
Measure the World with Electronics,
Arduino, and Raspberry Pi
Kimmo Karvinen & Tero Karvinen

K
arvin

en
 &

 K
arvin

en
M

ake: G
etting S

tarted w
ith S

ensors

Make:
Getting
Started with
Sensors

Sensors/ DIY Projects

Getting Started with Sensors

In Getting Started with Sensors, you’ll write programs and
build devices that respond to:

Sensors surround us. The world is full of them: infrared sensors in
motion detectors, carbon monoxide detectors in homes—even
tiny accelerometers, GPS modules, and cameras inside your
smartphone. Thanks to the proliferation of mobile devices,
sensors are now remarkably affordable, meaning you can
combine inexpensive sensors and microcontroller boards to
make your own devices.

This fully-illustrated, hands-on book teaches you to connect and
read sensors through a series of short projects. You’ll learn to use
the immensely popular Arduino and Raspberry Pi boards to
process data through simple programs you develop.

» Rotation with a potentiometer

» Distance with ultrasound

» Proximity with infrared

» Light and dark with a photoresistor

» Temperature with a thermometer

» Relative humidity with a humidity sensor

Make:
makezine.com

US $19.99 CAN $20.99

ISBN: 978-1-4493-6708-4

There’s a whole world out there full of sensory impressions you
can control, track, and manage. How will you capture it?

You’ll also work with resistive and electromechanical sensors, as
well as switches, transducers, potentiometers, buzzers, 555
timers, and voltage dividers.

For more sensor projects, check out the authors’ other
books: Make: Arduino Bots and Gadgets and Make: Sensors.

Measure the World with Electronics,
Arduino, and Raspberry Pi
Kimmo Karvinen & Tero Karvinen

K
arvin

en
 &

 K
arvin

en
M

ake: G
etting S

tarted w
ith S

ensors

Make:
Getting
Started with
Sensors

Sensors/ DIY Projects

Getting Started with Sensors

In Getting Started with Sensors, you’ll write programs and
build devices that respond to:

Sensors surround us. The world is full of them: infrared sensors in
motion detectors, carbon monoxide detectors in homes—even
tiny accelerometers, GPS modules, and cameras inside your
smartphone. Thanks to the proliferation of mobile devices,
sensors are now remarkably affordable, meaning you can
combine inexpensive sensors and microcontroller boards to
make your own devices.

This fully-illustrated, hands-on book teaches you to connect and
read sensors through a series of short projects. You’ll learn to use
the immensely popular Arduino and Raspberry Pi boards to
process data through simple programs you develop.

» Rotation with a potentiometer

» Distance with ultrasound

» Proximity with infrared

» Light and dark with a photoresistor

» Temperature with a thermometer

» Relative humidity with a humidity sensor

Make:
makezine.com

US $19.99 CAN $20.99

ISBN: 978-1-4493-6708-4

There’s a whole world out there full of sensory impressions you
can control, track, and manage. How will you capture it?

You’ll also work with resistive and electromechanical sensors, as
well as switches, transducers, potentiometers, buzzers, 555
timers, and voltage dividers.

For more sensor projects, check out the authors’ other
books: Make: Arduino Bots and Gadgets and Make: Sensors.

Getting
Started with
Sensors

Kimmo Karvinen and
Tero Karvinen

Getting Started with Sensors
by Kimmo Karvinen and Tero Karvinen

Copyright © 2014 Kimmo Karvinen, Tero Karvinen. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Maker Media books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://my.safaribooksonline.com). For more
information, contact O’Reilly Media’s corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Brian Jepson, David Scheltema, and Emma Dvorak
Production Editor: Nicole Shelby
Copyeditor: Sonia Saruba
Technical Editor: Philipp Marek
Proofreader: Jasmine Kwityn
Cover Designer: Brian Jepson
Interior Designer: Nellie McKesson
Illustrator: Kimmo Karvinen
Photographer: Kimmo Karvinen
Cover Art: Kimmo Karvinen
Technical Advisor: Paavo Leinonen

August 2014: First Edition

Revision History for the First Edition:

2014-08-06: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449367084 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The
Maker Media logo is a trademark of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Maker Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

ISBN: 978-1-449-36708-4

[LSI]

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449367084

Contents

Preface. vii

1/Sensors. 1

Project 1: Photoresistor to Measure Light. 3

Parts. 4

Build It. 5

Discussion: Photoresistors. 6

Interactive Sensor Control. 7

Going Forward. 7

2/Basic Sensors. 9

Project 2: A Simple Switch. 9

Parts. 9

Build It. 10

Troubleshooting. 11

An LED Needs a Resistor. 12

Project 3: Buzzer Volume Control. 12

Parts. 13

Build It. 13

Troubleshooting. 14

Project 4: Hall Effect. 14

Parts. 15

Build It. 15

Troubleshooting. 17

Project 5: Firefly. 17

Integrated Circuits. 17

555 Timer IC. 18

Light Up an LED When It’s Bright. 19

Light to Darkness. 21

Transistors. 22

Fading an LED. 24

555 Fading Blink. 25

iii

Capacitors. 28

Firefly. 29

3/Sensors and Arduino. 33

Project 6: Momentary Push-Button and Pull-Up Resistors. 34

Parts. 34

Build It. 35

Run the Code. 35

Pull-Up Resistors and Arduino. 37

Project 7: Infrared Proximity to Detect Objects. 40

Parts. 41

Build It. 42

Project 8: Rotation (Pot). 43

Parts. 45

Build It. 46

Run the Code. 46

Project 9: Photoresistor to Measure Light. 47

Parts. 47

Build It. 48

Run the Code. 49

Project 10: FlexiForce to Measure Pressure. 49

Parts. 50

Build It. 50

Run the Code. 51

Project 11: Measuring Temperature (LM35). 52

Parts. 53

Build It. 53

Run the Code. 55

Project 12: Ultrasonic Distance Measuring (HC-SR04). 56

Parts. 57

Build It. 57

Run the Code. 58

Conclusion. 61

4/Sensors and the Raspberry Pi. 63

Project 13: Momentary Push Button. 64

Parts. 64

Build It. 64

Run the Button Code. 66

Troubleshooting. 67

iv Contents

Hello, Python World. 68

Project 14: Blink an LED with Python. 69

Parts. 69

Build the LED Blink Project. 69

Run the Code. 70

Project 15: Adjustable Infrared Switch. 73

Parts. 73

Build the IR Switch Project. 73

Run the Code. 74

Voltage Divider. 76

Analog Resistance Sensors. 77

Project 16: Potentiometer to Measure Rotation. 77

Parts. 78

Build It. 78

Install SpiDev. 78

Allow SPI Without root. 79

Run the Code. 80

Project 17: Photoresistor. 82

Parts. 82

Build It. 83

Run the Code. 83

Playing with Resistance Numbers. 83

Project 18: FlexiForce. 85

Parts. 85

Build It. 85

Run the Code. 86

Project 19: Temperature Measurements (LM35). 86

Parts. 86

Build It. 86

Run the Code. 87

Project 20: Ultrasonic Distance. 89

Parts. 89

Build It. 90

Run the Code. 90

Real Time or Fast?. 92

A/ Troubleshooting Tactics. 95

B/ Arduino IDE Setup. 97

Contents v

C/ Setting Up Raspberry Pi. 101

D/ Bill of Materials. 117

Index. 123

vi Contents

Preface

There is a world of things happening around
you, most of which become knowable to you
thanks to one or more of your five senses. Sen-
sory perception happens so quickly, and so
often, that it’s easy to overlook how impressive
a system you actually are.
Take a moment and think how many sensory events happened to you from
the time you woke up to the time you began reading this book. It’s likely that
you can’t even list all the sensory occurrences. Not only do you constantly
sense the environment, but your senses also work together to compile a pic-
ture of the universe. For example, events such as people passing by, warm
sun shining on your face, or observing that a cool breeze in the morning is
getting warmer in the afternoon are all fine examples of your senses at work
and your mind processing sensations. But how can a robot or gadget have
similar input? You probably already know what makes this possible (you did
buy a book on the topic): sensors.

Adding sensors to a circuit expands its capabilities just as your own senses
expand your awareness and inform you about the world. Sensors provide an
input for information about an environment and work much like your own
senses. But sensation isn’t the only issue with sensors. A component doesn’t
necessarily have the ability to draw conclusions when a particular event oc-
curs. Say, for instance, that it is –5 degrees outside and you want to go for a
walk; what should you wear? You know, of course, that a coat and winter
clothing are in order, but a temperature sensor does not know this. It can
certainly provide you with a temperature reading, but it does not make judg-
ments or inferences about what you should wear—at least not at the com-
ponent level. For sensors to matter in the same way that your own sensations
and your reflection on these sensations matter, a level of data processing
needs to occur on the sensor data. Ultimately, sensors are components that
you wire so that, either through hardware or software, their data is processed
—and that’s what this book is about: how to wire sensors and process their
data.

In the first part of this book, you’ll learn how to wire up sensors to other
components. The level of data processing isn’t too robust at the component

vii

level, and the focus is really on just getting a sensor safely wired and teaching
some of the basics. The second part of the book deals with how to process
sensor data. You will learn how to easily and quickly write programs with
Arduino to process sensor data, as well as how to wire and program a Rasp-
berry Pi to support analog sensors.

In this book, you’ll gain hands-on experience with some of the most useful
and instructive sensors available. Among the sensors and applications in this
book, you’ll learn how to detect and respond to:

• Clicks and rotation with a potentiometer

• Distance with ultrasound

• Proximity with infrared sensors

• Light and dark with a photoresistor

• Temperature with a thermometer

• Relative humidity with a capacitive relative humidity sensor

What Sensors to Buy?
This book covers a number of specific sensors and components (a few are
illustrated in Figure P-1). To make sourcing parts easier, we’ve included Ap-
pendix D, which lists a complete bill of materials for all the projects in this
book.

Figure P-1. Arduino, sensors, and components

Some well-known sellers of Arduino boards and related parts include Maker
Shed, SparkFun Electronics, Parallax, and Adafruit. All four of these shops
should stock most of the individual sensors used in this book, and all sell
original, high-quality parts. Start with these shops.

Global electronics distributors, like Element14 and RS Components, are
great places to order parts from, too. However, their product lists can be
daunting for beginners to navigate. These global suppliers stock parts that
differ from each other only in the pin format or voltage tolerances, which can

viii Preface

http://makershed.com
http://makershed.com
http://www.sparkfun.com
http://www.parallax.com
http://www.adafruit.com
http://www.element14.com
http://www.rs-components.com

be quite exhaustive. The parts sold from both of these global suppliers are
high quality parts and very well documented.

Some online shops are very cheap, but these places typically do not sell of-
ficial Arduino boards—they will say the product is “compatible.” The sensors
they sell may differ slightly in their pin configuration or even general appear-
ance. At the time of writing, DealExtreme is one of the most popular shops
of this sort. Even though they are based in Hong Kong and Shenzhen and
offer free worldwide shipping, the quality of their parts varies a lot and de-
livery time can be slow. AliExpress is another popular Asian shop.

If you’re ordering from abroad, research your local laws regarding custom
fees. In some countries, small orders may be exempt from customs and
taxes.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file exten-
sions.

Constant width
Used for program listings, as well as within paragraphs to refer to pro-
gram elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by val-
ues determined by context.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Using Code Examples
You can download all the source code for this book from http://getstar
ted.botbook.com.

Preface ix

http://dx.com
http://www.aliexpress.com
http://getstarted.botbook.com
http://getstarted.botbook.com

You can extract the zip package by double-clicking it, or by right-clicking and
selecting Extract from the pop-up menu.

This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM
of examples from Make: books does require permission. Answering a ques-
tion by citing this book and quoting example code does not require permis-
sion. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Getting Started With
Sensors by Kimmo Karvinen and Tero Karvinen (Maker Media). Copyright
2014, 978-1-4493-6708-4.”

If you feel your use of code examples falls outside fair use or the permission
given here, feel free to contact us at bookpermissions@makermedia.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business
and creative professionals use Safari Books Online as their primary resource
for research, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organizations, government agencies, and individuals. Subscribers have ac-
cess to thousands of books, training videos, and prepublication manuscripts
in one fully searchable database from publishers like Maker Media, O’Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books On-
line, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the pub-
lisher:

Make:

x Preface

mailto:bookpermissions@makermedia.com
http://safaribooksonline.com
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Make: unites, inspires, informs, and entertains a growing community of re-
sourceful people who undertake amazing projects in their backyards, base-
ments, and garages. Make: celebrates your right to tweak, hack, and bend
any technology to your will. The Make: audience continues to be a growing
culture and community that believes in bettering ourselves, our environ-
ment, our educational system—our entire world. This is much more than an
audience, it’s a worldwide movement that Make: is leading—we call it the
Maker Movement.

For more information about Make:, visit us online:

Make: magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at: http://bit.ly/get-start-
sensors.

To comment or ask technical questions about this book, send email to: book
questions@oreilly.com

Acknowledgments
The authors would like to thank Hipsu, Marianna, Nina, and Valtteri.

Preface xi

http://makezine.com/magazine/
http://makerfaire.com
http://makezine.com
http://makershed.com/
http://bit.ly/get-start-sensors
http://bit.ly/get-start-sensors
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

1/Sensors

Sensors surround you in daily life. The world is
full of them: from passive infrared sensors in
motion detectors, to CO2 detectors in air con-
ditioning systems, and even tiny accelerome-
ters, GPS modules, and cameras inside your
smartphone and tablet—sensors are every-
where! The variety of sensor applications is re-
markable.
It’s safe to assume that if an electronic device is considered “smart,” it’s full
of sensors (Figure 1-1). In fact, thanks to the proliferation of smart devices,
especially phones, the price of sensors has been driven to affordability. Not
only is it economically viable to add advanced sensors to your projects, but
they vastly expand the kinds of projects you can make.

You’ll learn about sensors in this book by making small projects and reflecting
on the experience. It’s more fun to build first and discuss later, but both are
equally important. It’s best to avoid the temptation to only build projects and
skip the conceptual sections.

Getting started with sensors is easy, and only the sky is the limit. Electronics
challenge some of the best brains daily and produce new innovations and
dissertations. On the other hand, even a child can get started with some
guidance.

If you don’t know much about sensors yet, try to remember what it feels like
now. After you’ve tackled some challenges and built a couple of gadgets,
many dark mysteries of sensors will probably seem like common sense to
you.

This book is suitable for anyone with an interest in sensors (see Figure 1-2).
After you’ve built the gadgets and have read this book, you can get ideas for
bigger projects from our book Make: Arduino Bots and Gadgets or learn more
advanced sensors in Make: Sensors. For a wider view of the basics, see Get-
ting Started with Arduino, 2nd Edition by Massimo Banzi, Getting Started with
Raspberry Pi by Matt Richardson and Shawn Wallace, or Make: Electronics
by Charles Platt.

1

http://bit.ly/make-abg
http://bit.ly/make-sensors
http://bit.ly/Arduino_Started
http://bit.ly/Arduino_Started
http://bit.ly/start-raspberry-pi
http://bit.ly/start-raspberry-pi
http://bit.ly/make-elec

Figure 1-1. Various sensors: infrared proximity, rotation, brightness, but-
ton, temperature, and distance

What are sensors? Sensors are electrical components that function as input
devices. Not all inputs are explicitly sensors, but almost all inputs use sen-
sors! Consider your computer mouse or trackpad, a keyboard, or even a
webcam; these are not sensors, but they definitely use sensors in their de-
sign. More abstractly, you can frame sensors as a component to measure a
stimulus that is external to the system it is in (its environment). The output
data is based on the measurement. For example, when you type at a key-
board, the letter that appears on your screen (the output) is based on the
measurement (which switch, or key, you pressed on the keyboard). How
many letters appear on screen is based on another measurement (how long
you keep the key pressed).

Figure 1-2. Simple AND connection with buttons, built and designed by a
four-year-old with help from an adult

The first project uses a photoresistor to measure light. Without the photo-
resistor (or similar sensor), there is no way the circuit can know how bright

2 Getting Started with Sensors

the light is in the environment. By adding the sensor, your circuit knows
something it didn’t know before.

All of the projects in this book evaluate a particular stimulus within the envi-
ronment. None of this would be possible without sensors. Let’s get building
so you can experience the inputs and outputs that sensors provide to
projects.

Project 1: Photoresistor to Measure
Light
Light in an environment is quite informative: you can determine what time of
day it is based on the sun’s angle, you operate a car more safely at night when
its lights are on, and people who do not experience enough light in daily life
can become depressed with seasonal affective disorder. As such, light influ-
ences many aspects of your life and it’s fun to measure it, too.

The simplest sensor for detecting light is a photoresistor. It’s not uncommon
to also encounter another name for the exact same sensor: light-dependent
resistor (LDR). The component works by changing its resistance based on
the amount of light hitting it.

Now that you know the right sensor to use, the next question to think about
is how to process the sensor’s measurements. If you’ve ever worked with a
light-emitting diode (LED) , shown in Figure 1-3, you might know that resist-
ance is an electrically important consideration. For example, if you’ve ever
used a larger-value resistor for the LED than a project called for, you’ve seen
that too much resistance can restrict an LED from illuminating. This same
basic observation is applicable to this project.

Figure 1-3. LEDs

Sensors 3

The circuit is designed so that an LED is dependent on the photoresistor’s
measurement. Too much resistance and the LED simply will not turn on.
Enough discussion—it’s time to build! Figure 1-4 shows the finished project.

Figure 1-4. The finished photoresistor project

Parts
You need the following parts for this project:

• Photoresistor

• 5 mm red LED (different LEDs will work differently with this circuit; later,
you’ll learn a more sophisticated way to fade LEDs)

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• Breadboard

• 9 V battery clip

• 9 V battery

All of these parts, except the 9 V battery and 470 Ω resistor,
are available in the Maker Shed Mintronics: Survival Pack, part
number MSTIN2. You can use two of the 220 Ω resistors in
series or one 1 kΩ resistor in place of the 470 Ω resistor; both
of these are available from electronics retailers such as
RadioShack.

4 Getting Started with Sensors

http://bit.ly/mintron-sp

Build It
Here are the steps for building this project:

1. Orient your breadboard so that it is wider than it is tall, as shown in
Figure 1-5.

Figure 1-5. Circuit digram for photoresistor project

2. Look at your LED and determine which lead has a flat side above it on
the colored plastic housing—this indicates the negative lead of the LED
(the negative lead is also the shorter of the two), as shown in
Figure 1-6. LEDs have a certain polarity and putting them in backward
might damage them.

Figure 1-6. Negative leg of the LED

3. Insert the photoresistor so that the negative lead of the LED and one of
the photoresistor leads occupy the same column. The second (positive)

Sensors 5

LED lead should occupy its own column for now. Refer back to Figure 1-5
to see how they should be arranged.

Do you see the gap in the middle of the breadboard in
Figure 1-7? That gap separates the two groups of columns,
and there’s no connection across it. If you want two leads
in the same column to be connected, be sure they are on
the same side of the gap.

Figure 1-7. Breadboard layout

4. Connect the 470 Ω resistor to the column with the positive LED lead and
make sure it’s not the same column that already has the photoresistor
and LED’s negative lead in it. Make sure that the resistor’s other lead is
in a separate column.

5. Attach the black wire from the battery clip to the column that contains
only a photoresistor lead.

6. Insert the red wire from the battery clip to the column that contains only
a resistor lead.

7. Double-check the steps and if everything looks like Figure 1-5, connect
the 9 V battery.

That’s it. You’ve built your first sensor circuit. Congratulations!

Discussion: Photoresistors
It might not seem like the circuit is doing much. That’s because the light levels
probably have not changed much in your room. Put your finger over the pho-
toresistor and watch the LED closely. Did anything seem to change with the
LED? There should have been some change in the LED brightness. Try adding
more light to the photoresistor. The opposite happened, right? Now that
you’ve seen the photoresistor in action, how would you describe what is going

6 Getting Started with Sensors

on when you expose the photoresistor to more light in terms of its resist-
ance? Is the resistance increasing or decreasing when the sensor is exposed
to more light?

Here’s what’s going on in the circuit. The more light hits the photoresistor,
the lower its resistance. If the room is quite bright, then the LED will be quite
bright. If light is low in the room, the sensor resists the current flow, which is
expressed by the LED getting dimmer.

The current flow through the sensor controls how bright the LED will shine.
That’s because the circuit is wired so that all current to the LED must pass
through the photoresistor first.

The photoresistor, as you just learned, is a resistive sensor.
There are many types of resistive sensors; this category of
sensors is used to measure much more than luminosity. As
you continue reading and you encounter new sensors, it’s a
good idea to think how the stimuli are measured and especially
how the output is structured. None of the sensors will output
data that is in a convenient format for end-user consumption.
Instead, you will need to decide how to express or format the
raw sensor data output in a way that makes sense to users.

Another sensor type is electro-mechanical. These sensors do not manifest
changes in voltage or current, but rather by a change in their physical prop-
erties. The thermostat in your home or apartment is a great example (unless
you have a digital thermostat). When the room temperature changes, a ther-
mostat’s bimetallic coil will expand or contract depending on whether the
room’s temperature increases or decreases. The sensor is actually physically
expressing itself by changing shape! But even these sensors may trigger an
electronic sensor (for example, a thermostat’s bimetallic coil is usually con-
nected to a tilt switch that turns the heat on or off).

Interactive Sensor Control
“Project 1: Photoresistor to Measure Light” on page 3 used a sensor in a way
that didn’t directly involve interaction with a human. Sure, you were the one
who changed the lighting in the room to force the photoresistor to change its
resistance, but it could have just as easily been the setting or rising of the
sun. There are many sensors that you’ll manipulate directly; you’ll see these
in later chapters.

Going Forward
In all the projects in this book, you’ll be building small systems that collect
input data by taking measurements with a sensor. The systems will do some-

Sensors 7

thing that processes that input data, and then take action (the output of the
system). At first, you’ll just build things with electronic components, but later
in this book, you’ll use Arduino and Raspberry Pi to handle the processing.

When you use Arduino and Raspberry Pi, you’ll write code that does a lot of
the work for you. The benefit will become very clear because you’ll find that
you can change the way you respond to an input without having to rewire
your circuit.

Suppose you want to challenge your friend to see who can press a force-
sensing resistor down more firmly. All you would need to do is add some extra
lines of code to the Arduino sketch and send the new code. How would you
accomplish the same trickery if you didn’t have the option to alter code? It
certainly would be more challenging, and at the very least you would have to
move a few things on the breadboard. And how would you display the score
for the contest results? It turns out that an Arduino handles quite a lot of work
for you!

But this isn’t the whole story of sensors. We don’t want you to think that as
sensor systems increase in physical complexity, their programs become
more complicated. Rather, we want you to think of this as an issue of applic-
ability: what’s the best design to accomplish your goal?

8 Getting Started with Sensors

2/Basic Sensors

Get ready to wire a few more sensors and learn
a bit more theory. The circuits you will build in
this chapter do not need to be programmed,
which is to say, they will not use an Arduino or
a Raspberry Pi. The sensor’s data will be “in-
terpreted” by the electrical properties of each
component in the circuit design.
A sensor is a physical input to a circuit. Sensors are transducers. The process
of converting sensed energy into another form is called transduction. For
example, a light sensor transduces luminosity into resistance.

Another type of transducer is an actuator. Rather than reacting to something
in the environment, an actuator makes something happen. An actuator is a
physical output of a circuit. An LED, for example, transduces electrical cur-
rent into light; a speaker turns it into sound.

You’ll use both types of transducers (sensors and actuators) in the projects
in this book. So if someone asks you how a sensor exerts control over a cir-
cuit’s simply reply, “Transduction!”

Project 2: A Simple Switch
A switch can connect and disconnect the flow of electricity. It’s just like a
button, except that it stays where you leave it. If you switch it off, it stays off.
If you switch it on, it stays on.

Parts
You need the following parts for this project:

• A switch

• A wire with alligator clips

• Two 1.5 V batteries

• Battery holder with wire leads

• 5 mm red LED

9

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• Breadboard

Some toggle switches have three leads. These single pole dou-
ble throw (SPDT) switches are used in cases where you want
the switch to choose between two different paths for electric-
ity to flow. If you only wire up two of the leads, you’re just using
it as a regular single pole single throw (SPST) switch.

SPDT switches are used when a simple on-off switch won’t do
the trick, such as the pair of light switches commonly found at
the top and bottom of a staircase. Because of a multiway
switching wiring scheme, flipping either switch will toggle the
state of the light.

Build It
Figure 2-1 shows the circuit diagram for this project. Here’s how to wire it up:

1. Orient your breadboard so that it is taller than it is wide, as shown in
Figure 2-1.

Figure 2-1. Circuit diagram for the simple switch circuit; the short lead
connects to the black wire

2. Insert the red LED into the breadboard and keep track of which side is
positive (the longer lead) and which is negative (the shorter lead).

10 Getting Started with Sensors

3. Insert one lead of the 470 Ω resistor into the row containing the LED’s
positive lead.

Keep in mind that the gap in the middle of the breadboard
separates the two groups of rows, and there’s no connec-
tion across that gap. If you want two leads in the same row
to be connected, be sure they are on the same side of the
gap.

4. Connect the alligator wire from the other resistor lead to the middle lead
of the switch.

5. Connect the red positive wire from the battery holder to either side lead
of the switch using the following technique (see Figure 2-2):

a. Push the wire through the hole.

b. Fold the wire into itself.

c. Twist the folded wire to secure it.

Figure 2-2. Tying a wire to the switch leads

6. Insert the batteries into the holder.

With everything wired up, test the switch and see if your LED turns on and
off as you’d expect from a switch.

Now you can add a power switch to any of your projects. No more removing
the battery when you are done playing with a prototype.

Troubleshooting
If this project doesn’t work, try checking the following things:

Basic Sensors 11

• If your switch has three leads, did you connect the switch’s center and
one side lead (rather than using two side leads)?

• Make sure that the alligator clip only touches the middle lead of the
switch. If the alligator clip short-circuits two leads, the LED might be lit
constantly, even if you flip the switch.

• Is the battery wire connected securely? If you find the LED is never lit,
try pressing on the battery wire connection and flipping the switch. For
a permanent fix, twist the switch more to make the wire tighter.

An LED Needs a Resistor
All the circuits in this book work with a normal red LED and a 470 Ω resistor.
In a pinch, any resistor with a brown multiplier band (third stripe) will do.

What if you have a really fancy LED, such as a blue one or a superbright LED?
If you have a general idea what the LED should look like when lit, you can just
try out resistors. Start with the common 470 Ω. If the LED is too dim, pick a
weaker resistance.

Most LEDs don’t break easily, but they have very low resistance. So if you
forget the current limiting resistor, the LED might drain your battery and
cause some components to overheat and break. Even if you use an online
LED resistor calculator (there are many out there; just Google it or look in
your phone’s app store) and it gives you a zero (or less!), you should still use
a very small resistor.

Third Band Trick
We use a shortcut called the third band trick to pick out resistors. Hold a
resistor so the tolerance band is on your right—these are usually gold or silver
bands. The third band in from the left is known as the multiplier band.

Some resistors have five bands, not four, although they are uncommon. But
all the same, the multiplier band is the second-to-last band. For a five-band
resistor, it’s the fourth band.

Our rule of thumb (when working with 3 V to 5 V) for choosing a resistor by
its third band: pick brown if you are protecting an LED, green if you need a
pull-up resistor.

Project 3: Buzzer Volume Control
In many projects, you need the ability to slightly adjust input or output rather
than toggling between on and off. A potentiometer will allow you to operate
between the extremes of on and off, just as the photoresistor did in “Project

12 Getting Started with Sensors

1: Photoresistor to Measure Light” on page 3. Potentiometers, also known as
pots, are often used as volume controls for audio devices.

Parts
You need the following parts for this project, which are available in the Maker
Shed Mintronics: Survival Pack, part number MSTIN2 (you will need to pur-
chase the 9 V battery and piezo buzzer separately:

• DC piezo buzzer (Maker Shed part number MSPT01)

• 10 K potentiometer

• 9 V battery

• Battery clip

• Breadboard

You are using a 9 V battery in this project because common
piezos typically operate with a range of 6 V to 18 V or more.
Because we are going to be increasing and decreasing the
current with a potentiometer, using a 9 V source voltage gives
us room to increase or decrease the voltage and still produce
audible output.

Build It
Here are the steps for building this project:

1. Orient your breadboard so that it is wider than it is tall, as shown in
Figure 2-3.

2. Connect the negative wire of the piezo buzzer to any free column of holes
on the breadboard and then insert the black (negative) battery clip wire
into the same column.

3. Insert the potentiometer into the breadboard, but make sure you don’t
put it in the same column as the negative wires you just connected. Put
the battery clip’s red (positive) lead into the same column as the poten-
tiometer’s middle lead.

Basic Sensors 13

http://bit.ly/mintron-sp
http://bit.ly/mintron-sp
http://bit.ly/piezo-buzz

Figure 2-3. Circuit diagram for buzzer volume control

4. Next, connect the piezo’s positive lead to one of the potentiometer’s
outer pins. It doesn’t matter which outer pin you choose, just don’t pick
the middle one—that’s not an outer pin.

5. Clip in the 9 V battery and turn the potentiometer left to right to change
the output level of the piezo buzzer.

Now you can add loud noise to any of your projects. You also know how to
use a potentiometer as an adjustable resistor. You will soon learn about many
other sensors that report their value with resistance, just as a potentiometer
does.

Troubleshooting
If this project doesn’t work, try checking the following things:

• Does your piezo buzzer work? Connect it directly to the battery to make
sure it works (the piezo black lead goes to the battery’s black lead, and
red goes to red).

• Did you connect the pot correctly? We’re using the pot as a simple ad-
justable resistor, so we must connect one wire to the center lead and the
other to either of the side leads.

• Check connections one by one. Start from battery positive or negative
and go through the whole circuit.

Project 4: Hall Effect
A hall switch senses change in the magnetic field and detects if there is a
magnet nearby. A very common use for this is a bike speedometer that iden-
tifies how often a rapidly rotating object passes by the sensor. Another typical
application is a door burglar alarm like the simplified version we’re going to
build next.

14 Getting Started with Sensors

Figure 2-4 shows the NJK-5002A Hall effect switch, which you can find from
sellers on eBay or AliExpress for under $10. If you buy the similar NJK-5002C,
you will have to change the way you wire the circuit (described later).

Figure 2-4. Hall effect switch with magnet

Parts
You need the following parts for this project:

• DC piezo buzzer

• 9 V battery

• Battery clip

• Breadboard

• NJK-5002A Hall effect switch

Build It
The NJK-5002A acts as a switch, and has connections for positive voltage
(brown), negative (blue, although most components use black for negative),
and a connection that outputs positive voltage (black, despite the fact that
black usually indicates negative) when a magnet is held to the sensor.

If you are using the NJK-5002C, black will go negative rather than positive
when a magnet is held to the sensor.

Here are the steps for building this project:

1. Orient your breadboard so that it is wider than it is tall, as shown in
Figure 2-5.

Basic Sensors 15

http://ebay.com
http://aliexpress.com

Figure 2-5. Circuit diagram for the Hall sensor alarm

2. Insert the black (output) Hall effect switch wire into any free column of
holes on the breadboard and then insert the red positive wire of the piezo
buzzer into the same column.

If you are using the NJK-5002C instead of the NJK-5002A, connect the
black negative wire from the piezo here instead of the red positive wire.

3. Insert the red positive wire of the 9 V battery clip into any free column
of holes on the breadboard and then insert the brown (positive) Hall ef-
fect switch wire into the same column.

If you are using the NJK-5002C instead of the NJK-5002A, insert the red
positive wire from the piezo into this column as well.

4. Insert the blue (negative) Hall effect switch wire into any free column of
holes on the breadboard and then insert the black negative wire from
the battery clip into the same column.

Insert the black negative wire from the piezo into this column. (If you are
using the NJK-5002C, you don’t need to make another connection to it
in this step.)

5. Clip in the 9 V battery and hold a magnet to the switch to make the buzzer
sound.

Now that you’ve learned how to work with a Hall effect switch, you can use it
in your projects in many ways. You can use it to detect when two things are
brought together or separated. For example, you could put a magnet in a
door, and a Hall effect switch in the doorframe to know when it is opened or
closed.

It can also be used to measure rotational speed: if you embed a magnet in a
stationary bicycle wheel, you could use a Hall effect switch to measure how
fast you are pedaling. You could use the speed as input to a video game to
make your exercise sessions more interesting.

16 Getting Started with Sensors

Troubleshooting
If this project doesn’t work, try checking the following things:

• Try flipping the magnet over if it doesn’t work. The switch won’t be trig-
gered unless you press the right pole of the magnet against it.

• Did the LED that’s built into the sensor light up? If not, it’s probably not
wired right.

• Are you using the correct model of Hall switch? The build instructions
tell you how to connect two popular models (NJK-5002A and
NJK-5002C). If you’re using a different model, check the datasheet for
information that will help you connect it correctly.

• Make sure the piezo buzzer is working by connecting it directly to the
battery. Does it make a sound?

Project 5: Firefly
Night falls, and fireflies start to glow, slowly fading in and out. In case your
garden doesn’t have any real fireflies, you can build your own. You’ll use a
light-dependent resistor to detect darkness, and a 555 timer circuit to con-
tinuously fade an LED in and out.

It’s time to venture beyond basic components and leap to integrated circuits
(ICs). You’ll still use the components from the previous project, but also learn
to use one of the most popular ICs, the 555 timer.

First, you’ll make an LED light up when it’s bright outside. Then you reverse
this, making your LED light up in darkness. You’ll make the LED fade in and
out with the 555. Finally, you’ll combine the circuits to make the firefly. It turns
on the LED fading in darkness.

By building the 555 firefly in distinct, testable steps, you will learn a system-
atic approach to building analog circuits. You won’t learn analog circuit de-
sign here, but at the end of this project you’ll get some ideas for simple mod-
ifications. Designing completely new gadgets is easier with Arduino, which
you’ll see later in the book.

Integrated Circuits
ICs vary in complexity and price. The 555 timer we use here is a cheap, com-
paratively simple IC: it only has about 40 components inside, most of these
being transistors and resistors. Still, imagine if you didn’t have the luxury of
using a 555 timer. Your projects would balloon in parts and the wiring would
not be an easy process. If you think 40 components is a lot, you will be taken
aback to learn that there are billions of components in ICs such as a processor

Basic Sensors 17

or memory chip. The most complex IC we will be using in our sensor projects
is the Broadcom BCM2835 system-on-chip found in the Raspberry Pi.

This book teaches you the things you need to know to use the components
in this book. If you want to know more, you can search the Web for the name
of the IC and the word “datasheet” (e.g., “CA555E datasheet”). Datasheets
are sometimes tedious to read, but they are the authoritative source on how
the IC works.

Pin numbering can be found on the datasheet. Usually, pins are numbered
counter-clockwise from the notch. Hold the IC, pins down, so that you look
at it from the top. Locate the polarity mark: a half-moon notch, a corner tri-
angle, or a dot on pin 1. Pins are numbered counter-clockwise from that mark,
starting from pin 1.

For the CA555E, hold the half-moon notch to the left and the pins away from
you. See Figure 2-6. Pin 1 is the bottom left, and the numbers increase
counter-clockwise. Thus, the last pin (8) is at top left. To make your life easier,
the circuit diagrams in this book have small pin numbers on the 555 chips.

Figure 2-6. Pins are numbered counter-clockwise from the notch

555 Timer IC
The 555 timer IC (shown in Figure 2-7) is a multipurpose chip. You can con-
figure it as a timed delay, an oscillator, or as a flip-flop.

Modes of 555 operation are:

• Leave the output on for a while (monostable).

• Toggle the output (bistable, also known as flip-flop).

• Blink the output without any input (astable).

18 Getting Started with Sensors

Figure 2-7. 555 timer integrated circuit

Configuring a 555 timer is not analogous to the programming you will do on
an Arduino or Raspberry Pi, where lines of code are compiled and executed.
Instead, the 555 timer configuration is done by connecting certain compo-
nents such as resistors and capacitors to the 555. Hardware sets up the 555,
not software.

Building and configuring gadgets by coding with Arduino is easier than the
component-by-component approach you use with the 555. Here, we have
already designed the circuit for you and made the necessary calculations,
making it a simple task to get familiar with the 555.

Light Up an LED When It’s Bright
A light-dependent resistor (LDR) cuts off electricity when it’s dark. When it’s
well lit, the resistance is low and current passes through. The brighter it is,
the more current goes through.

How do you light up an LED when it’s bright? Just connect an LDR in series
with the LED. The LDR works just like any analog resistor, so you could use a
potentiometer in its place.

Sound familiar? That’s because you’ve built this circuit earlier (see
Figure 2-8). Refer to the building instructions in “Project 1: Photoresistor to
Measure Light” on page 3.

Put your finger over the LDR, and the LED goes dark. Aim a bright light at the
LDR, and the LED is brightly lit.

Who needs light in a bright room? Can’t you make it light up in the darkness?

Basic Sensors 19

Figure 2-8. LED/LDR circuit

Jumper Wires
Jumper wires, also known as hookup wires, allow you to connect components
to each other on a breadboard (Figure 2-9).

Figure 2-9. Jumper wires

These wires are not fancy and you can even make them yourself by stripping
the ends off of insulated solid core thin wire. Just because you can make
jumper wires doesn’t mean it is not worth buying a pre-made collection of
jumper wires. They are sold in various colors, and their ends are straight and
reinforced so it’s easy to push them into the breadboard.

Jumper wires are available in a number of colors, lengths, and connector
housings. The core of the wire refers to the part surrounded by plastic insu-
lation and can be stranded or solid. You want solid core wire because the
breadboard clips need to latch onto something solid.

20 Getting Started with Sensors

In an attempt to make life easier, jumper wires come in a variety of colors.
There is nothing electrically different about these hued wires, but typically
black is used for wires connected directly to a ground terminal (0 V, GND)
and red is used for direct connections to a positive terminal (+5 V). We
strongly recommend you reserve black for negative/ground and red for pos-
itive, but feel free to use all the other colors any way you want.

Light to Darkness
You can use a transistor and a resistor to invert the effect of the LDR.

A transistor is an amplifier (see “Transistors” on page 22). In this circuit, you
use the most common transistor, a bipolar NPN transistor. The amplifier cir-
cuit here is the common emitter amplifier, the most common transistor am-
plifier (see “Common Emitter Amplifier” on page 23).

Controlling base current to the transistor is done with two resistors. One of
the resistors is connected to the plus terminal of the battery, and pulls the
voltage up. The other resistor, the LDR, is connected to ground (minus).
When it’s bright, LDR has very low resistance. Thus, when it’s bright, the base
of the transistor gets pulled to ground, so it gets no current: zero amplified
is still zero and the LED stays dark.

The connection using the two resistors is called a voltage divider.

Parts
You need the following parts for this project:

• BC547 transistor

• Light-dependent resistor (LDR)

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• 5 mm red LED

• 9 V battery

• 9 V battery clip

• Breadboard

Basic Sensors 21

All of these parts, except the 9 V battery, 470 Ω resistor, and
BC547, are available in the Maker Shed Mintronics: Survival
Pack, part number MSTIN2, from . You can use two of the 220
Ω resistors in series or one 1 kΩ resistor in place of the 470 Ω
resistor; both of these are available from electronics retailers
such as RadioShack.

Build It
Build the circuit as shown in Figure 2-10. Covering the LDR with your finger
lights up the LED. Point a flashlight at the LDR and see the LED go dark.

Figure 2-10. LDR inverter circuit

Transistors
A transistor (see Figure 2-11) is an amplifier, taking small signals and making
them larger. It can also function as a switch, because a small power can con-
trol a larger power.

Transistors are actually the basis of all digital electronics. Your computer’s
CPU, the ATMega microcontroller in an Arduino board, and the system-on-
a-chip on the Raspberry Pi have millions, even hundreds of millions of tran-
sistors arranged in patterns to create digital logic.

Microcontrollers, such as Arduino and Raspberry Pi, use very little power. If
you want to control something that needs more power, such as a big motor,
a transistor is one way to do that.

22 Getting Started with Sensors

http://bit.ly/mintron-sp
http://bit.ly/mintron-sp

Figure 2-11. A transistor

In most prototyping projects, you don’t need an in-depth un-
derstanding of transistor circuits. For example, you can use an
Arduino and a servo (easy) instead of trying to control a motor
with transistors (harder). That’s why it’s enough to get the
high-level understanding of a transistor as an amplifier. You
won’t need to be able to design any transistor circuits after
reading this short explanation about transistors.

The most common type of transistor is the NPN-type bipolar junction tran-
sistor (BJT). We’ll only talk about these common NPN BJT transistors here,
as it’s much easier to learn the others once you know the NPN BJT transistor.
The BC547 transistor you use in this chapter is a typical NPN BJT transistor.

An NPN BJT transistor has three leads: emitter E, base B, and collector C.

Common Emitter Amplifier
Emitter E is the common ground, the negative. The arrow points to the neg-
ative lead. As it says in the NPN mnemonic, “Not Pointing iN,” the arrow in
the NPN transistor symbol is pointing out to negative. The arrow is simply
pointing the direction of current from positive to negative (see Figure 2-12).

The small controlling base current (BE) flows from base B to emitter E. This
base current is the weak signal to be amplified.

The large collector current (CE) flows from collector C to emitter E. This col-
lector current only flows if there is base current.

Basic Sensors 23

Figure 2-12. NPN BJT transistor

To give you an example of a transistor in action, consider a transistor where
the base is at 0 V. There is no base-emitter current flowing, so the big
collector-emitter current is blocked. When you apply current to the base, a
small base-emitter current starts flowing. This allows the big collector-
emitter current through, and could start a big motor or a bright light.

Take the transistor from this project, BC547, with leads down and the flat text
side facing you. The collector is on the left, base is center, and the emitter is
on the right.

Fading an LED
What could be easier than fading a light? Actually, fading an LED is tricky
business. If you gradually add voltage, first it’s off and then it’s on. For a dimly
lit LED, there is only a small voltage range available.

With microcontrollers, such as an Arduino, dimming is done by blinking the
LED faster than the eye can see. Here, with analog electronics, you can use
a transistor to help you control the small part of a voltage range where the
LED is between on and off (see Figure 2-13).

In this circuit, the potentiometer sets the voltage of the transistor’s base (B).
The transistor is used in the common collector amplifier, where the small BC
current controls the bigger EC current.

Build the circuit first, and test how you can use most of the potentiometer’s
range to control the brightness of the LED.

24 Getting Started with Sensors

Figure 2-13. Fading an LED with an NPN transistor

Is there some doubt in your heart that the transistor is really needed? You
can easily test it by building a worse, alternative setup (see Figure 2-14). Put
a potentiometer in series with the LED. When you try out that setup, you’ll
see that only a small part of the potentiometer range dims the LED. How well
(or poorly) the potentiometer works without the transistor depends on the
LED you’re using.

Figure 2-14. Bad way of trying to fade an LED

555 Fading Blink
Your firefly should continuously fade between lit and dark. You can use the
555 timer to fade the LED.

Basic Sensors 25

Build the circuit, then enjoy the explanation as you see your LED fading.

The previous projects can be accomplished on any type of
breadboard, even tiny ones. When you use an IC, however, you
need to make sure that your breadboard is split into two sec-
tions of horizontal rows. This breadboard layout allows for
each lead of the IC to be isolated on its own electrically con-
nected row.

Parts
You need the following parts for this project:

• BC547 transistor

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• 5 mm green LED

• 9 V battery

• 9 V battery clip

• Breadboard

• CA555E, NE555, or compatible 555 timer integrated circuit

• 10 kΩ potentiometer

• 100 uF capacitor

• Jumper wires

All of these parts, except the 9 V battery, 470 Ω resistor, and
BC547, are available in the Maker Shed Mintronics: Survival
Pack, part number MSTIN2.

Build It
Build the circuit as shown in Figure 2-15.

In this circuit, the 555 timer is used in astable mode. The 555 output fades
between 3 V and 6 V. Adjusted with a transistor amplifier, this makes the LED
fade in and out.

The input pins of the 555 are 6 (THRES) and 2 (TRIG). The two pins are con-
nected together. Pin 2 (TRIG) detects a voltage drop below 3 V and turns pin
3 (OUT) to 7 V, so that output voltage starts rising. Pin 3 (OUT) is connected

26 Getting Started with Sensors

http://bit.ly/mintron-sp
http://bit.ly/mintron-sp

to the capacitor through the potentiometer, so the 7 V voltage starts loading
the capacitor. You can turn the potentiometer to choose how fast the capac-
itor charges.

Figure 2-15. 555 fader circuit

When the voltage on pin 6 (THRES) rises to 6 V, the 555 detects this and
turns OUT low (to GND), so the voltage starts falling down. As you remember,
the capacitor is connected to pin 3 (OUT) through the potentiometer, so the
potentiometer chooses how fast the capacitor discharges.

As soon as the capacitor has discharged enough to bring the voltage to 3 V,
pin 2 (TRIG) pin toggles pin 3 (OUT) to 7 V. The capacitor starts to charge,
and the cycle starts over.

This way, the output of the 555 circuit keeps oscillating between 3 V and 6 V.
Because it takes time to charge the capacitor, your circuit produces a triangle
wave.

You probably want to connect an LED to the output of your new 555 oscilla-
tor. Or even better, connect the fading LED circuit with a transistor (see
“Fading an LED” on page 24). So where do the two wires go? See Table 2-1.
The output of the astable 555 circuit are GND (the 0V minus wire) and the
point that connects to the capacitor, pin 2 (TRIG), and pin 6 (THRES).

Table 2-1. 555 pins used in this project

Number Name Purpose

1 GND Ground, 0 V, goes to the minus terminal of the battery

2 TRIG If pin 2 (TRIG) goes below 3 V, turns pin 3 (OUT) to 7 V

3 OUT Either 0 V or 7 V, depending on the 555 state

4 RESET Keep this HIGH to prevent resetting timer interval

Basic Sensors 27

Number Name Purpose

6 THRES If pin 6 (THRES) goes above 6 V, turns pin 3 (OUT) to 0 V

8 VCC 9 V, goes to the plus terminal of the battery

Capacitors
A capacitor (shown in Figure 2-17) stores electricity in an electric field. It has
two conductive plates, separated by an insulator. Even the symbol for a ca-
pacitor shows this: two lines for the metal plates are separated by a gap.

Figure 2-16. Three capacitors

Figure 2-17. Symbol for capacitor

Capacitors are used in resonant circuits, like in radios. They can also smooth
spikes in DC power sources (e.g., in the circuitry of an Arduino board). Yet
another use is timing events, which is the usage you just worked with in the
last project.

The capacitor and resistor you hook up to the 555 timer configure its mode.
The values also further affect the specific expression of the configured mode
and allow us to make determinations about the overall circuit.

28 Getting Started with Sensors

How to Approach an Unfamiliar IC
When you see an IC, how are you supposed to know what it does? Here’s
something that usually works: read the tiny text on the chip and type it into
a search engine. For example, some 555 timers are labeled CA555E and some
are labeled NE555. The text on the chip doesn’t need to make sense. In fact,
the weirder the combination of letters, the more specific hits you’ll get.

The datasheet tells you how a chip is used, so you can add that as a search
term: “CA555E datasheet” or “NE555 datasheet.” You don’t need to under-
stand the internals of an IC to use it, and datasheets of more complex chips
only explain the connections of the chip. You could also try your luck for step-
by-step instructions and search for “CA555E tutorial” or “NE555 tutorial.”

These 555 projects wouldn’t have been easy to accomplish without a 555
timer. A similar complexity simplification occurs when we move from the 555
timer to a microcontroller, and then again to a system-on-a-chip.

Firefly
Time to build the final circuit for the project. If you skipped here to just build
the firefly—good, you can read the theory when it works. If you did every
intermediate step, great—you can just combine them with the understanding
you have built.

Build the circuit (see Figure 2-18). It simply combines the circuits you have
already built: “Fading an LED” on page 24, “555 Fading Blink” on page 25,
and “Light to Darkness” on page 21.

Parts
You need the following parts for this project:

• Two BC547 transistors

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• 10 kΩ Resistor (four-band resistor: brown-black-orange; five-band re-
sistor: brown-black-black-red; the last band will vary depending on the
resistor’s tolerance)

• 5 mm red LED

• 9 V battery

• 9 V battery clip

• Breadboard

Basic Sensors 29

• CA555E, NE555, or compatible 555 timer integrated circuit

• Potentiometer

• 100 uF capacitor

• Jumper wires

• Light-dependent resistor (LDR)

All of these parts, except the 9 V battery, 470 Ω resistor, and
BC547, are available in the Maker Shed Mintronics: Survival
Pack, part number MSTIN2.

Build It
Build the circuit as shown in Figure 2-18.

Figure 2-18. Completed firefly

Once the circuit is ready, try it out. Cover the LDR with your finger, and the
LED gradually lights up, then dims, then lights up again. Point a flashlight at
the LDR, and the LED turns off.

Troubleshooting
If this project doesn’t work, try checking the following things:

• Double-check the connections.

30 Getting Started with Sensors

http://bit.ly/mintron-sp
http://bit.ly/mintron-sp

• Test your LED and battery the way you learned at the beginning of this
chapter.

• If you can’t find out what’s wrong, try the pulsating and photoresistor
circuits separately again. This way it’s easier to isolate the problem.

What’s Next?
Congratulations, you have completed the chapter on component-by-
component electronics! The next chapter is about Arduino, so things are just
going to get easier. But before you move on, continue experimenting with the
analog, component-by-component approach:

• Can you make your firefly light up in the day instead of night?

• Try replacing the potentiometer with a suitable resistor.

• Try replacing the LDR with any analog resistance sensor, so your firefly
can react to being squeezed, the temperature, or the amount of alcohol
on your breath.

• Try replacing the output with another output, such as a DC piezo speaker.

Enjoy your firefly!

Basic Sensors 31

3/Sensors and Arduino

In this chapter, you will learn how to process
sensor data using an Arduino, the wildly pop-
ular microcontroller development board.
There are many advantages to using Arduino
rather than individual components as you did
in Chapter 2. One of the biggest is that you’ll
save time not having to wire up complex cir-
cuits to process sensor measurements (see
Figure 3-1).

Figure 3-1. Our Arduino Uno, breadboard, and laptop

An Arduino runs sketches, which are programs that you write and upload to
the Arduino from your computer. By writing software programs that make
the decisions necessary to process sensor data, you really expand how much
you can do, and, amazingly, you also cut down the time you’d have to spend
working with hardware components. Sure, you have to write a few lines of
code, but it’s faster to write a conditional loop in code than to design it in
hardware—at least for most of us.

It is also much easier to modify code than it is to modify a circuit layout. For
example, suppose you want to add a delay how often a sensor takes meas-

33

urements. You could accomplish this by chaining a few capacitors in series,
but you’ll need to do some careful planning and calculation to get the timing
right. It’s much easier to use a simple circuit and use the Arduino delay()
function to control the timing. It is more efficient to type a few lines of code
and upload a compiled binary program than it is to hunt for a specific com-
ponent and wire it into a circuit. For example:

delay(1000); // delays code execution for 1000 milliseconds or 1 second

Don’t worry if you’ve never programmed in your life; you’ll learn the basics in
no time, and the more you tweak your code, the more you will learn. Sketch
writing will open a whole new world of opportunities in your electronics
projects. Time to get building!

If this is your first time using Arduino, read Appendix B to learn how to install
drivers and the Arduino integrated development environment (IDE). It’s also
important to try the most simple program (“Hello, world”) with your new
hardware.

As long as the sensors and other components are used within
their electrical specifications, using an Arduino or any other
programmable microcontroller board will simplify your circuit
and facilitate greater flexibility. However, if you use them out-
side of their specifications, such as applying more voltage to
an LED than you should, you risk destroying the components,
or even your Arduino.

Project 6: Momentary Push-Button and
Pull-Up Resistors
Buttons are not the most exotic components but surely one of the most used
and common sensors. Unlike some techniques you’ll see for wiring a button
to an Arduino, this project does not require an external resistor. That’s be-
cause you’ll be using the pull-up resistor that’s internal to the Arduino’s
general-purpose input/output (GPIO) circuitry that can actually be turned
on by a single line of code. Hardware doesn’t get much more programmable
than this.

Parts
You need the following parts for this project:

• Momentary push button

• Arduino Uno

• Jumper wires

34 Getting Started with Sensors

• Breadboard

Build It
Here are the steps for building this project:

1. Orient your breadboard so that it is wider than it is tall, as shown in
Figure 3-2.

2. Insert the momentary push button anywhere on the breadboard.

3. In a breadboard column with a button lead in it, plug in a jumper wire and
connect the wire’s other end to GND on the Arduino.

4. Plug another jumper wire into the same row as the jumper you just con-
nected, but in a column corresponding to the button’s other pair of leads.
Next, attach the wire’s other end to pin 2 on the Arduino.

Figure 3-2. Momentary push button connected to an Arduino Uno

Run the Code
Once you’re done hooking everything up, run the code shown in
Example 3-1. When the button is pushed, the code lights up the built-in LED
attached to pin 13.

Example 3-1. Arduino sketch for detecting a button
press
// button.ino - light an LED by pressing button
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int buttonPin=2; //
int ledPin=13; //
int buttonStatus=LOW; //

void setup() //
{

Sensors and Arduino 35

 pinMode(ledPin, OUTPUT); //
 pinMode(buttonPin, INPUT); //
 digitalWrite(buttonPin, HIGH); // internal pull-up //
}

void loop() //
{
 buttonStatus=digitalRead(buttonPin); //
 if (LOW==buttonStatus) { //
 digitalWrite(ledPin, HIGH); //
 } else { //
 digitalWrite(ledPin, LOW); //
 }
} //

Set up some variables. From now on, when you write buttonPin in
your sketch, Arduino will put the number 2 in its place. Variables make
code easier to read and modify because you can change them in a
single place. All variables in this sketch are integers (int): whole
numbers such as 1, 2, 3, or -500.

Create another variable for the LED pin. The built-in LED is on digital
pin 13 (D13).

Even though the value of buttonStatus is modified elsewhere in the
program, it’s a good idea to initialize it to some value rather than
leaving it undefined.

The setup() function runs once when Arduino boots up. It contains
all the one-time initialization you need in your sketch.

Setting a pin to OUTPUT allows you to control it with the digital
Write() function later.

We set buttonPin (digital pin 2) to INPUT mode. This way, we can later
read its value with digitalRead().

Enable the internal pull-up resistor. Magic (hardware being controlled
by software) happens here! You’ll learn some pull-up resistor theory
in “Pull-Up Resistors and Arduino” on page 37. Note that you can
accomplish the same thing by replacing this line and the preceding
line with pinMode(buttonPin, INPUT_PULLUP);, but this will only work
with recent versions of the Arduino software; it is not supported by
older versions.

Arduino runs the loop() function automatically after setup() has
finished. As the name implies, loop() is called again and again until
you reset or power down the Arduino.

36 Getting Started with Sensors

Here you read the status of buttonPin (which you defined earlier in
the sketch as digital pin 2). Then you save this answer to variable
buttonStatus. If the button is pressed (closed), pin 2 is connected to
ground and digitalRead returns LOW. If the button is not pressed
(open), pin 2 is not connected to GND, so the internal pull-up resistor
pulls D2 up to +5 V, returning HIGH.

Two equals signs (==) indicate a comparison between two
expressions. Note that this is in contrast to a single equals sign (=),
which is used for assigning a value to a variable. Always use two
equals signs when performing a comparison in an if statement. By
putting LOW on the left side of the comparison, you guard against such
an error: LOW is a constant, and you cannot assign a value to it. So if
you use a single equals sign, Arduino would give you an error message
when you try to compile and load the sketch to your Arduino.

Here the LED is illuminated.

The else clause handles the case in which the if comparison doesn’t
evaluate to true. The block of code ({}) after the else is executed
when LOW != buttonStatus (which is equivalent to buttonStatus !=
LOW, and means buttonStatus is not equal to LOW).

Turn off the LED.

As soon as loop() finishes, Arduino runs it again, starting at the top
of the loop() function.

You can download all source code from this book’s website.

Pull-Up Resistors and Arduino
The momentary push-button design works reliably because you engaged an
internal pull-up resistor in the Arduino circuitry. You might wonder exactly
what a pull-up resistor pulls: it pulls the voltage of the pin toward the 5 volts
that power the Arduino.

Never trust a floating pin. If you read a pin that’s not connected to anything,
you get an unpredictable answer. For example, if you don’t connect anything
to digital pin D2 and then read it with digitalRead(), there are no guarantees
as to what you’ll get as a result. It could be HIGH, it could be LOW, it could change
10 times a second or never change. A floating pin gives a useless value (see
Figure 3-3).

Sensors and Arduino 37

http://getstarted.botbook.com

Figure 3-3. There is no point in reading a floating pin; add a pull-up resistor

The Arduino IDE comes with many useful example sketches.
If you look closely at their button code (File → Examples →
02.Digital → Button) it actually requires an external resistor
and won’t work with our circuit. That’s because that sketch
uses a pull-down resistor, so a HIGH state indicates that the
button is closed (pressed) and a LOW state indicates that the
button is open.

If you connect the same D2 to GND (zero volts, ground, LOW), your digital
Read() is guaranteed to return a result of LOW (see Figure 3-4). This handles
the case where the button is pressed.

Figure 3-4. LOW; pressing the button between D2 and GND is the same as
connecting D2 to GND

What if you don’t press the button? We already know you have to connect a
pin somewhere to read its value. But even if you connect a button to Arduino,
the pin isn’t really connected to anything until you press it.

Pull-up resistor to the rescue!

The pull-up resistor connects D2 to +5 V (HIGH), albeit weakly (because the
resistor limits the current). If nothing else is connected to D2, the resistor
will pull it up to HIGH. So when the button is open, D2 is not connected to
ground, but instead to +5 V through the pull-up resistor, which means that
D2 will be HIGH until you press the button (see Figure 3-5).

38 Getting Started with Sensors

Figure 3-5. HIGH; button up, D2 is only connected to +5 V through the pull-
up resistor

Now what happens when you press the button? It’s clear that D2 and GND
are now connected, but so is +5 V, isn’t it? You may be wondering, “You are
not telling me to connect GND and +5 V, are you? Isn’t that a short circuit?”

Although GND and D2 are both connected to +5 V, that connection is through
a big resistor, and because the path between GND and D2 has less resistance
than the resistor that connects to +5 V, the current in the circuit flows through
GND and D2. In other words, the pull-up resistor pulls D2 up to HIGH (+5 V)
if nothing else is pulling it down.

Typical values for pull-up resistors are tens of thousands of ohms to a few
million ohms (e.g., 20 kΩ to 2 MΩ).

This is how your connection works: press the button, D2 goes LOW. Release
the button, and the pull-up resistor pulls it up to HIGH. How do you recognize
a floating pin in your own connection? If any sensor connects to Arduino with
just two leads, ask yourself whether the pin is connected in every possible
state the sensor can be in. If not (as in the case with a button that’s open),
you probably need a pull-up resistor (see Figure 3-6) to hold it HIGH when
it’s not being pressed.

If you prefer to use an external resistor, it’s more common to
use it as a pull-down to hold the pin LOW. If you do that, re-
member to reverse the logic in your code (HIGH indicates a
button press, LOW indicates that the button is open).

That’s it for the diagrams and theory for now. As you can see, even the humble
switch has a lot to teach us about how sensors need to be wired up. With that
background out of the way, it’s time to relax with some practical, hands-on
stuff.

Sensors and Arduino 39

Figure 3-6. Internal pull-up resistor; enable it with pinMode(pin, INPUT) fol-
lowed by digitalWrite(pin, HIGH) or just pinMode(pin, INPUT_PULLUP)

Project 7: Infrared Proximity to Detect
Objects
Infrared sensors (such as the switch shown in Figure 3-7) consist of two parts:
an infrared emitter and receiver. The emitter is actually an LED that emits
light that’s invisible to the human eye, as the wavelength is longer than light
in the visible spectrum. An infrared LED is the same component that is used
in a TV remote control.

The receiver part of the switch collects the IR light that is reflected back.
Obstacles cause more light than usual to be reflected, which tells you that
there is something in front of the sensor.

This sensor can become confused in strong sunlight, and
some very dark materials can pass by unnoticed.

Figure 3-7. Infrared sensor switch

You can buy a switch like this from DFRobot (part #SEN0019), as well as from
sellers on Amazon, eBay, AliExpress, and DealeXtreme. They are usually

40 Getting Started with Sensors

listed as “Adjustable Infrared Sensor Switch” or under the manufacturer part
number E18-D80NK.

An infrared sensor switch is useful for various projects. It’s especially handy
when you need to know if something is close, but when you don’t need to
know the object’s exact distance. You can set the detection range of the sen-
sor by adjusting the trimmer potentiometer (trimpot) with a small screw-
driver, as shown in Figure 3-8.

Figure 3-8. Adjusting the infrared sensor

Parts
You need the following parts for this project:

• Infrared sensor switch

• Arduino Uno

• Jumper wires

If your infrared switch has wires that terminate in female head-
ers, you’ll need to use jumper wires to connect each wire to
the Arduino. If it terminates in male headers, you may need to
build this circuit using a breadboard and jumper wires.

As long as you have a sensor that breaks out wires for ground,
5 V, and a signal, then this layout will work with your sensor.
We used a sensor with separated wires, so we inserted each
lead directly into the Arduino headers.

Sensors and Arduino 41

Build It
Make sure the Arduino is powered down. Connect the circuit as shown in
Figure 3-9, then run the sketch shown in Example 3-2. When you put some-
thing in front of the sensor, the built-in LED attached to pin 13 is lit.

Follow these instructions for connecting the circuit:

1. Connect the yellow (signal) lead to digital pin 8 on the Arduino.

2. Connect the red (positive) lead to the +5 V pin on the Arduino.

3. Connect the green (ground) lead to a GND pin on the Arduino.

Figure 3-9. Connecting the infrared sensor switch

Example 3-2. Infrared distance switch Arduino sketch
// infrared_proximity.ino - light LED when object near, using Dagu IR switch
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int irPin=8; //
int ledPin=13;
int objectDetected=LOW; //

void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(irPin, INPUT);
 digitalWrite(irPin, HIGH); // internal pull-up
}

void loop() {
 objectDetected=digitalRead(irPin);
 if (LOW==objectDetected) {
 digitalWrite(ledPin, HIGH);
 } else {

42 Getting Started with Sensors

 digitalWrite(ledPin, LOW);
 }
}

This is similar to the code from Example 3-1, but the name button
Pin is changed to irPin.

Similarly, the name buttonStatus is changed to objectDetected.

You know this code already! As you look at it, you might recognize that it’s
the same code you used back in Example 3-1. We changed two variable
names, but that is largely cosmetic. Experiment with it yourself: can you use
the infrared proximity sensor with the code from Example 3-1? Can you use
a button with the code from Example 3-2?

Many sensors have identical interfaces. Now that you know how to work with
two switches, which we refer to as digital resistance sensors, you can apply
this skill to similar sensors in your own projects.

Analog Resistance Sensors
and Voltage Dividers

Most sensors you’ll use are analog resistance sensors. They produce their
results with a gradual change in resistance. For example, the more force you
exert on a force-sensing resistor like a FlexiForce, the lower its resistance.

Because you can’t measure resistance directly with Arduino (or Raspberry
Pi), you’ll learn how to use these types of sensors with an external resistor to
form a voltage divider. A voltage divider looks a lot like a pull-up or pull-down
resistor configuration, but instead uses two resistors in series between +5 V
and GND:

• The external resistor

• The sensor, whose resistance varies depending on its state

By using an analog pin to measure the voltage between these two resistors,
you’ll receive a voltage that varies in proportion to the state of the sensor.

Project 8: Rotation (Pot)
The potentiometer (shown in Figure 3-10) is an adjustable resistor with a
knob. When you turn the knob, its resistance changes. Potentiometers are
very common in everyday items such as radios and clothes irons. In RC air-
planes, servomotors can determine their angular position with the help of a
potentiometer.

Sensors and Arduino 43

Figure 3-10. Potentiometers can measure rotation

To some extent, analog resistance sensors can behave like digital ones, pro-
vided they meet two criteria:

• At their lowest level of resistance, they must let enough current through
to register as HIGH.

• At their highest level of resistance, they must resist enough current to
register as LOW.

Try it yourself! Return to “Project 6: Momentary Push-Button and Pull-Up
Resistors” on page 34, hook everything up, and then run the code. Then,
replace the button with the potentiometer: one side of the potentiometer to
+5 V, the other to GND, and the middle pin to digital pin 2. Now, turn the knob
to max or min. If the resistance of the potentiometer is sufficient, you can
turn the LED on and off.

Because the code is designed to read a button, you can only turn the LED on
or off. To make use of the analog values produced by the potentiometer, you
must use the analogRead() function. When used with analog sensors, this
function gives you a range of values (from 0 to 1023), rather than just HIGH
or LOW.

This project controls an LED’s blinking speed with a potentiometer. Turn it all
the way in one direction, and the LED blinks slowly. Turn it all the way in the
other direction, and it blinks faster.

Figure 3-11 shows the wiring diagram for this project.

44 Getting Started with Sensors

1. Which side depends on how you insert the pot into the breadboard; try it both ways!

Figure 3-11. Potentiometer wired to GND and A0 of an Arduino Uno

The potentiometer acts as a voltage divider. One side is connected to +5 V,
and the other to GND. The center pin is attached to analog input pin A0. As
you turn the knob, the resistance on either side of the pin varies. For example,
for a 10 kΩ potentiometer (all numbers approximate because inexpensive
potentiometers are not 100% precise):

When the knob is turned all the way to one side1

• The resistance between the positive and center pin is zero.

• The resistance between the center and negative pin is 10 kΩ.

• Pin A0 receives a voltage of 5 V.

• analogRead(potPin) returns 1023.

When the knob is all the way to the other side
• The resistance between the positive and center pin is 10 kΩ.

• The resistance between the center and negative pin is zero.

• Pin A0 receives a voltage of 0 V.

• analogRead(potPin) returns 0.

When the knob is centered
• The resistance between the positive and center pin is 5 kΩ.

• The resistance between the center and negative pin is 5 kΩ.

• Pin A0 receives a voltage of 2.5 V.

• analogRead(potPin) returns approximately 512.

Parts
You need the following parts for this project:

Sensors and Arduino 45

• Potentiometer (around 10 kΩ recommended)

• Arduino Uno

• Jumper wires

• Breadboard

Build It
Wire the components up as shown in Figure 3-11.

Run the Code
Next, run the code listed in Example 3-3.

Example 3-3. Arduino sketch for reading a
potentiometer
// pot.ino - control LED blinking speed with potentiometer
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int potPin=A0; //
int ledPin=13; //
int x=0; // 0..1023 //

void setup() { //
 pinMode(ledPin, OUTPUT); //
}

void loop() { //
 x=analogRead(potPin); //
 digitalWrite(ledPin, HIGH); //
 delay(x/10); //
 digitalWrite(ledPin, LOW); //
 delay(x/10); //
} //

In earlier examples, we used Arduino’s digital pins, and we referred
to them just by number (such as 13 for digital pin 13). The analog
input pins are also numbered, but we put the letter A in front of the
name when referring to them (A0, A1, etc.). The analog pins are on the
opposite side of Arduino’s digital pins.

Digital pin 13 is connected to the Arduino’s built-in LED.

x holds raw values that analogRead() returns. Note that we use the
comment to show the expected range of values. Even though you can
find this information in the Arduino documentation, it’s handy to have
here.

setup() performs one-time initialization.

46 Getting Started with Sensors

Set the pin D13 to OUTPUT, so we can control it later with digital
Write(). Note that although you’ll be reading A0 later, it’s not
necessary to explicitly configure it as an INPUT, because analog
Read() behaves differently than digitalRead().

After setup() is finished, loop() is called automatically.

Read the voltage from potPin (A0) with analogRead(). You’ll receive
a value between 0 (0 V == LOW) and 1023 (+5 V == HIGH). The code
saves this value to variable x.

Turn on the onboard LED.

We’ll wait for x/10 milliseconds. That’s 0 when the knob is turned to
the max (A0 reads 0 V). When the knob is turned the other way, the
delay is 0.1 seconds (1023/10 ms).

Turn off the onboard LED.

Wait again, so that the LED remains off briefly.

After loop() finishes, it’s called automatically again.

Project 9: Photoresistor to Measure
Light
How bright is it? A photoresistor lets more electricity through when it’s in
bright light (see Figure 3-12). Our students have used photoresistors to make
robots love (or hate) light, activate lights in the dark, or create burglar alarms.

Figure 3-12. A photoresistor is a better conductor in bright light

Parts
You need the following parts for this project:

• Photoresistor (10 K recommended)

Sensors and Arduino 47

• 10 kΩ resistor (four-band resistor: brown-black-orange; five-band resis-
tor: brown-black-black-red. The fourth or fifth band will vary depending
on the resistor’s tolerance)

• Arduino Uno

• Jumper wires

• Breadboard

Build It
Figure 3-13 shows the circuit design for this project. Build it as shown, and
run the sketch listed in Example 3-4. Note the addition of the 10K resistor.
This is to create a voltage divider. Back in “Project 8: Rotation (Pot)” on page
43, you didn’t need a separate resistor because the potentiometer can be
used as a voltage divider.

In order to produce a voltage that varies in proportion to the photoresistor’s
change in resistance, you need to create a voltage divider with the two resis-
tors (the 10K resistor, and the photoresistor) and measure the voltage that’s
produced between them to determine how dark or light it is.

Figure 3-13. Photoresistor circuit layout

48 Getting Started with Sensors

Run the Code
Example 3-4. Arduino photoresistor sketch
// photoresistor.ino - blink faster in dark, slower in the light
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int photoPin=A0;
int ledPin=13;
int x=-1; // 0..1023

void setup() {
 pinMode(ledPin, OUTPUT);
}

void loop() {
 x=analogRead(photoPin);
 digitalWrite(ledPin, HIGH);
 delay(x/10); //
 digitalWrite(ledPin, LOW);
 delay(x/10);
}

Hey, wait a minute; this looks a lot like Example 3-3! It’s exactly the same
code. We did replace “potPin” with “photoPin” and changed the comment
on the first line. Run the program and try it out. What happens when you make
a shadow or hide the photoresistor completely?

Most common sensors are analog resistance sensors, so they use a variation
of this same connection. You can apply this same approach to similar sensors
you meet in the future.

Project 10: FlexiForce to Measure
Pressure
A force-sensitive resistor such as the FlexiForce (see Figure 3-14) is a flat
sensor that measures how much pressure you exert on it. Untouched,
without any pressure, it has a very high resistance. When you press the round
area at the end of the sensor, the resistance drops and it becomes more
conductive.

Figure 3-14. A force-sensitive resistor measures pressure exerted on it

Sensors and Arduino 49

Parts
You need the following parts for this project:

• Force-sensitive resistor (FSR)

• 1 MΩ resistor (four-band resistor: brown-black-green; five-band resistor:
brown-black-black-yellow. The fourth or fifth band will vary depending
on the resistor’s tolerance)

• Arduino Uno

• Jumper wires

• Breadboard

Build It
You’ll use a voltage divider here just as you did in “Project 9: Photoresistor to
Measure Light” on page 47. As with that project, you need to use a resistor
that’s in the same range as the FlexiForce. We found that a 1 MΩ resistor
produced suitable results.

In our voltage divider, analog pin A0 measures the variation in voltage (“An-
alog Resistance Sensors and Voltage Dividers” on page 43) as you change
the amount of force exerted on the sensor, which gives you a value between
0 (voltage is near GND) to 1023 (voltage is near +5 V). Build the circuit as
shown in Figure 3-15, and then run the sketch from Example 3-5.

Watching the Action Over the Serial Port
You don’t need to guess what’s going on inside your Arduino’s brain. Arduino
can talk to your computer over its built-in serial port and send text back to it
(you can even send messages from the computer to Arduino), as shown in
Figure 3-16. The Arduino uses its USB port to transfer serial messages.

Serial ports are a very common way for embedded devices to talk. With our
book on controlling robots with your brainwaves (Make a Mind-Controlled
Arduino Robot), we used a serial-over-USB cable to hack a commercial, off-
the-shelf EEG headband. This allowed us to control the Arduino-based robot
with our brainwaves! Another great example is our mobile phone controlled
football robot from our book, Make: Arduino Bots and Gadgets. In that project,
we used serial over Bluetooth, allowing the Arduino to communicate with an
Android phone. But serial is not just used for communicating directions to
devices. When building an early prototype of our satellite, we used serial-
over-USB to debug our project. In fact, that’s what we’ll do in this project, too.

50 Getting Started with Sensors

http://bit.ly/mind-arduino
http://bit.ly/mind-arduino
http://bit.ly/make-abg

Figure 3-15. FlexiForce circuit layout

Figure 3-16. Serial Monitor

Run the Code
Example 3-5. Arduino sketch for reading the
FlexiForce sensor
// squeeze_serial.ino - flexiforce squeeze level to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int squeezePin=A0; //
int x=-1; // 0..1023 //

void setup() { //
 Serial.begin(9600); // bit/s //
}

void loop() { //
 x=analogRead(squeezePin); //

Sensors and Arduino 51

 Serial.println(x); //
 delay(500); // ms //
}

This is the pin that reads the sensor (analog pin 0).

Variable x is global; it’s declared outside any functions, so it would be
available to any other functions you might add to your sketch. We
initialize it to a value (-1) that you’d never get from analogRead() to
make debugging easier: if you see this value in the results, then you
would know there’s a problem.

The setup() function is called automatically; it handles one-time
initialization.

The serial port speed (we chose 9600 because that’s what the
Arduino Serial Monitor uses by default; if you’ve changed the setting
on the Serial Monitor, you will need to change it back to 9600).

The loop() function is called automatically (and repeatedly) after
setup() is finished.

analogRead() returns a value between 0 (LOW, 0 V) and 1023 (HIGH,
+5 V). This value is stored to variable x.

This prints out the value of the variable to the serial port so that it
appears in the Serial Monitor. Serial.println() prints each value on
its own line, so when you open the Serial Monitor, you’ll see each value
scrolling past in the window.

Wait for a while: this gives you time to observe each value in the Serial
Monitor, and prevents your code from consuming 100% of the
Arduino’s CPU time.

Experiment yourself: can you connect a potentiometer and read its current
value through serial? If you need to challenge yourself, you can try converting
rotation to angle in degrees or a percentage of maximum rotation.

Are you feeling really adventurous? Once you get your data to your computer,
you can read it in any programming language. In our interactive painting from
our book Make: Arduino Bots and Gadgets, we use Python’s serial library to
read values from the Arduino and control images on a computer.

Project 11: Measuring Temperature
(LM35)
Is it hot in here? The LM35 is an inexpensive thermometer that’s also easy
to use (see Figure 3-17). You just need to retrieve the voltage with analog
Read(), and then you can calculate the temperature in degrees Celsius as
voltage * 100C/V.

52 Getting Started with Sensors

http://bit.ly/make-abg

Figure 3-17. LM35 temperature sensor

Our students have used the LM35 to measure temperature in their summer
cottages and greenhouses, for example.

Parts
You need the following parts for this project:

• LM35 temperature sensor

• Arduino Uno

• Jumper wires

• Breadboard

The LM35 differs from previous analog resistance sensors you
have used. It has three leads: 5 V, ground, and signal. In this
way, it’s easier to wire than others because you don’t need a
pull-up resistor.

Build It
Figure 3-18 shows the circuit diagram. Build it as shown, and then run the
code listed in Example 3-6. Open the Serial Monitor to see the current tem-
perature. You’ll need to follow these steps:

1. Connect the LM35 sensor to Arduino using a breadboard. If you’re using
the most common version of the LM35 (the TO-92 package, which is a
common semiconductor package for transistors), hold the leads down

Sensors and Arduino 53

and orient the flat side toward you. The left lead is +5 V, middle is VOUT,
and the right lead is GND.

2. Connect +5 V to Arduino’s +5 V and GND to Arduino’s GND. But what is
VOUT? Voltage OUT indicates the temperature as an output voltage, so
you need to connect it to an analog input pin on Arduino (Example 3-6
uses A0).

Figure 3-18. Temperature sensor connected using breadboard

Once you’ve measured the room temperature, you might want to test the
LM35 some more. If you put it in your fridge, prepare to wait. Air is a very
good insulator for heat and doesn’t conduct well. When we want to quickly
test cooler temperatures, we use ice cubes (see Figure 3-19). Wet ice cubes
quickly conduct heat away from the LM35, so we get instant readings.

Figure 3-19. Testing the LM35 with an ice cube

54 Getting Started with Sensors

Run the Code
Example 3-6. The LM35 Arduino circuit
// temperature_lm35.ino - LM35 temperature in Celsius to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int lmPin = A0; //

void setup() //
{
 Serial.begin(9600); //
}

float tempC() //
{
 float raw = analogRead(lmPin); //
 float percent = raw/1023.0; //
 float volts = percent*5.0; //
 return 100.0*volts; //
}

void loop() //
{
 Serial.println(tempC()); //
 delay(200); // ms //
}

We use analog pin 0 (A0) to read the output of the sensor.

When the Arduino boots up, setup() gets called automatically to
perform one-time initialization.

Opens the serial port. You can monitor the Arduino’s serial port
output by going to Arduino → Tools → Serial Monitor. Be sure to select
the same speed in both this code (it’s 9600 here) and in the Serial
Monitor.

Define a new function called tempC(). You’ll call this function later in
the code when you need to read the temperature.

The function analogRead() returns an integer value from 0 to 1023. A
value of 0 means 0 V (LOW), and a value of 1023 means +5 V (HIGH).

We convert the raw reading (0-1023) to a percentage by dividing it by
the maximum value. The percentage will be 0.0 for 0% and 1.0 for
100%. To get the floating-point (decimal) answer you need, you must
use the floating-point divisor 1023.0 instead of integer 1023. In C and
C++, 1/2==0 (integer division), but 1/2.0==0.5 (floating-point
division).

The percent variable is calculated out of a maximum of 5.0 V (HIGH).
So multiplying by 5.0 gives the voltage in volts.

Sensors and Arduino 55

From the LM35 datasheet (search the Web for “lm35 datasheet”),
you can see that the scaling factor is 10 mV/C, with 0 V meaning 0
°C. Playing with the math, 10 mV/C = 0.010 V/C. The inverse is
1/0.010 C/V = 100 C/V. So you can get the temperature in °C by
multiplying the voltage by 100.

After setup() finishes, loop() is called automatically, over and over
until you power down the Arduino.

Call the tempC() function, which returns a number (e.g., 20). Print this
number and a line break to the Serial Monitor. Writing tempC() as a
function makes it easy to use it in our other projects. Now that it
works, you don’t have to think about the implementation details.
When you want to know the temperature, just connect the LM35 and
call tempC().

Pause for a while. This gives you time to read the text, keeps the serial
buffer from overflowing, and prevents the program from hogging
100% of the Arduino’s CPU.

Project 12: Ultrasonic Distance
Measuring (HC-SR04)
The ultrasonic distance sensor (shown in Figure 3-20) is one of our favorite
sensors. It sends an ultrasonic sound and then listens for how quickly it re-
turns, like a tiny sonar. As the name implies, the sound frequency is too high
for human ears to hear. The great thing compared to the infrared sensor
switch you saw earlier (“Project 7: Infrared Proximity to Detect Objects” on
page 40) is that this sensor actually gives you the distance to the obstacle
(you can find infrared distance sensors, such as the Sharp GP2Y0A series,
that report distance as well).

Nothing is without trade-offs, so while you can get a distance reading, the
ultrasonic distance sensor can miss certain objects easily. Items that are
especially soft and inclined planes tend to go unnoticed. This is one reason
that stealth aircraft are shaped the way they are.

There are many ultrasonic distance sensors. The Parallax PING used to be
our favorite, but its cost of about $30 limited how many we could buy. Now
there are ultrasonic distance sensors available for a couple of dollars each.
The HC-SR04 is one of these.

56 Getting Started with Sensors

Figure 3-20. Ping ultrasonic distance sensor

Parts
You need the following parts for this project:

• HC-SR04 ultrasonic distance sensor

• Arduino Uno

• Breadboard

• Jumper wires

Build It
Wire up the sensor as shown in Figure 3-21 and run the code in Example 3-7.

Figure 3-21. HC-SR04 connected with breadboard

Sensors and Arduino 57

Run the Code
Example 3-7. The HC-SR04 Arduino sketch
// hc-sr04.ino - distance using ultrasonic ping sensor
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int trigPin = 8; //
int echoPin = 7; //
float v=331.5+0.6*20; // m/s //

void setup() //
{
 Serial.begin(9600); //
 pinMode(trigPin, OUTPUT); //
 pinMode(echoPin, INPUT); //
}

float distanceCm(){ //
 // send sound pulse //
 digitalWrite(trigPin, LOW); //
 delayMicroseconds(3); //
 digitalWrite(trigPin, HIGH); //
 delayMicroseconds(5); //
 digitalWrite(trigPin, LOW); //

 // listen for echo //
 float tUs = pulseIn(echoPin, HIGH); // microseconds //
 float t = tUs / 1000.0 / 1000.0 / 2.0; // s //
 float d = t*v; // m //
 return d*100; // cm //
}

void loop() //
{
 int d=distanceCm(); //
 Serial.println(d, DEC); //
 delay(200); // ms //
}

You use the trigger pin to tell the sensor to transmit the sound pulse.
It is marked with “Trig” on the HC-SR04 board. It’s connected to
Arduino digital pin D8, and when you take the pin HIGH, the pulse will
be triggered.

The echo pin goes high when the pulse returns. On HC-SR04, it’s
marked as “Echo.” On the Arduino, it’s connected to digital pin D7.

58 Getting Started with Sensors

The speed of sound is about 340 meters per second. It’s calculated
here for 20 °C air temperature (we add 20 * .6 to 331.5). We always
spell out calculations in our code for clarity. It doesn’t add any extra
work to Arduino, because the compiler turns the calculation into a
constant before uploading your code to the Arduino.

The setup() function is automatically run once when Arduino boots.

Open the serial connection so that the result can be displayed to the
Serial Monitor (Tools → Serial Monitor). Remember to set the same
speed (bit/second, or “baud”) in both your code and the Arduino
Serial Monitor.

Set the Trig pin to OUTPUT so digitalWrite() can later turn it on and
off (HIGH or LOW).

Set the Echo pin to INPUT so that digitalRead() can later read it to
find out whether it’s HIGH or LOW.

Define a new function. This function distanceCm() returns a float, a
decimal number. It takes no parameters, so there is nothing inside
the parentheses after the name.

There are two separate parts to reading the distance. First, we ask
the HC-SR04 to send the pulse, and later, we check to see how long
it took for the echo to come back.

To create a clean pulse for sending the sound, the pin must be off
(LOW) first. Music starts from silence.

Wait a very short time for the pin to settle. When working with
different multiples of units, you should convert them to base units
such as seconds to get an idea of the scale. Three microseconds is
three millionths of a second, or 0.000003 seconds.

Turn the trigger pin on (HIGH, +5 V). The HC-SR04 is now
transmitting the ultrasound.

Wait for a very short time, 5 ms (microseconds). Five microseconds
== five millionths of a second == 0.000005 seconds. The trigger pin
stays high during this time.

Turn the trigger pin off, ending the short sound pulse.

Use a comment to mark that we’re in a different part of the function.

Now you need to find out how long it takes for the echo pin to go LOW.
The time returned by the pulseIn() function is reported in
microseconds. It’s usually best to use plain ASCII characters in
source code, so we indicate micro (millionth) with a plain u or U
instead of the Greek letter µ.

Sensors and Arduino 59

Convert microseconds (millionths) to seconds by dividing. It’s often
practical to use SI base units, such as seconds, meters, or kilograms.
To get decimal numbers and avoid premature rounding, we use a
floating point in the divider (1000.0 instead of integer 1000). The time
t is a round trip (there and back, two way, ping and pong), so we divide
it by two to get one-way time.

To get distance from time, we multiply by speed. For example, if it
took us 2 hours to get to Helsinki and back at 100 km/h, we’d
calculate that distance with 2h/2*100km/h, which is 100 km.

To get centimeters, we multiply meters by 100. This is a convenient
unit for distances typically measured with HC-SR04.

After setup() finishes, loop() is called automatically (over and over).
The loop() function is what your Arduino is doing most of the time.

This is all you need in your main program to use HC-SR04. Because
distanceCm() is written as its own function, you can easily add it to
your own projects. Even though it required some thought to write, we
can forget the implementation details when we use it. To get distance,
just attach the HC-SR04 sensor, include the function in your code,
and call distanceCm(). Here, we cast (convert) the result to an integer,
ignoring the decimal part. So d will now contain the distance in full
centimeters (e.g., 23).

Print the distance to the Serial Monitor (Tools → Serial Monitor). The
command println() prints the value of d as a decimal number, then
a line break.

When running in an infinite loop, always wait for a while to avoid taking
100% of the Arduino’s CPU time. This also gives you time to read the
results in the Serial Monitor so it’s not scrolling by too fast.

Experiment yourself! Can you evade the ultrasound? What surface reflects
sound so that distance measuring works? What surfaces absorb or misdirect
the sound, so that you become invisible to this sonar?

Looking for more of a challenge? Modify the distanceCm() function to take
the digital pin as parameter (e.g., distanceCm(3) for HC-SR04 on digital pin
3). You can even connect multiple HC-SR04 sensors to the same Arduino.

Many projects use PING, HC-SR04, and similar ultrasonic distance sensors.
We have used them in an interactive painting and a walking robot insect. Our
students have used them in robots, a gesture mouse, burglar alarms, and
interactive fluffy toys.

60 Getting Started with Sensors

Conclusion
You have learned to write Arduino programs and measure the world. Your
Arduino can sense pressure, temperature, light, and many other things. If
you want to keep working with the Arduino to build robots and design your
own devices, see our other book, Make: Arduino Bots and Gadgets.

Because the Arduino is simple and robust, it’s a tool we always keep on hand
for prototyping. But you might also want to see a platform that can run big
programs (e.g., web servers) and connect big things like video projectors or
televisions. Prepare to swim to the deep end, and advance to Raspberry Pi
in the next chapter.

Sensors and Arduino 61

http://bit.ly/make-abg

4/Sensors and the
Raspberry Pi

Do you wish there was a $35 Linux computer
with full HD display?

In this chapter, you will process sensor data
using a Raspberry Pi, an inexpensive credit
card-sized computer that runs Linux. The Pi is
a great board to use as a multimedia server, a
safe device to try random acts of programming
on, and a fun gizmo to learn the Linux com-
mand line with.
Thanks to the Pi’s general-purpose input/output (GPIO) pins, you can also
wire up your own custom circuits. Some of the benefits of Raspberry Pi are:

• Cheap ($35 US)

• Connects to a full HD display

• Connects to the Internet

• Runs Linux, the free operating system

• Can run full versions of Apache web server and SSH server

Unlike Arduino, the Pi does not have dedicated pins for analog input, but you’ll
learn how to get around that limitation and add analog input using a special
integrated circuit, the MCP3200.

You’ll be able to connect all the same sensors you worked with in the Arduino
chapter, but the steps to wire and program them are different.

You can start from the very beginning. To install “Hello, world,”
learn the command-line interface, and control an LED with
Raspberry Pi, see Appendix C. Once your “Hello, world” works,
return here to play with a button.

63

Figure 4-1. Raspberry Pi

Project 13: Momentary Push Button
Yes, the button strikes again! Many digital sensors behave like a button. They
are on or off, 1 or 0, true or false. In this project and “Project 15: Adjustable
Infrared Switch” on page 73, you’ll learn to use a button and an infrared prox-
imity sensor with Raspberry Pi.

Parts
You need the following parts for this project:

• Momentary push button

• Raspberry Pi

• Female-male jumper wires, black and green

• Breadboard

Before you build any circuit on your Raspberry Pi, you need to
shut down your Raspberry Pi and disconnect it from a power
source. To shut it down, click the shutdown button in the lower
right of the screen, and choose the shutdown option. You can
also type sudo halt from a terminal (LXTerminal) to begin the
shutdown procedure. Wait for the shutdown process to com-
plete before unplugging your Raspberry Pi. Double- and triple-
check all connections you made before powering it up again.

Build It
Build the circuit as shown in Figure 4-2. You’ll need to follow these steps:

64 Getting Started with Sensors

1. Orient the breadboard as shown.

2. Insert the momentary push button anywhere on the breadboard.

3. Choose a breadboard column with a pair of button leads in it. Plug the
male end of a jumper wire into that row, and connect the wire’s other end
to GND (pin 6 in Figure 4-2) on the Raspberry Pi.

4. Plug another jumper into a breadboard column with the other pair of
button leads, and attach the wire’s other end to pin 5 on the
Raspberry Pi.

Figure 4-2. Button on breadboard

The button circuit has only one component: a button placed between GPIO
3 (physical pin 7) and a ground pin. When you press the button, GPIO 3 be-
comes connected to the ground.

On the Raspberry Pi, each GPIO pin has two numbers: one corresponding to
its purpose (BCM, or Broadcom numbers), and another corresponding to its
physical location. The purpose (BCM) numbers are the numbers you’ll use
in your programs, as shown in Table 4-1.

Table 4-1. Pins used with button

GPIO pin (BCM) Board pin (place in header)

GPIO 3 5

GND 6

What happens when the button is not pressed (open)? For your program to
work reliably, the pin must be connected to something. A pin that’s not con-

Sensors and the Raspberry Pi 65

nected is floating, and the value from such a pin will vary with ambient elec-
trical fields. As you might remember from “Pull-Up Resistors and Arduino”
on page 37, we don’t want floating pins.

There is a built-in pull-up resistor on pins GPIO 2 and GPIO 3. The internal
pull-up connects the pin to +3.3 V through a 1800 Ω (1.8 kΩ) resistor. The
pull-up resistor is always connected on these pins. When the button is not
pressed, the pull-up resistor pulls GPIO 3 to HIGH, +3.3 V.

Be careful when connecting wires to the pins! For example, you
never want to connect a GPIO to +5 V, because it could phys-
ically damage your Raspberry Pi. The pins use 3.3 V and can’t
handle 5 V. Before you power up your Raspberry Pi after mak-
ing connections, double- and triple-check them to be sure you
made them correctly.

Run the Button Code
With the button connected, you can run some code to monitor its value. Open
the Terminal (LXTerminal), and follow the steps described in this section.

You should make GPIO work without root first (see
Example C-1). If you want to quickly try out GPIO with root
powers, use sudo tee instead of tee after the pipe. However,
you really should make GPIO work as a normal user.

Export the GPIO 3 pin so that you can use it in your code (don’t type the $; it
indicates the shell prompt that you see in the terminal window):

$ echo 3|tee /sys/class/gpio/export

This created a new folder called gpio3. You can see it by typing ls /sys/class/
gpio/.

To read a pin, you need to configure it to “in” mode:

$ echo in|tee /sys/class/gpio/gpio3/direction

Now you can read the value (don’t hold down the button while you do this):

$ cat /sys/class/gpio/gpio3/value
1

Because you weren’t pressing the button, the internal pull-up resistor pulled
GPIO 3 to 3.3 V, HIGH, so you got the value 1.

66 Getting Started with Sensors

Next, hold down the button and read the value again (for a cool trick, you can
recall the previous command by pressing the up arrow, so you don’t have to
type it again):

$ cat /sys/class/gpio/gpio3/value
0

Well done! You can now read values from digital sensors. Even though you’ll
soon practice with another digital sensor, the program will be very similar to
this one.

Figure 4-3. Buttons don’t need to be small and black

Troubleshooting
Before correcting any connections, be sure to power down your Raspberry
Pi. Power it back up when you are sure the connections are correct. Here are
some common troubleshooting issues:

Why do I always get a value of 0?
Did you put your four-legged button the right way round? If you mistak-
enly connected GPIO 3 and ground to leads that are always connected
to each other, that’s exactly the same as connecting them directly. GPIO
3 would be always connected to ground (GND, 0 V), so you’d always get
a value of 0.

Why do I always get a value of 1?
This means that GPIO 3 is never connected to ground. A likely reason is
that the button is not connected. Did you use the correct pins? Did you
put all the jumpers and leads to correct rows?

Permission denied?
These commands assume that you made your GPIO work without root,
as explained in “Using GPIO Without Root” on page 114. If you insist on
running everything as root (which we maintain is a dangerous, less stable
way), you can test it as root by putting sudo in front of every tee com-

Sensors and the Raspberry Pi 67

mand. For example, you could write echo 3|sudo tee /sys/class/gpio/
export. But of course it’s much better to avoid unnecessary use of sudo.

Works with sudo, but not as normal user (without sudo)?
Go through the steps in “Using GPIO Without Root” on page 114 again.

In the following projects, we’ll show you how to use the GPIO pins from a
Python program. All of the sensor projects in this book use Python.

Python is one of the easiest languages to learn. When we code for fun, most
often it’s in Python. Before we get into programming GPIOs with Python, let’s
get you up and running with the language.

Hello, Python World
Traditionally, the first program to write in any language is “Hello, world.” It
lets you test to confirm that everything is working. If you are a beginner, you’ll
also get assurance that you know how to write a Python program!

Whenever you start programming, you should always start with a “Hello,
world”—on any language, on any platform.

You’ll write your Python program just like any text file. The best place to store
your program files is in your home directory (/home/pi). If you’re not already
in your home directory, you can change to it with the terminal (LXTerminal)
command cd:

$ cd /home/pi

Start editing a new file with nano, a command-line text editor for editing plain-
text files. Its purpose is similar to other plain-text editors such as Notepad,
gedit, vi, and Emacs. Type this command:

$ nano hello.py

The file needs only one line. This is Python for you: easy things are so easy,
but hard things are still possible. Add this line to the file:

print("Hello, world!")

The code has just one line. print() is a command, but it behaves like a func-
tion. It gets one argument, the string “Hello, world!” As you probably guessed,
you are asking the computer to print the string to the terminal.

Now save your work by pressing Ctrl-X (exit). When prompted about whether
you want to save, type “y” for yes. Finally, confirm the name, “hello.py”, by
pressing Enter or Return.

68 Getting Started with Sensors

Now it’s time to run your Python program. This is a big moment if this is your
first step in Python. Type the command shown after the $ prompt. You’ll see
the output as soon as you press Enter:

$ python hello.py
Hello, world!

Your Python program printed the string “Hello, world!” Now you know you
can write Python, and that your Python environment works.

Project 14: Blink an LED with Python
When starting with a new feature, it’s good practice to write a “Hello, world”
program. It’s a program that tests the feature as simply as possible.

In this case, to start working with GPIO and Python, you’ll write a program
that blinks an LED. Knowing how to do this in Python, it will be much easier
to use this skill as a part of your robot or gadget projects.

Parts
You need the following parts for this project:

• Raspberry Pi

• Female-male jumper wires, black and green

• An LED

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• Breadboard

Build the LED Blink Project
Connect an LED and a resistor to GPIO 27 as shown in Figure 4-4.

Sensors and the Raspberry Pi 69

Figure 4-4. Hello, LED

Run the Code
Open a terminal, then change to your home directory cd /home/pi/ if you’re
not already there. Create a new file with nano led_hello.py, type in the code
from Example 4-1 (or download it from this book’s website), and save it with
Ctrl-X, press y, and then Enter or Return.

Run the program with:

$ python led_hello.py

The LED lights up for a moment, then dims again. Did you succeed in lighting
up the LED? You can now use GPIO pins with Python.

If you get “IOError: [Errno 13] Permission denied,” simply try again. If the
problem persists, verify that you have enabled GPIO without root using the
udev rule (see “Using GPIO Without Root” on page 114).

This code shows you the secret sauce of GPIO manipulation from Python.
Later on, you’ll see examples that use a library (a file containing code that
does all the work of manipulating the GPIO for you), so those code listings
will be much shorter.

As you saw earlier in “Project 13: Momentary Push Button” on page 64, you
need to manipulate files in the Linux filesystem to work with GPIO pins.

Want to save typing? Download the code, unzip it, and copy it
to /home/pi on your Raspberry Pi SD card.

70 Getting Started with Sensors

http://botbook.com
http://getstarted.botbook.com

Example 4-1. Hello, LED Python code
led_hello.py - blink external LED to test GPIO pins
(c) BotBook.com - Karvinen, Karvinen, Valtokari

"led_hello.py - light a LED using Raspberry Pi GPIO"
Copyright 2013 http://Botbook.com */

import time #
import os #

def writeFile(filename, contents): #
 with open(filename, 'w') as f: #
 f.write(contents) #

main

print "Blinking LED on GPIO 27 once..." #

if not os.path.isfile("/sys/class/gpio/gpio27/direction"): #
 writeFile("/sys/class/gpio/export", "27") #

writeFile("/sys/class/gpio/gpio27/direction", "out") #

writeFile("/sys/class/gpio/gpio27/value", "1") #
time.sleep(2) # seconds #
writeFile("/sys/class/gpio/gpio27/value", "0") #

Import a library to give you more commands (functions) to work with.
Here we are importing the time library, a very common library
because it has the time.sleep(seconds) function that makes your
program pause for a while.

The OS library has commands that let you work with the underlying
operating system. With os.path.isfile(filename), you can test
whether a file corresponding to the value in filename exists. Because
the OS library is an abstraction of the operating system’s features,
the same code can work on Linux, Mac, and Windows.

Define a new function called writeFile(). Defining a new function
saves you from typing the same commands over and over again.
Instead of copying all of the code in this function each time you need
it, you can simply call the function writeFile("foo.txt", "Hello").
This function takes two parameters: a filename for the name of the
file to write, and the contents to put into the file. If you called write
File("foo.txt", "Hello"), the values between the parentheses will
be assigned to variables inside the function. When writeFile() is
executed, the variable filename will have the value “foo.txt” and the
variable contents will have the value “Hello”.

Sensors and the Raspberry Pi 71

1. So called because they don’t really exist as files on stable storage (SD card).

Open filename for writing (w). This defines a new file handle named
f that you can use to work with the file in later lines of code. The with
block is the easiest built-in way to manipulate text files in Python.
Python will make sure that the file handle gets closed again; either at
the end of the block, or if any unexpected error occurs. Of course,
your newly defined function writeFile() makes writing files even
easier because it uses with for you.

Using the file handle f defined in the previous line, we write a value
of variable contents to the file. File handle f is an object, and write()
is a method of this object.

Print some text to help you debug your program. For example, if you
see the text appear onscreen but the LED doesn’t light, you already
know that your program ran but that the problem is probably in the
GPIO connections. print() can be used in two ways. You can call it
with the parameters in parentheses as in print(“foo”), just like any
function. Or, if you’re feeling lazy, you can use this shorter syntax that
leaves out the parentheses.

Test whether the file named direction already exists. If not, then
execute the indented block below. This test is needed because
exporting the same pin twice causes an exception that would make
your program crash.

Export the pin. Exporting creates the virtual1 files to manipulate the
pin such as direction and value. The export is done by simply writing
the pin number “27” to the (virtual) text file export. This block is
indented (there’s white space to the left of the line) under the if, so
it’s only executed if the if condition above it evaluates to true.

Write the string “out” to the text file direction. Here you call the
function writeFile() that we defined earlier. When you set the
direction to “out,” you can turn the pin on or off.

Write the string “1” to the text file value. This turns the GPIO 27 pin
to 3.3 V (HIGH). This causes current to flow through the LED and the
resistor to GND (0 V). The current lights up the LED.

Wait for two seconds. All the pins stay in the state they are in, so the
LED stays on. Because sleep was imported from the time library, you
have to specify the library’s namespace (time) before it, as in
time.sleep(). When your program sleeps, it takes very little computing
power, and other programs running in the background can have more
time.

72 Getting Started with Sensors

Write “0” to value, turning off the GPIO pin. Both leads of the LED are
now at the same voltage, so there is no current flowing, and the LED
goes dark. Because this is the last command, the execution of the
program ends.

When you are looking at a program, you should think through it in the order
it is executed. First, libraries are imported to give you more functions to work
(import time...).

Next, the first code in the global scope is run (print “Blinking…”). To simplify,
it’s the first command that’s flush left, without any indentation (whitespace)
before it.

The program execution continues line by line. The function writeFile() is
only run when it’s called (writeFile(“/sys/…”)). It’s worth noting that functions
are not run when they are defined (def writeFile(filename, contents)),
even though the definition appears before the lines of code and at the same
level of indentation.

Finally, the last line is executed (writeFile("/sys/...")). Then the program
exits, and the executions stop.

Now that you know the secret sauce, the rest of the examples will use the
botbook_gpio.py library to make the programs shorter. That library will do all
of the work of manipulating files for you.

Project 15: Adjustable Infrared Switch
An adjustable infrared switch senses when something is near. You can con-
figure the distance at which it is triggered by a nearby object. This sensor
only tells you when something is near, not its actual distance.

Parts
You need the following parts for this project:

• Infrared sensor switch

• Two 1 kΩ resistors (five-band: brown-black-red-brown-any; four-band:
brown-black-red-any)

• Raspberry Pi

Build the IR Switch Project
Reading any digital resistance sensor is similar to reading a button, so both
the connection and the code should already look familiar to you if you’ve tried
connecting a button to the Raspberry Pi.

Sensors and the Raspberry Pi 73

Let’s connect the infrared (IR) sensor switch to the Raspberry Pi. There are
some differences from the connections for the button. The button just has a
data pin and a ground connection. The IR sensor has some additional parts:
a red +5 V pin and two resistors connected to the yellow data pin. This is
because the IR sensor provides a new challenge: GPIO data pins can only
tolerate 3.3 V, but the sensor works at 5 V.

You can lower the voltage of the data pin with a voltage divider (see “Voltage
Divider” on page 76), which you can make with two resistors. A voltage divider
is a circuit that lowers a voltage by dividing it between two resistors (one
connected to a signal, the other to ground).

Make sure the Raspberry Pi is shut down and disconnected from power. Build
the circuit as shown in Figure 4-5.

Usually, IR switches have black minus, yellow data, and red plus. We also have
some models that have a green minus wire instead of a black one.

If your IR sensor switch has female pin headers, simply use jumper wire to
connect it to the breadboard.

Figure 4-5. Adjustable infrared switch connected to Raspberry Pi

Run the Code
Power up the Raspberry Pi, then upload the code shown in Example 4-2.

Try it out:

$ python adjustable-infrared-sensor-switch.py
Something is inside detection range

Run it many times to get many measurements.

74 Getting Started with Sensors

Example 4-2. Adjustable infrared switch code
adjustable-infrared-sensor-switch.py - is object within predefined distance?
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import botbook_gpio as gpio #

gpio.mode(27, "in") #
x = gpio.read(27) #
if(x == 0): #
 print "Something is inside detection range" #
else: #
 print "There is nothing inside detection range" #

The botbook_gpio library contains the Python code for manipulating
GPIO pins. For it to work, the botbook_gpio.py file must be in the same
directory as this program, adjustable-infrared-sensor-switch.py. If
you get an import error when you run it, verify that you can see both
files in the same directory when you run the ls command.
botbook_gpio.py simply reads and writes files under /sys/class/
gpio/, as you saw in “Project 14: Blink an LED with Python” on page
69.

Setting the gpio27 pin to “in” allows its value to be read.

Read the current value into new variable we call x. The value will be
either 0 or 1.

Value 0 means something has been detected. An infrared sensor
switch doesn’t tell the distance; it just tells whether something is
nearer than the distance to which it’s calibrated. An equality
comparison uses two equals characters (==). The comparison
operation, (==), is different from value assignment, (=).

Print to the terminal that something was detected. This indented
block under if only runs when the if condition is true; in this case, it
runs if the value of variable x is zero.

The indented block under else only runs when the if condition is not
true. In this case, the one-line block under else runs if the value of
variable x is not zero.

Print to the terminal that nothing was detected. As this is the last
instruction in the program, the execution of this program ends after
this line. If you want to make another measurement, run your
program again.

Sensors and the Raspberry Pi 75

Voltage Divider
How can you convert voltage from 5 V to 3.3 V? As most Arduino and Arduino-
compatible components use +5 V as HIGH, you will meet this question often
when you try to use something with the Raspberry Pi.

The red wire supplies the IR sensor with +5 V, and the IR sensor outputs +5
V. This is much more than the Raspberry data pins can take, as their HIGH is
+3.3 V. Connecting a GPIO pin to +5 V will likely destroy that pin.

When the IR sensor yellow wire is at zero, all is well because the Raspberry
Pi ground (0 V, LOW) is exactly the same as the ground in the IR sensor. That’s
because the IR sensor ground is connected to the Raspberry Pi ground (black
wire in Figure 4-5).

But what about the IR sensor HIGH state, +5 V? To protect the Raspberry Pi
data pins, you must ramp down the voltage from 5 V to 3.3 V. This is easily
done with a voltage divider.

The big 5 V is connected to ground (black wire, 0 V, GND) through two resis-
tors. On the 5 V side, the voltage is obviously 5 V. Just as obviously, on the
ground side of the two resistors, the voltage is 0 V. But in between, the voltage
gets split according to the values of the resistors. You want 3.3 V for the
Raspberry Pi:

3.3 V / 5 V = 0.66 = 66 %

So, you want the Raspberry Pi data pin to measure the voltage 66% on the
way from ground to 5 V. Your total resistance is 2 kΩ (two resistors in series,
1000 Ω each):

66% * 2000 Ohm = 1320 Ohm

You won’t find resistors in every possible size, so a resistor near that will
probably do. The parts list mentions two 1 kΩ resistors. Putting the data pin
between those resistors, you get 50% of the 5 V:

50% * 5V = 2.5 V

This is well above the minimum level for a HIGH signal, which is about half of
the nominal 3.3 V HIGH level, 1.65 V. Because 1.65 V < 2.5 V, Raspberry con-
siders 2.5 V HIGH.

But how did we come up with the 2 kΩ of resistance for the voltage divider?
The exact amount doesn’t matter. There must be enough resistance so that
ground and 5 V don’t short circuit. An air gap would achieve that, so the other
requirement is that resistance must allow some electricity pass through.
Thus, some kΩs is good.

76 Getting Started with Sensors

You can halve the 5 V by building a voltage divider with two resistors. And now
you know that lowering voltage doesn’t require mysterious integrated cir-
cuits or breakout boards—just two cheap resistors.

Analog Resistance Sensors
Analog resistance sensors change their resistance according to how they
respond to something in the physical world. For example, a light-dependent
resistor will have low resistance in bright light, and high resistance in the dark.

The Raspberry Pi can’t directly measure resistance, apart from two states:
on and off. To measure resistance, you need an analog-to-digital converter
(ADC). Unlike with the voltage divider, this will require a mysterious integra-
ted circuit (that won’t be mysterious to you in a moment).

It’s a bit easier to measure analog resistance with Arduino. Because Arduino
has a built-in ADC, there will be fewer wires and components in your con-
nections. Raspberry Pi needs an external ADC chip to read analog resistance,
which means more wires that could come loose or be connected incorrectly.

An advanced option for measuring analog resistance with the Raspberry Pi
is using only sensors that communicate over industry standard protocols like
I2C or SPI. Using I2C and SPI is out of the scope of this book, but you can
learn about it in Make: Sensors.

Another option is to use Arduino for connecting to sensors and communi-
cating with Raspberry Pi over USB serial. A similar setup using a computer
rather than a Raspberry Pi is shown in Make: Arduino Bots and Gadgets. In
this book, you’ll work with the conceptually simple approach of reading an-
alog resistance sensors with an ADC chip.

Project 16: Potentiometer to Measure
Rotation
Turn up the volume on a radio—you’re probably using a potentiometer. They
are everywhere! Whenever you turn a knob to gradually change something,
chances are that you are using a potentiometer. There are also hidden po-
tentiometers (trimmers) inside many devices that technicians can adjust
with a screwdriver.

The potentiometer (or pot) is the archetype of variable-resistance sensors.
Once you learn to work with a pot, you can easily see similarities with other
variable-resistance sensors.

This project teaches you how to read analog-resistance sensors with Rasp-
berry Pi. Analog readings are interesting because you have to use an external
analog-to-digital converter (ADC). In this project, you’ll learn to use the
MCP3002 ADC. It’s controlled over SPI, an industry standard protocol.

Sensors and the Raspberry Pi 77

http://bit.ly/make-sensors
http://bit.ly/make-abg

Parts
You need the following parts for this project:

• Potentiometer

• MCP3002 (analog-to-digital integrated circuit)

• Raspberry Pi

• Jumper wires (male-to-female and male-to-male)

• Breadboard

The Raspberry Pi does not have female header connections
for its GPIO pins. Instead, you will need to use a Pi cobbler or
male-to-female jumper wires. Either option works, but the
cobbler eliminates the concern of shorting out the GPIO pins
by accidentally touching them together.

Build It
Build the potentiometer circuit shown in Figure 4-6.

Install SpiDev
All analog readings in this book use the MCP3002 analog-to-digital convert-
er. The MCP3002 uses SPI, an industry standard protocol, to communicate
with the Raspberry Pi. That’s why all analog sensors in this book need the
spidev library.

Enable Internet on your Raspberry Pi. Simply use a normal Ethernet cable to
connect the Raspberry Pi to your wireless access point or switch. The Rasp-
berry Pi receives an IP address automatically. You can test your Internet con-
nectivity with the Midori web browser. Try http://botbook.com!

Install the requirements with apt-get (it uses the Internet, so if you get errors,
check your connection):

$ sudo apt-get update
$ sudo apt-get -y install git python-dev

78 Getting Started with Sensors

Figure 4-6. Potentiometer connected to Raspberry Pi

Then download and install the latest SpiDev from their version control sys-
tem:

$ git clone https://github.com/doceme/py-spidev.git
$ cd py-spidev/
$ sudo python setup.py install

Allow SPI Without root
Modify udev rules, as shown in Example 4-3:

$ sudoedit /etc/udev/rules.d/99-spi.rules

Write the rule. If you edited it with nano, press Ctrl-X, then type “y,” and press
Enter to save.

Example 4-3. 99-spi.rules
/etc/udev/rules.d/99-spi.rules - SPI without root on Raspberry Pi
Copyright http://BotBook.com

SUBSYSTEM=="spidev", MODE="0666"

To avoid typos, you could alternatively copy the file with sudo cp 99-spi.rules/
etc/udev/rules.d/.

Finally, edit the blacklist to enable the SPI device:

$ sudoedit /etc/modprobe.d/raspi-blacklist.conf

Sensors and the Raspberry Pi 79

Delete the line that says “blacklist spi-bcm2708,” then press Ctrl-X to exit,
type “y” then press Enter to save the file.

Reboot your Raspberry Pi. Verify that you can see some files with:

$ ls -l /dev/spi*

Can you see at least two files? Well done, now you are ready to read analog
resistance sensors.

Run the Code
Once you get the circuit wired up and SpiDev installed, reading the sensor is
easy with the MCP3002 library. You can download it from the website for
Make: Arduino Bots and Gadgets.

Put pot_once.py (see Example 4-4) and the MCP3002.py library into the
same directory. You can easily create the pot_once.py file with the nano ed-
itor. The MCP3002.py library is long, so it’s best to download it as well.

Run the code:

$ python pot_once.py

View your result. Turn the knob of the potentiometer, and run the program
again. In Linux, you can press the up arrow to retrieve an earlier command
so you don’t need to keep typing it over and over.

Example 4-4. Reading a potentiometer
pot_once.py - measure resistance of a potentiometer, once
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import botbook_mcp3002 as mcp #

x = mcp.readAnalog(0,0) #
print(x) #

Import the MCP3002 library. The file MCP3002.py must be in the
same directory as this program (pot_once.py). All the heavy lifting,
like the SPI interface, is done with this library.

Read the analog value from the MCP3002 chip. The readAnalog()
function is from the MCP3002 library, as you can see from the
namespace prefix “MCP3002.”. The parameters device (0) and
channel (0) correspond to the circuit you built. The readAnalog()
function returns a number between 0 and 1023. This number is saved
to a new variable called x.

Print the value of variable x.

80 Getting Started with Sensors

http://botbook.com
http://botbook.com

Troubleshooting? If running pot_once.py gives you this error…

spi.open(0, device) .. IOError: [Errno 2] No such file or directory

…verify that you modified /etc/modprobe.d/raspi-blacklist.conf as instruc-
ted in “Allow SPI Without root” on page 79, then rebooted. You should see
some files if you run the command ls /dev/spi.

Repeat Readings
Most embedded devices have a never-ending loop that keeps running forever
(Arduino has this: the loop() function runs until you shut the device down).
The program will do its thing, wait for a short while, then do it again. It makes
sense that an embedded device works as long as there is power: you wouldn’t
want your car’s assisted steering or your office air conditioning to stop and
require restarting all the time.

Example 4-5 shows how this is done in Python. Keep the same circuit as
before, but run the new code. Now you can continuously get new readings
while you adjust the potentiometer. Press Ctrl-C to kill the program and get
your command prompt back.

Example 4-5. Reading a pot over and over
pot_repeat.py - continuously measure resistance of a potentiometer
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import botbook_mcp3002 as mcp #
import time #

while(True): #
 x = mcp.readAnalog(0,0) #
 print(x) #
 time.sleep(0.5) # seconds #

Import the library for the analog-to-digital converter chip. Just as
before, MCP3002.py must be in the same directory as this program,
pot_repeat.py.

Import the library that supplies the time.sleep() function.

Repeat the block below as long as the condition is true: forever. Press
Ctrl-C to kill the program.

Read the analog value just like you did in pot_once.py.

Print the value of x, just like in pot_once.py.

Wait for a while. Whenever there is an infinite loop, you must make
sure you give time to the operating system and other programs.
Otherwise, your program could take 100% of CPU power of any one
core, even one running a zillion gigahertz.

Sensors and the Raspberry Pi 81

Why Does a Potentiometer Have Three Legs?
You may have noticed that you didn’t use a pull-up, pull-down, or voltage
divider, and you probably also noticed that a potentiometer has three leads.

One side is connected to ground (LOW, 0 V, black wire, GND, “negative”). The
other side is connected to positive (HIGH, 3.3 V, +, red wire). The middle lead
is connected to the data pin.

Turning the knob, you can select where the middle lead touches the resistor.
Because there is a resistor on either side of the pot (between the middle lead
and GND, and between the middle lead and +V), the pot itself is a voltage
divider!

If the knob is turned to the minimum setting, there is nearly no resistance
between the data pin (middle) and GND. All the resistance is between the
data pin and +3.3 V. So the data pin gets 0 V, and MCP3002.readAnalog(0,0)
returns 0.

When you turn the knob to the maximum, there is no resistance between the
data pin and +3.3 V. All the resistance is between data and ground. So the
data pin gets 3.3 V, and MCP3002.readAnalog(0,0) returns 1023.

When the knob is anywhere between maximum and minimum, you get a
voltage between LOW (0 V) and HIGH (3.3 V). MCP3002.readAnalog(0,0) re-
turns a number between 0 and 1023.

The voltage seen by the data pin is proportional to the position of the pot.

Project 17: Photoresistor
Resistor by night, wire by day. A photoresistor reduces its resistance when
it’s bright. It’s also known as a light-dependent resistor (LDR).

The LDR changes resistance. From the Raspberry Pi’s point of view, isn’t this
the same idea as a potentiometer?

In fact, the photoresistor can use the same code as a potentiometer. The only
difference is the number of leads on the sensor. As you can see from
Figure 4-7, an extra resistor is used to form a voltage divider. You may re-
member that a voltage divider requires two resistors; the photoresistor is the
second (and variable) resistor in the divider.

Parts
You need the following parts for this project:

• Photoresistor (10 kΩ suggested)

• Resistor (10 kΩ, or choose a value that matches the photoresistor)

• MCP3002

82 Getting Started with Sensors

• Raspberry Pi

• Jumper wires (male-to-female and male-to-male)

• Breadboard

The 10 kΩ resistor coloring is brown-black-orange-any (four-band) or brown-
black-black-red-any (five-band).

Build It
Wire up the circuit as shown in Figure 4-7.

Figure 4-7. Photoresistor connected to Raspberry Pi

Run the Code
After you’ve built the circuit, run the pot code again:

$ python pot_repeat.py

When you see numbers appearing, try changing the value. Cover the LDR
with your finger, and you see low numbers. Point a bright light at it, and the
numbers increase.

Once you are done, kill the program with Ctrl-C.

Playing with Resistance Numbers
If that felt too easy, let’s try playing with the measured numbers. There are
three common ways to look at the measured resistance:

Sensors and the Raspberry Pi 83

• Raw number, from 0 to 1023

• Voltage, from 0 V to 3.3 V

• Percentage, from 0% to 100%

You have already read the raw value with a potentiometer and light-
dependent resistor. It’s the value you get from this line of code:

MCP3002.readAnalog(0,0)

The raw number doesn’t have an obvious unit—it’s just an integer (a whole
number) from 0 to 1023. This is the number you always start with when you
take a sensor measurement.

It’s easy to convert a raw value to a percentage, from 0% to 100%. The min-
imum raw value 0 is 0%. The maximum value 1023 is 100%. Any value x in-
between is x/1023. For example, the raw value 348 is:

348/1023 = 0.34 = 34%

So the raw value 348 is 34% of the maximum value.

raw = MCP3002.readAnalog(0,0)
percent = raw/1023.0 #

To get a floating-point result, you must divide by a floating-point
number. In Python (and many other languages), dividing by an integer
(a whole number) gives you a counter-intuitive whole number result.
In Python, 1/2 == 0, but 1/2.0 == 0.5. Notice how 2 is an integer and
2.0 is a floating-point number.

You might already know that a percent is a one hundredth part. This means
that 0.34 is exactly 34%. When you speak about parts, percentages are
practical. When programming, a floating-point number 0.34 is practical, as
you can easily multiply a number with this.

In your own projects, you measure something to change something. You
might use a potentiometer to set the volume of a beep. Or you could use an
LDR to turn lights brighter when it’s dark outside. In these cases, it’s conve-
nient to multiply by a percentage.

To get the voltage of the data pin, you can multiply by the percentage. The
maximum voltage (HIGH) of a Raspberry Pi pin is 3.3 V (100%) and the min-
imum (LOW) is 0 V (0%):

raw = MCP3002.readAnalog(0,0)
percent = raw/1023.0
voltage = percent * 3.3

84 Getting Started with Sensors

Project 18: FlexiForce
The FlexiForce sensor (see Figure 3-14) measures pressure. The harder you
squeeze the round end of the sensor, the more electricity it lets through. Just
as with a pot and LDR, you can use the same code.

Parts
You need the following parts for this project:

• Flexiforce (11 kg, 25 pound version recommended)

• 1 MΩ resistor (five-band: brown-black-black-yellow-any; four-band:
brown-black-green-any)

• MCP3002

• Raspberry Pi

• Jumper wires (male-to-female and male-to-male)

• Breadboard

Build It
Build the FlexiForce circuit shown in Figure 4-8. As the FlexiForce has just two
leads; this connection is similar to the light-dependent resistor (LDR). There
is a second resistor to form a voltage divider

Figure 4-8. FlexiForce squeeze sensor connected to Raspberry Pi

Sensors and the Raspberry Pi 85

What about the third pin? The FlexiForce has a third pin in the middle, but it’s
not connected to anything. It’s just there to make it easier to connect the
FlexiForce to a breadboard. The outer pins are live.

Run the Code
Run the potentiometer code again:

$ python pot_repeat.py

Play with the values. Try leaving the sensor untouched. Then squeeze the
round end hard.

You’ve tried three analog resistance sensors: a pot, an LDR, and the Flexi-
Force. Do you recognize a pattern? All of these sensors can use the exact
same code. The circuit with the analog-to-digital converter (ADC, MCP3002)
is nearly identical for the different components. The only difference is the
second resistor for the sensors (the first resistor in the voltage divider) that
have just two leads.

Project 19: Temperature Measurements
(LM35)
The LM35 reports temperature by changing its resistance. In its default con-
figuration, the LM35 can measure temperature from 2 °C to 150 °C.

Parts
You need the following parts for this project:

• LM35 temperature sensor

• MCP3002

• Raspberry Pi

• Jumper wires (male-to-female and male-to-male)

• Breadboard

Build It
Build the circuit shown in Figure 4-9. Wires that are always in 3.3 V (same as
data pin HIGH) are red in the diagram. The dangerous (to Raspberry Pi’s pins)
+5 V wire is yellow. Don’t connect the yellow +5 V wire to data pins.

86 Getting Started with Sensors

Figure 4-9. LM35 temperature sensors connected to Raspberry Pi

As LM35 has three leads, the connection is similar to the pot circuit. The only
difference is the 5 V voltage required by the LM35.

The LM35 uses +5 V, enough to damage the Raspberry Pi’s
microcontroller IC. Mistakenly connecting 5 V to a data pin,
even for a moment, damages the Raspberry Pi. Most likely, the
damage is permanent, destroying some or all of the data pins
in the GPIO header. That’s why you use different colors for safe
+3.3 V (red) and dangerous +5 V (yellow). Be careful where
you connect +5 V. Just be careful to make correct connections
and you’ll be fine.

Run the Code
Every analog resistance sensor thus far (pot, LDR, and FlexiForce) has
worked with the same code. You can also try pot code here.

It does work, but the raw numbers are not very useful. What good does it do
to know that the temperature results in a raw value such as 815?

As you saw earlier, you can convert raw values to percentages and voltages.

All components have a datasheet that describes how they are used. Data-
sheets can be terse and technical, which makes books like this quite useful.
You can find the datasheet for the LM35 by searching the Web for “lm35
datasheet.”

Sensors and the Raspberry Pi 87

The datasheet for the LM35 tells us that the output voltage changes by 0.010
V per 1 °C. The inverse of this is that a 1 V change represents 100 °C. Some
sample voltage-temperature pairs are:

• 0 °C, 0.0 V (this circuit doesn’t measure temperatures this cold)

• 2 °C, 0.02 V (minimum measured temperature, a cold fridge)

• 10 °C, 0.1 V

• 20 °C, 0.2 V (summer in Helsinki)

• 30 °C, 0.3 V (summer in Spain)

• 40 °C, 0.4 V

• 80 °C, 0.8 V (a sauna)

• 100 °C, 1.0 V (water boils)

• 150 °C, 1.5 V (maximum measured temperature)

This also explains why we’re not worried about getting too much voltage to
the Raspberry Pi data pin: to get over 3.3 V, you would need 330 °C of heat.

You must convert the raw value to voltage, and voltage to Celsius. For this,
let’s create a new program.

Run the code shown in Example 4-6.

Example 4-6. Reading the LM35 sensor in Python
lm35.py - print temperature in Celsius
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time #
import botbook_mcp3002 as mcp #

def readTemperature(): #
 data = mcp.readAnalog(0,0) #
 percent = data / 1023.0 #
 volts = percent * 3.3 #
 celcius = 100.0 * volts #
 return celcius #

while True: #
 t = readTemperature() #
 print("Current temperature is %i C " % t) #
 time.sleep(0.5) # seconds #

The time library is needed for time.sleep() in the loop.

As with previous examples, the file MCP3002.py must be in the same
directory with this program (lm35.py).

88 Getting Started with Sensors

readTemperature() is a function, so it’s easy to add it to your own
projects.

Read the raw value, from 0 to 1023. This is the same command you
used with the potentiometer, LDR, and FlexiForce.

Convert to a percentage of maximum value, from 0.0 (0%) to 1.0
(100%). The divider must be a floating point to get a floating-point
result.

Voltage is calculated from the maximum voltage.

Convert voltage to Celsius, using the 0.010 V per 1 °C formula from
the datasheet.

Return the temperature.

Keep measuring and printing temperatures until the user presses
Ctrl-C to kill the program.

This is all you need to do to read temperature in your own programs.
Declare a new variable t, read the temperature, and store the value
there.

Print the temperature with some helpful text. print uses a format
string, where %i is replaced with an integer value, the value of the
variable t.

Wait for a while. This allows you to read the printed temperature, and
also prevents the program from taking all the CPU time.

Project 20: Ultrasonic Distance
An ultrasonic distance sensor gives you the distance to a target. For example,
it can tell you there is a target 58 cm from the sensor. It’s one of the most
popular sensors in the courses we teach.

HC-SR04 is a cheap ultrasonic sensor, costing just a couple of dollars. This
is a very nice price compared to alternatives costing much more.

Parts
You need the following parts for this project:

• HC-SR04 sensor

• Two 10 KΩ resistors (four-band: brown-black-orange-any, five-band:
brown-black-black-red-any)

• Raspberry Pi

• Jumper wires (male-to-female and male-to-male)

• Breadboard

Sensors and the Raspberry Pi 89

Build It
Build the circuit as shown in Figure 4-10. The sensor uses a protocol that’s
based on pulse length, where pulses consist of changes in voltage level from
HIGH or LOW. As no analog-to-digital converter is needed, the circuit is quite
simple. Be careful with the +5 V pin as connecting that to any data pin will
likely break the whole GPIO header beyond repair.

Figure 4-10. Cheap ultrasonic distance sensor HC-SR04 connected to
Raspberry Pi

Run the Code
Run the code shown in Example 4-7.

Example 4-7. Reading the HC-SR04 in Python
hc-sr04.py - measure distance with ultrasound
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time #
import botbook_gpio as gpio #

def readDistanceCm(): #
 triggerPin = 22 #
 echoPin = 27 #

 v=(331.5+0.6*20) # m/s #

 gpio.mode(triggerPin,"out") #

 gpio.mode(echoPin,"in") #

90 Getting Started with Sensors

 gpio.interruptMode(echoPin, "both") #

 gpio.write(triggerPin, 0) #
 time.sleep(0.5) #

 gpio.write(triggerPin, 1) #
 time.sleep(1/1000.0/1000.0) #
 gpio.write(triggerPin, 0) #

 t = gpio.pulseInHigh(echoPin) # s #

 d = t*v #
 d = d/2 #
 return d*100 # cm #

dist = readDistanceCm() #
print("Distance is %i cm" % dist) #

If you later improve the program measure distance continuously,
you’ll need time.sleep() in the loop.

The botbook_gpio library controls the GPIO pins. You must have
botbook_gpio.py in the same directory as this program, hc-sr04.py.

The readDistanceCm() function is defined here. This function does all
the hard work. You don’t need to think how it works when you call it
from your program.

Define a constant for GPIO pin 22, which is connected to the HC-
SR04 trigger pin. The word trigger was chosen because it’s marked
“Trig” on the sensor. Whenever triggerPin is mentioned in this
function, it will use the number 22 in that place.

The GPIO pin 27 is connected to HC-SR04 “Echo.”

Calculate the speed of sound, which is about 340 meters per second.
The number 20 is the temperature in Celsius; feel free to change it if
you happen to be in a warmer or colder place. The Raspberry Pi will
do a simple calculation instantly, so there is no need to calculate it
with pen and paper and put what amounts to a “magic number” into
code.

Set the trigger pin to “out” mode, so you can control it. The trigger
pin is used for sending the sound pulse with the ultrasonic speaker.
This will automatically export the pin, creating the needed direction
and value files.

Set the echo pin to “in” so that you can read the pulse.

Enable the interrupt on echoPin, so that you can later measure the
pulse duration with pulseInHigh(). The interrupt will happen “both”
for rising edge (start of pulse) and falling edge (end of pulse).

Make sure the trigger pin is LOW, so that you can send a short pulse
later.

Sensors and the Raspberry Pi 91

Wait for the pin to stabilize, so that there is a clear start for the pulse.

Bring GPIO 22 HIGH (3.3 V), starting the pulse.

Wait for a very short time. GPIO 22 stays HIGH. This wait defines the
length of the pulse. One millionth of a second is one microsecond.
Millionth is written as a calculation, because it’s annoying to try to
count the zeroes in 0.000001. To get a floating-point (decimal)
number, the dividers must be floating-point numbers (1000.0 instead
of integer 1000).

Turn GPIO 22 off (LOW), ending the pulse.

Measure the length of the pulse coming to GPIO 27. Save the pulse
duration to a new variable, t. The pulse length measurement is not
as precise as in Arduino (see “Real Time or Fast?” on page 92). The
uncertainty of the pulse measurement limits the precision of the
distance measurement. Still, pulseInHigh() and interrupts are much
better than checking the pin state with a loop.

Calculate distance d, using velocity v and time t. For example, if you
drive one hour at 100 km/h, you move a hundred kilometers.

One way trip is half of a two-way trip. The sound goes to target and
echoes back, so the distance is half of that round trip.

Convert meters to centimeters.

Measure the distance in centimeters, and save it to new variable d.
This is how you can measure distance in your own programs. This is
the first line executed after library imports.

Print some helpful text and the distance. To get rid of extra decimals,
%i converts distance to an integer.

Real Time or Fast?
If you tried HC-SR04 with both Arduino and Raspberry Pi, you probably no-
ticed that Arduino gives more reliable and precise results. Arduino is more
real time than Raspberry Pi.

Real time means that operations take the same, predictable amount of time.
Real time doesn’t mean fast. Raspberry Pi is much faster (more calculations
per second), but it’s not real time.

Arduino doesn’t have an operating system, so the only thing happening on
its CPU is the code you’ve written. Raspberry Pi has a whole operating system
(Linux kernel, GNU tools, daemons, etc.). At any moment, many programs
are running on a Raspberry Pi. They will affect how fast your program runs,
and this makes things less predictable.

You have now gone through a long journey. You can sense the world using
many different approaches. The most basic, even if tedious, way is to build a

92 Getting Started with Sensors

circuit component by component. Usually, the easiest way is to use Arduino.
And if you need a real computer, there is Raspberry Pi.

Now it’s time to make your skills serve your imagination.

Build your own ideas into prototypes. Make your own robots. Innovate devi-
ces and gadgets that have not been made before. We’ve written several books
that can help you.

To learn advanced sensors, read Make: Sensors. To add an EEG sensor to your
repertoire, build the bot in Make a Mind-Controlled Arduino Robot. Make: Ar-
duino Bots and Gadgets brings you six fun projects and shows how to achieve
impressive results quickly.

Go make your projects!

Sensors and the Raspberry Pi 93

http://bit.ly/make-sensors
http://bit.ly/mind-arduino
http://bit.ly/make-abg
http://bit.ly/make-abg

A/Troubleshooting
Tactics

No one gets everything right the first time, so it’s a good idea to be deliberate
in how you approach troubleshooting. Here are some tactics we use when
our projects do not behave as expected:

Verify hardware with “Hello, world”
By this, we mean get the simplest possible program working on your
hardware before you introduce complexity. Traditionally, a “Hello, world”
program prints a string of text onto a screen, but of course, many sensor
projects don’t call for a display. Our Arduino and Raspberry Pi “Hello,
world” analog is usually just a short program that will blink an onboard
LED on and off at a specific intervals.

Always build and test in small steps
Racing through a project only to find it does not work is never a good
experience. Our approach is to deliberately build and test as the project
progresses, not wait until the end to run the first test. This tactic means
we don’t end up with an extremely complex problem to troubleshoot
when the build is done. Testing is time well spent! Additionally, if you do
create a habit of regular testing, it is much easier to go back to a known
working state. Don’t try to keep pushing on when things don’t work. If
you do, you’ll end up frustrated with a pile of messy code and wiring that
nobody, including you, can understand. Building in small steps does not
mean that you have to understand every line of the code or inner work-
ings of your sensor. One working component and a basic understanding
of how it works is good enough.

Isolate the problem
Let’s say you are trying to make an Arduino project where a servo is
controlled by moving a rotary knob (a potentiometer). Taking our advice,
you built the project methodically and in small, manageable steps. But
the servo is simply not moving as you expect when the knob is turned.
Here is how we’d approach the issue. First, only connect the servo to
your Arduino and upload the most basic code that controls servo move-
ment. If the servo moves as expected, then it’s on to test the knob in the
same way you just did for the servo. If the servo does not move as ex-
pected, you’ve isolated the problem. If both parts work independently,

95

then you can be fairly confident the issue is in the code connecting the
two components.

RTFM (read the friendly manual)
Reading documentation is often overlooked as a troubleshooting re-
source, but it’s exactly where you should look for help! If there was no
manual accompanying a sensor you bought, try checking the manufac-
turer’s website. Another great place is online forums, but you should be
careful not to blindly assume that, because it’s in a forum or online, it
conveys the correct answer. There are lots of flawed instructions and
even nonfunctional sample programs, so it’s good to have some skepti-
cism while reading. (Another thing to be aware of: the F in RTFM isn’t
always considered to stand for Friendly. It’s best not to use the acronym
in an email to your best client.)

Document your work
Comment your code! No need to comment every line, but comment the
code where it’s tricky or where it took you a while to get it working prop-
erly. Photograph the stages of your build. It’s great to have images for
future use in a tutorial, but it’s helpful to have them even as you are
iterating through different project designs. Otherwise, you’ll forget what
you did in no time. If you want to kick it up a notch, publish your results
online!

96 Appendix A

B/Arduino IDE Setup

Here’s how to set up the Arduino integrated development environment (IDE)
on various platforms.

Ubuntu Linux
Connect Arduino to your computer with a USB cable. Arduino draws power
directly from the USB, so no external power supply is needed. Start the ter-
minal application.

You can start the command-line terminal in many ways. You
can open it in the main menu with Applications → Accessories
→ Terminal (on Xubuntu and other XFCE-based distributions
such as Debian with XFCE). Super-T, also known as the ugly
key or Windows key, works on many desktops. If you are using
Unity in the standard Ubuntu distribution, search for “Termi-
nal” in Dash (top-left corner).

To install the Arduino IDE, install the arduino package. Here’s how you’d do
it on Ubuntu Linux:

$ sudo apt-get update
$ sudo apt-get -y install arduino

Give yourself permission to access the serial-over-USB port (this is required
by the Arduino development environment to function). The first command
adds you to the dialout group, and the second command switches you into
that group without you needing to log out and back in again:

$ sudo adduser $(whoami) dialout
$ newgrp dialout

Start Arduino:

$ arduino

The Arduino IDE opens.

97

After you have logged out and back in, you can also start Arduino IDE from
the menus.

Now you’re ready to test your installation. See “Hello, World” on page 99.

Windows 7 and 8
Download the latest version of the Arduino software and unzip the file you
downloaded to any location that you find suitable (your Desktop or Down-
loads directory, for example).

Connect your Arduino Uno to your computer with a USB cable. Arduino draws
power directly from the USB, so no external power supply is needed. Win-
dows will start an automatic installation process for the Arduino drivers. It
may fail after a while and display an error dialog.

If Windows fails to install the driver:

1. Open Windows Explorer, right-click Computer, and choose Manage.

2. From Computer Management, choose Device Manager on the left. Lo-
cate Arduino Uno in the device list, right-click it, and choose Update
Driver Software.

3. Choose “Browse my computer for driver software.” Navigate to the Ar-
duino folder you extracted, open the drivers directory, choose ardui-
no.inf, and click Next.

4. Windows will now install the driver.

Launch the Arduino IDE by double-clicking the Arduino icon inside the folder
you unzipped.

Time to test your installation; see “Hello, World” on page 99.

OS X
Download the latest version of the Arduino software and unzip the file you
downloaded. Copy it to your /Applications folder.

Connect your Arduino Uno to your computer with a USB cable. Arduino draws
power directly from the USB, so no external power supply is needed. You
don’t need to install a driver for OS X.

Launch the Arduino IDE by double-clicking the Arduino icon in the /Applica-
tions folder.

Time to test your installation; see “Hello, World” on page 99.

98 Appendix B

http://bit.ly/arduino-dl
http://bit.ly/arduino-dl

Hello, World
Now that you have the Arduino IDE open, you can run the Arduino equivalent
of “Hello, world.”

First, confirm that you have the correct board selected. The Arduino Uno is
the default. If you have another board, such as a Mega or a Leonardo, choose
it from the Tools → Board menu.

Now you need to load the Blink test program. Choose File → Examples →
1.Basics → Blink. Click the Upload button (or choose File → Upload) to com-
pile and upload your program to Arduino.

The first time you do this, Arduino may display an error popup: “Serial port
COM1 not found.” That’s because you haven’t chosen which serial port to use
(the connection between your computer and Arduino is represented as a
USB serial port). Select your serial port from the drop-down menu. On Linux,
it’s probably /dev/ttyACM0; on the Mac, it may be something like /dev/
usbmodem1234; and on Windows, it’s one of the COM ports.

If you see a different error message instead of a request to
choose a serial port, choose your serial port from Tools → Port.
If you can’t figure out which port Arduino is connected to, pay
attention to the ports listed, unplug the Arduino, and make a
note as to which port went away. That’s the Arduino port. OS X
lists each port twice (e.g., as /dev/cu.usbmodem1234
and /dev/tty.usbmodem1234). Either one will work.

While the program is uploading, Arduino’s TX and RX (transmit and receive)
lights blink rapidly. Finally, when the program is running, the tiny light labeled
“L” is blinking.

The L LED blinking means that everything was successfully installed, and you
just got your first sketch running.

Congratulations! Remember this simple procedure: if you ever get so stuck
you are wondering whether Arduino is even running your code at all, return
to this “Hello, world” example. Whenever you start a new program, start with
a “Hello, world” to make sure that everything is working.

Appendix B 99

C/Setting Up
Raspberry Pi

To make Raspberry Pi work, you need to install an operating system. Without
it, you won’t even get a picture on the screen.

To install an operating system, you’ll need to do the following:

• Prepare a memory card: format it and extract a compressed zip archive.

• Connect cables and boot to the installer; Raspberry Pi boots automati-
cally when you connect the power cable.

• Install Raspbian; just select it from the menu.

• Configure your Linux; it’s easy using the menu that displays automati-
cally.

Parts
You need the following parts for this project:

• Raspberry Pi Model B (the one with wired Internet)

• Micro USB cable (for power)

• 4 GB SD card (can be 8 GB too; Raspberry Pi Model B+ uses a microSD
card)

• Display with HDMI port (your TV could qualify)

• HDMI cable

• USB mouse

• USB keyboard

• An SD card reader (for your regular computer; with the Raspberry Pi
Model B+, you may need a microSD to SD adapter to read the card on
your computer)

Optionally, it’s convenient to have an Ethernet cable that connects the Rasp-
berry Pi to the Internet.

101

Set It Up
The following sections describe how to set up the Raspberry Pi.

Prepare the Memory Card
To prepare the memory card, you download NOOBS*.zip and extract its con-
tents to an SD card.

Did you buy an SD card with preinstalled Raspbian? You can
skip this “Prepare Memory Card” section.

The SD memory card in the Raspberry Pi is the place to store data perma-
nently, over reboots. As Raspberry Pi doesn’t have a hard disk, the memory
card serves the same purpose.

Some shops also sell memory cards that have the operating system prein-
stalled. If you have one, you don’t have to install an operating system, and
you can skip to the point where Raspberry Pi is booted from this card.

Buying the SD card is quite simple. The name SD defines both the technology
and the physical size of the card. You want the big SD size (3.2 cm by 2.4 cm),
not the smaller mini SD or tiny micro SD. Most cards nowadays are prefor-
matted, and that’s convenient.

Open a web browser on your regular computer. Go to the official Raspberry
Pi website and download the Quick Start Guide and the latest NOOBS*.zip
using the “Direct download” or “Download ZIP” links. The name of the
NOOBS*.zip varies, so we’ve marked the version number with a star. For ex-
ample, the actual name could be NOOBS_v1_2.zip.

If you’re lucky, your memory card is preformatted when you buy it. If not,
format it to FAT according to the instructions in the Quick Start Guide you
just downloaded.

Put the SD memory card in the SD card reader of your regular computer. Your
laptop might have an SD card reader by default. For most desktops, you need
to buy a cheap external USB-connected reader.

Extract the contents of NOOBS*.zip to the memory card. In most modern
Linux, Windows, and Mac environments, just double-click or right-click
NOOBS*.zip. If you have trouble extracting the file in older Windows versions,
download and install 7zip and extract with that.

After extraction, you should have the contents on the top level of the memory
card. For example, bootcode.bin must be on the top level of the card and not
inside a folder.

102 Appendix C

http://bit.ly/rasp-dl
http://bit.ly/rasp-dl

Connect Cables and Boot to Installer
Connect the cables to Raspberry Pi; they only fit in the correct holes. Connect
the USB keyboard and mouse. Connect an HDMI cable between the Rasp-
berry Pi and your television or monitor.

Start your television or monitor. Make sure it’s set up to use the HDMI input
to which the Raspberry Pi is connected.

Insert the SD card. The SD card only fits the slot the correct way. The SD card
slot is on the short sides of the Raspberry Pi, the opposite side from the USB
and Ethernet ports.

Finally, connect the micro USB cable between the Raspberry Pi and a power
source. Raspberry Pi requires about 1 watt (1 W) of power, so a suitable power
source is a desktop computer or a powerful USB charger.

A red PWR (power) LED lights up. Your monitor should show an image of a
raspberry. This picture on the display means that Raspberry Pi is success-
fully running something from the SD card. Raspberry Pi doesn’t have a BIOS
similar to a workstation, so without software from the SD card, the screen is
black.

After a moment, you see a menu of installable operating systems.

Install Raspbian
The installer menu shows you many different Linux distributions that you
could install. Select Raspbian [RECOMMENDED] (see Figure C-1) and press
Enter. (Or in the newest version, select “Install OS.”) It’s the most popular
one. If you have ever used Ubuntu, Debian, or Mint, you will soon feel at home
with Raspbian.

Figure C-1. NOOBS boot screen

Answer yes to the confirmation “All existing data on the SD card will be over-
written” by pressing Enter again. Enjoy the slideshow while Raspbian installs.

Appendix C 103

The installation takes less than 10 minutes. When installation completes, you
get a pop-up “Image applied successfully.” Press Enter for OK.

The Raspberry Pi reboots. You get a screen with a raspberry at the top left,
and the log filling most of the screen. The log explains what’s happening when
Raspberry Pi boots. This can be quite entertaining to watch. Once the boot
completes, you are in the “Raspberry Pi Software Configuration Tool,” raspi-
config.

Configuration with raspi-config
Raspi-config is a menu with the most common configuration tasks. You can
move around with the arrow keys and Tab. To select items, press Enter or
Return.

Change your password
Move the selection to “2 Change User Password.” The default username
is “pi.” The default password “raspberry” could be a security risk be-
cause everyone knows it, so the first task in the new system is to change
the password. Choose a good password and type it at the prompt. What
you type is not echoed on the screen, so you’ll have to type it blindly.
After typing the password twice, you get a confirmation of your suc-
cessful password change. Then you return to the raspi-config menu.

Enable boot to desktop
Even though Raspberry Pi can’t replace a real workstation or a laptop,
it’s helpful in the beginning to have a web browser and multiple windows
when working. Select “3 Enable Boot to Desktop.” There is just one
prompt, “Should we boot straight to desktop?” Press Enter to answer
yes. Then you return to the raspi-config menu.

Press Tab and the arrow keys to select <Finish> and Enter to choose it.
In most keyboards, Tab is on the left side of the keyboard, above the Caps
Lock key.

You can also configure your time zone, locale (you’ll need to set this if you
use a non-English language), keyboard, and more.

The big moment: “Would you like to reboot now?” Press Enter for <Yes>.
Enjoy the log messages while Raspberry Pi shuts down.

Boot to Desktop
When Raspberry Pi boots, you briefly see four pixels filling the screen. Then
you’ll see the familiar Raspberry Pi logo on the top left and the boot log. After
a moment, you are in a very light graphical desktop. There is a giant raspberry
on the background (see Figure C-2).

Congratulations, you have now successfully installed Raspbian Linux on your
Raspberry Pi!

104 Appendix C

But wait, there could be more to celebrate! If you haven’t installed Linux on
a computer before, congratulations again. Now you have installed Linux on
a computer. (If this was your first time installing an operating system, our hat
is off to you now.)

Now that you have installed Linux on the Raspberry Pi, do you
want it on your desktop too? You can get a Free CD image for
that from xubuntu or debian.

Figure C-2. Booting to the desktop

Using Raspberry Pi
The graphical desktop makes it easy for you to get started. And you’ll get to
swim in the deep end of the pool too, as you’ll learn to use the famous Linux
commands.

The graphical desktop is there to help learning and development. Raspberry
Pi is not powerful enough to replace your laptop or desktop. When your
project is ready, it’s possible to run Raspberry Pi headless, without a display,
if you want to.

The most important programs on the desktop are the terminal and web
browser. You’ll use LXTerminal for the command-line interface (CLI). To
browse the Web, you use Midori, the light web browser.

If you connected to the wired Internet before booting up the Raspberry Pi,
you can start browsing immediately. Double-click the Midori icon on the left
of the desktop. When it opens, browse to http://botbook.com or http://
google.com. This verifies that the Internet connection is working. You can
also use the browser to copy and paste code examples from http://
botbook.com, or to copy and paste your own code to your own blog. You do
publish your successes, don’t you?

To use the command-line interface, double-click the LXTerminal on the desk-
top. You’ll get the prompt, waiting for your commands. It has some text, and

Appendix C 105

http://xubuntu.org
http://debian.org

at the end, a dollar sign. In the commands shown next, the dollar sign is the
prompt, so you don’t have to type that character.

Try writing some text. If you live outside the United States, it’s likely that some
of the characters are wrong. By default, you are using the US keymaps, even
though your physical keyboard is different. If you didn’t adjust the keyboard
with raspi-config earlier, correct the keyboard now. Use your own two-letter
ISO country code (fi, fr, de, etc.) in place of the default us.

$ setxkbmap us

Remember that you don’t type the prompt ($), so you only need to type
setxkbmap us and press Enter.

In the command line, you are always in a directory, which is your current
working directory. You can ask the computer to print your working directory:

$ pwd
/home/pi/

As your username in this system is “pi,” your home directory is /home/pi/.
This is the only place where a user can permanently store data.

You can change the directory:

$ cd /etc/
$ pwd
/etc/
$ cd /home/pi

If you ever get lost deep into the beautiful directory tree of Linux, it’s easy to
get back home. Return to your home directory with cd /home/pi or by using
the shorthand cd all by itself:

$ cd

You can view the files in the working directory with ls:

$ ls
Desktop ocr_pi.png python_games

To create a new file, you can use a text editor:

$ nano foo.txt

When nano opens, type some text. Press Ctrl-X to save it. Then answer yes
to “Save modified buffer?” by typing “Y”. Accept the “File Name to Write:
foo.txt” prompt by pressing Enter or Return.

You can see your new file in the file listing:

106 Appendix C

$ ls
Desktop foo.txt ocr_pi.png python_games

To edit the same file again, type the same command:

$ nano foo.txt

If you want to see the contents of the file quickly, you can type:

$ cat foo.txt

When playing with hardware interfaces, you often write just one word into a
text file. There is a nice shorthand way of doing that using a pipe. First, let’s
just write some text to the screen:

$ echo "Hello, world"
Hello, world

Not very surprising yet. But we can take the output of this program “Hello,
world” and use it as input for another.

$ echo "Hello, world" | tee hello.txt
Hello, world

The text “Hello, world” is sent as input to the command tee which prints it
on the screen and writes it to the specified file (hello.txt). The pipe symbol (|)
in between the two commands is a character of its own, a tall vertical line.

How do you write the pipe character? In the US keyboard, hold Shift and press
the “|\” key. The “|\” key is below the Backspace key and above Return/
Enter. In the Finnish keyboard, for example, you can get the pipe character
by pressing Alt-Gr and the “<>|” key near the left Shift key.

Check out the contents of the new file you created:

$ cat hello.txt
Hello, world

This trick will come in handy when you play with the file-based interface to
the Raspberry Pi’s hardware pins.

Python Programming
You can write programs just like any other text file. Write the first Python
program, “Hello, world”:

$ nano hello.py

For the contents of the hello.py file, type just this line:

Appendix C 107

print("Hello, world")

Press Ctrl-X, type “y,” then press Enter to save it.

Now you can run your first Python program with the command python hel-
lo.py. It should print the text “Hello, world:”

$ python hello.py
Hello, world

Did you get the text to appear in the window? If so, you just ran some Python
code.

Rootly Powers
One of the cornerstones of Linux security and stability is user separation. A
normal user is only allowed to do things that only affect him. Just try it out:

$ raspi-config
Script must be run as root. Try 'sudo raspi-config'

You can’t change system-wide settings as a normal user.

But luckily, your user “pi” is a member of the “sudo” group, so he can tem-
porarily gain these root powers:

$ sudo raspi-config

You get the same configuration menu you used earlier to change the pass-
word and enable the graphical desktop. Use the Tab and arrow keys to select
<Finish> and press Enter (or Return) to get back to command prompt.

Welcome to the Command Line
You have now played with the command-line interface. If you earn your living
running Linux servers, you probably knew most of this already. Even on Linux
desktops, you might have used the same commands. If not, welcome to the
command-line interface!

The most important commands are those that allow you to move around (ls,
pwd, cd) and manipulate text files (nano, cat).

As you’ll soon try out yourself, all Linux configuration is in human readable
text files. So by adding sudo, you can modify anything on the system.

The commands you just learned are surprisingly useful. Most of them work
on all Linux system (Debian, Red Hat, Ubuntu, and others), all Unix systems,
and even on OS X (which is based on Unix). They have stood the test of time.
Many commands (ls, cd, pwd) have been in use before Linux, before the Web,

108 Appendix C

and even before the Internet protocol suite. So you can likely keep using these
commands far into the future.

Take Over an Onboard LED
Hello, hardware! Using this exercise, you will:

• Control the ACT onboard LED

• Meet the GPIO header, the main way to connect hardware to the Rasp-
berry Pi

• Modify the system using virtual files in the /sys/ directory

Install the operating system (see Appendix C) if you haven’t done so already.
To use the command-line interface, open LXTerminal.

There are five LEDs near the USB connector: ACT, PWR, FDX, LNK, and 100.
Could it be possible to take over one of these built-in LEDs?

Luckily, one of the LEDs can be programmatically controlled. The ACT LED
is showing SD card activity by default, but we can disable this behavior. Have
a look at the current setting:

$ cat /sys/class/leds/led0/trigger
none [mmc0]

The trigger file you just read shows that currently, the ACT LED (led0) is
controlled by mmc0, so it’s just showing SD card use. The brackets “[]” show
the current selection. The other option is “none,” so you will want to select
that to control the LED:

$ echo "none"|sudo tee /sys/class/leds/led0/trigger
none

In Linux, all configuration is in plain-text files. All permanent,
system-wide configuration is under /etc/. And even the ever-
changing state of the system can be read and modified trough
virtual files in /sys/ and /proc/. Linux gurus can usually guess
the location of the configuration files for any aspect of the
system, and then modify the files with just a text editor.

The first part of the command echo "none" just prints the word none. The
second part writes this word to the trigger file. You can see that none is now
selected, as it’s surrounded by square brackets:

$ cat /sys/class/leds/led0/trigger
[none] mmc0

Appendix C 109

So now it’s time to take control! Write “0” to the “brightness” file to turn lights
out:

$ echo "0" |sudo tee /sys/class/leds/led0/brightness

Look at the Raspberry Pi board to see that the ACT LED is off. Then it’s time
for lights on:

$ echo "1" |sudo tee /sys/class/leds/led0/brightness

And you can see the green ACT LED light up.

The ACT light will revert to its default purpose after the next reboot. But if
you want to change it back now, you can:

$ echo "mmc0"|sudo tee /sys/class/leds/led0/trigger

Did you succeed in controlling the light? Well done! You are well on your way
to connecting the Raspberry Pi with the physical world.

As you gained control over the onboard LED, you:

• Manipulated the /sys/ virtual filesystem

• Had some hands-on experience with the command-line interface

• Succeeded in controlling some of the Raspberry Pi hardware

Now that you can manipulate the LED built in to the Raspberry Pi, it’s time
to connect your own.

Hello, GPIO: Connecting an External
LED
Hello, external hardware! Soon you’ll connect an external LED to your Rasp-
berry Pi. This is the very first external hardware component you add.

Working trough this exercise, you’ll control Linux trough virtual text files, and
you’ll get your first touch to the GPIO pin header.

This is the “Hello, world” for GPIO hardware. If you ever run into problems
with any sensors, it’s a good idea to repeat this exercise to solve any problems
with this simple setup.

Parts
You need the following parts for this project:

• Raspberry Pi

• Female-male jumper wires, black and green

110 Appendix C

• Breadboard

• 470 Ω resistor (five-band: yellow-violet-black-black-any; four-band:
yellow-violet-brown-any)

• An LED

Raspberry Pi has a GPIO pin header for connecting external components.
The GPIO pin header has 26 pins (see Figure C-3). Most pins can have mul-
tiple functions, and you can choose which one you use. In this experiment,
you learn the “out” mode to turn the pin on (3.3 V) and off.

Figure C-3. The GPIO pin header

The Raspberry Pi Model B+ features more input/output pins,
but the first 26 pins of the B+ header are compatible with ear-
lier models. This means that you can follow the instructions in
this book on the B+ without modification.

The circuit (see Figure 4-4) starts from the GPIO 27 pin that you control.
When you want to turn on the LED, this pin is +3.3 V, the HIGH of Raspberry
Pi. Then it has a resistor-limiting current, to protect both the LED and the
more expensive Raspberry Pi. After the resistor, there is an LED in series.
Finally, the minus leg of the LED is connected to ground (GND, 0 V).

Building the Circuit
Now it’s time to build the circuit (see Figure C-4).

Appendix C 111

Figure C-4. Hello, LED

Unlike Arduino, Raspberry Pi is very sensitive to mistakes. You
must be careful to only connect the pins you want to use, so
you don’t mistakenly short-circuit random pins together.

It is possible to build the circuit while the Raspberry Pi is on.
Of course, mistakenly shorting two pins could then immedi-
ately break your Raspberry. The safer option is to shut down
Raspberry Pi before connecting the wires. You can find the
shutdown in the main menu, the menu on the bottom left of
the desktop (Main Menu → Logout → Shutdown). After the
shutdown, disconnect the powering USB cable.

Find the correct pins on the GPIO header. The pin number one is marked with
a small white box on the board. The numbering diagram (see Figure C-3)
shows both the human-friendly name (GPIO 27) and the running number of
the pin (13). The pins are:

• GPIO 27 is pin number 13

• GND is pin number 14

Connect the female end of the green jumper wire to GPIO 27 and push the
male end to a free row in the breadboard. Push one leg of the resistor to the
same row with the jumper wire.

Push the free leg of the resistor to a free row on the breadboard. Push the
plus leg of the LED to this row.

Push the male end of a black jumper wire into the row with the LED minus
leg. Connect the female end of the black jumper wire to the GND pin on the
GPIO header.

112 Appendix C

Verify that you got the same kind of connections as in Figure C-4. After you
have double-checked the connections, power up the Raspberry Pi if it was
off while making the connections.

Commands to Control GPIO
Open LXTerminal by double-clicking the LXTerminal icon on the desktop.
Then take control of your GPIO pin.

In /sys/ you have text files that have information about the state of the sys-
tem. These files are virtual, so they only exist in computer’s memory.

Export the GPIO 27 pin, so we can use it:

$ echo 27|sudo tee /sys/class/gpio/export

This created a new folder gpio27. Turn the pin to “out” mode, so you can
control it:

$ echo out|sudo tee /sys/class/gpio/gpio27/direction

Turn the pin on (+3.3 V, HIGH):

$ echo 1|sudo tee /sys/class/gpio/gpio27/value

The LED lights up. Did you get it to light up? Well done! You can now connect
some hardware to your Raspberry Pi!

You can shut down the light, too:

$ echo 0|sudo tee /sys/class/gpio/gpio27/value

Troubleshooting
The LED is not lit, even though all commands seem to run. Check the LED
polarity. The long plus leg goes to the plus side, the side of the GPIO 27 pin.
On the minus side of the LED, there is a flat cut in the plastic. The minus side
goes toward the black wire, GND. If this doesn’t help, check the connections.

Hello, GPIO world! As you have learned, every project starts with a “Hello,
world.” If you ever run into problems with sensors, it could be a good idea to
build and run this “Hello, GPIO” project again. That way, you get to solve the
simple problems with a simple setup.

For us, “Hello, world” is usually the hardest project. It’s not just an LED! Your
“Hello, GPIO world” proves that:

• You have successfully installed Linux on your Raspberry Pi.

• You can use the command line.

Appendix C 113

• You can manipulate the state of the GPIO pins.

• You have obtained components that work with the Raspberry Pi.

• You have built a circuit that works with the Raspberry Pi (and did not fry
it).

If there is a time for a break, a successful “Hello, world” might
be it. Reward you brain with a cup of coffee, some jogging, or
staring out of the window for a while.

Using GPIO Without Root
By default, you need to invoke root user privileges on your Raspberry Pi to
access the GPIO pins in your code. This section shows you how to configure
your Raspberry Pi to avoid that. You only need to go through this process
once after you install your Raspberry Pi operating system.

Avoiding root privileges will make the system more secure and more stable.
For example, think about a program that serves sensor data to the Web.
Would you run a program that strangers can connect to as root?

In Linux, devices attached to your system are controlled by udev. Udev is a
rule-based system that can run scripts when devices are plugged in.

Linux lets you control GPIO pins by manipulating files in /sys/class/gpio/. By
default, these files are owned by the user “root” and the group “root,” which
is why you can’t change them without invoking root’s superuser privileges.
In this section, you’ll see how to write a udev rule to change the group to
“dialout.” You’ll then allow that group to read and write the files under /sys/
class/gpio/. Finally, you’ll make the folders’ group sticky, so that any newly
created files and folders under it will also be owned by the “dialout” group.

All system-wide configuration in Linux is under /etc/. Not surprisingly, udev
configuration is in /etc/udev/. Power up your Raspberry Pi, and open the
terminal (LXTerminal). Next, open an editor with the sudoedit command so
you can create a new rule file (don’t type the $; that indicates the shell prompt
that you see in the terminal window):

$ sudoedit /etc/udev/rules.d/88-gpio-without-root.rules

Add the text shown in Example C-1 to the file. Be sure to type each line as
shown (don’t type the numeric symbols; those are there to explain to you
what is going on in this file). Udev rules are very sensitive to typos.

114 Appendix C

Want to save typing? Download the code, unzip it, and copy
to /home/pi on your Raspberry Pi SD card.

If you don’t have permission to read the directory on Rasp-
berry Pi, use sudo chown -R pi.pi code/.

Example C-1. 88-gpio-without-root.rules
/etc/udev/rules.d/88-gpio-without-root.rules - GPIO without root on Raspberry
Pi #
Copyright http://BotBook.com

SUBSYSTEM=="gpio", RUN+="/bin/chown -R root.dialout /sys/class/gpio/"
SUBSYSTEM=="gpio", RUN+="/bin/chown -R root.dialout /sys/devices/virtual/gpio/"

SUBSYSTEM=="gpio", RUN+="/bin/chmod g+s /sys/class/gpio/"
SUBSYSTEM=="gpio", RUN+="/bin/chmod g+s /sys/devices/virtual/gpio/"

SUBSYSTEM=="gpio", RUN+="/bin/chmod -R ug+rw /sys/class/gpio/"
SUBSYSTEM=="gpio", RUN+="/bin/chmod -R ug+rw /sys/devices/virtual/gpio/"

This comment explains the purpose of the file.

Sets the owner of the two directories to be root, and the group to be
dialout.

Sets the sticky bit flag on these two directories.

Configures the permissions on the directories to give members of the
dialout group read and write permission.

The rules are processed in numeric order, but this is probably the only rule
affecting the GPIO directories, so the number does not matter. In Morse code
(CW), 88 is short for hugs and kisses. We prefer it over the often-picked
number 99, which means “get lost”.

To avoid typing and inevitable typos, you can download a copy of the 88-gpio-
without-root.rules file from http://botbook.com and copy it in place with sudo
cp 88-gpio-without-root.rules /etc/udev/rules.d/. To edit the file, you can use
sudoedit, which opens the file as root in the nano text editor:

$ sudoedit /etc/udev/rules.d/88-gpio-without-root.rules

Save the file (Ctrl-X, press y, and then press Enter).

To use your new rules, restart the udev daemon and trigger your new rule
with these commands:

$ sudo service udev restart
$ sudo udevadm trigger --subsystem-match=gpio

Appendix C 115

http://getstarted.botbook.com
http://botbook.com

Next, check whether the ownership on the files was set correctly:

$ ls -lR /sys/class/gpio/

The listing should mention the “dialout” group many times. The parameter
-l means to display a long listing (with owner, group, and permissions), and
-R means recursively list directory contents, too. If you don’t see dialout in
the listing, restart your Raspberry Pi and check again with the ls -lR /sys/
class/gpio/ command. If it still doesn’t work, go through the steps to con-
figure the udev rule again.

Once you have the new udev rule in place, you won’t need to go through the
preceding steps again unless you reinstall the operating system on your
Raspberry Pi.

116 Appendix C

D/Bill of Materials

This section lists the parts you’ll need to complete the projects in this book.

Chapter 1
The parts for “Project 1: Photoresistor to Measure Light” on page 3 are as
follows:

• Photoresistor

• 5 mm red LED (different LEDs will work differently with this circuit; later,
you’ll learn a more sophisticated way to fade LEDs)

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• Breadboard

• 9 V battery clip

• 9 V battery

Chapter 2
The parts for “Project 2: A Simple Switch” on page 9 are as follows:

• A switch

• A wire with alligator clips

• Two 1.5 V batteries

• Battery holder with wire leads

• LED

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• Breadboard

117

All of these except the 9 V battery and 470 Ω resistor are avail-
able in the Maker Shed Mintronics: Survival Pack, part number
MSTIN2. You can use two of the 220 Ω resistors in series or
one 1 kΩ resistor in place of the 470 Ω resistor; both of these
are available from electronics retailers such as RadioShack.

The parts for “Project 3: Buzzer Volume Control” on page 12 are as follows:

• DC piezo buzzer (Maker Shed part number MSPT01)

• 10 K potentiometer

• 9 V battery

• Battery clip

• Breadboard

All of these except the 9 V battery and piezo buzzer are avail-
able in the Maker Shed Mintronics: Survival Pack, part number
MSTIN2.

The parts for “Project 4: Hall Effect” on page 14 are as follows:

• DC piezo buzzer

• 9 V battery

• Battery clip

• Breadboard

• NJK-5002A Hall effect switch

The parts for “Project 5: Firefly” on page 17 are as follows:

• Two BC547 transistors

• Light-dependent resistor (LDR)

• 470 Ω resistor (four-band resistor: yellow-violet-brown; five-band resis-
tor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• 10 kΩ resistor (four-band resistor: brown-black-orange; five-band resis-
tor: brown-black-black-red; the last band will vary depending on the re-
sistor’s tolerance)

• 5 mm red LED

• 9 V battery

118 Appendix D

http://bit.ly/mintron-sp
http://bit.ly/mintron-sp

• 9 V battery clip

• Breadboard

• CA555E timer integrated circuit

• 10 kΩ potentiometer

• 100 uF capacitor

All of these parts, except the 9 V battery, 470 Ω resistor, and
BC547, are available in the Maker Shed Mintronics: Survival
Pack, part number MSTIN2. You can use two of the 220 Ω
resistors in series or one 1 kΩ resistor in place of the 470 Ω
resistor; these are both available from electronics retailers
such as RadioShack.

Chapter 3
Chapter 3 requires an Arduino to interface with your sensors. If you need to
buy one, purchase an Arduino Uno or an Arduino Leonardo.

The parts for “Project 6: Momentary Push-Button and Pull-Up Resistors” on
page 34 are as follows:

• Momentary push button

• Arduino Uno

• Jumper wires

• Breadboard

The parts for “Project 7: Infrared Proximity to Detect Objects” on page 40 are
as follows:

• Infrared sensor switch

• Arduino Uno

• Jumper wires

The parts for “Project 8: Rotation (Pot)” on page 43 are as follows:

• Potentiometer (around 10 kΩ recommended)

• Arduino Uno

• Jumper wires

• Breadboard

Appendix D 119

http://bit.ly/mintron-sp
http://bit.ly/mintron-sp

The parts for “Project 9: Photoresistor to Measure Light” on page 47 are as
follows:

• Photoresistor (10 K recommended)

• 10 kΩ resistor (four-band resistor: brown-black-orange; five-band resis-
tor: brown-black-black-red; the fourth or fifth band will vary depending
on the resistor’s tolerance)

• Arduino Uno

• Jumper wires

• Breadboard

The parts for “Project 10: FlexiForce to Measure Pressure” on page 49 are as
follows:

• Force-sensitive resistor (FSR)

• 1 MΩ resistor (four-band resistor: brown-black-green; five-band resistor:
Brown-black-black-yellow; the fourth or fifth band will vary depending
on the resistor’s tolerance)

• Arduino Uno

• Jumper wires

• Breadboard

The parts for “Project 11: Measuring Temperature (LM35)” on page 52 are as
follows:

• LM35 temperature sensor

• Arduino UNO

• Jumper wires

• Breadboard

The parts for “Project 12: Ultrasonic Distance Measuring (HC-SR04)” on
page 56 are as follows:

• HC-SR04 ultrasonic distance sensor

• Arduino UNO

• Breadboard

• Jumper wires

Chapter 4
The parts for “Project 13: Momentary Push Button” on page 64 are as follows:

120 Appendix D

• Momentary Push Button

• Raspberry Pi

• Female-male jumper wires (Maker Shed part #MKKN5), black and green

• A breadboard

The parts for “Project 14: Blink an LED with Python” on page 69 are as follows:

• Raspberry Pi

• Female-male jumper wires (Maker Shed part #MKKN5), black and green

• An LED

• 470 Ω Resistor (four-band resistor: yellow-violet-brown; five-band re-
sistor: yellow-violet-black-black; the last band will vary depending on the
resistor’s tolerance)

• A breadboard

The parts for “Project 15: Adjustable Infrared Switch” on page 73 are as fol-
lows:

• Infrared sensor switch

• Two 1 kΩ resistors (five band: brown-black-red-brown-any, four band:
brown-black-red-any)

• Raspberry Pi

The parts for “Project 16: Potentiometer to Measure Rotation” on page 77
are as follows:

• Potentiometer

• MCP3002 (analog-to-digital integrated circuit)

• Raspberry Pi

• Jumper wires (male-to-female and male-to-male, which are Maker Shed
parts #MKKN5 and #MKSEEED3)

• Breadboard

The parts for “Project 17: Photoresistor” on page 82 are as follows:

• Photoresistor (10 kΩ suggested)

• Resistor (10 kΩ, or choose a value that matches the photoresistor)

• MCP3002

• Raspberry Pi

Appendix D 121

• Jumper wires (male-to-female and male-to-male, which are Maker Shed
parts #MKKN5 and #MKSEEED3)

• Breadboard

The parts for “Project 18: FlexiForce” on page 85 are as follows:

• Flexiforce (11 kg, 25 pound version recommended)

• Resistor (1 MΩ, five band: brown-black-black-yellow-any, four band:
brown-black-green-any)

• MCP3002

• Raspberry Pi

• Jumper wires (male-to-female and male-to-male, which are Maker Shed
parts #MKKN5 and #MKSEEED3)

• Breadboard

The parts for “Project 19: Temperature Measurements (LM35)” on page 86
are as follows:

• LM35 temperature sensor

• MCP3002

• Raspberry Pi

• Jumper Wires (male-to-female and male-to-male, which are Maker Shed
parts #MKKN5 and #MKSEEED3)

• Breadboard

The parts for “Project 20: Ultrasonic Distance” on page 89 are as follows:

• HC-SR04 sensor

• Two 10 KΩ resistors (four band: brown-black-orange-any, five band:
brown-black-black-red-any)

• Raspberry Pi

• Jumper wires (male-to-female and male-to-male, which are Maker Shed
parts #MKKN5 and #MKSEEED3)

• Breadboard

122 Appendix D

Index

Symbols
$ prompt, 66
555

astable mode, 18, 26
bistable mode, 18
input pins, 26
modes of operation, 18
monostable mode, 18
output, 26

555 timer, 17, 26

A
actuator, 9
ADC (see analog-to-digital converter)
amplifier, 21
analog resistance sensors (see sen-

sors, analog)
analog-to-digital converter (ADC), 63,

77, 78
analogRead() function, 44
apt-get command, 78
Arduino, 8, 24, 33

analog input, 46
analogRead() function, 44
assigning variables, 37
blink test, 99
digital input, 36
digitalRead() function, 36
equality comparison, 37
HIGH, 37
input pins, 36
installation, 97–99
installation on Linux, 97–98
installation on Mac, 98
installation on Windows, 98
loop() function, 36
LOW, 37
OS X setup, 98
output pins, 36
programming, 19
serial port, 50
Serial.println() function, 52

setup() function, 36
timing, 34
vs Raspberry Pi, 92

B
base, 23
bimetallic coil, 7
books

Getting Started with Arduino, 1
Getting Started with Raspberry Pi, 1
Make a Mind-Controlled Arduino

Robot, 50, 93
Make: Arduino Bots and Gadgets, 1,

50, 52, 77, 93
Make: Sensors, 1, 93

breadboard, 5, 20, 26
gap, 6

Broadcom, 18, 65
button, 9
buying parts, viii–ix

C
capacitor, 28–28
cat command, 66
cd command, 68
cold temperatures

measuring, 54
collector, 23
command-line interface (CLI)

in Linux, 97
converting raw values

to percentage, 55, 84
to voltage, 84

D
digitalRead() function, 36
documentation, 96

E
echo command, 66
emitter, 23

123

F
files, writing, 72
FlexiForce, 43
floating pin, 37, 66
floating point, 60
force, 49, 85

G
general-purpose input/output (GPIO),

34, 63, 65, 78
getting help, x

H
Hello, world (blink test), 99
hookup wires, 20

I
infrared, 40, 73
input devices, 2
input pin, floating, 37, 66
integrated circuits, 17, 29

identifying, 29

J
jumper wires, 20

color, 20

L
LDR, 19, 21 (see photoresistor)
light, 2, 7, 17, 47
light-emitting diode (LED), 3, 4, 6, 7, 9,

17, 21, 24, 26, 29, 35, 69
choosing a resistor, 12
polarity, 5

Linux, 63
Arduino setup, 97

loop() function, 36
ls command, 66, 80, 116

M
magnetism, 14, 16
MCP3002, 78, 82, 85, 86
MCP3200 analog-to-digital converter,

63
movement, 43, 77

N
nano text editor, 68, 115
NJK-5002A, 15
NJK-5002C, 15

O
oscillator, 27

P
photoresistor, 3, 5, 6, 47, 82
potentiometer, 43, 46, 77, 82
pressure, 49, 85
projects

555 firefly, 17–31
Arduino distance measurement,

56–60, 89–92
Arduino force sensing, 49–52
Arduino infrared proximity, 40–43
Arduino light measurement, 47–49
Arduino potentiometer, 43–47
Arduino pushbutton, 34–39
Arduino temperature measurement,

52–56
Hall effect, 14–17
measure light, 3–7
Raspberry Pi force sensing, 85–86
Raspberry Pi infrared proximity, 73–

77
Raspberry Pi LED blink, 69–73
Raspberry Pi light measurement,

82–83
Raspberry Pi potentiometer, 77–82
Raspberry Pi push button, 64–68
Raspberry Pi temperature measure-

ment, 86–89
simple switch, 9–12
volume control, 12–14

prototyping, 23
pull-up resistor, 12
Python, 68

GPIO library, 75
importing libraries, 71

R
Raspberry Pi, 8, 18, 63

configuring GPIO, 114–116
configuring SPI, 78
installation, 101–116
programming, 19
reading GPIO pins, 66–67
shutting down, 64
vs Arduino, 92

resistance, 3, 7
resistor, 3, 4, 10–29, 48, 50, 69, 73, 82,

85
force-sensitive, 50
pull-down, 38
pull-up, 12, 36–39, 66
selecting, 12

124 Index

risks
component burnout, 12
damaging Arduino, 34
damaging components, 34
damaging Raspberry Pi, 66, 87, 90
overheating, 12

S
seasonal affective disorder, 3
senses

human, vii
robotic, vii

sensing
force, 49–52, 56–60, 85–86, 89–

92
light, 3–7, 17–31, 47–49, 82–83
magnetism, 14–17
proximity, 40–43, 73–77
rotation, 43–47, 77–82
temperature, 52–56, 86–89

sensors, 9
analog, 43, 49, 77
connecting, 41
digital resistance, 43
distance, 57
electro-mechanical, 7
FlexiForce, 85
infrared proximity, 41, 73
resistive, 7
temperature, 53, 86

serial port, 50
speed, 52

Serial.println() function, 52
setup() function, 36
shopping for components, viii–ix
sketches, 33, 38

example, 38
smart devices, 1
smartphone, 1
sound, 14, 16, 56, 89

speed of sound, 59
SPI, 78
spidev, 78
sudo command, 115
sudoedit command, 115
switch, 10

closed, 37
on/off, 9, 34, 64
open, 37
single pole double throw (SPDT), 10
single pole single throw (SPST), 10

T
temperature, 52, 86

effect on speed of sound, 59
testing, 95
timer, 555 (see 555 timer)
transducer, 9
transduction, 9
transistor, 21–22, 53

bipolar junction, 23
BJT, 23
NPN, 23

twisted-wire connection technique, 11

U
Ubuntu, 97
udev, 79
ugly key, 97

V
variables, 36, 71

global, 52
voltage divider, 21, 43, 50, 76–77, 82

W
Windows 7/8, 98
Windows key, 97

Index 125

The cover and body font is Benton Sans, the heading font is Serifa, and the
code font is Bitstream Vera Sans Mono.

About the Authors
Kimmo Karvinen works as a chief technology officer for a hardware manu-
facturer that specializes in integrated AV and security systems. Before that,
he worked as a marketing communications project leader and as a creative
director and partner in an advertisement agency. Kimmo’s education in-
cludes a Master of Arts.

Tero Karvinen teaches Linux and embedded systems in Haaga-Helia Uni-
versity of Applied Sciences, where his work has also included curriculum
development and research in wireless networking. He previously worked as
a CEO of a small advertisement agency. Tero’s education includes a Master
of Science in Economics.

	Copyright
	Table of Contents
	Preface
	What Sensors to Buy?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Sensors
	Project 1: Photoresistor to Measure Light
	Parts
	Build It
	Discussion: Photoresistors

	Interactive Sensor Control
	Going Forward

	Chapter 2. Basic Sensors
	Project 2: A Simple Switch
	Parts
	Build It
	Troubleshooting

	An LED Needs a Resistor
	Project 3: Buzzer Volume Control
	Parts
	Build It
	Troubleshooting

	Project 4: Hall Effect
	Parts
	Build It
	Troubleshooting

	Project 5: Firefly
	Integrated Circuits
	555 Timer IC
	Light Up an LED When It’s Bright
	Light to Darkness
	Transistors
	Fading an LED
	555 Fading Blink
	Capacitors
	Firefly

	Chapter 3. Sensors and Arduino
	Project 6: Momentary Push-Button and Pull-Up Resistors
	Parts
	Build It
	Run the Code
	Pull-Up Resistors and Arduino

	Project 7: Infrared Proximity to Detect Objects
	Parts
	Build It

	Project 8: Rotation (Pot)
	Parts
	Build It
	Run the Code

	Project 9: Photoresistor to Measure Light
	Parts
	Build It
	Run the Code

	Project 10: FlexiForce to Measure Pressure
	Parts
	Build It
	Run the Code

	Project 11: Measuring Temperature (LM35)
	Parts
	Build It
	Run the Code

	Project 12: Ultrasonic Distance Measuring (HC-SR04)
	Parts
	Build It
	Run the Code

	Conclusion

	Chapter 4. Sensors and the Raspberry Pi
	Project 13: Momentary Push Button
	Parts
	Build It
	Run the Button Code
	Troubleshooting

	Hello, Python World
	Project 14: Blink an LED with Python
	Parts
	Build the LED Blink Project
	Run the Code

	Project 15: Adjustable Infrared Switch
	Parts
	Build the IR Switch Project
	Run the Code
	Voltage Divider

	Analog Resistance Sensors
	Project 16: Potentiometer to Measure Rotation
	Parts
	Build It
	Install SpiDev
	Allow SPI Without root
	Run the Code

	Project 17: Photoresistor
	Parts
	Build It
	Run the Code
	Playing with Resistance Numbers

	Project 18: FlexiForce
	Parts
	Build It
	Run the Code

	Project 19: Temperature Measurements (LM35)
	Parts
	Build It
	Run the Code

	Project 20: Ultrasonic Distance
	Parts
	Build It
	Run the Code
	Real Time or Fast?

	Appendix A. Troubleshooting Tactics
	Appendix B. Arduino IDE Setup
	Ubuntu Linux
	Windows 7 and 8
	OS X
	Hello, World

	Appendix C. Setting Up Raspberry Pi
	Parts
	Set It Up
	Prepare the Memory Card
	Connect Cables and Boot to Installer
	Install Raspbian
	Configuration with raspi-config
	Boot to Desktop

	Using Raspberry Pi
	Python Programming
	Rootly Powers
	Welcome to the Command Line

	Take Over an Onboard LED
	Hello, GPIO: Connecting an External LED
	Parts
	Building the Circuit
	Commands to Control GPIO
	Troubleshooting
	Using GPIO Without Root

	Appendix D. Bill of Materials
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

