by a product may have a profound effect upon
the estimation of the integrated lethality, and reports of temperature deviation of
up to 10ºC within a process can be found (Akterian et al., 1998). Additionally,
model loads have been investigated, albeit as conduction-heated products,
within the virtual processes. Akterian (1999) and Akterian et al. (1998)
suggested the use of previously calculated sensitivity functions, these factors
correct for arbitrary fluctuations in the heating medium during different parts of
the heating holding and cooling cycles. Incorporating these functions with an
estimate of the bulk temperature deviation, estimated from the expected lethality
rate, allowed for the process to be controlled using a simple microprocessor
controller. Ryckaert et al. (1999) linked a process model to a PID controller that
operated an industrial oven. The modelling of the heat balance with the heated
chamber was used with temperature estimates from 32 thermocouples
throughout the oven volume. The modelled temperature distribution was then
used to tune the PID terms and so improve the oven control through the different
heat input rates that correspond to different parts of the process cycle.

Varga et al. (2000) used an FE method to model horizontal cascading water
retorts, and verified their model with industrial scale measurements. It was
stated that a reliable mathematical solution required a model that should be
combined with an appropriate statistical method to estimate real-world
variability, as well as an understanding of the quantitative implications of the
variance upon the system. Similarly, Verboven et al. (2000) used CFD to
examine temperature deviations within an industrial scale forced convection
oven. The model could predict oven temperatures to within 5ºC of measured
values (albeit in a trial with a reduced product load), although it was pointed out
that because of the assumptions made about wall effects, in order to make the
computation time non-prohibitive, at present the model was of qualitative use
only.

What remains as a clear goal is the accurate modelling of the inside of an
oven or retort with a full load of convection heated products with temperature
dependent physical properties. This aspiration, although not yet realised in the
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literature, may soon be reached as computation becomes quicker and models
more accurate and descriptive.

16.3 Continuous heating and cooling processes

Continuous thermal processing was developed to solve the problems associated
with traditional batch processing, such as low heat transfer rates, the long
processing times needed to achieve the required lethality and the resulting high
nutritional losses. The advantage of continuous thermal processing lies in the fact
that the activation energy of microbial death is higher than that of the reactions
occurring during thermal destruction of nutrients. As a result, high temperature
short time (HTST) processes offer the potential to give the same level of sterility
for a reduced quality loss. It is also possible to get higher heat transfer rates in fluids
flowing through heat exchangers. Aseptic processes first appeared in 1927 while
the first patent was granted to Ball in 1936 (Ramaswamy et al., 1995). Commercial
application of the technology was used extensively only after the introduction of
aseptic packaging and flexible packages, in the 1960s – however, packing methods
for high-solids fraction foods are still not well developed.

Depending on the nature of the processed food the physics of the process are
quite different. Therefore, simulations will be examined separately for liquid and
particulate foods. In both cases a variety of approaches have been used.
Historically, early investigators used over-simplifying assumptions in order to
derive analytical solutions; more recently researchers have used discretised
techniques to solve the partial differential equations describing the problem.

16.3.1 Sterilisation of liquid foods
Continuous sterilisation of foods is commonly used for products like milk,
juices, sauces and soups. The application of this technology has gained a lot of
attention with the introduction of aseptic packaging, which resulted in self-stable
products in convenient flexible packages.

In a typical sterilisation process the product passes through a heater, in order
to inactivate the bacteria and is then cooled. In many cases sterility is achieved
in a holding tube placed between the heater and the cooler. Although a number
of heat exchangers are used in the industry, most of the published mathematical
models use a simplified pipe geometry. The process variables in this case are the
product flow rate (typically 100 l/min), the pipe diameter (typically 0.03 m), the
temperature of the heater (typically 140ºC) and the physical properties of the
fluid (rheological properties, specific heat capacity and thermal conductivity). In
most cases relevant to industrial applications the flow is laminar.

The concept of F value, originating from traditional canning, is also used in
aseptic processing to describe microbial death. For the non-isothermal case of
continuous flow the equation for the total lethality F at a radial position r over an
axial length L, can be modified as follows:
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To derive this equation a variable transformation was performed. This equation
assumes that bacterial spores remain on the streamlines throughout the process.
The lethality given by equation (16.12) is used for the slowest heating zone, i.e.
the centre line. A bulk (volume average) lethality is often estimated as follows:
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For first order kinetics of nutrient destruction the same equations can be used to
calculate the nutrient retention. The lethality and the average lethality can be
estimated by using the appropriate Z value. Typically for nutrient retention bulk
lethality is estimated. If the velocity and temperature fields are known, one can
use the above equation to estimate the microbial death and the nutrient retention.

Viscosity is a strong function of temperature: the flow pattern and thus the
residence time at different radii depends on the temperature distribution. There
has been no reported analytical solution for the above system of equations for
temperature dependent viscosity for a pipe flow. Simpson and Williams (1974)
developed an analytical method for the design of aseptic processes by neglecting
the effect of temperature on viscosity. The authors suggested a total
dimensionless length ( � z�/(R2Uavg) of 1.2, with 0.8 for the heating section
and 0.4 for the cooling (a holding section was not considered). Based on their
calculations this value is accurate within �2% for all power law fluids with
0�3 � n � 1 and �4 � � � 4, where � characterises the strength of dependence
on temperature. The dimensionless length was estimated to give appropriate
inactivation of Clostridium botulinum spores at the centreline. It is important to
note that the structure of the dimensionless length , i.e. the length of the pipe
used during aseptic processing, should increase proportionally to the square of
the pipe radius. This relationship does not consider any effects of the wall
temperature.

Kumar and Bhattacharya (1991a) used a commercial finite element program
(FIDAP) to simulate the process for a shear thinning fluid with temperature
dependent viscosity. Lethality was calculated along the centreline. The length of
the heater was selected through a trial so a sterility of at least 6 min was reached
at the exit. The heater was followed by a 10 m cooling section. The mesh used
consisted of 25 nodes in the radial direction not equally distributed. In the axial
direction 100 nodal points were used for the first two metres of the heating
section, for the rest of the pipe the spacing between two nodes was equal to
0.025 m. Nine node isoparametric elements were used. The variables considered
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in this study were the wall temperature in the heating section, the tube diameter
and the flow rate. As expected the length of the heating section increased with an
increase in flow rate, for a given temperature and diameter but decreased with an
increase in temperature.

Jung and Fryer (1999), again using FIDAP, demonstrated how to optimise the
quality of food in a sterilisation process for a Newtonian and a shear thinning fluid.
Both lethality and quality were estimated as bulk averages. The agreement of
numerical predictions with various analytical solutions was tested. A constant
length of 12 m was considered for the heater while the length of the holding section
was estimated so that a final sterility of 3 min was reached at the exit. Fifty
elements were used in the radial direction. The authors concluded that the common
practice of the food industry to estimate lethality, assuming a Newtonian iso-
thermal flow could lead to significant overprocessing. In addition, the conventional
High Temperature Short Time treatment could fail under some circumstances. A
heater temperature of about 170ºC was found to be optimal for the conditions
studied; this lies above the usual operating temperature for food processes.

Recently Liao et al. (2000), again using FIDAP, investigated the sterilisation
of a starch suspension. The effect of gelatinisation on viscosity was included.
Microbial death was calculated at the shortest heating zone, while a volume
average was used for the nutrient retention. The authors did not include any heat
needed for the starch gelatinisation in the energy equation. In addition, even at
temperatures higher than the gelatinisation temperature, where the viscosity is
relatively low, velocity distributions appear to be fairly uniform, indicating high
viscosity values.

The problem of sterilisation of liquid foods in tubular heat exchangers is well
understood. Future areas of interest include studies of foods with complex
rheological properties, such as slip on the wall and yield stress. In addition,
application of the existing models to industrial situations for optimisation is
expected to minimise cost, and improve the nutrient content and quality of the
processed foods.

16.3.2 Sterilisation of foods containing particulates
Especially since approval has been granted by the FDA, aseptic processing of
foods containing particulates has become of great interest to the food industry.
There are a number of aseptically processed foods, such as soups, that contain
solid fractions up to 60% with sizes typically between 3 and 20 mm (Lareo et al.,
1997a,b). Aseptic processing is expected to lead to a new range of self-stable
products in flexible packages that are preferable to the institutional and food
service sector when compared to the commonly used #10 cans.

Although the flow of a single particle has been studied extensively, particulate
flows are not very well understood (Lareo et al., 1997c). Complicated particle-
particle interactions and the often-complex rheological properties of the liquid,
result in a non-uniform and often unpredictable flow. In order to study thermal
treatment of foods, data such as the heat transfer coefficient between the fluid and

Modelling thermal processes: heating 351



the particle are needed. Although a number of correlations for the heat transfer
coefficient have been published in the literature (Barigou et al., 1998) the accuracy
of these models for food systems is questionable. Furthermore, particles, as with
the fluid, experience a wide range of residence times. In order to ensure a safe
product the time temperature history of the fastest moving particle should be
considered. Locating this particle in real-life cases is not trivial. As a result it is
often a common practice in the food industry to assume a laminar particle flow,
which results in overprocessing.

In order to model particulate flows a set of equations describing the motion of
the fluid and the particles has to be solved simultaneously. The motion of fluid is
described from the continuity and momentum equations (equations (16.4) and
(16.5)), while the motion of particles is given from a force balance on each
particle. A description of the forces acting on the particles is given by Sastry et
al. (1989). The energy equations for the particles and the fluid have to be solved
to estimate temperature at various locations. One has to keep in mind that the
process is transient. From the above it is clear that solving the full problem for
realistic process conditions poses a tremendous computational challenge.

A number of investigators have tried to simulate the process, often using
over-simplifying assumptions. In an early attempt, Manson (1974) assumed
infinite fluid-particle heat transfer coefficient and demonstrated the importance
of the residence time distribution. Larkin (1989) suggested a modification of
Ball’s method, in order to predict the sterility in the middle of a particle. Sastry
(1986) developed energy balances for a continuous steriliser. Thermal balances
were used to estimate the temperature profile along the tube, assuming that solid
and liquid velocities were the same, and the effect of these profiles on different
particles (size and residence time) was studied. The author concluded that most
of the lethality is taking place in the holding tube and that increasing particle
size requires a longer tube length.

Mankad et al. (1995) presented a model to study the importance of slip
velocity, i.e. the difference between the velocity of the liquid and the solid. The
model was based on energy and mass balances for the liquid and the solid
phases. The resulting equations are as follows:

Energy balance for the liquid:
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Energy balance for the particle (heat conduction):
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The equations were solved as an initial boundary value problem, for steady state
conditions using implicit and explicit finite difference methods. The effect of the
slip velocity and fraction of the delivered solids on the length of the heating tube
required to heat the solid and the liquid to 100ºC and the residence time were
examined. The authors showed that increase of slip velocity increased the fluid-
particle heat transfer and reduced the required heating tube length while
increasing the delivered solids concentration had the opposite effect. Limitations
of the model arise from the assumption of uniform radial profile for the velocity
and the temperature. Furthermore, the authors acknowledged the difficulty in
predicting accurately the heat transfer coefficient between the particle and the
fluid. This model was extended by Mankad and Fryer (1997) to account for
more realistic flows occurring in particulate foods. The flow was divided in two
regimes, a sedimented bed with a low velocity and a low fraction region above
it. The temperature and the velocity of the fluid were uniform in each zone. The
model reveals the importance of slip velocity upon the temperatures of the two
phases. Flows where the velocity differences were minimised appear to be best
in terms of process time.

Recently Sandeep et al. (2000) simulated an isothermal two-phase flow in
straight and helical holding tubes. The motion of fluid was described by the
continuity and the three momentum equations. A source term added in the
momentum equations accounted for the effect of the particle on the fluid. The
translation of particles was predicted from three linear dynamics equations and
the rotation from three angular dynamics equations. The equations were solved
using a finite difference scheme (fourth-order four-stage explicit Runge-Kutta).
Although the authors used a shear-thinning fluid (CMC) the form of Navier-
Stokes used was for constant properties. No boundary conditions were used for
the fluid particle interface. In general, it is not clear if the authors differentiated
between the nodes used for the fluid and the particles, and as a result it could be
possible for the fluid and the particles to share the same physical space. This
limits the application to low particle concentrations. The authors demonstrated
that the existence of particles enhanced the secondary flow that improves the
mixing characteristics and product uniformity. An increase of the particle
diameter or flow rate appeared to narrow the residence time distribution (RTD).
The geometrical characteristics of the tubes appeared to have minimal effect on
the RTD (less than one second for both average residence time and difference
between fastest and slowest moving particle).

Aseptic processing has great industrial potential. The limited understanding
of the physics makes optimisation very challenging, in practice, over processed
products, with inferior quality characteristics often being produced. The problem
of sterilisation of liquid foods in tubular heat exchangers is well understood.
Future areas of interest include studies of foods with complex rheological
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properties, such as slip on the wall and yield stress. Experimental investigation
of particulate flows will give greater insight to the phenomena occurring and
provide means to validate existing numerical simulations. One area of research
that shows promise is the use of magnetic resonance imaging (MRI) to provide
temperature maps of foodstuffs in the sterilisation of foods containing
particulates (Sun et al., 1993, 1994; Hulbert et al., 1997; Kantt et al., 1998).
Increasing computational power will provide the means to handle multiple
particles flowing under non-isothermal conditions. In addition, application of
existing models to industrial processes for optimisation will minimise cost, and
improve the nutrient content and quality of the processed foods.

16.4 Heat generation methods: ohmic and microwave heating

Conventional thermal processes are limited to the standard three ways of
heating, by convective, conductive and radiative transport. In practice,
conduction is a slow process, which limits the practical heating rates of solid
foods and of foods in packages, such as cans. Alternative methods have been
sought in which heat is supplied using other techniques; here, heat generation
methods are briefly considered. In these, heat is generated by the material in situ
as the result of interaction with an external field. This field can be applied by
shear (for example, the viscous heating of a solid during shear in an extruder
barrel) or by some external electric field. The two best-studied examples of heat
generation processes are those of microwave and ohmic heating, in which
external electric fields are used.

In microwave heating a high frequency field is passed through the food,
stimulating the vibrational frequencies of chemical bonds to heat the material:
details of the process are found in the excellent review of Metaxas (1996). In
ohmic heating, an electric current is passed through a food material which then
heats as a result of its inherent electrical resistance; a review is given by Fryer
and Davies (2001).

Modelling these processes is useful for process and product designers: the
need is to show that uniform heating can be provided to commercial products, to
ensure safety and optimise product quality. In both cases, the conventional
thermal conduction equation within a solid:

�cp
�T
�t
� ��2T �16�16�

must be modified by inclusion of a source term Q, the amount of heat generation
per unit volume:

�cp
�T
�t
� ��2T � Q �16�17�

Within a liquid, a convective mixing term must be included; where there is fluid
motion or relative motion between particles and liquids the full Navier-Stokes
equation must be solved in the appropriate geometry. This is complex in itself,
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even if the heating term were constant. However, the heating term results from
the presence of the field; variations in local field strength can thus result in
different local heating rates. It is necessary to solve simultaneously for both the
electric field and for the thermal field that results; this is difficult both
theoretically and computationally.

The source term in microwave heating is due to the interaction of the external
field and the material; this is a function of the field frequency and strength and
the ability of the food to absorb the microwave energy. The two Maxwell’s
equations used in deriving the field equations for microwaves are Ampere’s law:

�	H � �E� �D
�t

�16�18�

relating the variation of the magnetic field H to the electric flux density D and
the electric field E, and Faraday’s law

�	 E � �B
�t

�16�19�

which relates E to the flux density B. For a dielectric material this becomes the
wave equation:

�2E � �� �
2E
�t2

�16�20�

and the power dissipated per unit volume is

Q � 1
2
�e
E
2 �16�21�

The source term in electrical resistance (ohmic) heating is of the same form
but is here due to the resistance of the food:

Q � �E2 � ���V �2 �16�22�
where E is the voltage gradient and � the electrical conductivity. To calculate
this requires solution of Laplace’s equation for the voltage field within a system
in which the electrical conductivity varied with position:

� � ���V � � 0 �16�23�
throughout the material. In both cases the equations are coupled through the
temperature dependence of the physical properties of the system such as
electrical conductivity and permittivity.

Temperature variation results from variation in the field: in microwave
heating there is a penetration depth as a result of absorption of the external field,
which is generally written as

Dp � �4�8
f �
�����������
��
���

	
�16�24�

where the penetration depth is in centimetres when the frequency f is in GHz,
and �� and ��� are the dielectric constant and the dielectric loss factor
respectively.
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In electrical heating the heating variation occurs as a result of inhomogeneous
distribution of the electric field, which is distorted by the presence of different
electrical conductivities, such as conductors and insulators. Current flows
around an insulator, and through a conductor; this distorts the uniformity of the
field.

A number of attempts have been made to model these processes and to
demonstrate the complexity of the heating patterns that can result; these are
summarised below.

16.4.1 Microwave heating
Excellent discussions of the problems inherent in modelling microwave
processes, and in validating them for commercial production, are given by
Bows (2000) and Bows et al. (1999). The interaction between the applied field
and the food material is a key issue. Multimode resonant applicators, used in all
domestic ovens and almost all industrial applications produce one resultant
heating pattern from the complex interaction of the field, material and
applicator. Strategies to minimise temperature differences (rotating turntables,
mode stirrers or moving the product) are not always sufficient to overcome
undesirable effects. These can include runaway heating when thawing frozen
foods (Buffler and Stanford, 1995), centre focusing in spheres and cylinders
(Ohlsson and Risman, 1978) and edge or corner overheating in trays (Bows and
Richardson, 1990). For frozen food heated in a domestic oven, thermal runaway
heating is observed when thawed areas preferentially absorb a greater proportion
of the microwave field than the remaining frozen areas. Thermal runaway is
chiefly a property effect; as a material’s dielectric properties change (with
temperature for some food materials, but particularly on thawing), the electric
field pattern also changes. Bows et al. (1999) describe a novel method of
microwave heating, referred to as phase control. The method uses constructive
interference techniques: when the microwave fields interacting within a product
are coherent (vector addition heating), many heating patterns can be generated at
an instant in time, and more controlled heating of food can be carried out.

A 3D finite element time domain code, using edge elements, was used to
simulate phase controlled heating using the method developed by Dibben and
Metaxas (1994). The model solves Maxwell’s equations in 3D and includes a
waveguide input feed with a surface excitation plane. The time domain was used
because it was found that the conductivities of foods caused ill-conditioned
matrices in the frequency domain.

Good agreement between the images and experiments was found; however,
the code was complex, with a mesh of 73 500 tetrahedral elements in the
foodstuff and 135 000 tetrahedral elements in the whole solution domain. A
Silicon Graphics Indigo 2 XZ with an R4000 processor and 128 MB RAM took
85 hours of CPU time to obtain a complete solution. This is a valuable tool but,
unlike conventional heating, requires advanced computers to solve the model.
Nott et al. (1999) used MRI to map quantitatively in three dimensions the
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complex temperature distributions induced by microwave heating of food
materials: results are compared with infrared thermal images. MRI is limited to
non-metallic systems such as paper, plastic, ceramic and glass, but this is an
approach which allows non-invasive sampling.

16.4.2 Ohmic heating
Although ohmic heating is thought of as a novel process, its use in food
processing goes back a century (de Alwis and Fryer, 1990). Over the last twenty
years, interest in the process has followed the development of a commercial unit
by APV Baker (Parrott, 1992). In this process, food is pumped past a series of
electrodes connected to three-phase supply at 50–60 Hz. Heating rates of the
order of 1ºC/s are possible, in field strengths on the order of 10 V/cm. The
process has found use in sterilisation of high-solids fraction (30–40% solids)
mixtures as well as the production of high-value materials such as pasteurised
fruit pieces for yoghurts.

Numerical models of electrical heating have concentrated on a set of
problems of different length and timescales:

• Heating rates within a solid-liquid mixture (such as de Alwis et al., 1989;
Palaniappan and Sastry, 1991).

• The types of temperature pattern found inside solid-liquid mixtures (such as
Fryer et al., 1993; Kemp et al., 1999).

• Predicting the temperatures of mixtures undergoing ohmic heating (such as
Zhang and Fryer, 1993, 1994; Benabderrahmane and Pain, 2000).

Laplace’s equation for the electric field can only be solved analytically in
very simplistic cases, such as for an isolated sphere or infinite cylinder of
constant physical properties in a uniform field. de Alwis et al. (1989) show that
for such cases the ratio of the heating rate in a solid and undisturbed liquid is
given by:

RQ�sphere� � 9�s�L

��s � 2�L�2
� RQ�cylinder� � 4�s�L

��s � 2�L�2
�16�25�

The heating rate in the cylinder can thus never exceed that of the surrounding
fluid, whilst that in the sphere can exceed that of the liquid for 1��s
�L � 4.
That ohmic heating can result in solids that overheat the liquid was shown by de
Alwis et al. (1989). In general, for non-uniform shapes and non-uniform
physical properties, computer models are needed to solve for the heating
patterns. The first interaction between the particle size and shape and the electric
field was shown by de Alwis and Fryer (1990), using a code written especially
for the problem. It is now possible to use commercial codes, such as ANSYS
(Zhang and Fryer, 1994) or FIDAP, with which Kemp et al. (1999) validate a
computational model for the heating pattern around an insulating particle. Here,
both simulation and experiment show that it is possible to have over- and
underheating in the same particle; underheating results from the region of low
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electric field behind the insulating particle, and overheating is due to the high
conductivity of the second particle. Local heating and cooling effects have been
shown by thermocouple and in elegant MRI experiments by Ruan et al. (1999).

Various models have been proposed to identify the coldest spot in an ohmic
formulation: finding this is key to deciding what a process should be. In
conventional processing, of course, the coldest spot will occur in the solid; with
the correct choice of solid and liquid electrical conductivity, the particles will
overheat the liquid, and the coldest spot will be found in the fluid. The amount
of fluid mixing is then critical; high viscosity fluids have a higher range of
temperature differences between them than less viscous ones (see Fryer et al.,
1993).

Models for the whole process have been developed which involve a series of
simplifications. Zhang and Fryer (1993, 1994) used a finite-element model to
predict the behaviour of a sphere in a well-mixed fluid, and then used that model
as the basis for a Fortran model of a flowing mixture.

Heat generation techniques have found some applications in industry –
obviously microwave ovens have achieved significant penetration into the
kitchen as a result of the rapidity of heating possible. Developments in
modelling will be used (i) to make industrial application easier, and (ii) to make
products which are of higher quality when heated in the domestic microwave
oven.

16.5 Developments in the field

The modelling of thermal processing of foods is an active research subject
around the world. The subject is developing in a number of areas:

16.5.1 Ease of solving models
Advances in computing continue to make it more straightforward to run the
types of programs that are needed to solve these problems. As shown above, FE
software can now run efficiently on a PC, whereas only a few years ago it
required workstation or mainframe capabilities. It is likely that problems that
currently are at the limits of computing power, such as the efficient modelling of
microwave heating, will be simple to solve in a few years time. This means that
models could be used as the basis for real-time control systems: at the moment
most run too slowly.

16.5.2 Realistic physical properties
Many of the papers described above have treated systems with simplistic
physical properties, such as constant thermal diffusivity. In practice, many
physical properties vary with temperature; the strong variation of viscosity and
electrical properties has been shown in some of the papers described above to
lead to very strongly coupled problems, where the thermal and other fields have
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to be solved together. To do this accurately requires accurate data: the more
accurate the data, the better the fit of the model to reality. In some cases, it is the
lack of data rather than the lack of appropriate theory that is limiting the
accuracy of the models.

16.5.3 New types of model
The models described above have used finite element, volume or difference
approaches to solve heat transfer models. Other types of approach are being used
in some areas, such as discrete element and lattice Boltzmann modelling of
single- and two-phase flows in complex geometries, and cellular automata
models for the interaction of microbes and foods. These different types of model
have some advantages, particularly where FE meshes are complicated and
change with time, as in particle flows. At the moment, they are difficult to use,
and commercial codes are not well developed; as these types of models become
simpler to use they will be applied to food problems.

16.5.4 Kinetic models for food processes
Given accurate physical property data and computer codes, thermal models are
capable of predicting the temperatures throughout food solids and liquids.
However, these predictions cannot be used fully if information on the rates of
the processes affected by temperature are not available. The microbiological
models used in many thermal models are probably simplistic; if equation (16.1)
does not describe the effect of temperature on a microbial population then the
results of the model will not apply. More research is needed to determine models
for microbial growth and inactivation, and on the rates of development of texture
and flavour in foods. This type of data, combined with effective thermal models,
will lead to the production of models which can predict food quality and safety,
and act as the basis for optimising production.

Some of our recent work (Bakalis, Cox and Fryer, unpublished results) has
studied ways of validating flow and heating models. The School of Physics at
the University of Birmingham, UK, has developed a unique way of following
flows in opaque fluids using tracers, the so-called Positron Emitting Particle
Tracking (PEPT, Parker et al., 1993). In this technique a radioactive tracer
particle is monitored during its passage through a system. The tracer emits
positrons, which then generate a pair of back-to-back gamma rays on collision
with an electron (an extremely rapid and geometrically close annihilation event).
By detecting the trajectories of the gamma rays (with a 180º of separation) the
position and velocity of the tracer can be followed by triangulating their position
at many times per second. The technique can also be used in pilot-scale
equipment as the gamma rays can penetrate reasonable thicknesses of metal.
This technique allows flow patterns to be followed in real systems.

As an example of how it can be used in foods, PEPT was used to examine
particle paths in a canning process. A typical metal can was filled to 90% of its
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volume with vegetable soup obtained from a local market, and a 600 micron
wide tracer particle was inserted in a piece of potato from the soup and was
followed as the can was rotated axially at a speed of 25 rpm. Fig. 16.2 represents
the particle path over a period of three minutes. It can be seen that the particle
follows a D shape trajectory with the headspace affecting the flow. This pattern
is very different when compared to a fully filled can, where the particles are
moving in circles. Overall PEPT appears to be a promising technique that can
give invaluable insight on thermal processing and provide means to validate
numerical simulations. This type of data, coupled with the modelling techniques
described here, will lead to a better predictive understanding of food processes.
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Introduction

In the last part of this book on food process modelling, the application of the
models and techniques discussed in the previous parts are used in a larger frame
of view. To apply these models in real world systems, these models and their
applications have to be considered in their interaction with real world systems.
All these applications have in some way to do with product quality and product
safety, all driven by consumer behaviour, wishes and acceptance.

To increase the application of models dedicated to problems local to a
product attribute or a situation of processing, we need to put these dedicated
models into a larger framework. Not only these local aspects have to be
considered, but also their interactions with the ever-changing conditions of
handling and distribution, and the ever-changing response over users and
consumers.

In Chapter 17 the problems with quality, consumer’s perception and
consumer’s acceptance are decomposed into a conceptual model of how quality
works in general for each individual. Out of this decomposition comes a clear
view on interactions between product properties and consumer’s perception and
acceptance. Based on these concepts, a common language on quality needed to
improve communication throughout the food supply chain, from grower/
producer up to and including the consumer can be deduced.

Chapter 18 devotes its attention to the difficulties of food spoilage and food
safety. Predictive microbiology is a discipline of microbiology, rapidly
increasing in importance and application. Just like quality, safety is such a
paramount property of our food, that it is absolutely necessary to be accepted by
consumers. However, unlike quality, consumers cannot perceive food safety

Part V
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until it is too late. That is why predictive modelling is becoming so important in
modern food processing and engineering. Predictive microbiology is moving
from the largely empirical type of modelling to the more fundamental type of
modelling, making adequate use of theoretical concepts with respect to growing
rate and induced lag phases.

In Chapter 19, the fundamental knowledge of kinetic modelling is
transformed into a practical and applicable system of temperature time
indicators (TTI). The currently most common available type of TTIs are
reviewed and described, along with their historical development. Based on
fundamental but simplified kinetics of quality changes, the action, application
and problems of TTIs are described in detail. Based on the results, a system for
optimised distribution and stock rotation system is developed and presented:
LSFO (least shelf-life first out).

In Chapter 20, simplified models on product quality and keeping quality are
used in a broader application targeted to the optimisation of distribution centres.
In this application the technical possibilities and resources available to
distribution centres are taken into account to maintain product quality as good
as possible while meeting the demands on delivering amount and delivery time.

In Chapter 21 the models on quality and safety and the techniques used to
build them, are put into a larger perspective of possible and desirable application
in marketing and consumer behaviour, mainly focused on food supply chains,
their management and possibilities for optimisation.

Pol Tijskens
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17.1 Introduction

Quality is becoming increasingly important as a determinant of food choice. As
disposable income in the developed world increases, the influence of price on
food choice decreases and factors such as healthfulness, convenience and quality
become more important. Quality is particularly important in determining repeat
purchases of food products (Steenkamp and van Trijp, 1996). Competing on
quality rather than on price often has advantages from the point of view of
companies. It creates customer loyalty, raises barriers to competition and
reduces price elasticity (Steenkamp, 1990). However, a quality-based strategy
can only succeed if the company knows what the customer understands by a
good quality product and if the company can translate these demands into
(technical) product specifications. In this chapter an approach to food quality
modelling is described which will allow companies to understand the
relationship between perceived quality and product characteristics, to predict
and control quality during production and distribution, and to optimise quality
during product development.

However, first it is necessary to define what is meant by quality. Since
Roman times it has been well known that quality and taste are something
personal and specific to every individual human being: ‘de gustibus et coloribus
non est disputandum’, or ‘do not discuss colour and taste’. Although the
information, contained within the product, upon which we all judge the quality
of that product, is the same for everybody, the interpretation and the
appreciation can be very different for different people. So a workable definition
of quality has to cover both aspects: the general information in the product and
the specific effect the product properties exert on different people.
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A frequently used definition is that given by Juran (1974), ‘fitness for use’.
Kramer and Twigg (1970) provide as definition of quality: ‘the composite of
those characteristics that differentiate individual units of a product, and have
significance in determining the degree of acceptability of that unit by the buyer’.
Steenkamp (1990) gives a more elaborate definition: ‘Perceived quality is an
idiosyncratic value judgement with respect to the fitness for consumption which
is based upon the conscious and/or unconscious processing of quality cues in
relation to relevant quality attributes within the context of significant personal
and situational variables.’ Implicit in all three definitions is that quality is the
result of the interaction between the person and the product. It will depend not
only on the characteristics of the product (colour, sugar content, etc.) but also of
the person (age, culture, etc.) and of the context (meal, dish, etc.). There is no
one objective measure of quality and this is emphasised by authors who use
terms like ‘perceived quality’ (Steenkamp, 1990) or ‘assigned quality’ (Sloof et
al., 1996).

Another implication of these definitions of quality is that modelling of food
quality will require the collaboration of disciplines both in the social sciences
(for example, consumer scientists, market researchers and economists) and in
the natural sciences (for example, biochemists and physiologists).

17.2 Key principles and methods

17.2.1 Process of quality assignment
In order to model food quality it is important to understand how quality
assignment takes place. The description that follows draws largely, though not
exclusively, on the work of Steenkamp (1989, 1990), Sloof et al. (1996) and
Sloof (1999).

Before consuming a food product (for example, when purchasing it in the
shop) an individual forms an opinion as to the quality of the product, termed the
expected quality. The individual bases the expected quality on quality cues. A
quality cue is an attribute of the food product which can be perceived before
purchase and consumption and which is believed to be indicative of its quality.
The individual believes the cue to be highly correlated with product quality, a
belief which can be based on personal experience or on information from
acquaintances or the media. Examples of cues are country of origin (‘the best
olives come from Italy’), price (‘good wines tend to be more expensive’) or
colour (‘dark red meat has a better quality than pale meat’).

Only when the product has been consumed can the individual form a final
opinion about the quality, the experienced quality. This unidimensional measure
of perceived quality is a function of the quality attributes. Quality attributes are
all those product attributes, which are relevant for determining the quality.
Which product attributes are quality attributes thus depends on the priorities of
the individual who assigns the experienced quality. The quality attributes can be
divided into experience attributes which are determined before and during usage
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(flavour, ease of preparation, etc.) and credence attributes which are based on
beliefs (nutritional value, production methods, food safety, etc.). The beliefs, in
turn, can be based on information on the packaging, on information obtained
from the media or from personal contacts.

Furthermore, a distinction can be made for both quality attributes and quality
cues between intrinsic attributes/cues and extrinsic attributes/cues. An intrinsic
attribute or cue is one which cannot be changed without changing the product
itself. Examples are the taste, the vitamin content, the size. An extrinsic attribute
or cue is one which is not part of the physical product, for example the price, the
packaging, the brand or the supermarket where the product is purchased.
Extrinsic attributes and cues are largely the domain of the marketing department.
While not denying their importance for quality assignment, most quality
modelling has concentrated on the intrinsic attributes and cues.

Some authors distinguish a third integration step in which an overall quality
is assigned based on both the expected and the experienced quality (Poulsen et
al., 1996). This allows for situations where disconfirmation of expectations leads
to an overall quality assignment which is different from the experienced quality.
For example, the appearance of the packaging may lead to the expectation of a
certain taste and therefore quality. If this is confirmed by experienced quality,
then satisfaction ensues. However if the taste is less favourable than expected,
then this will lead to negative, disconfirmation which may lead to the product
being rejected in a situation where, if expectations had been lower, it would have
been accepted (Andani and MacFie, 2000). It follows from this that producers
need to pay attention not only to quality attributes but also to quality cues and
their relationship with quality attributes. The interplay of attributes, cues and
quality is illustrated in Fig. 17.1.

A concept closely related to quality is acceptability. When the individual
decides on the acceptability of a product, he compares the (expected) quality to
some criterion, termed the ‘quality limit’ (Tijskens, 2000). If the quality exceeds
the quality limit, he accepts the product, otherwise he rejects the product. This
quality limit is dependent on the personal preferences and situation of the
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Fig. 17.1 Quality assignment based on intrinsic and extrinsic quality cues and quality
attributes.
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individual. Acceptability is involved in the ‘keeping quality’ (Tijskens and
Polderdijk, 1996) which is so important for perishable products. For perishable
products such as fruit and vegetables, the quality attributes change (usually
deteriorate) over time. Keeping quality is a measure of the time it takes before
the assigned quality falls below the quality limit at any condition during storage
and transport. Shelf-life is the keeping quality under specified storage conditions
(Tijskens, 2000). It follows from the above that keeping quality is no objective
measure but depends on the priorities and preferences of the individual.
Certainly producers should take account of differences between countries and
between market segments.

For quality modelling it is necessary to consider how intrinsic quality
attributes and cues are related to the product properties, defined as the physico-
chemical characteristics of the product. A single attribute can be a function of
several product properties. For example, the quality attribute ‘perceived
sweetness’ can be a function not only of the amount of sugars but also of
acids (Lawless and Heynmann, 1998). Several distinct steps can be identified in
arriving at the quality attribute or cue (Sloof, 1999; Sloof et al., 1996; Tijskens
et al., 1994). Firstly, the product properties form stimuli which are perceived by
the human senses. For example, the taste receptors on the tongue are triggered
by the acid and sugar components in the food product. Secondly, these
perceptions are integrated and evaluated to form an evaluation of the intensity of
the quality attribute or cue. In our example, the information from the taste
receptors is combined to form an evaluation of how sweet the product is. In final
appreciation step a hedonic judgement takes place. In the terms of the example,
the product is judged to be not sweet enough, just right or too sweet. These steps
are summarised in Fig. 17.2.

17.2.2 Quality assignment model
Introduction to quality model
If the aim of food quality modelling is summarised as the modelling of the
effects of choice of cultivar or recipe, temperature and other external factors
during storage and processing on perceived quality, then it is clear from the
above that a number of steps are involved. As is illustrated in Fig. 17.3, the
relationship between external factors and product properties, the relationship
between product properties and quality attributes/cues and the relationship
between quality attributes/cues and perceived quality all need to be described.
This leads naturally to the decomposition of the task of food quality modelling
into a number of sub-tasks (see also Chapter 2). This is best achieved by
decomposing the food quality model into two main sub-tasks (Sloof, 1999):

• A quality assignment model (QAM) describing the relationship between
quality attributes/cues and perceived quality. This model should also consider
the influence of situation and characteristics of the individual (age, culture,
etc.) on quality assignment.
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• A dynamic product model (DPM) describing the effect of external factors
such as choice of cultivar or recipe, temperature during storage and
processing on product properties and therefore quality attributes/cues.

Approaches to develop quantitative models will now be discussed for both of the
sub-tasks.

����	��
����������

����������

��
�	
����

�������
����

����������

�������

����������

��
�	
����

�������
����

��������
�	
����

��	
�

������	���

Fig. 17.2 Steps in assigning quality to a product by a human.
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Fig. 17.3 Quality assignment as affected by product properties, economic and socio-
psychological circumstances.
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Product-centred approach
Molnár (1995) has developed a mathematical model to describe quality
assignment. He distinguishes five categories of attributes, namely

• sensory properties
• chemical composition and physical properties
• microbiological contaminants
• toxicological contaminants
• packaging, labelling, shelf-life.

The relative importance of each category will vary according to the food
product. For example, for functional foods the category ‘sensory properties’ may
be judged relatively unimportant. Within each category, relevant attributes are
identified based on the knowledge of experts. Each attribute xi is normalised to
give zi with 1 � zi � 0. zi receives the value 1 when xi is at its optimum value
and the value 0 when xi is at its worst value or becomes unacceptable. In fact, xi

represents the evaluation of the attribute and zi the appreciation of the attribute.
To arrive at total quality, each normalised attribute is assigned a weight, and the
attribute categories are also assigned weights, giving the mathematical function

Q �
�ncat

j�1

Wj

�nj

i�1

wizi �17�1�

where Q is total quality, Wj, j� 1 � � � ncat are the weights for the attribute
categories, wi, i� 1 � � � nj are the weights for the individual attributes of category
j, zi, i� 1 � � � nj are the normalised attributes.

Molnár defines ‘primary critical’ attributes as attributes whose zero value
indicates that the product is unfit for human consumption and that the total
quality is therefore zero. Examples of primary critical attributes are sensory off-
flavour attributes and food safety related attributes.

Again Molnár suggests that experts are used to determine the weights for the
quality function. The fact that Molnár does not use consumers to gain
information about quality attributes and the quality function is a weak point of
his approach. It is the consumer who will finally assign a quality to the product
and it is unlikely that the expert can fully interpret the priorities of the consumer.
It is known that experts tend to consider quality as compliance with technical
specifications and to lay excessive emphasis on the absence of defects compared
to consumers (Tijskens et al., 1994; Lawless and Heynmann, 1998).

Consumer-centred approach
A number of researchers operating in the field of marketing and consumer
research have developed and quantified models for quality assignment which do
place the consumer centrally (Acebrón and Dopico, 2000; Steenkamp and van
Trijp, 1996; Poulsen et al., 1996). The models are built around the description of
the process of quality assignment given above and thus include quality cues and
expected quality as well as attributes and experienced and overall quality. The
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quality assignment model is quantified for a particular product by means of
consumer research. Typically consumers are asked to assess uncooked,
packaged products and assign scores to a pre-determined list of quality cues
and to expected quality. Then they are presented with (or prepare themselves)
the cooked product. Again they assess the product and assign scores to quality
attributes and experienced quality. Sometimes they may be asked to assign a
final overall quality score. The quality scores are related to the attribute and cue
scores using a statistical technique such as linear regression, Partial Least
Squares regression (Steenkamp and van Trijp, 1996) or LISREL (Poulsen et al.,
1996). For each step in the quality assignment process this gives one quantitative
formula which describes quality assignment for all consumers. It is interesting to
see that although the consumer research approach to quality assignment
modelling places the consumer at the centre, no allowance is made for the
subjective nature of assigned quality and for differences between consumers in
their quality model.

It is not always clear in these models whether consumers are scoring the
appreciation or the evaluation of the attributes and cues. In Poulsen et al. (1996)
consumers are asked to rate the sensory attributes of cookies on a nine-point
scale ranging from ‘much less than ideal’ through ‘ideal’ to ‘much more than
ideal’. This is clearly measuring appreciation. However, Acebrón and Dopico
(2000) ask consumers to rate cooked beef on a four-point scale from very tough
to very tender. This is an evaluation and it seems to be assumed implicitly that
appreciation is positively and linearly related with tenderness.

There are two problems with using consumers to provide evaluations rather
than appreciations. Firstly it is an unnatural task for consumers. People are
naturally able to say how much they like a particular attribute, but intensive
training (as a product expert, as a member of a sensory analytical panel) is
required before they are reproducibly able to score how much there is present of
a particular attribute. Secondly, the relationship between the evaluated amount
and the appreciation is often non-linear (as reflected in the scale used by Poulsen
et al., 1996). The relationship between the appreciation of individual attributes
and total assigned quality is probably monotone and it is plausible to assume that
it is approximately linear. The modelling of linear relationships is much simpler
and much less demanding in terms of the amount of data required.

It can also be questioned whether asking consumers to score both quality
cues/attributes and expected/experienced quality at the same moment on the
same product will give reliable results. It can lead to sociably desirable answers,
with high fat or high sugar content products receiving artificially low quality
scores. Also because pre-determined lists are used based on expert knowledge, it
may bring the attention of the consumer to an attribute or cue which in a real-life
situation would have played no part in his quality assignment. An alternative
approach would be to allow the consumer to score the attributes or cues at a
different moment (but for an identical product) to the moment at which the
quality is scored.
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Statistical techniques
Two techniques, which allow the influence of individual cues and attributes on
assigned quality to be deduced indirectly are conjoint analysis and preference
mapping. Both techniques were not originally intended for developing quality
models but can be used for that purpose.

Conjoint analysis was developed to determine price elasticity. In conjoint
analysis the respondent is presented with written descriptions of a set of products
and is asked to rank or score them in order of preference (Johnson, 1974). The
products are described according to a limited number of attributes with each
attribute taking one of a fixed number of values according to a factorial
experimental design. The respondent does not rank or assign scores to the
individual attributes but rather to the (described) product as a whole. By relating
the rankings or scores for the products to the attributes varied in the
experimental design (for example, using regression) it is possible to estimate
the effect of each attribute on preference. Conjoint analysis has been used to
build quality functions for ham (Steenkamp, 1987) and flower bulbs (Wilkinson
et al., 1994; Wilkinson and Polderdijk, 1996).

The aim of preference mapping is to model the relationship between sensory
profiles of products and consumer preferences. Consumers are presented with a
set of physical products. They judge each product and assign it a score according
to their preference. At the same time a trained analytical sensory panel evaluates
the values of a set of sensory attributes for the same set of products to provide a
sensory profile for each product.

Consumer preferences are related to sensory profiles using linear or nonlinear
regression models, which allow an estimation of which sensory profiles are
preferred. A strong point of preference mapping is that the preferences of each
individual consumer are modelled separately. This leads naturally to a
recognition of the subjective nature of preference and to segmentation,
clustering of groups of consumers with similar preferences. While preference
mapping is designed to elicit information about the influence of sensory
attributes, the technique could in theory be extended to include the influence of
other categories of attributes.

Summary – quality assignment models
To summarise, a number of approaches have been described for developing
quality assignment models. The consumer research approach is the one which
keeps closest to the description of the process of quality assignment.
However, it could be improved by incorporating features from other
approaches. These include the definition of primary critical attributes and
the decomposition of attributes into categories with differing importance, as
proposed by Molnár, the indirect measurement of attribute and cue
appreciation as used in conjoint analysis and preference mapping, and the
modelling of quality assignment at the individual consumer level, analogous
to the preference mapping approach.
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17.2.3 Dynamic product model
The dynamic product model aims to describe the relationship between external
factors and product quality attributes or cues. It is possible to decompose the model
still further to model the relationship between external factors and product
properties separately, as well as the relationship between the product properties and
the perceived quality attributes or cues. For example, one model could describe the
relationship between storage or processing variables and the sugar content of
French fries, and a second model could describe the relationship between the sugar
content and the colour. In fact this is rarely done, with most authors modelling the
quality attribute or cue directly (though see Hertog et al., 1997).

The most common approach is to build a model for a single attribute or cue.
Often these are primary critical attributes, according to the definition of Molnár,
such as spoilage. Models are frequently developed to predict keeping quality as
determined by spoilage. As discussed earlier, keeping quality is in fact the time until
quality falls below an acceptable level, the quality limit. An example is the model
described in Hertog et al. (1999) which describes spoilage of strawberries due to
Botrytis infection as a function of temperature and gas conditions. In Zwietering
(1993) and Zwietering and Rombouts (1994) kinetic models are discussed which
describe bacterial growth and which can be used to predict keeping quality.

In addition to models for primary critical attributes, models have also been
developed for other attributes. The choice of attribute is often influenced by the
priorities of the producer rather than the consumer. Marcelis and Gijzen (1998)
developed production (growth) models which predict the fresh weight of
cucumber fruits. They consider this to be an important quality attribute because
it determines market price. This reflects an outlook on quality from the point of
view of the producer and distributor rather than the consumer. Such an outlook
also leads to an emphasis on quality cues, which determine expected quality at
the point of sale rather than experienced quality attributes. As an example,
Vankerschaver et al. (1996) developed a model for the visual quality of cut
endive but not for its taste.

A major application of dynamic product models is in simulation studies. They
can show the effect of changes in storage and processing conditions on key
quality attributes and can thus be used to optimise logistic chains or food
processing. For example, Hertog et al. (1999) used simulations to gain insight
into the effect of logistic chains and packaging on spoilage of strawberries. For
true optimisation, dynamic product models need to be combined with quality
assignment models. This is not yet done. However, in simulations, some direct
information about assigned quality is obtained, as can be seen when the quality
of a product is no longer acceptable.

17.2.4 Integration of quality assignment models and dynamic product
models
While most modelling takes place within either the quality assignment sub-task
or the dynamic product sub-task, the quality function deployment and the quality
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guidance frameworks do overstep this boundary (Viaene and Januszewska,
1999; Steenkamp and van Trijp, 1996; Poulsen et al., 1996; Bech, 2000). Both
frameworks comprise a set of models, which relate consumer quality preferences
via quality cues and attributes to technical product specifications. However, they
are more than just a collection of models as they embody a philosophy in which
product development is guided by the voice of the consumer. They are tools to
improve the collaboration between marketing and R&D departments in the
process of new product development.

The quality function deployment framework defines a series of research steps
to carry out this goal. Firstly, potential market segments are defined and
consumer demands are identified. Secondly, consumer preferences are translated
into technical and sensory product specifications. These relationships are
summarised visually in a set of pictorial matrices which collectively form the so-
called ‘House of quality’ (Bech, 2000). This can be used to predict consumer
perceptions of existing own and competing products and new concepts. The
predictions can be validated using the results of consumer research. An example
of the use of quality function deployment for the chocolate industry can be
found in Viaene and Januszewska (1999).

The quality guidance framework extends the consumer research approach to
modelling quality assignment (see above) with a step relating perceived quality
attributes and cues to product properties. These relationships are inherently
multivariate. One quality attribute may be a function of several product
properties. For example, the meat quality attribute ‘appearance’ may be
influenced by colour, amount of fat and moisture. Equally one product property
may affect several quality attributes. Pâté coarseness may contribute positively
to the attribute ‘taste’ but negatively to the attribute ‘leanness’ (Steenkamp and
van Trijp, 1996). To describe these multivariate relationships, Partial Least
Squares regression (Steenkamp and van Trijp, 1996) or LISREL (Poulsen et al.,
1996) can be used.

17.3 Areas of application

The two main areas of application for food quality models are in quality control
and product development.

17.3.1 Quality control
In quality control an already existing product forms the basis. The aim of the
producer is to ensure a constant and high quality at all times. This is achieved by
monitoring the product during production and distribution and taking the
necessary actions to maintain its quality. Because quality control does not have
the intention of altering the existing product, quality is primarily interpreted as
meaning conformance to technical specifications and avoidance of defects. This
does not necessarily mean that the subjective nature of quality is ignored. Thus
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in quality control of rice it is recognised that quality indices for rice intended for
the Japanese market will differ to that for the American market due to
differences in taste preferences and use of rice in meals – Japanese prefer sticky
rice served plain; Americans prefer non-sticky rice served with a sauce (Barton
et al., 1998). However, it can mean that quality control tends to emphasise the
avoidance of negative attributes and cues (for example, external defects) rather
than maximising positive attributes and cues (for example, a good taste). Also
technical specifications have a lack of flexibility which means that they do not
always reflect the sometimes rapid changes in consumer preferences.

Food quality modelling can be implemented for three different purposes in
quality control.

• Prediction of key quality attributes using instrumental measurements. Often
at-line, in-line or on-line instrumental measurements are carried out routinely
at production and distribution facilities. These measurements of product
properties are then related to key quality attributes/cues using calibration
models. Examples are instrumental measurements of cucumber colour, of pea
mealiness, of the fat content of French fries and of rice protein content. There
is an increasing use of non-invasive spectroscopic and other multi-parameter
instruments, indicative of an increasing recognition that a given quality
attribute or cue is generally a function of several product properties. The
application of instrumental measurements would benefit from quality
assignment models. These could be used to direct attention to those quality
aspects which are truly found to be important by consumers rather than
aspects which producers think consumers find important. Also the use of
quality assignment models can help avoid excessive emphasis on quality cues
rather than quality attributes. Moreover they could be used to determine
which values of quality attributes or cues are appreciated, and by which
groups (segments) of consumers. This would ultimately enable production
tailored to the quality demands of specific segments in the market.

• Prediction of effect of raw material properties on final product quality. For
producers of processed food there is a need to determine and control the
effect of raw material characteristics on final product quality. With this
information they can reward suppliers by paying more for ‘high quality’ raw
materials. This is done for example in the French fries industry where the
amount paid out to growers for potatoes is partly determined by the fry
colour. Food producers can choose to vary their production process to
compensate for variations in raw material characteristics and ensure a
constant output quality. For some products (for example juice, port and
blended whisky), producers can use these prediction models to optimally
combine different batches of raw materials in order to obtain a constant and
high quality. In most current practical applications, prediction models
relating raw materials to final product quality are empirical, based on
observed correlations under a given processing condition. Such prediction
models gain in usefulness when they are based on dynamic product models,
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which describe how processing conditions change the raw product to obtain a
certain set of quality attributes (see Van Dijk and Tijskens, 2000).

• Calculation of quality indices. A quality index can be seen as the practical
application of a quality assignment model. It provides a well-understood
measure of the quality of a product which is recognised by all members of the
production and trade, and allows products to be compared in an objective
manner. An example of this kind of practical application of simplified quality
assignment models is the Streif index for apple maturity at harvest. Developed
in the early seventies (Streif, 1976), the index is defined as the ratio between the
firmness of apples and the Brix refraction times the starch stage. It has obtained
an increasing application to determine the harvest date for apples, optimal for
subsequent storage and eating quality. It is nowadays so widely used that
complete conferences (De Jager et al., 1996) are devoted to its application,
improvement and its calibration against sensory and expert data.

17.3.2 Product development
In new product development both quality assignment models and dynamic
product models can be applied in the search for a product with the desired
quality. The process of product development starts with the consumer – ‘what
does he want?’, moves to the product – ‘how do I make it?’ and then back to the
consumer – ‘does he like what I made?’. Several iterations may be necessary. In
the process, food quality modelling can be involved at all three stages.

• In the first stage, quality assignment models can be applied to determine the
quality preferences of consumers. The quality assignment models can show
whether there is segmentation in quality perception, which attributes (and at
which levels) determine quality perception and whether available products
are currently meeting quality demands.

• In the second stage, R&D is presented with a set of desired quality attributes
and cues. At this stage dynamic product models can be applied to determine
what modifications in processing conditions or ingredients are required to
achieve the desired attribute profile.

• In the third stage, traditionally a consumer acceptance test is carried out on
one or two products. However, it is possible to use the quality assignment
models developed in the first stage to predict the assigned quality for a
greater range of potential products as a first screening.

The use of food quality modelling for new product development as described
here is largely implemented in the quality function deployment and quality
guidance frameworks discussed in the previous section. However, these
frameworks give limited input for product design and optimisation (stage 2)
as they stop at the translation of quality demands into product properties. These
frameworks do not describe how these product properties should be modified.
To achieve this, fundamental knowledge has to be generated and incorporated
(see Chapters 2 and 3).
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17.4 Pros and cons and future trends

An advantage of food quality modelling is that it makes explicit the subjective
nature of assigned quality, implying that the same product can have different
perceived qualities for different people in different situations. As yet this aspect
of quality modelling is not well incorporated in the methodology with most
quality assignment models providing one mathematical function for all
consumers, or for only one defined subgroup. The future will see more attention
to the question of segmentation, in which quality assignment models are built for
defined groups of consumers with similar quality demands and defined
categories of situations. This will enable companies to tailor their products to
the quality demands of defined user groups.

Variations not only between consumers but also between individual product
units within a batch – the so-called biological variance – will also receive more
attention in the future (Tijskens et al., 2000). Regarding the quality assignment
model, the perceived quality of a batch obviously depends on the perceived
quality of the individual units, but the nature of this relationship is not so
obvious. Is it a simple average, or do poor quality units have extra weight? More
research is needed on this perception question. Regarding the dynamic product
model, there are some interesting developments in modelling batch behaviour
with a limited number of unit-dependent parameters (Nicolaı̈ et al., 1995;
Nicolaı̈ and Van Impe, 1996; Tijskens and Wilkinson, 1996; Tijskens, 2000; see
also Chapter 8).

Quality assignment models are inherently very broad, covering in their fullest
form intrinsic and extrinsic attributes as well as cues. This is both an advantage
and a potential problem. The advantage lies in the healthy counterbalance it
offers to the tendency in the past to reduce quality to one or two easily measured
aspects. Thus producers and distributors in the fruit and vegetable sector have in
the past tended to concentrate on a limited number of mostly external attributes
which could easily be measured instrumentally or by product experts (for
example, colour and firmness, but not taste). The broad range of the quality
assignment models, on the other hand, presents big challenges for the consumer
research methodology necessary to quantify the models. The mechanisms
underlying the perception and appreciation of experience attributes such as taste
are very different from those for credence attributes such as calcium content or
extrinsic cues such as brand name. Sensory perception and appreciation is
largely determined by the physical morphology, a result of genetic makeup and
age. Belief in the importance of calcium is a cognitive attitude and much more
susceptible to influence.

The extensive quality assignment models contrast too with the dynamic
product models. While the quality assignment models are highly multivariate,
relating many cues and attributes to several scores of quality, and usually
assume simple linear relationships, the dynamic product models are predomi-
nantly univariate, but are increasingly treated in a multi-response approach
(Chapter 3). They model single quality attributes using nonlinear models
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describing kinetic or other chemical or physical processes. Perhaps the biggest
challenge for the future is the combination of these two different styles of
modelling to produce workable models which can predict quality given
processing and other conditions, or alternatively which can deduce optimal
processing conditions given quality demands.
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18.1 Introduction

The increasing demand for mathematical modelling in the interest of
microbiological safety of food began with the awareness that quality control
of foods based on inspection of the final product was costly, laborious and
inefficient. Models are quick and economical ways to assess food safety
objectively. Since the 1980s, the quantitative approach to microbial ecology in
food has been studied intensively. The number of related publications has been
increasing exponentially since then. The name ‘predictive food microbiology’
was coined in the 1930s but practical applications began to materialise only in
the 1980s, with powerful desktop computing in everyday use.

Mathematical modelling is a main tool behind this development. In some ways,
mathematical modelling is an art of omitting the unnecessary. The starting point of
a modelling procedure is the process of abstraction where we disregard those
features of the modelled phenomenon that are not important from a certain point of
view. An example of this is the theory of constant D-value of bacterial inactivation.
According to this, if the heating temperature is constant, a homogeneous cell
population dies as described by first order kinetics, with constant specific death
rate, k. This model is obtained after omitting unnecessary details, and serves as a
purified version of reality, in that the population is never guaranteed to be
completely homogeneous, the temperature has, in fact, a distribution in the heating
menstrum, etc. In spite of this, the canning industry has been using constant D-
values (� ln(10)/k) for a long time, with satisfactory results, first based on purely
empirical observations, later confirmed by mechanistic thinking.

Though modelling bacterial inactivation and survival is probably the most
important topic in mathematical modelling of microbial safety, we give some
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examples of mathematical techniques to study bacterial growth in this chapter.
The reason for this is that bacterial inactivation in the food environment has
been more thoroughly analysed in recent decades compared to the relatively new
area of modelling bacterial growth. Besides, in the interest of minimally
processed, safe foods, growth studies gain more and more significance. This
chapter will review some results related to growth modelling.

18.2 Developing mathematical models

A mathematical model is a set of assumptions, some of which can be formulated
by equations describing mathematical relations between the introduced
variables. In biology, the real system is extremely complex, so its model must
inevitably include simplifying idealisations. These occur, for example, when one
variable measures a feature that is, in fact, a composite of several others, or
when a variable is considered to be constant in time and/or homogeneous in
space although it is known to be time-dependent and heterogeneous in reality.
The extent of this neglect depends on theoretical and practical considerations
such as the available mathematical techniques, computing power and data.

18.2.1 Empirical and mechanistic models
Mathematical models are frequently classified as mechanistic and empirical
models. Empirical models are only expected to describe accurately a set of
observations, without taking into account the intrinsic mechanism by which
these data are generated. A mechanistic model describes rather the process,
either directly observable or unobservable, that generates those data. In practice,
purely mechanistic models are rare, rather a mixture of the two is applied,
possibly closer to one than to the other. Examples of models involving more
empirical than mechanistic elements are those used in predictive microbiology,
frequently aiming at the pure collection and smoothed (i.e. ‘noiseless’)
representation of computerised microbial data. However, with the increase of
these data, more and more experience is accumulated and certain qualitative
features become ‘compulsory’ for the models to be created.

Frequently, model development is an iterative process going through a
‘learning curve’, when initial, empirical models (describing observations purely
quantitatively) can help to define certain qualitative features of a more
mechanistic model to be developed. It is also desirable to embed the model into
more general principles of science and to make it open to further developments
as the quantity and quality of information about the system increases.

For example, consider the development of bacterial growth models. It was
observed by Malthus (1798) that, if there is no inhibition, a homogeneous
population grows according to an exponential function, which is a straight line if
the size of the population is plotted in log scale. This exponential model for growth
was, initially, a purely empirical model. Later, mathematical descriptions of more
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general principles of nature confirmed this law (for a summary, see Renshaw,
1991). Today this law should be a basic requirement, a starting point, for any
mathematical growth model. In other words, if the physical environment is
favourable and constant with time, then the log of the population size against time
should be represented by a straight line (at least in the ‘happy growth region’, i.e.
over an adjustment period and far from overpopulation, etc; see Fig. 18.1).

This is today a basic requirement for any reasonable mechanistic model of bac-
terial growth (Baranyi and Roberts, 1995). There are, however, other, well-fitting,
useful empirical models of bacterial curves (Gompertz, logistic, etc., see Zwietering
et al., 1990), which do not have this mechanistic background. The problem with
those empirical models is that they are not applicable even for a slight extrapolation.
For example, starting from a Gompertz function for the logarithm of the bacterial
size (which has nothing to do with the Gompertz model for the size of the
population), it is difficult to create a consistent mathematical model for a changing
environment. Models for non-isothermal situations, in some sense, require a certain
extrapolation from isotherm models. As a mechanistic principle, the isotherm
situation should only be a special case of the dynamically changing temperature
environment (Fig. 18.2). This requirement is satisfied, for example, by the dynamic
model of Baranyi and Roberts (1995). That model is a system of differential
equations whose explicit solution is guaranteed only for constant temperature
profile, giving the well-known sigmoid curve for the bacterial cell concentration.
Under changing temperature, the model is the same but the solution can be obtained
generally by numerical methods only (step-by-step iteration on the computer).

Fig. 18.1 Bacterial growth curve fitted by the Gompertz function (broken line) and by
the model of Baranyi and Roberts (1995). The goodness of fit is similar but the latter

model ‘forces’ a straight line fitting in the exponential phase where the Gompertz
function has a pronounced curvature, thus overestimating the rate there.
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18.2.2 A dynamic growth model
First, we define some notations we use frequently in this chapter. A vector will
be denoted by bold: v� [v1� � � vn] means that the vector v has n entries, v1, v2,
� � �, vn. These entries can be time-(t-)dependent variables, too, in which case
v(t)� [v1� � � vn(t)] is a time-dependent vector variable.

We will denote the time and the bacterial concentration by t and x,
respectively. The x(t) function is the main centre of our investigation. We
consider this as a response to the environment, which we assume to be
satisfactorily characterised by some main factors, E1�t� � � �En�t�. As can be seen,
both the environment and response is meant in dynamic sense, allowing them to
change with time. In the main, the subject of predictive microbiology is the
mapping Environment�Bacterial response, whose most important element is
the sub-mapping E(t)� x(t).

18.2.3 Exponential growth
Discussing growth models commonly start with the exponential model.
According to that, the specific increase or decrease, �x�x, of the population
under �t interval is proportional to the length of the interval: �x�x � ��t. The
proportionality factor � is called the specific rate and it is positive for growth,
negative for death.

Fig. 18.2 If a model applied to isotherm environment is only a special case of the model
describing the dynamically changing environment situation, then small temperature
changes have a small effect on the bacterial response. The lower growth curve is a

prediction obtained by the model of Baranyi and Roberts (1995) for 15ºC. The upper
curve is predicted (by the same model) for the situation when the temperature increases at
a constant rate of 0.1ºC/hour, from 15ºC. For this prediction, a numerical integration was

necessary because of the dynamically changing environment.
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From the above equation, the following differential equation can be obtained

�x � �x �18�1�
where the (�) represents the d/dt operation. If and only if � is constant, then this
is equivalent to

x�t� � x0e�t �18�2�
where x0 is the value of the bacterial concentration at the time t � 0.

It is worth considering the natural logarithm of the bacterial population:

y�t� � ln x�t� �18�3�
by which, equation (18.1) can be written as

�y � � �18�4�

18.2.4 Sigmoid bacterial curves
Especially in food microbiology, where the bacterial concentration of interest
spans from 1 up to 109�1012 cells/ml, it is important to study the entire bacterial
growth curve which is commonly of sigmoid shape.

Turner et al. (1976) published a comprehensive study on sigmoid growth
models where the size of the population follows a sigmoid pattern with time. In
our situation, however, the log-population follows a sigmoid pattern with time
and using those classical sigmoid models for the log-population would be a
completely empirical approach.

In accordance with the principles mentioned in section 18.1, we start from the
idealistic model described by equation (18.4). We expect that the higher the cell
concentration, the smaller the specific rate. Therefore we develop the model
further in such a way that it can contain the original model as a special case. We
write

�y � � u�y� �18�5�
with some u�y� ‘inhibition’ function, which is between 0 and 1 and decreasing to
0 monotonically as y increases. All the well-known sigmoid growth models
(Gompertz, logistic, Richards, etc.) can be re-created for x�t� if u�y� is chosen
appropriately (see Baranyi and Roberts, 1995). The most frequently used
inhibition function can be derived from the model of Richards (1959)

u�y� � 1� e�m�ymax�y� �18�6�
where ymax is the natural logarithm of the maximum population density and m is
a curvature parameter characterising the transition to the stationary phase. With
m � 1, the logistic model of population growth can be obtained for y � ln x.

The model described by equation (18.5) results in a bi-phasic function for
y�t�, the shape of which goes through a transition from an increasing straight line
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to a horizontal one. Microbial growth curves, however, generally go through an
initial adjustment period called lag phase, lending a sigmoid shape to the growth
curve. The end of the lag period, denoted by � in what follows (see Fig. 18.4), is
defined as the intercept of the initial level and the tangent drawn to the inflexion
of the sigmoid curve (McMeekin et al., 1993). It is easy to see (Coleman, 1978),
that equation (18.5) is not suitable to describe bacterial lag, because y�t� cannot
have inflexion for any reasonable inhibition function. This is why we complete
the model with a so-called ‘adjustment function’

�y � ��t�� u�y� �18�7�
where �(t) is a monotone increasing function with values between 0 and 1.
Several forms of �(t) can be defined; a useful one is a Michaelis-Menten type
inhibition (Baranyi and Roberts, 1995):

��t� � P�t���KP � P�t�� �18�8�
where P�t� is a critical substance necessary to initiate growth (such as a new
enzyme, if the substrate has changed), and KP is the Michaelis-Menten
saturation constant. The critical substance is assumed to increase at a specific
rate �, from an initial value P0:

�P � �P �18�9a�
P�0� � P0 �18�9b�

Partly for numerical stability reasons, partly because the P�t� substance is
unknown and the solution of the system depends only on the P0�KP ratio, it is
worth introducing the q�t� � P�t��KP variable, by which we obtain the
equations

�q � �q �18�10a�
q�0� � q0 �18�10b�

where the q0 parameter depends on the history of the cells (how the initial
quantity of the critical substrate, P0 relates to KP); ��t� characterises the rate of
the adjustment to the new (actual) environment. The simplification � � � has
some mechanistic background and makes the model more suitable for practical
curve fitting procedures, too.

The model described by equations (18.6)–(18.10) has the advantage that it
has an algebraic solution if the parameters are constant with time. In dynamic
situations, however, it should be solved by numerical methods.

The following reparameterisations of q0 have biological interpretations and
advantageous numerical/statistical properties that are useful when using the
model for curve fitting:

�0 � q0��1� q0� �18�11�
h0 � �ln��0� �18�12�
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18.3 Modelling the effect of environmental factors on the
growth parameters

To study the effect of the environmental factors on bacterial growth, four aspects
should be considered:

1. What growth parameters are to be modelled as a function of the
environment?

2. What are the main environmental factors characterising the environment?
3. What model is to be used to describe that effect?
4. What is the environmental region where predictions can be obtained by

interpolation?

In predictive food microbiology, the temperature, pH, and water activity are
considered as the main environmental variables determining bacterial growth in
food. By doing this, such factors as food structure, the composition of the
atmosphere, or possible preservatives, were considered only as factors
modifying the basic model but not changing their main structure.

18.3.1 Choosing the growth parameters to be modelled
As has been mentioned, the subject of predictive microbiology is the mapping
Environment�Bacterial response. A variable or parameter of the mathematical
model describing this system is intrinsic, if it does not depend on factors outside
the system. Extrinsic variables or parameters are those that depend only on
factors that are outside the system. Of course, variables and parameters can be
defined in such a way, too, that they depend on both intrinsic and extrinsic
factors.

Traditionally, the growth of a bacterial population is defined by four
parameters: maximum specific growth rate, � ; duration of lag, � ; maximum
population concentration, cmax � exp�ymax� ; and initial cell concentration,
x0 � exp�y0�.

It is a principal assumption in food microbiology that, in a constant
environment, a homogeneous cell population eventually grows at the same
maximum specific growth rate, characterising the species and the environment
in question. Hence, � is a reproducible, intrinsic parameter. So is cmax. These
two parameters should be modelled without information on the history of the
cells. The initial log-concentration, however, depends only on the history of the
environment (such as a food treatment), so that is an extrinsic parameter. As for
the lag phase, it depends on both the history and the actual environment, so it is
neither an intrinsic nor an extrinsic parameter. Baranyi and Roberts (1994)
suggested that a parameter called h0 should be considered instead, from which
the lag can be calculated as � � h0��. Robinson et al. (1998) pointed out that h0

quantifies the ‘work’ required by the cells to prepare for the exponential growth.
From traditional growth data, neither the amount, h0, nor the rate of ‘work to

be done’, �, can be measured directly. However, it is a logical assumption that
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the subsequent maximum specific growth rate of the population (�) reflects the
rate at which metabolic reactions occur, determined by the environment.
Therefore, it can be assumed that � � �. The ‘work to be done’ before the
exponential phase is zero when the ability of the initial cell population to grow is
100% (h0 � 0, so �0 � 1 and there is no lag).

When standardised inoculum is used (inoculation from cultures with identical
history) to generate growth curves in different environmental conditions, h0

reflects the effect of the environmental change on the bacterial strategy to grow.
Robinson et al. (1998) pointed out that there is a consistent linear relationship
between �max and 1�� at different temperatures. This means that, with identical
history, h0 is independent of the actual growth temperature. In Fig. 18.3, it can
be seen that the ‘work to be done’ was the same at two different growth
temperatures (1.5ºC and 11ºC) for Listeria monocytogenes. The work was
carried out at a slower rate at 1.5ºC and, in consequence, the lag phase was
longer. Another way of putting this observation in words is that the lag/
generation time ratio is constant and characterising the history of the cells.

On the other hand, for a particular environment, h0 can be used as an
indicator of the heterogeneity of the inoculum, related to different physiological
states, for example injured or healthy cells, and/or different previous growth
conditions. Figure 18.4 demonstrates the different work carried out during the
lag phase by L. monocytogenes at 5ºC, depending on the previous growth
conditions. The cells previously subcultured at 25ºC needed less work to adapt
to the new environment (5ºC) than the cells subcultured at 37ºC. These imply
that, instead of the effect of the actual environment on the lag, it is the history
effect (initial conditions of the actual environment included) on the h0 parameter
that should be modelled. The lag can be derived from the h0 parameter by
� � h0��. If the environment changes with time, it is difficult to interpret a

Fig. 18.3 Growth of L. monocytogenes at (a) 11ºC, 80% CO2 and at (b) 1.5ºC, 80%
CO2. The h0 parameter is fairly independent of the actual environment.

�1 � 0�109 (1/h) �1 � 42.1 (h), therefore h0� �1�1 � 4�59 in case (a);
�2 � 0�010 (1/h) �2 � 448 (h), therefore h0 � �2�2 � 4�48 in case (b).
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specific lag parameter having only potential meaning; but the h0 parameter can
be interpreted in that case, too.

The effect of the actual environment should be studied only on those growth
parameters that are purely intrinsic. Of the intrinsic parameters, the maximum
population density is frequently modelled by a constant only, since growth
conditions do not affect this parameter very much; besides, accurate models for
high bacterial concentrations in food are rarely necessary. Therefore, the
maximum specific growth rate (or its variants, such as its logarithm, or the
generation time) is usually the modelled parameter.

18.3.2 Models describing the effect of the environment on the maximum
specific growth rate
The most frequently used models can be divided into three groups: Arrhenius-
based models, square root or Belehrádek type models and polynomial models. The
first two have some mechanistic elements inasmuch as the temperature is
considered as the only environmental variable. The polynomial approach is purely
empirical, but can be used for any number of environmental variables. An example
of a nonlinear Arrhenius model is that of Schoolfield et al. (1981) which describes
the logarithm of the maximum specific growth rate as a function of the reciprocal
of the absolute temperature. In the model developed by Ratkowsky et al. (1982,
1983), the square root of the maximum specific growth rate is described by a
function of the temperature. Zwietering et al. (1991) compared these two models
by F-tests and found that both models are statistically acceptable. Later, attempts
were made to extend both models to include other environmental variables, too
(Broughall and Brown 1984; Davey 1989; Neumeyer et al., 1997a).

Fig. 18.4 Growth of L. monocytogenes at 5ºC, (a) using an inoculum previously
subcultured three times at 37ºC; and (b) using an inoculum subcultured three times at

25ºC. The h0 parameter (work to be done during the lag phase) depends on the history of
the cells.

�1 � 0�074 (1/h) �1 � 92.3 (h), therefore h0� �1�1 � 6�83 in case (a);
�2 � 0�063 (1/h) �2 � 15.2 (h), therefore h0 � �2�2 � 0�958 in case (b).
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Another possibility to describe the effect of the environment on the maximum
specific growth rate is the use of polynomials (see, for example, McClure et al.,
1993). Although polynomials are empirical models, they have the advantage of
being linear in the parameters, therefore lending themselves to easily available
linear regression. Second-degree polynomials with two independent variables
are called quadratic surface responses. Baranyi et al. (1996) have shown that the
use of higher degree polynomials (e.g. cubic) improves the fitting but the model
loses its robustness (small perturbations in the observations induce significant
changes in the fitted model). Moreover, third or higher degree polynomials can
show such unrealistic analytical properties that make them unsuitable to describe
the relationships between growth rate and environmental factors.

A link function (such as logarithm or square root, as in the other two types of
models) is frequently used for the maximum specific growth rate, to stabilise the
variance of the observations. The role of link functions was analysed extensively
by Ratkowsky et al. (1996).

18.3.3 Comparing the effect of environmental factors
A useful tool to study and compare the effect of the environmental factors on the
growth parameters is the generalised z-value concept as introduced by Pin et al.
(2000).

Consider a predictive model describing a growth parameter p as a function of
a set of n environmental factors (v1 � � � vi � � � vn):

L�p� � f �v1 � � � vi � � � vn��
where L is a suitable link function (such as the logarithm function).

The first partial derivatives of the f model function, with respect to the
environmental variables, are:

df �v1 � � � vi � � � vn�
dv1

� � �
df �v1 � � � vi � � � vn�

dvi
� � �

df �v1 � � � vi � � � vn�
dvn

Note that, depending on the model, these derivatives can also be functions of the
environmental factors.

The reciprocal of a derivative expresses how much the respective variable
should change to induce one unit increase in the modelled parameter, while the
other variables remain fixed. Assuming that the model for that parameter is
strictly monotone in the studied environmental region, then the partial
derivatives differ from zero for any set of values of the variables, and the
reciprocals will be always interpretable. They can be expressed as:

zi � 1
df �v1 � � � vi � � � vn�

dvi

If the link function is the log2 (L�p� � log2(p)) and the modelled parameter is
the maximum specific growth rate (p � �) then zi is that change in the ith
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environmental factor (increase or decrease) that induces a two-fold increase in
the value of the maximum specific growth rate, while the rest of the
environmental factors keep their values. For more details, see Pin et al. (2000).

If the modelled growth parameter is a nonlinear function of the environ-
mental variables, the generalised z-value is not constant but a function of those
variables. In this case, to have a general overview on the effect of an
environmental factor vi , it can be useful to calculate a mean generalised z-value
in the studied environmental region, R (which must be part of the interpolation
region of the model):

Zi�R� � 1�
V �R�

df �v1 � � � vi � � � vn

dvi
dv1 � � � dvi � � � dvn

V �R�
where V(R) denotes the volume of R.

It is not always practical (if possible at all) to calculate Zi exactly. The
boundaries of the interpolation region of models with three or more explanatory
variables can be too complex for exact calculations. In these cases, a Monte-
Carlo approach can be used. This randomly generates a sufficient number of
environmental conditions (or vectors) inside the interpolation region of the
model and approximates Zi by the average of the respective zi values.

The main use of the Z value is to study whether the effect of one
environmental factor can be made equivalent to the effect of another one. The
results can be used for optimising storage environments. Another use is to
determine which growth parameter is affected most by an environmental factor.

18.3.4 Bacterial growth in a changing environment
It is important to see that if � is not constant but depends on time, � � ��t�, then
the solution of the simple exponential model (equation 18.1), for the logarithm
of the cell concentration y � ln x, is NOT

y�t� � y0 � ��t�t �18�13�
but

y�t� � y0 �
�t

0
��s�ds �18�14�

It is easy to check that equation (18.13) is really a special case of equation
(18.14), when the specific rate is constant and in which case y�t� against time is
a straight line.

Consider the situation when the specific rate is known to be increasing with
time. In Fig. 18.5, we applied the model of McClure et al. (1993) for the specific
growth rate of Brochothrix thermosphacta (assuming no lag) for the case when
the temperature increases linearly with time from 1 to 18ºC in 48 h. The result is
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a dynamic specific rate, ��t� � ��T �t��, where ��T� is from the model, and the
temperature can be substituted as

T�t� � 1� �18� 1��48 	 t
Applying equation (18.5), a growth curve can be obtained for the logarithm of
the cell concentration (preferred in practice as log10x�t� � y�t��ln10, where
ln 10 
 2.3). The slope of the growth curve increases with time as shown in Fig.
18.5. It is important to remember that, in this case, there is no lag, but the rising
temperature causes the increase of the specific growth rate.

In this case, we described the E(t)�x(t) mapping by the composition of the
empirical ��T� model of McClure et al. (1993) and the mechanistic model
(equations 18.5–18.12), with E(t)� T(t). Note that, by substituting ��T�t�� in
equation (18.5), we assumed that the bacterial specific rate adjusts to the actual
temperature instantaneously.

Depending on the �(T) model and T�t� environment profile, the predicted
curve cannot always be expressed by algebraic expressions. What is more, it is
frequently difficult even to find out whether, for a complex ��T� function, an
algebraic solution exists or not. In practice, it is much more useful to concentrate
on numerical (approximate) solutions of differential equation models (see for
example, Press et al., 1992), for which there are well-known, commercially
available software packages.

18.3.5 Interpolation region
One basic principle of empirical modelling is that it should not be used to predict
responses for conditions outside the region in which the observations used to fit
the model were made. The nominal region of a model is the Cartesian product of

Fig. 18.5 ‘log10conc. v. time’ growth curve of Brochothrix thermosphacta as predicted
by the model of McClure et al. (1993), during temperature increasing from 1 to 18ºC in

48 h. The curvature is not because of lag, but because of increasing temperature.
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the intervals of the different environmental factors for which observations were
obtained. The strict interpolation region is often smaller than this nominal
region. In multidimensional cases, it can be quite difficult to determine whether
a prediction from the nominal region is also inside the interpolation region.

Baranyi et al. (1996) defined the strict interpolation region as the minimum
convex hull containing all the observations that were used to generate the model.
The interpolation region is, in fact, defined by a restrictive rule. A prediction for
a combination of environmental conditions is an interpolated value if and only if
the conditions can be composed as a convex linear combination of those
conditions where observations were made and used to generate the model.

Figure 18.6 shows an example, in two dimensions, for the strict interpolation
region inside the nominal region. In more than two dimensions, it is not easy to
represent the strict interpolation region. In that case, a simplex algorithm can be
applied to decide whether a test point is inside that region or not (see Baranyi et
al., 1996).

18.4 Model validation

The conditions under which data used to develop models are generated do not
necessarily represent real food conditions exactly. For this reason, one would not
expect the predictions of a model to be completely accurate. Estimating the
expected differences is as important as giving the predictive value itself.
Validation is, in fact, a process of estimating the expected error and comparing
model predictions with observations obtained independently of the model.

The data used to develop a model are typically from bacterial cultures grown
under controlled conditions. However, this scenario is much simpler than the
real situation of a food product (varying composition, storage conditions, etc.).

Fig. 18.6 An interpretation of the strict interpolation region by the minimum convex
hull containing the observational points. (Continuous lines and circles: boundary and

vertices of the nominal experimental region of the environmental factors. Broken line and
squares: boundary and vertices of the minimum convex hull spanned by the points that

were used to create the model.

Modelling microbiological safety 395



Several studies have focused on the differences between the predictions of
models and observations made in food products. The difference between model
prediction and observation made under laboratory conditions is called ‘primary
error’, while the difference between model prediction and observation in food
products is called ‘overall error’ in Pin et al. (1999). Because laboratory
conditions, such as substrate are optimal (apart from the very modelled factors),
the primary error is always smaller than the overall error. The two would be the
same only if laboratory conditions mimic food conditions exactly.

In order to quantify these errors, Ross (1996) proposed two indices: the bias
factor, which indicates whether the model, on average, gives greater or smaller
predictions than the independent observations used in the comparison, and the
accuracy factor, an average difference between observations and predictions.

Baranyi et al. (1999) suggested a modification of the accuracy factor (A), by
introducing the root mean square difference between predictions and observa-
tions. Let ��vi) denote the observed, f �vi) the predicted rate at �vi�i � 1 � � � n�,
the series of environmental vectors where n observations were made. Then, the
accuracy factor is defined as:

A � exp

����������������������������������������������������������n

i�1

�Ln� f �vi�� � Ln���vi���2
�

n

�
�����

�
				
 �18�15�

Similarly, the bias factor is defined as

B � exp

�n

i�1

Ln� f �vi�� � Ln���vi��

n

�
����

�
			
 �18�16�

One of the advantages of these indices is that they can be used to estimate the
precision and the bias of a specific model compared to another model. If, for
example, vi� [Tempi, pHi� � �] and the functions f (Temp, pH� � �) and g(Temp,
pH� � �) are two models of the same growth parameter, then they can be compared by

A�exp

���������������������������������������������������������������������������������������������������������������������������������
V
�Ln� f �Temp, pH � � ����Ln�g�Temp, pH � � ����2dTemp dpH � � �

V

���
�18�17�

�
���

B�exp

�����������������������������������������������������������������������������������������������������������������������������
V
�Ln� f �Temp, pH � � ����Ln�g�Temp, pH � � ���dTemp dpH � � �

V

���
�18�18�

�
���

where V represents the intersection of the interpolation regions of these models.
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In both above cases (discrete and continuous), the indices can be expressed as
percentages. The percentage discrepancy or error (% D) is

�D � �A � 1� 	 100

and the percentage bias (% B) is

�B � sign�Ln B� 	 �exp�Ln B� � 1� 	 100

where:

sign�Ln B� �
�1 if Ln B � 0

0 if Ln B � 0

�1 if Ln B 	 0

���
��

When the values predicted by the model are higher than the observations, in the
discrete case (or higher than those of other models in comparison, in the
continuous case), the bias percentage is positive.

In the following section, two examples are shown for applying these indices.
Predictions of the model by Neumeyer et al. (1997a), developed for
Pseudomonas spp., have a mean discrepancy of 30% when compared with data
obtained for milk and meat products. The percentage bias indicates that, on
average, the predictions were +15% above observed values. The model is biased
but fails safe because it predicts faster growth rates than the observed ones
(Neumeyer et al., 1997b). The model for Pseudomonas spp. developed by Pin
and Baranyi (1998) has a mean discrepancy of 46% from observations made in
meat spoilt by its natural microbiota. The predicted values of this model were, in
almost all cases, higher than the observed values (bias: +35%). The discrepancy
of this model (46%) seems to be high but it is important to notice that this was
mainly due to the bias of the model. This means that, even if the primary error of
the model was small (because the laboratory conditions were more favourable
than those in food) the overall error is big. In the main, positive bias of the
model indicates safe predictions.

18.5 Available software packages

Probably the most general predictive microbiology software packages are the
Pathogen Modelling Program (USDA Eastern Regional Research Centre,
Wyndmoor, PA, USA) and the Food MicroModel (Leatherhead Food Research
Association, UK). We will refer to them as PMP and FMM, respectively.

PMP is a nicely written, user-friendly software package. It can be freely
downloaded via www.arserrc.gov/mfs/pathogen.htm . The program predicts
bacterial growth curves at user-defined sets of values of temperature, pH and
NaCl concentration (or water activity). For some organisms, the effect of a
fourth factor, such as a certain added preservative or atmospheric composition
can also be studied. The bacterial growth is represented by a Gompertz sigmoid
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curve, where the Gompertz parameters are modelled by a quadratic response
surface fitted to observed values. Advantages are that it is free, easy-to-use, and
has nice graphics. Disadvantages are that the user can give only individual
predictions of the Gompertz parameters and these cannot be collected in a table
for a given set of environmental factors, to copy them to other applications. The
lag is interpreted in a static way (consequence of the empirical Gompertz growth
curve, as analysed in section 18.2.1). Besides, because the raw data on which the
models are based were measured in laboratory conditions, no information is
provided on how reliable the model predictions are in real food systems.

FMM is a similar, perhaps more versatile program, based on similar
mathematical treatment. However, it is not free and not even cheap. The biggest
difference between PMP and FMM is that, at least in the manual for FMM, the
user can get an impression of the performance of the models in real food. For
further information consult the website www.foodmicromodel.com

A service called Forecast, where the predictions are based on models as
above, is run via telephone by the Campden and Chorleywood Food Research
Association in the UK ( +44 (0)1386 842071).

Some other predictive microbiology packages are created for purposes that
are more specific. A nicely written program for predicting seafood spoilage at
user-defined values of the environmental factors is the Seafood Spoilage
Predictor (SSP) of the Danish Institute of Fisheries Research. It is freely
available from www.dfu.min.dk/micro/ssp. Another example is the Food
Spoilage Predictor (see http://www.hdl.com.au/html/body-fsp.htm) which is a
time-temperature integration software, predicting the increase in numbers of
psychotrophic spoilage pseudomonads in food.

Not predictors, rather packages helping to create predictive models are
available from the Institute of Food Research. The program’s and DMFit are
Microfit downloadable from the IFR website, www.ifr.bbsrc.ac.uk. The first
one fits the model of Baranyi and Roberts (1994) (see section 18.2.2) to
measured concentrations of growing bacterial population. The user can carry out
a significance-test to compare the specific growth rates of different growth
curves. The second one, DMFit, is an Excel add-in, fitting, plotting and
analysing many growth curves simultaneously.

18.6 Modelling bacterial growth by a stochastic birth process:
a candidate for future research

Finally, we mention a relatively new approach (at least new in predictive
microbiology) to predict bacterial growth and survival in food. Stochastic birth
processes have long been applied in biotechnology (Tsuchiya et al., 1966;
Frederickson et al., 1967) and medical studies (Armitage et al., 1965) to model
bacterial growth, but it was not until recently that the interests of modellers in
food microbiology also turned to this technique. The reason is that predicting the
lag and probability of survival of pathogens has become of primary importance
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recently and, at low numbers of cells, deterministic models are no longer
suitable to describe bacterial kinetics.

The distribution of resistance and adaptability of cells in unfavourable
environments is at the centre of this investigation. Below, we show a basic
relation between deterministic and stochastic models of bacterial lag.

Let the initial number of a growing cell population be N. The lag defined in
the traditional way (see the deterministic models above) will be called the
population lag and its value will be denoted by ��N�. Our investigation focuses
on the connection between ��N� and the lag times of the individual cells.

Considering the lag as an adjustment period, a cell does not necessarily divide
after the lag, but the first generation time begins, which already belongs to the
exponential period. Therefore, the time to the first division is the sum of the lag
time and the generation time. The lag for the ith cell of the initial population will
be denoted by 
i�i � 1� 2 � � �N�. Suppose that the 
i individual lag times
(i � 1� 2 � � �N ) are identically distributed independent random variables, and
their expected value is E��i� � 
 .

If the cell population grows according to the classical Poisson birth process,
the birth intensity parameter is the same as the specific rate (�) of the
population. As before, let y�t� � Ln x�t� denote the logarithm of that population.
Suppose that the subsequent subpopulations of each cell of the initial culture
grow together, but independently of each other. Then, the expected population
lag produced by a single cell is ��1� � 
 . Baranyi (1998) proved mathematically
that the population lag, generated by N initial cells, is

��N� � � 1
�

Ln

�N

i�1

e��
i

N
�18�19�

Using the �i � exp���
i� �i � 1� 2� � � �N� notation,

��N� � e����N� �

�N

i�1

�i

N
�18�20�

The �i variables are also identically distributed, and the right-hand side of the
equation (18.20) is their arithmetic mean. That means that the parameter
� � �ln����, introduced by Baranyi and Roberts (1994) for deterministic
models to quantify the cells’ suitability to the actual environment, is a limit
value of the ��N� parameters. In other words, the ‘suitability parameter’ of the
population, �, is independent of the population size and it is equal to the
expected value of the suitability parameters of the individual cells. This simple
relation does not hold between the population lag and the mean individual lag.

Care must be taken therefore, when conclusions are drawn from deterministic
models to low cell concentrations. From stochastic birth models, knowing the
lag and generation time distributions, the expected population kinetics can be
calculated, but this is not true vice versa. If one measures the distribution of
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population growth parameters from replicate experiments, one cannot conclude
the distribution of those parameters among the individual cells, because the
variability of the individual cells disappears at the population level, and the
observed variability is in fact due to other extra-cellular effects. New techniques
are necessary, therefore, to measure individual cell kinetics. Our expectation is
that stochastic modelling will be one of the next developments in predictive
microbiology.
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19.1 Introduction

At the dawn of the twenty-first century in an environment of momentous
technological progress and evolution of consumer life style the food industry is
called to deliver to seemingly contradictory market demands. While in general
high technology is rapidly being accepted and absorbed, the position of the
consumers with regards to their expectations of food products is relatively
ambivalent. They seek upgraded sensory quality, increased functional and
nutritional properties combined with a traditional, wholesome image, from food
products of guaranteed safety but yet less processing, fewer additives and
‘technological’ interventions. At the same time they expect extended shelf-life
and high convenience in preparation and use.

The attainment of longer shelf-life with minimum processing requires not
only intense optimisation and control of all production and preservation
parameters but often innovative techniques, to ensure safety and reduce food
deterioration. The efforts of producers and regulators concentrate on the
development and application of structured quality and safety assurance systems
based on prevention through monitoring, recording and controlling of critical
parameters through the entire product’s life cycle. These systems include the
post processing phase and ideally extend to the consumer’s table. The ISO
9001 and 9002 quality management systems, widely adopted by the food
industry, explicitly refer to documented procedures for storage, handling and
distribution.1 The need for the inclusion of the post processing phase in an
efficient dynamically ameliorating system is further emphasised in the newly
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released ISO 9000 2000 standard.2 In practice, one of the weaker links of
inadequate control has been the post processing phase. The globally
recommended standard safety and hygiene assurance system, Hazard Analysis
and Critical Control Point (HACCP) also focuses on this phase.3–6 Certain
stages of the chill chain are being recognised as important critical control
points for new technology minimally processed chilled products such as MA
packaged, cook and chill and other ready to eat chilled products. Effectively
monitoring and controlling these CCPs or other points important to quality is a
complicated task.

Practice and industrial studies, mostly unpublished, show that temperature
conditions in chilled or frozen distribution and handling very often deviate from
recommended ones. Since temperature largely constitutes the determining post-
processing parameter for shelf-life under Good Manufacturing and Hygiene
Practices, monitoring and controlling it would be of central importance. The
complexity of such a proposition is highlighted when the variation in
temperature exposure of single products within batches or transportation
subunits is considered. Ideally, a cost-effective way to individually monitor the
temperature conditions of food products throughout distribution would be
required in order to indicate their real safety and quality state. Time-
Temperature Indicators (TTI) could potentially fulfil the above requirements.
A TTI based system could lead to effective quality control of the chill chain,
optimisation of stock rotation and reduction of waste, and provide information
on the remaining shelf-life of the product units. Prerequisite for application of
this approach is the systematic study and kinetic modelling of the temperature
dependence of shelf-life. Based on reliable models of food product shelf-life and
the kinetics of TTI response the effect of temperature can be monitored,
recorded and translated, from production to the consumer’s table.

In the following sections the principles and methodology of modelling, that
are being covered throughout this book, will serve as the basis for the
description of an optimised food product distribution and handling system. The
state of development and the potential of Time Temperature Integrators as tools
and fundamental elements of such a system will be explored and demonstrated.

19.2 Definitions and history of TTI

19.2.1 Definitions and classifications
A time-temperature indicator or integrator (TTI) can be defined as a simple,
inexpensive device that can show an easily measurable, time-temperature
dependent change that reflects the full or partial temperature history of a food
product to which it is attached.7

The principle of TTI operation is a mechanical, chemical, electrochemical,
enzymatic or microbiological irreversible change usually expressed as a visible
response, in the form of a mechanical deformation, colour development or
colour movement. The rate of change is temperature dependent, increasing at
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higher temperatures similar to most physicochemical reactions. The visible
response thus gives a cumulative indication on the storage conditions that the
TTI has been exposed to. The extent to which this response corresponds to a real
time-temperature history depends on the type of the indicator and the
physicochemical principles of its operation. Indicators can thus be classified
according to the kind of their functionality and the information they convey.
Different classifications and terminology have been proposed, partly reflecting
the evolution of the indicators.

An early classification system introduced by Schoen and Byrne (1972) had
indicating devices separated into six categories, including electronic temperature
recorders.8 Byrne (1976) revised the above classification realising that the main
functional difference of interest is whether the indicator responds above a
preselected temperature or responds continuously giving information on the
cumulative time-temperature exposure.9 He proposed three types: (a) Defrost
Indicators, (b) Time-Temperature Integrators, and (c) Time-Temperature
Integrators/Indicators. A similar scheme recognised three categories:10 (a)
Abuse indicators, (b) Partial temperature history indicators, and (c) Full
temperature history indicators. Full history indicators is an alternative
nomenclature for Time-Temperature Integrators.

A three-category classification will be used in this chapter:11

1. Critical temperature indicators (CTI). CTI show exposure above (or
below) a reference temperature. They involve a time element (usually
short; a few minutes up to a few hours) but are not intended to show
history of exposure above the critical temperature. They merely indicate
the fact that the product was exposed to an undesirable temperature for a
time sufficient to cause a change critical to the safety or quality of the
product. They can serve as appropriate warnings in cases where
physicochemical or biological reactions show a discontinuous change in
rate. Good examples of such cases are the irreversible textural
deterioration that happens when phase changes occur (e.g., upon defrosting
of frozen products or freezing of fresh or chilled products). Denaturation of
an important protein above the critical temperature or growth of a
pathogenic microorganism are other important cases were a CTI would be
useful. The ‘critical temperature’ term is preferred rather than the used
alternative ‘defrost’ that is too limiting. The term ‘abuse’ might be
misleading as oftentimes undesirable changes, warranting warning, can
happen at temperatures which are not as extreme or abusive as the term
implies and which are presumed within the acceptable range of normal
storage for the product in question.

2. Critical temperature/time integrators (CTTI). CTTI show a response that
reflects the cumulative time-temperature exposure above a reference critical
temperature. Their response can be translated into an equivalent exposure
time at the critical temperature. They are useful in indicating breakdowns in
the distribution chain and for products in which reactions, important to
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quality or safety, are initiated or occur at measurable rates above a critical
temperature. Examples of such reactions are microbial growth or enzymatic
activity that are inhibited below the critical temperature. CTTI combina-
tions can give a discretised approximation of real time-temperature history.

3. Time-temperature integrators or indicators (TTI). TTI give a continuous,
temperature dependent response throughout the product’s history. They
integrate, in a single measurement, the full time-temperature history and can
be used to indicate an ‘average’ temperature during distribution and
possibly be correlated to continuous, temperature dependent quality loss
reactions in foods. In the rest of this chapter, the term TTI will refer to Type
3 indicators, unless otherwise noted.

A different method of classification sometimes used is based on the
principle of the indicators’ operation. Thus, they can be categorised as
mechanical, chemical, enzymatic, microbiological, polymer, electrochemi-
cal, diffusion based, etc.

19.2.2 Requirements and properties of an ideal TTI
The requirements for an effective TTI are that it shows a continuous change, the
rate of which increases with temperature and which does not reverse when
temperature is lowered. There are a number of other desirable attributes for a
successful indicator. An ideal TTI would have all the following properties:

• It exhibits a continuous time-temperature dependent change.
• The change causes a response that is easily measurable and irreversible.
• The change mimics or can be correlated to the food’s extent of quality

deterioration and residual shelf-life.
• It is reliable, giving consistent responses when exposed to the same

temperature conditions.
• It has low cost.
• It is flexible, so that different configurations can be adopted for various

temperature ranges (e.g., frozen, refrigerated, room temperature) with useful
response periods of a few days as well as up to more than a year.

• It is small, easily integrated as part of the food package and compatible with a
high speed packaging process.

• It has a long shelf-life before activation and can be easily activated.
• It is unaffected by ambient conditions other than temperature, such as light,

RH and air pollutants.
• It is resistant to normal mechanical abuses and its response cannot be altered.
• It is nontoxic, posing no safety threat in the unlikely situation of product

contact.
• It is able to convey in a simple and clear way the intended message to its

target, be that distribution handlers or inspectors, retail store personnel or
consumers.

• Its response is both visually understandable and adaptable to measurement by
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electronic equipment for easier and faster information, storage and
subsequent use.

19.2.3 History of TTI
The drive for development of an effective and inexpensive indicator dates from
the time when the importance of the distribution temperature variations to final
food quality became apparent. Initially, the interest was focused on frozen foods.
The first application of a ‘device’ to indicate handling abuse dates from World
War II when the US Army Quartermaster Corps used an ice cube placed inside
each case of frozen food. Disappearance of the cube indicated mishandling.8 The
first patented indicator goes back to 1933.12 Over a hundred US and Inter-
national patents relevant to Time-Temperature Indicators have been issued
since. During the last 30 years numerous TTI systems have been proposed of
which only few reached the prototype and even less the market stage.9, 11, 13

Byrne (1976) gives an overview of the early indicators and Taoukis (1989)
presents a detailed history of TTI.9, 13 Taoukis et al. (1991) tabulated TTI patents
that have been issued since 1976 updating a then published list.9, 11 In Table 19.1
significant TTI patents of the past decade are listed and classified according to
type and principle of operation.

The first commercially available TTI was developed by Honeywell Corp.
(Minneapolis, MN).14 The indicator was tested by the USDA and was judged
reliable.15 The device never found commercial application, possibly because it
was costly and relatively bulky, and by the 1970 was not available. In the early
seventies, the US government considered mandating the use of indicators on

Table 19.1 List of recent TTI patents and classification according to type and mode of
response.

Date Inventor Principle of operation Patent No.

1991 Jalinski, T.J. Chemical (TTI) US5,182,212
1991 Jalinski, T.J. Chemical (TTI) US5,085,802
1991 Thierry, A. Chemical (CTI) US5,085,801
1991 Swartzel, K.R. Physicochemical (TTI) US5,159,564
1992 Jalinski, T. Chemical (CTI) EP497459A1
1993 Veitch, R.J. Physicochemical (CTI) EP563769A1
1993 Loustaunau, A. Physical (CTI) EP615614A1
1994 Loustaunau, A. Physical (CTI) US5,460,117
1994 Veitch, R.J. Physicochemical (CTI) US5,490,476
1995 Prusik, T. Physicochemical (TTI) US5,709,472
1996 Cannelongo, J.F. Physical (CTI) US5,779,364
1996 Veitch, R.J. Physical (CTI) EP835429A1
1997 Arens R. et al. Physicochemical (TTI) US5,667,303
1997 Schneider, N. Physical (CTI) US6,030,118
1999 Simons, M.J. Physicochemical (CTI) EP930488A2
2000 Schaten, B.B. Physical (CTI) EP1053726A2
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certain products.16 This generated a flurry of research and development.
Researchers at the US Army Natick Laboratories developed a TTI that was
based on the colour change of an oxidisable chemical system controlled by the
temperature dependent permeation of oxygen through a film.17 Field testing over
a two-year period with the TTI attached to rations showed their potential for
use.18 The system was contracted to Artech Corp. (Falls Church, VA) for
commercial development. By 1976 six companies were making temperature
indicators at least at the prototype stage.9, 19 The Artech, the Check Spot Co.
(Vancouver, WA) (US patent 2,971,852) and the Tempil (S. Plainfield, NJ)
indicators could be classified as CTI, whereas I-Point (Malmö, Sweden), the
Bio-Medical Sciences (Fairfield, NJ) (US patents 3,946,611 and 4,042,336) and
the 3M Co. (St. Paul, MN) indicators were TTI. The Tempil indicator could
function as a CTTI. It involved a change to a red colour and subsequent
movement when exposed above the critical temperature. The I-Point was an
enzymatic TTI, and the 3M, a diffusion based TTI. By the end of the 1970s, very
little commercial application of the TTI was achieved. A number of the
aforementioned systems were discontinued. Activity in the area of TTI subsided
temporarily, noted by a decrease in the relevant publications and in the new TTI
models introduced. However, the more sound systems remained available and
development continued aiming towards fine tuning of their characteristics and
making them more consistent with their claimed performance. In the early
1980s, there were four systems commercially available including the I-Point and
the 3M TTI. Andover Labs (Weymouth, MA) marketed up to 1985 the
Ambitemp and Tempchron devices. Both were for use in frozen food
distribution and could be classified as CTTI. Their operation was based on
the displacement of a fluid along a capillary.

19.2.4 Current TTI systems
In the last fifteen years three types of TTI have been the focus of both scientific
and industrial trials. They claim to satisfy the requirements of a successful TTI
and have evolved as the major commercial types in the market. They are
described in detail in the following sections, coded in this chapter as TTIs A, B
and C.

TTI A is a diffusion based indicator, the 3M Monitor Mark� (3M Co., St.
Paul, Minnesota) (US Patent, 3,954,011, 1976). One of the first significant
applications of TTI was the use of this indicator by the World Health
Organization (WHO) to monitor refrigerated vaccine shipments. The response of
the indicator is the advance of a blue dyed ester diffusing along a wick. The
useful range of temperatures and the response life of the TTI are determined by
the type of ester and the concentration at the origin. Thus the indicators can be
used either as CTTI with the critical temperature equal to the melting
temperature of the ester or as TTI if the melting temperature is lower than the
range of temperatures the food is stored at, e.g., below 0ºC for chilled storage.
The same company has marketed recently the successor to this TTI the Monitor
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Mark� Temperature Monitor (Fig. 19.1) and Freshness Check, based on
diffusion of proprietary polymer materials (US patent 5,667,303).

A viscoelastic material migrates into a diffusely light-reflective porous
matrix at a temperature dependent rate. This causes a progressive change of the
light transmissivity of the porous matrix and provides a visual response. The
response rate and temperature dependence is controlled by the tag configuration,
the diffusing polymer’s concentration and its glass transition temperature and
can be set at the desirable range. The TTI is activated by adhesion of the two
materials that before use can be stored separately for a long period at ambient
temperature.

TTI B is an enzymatic indicator, VITSAB Time Temperature Indicator,
successor of the I-Point Time Temperature Monitor (VITSAB A.B., Malmö,
Sweden). The indicator is based on a colour change caused by a pH decrease
which is the result of a controlled enzymatic hydrolysis of a lipid substrate (US
Patents 4,043,871 and 4,284,719). Before activation the indicator consists of two
separate compartments, in the form of plastic mini-pouches. One compartment
contains an aqueous solution of a lipolytic enzyme, such as pancreatic lipase.
The other contains the lipid substrate absorbed in a pulverised PVC carrier and
suspended in an aqueous phase and a pH indicator mix. As substrates, glycerine
tricapronate (tricaproin), tripelargonin, tributyrin, and mixed esters of polyvalent
alcohols and organic acids are mentioned. Different combinations of enzyme-
substrate types and concentrations can be used to give a variety of response lives
and temperature dependencies. At activation, enzyme and substrate are mixed by
mechanically breaking the barrier that separates the two compartments.
Hydrolysis of the substrate (e.g., tricaproin) causes acid release (e.g., caproic
acid) and the pH drop is translated in a colour change of the pH indicator from
deep green to bright yellow. Reference starting and end point colours are printed
around the reaction window to allow easier visual recognition and evaluation of
the colour change (Fig. 19.2). The continuous colour change can also be
measured instrumentally.7 The TTI Type B are claimed to have a long shelf-life
if kept chilled before activation.

Fig. 19.1 Diffusion based TTI Type A.

408 Food process modelling



TTI C, Lifelines Freshness Monitor� and Fresh-Check� indicators (Lifelines
Inc., Morris Plains, NJ) are based on a solid state polymerisation reaction (US
Patent, 3,999,946 and 4,228,126).22 The TTI function is based on the property
of disubstituted diacetylene crystals (R� C � C� C � C� R) to polymerise
through a lattice-controlled solid-state reaction proceeding via 1,4-addition
polymerisation and resulting in a highly coloured polymer. During polymerisa-
tion, the crystal structure of the monomer is retained and the polymer crystals
remain chain aligned and are effectively one dimensional in their optical
properties.23 The response of the TTI is the colour change measured as a
decrease in reflectance. Freshness Monitor consists of an orthogonal piece of
laminated paper the front face of which includes a strip with a thin coat of the
colourless diacetylenic monomer and two barcodes, one about the product and
the other identifying the model of the indicator. The Fresh-Check� version, for
consumers, is round, and the colour of the ‘active’ centre of the TTI is
compared to the reference colour of a surrounding ring (Fig. 19.3). The
laminate has a red or yellow colour so that the change is perceived as a change
from transparent to black. The reflectance of the Freshness Monitor can be
measured by scanning with a laser optic wand and stored in a hand-held device
supplied by the TTI producer. The response of Fresh Scan can be visually
evaluated in comparison to the reference ring or continuously measured by a
portable colorimeter or an optical densitometer. Before use the indicators,
active from the time of production, have to be stored deep frozen where change
is very slow.

Fig. 19.2 Enzymatic TTI Type B.

Fig. 19.3 Polymer based TTI Type C.

Modelling the use of time-temperature indicators 409



Despite the potential of TTI to substantially contribute in improved food
distribution, reduce food waste and benefit the consumer with more meaningful
shelf-life labelling their application up to now has not lived up to the initial
expectations. The main reasons for the reluctance of food producers to adopt the
TTI have been cost, reliability, and applicability. The cost is volume dependent,
ranging from 2 to 20 cents per unit, and if the other questions are resolved, the
cost-benefit analysis should well be in favour of the indicators. The reliability
question has its roots in the history of indicators, due partly to exaggerated
claims by manufacturers of some early models and partly on lack of sufficient
data, both from studies and from the suppliers. Initial attempts in using TTI as
quality monitors were not well designed and hence unsuccessful. Re-emerging
discussions by regulatory agencies to make the TTI use mandatory, before the
underlying concepts were understood and their reliability demonstrated, resulted
in resistance by the industry and may have hurt TTI application up to the present
time. Current TTI systems have achieved high standards of production quality
assurance and provide reliable and reproducible responses according to the
specifications stated. Testing standards have been issued by the BSI and can be
used by the TTI manufacturers as well as the TTI users.24 Testing and modelling
of the TTIs will be covered in depth in the next sections.

The question of applicability, however, has been the most substantial hurdle
to TTI use. Suppliers and earlier studies have been ineffective in establishing a
clear methodology on how the TTI response can be used as a measure of food
quality. The initial approach was to assume an overall temperature dependence
curve (or zone) for the shelf-life of a general class of foods, e.g., frozen foods,
and aim for an indicator that has a similar temperature dependence curve for the
time to reach a specific point on its scale. Such a generalisation proved
insufficient as even foods of the same type differed significantly in the
temperature dependence of the deterioration of their quality. What is needed is a
thorough knowledge of the shelf-life loss behaviour of the food system to be
monitored, expressed quantitatively in, as accurately as possible, kinetic models.
It is not reasonable to expect the TTI monitoring ability to improve on the ability
to predict quality and shelf-life of a food exposed to fully known temperature
conditions, such as one would record e.g. with an electronic data logger attached
to the food. Such unfounded expectations have been one of the main reasons for
the slow progress and often observed reversals in the history of TTI application.

It has been widely assumed and proposed that the behaviour of the TTI
should strictly match that of the particular food to be monitored at all
temperatures. This approach, even if feasible, is impractical, and requires an
unlimited number of TTI models. Instead of a TTI exactly mimicking quality
deterioration behaviour of the food product, a meaningful, general scheme of
translating TTI response to food status is needed. This should be based on
systematic modelling of both the TTI and the food. This kinetic modelling
approach and the methodology for applying TTI for food quality monitoring and
chill chain optimisation will be detailed in the next sections.
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19.3 Food quality modelling

Kinetic modelling of food quality has also been addressed in previous chapters
of this book. Effective and quantitative knowledge of food deterioration and
determination and modelling of the shelf-life or keeping quality of the food
products is the most important prerequisite for the application of a TTI based
monitoring system. For consistency of approach and terminology, the principles
and equations of food quality modelling used in the development of the TTI
scheme will be outlined in the present section.

Food is a physicochemical system of high complexity involving numerous
physical and chemical variables. It is imposible or impractical to quantitatively
determine all these variables. Food quality change in general may be expressed
as a function of composition and environmental factors:

dQ
dt
� F�Ci�Ej� �19�1�

where Ci are composition factors, such as concentration of reactive compounds,
inorganic catalysts, enzymes, reaction inhibitors, pH, water activity, as well as
microbial populations and Ej are environmental factors, such as temperature,
relative humidity, total pressure and partial pressure of different gases, light and
mechanical stresses. Even if this system could be explicitly expressed in terms
of measurable parameters, no analytical solution is attainable and possible
numerical solutions are too elaborate for any practical purpose. The established
methodology consists of first identifying the chemical and biological reactions
that influence the quality and the safety of the food. Then, through a careful
study of the food components and the process, the reactions judged to have the
most critical impact on the deterioration rate, are deternined.25 Based on this
analysis and without underestimating the underlying complexity of food
systems, food degradation and shelf-life loss is in practice represented by the
loss of desirable quality factors A (such as nutrients, characteristic flavours) or
the formation of undesirable factors B (such as off flavours, microbial load,
discoloration). The rate of loss of A (correspondingly of formation of B) is
expressed as:

rA � �d�A�
dt
� k�A�m �19�2�

The quality factors [A] are usually quantifiable chemical, physical,
microbiological or sensory parameters characteristic of the particular food
system, k the apparent reaction rate constants and m the apparent reaction order.
The apparent reaction order and constant are determined by fitting the change
with time of the experimentally measured values of [A] to equation (19.2). In the
integral method, variables are separated and integration is carried out. Thus for
equation (19.2), we have:

�
�A

A0

d�A�
�A�m � kt �19�3�
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Regardless of the value of m (the order of the reaction) equation (19.3) can be
expressed in the form:

f �A� � kt �19�4�
where the expression f (A) is defined as the quality function of the food.

The form of the quality function of the food for an apparent zero, 1st, 2nd and
mth order reaction can be derived from equation (19.4) and is shown in Table
19.2 along with the half life time of the reaction i.e. the time for the
concentration of the quality index A to reduce to half its initial value.

A more detailed discussion on the definition and methodology of
determination of the quality function and the involved caveats can be found
in Taoukis et al. (1997).26

In order to include in the quality function the effect of the environmental
factors the commonly used approach is to model it into the apparent reaction rate
constant, i.e. expressing k of equation (19.4) as a function of Ej � k � k�Ej�. The
factor most often considered and studied is temperature. This is justifiable
because temperature not only strongly affects reaction rates but is also directly
imposed to the food externally (direct effect of the environment), the other
factors being at least to some extent controlled by the food packaging. The
Arrhenius relation developed theoretically for chemical and biochemical
reactions, has been experimentally shown to hold empirically for a number of
more complex chemical and physical phenomena (e.g., viscosity, diffusion,
sorption). Food quality loss reactions described by the aforementioned kinetic
models have also been reported widely in the literature to follow an Arrhenius
behaviour for temperatures within the particular temperature range of practical
interest for each food product category. Deviations from the Arrhenius equation
and alternative approaches for modelling the temperature dependence such as
the Eyring, the Belehradek and the WLF equations have been addressed in other
chapters of this book and in the literature.26, 27

In summary, the shelf-life of a food product evaluated by the measurement of
a characteristic quality index, A, can be expressed as:

f �A� � kt � kref exp
�EA

R
1
T
� 1

Tref

� �� �
t �19�5�

Table 19.2 Quality function and half life time for deterioration of quality index A

Apparent Quality function Half life
reaction order f (A)t t1/2

0 A0 � At A0��2k0�
1 ln(A0 � At) ln2/k1

2 1�A0 � 1�At 1/(k2A0)

m �m �� 1� 1
m� 1

�A1�m
t � A1�m

0 � 2m�1 � 1
km�m� 1� � A1�m

0
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where f (A) is the quality function of the food and k the reaction rate constant. The
rate constant is an exponential function of inverse absolute temperature, T, given
by the shown Arrhenius expression, where kref is the reaction rate constant at a
reference temperature Tref, EA is the activation energy of the reaction that controls
quality loss and R the universal gas constant. The activation energy of food related
chemical reactions and spoilage or pathogenic microbial growth usually falls
within 30–120 kJ/mol. The reference temperature used is characteristic of the
storage range of the food, e.g. for chilled foods Tref� 273 K can be used.

The value of the quality function, f (A)t, at time t, after exposure of the food at
a known variable temperature exposure, T (t), can be found based on equation
(19.5) by calculating the integral of k[T(t)] dt, from 0 to time t.

f �A�t � kref

�t

0
exp
�EA

R
1

T�t� �
1

Tref

� �� �
dt �19�6�

The integral can be calculated analytically for simple T(t) functions or
numerically for more complex ones.26

We can define the effective temperature, Teff, as the constant temperature that
results in the same quality change as the variable temperature distribution, T(t).
Thus, f �A�t can be expressed as

f �A� � kt � kref exp
�EA

R
1

Teff
� 1

Tref

� �� �
t �19�7�

19.4 TTI response modelling – application scheme

The same kinetic approach as described for food quality can be used to model
the measurable change X of the TTI. If a response function F(X) can be defined
such that F�X � � kI t, with kI an Arrhenius function of T, the response of the TTI
can be expressed by the following equation:

F�X � � kI t � kIref exp
�EAI

R

�
1
T
� 1

Tref

� ��
t �19�8�

where kIref
is the TTI response rate constant at the reference temperature Tref and

EAI
is the activation energy of the response.

The effective temperature concept as described above can also be used for the
TTI. For an indicator exposed to the same temperature profile, T (t), as the food
product, the response function can be expressed by equations similar to (19.6)
and (19.7) which for the TTI take the form:

F�X �t � kI ref

�t

0
exp
�EAI

R
1

T�t� �
1

Tref

� ��
dt �19�9�

�

Using the effective temperature, Teff (TTI), i.e. the constant temperature that
results in the same TTI response as the variable temperature profile, T(t), F(X)t

can be expressed as
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F�X �t � kI t � kI ref exp
�EAI

R
1

Teff�TTI�
� 1

Tref

� ��
t �19�10�

�

Based on the above kinetic equations an application scheme was developed
that allowed the calculation of the value of the quality factor value A, at any time
t, from the measured change X of the indicator, at that time.7 The application
scheme is illustrated in Fig. 19.4. From the measured value X of the TTI at time t
the value of the response function is calculated, from which by solving equation
(19.10), Teff is derived. If the TTI and the food product quality deterioration
reactions have similar temperature dependence, translated into activation
energies differing by less than 25 kJ/mol, the same Teff can be used for the
food. With the Teff and the kinetic parameters of the quality loss reaction known,
the quality function f (A) value is calculated from equation (19.7) and from it the
value of the quality index At is found. Knowledge of the value of A gives the
extent of the quality deterioration of the food. It also allows the calculation of
the remaining shelf-life at any assumed average temperature.

To apply the developed systematic approach, the response characteristics of
the different types of TTI i.e., the F(X) expression and the values of kI and EA (if
they show Arrhenius behaviour) must be determined from kinetic experi-
ments.7, 28, 29 The author and co-workers have conducted extensive testing and
modelling work on all available types of TTIs. The response and Arrhenius plots
of the response rates of selected TTIs of Types A, B, and C are shown in Figures
19.5, 19.6 and 19.7. Continuous objective instrumental CIELab measurements
of the colour change with a Minolta 200 and/or a Hunter Miniscan colorimeter
were employed. Different indices that quantified better the response of each TTI
type were used. Then the response function, such that F�X � � kI t, was
determined. From the F�X � v. time plots, the value of the rate of the TTI

Fig. 19.4 Schematic representation of the systematic approach for applying TTI as
quality monitors.
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response k was determined at each temperature by linear regression analysis
(Fig. 19.5a, 19.6a and 19.7a). The correlation coefficients of the fit were 0.9 or
larger. The temperature dependence of the response rates, k, was modelled by
the Arrhenius equation. For TTI Type A the chromaticity change
�E � ��L2 ��a2 ��b2�, from the Lab values corresponding to the end
point colour, was used as the response X of the TTI. For TTI Type B the
normalized chroma Xc � �C � Cmin���Cmax � Cmin), where C � �a	2 � b	2�1�2,
Cmin is the minimum measured chroma value at the time of TTI activation and
Cmax the chroma value that corresponds to the colour reached long after what is
considered as the end point colour of the TTI, was used as the response X of the
TTI. The index that quantified better the change of colour of TTI Type C with
time was the b value of the CIELab system i.e. X � b.

Table 19.3 summarises the kinetic parameters of representative models of the
three types of TTI. The EA values of the three indicators cover the range of the
most important deteriorative reactions in foods. The kinetic expressions of the

Fig. 19.5 (a) Response of a TTI Type A at different isothermal storage conditions.
F�X � � �E2 is the response function of the indicator. Points are average of measured
response of ten TTI units at each temperature. Lines are the regression fit lines for F(X) v.

time. (b) Arrhenius plot of the response rate of TTI Type A. Tref� 273 K.

Fig. 19.6 (a) Response of a TTI Type B – Model M at different isothermal storage
conditions. F(Xc) is the response function of the colour changing ‘window’ of the

indicator. Points are average of measured response of twelve TTI units at each
temperature. Lines are the regression fit lines for F(Xc) v. time. (b) Arrhenius plot of the

response rate of TTI Type B – Model M. Tref� 273 K.
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behaviour of the TTI have to be validated under dynamic, i.e. variable
temperature conditions. Such validation for selected TTI was conducted and was
reported satisfactory.29, 30

The developed principles give a potential user the ability to develop an
application scheme specific to a product and to select the most appropriate TTI
without the need of extensive side by side testing of the product and the
indicator. The storage effective temperature (Teff) is the ultimate information
obtained from the TTI response and the reliability of a TTI is directly linked to
the error in Teff. The error in the Teff calculation is due to three sources:

1. The variability in the value of the response function, F(X), between
indicators of the same model, at same time and temperature. It can be
expressed as an average coefficient of variation for a large number of
different conditions. For previously studied TTI models it ranged from 1 to
10%.

2. The uncertainty in the Arrhenius equation, modelling the TTI temperature
behaviour, statistically expressed by the confidence limits of the regression
values of EA and kI. Values of 
5% to 14% for EA from 41 to 141 kJ/mol
were obtained. These first two sources of error reflect the quality of design
and manufacturing of the TTI and the reliability of the kinetic modelling of
the TTI temperature behaviour.

3. The third error in Teff is due to the difference in activation energies between
the food and the TTI. This error is systematic and not random. In the
developed application scheme there is an important underlying assumption;

Fig. 19.7 (a) Response of a TTI Type C at different isothermal storage conditions.
F(X)� ln(bo/b) is the response function of the indicator. Points are average of measured
response of ten TTI units at each temperature. Lines are the regression fit lines for F(X) v.

time. (b) Arrhenius plot of the response rate of TTI Type C. Tref� 273 K.

Table 19.3 Kinetic parameters for the three TTI types

TTI A TTI B -C TTI B -M TTI B -S TTI B - L TTI C

F�X � X2 [ln(1/1� [ln(1/1� [ln(1/1� [ln(1/1� ln(X0/X)
X)]1/2 X)]1/2 X)]1/2 X)]1/2

EAI
(kJ/mol) 112 48 69 102 160 83
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that the effective temperature of the food is equal to the effective temperature
of the TTI for a given temperature distribution. This is only true when the
activation energies of the food and the TTI are equal or in the trivial case
when the temperature is constant throughout the cycle. Calculations with
assumed variable temperatures showed that if the activation energies of the
food and the TTI differ by less than 40 kJ/mol, i.e. �EATTI � EAfood� � 40 kJ/
mol, then in general the two Teff differ by 0.4 to 1.8ºC. An error of 1ºC in the
Teff results in an error of the quality estimation in the range of 10�15%,
which in many cases is acceptable. For example it was computed that
�Teff� 1ºC corresponds to 12 and 8.3% error in the value of quality for a
zero- and 1st-order reaction with an activation energy EA of 85 kJ/mol
respectively. The recommended approach is to select a TTI with an EA close
to the foods, possibly within 
20 kJ/mol. Effect of EA difference on the
accuracy of quality estimation will be demonstrated in the next section.
Furthermore, in section 19.6 it is discussed that even TTIs with larger EA

differences from the food could be useful for stock rotation applications.

The importance of the prerequisite systematic knowledge of the shelf-life loss
behaviour of the food, expressed quantitatively in, as accurate as possible kinetic
terms, has been pointed out. Quality loss of chilled foods is often due, directly or
indirectly, to microbial spoilage. In this context the significant progress that is
being achieved in the area of predictive microbiology can lead to effective shelf-
life modelling of chilled foods and contribute to increased reliability in the use
of TTIs as monitors of the chill chain.31 What might be seen as a hindrance to a
direct application of the accumulated kinetic information, to the above
developed application scheme for TTIs, is the often used different kinetic
terminology and quantitation approach of the temperature effect. Belehradek or
square root type expressions for modelling the temperature dependence of the
microbial growth rate has most often been used:27

k
� � b�T � T0� �19�11�

The shown square root function, where b the slope and T0 is a nominal
minimum temperature, is the simplest form, applicable to the suboptimal
conditions of microbial growth of the chill chain. Most available TTIs show an
Arrhenius behaviour and are expressed in EA terms. The developed application
scheme based on the Teff concept could equally well be used with the
temperature dependence of both the food and the TTI expressed with an
equation other than the Arrhenius. If however the two systems are expressed by
different equations, the Teff calculated from the TTI response based on the
Arrhenius characteristics will introduce an additional error when used to
estimate the quality of the food from the square root equation. A practical
solution in these cases is to calculate, based on the Belehradek kinetics, the
corresponding activation energy of the food spoilage phenomenon at the
temperature range of interest, select the available TTI with the closest EA and
use the described application scheme based on Arrhenius kinetics.

Modelling the use of time-temperature indicators 417



19.5 Shelf-life monitoring in distribution

TTI can be used to monitor the temperature exposure of food products during
distribution, from production up to the time they are displayed at the
supermarket. Attached to individual cases or pallets they give a measure of
the preceding temperature conditions at selected control points. The obtained
information is used for continuous, overall monitoring of the distribution
system, leading to recognition and correction of the consistently problematic
links. Furthermore, it allows targeting of responsibility and serves as a proof of
compliance to contractual requirements by the producer and distributor. It can
guarantee that a properly handled product was delivered to the retailer, thus
eliminating the possibility of unsubstantiated rejection claims by the latter. The
presence of the TTI itself would probably improve handling, serving as an
incentive and reminder to the distribution employees throughout the chain, of
the importance of proper temperature storage.

The same TTI can be used as end point indicators readable by the consumer
and attached to individual products. Tests using continuous instrumental
readings to define the end point under constant and variable temperatures
showed that the end points could be reliably and accurately recognised visually
by panellists.32 However, for a successful application, there is a much stricter
requirement that TTI response matches the behaviour of the food, since there is
no correlation algorithm used but a single visual end point that should indicate
closely the end of shelf-life at any temperature. To achieve this the TTI end
point should coincide with the end of shelf-life at one reference temperature and
the activation energy should differ by less than 10kJ/mol from that of the food.
The TTI attached to individually packaged products, can serve as dynamic or
active shelf-life labelling instead of, or in conjunction with, open date labelling.
The TTI assure the consumers that the products were properly handled and
indicate remaining shelf-life. A consumer survey showed that consumers were
very receptive to the idea of using these TTI on dairy products along with the
date code.33 Thus, use of TTI can additionally be an effective marketing tool. As
such TTI Type A has been used by the Cub Foods Supermarkets in USA and
TTI Type C by the Monoprix chain in France and the Continent stores in Spain.

A number of experimental studies that aimed to establish correlations
between the response of specific TTI and quality characteristics of specific
products have been reported. They employed side by side storage of indicators
attached to the tested foods at different temperatures, plotting the response of the
TTI v. time and the values of selected quality parameters of the foods v. time
and testing the statistical significance of the TTI response correlation to the
quality parameters. Foods correlated to TTI include pasteurised whole milk,34–36

ice cream,37 frozen hamburger,38 chilled cod fillets,39 refrigerated ready to eat
salads,40 frozen bologna,41 UHT milk,42 refrigerated orange juice,43 pasteurised
cream,36 cottage cheese,36, 44 frozen strawberries,45 chilled lettuce and
tomatoes,46 and chilled fresh salmon.47 This type of studies offers useful
information, but do not involve any modelling of the TTI response as a function
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of time and temperature and thus are applicable only for the specific foods and
the conditions that were used. Extrapolation to other similar foods or quality loss
reactions, or even use of the correlation equations for the same foods at other
temperatures or for fluctuating conditions is not accurate.

The kinetic approach outlined allows the potential user to develop an
application scheme specific to a product and to select the most appropriate TTI
without the need of extensive side by side testing of the product and the
indicator. This approach emphasises the importance of reliable shelf-life
modelling of the food to be monitored. Shelf-life models must be obtained with
an appropriate selection and measurement of effective quality indices and based
on efficient experimental design at isothermal conditions covering the range of
interest. The applicability of these models should be further validated at
fluctuating, non isothermal conditions representative of the real conditions in the
distribution chain. Similar kinetic models must be developed and validated for
the response of the suitable TTI. Such a TTI should have a response rate with a
temperature dependence, i.e. activation energy EAI

, in the range of the EA of the
quality deterioration rate of the food. Also the total response time of the TTI
should be at least as long as the shelf-life of the food at a chosen reference
temperature. TTI response kinetics should be provided and guaranteed by the
TTI manufacturer as specifications of each TTI model they supply.

The above concepts were thoroughly applied in studying the suitability of
TTI in monitoring the seafood chill chain within the FAIR-CT96-1090 research
project funded by the European Commission entitled ‘Development, Modelling
and Application of Time-Temperature Integrators to monitor Chilled Fish
Quality’. Shelf-life of different fresh and minimally processed fish products was
systematically studied and modelled. The fish chill chain, noted for substantial
losses by spoilage is due to benefit significantly from effective monitoring and
controlling of storage conditions. Temperature largely determines the rate of
microbial activity, the main cause of spoilage of fresh and minimally processed
fish products, thus being the determining parameter of shelf-life under Good
Hygiene Practices. Shelf-life study requires establishing a time correlation
between measured chemical/biochemical changes, microbiological activity and
sensory value for the conditions of interest. Since each type of fish product,
depending on intrinsic and extrinsic factors, has its own specific spoilage
microflora investigation of the spoilage domain provides the fundamentals for
understanding the spoilage phenomenon and for reliable shelf-life predictive
modelling.48, 49 Models of sensory quality and growth of spoilage microflora
were developed and validated in dynamic temperature conditions for a variety of
different fish. Kinetic study of alternative TTIs at isothermal and non isothermal
conditions was conducted and their use as fish quality monitors was assessed. In
this context the natural microflora of different Mediterranean fish of commercial
interest such as boque, seabass, seabream, red mullet was studied and growth of
the specific spoilage bacteria Pseudomonas spp. and Shewanella putrefaciens
was modelled and correlated to organoleptic shelf-life.29, 50, 51 Arrhenius and
square root functions were used to model temperature dependence of maximum
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growth rates. For example experimental data for growth of the different
measured constituents of the boque natural microflora showed that at all
temperatures, growth of Pseudomonads and Shewanella putrefaciens, followed
closely the decrease of average sensory score of the cooked fish. End of shelf-
life coincided with an average level of 107 for these two bacteria from 0 to 15ºC.
At 0ºC it was determined at 174 hr. The Arrhenius temperature dependence of
the rate of sensory degradation and Pseudomonads and Shewanella putrefaciens
exponential growth rate was determined in terms of activation energy (EA) as
86.6, 81.6 and 82.7 kJ/mol respectively.

Based on the above kinetic data the effect of the difference in the activation
energies of TTI response (from Table 19.3) and spoilage rate of the monitored
fish on the shelf-life predictive ability of the TTI can be assessed. The actual
effective temperature (based on growth kinetics) of variable temperature profiles
is compared to the one calculated from the response of the TTI. This was also
translated based on the application scheme of Fig. 19.4 into remaining shelf-life
at chilled conditions of 0ºC.

The total shelf-life at 0ºC is 174 hr based on the Pseudomonads growth with
N0� 1000 and Nmax� 107. This coincides with the sensorial shelf-life. Setting
these limits allows the estimation of remaining shelf-life at 0ºC after the
‘abusive’ storage conditions of the first 24 hr. In Table 19.4, Teff for the fish,
after exposure for 24 hours at the variable temperature profiles (shown in Fig.
19.8), is given.

It can be seen that for the first temperature profile, TD1, indicator TTI B-
Model C that has an activation energy more than 40 kJ/mol different to the fish
spoilage gives a Teff error of more than 1ºC. This results in a prediction of
remaining shelf-life of 74 hr respectively, compared to the 90 hr of actual
remaining shelf-life. Teff and remaining shelf-life from TTI B-Model M and TTI
C-Model A6, 92 and 91 hr respectively, are very close to the actual. It should be
noted, however, that even the erroneous estimations from the TTIs with different
activation energies are in practice much better than the 150 hr that would be
presumed for shelf-life if no indication of improper storage was available. For
the second temperature profile, TD2, predictions from all TTIs are practically
sufficient. This illustrates the fact that the error depends on the actual

Table 19.4 Effective temperature and remaining shelf-life (tr) of boque at chilled
conditions of 0ºC, for variable storage temperatures (TD1, TD2) during the initial 24 hr
estimated by different TTI

TD1 TD2

Teff (ºC) tr (hr) Teff (ºC) tr (hr)

‘ACTUAL’ 8.93 90 9.8 81
TTI B-Model C 10.50 74 10.0 79
TTI B-Model M 8.74 92 9.8 82
TTI C-Model A6 8.95 91 9.8 81
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temperature distribution. TD1 and TD2 are qualitatively different in that the first
represents a profile with more abrupt changes than the second. The problem is
that the temperature profile in a real situation is unknown. It is therefore
advisable to select the TTI that, in addition to other requirements, has an
activation energy close to the one of the quality loss rate of the food.
Alternatively, response of two or three TTIs (i.e. a multiple TTI) with different
EAI

s could provide a corrected estimate of Teff giving a reliable estimate of the
food quality even when these EAI

s differ substantially from the EA of the food.52

The example shows the potential and demonstrates the methodology of
monitoring the chill chain based on a continuous scale TTI response, translatable
to the effective temperature history as described above. This methodology can
be applied to chilled products other than fish if appropriate quality loss models
are available. Especially long shelf-life chilled foods can benefit from the ability
to monitor their temperature history by the introduction of a TTI based
distribution control and stock rotation system. Such a system will be described
and evaluated in the next section.

Frozen foods can also be monitored based on the same approach. TTI Type B
and TTI Type A have been tested and modelled at temperatures in the range of
�1 to �30ºC.53 TTI Type A can respond above a temperature at which diffusion
commences. This temperature can also be set, based on the type of polymer
materials used and their glass transitions. Certain caveats should however be
taken into account when TTIs are applied to frozen foods. These are related to
the applicability of Arrhenius models developed under isothermal conditions to
the prediction of the effect of dynamic, fluctuating temperature storage. The

Fig. 19.8 Variable temperature scenarios of storage of boque during 24 hours.
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response of tested TTIs does show Arrhenius behaviour also at the subfreezing
range. Furthermore, the response models can reliably be used at non isothermal
conditions. However, foods can seriously deviate from such behaviour.
Deviations from Arrhenius type temperature dependence can be due to freeze
concentration effects, recrystallisation dependent quality deterioration and glass
transition phenomena.26 For products like frozen vegetables, assuming that
thawing is avoided (which can be verified with the aid of a CTI or a CTTI),
Arrhenius behaviour in the range of �1 to �30ºC has been modelled and
validated for fluctuating conditions.53 TTI monitoring can effectively be applied
in these cases. In cases such as ice cream or other frozen desserts where
recrystallisation phenomena seriously affect, if not determine, the product
quality, a cumulative effective temperature (obtained by a single response TTI)
might not be sufficient to accurately predict the quality loss.

19.6 Optimised distribution and stock rotation system

The information provided by the TTI, translated to remaining shelf-life at any
point of the chill chain can be used to optimise distribution control and apply a
stock rotation system. Such an inventory management and stock rotation tool at
the retail level was initially proposed by Labuza and Taoukis (1990).54 The
approach currently used is the First In First Out (FIFO) system according to
which, products received first and/or with the closest expiration date on the label
are shipped, displayed and sold first. This approach aims in establishing a ‘steady
state’ with all products being sold at the same quality level. The assumption is
that all products have gone through uniform handling, thus quality is basically a
function of time. The use of the indicators can help establish a system that does
not depend on this unrealistic assumption. The objective will again be the
reaching of a ‘steady state’ situation with the least remaining shelf-life products
being sold first. This approach is coded LSFO (Least Shelf-life First Out). The
LSFO system would reduce the number of rejected products and largely
eliminate consumer dissatisfaction since the fraction of product with unaccep-
table quality at consumption time can be minimised. The development of LSFO
system is based on validated shelf-life modelling of the controlled food product,
specification of the initial value of the quality index, A0, and the value As at the
limit of acceptability (end of shelf-life), and temperature monitoring in the chill
chain with TTI. The above elements form the program core of an integrated
software that allows the calculation of the actual remaining shelf-life of
individual product units (e.g. small pallets, 5�10 kg boxes or even single product
units) at strategic control points of the chill chain. Based on the distribution of the
remaining shelf-life, decisions can be made for optimal handling, shipping
destination and stock rotation, aimed at obtaining a narrow distribution of quality
at the point of consumption. The diagram of the decision making routine is
illustrated in Fig. 19.9. Also, the mechanism of decision making at a hypothetical
control point of the chill chain is shown. For example, at a certain point, e.g. the
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supermarket main storage, product half of a shipment is forwarded to the retail
display, immediately, the other half the next day. The split could be at random
according to conventional FIFO practice or it can be based on the actual
individual product quality and LSFO. For all units the response of the TTI,
cumulatively expressing the temperature exposure of the product, is put in either
electronically as a signal of a suitable optical reader or keyed in manually based
on visual readings. This information directly fed into a portable unit with the
LSFO progamme, is translated to quality status, At, based on the kinetics of the
used TTI, which integrates the time-temperature history of each product into an
effective temperature value, Teff, and the shelf-life model of the product. Having
estimated At for all the n product units, the actual quality distribution for the
products at the decision point is constructed. Based on the quality of each product
unit relative to this distribution, decisions about its further handling are made.

For the scenario illustrated in Fig. 19.9, products B with less remaining shelf-
life, i.e. higher At, will be displayed first at the retail display cabinets of the
supermarket and will therefore be consumed sooner whereas products with
longer remaining shelf-life (lower At) will be displayed later. The decision
process can involve more options with regard to e.g. handling methods, shipping
means or destinations, stock rotation timing and planning. Points of the chill
chain where actions are taken with regard to handling, transportation,
distribution and stocking of products can be designated and used as decision
points of the LSFO system.

In order to evaluate the results of the application of the LSFO system and
quantitatively prove its effectiveness a Monte Carlo simulation can be applied,
with data and information provided by surveys on the conditions of the
distribution chain. It is based on the generation of hypothetical ‘scenarios’.
Values of the controlling parameter, temperature, are treated as probability
distributions, which represent uncertainty (lack of sufficient knowledge, see also
Chapter 7) or the commonly encountered variation in the parameter. The
procedure, repeated many times, requires the random selection of a value from
each of the probability distributions assigned for the input parameters, in order
to calculate a mathematical solution, defined by the shelf-life model used. At
each iteration, a value is drawn from the defined distribution, calculations are
performed and the results are stored. Eventually, the analysis provides a
frequency distribution for the output of interest (quality status and remaining
shelf-life), that has taken into account the probability distribution of temperature
conditions, instead of using a single-point estimate (see also Chapter 5).

The results for the simulated application of LSFO in the cases of two long
shelf-life chilled products are presented. These products have both a shelf-life of
three months at 4ºC and their quality loss rate shows a low and high temperature
dependence (low and high EA respectively).

Russian salad, a chilled product widely consumed in Greece, microbiologi-
cally stable through application of hurdle technology principles with a shelf-life
of three months was used as a case study.55 For this microbiologically stable,
complex food, modelling of shelf-life was based on overall organoleptic
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deterioration and development of rancidity. Use of Weibull Hazard Analysis
facilitated shelf-life determination and modelling of sensory evaluation data.
The activation energy of shelf-life loss was estimated at 31.5 kJ/mol. For a
realistic estimate of the storage temperature conditions at the different stages,
data of chilled product temperatures previously collected at the commercial
level and from a survey of home refrigerators was used. The temperature
condition distributions are illustrated in Fig. 19.10.

To demonstrate the effectiveness of the LSFO approach as compared to FIFO,
a 60-day cycle, from production to consumption, was used. This consisted of
three stages: Stage 1, 30 days at local distribution centres; stage 2, 15 days at the
supermarket storage; stage 3, 15 days at the domestic refrigerator. Based on a
Monte Carlo simulation approach, 2000 temperature scenarios were run, using a
program code written in FORTRAN 77. The temperatures used were obtained at
random from the distributions of Fig. 19.10 (distribution 10a for stages 1 and 2
and distribution 10b for stage 3). The results of this simulation are illustrated in
Fig. 19.11 which shows the probability for the product to be consumed at a
certain quality level, expressed as Remaining Shelf-Life (SLR). The FIFO
approach shows a significant portion of products (8%) consumed with quality

Fig. 19.9 Logical diagram of the decision making routine of LSFO system at important
control points of the distribution chain. Quality at time t (At) is computed for all n product
units. The computation is based on the response of the TTI, translated to the effective

storage temperature (Teff) of the product. The distribution function of quality is
constructed and decision for the further handling of each unit is taken based on its value

within this function.
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lower than the one used to set end of shelf-life (expressed as a negative remaining
shelf-life). Using the LSFO approach, products in the 2nd stage are advanced to
retail cabinets for sale every five days based not on FIFO but on the response of
the attached TTI (Type B- Models C and M) showing which products should be

Fig. 19.10 Left: Temperature distribution in commercial chilled storage. (Measure-
ments in 150 supermarkets in the metropolitan area of Athens). Right: Temperature
distribution in domestic refrigerators. (Based on measurements in 40 households).

(Adopted from Taoukis et al., 1998.55)

Fig. 19.11 Distribution of quality of Russian salad products after 60 days distribution,
retail and domestic storage. For each point the percentage of the products that have a

remaining shelf-life in the range of 
2.5 days of the abscissa value can be read on the
vertical axis. The line with solid circles corresponds to the FIFO and with open circles to
the LSFO system based on actual temperature monitoring or a TTI with EAI

�EA. Open
diamonds line is the LSFO line based on the TTI, Type B (practically coincides with the

actual LSFO line).
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advanced first. This system leads to a narrower range of quality at consumption
time (less than 1% unacceptable products) and can practically eliminate the
‘tails’, i.e. the portions of products consumed at extreme qualities. Thus a
situation where products are consumed at a uniform quality, with no ‘below
standard’ products can be obtained. As tools for a comparative selection of least
shelf-life products at control points both TTIs can be used effectively.

The same system was applied to distribution and stock rotation of shrink-
packed marinated seafood products (marinated fish fillets, shrimp, squid,
octopus) with a target shelf-life of 3 months at 4ºC. Shelf-life temperature
dependence of such products, based on sensory evaluation, varied but was in the
high range of activation energies. An EA value of 110 kJ/mol, a distribution
cycle of 35 days, consisting of the same three stages and temperature
distributions as above (10 days at stage 1, 15 days at stage 2 and 10 days at
stage 3) and TTIs Type B (Models C, S and L with activation energies 48.3, 102
and 160 kJ/mol respectively) were used in the Monte Carlo simulation to assess
application of LSFO. Results are shown in Fig. 19.12. It can be seen that in
products with high activation energies the distribution of quality at consumption
time is much wider as temperature variation affects more intensely the rates of
quality loss. Application of the LSFO system reduces the percentage of
unacceptable products to less than 5% compared to 22% with the FIFO
approach. It can also be seen that even TTIs that differ from the food in terms of
EA approximately 50 kJ/mol can serve as tools for the relative comparison of the
shelf-life of the products at the control points of the LSFO system.

A further development to LSFO was an intelligent system proposed and
evaluated coded as Shelf Life Decision System (SLDS).56, 57 SLDS integrates
predictive kinetic models of food spoilage, data on initial quality from rapid
techniques and the capacity to continuously monitor temperature history of the
food product with Time Temperature Integrators (TTI), into an effective chill
chain management tool that leads to an improved narrow distribution of quality
at consumption time, effectively reducing the probability of products consumed
past shelf-life end. For most processed food products, ‘zero time’ post
processing parameters, including a target range of initial microbial load, can
be fixed and achieved by proper design and control of the processing conditions.
This is the working assumption of LSFO. However, initial microflora in fresh
foods such as fish or meat can fluctuate significantly, depending on a number of
extrinsic factors at slaughter or catch, and the following handling and
processing.58–60 SLDS takes not only the history of the product in the
distribution chain into account but also this variability of initial contamination.
Rapid methods of microbial enumeration can be employed to provide such
information as input. The Shelf Life Decision System can incorporate in the
calculation of the quality distribution at each control point, other parameters of
variability of the product’s quality. Such parameters can be variation of initial
pH, water activity, packaging gases composition, provided the used shelf-life
predictive models can account for the effect of these parameters on the
microbiological and chemical reactions responsible for the loss of quality.
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19.7 Future developments

The described systematic approach points out the future prospects of Time
Temperature Integrators. TTIs will inevitably find wider application as tools to
monitor and control distribution as their concept, their potential and their
limitations are thoroughly understood by the food science and industry. Progress
on both ends of the equation, i.e. on the variety, reliability and flexibility of TTI
and stricter, quantitative shelf-life characterisation of food products will allow
successful application of the described chill chain optimisation tools such as the
LSFO and the intelligent Shelf Life Decision System. Research progress in the
area of quality kinetic modelling and predictive microbiology, will show how
the TTI concept can be meaningfully and safely expanded to contribute in the
quality assurance of more foods. User friendly softwares will integrate support
systems designed to predict effects of processing parameters and product design
to food product quality.61 Such systems could provide the data input on initial
product quality distribution, based on processing and raw material parameters,
that is needed for the SLDS calculations at the control points of the chill chain
on which the TTI based management of the products occurs.

Fig. 19.12 Distribution of quality of shrink-packed products after 30 days distribution,
retail and domestic storage. For each point the percentage of the products that have a
remaining shelf-life in the range of 
5 days of the abscissa value can be read on the

vertical axis. The line with solid circles corresponds to the FIFO and with open circles to
the LSFO system based on actual temperature monitoring or the TTI B- Model S with
EAI
EA. Open diamonds and open triangles lines are the LSFO lines based on the TTI,

Type B–Models L and C.
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20.1 Introduction

The physical distribution of products such as dairy, meat, vegetables and fruits is
a complex process due to the perishable nature of these agricultural products.
The mainly soil-bound production of the raw materials takes place at relatively
small companies in a pattern that for the produced quantity and/or quality is
often seasonal. The demand for perishables fluctuates from day-to-day and has
in recent years diversified into products that distinguish themselves in quality
and appearance. Besides fresh produce, this chapter also considers prepared and
chilled products such as ready-to-eat meals and desserts, but not dried or deep
frozen products. The variation and decay in quality and the relatively short
keeping quality makes it difficult to balance supply and demand. In the supply
chain of perishables, the distribution centre plays an important role as
decoupling point, as defined by Hoekstra and Romme.1 Attention in the
distribution centre to maintain optimal conditions in relation to product
characteristics, combined with a short throughput time, increases the keeping
quality as well as the customer service.

The storage of perishables occurs at manufacturers, wholesalers, and at third-
party logistic service providers. Examples are the storage facilities at the
horticultural auctions and the fresh produce departments at retail chains. An air-
conditioned storage accommodation and several cold storage rooms with
insulation distinguish the layout of a distribution centre for perishables from a
standard distribution centre, according to Sims.2 The usual activities of a
distribution centre, such as groupage, storage and repackaging are carried out at
specific storage conditions. Value-adding activities such as conditioning or
ripening of products often require special installations.
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The specific layout and operations management of a distribution centre for
perishables influence the amount of keeping quality loss and the efficiency of
the operations. The management of a distribution centre for perishables has to
deal with questions concerning operations management such as:

• What kind of storage and handling equipment is needed?
• How much storage space is required for the different products?
• Where should the products be located in the distribution centre and does that

location depend on the time of year?
• What kind of storage conditions are needed in each location to reduce the

keeping quality loss?
• What kind of storage policy should be applied?

The problem associated with answering these questions is relatively unstruc-
tured, since it is practically impossible to formulate a model that can answer all
these questions at the same time. A hierarchical structure for the different,
functionally-related decisions that must be made to solve the problem is
proposed. The structure divides the decisions into nested or hierarchical levels.
Each level answers different questions for management. The problem-solving
task of the management of the distribution centre is facilitated by introducing a
decision support system with which the management can iterate between the
different decision levels. The models and methods that are introduced in this
chapter have been implemented in a decision support system by Broekmeulen3

and will help the user of the decision support system to generate and evaluate
alternative decisions.

20.2 Characteristics of perishables

20.2.1 Definitions and properties
Fresh foodstuffs are usually from an agricultural origin, and consist of biological
material. In the agribusiness, a product is for instance a cultivar of a vegetable
with well-defined properties like colour, taste and overall appearance. The
diversity of marketed fresh foodstuffs in type, quality, and lifetime is enormous
and is still increasing due to changing consumer preferences, globalisation of
markets and technological innovations. Only a limited number of foodstuffs can
be treated as normal commodities because of their relatively uniform quality and
long lifetime. Examples are cereals and coffee. Meffert4 stresses that all other
fresh foodstuffs have to be given special attention in the distribution chain from
producer to consumer in order to deal with their specific properties such as
ageing and breakdown. The assortment of a distribution centre is a list of the
products that are handled or in stock during a specific period of time. A year can
be divided in one or more planning periods. The supply of many perishables
depends on the seasons. The numerous changes in the assortment during the year
make the activities in a distribution centre non-repetitive.
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Keeping quality
Fu & Labuza5 define keeping quality or shelf-life as the period of time until
which a product becomes unacceptable. According to Shewfelt,6 the attribute
that limits the product acceptance is the first attribute that becomes
unacceptable, given the circumstances. The limiting attribute can be predefined.
An example is firmness of tomatoes in the study of Polderdijk et al.7 The
keeping quality loss of food is based on biological processes which remain
active after the harvest. Floros8 and Labuza9 mention a range of processes that
influence keeping quality of agricultural products. The static keeping quality is
the average number of days that a product is ‘fit for use’ if it is kept under the
same storage conditions. Storage conditions which maximise the keeping quality
result in minimal keeping quality loss.

The following items are examples of factors that influence the keeping
quality; see also Ryall and Lipton.10

• Initial keeping quality. The initial quality of an agricultural product varies
because of differences in the cultivars used, the production method, the
season and the production region.

• Storage time. Short storage times reduce the keeping quality loss.
• Temperature. Each product has its own optimal temperature. Many

agricultural products that now or in the past originated from tropical or
subtropical climates are chilling-sensitive.

• Relative humidity. A low relative humidity accelerates the dry out and
therefore the ageing of a product. On the other hand, a high relative humidity
makes the product an ideal medium for all kinds of microorganisms.

• Handling. Some perishables are very susceptible to mechanical damage like
shock and vibration. Suitable packaging can reduce the effects of shock and
vibration during handling. Handling has, in general, a negative effect on
keeping quality.

• Ethylene. The gas ethylene, a plant ripening hormone, plays a role in the
interaction between products. High concentrations of ethylene accelerate the
ripening and decay of a large number of products. According to Abeles et
al.,11 products that produce ethylene are susceptible to ethylene at the same
time. The production of ethylene as well as the influence of this product
interaction on the keeping quality are dependent on the temperature.

• Odours. Products like onions and garlic produce odours that are adsorbed by
fruits such as melons.

A quality change group consists of products with the same quality change
characteristics, such as optimal temperature and production of or susceptibility
to ethylene. The quality change models used in this research describe for each
quality change group the static keeping quality under specific storage
conditions. Some of the factors mentioned can be controlled in the storage
rooms of a distribution centre. Each storage room has a specific temperature that
is a compromise between the optimal temperatures of the quality change groups
that are assigned to that storage room.
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The keeping quality loss in the distribution centre depends on the initial
keeping quality when the product enters the distribution centre. The initial
keeping quality just after the harvest or production changes in the distribution
chain with the storage conditions and the duration of stay in the different stages
in the distribution chain. Tijskens and Polderdijk12 discuss these dynamic
aspects of quality change models for vegetables and fruits and their importance
for the simulation of the distribution chain of perishables. The effect of changes
in the distribution on the keeping quality of the products can be predicted with
simulation models of the distribution chain that incorporate dynamic quality
change models.

The effects of odours and hormones on keeping quality can be avoided by
spatially separating the products, by using an adequate packaging for the
susceptible products or can be reduced by ventilation of the storage room. Milk
is normally very susceptible to the odour of garlic, but milk in cartons does not
pose any problems. High ventilation rates reduce the effects of odours and
hormones by increasing the effective volume in a storage room but increase the
energy requirements.

Packaging
Storage conditions such as relative humidity and product interactions are
difficult to control in the storage rooms of a distribution centre. A suitable
(transport) packaging has several advantages for maintaining keeping quality:

• regulation of the relative humidity
• shielding of the product against odours and hormones
• protection against contamination by microorganisms
• reduction of the effect of shocks and vibrations during handling.

The complete sealing of the packaging for a living product can lead to too low a
concentration of oxygen due to the still active metabolism of the product. Low
oxygen concentrations can lead to unwanted or even dangerous secondary
metabolites during fermentation such as alcohol. In the absence of oxygen,
toxin-producing microorganisms such as Clostridium botulinum can start to
grow. More and more products are therefore distributed in sealed (transport)
packaging inside which the atmospheric conditions are adjusted to the product
(see Chapter 14 for modified atmosphere packaging or MAP). The relatively low
value of the majority of fresh products and the reduced perception of freshness
of pre-packed products still prevent all perishables from being distributed in
sealed packaging. Reduced product loss makes pre-packing often beneficial for
the environment compared with unpacked products.

Seasons
The effect of growing seasons is reflected in the assortment and the stock levels
of perishables. On the demand side, this can be explained by the consumption
pattern, such as Christmas for luxury vegetables and in summer for salads.
Depending on the agricultural origin of perishables or their raw materials,
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different harvest periods in the world and different production methods, such as
in the field or in greenhouses, result in peaks in the supply of products. The
seasonal pattern has a profound effect on the layout and management of
distribution centres for perishables.

20.2.2 Perishables in a distribution centre
A distribution centre performs activities such as storage, conditioning,
accumulation and consigning. These activities need resources such as buildings,
equipment and personnel. Specific operating policies applied to a set of
resources completes a warehousing system.

A distribution centre has two main functions: warehousing and distribution.
Warehousing includes all activities concerned with storage and retrieval of
products. The distribution function concentrates on the centre’s groupage and
shipment of customer orders. Groupage is the combination of one or more
customer orders in a single consignment. With direct delivery from supplier to
customer, the products skip the distribution centre. This option is interesting for
large shipments of only a few products. In all other cases, the products enter the
distribution centre. All products that are received in the distribution centre are
subject to inspection and quality control.

The storage accommodation is the part of the distribution centre where
products can be stored. The storage equipment such as racks and shelves creates
in the storage accommodation locations and storage space where products can be
stored. An important activity in a distribution centre for fruits and vegetables is
the conditioning of products. Adequate storage conditions such as relative
humidity and temperature, minimal handling and avoidance of product
interactions such as odour and hormone transmission can reduce keeping
quality loss. An area in the storage accommodation with specific storage
conditions is called a zone. By order picking the articles are collected from the
storage accommodation and moved to the staging area. In the staging area,
customer orders for more than one item of the assortment or for a product that
has to be collected from several locations are accumulated before shipment to
the customer.

Picking personnel or pickers move the products in the distribution centre.
Personnel need training to know what a specific article looks like, and whether
the article picked for shipment is the same as is ordered by the customer. An
administrative system such as a warehouse management system (WMS) can
support the day-to-day operations by giving storage and retrieval advice to the
pickers. A storage policy determines on the operational level where a product
can be stored and a retrieval policy which product can be retrieved.

A correct and fast information flow between the actors is a requirement in the
coordination of the distribution chain of perishables. Uniform article coding and
barcodes are essential to achieve the necessary quality of the information and
speed of the information flow. The large variation in product types, packaging
and quality have made uniform article coding impractical for agricultural
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products. The short lifetime and the fast handling of the articles hinder the
separate introduction of barcodes in the distribution centre. The storage time is
too short to give all incoming articles a detailed internal code or sticker. Due to
the absence of a uniform article coding and the special conditions needed by
perishables, all articles that are kept in stock need a fixed slot or location in a
distribution centre for perishables. Personnel still have to check by visual
inspection that the correct article is handled. Wrong quality or incorrect
packaging frequently result in mistakes.

The type of handling equipment and the degree of mechanisation determine
the differences in handling methods. The dimensions in the layout such as the
maximum height of a rack and the minimum width of an aisle define the
possible handling equipment and vice versa. The chosen handling equipment
and the degree of mechanisation are two of the factors that influence the
maximum handling capacity or throughput of the distribution centre and the
productivity of the personnel. Modern equipment such as automatic carousels
and automated sorters are often dedicated to the type of transport packaging and
require specific storage equipment and high investment. The combination of
racks, carts, and forklift trucks remains a flexible, low cost handling system with
the disadvantage of relatively low throughput per picker. Because of the
relatively low added value of perishables, the application of carts and forklift
trucks will probably continue in the near future.

20.3 Maintaining keeping quality with a slot plan

A slot plan describes for each planning period where in the distribution centre
and how much storage space must be reserved for each product or quality
change group. Usually a planning period in a slot plan coincides with a season.
With a slot plan that is optimised for the characteristics of perishables, the
keeping quality of these perishables during storage is maintained, compared to
conventional storage policies.

20.3.1 The value of a slot plan during operations
Slot planning is primarily used to optimise the efficiency of the order picking
operations. The class-based storage policy, introduced by Hausman et al.,13

concerns the assignment of incoming products to classes or sets of slots in order
to reduce the mean travel time for storage and retrieval. The storage
accommodation has a fixed number of classes with a specific storage space
requirement and the products are assigned to a class based on the turnover rate.
An incoming load is stored at an arbitrary open slot in the assigned class. When
all the slots in the assigned class are occupied, the class with open slots closest to
the assigned class is taken. In a distribution centre for perishables, a class often
coincides with a zone. A random storage policy, where incoming products are
assigned to the first open slot, has a better space utilisation compared to the
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class-based storage policy, but a lower order picking productivity. The random
storage policy does not take account of the specific storage conditions needed
for perishables.

The influence of the daily requests for storage and retrieval during a whole
year can be studied with a simulation model that assigns incoming loads of
products to zones. The daily storage and retrievals follow the seasonal
production and demand of the products. All requests are handled on a first-
come-first-served basis. The following three storage policies are studied with the
simulation model.

1. Free zone policy. The product is stored in the first zone with enough
unoccupied storage space to satisfy the request.

2. Temperature zone policy. The product is stored in a zone where the storage
temperature is closest to the optimal storage temperature of the product.

3. Preferred zone policy. The preferred zone to store the product is determined
by the slot plan. If the preferred zone has not enough unoccupied storage
space, the product is stored in a zone with available storage space where the
expected relative keeping quality loss is minimal.

The first two storage policies are based on existing practices in distribution
centres for perishables. The free zone policy only focuses on storage capacity
utilisation. The temperature zone policy requires only a little amount of
additional information about the keeping quality characteristics to reduce the
keeping quality loss compared to the last policy. The preferred zone policy is
derived from the class-based storage policy. In the case of a retrieval, the first-
in-first-out rule is only followed when no alternative zones are occupied with the
product. Stock in alternative zones with harmful storage conditions for the
product has priority over stock in the assigned or default zone and is therefore
used first for a retrieval.

In the thesis of Broekmeulen3 it is shown that the preferred zone policy
outperformed the other two policies in all tested problem instances. The use of a
slot plan compared to a simple quality-oriented assignment rule in the
temperature zone policy reduces the keeping quality loss by at least 50% and
avoids exceeding the maximum allowed keeping quality loss that is often
imposed in distribution chains for perishables.

20.3.2 Slot planning models
The following constraints have to be met when slotting the products for storage
in a distribution centre:

• Each product must be assigned to a slot.
• The storage assignment cannot exceed the capacity of a slot.
• The loss in keeping quality of the products may not exceed more than a

predefined level agreed in the distribution chain.
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The objective of a slot plan is, given an instance of the problem, that the
management of the distribution centre finds a slot for all products in the
assortment of the distribution centre such that the sum of the keeping quality
loss is minimal, and that the constraints are met. The sum of the keeping quality
loss is called the object value. An instance of the problem can, among others, be
defined by data about the layout of the building, the expected customer orders,
and the properties of the products in the assortment. The customer orders
determine the flow of products through the distribution centre. The minimal
required information about the expected customer orders should include the
expected stock levels for each individual product in each planning period. This
information can be obtained by analysing the historical transaction data of the
distribution centre. A distribution centre may use the same slot plan for several
years if the yearly turnover remains constant over the years.

The assignment of storage conditions to the zones and the selection of a
storage policy are considered long-term decisions. The choices made in the
layout and in the selection of the equipment determine the available slots and the
characteristics of these slots in the distribution centre.

20.3.3 Integration of product characteristics in a slot plan
This section will describe general aspects of models for ethylene production and
keeping quality that are used for constructing a slot plan. The development and
validation of these quality change models are open research topics. For a limited
number of quality change groups, these models are founded on a solid
theoretical basis and are verified by experiments.

The following assumptions were made with respect to the keeping quality of
the products in the distribution centre.

• Stock level. The average volume of a product that is stored overnight in a slot
is equal to the allocated storage space of that slot. Therefore, the ethylene
production of a product is based on the allocated storage space of that product
instead of the actual stock level.

• Quality change group. All articles are assigned to a quality change group,
based on the quality change properties of the product. The factors initial
keeping quality and storage time are used to assign a product to a quality
change group.

Temperature
Kopec14 states that temperature is the most important effect with respect to the
keeping quality of perishables. The effect of temperature on the keeping quality
in the absence of all other effects is called the normalised keeping quality. The
normalised keeping quality is influenced by two quality change processes:
ageing and chilling injury. According to Tijskens et al.,15 ageing speeds up with
higher storage temperatures, and chilling injury gets more severe at lower
storage temperatures.
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The current models assume that the keeping quality at a specific temperature
is always reduced by the effects of product interactions and handling. This is not
the case for controlled atmosphere storage and modified atmosphere packaging
that can also improve the normalised keeping quality. The reference temperature
is the optimal storage temperature in the absence of product interactions and
handling effects.

Product interaction
In general, the interaction between various products is modelled based on agents
such as odour compounds and ethylene. For example, the odour of onions is
transferred by a different agent compared to the odour transfer of melons.
Furthermore, some products produce the agent and some are susceptible to the
agent. Moreover, the product that produces the agent may also be susceptible to
it at the same time. The levels of production of and sensitivity to those agents are
specific for the quality change group and dependent on the storage temperature.
For example, mushrooms produce no ethylene and bananas and tomatoes are
examples of products with high ethylene production.

The ethylene concentration in a zone depends on the number of quality
change groups assigned to and present in the zone and the total volume of the
zone. The volume of the zone has to be adjusted with respect to the volume of
the quality change groups that are assigned to it and that are present in the zone,
and with respect to the rate of ventilation. A ventilation rate of 2 means that the
effective volume of the zone also increases by a factor of 2. High utilisation and
low ventilation of a zone may result in a high ethylene concentration, even when
the ethylene production is relatively low. The effect of ethylene on keeping
quality increases dramatically with concentrations between 1.5 and 3.5 ppm.

Handling
Handling causes shock and vibration and thus stress to fresh produce. The effect
of handling on the keeping quality depends primarily on the quality change
group. Strawberries are an example of products that are highly susceptible with
respect to handling. Processed foodstuffs are seldom susceptible to handling.

Relative keeping quality
Since the distribution centre acts as a decoupling point in the distribution of
perishables, the past and future storage times and conditioning of the products
that pass the distribution centre are not known in sufficient detail. Therefore, the
slot planning model has to use a measure of keeping quality loss in a distribution
centre that is independent of the initial keeping quality of the products, the
duration of stay in the distribution centre, and the remaining time of the products
in the distribution chain until consumption by the end consumers. The proposed
measure relates the keeping quality loss in a specific slot plan to the keeping
quality loss at ideal conditions. The relative keeping quality loss is the decrease
in keeping quality compared with the keeping quality at the reference
temperature without any effects of handling or ethylene.
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In the proposed measure, the relative keeping quality loss is equal to the
fraction of the initial keeping quality that is lost every day compared to storage
at the ideal conditions for that quality change group. A relative keeping quality
loss of 50% in a distribution centre implies that during each day the product is
stored in the distribution centre, the shelf-life is reduced by one and a half days
instead of just one day and the subsequent stages in the distribution chain have
less time to deliver the product to the consumer. When the normalised keeping
quality corresponds with a shelf-life of less than one day, the storage of that
quality change group is impractical, the total shelf-life expires during storage,
even at ideal conditions.

20.3.4 Influence of climate zones and planning periods
The possibility of assigning ideal conditions to each product is determined by
the number of climate zones in the distribution centre. Therefore, the number of
available zones and the specified storage conditions in these zones have a large
impact on the keeping quality loss of the stored products. A large number of
zones makes it possible to store interacting products separately. But a large
number of zones lowers the potential total utilisation rate of the distribution
centre. The use of ventilation and/or sealed (transport) packagings can avoid
product interactions to a large extent. Ventilation of cold stores removes the
precious cold air and therefore increases the energy bill. Since ventilation does
not reduce the risk of contamination, products such as fresh meat and vegetables
still have to be stored separately. For most assortments of vegetables and fruits, a
distribution centre needs a minimum of two and preferably three zones, with
storage temperatures 0ºC, 8ºC and 12ºC as an indication. Greens, such as lettuce
and endive, require a storage temperature between 0ºC and 2ºC in the absence of
ethylene-producing products. Ethylene-producing exotic fruits prefer storage
temperatures above 12ºC. Without ample ventilation, an additional third zone
with a storage temperature between 8ºC and 10ºC is needed for products of the
common Solenacea family such as potato, peppers and egg plant.

For seasonal products the number of planning periods determines the storage
capacity utilisation, since the peak stock level of a seasonal product depends on
the time of year and the length of the planning period considered. A longer
planning period increases the chance that a certain peak occurs in the planning
period considered. The sum of the daily stock levels for their demand period
complementary products such as chicory and strawberry results in a lower
combined peak stock level than the sum of the individual peak stock levels.
During the summer, the low in the stock level of chicory is compensated by the
peak in the stock level of strawberry. The size of this effect is illustrated in Fig.
20.1, where the peak stock levels of all products of a major wholesaler of
vegetables and fruits are summed. The summed peak stock level goes down
when the number of planning periods increases. Even with twenty planning
periods, the summed peak stock level is almost three times as high as the
summed average stock level of all products.
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20.4 Construction of a slot plan

A solution for the slot planning problem can be constructed by a greedy
heuristic. A heuristic is called greedy when it assigns values to the decision
variables one by one without changing the previous assignments afterwards. The
proposed construction algorithm assigns products with high peak stock levels
before products with lower peak stock levels to the zones until the capacity is
exhausted.

20.4.1 Construction algorithm for a slot plan
The following algorithm can construct for each planning period a slot plan,
given the number of zones and the storage conditions in these zones.

1. Determine for each product the expected stock level in the planning period.
Determine for each zone the available storage space.

2. Sort the products by stock level in descending order. Start the assignment
with the largest product.

3. Calculate for the current product the relative keeping quality loss in each
zone with enough available storage space to store the product. To minimise
possible product interactions, take already assigned products in the zone
into consideration. In the case of interactions induced by ethylene, one can
do this by calculating the expected ethylene concentration after the
assignment is calculated and from there the effect on the keeping quality of
the assigned products in the zone.

Fig. 20.1 The summed peak stock levels of all products as a function of the number of
planning periods in the dataset of a wholesaler of vegetables and fruits.
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4. Assign the product to the zone with the lowest expected relative keeping
quality loss for the current product as well as the already assigned products.
Subtract the available storage space in the selected zone with the expected
stock level of the current product. When the product does not fit in any of
the zones, return to Step 1 to modify the expected stock levels of the
products or the storage capacities of the zones.

5. When all products are assigned, then the algorithm is finished. Otherwise,
take the next product from the sorted list and continue with Step 3.

When a slot plan is required where each product must be assigned to the same
zone in each planning period, then the algorithm has to assign the product to the
same zone concurrently for all planning periods. The main modification of the
algorithm occurs in Step 2 where the products are sorted by the maximum of the
expected stock levels of the planning periods. A so-called fixed slot plan makes
it easier for personnel to find the products all year round.

20.4.2 Example of the construction of a slot plan
The following detailed example illustrates how to make a slot plan with the
construction algorithm for a distribution centre for vegetables and fruits. Assume
a distribution centre with three zones A, B and C. Zone A has a temperature of
2ºC, zone B of 8ºC and zone C of 12ºC. Zones A and B have no mechanical
ventilation and zone C is well ventilated. Each zone has storage space for 100
units. Table 20.1 lists the products that have to be stored in the distribution
centre with the expected keeping quality losses according to the keeping quality
change models. When all the products are assigned, the utilisation will be 80%.

Each zone initially has 100 units storage space available and the ethylene
concentration is low. The sequence in which the products are assigned is based
on the stock level (from large to small): potato, banana, Elstar (apple),

Table 20.1 The assortment of the distribution centre with the expected keeping quality
loss at three temperatures and two levels of ethylene (H� high, L� low)

Product name Stock level (units) Relative keeping quality loss (%)

2L 2H 8L 8H 12

Banana 45 82 84 41 81 14
Cucumber 14 76 78 35 79 7
Elstar 35 0 0 35 35 54
Garlic 5 15 15 48 48 62
Grapefruit 25 71 72 14 37 53
Haricotvert 10 56 57 0 27 39
Lettuce 17 26 30 70 90 83
Melon 9 72 71 18 40 26
Potato 65 72 73 10 34 38
Satsuma 15 36 38 33 51 55
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grapefruit, lettuce, satsuma (mandarin), cucumber, haricotvert (green bean),
melon and garlic.

In Table 20.2, one can follow the assignment process. After assignment step
3, when Elstar is assigned to zone A, the ethylene level in zone A changes from
low to high. For the assignment of lettuce in step 5, zone A is selected despite
the high ethylene level because the alternatives are worse. Since zone B has not
enough space left for satsuma, this product is assigned to zone A in step 6. The
additional keeping quality loss of this assignment is only 5%. Since zone C is
well ventilated, cucumber is not influenced by the ethylene producing banana
after assignment step 7. Melon is assigned to zone C because the first choice,
zone B, is already full. Fruits such as Elstar and satsuma are slightly damaged by
the odour of garlic, but the keeping quality loss for garlic in the alternative
location, zone C, is too large.

All products are now assigned, but not always to the most suitable zone for
the individual product. The additional keeping quality loss is only limited, as is
shown in Table 20.3. The relative keeping quality loss is never above 50%.

20.4.3 Improvement of a slot plan
The slot plan found with a construction algorithm can often be improved with
local search techniques such as tabu search and genetic algorithms. In these local
search techniques, the following cycle is carried out several times. In a first step,
candidate solutions are derived from the current solution based on the following
types of moves: a product is assigned to a different zone or two products swap
their zone assignments. All candidate solutions that can be reached with these
two types of moves are called the neighbourhood. In the second step, an
acceptance criterion selects the new current solution for the next cycle. In the
neighbourhood, the first candidate solution is accepted that has a better object
value than the current solution. A local optimum has been reached if the object
value of last accepted solution is better than all its neighbours. If such a local
optimum is reached, a new initial solution is generated by assigning random
values to the decision variables. After a limited amount of computation time the
search is stopped.

Note that in the example different stock levels lead to another sequence of
assignments and therefore may lead to large differences in keeping quality
losses. The exchange of the stock levels of grapefruit and melon results in a
completely different assignment. Therefore, improvement of the solutions found
with the greedy heuristic remains necessary. This improvement can be achieved
with the proposed local search heuristics.

20.5 Summary

This chapter showed a practical application of quality change models in the
planning of the layout and the operations of a distribution centre for perishables.
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Table 20.2 The assignment process with the proposed construction algorithm for the products in Table 20.1

Assignment Product Zone A Zone B Zone C
step

Content Space Ethylene Content Space Ethylene Content Space Ethylene
available level available level available level

0 – – 100 L – 100 L – 100 L
1 Potato – 100 L Potato 35 L – 100 L
2 Banana – 100 L 35 L Banana 55 L
3 Elstar Elstar 65 H 35 L 55 L
4 Grapefruit 65 H Grapefruit 10 L 55 L
5 Lettuce Lettuce 48 H 10 L 55 L
6 Satsuma Satsuma 33 H 10 L 55 L
7 Cucumber 33 H 10 L Cucumber 41 L
8 Haricotvert 33 H Haricotvert 0 L 41 L
9 Melon 33 H 0 L Melon 32 L

10 Garlic Garlic 28 H 0 L 32 L



The problem of constructing a slot plan has been implemented in a decision
support system with a hierarchical decomposition. The chosen model
formulation and solution strategy focus on the seasonal production and demand
of perishables, and the need for special storage conditions during the distribution
process, described in the applied quality change models.

The use of an assignment plan is useful for the operation of a distribution
centre for vegetables and fruits. The additional effort to make such a plan is
relatively small compared with the benefits for keeping quality. The assignment
rules used in the currently used storage policies are insufficient to ensure
specific conditions for the products.

It is recommended that the layout of a distribution centre for perishables is
based on the assortment and on the position of the distribution centre in the
supply chain for the products in the assortment.
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‘Let Pharaoh appoint commissioners over the land to take a fifth of the
harvest of Egypt during the seven years of abundance. They should col-
lect all the food of these good years that are coming and store up the
grain under the authority of Pharaoh, to be kept in the cities for food.

‘This food should be held in reserve for the country, to be used dur-
ing the seven years of famine that will come upon Egypt, so that the
country may not be ruined by the famine.’

Genesis 41: 34–36

21.1 Introduction

Since man started to grow his own food, instead of searching and hunting for it,
the sites where we consume our food are gradually taken away from the
production sites. In recent decades this process has sped up enormously. Industry
has almost completely taken over control of the production and distribution of
our foods from local production and consumption. The food chain becomes
more and more a global issue.

Within the context of this book, several techniques of modelling have been
described and examples are given to elucidate the building and application of
models. All these examples are somehow related to the behaviour, quality and
safety of a commodity. All these models, however, have to be applied within a
larger framework that includes the responses of sellers, buyers and consumers of
that commodity. This introduces all consumer research and economics into the
game. Commercial companies will only be interested in modelling when a clear
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increase of sales and profit will be the result of this application. This framework
in modern sales technology is the supply chain.

The modelling techniques used and the models described in the earlier
chapters of this book primarily deal with issues directly or indirectly connected
to food properties and food behaviour. The main difference of food supply
chains as compared to non-food supply chains, is the time critical and ever-
changing quality and properties of the perishable food during their journey from
growing site to consumption site. Food commodities have to be handled,
transported, distributed and eventually sold to and consumed by the consumers
with as high a quality as possible for as little cost as achievable. This whole
sequence of actions and the omnipresent decay of quality require proper
management to achieve the high standards as set by the modern consumers and
retailers. Due to the alienation of consumers with growers and retailers, the
reliability of continuous supply with high and acceptable quality inevitably leads
to a risk of acceptance both for the buyer as for the seller of commodities. As a
consequence, chain supply management not only comprises the purely physical
aspects of delivering commodities but also the reduction of risks involving sales,
quality, safety and consumer acceptance.

Apart from the perishable nature of food, another property of food is
psychologically very important to the consumer. Unlike other commodities
bought by consumers, food is used as the raw material for building up and
maintaining our bodies. When the commodity does not prove safe and reliable,
consumers can no longer put it aside, as it is already built-in in our bodies. This
places a very major emphasis on safety and health aspects of our food, both in
the short term and in the long term.

The necessity for the food industry to set high standards for food safety and
overall food quality has led to an enormous increase in the development of
conceptual models for the optimisation of the throughput of products in the
chain of production.1 The modelling of food processes and secondary product
characteristics has to be complemented by development and implementation of
conceptual models that deal with more managerial type of problems that arise
when managing and optimising food supply chains. This chapter will focus on
some important issues in chain optimisation and chain management, within the
framework of consumer driven supply chains.

21.2 Key principles and methods

Chains in general and food supply chains in particular can be considered on a
number of aggregation levels. For most product-oriented experts and modellers,
the food chain consists of the successive actions performed to that particular batch

1 Within the area of economics and chain management, production signifies more than just the
physical production. It also comprises the auxiliary infrastructure for making decisions and all the
actions to support and maintain the flow of information.
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of product ranging from growing, transportation, storage, and distribution over
retail up to the final consumer. As such it consists, from the products point of
view, merely of the actual scenario, expressed as time-temperature combinations
during its journey from the producing area to the consumption area. From an
economic and marketing point of view, however, a chain is a much more complex
structure of product flow, cash flow and information flow (see Fig. 21.1) that
needs to be understood and described for proper management and optimisation.
Several views and definitions have developed during the last decades.

21.2.1 Chains and networks
A chain is a network of autonomous and specifically named organisations,
systematically cooperating in the production of a commodity. The cooperative
relations are more than incidental and can vary from direct linear to complex
network forms (van Dalen 1994).

The notion ‘chain’ has been defined in different ways (Meulenberg and
Broens, 1997). Three definitions will be considered in more detail:

1. The value chain as defined by Porter (1980): a functional definition
2. Vertical coordination: A cooperative relation of two or more organisations

in a production column involving the coordination of decision making
towards an increased performance for a common third party (Porter 1985):
an institutional definition.

3. The network chain: the attitude or viewpoint that enterprises participating in
a production chain, have to coordinate their actions as well as possible

Fig. 21.1 Different types of flows within a chain.

450 Food process modelling



based on consumer defined requirements of risk, quality and acceptability: a
conceptual definition (Ford 1990, Haakansson and Snehota 1989, Jarillo
1988, Nohria and Eccles 1992, Beers et al. 1998, Thorelli 1986).

These three viewpoints form a conceptual development with an increasing
complex and abstraction level. A visualisation of this development is shown in
Fig. 21.2.

A functional definition: value chain
One of the oldest interpretations of food chains is provided by Porter (1980). It
considers five operations, conducted within one company that collectively
prepare a commodity for a specific customer: inbound or production logistics,
production, outbound or distribution logistics, marketing and sales. These five
operations are among others supported by the information structure within one
company. A disadvantage of the description/definition of Porter is that it only
concerns activities within one single company.

Whereas Porter (1980) starts off with the concept of strategy of the individual
enterprise, he also combines the ‘forces’ that affect the competitive position of
the enterprise within the concept of the value chain, in which the enterprise

Fig. 21.2 Increasing levels of conceptual abstraction in chains: from the single produce
going through a distribution history, over the single enterprise dispatching produce, to the
three types of chain definitions. With increasing conceptual abstraction level the centre of
attention shifts from the product over the enterprise to a centre outside the actual actors in

the chain.
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enhances its competitive position by improving the links between the value
adding processes in its value chain.

Extrapolation of Porter’s views to a multi-company effort provides an
interpretation of the chain as a consecutive sequence of logistic and marketing
activities in preparing a commodity or goods for delivery to a specific end-user
or consumer. In this definition, ICT (Information and Communication
Technology) is not an inherent part of the chain as a whole but remains a
supporting activity that exists separately.

An institutional definition: decision making in vertical coordination
Vertical coordination is the central issue in the institutional approach (Porter
1985, Zuurbier et al. 1996). The enterprises participating in a chain do not act
independently but are coordinated, like retailers in a franchise organisation with
a centralised purchasing facility. This coordinated action is not necessarily
formalised in contracts. Most of the time, due to the emphasis on cooperation,
not every enterprise, acting in that chain, is a member of this coordinated action
framework.

Enterprises form a kind of network of mutually cooperating enterprises. The
enterprises are not only interdependent for their physical products and raw
materials but also in terms of service, information interchange and cash flow as
influenced by third parties in the supply chain. This transforms the supply chain
into a network of actors (Fig. 21.3), whose operations are mainly related to
getting high quality products and information on to the market. Within the
institutional definition, the cooperation is primarily driven by the necessity for
improvement.

Vertical coordination has both strategic and operational aspects. Strategic
coordination comprises, e.g., coordination of product design, process design and
structuring information infrastructure. Operational coordination can occur on the
level of production means and information flow, parallel to flow of goods, cash
and property2 (Mallen 1977). This explicit cooperation regarding information
flow and infrastructure will inevitably lead to needs and demands for specific
information. Hence, within this definition, ICT plays a central role. Not only the
infrastructure of information exchange, but also the actual usage of information
from this structure and its interpretation are essential common resources.

A conceptual definition: the network chain
In the first two approaches on chain structure and meaning, the viewpoint was
obtained from one enterprise or from a cluster of enterprises looking at the
necessary actions to get a commodity to the final user. In the conceptual
definition, only one chain, ‘the’ chain exists, as an abstract entity outside the
enterprise(s) involved. The enterprise(s) can cooperate voluntarily with this

2 This multidimensional approach in information flow can nowadays also be perceived at the level of
flow of goods. Not only the traditional flow from producer to consumer is being considered in this
approach, but also the return flow of auxiliary material like packaging and waste material.
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chain, but the existence of the chain has to be taken into consideration in the
commercial policy. Chain policy can then be considered as a policy for the
whole branch to achieve the requirements of the customer by cooperation. This
third definition of chains puts the main emphasis on the awareness for the need
of cooperation, rather than the cooperation itself. Note that this definition of the
chain comprises all issues defined by the institutional definition.

The type of cooperation between actors in a chain can reach from almost non-
existing (e.g. sellers at a local market place) over contractual cooperation to a
complete merger (see Fig. 21.4). In this figure a number of features of
cooperation are visualised for non-cooperative actors (local markets), a network
chain and a fully merged enterprise. Of course the coefficient of vertical
coordination increases from local markets over network chains to the merged
enterprise. The flexibility of local markets as well as for fully merged enterprises
is high: they can decide on the spur of the moment to change suppliers or target
other buyers. However, the cost of changing over is for local markets quite low,

Fig. 21.3 Network chain and vertical coordination, with one possible pathway
highlighted in bold.
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while for network chains and merged enterprises the costs are relatively high due
to the massive changes throughout the organisation. The costs of transactions
are, on the other hand, relatively high for local markets, since they cannot rely
on mutual built-up trust, as the network chains and the merged enterprises can.
Within the conceptual definition and the connected efficient consumer response
(ECR) concept, the enterprises in a network chain cooperate non-contractually
but on a long-term basis, due to the recognition of mutual advantage.

21.2.2 Incentives for supply chain management
The great changes in market structure, consumer behaviour and consumer needs
and the massive changes in technology, especially the information technology,
have been major reasons for the need of supply chain management. Retailers
have gained more and more power on our food supply (supermarkets), and
enterprises are merging all over the world to grow into large multinationals.
Consumers act more and more as individuals in an increasing population (mass
individualisation). The innovations in computer technology and information
made it possible to start considering to manage the whole chain.

Supply chain management deals with total business process excellence and
represents a new way of managing business within each link and the relationship
with other members of the supply chain (Lambert et al. 1998). Since the 1980s,
literature on supply chain management stresses the need for collaboration among
successive actors, from primary producer to final consumer, to better satisfy
consumer demands at lower costs (Ellram 1991, Towill 1996, Bechtel and

Fig. 21.4 Levels of vertical coordination, adaptability and its cost indicated for different
levels of networking.
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Jayaram 1997, Cooper et al. 1997). Stevens (1989) refers to the interdependency
of activities in the supply chain: ‘if one activity fails, the chain is disrupted,
creating poor performance and destabilising the workload in other areas, thereby
jeopardising the effectiveness of the supply chain’. This holds true especially in
food supply chains because of the shelf life constraints of food products and
because of increased consumer attention for safe and environmental/animal
friendly production methods (Boehlje et al. 1995). Recent events like e.g. the
BSE crisis in Western Europe and the classical swine fever in the Netherlands
and Germany made producers aware of the necessity of supply chain control and
intensified supply chain cooperation.

The increasing distance between production site and consumption site from
local production to production more distant from the consumer, inherently calls for
an equal shift in reliability of information, from pure confidence of consumers in
the retailer at the street corner, to more objective and measurable quality indicators.
In the early days, consumers relied almost completely upon previous experience,
buying at a specific retailer, building up gradually the confidence in that retailer.
With the more impersonal supermarkets growing more and more important, the
consumers need increasing product information regarding quality, safety, content
and ultimate selling date to reach a decision whether or not to accept that particular
product. But not only the final consumer is faced with this increasing need for
information. For each actor in the chain, that product and history information
becomes more and more important in deciding which products to buy to be certain
he or she is going to be able to sell (van Trijp and Meulenberg 1996).

The increasing importance of information for the successive actors in the
chain of events has a number of severe practical and managerial consequences
(economics of scale and scope). Coordinated cooperation of all actors in the
chain can:

• Increase the efficiency of material and information resources
• Reduce risk of safety and quality
• Decrease the production life cycle
• Decrease the cost of obtaining and retaining that information throughout the

chain (transaction costs).
• Decrease the cost and number of repackaging a commodity by different

actors in the chain (packaging cost and environmental benefit).
• Reduce the stock level by one actor, based on production information by the

successor actor.
• Decide the optimal location in the chain for quality increasing investments.
• Increase profits.

Also strategic issues can be reasons to search for closer cooperation and
sharing of information. A good example of sharing information to reduce costs
and increase profits is the system applied by the world’s largest retailer Wal
Mart (USA). This enterprise allows free and total access to the purchase and
consumer database without restriction or prescription, as long as added value of
its usage can be substantiated by increased sales results.
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Motives for cooperation within the supply chain, asking for complex
innovations, not only come from inside the food supply chain (e.g. commercial,
organisational and technological influences), but also from outside the chain
(e.g. social, legal, political and community influences).

21.3 Food supply chains

For consumers of a product of a food production and supply chain, and hence for
the chain as a whole, the quality of a purchase comprises more than the pure
intrinsic quality of the purchased product. When deciding to buy a certain
product, the buyer finds a balance between, among others, his own preferences,
the preferences of its final consumer, the assumed properties of the product, the
availability of the product on the market and the costs involved. The overall
picture of this balance evaluated at the moment of every purchase decision can
be found in Fig. 17.3 of Chapter 17. Combining the information from that
chapter, and the viewpoints behind it, with the actual motives and considerations
of purchase, the issue commonly called quality, is more the acceptance of a
product by the consumer/buyer (Meiselman and MacFie 1996). In this
acceptance the intrinsic quality of a product is only one of the many issues
affecting the consumer’s decision. Most of these issues are subjective in nature,
including the risk assessment, safety factors, and product quality itself. For a
useful application in the integrated supply chain, all these factors have to be
recognised, described and modelled, and techniques have to be developed to
measure all these factors affecting the consumer’s acceptance in an objective
manner. All these factors are dealt with in previous chapters of this book.

21.3.1 Modelling the chain
The art of modelling is not yet very advanced in the realm of chain description
and chain management, especially on the level of individual commodities and
batches of commodities. The subject is too young and too complex to have
already achieved a comprehensive mathematical description. The models
concerning the chain as an integral entity are still limited to conceptual models
as described in previous sections. However, increasingly models generated in
other parts and disciplines, concerning product behaviour, product quality,
keeping quality (or shelf-life) and safety are used in description and optimisation
of parts of the integral chain. A number of these models and viewpoints are dealt
with in previous chapters of this book (Chapters 5, 19 and 20). Specific
conferences are being organised that cover the development in this area (Ziggers
et al. 1998, Triekenens and Zuurbier 2000).

21.3.2 Acceptance versus quality
Acceptance of a product by the consumer is the ultimate goal and the ultimate
test of the supply chain. Managing that chain and optimising it, signifies that one
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has to make sure that the consumer in the (near) future goes on purchasing his
foods from that particular chain. Within the decision of purchase, a number of
issues play an important role. These issues are of very different nature and
impact.

• Product-related issues:
– The intrinsic quality of the product purchased, however ill defined, and the

connected keeping quality. This issue brings in the whole physical
pathway the product has to go through, including all aspects of actual
scenarios with respect to e.g. temperature, and the actual physical handling
performed to the product like, e.g. cleaning, packaging and processing.

– Safety of the commodity e.g. microbial infection, radiation, health.
• Market-related issues:

– Availability of comparable products on the local market
– Confidence in the enterprise with respect to, e.g. quality, applied

technology and information
• Economic-related issues:

– Costs of purchase of the commodity
– Price reductions
– Sales promotions

• Social issues within the boundaries of the social community:
– Is the commodity ethically acceptable, e.g., child labour?
– Is the technology applied acceptably e.g. genetic modifications, organic

production, etc.
• Psychological issues:

– Does this commodity provide the buyer some social status?
– Does this commodity fulfil consumer’s expectations? (MacFie and

Thomson 1994).
– Is the information about the product, its contents and its production and

processing adequate and reliable? (advertising and labelling).

Given the ongoing mass-individualisation of the contemporary consumer, the
understanding of and the compliance to all these items obtain more and more
weight for commercial companies. Some effects in the decision making of a
consumer are already clear and described while many effects are not clear at all
and still remain very vague. All efforts and actions within a particular chain are
directed towards that ultimate goal: keeping the consumer happy so he will
come back. Managing and optimising a supply chain aims at maintaining the
structure and functioning of the complete supply chain in such a way that the
buyers/consumers do come back and keep on purchasing commodities from that
chain, while still making some profit in the process. This signifies that efforts
have to be directed to the many unresolved relations between decision making
and supply, while maintaining the paramount properties of quality and safety.
Managing a chain is finding the balance between purely economic issues
(profits, transaction costs), flexibility in pathway and commodity throughput
(see e.g. Fig. 21.3) and maintaining food safety and food quality.
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In the realm of product behaviour and product properties, many items are
already clear. Relations and effects have been described and modelled, as can be
taken from many previous chapters in this book. All these models on food
quality, safety and handling can be and are being used in optimising the product
going through supply chains. In the realm of specific economic issues, the
science of modelling in the chain and network area, is still in its infant stage.
When making strategic and tactical decisions, a fair part of information on
product properties and behaviour is already modelled and implemented.
Structured information on economic effects and processes are, however, still
quite sparsely available (see Fig. 21.5). Some progress has, however, been made
(ECR or Efficient Consumer Response (see section 21.5), sales promotions
(Wierenga and Soethoudt 2000). In the realm of psychological and of social
issues, consumer research has come up with a number of empirical relations and
rules of thumb, but has hardly achieved any fundamental breakthrough in really
understanding the ongoing processes. Some examples of psychological relations
and unstructured facts are, e.g., a more emotional involvement when buying
food products compared to non-food products: buying of food occurs much more
at the spur of a moment or affected by a particular space; food is bought on a
repetitive basis; consumers walk preferentially at the outer perimeter of
supermarkets and avoid more the inner space.

Combining all these effects for managing and optimising supply chains,
inherently leads to very diverse levels of understanding of the effects within and
throughout a supply chain.

Fig. 21.5 Availability and application of dedicated product, quality and economic
models in strategic and tactical decision making.
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What has been developed during the past decades is a decomposition of
supply chains into the participating actors and into the relations between those
actors: an understanding of the structure of a supply chain.

21.3.3 Technological issues
Technology of food production, processing and handling, has shown some
drastic changes over the years. All of these changes were initiated by incentives
and motives of increasing the quality of the delivered commodities combined
with an increasing profit or decreasing production costs (technology push). The
results of some technological changes were accepted by the customers without
any protest or objection, e.g. sterilisation, MAP packaging, microwave heating,
minimal processing. Other technologies studied never came to appreciable
commercial application by lack of economic results, e.g. ohmic heating, infra
red heating, large-scale maceration. However, in some cases, objections of
ethical, safety and risk hazards nature were so strong, customers did not accept
product treated with that particular technology (negative market pull). An
example of a rejected technology is, e.g., application of ionising radiation.
Recently quite some fierce discussions are ongoing on the risks and ethical
acceptability of genetically modified substances in our food products and the
occurrence and avoidance of BSE in bovine products.

As a consequence, innovations applied to our food production and supply
system, have always been and will always be subject to acceptance by the
customer/consumer. Accepting or rejecting a particular commodity is in fact the
only action possible for consumers. It is in these terms that consumer driven
innovations have to be considered (market pull).

The food supply chain is ultimately the structure where this type of
information from producer to customer and back from the customer to the
producer takes place. Managing a food supply chain means therefore more than
tactical and operational planning, but also has to include the long term strategic
views on consumer response, together with providing adequate means of
communication and information interchange between all actors in that chain.

21.4 Problems and issues of global sourcing

The main goal of enterprises whether or not as partner in a chain, is not to bring
as high quality products as possible to the final consumers, but to bring products
onto the market at as low cost and as high profit as possible, while keeping the
consumers satisfied.

One of the major trends in supply chains as a consequence of increased
technological abilities, is globalisation of resources and consumption or
internationalisation of trade. More and more a substantial portion of our daily
food no longer originates from local or national resources, but the origin spreads
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out all over the world e.g. Europe and North America import more and more
kiwis from New Zealand, mangoes from the southern hemisphere, beef from
Australia and Argentina, etc. Customers in North America and Europe are more
and more used to obtaining all products the year round, without limitation of
growing season. This aspect of consumer demands also puts considerably more
emphasis on understanding and modelling product quality and the interactions
between successive enterprises in the chain.

To optimise the whole process of buying raw material and selling final
products on a global market, several aspects come into play that for itself have
no bearing on the product and the product behaviour itself. A common quality
language is absolutely necessary throughout the chain, not only to communicate
but also to define which aspects of quality and product properties should be
measured and in what way. That is why consistent theories on quality as e.g.
described in Chapter 17 and the related and emerging common language
(Shewfelt and Tijskens 2000) are so important. Also essential is a transparency
and understanding of the complete process of a product going through the chain.
A major factor in this transparency results in a mutual trust between the
successive actors in the chain. With sufficient and reliable exchange of
information between the partners in a chain, transaction cost can be decreased
considerably.

To ascertain the quality and safety of commodities and to minimise risks (of
all kinds), several difficulties arise in this so-called global sourcing. All
difficulties involved are already mentioned in previous sections of this chapter.
By the sheer distance between original producer and final consumer, the
difficulties require, however, special attention and precautionary measures.

Food safety is an issue of such paramount importance, consumers in the
western world are becoming more and more aware of the risks involved in the
food production chains. Whether it is a case of BSE in the animal production
chain or a case of pesticide residues in the fruit and vegetable chains, consumers
demand that food companies and retail outlets do everything that is required to
avoid any health risks.

In the second place the paramount quality has to be guaranteed and maintained.
Solutions for this problem are sought for by technological means like modified
atmosphere packaging (MAP, see Chapter 14), transport in controlled atmosphere
containers (CA) and developing breeds of produce with long shelf-life and
temperature-time indicators (see Chapter 19). However, only part of the problem
of maintaining food safety and quality throughout the chain, can be tackled with
high tech end-of-pipe solutions. It is essential to overcome the gap between local
(third world country) production systems and western consumption. The first step
is taken by investing and developing the local infrastructure.

In order for private companies to be competitive in both local and
international markets, chains of production have to be built from scratch. Most
of the existing infrastructure is inefficient and usually not geared for change.
These changes will not be implemented within some months. Periods of
transmission may even mount up from five to ten years, depending on the
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possibilities of implementation and awareness of the necessity of new concepts
of supply chain management.

Farmers have to be educated to handle seed materials properly and apply
suitable growing and harvesting techniques. Resources have to be made
available to upgrade the primary chain in the network. These funds can only be
made available if the products, coming out of the system, meet local and global
quality standards, including food safety.

21.5 Practical application of supply chain management:
efficient consumer response

Related to the concept of supply chain management, the concept of efficient
consumer response (ECR) emerged in food supply chains, in which distributors
and suppliers work closely together to offer better value to the consumer. By
jointly focusing on the efficiency of the total supply system, rather than the
efficiency of individual components, they reduce total system costs, inventories,
and physical assets while improving the consumer’s choice of high-quality, fresh
products. In accordance with supply chain management the ultimate goal of
ECR is to achieve a responsive, consumer-driven system in which distributors
and suppliers work together as business allies to maximise consumer satisfaction
and minimise system costs. Accurate information and high-quality products flow
through a paperless system between manufacturing line and check-out counter
with minimum degradation or interruption both within and between trading
partners (Kurt Salmon Associates 1993).

The ECR working group comprising a group of industry leaders in the United
States developed five guiding principles that concisely articulate the ECR strategy
(Kurt Salmon Associates 1993): providing better value, committed business
leaders, accurate and timely information, ensure the right product is available at
the right time and a common and consistent performance measurement and reward
system. Coopers and Lybrand (Anon. 1996) translated these guiding principles
into a family of 14 ECR improvement practices, categorised into three clusters
concerning marketing or category management, logistics or operations improve-
ment and information technology or enabling technologies (see Fig. 21.6).

Three different approaches exist to explain and describe cooperative relations
as found in efficient consumer response, on theoretical premises (Overboom
2000, Boehlje and Schrader 1998, Verhaegen et al. 1999, Bash and Davies 1998,
Zylbersztajn et al. 1996, Thomas et al. 1995).

1. Transaction cost theory
Costs of transaction are those costs directly caused by the simple transaction
of buying and selling from one partner to another. They depend among
other things on incomplete information, uncertainty about the market, about
the behaviour of business partners, and about the draft and check-up of
contracts. Without sufficient confidence in the quality of the bought
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product, every enterprise, every actor in the chain has to check the quality of
the newly acquired goods, no matter what information is provided by the
seller. With sufficient confidence, whether or not by contractual agreement,
these costs can be reduced considerably. It then becomes a matter of mutual
agreement how and when commodities have to be and will be tested for
quality and content. The concept of transaction cost theory is useful for
explaining and understanding the behaviour of enterprises and for
improving their efficiency. Especially logistic issues of the ECR concept
(operations improvement) can be understood using the principles of the
transaction cost theory since the goals of logistics are always formulated in
terms of efficiency.

2. Strategic management theory
Competing strategies are the subject of strategic management. Michael
Porter (1985) is the most prominent author in this school. The theory starts
from the traditional industrial organisation, explaining the performance and
the behaviour of the enterprise (conduct). The emerging cooperation
between enterprises is in this theory a strategic response to uncertainties and
interdependencies. The higher the uncertainties the more intense the
cooperation will be (Pfeffer and Salancik, 1978). Using strategic manage-
ment, concerted relations can be treated and considered as category

Fig. 21.6 Aspects of efficient consumer response.
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management. Especially the uncertainties with respect to consumer
(buying) behaviour generate an interdependency on information exchange,
and increase the willingness to introduce the category management-concept.

3. Resource-based view
In the search for explaining the conduct of enterprises in the agri-business it
was also proposed to use the theory of key competences (e.g. Prahalad and
Hamel 1990). Key competences are the specific skills ensuring an enterprise
performs better than another enterprise and ensuring a sustainable
competitive performance. To build up and maintain these key competences,
resources and capabilities are needed. Within the ECR concept, the pooling
of complementary resources and capabilities of all partners involved can
explain the added value of close cooperation between individual enterprises.

The concepts upon which the ECR approach exist, are partly fully developed,
other parts still need further extension and study. The added value of ECR,
however, is to be found in the cooperation of all supply chain actors as equal
partners in the development, implementation and evaluation of these concepts.

21.5.1 Category management
Category management focuses on product categories for the optimisation of
assortments, product introductions and promotions. Food industries and retailers
jointly work on providing consumers with the right product that has the right
specifications, resulting in the purchase of the products.

In literature many definitions for category management are used. The ECR
category management subcommittee defines category management as (ECR
Board 1995):

The process between parts in the chain, where categories are being man-
aged as strategic business units, producing enhanced business results by
focusing on delivering consumer value.

A category is defined as a distinct, manageable group of products/services that
consumers perceive to be interrelated and/or substitutable in meeting consumer
needs.

One of the most important goals of category management is the optimisation
of the assortment as perceived by the consumer. The central issue for applying
category management is the knowledge of and the information on how the
consumer perceives the available brands of product in their mutual relation.
Within the issues of ECR is category management focused on increasing the
efficiency of logistics and on increasing the efficacy to satisfy the consumer.

For category management, a number of tools are available, one of them is the
cost approach direct product profitability or DPP. Direct product profitability is
basically a quantitative analysis of the assortment, based on profitability
calculations. DPP is assumed to be a better indication of profitability than the
gross margin (Floor 1996). Indications based on gross margin sometimes give a
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completely wrong impression. For example, two different products with the
same gross margin can show in the end severely different assets to profitability.

The costs of handling and sale, associated with different products can be very
different for each product. In direct product profitability, the contribution to the
overall profit is the difference between gross margin and direct product costs.
Direct product costs (DPC) are composed of three aspects of costs: the costs
made by the distribution centres, costs of transport to and costs at the retailers.
Some of the items constituting these costs are invariable while other costs are
variable costs. Unlike the variable costs, invariable costs do not increase parallel
with the number of commodities sold.

DPP at a retailer can be represented in different ways:

DPP per week DPPweek

DPP per sold consumer unit DPPcu

DPP per week per m3 DPPvol

The basic relation for DPP calculations is shown in equation (21.1). This
equation expresses that the profitability increases linearly with weekly sales.

DPPweek� �Gross margin� variable costs� � weekly sales

� invariable costs �21�1�
The three representations of DPP can be converted into one another and are
consequently proportional to each other:

DPPcu � DPPweek

weekly sales

DPPvol � DPPcu

shelf space
�21�2�

Costs of transport, costs of distribution centre operation and costs at the
retailers through the entire chain are all contained in the variable and invariable
costs. DPP can be regarded for one actor in the chain, but can in principle also be
used to estimate the DPP of the entire chain. In Table 21.1 an example of the
calculation is given.

So, the DPP of a product can be increased by, e.g., a higher rate of sales, a
more efficient use of shelf space, an increase in gross margin, a more efficient
handling routine or a different way of supplying commodities. Based on DPP
analysis, advice can be formulated on a different form or kind of packaging,
package content or repackaging.

21.5.2 How are DPPs affected
For calculating DPP values, the most sensitive and important input variable is
the weekly sales. The relation between DPPcu and the mean weekly sales is an
orthogonal hyperbola as can be taken by combining equations (21.1) and (21.2):
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DPPcu � Gross margin � variable costs� invariable costs
weekly sales

�21�3�

It approaches an upper limit at ever-increasing sales, consisting of gross margins
minus the variable costs. This upper limit hence represents the maximum DPPcu

that can be obtained at unlimited sales. The intercept at sales� 0 represents the
(negative) invariable costs of operation (see Fig. 21.7).

Within the distribution operation the degree of distribution, that is the number
of retailers serviced, is of major importance, quite similar to the retailer sales in
determining the costs of the distribution centre.

The parcel magnitude also has a major effect on DPP. With increasing parcel
magnitude the direct product costs (DPC) and exploitation costs decrease
considerably.

DPP analysis constitutes a valuable tool for category management and
composition of assortment, but can also assist in the planning of retail shelves,

Table 21.1 Shelf efficiency of fresh milk and meat products

Fresh milk Meat products

Price per consumer unity 0.582 �= 1.291 �=
Purchase price 0.545 �= 0.882 �=
Gross margin per consumer unity 0.037 �= 0.409 �=
DPC per consumer unity 0.023 �= 0.091 �=
DPP per consumer unity 0.014 �= 0.318 �=
Sales per week 180 # 15 #
DPP per week 2.52 �= 4.770 �=
Shelf space 0.050 m3 0.016 m3

DPP per week per m3 50.400 �= 298.125 �=

Fig. 21.7 Direct product costs per sold consumer unit versus weekly sales, based on
data of Table 21.1, fresh milk with variable costs set arbitrarily to 0.015 �= and the

invariable costs to 2.0 �= per unit.
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the optimisation of distribution and the development of price and advertising
policies. As such DPP is a valuable tool for managing and optimising the entire
supply chain and to support and promote the cooperation between producer and
retailer and to increase overall the efficiency in that chain (Stichting
Ketenmoduul, 1995).

21.6 Conclusions

Although the number of models that describe the changes of properties and
quality attributes and safety in our food steadily increases, market research and
economic applications of these models, and especially the development of
dedicated economic models is still in its infant stage. A vast effort applying good
and sound principles, based on problem decomposition and borrowing
knowledge and techniques from other disciplines, has to be undertaken in the
near future to achieve structured information on economic effects and processes.
Also in the area of consumer research and psychological effects, large gaps in
modelled knowledge still exist. All these voids in structured knowledge
inherently lead to very diverse levels of understanding within and throughout a
supply chain.

The necessity for the global food producing and food retailing companies to
achieve high standards for food safety and overall food quality strongly directs
the efforts in both the private domain as well as in the public domain.

With ‘situations’ such as the ongoing BSE crisis in Western Europe or the
case of strong consumers’ ‘dislike’ of genetic modified organisms, transparency
in the food chain is of utmost importance. In terms of the three schools of
thought mentioned above, uncertainty has to be reduced, transaction costs have
to be reduced, and new levels of trust have to be achieved.

These changes in network structures are not accomplished by mere input of
financial resources from the major food companies. The capability of the (local)
actors themselves have to be made available. Awareness, why certain standards on
food aspects and food quality have to be implemented, has to grow gradually over
time. The public domain – the knowledge infrastructure – has to play its part as well.

The translation of developed standards on food safety and food quality is a
major responsibility for research in the food domain. It is important to
understand the mechanisms in the sector of food processing, but it is even more
important to understand how and with which stimuli an overall higher level of
food safety and quality can be achieved. After all, garbage in� garbage out.

Economic theory on chains and networks is useful in trying to understand
why economic actors act as they do and where the best opportunities for
improvement are. It is also indicated that cooperation can lead to results that are
on a higher level than those achieved on the basis of individual performance.
With the increasing importance of linking the final consumers directly to the
basic production itself, e.g., with the help of Internet, transparency and uniform
standards are the only recipe for success.
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Chapter 1

Symbol Dimension Definition
� s lag time
[x] mol/l concentration of compound x
�� – mean
A – probability of growth
aw – water activity
c – dimensionless concentration of carbon resources
Cp J kg�1 heat of vaporisation
D m2 s�1 diffusion coefficient
D s decimal reduction time for death
Fi, fi – unnamed functions
h – dimensionless concentration of hydrogen ions
K m2 s�1 thermal diffusion coefficient
k s�1 growth rate constant� 1 � � �
m – dimensionless biomass
n – number
N – number
o – dimensionless concentration of oxygen
p – probability
Q – intensity of quality factor
r m dimension in x, y, z plane
t s time
T K or ºC temperature
W water content

Appendix: Notation



Index Definition
exp exponential growth
eff effective
d doubling
inj injury
res resuscitation
lag lag phase
0 Initial

Chapter 2

Symbol Dimension Definition
AC mol/l active complex
E mol/l concentration of enzyme
Ea J/mol energy of activation
k * reaction rate constant
Km mol/l Michaelis Menten equilibrium constant
P mol/l concentration of product formed
S mol/l concentration of substrate
t s time
T ºC or K temperature
Vmax maximal rate

* depending on order of reaction:
1st order 1/s
2nd order mol/l/s

Index Definition
0 initial
abs absolute
p of product formation
ref at reference temperature
s1 of forward reaction
s2 of backward reaction

Chapter 3

Symbol Dimension Definition
� – frequency
� – correlation coeffcient
�2

I – variance of component I
�G J Gibbs energy
�H J/mol enthalpy
�I – standard deviation of component I

Notation 471



�ij – covariance of components i and j
�ij – elements of the inverse of the matrix Covee

�S J/mol/K entropy
[A] mol/l concentration reagent
[AB] mol/l concentration reaction product
[B] mol/l concentration reagent
[C] mol/l concentration reagent
[E] mol/l enzyme concentration in an enzymatic reaction
[ES] mol/l concentration of the enzyme-substrate complex
[H+] mol/l concentration hydrogen ions
[S] mol/l substrate concentration in an enzymatic reaction
[S] mol/l concentration substrate
A * pre-exponential factor
c mol/l concentration of a component
cij – elements of the dispersion matrix C

(multiresponse modelling)
Covee – covariance matrix of experimental errors
c� mol/l concentration in standard state
Ea J/mol activation energy
h Js Planck’s constant (6.626�10�34 J s)
k * reaction rate constant
K * equilibrium constant
k� * pseudo first order reaction rate constant
kB 1.3807E�23 J/K Boltzmann’s constant
m – molecularity of a reaction
n – order of reaction
P mol/l concentration reaction product
pH – �log10([H+])
R 8.314 J/mol/K gas constant
S substrate
t s time
T K or ºC absolute temperature
u – number of experimental runs (multiresponse)
v 1/s maximum velocity of an enzymatic reaction
yI – experimental datum points for component i
�y – model prediction for component i

* depending on order of reaction:
1st order 1/s
2nd order mol/l/s

Index Definition� activated comples
0 initial
1, 2, 3 number of reaction
eq equilibrium
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M Michaelis constant
max maximal
T total
c with respect to concentration
t with respect to time
ref at reference temperature

Chapter 4

Symbol Dimension Definition
A m2 surface area
A kg s�1 coefficient matrix
a, b constants
Ap m2 particle surface area
Bi Biot number
c J kg�1 ºC�1 heat capacity
C J ºC�1 capacity matrix
Ca mol m�3 molar concentration of species component a
cm kg kg�1 ºM�1 moisture capacity
cp J kg�1 ºC�1 heat capacity of particle
C� turbulence constant
Da m2 s�1 mass diffusion coefficient of species

component a
E J mol�1 activation energy
f W thermal load vector
fI N m�3 volumetric body force
FI N Cartesian component of particle force
Fo Fourier number
h W m�2 ºC�1 surface heat transfer coefficient
H J kg�1 static enthalpy
hfg J kg�1 latent heat of evaporation
hma m s�1 surface mass transfer coefficient
k W m�1 ºC�1 thermal conductivity
K m2 s�2 turbulent kinetic energy
K W ºC�1 stiffness matrix
kf, b forward (f) or backward (b) rate constant
km kg m�1 s�1 ºM�1 moisture conductivity
L m characteristic length
M kg mol�1 molecular weight
m, n, o, p, q, r exponents
mp kg mass of particle
N shape function
n� outward normal to surface
p Pa pressure
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Q W m�3 volumetric heat generation
Q units s�1 source term vector
R J mol�1 K�1 universal gas constant
r residual
r �a kg m�3 s�1 rate of production of species component a
ra mol m�3 s�1 rate of production of species component a
Rc mol s�1 reaction rate
S	 units m�3 s�1 source of quantity 	
T ºC temperature
t s time
U m s�1 velocity vector
u nodal temperature vector
uj m s�1 Cartesian velocity component
upi m s�1 Cartesian component of particle velocity
V m3 volume
Xa mass fraction
xi, x, y, z m Cartesian coordinate

Greek
� object domain
� boundary of object
� kg m�1 s�1 diffusivity of quantity 	
	 units kg�1 transported quantity per unit mass
� ºM moisture potential

 ºC�1 thermo gradient
� ratio of vapour diffusion to total moisture

diffusion
� kg m�3 density

�

�
emission coefficient

m2 s�3 turbulent energy dissipation rate
� W m�2 K�4 Stefan-Boltzmann constant
 dimensionless temperature
� kg m�1 s�1 dynamic viscosity
�c convergence error

Index Definition
0 initial condition
� ambient condition
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Chapter 5

Symbol Dimension Definition
�2J/�Pi �Pj partial derivative of juiciness for all combina-

tions of the ith and jth model parameter
Ci ith model copy
Ei parameter estimate of the ith model parameter
J juiciness
Pi ith model parameter

Index Definition
i, j running index

Chapter 8

Symbol Dimension Definition
E Expected value
F Fisher information matrix
J Jacobian matrix
M Model structure
MSE Mean square error
N CFU/ml Cell density
n Number of observations
n0 ln CFU/ml natural logarithm of the initial cell density
nts

Number of sampling moments
nri

Number of replicate measurements
nt Total number of data points
np Number of model parameters
nmax ln CFU/ml Natural logarithm of the asymptotic cell density
P Covariance matrix
p Parameter vector
pls Least square estimated parameter vector
pml Maximum likelyhood parameter vector
SSE Sum of squared errors
s2 Variance
Tmin ºC Theoretical minimum temperature
Topt ºC Theoretical optimum temperature
Tmax ºC Theoretical maximum temperature
ti s, min or h Sampling moments
yI ith observation of nr replicate measurements
y Mean of replicate measurements
w Weighted factor/value
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Greek
�opt 1/h Maximum specific growth at Topt

�max 1/h Maximum specific growth rate
� h Lag time
� Probability density function
�2 Variance
�I Identification cost

Index Definition
mean mean

Chapter 9

Symbol Dimension Definition
DM dry matter
DMC % dry matter content
dW/dt rate of dry matter production
LAI leaf area index
Pg canopy gross photosynthesis
Rm maintenance respiration
Yg growth conversion efficiency

Chapter 10

Symbol Dimension Definition
C air CO2 concentration
DSS decision support systems
J objective function
L accumulative cost
LAI leaf area index
Pmax maximum rate of leaf photosynthesis
PAR photosynthetic active radiation
p perturbation vector
RUE radiation use efficiency
Rg growth respiration
Rm maintenance respiration
s weight of structural dry matter
T plant air temperature
t time
u(t) control vector
VPD vapour pressure deficit
x (t) state vector of the plant
w dry weight
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Chapter 11

Symbol Dimension Definition
CP g. head�1.day�1 crude protein content
DM dry matter
DMTP g. head�1.day�1 digestible true protein requirement
DUP g. kg�1 rumen indigestible protein digested in the lower

intestines
ERDP g. kg�1 effective rumen degradable protein
FME MJ. head�1.day�1 fermentable metabolisable energy
MCP g. head�1.day�1 microbial crude protein content
MP g. kg�1 microbial protein
MTP g. head�1.day�1 microbial true protein content
n number of observations
QDP g. kg�1 quickly degradable protein
SDP g. kg�1 slowly degradable protein
u Theil’s inequality coefficient
UDP g. kg�1 rumen indigestible protein

Chapter 12

Symbol Dimension Definition
A ha farm area
AE adult equivalent, energy requirement of a

cattle class relative to that of an adult animal
Ai coefficient relating the numbers of animals in

cattle class i to the number of cows mated
BRi ratio of the number of animals in the ith cattle

class to the number of breeders when survival
in the class is 100%

CC farm carrying capacity
CFi conversion factor to adult equivalents for cattle

class i
CM number of cows mated
CULL preferred yearly replacement percentage of the

number of cows mated
I kg. year�1 annual intake for an animal unit
LW liveweight
Ni number of cows in the remaining cattle classes
PFi boolean indicating whether cattle class i is

present
PG kg. ha�1 pasture growth
R mm. year�1 effective rainfall
SRi proportion of survival in cattle class i
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U safe utilisation
WR weaning rate
WU mm. day�1 water use over a specified time step
WUE kg. ha�1.mm�1 water use efficiency

Chapter 13

Symbol Dimension Definition
a m2/m3 specific surface area
Cs mmol/l actual substrate concentration
kl resistance for oxygen
Ks mmol/l affinity constant for substrate
tm time required to realise 95% of the final

concentration in the liquid

Greek
� 1/h specific growth rate of the organism
�max 1/h Maximum specific growth of the organism

Chapter 14

Symbol Dimension Definition
p kPa CO2 partial pressure
r rate of consumption or production by the

product
rO2

O2 consumption by the product
RQ respiration quotient; ratio of CO2 production to

O2 consumption

Index Definition
O2 oxygen
CO2 carbon dioxide

Chapter 15

Symbol Dimension Definition
aw surface water activity
ṁ kg/(m2.s) water flux
Bi Biot number
C global capacitance vector
CFD computational fluid dynamics
Cp J/(Kg.K) heat capacity
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Dp m penetration depth
Dwa m2/s diffusivity of water vapour in air
E EHTD defined as the ratio of the freezing time

of an infinite slab of same thickness as the
smallest dimension of the object to the freezing
time of the object

f thermal load vector
H J/Kg enthalpy
h W/(m2.K) heat transfer coefficient
Hfg J/Kg latent heat of evaporation
K global conductance matrix
k W/(m.K) thermal conductivity
Ki, a W/(m.K) thermal conductance between tank I and the

environment
Ki, j W/(m.K) thermal conductance between tank j and i
ky m/s mass transfer coefficient
n number of tanks
ODEs ordinary differential equations
PDE partial differential equation
q W/m2 heat flux
R m product’s smallest half-dimension
rf m frozen depth
T K nodal temperature vector
V m3 product volume
w Kg/Kg moisture content
Y Kg/Kg absolute humidity
Z geometric parameter
�H2 J/Kg latent plus post cooling heat

Greek
� mass transfer resistance factor
� Kg/ m3 density
� mass flow correction

Index Definition
a air
f frozen
I nodal value
m intermediate value
new at the end of a time step
old at beginning of a time step
s surface
sat value at saturation
w water
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Chapter 16

Symbol Dimension Definition
B flux density
Bi biot number
C 1/ml bacterial concentration
Cp J/(Kg.K) specific heat
D C/m2 electric flux density
d m characteristic dimension
E V/m electric field
E V/m voltage gradient
F s lethality
f Ghz frequency
G shape factor
g m/s2 gravity
H A/m magnetic field
H J/kg specific enthalpy function
h W/(m2.K) interfacial heat transfer coefficient
kt 1/s reaction rate
L m axial length
N number of bacteria
n flow behaviour index
P Pa pressure
PEPT positron emitting particle tracking
Q W/m3 amount of heat generation per unit volume
RQ heating rate
r m radial direction
t s time
T K temperature
u m/s velocity component
V V voltage
Z K increase in temperature
z m axial direction

Greek
� m2/s thermal diffusivity
� � dielectric constant
� �� dielectric loss
� Kg/(m.s) viscosity
� W/(m.K) thermal conductivity
� Kg/m3 density

m/s velocity component
� dimensionless length
	act porosity
� s/m electrical conductivity
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Index Definition
f fluid
ref reference
s, p solid particle
w wall

Chapter 17

Symbol Dimension Definition
n – number
Q arbitrary quality
W – weight of attribute category
w – weight of individual attributes
z – normalised attribute intensity

Index Definition
i, j of component i, j
cat category

Chapter 18

Symbol Dimension Definition
�I lag for the ith cell of the initial population
� maximum specific growth rate
A accuracy factor
B bias factor
cmax maximum population concentration
E environment
h0 amount of ‘work’ required to prepare for

exponential growth
KP Michaelis-Menten saturation constant
L link function
m curvature parameter characterising the transition

to the stationary phase
N the initial number of a growing cell population
P a critical substance to initiate growth
p growth parameter
t time
T temperature
vn nth environmental factor
x bacterial concentration
x0 bacterial concentration at time zero
y natural logarithm of the bacterial concentration

Notation 481



ymax natural logarithm of the maximum population
density

zI Change in the ith environmental factor that
induces a two-fold increase in the value of the
maximum specific growth rate keeping the
other environmental factors constant

�	t
 monotone increasing function with values
between 0 and 1

� duration of lag
� rate of the ‘work’ required to prepare for

exponential growth

Chapter 19

Symbol Dimension Definition
�E chromaticity change
A desirable quality factors
B undesirable quality factors
C chroma
Ci compositional factor
CTI critical temperature indicator
CTTI critical temperature-time integrator
EA J.mol�1 activation energy
EAI J.mol�1 activation energy of the TTI response
Ej environmental factor
f(A) quality function
F(X) response function for a TTI
FIFO first in first out system
k apparent reaction rate
kI TTI response rate constant
kI ref TTI response rate constant at reference

temperature
kref reaction rate constant at reference temperature
LSFO least shelf-life first out
m apparent reaction order
Q quality
r rate
R J.K�1.mol�1 universal gas constant
SLDS shelf-life decision system
SLR remaining shelf-life
t time
T K absolute temperature
Teff K effective temperature
Teff(TTI) K effective temperature for the TTI
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Tref K reference temperature
TTI time-temperature integrator or indicator
Xc normalized chroma

Chapter 20

Symbol Dimension Definition
MAP modified atmosphere packaging
WMS warehouse management system

Chapter 21

Symbol Dimension Definition
DPP �= direct product profitability
DPC �= direct product costs
weekly_sales – number of units sold per week
shelf_space m3 volume occupied at the shelf per unit

Index Definition
week per week
cu per consumer unit
vol per volume

Notation 483



absolute rate theory 43–6
abstract (high-level) processes 28–9
acceptibility 23–4, 369–70
acceptance, consumer 456–9
accuracy

classification 119–20
predictive 152–3

accuracy factor 396–7
activated complex theory 43–6
activation energy 44, 46–7, 54–5, 416–17
activation enthalpy 44, 45–7
active packaging 288
adaptive inductive modelling 122, 123–4,

131–2
adult equivalent (AE) 257–8
affinity constant 279–80
aggregation, levels of 99
Akaike’s Information Criterion 175–6
Ambitemp CTTI 407
animal subsystem 255, 256–8, 260, 261–3

see also beef cattle production; dairy
production

animal value 262–3
applicability 410
Apriori algorithm 144
aroma 15, 434, 435, 440
Arrhenius’ equation/law 43, 46–8, 298,

391, 412
and TTIs 416, 421–2

Artech CTI 407
artificial intelligence 222

aseptic processing 349–54
assigned quality 23–4, 368–76

see also quality assignment models
assignment plans 442–4, 445, 446
assimilate partitioning 187, 238
association rules 143–4, 151
attribute-value representations 109–11
attributes

data mining 140
attribute selection 141–2
attribute tests 149–51

quality attributes 368–9, 372, 377
system theory 94–5

bacteria see microbiological safety;
microbiology

BAKTIX 327
Baranyi and Roberts growth model 165
batch parameters 56
batch of products, modelling 26, 27–8
Bayesian estimators 166, 177
Bayesian Information Criterion 175–6
beam search 116
beef cattle production 253–72

challenges for modellers 258–65
linkages between components 260–3
matching purpose and structure

258–60
natural variability 263–4
verification and validation 264–5

Index



elements of 254–8
future developments 268–9
simple model of herd structure 265–8

beef side 329–31
bias, search 139
bias factor 396–7
bimolecular reactions 36, 37, 40
biological models 278–81
biological variation 187–8, 195, 296–7,

301–2, 379
biomass production 208, 281
Bio-Medical Sciences TTI 407
Biot number 64, 315, 328, 342
black box models 161–2, 184
boundary conditions 62, 67, 71
Boussinesq approach 66

candidate models, set of 161–2
canning 343, 347–8
capillary-porous bodies 69–71
carbon balance 204–5

carbon pool model 219, 220
cardinal values models 162–3
carrying capacity 265–6
case-based reasoning 122, 123
case-specific model features 162–3
category management 463–4
cattle 255, 260, 261–3

classes of 256–8
see also beef cattle production; dairy

production
cellular automaton approach 13, 15
CFX/TASCflow 80
chains 450–4

distribution chains 24, 26–7
logistic chains 304–5
network chain 450–1, 452–4
value chain 450, 451–2
see also food supply chains

Check Spot CTI 407
chemical kinetics see kinetic modelling
chilling injury 29
class attribute 140
class-based storage policy 437
class hierarchy 22
class of models 111–14
classes 22
classification accuracy 119–20
classification learning 140
classification rules 143, 144, 151
classification time 118–19
climacteric fruits 294, 295–6
climate

beef cattle production 254–5, 260,

260–1, 263–4
control 217–20, 222

climate zones 436, 438, 441
closed greenhouse systems 193–4
colony size distribution 11
combined discrete/continuous modelling

see parallelism
combined heat and mass transfer

Luikov’s equations 69–71
modelling 324–8

food undergoing cooling and
freezing 328

frozen food 327–8
impermeable skin 325
non-porous food 325–6
porous food 326–7

combined variables 29–30
commercial software see software
communities 92
compartment models 283–4
compartmentalization 56
complex kinetic reactions 37–40
complex shapes 317–20, 334
component-based development 33–4
components 93–4
comprehensibility of learned model 119
computational fluid dynamics (CFD) 77,

79–80
commercial software 80–1
process development models 284–5
transfer coefficients 329–31

computing power 358
concentration of hydrogen ions 48–9
concentration-time profile 15, 16
conceptual models 288

see also modified atmosphere
packaging

conduction 61–4, 341–2
with phase change 320–4
in solids 344–5

confidence interval 173–4
conjoint analysis 374
consecutive reactions 38–40
CONSERTO project 215–17
conservation equations 64–6
constant D-value theory 383
constant production rate model 281
consumer-centred quality assignment

372–3
consumers

decision making 457–8
efficient consumer response (ECR)

461–6
continuity equation 342

Index 485



continuous heating and cooling processes
349–54

sterilisation of liquid foods 349–51
sterilisation of particulate foods 351–4

continuous modelling 87–8
see also parallelism

continuous state event 98
control

climate control 217–20, 222
fermentation 276–7
model-based control of refrigeration

331
quality 376–8

controlled atmosphere storage 288
convection 341, 345–9

MAP 290–3
Navier-Stokes equations 64–9

convergence error 79
cooling 312–39

application of models 331–3
future developments 333–4
heat conduction equation with phase

change 320–4
model-based control 331
modelling combined heat and mass

transfer 324–8
modelling foods with complex shapes

317–20, 334
modelling product heat load 314–16
optimisation of processes 331–3
transfer coefficients 328–31

coordination, vertical 450, 452, 453
cost 410
covariance matrix of experimental errors

51–2
covering rules 148–51
critical control points (CCPs) 403
critical temperature indicators (CTI) 404,

407
critical temperature/time integrators

(CTTI) 404–5, 407
crop growth models 183–229

areas of application 189–94, 211–21
climate control 217–20
closed system for water and nutrient

management 193–4
combination of models and sensors

193
crop management 213–17
decision support to grower 190
fertigation control 221
prediction of quality 190–2
teaching 212–13
yield prediction 190–2, 213–17

future trends 195–6, 221–3
generic 194–5
key principles and methods 184–9

including water and nutrient
relationships 188–9

mechanistic models 185–6
tomato crops 203–11

crop management 213–17
cross-validation 120, 153
CTMI-model (Cardinal Temperature

Model with Inflection Point)
162–3

cucumber 183–200
model for crop growth and yield

prediction 186–8, 190–2
modelling quality development 132,

133
culling rates 266, 267
cultivars 202–3

D-value 35–6
theory of constant D-value 383

dairy production 230–52
economic considerations 242
grassland production 235–8
grassland utilisation 239–41
model structure 231–2
nitrogen use and environmental effects

232–5
validation of the model 242–7

data distribution 129–30
data mining 124–7, 137–55

benefits for food process modelling
139

data engineering methods 141–2
in food process modelling 139
input characteristics 140–1
methods 145–52
objective 137–8
output evaluation 152–3
output representations 142–5
search 138–9

data problems 140–1
data processing 158–61
data representation 106, 109–11
data selection 106, 108–9
data streams 97–8
databases 140
decision making, consumer 457–8
decision support systems (DSS) 190,

215–17
decision trees 112–14, 125–7

data mining 142–3, 148, 149
dedicated MAP models 302–3
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deductive modelling 3–18
flavour release 15–16
future trends 17
keeping-quality and shelf-life 6, 8–15
and process optimisation 5–8
strengths and weaknesses 4–5

deleted residual plot 161
descriptive models see empirical models
determinant criterion 50–3
determinate cultivars 203
development, timing of 208–9
diffusion

coefficient 7–8
equation 61–4
MAP 290–3, 298–9, 299–300

gas diffusion 294–5
water diffusion 295

digestibility of feed 240–1, 261–2
dimensioning MAP 303–4
direct product profitability (DPP) 463–6
discrete modelling 87, 88–90

see also parallelism
discretisation, numerical 72, 142
discrimination criteria 163, 175–6
diseases 202, 211
distribution 22–3, 436

optimised 422–7
shelf-life monitoring 418–22

distribution centres 432–47
characteristics of perishables 433–6
construction of a slot plan 442–4, 445,

446
maintaining keeping quality with a slot

plan 437–42
perishables in 436–7

distribution chain 24
modelling 26–7

DMFit 398
downstream processing models 285–6
dry matter content 209–10
dry matter partitioning 209
dry matter production 185, 187
drying pasta 3–4
dynamic product models (DPMs) 24, 371,

375, 378, 379–80
integration of quality assignment

models and dynamic product
models 375–6

economic models 286
economic subsystem 255, 258, 260,

262–3
effective temperature 413, 413–14,

416–17

efficient consumer response (ECR) 461–6
category management 463–4
DPPs 463–6

empirical models 184, 258–9
bacterial growth 384–6

energy
activation energy 44, 46–7, 54–5,

416–17
crop growth models 186–7, 206–7
equation 342
intake by cattle 240, 242, 243, 257–8

engineering approach 53–4
engineering models 203
enthalpy 44, 45–7, 321–4
entropy 45–6
environment

bacterial growth models 386, 389–95
changing environment 393–4
comparing effect of environmental

factors 392–3
effect on maximum specific growth

rate 391–2
nitrogen use and in dairy production

model 232–5
environment model 24

see also modified atmosphere
packaging

enzyme kinetics 29–31, 41–3
equipment design parameters 6–7
equivalent heat transfer dimensionality

(EHTD) 318
equivalent size 318
Escherichia coli 165
ethylene 295–6, 434, 440
evaluation 152–3
evaporation 324–8
event description method 88–9
expected quality 368
experienced quality 368–9
explanatory models 184

see also crop growth models
exponential growth 386–7
extrapolation of information 254
extrinsic product properties 23–4
extrinsic quality cues/attributes 369
Eyring equation 45–6, 47–8

F-test 163
F value 341, 344, 349–50
factory model 286
faecal nitrogen 234, 235
false deviations 100
farm management models 259, 268

Index 487



see also beef cattle production; dairy
production

feed intake
beef cattle 261–2
dairy cattle 239–41

availability 239–40
components 241
physical limit 240–1
physiological limit 240

FEEDMAN 259, 261, 262, 263
fermentation processes 275–87

future trends 287
models used during process

development 278–87
biological models 278–81
downstream processing models

285–6
economic models 286
mixed models 286–7
technological models 282–5

properties 276–8
fermentors 277, 283
fertigation control 221
Fick’s equation/law 62–3, 298
field production 201–3
films

developing 304
permeance 298, 304

filter methods 141–2
Final Prediction Error 175–6
finite difference method 72–4

comparison with finite element method
76–7

modelling cooling and freezing 316,
318–19

phase change 321–3
finite element method 7–8, 74–7, 98

applications 77
comparison with finite difference

method 76–7
Galerkin method 75–6
modelling cooling and freezing 319

phase change 323–4
principle 74–5

finite volume method 77–80
applications 79–80
modelling cooling and freezing 319–20
principle 77–8
solution of the discretised equations

78–9
First In First Out (FIFO) system 422,

424–5, 427
first order reactions 36
fish see seafood

Fisher information matrix 168
fixed grid methods 321–4
flavour release 6, 15–16
FLORES model 25
Fluent/FIDAP/Polyflow 80
fluids

continuous heating and cooling
processes 349–54

Navier-Stokes equations 64–9, 342–3
Food MicroModel (FMM) 398
food microstructure 13–15
food parameters 7
food properties 333–4
food quality modelling see quality

modelling
Food Spoilage Predictor 398
food supply chains 196, 448–69

acceptance vs quality 456–9
chains and networks 450–4
efficient consumer response 461–6
incentives for supply chain

management 454–6
issues of global sourcing 459–61
modelling the chain 456
technological issues 459

food surface parameters 7
forage subsystem 255, 256, 260, 260–2

see also grassland
Forecast 398
forward selection 141
Fourier equation 61–4
free zone storage policy 438
freezing 312–39

application of models 331–3
future developments 333–4
heat conduction equation with phase

change 320–4
modelling combined heat and mass

transfer 324–8
modelling foods with complex shapes

317–20, 334
modelling product heat load 316–17
transfer coefficients 328–31

Fresh-Check TTI 409, 416
Freshness Monitor TTI 409, 416
front tracking methods 321–2
frozen foods

combined heat and mass transfer from
327–8

shelf-life monitoring 421–2
fruit treatment 121–2

Galerkin finite element method 75–6
gas exchange 292–3, 293–4, 298–302
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Gauss-Markov estimator 176
Gear routine 51
generalised z-value 392–3
generic classes 22
genetic models 278–9
global sourcing 459–61
goal violation 98–9
grassland

forage subsystem for beef cattle model
255, 256, 260, 260–2

herbage accumulation under cutting
238

production 235–8, 244–5
utilisation 239–41

GRAZE 259
greedy heuristics 442–4
greedy search 115–16
greenhouse production 201–3
grey box models 161
growth

bacterial growth see microbiological
safety; microbiology

crop growth models see crop growth
models

growth respiration 205
guards 129, 130

h0 parameter 389–91
handling 434, 440

equipment 437
Hazard Analysis and Critical Control

Point (HACCP) system 403
headspace 347–8
heat generation methods 354–8

microwave heating 354, 355, 356–7
ohmic heating 354, 355–6, 357–8

heat load 314–17
heat transfer 60–86, 341–3

fermentation processes 282
Fourier equation 61–4
Luikov’s equations 69–71
modelling combined heat and mass

transfer 324–8
Navier-Stokes equations 64–9, 284–5,

342–3
numerical methods 72–81
transfer coefficients 7–8, 328–31, 333
see also conduction; convection;

cooling; freezing; heating
heating 340–64

basic equations 341–3
continuous heating and cooling

processes 349–54
developments in research 358–60

heat generation methods 354–8
new types of model 359
processing of packed and solid foods

343–9
types of thermal process 340

heifers 256, 257
Heissler chart 64
herd structure model 265–8
high-level (abstract) processes 28–9
hill climbing 116
homologous proteins 122, 125–7
Honeywell Corp. TTI 406
HTST (high temperature short time

pasteurization) 55
humidity, relative 434
hydrogen ions, concentration of 48–9
hypotheses 105–6, 253

see also inductive modelling
hypothesis space 112

I-point TTI 407
impermeable skin 325
incremental inductive modelling 122,

123–4
indeterminate cultivars 202–3
individual lag times 399
inductive modelling 105–36

advantages and disadvantages 130–2
future trends 132–4
key principles and methods 108–30

application approach 120–30
class of models 111–14
data representation 109–11
data selection 108–9
estimating classification accuracy

119–20
inductive techniques 108–20
search methods 114–16
validation of induced models 118–19

information
needs in supply chain 455
provision 212, 212–17

information technology: decomposition
20–2

initial keeping quality 434, 435
injury time 11
instance-based learning 152
instrumental measurements 377
integrated lethality (F value) 341, 344,

349–50
interactions

between processes 29–31, 32–3
between products 26, 27, 33, 440

interactive prototyping 263

Index 489



intercepted solar radiation 186–7, 260–1
interfaces between subsystems 255,

260–3
internal atmospheres 299–300
Internet 196
interpolation region 394–5
intrinsic product properties 23–4
intrinsic quality cues/attributes 369
irreversible reactions 36–7
irrigation 221
ISO 9000 quality management systems

402–3
item sets 151
iteration 78–9

joint confidence regions 169–70

K - � models 66–7, 329
keeping quality 370, 375

deductive modelling 6, 8–15
effects of microgradients 12–13
factors that influence 434–5
food microstructure and microscopic

water distribution 13–15
MAP 301, 304–5
slot planning in a distribution centre

437–42
see also shelf-life

key competences 463
killing-off models 280
kinetic modelling 35–59, 69, 359–60,

411–13
advantages and disadvantages 56–7
areas of application 54–6
future trends 57
key principles and methods 36–54

complex kinetics 37–40
effects of temperature 43–8, 54–5
engineering approach 53–4
enzyme kinetics 41–3
multiresponse modelling 49–53
pH effects 48–9
simple kinetics 36–7
steady-state approach 40–1

TTI reponse modelling 413–17
kinetic parameters 56
Kirchoff function 320–1
knowledge discovery in databases (KDD)

124–7
KOSI 186–8, 189, 190–2

lag, bacterial 9–11, 388, 389
population and individual 399

Lagrangian model 68

land subsystem 255–6, 260, 260–1
landscape management 256
latent heat 320, 322
lazy learning techniques 117
leaching, nitrogen 245–6, 247
learning tasks 107–8
learning time 118
Least Shelf-life First Out (LSFO) system

422–7
least squares regression criterion 50–3
least sum of squared errors (LSE) 166
leave-one-out cross-validation 153
lethality 341, 344, 349–50
lettuce 219–20
Levenberg-Marquard method 92
light absorption 186–7, 206–7
linear discrimination analysis 112, 113
linear regression 152
linkages between subsystems 255, 260–3
liquid foods 349–51
local markets 453–4
local search heuristics 444
logarithmic transformation of cell density

counts 158–9, 160
logistic chains 304–5
Luikov’s equations 69–71
lumped capacitance method 323–4

Machine Learning Toolbox project 124
Maillard reactions 40
maintenance respiration 205
management 211–12

crop management 213–17
farm management models 259, 268
impact of changing the management

system in dairy production 242,
243

strategic management theory 462–3
market situation 23–4
markets

local 453–4
market subsystem 255, 258, 260,

262–3
mashing recipes 122, 123–4
mass balances 204–8
mass transfer 60–86

coefficients 7–8, 328–31
Fick’s equation 62–4
Luikov’s equations 69–71
modelling combined heat and mass

transfer 324–8
Navier-Stokes equations 64–9
numerical methods 72–81

mass transfer controlled freezing 334

490 Index



mastication 15, 16
mathematical validation 175
maximum likelihood estimators 166,

167–8, 176
maximum specific growth rate 389–92

effect of environment 391–2
mean sum of squared errors (MSE) 166
mechanistic modelling 134, 258–9, 306

bacterial growth 384–6
crop models 185–6

see also crop growth models
media 276
merged enterprises 453–4
metabolic pathway engineering 278–9
Michaelis Menten approach 30–1, 41–3,

299–300
microbial lethality 341, 344, 349–50
microbial protein 233–5
microbiological safety 8–15, 383–401

developing mathematical models 384–8
dynamic growth model 386
empirical and mechanistic models

384–6
exponential growth 386–7
sigmoid bacterial curves 387–8

model validation 395–7
modelling effect of environmental

factors on growth 386, 389–95
bacterial growth in a changing

environment 393–4
choosing growth parameters 389–91
comparing effect of environmental

factors 392–3
effect of environment on maximum

specific growth rate 391–2
interpolation region 394–5

software packages 397–8
stochastic birth process modelling

398–400
microbiology 341

fermentation processes 276–7
growth models 279–80, 281
killing-off models 280

heating and microbial cook 340–64
MAP 296, 301
temperature and microbial growth 417

Microfit 398
microgradients 12–13
microscopic water distribution 13–15
microstructural stress effect 14–15
microstructure, food 13–15
microwave heating 354, 355, 356–7
milk production 242, 243, 245, 246, 247

see also dairy production

minerals 207–8
see also nutrients

missing values problem 140
mixed-fluid modelling approach 67–8
mixed models 286–7
mixing models 283–5
mixing time 283, 284
MLNet ontology 107–8
model adaptation 194–5
model-based control 331
model search 114
model trees 144–5
modelling languages 90
modified atmosphere packaging (MAP)

288–311, 435
advantages and disadvantages 305–6
areas of application 303–5

developing new films 304
dimensioning MAP 303–4
optimising logistic chains 304–5
sensitivity studies 305

future trends 306–7
key principles and methods 289–303

dedicated models 302–3
general conceptual approach 289–97
macro level 289–90, 297–8
meso level 290–3, 298–9
micro level 293–7, 299–302
sub-models 297–302

molecular modelling 57
momentum equation 342, 347
Monod model 279
monomolecular reactions 36–7, 40
Monte Carlo method 170–2, 301–2, 423
morphogenetic models 196
MRI (Magnetic Resonance Imaging) 5,

354
multi-phase approach 69
multiresponse modelling 40, 49–53

n-fold cross-validation 153
naive Bayes 117–18, 125–7, 146–8
natural variability 263–4
Navier-Stokes equations 64–9, 284–5,

342–3
additional equations 67–9
conservation equations 64–6
initial and boundary conditions 67
turbulence 66–7

network chain 450–1, 452–4
networks 91–2, 93

chains and 450–4
neural 91, 114–15, 116

Newtonian fluids 64
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nitrogen 207
diary production 238, 244–5

leaching 245–6, 247
nitrogen use and environmental

effects 232–5
noise 141
non-porous food 325–6
non-uniformity 345–9
numeric data, mining from 152
numeric learning 140
numeric prediction 144–5
numerical methods 72–81

commercial software 80–1
discretisation 72, 142
finite difference method 72–4, 316,

318–19, 321–3
finite element method 7–8, 74–7, 98,

319, 323–4
finite volume method 77–80, 319–20
modelling cooling and freezing 316,

318–20, 321–4
nutrients 207–8

fertigation control 221
management in a closed system

193–4
nutrient stress and dairy production

238
relationships 188–9

object-oriented analysis and design 20,
21–2

modelling food processes 25–8, 31
odours 15, 434, 435, 440
ohmic heating 354, 355–6, 357–8
1R algorithm 145–6
one-time-events 120–2
operational coordination 452
optimal control 218–20
optimal experiment design 164
optimisation

chain optimisation 448–69
distribution 422–7
logistic chains 304–5
process optimisation 5–8, 331–3
refrigeration processes 331–3

ordinary differential equations (ODE)
models 314–17

outliers, removing 159–61
output

data mining
evaluation 152–3
representations 142–5

model output uncertainty assessment
172–4

overall error 396–7
oxygen transfer models 282–3

packed foods 343–9
packaging 33–4

MAP see modified atmosphere
packaging

perishables 435
palletised MA packs 289–90, 297–8
parallel reactions 38–40
parallelism 87–101

combined modelling 97–8
continuous modelling and 87–8
discrete modelling and 88–90
modelling trends 100–1
pitfalls 98–100
power of parallel processes 90–2
system theory 93–7

parameter covariance matrix 167–9
parameter estimation 157, 164–72

assessing uncertainty 167–72
criteria 166–7, 176–7

parameter search 114
particulate foods 351–4
passive MA packaging 288
pasta drying 3–4
pasture subsystem 255, 256, 260, 260–2

see also grassland
Pathogen Modelling Program (PMP)

397–8
perforated films 298
perishables 432–7

definitions and properties 433–6
in a distribution centre 436–7
see also distribution centres; slot

planning
permeance of films 298, 304
pests 202, 211
pH 48–9
phase change 320–4

finite difference models 321–3
finite element models 323–4

phase control 356
PHOENICS 80–1
photosynthesis-based models 185–6,

204–5, 208, 237
see also crop growth models

physical properties, realistic 358–9
physico-chemical characteristics 370
physiological response 15, 16
Picard iteration 78–9
picking personnel (pickers) 436
planning periods 441–2
plant to plant variation 187–8, 195
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point streams 97–8
policy models 259–60, 268–9
polynomial bacterial growth models 392
population lag 399
porous media 69–71

combined heat and mass transfer in
porous food 326–7

Positron Emitting Particle Tracking
(PEPT) 359–60

potential liveweight gain 262
prediction 156–79

data processing 158–61
model discrimination criteria 163,

175–6
model output uncertainty assessment

172–4
model parameter estimation 164–72

assessing uncertainty 167–72
parameter esimation criteria 166–7,

176–7
model structure characterisation 161–3

selection criteria 162–3
set of candidate models 161–2

numeric prediction respresentations
144–5

prediction error variance 172–3
prediction interval 173–4
predictive accuracy 152–3
predictive microbiology see

microbiological safety
pre-exponential factor 46, 47
preference mapping 374
preferred zone storage policy 438
pre-stress adaptation 12
primary error 396–7
probabilistic deductive models 9–12
problem decomposition 19–34, 56

benefits for modelling food processes
31–2

future trends 32–4
in information technology 20–2
modelling food processes 22–31

object-oriented analysis 25–8
process decomposition 28–31, 31–2
quality change 23–5

process decomposition 28–31, 31–2
process descriptions 95–7

too many conditions 99
process design parameters 6–7
process optimisation 5–8, 331–3
process representations 212, 217–21
product-centred quality assignment 372
product heat load 314–17
product treatment support system (PTSS)

121–2
product validation 175
production chains see food supply chains
production models 281
products

development of 378
modelling a batch of 26, 27–8
modelling interactions between 26, 27,

33, 440
proteins

homologous 122, 125–7
microbial protein in dairy production

233–5
unfolding of 45–6

purchase decisions 457–8

qualitative process model 124
quality 341, 460

acceptance vs 456–9
crop models 195–6

cucumber quality development 132,
133

prediction 190–2
tomatoes 210–11, 222

initial quality and keeping quality 434,
435

keeping quality see keeping quality
MAP and 296, 304–5
modelling see quality modelling
modelling quality change by problem

decomposition 23–5
quality assignment 23–4, 368–76
quality assignment models (QAMs) 24,

370–4, 378, 379
integration of QAMs and dynamic

product models 375–6
quality attributes 368–9, 372

prediction using instrumental
measurements 377

primary critical attributes 372
quality change groups 434, 439
quality control 376–8
quality cues 368, 369
quality function 412–13
quality function deployment framework

375–6, 378
quality guidance framework 375–6, 378
quality indices 378
quality limit 369–70
quality modelling 367–82, 411–13

advantages and disadvantages 379–80
areas of application 376–8

product development 378
quality control 376–8
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key principles and methods 368–76
dynamic product model 375
integration of quality assignment

models and dynamic product
models 375–6

quality assignment model 370–4
quality assignment process 368–70

TTI response modelling – application
scheme 413–17

quasi-steady-state approximation (QSSA)
40–1

radiation 341
radiation use efficiency (RUE) 207, 208,

260
random storage policy 437–8
rate constant 45
rational technique selection 129–30
raw materials

modifying 17
prediction of effect on final product

quality 377–8
refrigeration see cooling; freezing
relational learners 111
related components 91–2, 93
relative humidity 434
relative keeping quality loss 440–1,

442–3, 444, 446
reliability 410
resampling 109
research models 203, 259
resource-based view 463
respiration 204–5, 237–8
response function 413–17
reversible reactions 37–8
Reynolds Averaged Navier-Stokes

(RANS) models 66–7
rule induction 145–6
rules 145

association 143–4, 151
classification 143, 144, 151

Russian salad 423–6

safety 460
microbiological see microbiological

safety
seafood 419–21, 426, 427
Seafood Spoilage Predictor (SSP) 398
search 138–9

methods 114–16
seasons 435–6
second-class fruits 187, 191, 192
second order reactions 37
segmentation 379

selection criteria 162–3
senescence 238
sensitivity analysis 264, 305
sensors 193–4, 195
Sephadex 14
SERRISTE project 222
set of candidate models 161–2
shelf-life 370, 412–13

deductive modelling 6, 8–15
food microstructure and microscopic

water distribution 13–15
microgradients 12–13
monitoring in distribution 418–22
optimised distribution and stock

rotation system 422–7
see also keeping quality

Shelf Life Decision System (SLDS) 426
shrink packed seafood products 426, 427
sigmoid bacterial curves 387–8
simple kinetic reactions 36–7
silica 14
simulated annealing 116
SIMULSERRE project 213
sink strengths 187
slip velocity 352–3
slot planning 437–44

climate zones and planning periods
441–2

construction algorithm 442–3
example of construction of a slot plan

443–4, 445, 446
improving a slot plan 444
integration of product characteristics

439–41
models 438–9
value of 437–8

software
CFD codes 80–1
predictive microbiology packages

397–8
soilless culture 202
solid foods 343–9
speaking plant concept 195
specific growth rate 386–7

dynamic 393–4
maximum 389–92

spoilage 296, 375
spreadsheets 140
square root bacterial growth models 391,

417
standardised residual plot 160–1
STAR-CD 81
statistical approaches 32

data mining 146–8
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food quality modelling 374
refrigeration 334

steady-state approach 40–1
sterilisation 280

foods containing particulates 351–4
liquid foods 349–51

stirred tank models 315–16
stochastic models 164

stochastic birth process bacterial
growth modelling 398–400

stock level 439
stock rotation system 422–7
storage accommodation 436
storage conditions 436
storage policy 436, 437–8
storage time 434
strategic coordination 452
strategic management theory 462–3
Streif index for apple maturity 378
structure, model

characterisation 157, 161–3
matching purpose and 258–60

substrate affinity constant 279–80
subtasks 21
sum of squared errors (SSE) 166–7
supermarket, modelling 93–7
supervised discretisation 142
supervised learning 107
supply chains see food supply chains
support vector machines 117
survival rates 266
system theory 93–7

combined modelling 97–8

tank network model 315–16
task analysis 128
task decomposition 20–1, 31
task decomposition tree 21
teaching 212–13
technique selection 128–30
technological models 282–5
technology 459
Tempchron CTTI 407
temperature

climate control for a tomato crop
219–20

effective temperature 413, 413–14,
416–17

keeping quality of perishables 434,
439–40

kinetic modelling 43–8, 54–5
time-temperature indicators see time-

temperature indicators
temperature-enthalpy correction method

322–3, 323–4
temperature zone storage policy 438
Tempil CTI 407
Theil’s inequality coefficient 243–5, 246,

247
thermal conductivity 320–1
see also conduction

thermal processes see cooling; freezing;
heating

thermal runaway 356
thermodynamics 35
thermophysical properties 62, 70–1
3M diffusion-based TTI 407
3M Monitor Mark TTI 407–8, 415, 416
time-temperature indicators (TTIs) 402–31

current TTI systems 407–10
definitions and classifications 403–5
food quality modelling 411–13
future developments 427
history of 406–7
optimised distribution and stock

rotation system 422–7
requirement and properties of an ideal

TTI 405–6
shelf-life monitoring in distribution

418–22
TTI response modelling – application

scheme 413–17
timing of development 208–9
tomatoes 201–29

areas of application of models 211–21
climate control 217–20
fertigation control 221
teaching 212–13
yield prediction and crop

management 213–17
future trends 221–3
greenhouse vs field production 201–2
modelling tomato crops 203–11

interaction with pests and diseases
211

mass and energy balances 204–8
quality formation 210–11
yield formation 208–10

uses of crop modelling 203
TOMPOUSSE model 213–15, 216
train-and-test approach 119–20
transaction cost theory 461–2
transfer coefficients 7–8, 328–31, 333

see also heat transfer; mass transfer
transition state theory 43–6
transparency 460, 466
turbulence 66–7, 329, 333

Index 495



UHT (ultra-high temperature processing)
55

uncertainty 156–7, 462–3
model output uncertainty assessment

172–4
model parameter estimation 167–72

Unified Modelling Language (UML) 22
unit operations 285–6
unsupervised discretisation 142
unsupervised learning 118
urine nitrogen 234, 235
user friendly presentation 263

validation 57
beef cattle production model 264–5
dairy production model 242–7
induced models 106, 118–20
mathematical validation and product

validation 175
microbiological safety 395–7

value chain 450, 451–2
Van Slyke equation 41
variability 156–7

natural 263–4
variance stabilising transformations 158–

9, 160
variation, biological 187–8, 195, 296–7,

301–2, 379
vase-life 25
verification 264–5

vertical coordination 450, 452, 453
VITSAB TTI 408–9, 415, 416
volume, pack 299

Wal Mart 455
warehousing 436
water

crop growth models 188–9, 196, 238
closed systems 193–4
fertigation control 221
water balance 205–6

diffusion and loss in MAP 295
microscopic distribution 13–15

water use efficiency (WUE) 260–1
weaning rates 266, 267
weekly sales 464–5
weighted sum of squared errors 166–7
Weka System 154
white box models 161
wrapper methods 141

yield
formation 208–10
prediction

cucumber 186–8, 190–2
tomatoes 213–17

z-value 35–6
generalised 392–3

zero-order formation 36–7
zones, climate 436, 438, 441
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