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PREFACE 

The word system may have different meanings for different people. In the 
scientific community, a system is usually said to be an arrangement, set, or collection of 
things connected in such a manner as to form an entirety or as to act as an integral unit. 
In a more mathematical sense, a system is defined as a physical or abstract object that, 
over the time scale, receives inputs fiom outside its boundaries, responding with changes 
of state and with outputs. An important implication of this definition is the awareness of 
a dynamic condition, the awareness of changes and evolution of the system over time. 

With the new breakthroughs in computers and computer software for data 
processing, it is feasible and necessary to improve the existing thinking and research 
procedures. Thus, the objective of this work is to present a methodological foundation for 
research and analysis of biological systems, based on a system theoretical approach. It is 
intended as an aid to the scientist in his quest for improving the accuracy of research. 

The book is essentially a proposal of procedures for mathematical modeling, as 
it applies to the design and analysis of biological systems. It is a guideline for the scientist 
to match mathematical models to working hypotheses, for selecting the most appropriate 
mathematical model and for matching experimental treatments and designs to models. For 
such, the book includes a mathematical background, theoretical definitions in system 
engineering and specific applications of mathematics to modeling procedures. It also 
includes procedures for the evaluation of mathematical models as they apply for 
experiments in agricultural systems. Specific features, related to the design of 
experimental tests in the research of agricultural systems and the processing and analyses 
of related experimental data, are also discussed. 

The first chapter of this book is a general outlook of basic definitions and 
modeling procedures for system analysis in agricultural research. The next four chapters 
include selected topics from algebra, calculus and nonlinear curve fitting, which are 
directly related to the understanding of models in the subsequent chapters. Without the 
necessary skills in these topics, the manipulation of subjects in those chapters could 
become difficult and even Gustrating. 

The following four chapters contain specific applications of mathematics to the 
modeling and analysis of systems. Chapter 6 is a general outlook of the modeling process, 
aimed mainly at the utilization of linear mathematical models. Also explained in this 
chapter are procedures for interconnecting systems by means of differential or difference 
equations and the different types of responses expected from a system. Guidelines for 
defining stochastic models are presented in Chapter 7. Regular processes leading toward 
a steady state of the system, absorbing processes leading toward the extinction of some 
system states and the relationship between stochastic and deterministic models, are also 
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evaluated in this chapter. Guidelines for defining deterministic models are presented in 
the eighth and ninth chapters. The main subjects examined in these two chapters are 
specific modeling procedures, the evaluation of deterministic models for conventional 
experiments in agricultural systems and methods for determining state equations fiom 
experimental data. 

The last chapter includes very specific features related to the design of 
experimental tests in agricultural systems research and to processing and analysis of 
related experimental data. Relationships between the research problem and mathematical 
models of the working hypotheses and matching of experimental treatments to 
mathematical models, are the main subjects examined in this chapter. 

Mathematics is used here as a tool and not as an end. Theoretical considerations 
are avoided and theorems and proofs are omitted. The lack of formality of this approach 
may not look attractive for mathematicians, but may not scare away agricultural research 
scientists, which are the targets of this book. 

To be able to follow the material presented and discussed here, the reader needs 
college algebra and calculus and an acceptable background in statistics and experimental 
design. 

This work is directed toward the utilization of linear mathematical models, 
represented by linear difference or differential equations. Agricultural Science is 
essentially an empirical science and there is seldom the necessity for going beyond linear 
models. Most topics and procedures outlined here are supported by examples and by case 
studies using actual data. Some equations, however, were computed fiom plotted data 
reported in the literature. Formal mathematical definitions follow examples and case 
studies. In this manner, it is expected that the reader can follow the full modeling process 
with a concrete image of the real problems, as they are projected into the abstract world. 
In addition and when appropriate, the proposed procedures are compared with traditional 
methods and accuracy of the use of data is evaluated. 

It is the author's hope that, after the completion of this study, the reader should 
have the necessary skills and motivation to explore further and deeper into the subjects of 
this book. Graduate students and research professionals may both profit fiom the author's 
experience in the management and development of research procedures in agriculture, 
with a bias, however, toward animal science. 

KAREL D. VOHNOUT 
Tucson, Arizona 
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THE SCOPE OF SYSTEM ANALYSIS 

The notion of a system and of system analysis may have different connotations 
to different people. Thus, the purpose of this chapter is to define these concepts 
objectively, as they relate to agricultural research in this book. 

System analysis may be defined as the process of developing an abstract model 
of an existing system, such that the model would simulate the real system by means of a 
computer program. Then, the real system may be analyzed abstractly. The following steps 
may be included in this process: 

Statement of the research problem 
Defining the hypothesis about input-output relationships 
Designing a model of the system in terms consistent with the hypothesis 
Defining the system test plan 
Implementing the project and running system experiments 
Manipulation of the abstract model to simulate the real system 

The statement of the research problem should answer the question, what is the 
system supposed to do. Answering this question leads to the notion of the input-output 
relationships. In nature, a production system has often countless input and output 
variables that need to be sorted out. This sorting leads to additional questions such as, 
what research on the input-output relationships is the most relevant and if such research 
is feasible as a research project. Conventionally, the statement of the research problem 
should be covered by the "Introduction" of the research project. 

The hypothesis should answer the question how are the inputs aflecting the 
outputs. A research team has often in mind some image ofthe system to answer intuitively 
this question. Thus, projecting this image into an abstract model of the system is possible. 
The idea of modeling includes the abstract model and the field model, which have a 
formal relationship called a homomorphic image. The field model has the experimental 
design as its basic blue prints. The experimental design is the floor plan of the field model. 
The abstract model should be consistent with the hypothesis on the selected input-output 
relationships and is also the result of a screening process over a set of proposed 
mathematical models. 

At this time, a plan for testing the abstract model by means of field experiments 
on the field model should also be defined. Planing experiments on the field model should 
answer the question, how is the abstract model going to be tested. Answering this 
question determines the system test plan. The system test plan includes the field 
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procedures and the proposed statistical analyses and is often called "Methods" or 
"Materials and Methods." 

The field model, as implemented by the rules of experimental design, simulates 
the real system by means of system experiments. Results of field experiments are used for 
testing the abstract model. If not acceptable, adjustments to the abstract model and often 
also to the field model may be required. This iterative process may require long term 
projects and is often incompatible with flash type research. 

Finally, if the mathematical model is accepted by statistical standards, it maybe 
used for system experiments by means of computer simulations. 

This chapter is a general outlook ofbasic definitions and procedures for modeling 
and evaluation of agricultural systems, as they are further presented and developed in this 
book. Thus, procedures for solving some problems in the examples that follow will be 
disclosed in the appropriate following chapters. 

1.1 THE MATHEMATICAL CONCEPT OF A SYSTEM 

The concept of a system is related to the notion ofa dynamic physical or abstract 
object. This object is receiving inputs fiom outside its boundaries and is reacting to such 
inputs by state changes and by producing outputs. In the same manner as the state of the 
system depends on inputs, an output variable depends on the system states. This verbal 
definition can be translated into a precise mathematical theory. 

A simple portrait of a system is that of a tank with a water admission pipe and 
an outlet with a pressure valve for collecting water fiom the tank. The content of the tank 
is emptied in proportion to the height of water in the tank. The change of the water level 
is the difference between admission and discharge of water. This prototype of a system is 
pictured in Fig. 1.1.1 : 

Figure I. I. I 

Note that the difference between the input and the output determines the change 
in the water level in the tank. Thus, the following first order linear differential equation 
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represents the change of the water level: 

3 

where t is time, x =At) is the water input, y = g(t) is the height of water, b is the effect of 
the pressure valve and by = z is the output, for z = h(t) . The above equation corresponds 
to a continuow system. The time variable of continuous systems is the set of nonnegative 
real numbers. An abstract representation of the system is the black box shown in Fig. 
1.1.2: 

1--- - _1 
I 

-x----+/ 

Figure I .  1.2 

A steady state is achieved when the input and the output are the same, that is 

The simplest system is one where the input is a constant c. Then 
x=by. Otherwise, the system is said to be in a transient state. 

This differential equation is easily solved by making the substitution y =pq , such that 

I = p d 4 + q d p  
dt dt dt 

Then 

p s + ( $ + b p ) q  = c 

The variablep is determined by solving - dP + bp = 0 in the above equation. Then 
dt 
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lnp = -bt+lnk, 
p = k e-bi 

I 

where k, is an integration constant. The variable q is determined by solving p -  4 = c ,  
such that dt 

[dq = [;eb'dt 
1 

c br q = -e + k 2  
k,b 

where ,$ is an integration constant. Then 

y =pq = k,e-($e*' + k2) 

If the initial condition of the system is defined as yo, then klk2 =yo -clband the solution 
becomes 

= c+(yo-$?-bt 
b 

where c/b is an asymptotic value for the system at a steady state. This equation represents 
a state ?rajectory of the system. Note that changing the input c affects the steady state of 
the system. Note also that the initial state yo and the input x = c determine the state y of 
the system at any time t. Clearly, if the system is started at a state yo, is supplied by an 
input trajectory f and is run to some time t, then 

The above expression is called the state transition function of the system. The state 
transition function represents the dynamic behavior of the system. 

From the above, it is clear that, given the initial conditions, a continuous system 
is completely determined by a differential equation or a set of interconnected differential 
equations and their solutions. 

The output of the system was defined as by = z . Therefore, the expression 
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represents an output trajectory of the system. Note that an output z is completely 
determined by the state y .  Then 

The above expression is called the output function of the system. 
When the state variables cannot be fractionalized, the system cannot be 

represented by differential equations. In such cases, the system is a discrete system and 
is represented by difference equations and their solutions. The time variable of discrete 
systems is the set of nonnegative integers. The Same principles outlined far continuous 
systems apply also for discrete systems. 

The following first order linear difference equation represents a discrete system, 
equivalent to the continuous system previously described': 

where n is a discrete time value, x, is the input and by, is the output. The following is 
the corresponding difference equation in subscript notation: 

where Ay, =y,+, -yn. Note that the state y,,' of the system at time n+l is completely 
determined by the state y ,  and by the input x, at the discrete time n. Thus 

This expression is called the next state function of a discrete system. 
If the input is constant, the difference equation of the system becomes 

It follows that 

'Readers that are unfamiliar with difference equations are referred to 
Chapter 3. 
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Y1 = c + (1 - b)Y, 
y, = c + ( l - b ) y ,  = c+(l-b)c+(l-b)2yo 

y, = c[l + ( 1 4) + ( 1 -6)Z +. . . + ( 1 -by-'] + ( 1 -byyo 

The terms within brackets represent a geometric series, such that 

8" = c[  1 + (1 -6) + ( 1 -by +... + ( 1 -by-'] 

- 1 - ( I  -6)" 
1 - ( 1  -6) 

Then, after replacing values and rearranging terms, the solution ofthe difference equation 
becomes 

b 

where yo is the initial condition of the system. This is a state trajectory of the discrete 
system for an input value of x = c. The above sequence shows that the initial state yo and 
the input xn = c determine the state of the system at any discrete time n. Clearly, if the 
system is started at a state yo, is supplied by an input trajectoryfand is run to some 
discrete time n, then 

represents the state transition function of the discrete system. 

In conclusion, the mathematical definition of a system includes the following 
elements: 

The time variable, as a continuous or a discrete scale 
The states, as quantitative OT qualitative variables 
The input variables 
The state transition function 
The output function, when appropriate 

The full description of the above statement is presented in Chapter 6. 
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Summary 

A system is a dynamic physical or abstract entity. It receives inputs from outside 
its boundaries and reacts to such inputs by state changes and by emission of outputs. The 
state y of a continuous system at any time t is completely determined by un input x =At) 
and by the initial condition yo. Thus, if the system is started at a state yo, is supplied by 
an input trajectoryfand is run to some time t, then y = uV;yo, t ) .  This expression is called 
the state transition function of the system. The output z =At) of the system is determined 
only by the state y, that is z = w@) . This expression is called the output function of the 
system. The state y,,, of a discrete system at a period n+l is completely determined by 
the input x, and the state y,  at a period n, that is y,,, = v@,,~,). This expression is called 
the next state function of the discrete system. Given the initial state, a linear system is 
completely determined by a differential or a difference equation or their solutions. 

1.2 CLASSIFICATION OF AGRICULTURAL SYSTEMS 

For practical purposes, the following factors were used for the classification 
criteria adopted for this book: 

The time scale of the system 
The uncertainties of events in the system 
Structure of the system 

Within these classes, systems are named and classified according to the type of differential 
or difference equations of the mathematical model representing the system. 

The Time Scale 

There are two classes of systems as they relate to the time scale chosen for the 
mathematical model: 

Continuous systems 
Discrete systems 

Continuous Systems. The time scale of continuous systems is the set of nonnegative 
real numbers. Continuous systems are called dyerentiable systems because they are 
represented by differential equations and their solutions. 

Example 1.2.1 The following equation was fitted to the energy content of milk of a group 
of cows2: 

2computect from Lowman, B.G. et.al 
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y = 2.821 +0.965e-0."23' 

where y is the energy content of milk in MJoulesKg and t is days after calving. Determine 
the corresponding differential equation. 

Solution: The following is the first derivative of the state equation: 

= 0.965e -0.0423f( -0.0423) 
dt 

where 0.965e -0.0423r = y  - 2.821 . After replacing values, the following is the differential 
equation representing this system: 

9 = 0.1 193 - 0.0423~ 
dt 

where 0.1 193 is the energy input and 0.0423~ is the energy output in MJoulesKglday. 

Discrete Systems. The time scale of discrete systems is the set of nonnegative integers. 
Discrete state variables cannot be fkactionalized, meaning that the system cannot be 
represented by differential equations. This is the case of state variables defined as number 
of individuals or as qualitative traits. Thus, the state changes are represented by difference 
equations. 

Example 1.2.2 A rancher sells each month 3.6% of his feedlot steers and buys 90 new 
animals. The initial number of steers is 460. Define a mathematical model for the system. 

Solution: This system is discrete because the state variable, number of steers, is discrete. 
The following difference equation represents the system: 

where n is months, y,, is the number of steers corresponding to the present state of the 
system, Y,,, is the number of steers of the next state, x = 90 is the input as number of 



I.2:Classijication of Agricultural System 9 

steers purchased and z,  = 0 . 0 3 6 ~ ~  is the output as number of steers sold per month. The 
following is the corresponding state trajectory: 

y, = 2500 - 2040(0.964r 

Example 1.2.3 It was found that, when the trees in a citrus farm are healthy, 20% get a 
disease within a year and when the trees are diseased, 30% of the trees recover. Define the 
mathematical model of the system. 

Solution: This system can be modeled as a finite discrete system because the state 
variables are represented by two qualitative traits, the percent of healthy trees and the 
percent of diseased trees. The state transition matrix of the system is shown in the Table 
1.2.1 1 .The first row shows that the probability of healthy trees of remaining healthy in the 
next state is 80% and that the probability of becoming diseased is 20%. The second row 
shows that the probability of diseased trees of becoming healthy in the next state is 30% 
and that the probability of remaining diseased is 70%. 

Table 1.2.1 

~~ - 

Present State Next State Probability 

Healthy Diseased 

Healthy 0.80 0.20 

Diseased 0.30 0.70 

The state and output trajectories ofthe system are shown in Table 1.2.2. Note that 
the next state P,+,ofthe system is defined by the product QP, , where P, is a state vector 
at time n and Q is the transition matrix. The initial condition of the system is assumed as 
Po = (1,O) , meaning that initially all the trees were healthy. By knowing the present state 
and the transition matrix, the next state of the system was predicted. Then, the next state 
of this system is completely determined by matrix Q and the present state 

As shown, the following matrix equation represents the system: 

where P, is the set of states at time n and Pn+l is the set of states at time n+ 1. 
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Table 1.2.2 

Present State Next State 
Time pn Pn+1 = QPn 

output 
2, 

0 ( L O )  

1 (0.8,0.2) 

2 (0.7,0.3) 

3 (0.65,0.35) 

(-0.2,0.2) 

0.8 0.2 
o-7]”.8 0.21 = [0.7 0.31 (-0.1,o. 1) 

0:’]10.7 0.31 = [0.65 0.351 (-0.05, 0.05) 

0.8 0.2 
[ O h 5  0.351 = [0.625 0.3751 (-0.025, 0.025) 

10.3 0.d 

The state equation may also be written as 

AP, = B -  (Z- Q)P, 

where B is the input of the system, I is an identity matrix and the output is the expression 

Note that the input is a null matrix, because no healthy or diseased trees are imported 
fiom outside the system. Then, the output of the system becomes the difference between 
the next state and the present state. The output shows the decrease of healthy trees and the 
increase of diseased trees, in percent units, at each new state of the system. 

If all the trees in the initial state were healthy, the following is the solution of the 
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next state equation of the system3: 

P, = -[3 m + 2(0.5)’, 2 - 2(O.5)”] 
5 

for P ,  = (pln,pzn), where p l ,  is healthy trees, pzn is diseased trees, m is the total number 
of trees and n is years. 

As shown in the next example, sometimes determining whether the system is 
continuous or discrete may be ambiguous. 

Example 1.2.4 A forest area is chopped down and burned. After the first year, 20% ofthe 
burned area is the regrowth of trees and 30% is colonized by grasses. The remaining area 
stays as bare soil. Mortality of trees is 15% and mortality of grasses is 25%. Define the 
mathematical model of the system. 

Solution: It may appear that grasses and trees are moving to colonize the bare soil. As 
such, this forest area may be defined as a continuous system, having the following 
mathematical model: 

I -(0.30+0.20) 0.25 0.15 

-0.25 0 

= I . 0.20 0-30 0 -0.15 

Y 

for Y = (yl, y2, y 3 ) ,  where Y is a column vector, y 1  is bare soil, y2 is grasses, y ,  is trees 
and t is years. The solution of the above differential equations is the following set of state 
trajectories4: 

y ,  = 0.2830 + 0.6937e 
y2 = 0.3396 - 0.4479e 

y, = 0.3773 - 0.2457e-0.715‘ - 0.1316e-0-’85‘ 

+ 0.0233 e 

+ 0.1083 e 

See Chapters 4 and 9 for procedures for solving linear difference 3 

equations. 

4See Chapter 4 and 10 for procedures for solving linear differential 
equations. 
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0.50 0.30 0.20 

Yfl+l = 0.25 0.75 0 

0.15 0 0.85 

The area may also be defined as a finite discrete system with three states, percent 
of bare soil, percent grass and percent trees. Table 1.2.3 shows the corresponding 
transition matrix: 

Yn 

Table 1.2.3 

Present Next State 
State 

Bare Soil Grasses Trees 

Bare Soil 0.50 0.30 0.20 

Grasses 0.25 0.75 0 

Trees 0.15 0 0.85 

The following set of next state equations represents the system: 

As shown in the table and the above equations, 50% of bare soil may remain as 
bare soil, 30% may become grasses and 20% may become the regrowth of trees. It is also 
shown that 25% of the grasses may die out, reverting to bare soil and that 75% may 
remain as grasses. Fifteen percent of the trees may die and revert to bare soil and 85% 
may stay alive. 

Note that the above transition matrix is the transpose of the matrix of the 
continuous model. Note also that Y, is a row vector, whereas Y in the continuous system 
is a column vector. 

After solving the above matrix equation, the following are the state trajectories 
when the initial state is bare soil5: 

Y , ~  = 0.2830 + 0.6937(0.285)” + 0.0233(0.815)” 

- 0.3396 - 0.4479(0.285)* + 0.1083(0.8 15)” Y2n - 
Y3n - - 0.3773 - 0.2457(0.285)” - 0.1316(0.815)” 

’See Chapters 4 and 9 for procedures. 
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Note that these expressions are identical to the state trajectories of the continuous model. 
Very seldom is agricultural research data recorded as a continuous flow of 

information. Most often data of continuous systems is recorded at fixed At periods, 
determining the discretization of the time scale. By discretizing the time scale of a 
continuous system, the system is also discretized. An important question is here, how 
much information is lost within each At period, a question that must be taken into 
consideration when designing experiments. Clearly, At must be small enough as to 
prevent important information fiom being lost. 

Uncertainties of Events 

Most of the inputs reaching agricultural systems cannot be controlled and occur 
in a random pattern. Therefore, the operation of all agricultural systems is subject to some 
kind of uncertainties. Then, depending on whether these uncertainties are considered in 
the mathematical model or are ignored, two types of systems evolve: 

Stochastic systems 
Deterministic systems 

Stochastic Systems. The basic feature of a stochastic model is that state variables are 
defined as probability distributions. 

Example 1.2.5 Define the state probability distributions for the citrus trees in Example 
1.2.3, assuming a binomial distribution of events. 

Solution: The following was the state joint distribution expression defined for the system 
in Example 1.2.3, for an initial state Po = (1,O): 

P, = ?[3 + 2(0.5)", 2 - 2(O.5)"] 
5 

where m is the total number of trees. This expression corresponds to a deterministic model 
of the system. It is assumed that the state variables have the binomial distribution, as 
shown below: 

where x ,  and x2 are the number of healthy and diseased tress andp, andp, are the 
corresponding probabilities. Then, by replacing the P, values in the binomial expression, 
it is possible to define the following state probability model of the system: 
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XZ 

The probability distribution curves of diseased trees are shown in Fig. 1.2.1. The total 
number of trees was assumed to be 10. 

Years 

Figure 7.2.7 

Deterministic Systems. In deterministic models, the states of the system are the 
expected values of the outcomes. Thus, deterministic models represent the expected or 
average behavior of the system. The first four examples in this section were all 
deterministic models. 

A real system may be defined by a deterministic model or a stochastic model. 
Deterministic models are simpler and more widely used than stochastic models. 

Example 1.2.6 The following is the deterministic model for the state equation of the 
previous example, expressed as expected values: 

E,(x~,x,) = -[3 M +2(0.5)”, 2 -2(0.5)”] 
5 

where x1 is the expected number of healthy trees and x2 is the expected number of 
diseased trees at time n. The graphic representation of expected values is shown in Fig. 
1.2.2. The total number of trees is assumed to be 10. 
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- Healthy 
- Diseased 

Ir'  1 I I I 
0 1 2 3 4 

Years 
Figure 1.2.2 

Structure of Systems 

The notion of structure of a system is related to how component systems are 
coupled to form a more complicated system. The following classification was adopted 
here: 

Interactive coupled systems 
Conjunctive coupled systems 

Interactive Coupled Systems. Interacting systems may be coupled by means of 
interconnected differential or difference equations, determining an interactive coupling. 
Interacting agricultural systems may be arranged in two groups: 

Compartmental systems 
Non compartmental systems 

Compartmental Systems. Components of compartmental systems are called 
compartments. Such compartments work as chambers among which some material is 
considered to move. 

Example 1.2.6 The movement of DDT from plant to soil is 25% per month, fiom soil to 
plant 2% and carried out with ground water 5%. Define the mathematical model of the 
system. 

Solution: This system is represented in Fig. 1.2.3. The following set of differential 
equations defines the flow of DDT in the system6: 

%ee Chapters 4 and 10 for procedures. 
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0.25 -(0.02+0.05) 0*02 I 
for Y = (jp,ys), where yp is a state of the plant compartment, y,  is a state of the soil 
compartment and t is months. Coefficients with positive signs are the compartment inputs 
and coefficients with negative signs are the compartment outputs. 

\ 0.05 
Plant j I Soil t > 

Non Cornpartmen&/ Sysfenns Components ofnon compartmental systems sometimes 
are called black boxes, among which some information is considered to move. 

Example 1.2.7 The following matrix equation defines the relationships between pasture 
yield and carrying capacity of a Kikuyu pasture field, as affected by rainfal17[2]: 

for Y = (yl, y2)  where y 1  is leaf growth in kg of dry matter per hdday, yz is the number 
of cowsha and x is rainfall as mm/month. Determine the input and output of the system. 

Solution: The mathematical model of the system has the form 

dk dy = A Y +  B -  +cX 
dt dt 

The system input is rainfall, defined by the expression Bdk/dt+Cx and the system output 
is AY. Fig. 1.2.4 shows the system black boxes exchanging information by input-output 
relationships. 

'computed kom ~urtagh,  G.J. et.al. 
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I ,  OY, 

~. .- 0.3338.v, .A 

Figure 1.2.4 

Conjunctive Coupled Systems. The idea of conjunctive coupling is that of a complex 
system where each of its components operates independently. This is the case, for 
example, of different plots or different experimental material, such that each plot is a 
component system and operates as a replication of the experiment. Grouping of 
experimental material determines the sources of variation in a typical analysis of variance. 

As shown in the next example, the notion of conjunctive coupling is particularly 
helphl in factorial arrangements of treatments and in split-plot experimental designs. 

Example 1.2.8 An experiment was designed to study how starch in the diet of cattle 
affects the digestibility of roughage. The experimental roughage were corn stalks, stems 
of the banana plant, sugarcane leaves and Stargrass hay. Different amounts of green 
bananas provided starch. In vivo digestibility procedures were carried out with six 
fistulated steers. Define the experiment as a conjunctive coupled system. 

Solution: As shown in Fig. 1.2.5, each steer is a replication and a component system of 
the experiment as a system. Each roughage is a component within a fistulated steer as a 
system. Green bananas are the inputs. 

Note that roughage and green bananas are both treatments, but only green 
bananas are inputs, because only green bananas are scheduled over the time variable. This 
is a very important fhctor in the design of experiments, because it determines the scaling 
of classes in the field design and in the analysis of variance. Inputs are placed always at 
the lowest end of the list of treatments and should never be confused with components. 
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Figure 1.2.5 

Summary 

Depending on the time scale adopted for the mathematical model, systems are 
classified as continuous or discrete. Whether uncertainties are considered or are ignored, 
systems are stochastic or deterministic. Systems having interface relationships are called 
interactive coupled systems. If some material is moving among component systems, the 
system is called compartmental. Conversely, if components exchange only information, 
the system is non compartmental. Component systems having no interface relationships 
are called conjunctive coupled systems. 

1.3 USING LINEAR MODELS IN AGRICULTURAL RESEARCH 

Agricultural systems are very complex and are characterized by having multiple 
input variables of unknown or chaotic behavior. Thus, mathematical modeling in 
agricultural research is essentially an empirical process, with only few feasible theoretical 
considerations. Thus, a fiee choice of mathematical models of agricultural systems is 
possible. The simplest empirical option for modeling is using linear models. This was the 
approach taken in writing this book. 

The following examples are presented here as an introduction to the use of linear 
models in agricultural systems. The frrst example is related to modeling and analyzing a 
deterministic system. 

Example 1.3.1 The following are some selected experimental features fiom a research 
report on pasture production, as determined by pasture yield and pasture carrying 
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capacity? 

Animals: Guernsey and Jersey cows with an average live weight of 364 kg. 
Treatments: Nitrogen fertilized Kikuyu pastures (Pennisetum clandestinum), where more 
than 90% of the grass cover was Kikuyu and unfertilized Carpet grass (Axonopus affinis), 
where the average carpet grass cover was 59 %. 
Measurements: Pasture yield, as dry green leaves in kglhdday and carrying capacity, as 
cowdha. The pasture growing season was divided into ten 4-week periods. Data were 
collected for each period. 

I )  Define the mathematical models for pasture yield in both treatments. 
2) Define a mathematical model for the relationship between yield and carrying 

capacity in the Kikuyu treatment. 

Solution: The first step for defining the mathematical model of pasture yield is to 
arrange the data as a difference table. A difference table is a table that gives successive 
differences ofy, =At), for t = 1, 2, ...,. For example, 

is called afirst orderfinite diflerence, where At is a time increment. Thus, a second order 
difference would be 

and so on. The first entry in each column is called the leading difference. 
Before defining a difference table for a continuous system, the data should be 

discretized. The derivative of a fimction is represented by the symbol dy/dt. The symbol 
dy is called the differential of the state variable and the symbol dt is called the differential 
of the time variable. The differential dt is always equal to the time increment At. 
Conversely, the differential dy is not equal to the finite difference Ay. However, if At is 
small enough, dy could be an acceptable approximation of Ay'. This was the accepted 
criterion for discretizing and fitting the Kikuyu data to the proposed mathematical model 
for the system. 

The following is the difference table for the Kikuyu treatment, up to the second 
order difference. Note that this table was modified for a regression analysis, by having the 

*Computed fiom Murtagh, G.J. et.al. 

'This subject is discussed in Chapter 3.  
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leading differences aligned with the time scale values and not located in the traditional 
arrangement, between two successive entries of the preceding column. Note also that the 
time scale is discrete and that At = 1 = A?. 

Table 1.3.1 

t y AylAt A2ylAt2 x k l A t  A2xlAt2 

0.00 
1 .oo 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

12.00 
15.00 
19.00 
50.00 
48.00 
7 1 .OO 
66.00 
45.00 
24.00 
21.00 

3.00 
4.00 

3 1 .OO 
-2.00 

23.00 
-5.00 

-21.00 
-2 1 .oo 
-3.00 

1.00 46.00 22.00 23.00 
27.00 68.00 45.00 259.00 

-33.00 113.00 304.00 -486.00 
25.00 417.00 -182.00 327.00 
-28.00 235.00 145.00 -278.00 
-16.00 380.00 -133.00 -23.00 

0.00 247.00 -156.001 19.00 
18.00 91.00 -37.00 79.00 

54.00 42.00 
96.00 

The table includes the differences for the state variabley and the input variablex, where 
1 is months, y is the leaf growth rate as kg of dry matterhdday and x is the rainfall input 
in mmlmonth. 

The second step is defining the differential equation representing this system. 
The following linear second order difference equation was computed, by linear regression, 
fkom the difference table: 

AY A 2 x  A x  &+ 1.4567-+ 0.6210~ = 0.0972-+ 0.1975-+ 0.1321~ 
A t  A t  A t  A t  

If Ay and Ax are considered an acceptable approximation of CJ, and dr, then the following 
differential equation may be defined: 

d2Y dY d2.X & - t 1.4567- t 0.6210~ = 0.0972- t 0.1975- t 0.1321~ 
dt 2 dt dt2 dt 

As indicated by the statistics of the linear regression analysis shown in Table 1.3.2, the 
relationship between pasture yield and the rainfall input is significant. The coefficient of 
determination Rz may be less than the above value, because this was a linear regression 
through the origin. 
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Table 1.3.2 

R Square 0.99108 
Adjusted R Square 0.97622 
Standard Error 3.36442 

Analysis of Variance 

Regression 5 3 774.04 199 754.80840 
Residual 3 33.95801 1 1.3 1934 

!IF Sum of Squares Mean Square 

Variable B SE B t 
Ay/At - 1.456682 0.361637 -4.028 
Y -0.620985 0.1941 18 -3.199 
A%lAt2 0.097204 0.008583 1 1.325 
AxlAt 0.197499 0.03703 1 5.333 
X 0.1321 13 0.041 822 3.159 

Each coefficient of the mathematical model was evaluated by a "t" test. If k, is 
a coefficient of the state equation and k, is the corresponding hypothetical value, then 
where Sa, is the standard error of the k, coefficient. The null hypothesis is here k, - k, = 0.  

The third step is determining the solution of the system differential equation. 
Note that the above differential equation has the form: 

d2Y dY d2x & 
dt2 dt dt2 
- +bl-  +bg  = c,- +cl-  +c$ 

The left hand may be represented by the polynomial s + b,s + b, = (s + A,)@ + &), called 
the characteristic equation of the system'*. Since pasture production often displays a 
cyclical pattern due to climatic conditions, then h = E l t i p .  Thus, the characteristic 
equation of the system is s2 + 1.4567s + 0.6210, where h = -0.7284*0.30091' and 
i =GI. 

The following is the solution of the differential equation of the Kikuyu grass 

"See Chapter 2 for definitions. 
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system I '  : 

1: The Scope of System Analysis 

.Y = 13.36 - 13.36~0~0.809t - 19.76~in0.809t 
+ 31.11 +e-0.728'[(13.01 -31.11)cos0.301t] 

wheretheterms 13.36 - 13.36cos0.809t - 19.76sin0.809t aretherainfkllcomponentsof 
the state equation, 0.728 and 0.809 are the a and p terms of I = af if3 in the characteristic 
equation of the system and the term 13.0 1 is the initial value yo. 

As indicated before, some error was introduced here by using values of the finite 
difference Ay for the differential operator dy and values of the difference Ax for the 
differential operator dx. Note, however, that this error is also implicit in the data, because 
the data was not recorded continuously. A non linear regression procedure was used to 
account for this discretization error. The summary of the non-linear regression statistics 
is shown below: 

Table 1.3.3 

source DF Sum of Squares Mean Square 
Regression 4 17701.76629 4425.44157 
Residual 6 271.23371 45.20562 
Uncorrected Total 10 17973.00000 
(Corrected Total) 9 4208.90000 
R squared = 1 - Residual SS / Corrected SS = 0.93556 

Parameter Estimate Std. Error t 
kl 13.356942635 3.297376801 4.05 
K2 19.762102352 3.215554382 6.14 
k3 31.1 11270880 4.083738812 7.63 
Yo 13.008102655 6.242228999 2.08 

Asymptotic 

where 

y = R,  -k,cos0.809t-k2sin0.809t + k3 +e-"[(y0-R3)cosPt)] 

Note that, by using the addition formula of sinuses and cosines, the state equation 
may be expressed in the form 

See Chapters 4 and 9 for procedures for solving linear differential 11 

equations. 
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y = k + ae-"co@(t-b)] 

This form of the state equation is very usehl and has a straightforward geometric 
interpretation: 

Parameter p modulates the fiequency response of the system 
The term ae  - p f  modulates the amplitude response of the system 
Parameter b is the out-of-phase parameter 
Parameter k is the distance between the abscissa and the axes of the response curve 
A cycle is equal to 2x43 

Note that when a<O the amplitude decreases over time, when a>O the amplitude increases 
and when a=O the amplitude is only determined by coefficient a. The above model is 
shown in Fig. 1.3.1 for a<O. 

T 

I I I 

Time 

Figure 1.3.7 

By the above transformation, the Kikuyu state equation becomes 

y = 13.36 - 23.88~[0.809(t - 1.207)] 
+ 3 1 .1  1 + e -0.7281[ (13.01 - 3 1 . 1  l)cos0.301 t] 

This expression is the sum of two components of the state equation. The first 
component is called thefiee response of the system and is related only to the initial 
conditions yo : 

y, = 13.01e -0.728'cos0.301 t 

The second component is called theforced response of the system and is related only to 
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the input x =At) : 

yb = 13.36 - 23.88cos[0.809(t- 1.207)] +31.11(1 -e-0.728'~os0.301t) 

The graph of the Kikuyu response functions is shown in Fig. 1.3.2: 
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As expected, the free response fades away rapidly. In contrast, the forced response curve 
follows the shape of the rainfall data. 

The following is the difference table for Carpet grass 

Table 1.3.4 

t y AylAt A2yfAt2 x AxfAt A2xfAt2 

0.00 
1 .oo 
2.00 
3.00 
4.00 
5-00 
6.00 
7.00 
8.00 
9.00 

3.00 
3.00 
4.00 

17.00 
18.00 
35.00 
20.00 
13.00 
8.00 
2.00 

0.00 
1 .oo 

13.00 
1 .oo 

17.00 
-15.00 
-7.00 
-5.00 
-6.00 

1 .oo 
12.00 

- 12.00 
16.00 

-32.00 
8.00 
2.00 
-1.00 

46.00 
68.00 

1 13.00 
417.00 
235.00 
380.00 
247.00 
91.00 
54.00 
96.00 

22.00 
45.00 

304.00 

145.00 
- 182.00 

- 133.00 
- 156.00 

-37.00 
42.00 

23.00 
259.00 

-486.00 
327.00 
-278.00 
-23.00 
119.00 

79.00 

and the following is the corresponding difference equation: 
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AY Ax * + 1.9103- + 1.5624~ = 0.02881% + 0.06749- + 0.11321~ 
At2 At At At 

As indicated before, this difference equation was considered an acceptable approximation 
of the system differential equation, such that 

d2Y 4 d2x & 
- t 1.9103- t 1.5624~ = 0.02881- t 0.06749- t 0.1 1 3 2 1 ~  
dt2 dt dt2 dt 

The characteristic equation ofthis system is s 2  + 1.9103s + 1.5624, where the roots are 
A = -0.9551*0.80631'. The system statistics are given below: 

Table 1.3.5 

R Square 0.99722 
Adjusted R Square 0.99259 
Standard Error 1.23 193 

Analysis of Variance 

Regression 5 1633.44703 326.6894 1 
Residual 3 4.55297 1.5 1766 

DF Sum of Squares Mean Square 

Variable B SE B t 
Ay/At -1.9 10289 0.099422 -19.214 
Y -1.562407 0.105729 -14.777 
A?/AP 0.028806 0.003481 8.274 
&/At 0.067494 0.0074 15 9.103 
X 0.113215 0.007590 14.917 

The following is the solution of the differential equation for Carpet grass: 

y = 7.52 - 7.52cos0.809t - 9.70sin0.809t + 7.57(1 - e ~0~955*cos0.806t) 

where the terms 7.52 - 7.52cos0.809t - 9.70sin0.809t are components of the rainfall 
input and 0.955 and 0.806 are the numerical values 01 and p &om the characteristic 
equation of the carpet grass system. Note that the coefficient for the initial value yo was 
not significant and was deleted fiom the state equation. Thus, there is no significant 



26 I : The Scope of System Analysis 

response to initial conditions for carpet grass and the above equation represents the forced 
response of the system. 

The following is the statistical summary of the non-linear regression used to 
correct discretization errors for Carpet grass: 

Table 1.3.6 

Source DF Sum of Squares Mean Square 
Regression 3 2376.40104 792.13368 
Residual 7 132.59896 18.94271 
Uncorrected Total 10 2509.00000 
(Corrected Total) 9 996.10000 
R squared = 1 - Residual SS / Corrected SS = 0.86688 

Parameter Estimate Std. Error t 
k, 7.5 15671654 2.202448 128 2.92 
k2 9.70218205 1 2.044905458 3.42 
h 7.574700565 2.589750722 4.75 

Asymptotic 

where 

The graph of the state equations of the Kikuyu and the Carpet grasses is shown in Fig. 
1.3.3. 
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Differences between the Kikuyu and the Carpet treatments may be evaluated by 
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the nt" test. If k,, is a coefficient of the Kikuyu equation and kr2 is a coefficient of the 
Carpet equation, then 

k,, - 4 2  t =  

where Sk and Sk2 are standard errors, The null hypothesis is here k,, - k12 = 0.  
h e  same approach may be used for evaluating relationships among different 

variables within a system, such as determining the relationships between pasture yield and 
"rying capacity in the K h y u  pasture system. 

The firststep isarrangingthedataasadifferencetable, for Y=(y1,y2),where y 1  
is pasture yield, y2 is carrying capacity and x is rainfall as mmlmonth: 

Table 1.3.7 

t y1 Ay,lAt y2 Ay2fAt x AdAt 

0.00 
1.00 
2.00 
3.00 
4.00 
5 .OO 
6.00 
7.00 
8.00 

12.00 
15.00 
19.00 
50.00 
48.00 
71.00 
66.00 
45.00 
24.00 
9.00 

3 .OO 
4.00 

31.00 
-2.00 
23.00 
-5.00 

-2 1 .oo 
-2 1 .oo 
-3.00 

21.00 

1.30 0.90 
2.20 0.80 
3.00 2.00 
5.00 1.60 
6.60 1.80 
8.40 0.90 
9.30 -2.80 
6.50 -2.80 
3.70 -1.70 

2.00 

46.00 
68.00 

113.00 
417.00 
235.00 
380.00 
247.00 
91.00 
54.00 
96.00 

22.00 
45.00 

304.00 

145.00 
-1 82.00 

-133.00 
-156.00 
-37.00 
42.00 

The second step is determining the mathematical model of the system. The 
following first order set of linear difference equations was fitted to the above data: 

AY 0 -2.9463 0.11066 0.08708 

+ [ o . o m & -  + 1 0 1. 
This system of equations shows that the number of cows affects negatively the change in 
pasture yield. These equations also indicates that the change in carrying capacity is 
affected positively by pasture yield and negatively by the number of cows. Again, these 
equations are considered as an acceptable approximation of the system differential 
equations. The statistics for the y,  variable is shown in Table 1.3.8. Note that the 
coefficient for the y ,  variable was deleted because it was not statistically significant. 
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Table 1.3.8 

I: The Scope of System Analysis 

R Square 0.95829 
Adjusted R Square 0.93744 
Standard Error 4.11405 

Variable B SE B t 
Y2 -2.946283 0.530966 -5.549 
X 0.087075 0.013815 6.303 
AxlAt 0.1 10656 0.009957 11.113 

The following is the statistics for the y2 variable: 

Table 13.9 

Multiple R 0.94348 
R Square 0.89015 
Adjusted R Square 0.83522 
Standard Error 0.74886 

Variable B SE B t 
Y1 0.3 3 3 796 0.053 107 6.285 
Y2 -2.528848 0.401317 -6.301 
A d A t  0.01 1854 0.002060 5.753 

The third step is finding the set of solutions of the system. The above set of 
equations has the form 

where Y is the set of state variables. Again, it is assumed here that this model may 
represent the set ofdifferential equations ofthe system. The characteristic equation ofthe 
system is given by the expansion of the following determinant, where h,  = 0.4800 and 
A2 = 2.0488 : 
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2.9463 
IsZ-BI = 

= s2 + 2.5288s + 0.9835 
= (S + 0.4800)(s + 2.0488) 

Then, the following are the solutions of the system'*: 

80.89 -68.93 e -0.480f 

= [ 0 1.23 ] 1 - z . 0 4 9 ]  

This is the fiee response of the system. The following is the forced response: 

- 1.196(72.24) 0.769(72.24) 

The total response Y is the sum Ya + Y6. Note that the terms 

1 0 13.57 13.57 20.64 cos0.809t 

[o d[ ~ 0 7 d  - 11.073 3.4181[~in0.809(1 

in the forced response are related to the rainfall input. 
The coefficients of the fiee response are defined as follows: 

12See Chapters 4 and 9 for procedures for solving systems of 
differential equations. 
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where k,, stands for yield and Si stands for carrying capacity. The following are 
definitions of the forced response coefficients: 

Yb = 

1 

31112 I 

The graph of pasture yield is shown in Fig. 1.3.4 

1Oor- ~ _ _ _  - 7 5 0 0  

+Rainfall 

0 - ~ -  _- -- - 
0 1 2 3 4 5 6 7 8 9  

Months 
Figure 1.3.4 

The following is corresponding summary of the non-linear regression, used to 
correct discretization errors for pasture yield: 

Table 1.3.10 

source DF Sum of Squares Mean Square 
Regression 5 17708.15325 3541.63065 
Residual 5 264.84675 52.96935 
Uncorrected Total 10 17973.00000 
(Corrected Total) 9 4208.90000 
R squared = 1 - Residual SS / Corrected SS = 0.93707 
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Asymptotic 
Parameter Estimate Std. Error t 
kl1 72.23607 1 842 10.74268 1413 6.73 
k** 80.894743 168 17.793591477 4.55 
kl, 68.925903214 19.888946475 3.47 
k14 13.570507544 3.690590480 3.68 
&I5 20.639417786 4.228578006 4.88 

The graph of carrying capacity is shown in Fig. 1.3.5 
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The following is the corresponding summary statistics for correcting discretization errors 
for carrying capacity: 

Table 1.3.11 

Source DF Sum of Squares Mean Square 
Regression 4 299.40021 74.85005 
Residual 6 1.67979 0.27997 
Uncorrected Total 10 301.08000 
(Corrected Total) 9 70.68000 
R squared = 1 - Residual SS / Corrected SS = 0.97623 

Parameter Estimate Std. Error t 
b, 12.46 166049 1 0.84720407 1 14.71 
kz3 1.22%53345 0.526192538 2.33 
k24 1.073217885 0.265371083 4.05 
k,, 3.4 17872472 0.253417049 13.50 

Asymptotic 
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The next example is related to a stochastic system. 

Example 13.2 Determine themathematical model and the state equations for the diseased 
trees in Example 1.2.3, assuming that some of the diseased trees may die. 

Solution: The first step in defining the mathematical of the system is defining the data 
in as a transition table: 

Table 1.3.12 

Present State Next State 

Healthy Diseased Dead 

Healthy 0.80 0.20 0 

Diseased 0.30 0.10 0.6 

Dead 0 0 1 

The first row shows that the probability of healthy trees of remaining healthy in the next 
state is 80%, the probability of becoming diseased is 20% and the probability of dying is 
zero. The second row show that the probability of diseased trees of becoming healthy in 
the next state is 30%, the probability of remaining diseased is 10% and the probability of 
dying is 60%. The third row shows that dead trees would remain dead. The following 
probability matrix represents the above table: 

10.8 0.2 o 
Q = 0.3 0.1 0.6 

10 0 1 

The second step is defining the set of next state equations of the system. The 
state changes of the system are defined by the product QP,, where P is a state probability 
vector. By knowing the present state P,, and the probability matrix Q, the next state QPm 
ofthe system is predicted. Therefore, the following matrix equation represents the system: 

where Pn is the set of states at time n and P,,, is the set of states at time n+l. 
The third step is defining the solution of the next state equation. The solution 
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P, = 

of the next state equations has the form F(0)Q n, where q 0 )  is the set of initial 
 condition^'^: 

1 0 0 0.8 0.2 0 

0 1 0 0.3 0.1 0.6 

0 0 1 0  0 1 

Note that the fxst row in the initial state matrix shows that all the trees were healthy, the 
second row shows that all the trees in the initial state were diseased and the third row 
shows that all the trees in the initial state were dead. After solving the above power matrix 
and assuming that all the trees in the initial state were healthy, the solution is 

Pn = [0.910(0.877)" t 0.090(0.023)", 0.234(0.877)n - 0.234(0.023)", 

- 1.144(0.877)n t 0.144(0.023)" t 11 

for Pn=(Pln,p2,,p3,,),.where p, ,  is the proportion of healthy trees, pzn is the proportion 
of diseased trees, p 3 p  the proportion of dead trees and n is years. 

10 

-e- Healthy 

-m-- Diseesed 
-A- Dead 

0 1 2 3 4 

Years 

Figum 7.3.6 

If the total number of trees is M, then the above equation becomes the expectation 

I3See Chapters 3 and 8 for solving stochastic models. 
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E ( x ~ , x ~ , x ~ )  = N0.910(0.877)" + 0.090(0.023)n, 0.234(0.877)" - 0.234(0.023)n, 

- 1.144(0.877)n + 0.144(0.023)n + 11 

where x, is the number of healthy trees, x2 is the number of diseased trees and x3 is the 
number of dead trees. This expression defines expected values and corresponds to a 
deterministic model ofthe system. The graphic representation ofexpected values is shown 
in Fig. 1.3.6. The total number of trees is assumed to be 10. 

The fourth step is determining the stochastic model. The state variables may 
have a multinomial distribution, that is 

where , x2 and x3 are the number of healthy, diseased and dead tress out of a total of 
m tx, rees. By replacing the P,, values in the multinomial equation, it is possible now to 
define the following state probability model of the system for an initial state Po=( 1 ,O,O): 

[0.910(0.877)" t 0.090(0.023)"f1 [0.234(0.877)" - 0.234(0.023)n]X2 
m! 

XI !x2 !x3 ! 
fn(xl,x2?x3) = 

[- 1.144(0.877)" t 0.144(0.023)" t lIx3 

The probability distribution curve for eight healthy, two diseased and zero dead 
trees, is shown in Fig. 1.3.7. 

0.4 - 

0 1 2 3 4 

Years 

Figure 1.3.7 
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The total number of trees was assumed to be 10, resulting in 720 probability distribution 
curves, determined by the multinomial coefficient m!l x1 !x2 !x3 ! . 

The proposed modeling and analyses may improve or replace conventional 
procedures for evaluating a system and for comparing different systems. 

Summary 

The first step for defining the mathematical model and analyses ofa deterministic 
system is arranging the data as a difference table. The difference table is used to determine 
the differential or difference equations representing the system. The solutions of the 
differential or difference equations are the state trajectories and parameters in these 
equations are evaluated by "t" tests. The first step for defining the mathematical model of 
a stochastic system is condensing the data in a state probability table, fiom which the next 
state equations of the system are determined. The next step is defining the corresponding 
deterministic solutions ofthe next state equations. The final step is applying a distribution 
he t ion  to the deterministic expressions. 



CHARACTERISTIC VALUES 

The selection of topics for this chapter has been aimed at gaining a basic 
understanding and proficiency in the manipulation of linear equations, as this subject 
relates to further chapters. Matrix techniques are applied here for solving linear equations 
and for determining characteristic equations, roots and vectors. Some readers may wish 
to skip some familiar material of the first two sections of this chapter. 

2.1 SYSTEMS OF LINEAR EQUATIONS 

As disclosed in the previous chapter, system analysis is related to the process of 
developing an abstract model of a system, such that the model would simulate the real 
system by means of a computer program. It was also indicated that the approach selected 
for modeling a system was the use of linear models. Therefore, some basic definitions and 
concepts are presented here for a clear understanding of the subject. 

Linear Combinations 

The concept of linear combination is related to the straight line. For the 
particular case of the X, Y plane, it is possible to define a linear combination of the 
variables x and y, such that 

The above equation is called linear, because it represents a straight line. Then, the 
following definition stands for linear combination: 

Definition 2.1.1 If y1,y2, ..., y,  are m-component vectors and k,,k2, ..., k, are scalars, 
then vector y = k,y ,  + k g 2  +... + k j n  is called a linear combination of y,,y2, ... ,yn.  

This concept is illustrated in the following example. 

Example 2.1.1 Given the scalars k,, k,, & and vectors y ,  = (1,2,3), y2 = (4, -3,7) and 
y, = (-2,7, - 1) define a linear combination of vectors y I ,  y,, y, . 
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Solution: All linear combinations ofy,, y2 and y, are of the form 

y = k1(1,2,3)+ k2(4,-3,7) + k3(-2,7,1) 

= (kl + 4k2 - 2k3, 2k1 - 3k2 + 7k , 3k + 7k2 - k3) 

where k,, k2 and k3 are arbitrary scalars. The following is the matrix form of the above 
expression: 

.Y=[2 3 -3 7 - 1  7 ~ ~ k 2 ~  k, 

1 4 -2 k, 

Linear combinations are either linearly dependent or linearly independent. 
Linear dependence is defined as follows: 

Definition 2.1.2 The m-component vectors y1,y2, ... jn are said to be linearly dependent, 
iftherearescalars kl,k2, ..., k,, not all equal tozero, such that k , y l + k ~ 2 + . . . + k ~ , = 0  

Consider the following example: 

Example 2.1.2 If y, represents the daily average consumption of dry matter by a group 
of cattle, y2. represents the daily average consumption of crude protein and 0.1 15 is the 
crude protein content of food on a dry basis, define a linear combination. 

Solution: The two variables are related by equation, 0.1 15y, = y2 ,  This relationship can 
be rewritten as follows: 

0.1 1 5y, - yz = 0 

It is clear here that y ,  and y2 are related, because k, = 0.1 15 and k2 = - 1 are 
different fiom zero. Therefore, y ,  and y2  are linearly dependent. 

The following definition stands for linear independence: 

Definition 2.1.3 Them-component vectors yI ,y2 ,  ...,yn are said tobe linearlyindependent, 
iftherearescalars k, = k 2 =  ...= kn=O , suchthat k ly l+kg2+  ...+ k,,y,=O 

Consider the next example: 

Example 2.1.3 Given vectorsy, = (1,0, -2), y2 = (-4, 3,5) andy, = (1,2,3) and scalars 
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8 

4 

0 

-2 

-4 

k,, k2, and k3, show that y,, y2 and y3 are linearly independent. 

'- 
* 

!! k &  
A * 2 - . . .  . . . . . . . . . . . . . 

-. - 2~+3y=8  
- 3 ~  - 4 ~ 1  -- * :  

-- * 

Solution: The system may be represented by the following matrix expression: 

No solutions to the above system can be found other than k, = k2 = k3 = 0. Thus, y,, y2 and 
y3 are linearly independent. The reader is encouraged to test this result 

Linear Systems 

As indicated, any equation ofthe form ax + by = c ,  where a, b and c are constants 
and (x, y) are variables, is a linear equation because it represents a straight line in the X 
Y plane. The equation is satisfied whenever an ordered pair (a$) of real numbers is 
substituted for (x, y)  and a a  + bp  = c . This is a linear combination of the variables x 
and y. The pair (a$) is called a solution of the equation. The set of all solutions of an 
equation is its solution set. 

Two or more linear equations in the same variables are said to form a system, 
when the equations are satisfied by a given solution. The system is then called a system 
of linear equations. Thus, two equations form a system if an ordered pair of real numbers 
(a$) is found to satisfy both equations. Then (a$) is a solution of the system. 

A system of equations may have a single solution, multiple solutions or no 
solution at all. The system in the following example has a single solution: 

Example 2.1.4 A system with a single solution: 

-3 -2 -I 0 1 2 3 

Figure 2.7. I 

The solution of this system is the ordered pair (1, 2), since both equations are satisfied 
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when x = 1 and y = 2. As shown in Fig. 2.1.1, the solution is the point of intersection 
between the two straight lines. 

A system with multiple solutions is illustrated in the following example: 

Example 2.1.5 A system with infinite solutions: 

2x + 3y + z = 14 
X +  y + z =  6 

3x + 5y + z = 22 

A set of some solutions of this system is shown in the following table: 

Table 2.1.1 

Variables solutions 

s1 s2 s3 s4 s5 

X 4 6 8 2 0 

2 1 0 3 4 

Z 0 -1 2 1 2 

Y 

The reader is encouraged to check these solutions. 

solutions, as shown in the following example: 
When there are fewer equations than unknowns, there are infinite number of 

Example 2.1.6 A system with infinite number of solutions and fewer equations than 
unknowns: 

The solutions of this system are 
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As indicated in the next example, not all systems of linear equations have 
solutions. When the lines are parallel, there is no intersection and the system has no 
solutions. A linear system that has no solutions is said to be incornistent. 

Example 2.1.7 A system with parallel lines: 

12 A 

,m 
,I 

0 

I ,,A 

0 A’ 
--t 6x-2y -5  

:[ 
--t 3x- y=2 

-8 

-12 -4 -3 < -2 -1 0 I 2 3 X 

Figure 2.1.2 

Note that solutions for a set of linear equations exist only if the system is consistent. 
Thus, the following detinition is here set forth: 

Definition 2.1.4 A system represented by the matrix equation Ay = b is said to be 
consistent if it has at least one solution. 

Whether the system has one solution, multiple solutions or no solution at all, the 
general linear system of m equations and n unknowns can be represented as follows: 

a1gl + alg2 + ... + a l j n  = b ,  

a,,y, + a2g2 + ... + a 2 ~ , ,  = b, 

a,cy, + a,y2 + ... + a , ~ ,  = b, 

The following definition applies here: 

Definition 2.1.5 A system represented by the matrix equation Ay=b is homogeneous if 
b, = b, = ... = b, = 0. Otherwise, the system is said to be nonhomogeneous. 

In all the above examples, the systems were nonhomogeneous. A homogeneous 
system of equations is illustrated in the next example: 



2.l:Systems of Linear Equations 41 

Example 2.1.8 A homogeneous system: 

5, + Y2 + y3 = 0 
5Y, + 2y* + 2y3 = 0 
Y ,  - Y2 + Y3 = 0 

Note that homogeneous systems are never inconsistent. All such systems have the 
solution (0, 0, ... ,O). This is called a trivial solution. Thus, the problem in a homogeneous 
system is to determine whether there is anon trivial solution. Note also that a system with 
fewer equations than unknowns, always has a non trivial solution. Otherwise, to avoid 
trivial cases, at least one av coefficient must be non-zero. In addition, systems with a 
single non trivial solution are always nonhomogeneous. Conversely, systems with many 
solutions may be either homogeneous or nonhomogeneous. 

Order and Rank of a Matrix 

A matrix is defined by its order and by its rank. The order of a matrix is 
determined by the number of rows and columns and is defined as follows: 

Definition 2.1.6 The order, called also the matrix dimension, represents the size of a 
matrix 

Thus, a matrix A with r rows and c columns has order r x c and can be written 
as A, =. When the number of rows and columns are equal, the matrix is refixed as a 
squared matrix and is describer as being of order r. 

Example 2.1.9 A matrix of order 2 x 3: 

4 0 -3  
A 2 x 3 =  [-7 3 1] 

Example 2.1.10 A matrix of order 3: 

The rank of a matrix is defined as follows: 
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Definition 2.1.7 The rank r(A) of a matrix A represents the number of linearly 
independent rows or columns of the matrix. 

Example 2.1.11 Determine the rank of the following matrix: 

A = [ : :  1 0 - I  I ]  
Solation: This is a rectangular matrix of order 3 x 4 and, therefore r( A) s 3 . Note 
that the third and the fourth columns are linear combinations of the first two: 

The third row is a linear combination of the first two: 

[ 5  2 9 21 = 2[3  1 4 21-4[1 0 -1  21 

Thus, matrix A has only two independent columns and two independent rows, therefore, 
r ( A ) =  2 .  

From the above, it is clear that rank and order are related in the following 
manner: 

The rank of a square matrix is equal or less than its order 
The rank of a m x n rectangular matrix is equal or less than the smaller value of 
m and n 

Defining the order of a matrix is straightforward. However, defining the rank 
requires determining the number of linearly independent rows or columns. Since the 
number of linearly independent rows or columns is also the order of the largest minor 
determinant whose value is different 60m zero, finding the order of such minors is also 
a straightforward procedure to find the rank of a matrix. Thus, the following definition 
applies here: 

Definition 2.1.8 The rank <A) ofa matrix A is the order ofthe largest minor ofthe matrix 
determinant, whose value is different 60m zero. 
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The reader is reminded that a determinant can be expanded as a linear function 
of minor order determinants derived from it. Thus, a third order determinant can be 
expanded as a linear fhnction of three second order determinants. The minor order 
determinants are simply called minors. 

Example 2.1.12 Find the rank of matrix A in Example 2.1.1 1 using determinants. 

Solution: Matrix A was defined as 

1 0 - 1  2 

5 2 9  2 

By definition, a determinant is a polynomial ofthe elements of a square matrix. However, 
matrix A can be partitioned, such that a group of three column vectors may be selected 
into a square matrix B. Then, the rank of B is determined by evaluating IBI : 

IBI = 

1 0 -1 

3 1  4 
5 2  9 

1 4  

2 9  

3 1  

-15 2 

Note that the value of IBI is zero, but the value 0s its minors is different fiom zero. Thus, 

r( A) = 2 , because the order of the minors is two. Thus 

If any of the rows or columns of a matrix are linearly dependent, its determinant is zero. 
If all the rows or columns of a matrix are linearly independent, then the determinant is 
not zero. 

The following properties of the rank of a matrix are summarized here: 

The rank of a square matrix of order n is equal or less than its order 
The rank of a rectangular matrix or order m x n is equal or less than the smaller value 

If r( A )  = r , there are at least one minor of order Y whose value is different from zero 
of m and n 

and all minors of order greater than Y are zero 
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Summary 

A vector y = k8, + k2y2 +... + ka, is called a linear combination of vectors 
y,,y2 ,..., y,, where kl,k2 ,..., k, are scalars. Vectors yI,y *,..., y,, are said to be linearly 
dependent, ifthere are scalars k,,k2, ..., k,, not all zero, such that kp, + kg2 +... + k , ~ ,  = 0. 
Vectors yl,y2,.,.,yn are said to be linearly independent, if there are scalars 
R,  = 4 = .._ = k, = 0, such that kg, + Q2 +... + kgn = 0.  A system represented by the matrix 
equation Ay = b is said to be consistent if it has at least one solution. It is said to be 
homogeneous if b, = b, = ... = b, = 0.  Homogeneous systems are never inconsistent. 
Solutions of the form (O,O, ..., 0) are called trivial. Systems with fewer equations than 
unknowns have always non trivial solutions. Systems with a single non trivial solution are 
always nonhomogeneous, while systems with multiple solutions may be homogeneous or 
nonhomogeneous. The rank of a square matrix is equal or less than its order and the rank 
of a m x n rectangular matrix is equal or less than the smaller value of m and n. 

2.2 SOLVING LINEAR SYSTEMS 

As defined before, a system represented by the matrix equation Ay = b may have 
a single solution, multiple solutions or no solutions. Some selected procedures for solving 
linear equations are described in this section. 

Single Solution Systems 

Two procedures will be used for solving single solution systems, a determinant 

A system with two variables will be utilized as a model to explain the procedure 
procedure and a matrix inversion procedure. 

for solving linear equations using determinants. Thus, the system 

is written in the following matrix form: 

Note that this system can be easily solved by any of the well known algebraic procedures 
based on successive elimination, such that 
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These procedures may become cumbersome if the system has more than two variables. 
However, the above solutions can be expressed easily as determinants. Then, the 
denominator of the above solutions is 

The numerator of y ,  is obtained by replacing the first column of matrix A by vector b: 

The numerator of y 2  is obtained by replacing the second column of matrix A by vector b: 

Thus, the solution, in terms of determinants must be 

Example 2.2.1 Solve the system 

3x + 2y = -12 
& - 3 y =  5 
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Solution: 
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Example 2.2.2 Solve the system 

x +  y =  1 
2 x + 2 y = 2  

Solution: This system has an infinite number of solutions, because the second equation 
is a multiple of the first. Thus, the determinant of the denominator is zero and matrix A 
has no inverse: 

Example 2.2.3 Solve the system 

3 x -  y = 2  
6~ - 2y 3 

Solution: This system has no solutions. The two lines are parallel, because the slope is 
the same, as shown below: 

y = -2 + 3x 
y = -312 t 3~ 

As in the previous example, the determinant of the denominator is also zero: 
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20 8 6 

-2 2 -2 

1 1  -1 1 
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2 -2 8 6  8 6  

-1 1 -1 1 
= 201 1 - 21 I + I l l  -4 = -280 

Example 2.2.4 Solve the system 

20 6 1 -2 -2 

1 1  I 

2 x t 8 y t 6 ~ = 2 0  

4 x t 2 y - 2 z =  -2 

3x- y -  z =  11 

= -201 - 21 - 1 1 1  61 = 140 

Solution: Denominator: 

The numerator of the x solution is 

The numerator of they solution is 

The numerator of the z solution is 
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Then 
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x = -2801- 140 = 2 
y = 140/-140 = -1  
z = -560/-140 = 4 

Solving linear equations using determinants may not be practical for systems 
with many variables. An alternate procedure is based in the following relationship: 

A-'Ay = A - ' b  

Since A -'A = Z, where Z is the identity matrix and Zy = y, then 

y = A - ' b  

By this way, the problem of finding solutions for a linear system is the problem of finding 
the inverse A -' 

Several procedures are available for inverting matrices. The matrix inversion by 
elementary operations is used in this book, because this procedure can be applied to find 
the system solutions when a matrix is either invertible or non invertible. It can also be 
used when the system is homogeneous or nonhomogeneous. The procedure changes, by 
elementary row operations, the original system of equations Ay = Ib to Zy = A"b. The row 
operations that transfwm matrix A to the identity matrixZ, also transforms Zto A-'. Matrix 
A and the adjoined identity matrix Z are called an augmented matrix. The following 
example illustrate the procedure. 

Example 2.2.5 Solve the system 

[: :][::] = [ ;] 
Solution: Perform the following row operations: 
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Row Operations Augmented Matrix 

( -2 )  times the first plus the second row 

(-1) times thesecond row 

( -2 )  times the secondplus the first row 

Thus 

= [: :] = [ :] 
Note that A A*’ = I: 

Example 2.2.6 A diet for heifers uses corn, soybean meal and sorghum silage as 
ingredients. The nutrient composition and daily requirements of the heifers are 
summarized in Table 2.2.1, where DM = Dry Matter DE = Digestible Energy and CP = 

Crude Protein. Find how much of each ingredient is needed to balance the diet for the 
above requirements. 
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Table 2.2.1 

Nutrients Ingredients Requirements 

Corn Soybean Sorghum 
Meal Silage 

DM, KglKg 0.89 0.89 0.29 2.80 

DE, 3.45 3.17 0.7 7.45 
McaVKg 

cp, K%m 0.089 0.44 I 0.024 0.32 

Solution: This problem maybe defined as a system of linear equations, wherey represents 
the quantity of each ingredient in the food: 

0 . 8 9 ~ ~  + 0.89~~ + 0 . 2 9 ~ ~  = 2.80 
3 . 4 5 ~ ~  + 3 . 1 7 ~ ~  + 0 . 7 0 ~ ~  = 7.45 

0.089y1 + 0 . 4 4 1 ~ ~  + 0 . 0 2 4 ~ ~  = 0.320 

Note that matrix A represents the nutrient composition of the ingredients. The 
quantity of each ingredient required to meet the heifers' requirements is vector y. Vector 
b is the heifers' daily requirement. Elementary row operations for inverting matrix A are 
as indicated below. 

0.89 0.89 0.29 

3.45 3.17 0.70 

0.089 0.441 0.024 0.320 

First: I /  0.89 times row 1 
Second: 0.089 times row 2 - 3.45 times row 3 
Third: row 3 - 0.089 times row I 
Fourth: row 1 - 1/0.352 times row 3 
Fifth: 0.005 times row 2 - 0.0205 times row 3 
Sixth: 0.0134 times row 3 + 0.352 times row 2 
Seventh: -1/0.0134 times row 2 
Eight: 1/0.00006706 times row 3 
Ninth: row 1 - 0.34 times row 3 
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0.89 0.89 0.29 I 1 0 0 
3.45 3.17 0.70 I 0 I 0 

1 0.089 0.441 0.024 I 0 0 la 
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I 0 0 1 -1.7439 0.7948 -2.2086 

_.. _.. 0 1 0 I -1.5284 -0.0332 2.8145 

0 0 1 I 9.2687 -2.3373 -1.8597, 

Then, the equivalent augmented matrices fiom the abve  operations are 

The reader may want to check the above operations. The following is the resulting 
inverse: 

A '  = 

- 1.7439 0.7948 -2.2086 

-0.1528 -0.0332 2.8145 

9.2687 -2.3373 - 1.8597 

Thus, the solution of the problem is 

'- 1.7439 0.7948 -2.20861 i . 80  

9.2687 -2.2373 -1.8597 

Then, the following is the amount of each ingredient needed to balance the diet for the 
heifers: 

y1 = 0.332 Kg of codday 
y2  = 0.225 Kg of soybean meallday 
y3 = 7.944 Kg of sorghum silagelday 

Multiple Solutions Systems 

The procedures described previously are valid only for systems with solutions of 
the form y = A - 'b ,  when matrix A is invertible. An invertible matrix is nonsingular and 
the system is nonhomogeneous. A matrix is said to be nonsingular if its row vectors and 
its column vectors are linearly independent. Otherwise, the matrix is said to be singular. 
In multiple solutions systems, matrix A is not invertible. Then, an alternative procedure 
is needed. 

As indicated previously, elementary matrix operations can be used to find 
solutions when matrix A is either invertible or non invertible and also when the system 
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2 3 1 1 1 4  2 3 1  1 1 4  2 3 1 / 1 4  

1 1 1 1  6 - 1 1  1 1  6 = 0 - 1 / 2 1 / 2 ) - 1 =  

3 5 1 1 2 2  0 1 - 1 1  2 0 1 - 1 1  2 
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r 

2 3  1 \ 1 4  1 1  1 1 6  1 1 1 1 6  

0 -1/2 1/2 I - 1  = 0 -1/2 1/2 1 - I  = 0 - 1  1 I - 2  

o o o / o  o o o / o  O O O I O ,  

is either homogeneous or nonhomogeneous. 

Example 2.2.6 Find solutions for the following system: 

Solution: This system has n = 3 unknowns and rank r = 2. A set of solutions was defined 
in Example 2.1.5. At that stage, however, it was not explained how those solutions were 
obtained. The following row operations were performed here on the augmented matrix: 

First: 2 times row 3 - 3 times row 1 
Second: row 2 - 0.5 times row 1 
Third: row 3 + 2 times row 2 
Fourth: 0.5 times row 1 + row 2 
Fifth: 2 times row 2 

The equivalent system is now 

Then 
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V =  

53 

-2k + 4 

k + 2  
b 

By solving the above equations, it was found that 

y =  2 + 2  
x = -22 + 4 

If z is made a constant k, then the set V of solutions becomes 

A set of some explicit solutions of this system is given in the table below. Note 
that these solutions are the same shown in Example 2.1.5. 

Table 2.2.2 

Variables solutions 

s,, k=O s2, k=-1 s3, k = - 2  s4, k = l  s5, k=2 

X 4 6 8 2 0 

Y 2 1 0 3 4 

2 0 - 1  -2 1 2 

Example 2.2.7 Find the set of solutions for the following homogeneous system: 

2x + 3 y  + Z  = o  
x +  y + z = o  

3x f 5y + z = 0 

This is the same system of equations of the previous example but made homogeneous. 
Therefore, writing the last equivalent form of the elementary transformations in the 
previous example is easy. Then 
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V =  

2:Characteristic Values 

- 2k 

k 

k 

By solving these equations, it is found that 

x = - 2 z  
y =  z 

If z is made k, the set Y of solutions will be 

Example 2.2.8 Solve the following system: 

1 2 - 1 9  

1 2 4 - 6  

4 

13 

1 

9 

Solution: The following elementary operations were performed here: 

First: row 3 + row I 
Second: row 2 - 2 times row 1 
Third: row 4 - row 1 
Fourth: row 3 - row 2 
Fifth: row 4 - row 2 
Sixth: 1/5 times row 2 
Seventh: row 1 + row 2 



2.3:Characteristic Equation, Roots and Vectors 

-1 -2 6 -24 I 1 

1 2 4  - 6 1 9  

55 

? -  - ... - 
0 0 0  0 1 0  

0 0 0 0  1 0  

The reader is encouraged to check the above operations. The equivalent system is now 

y, = -2y2 - 6y4 + 5 

0 0 0  0 Y3 = 3Y4 + 1 

By making y2 = k2 and y4 = k4, the set V of solutions is 

Summary 

For single solution systems of the form Ay=b, each solution for y can be 
obtained by determinant procedures. However, if the system has many variables, solving 
the system by matrix inversion procedures may be more practical. Elementary operations 
can be used to find solutions when matrixA is either invertibleor non invertible and when 
the system is either homogeneous or non homogeneous. 

2.3 CHARACTERISTIC EQUATION, ROOTS AND VECTORS 

If a system of linear equations is defined as Ay=b, where A is a square matrix of 
order n, a question arises on whether there exists any vector such that Ay is a constant 
multiple of y. This question leads to the concepts of Characteristic equation, 
characteristic roots, known also as latent roots or eigemalues and characteristic vectors, 
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called also invariant vectors, latent vectors or eigenvectors. 

The Characteristic Equation 

IfA is a square matrix of order n and y is a column vector, such that Ay=b, then 
a question is posed whether a vector y exists, such that Ay is a constant multiple ofy. 
Then 

Ay = Ay 

where A is a scalar value. If A and y satis@ this equation, then A is said to be a 
characteristic root of matrix A, corresponding to the characteristic vector y of A. 

The above equation can be rewritten as Ay - Ay = 0, which is equivalent to the 
matrix equation 

(A - AI)y = 0 

where Z is an identity matrix and 0 represents a null vector. A homogeneous equation of 
this form has a non trivial solution for vector y, only if its determinant is zero. Then 

IA - AZI = 0 

When matrix A is of order n, the expansion of this determinant yields a polynomial 
equation of degree n in A, which is known as the characteristic equation of the system. 
The polynomial is called characteristic polynomial. 

Example 2.3.1 Given matrix 

find the characteristic equation of the system. 

Solution: The expansion of the determinant is 
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I A  - a11 = 

Then, the characteristic equation is A2 + 23t - 3 = 0 

1-a 3 o 
7 I-a 5 

o -4 I-a 

Example 2.3.2 Find the characteristic equation of the system represented by the 
following matrix: 

Solution: The expansion of the determinant is here 

Then, the characteristic equation is 1 ( A 2  - 33t + 2) = 0.  
The same rules for determining the characteristic equation of system of linear 

equations, having the form Ay = b, apply far determining the characteristic equation of 
a system of linear differential equations of the form dY/dj = AY, where Y = (Yl, y2...,yn). 

Example 2.3.3 Determine a characteristic equation ofthe following system of differential 
equations: 

41 - = 2y* - 3y2 
dt 

4 2  
~ = -4y, + 3y* dt 

Solution: The above system can be written in the following matrix form: 

where Y = (Y1,yz). Then, the matrix equation is here 
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1 

/-(0.25+a) o 0.30 0 

0 -(0.15+a) 0.20 Y = o 1 0.25 0.15 -(oso+a) o 

2: Characteristic Values 

2 4  -3 [ -4 =I] 
The characteristic equation is the expansion of the determinant of the system: 

Note that the characteristic equation is a second degree polynomial because there are two 
variables in the system of differential equations. 

Example 2.3.4 The movement of DDT from a group of orange trees to soil is 25% per 
month and from soil to trees is 30%. The movement ofthe insecticide from soil to weeds 
is 15% per month and from weeds to soil is 20%. The following set of differential 
equations represents the system: 

1-0.25 0 0.30 1 
0 -015 0.20 Y 

0.25 0.15 -0.50 I 
for Y = 01,, y2,  y 3 ) ,  where y ,  is the amount of DDT in the trees, y2  is the amount of DDT 
in the weeds and y3 is the amount of DDT in soil. Determine the characteristic equation 
of the system. 

Solution: The matrix equation of the system is here 

The characteristic equation is found by expanding the determinant of the system: 
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= a 3  + 0 . 9 ~ 2  + 0.i325a = o 
0.15 -(0.50+a 

-(o.z+a) o 
0 

0.25 

Since the system is represented by three variables in yy the characteristic equation is a 
third degree polynomial. 

In general terms, if av is the ij element of matrix A, for i,j = 1,2, ..., n, then the 
characteristic equation of A is represented by the diagonal expansion of the following 
determinant: 

IA-AII = = -a)’-! +... +S,J -a)+S,=o 

where the s coefficients are the sums of certain minor determinants ofA. Specifically, by 
a diagonal expansion, s1 = a,, + aZ2 + ... +ann and s,, = / A  1 . 

Characteristic Roots and Vectors 

If matrix A is of order n, the characteristic equation of A is a polynomial of 
degree n in the variable A. A polynomial of degree n has n solutions, that is 

Each of these solutions is called a characteristic root of A. For each solution, equation 
00 = Ay must hold true. It is expected that, corresponding to the n solutions of the 
characteristic equation, there are n linearly independent vectors 

which are the characteristic vectors ofA. Then 

Av, = Aivi ; i = 1,2, ..., n 
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Derivation ofthe characteristic roots and generation ofthe corresponding vectors 
is shown in the following examples. These examples are related only to solving quadratic 
and cubic equations in A. This task is not difficult, but solving higher-order polynomials 
becomes increasingly more complicated as the degree of the polynomial increases. 
Several numerical methods are available for determining these roots. These methods can 
be handled fast and easily by personal computers and even by some pocket size 
calculators. 

Example 2.3.5 The characteristic equation of matrix A in Example 2.3.1 was 

Find the corresponding characteristic roots and vectors. 

Solution: Ifthecharacteristicequationis A* + 2A - 3 = (A + 3)(A - 1) = 0,thenthe 
characteristic roots ofthe system are the following solutions ofthe characteristic equation: 

For a matrix equation Ay = Ay, where y = fyI,y2), the characteristic vector vi for 
root A, = -3 satisfies equation Ay = -3y. That is 

By solving the above equations, it is found that y ,  = y2 . Then, any vector 

where k, is any constant value, is a characteristic vector ofA and a solution of the system. 
The characteristic vector v2 corresponding to root A, = 1 satisfies equation Ay=y, that is 
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v1 = k, 
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-3 

1 

4 

By solving the above equations, it is found that y ,  = 3y2. Then, any vector 

where k, is any constant value, is another characteristic vector of A and also a solution 
of the system, 

Defining a characteristic matrix Vof solutions is now possible: 

Note that the characteristic vectors v1 and v, are linearly independent, because 1 F'l +O . 

Example 2.3.6 The characteristic equation in Example2.3.2 was A(h2 - 3J. + 2) = 0. 
Find the corresponding characteristic roots and vectors. 

Solution: The characteristic roots of the above equation are A, = 0, h, = 1 and A3 = 2 .The 
corresponding characteristic vector for root A, = 0 satisfies equation Ay = 0, that is 

Y ,  + 3y2 = o  y 1  = -3y2 

- 4y2 + y 3  = 0 y3 = 4y2 -4 1-0 0 

Then, any vector 
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V ,  = k2 

is a characteristic vector and a solution of the system. The corresponding characteristic 
vector for root 1, = 1 satisfies equation (A - 4 y  = 0, that is 

5 

0 
-7 

Thus, any vector 

1-2 3 0 
I 7  1-2 5 - [; 
1 0 -4 1-2- 

Y ]  = 3y2 

- 4y* - y 3  = 0 Y3 = -4Y, 

-yI  + 3y2 = o  
= -: ; 7y1 - y ,  + 5y, = 0 ; y ,  = y ,  

0 

is also a characteristic vector and a solution 

V )  = k3 

of the system. The corresponding 

3 

1 

-4 

characteristic vector for root I, = 2 satisfies equation (A - 2Z)y = 0, that is 

Also any vector 

is a characteristic vector and a solution of the system. Then, the characteristic matrix V 
of the system is 
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I A  - a11 = 
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- 1 - A  - 1  -2 

1 2-a 1 = (a - i)(n2 - 1 )  = o 
- 1  -1 -h 

The vectors of the above characteristic matrix are linearly independent. 
So far, the examples presented here are related to systems with characteristic 

roots all different. If the characteristic equation has multiple roots, the problem is to 
determine a set of linearly independent characteristic vectors. In the following example 
the system has multiple characteristic roots. 

- 1 + l  -2 -2 I 

- 1  - 1  1 

Example 2.3.7 Determine the characteristic roots and vectors of the following matrix: 

0 - 2y2 - 2y3 = 0 Yl = 2Y3 

-Y, - Y2 + v3 = 0 v3 = v3 0 

- 1  -2 -21 

A = l  2 1 

1-1 ~1 - 1  0 

Solution: The characteristic equation is here 

and the roots are A, = - 1, h2 = 1, A, = 1 . Note that A, = A,. Hence, A = 1 is a multiple root 
with multiplicity 2.  For root A,  = - 1 ,  the corresponding vector satisfies equation 
(A+Ily=O. Thus 
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Then, any vector 

1 - 1  -2 -2 1 

- 1 2-1 l - b ; - =  
-1 - 1  -1 

vI  = k, 

0 -2y, - 2y2- 2y3 = 0 YI = YI 

Y ] +  Y , +  Y 3 = 0  ; Y 2 =  0 

-YI - Y ,  - Y3 = 0 Y3 = -Y1 

0 ; 

0 
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2 

-1  

1 

is a characteristic vector and a solution of the system. For multiple roots A =  1, the 
corresponding vectors satis@ equation (A - Z)y = 0: 

However, the solution must provide here two linearly independent vectors fiom the same 
root. Note that the above equations are all represented by expression yl t y2 t y3 = 0.  
Then, any vector v, such that y,  t y, t y3 = 0 , is an appropriate solution. The following 
are two possibilities: 

v, = k2 “ I  0 ; v3 = k3 

1-11 

Thus, the characteristic matrix is as follows: 

1 

- 1  

0 
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Summary 

The characteristic equation of a system of linear equations is a polynomial of 
degree n in the 1, characteristic roots and is obtained by expanding determinant 
JA - III = 0 .  Then, equation (A -A& = 0 must hold true for each of the characteristic 

roots. Corresponding to each characteristic root there is a characteristic vector v,, such 
that ( A  - 41) = 0. 



THE CALCULUS FOUNDATION OF MODELING 

The concept of a system is related to the notion of change. Depending on wether 
the system is discrete or is continuous, change is usually expressed as difference or as 
differential equations. 

The objective ofthis chapter is to present a conceptual overview of difference and 
differential equations. Because the calculus of finite differences is fi-equently overlooked 
in formal mathematical training, selected topics of series and finite differences are also 
included. 

3.1 SERIES 

The notion of a series is derived f?om the summation of the terms of a sequence. 
A sequence is a succession of terms formed according to a fixed rule or law. For example, 

1, 4, 9, 16, 2 5 ,  ... , n 2  

is a sequence, and 

2 1 + 4 + 9 + 16 + 25 + ... + n 

is a series. Then, a series is defined as follows: 

Definition 3.1.1 A series s, is the sum of the terms of a sequence. When the number of 
terms is limited, the series is said to be afinite series. When the number of terms is 
unlimited, the series is called an infinite series. 

The variable S, is a hnction of n, the number of terms. When n increases 
without a limit, the series is said to be convergenr if S,, approaches a finite limit, that is 
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where u is a positive real number. When S,, approaches infinity as a limit, the series is 
said to be divergent: 

lim S,, = 

n-- 

Example 3.1.1 Find the value of S,, in the following geometric series. 

s, = 90 (1 + 0.964 + 0.9642 +...+ 0.964"-') 

Solution: For simplicity, define u = 90 and r = 0.964. Then 

S,, = a(1 + r + r 2  +...+ rn-l)  

rs,, = u(r + r2  + r3  +...+ r? 

s,, = 

s,, - rs,, = u(l - r") 

a(l - r n >  
1 - I  

If Irl < 1, then r " decreases in value as n increases. Therefore 

U lim S,, = - 
1 - r  n- 

The following is obtained when the numerical values are replaced in the above result: 

lim s,, = 90 = 2500 
1 - 0.964 n-- 

Example 3.1.2 Show that the geometric series is divergent when Irl > I .  
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Solution: S,, can be written as follows: 

a(r" - 1) 
r - 1  

s,, = 

If I r 1 > 1 , then r increases to infinity as n increases indefinitely. Thus, S,, will become 
infinite. 

Example 3.1.3 It was found that consumption of molasses reduces pasture consumption 
of dairy heifers, as defined by the following equation I :  

y = 30.1 - 0 .501~  

where y is pasture consumption in McaVday of digestible energy (DE) and x is a molasses 
supplement in McaVday, also as digestible energy. This effect is illustrated in Fig. 3.1.1. 

31 1 

x 

+ , 

- 2 5 1 ,  1 

0 1 2 3 4 5 6 7 8 9  

Molasses, Mcal DEIDay 

Figure 3.1.1 

Find how much digestible energy as molasses the heifers need for a target total energy 
consumption of 34.6 McaVday. 

Solution: The difference between the target energy consumption of 34.6 and 30.1 and the 
pasture energy consumption when the molasses value is zero is 4.5 McaVday. Note that, 
for each Mcal of molasses, the pasture consumption of the heifers decreases by 0.501 
McaVday. Supplementing 4.5 Mcal ofmolasses will decrease pasture consumption in 2.25 

'Computed from Beaudouin, J. 
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Mcal of pasture. Therefore, an additional supplementation of 2.25 Mcal of molasses is 
needed, that will decrease pasture consumption by an additional I .  13 McaVday and so on. 
Thus, the following geometric series can be defined: 

Sfl = 4.5(1 + 0.501 + 0.5012 + 0.50 

Then, the solution is 

lim S,, = 4*5 = 9.02 McaVday 
1 - 0.501 n- m 

This solution is shown in Fig 3.1.2. 

I s, 9 

0 2 4 6 8 10 
Mo/asses, Mcal DuDay 

Figure 3.1.2 

+Pasture 

-+-- Total 

2 

Note that this system may also be defined by the following set of linear equations: 

y = 30.1 - 0.501~ 

y + x = 34.6 

Then, X = 9.02 and y = 25.6 . 
It is often important to determine the limit of a convergent series when n 

increases without a limit. Conversely, for divergent series, it is only possible to determine 
the value of Sfl for a finite value of n. Thus, it is essential to have the means for testing 
if the series is convergent or divergent. 
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One available procedure to determine the convergence of a series is called the 
test-ratio method and maybe applied as follows to any series. Let u1 + u2 +... + u"+~ +... be 
an infinite series. By considering consecutive terms, the following ratio can be defined: 

Let p be the limit of R when n becomes infinite. Then 

The following rules are here set forth without proof: 

If p < 1, the series is convergent 
If p > 1, the series is divergent 
If p = 1 ,  the test fails 

Example 3.1.4 Test the following series: 

1 1 1  c. -+-+-+... 1 1 1  l! 2! 3! 
l !  2! 3! 1 0  102 103 l*2 3*4 5*6 

A. 1 +  -+-+-+... B. -+-+-+... 

Solution: 

lim 1 = o The series is convergent % + I  ( n - l ) !  - 1 . 
Ufl n! n 

A. _ _ = - _ -  
7 P = n + m  

lim n+l B. -=-*-=- % + I  (n+l )!  10" n + l  . - = 03 The series is divergent 
7 P = n-+m 10 u,, 10"" n! 10 

1 1 lim 4n2-2n = 

4n +6n +2 
c. un = ; P = n'm (2n- 1)2n ' = (2n+1)(2n+2) 

Note that series C may be either convergent or divergent, meaning that the test failed. 
Thus, another testing procedure is needed. Often determining if a series is convergent or 
divergent is possible by comparing it term by term with another series whose convergence 
or divergence was previously determined. 
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Example 3.1.5 Determine if series C in the previous example is convergent or divergent. 

Solution: Compare series C term by term with the following convergent geometric series: 

1 1 1  1 1 1  Geometric Series: 1 +-+-+-+... ; Series C: --+-+-+... 
2 22 23 l(2) 3(4) 5(6) 

The terms of the geometric series are never less than the corresponding terms of the series 
being tested. Thus, series C is convergent. 

Summary 

A sequence is a succession of terms arranged according to a fixed rule and a 
series is the sum of such terms. When the number of terms is finite, the series is said to 
be a finite series. Conversely, if the number of terms is infinite, the series is called an 
infinite series. Infinite series are said to be convergent if the sum of its terms approaches 
a finite limit when the number of terms increases without a limit. Otherwise, the series 
are said to be divergent. Series may be tested for convergence by the test-ratio procedure. 
If this method fhils, the series may be compared term by term with another series whose 
convergence or divergence was previously determined. 

3.2 FINITE DIFFERENCES 

The topics covered in this section have been aimed at getting a basic knowledge 
on finite differences, as related to the manipulation of difference equations in Chapter 6. 

Definition of a Finite Difference 

Consider the function y =At) depicted in Fig.3.2.1. Then, a finite difference is 
defined as follows: 

Definition 3.2.1 If Ay is the difference between two values of At) and Aht is the increment 
in the independent variable, then y + Ay = At +At). 

Thus 

Ay = At + At) -At) 

Ay is called a$nite dzflerence. The symbol A is called the dzference operator. The 
geometrical interpretation of a finite difference is shown in Fig. 3.2.1. 
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I 
................................................ 

Figure 3.2. I 

Example 3.2.1 Find a finite difference expression for equation y = 2x + 3x. 

solution: 

y = 2 x 2 + 3 x  
y + Ay = 2(x + Ax)’ + 3(x + A X )  

Ay = 2 ( ~  +  AX)^ + 3 ( ~  + AX) - 2x2 + 3~ 
= Ax(4x + 2AX + 3) 

If Ax = 2, then Ay = 2(4x + 7). 
From the definition of a finite difference, it is clear that a relationship exists 

between finite differences and derivatives. A derivative is determined if the finite 
difference Ay is divided by At and the limit of this ratio is taken when At approaches zero: 

It is possible to perceive more clearly the analogy between the difference calculus 
and the differential calculus by comparing the general rules for finite differences and the 
rules for differentiation. The general rules of the difference calculus are presented below: 
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Ak = 0 . k = constant 
A[mt)] = kAAk 

AHt)  + g(t)] = AAt) + Ag(t) 
AHt)g(t)] = At)Ag(t) + g(t+At)Af(t) = g(t)AAt) +At+A.t)Ag(t) 

= J(t)Ag(t) + g(t)AAt) + AfTt)Ag(t) 

The following are the general rules of differentiation: 

The differential calculus would give the results of the difference calculus in the 
special case when At approaches zero as a limit. 

Example 3.2.2 Show that AMt)g(t)] =At)Ag(t) + g(t)AfTt) + AAt)Ag(t). 

Solution: According to the definition of a finite difference, 

AHt)g(t)] = At+At)g(t+At) -At)g(t) 
At+At)  = At) + AAt) 
g(t+At) = g(t) + Ag(t) 

After the proper replacements, the following is obtained: 



74 3:The Calculus Foundation of Modeling 

Note that it is possible to obtain the derivative of the product of two hnctions by 
dividing the difference of the product by At and making this to approach zero as a limit: 

The following are the differences of special functions, which are also analogous 
to their derivative counterparts: 

A[kY = k x ( k h ” - l )  ; k = constant 
A[.? = e”(e“-1) 

A[sin kx] = 2sin(kAx/2)cosk(x+Ax/2) 
A[COS kx] = -2~in(kA~/2)~ink(~+Ax/2) 

A[ln x] = In(] +Ax/x)  
A[log, X] = log,(l +Ax/x)  

Example 3.2.3 Show that A[sinkx] = 2 sin(kAx/2)cosk(x+Ax/2). 

Solution: According to the definition of a finite difference 

A[sin kx] = sink(x+Ax) - sin kx 
= sinA - sinB 

This difference formula may be written as2 

= 2 sin (kAx/2) cos k(x +Ax/2) 

Subscript Notation 

Consider the functionfit) and make the transformation t = a + nAt for variable 
C. Defining a new function y ,  is now possible, such that y, =Aa + nAt). Then, the finite 

*See any manual of mathematical tables 



3.2: Finite Differences 75 

difference can be written as 

Ay, = AAa+nAt) 
= Aa+nAt+At) -Aa+nAt) 
= Aa+(n+I)At) -Aa+nAt) 

If a=O andAt = 1, then t = n  andthenewindependent variablebecomes ncN[O,m).Now 
the finite difference can be redefined as follows: 

Ayn = An.1) -An) 
= Yn+l -Y, 

Thus, Ay, is the difference between two values of the dependent variable. 
Notethat, because At = 1 , thedifference Ay, is equivalent tothe first derivative &dt 

in the differential calculus. Note also that y, represents a sequence of values of the 
dependent variable, defined over the discrete time scale N. As shown below, the rules of 
the difference calculus are not changed by the subscript transformation: 

A[k] = 0 ; k = constant 
",I = kAY, 

NY,Z,l = Y p ,  + Z,+lAY, 

Alv,+z,I = AY, + hz, 

A k ]  = - zflAyfl 

Z 2 n  + 1 

A[e"] = e" (ek-1) 
A[ln n] = In ( l+ l ln )  

A[log, n] = log, (1 + l/n) 
A[sin kn] = 2 sin (W2) cos k(n+1/2) 
A[cos kn] = -2 sin (k/2) sin k(n+1/2) 

A[k"] = k"  (k-1) 

Example 3.2.4 Show that Ay,,zn = y,Az, +zntlAyn. 

Solution: According to the definition of a finite difference, Ay = yn+, -yn. Then 

AY?, = Yn+lZ,+l - Y?, 
z, = Zn+l  - 4 
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Example 3.2.5 The rate of change of an insect population is described by the following 
difference equation: 

where y is number of insects and n is periods in weeks. Find the population growth 
equation. 

Solution: It foliows that: 

Y ,  = Y , _ ~  + 500(2-") 
Y ,  = yo + 500(2-') 

Y2  = yI + 500(2-2) = yo + 500(2-') + 500(2-2) 

Y ,  = yo + 500(2-') + 500(2-*) + ... + 500(2-") 

This solution includes the series 

s, = 2-1 + 2-2 + _.. + 2-" 
2sn = 1 + 2-1 + ... + 2-("+1) 

s, - 2s,  = - 1  + 2-" 
s = 1 - 2 - n  
n 

Then 

Y ,  = ,v, + 500(1 - 2-7  

This is a general solution for the given difference equation, where y ,  is the 
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summation constant. If a particular value is assigned to yo , then the solution is called a 
particular solution. A particular solution for yo = 1000 is shown in Figure 3.2. 

A ’  
A 

A 

4 

4 

+ 
--t----t----i-----l 

1 2 3 4  
Periods 

Figure 3.2.2 

Example 3.2.6 A rancher sells each month 3.6 % of his feedlot steers and buys 90 new 
animals. Define a difference equation and the state equation for this system. 

Solution: The difference equation is given by the difference of what the rancher selIs and 
what he buys: 

where y is number of individuals and n is periods in months. Then, it follows that: 

Yn+l = (1 -0.036) y, + 90 = 0.964 yn + 90 
y1 = 0.964 yo + 90 

yz = 0.964 y ,  + 90 = (0.964)2 yo + 0.964(90) + 90 

y, = (0.964>” yo + 90[(0.964)’+’ + (0.964)’-2 + ... + (0.964)”-”] 

The following geometric series is included in this solution: 
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S, = 90[1 + 0.964 + 0.9642 + ... + 0.964"-') 
- 90(1 - 0.964") 

1 - 0.964 
= 2500(1 - 0.964") 

Then 

y,  = (0.964)" yo + 2500(1 - 0.964") 

= 2500 + (yo - 2500) 0.964" 

The constant yo is the initial number of animals in the ranch. A particular solution for 
yo = 1000 and the corresponding difference equation are shown in Figure 3.2.3. 

O J  T t o  
0 1 2 2 4 3 6 4 8 6 0  

Periods 
Figure 3-23 

Number 
Rate 

In the work that follows only the subscript notation will be used. 

Summary 

A finite difference is defined as Ay =At +At)-At). The limit of the finite 
difference divided by At is a derivative when At approaches zero. A finite difference can 
be redefined in a subscript notation as Ayn =yn+ ,  -yn .  
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3.3 DIFFERENTIALS 

The derivative of the function y = f i x )  is represented by the symbol &/&. This 
symbol should not be considered as an ordinary fraction with dy as numerator and dx as 
denominator but as a representation of the limit of the quotient Ay/Ax as Ax approaches 
zero as a limit. As will be shown, giving a geometrical meaning to dy and dx separately 
is important. 

As exposed in Fig. 3.3.1, dy/& = tan p = RT/PR. Note that segment RT=dy and 
segment PR=&. Note also that segment RQ=Ay+dy, except for the particular case ofthe 
straight liney=a+bx. Conversely, always = Ax . Then 

dy =f’(x)dx = f ( x ) A x  

The symbol dy is called the differential offix), the symbol dx is called the diflerential of 
the independent variable x and the symbol d is called the differential operator. 

As illustrated above, the differential dy is not equal to the increment of the 

0; x 
Figure 3.3. I 

function Ay. However, if Ax is small enough, dy could be an acceptable approximation for 
Ay. Usually, calculating differentials and using this value rather than the corresponding 
increment is simpler. This is shown in the following example. 

Example 3.3.1 
function of crude protein in forage, is given by the following equation 3: 

The daily average consumption of forage by a group of steers, as a 

3Vohnout, K., Unpublished. 
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X 

0.0701 + 0.0102~ 
Y =  

The variable y is dry matter consumption in grams per unit of metabolic body weight 
(w0.75) and the variable x is percent crude protein. Find the difference between the 
differential of the fiulction and the corresponding consumption increment, when crude 
protein is increased fi-om 5 to lo%, from 10 to 1 1 % and from 10 to 15%. 

Solution: The frst  derivative of the mathematical model is 

2, 0.0701 

c.& (0.0701 + 0.0102~)~ 

If dy = f x A X  and A? =f lx l ) -Ax2)  then, when protein is increased from 5 to 10% for 
AX = 5 ,  the following results are obtained: 

5 = 23.90 0.070 1 

@ = I [0.0701 +0.0102(5)]* 

Ay = 10 - 5 = 16.82 
0.0701 +0.0102(10) 0.0701 +0.0102(5) 

Thus, @ - Ay = 7.08. When protein is increased fi-om 10 to I I% for a AX = 1 ,  the 
following relations are obtained: 

= 2.37 0.0701 

(0.0701 +0.1020)2 
d Y =  

= 2.23 11 10 
0.0701 +0.1122 0.0701 +0.1020 

Ay = 

Thus, dy - Ay = 0.14. When protein is increased from 10 to 15% for a AX = 5, the 
following expressions are obtained: 

= 11.83 0.3505 
(0.0701 + 0. 1020)2 

15 10 
0.0701 +0.1530 0.0701 +0.1020 

d y =  

= 9.12 Ay = 
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Thus, Q - Ay = 2.71 .Note that the difference between dy and hy increases with the 
increase of Ax. Note also that, because of the diminishing returns nature of the function, 
as the independent variable increases, the error introduced by the L& 
estimate decreases. These relationships are shown in Fig. 3.3.2. 

75 r 

60 
C 
.9 3 45 

u) 30 
f 
8 15 

E 

0 
0 2 4 6 8 10 12 14 16 

Crude Protein 
Figure 3.3.2 

Example 3.3.2 The following equation was fitted to the lactation curve of a group of dairy 
cows4: 

y = e -484r(298 +41 It)  

where y is milk production, Kg/month and t is months. Determine the difference between 
the differential of the function and the corresponding increment in milk production 
between 0.5 and 1 month and between 0.5 and 1.5 months in the lactation curve. 

Solution: The first derivative of the lactation curve equation is 

Then, the difference in milk production between 0.5 and 1 month is given by the following 
expressions: 

Vohnout, K., Unpublished 
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dy = 0.5e -0.484(0.5)[267 - 199(0.5)1 = 65.7 

Ay = e -0.484c298 + 4 I I] - e -48410.5)[298 +4 1 1(0.5)] = 4 1.69 

Thus, dy - Ay = 24.0. The difference in milk production between 0.5 and 1.5 months is 

dy = e-o.484(o.5)[267 - 199(0.5)] = 131.4 

Ay = e -484(0.15)[298 + 41 1( 1.5)J - e -484(0.5)[Z98 +4 L 1(0.5)] = 47.19 

Thus, C& - A y  = 84.2. 
Data are seldom recorded continuously. Most often, experimental data are 

recorded at given intervals of time. Thus, information between data points is lost. As 
shown, understanding differentials and increments is important in the design of system 
experiments, in relation to the manipulation of errors introduced by the intermittent 
collection of data and in relation to the analysis of results. 

Summay 

The symbol dy/& is not an ordinary fraction, but the representation of the 
derivative of a hnction. However, 4 and & have a geometrical meaning if considered 
separately that is, always du = hw but dy f- Ay, except for the straight line case. Since 
obtaining differentials is simpler than obtaining increments, when Ax is small, could 
be an acceptable approximation for Ay . Data is seldom recorded continuously. Thus, the 
difference between dy and Ay reflects the amount of information lost between increments 
in the independent variable. 

3.3.4 DIFFERENCE EQUATIONS 

The reader has already been introduced in the previous section to the notion of 
difference equations. Thus, it should come as no surprisethat a relationship exists between 
differential equations and difference equations. If a differential equation is an equation 
involving derivatives or differentials, then a difference equation is one involving finite 
differences. 

A differential equation is the limit of a difference equation when the time 
increment At approaches zero as its limit. This relationship is shown here using a first 
order constant coefficients linear equation: 
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where Ay = yn+l  - y , .  Then, the first order difference equation may be written as 

Yn.1 -J'n - a y ,  = b 
At 

yn+l  - (1  -aAt)y ,  = bAt 

As will be shown, the solution of a differential equation is also the limit of a difference 
equation when the time increment At approaches zero as its limit. 

The solution of the first order constant coefficients differential equation is 

and the solution of the corresponding difference equation is 

b 
a 

where t/At = n. The following definitions are from the infinitesimal calculus: 

lim [ 1 + :) = e = 2.71828 ... n- m 

If n = l/At, then 

Thus 
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For the purpose of this book, difference equations are classified according to the 
following criteria: 

The order and degree of the equation 
Linearity or non linearity 
Inclusion or non inclusion of the dependent variable in each term of the equation 
Inclusion or non inclusion of the time variable in one or more terms of the equation 

Combinations of all the above factors are possible. Of the above list, order and 
linearity are the most relevant for further chapters and are also the most often used to 
name a discrete system. 

Note that two or more difference equations may form a system. In such case, the 
system is called multidimensional. 

Order and Degree 

The order of difference equations is determined by the sequence of successive 
differences of a fimction and is defined as follows: 

Definition 3.4.1 The order of a difference equation is the difference between the largest 
and the smallest argument of the hnction involved. If n+m is the largest argument and 
n is the smallest, then the order is (n+m)-n = m. 

Thus 

AY, = Yn+l - Y ,  

A2Yn = AYn+l - AY, 

A3Yn = A2Yn+, - A*& 

- 
- Yn.2 - Yn+l - c v , + l  - Y,)  
= Y,+2 - 2Y,+, + Y ,  

= Yn+3 - 2Yn+2 + Y,+1 - bn+2 - 2Y,+l + Y,) 
= yn+3 - 3 ~ , , + ~  + 3 ~ , , + ~  - Y ,  

Successive differences as the above can be represented as a difference table. A 
difference table is a table that gives successive differences of y =An),  for n = 1,2, ... ,. 
The entries in each column after the second are located between two successive entries of 
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the preceding column and are equal to the difference between these entries. A difference 
table is completely determined when only one entry in each column beyond the first is 
known. 

As shown in the difference table, entry A2yl in the fourth column is located 
between entries Ayl and Ay2 of the third column, which means that A2yl = Ay, - AyI , 
A3y2 = A2y3 - A2y2 and so on. The first entry in each column is called a Zeading dzffeerence 
for the column. Thus, the leading difference for the successive columns are 
AY,, A”,, ... ,A5y0. 

Note that the first value of n in the difference table is 0. However, the first value 
can be any integer number, either positive or negative. Note also that the subscript in each 
entry relates that entry to the corresponding value of the independent variable n. 

Table 3.4.1 

Example 3.4.1 Define the n difference in equation y, = n - n and the corresponding 
difference table. 
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Solution: 

Ay, = (17.1)~ - (n+1)2 - ( n 3 - n 2 )  = 3n2 + n 
A*y, = 3 ( r ~ + 1 ) ~  + (n.1) - (3n2+n) = 6n + 4 

A3y, = 6(n+l) + 4 - (6n+4) = 6 

Table 3.4.2 

The concept of order is further illustrated in the following examples. 

Example 3.4.2 Determine the order of the following equations: 

Y - Y,_, = 2-” 

2 ~ ~ + ~  + 3 ~ , + ]  = sin @,+J 

Order n-(n-1) = 1 
Order n + l  - (n-1) = 2 
Order n+2 - (~7.1) = 1 
Order n+2 - n = 2 

y,,, = 2-“y, t 

+,+2 + 3~,,+1 + Y ,  = 0 

Example 3.4.3 The evolution of a population of birds is given by the following state 
equation: 

y ,  = 780 - 1015(0.573)” + 265(0.240)” 
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The variable y is the number of individuals and the variable n is periods in years. Define 
the corresponding second order difference equation. 

Solution: The following is the first order difference equation: 

y,+, - y, = 780- 101 5(0.575)n” +265(0.240)”” -[780- 101 5(0.575>”+265(0.240>n] 

= 1015[(0.575)”(1-0.575)]-265[(0.240)”(1-0.240)] 

The following is the second order difference equation: 

Y,+, - j ~ ,  = 780- 101 5(0.575>”+2+265(0.240)”‘2-[780 - 101 5(0.575”+265(0.240)”] 

= 1015[(0.575)”(1 -0.575,)] -265[(0.240)”(1 -0.2402)] 

This second difference equation must now berestructured. For such, the state equation and 
the two difference equations can be expressed as follows: 

y, = c - A  + B 
Ay,, = a,A - b,B 

A2yn = a$ - b,B 

By selecting any two equations in the system, solving for the A and B unknowns, replacing 
these values in the third equation and replacing the numerical values of c, A, B, 
a,, a,, b,, b,, the second order difference equation looks now as follows: 

Y,+, - O.815yn+, + 0 . 1 3 8 ~ ~ ~  = 252 

The reader is encouraged to check the above calculations. This is a tedious 
procedure. However, a shortcut is available. Defining a characteristic equation from the 
state equation of the system is possible: 

whereh isacharaderisticroot. Then Y , , + ~  -0.815yn+, +0.138y, = c .  Tofindthenumerical 
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value for c, some numerical values for Y,+~, Y , , ~  and y ,  are needed. For n = 0, the 
following equations can be defined: 

y,, = 780 - 1015 + 265 = 30 
y,,, = 1015(1-0.575) - 265(1-0.240) + Y ,  = 260 

Y ~ + ~  = 1015(1-0.5752) - 265(1-0.2402) + y, = 460 

Then c ~460-0.815(260)+0.138(30) =252 
As referred earlier, systems are named according to the order of the difference 

equations of their mathematical model. Thus, the system of Example 3.3.3 is a second 
order system. 

The following is the definition for degree: 

Definition 3.4.2 The degree of a difference equation is the value of the largest exponent 
affecting the term of largest order in the equation. 

Example 3.4.4 Determine the degree of the following equations: 

~y, ,~ )~  = ( I  +y,+J2 Second degree 
First degree 

Third degree 
Y,,, +Y,  = 0 

CV,+J’ -Y,  = CV,+J4 

Linearity 

A linear difference equation may be defined as follows: 

Definition 3.4.3 A linear difference equation is one in which the dependent variable and 
any of its differences are of no degree greater than one. 

The above definition implies that the dependent variable shouldnot be expressed 
as products, logarithms, trigonometric functions or any other non linear terms. If a 
difference equation contains a non linear term, it is called a non linear difference 
equation. As indicated before, discrete systems are named accordingly. Thus, a linear 
difference equation of order m is an equation having the form 
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where gi(n) and An) are functions of the independent variable or constants. 

I 
only Linear ' 

1 ~ e r m s i n t h e  1 
Dependent 1 Variable j 

I ' May Contain 1 
nonunear ~ 

1 Termsin the 
~ Dependent ~ 

Variable A 
T 

i -  

Figure 3.4. I 

Example 3.4.5 Determine the linearity of the following equations: 

Y , + ~  - + 6 ~ , + ~  + 3y, = 0 Linear 

Non Linear 
Non Linear 
Linear 

Non Linear 

2 
YJn+l  = Yn-1 

ynt l  - a(n)y, = r(n) 
Y,,, - y ,  + ny,+y, = 0 

2 -  3 
Yn+d'n - Yn+l 

In some cases non linear equations can be linearized by proper transformations, 
as shown in the next example. 

Example 3.4.6 Linearize the non linear equations in Example 3.4.5. 

2 .  Solution: For equation y2,+1 =Y,-~ .  

h Y ,  + lny,,, - 2lnY,-l = 0 
vntl + v, - 2 ~ , - ~  = 0 ; v, = lny, 

For equation y ~ , , ~  - y ,  + nyn+ly, = 0 :  
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+ n  = O  1 1  

Y n  Y ~ + I  
v,,, - v n  = n ; v, = l/y, 

For equation y,+,y,' = y,"+, : 

lny,,;! + 21nyn = 3lnYn+l 
v,,, - 3vnCl + 2vn = 0 ; vn = lnyn 

Example 3.4.7 The population of a protected bird is represented by the following state 
equation: 

y, = (0.606)"(450n + 250) 

where y is number of birds and n is periods in years. Find out if the corresponding 
difference equation is linear or non linear. 

Solution: The graphs of the state equation is shown in Fig. 3.4.2 and the corresponding 
difference equation follows. 

"5"; 0 0 

$300 "i 
c i:i 4 

4 
75 

0 

0 

0 
150 p 

O U  

Birds 
+ Rate 

0 2 4 6 B 10 

Periods 

Figure 3.4.2 
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y, = (0.606)”(450n + 250) 

yn+] = (0.606)””[450(n+l) + 251 

= 0.606(0.606)”(450n + 250) + 450(0.606)”” 
= 0 . 6 0 6 ~ ~  + 450(0.606)”” 

Then y,,] - 0 . 6 0 6 ~ ~  = 272.7(0.606)”. This is a first order linear equation. 

Example 3.4.8 The number of colonies of some bacteria species in a Petri dish, was found 
to grow according to the following state equation: 

1 

0.0169 + 0.0279(0.9449)” 
Y n  

where y is the number of colonies and n is periods in hours. Determine if the 
corresponding difference equation is linear or non linear. 

Solution: The following is a simple procedure: 

1 1 
Yn.1 = 

- 

0.0169 + 0.0279(0.9449)”+’ 0.0 169 + 0.0279(0.9.449)(0.9449)” 

From the state equation, it is found that 0.0279(0.9449)” = (1 -0.0169yn)/yn. By 
replacing this value in the above equation, the following is obtained: 

Yn 
= 0.0O0931yn + 0.9449 

Thus 

= o  Yn 
- 0.000931yn + 0.9449 

This difference equation isnon linear. The state equation and its corresponding difference 
equation are shown in Fig. 3.4.3. 
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Homogeneity 

The property of homogeneity refers to the distribution of the dependent variable 
in the difference equation. Consider a linear difference equation of the form 

where g,(n) represents hnctions of the independent variable or constants, f ln )  is a 
function of time or a constant and n+m is the order of the difference equation. 

~ Dependent I 
j Variable in 1 

Each Term J 

- - - - _ - _  

1 Homogeneous 
I 

I &pendent 
I Variable not 
i - -- - - ~  

I 
I 

Figure 3.4.4 
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Then the concept of homogeneity is defined as follows: 

Definition 3.4.4 A difference equation is called homogeneous if the dependent variable 
appears exactly once in each term of the equation and the term fin) = 0. 

Definition 3.4.5 If some terms of the equation do not contain the dependent variable, the 
equation is non homogeneous. 

Example 3.4.9 A sample of homogeneous and non homogeneous equations. 

Yn+2 + nyfl+l +4n, = 0 Non homogeneous 
s h y f l + ,  = -cosnyfl Homogeneous 
Y n + l + Y f l  = 4 Non homogeneous 

Non homogeneous 

Non homogeneous 

Yn+2 +Yfl+l + n  = 0 
b 

n n2 

c 
Yn+l + 7 Y f l + -  = 0 

A complementary definition applies here: 

Definition 3.4.6 If all the g,(n) terms ofthe equation are constants, the equation is called 
a difference equation with constant coefficients. 

Example 3.4.10 An insect control program was tested for one year in a pasture field. The 
following state equation was fitted to the data: 

y,, = 2193(0.6686)” - 1943(0.5359)” 

where y is the number of bugs per square meter and n is months. Determine if the system 
is homogeneous or non homogeneous. 

Solution: The following is the system difference equation: 

Y,,+~ - 1.2045yfl+, + 0 . 3 5 8 3 ~ ~  = 0 

The dependent variable appears exactly once in each term of the equation. Therefore, the 
system is homogeneous with constant coefficients. The reader is encouraged to check that 
the above difference equation corresponds to the state equation. 
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Example 3.4.11 Determine ifthe difference equation in Example 3.3.7 is homogeneous 
or non homogeneous. 

Solution: Equation Y , , ~  - 0 . 6 0 6 ~ ~  = 272.7(0.606)” is non homogeneous because the 
dependent variable does not appear exactly once in each term. Note that the term 
272.7(0.606)” f 0 and does not contain the dependent variable. 

The Time Variable 

Time is always the independent variable of a system and, unless otherwise 
specified, is the only independent variable of the system. The following definitions are 
related to the time variable: 

Definition 3.4.7 When one or more terms of the equation depend explicitly on the time 
variable, the equation is called a time variant difference equation. 

Definition 3.4.8 If none of the terms of the equation depends explicitly on the variable 
time, the equation is called a time invariant diflerence equation. 

Difference 
Equations 

None of the 

Time Variant Time Invariant 

Figure 3.4.5 

Example 3.4.12 Some time variant and time invariant difference equations: 

~ n . 2  + n ~ n + l + 4 n n  = 0 Time variant 
sinnyn+, = -cosnyn Time variant 
Y,,I+Y” = 4 Time invariant 

Time invariant ~ n . 2  +Yn+l + Y n  = 0 
b C yn+l +-y +- = 0 

n 2  n 2  
Time variant 
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Example 3.4.13 An insect population was monitored for one year in a pasture field. The 
following is the state equation fitted to the data: 

y ,  = 152 + 149n2.28(0.440)N 

where y is the number of bugs per square meter and n is months. Determine if the 
corresponding difference equation is time variant or time invariant. 

Solution: The above expression has the following first order difference equation 

Y"+I - - 152 + 149(n+1)2.28(0.440~+' 

= 152 + tyfl - 152) 

' 2 . 2 i  2.28 

= 152 +0.440( *) n y ,  - 152(0.440( :L) 

Thus 

Y , , ~  - 0.440 - y, = 152 - 66.9( ?)2-28 ( 1 2'28 

This is a first order, non homogeneous time variant difference equation, 

Example 3.4.14 The population of an animal species is represented by the following state 
equation: 

y ,  = 309 + 957 - cos -(n - 0.3648) (6)" [2; 

where y is the number of animals and n is the number of generations. Determine if the 
corresponding difference equation is time variant or time invariant. 

Solution: The following is the difference equation representing this system: 
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y,,, + OSy,,, + 0 .25~"  = 540 

This is a second order, non homogeneous time invariant equation. 

Summary 

Difference equations are expressions involving finite differences. The order of 
a difference equation is the difference between the largest and the smallest argument of 
the hc t ion  involved. If n+m is the largest argument and n is the smallest, then the order 
is (n+m)-n = m. The degree is the value of the largest exponent corresponding to the 
largest order term. A linear difference equation is one in which thedependent variableand 
any of its differences are not of degree greater than one. Otherwise, the equation is non 
linear. A difference equation is called homogeneous if the dependent variable appears 
exactly once in each term of the equation, otherwise is non homogeneous. If one or more 
terms depend explicitly on the variable time, the equation is time variant. If none of the 
terms depends explicitly on the time variable, the equation is called time invariant. 
Discrete systems are often named according to the type of difference equation of the 
mathematical model assigned to define the system. 

3.5 DIFFERENTIAL EQUATIONS 

A differential equation is an equation involving derivatives or differentials. In 
this book, difference equations are classified according to the same criteria defined 
previously for difference equations: 

The order and degree of the equation 
Linearity or non linearity 
Inclusion or non inclusion of the dependent variable in each term of the equation 
Inclusion or non inclusion of the time variable in one or more terms of the equation 

Continuous systems are usually named according to the type of differential 
equations of the mathematical model of the system. 

Order and Degree 

The order of differential equations is defined as follows: 

Definition 3.5.1 The order of a differential equation is that of the derivative of highest 
order in the expression. 
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The order of a differential equation is determined by the sequence of successive 
derivatives of a function. Thus, the first derivative of a function determines a first order 
differential equation. The second derivative determines a second order differential 
equation and so on. 

Example 3.5.1 Find the successive derivatives and the order of equation y = 3x4 

Solution: 

Itv = 1 2 x 3  First order 
a% 

= 36x2 Second order 

L( A( 3)) = 2 = 7 2  Third order 
& & &  

d d d d y  
& d 5 C a % d x  ---- ( ( ( ) ) )  = $ = 72 

Fourth order 

Example 3.5.2 The reader may want to confirm the order of the following equations: 

First order 
dx 

".4(g) 3 + 4 y = o  

&= 

___ d3y + y2(1+ x 4 )  = 0 
ak3 

Second order 

Third order 

3 ( $ ) 2  = ( 1 +  ( %I2] Second order 

In general terms, the order of a differential equation is related to the dimension 
and complexity of a system. This statement is illustrated in the following example. 

Example 3.5.3 The growth of the population for two species of insects is given by the 
following state equations: 

y1 = 305e0.'0' First species 
y2  = 563e O.Ogt Second species 
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The variabley is the number of individuals and the variable t is time. Find the differential 
equations for each of the two species of insects and for the two species combined as a 
single system. 

Solution: The following are the first order differential equations for the above species: 

- dYi = 305e0.'0'(0.10) 
dt 
- 4 2  = 563e0.08'(0.08) 
dt 

These equations can also be expressed as follows: 

o.loyi = 0 dYi - -  
dt 

_ -  42 0 . 0 8 ~ ~  = 0 
dt 

The state equation, for the two species combined, is given by joining the state equations 
of each single species. This state equation and its first and second derivatives are shown 
below: 

y = 305e0.'0' + 563e0.08' 

9 = 305e0.'0'(0.10) + 563e0.08'(0.08) 
dt 

dt2 
= 305e0.10'(0,10)2 + 563e0.08r(0.08)2 

The second derivative must now be restructured. For such, the above system of equations 
can be expressed in the following terms: 

y = A + B  

d y = a A + b B  
dt 

= (a)2A + (b)2B 
dt2 
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By selecting any two equations in the system, solving the A and B unknowns and 
replacing these values in the third equation, the second order differential equation 
becomes 

~ d2Y - (a+b)- dy + aby = 0 
dt2 dt 

Thus, the second order differential equation is 

dY 
dt2 dt 
___ d2y - 0.18- + 0 . 0 0 8 ~  = 0 

The second order differential equation represents the two insect populations 
combined, which is a larger and more complex system than any of the single species 
represented by the first order differential equations. The reader is encouraged to check all 
the above operations. 

Note that it is possible to define a characteristic equation from the state equation 
of the system. By defining the characteristic equation of the system, it is possible to 
determine its differential equation directly from the state equation. 

The following definition stands for degree: 

Definition 3.5.2 The degree of a differential equation is the value of the largest exponent 
affecting the largest order differential term. 

Example 3.5.4 Determine the degree of the following equations: 

( $)2 = ( I +  $ 3  

(3)’ = (Y+ 34 

Second degree 

First degree 

First degree 

Third degree 
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Linearity 

A linear differential equation is defined as follows: 

Definition 3.5.3 A linear differential equation is one in which the dependent variable and 
any of its derivatives are of no degree greater than one. 

The above definition can be represented by the following expression: 

where g,(t) represents functions of the independent variable or constants and n is the 
order of the differential equation. This means that the dependent variable should not be 
expressed as products, logarithms, trigonometric functions or any other non linear terms, 
such as 

If the differential equation contains a non linear term, it is called a non linear 
differential equation. As indicated in Fig. 3.5.1, systems are named accordingly. 

Figure 3.5. I 
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Example 3.5.5 A sample of linear and non linear differential equations: 

__ d2x = 8x Linear 
dt2 

dy + 2 ~ y  = e-xZ Linear 
ak 

?? ' y 2  Non linear 
dt 

- -  ak t2X = 0 Linear 
dt (s)~ + y e y =  1 + x  Non linear 

Non linear d2x 3 x- = t 
dt2 

Example 3.5.6 The following state equations were obtained from "in situ" digestibility 
data of forage samples5: 

where y is percent digestion and t is time in hours. Determine ifthe differential equations 
of the proposed state equations are linear or non linear. 

Solution: The first and second derivatives for the first state equation are shown below: 

.& = 0.01 13(30.6)e -0.01131 + 0.0928(38.7)e -0.0928' 
dt 

- -  d2y - -(0.01 13)2(30.6)e -0.0113' - (0.0928)2(38.7)e -0.928' 

dt 

'Computed from San Martin, F.A. 
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The state equation and its derivatives can be expressed as follows: 

where A and B are the exponential expressions. By selecting any two of the above 
equations, solving the A and B terms and replacing these values in the third equation, the 
differential equation representing the system is obtained: 

- d2Y + (a + b)- dv + aby =abc 

- d2Y - 0.1051- dv + 0.00105~ = 0.0785 

dt2 dt 

dt2 dt 

The first mathematical model is linear. Note that the characteristic equation of the system 
is here 

(A + a)(A + b) = A2 + (a + b)A + ab 
(A - O.O113)(A - 0.0928) = A2 - 0.10511 + 0.00105 

Note also that the characteristic equation can be determined directly from the state 
equation. As disclosed before, determining the characteristic equation becomes a shortcut 
€or determining the system differential equation. 

The following is the first derivative of the second state equation: 

cjv - 0.0743(0.0335)e -0.0743' 

dt (0.0157 + 0.0335e0.074312 
_ -  

The reader is encouraged to establish that this equation can also be expressed as follows: 

3 + 0.00117y2 - 0.0743~ = 0 
dt 
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The second mathematical model is non linear and is known as the Zogistic equation. The 
logistic equation is widely used to describe growth processes, mainly in bacterial 
populations. “In vitro” and ‘‘in situ” processes are related to bacterial digestion. As 
illustrated in Fig.3.5.2, both models fit the data accurately, however the linear model is 
a first choice. 

A Data 

---- Non Linear 

Linear 

- -7-7 - 1  -1 0 ;-- _ _  - 

0 20 40 60 80 100 120 
Time, Hours 

Figure 3.5.2 

The statistical results for the two models are shown in the following table: 

Table 3.5.1 

Model R 2  SYX 

Linear 0.999 0.782 

Non Linear 0.974 2.87 

As disclosed in the example, linear mathematical models can often describe 
agricultural data at least as accurately as non linear models. Since agricultural research 
is an empirical science and linear models are easier to manipulate than non linear, the 
linear approach may be the first modeling choice. 

Homogeneity 

Given a differential equation of the form, where g,(f) represents functions of the 
independent variable or constants, At)  is a function of time or a constant and n is the 
order of the differential equation 
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the following definitions apply: 

Definition3.5.4 A linear differential equation is called homogeneous when the dependent 
variable appears exactly once in each term of the equation and the term f i t )  = 0. 

Definition 3.5.5 When some terms in the equation do not contain the dependent variable, 
the equation is called non homogeneous. 

Definition 3.4.6 If the g,(x) expressions represents only constant terms, the equation is 
called a differential equation with constant coeficients. 

I j Differential 1 
'1 Equations r - ~ _ _ _  - 
I 

I - - -  
~ 

I Dependent Dependent 
' Variable in ~ Variablenot 

in Each Term Each Tern _ _ ~  ~ - I  
I 

- -__I__ 

7- L -  

I 
I __- 

I I 

I Non 
j Homogeneous I Homogeneous I 

Figure 3.5.3 

Example 3.5.7 A sample of homogeneous and non homogeneous differential equations: 

Homogeneous 

s i n x 9  = -cosx y Homogeneous 
dx 

- d2Y + - dv + x  = o  Non homogeneous 
d k 2  dx 

Non homogeneous 
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Example 3.9.8 The difference between the number of cattle, adjusted by the method of 
put and take and the carrying capacity of a pasture land is given by the state equation 

y = e -0.691 [ lO.Oco~(2.09t) + 14.4sin(2.09t)] 

where y is the error between real numbers of cattle and carrying capacity and t is time in 
years. Determine if the differential equation of the system is homogeneous or non 
homogeneous. 

Solution: The reader is requested to find the first and second derivatives and rewrite the 
differential equation in the proper manner, as it was done in previous examples. Hint, 
make 

A = e -0~069zcos(2.09t) 
B = e-o.6% sin(2.09t) 

Then, the following is the second order differential equation of the system: 

d2y + 1.39- @ + 4 . 8 5 ~  = 0 
dt2 dt 

This is a homogeneous differential equation with constant coefficients. 

Example 3.9.9 The rumination pattern of a group of steers can be described by the 
following state equation6: 

= 239e -1.341 tl.18 

where y is percent of animals ruminating and t is time in hours after feeding. Determine 
if the differential equation of the system is homogeneous or non homogeneous. 

Solution: The following is the first derivative of the state equation: 

- 

6Vohnout, K., Unpublished data. 



I06 3 : n e  Calculw Foundation of Modeling 

This equation can also be written as 

& + (  1 . 3 4 - F ) Y  = 0 
dt 

which is homogeneous. 

The Time Variable 

As with difference equations, time is always the independent variable of a system 
and is the only independent variable of the system, unless otherwise specified. The same 
definitions applied to difference equations also apply to differential equations: 

Definition 3.5.7 When one or more terms depend explicitly on the time variable, the 
differential equation is called time variant. 

Definition 3.5.8 If none of the terms depends explicitly on the variable time, the 
differential equation is called time invariant. 

' OneorMore I 
Terms Depend 

, Expljcitty I 

i-QD!T&lG' - 

Figun? 3.5.4 

From the above definitions, any differential equation with constant coefficients, 
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such as equation in Example 3.5.8, is clearly always time invariant: 

I07 

Is d2Y + 1.39- 4 + 4 . 8 5 ~  = 0 
dt2 dt 

Conversely, the differential equation in Example 3.5.7 is time variant: 

An additional example follows. 

Example 3.5.9 The following is a fitted equation fm the feeding pattern of a group of 
feedlot steers7: 

where y is percent of steers eating and t is the time of the day in hours. Determine if the 
corresponding differential equation is time variant. 

Solution: The set of derivatives of the system is 

By using the procedure outlined in Example 3.5.6, the differential equation ofthe system 
was determined as follows: 

Computed from Ray, D.E. and R.E. Roubicek 7 
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fi - 2[(0.476 + 0.286)r - 6.6(0.476) - 18.1(0.286)] - dy 
dr dr 

+ 4(0.476)(0.286)[t + (6.6 + 18.l)t + 6.6(18.1)]~ = 0 

After simplification, the above equation becomes 

fi - (1.524r- 16.636)- dy +(0.545r2 + 13.4501 +65.051)y = 0 
dr dt 

This is a time variant system. 

Summary 

Differential equations are expressions involving derivatives or differentials. The 
derivative of highest order determines the order of the equation and the degree is 
determined by the value of the largest exponent affecting the largest order differential 
term. When the degree of the dependent variable and any of its derivatives are not greater 
than one, the equation is called linear, otherwise it is non linear. When the dependent 
variable appears only once in each term of the equation, the equation is called 
homogeneous, otherwise it is non homogeneous. When one or more terms of the equation 
depend explicitly on the time variable, the equation is called time variant. Otherwise, it 
is called time invariant. Time is always the independent variable of a system. Systems are 
usually named according to the type of differential equations of the model assigned to the 
system. 



SELECTED TRANSFORM PROCEDURES 

Several procedures, used in finding solutions to diffaential and difference 
equations, are based on the replacement of functions of a real variable by functions of a 
complex variable. Two important methods for solving linear differential and difference 
equations with constant coefficients are introduced in this chapter, the Laplace transform 
and the Z transform. A good knowledge of partial fractions and complex numbers is 
necessary for the manipulation of these transform procedures. 

4.1 PARTIAL FRACTION EXPANSIONS 

A rational function is a ffaction ofwhich the numerator and the denominator are 
polynomials. If the denominator can be broken into its real prime factors, then complex 
rational functions can be expressed into simpler forms called partial fi-actions. This 
process of representing rational functions is called partial fraction expansion. Thus, a 
partial fraction expansion may be defined as follows: 

Definition 4.1.1 A partial fraction expansion is the process of representing a rational 
function as the sum of partial fiactions, each one of which has a real prime factor as 
denominator 

Two situations will be discussed here: 

The denominator of a fraction contains only first degree factors of the form (mc+b)" 

The denominator of a fraction contains second degree factors of the form (ax2+bx+c)" 

The denominator is of the form (m+b)". An expression of the form 

+ c* cIx"-' + c."-2 + ... 

in which the denominator is the product of n first degree linear factors, can be expanded 
as a sum of n simpler terms, such as 
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A ,  A2 A 

a lx+b,  a.p+b2 a 2  + b" 
~ + ___ + ... + n 

A procedure for solving the above identity for coefficients A , ,  A,, ..., A,  is shown in the 
following examples. 

Example 4.1.1 Find partial fractions for the following equation: 

2x -5x -5x +5x +3 

2x 3 +x2-2x- 1 

Solution: The degree of the numerator of this fiaction is greater than the degree of the 
denominator. Therefore, by dividing the numerator by the denominator, this 6action may 
be reduced to a mixed expression: 

A B C = x - 3 + - + - + -  2 x 2  + 4x x-3 + 
( 2 x + l ) ( x + l ) ( x - l )  2x+1 x + l  x-1 

The last term is a 6action having the degree of the numerator less than the wgree of the 
denominator. This new fiaction can be Written as 

2 x 2  + 4 x  - A B C 
(2x+ l ) (x+ l ) (x - I )  2x+1 x + l  x-1 

- - + - + -  

By taking a common denominator, the following expression is obtained: 

2x2 + 4~ = A(x+l ) (x -1 )  + B ( b + l ) ( ~ - l )  + C(2x+l ) (x+ l )  
= (A+2B+2C)x2 + (3C-B)x - (A+B-C)  

This identity is true if 
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A + 2B + 2C = 2 
- B + 3 C = 4  

A +  B -  C = O  

Then, the solution for this system of equations is A =2, B = - I ,  C = 1 . Thus 

2 1 1 = x - 3 + - - - - - . - - + - - -  
2x 3 ++2x - 1 2x+1 x + l  x-1 

2x4-5x3 -5x2 +5x+3 

Example 4.1.2 Find partial fractions for 

s 2  + 0.845s + 0.149 

s 2  + 1.190s + 0.127 

Solution: The degree of the numerator and denominator are the same. Therefore this 
expression can be expanded as follows: 

B C = I + - + -  s '+0.845s+O. 149 
s2+1. 19os+o.127 s+1.071 s+0.119 

where 1.071 and 0.1 19 are the roots of the quadratic expression in the denominator. After 
taking a common denominator, the equation becomes 

s 2+0.845~+0. 1 19 = s + 1.190~+0.127 +(B+C)s+O. 1 19B+ 1.071 C 

Then -0.345s +0.22 = (B+C)s + 0.1 19B + 1.071C. This equality is true if 

The solution ofthis system is B = -0.41 12, C = 0.0662. Thus 
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A 3  

B = 4  

- 1  

s2+0.845s+0.149 - - 1 - L + -  04112 0.0662 
s 2 +  1.190s+0.127 s+1.071 s+0.119 

Example 4.1.3 Find partial fiactions for the following equation: 

3~ +4x - 1 

(x+2)2(2x+1) 

Solution: For every n linear factors in the denominator, there must be the sum of n partial 
fractions. The denominator of the above fraction is of the third degree. Therefore, this 
expression can be expanded to three partial fiactions: 

3x2+4x-1 - A B C 

(x+2)2(2x+1) x+2 (x+2)2 2x+l 
- - + - + -  

Then 3x2+4x-1 = (2A+C)x2 +(5A+2B+4C)x +2A+B+4C and 

2 0 1  

5 2 4  

2 1 4  

The solution of the above system is A = 2, B = - 1, C = - 1 . Thus 

3x2+4x-1 - 2 1 1 

(X+2)2(2x+l) x+2 (x+2)2 2x+1 

The denominator is of the form (m2+bx+c)”. When the denominator contains 
quadratic factors of the form (mc2+bx+c)” , where n is a positive integer, for every such 
factor there will be a corresponding sum of n partial fiactions of the form 
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A l x + B ,  + Ag+B2 + ... + ArF+Bn 
ax + bx +c (ax + bx + c ) ~  (ax + bx +c)” 

Non quadratic factors are dealt with as before. 

Example 4.1.4 Find partial fractions for the following equation: 

4 

(x 2 + 1)2(x - 1 ) 2  

Solution: The second degree factor is here (x + 1)2 for n = 2. Factor (x - 1)2 is first degree 
and should be treated accordingly. This equation can be written as 

Ax+B Cx+D E F 
= - + - - - - - - + - - - - ? - + -  4 

(x2+1)2(x-1)2 x2+1 (x2+1)2 x-1  (x-1)2 

By taking a common denominator, the following expression is obtained: 

4 = ( A x + B ) ( ~ ~ + l ) ( x - l ) ~  + (Cx+D)(x-1)2 + E ( x - ~ ) ( x ~ + ~ ) ~  + F(x2+1)2 

For x = 1,  the above equation becomes 4 = F( 1 + 1 ) 2 .  Then, F = 1 .  Substituting this value 
in the equation and dividing throughout by (x - I), it is found that 

-(x3+x2+3x+3) = (Ax+B)(x2+1)(x-1) + (Cx+D)(x-1) + E ( x ~ + ~ ) ~  

As before, for x=l, E=-2. Substituting this value in the equation and dividing again 
throughout by (x - l), the following expression is obtained: 

2x3+x2+4x+1 = (Ax+B)(x2+1) + Cx + D 
= A x 3  + Bx2 + (A+C)x + B + D 

Finally, the following results are obtained after equating the coefficients: 
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A = 2 ,  B = l ,  A + C = 4 ,  C=2, B i l l = ] ,  D=O 

Thus 

2x+ 1 2.x 2 1 = - + - - - + -  4 

(x2+1)2(x-1)2 x 2 + 1  (x2+1)2 x-1 (x-1)2 

Summary 

Partial fiactions are expressions derived from more complex rational fractions, 
provided that the denominator can be broken into its real prime factors. Two cases were 
discussed: when the denominator contains only first degree factors of the form (ax + b)" 
and when the denominator contains second degree factors of the form (ax2 + bx +c)", 
where n is a positive integer. 

4.2 COMPLEX NUMBERS 

Complex numbers may be defined as follows: 

Definition 4.2.1 A complex number is an expression having the form a + i p  , where a and 
p are real numbers and i = fl. 
The a value is called the realpart, p is called the imaginarypart and i is the imaginary 
unit. Operations with complex numbers are the same as in the algebra of real numbers, 
replacing i 2  by -1  when it occurs. Inequalities for complex numbers are not defined. 

The Complex Plane 

A complex number a + ip can be represented as a point in an XYplane, called 
the complexplane, with the a value plotted along theXaxis and the p value plotted along 
the Yaxis. 

Example 4.2.1 Locate the following points in the complex plane: 

Solution: The requested points are shown in Fig. 4.2. I 
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Figure 4.2. I 

Example 4.2.2 The difference between the carrying capacity of a pasture land and the real 
number of cattle is given by the state equation 

y = e~0~69'[10.00cos(2.09t) + 14.43sin(2.09t)] 

where y is % difference and t is time in years. The following is the corresponding second 
order linear differential equation: 

dy + 1.386- CJ, + 4 .848~  = 0 
dt2 dt 

Define the characteristic equation' of the system and the roots of the equation as complex 
numbers. 

Solution: The following is the characteristic equation of the system: 

'The concept of characteristic equations was defined in Chapter 2. 
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where A. is a characteristic root. Then 

1.3862-4(4.848) = 2.09i i p =  J 
2 

A. = -0.69*2.09i 

Note that a and p are coefficients of the state equation. This is a cyclical or periodic 
function and can be defined on a polar coordinate system. 

Polar Form of Complex Numbers 

As shown in Fig. 4.2.2, the x and y values of a complex number a + ip are 

x = rcos8 
y = rsin0 

where r = dw is the distance between p(x, y) and the origin 0 and 0 = tan-'(v/x) 
is the angle, in radians, between r and the abscissa. 

r sin0 

~ + 
r cos0 X X I 

01 

I 

Figure 4.2.2 

Then, if y = sin 8, x = cos 8 and r = 1, it follows that x + iy = r(cos 8 + i s h  0) and 
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x - iy = r (cos 0 - i sin 0). These expressions are called polar forms of a complex number 
and r and 0 are calledpolar coordinates. Ifx is measured in radians, then 

+ isin0 = eie 
case - isin0 = e-je 

These expressions are known as the Euler's formula. As a test, note that 

(cos0 + i sin B)(cos 0 - isin 0) = cos20 + sin20 = 1 and e Zee -" = 1 

Thus 

The relation between Cartesian and polar coordinates is shown in Fig. 4.2.3. 

Figure 4.2.3 

The radius r modulates the amplitude of a cyclical function and the angle 0 modulates the 
Pequency. This is illustrated in the following example. 

Example 4.2.3 Show the graphs for functions y = rsinat and y = rcosat, where a is the 
angle between the radius r and the polar axis and t is value of the independent variable. 

Solution: As shown in Fig. 4.2, a full cycle or period of the function has the value 2da. 
Thus, by increasing the value of a the cycle is decreased. Note also that the amplitude is 
increased by increasing the value of r. 
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-- 

- 

T y = rsinat 

, o /  J 
la 

' Figure 4.2.4a 

Y 
T 

Example 4.2.4 Show the graph of equation 

as defined in Example 4.2.2. 

Solution: As shown in Fig. 4.2.5, the cycle of this function is 2nla = 4.2812.09 = 3 years. 
Note also that the amplitude decreases with time according to the exponential expression 
e -0.691. As was shown in Example 4.2.2, the roots of the characteristic equation of this 
system are 3, = -0.69rt2.09i. 
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12 
9 
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g 6  
$ 0  
$ 3  

-3 
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Time, Years 
Figure 4.2.5 

Summary 

Complex numbers are expressions having the form x + iy where x and y are real 
numbers and i = n. Complex numbers can be represented as a point in the XY plane, 
called the complex plane or in a polar form such that x = rcos0 and y = rsin0, where 
r = dm and 8 = tan-'(y/x). 

4.3 THE LAPLACE TRANSFORM 

The process of solving linear differential equations by Laplace transforms is 
outlined in Fig. 4.3.1. 

I Differential Equafions 
L - 

1 Algebraic Equations 1 
-- 

1 
' Algebraic Solutions I 

inverse $anstorm 
I- ~- - - _ I  

State Equations I I 
! 

Figure 4.3. I 
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The Laplace transform allows complicated differential equations to be reduced 
to simple algebraic expressions. Then, the inverse transform of algebraic solutions 
become solutions ofthe differential equations. When the independent variable is time, the 
Laplace procedure transforms differentiation and integration operations in the time 
domain into multiplication and division operations in the fiquency domain. 

The relationship between a Laplace transform and its inverse is similar to the 
relationship between a logarithm and its antilogarithm or between the derivative and the 
anti-derivative. The Laplace transform is the technique of choice for solving linear 
differential equations with constant coefficients. 

Definition of the Laplace transform 

The following notation is often used to indicate that a hc t ion  F(s) is the Laplace 
transform of At) .  Herein, the symbolsf; g and h are used for defining an input function, 
a state function and an output function, respectively. The symbol L is called the Laplace 
operutor and indicates the Laplace transformation. 

The following notation signifies that At)  is the function whose transform is F(s) : 

At) = L -"F(s)] 

where the symbol L- 
complex variable 

is called the inverse Laplace operator. The new variable s is the 

s = u + i o  

where u and o are real variables and i = 0. 
Then, the following is the formal definition of the Laplace transform: 

L m t ) ]  = F(s) = mfTt)e-"dt L* 
where t > 0 is a real variable, s = u + io and i = fl. This process transforms a function 
At) to F(s) by multiplying the function by e and then integrating over t, between zero 
and infinity. The symbol 0' is usually used to deal with functions that are discontinuous 
at t = 0. Whereas t could be any variable, it is used here only to denote time. 
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Example 4.3.1 Find the Laplace transform of e -' . 
Solution: L[e-'] = "e-"e-'dt = - s, s +  1 

Laplace transforms, for the most frequently used equations, can be located in 
tables. However, when a transform of a particular equation is not found, determining it 
by the above process is possible. 

Example 4.3.2 Find the transform of function x = t 

Solution: F(s) = "t1'2e-s'dt. Let t = u 2  and dt=2udu. Then s, 

The solution of this integral can be found directly in a table of definite integrals: 

Laplace transforms of linear differential equations with constant coefficients are 
rational tkactions. When the inverse transform is not found in tables, the inversion process 
is greatly simplified by partial fi-action expansions, as shown in the following example. 

Example 4.3.3 Find the inverse of the following transform: 

s = + 2  
s(s + 2)(s + 3 )  

F(s) = 

Solution: 

s 2 + 2  - A b C  F(s) = - - +  -+-- 
s (s+2)(s+3)  s s + 2  s + 3  

- s 2 ( A + B + C ) + s ( 5 A + 3 B + 2 C ) + 6 A  
s(s + 2)(s + 3 )  

Clearly 

A +  B +  C = l  
5A + 3B + 2C = 0 
6A = 2  
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Then, A = 1/3, B = -3  and C = 11/3. The new transform is 

1/3 3 11/3 
s s + 2  s+3 

F(s) = - - __ + - 

The inverse of the above fractions are easily found in tables. Thus 

I 3e-2' 11 e-3' 
3 3 

At) = - - + -  

Selected Properties 

The following properties ofthe Laplace transform will be used extensively in this 
book. 

Propee  1. The Laplace transform and its inverse are linear transformations between 
functions defmed in the domain of the real variable t > 0 and functions defined in the 
domain of the complex variable s, that is 

k,F,(s) + kp2(s)  is the Laplace transform of kS,(t) + k$,(t) 

and 

kS,(t) + kd2(t) is the inverse of k,F,(s) + k2F,(s) 

Example 4.3.4 Find the Laplace transform of 3e -' + e -2' 

Solution: From a table of Laplace transforms, L[e - ' I  = l/(s + 1) and L[e - 2 1 ]  = l/(s + 2). 
Then 

Property 2. The Laplace transforms of the derivatives of a functionAt) whose transform 
isAs) are 
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dt 

d" d "  where -f(O) is the limit of --f(t) as t + O+ . 
dt dt 

Example 4.3.5 The digestion of the cell walls of a forage is represented by the following 
differential equation2: 

- dY + 0 . 0 8 2 ~  = 0 
dt 

where y is percent digestion and t is time in hours. Find the state equation for an initial 
value of 54. 

Solution: 

+ O.O82Lb] = sC(S) - yo  + 0.082G(~)  = 0 

(S +0.082)G(s) = yo 
yo 

s + 0.082 
G(s) = 

where yo is an initial value. Then 

y = L-'! yo j 
s + 0.082 

2Computed from Van Soest, P. J. 
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Given yo = 5 4 ,  the inverse transform, as found in tables, is the state equation 

Note that the notation G was used here to symbolize a state related function. 

Example 4.3.6 The concentration of ammonia in the rumen of sheep, aRer eating a food 
containing urea, is given by the following first order differential equation': 

where y is NH, in mM/liter and t is time in hours after eating. Find the state equation. 

Solution: The following is the transformed differential equation: 

45 
s +0.5 

sG(s) - Y O  + 0 . 5 G ( ~ )  = - 

Yo 45 G(s) = -+ 
S + 0.5 (s + 0.5)' 

If g(0) = 1 1, the state equation is the inverse transform of the above, that is 

Example 4.3.7 The growth ofa group of steers is represented by the following differential 
equation: 

d2u + 1 . 9 8 9  + 0 . 7 8 9 ~  = 616 
dr2 dt 

2Cornputed fiom Streeter, C.L. et.al. 
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where y is body weight in Kg and t is years. Find the state equation. 

Solution: 

L- + L 1.98- + L[0.789~] = L[616] !::] [ $1 
s2G(s) - sy0 -yo’ + 1.98[sG(s) -yo] + 0.789G(s) = 616 

G ( ~ ) ( ~ * + 1 . 9 8 ~ + 0 . 7 8 9 )  -y0(s+1.98) -yo’ = 616 

_I_ 

S 

_I 

S 

Then 

yo(s + 1.98) +yo7 + 616 
(s + 1.427)(s + 0.553) s(s + 1.427)(s + 0.553) 

G(4 = 

For initial values of yo = 30 and yo’ = 183 the state equation is the following inverse: 

s(s + 1.427)(s + 0.553) 
30(s +S.OS) ] + 

(s + 1.427)(s + 0.553) 
y = L - ‘  

By looking at transform tables, it is found that 

, I  - (8.08 -0.553)e-0.553t 
0.553 - 1.427 

0.553 e -1.427‘ + 1.427e -0.553r 

1.427(0.553) 0.553 - 1.427 

Thus 
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Example 4.3.8 Body weight and efficiency of milk production in a group of Holstein 
cows were related by the following set of differential equations3: 

-0.399526 0 238.890 4.17028 

= !-0.007892 d y  + 1 4.569 1 + !0.07011]' 

for Y = ( y l ,  y2 )  , where yI is body weight in kilograms, y2 is kilograms of milk per 

Mcal of metabolizable energy, t is months after calving and matrix A defines the relations 
between the state variables. Determine the state equations. 

Solution: This is a multidimensional linear model reducible to the form 

The following is the Laplace transform of the above equation: 

sG(s) - Yo = AG(s )  + F ( s )  or 

(sZ - A)G(s)  = Y + F ( s )  
0 

where (sZ-A) is the characteristic equation of the system, G(s) is the set of Laplace 

transforms corresponding to the set of state variables, 6 is the set of initial conditions 

and F(s) is the set of Laplace transforms of the input functions represented by X. Then, 
the following is the Laplace transform of the system equations: 

s+0.3995 0 238.890 1 4.170 [ 0.007892 s = yo + [ 4.569 1; + [0.07011 

where the characteristic equation of the system is as follows: 

1 - 
S 2  

3Computed fiom Miller, R.H. and N. W. Hooven, Jr. 
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+0.3995 0 

.007892 s 
= 1 = s(s+0.3995) 

The following is the Laplace transform for body weight: 

1 238.890 4.170 o1 
n, +- +- 

- yo, + 238.890 + 4.170 
~+0.3995 ~(~+0.3995) s2(s+0.3995) 

where yo, = 607 and yo2 = 1.25 are initial values. After finding the inverse for the above 
transform and rearranging terms, the state equation for body weight is 

y, = 572 + 10.4t + 35. le -0.400' 

The following is the Laplace transform of efiiciency: 

1 
G*(s) = 

238.890 + 4.170 
0 1 ' s  -1 S 2  

Yo2 4.569 + 0.0701 1 0.007892 = - + -  ___ 
s s2 s 3 ~(~+0.3995) 

The inverse of the above transform is the state equation of efficiency : 

y2 = 0.5577 + 0.05634t + 0.02892t2 + 0.6923e -0.400* 
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The reader is encouraged to check the above solutions. 

Property 3. The Laplace transform of the integral f f ( ~ ) d r  of a function f ( t )  whose 
Laplace transform isfls) is s, 

Example 4.3.9 The lactation curve of a group of dairy cows is given by equation 

where g(t) is milk production in Kg/month and t is time in months. Find the cumulative 
curve h(t) for milk production. 

Solution: 

h(t) = 1 ‘g(t)dt = 972 le-0.3871dt - 722 ’e -1.178rdt 
0 s, s, 

The corresponding Laplace transform is here 

972 722 
H(s) = S(S + 0.387) s(s + 1.178) 

Then 

972 ( 1 - e - 0 3 8 7 t )  - 722 (1 -e  -1.178t) h(t) = - 
0.387 1.178 

Thus, the cumulative milk production curve is as follows: 

h(t) = 1899 + 613e -1 .1781 - 2512e -0.387r 
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Property 4.  If F,(s) and F2(s) are the Laplace transforms of fi( t)  and f,(t), then the 
product of two functions is 

The above integrals are called convolution integrals. 

Example 4.3.10 Find the inverse of the following transform: 

3s+2 F(s) = 
(s + 3)(s + 2)2 

Solution: 

Then, by Property 4 

Property 5. The following is the Laplace transform of a function of the form e -"ff(t) : 

L[e -"'f(t)] = F(s +a) 
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Example 4.3.11 Find the Laplace transform of e -'I cos t . 

slution: The Laplace transform of cos t is s/(s + 1 ) . n u s  

s+2 - s +2 

(s +2)2+ 1 s 2  +4s+5 
LieA2' cost] = 

In conclusion, the following are selected properties of Laplace transforms, to be 
applied in further chapters: 

k,F,(s) + k2F2(s) is the transform of kS,( t )  + k$2(t) 
dfl-1 d d2  . ~ ( ~ ) - ~ n - y ( o )  -sn-2-f(o) -sn-3--y(0) -...-----f( 01 

dt dt2 dt 
d"  is the transform of -fit) 

F(s) is the transform of 
d t n  

y(r)& s, * -  
S 

F,(s)F2(s) is the inverse transform of x(T)&(t -z )h  = 1 ffi(t)fi(t-t)dz 

F(s +a) is the transform of e -"'f(t) 

s, 0 

Summary 

Laplace procedures transform differentiation and integration operations in the 
time domain of variable t, into multiplication and division operations in the frequency 
domain of the complex variable s. Thus, differential equations are reduced to algebraic 
forms that, by inverse transformations, become the solution of the differential equation. 

4.4 THE 2 TRANSFORM 

In the same way the Laplace transform is used to solve linear differential 
equations with constant coefficients, the Ztransformation is used to solve linear diffaence 
equations with constant coefficients. The process of solving linear difference equations by 
Z transform procedures is outlined in Fig. 4.4.1. 
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I Difference Equations I 
c~ ~ 

Tran.b&-p 

1 Algebraic Equations I 

- 

Algebraic Solutions 1 

Inverse ransfom 

r - 
State Equations I 

Figure 4.4.7 

Definition of the 2 Transform 

The following notation is frequently used to denote that a hnction F(z) is the Z 
transform of a sequencefln) of real values, where n is a positive integer : 

where Z is called the Z operator. The following indicates thatfin) is a sequence whose 
transform is F(z): 

f in)  = z-"F(z)] 

where Z- is called the inverse Z operator. The new variable z is the complex variable 

z = u + i v  

where u and v are real variables and i = $-i. Then, the formal definition of the Z 
transformation is as follows: 

m 

z[Xn)] = c f (n ) z  -n = F(2) 
0 
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where n is a positive integer and z = u + iv. This process transforms the sequencefin) into 
F(z) by multiplyingfln) by z -" and then summing over n fiom zero to infinity. When the 
resulting series is convergent, the sequence is transformable. Then, there exists a real 
finite number r such that F(z) converges for r < IzI . Number Y is called the radius of 
convergence of the series. 

Example 4.4.1 Find the radius of convergence of F(z )  , wheref(n) = a ', n is a positive 
integer and a is any finite complex number. 

Solution: 

Then 

s, = 1 + a z - ' + ( a z - ~ ) ~ + . . . + ( a Z - ~ ) n - ~  

a "z -"s, = az - 1  +(a2 - ' )2  + (az - 9 3  + ... + (m -y 
= s, - 1 + a"z-" 

1 - (az-1)" 

1 - az-' 
s, = 

Thus 

If 1 az I < 1 or r = I a I < 1 z 1 , this series is convergent. This relationship is shown in Fig. 
4.4.2. 
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Figure 4.4.2 

Selected Properties 

The following properties of the Z transformation will be used extensively in this 
treatise. 

Property 1. The Z transform and its inverse are linear transformations between sequences 
defined in the domain of the real variable n > 0 and functions defined in the domain of the 
complex variable z, that is 

k, F, (2) + k2 F2 (z) is the Z transform of k,fi (n) + k2fi (n) 

and 

k,fi (n) + k f i  (n) is the inverse of k, F2 (z) + k2 F2 (2) 

Example 4.4.2 Find the Z transform of 

Solution: The following is obtained from a table of Z transforms: 
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= __ 22 

= 2-1/4 

Z+ 1/2 

42 

Then 

Property 2. If F(z) is the Z transformation of a sequenceffn) for n > 1, then 

L[f(n+l)] = zF(2) -zf(O) 
L[f(n+2)]  = Z*F(Z) -Z2f(O) -2fll) 

LV(n + k)]  = 2 "F(z)  - z "f(0)  - z"-'f( 1) - ... - zf(n - 1) 

- - 

wherefl0) is the initial value of functionj: 

Example 4.4.3 The growth of colonies of a bacteria is given by the following difference 
equation: 

y"+l - 1.021y, = 0 

where y is the number of colonies and n is time in hours. Find the state equation. 

Solution: 

Lly,+,] - 1 . 0 2 1 L ~ , ]  = zG(z) -ZY, - 1.021G(z) 
(Z - 1.02 l)G(z) = 2y0 
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Given an initial value of yo = 0.2 1 , the inverse transform, as found in tables, is the 

state equation 

y, = 0.21(1.021)” 

Example 4.4.4 A rancher sells every month 3.6% of his feedlot steers and buys 90 new 
animals. Find the state equation assuming that he started the business with 460 animals. 

Solution: The system is represented by the following difference equation: 

JI,,i - y ,  = -0.036~1, + 90 

Upon rearrangement, the difference equation becomes 

yntl - (1 -0 .036)~,  = 90 

The transformed equation is 

zG(z) - 4602 - ( I  -0.036)G(z) = 90 __ Z 

z -  1 

Then 

2 z 
+ 460 _I_ 

G(z) = 90 (z-I)(z-0.964) 2-0.964 

By looking at transform tables, it is found that 
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Y ,  = ___ 90 [ 1 - (0.964yq + 460(0.964)” 
1-0.964 

= 2500 - 2040(0.964)” 

Example 4.4.5 The changes in an insect population are represented by the following 
difference equation: 

. Y ~ + ~  - 1 . 2 1 2 ~ ~ ~ ~  + 0 . 3 6 7 ~ ~  = 0 

wherey is the number of insects and n is months. Find the solution when yo =250 and 
y ,  = 424. 

Solution: The transformed equation is 

z2G(z) - z2y0 - ZY, - 1.212[zG(z) - 2y0] + 0.367G(z) = 0 

Then 

yo(z2- 1.2122) +y,z  
G(z) = 

z2 - 1.2122+0.367 

The denominator of the above transform is the characteristic equation of the 
system’. Note that the coefficients of the characteristic equation are the same as the 
coefficients of the difference equation. The characteristic equation has two equal roots. 
Then, upon rearranging and replacing the yo and y1 values, G(z) becomes 

250z2 + 1212 G(z) = 
(Z - 0.606)2 

This equation can be written as 

~~ ~- ~~ 

7Characteristic equations were defined in Chapter 2. 
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B 
- -  G(z) - 250z+121 - - A +  

z * Z(Z - 0.606)2 z(z - 0.606) (z - 0.606)2 

where A = -200 and 3 = 450. Then 

-2002 + 4502 F(z) = 
z - 0.606 (z  - 0.606p 

The inverse transform of F(z) is the state equation 

y, = -200(0.606)” + 450(n+ 1)(0.606r 
= (0.606r(450n + 250) 

Example 4.4.6 The population of a type of bird doubles every year. The introduction of 
predators reduces the number of birds by ten times the number of predators. The number 
of predators also doubles every year. Some 200 new birds move into the ecosystem each 
year and some 30 predators are hunted down. Determine the state equations of the system, 
assuming 1000 initial birds and 50 initial predators. 

Solution: The difference equation of the system is as follows: 

for where is birds, is predators and n is years. This is a first order 
multidimensional linear model represented by difference equations reducible to the form 

Y,+l = AY, +x 

The 2 transform of the above equation is written as follows: 
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2002 
z-1 

-302 z - ;  
2-  1 
__I 

z q z )  - z Yo = A G(z) + F(z) 
( Z Z  - A )  G(2) = z Yo + F(z) 

where ( z l -  A) is the characteristic equation of the system, G(z) is the set of Ztransforms 
of the state variables, is a set of initial conditions and F(z) is the set of transforms of 
X. Then, the following is the Z transform of the system equation: 

The characteristic equation of the system is here 

-2 10 

0 2-2 
IzZ-Al = 1 I = (2-2)2 

The following is the Z transform of the birds: 

- ~ ( 1 0 0 0 ~ - 2 5 0 0 )  + 2002 + 300 

(2 - 2)2 
Az  Bz2 2002 

2 - 2  (2-2)2 ( z -2 ) (2 -  1) 
= - + - +  

where A = 1250, B = -250, C = 1 ,  D = 1 and E = -1. 
The following is the Z transform of the predators: 
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-2 1000 1 
GP(4 = -q ,,A + - (z-2)2 0 (2-2)2 

2002 
2-2 - 

z -  1 

0 ___I_ -302 
I z-1 I 

502 302 = - -  
2 - 2  (z-2)(2-  1) 

After taking the inverse transforms and rearranging terms, the following is the 
set of state equations of the system: 

100 100(9-n) 

yn = [10]+[  20 12" 

Testing that the solution is correct is possible by equating the system solution 
with the system difference equation, such that 

Y, = 

The reader may wish to check that the above holds true. 

applied in fbrther chapters: 
In conclusion, the following are selected properties of the Z transforms, to be 

k, F,  (2) + k2Fz(z) is the 2 transform of k,fi (n) + kz&(n) 

z "F(z)  -z  "f(0) -z"-'j(l) - ... -zf(n - 1) is the transform of f ( n  + k) 

Summary 

The Ztransformation procedure is used to convert difference and sum operations 
in the time domain of variable t, into multiplication and division operations in the 
frequency domain of the complex variable z. Difference equations with constant 
coefficients are transformed to algebraic forms. Then, by inverse transformations, the 
algebraic expressions become the solution of the difference equation. 



CURVE FITTING AND EVALUATION 

In a system analysis problem, the data is defined as a time series and the name 
ofthe game is developing equations for predicting the system behavior over time. As such, 
the most important parameters in the system evaluation process are the constant 
coefficients ofthe equations representing the hypotheses. Thus, the purpose ofthis chapter 
is to present appropriate procedures for determining and for evaluating the state and the 
output functions of the system. 

5.1 THEORETICAL BASIS OF NONLINEAR CURVE FITTING 

Several methods are available for a non linear curve fitting problem and many 
were developed exclusively for specific mathematical models. This section is related only 
to a general non linear regression procedure. A major difficulty of this procedure is 
guessing the initial values of the equation parameters. If the guesses are not correct, the 
process may not converge to the least sum of squared errors. Moreover, it is not always 
possible to know if the process converged to the best estimate of the least sum of squared 
errors. Thus, the real problem becomes getting too many answers to the curve fitting 
problem. 

The Least Squares Concept 

Curve fitting is the process of finding numerical values for the constant 
coefficients of the mathematical model representing the system. The least squares 
regression is the procedure for finding the best possible curve fitting for the data. The 
simplest model, the straight line 9 = a + bt, will be used to illustrate this criterion. 

As indicated, the problem is here finding numerical values to coefficients a and 
b, for the best possible fitting equation to the data. Then 
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are the differences between each data value c, = (t,,Yr) and the corresponding point 9 in 
equation 9 = a + bt. The following is the sum of squares of those differences: 

n 

ss = cp,- 
1 

To find numerical values for coefficients a and b, the partial derivatives of SS, defined 
over a and b, are required. Note that, for minimizing SS, the values of the partial 
derivatives are zero. Thus 

= - 2 2  pi - (a +bt,)] = 0 
da 1 

dSS - -2gt@i- (a+bt , ) ]  = 0 
db 1 

The above system of simultaneous normal linear equations may be written as 

n n 

a n + b x t ,  = c y ,  
1 1 

a t  tl + b f :  t,” = f: tlyl 
I 1 1 

This system of two equations and two unknowns is solved easily. The following are the 
solutions for coefficients a and b, corresponding to the minimum SS, written in an 
abbreviated form: 

The expression for the sum of squares of the deviations fiom regression is 
obtained by replacing the a and b values in SS. Then 
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Age, weeks 

Height, cm 
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1 2 3 4 5 6 7 

5 13 16 23 33 38 40 

where SS is a minimum. The sum of squares of the deviations fiom regression is known 
as c d,:. 
Example 5.1.1 The following are the average heights of soybean plants, sampled at 
random each week: 

Compute the regression line, corresponding to the least sum of squared errors, for the 
above data. 

Soiution: The squares and products of the data are given in the following table: 

Table 5.1.1 

Age Height Squares Products 

t Y t 2  Y 2  tu 
1 5 1 25 5 

2 13 4 169 26 

3 16 9 256 48 

4 23 16 529 92 

5 33 25 1089 165 

6 38 36 1444 228 

7 40 49 1600 280 

C t = 2 8  &=168 c ? ’ = 1 4 0  C y 2 = 5 1 1 2  C t y = 8 4 4  
r = 4  j j  = 24 
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The following are the equation coefficients: 

844 - 28(168)/7 = 6.143 b =  
140 - 28(28)/7 

a = -b; = 24 - 6.143(4) = -0,572 

Thus, the system equation is 9 = 6.143 t - 0.572 and the following is the sum of squares 
of the deviations fim regression: 

C d;, = 51 12 - 1682/7 - 844 - 28(168)/7 = 23.4286 
I40 - 2a2I7 

The General Method for Nonlinear Curve Fitting 

As in linear least squares fitting, the goal in nonlinear least squares fitting is to 
minimize the sum of squares of the deviations from regression. In linear least squares 
fitting, the simultaneous normal equations are linear. In nonlinear curve fitting, the 
normal equations are not expected to be linear. Therefore, the sum of squares is not 
obtained by direct calculations but by iterative procedures. One of the simplest non linear 
expression, the exponential curve y = a( 1 - e -b?, will be used to illustrate the procedure. 

The following is the sum of squares of the differences between each data value 
and the corresponding point 9 in equation y^ = a(1 - e -b?: 

The corresponding partial derivatives are here 

Note that the above system of equations is not linear and that there is not a direct easy 
solution for the unknowns. An alternative procedure follows. 

The following are the residuals R, between each data value and the matching 
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point ~7 in equation 9 = a(1 -e-b+): 

y ,  -9, = y , - a ( l  -e"I) = R ,  
y2 -y2  = y2-a(1-e P'* ) = R, 

yn-$, = y , -a ( l  - e  PI. ) = R, 

where a and p are initial guesses assigned to coefficients a and b of the mathematical 
model. Manipulation of a and p should result in a progressive reduction of the Ri 
residuals, such that a and p should progressively approach the asymptotic values 
represented by coefficients a and b. 

The changes in the R, residuals may be defined as the sum of the changes due 
to changes in a and in p. Thus 

dR,  dR,  

dR, dR, 

AR, = -Aa + -Ap 

AR, = -Aa + - A p  

aa ap 

aa a p  

The J R j a a  and JR/ap  values may be obtained &om the partial derivatives of R, with 
respect to a and p, such that 

After replacing these values in AR,,  the following expression is obtained: 

AR, = -bail - e - ' ' I )  + A p a  tle -",] 

The goal here is having AR, = -R, .  Then, El = R, + AR, is an error term, as was the 
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difference d, = y, -9, in linear regression. Therefore, the objective ofthe procedure should 
be minimizing the sum of squares ofthese newly defined errors. The following is the sum 
of squares of El : 

where ha and Ap are now the unknowns. Then 

Note that c1 and 
simultaneous normal equations is now linear and may be written as 

are not the variables here, but Aa and Ap. Therefore, the system of 

where A = 1 - e - P f r ,  B = a tle 
solutions for Aa and A@, written in a condensed form: 

and R, = y - a( 1 - e -Pfi). Then the following are the 

C B~ - C RBC AB A a  = C A ~ C  B~ -  CAB)^ 
C R B C A ~ - C R B C A B  

C A ~ C B ~ - ( C A B ) ~  Ap = 

The sum of squares for the error is obtained by replacing Act and Ap in SS 

SS = [R - ( A a A  + ApB)I2 

This sum of squares may also be written as E 2 .  The cycle is completed after 
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Hours 

%Digestion 
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6 12 18 24 30 36 42 48 

19 35 43 47 49 51 52 53 

determining new values for a and p: 

a‘ = a + Aa 
p ’ = p + A p  

The process is repeated until the changes in a and p and the changes in SS fulfill some 
given convergence criteria. Convergence is defined here as the approximation of a and 
p and of 

Note that, except for very simple mathematical models, the process is not feasible 
without a computer. Note also that, ifthe initial guesses ofthe system parameters are not 
appropriate, the process may not converge to the correct solution or may not converge at 
all. 

E to their corresponding asymptotic values a, b and di, .  

Compute the constant coefficients for equation 9 = a( 1 - e -b7. 

Solution: The initial guesses may be obtained fiom a graph, as the one in Fig. 5.1.1. For 
the above mathematical model, coefficient a is an asymptotic value and b is a slope. As 
seen in the graph, coefficient a is around 50. If a is guessed as 50, coefficient b may be 
obtained by plotting y - a on a semi-log paper or simply by solving expression 

where t andy may be selected fiom the data. From the above, coefficient b is found to be 
roughly 0.1. If the initial guesses are a=50 and p=O. 1, then 

where A, B and R were previously defined. 
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* .  4 

4 

Table 5.1.2 shows the values required for computing Aa and AP. For simplicity, 
only four data points will be used. 

Table 5.1.2 

T Y  R A B RA RB A t  B 2  AB 

6 19 -3.56 0.451 164.6 -1.65 -586.0 0.203 27107 74.3 

18 43 1.27 0.835 148.8 1.06 188.2 0.697 22132 124.2 

30 49 1.49 0.950 74.7 1.42 112.2 0.903 5577 70.9 

42 52 2.75 0.985 31.5 2.71 86.6 0.970 992 31.0 

c 1.95 3.58 -199.0 2.273 55808 300.4 

Then 
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New values for a and p can now be computed: 

a’ = a + Aa = 50 + 4.02 
p’ = p + Ap = 0.1 -0.0252 

54 
0.075 

As shown in the next table, the R,‘, residuals computed with the new a’ and p’ 
values, are smaller that the R, residuals computed with a and p. Note that the sum of 
squares of the new residuals was also reduced: 

Table 5.1.3 

T Y R R 2  R’ cR 9’ 
6 19 -3.56 12.666 -0.534 0.285 

18 43 1.27 1.600 3.035 9.209 

30 49 1.49 2.2 I7 0.708 0.501 

42 52 2.75 7.565 0.3 14 0.099 

Y 24.046 10.046 

A full cycle has now been completed. The iterative process is repeated until the 
convergence criteria are fulfilled. 

Several nonlinear computational methods have been developed. They differ 
mainly in how they compute the change of the equation parameters. For a particular 
problem one method may perform better that others. Several statistical packages, like 
SPSS for Windows, SASISTAT for Windows, S-PLUS for Windows, to mention a few, 
provide computation programs for nonlinear regression. 

Summary 

Curve fitting is the process of finding numerical values for the constant 
coefficients ofthe mathematical model representing a set of data. In linear regression, the 
curve fitting error is the difference d, =y-$ ,  where y is a data point and $ is the 
corresponding estimate. The simultaneous normal equations, derived fiom d,‘ , are 
linear and the system is easily solved for its unknowns. In nonlinear regression, the system 
of normal equations is not linear and may not have an easy solution. A general method 
ofnonlinear least squares curve fitting defines the error as the difference E, = R, - AR,. R, 
is the difference between a data point and the corresponding conditional estimate and AR, 
is the change in the value of R,, corresponding to a change in value of the estimate. The 
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set of normal equations is derived fiom E: and the unknowns are the changes in the 
numerical value of the equation parameters. The iterative process is repeated until the 
changes in the equation parameters and the changes in Ef hlfil some given 
convergence criteria. 

5.2 COMPUTATION OF THE MODEL PARAMETERS 

As indicated in the previous section, the nonlinear regression process starts with 
the initial guesses of the model parameters. If these initial values are not appropriate, the 
process may not converge to the least sum of squares of the error terms. In addition? there 
is always some uncertainty whether the process converged to the least sum of squared 
errors or to a trap. The uutcome is a trap, when different regression methods or different 
initial guesses yield different results. Lack of convergence and traps may be caused by 
incorrect initial guesses or highly correlated parameters? by the size of the change across 
successive iterations, by an inappropriate mathematical model and even by the quality of 
the data. 

Models with some exponential terms and powers may cause underjlow or 
oveijlow convergence problems. A number that is too small for the computer to handle 
may cause underflow. An overflow is caused if the number is too large. A transformation 
of the time scale may often correct the problem, for example using years instead of months 
or subtracting the smallest time value from all the other time values. 

Limiting the size ofthe parameter changes across iterations may help solve some 
convergence and trap problems, but it would slow down the process. Deleting some 
parameters may correct over parameterization. Amodel with fewer parameters that fit the 
data does not necessarily mean that the original model was inappropriate. It may mean 
that the data was not sufficient to estimate all the parameters. 

If the culprit of computational problems is the quality of data, imposing bounds 
on parameters may prevent jumps of the iterations in the wrong direction, forcing the 
function trough the expected path. Main sources for poor quality data are, too large 
experimental errors and lack of data points where the function is expected to have critical 
and extreme values. 

Guessing the values of the initial parameters is often a combination of technique 
and artistry. There are no fixed rules and only the experience of the research team may 
determine the best pathway for defining initial values for the constant coefficients. 

As disclosed in the first chapter, the system difference or differential equations 
may be determined? by linear regression, ftom difference tables of the data. Then, the 
numerical values of the constant coefficients of the resulting state equations may be used 
as the initial values for nonlinear regression. As shown in the next examples, this pathway 
is often the simplest approach for determining the initial values of the model parameters. 
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Daysafter calving 

Mjoules/Kg 

10 20 40 60 100 120 140 150 

3.45 2.97 2.90 2.88 2.90 2.74 2.84 2.82 

Determine the equation representing the above data. 

Solution: The frst step is defining a difference table for the data: 

Table 5.2.1 

t Y AY Ay/At 

10 

20 

40 

60 

80 

100 

120 

140 

150 

3.45 

3.25 

2.97 

2.90 

2.88 

2.90 

2.74 

2.84 

2.82 

-0.20 

-0.28 

-0.07 

-0.02 

0.02 

-0.16 

0.10 

-0.02 

-0.02 

-0.014 

0.0035 

-0.00 1 

0.001 

-0.008 

0.005 

-0.002 

The following differential equation was fitted by linear regression to the data from the 
difference table: 

4 + 0.03312~ = 0.09382 
At 

where y is energy content in Mjoules/Kg and t is days after calving. As indicated in 

'computed from Lowman, B.G. et.al. 
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Chapter 3 ,  A.Y f 4 , but it may be a good approximation, provided that At is small 
enough. The corresponding Laplace transform of the above equation is here 

0.09382 + 
s+0.033 12 s(s+0.03312) 

G(d = 

where the initial energy content of yo = 4.0 MjoulesKg was estimated fiom a graph of the 
data. The following is the resulting response equation: 

The constant coefficients of the above equation may be used as the initial values for the 
non linear process. This equation has the form y = a + be Then, the following are the 
partial derivatives for the unknowns of the model, required by the nonlinear procedure: 

Note that some statistical packages, like SPSS for Windows, do not always require the 
partial derivatives fi-om the user. The following results were obtained from nonlinear 
regression*: 

Table 5.2.2 

Source DF Sum of Squares Mean Square 
Regression 3 79.91208 26.63736 

Uncorrected Total 9 79.92590 
[Corrected Total) 8 0.41896 
R squared = 1 - Residual SS / Corrected S S  = 0.96701 

Residual 6 0.01382 2.303615E-03 

2~~~~ Professional Statistics 7.5. 
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Asymptotic 
Parameter Estimate Std. Error "t" 
a 2.821334360 0.025511076 110.64 
b 0.964619071 0.1 15501347 8.32 
c 0.042261 182 0.008612802 4.91 

Asymptotic Correlation Matrix of the Parameter Estimates 

a 1 .oooo 0.4077 0.6386 
b 0.4077 I .oooo 0.8582 
c 0.6386 0.8582 1 .oooo 

a b c 

Thus, the following is the resulting equation for energy content: 

y = 2.821 +0.965e-0."23r 

The graph of this function is shown in Fig. 5.2.1. 

*-A c ----- k-- - 
A 

s2 .5  
g2 .0  
6 1.5 
rA 1.0 

Q O  
0 20 40 60 80 100120 140160 

Days After Calving 
Figure 5.2.1 

Iterations stopped after 10 model evaluations and 5 derivative evaluations, 
because the relative reduction between successive residual sums of squares and the relative 
difference between successive parameter estimates matched a given criteria. 

Note that the coefficient of determination and the equation parameters are 
statistically significant. These statistics are the main criteria for the evaluation of the 
process and the mathematical model of the system. Note also that the correlation between 
coefficients a and b are not significant, confirming again that the mathematical model is 
appropriate for the data. 
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Determining the difference or differential equations of the system may also 
require sometimes a nonlinear regression approach. This assertion is explained in the 
following example. 

Example 5.2.2 The following mathematical model is proposed for the lactation curve of 
a group of dairy cows: 

y = (a+bt)e-"'  

where y is Kg/month and t is months. Determine the corresponding differential and state 
equations flom the following data: 

Months 10.5 1 2 3 4 5 6 7 8 9 10 
~ 

400 430 425 360 290 205 150 110 75 45 30 
Kg/month 

Solution: The following is the differential equation of the model: 

Clearly, nonlinear regression is required for determining the numerical values of the 
coefficients of the above equation. The following are the results of a first attempt to obtain 
provisional estimates ofthe parameters using linear regression and data fiom a difference 
table: 

Table 5.2.3 

Source DF Sum of Squares Mean Sauare 
Regression 2 4083.06985 2041.53492 
Residual 7 6476.93 0 1 5 925.27574 

Variable b SEb "t" Sig t 
Y -0.693281 0.337930 -2.052 0.0793 
t -36.201751 17.235579 -2.100 0.0738 
[Constant) 300.344925 162.033905 1.854 0.1062 
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The resulting equation is AylAdt = 300 - 36t-0.69~. This equation may be modified to 
AylAt = 300e -Of- 36t - 0 . 7 ~  to yield the initial guessing ofthe parameter values. Note 

that an exponential term with a 0 exponent was added to the new equation, because any 
number to the zero power equals one. The following are the nonlinear regression results 
of a second regression round: 

Table 5.2.4 

Source DF Sum of Squares Mean Square 
Regression 4 23918.32779 5979.58195 
Residual 6 331.67221 55.27870 
Uncorrected Total 10 24250.00000 
(Corrected Total) 9 10560.00000 
R squared = 1 - Residual SS I Corrected SS = 0.96859 

Parameter Estimate Std. Error "t" 
a 241.19590320 109.193 16215 2.21 
b 0.410718065 0.403085491 1.02 
C 0.710669594 1.530578335 0.46 
d 0.400183173 0.314375479 1.27 

Asymptotic 

The new equation is AylAt = 24 le 441f - 0.7 1 t - 0 . 4 0 ~ .  Note that this equation is now 
over parameterized. The best candidate for removal is coefficient c. Note also that 
coefficients b and dare  virtually the same. The results of the next nonlinear regression 
round are shown in Table 5.2.5. These results are now acceptable and the following is the 
final adopted equation of the system: 

Table 5.2.5 

Source DF Sum of Squares Mean Sauare 
Regression 2 23839.95913 11919.97956 
Residual 8 410.04087 51.25511 
Uncorrected Total 10 24250.00000 
{Corrected Total) 9 10560.00000 
R squared = 1 - Residual SS / Corrected SS = 0.961 17 

Parameter Estimate Std. Error "t" 

a 25 1.68452603 12.243564107 2 1.37 
b 0.4 1668 1056 0.0 1071 5303 38.94 

Asymptotic 

The following is the Laplace transform of the above equation: 
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Yo 239 
s+0.417 (~+0.417)~ 

Gfs) = ' + 

where yo = 400 is an estimated initial value. Thus, the resulting state equation is 

y = (400 + 239t)e-0.417' 

The constant coefficients of this equation may now be the initial guesses for a final 
nonlinear regression round. Iterations stopped after 12 model evaluations and 6 derivative 
evaluations. The results are shown in Table 5.2.6. 

Table 5.2.6 

Source DF Sum of Squares Mean Square 
Regression 3 824140.12783 27471 3.37594 
Residual 8 259.8721 7 32.48402 

Uncorrected Total I 1  824400.00000 
(Corrected Total) 10 247090.90909 

R squared = 1 - Residual SS / Corrected SS = 0.99895 
Asymptotic 

Parameter Estimate Std. Error "t" 
a 298.01044072 1 1.67017908 1 25.54 
b 41 1.19839087 16.848179856 24.4 
C 0.483780363 0.0074 1427 1 65.28 

Asymptotic Correlation Matrix of the Parameter Estimates 
a b C 

a 1 .oooo -0.8655 -0.732 1 
b -0.8655 1 .oooo 0.9399 
C -0.732 1 0.9399 1 .oooo 

Thus, the following is the resulting lactation curve equation: 

y = (298 + 41 1 t)e -0.484r 

The corresponding graph is shown in Fig. 5.2.2. 
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Figure 5.2.2 

Example 5.2.3 Determine themathematical expression for the following data of ammonia 
and protein nitrogen of the nunen of steers fed a soybean meal diet3: 

I l l  2 3 4 5 6 7 8 9 10 1 1  12 13 

where yo is ammonia nitrogen y,, is protein nitrogen, in Mg/100ml of ruminal fluid and 
t is hours after feeding. 

Solution: The following set of equations was fitted to the above data: 

- _  AY - 1-0.7132 0.05305 

Adt - 1. I440 -0.6978 

Data of a difference table and procedures outlined in the previous example were used here. 
The following table shows the statistics for the ammonia differential equation: 

3Computed fiom Davis G.V. and O.T. Stallcup 
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Table 5.2.7 

source DF Sum of Sauares Mean Square 
Regression 4 109.81357 27.45339 
Residual 8 2.40643 0.30080 
Uncorrected Total 12 112.22000 
(Corrected Total) 11 112.22000 

R squared = 1 - Residual S S  / Corrected S S  = 0.97856 
Asymptotic 

Parameter Estimate Std. Error "t" 
K1 -0.713185655 0.066077062 10.79 
K2 0.053045980 0.012721538 4.17 
K3 13 '290957 161 2.239732720 5.93 
K4 0.138065737 0.046170577 2.99 

The following is the summary of statistics for the protein differential equation: 

Table 5.2.8 

Source DF Sum of Sauares Mean Square 
Regression 4 813.79945 203.44986 
Residual 8 45.70055 5.71257 
Uncorrected Total 12 859.50000 
fcorrected Total) 11 845.41667 
R squared = 1 - Residual SS I Corrected SS = 0.94594 

Parameter Estimate Std. Error "t" 
K1 -1.144027890 0.315665445 3.62 
K2 -0.697849486 0.164338043 4.25 

Asymptotic 

K3 132.71754638 18.5 14228294 7.17 
K4 0.013458092 0.003497463 3.85 

The Laplace transform of the system has the following expression: 

~+0.7132 -0.05305 s+O. I38 I 
G(s) = Yo + 

1.1440 s+0.6978 1 1 132.7176 1 
[s+O.01346] 

where 
ammonia and for protein. Then, the characteristic equation of the system is 

is the set of initial values, for yo0 = 15 and y, = 127 are data values for 
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J ~ I - A I  = s2+ 1 .4110~+0 .5584  = (s+a1)(s+a2) 

= [s +(0.7055 + 0.2462i)][s + (0.7055 - 0.246291 

where 

differential equations may be written as 

= u T Pi = 0.7055~t0.2462i. Thus, the state equations have a periodic form. 
The above system may be first solved symbolically. For such, the set of 

The corresponding solutions have the form 

Y =  

where 

The stateequations may now be obtained by replacing symbols by their numerical 
values: 
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= 1-39.70 172.13]le-o~1381'l 

19.42 13.05 e -0.01346r 

-32.47+yN -27.53 

- 132.43 +yao 
+ 

-0.70551 

The above state equations provide excellent initial guesses for the model 
parameters. However, the reader is reminded that the relationship between the state 
variables is not absolute. If all these coefficients are allowed to change independently for 
each state equation, the relationships between the state variables, established by the set of 
differential equations, could be disrupted. If preserving the relationships between the state 
variables is wanted, then only the initial values g,(O) = 15 and g,(O) = 127 should be 
allowed to change, because these are data values that include an experimental error. By 
adopting this criterion, the following state equations were obtained by non linear 
regression: 

= 1-39.70 1 7 2 . 1 3 ] ~ e - ~ ~ ~ ~ " ' /  

19.42 13.05 e -0.013461 

-32.47 + 15.06 -27.53 +5 1.32 

-132.43+129.30 146.68-25.79 
+ 

-0.70551 

The resulting initial values are yao= 15.06 and y 129.30. The nonlinear regression 
statistics for dependent variableya are shown in ?able 5.2.9. Iterations stopped after 4 
model evaluations and 2 derivative evaluations. 

Table 5.2.9 

source DF Sum of Squares Mean Square 
Regression 2 5363.29904 2681.64952 
Residual 1 1  2.65 096 0.24 100 
Uncorrected Total 13 5365.95000 
(Corrected Total) 12 2 17.82000 
R squared = 1 - Residual SS / Corrected SS = 0.98783 

Asymptotic 
Parameter Estimate Std. Error "t" 
Ya0 15.05792223 1 0.476088061 3 1.63 

240.32223677 12.841811683 18.77 ypo 
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The value 240.32 is significantly different from 127. 
The following are the statistical results for variable y, : 

Table 5.2.10 

source DF Sum of Squares Mean Square 
Regression 2 26 1787.93725 130893.96862 
Residual 1 1  129.8 1275 1 1.80116 
Uncorrected Total 13 261917.75000 
(Corrected Total) 12 495.26923 
R squared = 1 - Residual SS I Corrected SS = 0.73789 

Parameter Estimate Std. Error ‘It” 

J, 

Asymptotic 

yo0 6.419969406 4.185956705 1.53 
129.34073046 3.331537927 38.83 

Iterations stopped after 4 model evaluations and 2 derivative evaluations. The value 6.42 
is statistically different fiom 15, ps0.10. 

The reader may wish to experiment with additional parameter changes to 
improve the coefficient of determination of the protein equation. However, if more than 
four or five coefficients are allowed to change simultaneously in each equation, the non 
linear regression procedure may find the model over parameterized. 

The graph of the above equations is shown in Fig. 5.2.3. 
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A graphic approach may often help determining the initial parameter values. 
This approach is particularly helpful in periodic functions, because sometimes 
determining the state equations €torn difference or differential equations may be a long 
process prone to errors. 
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Months 

Time 

DryMatter, 
KgMdday 

Example 5.2.4 The following are the production data of a Kikuyo pasture field4: 

S O N D J F M A M J J A  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

15 16 20 51 47 78 67 44 25 22 16 20 

Determine the numerical values for the constant coefficients of the following model: 

y = a + be*'cos[p(t-c)] 

where y is pasture production in Kg/Ha/day and t is months. 

Solution: The geometrical meaning ofthe model parameters is shown in Fig. 5.2.4. This 
graph provides the following parameter estimates: 

a = 40 is the distance between the abscissa and the axes of the response curve 
be '' = 40 modulates the amplitude 
p = 2dl2modulates the frequency response, for a 2x43 cycle 
c = 6 is the out-of-phase coefficient, may be also a negative number 

0 1 2  3 4  5 6 7  8 9 1 0 1 1 1 2  
Months 

Figure 5.2.4 

Computed from Murthagh, G.J. et.al. 4 
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The following are the results ofa first nonlinear regression round, excluding the 
a coefficient: 

Table 5.2.11 

Source DF Sum of Squares Mean Square 
Regression 4 19498.071 I6 4874.51779 
Residual 8 466.92884 58.36610 
Uncorrected Total 12 19965 .OOOOO 
(Corrected Total) 11 5 194.9 1667 
R squared = 1 - Residual SS / Corrected SS = 0.91012 

Asymptotic 
Parameter Estimate Std. Error 'Y" 
a 40.686033337 2.395914989 16.98 
b 27.735 169241 3.142 103289 8.83 
P 0.690857972 0.040456 179 1 7.06 
C 6.164223027 0.175905181 35.02 

The exponent a will now be added, using the above parameters as initial values 
and assuming an initial value of zero. The following parameter values were obtained: 

Table 5.2.12 

Asymptotic 
Parameter Estimate Std. Error "t" 

a 40.660655707 2.573407459 15.80 
b 28.362500936 6.3 8 1 95 10 19 4.44 

P 0.690155050 0.044064 108 15.65 
C 6.165792283 0.188 149562 32.80 
a -0.003640961 0.031355789 -0.12 

Clearly, parameter a is not significant and the function is now over parameterized. Thus, 
the following is the resulting equation when the exponential term a is deleted: 

y = 40.7 + 27.7cos[0.691(t -6.16)] 

The graph related to the system equation is shown in Fig. 5.2.5. 
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*c 
0 2 4 6 8 10 12 

Months 
Figure 5.2.5 

As shown in this example, sometimes a graphic approach, for determining 
parameter initial values, may save a substantial amount of work. 

The problem of determining the model parameters becomes more complex as 
more input variables are added to the system. The following example illustrates a case 
with one input variable. 

Example 5.2.5 The following mathematical model was defined for the in situ digestibility 
of the cell walls of sugarcane leafs: 

wherey is percent digestibility, yo is an initial value, t is weeks, c/b is an asymptotic value 
and b is a relative rate. Determine how supplementation of green bananas to experimental 
steers affects the system. Table 5.2.13 shows the available data'. 

Solution: The following is the proposed model of the differential equation representing 
the system: 

where Ax) is the system input and x is percent of green bananas. Note that this is a partial 

'~omputed &om ~m-~ar t in ,  F.A. 
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differential equation because the banana inputs are fixed in each treatment. 

Table 5.2.13 

Digestibility, YO 

Time, 
Hours 

Green Bananas, YO in the Diet 

0 21.6 35.9 55.1 60.1 70.7 

6 0.00 

12 16.51 

18 21.73 

24 26.01 

48 40.44 

72 46.91 

96 5 1.05 

120 52.88 

3.51 2.00 

19.36 4.97 

25.96 13.33 

35.87 22.23 

47.02 32.79 

50.14 39.38 

53.63 49.52 

60.67 52.46 

1.20 

4.28 

5.04 

12.29 

37.19 

4 1.54 

52.40 

54.72 

0.00 

0.00 

0.08 

8.25 

28.71 

33.25 

35.60 

4 1.39 

0.00 

0.53 

0.61 

3.48 

7.06 

16.86 

28.13 

33.37 

The solution of the differential equation has the form 

Thus, the first step in determining the state equation of the system is finding Ax). The 
following results were obtained by linear regression using a difference table: 

Table 5.2.14 

source DF Sum of Squares Mean Square 
Regression 2 7.11301 3.55650 
Residual 39 10.20353 0.26 163 

Variable b SEb "t" Sin t 
Y -0.021561 0.004729 -4.559 0.0000 
X -0.014729 0.003553 -4.146 0.0002 
(Constant) 1.657543 0.22285 1 7.438 0.0000 
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Thus, the resulting equation is Ay/At+0.0216y = 1.658 -O.O147x, where the input is 
f i x )  = 1.658 - 0.0147~. Then, the following is the solution of the differential equation: 

where yo is an initial state value, estimated as yo=8 fiom a graphic approach. This 
equation provides the initial guesses for the final regression round shown below: 

Table 5.2.15 

Source DF Sum of Squares Mean Square 
Regression 4 46887.43088 11721.85772 
Residual 44 22 I 1.08952 50.25203 
Uncorrected Total 48 49098.52040 
(Corrected Total) 47 1 83 72.17637 
R squared = 1 - Residual SS / Corrected SS = 0.87965 

Parameter Estimate Std. Error "t" 
K1 1.699820480 0.264108342 6.44 
Is2 0.01 1083298 0.002260906 4.90 
K3 0.025055015 0.005426163 4.62 

Asymptotic 

YO -8.139136574 3.687234943 2.21 

All the above parameters are statistically significant. Thus, the following is the final 
expression for the state equation of the system: 

y = JTX) - [  
0.025 1 0.025 1 

where Ax) is the input of green bananas. The reader is invited to apply the procedure to 
determine the more accurate equation shown below: 

y = Jix> - ( 8.566 +- 
0.0258 0.0258 

f i x )  = (1.515 +0.0800x)e -0.0303' 
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Summary 

The first step in nonlinear regression is guessing initial values of the model 
parameters. If the initial values are not appropriate, the process may not converge to the 
least sum of squares of the error terms. Wrong initial parameters, highly correlated 
parameters, too large parameter changes across interactions, overflows or underflows, 
inappropriate mathematical models or poor quality data, may impair convergence. A 
solution to these problems may require, among other tactics, defining smaller parameter 
changes across interactions, imposing bounds on parameters, redefining the time scale of 
the system or even making changes in the mathematical model of the system. In linear 
systems, the simplest approach for guessing the initial parameter values is often 
determining the difference or differential equationsofthe system by linear regression. The 
initial values are then obtained f?om the resulting state equations. When possible, a 
graphic approach for determining the initial parameters may save some work in 
mathematical manipulations. No single rule is valid for all cases for determining the 
initial guesses of the model parameters. 

5.3 EVALUATION OF THE MATHEMATICAL MODELS AND SYSTEM 
BEHAVIOR 

Several statistical tests of the outcomes of the regression analysis are required 
before the mathematical model of the system can be accepted or rejected. These tests 
include evaluations ofthe constant coefficients ofthe mathematical model and evaluations 
of the predictive value and accuracy of the model. 

Evaluation of the Constant Coefficients 

Evaluation ofthe constant coefficients ofthemathematical model should be done 
at two levels of resolution: 

Within components 
Between components 

A "t" test should be used to evaluate each coefficient of the mathematical model 
within components, such that 

k - ko 
t = -  

Sk 

where k represents a constant coefficient, k, is the corresponding hypothetical value, S, 
is the standard error of the k coefficient and it - ito = 0 is the null hypothesis. Usually, KO 
is zero. Several mathematical models were displayed in the previous section with the 
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Age, Months 

NDT,% 10 "c 
Body 
Weight* 27 "c 

complete statistical outcomes. When the null hypothesis for a parameter was accepted, the 
mathematical model was considered over-parameterized and the corresponding coefficient 
was deleted. The reader may review those examples and the criteria used to accept, modify 
or reject a model. 

If the system has more than one component, the "t" test expression for comparing 
pairs of parameters is as follows: 

1 3 4 5 6 7 8 9 1 0 1 1 1 2  

2.2 3.0 2.9 2.7 1.9 - 1.9 1.7 1.6 - 1.5 

2.0 2.4 2.4 2.5 2.1 1.8 1.9 1.8 1.6 1.6 1.4 

k, - kJ 
t =  

where k, represents a coefficient of the i component, k, represents the coefficient of the 
j component and Sk, and S are their related errors. The null hypothesis is k, - kJ = 0.  The 
expression for degrees of freedom for the above test is DF = n, - m -t nj - rn = n, + nj - 2m, 
where n, and nJ are the number of observations in the i andj  components and m is the 
number of constant coefficients in the regression equation. 

k, 

Example 5.3.1 The following is the energy consumption of Jersey calves grown in a heat 
chamber at 10 "C and at 27 "C 6:  

Determine if the environmental temperature affects the energy consumption of the two 
groups of calves. 

Solution: The following is the mathematical model used for this system: 

The results for the first 10 "C group are shown below: 

komputed from Johnson, H.D. 
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source DF Sum of Squares Mean Square 
Regression 4 44.31358 1 1.07840 
Residual 5 0.14642 0.02928 
Uncorrected Total 9 44.46000 
/Corrected Total) 8 2.64222 
R squared = 1 - Residual SS / Corrected SS = 0.94459 

Parameter Estimate Std. Error "t" 
a 1.512640404 0.153029984 9.89 
b 1.463399174 0.326449846 4.49 
C 2.186617924 0.701647784 3.12 
d 0.780566265 0.244944768 3.19 

Asymptotic 

The results for the 27 "C group are as follows: 

Table 5.3.2 

source DF Sum of Squares Mean Square 
Regression 4 43.24803 10.8 1201 
Residual 7 0.10197 0.0 1457 
Uncorrected Total 1 1  43.35000 
(Corrected Total) 10 1.32727 
R squared = 1 - Residual SS / Corrected SS = 0.923 17 

Parameter Estimate Std. Error "t" 
Asymptotic 

a 1.201402929 0.360151004 3.34 
b 1.098037273 0.374336172 2.94 
C 1.046353355 0.573048232 1.83 
d 0.337156859 0.182164352 1.85 

Thus, the resulting equations for the 10 "C and the 27 "C groups are 

yI = 1.52 + 1.46t2.I9 e -0781' 

y, = 1.20 + 1.10t'.05e-0.337f 

The graph of the above equations is shown in Fig. 5.3.1: 
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5 "1 
f 2.5 

10 "C 
A 27 "C 

I * I , I 

0 2 4 6 8 1 0 1 2  
Age, Months 

Figure 5.3. I 

The two energy consumption curves in Fig 5.3.1 may look different. However, as shown 
by the "ttt tests, the only significant difference between the curves relates to coefficient 4 
with a mild statistical significance: 

0'7806 - . ~ - ~  - 0*3372 - - 1.436 ; P<O.20 t, = 

d0.2449)*+(0. 1882)2 

The degrees of freedom are here 9+11-8=12. Coefficient d is related to the rate of energy 
consumption. 

Example 5.3.2 The following is the energy consumption of a group of Jersey, Holstein and 
Brown Swiss calves, grown in a heat chamber at 27 "C of environmental temperature'. 

Age, Months 1 1  3 4 5 6 7 8 9 1 0 1 1 1 2  
~ ~ 

2.0 2.4 2.4 2.5 2.1 1.8 1.9 1 8  1.6 1.6 1.4 

We&ht* Holstein I 1.8 2.1 2.2 2.0 - 1.7 1.7 1.6 1.4 1.4 1.4 
~~ ~~ ~ 

Swiss 1- 2 1 2.3 2.3 2 0  1.8 1 8  1.7 1.5 - 1.4 

*1 Kg of NDT = 4 4 Mcal of digestible energy 

'Computed from Johnson, H.D. 
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Determine if the breed of the calves affects energy consumption. 

Solution: The following mathematical model was used in the required evaluations: 

The results for the Jersey group are shown below: 

Table 5.3.3 

Source DF Sum of Squares Mean Square 
Regression 4 43.24803 10.81201 
Residual 7 0.10197 0.01457 
Uncorrected Total 11 43.35000 
[Corrected Total) 10 1.32727 
R squared = 1 - Residual SS / Corrected SS = 0.923 17 

Parameter Estimate Std. Error Y1 
a 1.201405070 0.360131236 3.34 
b I .098034810 0.374320474 2.94 
C 1 .046357260 0.573059581 1.83 
d 0.3371 58043 0.182 16671 6 1.85 

Asymptotic 

The following are the results for the Holstein group: 

Table 5.3.4 

source DF Sum of Squares Mean Square 
Regression 4 30.683 19 7.67080 

Uncorrected Total 10 30.71000 
(Corrected Total) 9 0.78100 
R squared = 1 - Residual SS I Corrected SS = 0.96567 

Parameter Estimate Std. Error Y* 
a 1.2 19996492 0.156572078 7.77 
b 0.836027400 0.164482133 5.10 
C 1.166526980 0.403027490 2.90 
d 0.386706 189 0.132456924 2.93 

Residual 6 0.02681 4.468262E-03 

Asymptotic 

The following results were obtained for the Brown Swiss group: 
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Table 5.3.5 

Source DF SumofSquares MeanSquare 
Regression 4 32.53502 8.13376 

Uncorrected Total 9 32.57000 
[Corrected Total) 8 0.83556 
R squared = 1 - Residual SS / Corrected SS = 0.95814 

Parameter Estimate Std. Error ‘,t” 
a 1.392388259 0.1 13864207 12.21 
b 0.172633010 0.15 I988348 1.14 
C 3.748846679 1.531365765 2.45 
d 0.890486073 0.33643 1886 2.65 

Residual 5 0.03498 6.995549E-03 

Asymptotic 

Thus, the following set of equations represents the three component systems: 

y ,  = 1.20 + 1.10t”0se-0337‘ 

y2 = 1.22 + 0.836t1.17e-0387‘ 

y3 = 1.39 +0.172t375e-0.890‘ 

As shown by the “t“ tests, no significant differences were found between the 
Jersey and the Holstein calves. By conventional criteria, some significant differences were 
found between Brown Swiss and the other two groups: 

t(bl-b3) = 2.291 ; P<0.05 

t@2-b,) = 2.962 ; Pg0.025 

Thus, b, < b, = b, . Some mild statistical differences between Brown Swiss and the other 
two groups, also exist in the c and d coefficients at the P s 0.20 tolerance level. 

Predictive Value and Accuracy of the Mathematical Model 

The “t” test for the constant coefficients is valid only as a criterion for accepting 
or rejecting parameters of the mathematical model of the system. This “t“ test provides no 
information regarding the predictive value and accuracy of the mathematical model. For 
such, the coeficient of determination and the standard deviation ji-om regression are 
required. 

The coefficient of determination R2 is the square ofthe correlation coefficient and 
tells how much the mathematical model affects the total variability, that is 
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where I; is the sum of squares attributable to regression and y is sum of squares 
ofthe total. Thus, as with the constant coefficients, the mathematical model of the system 
also affects the R2 coefficient. 

The coefficient of determination is tested by means of the multiple correlation 
coefficient. When highly inter-correlated variables are included in the equation, the R2 
value may be significant, while the constant coefficients may not. High correlations 
between independent variables inflate the variances of the estimates, making individual 
coefficients unreliable. 

A question arises on whether a change in R2 resulting 60m a change in the 
mathematical model is significant. The change in the coefficient of determination i s  
defined as follows: 

where * R 2  is the coefficient of determination when one or more variables are excluded 
from the equation. Then, the null hypothesis that RC2hange = 0 i s  verified by the following 
F test: 

where n is the total number of cases in the equation, p is the number of variables related 
to R2 and q number of variables related to ' R  ' . Then, n-p-1 is degrees of fieedom for the 
residual related to R2. Note that, in nonlinear regression, the residual degrees of freedom 
related to R2 is written as n-p, wherep is the number of parameters in the equation. The 
statistical significance of Fchange is obtained 60m the F distribution, with q and n-p-1 
degrees of freedom. 

Example 5.3.3 The following are the differential equations proposed for the lactation 
curve of a group of cows: 

where y is milk production, Kglmonth and t is months. The statistical results for the first 
equation are as follows: 
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Table 5.3.6 

Source DF Sum of Squares Mean Square 
Regression 3 22928.34409 7642.781 36 
Residual 7 1321.65591 188.80799 
Uncorrected Total 10 24250.00000 
[Corrected Total) 9 10560.00000 
R squared = 1 - Residual SS / Corrected SS = 0.87484 

Parameter Estimate Std. Error "t" 
a 0.174882315 0.025002471 6.99 
a 0.206780539 0.042671 01 8 4.84 
C -15.78533600 9.278828992 1.70 

Asymptotic 

The following are the statistics of the second equation: 

Table 5.3.7 

source DF Sum of Squares Mean Square 
Regression 2 23839.95913 11919.97956 
Residual 8 410.04087 51.2551 1 
Uncorrected Total 10 24250.00000 
(Corrected Total) 9 10560.00000 
R squared = 1 - Residual SS / Corrected SS = 0.961 17 

Asymptotic 
Parameter Estimate Std. Error "t" 
a 251.68452603 12.243564107 21.37 
b 0.416681056 0.0107 15303 38.94 

Determine if the coefficients of determination of the two equations are statistically 
different. 

Solution: The following is the FChange value for the above coefficients of determination: 

2 
Rchmgz(n-P) - (0.961 17 -0.87484)(10 -2  - 1 )  - 5,188 p<o.05 

4(1 - R 2 )  3(1-0.96117) Fchatlge = _____ - ~ - 

The hypothesis that R:&,ge = 0 is equivalent to the hypothesis that non significant 
parameters are also zero. Then, deleting non significant parameters should not affect 
significantly the coefficient of determination. This statement is shown in the following 
example: 
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Example 5.3.4 The following differential equation is proposed for the lactation curve of 
the group of cows in Example 5.2.2: 

where y is milk production and t is months. Determine the effect of deleting non 
significant parameters on the R2 value. 

Solution: The following statistical results fit the data: 

Table 5.3.8 

Source DF Sum of Squares Mean Square 
Regression 4 26736.10290 6684.02572 
Residual 6 2 13.89710 35.64952 
Uncorrected Total 10 26950.00000 
I(Corrected Total) 9 15390.00000 
R squared = 1 - Residual SS / Corrected SS = 0.98610 

Asymptotic 
Parameter Estimate Std. Error "t" 
a 327.86977097 49.692096538 6.60 
b 0.330155226 0.083324925 3.96 
C -1.067232252 1.416257767 0.75 
d -0.547996260 0.125794564 4.35 

Clearly, parameter c is not significant. A new round with parameter c deleted shows the 
following results: 

Table 5.3.9 

Source DF Sum of Squares Mean Ssuare 
Regression 3 26705.71069 8901.90356 
Residual 7 244.2893 1 34.89847 
Uncorrected Total 10 26950.00000 
(Corrected Total) 9 15390.00000 
R squared = 1 - Residual SS I Corrected SS = 0.98413 

Asymptotic 
Parameter Estimate Std. Error Yt 
a 287.76427522 59.496 146589 4.84 
b 0.440587310 0.193108177 2.28 
d -0.432546460 0.170836477 2.53 

Note that the coefficients of determination in the two statistical evaluations are almost 
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identical. Note also that coefficients b and dare also similar. Thus, the final equation is 

The R2 coefficient was defined as a measure of goodness of the mathematical 
model for fitting the data. The opposite criterion to the goodness of fit is the sum of 
squares of the deviations &om regression d2, defined by the following expression: 

that is, the sum of squares of the deviations &om regression is the sum of squares of the 
total 9 2 .  The sum of squares of the 
deviations f?om regression is the basis for estimating the standard deviation from 
regression. The standard deviation from regression is defined as follows: 

y 2rninus de sum of squares due to regression 

The S,.t value is an estimate of the failure of the mathematical model in fitting the data. 

Example 5.3.5 Equation y = 40.7 t 27.7cos[0.691 (t-6.16)] was fitted to the pasture 
production data of Example 5.2.4. The predictive value ofthis equation is R 2  = 0.910. 
The lack of fit, for a standard deviation of S,,, = 7.64, is shown in Fig. 5.3.2: 

"1 
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4 
+ \ \  
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Figure 5.3.2 
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The standard deviation estimates de accuracy of the mathematical model for 
fitting the data, whereas R2 estimates the predictive value of the model. it is expected that 
a smaller S corresponds to a larger Rz, if the non significant coefficients are deleted. 
This statement is illustrated in the next example. 

Y.t 

Example 5.3.6 The following mathematical models were fitted to the rumen concentration 
of ammonia in lambs fed a diet containing urea': 

y ==(a + bt)e-C' 
y = a + bje-" 

where y is rumen ammonia, mMoles/liter and I is hours after feeding. Determine the 
numerical values of the constant coefficients and the statistical parameters for the two 
mathematical models. 

Solution: The following are the results for the fust model: 

Table 5.3.10 

Source DF Sum of Squares Mean Square 
Regression 3 5824.7 1 5 12 I94 1.57 171 
Residual 6 105.07488 17.5 1248 
Uncorrected Total 9 5929.79000 
(Corrected Total) 8 1043.78000 

R squared = 1 - Residual SS / Corrected SS = 0.89933 

Parameter Estimate Std. Error "t" 

a 7.829388620 4.020972876 1.958 
b 34.543303266 5.458689171 6.326 
C 0.395602703 0.037130787 10.663 

Asymptotic 

Asymptotic Correlation Matrix of the Parameter Estimates 

a 1 .oooo -0.6144 -0.3656 
b -0.6144 1 .oooo 0.8650 
C -0.3656 0.8650 1 .oooo 

The corresponding state equation for model one is here: 

'Computed from Streeter, C.L. et.al. 
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y = (7.83 + 34.54t)e-0.397' 

The results for the second model are as follows: 

Table 5.3.11 

Source DF Sum of Squares Mean Square 
Regression 3 5855.48225 I95 1.82742 
Residual 6 74.30775 12.38462 
Uncorrected Total 9 5929.79000 
(Corrected Total) 8 1043.78000 
R squared = 1 - Residual SS / Corrected SS = 0.92881 

Parameter Estimate Std. Error "t" 

a 7.469339752 2.550686920 2.929 
b 37.52234582 1 4.972439824 7.549 
C 0.497918668 0.053916065 9.237 

Asymptotic 

Asymptotic Correlation Matrix of the Parameter Estimates 

a 1 .oooo -0.3 140 0.5444 
b -0.3 140 1 .oooo 0.5221 
C 0.5444 0.5221 1 .oooo 

The state equation for model two is 

y = 7.47 + 37.52te-0.498' 

A summary for the above statistics is shown in the following table: 

Table 5.3.12 

State Equation R 2  S" f 

y = (7.83 + 34.54t)e -0.3961 0.899 4.18 

y = 7.47 + 37.5 te 0.929 3.52 

Note that the second equation has a larger R2, a smaller standard deviation and more 
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reliable constant coefficients. Note also that the correlations between the parameter 
estimates of the second model are smaller that the correlations in the first model. 

In conclusion, in selecting a mathematical model, the research team should look 
at the following statistics. It is expected also that results should agree with the 
experimental hypothesis. 

Reliability of the constant coefficients 
The coefficient of determination 
The standard deviation fi-om regression 
The correlation matrix of the parameter estimates 

Summary 

The main criteria for accepting or rejecting the experimental hypothesis are the 
"t" tests for the constant coefficients of the mathematical model of the system. However, 
the predictive value and accuracy of the model are estimated from the coefficient of 
determination and the standard deviation fi-om regression. Sometimes, the correlation 
matrix of the parameter estimates may also be included in the evaluation of the 
mathematical model. 



FRAMEWORK FOR MODELING 
AGRICULTURAL SYSTEMS 

A model is a characterization of a real system. It may take the form of a drawing, 
a simple written verbal description or may be a complicated set of equations to be used 
in the simulation of the system. 

This chapter is an extension of Chapter 1. Is a conceptual overview of the 
modeling process, as is further developed for specific applications in chapters 7 , 8  and 9. 
For such, simple examples are introduced and developed for explaining general modeling 
principles. 

6.1 THE SYSTEM VARIABLES 

As disclosed previously, the following variables are required for defining the 
mathematical model of a system: 

The time scale adopted for the system 
Input variables 
State variables 
Output variables 

The Time Scale 

Time is a continuous process. However, when sampling takes place at fixed 
intervals oftime, then a discrete signal is generated. Depending on the time scale adopted 
for the model, system models are grouped into two categories: 

Continuous systems 
Discrete systems 

Actually, any system is neither continuous nor discrete, they are simply systems. It is in 
the modeling process, according to the human interpretation of the system, that systems 
are given specific definitions and features. 

For continuous systems, the time scale is the set of all nonnegative real numbers. 
Continuous systems are frequently called differentiable systems when they are represented 
by differential equations and their solutions. 
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When the state variables can be accepted as discrete, adopting a discrete model 
for such system may be appropriate. This may be the case of state variables defined as 
number of individuals or as qualitative traits. For discrete systems the time scale is the set 
of all nonnegative integers. Discrete systems are not differentiable, because the state 
variables are discrete. Discrete systems are sometimes represented by difference equations 
and their solutions. 

In put Variables 

An input is anything admitted into the system, either in physical terms or as 
information. Any agricultural system is bombarded by different kinds of inputs, most of 
them not explicitly related to the research problem. Some inputs can be manipulated, for 
example the application of fertilizers. In agricultural research, manipulation of inputs may 
determine experimental treatments and designs. Most inputs, however, are not subject to 
manipulation, like the weather factors and may add uncertainties for the modeler with 
respect to the response of the system. 

An input variable is named here x,. A set of input variables determines a 
Cartesian product X ,  such that 

x = x,x ...” X/ = (.=(x ,”. X/);X,Ex,} 

where the I-tuple x is an input, X, is the range of input variable x,, and i = 1,2, ..., l is the 
identification ofthe system input variables. Each Xi is also called an inputport’. 

Example 6.1.1 The following levels of fertilizer are applied to a pasture experimental 
field to test the pasture response to sodium nitrate and to superphosphate: 

X ,  = (0,300,600); X, = (0,200) 

where XI is sodium nitrate and x2 is superphosphate, in kilograms per hectare. Define 

the set of inputs of the system. 

Solution: The set of inputs ofthe system is determined by the following Cartesian product: 

X = XI x X, = { (0, 0), (0,300), (0,600), (200,0), (200,300), (200,600)) 

Waymore, A. W. I 
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where each of the six ordered pairs in the above product is an input. 

has the following form: 
Inputs organized over time are called input trajectories. Thus, an input trajectoryf 

f = { (t,x): t E T; x EX ;x = XI x . .. x x, ;x = (XI,. . ., XI) ;XI EX,)} 

for continuous systems and 

f = ((n,~): ~EN;xEX,X=X, x ...x X[;X=(X, ,..., xJ;x~EX,) 

for discrete systems, where T and N are the continuous and the discrete time scales. 

Example 6.1.2 Define an input trajectory for treatment x2 = (0,3000) for the experiment 
in Example 6.1.1, assuming applications of the fertilizers every three months, during a 
full year. Define also a fertilization program, where no fertilizer is applied in winter, that 
is treatment x1 = (0,O) and maximum levels are applied during summer, that is treatment 
x6 = (200,600). 

Solution: The requested trajectories are shown in the following table: 

Table 6.1.1 

Months Trajectories 

f ,  fi 

0 

3 

6 

9 

I2 

Note that in agricultural experiments inputs subject to manipulation are usually held at 
constant values over time, as is the case of trajectoryf, in the above table. Note also that 
the input trajectories in the table correspond to inputs that can be manipulated. 

The following example corresponds to inputs that cannot be manipulated. 
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Month 

Temperature* 

Rainfal1,mm 

Example 6.1.3 The following are average temperatures and rainfall data for a country 
region in Panama: 

J F M A M J J A S O N D  

26 27 26 25 24 24 23 23 23 24 24 25 

18 50 70 27 8 2 1 0 0 0 0 3 

Each ordered pair x = (temperature, rainfall) in the above table is an input ofthe 
system and the table specifies an input trajectory. 

Note that the Cartesian product Xholds true for both, discrete and for continuos 
models, because ail combinations of values within the range of the input variables are 
possible. However, what actually defines the system response is the input trajectories 
accepted by the system. 

State Variables 

The notion of a state is related to what is going on inside the boundaries of the 
system. The state of the system is a static condition that can be determined by many 
variables. Often many of these variables may not be even related to the research problem. 
State variables may be either quantitative, like the weight of a cow or qualitative, like the 
color of a cow. 

A state variable is named here y, . Then, the state of the system is represented by 
the Cartesian product Y, such that 

where the n-tuple y is a state, 5 is the range of state variable .Yi and i = 1,2, ..., m are 

labels of the state variables. 
Due to the randomness of most inputs, the operation of all agricultural systems 

must be considered subject to some kind of uncertainty. Depending on wether 
uncertainties are taken into consideration or are ignored, models of systems are assigned 
to two categories: 

Stochastic models 
Deterministic models 

In stochastic models, the states of the system are defined as probability distributions. In 
deterministic models, the states are defined as the expected value of the outcomes. 
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Example 6.1.4 The trees of a citrus plantation are classified by size as small (s), medium 
(m) and large (1) and by health as healthy (h)or diseased (d). Defme the set of states of the 
system. 

Solution: The state ofthis system is represented by two variables, namely sizes and health 
h. Thus, the set of states of the system is represented by the following product: 

States organized over time are the state trajectories of the system. Thus, a state 
trajectory is any function defined over the time scale with values in the set of all states of 
the system. Thus, a state trajectory g is defined in the following form: 

g = ( ( t ,y) : t t r ;  YE y;,Y= Y,x ...x Y,;y =@,, ... ?ym);y,€ q }  

for continuous systems and 

for discrete systems, where t and N are the continuous and discrete time scales and y, is 
a state variable. 

Example 6.1.5 The following fitted equation represents the growth curve of a group of 
steers'. This equation represents the body weight trajectory and is shown in Fig. 6.1.1. 

Herey is the state variable of the system as the body weight of the steers in Kg and t is the 
age of the steers in years. 

2Vohnout. K., Unpublished 
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Output Variables 

An output is anything produced by the system across its boundaries. As with 
inputs, outputs can be either in a physical form or as information packages. Oranges 
produced by the citrus plantation in Example 6.1.4 are a physical output of the system, 
while knowledge of the state of the trees is an information output. Many outputs of a 
system may not be related to the research problem. Therefore, defining such outputs is not 
necessary. This is the case in Example 6.1.4, h e r e  the problem is only related to the size 
and health ofthe trees. Then, defining oranges as an output ofthe system is not necessary, 
unless the problem is defined in terms of production of oranges in relation to the size and 
health of the trees. Furthermore, being explicit in defining the size and health of the trees 
is an information output of the system. In this case, the state is also the output of the 
system. 

An output variable is named here z,. Then, the output of the system is denoted 
here by the Cartesian product 2, where the n-tuple z is an output, Z, is the range of 
variable z, and i = 1,2, ..., n are labels of the output variables. Each Zi is also called an 
output porr-': 

2 = Z I X  ... X Z "  = (z=(zl ,... .zn);zi€Z,} 

Example 6.1.6 Production of a pasture field is determined in terms of grass and in terms 
of milk. Define the output of the system. 

3~aymore ,  A.W. 



6.1 :The System Variables 185 

Solution: The output ofthe system is represented by two output variables, where z ,  and z2 
stands for grass and for milk, such that 

z = z, x z 2  = ~ = ( z , , z 2 ) ; z , E Z , ; z 2 E z 2 }  

Outputs organized over time are the output trajectories of the system. Then, an 
output trajectory h is defined as follows. For continuous systems 

h = ((t,z): &T; ZEZ; 2 = 2, x ... "2, ;z  = (zl, .. . ,zn) ;z,  E z,} 

and for discrete systems, where t and N are the continuous and the discrete time scales. 

h = {(H,z): HEN; ZGZ; Z=  Z,  x... xZ,;z = (z,, ... J,); Z,  E Z,} 

Example 6.1.7 The following is the equation fitted to the lactation curve of a group of 
dairy cows4: 

z = e -04841(298 + 41 It) 

0 

s 
A 
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Figure 6.72 

4Vohnout, K., Unpublished 
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This lactation curve is also shown in Fig. 6.1.2, where the output variable of the system 
is z,  as milk production in kilograms/month and t is time in months. 

The following is an outline of the system related variables: 

Time scale for continuous systems 

z = ( t :  t is a real number; 0 5 t < a] 

Time scale for discrete systems 

N = {n:n is an integer; 0 I n < a} 

Set of inputs 

x = x,x ..." x/ = i (  x =  x i . . . x , ) : x , € x , }  

Set of states 

Y = Y," ..." Y,  =+=(y, )...) y,) ;y , tY,)  

Set of outputs 

2 = Z I X  ...x zn = ( < =  z zi )...) 5 , , ) ; Z , E z l }  

where Xi and Zi are input and output ports. 

Summary 

An input is anything admitted to the system, either as physical objects or as 
information packages. Depending on the time scale adopted, systems are classified as 
continuous or discrete. Depending on whether uncertainties in the admission of inputs are 
considered or ignored, systems are classified as stochastic or deterministic. States are traits 
that characterize the system and outputs are anything produced by the system, either in 
a physical form or as information packages, as a fhnction of the state. 

6.2 SYSTEM DYNAMICS 

The notion of a state is related only to an instantaneous or static condition of the 
system. As disclosed before, the dynamic condition is represented by the state transition 
function. The state transition function represents the changes in the state of the system 
over time, as determined by the initial state and by inputs. It was also disclosed that the 
output depends only on the state of the system. These statements are discussed in more 
detail in this section. 
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The State Transition Function 

The state transition of a continuous system is determined usually by a derivative 
function p that depends only on a state y =g( t )  and an input x =At), such that 

A state trajectory of the system is the solution p of the above differential equation for a 
given initial state y -g(O). Thus, if the system is started at a state yo,  is supplied by an 
input trajectoryfand IS run to some time t, then 

0 -. 

Clearly, given the initial conditions, a continuous system is completely determined by a 
differential equation or a set of interconnected differential equations. 

The next state fimction v of discrete systems is equivalent to the derivative 
function p of continuous systems. Thus, a state y,,, at the discrete time n+ 1 is completely 
determined by the state y, and the input x, at time n. Then 

Therefore, given the initial conditions, a discrete system is completely determined by a 
difference equation or a set of interconnected difference equations. 

From the above, it is clear that the state transition function represents the 
dynamic behavior ofthe system. The state transition function may be defined by a graph, 
a table, or by mathematical expressions. 

Example 6.2.1 The movement of DDT from plant to soil is 25% per month, from soil to 
plant is 2% and carried out with ground water is 5%. Define the state transition function 
and the set of state trajectories of the system. 

Solution: The dynamics of the system is shown in Fig. 6.2.1. This is a two-compartment5 
open system and Fig. 6.2.1 symbolizes a state transition hnction. It is a continuous system 
because there is a continuous flow of DDT within the system and between the system and 
the outside environment. 

The term “compartment” is widely used in tracer kinetics and was 5 

accepted and adopted for this book 
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Figure 6.2. I 

The system is completely determined by a set of initial conditions Yo = (0.6,0.4) and by 
the following set of differential equations: 

0.25 -(0.02+0.05) 
-0.25 I d Y = A Y =  

dt 

for Y =  ( ~ ~ , y , ~ ) ,  where y, is the plant concentration of DDT, y, is the soil concentration 
of DDT, I is months, xSp = 0 . 0 2 ~ ~  is the input to the plant compartment, xps = 0 . 2 5 ~ ~  is the 
input to the soil compartment, z = 0 . 2 5 ~ ~ ~  is the output of the plant compartment to the 
soil compartment, z,7p = O.O2y, is the output of the soil compartment to the plant 
compartment and Zso = 0.05Y.~ is the output of the soil compartment to the outside. Note 
that coefficients with a positive sign are inputs and coefficients with negative signs are 
outputs. The Laplace transform of this set of differential equations is given by the 
expression (s l -A)G(s)  = Yo, where 

P? 

+0.25 -0.02 

-0.25 ~ + 0 . 0 7  
Isl-Al = 1 I = (s+0.0455)(~+0.2745) 

is the characteristic equation of the system. Then 

-O-O2I 

1 
= (s+0.0455)(~+0.2745) .4 s+0.07 

1 
(~+0.0455)(~+0.2745) 

GJS) = 

The reader is encouraged to check that the solution of the above transforms is the 
following set of state trajectories: 
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These trajectories are shown in Fig. 6.2.2. Since this system has an output to the outside 
environment but does not have inputs fiom outside, DDT values will approach zero as the 
time variable gets very large. 

0.8 

x 

-e- Plant -1 

02 -t- Soil 

- t----+----t-t 

0 4 8 12 16 20 24 
Months 

Figure 6.2.2 

Example 6.2.2 A rancher sells each month 3.6% of his feedlot steers and buys 90 new 
animals. The initial number of steers is  460. Define the next state function and the state 
trajectory of the system. 

Solution: This system is discrete because the state variable steers is discrete. The system 
is depicted in Fig 6.2.3: 

The following is the corresponding difference equation, where y, is the present state of 
the system, Y , , ~  is the next state, x = 90 is the input and z, = 0 . 0 3 6 ~ ~  is the output: 

Y,,, - y ,  = 90 - 0 . 0 3 6 ~ ~  
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The above equation may also be written in the next state form yn+, = 90 t 0 . 9 6 4 ~ ~ .  Then, 
the Z transform of this difference equation is 

460z 
t- 

90z 
(z- 1)(~-0.964) 2-0.964 

G(z) = 

The following state trajectory is the corresponding inverse 

y, = 2500 ~ 2040(0.964)” 

also shown in Fig. 6.2.4: 

0 20 40 60 80 1m120 

Months 
Figure 6.2.4 

Example 6.2.3 A forest area is chopped down and burned. After the first year, 20% of the 
burned area is regrown by trees and 30% is colonized by grasses. The remaining area stays 
as bare soil. Mortality of trees is 15% and mortality of grasses is 25%. Define the next 
state function and the state trajectories of the system. 

Solution: This forest area may be defined as a finite discrete system with three state 
variables, the bare soil state variable, the grass state variable and the trees state variable. 
The next state function of the system is shown in Fig. 6.2.5: 
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Figure 6.2.5 

The corresponding state transition matrix is shown in the following table: 

Table 6.2.1 

Present Next State 
State 

Bare Soil Grasses Trees 

Bare Soil 0.50 0.30 0.20 

Grasses 0.25 0.75 0 

Trees 0.15 0 0.85 

The above table shows that 50% ofbare soil may remain as bare soil in the next state, 30% 
may become grasses and 20% may become regrowth of trees. It also shows that 25% of 
the grasses may die out, reverting to bare soil and that 75% may remain as grasses. Fifteen 
percent of the trees may die and revert to bare soil and 85% may stay alive. 

The system is represented by the following set of next state equations: 

Then, the corresponding 2 transform and its inverse are 



192 

G(0) = 
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1 0 0  

0 1 0 

0 0 1  

where G(0) is the set of initial states of the system and Q is the state transition matrix. 
The set of initial states is here 

’1 0 O”0.50 0.30 0.20 

Yn = 0 1 0 0.25 0.75 0 

,O 0 1 0.15 0 0.85 

” 

Note that the first row of the above matrix shows that the initial state is bare soil. Then, 
the following is the set of state trajectories of the system: 

After solving matrix Q ”, the following are the state trajectories when the initial 
state is bare soil6: 

y , ,  = 0.2830 + 0.6937(0.285)” + 0.0233(0.815)” 

y,,, = 0.3396 - 0.4479(0.285)” + 0.1083(0.8 15>n 

y,, = 0.3773 - 0.2457(0.285)” - 0.13 16(0.81 S>n 

Fig. 6.2.6 shows the above state trajectories. Since this is a closed system, states will 
approach an asymptotic value as time gets larger. 

6The procedure for determining the powers of a matrix will be 
discussed in the next chapter 
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The Output Function 

As specified in the first section of this chapter, the notion of an output finction 
is related to the production of outputs as a response to the state of the system, such that 

z=w@) 

where w is an output function. Then, an output z of the system is completely determined 
by the state y. 

Defining output fkctions isnot always necessary. In addition, when dealing with 
empirical models, an output h c t i o n  may often have only an abstract meaning. 

Example 6.2.4 Define the output function of the DDT system in Example 6.2.1. 

Solution: This system was represented by the following set of differential equations: 

- 

O.O2 l y  dY 1-0.25 
- 

dt 1 0.25 -(0.02 +0.05) 

where y p  is DDT concentration in the plant compartment and y ,  is the concentration of 
the insecticide in the soil compartment. Because there are no external inputs defined for 
the system, the above set of equations is also the output of the system, such that 
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-0.25 0.02 dY j 
dt 0.25 -0.07 -2 

Since the state trajectories are known, the following is the set of output trajectories of the 
system : 

These trajectories may haveonly a theoretical meaning. More important are here 
the input-output relationships between compartments. As shown in the graph ofFig. 6.3.7, 
the outputs of each individual compartment are determined by the coefficients with 
negative signs, that is zpr = 0 . 2 5 ~  and zs =zAp +zso = 0.07ys, where zps is the output from 
the plant compartment to the soil compartment, zsp is the output ffom the soil 
compartment to the plant compartment, zso is the output from the soil compartment to 
the outside and z, = z , ~  + z , ~  is the total output from the soil compartment. Fig. 6.2.7 
represents the output function of the system. 

P 

Plant Plant 

u z,= 0 . 2 p  
Figure 6.2.7 

Summary 

The state transition ofa continuous system is determined bya derivative function 
p that depends only on a state and an input, such that dg(tj/& = p(s(t),f(tj). A state 
trajectory ofthe system is the solution ofthis differential equation for a given initial state. 
Thus, if the system is started at a state yo,  is supplied by an input trajectory f and is run 
to some time t, then y =  u(yo,,f; t ) .  The next state fimction v of discrete systems is 
equivalent to the derivative function p of continuous systems. Thus, a state at the discrete 
time n+l is completely determined by the state and the input at time n such that 
yn+, =v(y,,x,j. Given the initial conditions, a system is completely determined by a 
differential or a difference equation or by a set of interconnected differential or difference 



6:3. Response Functions 195 

equations. An output hnction w relates outputs and states, such that z =I+@), where z is 
the output. 

6.3 RESPONSE FUNCTIONS 

A continuous linear system was represented, in the first chapter, as a tank with 
devises for water admission and for water discharge. The change of the water level was 
defined as the difference between admission and discharge, such that 

where x is the water input, y is the height of water, t is time and by is the water output. 
Two processes are taking place in the tank. One process is the filling and the other is the 
emptying of the tank. The emptying process may take place even if the water input is 
turned off, independently ofthe water input. In this case, the emptying of the tank is due 
exclusively to yo, the height of water at time zero. Conversely, the filling process 
determines a system response that is due exclusively to the input x, independently of the 
initial conditions. These two processes are called the p e e  response and the forced 
response. The portrait of this system for an input of x = c is shown in Fig. 6.3.1. 

V '  
Figure 6.3. I 

- ~ output by 

From the above, the following definition applies for the free response: 

Definition 6.3.1 The free response is the system response due onlyto the initial conditions 
in the absence of inputs. 
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The following definition applies for the forced response: 

Definition 6.3.2 The forced response is the system response due only to inputs, regardless 
of the initial condition. 

Thus, if the input c is zero, the free response of the system is a homogeneous differential 
equation : 

The fiee response is always represented by a homogeneous differential equation. 

differential equation of the system, for an input x = c : 
The two responses are clearly seen in the following Laplace transform of the 

Yo C 
G(s) = - + - 

s+b s(s+b) 

The first fiaction of the above expression corresponds to the free response and the second 
to the forced response. Thus, the inverse of the first fraction is the state trajectory of the 
free response y ,  and the inverse of the second &action is the state trajectory of the forced 
response y,:  

yA  = yoe 
X 

y, = -(I - e -bf) 
b 

The sum of the two responses is the total response of the system. Thus, the following 
definition applies: 

Definition 6.3.3 The total response of the system is the sum of the fiee response and the 
forced response. 

Then, the state trajectory of the total response is the sum 

The steady state response and the transient response are two other quantities 
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whose sum equals to the total response. Note that, when the output of the system is equal 
to the input, the system is at a steady state, that is 

Then, at steady state, the response of the system approaches the constant c as time 
approaches infinity. Clearly, changing c also changes the steady state of the system. Thus, 
the following definition applies for steady state: 

Definition 6.3.4 A steady state is the response ofthe system when the input and the output 
are equal. 

The transient response is defined as follows: 

Definition 6.3.5 A transient response is the system response when the input and the 
output are not equal. 

Thus 

Example 6.3.1 An individual with an immunodeficiency problem was dosed with 9.9 
grams of gamma globulin intravenously. The blood concentration of the patient gamma 
globulin is described by the following fitted state equation’: 

where y is gamma globulin concentration in mg/dl and t is time in days. Define the 
response functions of the system. 

Solution: The following is the differential equation related to the state equation: 

- 4 + 0 . 0 3 8 6 ~  = 180 
dt 

Vohnout, K., Unpublished 7 
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The corresponding Laplace transform of the above differential equation is 

463 + 180 
s +0.03 86 s(s +0.0386) 

G(s) = 

where 463mg/ml is the blood gamma globulin at zero time and 180mg/day is the patient 
gamma globulin input. The first fraction represents the free response due to the dose of 
gamma globulin given to the patient. The second fiaction represents the forced response 
and is attributable to the patient’s own gamma globulin contribution. The following state 
trajectories are the fiee response yA and the forced response yB:  

Then, the total response is the sum 

The steady state response is the asymptotic value 2 18. The system responses are shown 
in Fig. 6.3.2.Note that the gamma globulin dosed to the patient approaches zero as time 
increases. Conversely, the patient’s own gamma globulin contribution approaches the 
asymptotic value of 2 18 mg/ml. 
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Example 6.3.2 The following equation was fitted to the microbial digestion ofthe cell 
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walls of a forage sample': 

193 

where y is percent of residual cell walls and t is time in hours. Define the system response 
functions. 

Solution: The following is the differential equation of the system: 

- dy + 0.0820y = 0 
dt 

This is a homogeneous equation and the change of state of the system is determined only 
by the output 0.0820~. Therefore, the fitted equation i s  a freeresponse function depending 
only on the initial condition 54.0%. 

The same principles described for continuous systems apply also for discrete 
systems. A simple first order system is represented by the following difference equation: 

where x, is the input and by, is the output. This difference equation has the following Z 
transform for a constant input of x, = c : 

where g(0) represents the initial condition of the system. If the input c is zero, then the 
following homogeneous difference equation represents the free response of the system: 

The Z transform of this difference equation is 

'Computed from Van Soest, P.J. 
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which is the first fraction ofthe total response transform. When the initial condition g(0) 
is zero, then the transform of the forced response is 

C Z  

GB(Z) = (z- l)[z - (1 -b)] 

which is the second fraction of the transform of the total response. Thus, the following 
sequences are the free response yAn and the forced response yRn of the system: 

The total response is the sum 

Example 6.3.3 Each month 3.6% of farm workers of a county are laid-off or quit and are 
replaced by 90 newcomers. Define the response functions of the system if the initial 
number of workers is 460. 

Solution: The following is the difference equation representing this system: 

yn+,  - y ,  = 90 - 0 . 0 3 6 ~ ~  

Thus 

y, , ,  - 0 . 9 6 4 ~ ~  = 90 

The following is the Z transform of the above equation: 
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4602 + 90z G(z) = 
z - 0.964 (Z - l)(z - 0.964) 

where 460 is the initial number of workers and 90 is the monthly input of newcomers. 
Then, the following solutions are the fiee response yAn, the forced response yBn and the 
total response y,: 

yAn = 460(0.964)” 

y,, = 2500[1 -(O.964)”] 

y ,  = 2500 - 2040(0.964)” 

These responses are shown in Fig. 6.3.3. Note that, as time increases, the number of old 
workers approaches zero and the number of newcomers approaches 2500. 

2000 2500i 

500 t -1 2 1500 Q 
4 Iooo 

I 

O& 
0 

. -  
-*-,,’ - - -+ - - -  Total 

. - -. - ~ Forced 

. - -A - - Free 

.* m. 
- ,  

I .  

i -  . - A - .  ~ - A -  ~ 

! I I A-t=+= 
I 0  20 30 40 50 60 

Months 

Figure 6.3.3 

Summary 

The response of a linear system is represented by two types of functions, the free 
response and the forced response. The free response is the reaction of the system to initial 
conditions in the absence of inputs and the forced response is the system reaction due 
exclusively to inputs. The sum of the fiee and the forced response of the system is called 
the total response. A steady state is the response of the system when inputs and outputs 
are equal. 
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6.4 TRANSFER FUNCTIONS 

6: Framework for Modeling Agricultural Systems 

In a broad sense, a transfer function relates the response hnction of the system 
with an input function. Consider the following example: 

Exampie 6.4.1 Define the transfer function of the system: 

Solution: The following is the Laplace transform of the above differential equation: 

Then 

The above transform may also be written as 

where P(s) is called the transfer function of the system. The transform of the input 
function is F(s), the transform ofthe response function is G(s) andR0) andg(0) are initial 
values for the input and for the state variables. When all initial values are zero, the 
transfer hnction relates the response function of the system and the input by the 
expression as) = P(s)F(s). This relation is shown in Fig. 6.4.1. 

Figure 6.4.1 
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Thus, the following definition applies for the transfer hnction: 

Definition 6.4.1 In a linear system, a transfer function P(s) is the ratio between the 
transform of the response function of the system and the transform of the input function, 
when all the initial values are zero. 

By using the Laplace or the Z transforms, this definition is valid for continuous 

The general expression for the Laplace transform of the response hnction can 
and for discrete systems. 

be written as 

2 C,S I 

0 
G(s) = --F(s) + (all terms for initial conditions) 

b,s 
0 

Then, the general expression for the transfer hnction is 

m 

' +...+ c 

Note that the denominator of the transfer hnction is the characteristic polynomial of the 
system. 

Example 6.4.2 Define the transfer function for the following system: 

Solution: The following is the Z transform of the system: 

(z  *G(z) - g(0)z - g( 1 )z + b, [zG(z) - g(O)z] + b,G(z) 

= z?F(z) -AO)z2 -JTl)z +c, [zF(z) -AO)z] + c2zF(z) 

where do), g(l), AO) and A1) are the initial conditions. Then, the transform of the 
response may be written as 
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z2  +ctz+c2 g(O)z(z +bl) +g(l)z AO)z(z +c,) +fll)z 
z + b,z + b, 2 z2 + b,z + b, z 2  + b,z+ b G(4 = F(z) + 

The transfer function is here 

z z  + c,z + c2 
P(z) = 

z 2  + b,z+ b, 

where z 2  + b,z + b, is the characteristic equation of the system. 
As will be shown in the next example, when the input depends on time, defining 

the response finction of the system requires the appropriate handling of the transfer 
hnction. 

Example 6.4.3 The following is the differential equation representing the yield of a 
Kikuyu grass field, in response to rainfall’: 

9 + 0.4916~ = 0.1049- dx + 0.1090~ 
dt dt 

wherey is pasture yield, as kg/ha/day of dry green leaves and x is rainfall in mmlmonth, 
as defined by the following corresponding rainfall equation: 

x = 206 - 152.6cos0.809t - 43.5sin0.809t 

Determine the response functions of the system. 

Solution: The above differential equation may be expressed symbolically as 

dv +by = c,- dx +c$ 
dt dt 

~~ 

Computed from Murtagh, G.J. et.al. 9 
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and the symbolic expression for rainfall has the form 

At)  = k, + k,cos0t + k2sin0t 

Then, the Laplace transform of the system differential equation is 

As disclosed in the previous section, the response of a system can be separated 
into two components, the fi-ee response depending only on initial conditions of the system 
and the forced response depending only on the input. 

Free Response. The Laplace transform of the free response is here 

where g(0) is the initial pasture yield. Then, the free response of the system is simply the 
inverse transform of the above equation: 

Forced Response. The Laplace transform of the forced response is 

C I S  + c2 c fi0) GB(s) = _I___ F(s) - _I 

s + b  s + b  

whereA0) is the initial condition for rainfall. Note that the forced response includes the 
initial conditions of the input. The initial conditions of the input should not be conksed 
with the initial conditions of the system. 

The first term of the forced response may be written as G,(s) = P(s)F(s) , where 
P(s) is the transfer function of the system and F(s) is the Laplace transform of the rainfall 
input. For practical purposes, this first term will be solved first. 

As disclosed in Chapter 4 and Property 4, the inverse Laplace transform of the 
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product of functions P(s) and F(s) is given by the following convolution integral: 

6: Framework for Modeling Agricultural Systems 

g&t) = L -'[P(s)F(s)] = [ 'p(t-t)fTr)dz = J 'p(r)J(t-.c)dz 
0 0 

where 

CIS+ c2 
= q  1-- t- P ( s )  = ~ 

s + b  [ s f b ]  s:b 

The inverse of the above transfer function is 

At) = c,(S(t) -be -b') + cze -b' = c,6(t) - (c,b -c$ -" 

The term 6(t) is the inverse transform of integer I and is called (I unit impulse function, 
or delta function. The delta function represents a spike whose ordinate approaches 
infinity and the width of the independent variable approaches zero. The area under the 
curve is equal to one, that is 

meaning that ofa unit of input is compressed to an infinitesimally small duration of time. 
Note that the delta hnction has a value only at t = 0. Then, the following is the Laplace 
transform of the delta function: 

The inverse of F(s) is the rainfall input and was defined as 

A t )  = ko + k p s  8 t + kzsin 8 1 

Then 
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where T is the time scale. As indicated before, the inverse transform of the product of two 
functions is defined by a convolution integral. Since the Laplace transform of 6 ( t  ) = 1 , 
then 

I f 
6 6 ( z ) . f ( t  - z)dz = s(t - z ) f ( z ) d z  = L-"(I)(F(s))] = f ( t >  d 

Expression 6(t - z) is called a delayed impulse. 

Note that f ( r )  = kg + kl cos6t + k,  sin6t .Thus 

After computing the integrals and factorizing, the above expression becomes 

The second term of the transform of the forced response has the following 
solution: 
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Then, the final expression for the forced response is 

Total Response. As disclosed previously, the total response is the sum of the free response 
and the forced response. Thus 

It is now a simple task to replace the above expression with the known numerical values 
for b, cl, c2, k,, k , ,  k 2 ,  c o d  and sine. Then 

y = 45.68 - 23.12cos0.809t - 13.86sin0.809t-22.56e 4492f +g(O)e -0.492r 

where g(0) is the pasture initial yield. An educated guess for this initial yield may be 
obtained fiom the data, but the final value is better obtained by non linear regression. The 
following are the results after this procedure: 

y = 45.68 - 23.12cos0.809t - 13.86sin0.809t-22.56e -0-492' + 22.60e -0.492* 

where g(0) = y, = 22.60. The following is a summary of the non linear curve fitting 
statistics: 
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Tabie 6.4.1 

Source DF Sum of Squares Mean Square 
Regression 1 16948.26085 16948.26085 
Residual 9 1024.739 15 113.85991 
Uncorrected Total 10 17973.00000 

(Corrected Total) 9 4208.90000 
R squared = 1 - Residual SS / Corrected SS = 0.75653 

Asymptotic 
Parameter Estimate Std. Error ,*t" 

Ya 22.597416584 0.100807556 223.70 

The accuracy of the state equation may be improved by including more 
parameters in the non linear curve fitting process. To preserve the identification of the gee 
response, the total response may be written as follows: 

y = Ae + B - (B + C)e -bt + Ccos O t  + Dsin 0 t 

Then, the following equation was obtained: 

y = 14.26e-o.4922' + 45.82 - 31.29e 0.492r - 14.53cos0.809t - 19.09sin0.809t 

where the first term of the above equation corresponds to the fie response. Parameter 0 
was not included in the curve fitting process. The graph ofthe response functions is shown 
in Fig. 6.4.2. 
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The following is the summary of the regression statistics: 

Table 6.4.2 

Source DF Sum of Squares Mean Square 
Regression 4 17683.78934 4420.94734 
Residual 6 289.21066 48.201 78 
Uncorrected Total 10 17973.00000 
(Corrected Total) 9 4208.90000 
R squared = 1 - Residual SS / Corrected SS = 0.93 129 

Parameter Estimate Std. Error Lower Upper 

B 45.81 7639700 2.862976589 38.81 2 188354 52.823091046 

Asymptotic 95 % Confidence Interval 

A 14.262346109 6.139706127 -0.760973576 29.285665794 

C -14.53461 940 3.2341 8773 1 -22.448391 68 -6.620847108 
D -1 9.08527739 3.394823204 -27.392 1 1052 -1 0.77844426 

In conclusion, since transfer functions relates the system response with a 
particular input function, the researcher can simulate countless system responses by 
changing the input trajectory. 

Summary 

Transfer fbnctions relate the system response with an input trajectory. When all 
initial values are zero, the transfer function relates the response hnction ofthe system and 
the input by the expression G(s) = H(s) F(s), where G(s), H(s) and F(s) are the Laplace or 
Z transforms of the system response, the transfer fhction and the input trajectory. Thus, 
a transfer hnction is the relation between the transform of the response function and the 
transform of the input function, when all the initial values are zero. This definition applies 
either for continuous or for discrete systems. 

6.5 STRUCTURAL PROPERTIES OF SYSTEMS 

The notion of structure is related to how the parts of something are put together 
and organized to form a more complicated arrangement. Then, the structure of systems 
is related to how component systems are coupled to form a more complicated system. 

The following structural classification of agricultural systems has been adopted 
for this book: 

Interactive coupling 
Conjunctive coupling 

Interacting component systems may be coupled by means of interconnected 
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differential of difference equations, determining an interactive coupling. Difference and 
differential equations denote the existence of interfaces between the coupled components. 
In a simpler type of coupling, a set of components may be coupled as one system having 
no interface relationships between such components. This type of coupling is called 
conjunctive coupling. 

Interactive Coupled Systems 

Interactive coupled agricultural systems may be arranged into two groups: 

Compartmental systems 
Non compartmental systems 

Compartmental Systems. The components of compartmental systems are called 
compartments, a label that is widely used in tracer kinetics. Compartments work as 
communicating chambers among which a substance is considered to move. A 
compartment is defined, in a morphological sense, as a chamber with a given substance 
that occupies the chamber. Compartmental systems are called closed systems, if it is 
assumed that no material enters or leaves the system. If communication with the external 
environment is permitted, then the system is called an open system. Modeling of 
compartmental systems is called compartmental analysis. An abstract representation of 
a compartmental system is shown in Fig. 6.5.1. 

An open system with two compartments is illustrated in the following example: 

Example 6.5.1 As defined in Example 6.2.1, the movement of DDT fi-om plant to soil was 
25% per month, ffom soil to plant 2% and carried out with ground water 5%. This 
system is pictured in Fig. 6.5.2: 

Figure 6.5.2 
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The following set of differential equations was defined for this system: 

-0.25 0.02 

dt 

for Y =  (yp,ys), where y is a state of the plant compartment, y, is a state of the soil 
compartment and t is months. The state changes are determined only by the output 
(A+B)Y, because there are no external inputs to the system. The matrix of constant 
coefficients determining exchange rates between compartments is A.  Coefficients with 
positive signs are compartment inputs and coefficients with negative signs are the 
compartment outputs. Note that the system is represented by two differential equations, 
because it has two compartments. Note also that the sum of the coefficients of each 
column of matrix A should always add up to zero. Matrix B is determined by the system 
output to the outside environment. 

Compartmental analysis may yield information on state changes and exchange 
rates between compartments. It may provide also information on the distribution volumes 
and the mass of the system compartments. The next example illustrates this possibility. 

P 

Example 6.5.2 It was shown in Example 6.3.1 that a patient with an immunodeficiency 
problem was dosed with 9.9 grams of gamma globulin intravenously. The blood 
concentration of the patient gamma globulin was described by the following equation", 

wherey is IgG gamma globulin concentration in mg/dl and t is time in days. Determine 
the gamma globulin distribution volume for a one-compartment model of the system. 

Solution: The distribution volume is given by the relationship V =  D/yo, where Vis the 
distribution volume in deciliters, D is the gamma globulin dose in milligrams and yo is 
the blood gamma globulin concentration in milligrams per deciliter at time zero. Then 

v = - -  9900 - 21.4 dl 
463 

By knowing the distribution volume of the marker, it is possible to convert the 

"Vohnout, K., Unpublished 
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state equation from concentration of the marker to amount of the marker, such that 
y, = y  Y. Then 

yw = 4661 + 5239e -0.0386f 

where y, is milligrams of gamma globulin. he carresponding differential equation is here 

dv, - = 180 - 0 . 0 3 8 6 ~ ~  
d# 

where 180 is an input and 0 . 0 3 8 6 ~ ~  is the output. The system is represented in Fig. 
6.5.3. 

-. 

, 0.0386~~ 
1 

- --+ - 

180 

#\ /mgtciaytmg mgfday 

Figure 6.5.3 

- --___ 

r 

As shown in the above examples, the following is a hndamental feature of 
compartmental systems: 

The sum of the coefficients in each column of the matrix representing 
exchanges among compartments always add up to zero 

The reader is advised not to confuse compartments with the states of a finite 
discrete system. To emphasize the difference, states are represented as the dashed circles 
shown in Fig. 6.5.4. 

Figure 6.5.4 

The state at which the system is operating is called the mode of operation of the system. 
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Example 6.5.3 It was found that, when the trees in a citrus plantation are healthy, 20% 
may get a disease within a year. When diseased, 30% of the trees may recover and 10% 
may die. Define the mathematical model representing the system. 

Solution: There is a temptation of defining this system as continuous and open, with a 
compartment ofhealthy trees and a compartment of diseasedtrees. As shown in Fig. 6.5.5, 
this is a finite discrete system with three states, the healthy state, the diseased state and 
dead state. This is called the next state diagram of afinite discrete system or just, a state 
transition diagram. 

Figure 6.5.5 

The corresponding state transition matrix is shown in the following table. 

Table 6.5.1 

Present Next State 
State 

Healthy Diseased Dead 

Healthy 0.8 0.2 0 

Diseased 0.3 0.1 0.6 

Dead 0 0 1 

The first row in the table shows that when the trees are healthy, the probability of 
remaining healthy in the next state is 0.8 and the probability ofbecoming diseased is 0.2. 
The second row shows that when the trees are diseased, the probability of getting healthy 
in the next state is 0.3, the probability of remaining diseased is 0.1 and the probability of 
dying is 0.6. The third row shows that dead trees would remain dead. Then, the 
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mathematical model of the system is given by the following next state equation: 

Y,+l = 0.3 0.1 0.6 Y, 

l o  0 l i  

where y ,  , y2, y3 are the healthy, the diseased and the dead states and n is years. 
The system is represented by three difference equations, because it has three 

states. Note that no substance is moving between the states, but information that 20% of 
healthy trees may turn diseased and 80% may remain healthy. Thirty percent of diseased 
trees may become healthy, 60% may remain diseased and 10% may die. All the dead trees 
remain dead. 

Non Compa~mentaiSystems. Components of a non compartmental system may work as 
transducers with no chambers among which matter may move, but black boxes linking 
the components by inputs and outputs of information. Mathematical models of non 
compartmental agricultural systems are usually of empirical nature. An abstract 
representation of a non compartmental system is the black box shown in Fig. 6.5.6. 

Figure 6.5.6 

Example 6.5.5 Without predators, every year the population of a type of bird doubles. 
When predators are introduced, the bird population is reduced in proportion to ten times 
the number of predators. The number of predators increases in proportion to the number 
of birds by a 0.01 factor. Define the mathematical model of the system. 

Solution: Since birds and predators are discrete variables, it is reasonable to define the 
system as discrete. The following is the set of difference equations representing the 
system: 
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for Y, = CV,,y,), where yb is the birds component, y, is the predators component and n 
is years. As shown, the buds are affected by birds by a 2 factor and by predators by a factor 
-10. Predators are affected by birds by a factor 0.01. This system is pictured in Fig. 6.5.7. 
The system is represented by two difference equations because it has two components. 
Note that the sum of the columns of matrix A does not have to add to zero, because there 
is no matter moving between the components, but information on state changes. Note also 
that no inputs from outside have been defined for this system. Therefore, the state changes 
are determined only by the output A Yn . 

jf Predators I- 

Figure 6.5.7 

Example 6.5.6 The leaf growth of Kikuyu pastures and milk production of dairy cows was 
measured for periods offour weeks, during three consecutive years". The following matrix 
equation defines the relationship between the state variables: 

-0.3661 
= A Y + B T + C  = 

dt 

The state variables are here Y=O, ,y ), where y p  is leaf growth in kilograms of dried 
green leafper hectare per day and { ii milk production in kilograms of4% fat corrected 
milk per hectare per day. Define the input and output of the system. 

Solution: The system input is BT+C and the output is Z=AY. The corresponding picture 
of the model is shown in Fig. 6.5.8. Note that the differential equations of the system 

Computed from Murtagh, G.J. et.al. 1 1  
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correspond to an empirical model fitted to the data. As opposed to compartmental models, 
non compartmental models are often empirical in nature. Therefore, the numerical 
coefficients in the differential or difference equations may not have a physical 
interpretation other than establishing relationships among variables. For instance, the 
inputs in Example 6.5.6 may include a group of factors not accounted for explicitly in the 
mathematical model of the system. In non compartmental systems there is no material 
flow but a flow of information. 

0 

0.631 ly, 

26374.649% 

Figure 6.5.8 

As shown in the above examples, the following are hndamental features of non 
compartmental systems: 

The sum of the coefficients in each column of the matrix representing 
relationships among components may not have to add up to zero 
The Coefficients in the differential or difference equations represent 
information flows and may not have a physical interpretation 

Conjunctive Coupled Systems 

The notion of conjunctive coupling is that of systems in which each component 
has its own inputs and operates independently. The essence ofthis concept is the grouping 
of the experimental material such that each group is a component system and constitutes 
a single trial or replication. Grouping determines the sources of variation in the typical 
analysis of variance. 

The "Source of Variation" in the analysis of variance may include input variables 
and non-input variables. An input is a variable defmable as a function oftime. Non-input 
variables are usually qualitative variables, such as blocks, breeds, species or any particular 
trait. Non- input variables are component systems and are not definable as functions of 
time. 
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Example 6.5.7 An experiment was carried out to test the effect of potash on the yield of 
cotton. The experiment was arranged in 3 randomized blocks and the treatments were five 
levels of K,O per acre. Define the conjunctive coupling of the experiment as a system. 

Solution: The following is the analysis of variance proposed for the above experiment: 

Table 6.5.2 

Source of Variation Degrees of Freedom 

Blocks 2 

Treatments 4 

Error 8 

Here the blocks can be portrayed as system components. Each block is a 
replication ofthe experiment and operates independently. The treatments are inputs ofthe 
system, because applications of potash are scheduled over the time variable. 

This system is shown in Fig. 6.5.9. 

Experiment tB_1, 
Treatments 

Block 2 
I , 

Figure 6.5.9 

Note that there are no interfaces between the experimental blocks. Each block is an 
independent system by itself. However, the three blocks are components ofa system called 
experiment. 

The notion of conjunctive coupling is particularly helpfid in Fdctorial 
arrangements of treatments and in split-plot experimental designs. 

Example 6.5.8 An experiment was designed to study how the starch content of the diet 
of steers affects the digestibility of roughage. The experimental roughage was stems of the 
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banana plant, sugarcane leafs and Star grass hay. In vivo digestibility procedures were 
carried out by placing the bags containing the roughage in the rumen of six fistulated 
steers. The starch was provided by six different amounts of green bananas. Define the 
experiment as a conjunctive coupled system. 

Solution: Each steer is here an independent component of the experiment as a system. 
There are six steers in the experiment, meaning that the experiment has six components 
and five degrees of fieedom for steers. Each steer received the three types of roughage in 
bags, placed in the rumen, for in vivo digestion. Thus, each roughage is an independent 
component of a steer as a system and a sub-component of the experiment. There are three 
roughages per steer, meaning that the experiment has two degrees of fieedom for 
roughage and 10 degrees of &eedorn for the interaction steersxroughage. There are six 
levels of green bananas, meaning that the experiment has five degrees of freedom for 
bananas, plus all the corresponding interactions. Note that each roughage is a treatment, 
but is not an input because the roughage bags are placed in the rumen of the steers for 
digestion and are not scheduled over the time scale. Green bananas are also treatments but 
are not components. Bananas are inputs, because consumption of green bananas is 
scheduled over the time scaleI2. 

A formal plan for the anaiysis of variance in the experiment is shown in the 
following table: 

Table 6.5.3 

Source of Variation Degrees of Freedom 

steers (S) 

Roughage (R) 

RS (Error I) 

Green Bananas (B) 

BR 

BS 

BRS (Error 11) 

Total 

5 

2 

10 

5 

10 

25 

50 

107 

In the traditional analysis of variance, the steers would be called block, roughage would 

'*Computed fiom San Martin F.A. 
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be classes and green bananas subclasses. 

experimental roughage, as affected by the input x: 
The following model was proposed for the digestion of crude protein of the 

?z + b y  =Ax) 
at 

where y is digestibility of crude protein as percentage, t is time in hours and x is percent 
of dried bananas in the diet. The data should be fitted to this model for each experimental 
roughage. Then, the constant coefficients of each equation can be compared by a "t" test 
between roughages. 

The experiment as a system, with the steers as components in conjunctive 
coupling, is shown in Fig. 6.5.10. 

Experiment 

Steer1 
Banana -7 Digestibilik 

Figure 6.5.10 

A steer component with roughage, also in conjunctive coupling, is illustrated in 
Fig. 6.5.1 1. 

~ Steer 

Digestibilik 

Figure 6.5.7 I 
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In conclusion, the following statements apply to conjunctive coupling of 
agricultural systems, as they affect the design of experiments: 

The notion of conjunctive coupling applies mainly to grouping of experimental material 

Input variables should always be subclasses of component variables 
Component variables should never be subclasses of inputs 

in the design of agricultural experiments 

Summary 

Interactive coupled systems are systems interfacing by means of interconnected 
difference or differential equations. The number of interconnected equations corresponds 
to the number of components of the system. When components work as communicating 
chambers among which a material is considered to flow, the system is called a 
compartmental system. Components of non-compartmental systems may work as 
transducers with no chambers among which matter may move, but black boxes linked by 
inputs and outputs of information. In conjunctive coupling, each component works as an 
independent system. This concept pertains mainly to grouping of experimental material 
in the design of agricultural experiments. 



STOCHASTIC MODELS OF SYSTEMS 

As disclosed before, the operation of all agricultural systems must be considered 
subject to some kind of uncertainties. Depending on whether uncertainties are being 
considered or are ignored, the models of systems are either stochastic or deterministic. 
Many other sources of uncertainties affect a system, such as 

Uncertainties as to the actual inputs 
Randomness in the arrival of inputs 
Uncertainties in the response of the system 
Uncertainties introduced by the mathematical model of the system 

Just a few of the sources of uncertainty affecting a system may be controllable by the 
researcher by means of experimental designs. 

This chapter is related to stochastic models of systems, with an emphasis in 
Markov processes or Markov chains that is, processes where the next state of the system 
is completely determined by the present state. 

7.1 MODELING STOCHASTIC AGRICULTURAL SYSTEMS 

The basic feature of stochastic models of systems is that state variables are 
defined as probability distributions. In contrast, state variables in deterministic models are 
defined as expected values. 

For the scope of this book, the following criteria for modeling stochastic 
processes have been adopted: 

Modeling of Markov chains 
Modeling on non-Markov processes 

Markov Chains 

Many applications ofclassical probability theory to the study of systems are based 
on the assumption that the outcomes of successive trials of an experiment are independent 
from each other. In contrast, Markovprocesses or Markov chains are stochastic processes 
in which the probability of the next state of the system is completely determined by the 
probability of the present state. Markov processes can be used to model many agricultural 
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applications. This section is related to the theoretical concept and to the characterization 
of Markov processes, as they apply to agricultural research. A finite Markov chain is 
defined as follows: 

Definition 7.1.1 A sequence of trials of an experiment is a Markov chain if the outcome 
of trial n+l depends only on the outcome of trial n and not on the outcomes of earlier 
trials 

Representing state transitions in a Markov process requires: 

Definingprobabilig vectors P = @,,p2,... ,pm) such that p ,  tp2 + ... +p, = 1, where 
p,zO is interpreted as the probability of a state y, E Y and Y is the set of states of the 
system. 
Defining transition matrix Qm,,, where each of its rows is a probability vector 

Then, if P is the present state vector and Q is the transition matrix, PQ is the next state 
vector of the system. Matrix Q is also called a probability matrix, because the elements 
of each row ad to one. The following is the formal definition of a probability matrix: 

Definition 7.1.2 A matrix Qmx, is a probability matrix if each element q, is the 
probability that the state y ,  at time n would change to the state y, at time n+l, for 
i,= 1,2, ..., m and j = 1,2, ..., m and each row is a m-state probability vector, such that 
c4,= 1 ; q,>o 

1 

These concepts are illustrated in the following example. 

Example 7.1.1 The trees of a citrus farm are surveyed and classified as healthy or 
diseased. It was found that, when the trees are healthy, 20% get a disease within a year 
and when the trees are diseased, 30% of them recover. Define the state transitions of the 
system. 

Solution: A tree diagram for state changes of the system during the fust two years is 
shown in Fig. 7.1.1. Note that at zero time, all the trees are supposed to be healthy. After 
one year, there are 80% healthy and 20% diseased trees. After two years, only 64% of the 
healthy trees remain healthy and 30% of the diseased trees recover, making a total of 70% 
healthy trees and 30% diseased trees. 

Representing state transitions as tree diagrams is awkward. An easier procedure 
requires defining the state changes as a Markov chain. The probability vector is here 
P = @,,p2), where p ,  is the probability of the healthy state and p2  is the probability ofthe 
diseased state. 
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Initial State Healthy 

0.8 A 0 2  
State After 

Healthy 0.8 Diseased 0.1 

State After / \ / 
T~~ years Healthy 0.64 Diseases 0.16 Healthy 0.06 Diseased 0.14 

Figure 7.1.1 

The transition matrix Q is shown in the following table: 

Table 7.1.1 

Present State Next State 

Healthy Diseased 

Healthy 0.80 0.20 

Diseased 0.30 0.70 

The first row shows that the Probability of healthy trees of remaining healthy in the next 
state is 80% and that the probability of becoming diseased is 20%. The elements of the 
second row show that the probability of diseased trees of becoming healthy in the next 
state is 30% and that the probability of remaining diseased is 70%. 

The graphic representation of matrix Q, depicting the state changes of the 
system, is shown in Fig. 7.1.2. 

Figure 7.1.2 

The diagram in Fig. 7.1.2 is called the next state diagram of the system. 
The state changes of the system, as defined by the product PQ, are shown in 

Table 7.1.2. The probability vector for the initial condition of the system is P = (l,O), 
meaning that all trees are healthy. By knowing the present state P and the probability 
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matrix Q, the next state PQ of the system was predicted. Note that at time 2, the values 
for the present state are consistent with the values obtained in the tree diagram of Fig. 
7.1.1. 

Table 7.1.2 

Time Present State Transition Matrix Q Next State 
n P PQ 

0 (190) 0.8 0.2 (0.80,0.20) 

[0.3 0 . 4  

1 (0.80,0.20) 0.8 0.2 (0.70,0.30) 

10.3 0.4 
2 (0.70, 0.30) 0.8 0.2 

10.3 0 . 4  

(0.65,0.35) 

3 (0.65, 0.35) 0.8 0.2 (0.625, 0.375) 

[0.3 0.71 

n (0.60, 0.40) (0.60,0.40) 

If this Markov chain would be extended indefinitely, it would be found that the 
system may reach a steady state condition. A steady state is reached when the difference 
between the present state and the next state approaches zero as a limit. Then, the steady 
state of the system is given by the expression PQ = P, that is 

By solving the above equation, it is found that the steady state probability vector is 
P = (60,40). 
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Note that the next state of the system is completely determined by the present 
state, defined by vector P and the probability matrix Q. Thus, the system is represented 
by the following set of next state equations: 

where P, is the set of states at time n and P,+, is the set of states at time rrtl .  This is a 
difference equation representing a free response of the system. 

Non-Markov Processes 

Not all stochastic systems can be represented as Markov processes. This is 
especially true when only partial information on the outcomes of an event is available. 
Then, this partial information must be taken into account as conditional probability. This 
approach may often result in countless mathematical difficulties. Modeling of such 
processes is usually accomplished by reducing the detail being considered in the model. 
This suggestion is illustrated in the next example. 

Example 7.1.2 A type of bird is surveyed for its ability to consume and control caterpillars 
in a cotton field. Determine a stochastic model for the activity of a bird over the 
population of caterpillars. 

Solution: Many sources of uncertainties a f f i  this system, such as the availability of 
caterpillars, the length of time needed by the bird to find or select the caterpillars, the 
presence of other birds, the time required to make the catch, the time of the day, the wind 
and so on. Having the actual data, it might be possible to describe all these factors by 
probabilistic equations. However, the resulting mathematical model would be extremely 
complicated. The approach taken in this example is reducing the details in the 
mathematical model. 

The outcomes of the system are the success and the failure of a catch. Then 

P(X=x, t I X=x - 1, t -At) 

P(X=x, t 1 X=x, t -At) 

success 

failure 

are the probability of a success at a time t ,  if at a time t-At the bird had X=x-1 successes 
and the probability of a failure at a time t, if at a time t-At the bird had X=x successes. 

Note that the total number of successes Xdoes not change when the outcome is 
a failure and that there may not be failures in a strict sense. Note also that during the time 
interval At there is always the probability of more than one catch. However, ifthe interval 
chosen is small enough, such probability may be negligible. 

It is assumed here that the probability of success is proportional to the time 
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interval At. Then, the probabilities of success and failure must be 

227 

P(X=x, t I X=x - 1, t -At) = kAt success 
P(X=x, t I X=x, t-At) = 1 - kAt failure 

where k is a proportionality constant. These outcomes can be put together by using the 
multiplication theorem of conditional probability': 

If A (X=x, t ) ,  B ,  = (X=x- 1 ,  t -At) and B, = (X=x, t-At),  then 

P(X=X, t )  = P(X=X - 1,  t -At) P(X=X, t I X=X - 1, t - At) 

+ P(X=X, t-At) P(X=x, t I X=X, t - A  T )  

After replacing the success and failure expressions in the above equation, the following 
new expression is obtained: 

P(X=x, t )  = P(X=X- 1 ,  t -At) kAt + P(X=X, t -At)( 1 - kAt) 

= [P(X=x-l,  t-At) - P(X=X, t-At)]kAt + P(X=X, t-At) 

Finally, after rearranging the above terms, this equation becomes 

P(X=X, t )  - P(X=X, t-At) - - k[P(X=x-l,  t-At) - P(X=X, t-At)] 
At 

By making the time interval At approaching zero as a limit, the left-hand side of the 
equation becomes a derivative and the At terms vanish from the right-hand side. Thus 

'See Appendix D 
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- d P(X=x, t )  = k[P(X=x - 1,  t)  - P(X=x, I ) ]  

dt 

Since P(X = x, t )  = f ( x ,  t )  , this differential equation is equivalent to 

d 
dt 
-Ax, r )  = M x -  1 , t) -Ax, r)] 

The following procedure was developed for finding the solution of this equation. 
As a first step, it is assumed that the initial number of successes at time zero is u. Then 

+qa?t) = Ma-l,t) -Aa,t)] 
d 

where JTa-1, t)  is zero, because the initial value is a and any value before time zero is 
zero. Therefore 

$ p , t )  = -Ma,t) ; Aa,r) = e-’ ; InMa,f)) = -kt 

where P(X = u,t = 0)  = 1 , because it is known that the event took place. 

If f (u)  is known, it is possible to findAu+l): 

The above expression is equivalent to 

-&+l,t)+kf(a+l, t)  d = ke-’ 
dt 
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The following is the Laplace transform of this differential equation: 
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sF(s) -Au+ 1,O) + kF(s) = ~ k 
s+k 

Note here that &+I,  0) = 0 because this event does not exist. Therefore 

k -kl F(s) = - ; fia.1) = -te 
(s + k)2 l! 

By the same approach, knowing fTa+l, t )  it is possible to findAa+2, t):  

The solution of this equation is 

k 2  ; fiu+2) = __ (W2 -m As) = - 
( s + K ) ~  2! 

The full pattern for defining the system differential equation and its solution has 
now emerged. The system differential equation a n  now be expressed as the 
nonhomogeneous expression 

&p t )  +AX, t) = k 're -*' 
d 

This expression has the following solution: 

(ktr -h ; Ax) = I_ 

k" F(s) = I__ 

(s + k r  " X! 
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This solution corresponds to a Poisson distribution, for t andXstarting at zero. 

caterpillars at various time values when k=3 and time is in hours. 
Fig. 7.1.3 shows the probability distribution curves for the success of catching 

0 2 4 6 8 10 
Number of Catches 

Figure 7.1.3 

Summary 

State variables in stochastic systems are defined as probability distributions. 
Markov processes are stochastic processes in which the probability of the next state of the 
system is completely determined by the probability of the present state, such that 
Pn+,  = P,Q,  where P is a probability vector and Q is a transition matrix. Modeling of 
complex non-Markov processes is usually accomplished by reducing the details being 
considered in the model. 

7.2 THE POWERS OF A PROBABILITY MATRIX 

Frequently, manipulation of Markov processes requires defining the powers of 
the probability matrix Q. As disclosed in Chapter 2, when a matrix Q is of order m, the 
corresponding characteristic equation is a polynomial of degree m in the characteristic 
root k and has also m solutions. Corresponding to these solutions, it is expected to find m 
characteristic vectors v. lf this holds true, then it is possible to write 

The above equation is equivalent to 
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[a1 o ... o 
o a2 ... o 

o o ... an 
. . . .  . . . .  . . . .  

Q(vl,v 2,...,vm) = (vI,v2 ,..., vm) 

23 I 

where (vl,v2, ..., v,) = V is acharacteristicmatrix. Then, defining the following equation 
is possible: 

A V =  VD 

where D is a diagonal matrix of order n of the roots A,,h2, ...,A,. Hence 

Finding Q is now the process of determining the characteristic matrix Vand its inverse 
V-'and determining D n. Finding D is simple: 

0 A2 ... 0 
1' O * * -  O t = 

1'1 0 ... 0 

o a; ... o 

o o ... a; 

. . . .  . . . .  . . . .  

Matrix D is known as the canonical form of matrix A under 
operation is illustrated in the following example. 

similarity. The above 

Example 7.2.1 It was observed that, within an hour and when resting, some cattle in a 
herd would remain in this position 90% of the time and would stand up to walk 10% of 
the time. When walking, they would keep walking 80% of the time and would lie down 
20% of the time. Determine the probability that the animals are resting or walking after 
six hours, when the initial state is resting and when the initial state is walking. 

Solution: This analysis can be understood better if pictured as a tree diagram. The tree 
diagram for the initial state at rest and for the first two hours, is shown in Fig. 7.2.1 
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Initial State Resting 
A 

State After 
One Hour 

0.2 

\ / 
Two state Hours After Resti&O.81 Walking 0.09 Resting 0.02 Wakng 0.08 

Figure 7.2.1 

Note that the initial state of the system was (1,O) for resting and walking. After one hour, 
the state of the system was (0.9,O.l) and after two hours, the state was (0.81+0.02, 
0.09+0.08), that is (0.83,0.17). 

The tree diagram for the initial state at walking and also for the fust two hours 
is shown in Fig. 7.2.2. The initial state of the system was here (0, 1) for resting and 
walking. After one hour, the state of the system was (0.2, 0.8) and after two hours, the 
state was (0.34,0.66). The complete picture of the system states for the first two hours is 
obtained by putting together the data of the two tree diagrams. 

Initial State Walking 
A 

0.2/ \0.8 

gEEt 

State After Resting 0.18 Walking 0.02 Resting 0.16 Walking 0.64 Two Hours 

Figure 7.2.2 

As shown above, calculations of the system states using tree diagrams are cumbersome, 
but are useful for understanding and developing the system model. A simple procedure 
requires determining the powers of the probability matrix Q of the system. The elements 
of the first row in matrix Q are the probability 0.9 of resting cattle to remain resting and 
the probability 0.1 that they would stand up. The elements of the second row are the 
probability 0.2 of walking animals to rest down and the probability 0.8 of remaining in 
the walking state. Thus 



7.2: The Powers of a Probability Matrix 23 3 

0.9 0.1 

= 10.2 0.J 

The following sequence of states is obtained by joining the data in Fig. 7.2.1 and 
Fig. 7.2.2: 

Initial state: 

State after one hour: k:: = Q' 

0.83 0.17 

10.34 0.6d = Q2 
State after two hours: 

A pattm has evolved here, suggesting that the state of the system at a discrete time n is 
given by the expression Q " = VD V-' , where V is the characteristic matrix of Q and D 
is the diagonal matrix of the roots of Q. The characteristic equation is here 

.9-A 0.1 
p a l l  = 1 1 = a2-1.7a+o.7 = o 

0.2 0.8-a 

and the characteristic roots are A,  = 1 .O and A2 = 0.7. For the first root, the corresponding 
vector is 

For the second root, the corresponding vector is 

0.9-0.7 0.1 0.2y1 + 0. ly, = 0 [ 0.2 0.8-0.71 ii] = ' 0 . 2 ~ ~  +0.1y2 = O  
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Thus, the following are the characteristic matrix, its inverse and the diagonal D " : 

Now, the following matrix to the n power is obtained for expression P " = VD "V - I ,  where 
n = 1,2,. . .,m is time in hours: 

If time is six hours, then n=6. Thus 

0.71 0.29 

0.59 0.41 

According to this result, if the initial state was resting, there is 71% probability 
that the animals will be resting after six hours and 29% probability that they will be 
walking. Ifthe initial state was walking, there is 59% probability that they will be resting 
and 41% probability that they will be walking. This model does not consider the cyclical 
behavior of cattle and is used here only to illustrate the procedure for determining the 
powers of a matrix. The interpretation of this result is made easier in the following table: 

Table 7.2.1 

Initial State After Six Hours 
State 

Resting Walking 

Resting 0.71 0.29 

Walking 0.59 0.41 
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o-2 

0.25 Oso4 0.25 
0.25 0.25 0.50-a 

.60-h 0.2 

Example 7.2.2 The weather in a particular region was classified as sunny, cloudy and 
rainy. It was found that the probability of being sunny, cloudy and rainy is 0.6,0.2 and 
0.2, when the previous day was sunny. The probabilities are 0.25,0.50 and 0.25, when the 
previous day was cloudy. The probabilities are 0.25,0.25 and 0.50, when the previous day 
was rainy. Give a five-day forecast for the weather. 

Solution: The following is the probability matrix of the system: 

= a3 - 1 .6a2 + 0.68751 -0.0875 

= (a -0.25)(31. - 0 . 3 5 ) ~ .  -11 

0.60 0.20 0.20 

Q = 0.25 0.50 0.25 I 0.25 0.25 0.50, ! 
Then, the characteristic equation is 

The following is the characteristic vector for root A = 0.25 

For the second root h = 0.35, the characteristic vector was obtained as follows: 

0.25 0.20 0.20 YI 5 0 8 Y 1  

10.25 0.25 0.15 0.25 0.15 O Z / j  4- ...-I: d [ !  = [ ; V 2  = 1 -;*' 1 

The characteristic vector for root A = 1 was obtained as follows: 
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0.25 0.25 -0.50 \ O  0.75 -0.75 

Thus 

0.3846-0.3846(0.35)" 0.3077+0.5(0.25)"+0.1923(0.35)" 

v = [  J -je ;j ; v-'= 
Expression Q = VD " V ~ ' is, then 

0 0.25" 0 0 

0.3846 0.3077 0.3077 

0.3077 -0.3077(0.35r 

0.3077-0.5(0.25)"+0.1923(0.35~ 

0.3077 +0.5(0.25)'+0.1923(0.35)" 

where n is time in days. Determining the five-day forecast is now a simple task. The first 
row of the above matrix corresponds for a sunny initial state, the second row for a cloudy 
initial state and the third row for a rainy initial state. 

Summary 

Manipulation of Markov processes often requires defining the powers of the 
probability matrix Q. The powers of matrix Qare given by the expression Q ,I = VD V-' , 
where Vis the characteristic matrix of Q and D is a diagonal matrix of the characteristic 
roots of Q. 

7.3 MARKOV PROCESSES IN AGRICULTURAL RESEARCH 

Markov chains are related to many agricultural applications and have been 
especially useful in the analysis of the genetic makeup as it changes f?om one generation 
to another. 
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Q = 

Characterization of Markov Chains 

1/2 1/2 0 

1/4 112 114 

0 112 1/2 

Some definitions are needed €or a better understanding of the Markov theory and 
for developing a categorization of the different types of Markov processes. 

The first concept is related to the possibility of a given state to be reached from 
another state. A state is said to be reachable from another state if there is a direct path 
between the two states. This concept is formally defined as follows: 

Definition 7.3.1 Given a transition matrix Q and a set of states Y, a state y , ~  Y is said to 
be accessible &om a state y , ~  Y, if there is a sequence io,il, ..., iH in Yfor some integer 
n >  1, suchthatz,=i,i,=j and q > O .  

The sequence io,i,, -..,in is called a directpathporn i to j and the path is said to consist 
of n steps or periods of time. None of the probabilities in the direct path are zero. The 
subset of all j states accessible from y ,  is denoted YJc Y. 

!I 

These concepts are illustrated in the following example. 

Example 7.3.1 Given the probability matrix 

determine the accessibility of each state &om the others. 

Solution: State 3 can not be the next after state 1, because qI3  = 0. In the same way, state 
1 can not be the next state after state 3, because q3* = 0. 

112.' 

Figure 7.3. I 
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Q = O  

These relationships are easily seen in the next state graph of Fig. 7.3.1. Note that there 
is no pathway between states 1 and 3. Note also that there is only one step between states 
1 and 2. In addition, there are two steps between states 1 and 3, always going through 
state 2. The subsets of states reachable from state 1 are states 2 and 3. A system may 
eventually evolve toward a state or a subset of states from which no escape is possible. 
This concept is defined as follows: 

0 112 0 112 0 

112 0 112 0 0 

0 1 0  0 

0 o o o o l J  0 0 112 112 

Definition 7.3.2 Given a matrix Q and a set of states Y, a state Yi EY is called an 
absorbing state if, once the system reaches this state on some trial, the system will remain 
in such state on all fbture trials. Then, qii = 1 and no escape fiom the absorbing state is 
possible. 

Definition 7.3.3 Given a transition matrix Q and a set of states Y, a non-empty subset of 
states Y4 c Y is called an absorbing sub-chin, when no state y ,  Q Y, is accessible fiom a 
state yl E Y, . Then q, = 1 and no escape from the absorbing sub-chain is possible 

An absorbing sub-chain is also called a closed sub-chain. 
The following example illustrates this definition. 

. ,€Y4 

Example 7.3.2 Determine the absorbing states in the following system: 

Solution: By inspection, state 3 is an absorbing state because the probability of the next 
state fiom state 3 to state 3 is 4-33 = 1 .This means that no escape is possible fiom state 
3. Thus, a probability of 1 in the diagonal of matrix Q means that the state in that row is 
an absorbing state. The system features are revealed in the next state diagram of Fig 7.3.2. 

Matrix Q can be partitioned into the following sub-matrices: 

such that 
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c = l *  112 112 1 1  

Note that C c Q is a probability sub-matrix located in the diagonal of matrix Q. Each 
row vector y4 c C and y5 c Cadds up two one. Therefore, once the system reaches 
state 4, it will remain cycling between states 4 and 5 forever. Then, states 4 and 5 are a 
subset of absorbing states. 

412  
. .  

/ \ 

Figure 7.3.2 

If no subset of states is absorbing, the system may eventually evolve toward a 
steady state or toward a condition ofperiodicity, in which the state ofthe system alternates 
between sub-chains. These conditions are defined as follows: 

Definition 7.3.4 Given a transition matrix Q and a set of states Y, a subset of states Yrc Y 
is said to be an irreducible sub-chain, if no subset of YI is an absorbing subset of states. 

If Y, = Y, then matrix Q is a transition matrix of an irreducible Markov chain. As defined 
below, irreducible Markov chains are of two types. 

Definition 7.3.5 Given a transition matrix Q of an irreducible Markov chain, the chain 
is called regular iffor some n 2 1 , where n is a step or time period and all elements qu of Q 
are positive. Otherwise, the chain is called periodic. 

These concepts are portrayed in the following examples. 
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Example 7.3.3 Given the following matrix, determine ifthe process is regular or periodic. 

Q = I 0 112 112 

112 0 112 

L112 112 0 J 

Solution: As shown bellow, the square of this matrix has all its elements positive. 
Therefore, this process is regular. 

Q 2  = 

112 114 114 

114 112 114 

114 114 112 

Example 7.3.4 Given the following matrix, determine ifthe process is regular or periodic. 

0 0 1 0  I, 0 0 1- 

1 0 0  

113 213 0 0 

Q =  

0 1 0 0  

1/3 213 0 0 

0 0 0 1  

0 0 113 213 

Q 2  = 

Solution: The following are some powers of matrix Q: 

0 0 0 1  113 213 0 0 

219 719 0 0 0 0 113 213 

113 213 0 0 0 0 113 213 

219 719 0 0 0 0 219 719 

Q4 = Q 3  = 

At each period, the system alternates fiom states { 1,2} to next states { 3,4}and vice versa, 
such that 
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n = 1,3,5, ... 

n = 2,4,6, ... 

Therefore, the process is periodic. The graph of some powers of matrix Q is shown in Fig. 
7.3.3. 

!? 
Figure 7.3.3 

Regular Processes 

A Markov process is called regular if its transition matrix Q is regular. As 
specified in Definition 7.3.5, atransition matrixiscalledregular, when all the elements q, 
of Q are positive for some n2 1 ,  where i=1,2 ,..., n andj=1,2, ..., n.. Then, if all elements 
of Q are positive, the same is true for en+'. Thus, a regular process is the progressive 
change of states of the system, resulting in a final steady state, meaning that a steady state 
is achieved only if the probability matrix Q is regular. 

Example 7.3.5 Find which of the following matrices is regular: 
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1 0  112 112- 

Q2 = 112 0 112 

1112 112 0 ~ 

112 114 114 

Q 4 =  0 0 1 

0 314 114 

7:Stochustic Models of Systems 

Ql = 

Q, = i'p 

112 114 114 

114 112 114 

114 114 112 

315 115 115 

Q3 = 114 112 114 I 114 114 112 

Solution: Every power of matrix Q, has a zero element. Therefore, this matrix is not 
regular: 

The square of matrix Q2 has all its elements positive, therefore is regular: 

The elements of matrix Q3 are all positive, therefore is regular. Matrix Q4 contains the 
following absorbing sub-chain: 

Q4A = lo 314 114 l l  

and is therefore, not reducible. Thus, matrix Q4 is not regular. 

matrix: 
The following additional definitions are related tothe steady state of a probability 

Definition 7.3.6 If a probability matrix Q is regular, then lim n- 
steady state matrix. 

", if it exists, is called the 
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The steady state matrix represents the steady state of the system. As indicated 
before, the steady state of the system is given by the expression PQ = P,  where P is a 
steady state vector. The above definition is illustrated in the following examples. 

Example 7.3.6 Determine the steady state matrix for the citrus fkrm of Example 7.1.1. 

Solution: The following was the probability matrix defined in Example 7.1.1 

' = i"" 0.3 0.7 O.zl 
The first row shows that the probability of healthy trees of remaining healthy is 80% and 
that the probability of becoming diseased is 20%. The second row shows that the 
probability of diseased trees of remaining diseased is 70% and that the probability of 
becoming healthy is 30%. The state changes of the system are shown in the following 
table, where matrix Q represents the state changes over time. 

Table 7.3.1 

Time States P "  

Q0 

Q' 0.8 0.2 

[o., 0.71 

Q 2  1 0.7 0.3 

0.45 0.55 

Q 3  
3 

lim Q" 
n- m 

n 
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The steady state of the system is given by the expression PQ=P. Then 

The solution of the above equation is the steady state vector P = (60,40). Note that the 
steady state matrix is here 

0.6 0.4 e n = [  0.6 0.4 ] 
The first row represents the steady state vector for an initial state P = (1,O) that is, all the 
treeswerehealthy. TheseaxldravrepPsentsthesteadystatevectorfortheinitial state P = (0,l) 
that is, all the trees were diseased. Therefore, the following statement applies here: 

In regular processes, the same steady state is attained independently of the initial state 

Example 7.3.7 A male mouse of genotype Aa is crossed with a female of an unknown 
genotype. This process is continued for a succession of matings of males Aa with females 
of unknown genotypes. Determine the long run expected genetic composition ofthe mice. 

Solution: If the genotype of males is always Aa and the genotype of females is any ofAA, 
Au or ua, the genetic composition of the offspring is as shown in the following table: 

Table 7.3.2 

Male Female Female Female 

A A A a a a 

A AA AA AA Aa Aa Aa 

a Aa Aa Aa aa aa aa 

Then, by looking at the female columns of the table, it is possible to define the following 
transition matrix: 
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112 112 0 

114 112 114 

0 112 112 

245 

= @,,p2,p3) 

Table 7.3.3 

Females Next Generation 

AA Aa aa 

AA 1 I2 112 0 

Aa 114 112 1 /4 

aa 0 1 I2 112 

This matrix is regular because all the elements of the squared transition matrix are 
positive, that is 

If the probability matrix is regular, then the steady state is given by the 
expression PQ=P, that is 

@1’P*>P3) 

By solving this equation, it is found that the steady state probability vector is 
P = (114,1/2,114), meaning thatp(AA) = 1/4,p(Aa) = 112 andp(au) = 114. 

Absorbing Processes 

As denoted before, a system may eventually evolve toward a specific state or set 
of states and remain there forever. Then, such state or set of states are absorbing states. 
The non absorbing states are called transient states. 

Example 7.3.8 Determine the absorbing and the transient states in the following 
probability matrix: 
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Q =  
112 114 114 

0 314 114 

0 0 1  

Solution: This system has three states. At first sight, this is not a regular matrix because 
the probability of the next state fiom state 3 to state 3 is 1. The probability of 1 in the 
diagonal always determines the existence of an absorbing state in that row. This is easily 
seen in the next state diagram of Fig. 7.3.4. Once the system reaches state 3, it will remain 
there. Thus, state 3 is an absorbing state and states 1 and 2 are transient states. 

w 
Figure 7.3.4 

Example 73.9 It was found that, when the trees in a citrus farm are healthy, 20% may 
get a disease within a year. When diseased, 30% of the trees may recover and 10% may 
die. Determine the transient and the absorbing states. 

Solution: As shown in Fig. 7.3.5, this is a finite discrete system with three states, the 
healthy state, the diseased state and dead state. The corresponding probability matrix is 
shown in Table 7.3.4. The first row in the table shows that when the trees are healthy, the 
probability of remaining healthy in the next state is 0.8 and the probability of becoming 
diseased is 0.2. The second row shows that when the trees are diseased, the probability of 
getting healthy in the next state is 0.3, the probability ofremaining diseased is 0.1 and the 
probability of dying is 0.6. The third row shows that dead trees would remain dead. 
Clearly, the healthy and the diseased are transient states and the dead state is absorbing. 
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Yn+l = 
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0.8 0.2 0 

0.3 0.1 0.6 

0 0 1  

/ -  - - -  0.30 - -  - - _  \< _ _ ~  0 -, -, 
/ / 

/ 
\\ 0.6 

\ \ 

0 8 Healthy :Diseased- Dead 1 
\ I 

'\ 4 
1 / *.-- ' 0.2 *./a ._- 

I 

0.1 
~ 

Figure 7.3.5 

Table 7.3.4 

Present Next State 
State 

Healthy Diseased Dead 

Healthy 0.8 0.2 0 

Diseased 0.3 0.1 0.6 

Dead 0 0 1 

The mathematical model of the system is  given by the following next state 
equation: 

Yn 

where y ,  , y 2 ,  y3 are the healthy, the diseased and the dead states and n is years. 
Usually the problem is determining how long the system is expected to survive 

in the transient states, before reaching the absorbing state or states. This type of problem 
is shown in the next examples. 

Example 7.3.10 A dog has the choice of selecting three different meals. Once he has tried 
meal 111, he refuses to eat the other two meals. Determine the expected number of steps 
that would take for the dog before reaching the third meal. 

Solution: The following table represents the transition matrix of the system: 
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Present Next State 
State 

I II rn 
I 0 I /2 1 /2 

n 1 /2 0 1 /2 

In 0 0 I 

This is not a regular matrix because the probability of transition from meal I11 to meal I11 
is 1, meaning that the dog would eat only meal I11 in the next state. Once the system 
reaches state Ill, it will remain there. State 111 is an absorbing state and states 1 and 11 are 
transient states. 

The system can reach the absorbing state through four different pathways: 

1 - The initial state is I and the final state before reaching the absorbing state is I: 

Table 7.3.6 

steps Probability 

I to 111 1 

1 to 11 to 1 to I11 

I to 11 to I to I1 to I to 111 

1/2(1/2)(1) = 1/4 

1/2( 1/2)( 1/2)( 1/2)( 1) = 1/16 

I to I1 to I to I1 to I to ... to Ill 1/2( I /2)( 1 /2)( 1/2).. .( 1) 

The following is the expected number of steps n,, for the pathway I to I that is, the 
number of times the dog tried meal 1 before reaching meal 111: 

1 1  1 1  1 -  4 n,, = I + - +  -+... = I +  -+-+... = - - - 
4 16 4 4= 1 - 1/4 3 

2 - The initial state is I and the final state before reaching the absorbing state is 11: 
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Table 7.3.7 

249 

Steps Probability 

I to I1 to 111 

I to I1 to I to 11 to 111 

1/2(1) = 1/2 

1/2(1/2)(1/2)(1) = 1/8 

I to I1 to I to I1 to I to I1 to 111 1/2( 1/2)( 1/2)( 1/2)( 1/2)( 1) = 1/32 

I to I1 to I to I1 to 1 to I1 to ... to 111 1/2( 1/2)( 1 /2)( 1/2)( 112) ...( I ) 

The following is the expected number of steps n12 for the pathway I to 11: 

n,, = -+-+-+... 1 1  1 = ~ ( 1  +-+-+...] 1 1  = +.!--I = - 2 
2 8 32 2 4 42 2 1 - 1/4 3 

3 - The initial state is I1 and the final state before reaching the absorbing state is I. The 
following is the expected number of steps n,, for pathway I1 to I: 

1 1  1 1 1  2 
2 8 32 

4 - The initial state is 11 and the final state before reaching the absorbing state is 11. The 
following is the expected number of steps n,, for pathway I1 to 11: 

1 1  1 1  1 -  4 n22 = 1 +  -+-+... = 1 +  -+-+... = - - - 
4 16 4 42 I - 1/4 3 

The steps related to the four pathways are represented by a matrix N, that i s  

“11 n12 4/3 2/3 
= 121 n2J = [2/3 4/J 



250 7:Stochastic Models of Systems 

where each element of matrix N is the expected number of steps needed to reach the 
absorbing state through each pathway. The total expected number of trials, before 
reaching the absorbing state, is the sum of the expected number of trials the system was 
in each transient state. Thus, when the initial state was I, the expected number of times 
the dog was in state I and in state 11, before reaching the absorbing state 111, was 
413 +2/3 = 2 .  Similarly, when the initial state was 11, the expected number of steps needed 
to reach the absorbing state was 213 + 413 = 2 .  

Note that matrix N is the power series of a matrix Q,, representing the transient 
states. Thus 

2 3  N = Z+ Q, + Q, + Q, + ... + 

where 

is the matrix of transient states and I = Q," is an identity matrix. Then 

N - z  = Q~+Q;+Q,'+ ...+ = Q$+Q,+Q, 2 +...+I = Q,N 

Upon rearranging, the above expression becomes 

N = (Z- Q,)' 

The following result is obtained by using this equation in Example 7.3.9: 

413 213 

(Z - QJ' = 1213 418; = 

This result is consistent with the results previously obtained. 
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Example 7.3.1 1 Suppose that the 70% of the diseased citrus trees in Example 7.1.1 never 
recover but die. Determine the expected number of years needed for all the trees to die. 

Q = 

Solution: The following is the probability matrix Q of the system: 

0.8 0.2 0 
0.3 0 0.7 

0 0 1  

Matrix Q shows that 30% of the trees are expected to recover while the remaining 70% 
is expected to die. Matrix Q, of the transient states is here 

'' = I"." 0.3 o*2i 0 

Then 

1 0 0.8 0.2 0.2 -0.2 

I-'' = [0 d-10.3 0 1  1-0.3 1 1 
(I - Q$' = - [ = N 

0.14 0.3 0.2 

If the initial state was (1, 0, 0), that is all the trees were healthy, the expected time for the 
trees to die is (1 + 0.2)/0.14 = 8.6 years. Conversely, if the initial state was (0, 1, 0), that 
is all the trees were diseased, the time required for all the trees to die i s  
(0.3 + 0.2)/0.14 = 3.6 years. 

Summary 

A state is said to be accessible fkom another state if there is a direct path between 
the two states. A sub-chain is called absorbing if the system may eventually evolve toward 
that sub-chain and remain there forever. If no subchains are absorbing, the Markov 
process is called irreducible. Irreducible chains are either regular of periodic. Regular 
processes eventually evolve toward a steady state. In periodic processes the state of the 
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system alternatesbetween sub-chains. For aprocess toberegular, thereexistsaprobability 
matrix Q whose elements are all positive for some n k  1 . The steady state is represented 
by a steady state matrix, such that any row of the steady state matrix is a steady state 
vector. For a process to be absorbing, the probability that the next state after an absorbing 
state is 1. The non absorbing states are called transition states. The survival time of a 
system, before reaching the absorbing condition, is given by the expression N = ( I -  QJ-', 
where matrix Q, is a sub-matrix of matrix Q, representing the transition states and N is 
a power series of Q,. The sum ofthe elements of a row ofNrepresents the survival period 
for the corresponding initial state of the row. 

7.4 RELATIONSHIP BETWEEN STOCHASTIC AND DETERMINISTIC MODELS 

As disclosed before, in stochastic models the states of the system are defined as 
probability distributions. In deterministic models, the states are defined as expected values 
of the outcomes. The notion of an expected value is related to the idea of an average, in 
the sense that a given number would summarize and represent certain data. Thus, 
deterministic models would represent the average of the probability distribution values, 
as determined for the stochastic model. This conception is presented in the following 
examples. 

Example 7.4.1 Define a deterministic and a stochastic model of the diseased trees in 
Example 7.1.1. 

Solution: As was shown previously, the system is represented by a set of next state 
equations of the form Pn+, = P,Q,  where P, is the set of states at time n, P,,,, is the set 
of states at time n+l and Q is the probability matrix 

= i"" 0.3 0.7 

The solution of the next state equations of this system is given by the Z transform 

z 
fl.4 = F(0)- 

z -  Q 

where q 0 )  is the initial state. The initial state matrix of the system is here 
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Then, the following is the solution of the next state equations: 

1 0 0.8 0.2 ” 
‘n = [0 116.1 0.l) 

This expression is the deterministic model of the system and represents the expected value 
of probabilities. Note that the first row in the initial state matrix shows that all the trees 
were healthy. The second row shows that all the trees in the initial state were diseased. 

Manipulation of matrix Q is made simpler by the procedure outlined in Section 
2 of this chapter. As previously defined, a matrix of order n can take the form 
Q = VD ” V-’, where Yis the characteristic matrix of Q and D is the diagonal matrix of 
the characteristic roots of Q. The following results were obtained after solving matrix Q 
for its characteristic roots and vectors: 

After solving the product F(0)Q and assuming that all the trees in the initial 
state were healthy, the solution P,, is 

1 

5 
P,, = -[3 +2(0.5)”, 2 -2(OS)”] 

for Pn = (pln,p2,,), where p l n  is the proportion of healthy trees, pzn is the proportion of 
diseased trees and n is time in years. If the total number of trees is m, then the above 
equation becomes 
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where XI is the number of healthy trees and X2 is the number of diseased trees. The 
graphic representation ofexpected values is shown in Fig. 7.4.1. The total number of trees 
is assumed to be 10. 

The above expression corresponds to the deterministic model of the system. The 
state variables may have a binomial distribution, that is  

where x1 and x2 are the number of healthy and diseased tress out of a total of m trees. 

Heakhy 
Diseased 

0 1 2 3 4 

Years 
Figure 7.4.1 

By replacing the P, values in the binomial equation for an initial state P=(I,O), 
it is possible now to define the following state probability model of the system: 

XZ 

The probability distribution curves of diseased trees are shown in Fig. 7.4.2. The 
total number of trees was assumed to be 10. 
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P,, = 

255 

1 0 0 1/2 1/2 0 

0 1 0 114 112 114 

0 0 I 0 1/2 1/2, 

Example 7.4.2 Define the deterministic and the stochastic models of the system of 
Example 7.3.7, if the initial female is AA. 

Solution: As denoted before, a Markov process is represented by a set of next state 
equations of the f m  P,,+l = PnQ,  where P, is the set of states at period n and Pn+, is 
the set of states at period n + l .  In this system n is the number of generations. The Z 
transform for this model is 

z F(z) = F(O)---- ; F(0) = 0 1 0 

2 - Q  1 0 0  4 
where F(0) is the initial state for female mice. The first row shows that the initial female 
is ofthe AA genotype. The second row indicates that the female is an Aa and the third row 
shows that the female is aa. Then, the solution of the system is 

The above power matrix can take the form Q" = VD"V- ' ,  where V is the 
characteristic matrix of Q and D is the diagonal matrix of the characteristic roots of Q. 
Thus 
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1/2 1/2 0 

114 112 1/4 

0 112 1/2 
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” - 1 1  1 0 0  0 - 1 2 - 1  
1 
4 

= - 1 1 0 0 1” 0 1 2 1 

-1 1 -1 0 0 0.5” 2 0 -2 

1 
4 

= -  

1+2(0.5)” 2 1-2(0.5)” 

2 1 1 

1 -2(0.5)” 2 1 +2(0.5)” 

After solving the product F(0) Q “ and assuming that the initial female is AA, the genetic 
composition of the ofkpring is 

P = -[I+2(0.5)”, 1 2, 1-2(0.5)”] 
“ 4  

for P, = (Pln,pZn,p,,,), where p l ,  is the proportion of AA mice, pZn is the proportion ofAa 
mice, p3,, is the proportion of ua mice and n is the number of generations. This expression 
corresponds to the deterministic model of the system that is, the expected genetic 
composition of the omring. 

The expected genetic composition may be better described by the expression 

E(Xl,X2,X,) = ?[I +2(0.5)”, 2, I -2(O.5)”] 
4 

where XI, X, andX, are the number ofAA, Au and uu offspring mice out of m total mice. 
The state variables may have a multinomial distribution. Therefore, it is possible 

to define the stochastic model 

AX,,X,,X,) = m! ( 1 +2:.5)n) ” ( +) xz ( 1 -2T.5)”) ’’ 
XI! x2! x,! 

where x,, x2 and x3 are the number ofAA, Au and au offspring mice out of a total of m 
mice. 
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Example 7.4.3 Define a deterministic model for the activity of a bird over the population 
of caterpillars in Example 7.1.2. 

Solution: As denoted in Example 7.1.2, it was assumed that the expected success of the 
bird in catching caterpillars is proportional to the time interval At, that is 

E(Ax,At) = kAt 

where X is the total number of successes and Ax is the difference between the number of 
successes at the end of the interval and the number of successes at the beginning. Note 
that the expectation of a difference is the difference of the expectations. Then, if x=J(t), 
it follows that 

E ( h ,  At) = a t + A t ) ]  - a t ) ]  = kAt 

The following differential equation is obtained by dividing both sides by At and taking the 
limit as At approaches zero: 

where E(X) is the expected total number of successes by the bird. The deterministic model 
of the system is the solution of the above differential equation, that is 

E(X) = kt 

The stochastic model was defined as a Poisson distribution, that is 

Thus, as shown in the above expression, the expected value E(J) is the mean p of the 
stochastic model of the system. 

Note that the deterministic model may be used to generate the k coefficient 
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experimentally. The k coefficient may be easy to generate by measuring the number of 
catches as a function of time. Then, the time interval At may be selected by dividing the 
time variable into intervals that are small enough, such that the rate of change in the 
number of catches remains essentiallyconstant. Ifa sufficient number ofevents cannot be 
fitted in such interval, as to make the coefficient of variation acceptably small, a more 
appropriate function for the expected value may be chosen, that is p’+kt. Failures, which 
are difficult to define or detect, do not need to be recorded. 

Note also that the stochastic model could have been determined in a very simple 
way, just by defining the deterministic model of the system and assuming a Poisson 
distribution at the beginning of the modeling process. Such procedure is possible only if 
the assumptions for selecting the deterministic model and the distribution function are 
acceptable. 

In general terms, defining mathematical models for stochastic processes maybe 
accomplished by the following procedure: 

Define an appropriate probability distribution for the problem 
Define the deterministic model 
Determine experimentally the numerical coefficients for a deterministic model of the 

Fit the probability distribution to the deterministic model 
system 

Summary 

Mathematical models of stochastic systems may be determined by first defining 
the deterministic model and then fitting the corresponding probability distribution to the 
deterministic model. Deterministic models may also be useful in generating numerical 
coefficients for the stochastic model of the system. 



DETERMINISTIC MODELS OF DISCRETE SYSTEMS 

As indicated before, deterministic models represent the expected behavior of the 
system. It was also disclosed that discrete systems are related to qualitative state traits or 
to state variables representing numbers of individuals. 

Discrete state variables cannot be fractionalized, meaning that the system is not 
differentiable and cannot be represented by differential equations. Thus, discrete systems 
are represented by difference equations and their solutions. Difference equations define 
the state changes of the system and their solutions define the state trajectories. The time 
scale of these systems is the set of non negative integers. 

This chapter is related to the process of linking difference equations and their 
solutions to the system behavior and data. For such, systems are here defined according 
to their dimension that is, according to the number of the system components and inputs. 
The number of system components determines the number of first order difference 
equations in the mathematical model or the order of a single equation representing the 
system. This second and more empirical approach may be used when separation or 
identification of the system components is difficult or not possible. 

8.1 RELATIONSHIP BETWEEN ORDER AND DIMENSION 

The most elementary models are first order expressions of the form 

where byn is the system output and x is the single input. The above equation is reducible 
to the following representative form: 

where a=b- 1. As illustrated in Fig. 8.1, this first order difference equation represents a 
one component model of a system. 
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Figure 8. I. I 

Example 8.1.1 A rancher sells each month 3.6% of his feedlot steers and buys 90 new 
animals. Determine the system difference equation. 

Solution: The following is the difference representing the system: 

Y,,, - y ,  = 90 - 0 . 0 3 6 ~ ~  

where 90 is the input and 0.036~" is the output. This difference may be simplified to 

Y,,,~ + 0.964~" = 90 

Next in complexity are second order models reducible to the form 

where b, and b, are constants and x is the system input. As will be shown, this second 
order difference equation is equivalent to the following set of two first order 
interconnected equations: 

where u is the single input and c1y,(") and c2y2(") are outputs. The corresponding two- 
component system is shown in Figure 8.1.2. 
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I--(- 
! 

The equivalent second order form of the first order set (2) is determined by the procedure 
that follows. First, a second order expression is obtained by taking the second difference 
of the second equation in (2), that is 

Y2(n+2)  = C P I ( n + l )  - C2Y2(n+ , )  (3) 

Next, the term Y , ( , + , ~  in (3) is replaced with the first equation in the set (2): 

Y2(n+2)  = C d U  - C I Y l ( n ) )  - C2Y2(n+l )  

Then, according to the second equation in (2), the state variable yl(n) is 

Thus 

Finally, after factorizing and rearranging terms in (4), the following second order equation 
is obtained: 

where c1 + c2 = b,, c1 c2 = b2 and c1 u = x, in equation (1). Equation (5) is equivalent to 
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-c, 0 ... 0 0 1 

C I  -c2 ... 0 0 

0 0 ... cn_l -cn 

0 
+ u  

equation (1)  when operations are carried out on the second component of the System. The 
reader may want to check that the following second order equation is equivalent to 
equation (l), when operations are carried out on the first component: 

Example 8.1.2 The number of individuals of generation n is the sum of the two previous 
generations. Determine the difference equation for the system and the corresponding set 
of first order equations. 

Solution: The following is the difference equation of the system: 

where c1 + c2 = - 1 and clc2 = - 1 .Then, the following is the set of first order equations: 

Generalizing the model of the system of n first order equations, equivalent to the 
single input n order difference equation, is now possible: 

where the c, coefficients are the characteristic roots of the system and u is a single input. 
The following is the corresponding n order difference equation: 
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Summary 

Anmorderdifferenceequationoftheform yn+m + b,y,+,,_,, + ... +b,y, = x, where 
b, are constants, y is the state variable and the variablex represents the single input of the 
system, is equivalent to m first order equations. 

8.2 SINGLE INPUT LINEAR MODELS 

Single input linear models are represented by difference equations reducible to 
the form 

where y is the state variable, gin)  and An) are functions defined over the discrete time 
scale or are constants, for i = l,2, ..., m. The g,(n) terms are usually constant coefficients. 
In such case, the following expression would replace the above equation: 

where a, are constants and x =An) is the single input of the system. 
The notion of response functions was presented in Chapter 6. The system reaction 

to initial conditions, independently of the inputs, was defined as the fkee response. The 
reaction of the system to inputs, independently of the initial conditions was defined as the 
forced response. For conceptual purposes, only simple first order time invariant models 
of systems were considered. In this section, progressively more complex models will be 
examined. 

The general expression for a first order constant coefficients model was defined 
as 

The following is the Z transform of the above equation: 
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zG(z) -g(O)z - bG(z) = F(z) 

Then 

Z 1 
z - b  Z - b  

G(2) = - g ( O ) + - F ( Z )  

The first fraction in the above transform corresponds to the fiee response of the system, 
the second fraction is the forced response, g(0) is the initial condition and z-b is the 
characteristic equation. The inverse of these transform fractions are the state trajectories 
for the free and the forced responses. 

Example 8.2.1 Determine the fiee and forced responses of the feedlot system of Example 
8.1.1, if the rancher had 460 initial animals. 

Solution: The following is the difference equation defined for the system: 

y,,, + 0.964~" = 90 

This is a non homogeneous time invariant difference equation. The corresponding Z 
transform is 

4602 + 90 z 
z - 0.964 (Z - l)(z - 0.964) 

G(4 = 

The first fiaction of the above transform is the free response determined by the initial 460 
steers. The following is its inverse: 

yA(n) = 460(0.964)" 

The second fraction is the forced response, determined by the purchase of new steers: 
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90 [l - (0.964)"] = 2500[1 - (0.964)"] ym) = 1-0.964 

The total response is the sum of the f i e  and forced responses: 

y ,  = 2500 - 2040(0.964)" 

The graph of the response functions is shown in Fig. 8.2.1. 

Total 
. . - . . - . Forced 
- ----Free 

0 20 40 60 80 100 

Months 
Figure 8.2. f 

The following is the general expression for a second order, constant coefficients 
difference equation: 

The corresponding Z transform of this equation is 

Z q z )  - z"0) - Zg(1) + b[zG(z) - zg(O)] + cG(z) = F(z) 

where g(0) is a value at a period n=o and g(1) is a value at a period n= 1. After factorizing 
and rearranging terms, the Z transform can be written as 
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where A,  and I ,  are the roots of the characteristic equation z2  + bz + c. The roots of a 
second degree polynomial are given by the following expression: 

Then, if (b * -4c)>O the polynomial has two different real roots, if (b -4c) = O  the 
polynomial has two equal real roots and if (b2 -4c)<O the polynomial has two imaginary 
roots. This third case determines a periodic response of the system. 

Note that the coefficients of the characteristic equation are the same coefficients 
of the difference equation. The first fi-action of the transform corresponds to the fi-ee 
response of the system and the second fi-action to the forced response. 

The ( b 2  -4c)>O case is illustrated in the following example. 

Example 8.2.2 An insect control program was tested for one year in a pasture field. The 
following difference equation was fitted to the data: 

A2yn + 0.7955Ayn + 0 .1538~~  = 0 

This equation has the following expression in the subscript notation: 

Y , , + ~  - 1.2045yn+, + 0 . 3 5 8 3 ~ ~  = 0 

where y is number of bugs per square meter and n is months. Find the response due to the 
initial count of insects and the forced response due to the pest control program. The initial 
count of bugs was 250. The count after one month was 425. 

Solution: The above is a homogeneous second order time invariant equation. Therefore, 
at a first glance, only a free response is possible. However, as will be shown, a second 
order homogeneous time invariant equation is equivalent to a first order non homogeneous 
time variant equation. To find the first order expression, the solution of the second order 
equation is first needed. 
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The following is the Z transform of the difference equation: 

267 

z'C(Z) - 2 5 0 ~ ~  - 4252 - 1.2045[~C(~) - 25021 + 0.3583G;(~) = O 

Then 

250(z2 - 1.20452) + 4252 G(z) = .__- 

z2 - 1.20452 + 0.3583 

This transform can be expressed as 

] + 4*5[ + " I  GO = 250[ A +  
2 z - 0.6686 z - 0.5359 z - 0.6686 z - 0.5359 

where 0.6686 and 0.5359 are the roots of the characteristic equation. After solving the 
partial ftactions, it was found that A = -4.0384, B = 5.0384, C = 7.5358 and D =  -7.5358. 
Thus, the 2 transform becomes 

21932 19432 G(z) = 
z - 0.6686 z - 0.5359 

Then, the solution of the second order difference equation is 

y ,  = 2193(0.6686)" - 1943(0.5359)" 

The following is the first order difference equation of the system: 
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yn+l  = 2193(0.6686)”+’ - 1943(0.5359”” 

= 1466(0.6686)” - 1041(0.5359)” 
2193(0.6686)” - y ,  1 1 9 4 7 1  

= 1466(0.6686)” - 1 0 4 1  

= 290.77(0.6686)” + 0 . 5 3 5 9 ~ ~  

Then, after rearranging terms, the following is the first order time variant non 
homogeneous difference equation of the system: 

yn+l  - 0 . 5 3 5 9 ~ ~  = 290.77(0.6686)” 

where 290.77(0.6686r is an input and 0 . 5 3 5 9 ~ ~  is an output. Defining the fiee and 
forced responses is now possible. 

The new Ztransform is 

290.772 2502 
G(z) = (z - 0.6686Xz - 0.5359) ’ z - 0.5359 

The first fiaction of the above transform is related to the pest control and the second 
fiaction is related tothe initial count ofmsects. Then, the following are the fiee response yA(,,) 
and the forced response yS(,, : 

yA(n) = 250(0.5359)” 

yS(,, = 2193[(0.6686)” - (0.5359)”] 

As expected, the sum of these two equations is the total response determined previously. 
The graph of the response fhctions of this system is shown in Fig. 8.2.2. 

The procedure for solving the (b - 4c)> 0 case is straightforward. That may not 
be SO with the (b2  - 4c)<O condition, where the strategy for canceling imaginary terms 
may require more time and expertise. The following examples illustrate the (b2  - 4c)<O 
case. 
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0 2 4 6 8 I 0 1 2  
Months 

Figure 8.2.2 

Example 8.2.3 It was found that the population of an animal species decreases, each 
generation, by approximately one half the number of animals of the previous generation. 
It is assumed that each generation is affected by at least the effects of two previous 
generations. To prevent extinction, 540 new animals are introduced with each new 
generation. Determine the response corresponding to the initial I000 animals and the 
response due to the periodic introduction of new animals. 

Solution: The system is represented by the following difference equation: 

yn+* + 0.5yn+l + 0 . 2 5 ~ ~  = 540 

The characteristic equation of the system is here 

z2+0.5z+0.25 = l + [ % - l T ] ] [ ~ + (  I .Js 4 - l ~ ) .  I .fi 
= (z-A,)(z-k*) 

Thus 

-05 1 d T - = - m = @  where a = - = -- and p = 
2 4 2 4 

Then, the Z transform of the difference equation becomes 
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where 375 is the number of original animals found after the first period. The first fiaction 
of the transform is related to the response due to the 1000 initial animals. The second 
ii-action is related to the response due to the introduced animals. 

The first fiaction of the transformed equation may be expressed as follows: 

G(z) - lOOOz + 875 - A B 
_ _ -  - - + -  

2 (z-aI)(z-a2) 2-1, z-A,  

After solving for A and B, the Z transform of the free response becomes 

Thus, the following is the fiee response of the system: 

As disclosed in Chapter 4.2, by the Euler's formula: 

1, = a + ip = r(cos0 + isine) = re 'e ,  
A, = a - ip = r(cos6 - isine) = re 

w h e r e r = J ~ = 1 1 2 . T h e n , A , - A 2 = 2 i p ,  A, = e r e / 2  andA,=e-'e/2 

After replacing values, the ii-ee response becomes 
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where 

27 1 

Finally, after replacing values and factorizing, the kee response is 

sin n- 

The following is the fiaction ofthe Ztransform representing the forced response: 

B 
- 540- + - + __ - jl G(4 - 540 

z (z-i)(z-a,)(~-az) z - ~  z-a, P A ,  

After solving for A ,  B and C, the 2 transform of the forced response becomes 

Thus, the following is the forced response of the system: 
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Note that the characteristic equation of the system is 
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z 2  -(A, +A2)z +A,A2 = z 2  +0.502+0.25 

Then, (1-A&-k2)= 1 -(k,th2)+k1k2=1.75.AfterreplacingtheAvalueswith Euler’s 
equations, the forced response becomes 

Finally, after replacing the a, p and 0 values and hctorizing, the resulting forced response 
of the system is 

The total response is the sum of the ~ e e  and the forced responses, that is 

y ,  = 309+(  2 x  
3 

The graph of the system responses is shown in Fig. 8.2.3. 
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The above responses may be defined by expressions with a very precise geometrical 
meaning. Note that, by the addition formula of sinus and cosines 

cos(A f B) = cosAcosB T sinAsinB 
acos[0(c*n)] = acosBccos0n T asinBcsin0n 

2 x  2 x  
= 691cosn- + 662sinn- 

3 3 

where acos 0c = 69 1 = K ,  , asin 0c = 662 = K2,  8 = 2xf3 and a and c are unknowns. Then 

2 n  
Sin-C 

662 and 2- -__ I  662 = 0.9580 

cos 22 c 

691 - 
-_li___l__ a =  

69 1 2 x  . 2 x  cos-c sin--c 
3 3 3 

such that 

2 n  
3 

tan-'(0.9580) = 0.7640 = ---c ; c = 0.3648 

Finding a is now possible: 

Note that acos[B(c -n)] = acos[0(n -c)].  Then, the new expression for the system 
response has the form 

y, = KO + ar "cos[0(n-c)] 

After replacing values, the total response of the system becomes 

1 
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The following definitions apply for this response model: 

Parameter 8 modulates the frequency response of the system 
Parameter r modulates the amplitude response of the system 
coefficient a modifies parameter r 
Coefficient c is an out of phase parameter 
Coefficient d is the distance between the abscissa and the response axes 
A cycle is equal to 2x/O 

Note that when r < 1, the amplitude decreases over time and if r > 1, the 
amplitude increases. Thus, for r = 1/2, the amplitude of the system response decreases 
over generations. Note also that, if one full cycle is 2rc, then 8 = 2 d 3  means that one 
cycle is here three generations. In this example, the function is c = 0.32 18 generations 
out of phase and has an asymptotic value of d = 309 animals. 

The reader is encouraged to determine why the following relationships hold here: 

y, = KO + (r)”[K,cosn8 + K2sinn8] 

Yn+2 = Ko(l -2rcos8 +r2)  + 2rcos8yn+, - r2y, 

A , A 2  = r 2  

A , + A 2  = 2rcos8 

Summary 

Singleinput linear models with constant coefficients are represented by equations 
reducibletotheform yn+m +b,y,+(,,-,) +... +b,y, = x, where bi areconstants,yisthestate 
variable and the variable x represents the single input of the system. 

8.3 MULTIDIMENSIONAL FIRST ORDER LINEAR MODELS 

First order multidimensional linear models are represented by difference 
equations reducible to the form 

Y,,, = AYn +x 

where Y is a set of state variables, A is a matrix of coefficients defining the relations 
between the state variables and X is the set of input functions of the system. 

The Z transform of the above equation is written as follows: 
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zG(z) - Z q o )  = AG(z) + F(z) 
(ZI - A)G(z) = ZG(0) + F(z) 

where (zI - A) is the characteristic equation of the system, G(z) is the set of Z transforms 
of the state variables, G(0) is a set of initial conditions and F(z) is the set of transforms of 
the input functions. Then, the free response YAcn, and the forced response Y&, are 

YACn) = z-'[(zl -A)-'zG(O)] 

Yet,) = z-"(zI - A)-'F(z)] 

Example 8.3.1 The population of a type of bird doubles every year. The introduction of 
predators reduces the number of birds by ten times the number of predators. The number 
of predators also doubles every year. Some 200 new birds move into the ecosystem each 
year and some 30 predators are hunted down. Determine the response functions of the 
system, assuming 1000 initial birds and 50 initial predators. 

Solution: The difference equation of the system is as follows: 

2 -10 200 
yn+l = lo ]yn + j3U/ 

where yA is birds, y ,  is predators and n is years. The following is the corresponding Z 
transform: 

50 

The characteristic equation of the system is here 

-2 10 

0 2-2 
jzZ-Al = 1 1 = (z-2)2 
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2002 *o - 
1 z-1 

Z- 1 

GSl(z) = -- 
( ~ - 2 ) ~  -302 

___ 2-2 

Free Response. The following is the 2 transform for the free response of the birds: 

- 2002 3002 + 
(2 - 2xz - 1) (2 - 2)2(2- 1)  

- 10002-2500 - A B 
- -  --+- 

Z 2  z (2 - 2)2 z(z-2) (2-2)2 

where A = 1250 and B = -250. Then 

12502 250z2 
GAI(z) = - - ___ 

2-2  (2-2)2 

The following is the Z transform for the free response of the predators: 

Thus, the inverse of the above transforms is the fiee response of the system: 

Forced Response. The following is the Z transform for the forced response of the birds: 

= 2002 
(z - 2)(2 - 1) 

where A = I ,  B = 1 and C = - 1 .  Then 
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2002 
(2 - 2)(2 - 1) 

G&) = 

The following is the Z transform for the forced response of the predators: 

-302 

2- 1 

The inverse transform of the birds and the predators is the forced response of the system: 

100 50(3n-2) 
y ~ n )  = [ 3 0 ] + !  -30 jT 

The following is the total response of the system: 

100 100(9-n) ’’ = [ 301’1 20 jz” 
The graph of the response functions of the birds is shown in Fig. 8.3.1 : 

1- T 
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Testing that the solution is correct is possible by quating the system solution 
with the difference equations of the system, such that 

The reader may wish to check that the above expression holds true. 
The graph of the response hnctions of the predators is shown in Fig. 8.3.2: 
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Example 8.3.2 Two species of birds share the same ecosystem and food sources, affecting 
each other's reproductive and survival rates. Their relationship is represented by the 
following set of difference equations: 

0.15934 2.20254 

-0.4528 1 0.87340 Y"+I = [ " + I 224.27 O 1 + 1  5.3174 O 1 
where y ,  and y2  is each of the bird species and n is years. Find the response functions of 
the system. 

Solution: The above set of difference equations has the form 

Then, the following is the 2 transform of the system difference equations: 
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where g,(O) =400 and g,(O) =200 are the initial number of birds for each of the two 
species. The characteristic equation of the system is given by the expansion of the 
following determinant: 

-0.15934 -2.20154 

0.45281 2-0.87340 
1.1-A) = 

= z2 - 1.03274~ + 1.13605 = (z-al)(Z-a2) 

Then, the following are the characteristic roots: 

1.03274 f i1.86484 = a 
i p  a =  

2 

where a = 0.51637 and p = 0.93242. Clearly, the system response is represented by 
periodic functions. 

Free Response. The following determinant is the Z transform of the fiee response for the 
first species: 

Then, the inverse of the above transform is the fiee response of the first species: 
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After replacing the 3L terms, the fiee response becomes 

where 

Finally, after replacing the r, a, p and 0 values and factorizing, the free response 
for the first species is 

yA,(n) = (l.O66)”[4OOcos n( 1.065) + 3 19sin n( 1.0631 

The following determinant is the 2 transform of the fiee response of the second 
species: 

After solving the partial fiactions, and replacing the symbols by the corresponding initial 
values, the transform becomes 
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Then, the free response of the second species is the inverse transform of the above 
expression: 

2001, -212.992 2001, -212.992 
1; - 1; 

a1 - 1 2  1 1  - 1 2  
yA2(n) 

After replacing the 1 values, the free response is 

[200(a + i p ) -  149.256](cosn0 +isinn 0) + 

”’(’) = r n  I [ 149.256 -2OO(a - i p)](cos n 0 -i sin n 0) 

Finally, after replacing the r, a, p and 0 values and factorizing, the fiee response of the 
second species becomes 

yA2(ni = (1.066r[200 cos n( 1.065) - 1 18 sin n( 1.065)] 

Then, the following is free response of the system: 

400 -3 19 cos n( 1.065) 
= (1.066)’[ ][ 1 

200 - 119 sin n(1.065) YAW 

Forced Response The Z transform of the forced response for the first species is given by 
the expansion of the following determinants: 
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where c1  = O  and d ,  = O .  Then 

The above transform can be expressed as partial fractions, such that 

F=C.  

The inverse of the above transform is the forced response of the first species: 

Manipulation is easier if the above equation is expressed as follows: 
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The characteristic equation of the system is 

2 2 -  i.03274~+ 1.13605 = (z-al)(z-a,) 

Then 

(1 -A,)( 1 -A2) = 1 - 1.03274 + 1.13605 = 1.10331 

Thus, after replacing the 1 values, the forced response becomes 

(I-a-ip)(cosne-isinne) - (l-a+ip)(cosne+isinne) + 

2( 1.1033) i p 1 YB/ (n)  = ’,ZcZr 

[( 1 - ~ ) ~ + p ~ + 2  i p](cos n 8 +i sin n e) - [( 1 -a)’+PZ -2 i p](cos n 8 -i sin n 0) + 

2( 1.1033)’i p 1 

Finally, after replacing the r, a, f3 and 8 values and .factorizing, the followhg is 
the forced response for the first species: 

yBI(,) = 438 + 10.62n - (1.066)”[438cosn(l.065) + 218sinn(1.065)] 

The 2 transform of the forced response for the second species is the expansion 
of the following determinants: 
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where cl = 0 and dl = 0. Then 

By using partial hctions expansion, the above transform becomes 

The inverse of this expression is the forced response of the second species. Manipulation 
is made easier if the above equation is expressed as foIIows: 

The reader is encouraged to determine the missing steps in the above inversion process. 
By using the Euler’s equations, it is possible to write 
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Replacing the A values is now easier. After some factorization, the forced response of the 
second species becomes 

2 ip(o. 15934- 1)cosn e + 2[0. I 5934(1 -a)-a+a2+p2]isinn e - I 2 ip( 1.1033) 1 yB2(R) = 224.27r 

224.27( 1 -0.15934) + 

1.1033 
i 
I+ 

2 i p[2(0. I 5934)( I -a)+a2+p2- ilcoSp2 e + 

2 i p( 1.1033)’ 5.3174r 
2[0.15934[( 1 - ~ 1 ) ~ + p ~ ]  +2(a2+p2)( 1 -a) -011 i sinn 8 

2 ip( 1. 1033)2 

2ip[2(0.15934)(1 -a)+a2+p2- 11 + 5.3174(1-0.15934)n 

2 i p( 1 .  1033)2 1.1033 
5.515 

Finally, after replacing the r, a, p and 0 values and factorizing, the forced 
response of the second species is written as follows: 

yBZ(n) = 172 + 4.052n + (1.066)~-172cosn(1.065) + 148sinn(1.065)] 

The forced response of the system is, then 

10.62 

The following is the total response of the system: 
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Y, = 
+[:$I + (I.O66Y[ -38.3 100.8 ][ cosn(1.065) ] 

27.9 30.3 sinn(1.065) 

The graph of the response fimctions of the first species is shown in Fig. 8.3.3. 
Note that one hll cycle is 2nl8 that is, the fiequency is here 6.2811.065 = 5.90 years. Note 
also that r = 1.066 > 1 that is, the amplitude of the system response increases with time. 

$ 0  

f -500 

-1 OOO 
z 

A Data 
---I- Total 

18 .__._-. Free 

- . - --Forced 
I .  

Years '- I 
-1500 1 

Figure 8.3.3 

The graph of the response hnctions of the second species is shown in Fig. 8.3.4: 

f 

Years 

A Data 

Figure 8.3.4 
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Summary 

First order multidimensional linear models are represented by equations reducible 
to the form Y,,, = AY, + X ,  where Y is the set of state variables, A is a matrix of constant 
coefficients and Xis the set of input functions of the system. 

8.4 FITTING MODELS TO DATA OF DISCRETE SYSTEMS 

As disclosed previously, successive differences can be expressed as a difference 
table. The entries in each column after the second are placed between two successive 
entries of the preceding column and are equal to the difference between those entries. As 
shown in Table 8.4.1, Ayo = y ,  -yo, Ayl = y2 - y l ,  = Ayl - Ayo, A3y0 = Azyl - A2yo, 
and so on. 

Table 8.4.1 

A Table of Finite Differences 

n 

A3Y, 

A3y 

A3y2 

A4yO 

A4Y I 

"'yo 

For processing data, the entries in the difference table may be rearranged as in 
the following table. Each column in the table is a variable and as such, least squares 
procedures are feasible for fitting difference equations to the data. Thus, the following 
linear regression models would fit data with one dependent variable: 
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Ay = a t bn + cy 
A2y = a t bn + c,y + c2Ay 

Any = a + bn t c p  + c,Ay + ... t c,A"-'y n-order 

First order 
Second order 

Table 8.4.2 

A Modified Table of Finite Differences 

Example 8.4.1 As indicated in Example 8.2.2, an insect control program was tested 
during one year in a pasture field. The following is the corresponding data: 

n l 0  1 2 3 4 5 6 7 8 9 10 11 12 
~~~~ ~ ~~ 

y p l z s 0 4 2 5  421 362 279 205 151 108 65 49 35 22 18 

where y is the number of insects per square meter and n is months. Find first and second 
order linear models for the data. 

Solution: The following first order difference equation was fitted to the data in Table 
8.4.3: 

Ay = 323.24 - 33.95n - 0.7883~ 
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The following is the difference table of the data: 

Table 8.4.3 

n Y AY A2Y 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

250 

425 

42 1 

362 

279 

205 

151 

108 

65 

49 

35 

22 

18 

175 -179 

- 4  - 55 

-59 - 24 

-83 9 

-74 20 

-54 11 

-43 0 

-43 27 

-16 2 

-14 1 

-13 9 

- 4  

The statistics for the regression coefficients of the difference equation was as follows: 

Table 8.4.4 

Variable Coefficient Standard V’ 
Error 

~ 

Y 

~~ ~ - 

-0.7883 0.2070 -3.812 

It -33.95 8.56 -3.965 

Constant 323.24 86.74 3.727 

The coefficient ofdetermination was R2 = 0.640 and the standard deviation was S=44.36. 
The following second order equation was also obtained fiom the data: 

A2y = -9.4407 + 1.0737n - 0.1323~ - 0.7748Ay 
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and the following are the corresponding statistics for the regression coefficients: 

Table 8.4.5 

~ ~ - ~ 

Variable Coefficient Standard 
Error 

AY -0.7748 0.0637 -1  2.162 

Y -0.1323 0.0632 -2.094 

n 1.0737 2.9 104 0.369 n.s. 

Constant -9.4407 26.7830 -0.352 n s .  

The coefficient ofdetermination and the standard deviation were R L  0.991 and s = 6.926. 
The second order is clearly more accurate than the first order model. However, as shown 
in the above table, the intercept and the coefficient for the time variable n are not 
significant. Thus, the following is the new regression equation, with those coefficients 
deleted: 

A2y = -0.7955Ay - 0.1538~ 

The corresponding statistics is as follows: 

Table 8.4.6 

Variable Coefficient Standard ‘ctn 

Error 

AY -0.7955 0.0279 -28.546 

Y -0.1538 -0.6750 -20.1 16 

As shown in the above table, the significance of the model was improved. The standard 
deviation was reduced to s = 6.17 1. 

The subscript notation form of the second order difference equation is 

yn+2 - 1.2O45yn+, + 0.3583~ = 0 
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n 

y, 

y2 

2 
where BY = Y,,~  - y1 and A Y = yn+2 - 2yn+l - yn . The following is theZtransform 

for this equation: 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  

400 500 580 450 390 400 420 610 730 680 500 330 400 620 830 770 450 

200 230 180 140 150 180 240 300 240 170 100 130 260 320 290 170 110 

250(z2 - 1.20452) + 42% 

z2  - 1.2045~+0.3583 
G(z) = 

where 250 and 425 are the first and second differences in the data table. The inverse of 
this transform is the solution of the difference equation, as defined in Example 8.2.2: 

y ,  = 2193(0.6686)" - 1943(0.5359)31 

The reader should be aware that each of the numerical values of the first and 
second terms of the y, sequence, which are 250 and 425, include an error term. 
Therefore, the accuracy of the above solution is a f f i e d  by the size of such errors. In the 
present example, the fit of the difference equation has a coefficient of determination (R? 
of 0.99 and the goodness of fit is high, as shown in Fig. 8.4.1. 

0 
0 2 4 6 8 1 0 1 2  

Monthds 
Figure 8.4. I 
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where y ,  and y2 are the number of birds of each of the two species and n is years. Find 
a first order model for the data. 

Solution: The following first order difference expression was obtained fkom the data in 
the difference table bellow: 

A Y = [  -0.8982 2.1437Iy+ [ 28.33) +Z?.I36] n 

-0.4528 -0.1266 224.27 5.317 

The following is the difference table for the data: 

Table 8.4.7 

n Yl AY, Y2 AY, 

0 400 100 200 
1 500 
2 580 
3 450 
4 390 
5 400 
6 420 
7 610 
8 730 
9 680 
10 500 
1 1  330 
12 400 
13 620 
14 830 
15 770 
16 450 

80 
-130 
- 60 

10 
20 

190 
120 

- 50 
-180 
-170 

70 
220 
210 
-60 

-320 

230 
180 
140 
150 
180 
240 
300 
240 
1 70 
100 
130 
260 
320 
290 
170 
110 

30 
- 50 
- 40 

10 
30 
60 
60 

- 60 
- 70 
- 70 
30 
130 
60 

- 30 
-120 
-60 

The statistical evaluation for the regression coefficients is shown in Table 8.4.8. The 
coefficients of determination are here R2 = 0.966 and R2 = 0.949 for each of the to state 
variables and the standard deviations are s = 3 1.489 and s = 16.8 18. 
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Table 8.4.8 

293 

Variable Coefficient Standard 
Error 

-0.8982 
YI 

-0.4528 

2.1437 
y2 

-0.1266 

n 2.1356 

5.3 174 

Constant 28.3260 

224.2747 

0.0641 

0.0342 

0.1363 

0.0728 

1.9630 

1.0481 

33.6027 

17.9418 

-14.023 

- 13.240 

15.730 

-1.740 

1.088 n.s. 

5.073 

0.843 n.s. 

12.500 

As shown in the table, there are two non significant coefficients. The following is the new 
expression with those coefficients deleted: 

b y = [  -0.8407 2.20151 Y +  [ 0 ]+I 0 ] 
-0.4528 0.1266 224.27 5.317 

The corresponding equation in subscript notation for the above mathematical model is 

0.1593 2.2015) [ 0 1 +I 0 

-0.4528 0.8734 yn -t 224.27 5.317 

As determined in Example 8.3.2, the 2 transform of this model is 

2-0.1593 -2.20151 r""J [ 0 1 - +  [ 0 
F(z) = 2 o o z +  I 0.4528 2-0.8734 224.27 2-1 5.317 (2-1>* 
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Note that 400 and 200 are initial values for each of the two species of birds. Note also that 
these values include the error terms. Therefore, the accuracy of the free response is 
affected by these error terms. 

The total response of the system was defined as 

Because the fiee response is affected by how much the first differences deviate from 
regression, the system solution would need some fine tuning using non linear curve fitting 
procedures. The "goodness" of fit can be appreciated in Fig. 8.4.2. 

0 3 6 9 12 15 18 

Years 
Figure 8.4.2 

In conclusion, the following procedure is recommended for fitting linear models 
to the data of discrete systems: 

Express the data as a difference table 
Use a least squares procedure to determine the most appropriate model 
Define the set of difference equations for the system 
Determine the state equations 
Use non linear regression for fine tuning the state equations 

Summary 

Fitting linear models to data of discrete systems may be accomplished by linear 
regression, using data from difference tables. Constant coefficients of resulting state 
equations may be fine tuned by non linear least squares curve fitting. 



DETERMINISTIC MODELS OF 
CONTINUOUS SYSTEMS 

Continuous systems are also called dilfferentiable systems because they may be 
represented by differential equations and their solutions. The time scale of these systems 
is the set of non negative real numbers. 

This chapter is related to the process of linking differential equations to the 
system behavior and data, using constant coefficients linear models. Systems are here 
classified by their structure and by their dimension. By structure, systems are either 
compartmental or non compartmental. As with discrete systems, the number of system 
components also determines the dimension of the system. 

9.1 RELATIONSHIP BETWEEN ORDER AND DIMENSION 

The following first order model describes one of the most elementary types of 
systems: 

where by is the output of the system and x is the single input. As shown in Fig. 9.1.1, a 
first order differential equation represents a one component system. 

~---).I X 

I 

Figure 9.7.7 

Example 9.1.1 The concentration of bacteria in the rumen of a group of calves was found 
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to increase with age. The following is the fitted equation describing this process': 

9:Deterministic Models of Continuom Systems 

y = 4.61 - 3.71e -0.142f 

where y is concentration of bacteria in millions/G*104 and t is age in weeks. Determine 
the components of the system, as represented by the above equation and define the single 
input and the output. 

Solution: The following is the differential equation of the system: 

3 + 0 . 1 4 2 ~  = 0.655 
dt 

This is a first order differential equation. Therefore, the system has only one component. 
The input is 0.655 and the output is 0.142~.  

More complex are second order models reducible to the form 

4 ~. d2y + b , -  + b2y = x 
dt2 dt 

where b, and b, are constant coefficients and x is the single input. As will be shown, the 
above second order differential equation is equivalent to a set of two first order 
interconnected differential equations of the form 

47, = -a,y, + u  

4 7 2  - - up1 -a$, 

___ 
dt 

dt 

where u is the single input and afl, and ag2 are outputs. The corresponding two- 
component system is pictured in Fig. 9.1.2. 

'Computed fiom Lengeman F.W. and N.N. Allen 
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1 ' Q2Y2 

Figure 9.1.2 
The procedure that follows determines the equivalent second order form of system (2). 

in (2): 
First, a second order equation is obtained by differentiating the second equation 

Next, the dy,ldt term in (3)  is replaced with the fEst equation in (2): 

4 2  - = u,(u - ug,) - u2-- 
d2Y2 
dt2 dt 

Then, according to the second equation in (2), the variable y, is 

Thus 

(4) 

Finally, after factorizing and rearranging (4), the following second order equation is 
obtained: 
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- d2Y2 + (a, +a*)- 4 2  + a p g ,  = u p  
dt2 dt 

where a, + a, = b,, a, a2 = b, and alu = x in equation (1). Equation (5) is equivalent to 
equation (l), when operations are carried out on the second component of the system. The 
reader may want to check that the following second order equation is equivalent to 
equation (1) when operations are carried out on the first component: 

- d2Y, + (a, +a2)- 4 + a p g ,  = a p  
dt dt (5) 

As demonstrated, a second order differential equation represents a two- 
component model of the system. 

Example 9.1.2 The following fitted equation represents the growth curve of a group of 
steers2: 

where y is the steers’ body weight and t is the steers’ age in years. Define the single input, 
the outputs, the components of the system and the set of equivalent first order differential 
equations. 

Solution: The following are the first and second derivatives of the state equation: 

* = - 1.427(265)e 
dt 

+ 0.553( 1065)e -0.5531 

fi = (1 .427),(265)e 
dt 

- (0.553),( 1065)~ -0-553‘ 

The second order differential equation is obtained by solving for the exponential terms in 
the above set of equations and replacing the solutions in the state equation. The reader is 
invited to prove the following shortcut: 

2Vohnout, K., Unpublished 
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dY - 
dt 
I_ - 

a t  d2t dY If y = qeaIt t b e  2 t c , then - + (a1 + a2)- + ap2y = q q c  
dt dt 

a, -a2 ... 0 0 

: 
Y +  

By either procedure, the following is the second order differential equation ofthe system: 

d2Y + 1.980- dv + 0.789~ = 616 
dt dt 

If a, +a2 = 1.980, ala2 = 0.789 and a,u = 616, then al = 1.427, a2 = 0.553, the outputs 
are I .427y, and 0-553y2 and the input is u = 432. Thus, the following is the equivalent 
first order system: 

I_- &' - - 1 . 4 2 7 ~ ~  + 432 
dt 

___- dvz - - 1.425, - 0 . 5 5 3 ~ ~  
dt 

Note that the output coefficients I .427 and 0.553 are also the characteristic roots of the 
system. As expected and shown in Fig. 9.1.3, the model of this system has two 
components. 

432 
-- q - -  

Figure 9.1.3 

Generalizing the model is now possible. Thus, the following is the system of n 
first order equations equivalent to an n order constant coefficients differential equation: 
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where the uI output coefficients are the characteristic roots of the system and u is the 
single input. The following is the corresponding n order differential equation: 

d"-'y, 
____ + (ul+u2+...+un)- + ... + ulu 2...uJ, = u,u ,... q _ , u  
d"Y, 

dt dt 

Clearly, the above system has n components. 

Summary 

An n order differential equation of the form 

dny d"-'y 
- + b, ~ + ... + b,y = x 
dt dt"-' 

where x=At)  is the single input of the system, y is the system response and b, are 
constant coefficients, is equivalent to n first order equations. 

9.2 SINGLE INPUT LINEAR MODELS 

Single input non compartmental linear models with constant coefficients are 
represented by differential equations reducible to the form 

where x =fit) is an input trajectory, y is the system response and 6, and c, are constants. 
The general expression for a first order constant coefficients model is 

dx 
dt dt 
d y  + by = cl-- + CP 

and the following is the Laplace transform of the above system: 
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Then 

where yo is the initial condition of the system, AO) is the input initial value, 
(cls + c2)/(s + b) is the transfer hc t ion  and s+b is the characteristic equation of the 
system. 

Defmitions for the response fimctions of the system were presented in Chapter 
6. The reader is reminded that the system reaction to initial conditions, independently of 
the inputs, is known as the fiee response. The reaction of the system to inputs, 
independently of the initial conditions, was defined as the forced response. The solution 
of the Laplace transform is the fiee and forced responses. In the above example, the first 
fraction of the transform corresponds to the free response and the other two fiactions to 
the forced response. 

Example 9.2.1 The following equation was fitted to the energy content of milk fiom a 
group of cows3: 

y = 2.821 + 0.965e -o.04231 

where y is the energy content in MJouled Kg and t is days after calving. Determine the 
fiee and forced responses of the system. 

Solution: The following is the differential equation representing this system: 

3 = 0.1193 - 0.0423~ 
dt 

where 0.1193 is the input and 0.0423~ is the output. An asymptotic value is obtained 
when the input and the output are equal, that is y = 0.1 193/0.0423 = 2.82. The above is 
a non homogeneous time invariant differential equation. The corresponding Laplace 
transform is 

0.1193 yo + 
s ~0.0423 s(s +0.0423) 

G(s) = 

3Computed &om B.G. Lowman, RA. Edwards and S.H. Somerville 
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The fust fkaction of the Laplace transform is the free response, determined by the cows 
condition before calving. The following is its inverse: 

yA = 3.786e -0.0423r 

The second fraction is the forced response, determined by the system inputs after calving 
and the following is the corresponding trajectory: 

ys = 2.821(1 -e-o.0423’) 

The total response of the system is the fitted equation, which is the sum ofthe free and the 
forced responses. 

The graph of the response functions of the system is shown in Fig. 9.2.1. 

..----- Free 
e 0.5 ----- Forced 

0 20 40 60 80 1001200140160 

Days Affer Calving 
Figure 9.2.1 

Example 9.2.2 The following is the equation fitted to the lactation curve of a group of 
dairy cows4: 

y = e -0.484r(298 + 41 It)  

wherey is milk production in kilogramdmonth and t is months. Define the free and forced 
responses of the system. 

~ ~~ 

4Vohnout, K., Unpublished 
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Solution: The following is the differential equation of the system: 

303 

where 41 1 e -0.484r is the input and 0.484~ is the output. This is a first order time variant 
non homogeneous equation. 

The differential expression of the free response is here 

3 + 0.484~ = 0 
dt 

which has as its solution 

This free response represents exclusively the milk production expected fiom the physical 
condition of the cows before calving. 

The fitted equation minus the free response is the forced response: 

yB = 41 Ite -0.484' 

The forced response represents milk production due to the system input after calving. The 
graph of the system response functions is shown in Fig. 9.2.2. 

400 t 4 

A Data 
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Figure 9.2.2 
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Example 9.2.3 The following differential equation represents the response of Carpet grass 
to rainfall? 

where y is pasture yield, as kg/ha/day of green dry leaves and x is rainfall in mdmonth. 
The following equation was fitted to rainfit11 data’: 

x = 206 - 152.6cos0.809t - 43.5sin0.8091 

Determine the response finctions of the system. 

Solution: As defined before, the Laplace transform of the system has the form 

C,fTO) 
F(s) - ~ 

Yo CIS+CZ: G(s) = - + - 
s i b  s+b s+b 

and the rainfall equation has the symbolic expression 

x = ko + k,cos0t + k2sin0t 

The first term of the Laplace transform corresponds to the free response. Then, the fkee 
response is simply 

-0.7071 
Y A  = Yoe 

where yo is the initial state of the system. An approximate value, obtained from the data, 
is 3 and should be further fine tuned by non linear regression. 

The remaining terms ofthe Laplace transform are related to the forced response. 
This model was used and solved in Example 6.4.3 for a Kikuyu pasture experiment. 

Computed from Murtagh, G.J. et.al. 5 
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Therefore, there is no need for repeating all the steps of the procedure and only the 
solution is presented here: 

The following is the resulting forced response after replacing the symbols with the 
corresponding numerical values: 

yB = 15.57 - 7.00e-0.7071 - 8.57cos0.809t - 4.68sin0.809t 

For this particular data, the forced response is also the total response, because the 
initial value yo is not statistically significant. The following final equation for the total 
response was fitted by non linear regression: 

y = 15.63 - 7.63e-0.7071 - 8.00cos0.809t - 8.98sin0.809t 

The graph of this equation is shown in Fig. 9.2.3. 

30 T I 
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I00 
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Figure 9.2.3 
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The following is the general expression for a second order, constant coefficients 
model: 

The corresponding Laplace transform is here 

where do), g'(O), AO) and f ( 0 )  are the initial values of the solution and of the first 
derivatives of the response and the input. Then, the following is the Laplace transform of 
the system response after factorization: 

where 3L1 and A, are the roots of the characteristic equation s + bs + c of the system. The 
transfer function is here 

The first fraction of the transform represents the free response and the other fractions the 
forced response. Note that the coefficients in the characteristic equation are the same 
coeficients of the differential equation. Note also that the degree of the characteristic 
equation is the same as the order of the differential equation. 

The following expression gives the roots of a second degree polynomial: 
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Then, if (b2 -4c)>O the polynomial has two different real roots, if (b * -4c) = O  the 
polynomial has two equal real roots and if (b -4c)CO the polynomial has two imaginary 
roots. The ( b 2  -4c)>O case is illustrated in the following example. 

Example 9.2.4 The following diffaential equation corresponds to the fitted equation of 
the growth curve of a group of steers, as defmed in Example 9.1.2: 

_c_g d2Y + 1.980-- dv + 0.784, = 616 
dt2 dt 

Determine the response functions of this system. 

Solution: The characteristic equation of the system 

s2 + 1.980s + 0.789 

has two real different roots, 1.427 and 0.553. Then, the foliowing is the Laplace transform 
of the above differential equation: 

g(O)(s + 1.98) + g '(0) + 

(s+ 1.427)(s+0.553) s(s+ 1.427)(s+0.553) 
616 

(3s) = 

The first fraction represents the free response and the second &action represents the forced 
response of the system. The corresponding inverses are easily obtained from standard 
tables of Laplace transforms. Then, ifg(0) = 30 and g'(0) = 183, the free response yA and 
the forced response yB are 

Note that the characteristic roots are also the exponents in the exponential terms of the 
response functions. 

The graph of the system response functions is shown in Fig. 9.2.4. 
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The reader is encouraged to show that, for a state equation of the form 

-A,I y = k, + k,e + k2e -I2' 

the corresponding second order differential equation has the form 

Then, by the above expression, a second order differential equation with constant 
coefficients may be determined, in a single step, from the solution. 

The (b - 4c) = 0 case is portrayed in the next example. 

Example 9.2.5 The lactation curve of a group of cows was defined in Example 9.1.4 as 

y = e -0-484r(298 + 41 It) 

Find the second order differential equation of the system and determine the corresponding 
characteristic roots. 

Solution: The following first order, time variant non homogeneous equation, represented 
this system: 



9.2:Single Input Linear Models 3 09 

* = 41 le -0.4s41 - 0.484~ 
dt 

Differentiating the above expression determines a second order differential equation such 
that 

fi + 0.968* + 0.234~ = 0 
dt dt 

Note that the first order non homogeneous time variant model in this example is 
equivalent to the following second order homogeneous time invariant model: 

9 + 2(0.484)- du + (0.484)*y = 0 
dt2 dt 

Clearly, the characteristic equation has two equal roots, that is h = 0.484, which is the 
exponent of the exponential term of the lactation curve. 

The following important conclusion is achieved from this example: 

AJirst order non homogeneous time variant equation, is equivalent to a second order 
homogeneous time invariant equation 

The first order and the second order models are equivalent in mathematical 
terms. However, in some cases, the second order model may not be appropriate, because 
it determines only a ffee response of the system. This type of considerations will be 
discussed in Chapter 10. 

The reader is encouraged to prove that, for a response equation of the form 

the corresponding differential equation has the form 

_L__ d2y +(b l+b2)-+blbg  4 = &b1b2 dt2 dt 
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Finally, the b - 4c < 0 is illustrated in the following example. 

Example 9.2.6 The following equation was fitted to the dry matter production of a Kikuyu 
pasture field6: 

y = 1170t -839 +839~0~(0.686t) -915~in(0.686t) 

where y is the accumulated dry matter yield in Kg/Ha and t is months. Determine the 
response functions of the system. 

Solution: The following are the first and second derivatives of the above equation: 

* = 1169.8 -627.8cos(0.6861t)-575.5sin(0.6861r) 
dt 

dt2 
- -  d2y - -394.9~0~(0.686lt)+430.7sin(0.6861t) 

By solving for the unknowns cos(0.6861t) and sin(0.6861t), replacing the corresponding 
values in the state equation and factorizing, the differential equation of the system is the 
following expression: 

- d2y - 0.000033 16- d y  + 0.4707~ = 550.7t - 394.9 
dt dt 

Note that the coefficient of the first order differential is extremely small and can be 
dropped. Thus, the following is the new form of the system differential equation: 

+ 0.4705 = 550.7t - 394.9 
dt 

Then, the following is the characteristic equation of the system: 

Computed &om Murtagh, G.J. et.al. 6 
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s 2  +0.4707 = (s-O.6861i)(s+O.68611’) 

The corresponding Laplace transform is here 

where g(0) =0, g’(0) =542, 1, -= -0.68611’ and A, =0.6861i. 

system and the following expression is their inverse: 
The first two terms of the above transform corresponds to the fiee response of the 

ya - 
542 (e -4‘ - e 4 2 9  

a 2  -a1 

where e-”I‘=cos(pt)+isin(pt), e-’2f=cos(pt)-isin(Pt), A 2 - A l  =2pi and pzO.6861. 
Then, after replacing values and factorizing, the ftee response becomes 

yA = 790.0 sin(0.6861 t )  

The following expression is the Laplace transform of the forced response of the 
system: 

The inverse of the above transform is the forced response: 
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where e -'It = cos@ t )  + isin(pt), e = cos@ t )  - isin(pt) and 3LI + 3L2 = 0 .  Then 

After factorizing and replacing A with the corresponding numerical values, the forced 
response becomes 

y B  = 1170t - 743 + 743cos(0.6961t) - 1705sin(0.6861t) 

The graph of the system response functions is shown in Fig. 9.2.5. 



9.2:Single Input Linear Models 313 

The reader is encouraged to prove that, for a state equation of the form 

y = KO + K,t +e  -a'(K,cos(pt> + K,sin(pt)) 

the corresponding second order differential equation has the form 

where A.=arip. 

Example 9.2.7 Determine the response functions as the monthly dry matter yield for the 
Kikuyu pasture field of the previous example. 

Solution: The response functions, as the monthly yield, are simply the first derivatives of 
the response functions of the accumulated yield: 

y i  = 542~0~(0.686 1 t) 

y; = 1170 - 1170cos(O.6861t) - 576sin(0.6861t) 

y ' = 1170 - 628cos(O.6861t) - 576sin(0.6861t) 

The corresponding graph is shown in Fig. 9.2.6. 

8 -lo00 1 
Months 

Figure 9.2.6 
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The total response of the production rate of the Kikuyu field was defined by the following 
type of mathematical model: 

Note that, by the addition formula of sines an cosines, 

cos(A*B) = cosAcosB T sinAsinB 
= acos(pb)cos(pt) T usin(pb)sin(Pt) 
= K,cos(Pt)~ K,sin(Pt) 

Note also that K, = acos(pb) and K2 = asin(@) where a and b are unknowns. Then 

After replacing values in equation (6), the following new equivalent expression emerges: 

This form of the mathematical model is geometrically very usefbl. The following 
definitions apply here: 

Parameter p modulates the fiequency response of the system 
The term ae +‘ modulates the amplitude response of the system 
Coeficient b is the out of phase parameter 
Coeficient KO is the distance between the abscissa and the axes of the response 

A cycle is equal to 27dp 
curve 

Note that when a < 1 the amplitude decreases over time, when CL > 1 the amplitude of the 
curve increases and when a = 0 the amplitude is a constant. 

Example 9.2.8 Find the equivalent equation, as defined in (7), for the total response of 
the production rate of the Kikuyu pasture field in the previous example. 
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Solution: The state equation was defined as 

y = 1169.8 - 627.8cos(O.6861t) + 575.5sin(0.6861t) 

3 15 

where acospb=627.8, asinpb=575.5 and p=0.6861. Then 

575 5 
cos(0.686 1 b) sin(0.686 1 b) -627.8 

575S and tan(0.6861b) = -.-..-L = -0.9167 -627.8 - a =  

Thus 

- = -85 I .7 -627.8 575.5 
cos[(O.6861)(-1.0814)] sin[(0.6861)( -1.0814)’~ 

a =  

The new expression is now 

y = 1 170 - 852~040.686(t+ 1.08 l)] 

The cycle of the system is here 2d0.6861 = 9.16 months, with 1.08 months out 
of phase. The value 1 170 is the intersection between the abscissa and the axes of the curve 
and 852 is the amplitude. 

By now, the reader should be aware that increasing the order ofthe system makes 
determining the symbolic solution progressively more difficult. Thus, afier developing a 
model for the solution, a numerical procedure using non linear regression may often be 
more practical. 

Summary 

Single input constant coefficients linear models are represented by equations 
reducible to the n order form 
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where x =At) is an input trajectory, y is the system response and b, and c, are constant 
coefficients. 

9.3 MULTIDIMENSIONAL NON COMPARTMENTAL FIRST ORDER LINEAR 
MODELS 

As indicated before, the components of multidimensional non compartmental 
systems may work as transducers, linking inputs and outputs of such components. The 
following multidimensional first order linear model will be addressed in this section: 

= BY+X 
dt 

where Y is a set of state variables, B is a matrix of constant coefficients defining 
relationships between state variables and X is the set of input functions of the system. 

The following is the Laplace transform of the above equation: 

sG(s) - G(0) = B q s )  + F(s) 
(SZ- B)G(s) = G(0) + F(s) 

where (sZ-B) is the characteristic equation of the system, G(s) is the set of Laplace 
transforms corresponding to the set of state variables, F(s) is the Laplace transform of the 
input functions, and G(0) is the set of initial conditions of the system Then, the following 
expressions are the transforms of the free response YA and the forced response YB of the 
system: 

YA = L -"(sz-B)-'G(O)] 
YB = L -"(sz-B)-'F(s)] 

Example 93.1 Body weight and efficiency of milk production in a group of Holstein COWS 

were related by the following set of differential equations6: 

-0.399526 0 238.890 4.17028 

% = [ -0.007892 J y  + [ 4.569 1 + [0.0701 l]' 

6Computed from Miller R H  and N.W. Hooven Jr. 
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where y ,  is body weight in kilograms, y2 is kilograms of milk per Mcal of metabolizable 
energy, t is months after calving and matrix B defines the relations between the state 
variables. Determine the system responses. 

Solution: The following is the Laplace transform of the above equations: 

0.007892 s 

where the characteristic equation of the system is 

+0.3995 0 

.Oil7892 s 
b1-4 = 1 = s(s+0.3995) 

Then, the following is the Laplace transform for body weight: 

238.890 4.170 
g,(O)+-----+------- 

2(0)+-- f-- 

S S 2  

4.569 0.0701 1 (i S S 2  

1 
s(s + 0.3995) 

G,(s) = - 

238.890 4.170 
L,(O)+----- + Y 

S S L  

4.569 0.0701 1 2(0)+-- f-- c S S 2  

1 
s(s + 0.3995) 

G,(s) = - 

- g,(O) 238.890 + 4.170 
~+0.3995 ~(~+0.3995)  s2(s+0.3995) 

where g,(O) = 607 and g,(O) = 1.25 are initial values. The fiee response y for body 
weight is clearly the inverse transform of the first fi-action of the above equation, that is 

A.1 

yAl = 607e-0.400' 

The forced response yel is the inverse of the two remaining fiactions, that is 
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After rearranging terms, the above equation becomes 
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ys, = 10.4t + 572( 1 - e -0.4009 

The total response y, is the sum of the free and forced responses, that is 

y, = 572 + 10.4t + 35. le -0.400' 

The graph of the response functions of body weight is shown in Fig. 9.3.1 
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Figure 9.3.1 

The following is the Laplace transform of efficiency: 

238.890 4.170 
+0.3995 g,(O)+-------+ 

G ( s )  2 = -----I 1 
4.569 0.0701 .~~ 1 s(s+0.3995) $007892 g,(O)+----- + 

&(o) + 4.569 0.0701 1 0.007892 238.890 + 4.170 
= -  -+- 

S S 2  s 3 ~ (~+0.3995)  

Then, the inverse of the terms with the initial values gives the fiee response of efficiency, 
that is 
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yAI = 1 1.98e-0.4"'-10.73 

The inverse of the remaining terms gives the forced response, that is 

yB2 = 0.056346-0.00613t2+ 11.29(1 -e-0.4"? 

Finally, the total response is the sum 

y2 = 0.5577 + 0.05634t +0.02892t + 0.6923e -o.400t 

The reader is encouraged to check the above solutions. 
The graph of the efficiency response functions is shown in Fig. 9.3.2 
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Example 9.3.2 Protein nitrogen and ammonia nitrogen in the m e n  of steers fed a soy 
meal diet, were found related by the following set of differential equations': 

'Computed fiom Davis, G.V.and O.T. Stallcup 
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dY - -1.0249 0.1888]* + 1 0 ] - 11.0911] 1 

dr - 1-1.1692 -0.6931 132.4006 1.6694 

where y ,  is protein nitrogen and y ,  is ammonia nitrogen in Mg/IOO M1 of ruminal fluid, 
t is hours after feeding and matrix B defines the relations between the state variables. 
Determine the response functions of the system. 

Solution: The following is the Laplace transform of the system: 

-0.18881 [ 0 ]i - (1.0911] - 1 
1.1692 s+0.6931 G(s) = c(o) + 132.4006 s 1.6694 s2  

where G(0) is initial values, such that g,(O) = 15 and g2(0) = 127. The characteristic 
equation of the system is 

IsZ - BI = S *  + 1.7180s + 0.931 1 = (S +A,)(s +A2) 
= [s t(0.8590 -0.4396i)][s +(0.8590 +0.4396i)] 

Then A = a T pi  = 0.8590 T 0.43901’. 
The following transform expression defines the fiee response of the system: 

-0.18881-11 15 

1.1692 s+0.6931 127 
G,(s) = 

Then, the following determinant gives the fiee response for protein nitrogen: 

G,&) = 1 115 -0.l8881 - 15s+34.3741 
(s+AI)(s+A2) 127 s+0.693 1 (s+A,)(s+A,) 

The solution of the above transform is 
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where 2 = 01 T pi. Then, the solution may be written as 

yA, = 2 [ ( 1 5 2 ,  -34.3741)e-(a-p')t - (15A, -34.3741)~-(~+~')~] 
21 4 2  

21-12 

-at 

=-[(152, -34.3741)ep" - (152, - 34.374l)e-B"I 

-at 
-~ - [(15A1 -34.3741)(cospt-isinpt) - (15A2 - 34.3741)(cospt+isinpt)] 

A ,  -2, 

After rearranging terms and replacing the 01, p and A values, the protein f i e  response 
becomes 

yAI = e -0.s5911 5cos(0.440t) + 48.88sin(0.440f)] 

The following determinant gives the fiee response of the ammonia nitrogen: 

The inverse of the above transform is 

The reader is encouraged to check that the final form of the ammonia fiee response is 

yA2 = e -0~859~127ws(0.440f) + 8.03sin(0.440t)] 
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Then, the following expression gives the free response of the system: 
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15 48.88 cos(0.440t) -o.859, 

yA = I 127 8.03 II sin(0.440t) 1 
The free response of the system is shown in Fig. 9.3.3 
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Figure 9.3.3 

The following Laplace transform represents the forced response of the system: 

-O.I888/i'# 0 ]i - 11.0911] - 1 

1.1692 ~+0.6931 132.4006 s 1.6694 s2  
G,W = 

The following determinant gives the corresponding forced response for protein nitrogen: 

GB'(s) = 1 -0.18881 + (-l.0911h2 -0.18881 

(s+A1)(s+A2) s+0.6931 -1.6694/s2 ~+0.6931 

1 1 

S 2  

After a partial fi-actions expansion, the above equation becomes 
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The following is the inverse of this equation: 

a:(23.906 la, + 1.0714)e - a:(23.9061 a,+ 1.0714)e -'* 
= 27.7983 - 1.1507t + 

31:3L:@-a2) 

where A = a+Pi. Thus 

By using the Euler's theorem, the above equation becomes 

e -011 k~(cospr-isinpt)(23.906 1 a, + 1.071 4) 

a;a:(ai -.a2) ! - A:(cospr +isin@)(23.9061 A2+ 1.071 4) 
= 27.7983 - 1.1507 + 

After rearranging terms and replacing the a, p and A values, the final expression for the 
forced response of protein nitrogen is 

yBI = 27.80 - 1 . 1 9  - e-859'[27.80~~~(0.440t) + 51.7Osin(O.44Ot)] 

The following Laplace expression represents the forced response for ammonia 
nitrogen: 
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- 1 2 1  

- 
4 4 2  

After a partial fractions expansion, the inverse of the above transform is the state 
equation of the forced response for ammonia nitrogen: 

134.02801, 
132.4006 - 

1 1 1 2  

-1 I 
-Al( - e  - A 2 f ] +  134.02801 1 -  ‘ - * l e  

1 1 1 2  1 2 - 1 1  
yB2 

1 -e -‘I‘ 

4 1 2  -1,) A:@, -A2) 

-at 

1 1 - 1 2  

By rearranging terms, the forced response becomes 

1 
134.02801, 0.43531: 

(cospf+isinpt) 132.4006 -. 
113L2 a;a: 

+ I. 134.02801, 0.4353a; 

4% a:1: 

ys2 = 144.8085 - 0.4675t - ___ -I1‘ 132.4006 
4 4 2  

I I+ 1 34.02801, 0.43531: 

1 1 1 2  1:1; 

0.43531:] 

where 1 = a T pi. As discussed in Chapter 4.2, by using the Euler’s theorem, the forced 
response may be Written as 
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After rearranging terms and replacing the a, p and A values, the following is the final 
form of the forced response of ammonia nitrogen: 

yB2 = 144.8 -0.468t -e  -0~859'[144.8cos(0.440t) - 19.3sin(0.440t)] 

Then, the following expression defines the forced response of the system: 

Y* = 
27.801 - t[ l . l S l ]  - -o.119f[ 27.80 51.70]~(0.44Ot)] 

144.81 0.468 144.81 -19.28 sin(O.440t) 

The forced response of the system is shown in Fig. 9.3.4. 

1601 

-----Protein 
-.-.-- Ammonia 

The following expression is the set of state equations for the total response of the system: 

Y =  
-27.81 - - e-,.859f[ 12.80 2.82 ]p(O.44Ot)] 

144.8 17.81 -27.32 sin(0.440t) 

As shown below, testing that the above solution is correct is possible by 
differentiating the state equations and equating them with the set of differential equations 
of the system. Thus 
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-1.0249 0.1889lf + [ 0 1 - 1.0911] t 

- 1.1692 -0.693 1 132.4006 1.6694 

- 12.2326 3.2052 

-3.2886 31.2946 

- 1.1507 

= 1-0.4675j + -0.859f[ 

Then 

-1.0249 0.188 

Y = [  - 1.1692 -0.693 1 I 
- 1.1507 1.091 1 [ -132.86813 + [ 1.6694/ + 

-12.2326 3.2052 

-3.2886 3 1.2946 
-0.8591 

It can be easily shown that this expression is the set of state equations of the system: 

Y =  27.81 - [ l . l 51 ]~  - -o.859,[ 12.80 2.82 ][W.(O.MOt)] 

144.8 0.468 17.81 -27.32 sin(O.44Ot) 

The following equations represents the system, after a fine tunning by non linear 
regression, when 
change: 

Y . 1  27.80 

144.81 

mly those coefficients related to initial conditions were allowed to 

14.90-27.80 68.47-5 1.70 

128.1 1-144.81 52.80+19.28 

Clearly, the new fiee response is here 

y = e-o.859[ 14.90 68.47 ][ cos0.440t ] 
128. I 1  52.80 sin0.440t A 

The forced response was left the same. The graph of the total response of the system, as 
defined by the new equations, is shown in Fig. 9.3.5. 



9.4:Compartmental First Order Linear Models 327 
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Figure 9.3.5 

Summary 

First order multidimensional linear models are represented by differential 
equations reducible to the form dYldt = A Y  + X ,  where Y is a set of state variables, A is a 
matrix of constant coefficients determining the relations between variables and X is the 
set of input functions of the system. 

9.4 COMPARTMENTAL FIRST ORDER LINEAR MODELS 

As disclosed before, compartmental systems work as communicating chambers, 
among which a substance is considered to move. Compartmental first order linear models 
are represented by differential equations reducible to the form 

= ( A + B ) Y  + x 
dt 

where Y is the set of state variables, A is a matrix of constant coefficients defining the 
exchange of a substance between compartments, B is a matrix defining the system output 
to the outside environment and X is the set of input functions of the system. The sum of 
the coefficients of each column of matrix A should always ad up to zero and B is a 
diagonal matrix. The model represents a closed system if B is a null matrix, otherwise the 
system is open. 

The following is the Laplace transform of the system: 
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where [sl- ( A f B ) ]  is the characteristic equation of the system, G(s) is the set of Laplace 
transforms corresponding to the set of state variables, G(0) is the set of initial conditions 
and F(s) is the set of transforms of the input functions. 

Example 9.4.1 The movement of DDT &om plant to soil is 25% per month, f?om soil to 
plant is 2% and carried out with ground water is 5%. Define the set of state equations 
representing the system. 

Solution: The movement of DDT between compartments is shown in Fig.9.4.1 

Figure 9.4.1 

The following is the corresponding set of differential equations: 

-0.25 0.02 0 
$ = [ 0.25 -0.04 " -0.05 

-0.25 0.02 =I 0.25 -0.07 I y  
Y 

for Y = (yp,ys), where y, is the plant compartment and yh is the soil compartment. The 
state changes are determined by the exchange rates in matrix A and by the output rates 
leaving the system in matrix B. There are no external inputs to the system. Coefficients 
with positive signs are input rates and coefficients with negative signs are output rates. 
Note that two differential equations represent the system, because it has two 
compartments. Note also that the sum of the coefficients of each column of matrix A ad 
up to zero. The system is open because matrix B is not a null matrix. 

The following is the Laplace transform of the system differential equations: 
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-0.25 ~+0.07 

where G(0) = (0.6,0.4) are initial values. 
The following is the characteristic equation of the system: 

= (S + 0.0455)(s + 0.2745) 

Then, the Laplace transforms for the plant and soil compartments are expressed as 
follows: 

1 0.6(s+0.0833) 
Gp(s) = ( s + 0 . 0 4 5 5 ) ( ~ ~ ~ ~ ~ ~  ::j = (;+0.045%+0.2745) 

and 

1 +0.25 g&O) 0.4(s+0.6250) 
GF(S) = (s+o.0455)(~+0.2745) -2745) 

The inverse of the above transforms are the state equations of the system: 

[(0.0833 -0.0455)e -0.04551 - (0.0833 -0.2745)e -0.27451] 
0.2745 -0.0455 

Y, = 

and 

0*4 [0.6250 -0.0455)e -'.04ss' - (0.6250 -0.2745)e -0,274sf] ''' = 0.2745 -0.0455 
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The system response is shown in Fig. 9.4.2. 
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Figure 9.4.2 

Afier rearranging the above terms, the final expression for the state equations becomes 

Example 9.4.2 A patient with an immunodeficiency problem was dosed with 9.9 grams 
of gamma globulin intravenously. The following equation describes the blood 
concentration of the patient Ig globulin': 

wherey is the IgG concentration in mg/dl and t is time in days. Determine the IgG 
response h c t i o n s  of the system. 

Solution: The following is the differential equation of the system: 

8Vohnout, K. Unpublished 
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+ 0.0386~ = 8.415 
dt 

The corresponding Laplace transform is given by the expression 

do) + 8.415 
G(s) = s+0.0386 s(s+0.386) 

where the first fkaction is related to the fkee response, the second fi-action to the forced 
response and g(0) = 463 is the initial value. Then the state response hc t ions  are as 
follows: 

The above fbnctions are shown in Fig. 9.4.3. 

Compartmental analysis makes it possible determining not just exchange rates, 
but also distribution volumes and mass ofthe system compartments. In the above example, 
the distribution volume is given by the relationship V =  D/g(O), where Vis the distribution 
volume in deciliters, D is the gamma globulin dose in milligrams and g(0) is the blood 
IgG at time zero. Then 
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9900 V = - = 21.4 dl 
463 

By knowing the distribution volume of the marker, it is possible to convert the state 
equation fiom concentration of the marker to amount of the marker, such that y ,  = y V .  
Then 

y, = 4661 + 5239e-0.0386' 

where y ,  is now milligrams of IgG. The corresponding differential equation is here 

_ _ -  dYw - 180 - 0 . 0 3 8 6 ~ ~  
dt 

where 180 is an input and - 0 . 0 3 8 6 ~ ~  is the output. The system is represented in Fig. 
9.4.4 

mglday mglda ylmg 

Figure 9.4.4 

Compartmental modeling and analysis is used mainly in tracer kinetic studies 
and a vast literature is available on the subject. The following definitions apply: 

y ,  is specific activity or the tracer per unit of volume in compartment i 
v, is distribution volume of the tracer in compartment i 
rr is total amount of the tracer in compartment i, r, = vly, 
K,, is exchange rate per unit of volume between compartments i and j 
C,, is exchange rate between compartments i and j, C,, = v,K,, 
A, are roots of the ith degree characteristic equation of the system 

A model of the I'3'-thyroxine kinetics is presented in the next example. 
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Example 9.4.3 As shown in the following diagram, the kinetics of I'31-thyroxine is 
modeled as a three-compartment system. Solve the system for the distribution volumes of 
the trace in each compartment and for tracer exchange rates between compartments. 

113' Dose 

1 = ThyroidGIand 
2 = Plasma 
3 = Extravascular Space 

Figure 9.4.5 

Solution: The following is the set of differential equations of the system: 

for R = ( 5 ,  r, ,r3) , where 5 ,  r, and r3 are the amount of the tracer in compartment 1, 

2 and 3 and are the rate constants related to the amount ofthe tracer. Note that the urine 
output Km is included in matrix A. The above quation should be converted to specific 
activity, that is Y = R/K because specific activity is the variable measured by sampling the 
plasma compartment 2. Then 

Y 
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s +Cl2/V, -c21/vI 0 

- c I 2 / v 2  s+(C2, +c23+c20)/v2 -C3,lV2 

where Cg = viKij are now the new rate constants related to the specific activity of the 
tracer. By rearranging terms, the differential system becomes 

Gys) = G(0) 

The following is the corresponding Laplace transform of the above system of 
equations: 

where G(0) is the set of the initial specific activities in the three compartments of the 
system. The characteristic equation of the system is here 

The expansion of this determinant results in the following expression: 

This equation is equivalent to 
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A =  

B =  

C =  

'12 '2,+'23+'20 '32 -+ +- = I  + I  + I  
1 2 3  

V1 v2 v3 

'12('23 "20) '12'32 c32(c21+c20) = I,A2 + A ~ A ~  + q, +-+ 
VlV2 '1'3 '2'3 

c , 2 c 2 0 c 3 2  = A,a23c3 
'1'2'3 

Note that the Ii3' dosing and blood sampling takes place at the plasma 
compartment 2. The Laplace expression for compartment 2 is 

Then 

E F + - + -  - D  - _ _ _  
S + I ,  s+a2 s+a3 

The state equation for the sampling compartment 2 is the inverse of the above transform: 
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where 

9: Deterministic Models of Continuous Systems 

Note that there are eight unknowns in the system, C,,, C21, C23, C,?, C,, and 
vl, v2, v3 .  The C2, rate is determined by collecting urine samples and the v2 distribution 
volume is determined d om the relationship v2 = I I3’D0se /g2(0). The D, E, F and the A 
values are determined fiom the nonlinear curve fitting process of the state equation 
corresponding to the sampling compartment. The remaining six unknowns are determined 
fiom the six equations, namely A, B, C, D, E, and F. If the unknowns are solved, the 
Laplace transforms and the state equations for the remaining compartments are easily 
defined. The following are the corresponding Laplace expressions for compartment 1 and 
compartment 3 : 

and 

Summary 

Compartmental first order linear models are represented by differential equations 
reducible to the form dYldt = (A +B)Y +X, where Y is the set of state variables, A is a 
matrix of constant coefficients determining exchange rates between compartments, B is 
a matrix defining the system outputs to the outside environment andXis the set of input 
functions of the system. The sum of the Coefficients of each column of matrix A should 
always add up to zero. The model represents a cIosed system if B is a null matrix, 
otherwise the system is open. 
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t 

Y 

9.5 FITTING MODELS TO DATA OF CONTINUOUS SYSTEMS 

3 6 12 19 26 33 45 54 62 

427 420 374 340 301 298 241 238 259 

Data of continuous systems are seldom recorded continuously. Most fi-equently, 
the data is recorded at regular or at irregular intervals. As disclosed in Chapter 3, always 
dt = At. Conversely, except for the particular case of the straight line, dy f Ay . 
However, if At is small enough, dy could be an acceptable approximation to the increment 
Ay of the function. Therefore, the same procedure for fitting models to discrete data is 
feasible for continuous systems, provided the data is collected and organized in a discrete 
arrangement. The procedure was presented in the previous chapter and is now illustrated 
with continuous systems in the examples that follow. The procedure implies the 
discretization ofthe continuous system that was already discretized by the data collection 
method. 

where t is days and y is the IgG concentration in mg/dl. Define an appropriate linear 
model for the data. 

Solution: The following is an adjusted difference table for the above data: 

Table 9.5.1 

t Y Ay AylAt A’y A2ylAtZ 

3 427 -7 -2.333 -39 -4.333 

6 420 -46 -7.667 12 0.333 

12 3 74 -34 -4.857 -5 -0.102 

19 340 -39 -5.571 36 0.745 

26 301 -3 -0.429 -54 -1.102 

33 298 -57 -4.750 54 0.375 

45 24 1 -3 -0.333 24 0.296 

54 23 8 21 2.625 

62 259 
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The following is the second order equation, obtained by linear regression from 
this table: 

+ 0.6764-.- AY + 0.0525 = 17.1574 - 0.1 1131 
A t 2  At 

The statistical evaluation of this equation is shown in the next table. The coeficient of 
determination and the standard error are here R2 = 0.916 and s = 0.725. Note that the 
coefficient related to the time variable is not significant. 

Table 9.5.2 

Variable Coefficient Standard Wt" 

Error 

AY 0.6764 0.1364 4.960 

Y 0.0522 0.0275 1.898 

t -0.1113 0.1200 -0.927 

Constant 17.1575 11.7113 1.465 

As shown below, a new expression, with the non significant coefficient deleted, greatly 
improves the stability of the other coefficients: 

+ 0.643 1 -- AY + 0.0275 = 6.4009 
At At 

The statistics ofthis new equation, with R2 = 0.892 and s = 0.713, is shown in the next 
table: 

Table 9.5.3 

Variable Coefficient Standard "t" 

Error 

AY 0.643 1 0.1292 4.976 

Y 0.0272 0.0052 5.227 

Constant 6.40 10 1.5808 4.049 
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The following is the Laplace expression of the new equations: 

g(O)(s+O.643 1) +g’(O) + 6.4010 
= (s + 0.0456)(s + 0.5 976) s(s + 0.0456)(s + 0.5976) 

where the g(0) and g’(0) are initial conditions. Note that the zero time values are not 
available ftom the data. These initial values were guessed fkom a graph of the data as 
g(0)=460 and g’(0)=13. After solving the above transform, rearranging terms and fine 
tunning the total response by non linear regression, the following are the resulting system 
responses: 

where yA, is the &ee response, ye is the forced response and yt is the total response of 
the system. The “goodness“ of fit is shown in Fig. 9.5.1. Because the initial values and the 
discretization procedure a f f i  the state equations, some fine tunning by non linear curve 
fitting methods is ftequently needed. Non linear curve fitting methods were discussed in 
Chapter 5. 

Example 9.5.2 The following is the data corresponding to Example 9.3.2, related to the 
nitrogen &actions in the lumen of steers fed a soy-meal diet: 
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Table 9.5.4 

t y1 Y2 t Y1 y2 

0 15.0 127.0 7 19.1 140.5 

1 24.5 154.0 8 18.2 142.0 

2 26.0 152.0 9 17.1 141.5 

3 26.5 142.0 10 16.0 141.0 

4 24.3 144.0 11 15.5 140.5 

5 21.5 140.0 12 15.0 140.0 

6 20.0 139.5 

where y ,  is protein nitrogen, y ,  is ammonia nitrogen in Mg/lOO M1 of ruminal fluid and 
t is days. Determine the differential equations of the system. 

Solution: The following is the adjusted difference table corresponding to the above data: 

Table 9.5.5 

t Y1 AYl Yz AY2 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

15.0 9.5 

24.5 1.5 

26.0 0.5 

26.5 -2.2 

24.3 -2.8 

21.5 -1.5 

20.0 -0.9 

19.1 -0.9 

18.2 -1.1 

17.1 -1.1 

16.0 -0.5 

15.5 -0.5 

15.0 

127.0 

154.0 

152.0 

142.0 

144.0 

140.0 

139.0 

140.5 

142.0 

141.5 

141.0 

140.5 

140.0 

27.0 

-2.0 

- 10.0 

2.0 

-4.0 

-1.0 

1.5 

1.5 

-0.5 

-0.5 

-0.5 

-0.5 
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The set of equations obtained by linear regression from this difference table is as 
follows: 

AY - -0.9197 0.0964JY + [ 10.74301 - [-1.0445] t 

% - [-1.1692 -0.6931 132.4006 1.6694 

The statistical evaluation of the regression coefficients is shown in Table 9.5.6. 

Table 9.5.6 

Variable Coefficient Standard "t" 
Error 

Y1 -0.9 197 

-1.1692 

YZ 0.0964 

0.693 1 

t - 1.0445 

- I  .6694 

Constant 10.7430 

1 3 2.4006 

0.1116 

0.3341 

0.0571 

0.1710 

0.0955 

0.2858 

6.3745 

19.0786 

-8.238 

-3.499 

1.687 

-4.054 

- 10.938 

-5.841 

1.685 

6.940 

The above set of equations is quite acceptable. The coeficients of determination are 
R = 0.953 for protein nitrogen and R = 0.944 for ammonianitrogen. Standard errors are 
s = 0.813 and s = 2.432 for each of the two variables. However, as will be shown, the 
stability of the coefficients is improved if the non significant coefficient 10.7430 is 
deleted. The new set of equations is the one defined in Example 9.3.2: 

-1.0249 0.1888 ]I + [ 0 ] - 11.0911] 
t 

-1.1692 -0.6931 132.4006 1.6694 

The set of state equations corresponding to the above difference equations is 
shown below and the corresponding graph is shown in Fig. 9.5.2: 
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-- rn Data 

Protein 

A Data 
20l.'r ** **t  * )*-I _._.... Ammonia 

f 

= [ 27.81 - [l.151]t - e-,.859,[12.80 2.82 ] p ( O . 4 4 O t ) ]  

144.8 0.468 17.81 -27.32 sin(0.440t) 

The statistics for these equations is shown in Table 9.5.7: 

Table 9.5.7 

Variable Coefficient Standard "t" 
Error 

Y1 -1.0249 0.1016 -1 0.089 

-1.1692 0.3341 -3.499 

YZ 0.1888 0.0175 10.766 

0.693 1 0.1710 -4.054 

t -1.091 1 0.1032 -10.876 

- 1.6694 0.2858 -5.841 

Constant 10.7430 6.3745 1.685 
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Note that the response curves do not match the data very accurately at some 
critical points. Therefore, a fine tuning of the state equations by a non linear regression 
procedure is needed. The following equation represents the system when only those 
coeflicients related to the initial conditions were allowed to change: 

12.90 -16.77 Ws0.440t 27*80 - -0.859 

= ll44.8d- [0.46Sl 116.70 -7zw/[ sinO.44Or] 

As shown in Fig. 9.5.3, the new set of state equations greatly reduced the mismatch: 

0 ;  I , I 1 I I 

Hours ARer Feeding 
Figure 9.5.3 

0 2 4 6 8 1 0 1 2  

Summary 

The following procedure is recommended for fitting linear models to the data of 
continuous systems: 

Express the data as a difference table 
Use a linear regression procedure to determine the most appropriate model 
Define the set of differential equation of the system 
Determine the state equations 
Use a non linear curve fitting procedure for fine tuning the state equations 



I 0  
EXPERIMENTAL TESTS FOR A 
SYSTEM ANALYSIS PROBLEM 

The purpose of experimental tests in system analysis is to generate an abstract 
model of the system. Before the experimental tests take place, the model of the system 
exists only as a hypothesis. Depending on the statistical outcomes of the experiments, the 
hypothesis may then be accepted or rejected. 

This chapter is related to procedures for modeling and selecting the working 
hypotheses, in a manner consistent with the concept of a system, as defined in Chapter 1 .  
It is also related with procedures for matching experimental treatments to the 
mathematical model of the hypothesis. 

10.1 THE EXPERIMENTAL HYPOTHESIS 

A hypothesis is a speculation or conjecture about something that is not proven. 
Therefore, an experimental hypothesis is, in agricultural research, a speculation about a 
particular population related to agriculture. The researcher has often in mind a definite 
notion about the population. Then, the purpose of experimentation is to get evidence 
concerning such belief. Specifically, the following definition for an experimental 
hypothesis applies in system analysis: 

Definition 10.1.1 An experimental hypothesis is a pre experimental proposal of 
mathematical models for the response functions of the system. 

Statement of the Research Problem 

A research problem may be defined as a set of questions on the cause-effect 
relationships among variables. When no acceptable answers to the questions are known 
to exist, such questions determine the existence of unknown quantities. Finding values of 
the unknowns may require experimental tests. 

A question may be defined as a hnction assigning a set of unknowns to a set of 
cause-effect relationships. The domain of the question is the set of all factors affecting the 
system. It includes factors related and factors not related to the research problem. The 
codomain of the question is the set of all possible acceptable solutions to the unknowns. 
It includes only solutions related to the research problem. The main constraints of the 
solutions are the mathematical model of the hypothesis, the experimental design and the 



10.1 :The Experimental Hypothesis 

quality of experimental data. 

345 

c-- - - - 

' Causal Factors 

Questions ' Cause/ 1 

Unknowns -- - -- - h Effect ,I 

__ __ ~ ~- - I 

r - - - -  -MathematicalModel , 
I-Experimental Designr ~ -y Solutions , 
' -Quality of Data _ -  - 

Figure 10. I. I 

Example 10.1.1 An experiment is required to evaluate the effects of nitrogen fertilization 
on the forage yield, as dry matter and as crude protein, of African Star grass and guinea 
grass pastures. Define the research problem. 

The question is here: "How is nitrogen fertilization affecting the dry matter and 
crude protein yields of Star grass and Guinea grass?" Pasture yield is here a function of 
the grass species and of nitrogen fertilization. Note that grass species and nitrogen 
fertilization are two different types of variables. The grass species, s 
Star grass and guinea grass, are component variables with no interface relationships. The 
reader i s  reminded that component variables were defined in Chapter 6 as components of 
a conjunctive coupled system. The different levels of nitrogen fertilization are input 
variables. Thus, the following are the problem related factors that may affect the system: 

Component variables - Grass species 
Input variables - Nitrogen fertilization 

The above factors may affect the following variables: 

State variables 
Output variables - Dry matter yield and crude protein yield 

- Available pasture and crude protein content 
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Unknowns of the research problem: 

Available pasture as a function of the grass species 
Crude protein content as a function of the grass species 
Available pasture as a function of nitrogen fertilization 
Crude protein content as a hc t ion  of nitrogen fertilization 
Dry matter yield as a hnction of available pasture 
Dry matter yield as a function of the crude protein content 
Crude protein yield as a function of available pasture 
Crude protein yield as a hnction of crude protein content 

As shown above, the component variables generate some unknowns and the input 
variables within components generate others. 

Domain - {{Grass species, Nitrogen fertilization},{All other factors affecting the 
system}} 

Codomain - {Solutions} 

Note that, before the experiment takes place, the set of solutions is only a set of 
hypotheses. Depending on the outcomes of the experiment, a hypothesis may then be 
accepted to become an actual solution or may be rejected. 

The graphic representation of the research problem, defined as a conjunctive 
coupled system, is shown in Fig. 10.1.2. 

Experiment 

Available Pastur 
and  Crude 

k Guinea Grass 
Available Pastur 

Forage and 
Proteinyiet c? 

-f, 
~ [Protein Content 1 1 

Figure 10.1.2 

The statement of the research problem should be a simplified image of the system. In the 
above example, the system has two component systems, called Star grass and Guinea 
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grass. Each component accepts nitrogen fertilization as an input. Nitrogen fertilization 
affects the states of the system, namely available pasture and crude protein content. The 
system states affect the output, namely dry matter and protein yields. The complete picture 
ofthe system should include the proposed mathematical models of the response functions. 

The problem related factors, namely grass species and nitrogen fatilization in 
the example, determine the experimental treatments. All other possible factors affecting 
the system would determine the type of experimental design needed for managing the 
experimental error. 

' Problem j 
Factors , 

, 
- _YIP__ - 

I Design I 
I , Experimental 

Figure 10.1.3 

The statement of the research problem is the foundation for the formal definition of the 
experiment as a system, as was explained in Chapter 6. It is also the foundation for the 
mathematical models of experimental hypotheses. 

The Null Hypothesis 

As indicated before, component variables generate some unknowns in the 
statement of the problem and input variables generate others. Thus, the notion of 
experimental hypotheses should include both criteria, the hypothesis on the effects of 
component variables and the hypothesis related to the state transition function or the 
output function. 

The hdamental hypothesis in experimental statistics is the statement that there 
are no differences between hypothetical parameters or figures in the experimental sample 
and the corresponding parameters or figures in the population. This statement is called 
the null hypothesis. Thus, the null hypothesis may be defined as follows: 

Definition 10.1.2 A null hypothesis is a statement that there are no differences between 
hypothetical parameters in a sample and the corresponding parameters in the population 
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Depending on the experimental outcomes, the null hypothesis may be accepted 
or rejected. The most common parameters tested by a null hypothesis are sample means 
or a particular ratio. Testing differences among component systems only by their sample 
means can be misleading. In system analysis, averages or ratios are not sufficient criteria 
for testing a hypothesis. System analysis requires testing the coefficients of the 
mathematical models of the response functions of the system. Each coefficient of the 
mathematical model should be evaluated by a "t" test. If k represents a real coefficient of 
the state transition function and k,, represents the corresponding hypothetical value, then 

The null hypothesis is here k - k,, = 0, where Sk is the standard error associated with 
parameter k. 

If the system has more than one component, k, represents a coefficient of the 
state transition function ofthe i component and k, represents the corresponding coefficient 
ofthe state transition function of thej component, for i = 1,2, ..., n andj = 1,2, ..., n, then 

The null hypothesis is now k, - kJ = 0, where Sc, and S are the standard errors associated 
with parameters k, and kJ . k, 
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Example 10.1.2 An experiment was designed to study how starch in the diet of steers 
affects the digestibility of roughage. The experimental roughage were stems ofthe banana 
plant, sugarcane leafs and African Star grass hay. Different amounts of green bananas 
provided the starch. In vivo digestibility procedures were carried out with fistulated steers. 
The following differential equation was proposed as experimental hypothesis: 

where y is percent digestibility of crude protein, t is hours and x is percent of dried 
bananas in the diet. Define the null hypothesis for the constant coefficients and for 
differences between roughages. 

Solution: Each roughage is a component of the experiment as a system and must have its 
own differential equation and the corresponding constant coefficients should be compared 
by a "t" test between roughages. Then, the following is the set of null hypotheses: 

Table 10.1.1 

Coefficient Banana Stems Sugarcane Leafs Star grass Hay 

64.25 54.35 64.33 

8.92 5.74 12.41 

-0.06196 -0.03979 -0.04175 

0.00634 0.00992 0.00872 

-0.01312 -0.0 10 10 -0.01009 

0.00298 0.00666 0.00574 

The a, b and c coefficients and the corresponding errors are displayed in 
Table1 0.1.1 '. The reader may wish to check if the differences are significant, with 20 

'Computed from R.I. Medina-Certad 
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degrees of fieedom for within roughages and 40 for between roughages. 

Summary 

A research problem may be defined as a set of questions assigning unknowns to 
the cause-effect relationships among variables. The domain of the question is the set of 
all factors affecting the system. The codomain is the set of acceptable solutions to the 
unknowns, as defined in the problem. In system analysis, solutions are expressed as 
mathematical models of the response functions of the system. Before the experiment takes 
place, the set of solutions is only a set of hypotheses, defined as proposals of mathematical 
models of the response functions. Testing these models requires testing the coefficients 
of the mathematical models using the null hypothesis criteria. 

10.2 MATHEMATICAL MODELS OF THE RESPONSE FUNCTIONS 

The agricultural scientist has often some notion or image about the relationships 
between variables in the population that he is dealing with. Mathematical models of the 
experimental hypothesis must reflect this image. Several choices of mathematical models 
are often available. 

Selecting the Model 

The existence of some patterns of the expected response functions are usehl 
indicators in determining an appropriate mathematical model: 

Maximum and minimum values 
Asymptotic values 
Inflection points 
Initial values 

However, several empirical models may represent a particular response curve, sometimes 
sharing all of the above indicators. Then, inspecting additional properties of the 
mathematical model may be necessary. The following example illustrates this statement. 

Example 10.2.1 Determine the most appropriate mathematical model for an experimental 
hypothesis of the growth curve of steers. 

Solution: A growth model is represented by an S shaped curve, meaning that the curve 
has an inflection point and the rate equation has a maximum. In this example, the curve 
is expected to have also an asymptotic value. Many models would satisfy these 
requirements and some are listed in Table 10.2.1. Except for the polynomial, all these 
models conform to curves having an inflection point and an asymptotic value representing 
the mature weight of the steers. The task is now selecting the most appropriate 
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experimental hypothesis. 
Model 1 in the list is a third degree polynomial. As such, this polynomial has a 

maximum and a minimum, a feature that is inconsistent with growth curves. Note that 
using polynomial models is always an option and a temptation. Polynomials are also 
called "the poor man's equations," because they do not require too much pre experimental 
thinking and, depending on the degree of the polynomial, they may fit all kind of data. 
Sometimes, these convenient features may just be what the agricultural scientist needs, 
especially if the available data corresponds to only a segment of the response curve. The 
major inconvenience is that finding statistical significance and a geometrical meaning to 
the constant coefficients of polynomials is not always feasible. In addition, minor 
extrapolations of conclusions may be very risky. 

Table 10.2.1 

State Equation Differential Equation Inflection Point 

Finding a geometrical meaning for the constant coefficients of themathematical 
model is important for determining the appropriate hypothesis and for determining the 
appropriate experimental treatments. This statement will be discussed later. 

Model 2 is the well known and widely used logistic growth equation. The 
ordinate of the inflection point of this equation is exactly half the asymptotic value Ila. 
Assuming that the inflection point is determined only by the mature weight of the steers 
is a severe constraint for the data. Physiological facts do not support such assumptions. 
In addition, model 2 is represented by a non linear differential equation, which is an 
inconvenience. 

Model 3, known as the Gompertz equation, and model 4 are better choices. Thus, 
the selection process is confined now to only model 3 and model 4. Note that model 3 is 
represented by a homogeneous differential equation. This means that the system has only 
the free response due to initial conditions. This feature ofmodel 3 gives to model 4 some 
advantage. Data support this advantage. The following are the state equations for both 
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models, using actual data from birth to seven years of age2. The third degree polynomial 
is also included for comparison. 

,Y = 18.67 +293.48t -38.32t2 + 1.58t’ 
= 45 4e2.55(1-e~U9”~0.913 

y = 749 - e-0.948‘(722 + 560t) 

where y is weight in kilos and t is age in years. 
The coefficient of determination for the polynomial is a shining R2 = 0.998 with 

a standard deviation of Sy,, = 17.02. However, the intercept 18.67 is not statistically 
significant. In addition, note that the maximum and the minimum have as coordinates 
(6.23, 742) and (9.94, 701). Thus, the inflection point is outside the segment 
corresponding to the seven years of data. A second degree polynomial would be a txtter 
choice. Clearly, a polynomial does not represent a growth curve. 

The statistics R2 = 0.998 and S = 13.50confirm the accuracy of model 3. 
Additional statistics are shown in the followrng table: y ! 

Table 10.2.2 

Coefficient Error ”t” 

45.37 9.06 5.01 

2.548 0.307 8.30 

0.9125 0.05 1 1 17.86 

A smaller standard deviation of Sy., = 7.54 and a better stability of the constant 
coefficients prove the advantage of model 4, as shown in Table 10.2.3. Note that model 
3 overestimates the birth weight of the steers by roughly 50%. The estimate of birth 
weight by model 3 is 45.4 Kg, as compared with 27 Kg in model 4, a value within 
expectations. Both models remain good choices. As shown in Fig. 10.2.1, both curves 
virtually overlap. 

2Vohnout, K. Unpublished 
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Table 10.2.3 

"t" Coefficient Error 

749.33 6.03 124.27 

0.948 1 0.0449 21.12 

721.70 9.83 73.42 

559.64 64.73 8.65 

I 

Geometric Interpretation of the Expected Response 

Some common response curves found in agricultural systems include diminishing 
returns, positive and negative growth, rate equations, periodic functions, among others. 
However, as new variables are added to the problem, mathematical modeling may be more 
complex than these basic functions. Some geometrical analysis of the expected response 
curves of the system may help with the task of modeling and may also help avoiding the 
dependence on polynomials. The following examples illustrate this statement. 

Example 10.2.2 Determine an appropriate mathematical model for the response curve of 
pasture production, as affected by nitrogen fertilization. 

Solution: Pasture production displays a cyclical response due to climatic conditions. Thus, 
an appropriate option is a second order periodic linear model, with a state equation of the 
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form 
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y = a + bea'cos[P(t - c)] 

where y is pasture production and t is time. 

coefficients should be first determined. The following definitions apply to this model: 

Coefficient a is the distance between the abscissa and the axes of the response curve 
Expression be UJ modulates the amplitude response 
Coefficient P modulates the fkequency response, such that a cycle is equal to 2nlP 
Coefficient c is an out-of-phase parameter 

If the above model is selected, the geometrical meaning of the five constant 

The above geometrical definitions are shown in Fig. 10.2.2: 

- 

Y 

Time 
Figure 10.2.2 

Note that when a < 0 the amplitude decreases over time, when a > 0 the 
amplitude increases and when a = 0 the amplitude is only determined by coeEcient b. 

For determining which coefficients are most likely affected by nitrogen 
fertilization, is helpful to look at the input term h,h,a in the system differential equation 

d2y + (a, 4 + I, 19 = a,a,a 
dt 

where A = a* i p .  Then, the input term becomes (a2 + P2)a. As shown, the coefficients 
related to the input term in the differential equation are a, a and p. 
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Nitrogen fertilization would most likely affect coefficient a, the distance between 
the time abscissa and the axes of the response curve, because a represents the average 
pasture production. Nitrogen may also affect coefficient a, because a changes the 
amplitude of the response curve over the time variable. It is unlikely that nitrogen 
fertilization would affect the frequency coefficient p. The proposed model is shown in Fig. 
10.2.2 for an a < 0 value. 

The task is now to determine appropriate equations for the presumable nitrogen 
dependent coefficients a and a. If these coefficients are no longer considered constants, 
they should be renamed as a = I( E U and a = v E V.  It is safe to assume that nitrogen would 
increase pasture production. Then, as indicated in Fig. 10.2.3, the response of variable u 
to fertilization would probably be a curve of diminishing returns with an initial value of k, - k, 
and an asymptotic value of k, . 

i 

- x  ~ ~~ 

I -~ -- - - ~ ~  

Figure f 0.2.3 

Equation u = k, - k,e-4x represents the above relationship, where u is average pasture 
production and x is nitrogen fertilization. 

It is also save to assume that pasture production over time would decrease due 
to the nutrient depletion of the soil. Then, variable v would have negative values. 

V 

-k4 I 
Figure 10.2.4 
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If the goal is maintaining a constant pasture production with fertilization, v would have 
to grow to an asymptotic value of zero, such that v = -k,e -k5x, where v determines the 
changes of amplitude of the response function over time. The picture of this expression 
is shown in Fig. 10.2.4. 

After replacing the above expressions in the original state equation, the following 
new equation represents now the system experimental hypothesis: 

Example 10.2.3 Determine a mathematical model for the response curve of pasture 
production, as affected by nitrogen fertilization and by stocking rate. 

Solution: It was assumed in the previous example that only coefficients a and a, in the 
state equation for pasture production, where a = u and a =  v, are affected by nitrogen 
fertilization, such that 

where u is the average pasture production, v determines the changes in amplitude of the 
response curve over time, xI is nitrogen fertilization and f is time. 

' 

\ 

1 2  - 

Figure 10.2.5 
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It is now valid to assume that the same coefficients affected by fertilization are 
also affected by stocking rate. Then, as stocking rategrowsvery large, coefficients k, and k2 
in variable u should approach zero. Thus, these coefficients may be renamed as k, = sI E S, 
and 4 =s2cS2,  such that s, = c,( 1 - e  and s2 = c2es2 , where x2 is stocking rate. 
The graph of these expressions is shown in Fig. 10.2.5. 

After replacing the above expressions in u, the new equation for average pasture 
production is now 

u = c , ( l - e  -k lx ' ) - c 2 e  -w, ++J 

showing that nitrogen fertilization would increase pasture production by making u larger, 
&om an initial value of cI -c2 to an asymptotic value of cI.  Conversely, increasing 
stocking rate would decrease pasture production by diminishing the value of ~ l .  These 
relations are shown in Fig. 10.2.6. 

U U 

C1 

c1 -c2 

C1 

C r C 2  

x2 
Figure 7 0.2.6 

Increasing stocking rate would probably deplete the soil progressively faster. 
Therefore, assuming that stocking rate affects coefficient k4 in the equation for variable 
v, this coefficient would grow gradually larger as stocking rate increases. Then, coefficient 
k4 should be renamed as variable k4 = s, E S,, such that s = cp?. After replacing the 
above expression in v, the new equation is now v = -c3x$e -k5xl , showing that nitrogen 
fertilization would make the negative values of v progressively smaller, &om the initial 
value of cp2 to an asymptotic value of zero. Conversely, &om an initial value of zero, 
stocking rate would make the negative values of v progressively larger. The above 
relationships are shown in Fig. 10.2.7: 

k8 
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Figure 10.2.7 
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Atter replacing the u and v equations in the initial state equation, the experimental 
hypothesis becomes 

In general terms, mathematical modeling may take the following steps: 

First step: Select a mathematical model for the experimental hypothesis using critical 

Second step: Determine the geometrical meaning of the constant coefficients of the 

Third step: Determine which constant coefficients maybe affected by the input variables 

Fourth step: Define mathematical expressions for the possible relationships between 

points indicators 

selected state equation 

of the system 

input variables and coefficients 

Experimental design and treatments must be consistent with the experimental 
hypothesis. After the data are collected, all the constant coefficients of the model must be 
tested by null hypothesis criteria. 

Summary 

Critical points of the response curve, such as maximum and minimum values, 
inflection points and asymptotic or initial values, are useful indicators for defining a 
mathematical model of the experimental hypothesis. Understanding the geometrical 
meaning ofthe constant coefficients ofthe state equation, determining which coefficients 
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are most likely affected by input variables and determining expressions for the presumable 
relationships between the input variables and the selected coefficients, are also useful 
modeling procedures. 

10.3 GENERATION OF EQUATIONS BY GEOMETRIC ANALYSIS 

The models of the expected response curves must reflect what is assumed that the 
response curves might be and treatments must provide the data points for the 
mathematical expression. Therefore, the pre-experimental selection of the mathematical 
model is essential for determining the proper experimental treatments. 

Ifthe researcher can figure them out, several choices ofmathematical models are 
often available for a given system. As indicated before, some geometric analysis is 
required for determining those choices. 

As a complement of the previous section and to help the reader defining 
mathematicalmodels, this section gives some guidelines in analytic geometry, as it applies 
to assembling the most common response curves found in agricultural research. Several 
examples are provided to show how theoretical considerations, related to the expected 
response of the system, match the observed response. 

Equations Related to the Straight Line 

The simplest equation to assemble is the straight line. Without understanding 
how a straight line is born, building more complicated mathematical models is hardly 
possible. Consider the points P,(tl,y,) and P2(t2, y2) in the TY plane. The two points 
determine a line segment with the following slope: 

By rearranging terms, the above expression may be written as the straight line 
equation y2 = y ,  + b(t2 - t l ) .  If t ,  = 0 and y, = Q, this equation becomes 

y = ~ + b t  

This is the most common expression for the straight line. The above relation is shown in 
Fig. 10.3.1. 
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Figure 10.3. I 

Consider now equation y = a t  b .  By a logarithmic transformation, this expression 
is the straight line Iny = b Int + k, where k = ha .  This mathematical model has been 
applied mainly to problems of animal metabolism and growth of body parts relative to the 
whole body. 

Example 10.3.1 The following equation represents the relationship between body weight 
and metabolic rate in 26 animal species, from mouse to cow 3: 

0.756 
y, = 6 7 . 4 ~ ~  

Iny, = 4.21 +0.7561ny2 

where y, is metabolic rate in kcalfday and y2 is body weight in kilograms. The 
corresponding graphs are shown in Fig. 10.3.2. Note that this is not a state equation but 
a relationship between two state variables. 

A straight line is also obtained fiom a logarithmic transformation of the state 
equation y = ae ". Then Iny = k + bt, where a is the initial value and k=lna. If b>O, 
the equation represents exponential growth. If b<O, this expression represents exponential 
decay. The following is the corresponding differential equation: 

3Kleiber, M. 
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This is a first order homogeneous equation, representing only the fiee response due to 
initial conditions. 
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Figure 10.3.2a 

Example 10.3.2 The following is the fitted equation for the residual of in vivo digestibility 
of cell walls of sugarcane leaves 4: 

= 1 0 2 ~  -0.00751t 

lny = 4.628 - 0.00751 t 

where y is percent of undigested residual and t is days. The graphs of this function are 

4Computed fiom San Martin, F.A. 
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shown in Fig. 10.3.3: 
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Figure 70.3.3a 
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Figure 10.3.36 

If a constant c is added to the exponential decay equation, expression 
y = ae -b' + c is obtained, where c is an asymptotic value and a+c is the initial value. Note 
that when &a, the asymptotic value is negative. Conversely, when c>a the asymptote is 
a positive value. The following is the corresponding differential equation: 

dy - + by = bc 
dt 

This is anon homogeneous equation and represents the total response ofthe system. Thus, 
by adding the constant c to the exponential decay expression, a first order model for the 
total response was obtained. 

Example 10.3.3 The following equation was fitted to the energy content of milk from a 
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group of cowss: 

y = 2.821 + 0.965e -0.4231 

where y is the energy content of milk in MjoulesKg and t is days after calving. The graph 
of the response functions of this system is shown in Fig. 10.3.4: 

Ifthe expression ofexponential d e c a y i s m i i a n  aamstant c, equation y = c - ae -bt 

of diminishing returns is obtained, where c is the asymptotic value and c - a is the initial 
value. Note that when c=a, the above equation becomes y = a( 1 - e -b') and the initial 
value is zero. Then, there is no fiee response, because the initial value is zero. Note also 
that when c<a, the initial value of the function is negative. Conversely, when c>a the 
initial value is positive. 

Example 10.3.4 The following is the fitted equation for the bacteria count of the rumen 
of a calve6: 

where y is the bacteria count in millions/gram x 1 O4 and t is weeks. Fig. 10.3.5 shows the 
graph of the response curves of the system. 

'~omputed fiom Lowman, B.G. et.al. 

Computed &om Lengemann, F. W. and N.N. Allen 6 
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Figure 10.3.5 

None of the models assembled so far provide maximum, minimum or inflection 
points for the response curves. For such, combining two or more different terms in the 
time variable is needed. Two terms determine a second order system, three terms 
determine a third order system, and so on. 

Polynomials are always an option but, as was pointed out in the previous section, 
determining a geometrical meaning of the polynomial constant coefficients is often 
difficult. Since assembling response curves by the geometrical meaning of the constant 
coefficients is what this section is all about, polynomials are here excluded &om 
consideration. 

Example 10.3.5 An insect control program was tested in a pasture field and the following 
is the corresponding fitted equation: 

y ,  = 2193(0.6686)” - 1943(0.5359)” 

where y is the number of insects per square meter and n is months. This equation has two 
terms in the time variable. Therefore, it represents a second order system. The following 
is the second order difference equation of the system: 

Y , ~ + ~  - 1.2045~,+~ + 0 . 3 5 8 3 ~ ~  = 0 

This is a homogeneous time invariant equation. As discussed in a previous chapter, a 
second order time invariant homogeneous equation is equivalent to a first order time 
variant non homogeneous equation. The following is the first order difference equation: 
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Y , , ~  - 0.5359~,, = 290.77(0.6686)” 

The response curves of the system are shown in Fig. 10.3.6. 
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Figure 10.3.6 

Time delay is another feature worth considering. The following example illustrates the 
manipulation for including the time delay in the model. 

Example 10.3.6 The following is the fitted equation to the in vivo digestion of the cell 
walls of corn plant stubs7: 

I = 0.783[e -0.00883(/-17.98) - -0.115(/-17.98) 

where y is digestion rate, as percent per hour and t is hours. Note that there is a time lag 
of 17.8 hours in the digestion process. The graph of the total response of the system is 
shown in Fig. 10.3.7. 

The following equation was also fitted to the data: 

Note that the time delay coefficient always goes with the time variable. This equation is 

’Computed &om San Martin, F.A 
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less accurate than the first one. 
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Figure 70.3.7 

Periodic Functions 

Periodic hnctions are mathematical expressions defined in polar coordinates. As 
such, they are functions of the radius r of the circle. Then, a point P is defined over 
parameters r and 8, such that P(r,8), where 8 is the angle between two vectors whose 
length is r. 

Figure 10.3.8 

As shown in Fig 10.3.8, sine = ylr and cos8 = tlr. Then 
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y = rsin0 
t = rcos0 

The above expressions are calledparametric equations of the curve. 

equations may be written as 
If the angle 8 is expressed in radians, such that 0 = ai, then the parametric 

y = rsinut 
t = rcosat 

where the radius r modulates the amplitude of the function, such that -TI y s  r and 
parameter a modulates the frequency. Note that these functions are defined in periods or 
cycles of magnitude 2x. A cycle is completed when at  = 2 x . Then 

2x Cycle = __ 
a 

The graph of these functions is shown in Fig. 10.3.9. 

T 

1 
Figure 10.3.9 



368 1 Or Experimental Tests for a System Analysis Problem 

An important equation representing response curves that occur fi-equently in 
biological problems is y = r,cosat +r,sinat. As discussed in the previous chapter, an 
equivalent expression has the form y = rcos[a(t - b)] , where a modulates the fiequency, 
b is a time lag or out of phase coefficient and r modulates the amplitude. Coupling the 
above equation to an exponential term could change the amplitude of the response curve 
over the time variable. If the exponent a is negative, the amplitude decreases over time. 
Conversely, if the exponent is positive, the amplitude increases. The distance between the 
abscissa and the axes of the response curve could also be changed by adding a constant 
c to the equation. The following is the resulting expression: 

y = re"'cos[a(t - b)] + c 

Example 10.3.7 The population of an animal species decreases each generation roughly 
by half the number of animals of the previous one. To prevent extinction new animals are 
introduced with each generation. The following is the equation representing the total 
response function of the system: 

y ,  = 309 + 957(0.5)"~0~ -(n - 0.365) 
[2J I 

where y is number of animals and n is generations. Note that the axes of the response 
curve has a value of 309. The radius is 957 and the cycle is 2 d 3 .  The curve is 0.365 out 
of phase. The graph of the above fhnction is shown in Fig. 10.3.10. 

1 Generations -500 

Figure 10.3.10 
As disclosed in the previous section, input variables may affect the constant 
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coefficients of a state equation. The task for the researcher is proposing also appropriate 
expressions for such relationships. 

Summary 

Many equations in Cartesian coordinates are related to the straight line by a 
logarithmic transformation and assembling complicated equations is possible by simple 
manipulations of these transformations. Periodic functions are expressions defined in 
polar coordinates and assembling many useful equations is possible by manipulation of 
the sinus, cosines and exponential functions. A pre experimental selection of 
mathematical models of the expected response curves of the system is essential for 
determining the proper experimental treatments. 

10.4 ASSIGNMENT AND ARRANGEMENT OF TREATMENTS 

The assignment and arrangement of experimental treatments must be consistent 
with the statement of the research problem and with the hypothesis representing the state 
transition function of the system. Note that an input trajectoryfand the initial state yo 
determine the state y of the system at any time t, such that 

This is the fundamental expression determining the experimental treatments. Note also 
that input variables are related to the mode of operation of the system and that component 
variables are related to the structure. Thus, the following variables determine the 
categories of treatments that must be considered: 

Input Variables 
Initial state of the system 

Component variables 

The reader should not confuse the notion of assignment and arrangement of 
experimental treatments with the concept of experimental design. Experimental design 
is the procedure for increasing the accuracy of experiments by grouping the sources of 
variation and determining the variability that is not due to treatments. Such variability is 
then subtracted from the experimental error. Therefore, experimental design is the 
management of the variability that is not related to the experimental problem and is not 
within the scope of this book. 



3 70 1O:Experimental Tests for a System Analysis Problem 

Treatments Related to Input Variables 

For continuous systems, an input trajectory is a set of ordered pairs of the form 
(I, x), where xd'is an input value and tczT is a value defined over the time scale T of the 
system. In agricultural experiments, an input trajectory is usually a constant value for the 
duration of the experiment. Thus, input related treatments may generate a factorial 
arrangement of the form 

x = x,x. . .xyx.. .xx, , l  

where XI = (xlt,  ...,x,") is an input variable. Then, a treatment is an element ofthe factorial, 
such that 

x = {x = (XI], ...Jm,) :x+q 

where the m-tuple x is atreatment, X i  for i = 1 2 ,  ..., rn is an input variable and X j i  
for j = 1.2,. . . .n is a value within a treatment. This factorial may be nested in any 
experimental design. 

The following example illustrates the concept of a factorial arrangement of 
treatments as defined above. 

Example 10.4.1 An experiment is designed with three levels of nitrogen fertilization and 
two levels of phosphoric acid. Define the factorial arrangement of treatments. 

Solution: If nitrogen is denoted by X, and phosphoric acid by X2 , then 

where each ordered pair is a treatment that includes a nitrogen value and a phosphoric 
acid value. Therefore, there are six treatments in the experiment. 

Given the input variables in the research problem, the following factors 
determine the experimental treatments: 

A capacity factor related to the number of treatments 
A potential factor related to the values assigned to each treatment 

The number of treatments affects the significance test for the constant coefficients of the 
response functions, because significance tests are related to the degrees of freedom. The 
values assigned to each treatment modulate the response functions, affecting the 
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coefficient of determination. 

Numberof I Assigned 
Treatments , 1 Values - -~ - -  - -- _ _ _ _ _  - - ____- __ 

I Significance of 1 ' Modulation , 
Null Hypothesis I of Response I __--___J -_ - 

Figure 10.4. I 
The relationship between degrees of fieedom and the probability of a larger value 

in the "t" test is shown in Fig. 10.4.2. 
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Figure 10.4.2 

Note that, as the number of degrees of freedom increases, the "t" value approaches 2.576 
for P I 0.0 1 and 1.960 for P 5 0.05. The researcher would have to compromise between 
the accuracy of the "t" test and the affordable number of treatments in the experiment. 
Note also that more than four or five degrees of fieedom no longer provide dramatic 
reductions of the "t" values. Therefore, a minimum of four or five degrees of li-eedom for 
the error term in the "t" test seems an acceptable settlement. Without previous knowledge 
of the variability expected for a research problem, the chart of Fig. 10.4.2 or a 
corresponding table, may prove useful in choosing the number of treatments for an 
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I I I I I I  I I 
I I l l l l  I I  

experiment. 

Example 10.4.2 The following is the proposed mathematical model for the expected milk 
production response of dairy cows to a low protein supplement: 

y = e -m(b + cx) + d 

where y is milk production andx is the percentage of a low protein supplement in the diet. 
Determine the number of treatments if five degrees of fieedom are chosen. 

Solution: This equation has four constant coefficients. If five degrees of fieedom are 
chosen, then nine treatments are required because n=4+5, where n is the number of 
treatments. Nine treatments would hlfill the chosen degrees of fieedom and also the 
modulation of the response equation. 

Note that this fimction increases fiom an initial value of b+d, to a maximum and 
then decreases to an asymptotic value of d. Thus, the expected shape of the milk 
production response to supplementation is as shown in Fig. 10.4.3. Note also that the 
treatments were not spaced equally, but placed more closely where the expected maximum 
would most likely happen. Such distribution oftreatments was decided for modulation of 
the response curve. 

i 
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Example 10.4.3 Determine an appropriate number and distribution oftreatments for the 
pasture production problem in Example 10.2.3. 

Solution: The following was the mathematical model proposed for the experimental 
hypothesis of Example 10.2.3: 

where u is average pasture production, v determines the amplitude of the response 
function over time, x, is nitrogen fertilization, x2 is stocking rate and t is time. There are 
three independent variables and 11 coefficients in the above equation. With 11 
coefficients, if five degrees of ffeedom are chosen for the error term, a minimum of 16 
data points would be required. A 3x3 factorial would provide nine data points fiom nine 
treatments. If data is collected monthly during one year, then a total of 108 data points 
would be available, giving a generous 97 degrees of ffeedom to the error term. Clearly, 
obtaining degrees of freedom for the error term is not critical here. The graph of the 
average pasture production u, for a 3x3 factorial arrangement, is shown in Fig. 10.4.4: 
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Figure I 0.4.4 

The question is whether a 3x3 factorial would provide sufficient data points for 
the modulation of the expected response curve. By observing Fig. 10.4.4, it seems very 
unlikely that three data points would modulate properly the expected curves. As shown 
in Fig.10.4.5, a 4x4 factorial, representing 16 treatments, seems more suitable here: 
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Figure 10.4.5 

Clearly, the number of treatments, determined to provide degrees of freedom for the error 
term, is not a sufficient criterion for defining the experimental treatments. Treatment 
distribution should be determined only after an evaluation of where the system response 
is expected to have extreme values and the largest changes, as affected by the independent 
variables. 

Modulation of the response curve should be determined also for the system 
response to the time variable. Therefore, data collected over time should meet the same 
criteria and requirements as data collected over the input variables. 

Example 10.4.4 The following is the graph of the expected state equation of an insect 
control program: 

o 2 4 6 a 1 0 1 2  
Months 

Figure 7 0.4.6 
The number of data points in the above response curve may look as too many. 

However, as often happens, it is assumed here that data are collected monthly and that the 
time scale of this system is discrete. 
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Example 10.4.5 The following is the graph of the expected response of the pasture 
production problem in Example 10.2.2. 

Years 
Figure 10.4.7 

As shown in the graph, four data points per year may yield an adequate modulation of the 
response curve. However, a bimonthly collection of data would probably be more 
appropriate. 

Researchers that are more concerned with parameters such as the mean, rather 
than with the dynamic condition of the system, may question the importance placed here 
on modulation of the system response. Systems change over time and the name of the 
game is forecasting the system response. Much effort and resources are wasted in small 
experiments, designed with mass production mentality, that are irrelevant because 
conclusions are based on the traditional A versus B comparison of means. The A versus 
B comparison of means has often very little predictive value. 

The coefficient of determination estimates the predictive value of the 
mathematical model of the system response. As mentioned earlier, modulation of the 
system response affects the coefficient of determination. The coefficient of determination 
is the proportion of the total variability that is attributable to regression, that is 

wherex J ? ~  is the variability due to the mathematical model that is, the variability due to 
regression and E d 2  is the variability of the deviations &om regression. Thus, the 
following factors affect the Coefficient of determination: 

The mathematical model of the system response 
The modulation of the system response 
Variability not due to regression 
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The variability that is not due to regression is estimated by the corresponding 
standard deviation. The standard deviation from regression represents the size of the 
deviations of the system response in relation to the mathematical model of the system 
response, that is 

where n is the total number of data points and m is the total number of constant 
coefficients. Thus, the following factors affect the standard deviation fiom regression: 

The mathematical model of the system response 
Degrees of fieedom 
Variability of the sample 

The reader is reminded that, as the number of constant coefficients increases, R2 
gets larger, approaching 1 .O as the number of coefficients approaches the number of data 
points. Thus, how much the coefficient of determination can be trusted depends on the 
standard deviation of the regression coefficients. Non significant coefficients must be 
deleted fiom the regression equation or an alternative mathematical model should be 
determined. Multiple options of mathematical models for the expected response of a 
system are often available. The subject was presented and discussed several times before. 
The reader is also reminded that the experimental design affects the variability of the 
sample. 

Treatments Related to Initial States of the System 

As previously indicated, the dynamic condition of a system is represented by the 
expression y = uV;yo, t ) ,  where y is a state trajectory, u is the state transition function, f 
is an input trajectory, yo is the initial state and t is time. Note that the initial value in the 
above expression is an independent variable but is not an input. Therefore, initial values 
are not a part of the factorial arrangement of treatments. 

The set of initial states is defined as 

, Y,C Y 

Each initial value yOJ may generate a different state trajectory. Thus, an initial state 
related treatment is a subclass within the experiment. As such, initial states determine a 
set of component systems coupled conjunctively in the experiment as a system. This 
coupling is shown in Fig. 10.4.8: 
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Figure 10.4.8 

The factorial arrangement of treatments should be nested in each of the above subclasses 
and treatments should be randomized over each subclass. This conception is illustrated 
in Fig. 10.4.9: 

~ x , x  ... xx, 1 
1 

Figure 10.4.9 

Example 10.4.6 The foliowing is the mathematical model proposed for the experimental 
hypothesis of Example 10.2.3: 



378 1O:Experimental Tests for a System Analysis Problem 

y = u + be"'cos[P(t - c)] 

u = c,( l -e  -k /X *) - c2e  +QJ 

4 -+, v = - c f 2  e 

YOJ = C I J  - CZJ - b,cos(P,c,) 

where u is average pasture production, v determines the amplitude of the response 
function over time, x, is nitrogen fertilization, x2 is stocking rate, yoJ is an initial state 
and t is time. It is assumed here that the maximum production is obtained during the rainy 
season of a tropical environment and the minimum production during the dry season. The 
experiment is conceived as to start the system at three different stages of the production 
cycle: three months before the peak production of the rainy season, at the peak production 
and three months after the peak production. Determine the subclasses and the nesting of 
the factorial. 

Solution: The following is the graph of the expected state trajectories for the three initial 
states defined for the system. Note that each of the three state trajectories corresponds to 
a different component system, determined by a different initial state. 

0 1 .o 2.0 
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Figure 10.4.10 

As shown in Fig. 10.4.1 1, the X, x X, factorial should be nested and treatments 
randomized over each of the component systems. 
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Figure 10.4.11 

Treatments Related to Structural Components 

The causal factors related to an experimental problem may include input 
variables and variables that cannot be defined as functions of time. Variables that cannot 
be defined as functions of time are usually qualitative traits and were called components 
in Chapter 6. 

As defined previously, treatments related to component variables are not inputs 
of the system, but may determine component systems coupled conjunctively within the 
experiment as a system. It was also defined previously that treatments related to initial 
states may also generate component systems coupled conjunctively. However, systems 
determined by component variables and systems determined by initial states are at 
different structural levels within the experiment. Component variables are at a higher 
level of the pyramid. Then, if treatments related to initial states are subclasses, treatments 
related to component variables should be classes. This stratification of treatments is 
known as a split-plot arrangement. A class is a mainplot that is being split into smaller 
subplots or subclasses. Subplots should be nested randomly over a main plot. 

The set C of component variables is denoted here as C = (.,,c, ..., cm}, where 
each component c, E C should nest the set of treatments Yo related to initial states. The 
total number of split-plot treatments SP is the product SP = Cx Yo. Each component 
yoJc Yo should nest the factorial arrangement of input related treatments. Thus, the total 
number of experimental treatments E is E = C x Y o x X ,  where X = X , x  ...x X,. This 
structural arrangement of treatments is shown in Fig. 10.4.12. 
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Figure 10.4.12 

Note that the sequence shown in Fig. 10.4.12, component variables - initial states - input 
variables, should never be changed. This sequence may be nested in any experimental 
design. Note also that the component variables may also determine a factorial 
arrangement of treatments at the upper level of the pyramid. 

Example 10.4.7 Determine the arrangement of treatments in a pasture production 
experiment with three blocks, three pasture species, three initial states, four levels of 
nitrogen fertilization and four levels of stocking rate. 

Solution: This experiment has four variables: pastures, the initial state, nitrogen 
fertilization and stocking rate. It has four structural levels: blocks, pastures, initial states 
and the factorial. The split-plot arrangement has nine treatments nested in each block for 
a total of 9x3=27 plots. The 16 factorial treatments are nested in each initial state for a 
total of 1 6 ~ 9 ~ 3 = 4 3 2  plots. An experiment with 420 plots is very large, mainly for the 
necessity of modulating the system response and for the inclusion of the initial state 
variable. Thus, the researcher may be facing the challenge of reducing the size of the 
experiment by cutting down the number of plots with the minimum loss of information. 
Deleting the initial state variable is one choice. Manipulation of the factorial arrangement 
of treatments is another available choice. 

The following summarized plan for the analysis of variance reflects the picture 
of the arrangement of treatments: 
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Table 10.4.1 

Sources of Variation 

SpIit-plot 24 

Degrees of Freedom 
Blocks (B) 2 

Pastures (P) 6 
P 2 
PxB 4 

1 2 
IXP 4 
IxB 4 
IxPxB 8 

Factorial 405 

Initial States (I) 18 

Nitrogen 3 
Stocking Rate 3 
Interactions 399 

Manipulation of the Factorial Arrangement of Treatments 

As indicated before, if the problem has more than one independent variable, 
providing treatments for modulation of the response functions of the system is often 
critical. For such, four or five and sometimes more data points are needed for each input 
variable. For a 5x5 factorial, that means 25 treatments. Three variables would result in 
125 treatments. Central composite rotatable designs have been among the most widely 
proposed schemes for reducing the number of treatments. The concept of rotatability is 
related to the distribution of the standard error of the regression estimate. In a rotatable 
scheme, the standard error is the same for all points that are at the same distance ffom the 
center of the response curve'. A central composite rotatable arrangement combines a 2k 
factorial, a 2(k) star part and central points, where k is the number of input variables. 

Example 10.4.8 Determine a central composite rotatable arrangement of treatments for 
two input variables. 

Solution: With two input variables, a central composite rotatable design is obtained by 
placing four treatments equally spaced around a circumference of a circle in the X,,x2 
plane with center (O,O), plus one or more points at the center. The number of treatment 
replications at the center of the circle is chosen so that the standard error of the regression 
estimate is approximately the same at the center as it is at all points on the circle with 

'Box, G.E.P. and J.S. Hunter 
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radius 1. In addition, four more treatments are placed at the vertices of a square inscribed 
in the circle. This arrangement is shown in Fig. 10.4.13. 

.... 
'..-:y* .......... 

Figure 10.4.13 

As shown above, the total number oftreatments is nine and the total number of data points 
is 13, including the five central points, as compared with 25 in a regular 5x5 factorial. As 
with the regular factorial, there are also five data points for the modulation of the response 
of each of the two input variables. 

Note in Fig. 10.4.13 that the coordinate values are coded. The rotatable designs 
were developed at a time where the most sophisticated tools were the IBM 1620 computer 
and the Monroe electric desk calculator. Thus, coding of the coordinate values was very 
helpful for the computation of regression polynomials. After computations were 
completed, regression coefficients had to be decoded. Coding is unnecessary with the 
computer facilities available today. 

If blocking is used in central composite rotatable schemes, the factorial and some 
central points form one block or sometimes two blocks in larger designs. The star part PIUS 
the remaining central points form an additional block. These are called incomplete blocks. 

An inconvenience ofcentral composite rotatable designs is their rigidity, because 
the distance between data points is fixed. Such distribution of treatments makes 
modulation of the response function of the system more difficult. Another inconvenience 
is the exclusion of the corner data points of the 5 x5  grid. Comer points represent extreme 
values, which are often required for an efficient modulation of the response curve. An 
optional compromise would be inserting those corner treatments in the layout. Thus, this 
modified arrangement includes the 2' factorial, the 2(k) star points, one central point and 
the additional 2' comer points. 

Example 10.4.9 Determine a modified central composite rotatable arrangement with two 
input variables. 
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Solution: A modified central composite design with two factors should have four factorial 
points, four star points, one central point and four corner points, totaling 13 treatments. 
The modified design is shown in Fig. 10.4.14. 

Figure 10.4.14 
Example 10.4.10 Define a modified central composite design with three factors. 

Solution: The modified central composite design with three variables should include eight 
factorial points, six star points, one central point and eight corner points, totaling 23 
treatments. This arrangement is shown in Fig. 10.4.15. 

I ................................ i- ~ 

~~ 

' i i  ............................ ..... 
L -  

Figure 10.4.15 
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Note that the central composite rotatable scheme with three input variables has only 15 
treatments, making a total of 20 data points with the replications of the central points, as 
compared with 23 for the modified design. Thus, the trade-off for the convenience of 
having the corner treatments is three more data points. 

A less restrictive arrangement of treatments is a combination of hctorials, as 
shown in the next example. 

Example 10.8.11 Combine a 33 and a23 hctorial. 

Solution: Combining a 33 and a 23 hctorial, as in Fig. 10.4.16, requires a total of 35 
treatments. 

Figure 10.4.16 

Options for the arrangement of treatments depend on and the ability of the 
research team to figure them out, on the research needs or on the availability of resources. 
Thus, in general terms, determining a design for the distribution of treatments may take 
the following steps: 

First step: Define the degrees of fieedom required for the error term and the data points 

Second step: Determine if the size of the experiment is compatible with available 

Third step: Adjust the number and distribution of treatments with a design compatible 

for modulation of the response functions of the system 

resources 

with available resources 
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Summary 

Assignment of treatments should be consistent with the research problem and 
with the model ofthe expected state transition function ofthe system. As such, treatments 
should be related to input variables, to initial states and to component variables. 
Treatments related to input variables may generate a factorial arrangement. The number 
and distribution of treatments in the factorial must be chosen to attain the best modulation 
of the system response functions. When appropriate, the factorial should be nested in the 
initial states related treatments, which in turn are nested in the treatments related to 
component variables. Component variables are here the main plots and initial states are 
the subplots. An experiment with this structure may become extremely large. Central 
composite rotatable designs and modifications of these schemes are available for 
negotiating between the accuracy and the feasibility of experiments. 



MISCELLANEOUS MATRIX 
CONCEPTS AND PROCEDURES 

Definition of a Matrix. Matrix is a rectangular array of numbers arranged in rows and 
columns. In general terms, a matrix A is represented as follows: 

where a.. denotes the element in the i th row and the j th column for a matrix of r rows 
and c cof'umns. 

An abbreviated form is here 

A = {a,), for i =1 ,2 ,  ..., m, and j = 1 , 2 ,  ..., n 

Matrix addition. If A = (a9 } and B = {bg)  , then 

A + B = 1 a, + b, 1, for i = 1,2 ,..., m 

The above operation can take place only if the matrices involved have the same 
number of rows and the same number of columns, in other words, if they are of the same 
order. The following definition is here set forth: 

and j = 1,2 ,..., n 

When matrices are of the same order, it is said that they are conformable for addition. 
Matrices that are conformable for addition are also conformable for subtraction 

Matrix addition and subtraction are commutative, that is 
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A + B = B + A  

Matrix addition is associative, that is 

(A + B) + C = A + (B  + C) 

Matrix Multiplication. Addition of two equal matrices can be written as follows: 

A + A = {ad + IaJ = {2aJ = 2A for i = 1,2 ,..., rn and j = 1,2 ,..., n 

This result can be extended to the addition of k equal matrices: 

A + A  + ... + A  = kA 

Thus, a matrix A multiplied by a constant k is the matrix A with each of its elements 
multiplied by k. 

The product of two vectors is the sum of the product of each element a, of the 
row vector a'multiplied by the corresponding element xi of the column vector x. Then, 
if 

a' = (a, a2 _.. an) and 

the product a5  must be 

x =  

a'x = u p l  + ag2 + ... + aXn = CaF, 

i = 1,2, ..., n 
1=1  

If each row in matrix A is multiplied by vector x. Then the product Ax is as 
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follows: 

Appendix A 

Thus, if A = { as I and x = { x, I then 

In multiplying two matrices, each row vector of one matrix is multiplied by a 
column vector ofthe other matrix. This is a repetitive operation ofmultiplying one matrix 
by each column vector of the other matrix. 

For a product AB to exist, it is required that the number of columns in matrix 
A to be the same as the number of rows in matrix B. such that 

The following definition applies here: 

When the number of columns in matrix A is the same as the number of rows in matrix 
B, the matrices are said to be conformable for multiplication. 

Thus, if A = { a,, I for i= 1,2 ,..., m and j = 1,2 ,..., n and B = { b,, 1 for 

,,B, i = 1,2 ,..., n and j = 1,2 ,..., s, such that A,,, = ABm then: 

n 
The ij th element of AB is Ca,,bb and AB = Ca,,b, 

k = l  { k:l } 
If the matrices are conformable for multiplication, the following properties are 

here set forth: 
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Matrix multiplication is associative, that is A(BC) = (AB)C 

Matrix multiplication is distributive, that i s  

A(B + C) = (AB + AC)  
(A + B )  C = A C  + BC 

A(kB) = k(AB) = (M)B 

Matrix multiplication is not commutative, unless all the matrices are of the same order, 
that is AB # BA 

Transpose of a Matrix. By interchanging rows and columns, matrix A ’  becomes the 
transpose of matrix A.  Thus 

A = { a , } + A ’ = { a , , }  ; i = 1 , 2  ,..., m ; j = 1 , 2  ,..., n 

The following properties for the transpose operation are here set forth without 
proof: 

The transpose operation is reflexive, that is (A ’), = A  

The transpose of a product matrix i s  the product of the transposed matrices taken in 
reverse order, that is (AB)’ = B’A’ 

The transpose of the addition of matrices is the addition of the transposed matrices, that 
is ( A + B ) ’ = A ’ B ’  

Elementary Operations The following are called elementary operations: 

Exchanging two rows or two columns 
Adding or subtracting a multiple of a row or column to another row or column 
Multiplying a row or column by a constant k + 0 

Matrices related by elementary operations are called equivalent matrices. Thus, 
matrix A and matrix B are said to be equivalent, if matrix B can be obtained from matrix 
A by elementary operations. Then A = B 

Expansion of Determinants. A determinant IA 1 is a polynomial of the elements of 
a square matrix A .  It is a scalar value. Thus, ifA i s  a second order matrix, then IA I is 
defined as follows: 
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The process of obtaining the value of a determinant lAl is known as evaluation or 
expansion of the determinant. 

Elementary expansion. The expansion of a second order determinant is the product of 
the diagonal terms minus the product ofthe off-diagonal terms. A third order determinant 
can be expanded to three second order determinants: 

Note that the three second order determinants are multiplied by three coefficients 
that are elements either of a row or fiom a column of the third order determinant. Each 
second order determinant is multiplied, in an alternate way, by (+1) and by (- 1). Thus, the 
third order determinant is a linear function of three second order determinants, whose 
coefficients are either elements of a row or elements of a column. The second order 
determinants are called minor determinants or simply minors. 

By making this process general, the expansion of a determinant of a square 
matrix of order n is as follows: 

Note that, whenj (or i )  is even, (- 1)”’ = - 1 and when j (or i )  is odd, (- I)’+’ = 1 . 
Note also that a,, is an element of matrix A and that IA,I is its minor. 
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The product (- l)'+J I A ,  1 is known as the cofactor of coefficient a, and is written 
u,,. The minor ]A , [  is written as lM,I. Thus 

Diagonal Expansion. A matrix can be expressed as the sum of two matrices, one of 
which is a diagonal matrix. A square matrix is called diagonal when all the non diagonal 
elements are zero. Such a matrix is shown below: 

D =  

dlI 0 ... 0 

0 d2, ... 0 
. . . .  . . . .  . . . .  

0 0 ... dnn 

Then, given A = {a,), for i,j = 1,2 ,..., n, a matrix (A+D) can be defined. The 
determinant of such a matrix can be obtained as a polynomial of the elements of D. 

The diagonal expansion is usehl, because the determinant form ( A  +D( occurs 
often. It is also usehl when some minors of ( A  I are zeros or can be made zeros by 
adopting a ( A  +D( form or when all the elements of the diagonal matrix D are the same. 

For a second order matrix, the determinant IA +D( can be expanded as follows: 

( A + D (  = 1'' + dl  1 = (all + d1)(a2, + d,) - a,,a,, 
a21 a22 + d2 

This expression can be written as a hnction of d,  and d, : 

For a third order determinant the expansion is as follows: 
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1 1  + 4 a 1 2  ‘13 

IA+D( = a21 ‘22 + d2 ‘23 1 a31 ‘32 ‘33 + d3 

= dld2d3 + d,d2a3, + d,d3a2, + d2d3a11 + 

a12 a13 

a231 + d 2  1 1 1  31 a ~ 3 1  a33 + d 3  1 1 1  21 “121 a 2 2  + 1:; a23 

31 a32 ‘33 
32 ‘33 

d l  

The following are some additional important properties of determinants: 

The determinant of the transpose of a matrix is the same as the determinant of the 
matrix, that is IA’I = IAl 

If A is a scalar and a factor of a row, it is also a factor of the determinant, such that 

AIAl 

If A is a scalar and a factor of an n x n matrix, then 1 hA 1 = An I A I 

If one row of a determinant is a multiple of another row, the value of the determinant is 
zero. The same rule applies for columns. 

If a determinant has a row or column of zeros, the value of the determinant is zero. 

The determinant of the product of two squared matrices of the same order is the product 
ofthe determinants ofthe individual matrices, that is IAB( = IAl IBI 

Matrix Inversion. Given asquare matrixd, defining a matrix A - I  is possible, such that 
AA =I, where l i s  the identity matrix. Matrix A - 1  is called the inverse matrix of A. The 
process of finding matrix A - 1  is called matrix inversion. If A has an inverse then, A is 
called an invertible or non singular matrix. 
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1 0 ... 0 

0 1 ... 0 
. .  . .  . .  

I =  

0 0 ... 1 

Matrix inversion is related to the process of division of a matrix by another 
matrix. Ln a strict sense, however, division does not exist in matrix algebra. The process 
of dividing a matrix B by a matrix A is, actually, a multiplication of B by the inverse 
matrix A - ' .  

The following properties of the inverse are here set: 

An inverse matrix A -' is commutative with A ,  that is A -'A = AA -' 
The inverse of A is unique 

The determinant of the inverse of A is the reciprocal of the determinant of A ,  that is 

The inverse of A -I is A ,  that is (A  - ' ) -I  = A 

The inverse of a transpose is the transpose of the inverse, that is (A')-' = (A -')' 

The inverse of a product is the product of the inverses taken in reverse order, that 
is = B-'A-' 

If a matrix A is such that its inverse equals its transpose, A is said to be orthogonal. 
Then, the product of the two matrices is the identity matrix I, that is AA' = I 

A squared matrix is invertible when determinant IA 1 +O 



B 
BASIC CONCEPTS AND 

PROCEDURES IN CALCULUS 

Definition of a Derivative. A derivative is defined as follows: 

The derivative of a fimction at a point is the limit of the ratio of the increment Ay of the 
dependent variable, to the increment Ax of the independent variable, when the latter 
increment approaches zero as a limit. 

When such a limit exists, the hnction is said to be differentiable at that point. The process 
of obtaining the derivative of a function is called differentiation. 

The above definition can be expressed mathematically as follows: 

Y =m 
y + Ay = f i x  + Ax) 

Ay = fix + Ax) - fix) 

Ax Ax 
4 = fix + Ax) - Ax) 

lim Ay lim Ax + Ax) -fix) - dy _ _  
Ax-0 = Ax-0 Ax dx 

A derivative of f i x )  is denoted by the - dy symbol. It is also a function of the 
dx variable x .  Therefore, if y = f i x )  then 

d 
dx 

The symbol - is called the derivative operator. Other commonly used symbols are D, 
y ’ and f’(x). 

All derivatives can be found by applying the above definition, which is called the 
general rule ofdflerentiation. The above process, for a function y =Ax), is shown in Fig. 
Bl:  



Basal Concepts and Procedures in Calculus 395 

Y1 Y =  4 

/ ,’,,,$; 

x 
Figure B I  

According to Fig. B1 and by the third step of the general rule of differentiation, the 
following relationship is obtained: 

= R L ! = -  sina 
PR cosa 

Note that, as Ax approaches zero as a limit, the secant line PQ approaches the tangent 
line at point P(x, y) and angle a approaches angle p. Then 

lirn a = p 
AX-0 

By the fourth step of the differentiation process, the following is obtained: 

lim Ay - lim sina - lim tana = tanp 
Ax-0 -E - Ax-0 ;& - Ax-0 

Then, the value of the derivative becomes 
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The above definition can be stated as follows: 

The value ofthe derivative at any point of a curve is equal to the slope of the tangent line 
to the curve at that point. 

Thus, the direction of the curve at any point can be determined by the value of 
the tangent line at that point. Marimum and minimum values of a function are obtained 
by making zero the value of the first derivative. Infection points are determined by 
making zero the value of the second derivative. 

Partial derivatives. Many biological problems are determined by more than one 
independent variable. Consider the function z=f(x, y). Ifx is held constant, such that x=a, 
then 

a Z  

aY dY 
z = ~ u ,  y )  is a function of y, then, - = AA~, y> 

where dzlay is called the partial derivative of z with respect to y. If y is now hold 
constant, such that y=b, then 

az d 
ax 

z = Ax, b) is a fimction of x then, - = --&(x, b) 

where dzldx is called the partial derivative of z with respect to x. 
As shown in Fig. B2, function z =f ix ,  y) determines a response surface defined 

over the XY plain with values in coordinate 2. If a point P(x, y, z) is defined on this 
response surface, such apoint, projected on themplain,  determines a point P’(a, b) on 
themplain.  Note that, by cutting the response surface through point P with a plane TPS, 
parallel to the plane UZ, a function z =f(a,y) is defined. Note also that by cutting the 
response surfacethrough point Pwith a plane QPR, parallel totheplane= a hction z =Ax, b) 
is also determined. 
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Figure 52 

By holding one independent variable as a constant, all the rules developed for 
function y =fix) apply for each of the partial derivatives of function z =Ax, y). It should 
be pointed out here that 

are the tangent lines at P in function z =f(a, y) and in function z =fia, y), respectively. 
These relationships are illustrated in Fig. B3. 

T p's y 3 p '  R X  

Figure B3 

Definition of an Integral. An integral is the antiderivative ofa fimction, that is 

d f c x )  = f'(x) is the derivative of function Ax) 
dx 
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sf’”.) L& = Ax) + C is the integral or anti derivative of function f ’ (x )  

The symbol 

upon integration, C is unknown and indefinite. Thus 

(...) dx is called the integrul operator and C is called the constant of 
integration. TL e process of finding the integral of f ’ (x)  is called integration. Note that, 

Ax) + C is the indeJnite integrul of f’(x)dx 

The indefinite integral off/(x) dw determines a family ofcurves whose difference 
is only the value of the constant C. 

Definite Integrals. Consider the hnction y =g(x) in Fig B4. Let u be the area CMPD. 
Note that when x takes an increment Ax, the area y takes an increment Au, where Au is 
the area MNQP. 

Figure 8 4  

Note also the following relationships among areas: 

Area h4NRP < area MNQP < area MNQS 

Thus 
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Now let Ax approach now zero as a limit: 

Then, using differentials, the following relation is determined: 

The above is translated into the following definition: 

The differential of an area bounded by a curve, the x-axis, a fixed ordinate value and a 
variable ordinate value, is equal to the product of the variable ordinate and the 
differential of the corresponding abscissa. 

It follows that, if y = gix) then 

du = g ( ~ )  dx 
u = Jg(x) & 

=Ax) 4 c 

Note in Fig. B4 that, when x = a, then u = 0. Thus 

Aa)  + c = 0 
C = -Aa) 
u =Ax)  - A a )  

Now, if x = b, the area CMPD becomes 

Area CMPD =Ab) - A a )  

The following new definition is now possible: 

The area bounded by any curve whose ordinate is y, by thex-axis and by two fixed values 
for the ordinate, corresponding tox = a and x = b, is equal to the difference of the values 
of ydx for x = a  and x = b .  i 
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This area is represented by the symbol 

If between a and b the curve does not rise or fall to infinity or cross the x-axis, an 
integration between the finite limits a and b has always a definite value. That is why 
integral Job y h is called a deJnite integral. The constant C has been canceled out here. 

From the above, the definite integral clearly represents, in geometrical terms, the 
area under the curve and between two limits in the independent variable. The process of 
determining the definite integral is summarized as follows: 

First Step: Integrate the differential expression. 

Second Step: Substitute in the indefinite integral the value of the independent variable, 
first by the value of the upper limit and then by value of the lower limit. 

Third Step: Subtract the last result from the first. 

Improper Integrals. A special case of the definite integral is the improper integral. An 
improper integral is determined when one or both of the limits are infinity. Three cases 
are here possible provided that the limits exist: the upper limit is infinite, the lower limit 
is infinite or both limits are infinite, that is 



PROBABILITY DEFINITIONS AND FORMULAS 

Probability of Events in a Finite Sample Space. A sample space is defined as 
follows: 

A sample space S is the set of all possible outcomes of an experiment. 

The outcomes of the sample space are called sample points or elementary events. Then 

where e is an outcome. 
When the number of outcomes is finite, the sample space is also finite. 

Conversely, when the number of outcomes is infinite, then the sample space is infinite. 
Any union of outcomes is a subset of the sample space and is called an event. 

Then, an event may be defined as follows: 

An event E is any subset of the sample space S. 

Then 

E = ( e ; e c S }  

Since events are sets, using set operations is possible. 
Events that are complementary are defined as follows: 

Given an event E in the sample space S, the complementary event J!? is the set of 
outcomes in S but not in E. 

Then 

E = ( e ; eES;egE}  

In some situations the probability of an event can be obtained simply by common 



402 Appendix C 

sense. Common sense suggests that, if a coin is perfectly balanced, then the probability 
of heads would be %. Frequently, however, obtaining probability values may requue 
gathering experimental data. If an experiment is performed to test the coin, in the early 
stages of tossing a coin the proportion of heads varies considerable. As the experiment 
continues, the proportion of heads approaches the expected value of 0.5. Then, the 
following generalization is possible. The probabilityp for an event E to occur m times, is 
the limit of the relativefiequency m/n of the event, when the number of repetitions n of 
the experiment approaches infinity. Thus 

wherep is theprobability function andp(E) is theprobability of the event E. If n is large 
enough, the probability of an event may be defined as 

m 
n 

number of elementary events of E 
number of elementary events of S 

p(E) = - = 

An event E was defined previously as a subset of the sample space Sand as a set 
of elementary events. Then, the probabilityp(E) ofthe event is the sum ofthe probabilities 
of the elementary events. Thus, if 

E = {e,,e *,..., em} 

then 

Note that given p(E) = d n ,  when m = n then E = S. Thus 

where S is the sample space. Expressionp(S) is called the probability space. Conversely, 
when m = 0, then 
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where 0 is called the impossible event. The above implies that the probability of event E 
is some value between 0 and 1. Thus 

- 
It also implies that the probability of the complementary event E must be 1 - p(E): 

Mutually Exclusive Events. The following definition applies for mutually exclusive 
events: 

Mutually exclusive events are events that cannot occur simultaneously because they have 
no sample points in common. 

If two events E, and E2 are mutually exclusive, then E,fl E2 = 0 

E2 occurs is the sum of the individual probabilities of the two events, that is 
If El and E2 are two mutually exclusive events, the probability that either El or 

This result can be extended to n mutually exclusive events, that is 

p(E,uE2u ... uE,) = p(E, )  +p(E2) + ... +p(E,) 

The above relationship does not apply when events are not mutually exclusive. 
For any two events not mutually exclusive, the following relationship applies: 



404 Appendix C 

Note that, for mutually exclusive events, p(E,nE2) = e, . Therefore, this formula applies 
equally for not mutually exclusive events and for mutually exclusive events. 

The following probability applies for three not mutually exclusive events: 

Conditional Pm6a6i/ify. Between no information and complete information on the 
outcomes of an event, there may be many levels of partial information. If known, this 
partial information may be a condition that can affect the probabilities of occurrence of 
events and must be taken into account. Then, conditionalprobability may be defined as 
follows: 

For a sample space Sand events El and E, in S, conditional probability is the probability 
that event E, occurs given the condition that event El also happened. 

Conditional probability has the following notation: 

The probability p ( E ,  1 E,) is called the conditional probability of El given E 2.  

To calculate p ( E ,  I E,) it is necessary to know the probability that E2 occurs and 
the probability that E,  and E2 occur together on a trial. If an event E2 contains E sample 
points and an event E,nE2 contains m sample points, then 

I 
-- and p(E,nE2) = 
n 

m 
n 
- 

where n is the total number of sample points in the space S. Since the condition is that the 
event E, occurs, the outcome of the experiment must be one of the I sample points in E2. 
Among these 1 points, there are sample points for which E ,  also occurs. These are the m 
sample points in ElnE2.  Thus 

m 
I 

number of sample points of E,nE2 
number of sample points of E2 

P(E,IE,) = - = _I_ 
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Note that E,nE2 is considered as an event in the sample space E2cS.  This concept is 
illustrated in Fig. C I .  

I 
I 

I 

I I 
Figure CI 

If  numerator and denominator are divided by n, the following is obtained: 

From the above, if Eland E2 are events in the sample space S and p(E2) + 0, the 
conditional probability of El given E2 is 

Frequently, the problem is to compute the probability of events that occur 
together in a trial. The following is obtained by rearranging the conditional probability 
expression for two events: 

This result is known as the multiplication theorem of conditional probability. The 
multiplication theorem of conditional probability can be generalized for n events: 

Given El,,!?,, ..., En events in the sample space S, and p(E,nEZn...nEn_,) f 0, then 

p(E,nE2n.. . nEn) = p(EJ p(E2 1 E1)p(E3 I E,  nE2). . . p(E, 1 E,nEZn. .. nEn-J 

In many problems, partitioning the sample space S into subsets may be more 
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meaningful. This would be the case, for example, if a herd of cattle is partitioned into 
subgroups according to breed, sex, age or any other criteria. As indicated in Fig. C2, an 
event E can be expressed as the following disjoint union: 

E = (EnS,)u(EnS,)u ... u(EnS,) 

with probability 

p(E) = p(EnS,) +p(EnS2) + ... +p(EnS,,) 

Independent Events. Independent events are defined as follows: 

Two events are said to be independent when the probability of an event E ,  is not 
affected by the knowledge that an event E, occurs. 

Then 

It was shown, however, that 
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By equating these two expressions, the following is the mathematical definition for 
independent events: 

The definition of independent events can be generalized to n events. If events 
A&,, ... ,An are independent, then 

The idea of independent events should not be conhsed with the concept of 
mutually exclusive events. For two events to be mutually exclusive, it is required that 
E p E ,  = 0. Then p(E,nE,) = 0, simply because p(0)  = 0. In two independent events, it 
is required that the probability of one event to be zero when p(E,nE2) =p(E,)p(E,) = 0 .  
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D 

RULES OF COUNTING 

Multiplication Principle. The multiplication principle is stated as follows: 

If a set A ,  contains n,  objects, a set A,  contains n, objects, ..., and a set A ,  contains nk 
objects, the number of ways to choose one object tiom each of the k sets is n, x n, x . . . x nk 

Permutation. A permutation is the act or process of changing the order of a set of objects 
and to arrange these objects in all possible ways, that is: 

A permutation of n objects is an arrangement of these objects in a definite order and 
without repetition 

Thus, the first rule for permutations can be written as follows: 

The number of permutations of a set with n distinct objects is 
l(2) ...( n -  l ) (n)  = n! 

Often the interest is in the number of ways of choosing n objects taken k at a 
time, rather than all possible ways in choosing n objects. Then, the second rule of 
permutations is as follows: 

The number of permutations in a set of n distinct objects taken k at a time is 
n! 

Pn.k = 

Often, not all the objects that are being permuted need to be distinguished. The 
following is the third rule of permutations: 

For a set of n = n,  +n2 + ... +nk objects, where the objects within n1,n2, ... n are ’. k 
indistinguishable, the number of Permutations is the multinomial coefficient 

Combinations. There are many cases in which the ordering of objects is not important. 
For example, with three objects that can be selected from the set { 1,2,3,4) ,  there are 24 
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permutations of objects taken three at a time. There are more permutations than subsets 
with objects taken three at a time, because permutations distinguish the ordering of 
objects, while subsets do not. Therefore 

1 2 3 a n d 3 2 1  

are different permutations of { 1,2,3,4)  with objects taken three at a time, while the sets 

are not different because they have the same objects. Thus, the following definition applies 
here: 

A subset of k objects chosen from a set of n objects is called a combination of the n 
objects taken k at a time. 

The rule of combination is the number ofpermutations divided by k! and is stated 
as follows: 

The number of combinations of n distinct objects taken k at a time is 
n.  qk  = __I_-- 

Often the notation is used in place of Cn,t is 

k!(n - k)! 
. This notation is known as the 
the expansion of the binomial binomial symbol and usually is used here in 

expression (a + b)”. 



PROBABILITY DISTRIBUTIONS 

The Binomial Distribution 

In many experiments, the primary interest is whether a certain outcome does or 
does not occur. These are experiments for which there are only two possible outcomes, 
success and failure. On a one trial experiment, the probability of success may be called 
p and the probability of hilure q. Then 

Probability of success is p 
Probability of failure is q = 1 - p 

Thus, the sample space would have only two elementary events. If the above experiment 
is repeated twice, the sample space will have four elementary events, that is 22. If the 
outcome of the second trial is not affected by the outcome of the first trial, independence 
allows the multiplication of probabilities. Then, the probabilities of the four elementary 
events would be 

success, success = pi  
success, failure = pq 
failure, success = qp 
failure, failure = q2 

By adding up the above probabilities, the following expression is obtained: 

p L p q + q p + q 2  = @+q)2 = 1 

If the experiment is repeated three times, the sample space would have eight outcomes, 
that is 23. Then 

p3+3pzq+3pq2+q3 = @+q)3 = 1 

If the experiment with two outcomes is repeated n times, then it will be 2" possible 
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outcomes in the sample space. Thus 

n! 
x!(n  -x)!  

where (:) = for x = 1,2 ,..., n. 

Each element of the above binomial is a binomialprobability f'(x=X). 
Experiments for which there are only two possible outcomes are called binomial 
experiments or Bernoulli experiments and the variable X is called a binomial random 
variable. Thus, the following deftnition applies here: 

The binomial probability P(X=x) of having x successes in n independent 
trials of a binomial experiment is given by expression 

P(X=x) = f i x )  = ( ; ) p , n - x  

Given the number of trials n, the number of successes x and the probability of success 
of an outcome p ,  the binomial probability can also be written as 

Individual terms of the binomial distribution can be found in standard mathematical 
tables. 

random variable X are given by the following expressions: 
The expected value of the mean E(X) and the variance o2 of the binomial 

= nP 
u2 = npq = p(1 -p )  

where n is the number of trials, p is the probability of success and q is the probability of 
failure. 
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The Multinomial Distribution 

The binomial distribution was shown to represent repeated trials of an 
experiment with two random variables, X, and X, with probabilities p 1  = P(X, = x , )  and 
p ,  = P(X, = x,) . Then, expression 

represents the set of all the outcomes in n trials. If x, is a success, then x2 must be a 
failure. For n trials, it will be nl outcomes of type XI and n2 outcomes of type X,. 
Therefore, x1 + x2 = n. 

Each element ofthe above sum is a binomial probability P(X, = x I ,  X, = x,), such 
that 

n! p; lp;  P(X, =x*,x2 =x2) = f (x * ,x2 )  = - 
X,!X,! 

This approach can be generalized to experiments with m possible types of 
outcomes. Let X,,X,, ..., X, be the different types of outcomes of an experimental trial 
and p ,  = P(X, =x,), p2 = P(X, =x,), . . . ,p, = P(X, =x,) be the probabilities of these 
outcomes where p ,  +p2 + ... + p ,  = 1 . If the experiment with m random variables is 
repeated n times, then the total possible number of outcomes is represented by the sum 

n! * I  x2 xm 
P I  P Z  ... P m  (PI +p2 +...+p,>" = 2 

0 n,!  n,! ... n,! 

where x, +x2 + ... +x, = n is thetotalnumber ofoutcomes. Each element oftheabovesum 
is a multinomial probability P(Xl = x,, X, = x,, ..., X, = xm) and XI, X2, ..., X, are the 
multinomial random variables. The joint distribution of these variables is called the 
multinomial distribution. Thus, the following definition applies here: 

The multinomial probability P(Xl = x,, X, = x,, ..., X, = x,) is given by the expression 
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where ( ] = 
n! 

n,,n2 ,...,nm n l !  n2! ... nm! 

As expected, the mean p and the variance o2 of the multinomial distribution are 
the same as in the binomial distribution, but defined over each oftheX, random variables, 
that is 

where n is the number of trials and p,  is the probability of the outcome X,. 

The Geometric Distribution 

The binomial probability P(X = x) was shown to be 

which is the probability of x successes in n trials of the experiment, where p is the 
probability of a success and q the probability of a failure. If the binomial experiment is 
performed n times, until the first success occurs, then the above formula becomes 

P(X=l)  = ( q)pqX-I = p 4 - l  

Note that the random variableXbecomes now the number of trials required for 
the first success to occur and not the number of successes. Then, the random variable X 
is said to have a geometric distribution and can be any positive integer value. The 
geometric probability function takes the following form and definition: 

The geometric probability P(X=x) of having a success in x trials is given by 
the expression Ax) = pqx-’  

Since the random variablexis any positive integer, the sample space is infinite, 

The cumulative geometric probubility P(X2x) is the sum 
with range Sr = {x: xel’) where I+ is the set of positive integers. 
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F(x) = C p q x - 1  = 
0 

PC qx- '  
0 

= p( l  + q + q Z + . . . + q n  ) 

Note that this sum is a geometric series, which gives the name to the geometric 
distribution. Note also that 

lim (1 - 4 " )  = 1 
n-m 

The expected number of trials for the first success and the variance for the 
geometric distribution are the following expressions: 

1 v = -  
P 

wherep and q are the probabilities of success and of failure. 

The Poisson Distribution 

For experiments with probabilities p for success and q = 1 - p for failure, the 
sample size is often too large or undefined and the probability of success is very small. In 
such situations, applying the binomial distribution may not be convenient or even feasible. 
To avoid these problems, an approximation to the binomial distribution, called the 
Poisson distribution, has been developed. The Poisson distribution can be used whenever 
n is too large and p is too small and is defined as follows: 

The Poisson probability P(X=x) of having a success x is given by the expression 

f i x )  = - e e u  vx 
X! 
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where p = np > 0 is the mean. 

The expected value of the mean for the Poisson distribution was already defined 
as p = np where n is large andp is small. Sincep is small, then q = 1 -p is  approximately 
equal to 1. The variance in the binomial distribution is u2 = npq. Since q is approximately 
1, then npq is approximately equal to np and the variance in the Poisson distribution 
becomes equal to np, which is also the mean p. Thus 

A classical example of a Poisson distribution is the radioactive decay. Given the 
following definitions 

n the number of radioactive atoms 
p the small probability of decaying during a I-second period 
p = np the expected number of decays per second 
t the time in seconds 

then the probability distribution is 

where pt is the expected number of decays in f seconds. 

The Normal Curve 

The normal distribution may be defined as an approximation to the binomial 
distribution. As the number n of trials increases, the area under the histograms approaches 
the area under a bell shaped curve. Then, i fp  is success and q is failure, as n increases, 
the binomial probability hnction 

approaches the density function 
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called the normal density function. 

definition applies: 
Note that npq is the variance u2 and np is the mean p. Then, the following 

The random variable X is said to be normally distributed on the range - ~0 <x <m,  

if its density function is f i x )  = - ' e -(x-p)212a2, where p is the mean and u2 
U @ i  

is the standard deviation 

The graph of the normal curve is shown in Fig. E 1 .  Note that the mean x = p is 
the center of symmetry of the curve and that the inflection points occur at x = p - u and 
at U = p  + u .  

v-a P P+U X 
Figure €7 

The random variable X has the following distribution function: 

Of particular importance is the normal curve with o = 1 and p = 0, called 
standard normal distribution or unit normal distribution function. By defining a random 
variable Z, such that z = (x - p)/cz, the normal density function is simplified to the 
following definition: 



Probability Distributions 417 

Given the random variable Z, the standard normal density function is determined by 

1 -2212 the expression f(z) = - 
fi 

By avoiding the parameters p and u, the mathematical manipulation of the normal 
distribution function is made more practical. Tables for the standardized random variable 
2 are available. 

The random variable Z has the following standard distribution function: 

ds 1 F(z) = P ( X < p + 0 2 )  = P(Z<Z) = 
- s I, -s212 @ -  

where s = 0.I - p)/o. This means that, if the random variable Z has a standard normal 
distribution, then X = p + 02 is normally distributed with mean p and variance u2. Thus, 
tables of probability values ofthe standard density and distribution functions can be used 
to obtain probabilities for normal random variables with any mean p and variance u'. 

Confidence Intervals 

In statistical analysis, measuring the deviation of an outcome from the expected 
mean as standard deviation units, is often convenient. Ifthe variable is the sample mean, 
it is possible to defme a random variable 'T", such that 

Note that "t" is the deviation of the sample mean fkom that of the population mean, 
measured as standard error units for n observations. The sampling distribution of the 
random variable 'T" is known as Student's "t" distribution. Like the normal, the "t" 
distribution is symmetrical about the mean. In large samples it is essentially normal, with 
p = 0 and u = 1. However, for samples of less than 30 the difference becomes evident, the 
"t" distribution being more peaking at the center than the normal. Note also that p is 
seldom known. Without knowing p, 'Y" cannot be calculated, but tables of the "t" 
distribution for the required degrees of fkeedom are available. Thus, the actuaI ?" is 
expected to lie between the negative and the positive tails of the "t" distribution. For 
example, if the value to,os is chosen, then 
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Upon rearranging, the above expression becomes 

that is, the probability that the above interval will include p is 0.95 . 

experiment. If "t" is redefined, such that 
A major application of this analysis is determining the sample size of an 

where d is the least significant difference that the experiment is expected to detect. Then 

where s is the sample standard deviation, "t" is a tabulated value and n is the sample size. 
Note that, as a starting value, "t" is not known. Thus, it takes some manipulation to 
converge to the value n of the sample size. 



MOST FREQUENTLY USED 
STATISTICAL FORMULAS 

Random variable: X = { (e, x); e ' S }  

Discrete probability function: f = {(x, P(X=x));  x€sr) 

Discrete distribution function: F = {(x, P(X2 x)); x€Sr) 

Continuous distribution function: F = {(x, P(xIX)); -m<X<w} 

Density function: Ax) = - F(x) 

Expected value: E(x) = p = 

d 

h m  

xf(xi> 
1 "  l n  

m i = l  

*Variance: a2 = (xi - p)xxi) = - c (xi - p)2rj = -c (x, - pj2, where n 
i= I y1 j - 1  J = 1  

is the number of cases 

Standarddeviation: (5 = @ 

* Standard error: O,, = (5/h 
Sample mean: X = (xl +x2 +... +xJu = (xI rl 

1 
Sample variance: s2 = - 2 (xj - 9 2  = 

n-1 j=1 

Sample standard deviation: s = @ 

Sample standard error: s,- = df i  

Coefficient of Variation: C = (s/ X)100 
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The X distribution test for E expected and 0 observed values: 

(0- E)2  
x ’ = z  E 

- 
d 

Comparison between two means, paired observations: t = - 
Sd 

2, - x2 
Comparison between two means, not paired observations: t = 4- 

z v  
C X ’  

The regression coefficient: b = - 

The multiple regression coefficient: 6, = C# X,Y , where 

Sum of squares due to regression: C j ;  = C bl C X,Y 

Sum of squares not due to regression: x d 2  = x y2  - y2 

Mean square deviation from regression for p independent variables: 

2 d2  
SY 1.2, . p  = c - n - p  

Sample standard deviation of a regression coefficient: sb, = sr 12 

b -  b, 
’b  

Comparison between a regression coefficient and hypothetical value b, : t = - 
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Comparison between a regression coefficient of two different treatments: 

t =  
4 - b, 

c 3; + s;, 

r 2 2  
L Y  Coefficient of determination: R2 = - r 172 

PU-  RZ) 
n - p - 1  

Coefficient of determination adjusted for sample size: R," = R2 - 

Coefficient ofdetermination when a new independent variable is entered in the equation: 

RchmXe = R2 - Rf 

where R j  is the coefficient of determination when all independent variables except the 

jth are in the equation 

Comparison between two coefficients of determination: 

Rc;a"ge(n - P - 1) 

d l -  R 2 )  
Fchrmge = 

where q is the number of variables entered at this step 
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TABLE OF LAPLACE TRANSFORMS 

Definition of the Laplace Transform 

L [ f ( t ) ]  = F(s)  = $e-"f(t)dt  

Selected Properties of the Laplace Transform 

I F(s I a) 

aF (as) I 
F(s+ a )  I e-"'f ( t )  

F(s -  a )  I 

I s2F(s) - sf (0) - f '(0) I f " ( t )  

]s"F(s) - s"-'f(0) - s"-"'(0)- . f .- f" ' (0)  I f " ( t )  

F" (s) 
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~ ~~ 

e - -zS 

1 - 
S 

1 

423 

~ ~~~~ -~ 

J(t - z) delayed impulse 

l(t) unit step 

t unit ramp 

F(s) / s 

2 - 
s3 

1 
- ~ 1 =  1,2,3, ... 
Sn 

lim sF(s) 
s+ m 

t2 

t"-' 

(n- l)! 

lim sF( s) 
S+ 0 

I e-""F(s) 

Some Useful Laplace Transform Pairs 

limf(t) = f ( 0 ' )  
t-+O 

lim f ( t )  = f ( m )  
t+aJ 

1 J ( t )  unit impulse 
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I 

S 
l(t - z) delayed step 

1 
s t a  

-of e 

n = 1,2,3,.. 
1 

s - a)n 

1 

s(s t a )  

(s+ a)(s t b) 

1 
-(1- e-") 
a 

1 

s(s t a)(s t b) 
1 be-"' ae-bt 

ab b-a b-a 
-( 1- -t -1 

1 

(s t a)(s t b)(s t c) 
e-" e- bt e-& 

t t 
( b -  a)(c- a )  (a -  b)c- b) (a -  c)b- c)  

S a 
- 1 - -  

s t a  s t a  
__- 

- ot 6 ( t ) -  e 

S 

(s t a)(s t b) 
1 

-(ae-" - be-bi) 
a -  b 

I 

s2(s t a )  
t 1  

a a2 
---(I- p) 

1 

s3(s t a )  
t 2  t 1 
- - 2t 7 ( 1 -  P)  
2a a 
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1 1 
-(ed t e-~‘) 
2a s2 - a2 

S 1 
2 
- (e* - e-* 2 2  s - a  

S 
(1 - at)e-at 

(s t a)2 

1 
-(e* t e-* - 2) 
2a2 

1 

s(s’ - 2) 

sin at a 
s2 t a2 

n cos at J 

s2 t a2 

1 sinat - at cosat 
2a3 (s2 t 

S t sin at 

(s2 t 2a 

sin at t at cosat SL 

2a (2 t a’)’ 

2 2  s - a  t cos at 

e-br sinat a 
(st b)2 t a2 
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a 
(s- b)2 t a2 

s+  a 

(st b)2 t a2 

s t a  

(s- b)* t a’ 

s3 

(s2 t a2I2 

ebt sinat 

- bt e cosat 

ebr cosat 

at sinat 

2 
cosat - 



TABLE OF Z TRANSFORMS 

Definition of The Z Transform 

Selected Properties of The Z Transform 

z2F(z) - z2 f (0) t-------------- znF(z) - z " f ( 0 )  - z"-'f( 1)- - - .- z f (n  - 1) 

I z- F(z)  

fin) n=1,2, ... 
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I An) n=1,2, ... 

Some Useful 2 Transform Pairs 

I 1 unit step sequence 

z-" 1 at n, 0 elsewhere 

z 
z -  1 

z 
( 2 -  1)* 

n unit ramp sequence 

z(z t 1) 
( z -  113 

n2 

z 
z -  e-a 

Z" 

( 2 -  1)" 

( n t  l)(nt 2) . . . (nt  k -  1) 
(n- l)! 

Z 

z -  a 
U" 

az 
( z -  a)2 

na" 

Z" 

(2 - a)" 

(n+ I)(nt 2).-.(n t k -  1) 

(n- I)! 
a" 
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1 
2 2  z - a  

z 
(z - a)(z - 

1 

(2- a)(z- b) 

z 

(z - a)(z - b)  

z(1- a)  
(z - a)(z - b) 

zsina 
z2 - 2zcosa t 1 

z(z- cosa) 
z2 - 2zcosa t I 

z 

z t a  

a" t (-a)" 
2a2 

an n 1 

(a-  I ) ~  I -  a (I-  aI2 +-- 

0 for n = 0 

1 
-(an-* - for n>o 
a - b  

1 

a - b  
--(a" - b") 

1- an 

sin an 

cos an 

an cosm 



THE DELTA FUNCTION 

To define and understand the delta function, it is first necessary to define the unit step 
function represented by the expression 

The unit impulse function or delta function 6( t )  is defined as follows: 

1 A t +  0' 
S ( t )  = 

The mathematical interpretation is that of a function representing a spike whose ordinate 
approaches infinity and the width of the independent variable approaches zero. The area 
under the curve is equal to one, that is 

rm6(t)dt = 1 

meaning that a unit of input is compressed to an infinitesimally small duration of time. 
Note that the delta function has a value only at t = 0. The following is the Laplace 
transform of the delta function: 

L[S( t ) ]  = %e"S(t)dt = 1 

Then, L-'[II = s ( t ) .  
Expression 6(t  - z) is called a delayed impulse, such that 
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