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xiii

Preface

This book provides a comprehensive overview of mathematical programming models and
their applications to important problems confronting agricultural, environmental, and resource
economists. Mathematical programming, which includes linear and nonlinear programming
models, is one of the most powerful and widely used problem-solving approaches in quan-
titative methods. It is used by researchers in businesses, governments, nongovernmental
organizations, and academics to address problems involving the efficient allocation of scarce
resources.

Unlike most mathematical programming books, the principal focus of this book is on
applications of these techniques and models to the fields of agricultural, environmental,
and resource economics. While applied to these important sectors of the economy, the
models described here are also useful to other areas of applied economics. The three fun-
damental goals of the book are to provide the reader with (1) a level of background suffi-
cient to apply mathematical programming techniques to real-world policy and business to
conduct solid research and analysis; (2) a variety of applications of mathematical pro-
gramming to important problems in the areas of agricultural, environmental, and resource
economics; and (3) a firm foundation for preparation to more advanced, Ph.D.-level books
on linear and nonlinear programming.

This book is designed to be an introductory book in applied mathematical programming.
The reader is not required to have any formal background or training in this area. All tech-
niques covered in this book are based on this assumption. Unlike more theoretical mathe-
matical programming books, this book is written at a more basic mathematical level, which
consists primarily of algebraic and geometric concepts, but a few of the later chapters include
some basic calculus. The book is geared towards upper-level undergraduate and M.S-level
graduate students majoring in economics, agricultural economics, environmental and resource
economics, applied economics, business, and operations research. The book will also be use-
ful to undergraduate and graduate students majoring in agricultural and food disciplines,
such as food science, animal science, agronomy, and veterinarian medicine, as well as stu-
dents majoring in environmental and resource studies.

Despite its introductory nature, the book places significant emphasis on real-world
applications of mathematical programming to decision problems. A wide array of exam-
ples and case studies are used to convey the various programming techniques available to
decision analysts. Readers will learn (1) how to set up programming models of real-world
problems; (2) how to solve them graphically, algebraically, computationally, and with
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computer software; (3) how to interpret the results; (4) how to validate the model; (5) how
to conduct sensitivity analysis; and (6) how to judge and verify the model’s performance
relative to the real-world decision process it depicts. Upon completing this book, students
should be able to use mathematical programming in independent applied research, includ-
ing applications in academic, business, nonprofit, and governmental research.

While the major focus is on applications, this book also integrates neoclassical eco-
nomic theory with applied examples. The problems will almost entirely consist of areas
within microeconomic theory, primarily theory of the firm, as well as applications of con-
sumer theory, welfare economics, and environmental and resource economics. Hence, the
book is a nice supplement to many courses in applied economics.

Because the overall goal of this book is to demonstrate how to use mathematical pro-
gramming in real-world problem solving, the book provides many case studies from pub-
lished research. Each chapter includes up to three case studies involving the use of
mathematical programming in agricultural, environmental, and resource economics. The
reader will be exposed to a thorough range of interesting applications, and teachers in agri-
cultural and applied economics will find the inclusions of these case studies quite helpful
in illustrating the power behind this quantitative method.

MATHEMATICAL PROGRAMMING

Mathematical programming is a branch of quantitative methods concerned with finding
optimal ways to achieve a certain objective when faced with constraints on the ways the
objective is achieved. For example, a farm enterprise is interested in choosing a mix of crops
to grow and/or livestock raise that will maximize profits while satisfying resource restric-
tions it faces on land, labor, machinery, animal numbers, and capital. An example from
environmental economics is a manufacturing firm desiring to maximize profits while meet-
ing constraints on carbon dioxide emissions. Mathematical programming models feature
several common elements, including (1) an objective to be maximized or minimized; (2)
activities or decision variables, which are the ways to carry out the objective; (3) objective
function coefficients, which translate an overall numeric value to the objective through
interaction with the values of the activities; and (4) a set of constraints that model the
restrictions that the decision maker must operate within. Mathematical programming prob-
lems are modeled as a set of equations, linear or nonlinear, that define the decision-making
environment.

Mathematical programming has its roots in the 1940s, when solution procedures for
linear programming (LP) were developed. Linear programming was used extensively by
the U.S. military during World War II, primarily to minimize various costs associated
with the war effort. Techniques for solving LP problems were invented during this period
by Leonid Kantorovich (LP problem), George Danzig (simplex method), and John Von
Neumann (duality). After the War, mathematical programming techniques and applica-
tions were rapidly adopted in the private sector, academia, and government as a quantita-
tive technique to handle a huge variety of problems. Today, it is one of the most widely
used quantitative approaches in decision analysis.

THE USE OF THE RISK SOLVER PLATFORM FOR EDUCATION

All of the examples in this textbook have been developed as Microsoft Excel spreadsheets
and can be solved using the Risk Solver Platform for Education (generally referred to in
this textbook as Solver). In cooperation with Frontline Systems Inc., the developers of
Solver, this program has been made available for free to students who purchase this book.

xiv PREFACE
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PREFACE xv

We decided to use Solver in this textbook because we have found that our students appre-
ciated having a program that is user-friendly and works within the context of Excel spread-
sheets. Therefore, students can take advantage of a variety of Excel functions in the
development of their models and spreadsheet features, such as a variety of graphing options
in the presentation of their results. Furthermore, the skills that students learn in Excel
through the development of models for Solver can be transferred to other data analysis
activities within Excel. An additional advantage of Solver is that it can be incorporated into
customized programs within Excel through the use of Visual Basic for Applications (VBA).
Students interested in this topic may want to consult VBA for Modelers: Developing
Decision Support Systems with Microsoft Office Excel by S. Christian Albright.

We have observed that students find using Solver relatively easy as it builds upon skills they
have already developed with Excel, and they do not have to learn a program-specific pro-
gramming language. Students also tend to appreciate Solver’s interactive visual menus. We
recommend that instructors allow for some time at the beginning of the course for their stu-
dents to get the Risk Solver for Education program installed on their personal computers—as
well as having the program installed on classroom and laboratory computers, if applicable—
before assigning exercises that require the program. This can be especially important if some
students decide not to purchase the book until after attending a couple of classes.

Throughout the book, we have provided tips on how to use the tools of Excel to enhance
model development and how to develop models that are easily interpreted by others.
Instructors reviewing problems will appreciate the well-designed models that make the
identification of problems straightforward. Readers interested in further discussions of
related topics may want to consult books dedicated to this topic, such as The Art of Modeling
with Spreadsheets: Management Science, Spreadsheet Engineering, and Modeling Craft
by Stephen G. Powell and Kenneth R. Baker.

We note that some instructors may have more experience, and therefore comfort, with
other mathematical programs, such as LINDO/LINGO, GAMS, AMPL, AIMMS, and
MPL. Each one of these programs has its own strengths and weaknesses and we appre-
ciate the challenges that come with learning new software. Certainly, users not previ-
ously accustomed to Solver will experience some initial challenges as they learn to
navigate around its interface while setting the objective function, decision variables,
constraints, Solver engine, and related parameters. To help instructors with this transi-
tion, we have developed supplemental materials that include the initial problem, a solved
version of the problem, and related sensitivity analysis for every problem outlined in the
book. These supplemental materials are provided as instructional aids to instructors and
students and are available at www.wiley.com/college/kaiser.

One of the traditional advantages of stand-alone mathematical programs has been the
ability to solve large-scale problems, especially when constraints are indexed over many
different dimensions. The magnitude of this problem has decreased in recent years, and as
computer power continues to grow, we encourage students and instructors to review the cur-
rent editions of Frontline’s Solver products (www.solver.com). Some of these Solvers can
handle larger and more complex problems, not only in terms of the number of variables and
constraints, but also in the incorporation of other important techniques from operations
research and management science. While these advanced products come with an additional
cost, Frontline traditionally has offered educational discounts.

ORGANIZATION OF THE BOOK

Since mathematical programming consists of linear and nonlinear programming, this book is
divided into two major sections. Part 1 consists of six chapters involving LP and its
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applications. Part 2 features seven chapters involving nonlinear programming (NLP) models
or linear models that relax the standard assumptions of LP.

In Part 1, the first three chapters provide a thorough overview of LP concepts, including
the basic elements of the LP model, standard assumptions, tips on formulating an LP prob-
lem, sensitivity analysis, duality, and solving LP models with graphs, algebra, and Solver.
While entire books have been written on these topics, Chapters 1, 2, and 3 provide enough
detail and sufficient background on LP concepts to give the reader an ample foundation for
applying this method to real-world problem solving. Instructors wishing to de-emphasize
the theoretical concepts of LP may want to select sections from these chapters to cover in
order to emphasize the remaining application chapters.

Chapters 4, 5, and 6 are concerned with applications of LP in agricultural, environmen-
tal, and resource economics. Chapter 4 examines the use of LP for farm-level decision
making, and includes analyses of static and dynamic models for grain and livestock farm-
ers, order preserving sequencing constraints, and multiperiod models. This chapter also
features two research applications of farm models.

Chapter 5 examines the use of network and transportation LP models in the agricultural,
food, and resources sector. The chapter also illustrates how to model product transforma-
tion problems. These models are extremely useful in developing efficient networks to min-
imize flows of commodities from a research application of a large transshipment model
with product transformation is included in this chapter.

Chapter 6 is devoted to environmental and natural resource economic LP models.
Popular models applied to problems in environmental and resource economics are pre-
sented in this chapter including application to forestry, land use planning, water conserva-
tion, and game management. In addition, a research case study looks at designing
migratory corridors for grizzly bears.

Part 2 features seven chapters that cover applications of nonlinear and more advanced
LP models. Chapter 7 covers integer and binary programming models. Integer program-
ming (IP) is basically the same as LP, with the exception that some or all variables are
restricted to be integers. In this chapter, the basic concepts underlying IP are presented.
Specifically, the most efficient IP and general solution procedure to date, known as 
the branch-and-bound method, is examined. This is followed by several important appli-
cations of binary programming to the conservation of agricultural and ecologically valu-
able lands.

Chapter 8 provides an introduction into NLP problems that can be solved using calcu-
lus. This chapter looks at unconstrained and constrained optimization and shows how
some nonlinear problems can be solved using Solver. This chapter is intended to give a
conceptual foundation for NLP models. The chapter concludes by providing an applica-
tion to fishery management and summarizing two research examples of NLP, one from
agricultural economics and the other from environmental economics.

Chapter 9 continues this examination of nonlinear optimization and discusses a variety
of techniques available in Solver that can be used for these problems. Methods include the
SOCP Barrier Solver, Evolutionary Solver, and Interval Global Solver. Sensitivity analy-
sis of nonlinear optimization is discussed in the context of a forest example and two
research applications are presented. The first example is related to agricultural economics,
and the second comes from environmental economics.

Chapter 10, which deals with risk programming models, relaxes the assumption of
parameter certainty. Considerable evidence exists that suggests that farmers adjust their
farm plans according to their risk posture, and that profit-maximizing models, which
ignore risk preferences by farmers, have failed to give accurate normative or positive
economic results when applied to many farming situations. Thus, in order to properly
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study most farm-level decision-making problems, one must formulate the decision envi-
ronment in such a way that risk and uncertainty is a critical component in the model. This
chapter presents several risk programming models that have been extensively used in
food and agricultural applications, including quadratic risk programming (i.e., mean-
variance analysis), minimization of absolute deviations (MOTAD), target-MOTAD,
chance-constrained programming, and discrete sequential programming. The chapter
concludes with three research applications of risk programming in agricultural and envi-
ronmental economics. This chapter is one of the more advanced in terms of mathemati-
cal complexities, and it is geared more toward graduate students than undergraduate
students. Therefore, instructors of undergraduate courses may want to selectively use
sections in this chapter.

Chapter 11 focuses on price endogenous programming models, which relax the
assumption that price is a constant parameter. When one moves from the individual-firm
level to the market level, the assumption of constant price is no longer valid. At the mar-
ket level, price is determined by the interaction of market supply (the collection of all
individual firms’ supply curves in the market) and market demand (the collection of all
individual consumers’ demand curves in the market). Consequently, if one is interested
in modeling a market or sector rather than an individual firm, then a “price endogenous”
or “sector programming” model is necessary. Price endogenous models are also neces-
sary at the firm level if the firm has some degree of market power because in such cases,
the firm can influence price by altering its output. Several popular models are presented
to illustrate price endogenous programming, along with two research applications in
agricultural and environmental economics.

Chapter 12 examines goal programming (GP) models, which is a technique that relaxes
the sole objective assumption. Under this approach, one can specify multiple goals or tar-
gets for the decision maker and minimize the deviations from not achieving each goal.
Goal programming has been used extensively in environmental, natural resource, and agri-
cultural economics as a planning tool. There have been numerous applications in forestry
management, land use planning, pollution mitigation, and farm planning. Numerous exam-
ples of GP are presented, along with two research applications: one relating to parasite
control and one to forest conservation.

Chapter 13 examines the technique of dynamic programming (DP). Dynamic programming
is a method used to solve large and complicated problems by splitting them up into smaller
subproblems that are both easier to solve and yield the same optimal solution as the original
large problem. Three examples of the DP solution procedure are presented. In addition, two
research applications from agricultural economics are summarized.

The book is intended for both upper-level undergraduate as well as introductory gradu-
ate courses in mathematical programming. Not all chapters or parts of chapters are
intended for undergraduate students, and each instructor should use discretion in choosing
which material to cover. The book is fairly comprehensive in addressing all the important
mathematical programming topics typically covered in introductory courses. Indeed, there
is probably more material in this book than can be covered in a single semester course. We
intended this to be the case as it offers greater flexibility to the instructor to cover the top-
ics the teacher prefers.

EXERCISES

We believe that students learn how to use mathematical programming best when they have
ample opportunity to practice the techniques presented in the chapters as part of assigned
problem sets. Therefore, we have developed approximately 25 to 30 exercises, for each
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chapter. Additionally, we have developed answers to the exercises, which are available to
instructors at www.wiley.com/college/kaiser. Instructors will want to review the exercises
and the answers before assigning them to their students as the difficulty of the questions
varies. Generally, we have organized the exercises from easiest to hardest. However, we
recognize that an exercise that might be relatively easy for us may be difficult for some
students, and vice-versa, as some students are undoubtedly better at using spreadsheets and
Solver than us.
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2

1
Introductory Concepts and the
Graphical Approach to Linear

Programming

The focus of this book is on applications of optimization models for the fields of agricul-
tural, environmental, and resource economics. Before such techniques can be applied to
real-world problems, an elementary foundation needs to be established on basic concepts,
definitions, and approaches of mathematical programming in order for you to fully under-
stand the usefulness and limitations of mathematical programming. This is not a book on
theory, so the basics established here are intended to supplement the applications that fol-
low, which are the real focus of the book. Readers interested in obtaining a broader under-
standing of theoretical concepts of linear programming (LP) may wish to consult a book
in LP theory. In this and the next two chapters, we concentrate on building this foundation
for LP models, and in later chapters we develop a similar set of introductory concepts for
nonlinear models.

There are several objectives of this chapter. The first objective is to define LP, explain
how it is used, and outline the assumptions necessary to apply LP to agricultural, envi-
ronmental, and resource economics problems. The second objective is to describe how
to set up simple decision problems as LP problems, a task that is often more of an art
than a science. The third objective of this chapter is to demonstrate how to solve two
variable maximization and minimization LP problems using graph paper and a straight
edge. The reader will also see how to use simple algebra to verify whether solutions
obtained via the graphical method are indeed correct. Finally, the last objective is to dis-
cuss the notion of sensitivity analysis. Sensitivity analysis involves examining how sen-
sitive the solution to a problem is with respect to the problem’s parameters. The
discussion in this chapter will focus on graphical techniques to accomplish various types
of sensitivity analyses.

Linear programming is a category of mathematical programming models. One way to
categorize mathematical programming is to divide it into two classes of models: linear and
nonlinear programming. Nonlinear programming (NLP) is less restrictive than LP, in that,
equations may have nonlinear, as well as linear forms. The majority of the chapters that
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follow will deal exclusively with LP models, since these models represent the majority of
mathematical programming models.

Linear programming is a widely used problem-solving approach in quantitative meth-
ods. The LP problem is to determine the optimal value of a linear function (which
defines the objectives of the problem) subject to a set of linear constraints (which defines
the limits or decision environment of the problem). The term optimal, in this context,
means minimizing or maximizing a given objective, for instance, maximizing profit, or
minimizing costs. Linear programming models are used to help people and organizations
make decisions. Decisions involve a process of formulating a set of alternatives to com-
plete a goal, weighing each alternative based on some choice criterion, and selecting
among these alternatives to accomplish this goal.

It should be emphasized that linear (and nonlinear) programming models are decision
models or aids, not the means and ends for making the decision in question. Like all deci-
sion aids, the LP technique is there to assist people in their decision-making process. The
management skills of the decision maker, which include qualitative as well as quantitative
abilities, are the key attributes of the basis for one’s decision. Nevertheless, quantitative tech-
niques like LP have become powerful tools which are often used to improve managerial 
decision making.

1.1 APPLICATIONS OF LINEAR PROGRAMMING IN AGRICULTURAL,
ENVIRONMENTAL, AND RESOURCE ECONOMICS

Linear programming has been used in a wide variety of applications of decision analysis.
To provide a glimpse of such applications, which is by no means exhaustive, consider the
following areas.

1. The Diet Problem. The problem is to determine the least-cost diet for a person, based
on food prices, subject to the person receiving an adequate diet. The solution to this
problem gives the combination of foods that a person should purchase to minimize
food expenditures. Such applications are useful in developing countries, where food
is scarce and starvation and malnutrition are major problems, as well as in food man-
ufacturing and farming, where individuals are interested in minimizing the cost of pro-
ducing food. This problem also applies to livestock producers wishing to minimize
feed costs of livestock production.

2. The Carbon Abatement Problem. The problem is to determine the least-cost way to
reduce carbon emissions by a firm in response to new legislation against global warm-
ing. The solution to this problem provides the combination of carbon-reducing activ-
ities for the firm to follow in a way that achieves the targeted reductions mandated by
the law.

3. The Product Mix Problem. The problem is to determine the product mix (combina-
tion of outputs to be produced and sold), given limited resources, that maximizes prof-
its, gross revenue, cash flow, net revenue, or utility for a firm. For example, a farmer
needs to determine how to best allocate land among crops so that profits are maxi-
mized, given the level of control over all factors of production: for instance, the farmer
owns and controls 600 acres of land, has two sons to supply family labor, owns one
tractor, and so on. Small and large businesses often use LP to help determine product
mixes.

4. The Portfolio Problem. The problem is to allocate a fixed amount of a resource (e.g.,
corn harvest) among alternative prospects so as to maximize the returns or minimize the
risk from marketing the crop. For instance, corn could be sold at harvest, forward
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4 PART 1 LINEAR PROGRAMMING

marketed, stored and sold in future months, or hedged and sold on the futures market.
The farmer’s objective is to either maximize profit, minimize risk, or some combination
of the two. Banks, investment institutions, private investors, universities, state and fed-
eral governments, and others also use LP to assist in their portfolio decision process.

5. The Transportation Problem. The problem is to determine how to move a product,
such as oranges, produced on farms located in different geographic locations to dif-
ferent demand destinations in the most cost-efficient (least-expensive transportation
costs) way. Linear programming applications for this class of problem are common.

6. The Allocation Problem. The problem is to determine how to allocate scarce resources
among competing projects. For example, a conservation organization seeks to maximize
the ecosystem services provided in an ecoregion, but has to select which conservation
projects to fund. Given the different outcomes provided by the projects and the different
objectives and priorities of the funding sources, binary linear programming can be
used to determine which services should be used.

7. Capital Budgeting Problem. The problem is to invest capital, which is finite (scarce),
to alternative projects. What is capital? Capital can mean money, or it can mean man-
made resources, such as machinery. Business school types often define capital as some
sort of money or financial measure, such as cash, stocks, bonds, savings, and so on.
Economists generally define capital more broadly to include tools, equipments, facto-
ries, machinery, and all man-made items used to produce goods and services. Hence,
the uses of capital budgeting may include monetary investments among alternative proj-
ects or the allocation of man-made aids to production to alternative projects.

All of these problems have four general properties that are inherent in any LP model.
These properties are:

1. The objective is to be optimized by either maximization or minimization.

2. There are constraints restricting the activities that are required to carry out the 
objective.

3. All equations are linear.

4. The activities (or decision variables) are generally non-negative.

To illustrate these properties, consider the following example. Suppose that a grain
farmer’s objective is to maximize profit by producing two types of crops: wheat and
sorghum. The farmer knows that the net profit of producing wheat is $135 per acre, while
the net profit of producing sorghum is $100 per acre. The farmer’s objective function,
then, is to maximize profit from the production of the two crops, which can be expressed
mathematically as:

Max: Z � 135wheat � 100sorghum,

where wheat is the number of acres of wheat produced and sorghum is the number 
of acres of sorghum produced. The variables wheat and sorghum are called activities in 
LP language. If there were no constraints placed on these activities, the optimal solution
to this problem would be to produce only wheat because it has a higher unit profit (135
versus 100). Furthermore, the optimal solution would be to produce an infinite amount 
of wheat because there are no restrictions currently placed on the problem’s activities. In
reality, the farmer would likely face many restrictions such as constraints on the avail-
ability of land, labor, machinery, and raw materials needed to produce crops. For example,
suppose that the farmer has a labor force of 10 people and that each acre of wheat requires
two people to produce, while each acre of sorghum requires one person to produce. 
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The following constraint can be added to this problem to reflect the scarcity of labor for
this situation:

2wheat � 1sorghum � 10.

This constraint has the following interpretation: each acre of wheat produced requires two
people, each acre of sorghum produced requires one person, and the total amount of labor
used in raising both crops cannot exceed 10 people. Similar constraints could be added to
this problem to reflect the scarcity of other resources such as land, capital, raw materials,
and other resource endowments. These constraints are referred to as structural con-
straints. Note that both the objective function and the resource constraint to this problem
are linear. Finally, in most applications it is appropriate to add a non-negativity constraint,
which requires all activities to be non-negative. In this example, this implies that the
farmer cannot produce negative quantities of either wheat or sorghum. The LP model for
this example is:

Max: Z � 135wheat � 100sorghum Objective function,

Subject to (s.t.):

2wheat � 1sorghum � 10 Labor constraint,

wheat, sorghum � 0 Non-negativity.

1.2 COMPONENTS OF THE GENERAL FORM OF THE MODEL

There are several ways to express an LP model. The first of these is called the general
form of the model, which was used in the example above. The general form of a generic
LP model for n activities and m structural constraints is:

Max or Min: Z � c1x1 � c2x2 � … � cnxn (0)

s.t.:

a11x1 � a12x2 �…� a1nxn {�, �, �} b1 (1)

a21x1 � a22x2 �…� a2nxn {�, �, �} b2 (2)

: : : : : :

am1x1 � am2x2 �…� amnxn {�, �, �} bm (m)

x1, x2, … xn � 0 (m�1)

The first component of the model will always be the objective function, which is expressed
in equation (0). The objective function is a mathematical formulation of the decision
maker’s objective. The objective is expressed as a function of the activities (xi) that are
under the control of the decision maker: that is, Z � f(x1, x2, … , xn). The objective func-
tion value (Z) measures the alternative solutions to the problem, such as profit, costs, sales,
production, and so on. The objective function will either be maximized or minimized
depending upon the problem. The activities (also referred to as “decision variables” or just
“variables”) are the unknown endogenous (model-determined) variables of the problem.
The model solution provides the decision maker with the optimal activities levels. The cis
in the objective function are called the objective function coefficients. These are fixed
parameters (or coefficients), which give the contribution of each activity to the value of the
objective function. For example, if the objective is to maximize profits from the sale of two
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6 PART 1 LINEAR PROGRAMMING

products such as wheat and sorghum, then the objective function coefficients could be unit
net profit per acre for each crop.

Equations numbered (1) through (m�1) represent the constraint set for this problem.
The objective function is optimized subject to (s.t.) satisfying all of the constraints, which
define the restrictions on the activities in the problem. Intuitively, the constraints model
the restrictions that the decision maker must operate within. Notice that there are two
types of constraints for an LP model: structural constraints and a non-negativity
constraint.

Mathematically, there are three possible directions for the structural constraints in 
an LP model. Constraints may be (1) less-than-or-equal-to (�) restrictions, (2) greater-
than-or-equal-to (�) restrictions, or (3) equal-to (�) restrictions. The structural constraints
are the first m constraints, which define the technical relationship between resource usage
(aijxi) for each activity and the resource endowment (bj). The technical coefficients (aij)
define how much of resource i it takes to produce a unit of activity j. The resource
endowment or right-hand-side (RHS) value (bj) either represents the amount of
resources that the decision maker controls in the decision process, or represents a mini-
mum condition that must be met.1 For example, one � type of structural constraint is a
land constraint for a farm problem that limits total acreage planted for all crops to not
exceed total acres controlled by the farmer. An example of a � type of constraint is a
minimum amount of some nutrient needed to survive for a balanced diet problem. As was
previously mentioned, the non-negativity constraint, which is included in most LP models
but is not a structural constraint, requires that all activities be non-negative (i.e., zero or
positive). For example, one cannot have negative seven acres of corn being produced in the
optimal solution.

The collection of all fixed coefficients (not variables) in the LP model (i.e., ci, aij, and
bj) is called the parameters of the model. Linear programming assumes that all parameters
are known by the decision maker in order to completely determine the model’s solution.
This assumption is relaxed later on in this book when a special class of mathematical pro-
gramming known as stochastic or risk programming is examined.

Notice from the general form of the model that all LP models are composed of linear
functions. A linear function is a function whose form is the following:

c1x1 � c2x2 � … � cnxn,

where c1, c2, … , cn are numerical constants (parameters) and x1, x2, … , xn are variables 
(or activities). In other words, linear functions are characterized by all variables having an
exponent of 1 and no multiplicative terms, for instance, no xi xj terms.

The optimal solution (denoted as xi
*) to an LP model gives the values for the activi-

ties that optimize the objective function, that is, gives the best way to achieve the desired
objective while satisfying all the restrictions. If the objective function is to minimize the
cost of producing a certain amount of an output, y, given two inputs, x1 and x2, the optimal
solution to this problem, x1

* and x2
*, provides the least-expensive way to utilize the two

inputs in achieving the desired amount of output. The optimal solution for a 
maximization problem is a feasible solution that yields the largest value of the objective
function.

1The term “resource endowment” is more appropriate for LP problems involving allocating fixed resources. On
the other hand, there are also LP applications that involve RHS parameters that are not resource endowments. In
these cases, such parameters are generally known as RHS values.
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1.3 STANDARD ASSUMPTIONS OF LINEAR 
PROGRAMMING MODELS

There are four assumptions of all LP models.

1. Proportionality. The contribution of each objective function coefficient (ci) to the
activities is the same regardless of the level of the activity. In other words, if the value
of an activity is tripled, then its contribution to the objective function will also be
tripled. Proportionality also implies that the contribution of each resource requirement
(aij) to activity j is the same regardless of the level of the activity. In other words, if the
value of an activity is tripled, then it will require three times as much resource as it
previously required.

2. Additivity. The contribution of each activity does not influence the contribution of all
other activities. Additivity requires that for any level of activities (x1, …, xn), the value
of the objective function and the total resource usage are found by the summation of
the individual activities times their associated parameters.

3. Divisibility. The optimal values of decision variables are real numbers, for instance, x1 �
22.34527. That is, optimal solutions to the problem may be continuous variables.

4. Certainty. All parameters are constants that are known by the decision maker.

The first two assumptions above guarantee that all equations in a linear program are in fact
linear. These two assumptions suggest that if a firm does not experience constant returns to
scale, or its activities are not independent, then traditional LP should not be used. In this case,
NLP may be more appropriate because it can handle the relaxation of these two assumptions.
Alternatively, linear approximations such as separable LP can be used to handle cases such
as decreasing returns to scale.

What about divisibility and certainty? While the divisibility assumption may be fine
for many applications, it may be unrealistic for some, such as capital budgeting. Integer
or binary programming is necessary when this is the case. Certainty is an assumption
that is often unrealistic. For example, when lags are involved between deciding upon
input allocation and realization of outputs, some of the parameters in the objective func-
tion and/or constraint set may not be known with certainty. This is clearly the case for
crop farming. If this is the case, then a linear or nonlinear risk programming model is
necessary.

While these assumptions are usually violated in reality, LP is still the most commonly
used quantitative decision aid among decision makers. In many applications, one can
“live” with these assumptions, and LP provides an approximation to reality.

1.4 FORMULATING LINEAR PROGRAMMING PROBLEMS

Formulating LP problems is the most important part of LP; if the problem cannot be set up
properly, a correct answer cannot be found. Unfortunately, there is no theory or scientific
method for formulating LP problems. This task is more of an art than a science. The only
way to learn this task is to practice, practice, and practice some more by working through
example after example.

Formulating LP problems is similar to translating word problems encountered in
introductory algebra into mathematical problems. The problem is written out in words,
and the task of the analyst is to convert the language into a suitable mathematical trans-
lation. The first step is to read and study the verbal problem carefully until a complete
understanding of what it entails is developed.

Study the verbal problem well enough to have a complete understanding of what it
entails.
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8 PART 1 LINEAR PROGRAMMING

Read the problem once or twice carefully without worrying about how to set it up in LP
“language.” Concentrate on what the problem is, rather than what the LP problem will 
look like.

Once the problem is fully understood, the next step is to read it again, but this time pay
closer attention to sorting out the relevant information required for the LP model. There
are several pieces of information that need to be sorted out in this phase of constructing 
an LP model. The pieces of information pertinent for an LP problem are defined by vari-
ous steps listed below:

1. Identify the objective function for the problem. For example, the objective may be to
maximize profits, or maximize sales, or maximize production. Or the objective may
be to minimize costs or some other goal.

2. Identify the activities (decision variables) for the problem. Recall that an activity is a way
(or ways) of reaching the objective, that is, the objective is a function of the activities of
the problem. The units of measurement for each activity should also be identified.

3. Identify the objective function coefficients for each activity. These coefficients give
the per unit contribution of each activity to the value of the objective function.

4. Identify the resources controlled by the decision maker (resource endowment), their
levels, and their units of measurement. In problems not involving fixed resources,
identify the RHS parameters of the problem.

5. Identify the technical coefficients that give a correspondence between the activities
and the resources. The technical coefficients define how much of each resource it
takes to produce a unit of an activity. Also, identify the units of measurement for the
technical coefficients.

6. Set up the appropriate structural constraints in the constraint set.

After following these procedures, the last step is to put all the pieces of information
together into the general form of the model (see definition on page 5).

Example 1 The Polluter’s Problem

A factory emits four types of greenhouse gases into the air, all of which cause global warm-
ing. The four greenhouse gases are (1) carbon dioxide, (2) methane, (3) chlorofluorocar-
bons, and (4) nitrous oxide. The federal government has just passed a new environmental
bill designed to slow the growth of greenhouse gases in the atmosphere. Under the new law,
this factory must reduce its annual emission of carbon dioxide by 100 million pounds,
methane by 25 million pounds, chlorofluorocarbons by 50 million pounds, and nitrous oxide
by 75 million pounds. Assume there are four abatement techniques, A, B, C, and D.2 Each
abatement method has the following cost and per unit reduction for each greenhouse gas:

Gas Abatement Technique
(per unit reduction in million pounds)

Greenhouse Gas A B C D

Carbon Dioxide 10 15 25 25
Methane 2 5 7 6
Chlorofluorocarbons 8 10 9 15
Nitrous Oxide 5 12 13 16
Cost/Unit ($ million) $0.50 $1.20 $3.30 $5.00

2Real-world examples of pollution abatement techniques include flue-gas desulfurization, electrostatic filters,
selective catalytic reduction, and use of lower-sulfur coal.
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Suppose that the firm’s sole objective is to minimize the total cost of reducing emis-
sions of these four greenhouse gases to the federal government’s new standard by using
any combination of the four abatement techniques.

To formulate this problem as an LP model, consider the steps previously outlined.
Let’s start out with an easy question.

What is the objective of the decision maker?
The firm’s objective is to minimize total greenhouse gas abatement costs.

What are the activities or decision variables, which describe how the objective
(minimum costs) is made?
In this case, there are four activities corresponding to the adoption of each abatement
approach. Let:

a � number of units of technique A used to reduce greenhouse gas emissions,

b � number of units of technique B used to reduce greenhouse gas emissions,

c � number of units of technique C used to reduce greenhouse gas emissions,

d � number of units of technique D used to reduce greenhouse gas emissions.3

Notice that the units of all four activities are measured in terms of number of green-
house gas abatement techniques implemented, for instance, four of technique A imple-
mented. Given the objective function coefficients, which are the per unit costs for a, b,
c, and d, we can now define the objective function for this problem. The objective func-
tion is to minimize total abatement costs (Z), which is equal to:

Min: Z � 0.5a � 1.2b � 3.3c � 5d,

where Z is measured in million dollars.
The reader is now ready to ask the next question.

What are the restrictions faced by the firm, what are their minimum require-
ments, and what are their units of measurement?
The restrictions have been set by the new law, that is, the firm has to reduce its annual
emissions levels of the four greenhouse gases. Specifically, the firm must reduce its
annual emission of carbon dioxide by 100 million pounds, methane by 25 million pounds,
chlorofluorocarbons by 50 million pounds, and nitrous oxide by 75 million pounds. These
minimum requirements, which are all measured in terms of million pounds of reduced
greenhouse gas emissions, will be modeled as four separate constraints in the LP model.
So the firm’s LP problem is to minimize the total cost of abatement, while satisfying these
four minimum levels of reductions in greenhouse gases.

What are the technical coefficients, which define how many million pounds each
greenhouse gas is reduced, for each abatement technique?

Carbon Dioxide

The first constraint of the problem is to reduce carbon dioxide emissions by 100 million
pounds. From the table above, it is given that one unit of technique A reduces carbon diox-
ide emissions by 10 million pounds, one unit of technique B reduces carbon dioxide 

3While activities were previously denoted as x1, x2, etc., it is often useful to use abbreviations for names to define
activities. In this book, both naming conventions for activities will be followed. For generic models, activities will
generally be denoted as x or some other letter, while in specific applications, abbreviations will generally be used.
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10 PART 1 LINEAR PROGRAMMING

emissions by 15 million pounds, one unit of technique C reduces carbon dioxide emissions
by 25 million pounds, and one unit of technique D reduces carbon dioxide emissions by
25 million pounds. Combining the required reduction (100 million pounds) with the tech-
nical coefficients for a (10 million pound reduction per device), b (15 million pound reduc-
tion per device), c (25 million pound reduction per device), and d (25 million pound
reduction per device), the first constraint can be written as:

10a � 15b � 25c � 25d � 100.

This constraint says that the minimum amount of carbon dioxide reduction by the com-
bination of the four abatement techniques cannot be lower than 100 million pounds. For
example, if the firm wanted to only use technique A, then, at a minimum, 10 units of a
would be needed (i.e., 100/10 � 10). Likewise, if only technique D were used, a mini-
mum of four units would be necessary (i.e., 100/25 � 4).

Methane

The second constraint of the problem is to reduce methane emissions by 25 million
pounds. From the table above, it is given that one unit of technique A reduces methane
emissions by 2 million pounds, one unit of technique B reduces methane emissions by
5 million pounds, one unit of technique C reduces methane emissions by 7 million
pounds, and one unit of technique D reduces methane emissions by 6 million pounds.
Combining the required reduction (25 million pounds) with the technical coefficients
for a (2 million pound reduction per device), b (5 million pound reduction per device),
c (7 million pound reduction per device), and d (6 million pound reduction per device),
the second constraint can be written as:

2a � 5b � 7c � 6d � 25.

This constraint says that the minimum amount of methane reduction by the combina-
tion of the four abatement techniques cannot be lower than 25 million pounds. For
example, if the firm wanted to only use technique A, then, at a minimum, 12.5 units of
a would be needed (i.e., 25/2 � 12.5). Likewise, if only technique D were used, a min-
imum of 4.17 units would be necessary (i.e., 25/6 � 4.17). Notice the LP assumption
of perfect divisibility here may or may not be appropriate: that is, fractional amounts of
each of the four abatement techniques can be used.

Chlorofluorocarbons

The third constraint of the problem is to reduce chlorofluorocarbons emissions by 50 mil-
lion pounds. Similar to the two previous constraints, the third constraint can be written as:

8a � 10b � 9c � 15d � 50.

This constraint says that the minimum amount of chlorofluorocarbons reduction by the
combination of the four abatement techniques cannot be lower than 50 million pounds.
For example, if the firm wanted to only use technique A, then, at a minimum, 6.25 units
of a would be needed (i.e., 50/8 � 6.25). Likewise, if only technique D were used, a
minimum of 3.33 units would be necessary (i.e., 50/15 � 3.33).

Nitrous Oxide

The fourth constraint of the problem is to reduce nitrous oxide emissions by 75 million
pounds. The fourth constraint can be written as:

5a � 12b � 13c � 16d � 75.
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This constraint says that the minimum amount of nitrous oxide reduction by the com-
bination of the four abatement techniques cannot be lower than 75 million pounds. For
example, if the firm wanted to only use technique A, then, at a minimum, 15 units of A
would be needed (i.e., 75/5 � 15). Likewise, if only technique D were used, a minimum
of 4.69 units would be necessary (i.e., 75/16 � 4.69).

Non-negativity Finally, every LP problem requires that the activities be non-negative:
for instance, a firm cannot use �5 units of A. The non-negativity constraint is typically
written as the last constraint in the LP problem as:

a, b, c, d � 0.

The last step in setting up an LP problem is writing out the full general model. In this
case, we have written the objective function and all constraints for the problem. Hence,
we just need to combine them. Students are encouraged to number the equations, or
descriptive labels, or both, when presenting the model in general form. Using both
equation-numbering and descriptive labels, the general form for this problem is:

[Objective Function] Min: Z � 0.5a �1.2b �3.3c � 5d (0)
s.t.:

[Minimum carbon dioxide reduction] 10a � 15b � 25c � 25d � 100 (1)

[Minimum methane reduction] 2a � 5b � 7c � 6d � 25 (2)

[Minimum chlorofluorocarbon reduction] 8a � 10b � 9c � 15d � 50 (3)

[Minimum nitrous oxide reduction] 5a � 12b � 13c � 16d � 75 (4)

[Non-negativity constraint] a, b, c, d � 0 (5)

The solution to this problem (Z*, a*, b*, c*, d*) yields the least total cost to attain the
minimum reductions, given the parameters (unit cost, technical coefficients, and mini-
mum reductions) of the problem.

Example 2 The Brewer’s Decision

A local brewery manufactures two types of beer for sale. The first is a relatively inex-
pensive beer (cheap) and the second is a premium beer (prem). The net profit for cheap
is $1.00 per case while the net profit for prem is $2.50 per case. It is assumed that the
brewery can sell all the beer it produces.

There are three workers who specialize in separate production operations to brew
both beers. One works 50 hours per week on pre-fermenting operations. The second
devotes 40 hours per week to bottling the beer. Finally, the third spends 25 hours per
week on quality control. The average time requirements per case of beer are as follows:

(cheap) (prem)
Inexpensive Beer (minutes) Premium Beer (minutes)

Pre-Fermenting Operations 3 3
Bottling 2 4
Quality Control 1 3
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The LP problem is as follows: given this set of requirements and the profit per unit,
what combination of inexpensive and premium beer should be produced to maximize
profit during the week?

There are two activities for this problem, cheap and prem. The objective function for
this problem is to maximize profit, and the objective function coefficients are the unit
profits for each type of beer. Since it is given that per unit profit of the inexpensive beer
is $1.00 per case, and the unit profit for the premium beer is $2.50 per case, the objec-
tive function is:

Max: Z � 1cheap � 2.5prem,

where the activities are measured in cases of beer produced each week. There are three
resource constraints for this problem: (1) labor for the pre-fermentation operations
(resource endowment is 50 hours per week, or 3,000 minutes per week), (2) labor for
the bottling operations (resource endowment is 40 hours per week, or 2,400 minutes per
week), and (3) labor for the quality control operations (resource endowment is 25 hours
per week, or 1,500 minutes per week).

Combining the resource endowments with the technical coefficients, the following
constraints are derived:

3cheap � 3prem � 3,000 (fermentation constraint, units � minutes),

2cheap � 4prem � 2,400 (bottling constraint, units � minutes),

1cheap � 3prem � 1,500 (fermentation constraint, units � minutes).

The general form of the model, including the non-negativity restriction, is:

[Objective Function] Max: Z � 1cheap � 2.5prem (0)

s.t.:

[Fermentation Constraint] 3cheap � 3prem � 3,000 (1)

[Bottling Constraint] 2cheap � 4prem � 2,400 (2)

[Quality Control Constraint] 1cheap � 3prem � 1,500 (3)

[Non-negativity] cheap, prem � 0 (4)

Example 3 The Dairy Farmer’s Feeding Decision

A dairy farmer can purchase two kinds of feed for his cows. Each cow requires 60, 84,
and 72 units of nutrients A, B, and C, respectively, per day. The nutrient contents and
costs per pound of feed 1 and feed 2 are the following:

Nutrient Content/Pound Cost
Feed A B C (cents/pound)

Feed 1 3 7 3 10
Feed 2 2 2 6 4

The farmer’s LP problem is to determine what would be the least expensive diet to 
feed his cows given the minimum requirements for nutrients A, B, and C, and the feed
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CHAPTER 1 INTRODUCTORY CONCEPTS AND THE GRAPHICAL APPROACH TO LINEAR PROGRAMMING 13

prices. It is assumed that feeding more than the minimal nutrient requirements will not
be harmful to the animals. Note that the objective function will be expressed on a cost-
per-cow basis. This problem is quite similar to the first example of greenhouse gas
abatement.

There are two activities in this problem, how many pounds of feed 1 and how many
pounds of feed 2 to purchase and feed the farmer’s dairy herd. The objective function
coefficients for each activity are the unit costs of each feed. Denoting feed 1 as feed1

and feed 2 as feed 2, the objective function is to minimize feed costs:

Min: Z � 10feed1 � 4feed 2

There are three structural constraints: (1) each cow receives a minimum of 60 units of
nutrient A, (2) each cow receives a minimum of 84 units of nutrient B, and (3) each
cow receives a minimum of 72 units of nutrient C. Notice that unlike the previous
maximization problem which restricted resource use to not exceed the resource
endowments, in this minimization problem the constraints restrict the decision maker
to feed at least the minimum daily nutrient requirements for each cow. The technical
coefficients for this problem translates the nutrient content (A, B, and C) for each feed.
Using this information, the three constraints can be written:

3feed1 � 2feed2 � 60 (Minimum Daily Requirement, Nutrient A, units � nutrients),

7feed1 � 2feed2 � 84 (Minimum Daily Requirement, Nutrient B, units � nutrients),

3feed1 � 6feed2 � 72 (Minimum Daily Requirement, Nutrient C, units � nutrients).

The general form of the model is:

[Objective Function] Min: Z � 10feed1 � 4feed2 (0)

s.t.:

[Minimum Daily Requirement A] 3feed1 � 2feed2 � 60 (1)

[Minimum Daily Requirement B] 7feed1 � 2feed2 � 84 (2)

[Minimum Daily Requirement C] 3feed1 � 6feed2 � 72 (3)

[Non-negativity] feed1, feed2 � 0 (4)

1.5 THE GRAPHICAL APPROACH FOR SOLVING LINEAR 
PROGRAMMING MAXIMIZATION PROBLEMS

In the previous section, we learned how to set up very simple (two-dimensional) LP
problems. The next step in the process is to find a solution for the problem using the
logic of LP. Generally speaking, there are three ways to solve LP models. The first is
the graphical method, which is useful for illustrating the intuition behind LP.
However, the graphical method can only be used for very small problems (typically two
activities, sometimes three activities). To tackle larger problems, algebraic approaches
are necessary. One of the most powerful and efficient of these approaches is called the
simplex method. As will become clear in the next chapter, this method can be used to
solve larger problems involving many activities. The last approach is to use LP com-
puter software, which is based upon the simplex method or other solution algorithms.
When computers are used to solve LP problems, the size of the problem can be very
large. Problems with thousands of activities and thousands of constraints may be
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14 PART 1 LINEAR PROGRAMMING

readily solved using computer software. Later chapters will describe how to use and
interpret the output of LP software.

Solving Two-Activity Maximization Problems

Linear programming problems with only two activities can be solved easily using the
graphical approach. The first step is to determine what the possible feasible solutions and,
hence, feasible region are, given the constraints of the problem.

Any combination of values for the activities that satisfies all the constraints (including
non-negativity) constitutes a feasible solution. An infeasible solution is a specification of
values for the decision variables that violates one or more constraints. The feasible region
is the set of all possible feasible solutions.

To determine the feasible region, we need to graph all of the constraints. To illustrate,
consider the following maximization problem.

Max: Z � 40x � 45y (0)

s.t.:

x � y � 600 (1)

x � 1.5y � 750 (2)

x � 400 (3)

x, y � 0 (4)

Start with the easiest constraint, the non-negativity constraint, which requires x and y
to be non-negative. This constrains x and y to be in quadrant I (including the vertical
axis and horizontal axis) of the Cartesian coordinate system. If non-negativity was the
only constraint, then the feasible set would include all non-negative values for x and y,
which is depicted graphically in Figure 1.1(a). Notice that this set includes all of quad-
rant I plus the x and y axis and is bounded from below, but unbounded from above, that
is, x, y � 0.

Next consider the first structural constraint:

x � y � 600 (1.1)

To show all points that satisfy this relation, start by graphing the line corresponding to the
equation. Rewrite (1.1) using an equality constraint instead of a weak inequality, that is:

x � y � 600 (1.2)

Equation (1.2) is called a constraint line. This line or equation gives all the values for x
and y that lie on the border or frontier of this particular constraint. The simplest way 
to draw this graphically is to find the x and y intercepts and then connect the two by 
drawing a line. Using basic algebra, the x intercept of (1.2) can be found by setting y equal
to zero:

1x � 1(0) � 600, or

x � 600 (1.3)

It is clear from equation (1.3) that the x intercept is 600. Repeating this procedure for y
(set x equal to zero and solve (1.2) for y) shows that the y intercept is also 600. Drawing
a line connecting the x and y intercepts gives the constraint line. Since the constraint is 
of the � type, shading in the region on and below this frontier results in 
the feasible region for this particular constraint. Again, this area is the region where all
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Figure 1.1 The four constraints for the maximization problem illustrated graphically.

solutions satisfy the first structural constraint. Figure 1.1(b) shows the feasible region for
this constraint plus the non-negativity constraint.

Now consider the second structural constraint:

x � 1.5y � 750 (1.4)

As in the previous case, we first make (1.4) an equality constraint, that is:

x � 1.5y � 750 (1.5)

Then, solve for the x and y intercepts. The x intercept is 750 (i.e., solve x � 1.5(0) � 750
for x). The y intercept is 750/1.5 � 500 (i.e., solve 1(0) � 1.5y � 750 for y). Next, draw a
line connecting the two intercepts. Finally, shade in all x and y points that lie on and below
this line. Figure 1.1(c) shows the feasible region for this constraint and non-negativity.

The third and final structural constraint simply limits x to be no greater than 400. The
constraint line is found by drawing a vertical line from the x axis at 400. Figure 1.1(d)
shows the feasible region for this constraint plus non-negativity.
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16 PART 1 LINEAR PROGRAMMING

In an LP model, the solution points need to satisfy all constraints simultaneously. That
is, the full feasible region is found by superimposing all constraints into one graph. The
feasible region is equal to the intersection of all feasible points. Figure 1.2 shows the fea-
sible region for this LP problem.

There are several observations that can be made from examining the feasible region for
this maximization problem:

1. A solution that does not violate any of the constraints is a feasible solution. For exam-
ple, the origin and any point along the segment ABCD are feasible solutions to this
problem.

2. If a set of feasible solutions for an LP model exists, then it will generally contain an
infinite number of solutions. This is due to the assumption of divisibility (i.e., all vari-
ables are continuous). There are counter-examples to this rule; however, they are usu-
ally trivial cases.

3. The feasible region is a convex set. Intuitively, this means that if you pick any two
points in this region and draw a line connecting them, all points lying on this line are
also in this region. This condition will hold for any two points that lie within the fea-
sible region. An important property of a convex set is that it will contain extreme
points, which are the vertices or corners of the feasible region where one constraint
intersects another. The origin is also considered to be an extreme point. In Figure 1.2,
the extreme points are labeled as 0, A, B, C, and D.

4. An optimal solution, which will be discussed next, will always be found at one of the
extreme points in the feasible region. In the case of multiple optimal solutions (dis-
cussed later on), one of the multiple optimal solutions will be an extreme point.

Finding the Optimal Solution

In proceeding to determine the optimal solution, choose an arbitrary level of profit for Z
and identify all points associated with that level. For now, define the arbitrary level of

y

x0
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600
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400 750
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A
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D

Figure 1.2 The feasible region.
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profit generally as Za rather than a specific numeric value. Recall that from the objective
function, profit is given by:

Z � 40x � 45y � Za (1.6)

Solving equation (1.6) for x or y gives the slope of the iso-profit line, or more generally
called the iso-contribution line. An iso-contribution line shows all activity solutions that
yield the same value for the objective function.

Solving (1.6) for y yields:

45y � Za � 40x, or

y � 1/45 Za � 8/9x (1.7)

This equation is the slope-intercept form of the iso-contribution line. The y intercept is
1/45 and the slope is �8/9. We could also express the slope-intercept form in terms of solv-
ing for x. Figure 1.3 shows several values of Za plotted on a graph, along with the feasible
region. The iso-contribution lines are parallel to one another since their slopes are the
same. Also, if all objective function coefficients are positive, then the value of all iso-
contribution lines will increase as they move out and to the right of the origin. Therefore,
in maximization problems, the desired direction for iso-contribution lines is the northeast,
north, or east.

Using these two properties, the optimal solution can now be found. Since the objec-
tive is to maximize Z, the optimal solution is found by moving the iso-contribution line
out in the northeast (or north or east) direction as far as possible until only one point on
the line touches (is tangent to) a point on the feasible region. The feasible point that lies
on the highest Za line in this example is point B in Figure 1.3, which is the optimal solu-
tion. Hence, the optimal solution to this problem is x* � 300, y* � 300, and Z* (the
optimal value of the objective function) � 25,500 (i.e., 40(300) � 45(300)). Note that
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Figure 1.3 Iso-contribution lines and the optimal solution.
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18 PART 1 LINEAR PROGRAMMING

the optimal solution at point B is unique, in that all other solution combinations yield-
ing $25,500 profit are infeasible.

To denote that the solution values are the optimal activities, asterisks (*) are used, that is,

x* � 300, y* � 300.

Not all structural constraints are binding at the optimal solution. A binding constraint is
one where all of the resource endowment is utilized. In this example, the first two con-
straints are binding, but not the last constraint. To verify this, substitute the optimal activ-
ity values (x* � 300, y* � 300) into the constraints and compare the left-hand-side (LHS)
values of these equations to their RHS values.

x* � y* � 600, or (1.8)

300 � 300 � 600 (binding)

x* � 1.5y* � 750, or (1.9)

300 � 1.5(300) � 750 (binding)

x* � 400, or (1.10)

300 � 400 (nonbinding)

We could also verify this for the two-activity case by inspecting the graphical solution.

Verifying the Solution: The Simultaneous Equations Approach

If we know which constraints are binding in the optimal solution, then we can determine
the optimal solution by solving the constraints for x and y. In this example, since the first
two constraints are binding, we can write them as equalities, that is:

x � y � 600 (1.11)

x � 1.5y � 750 (1.12) 

Since there are two equations and two unknowns, they can be solved simultaneously to
determine the values for the two unknown activities. Solving (1.11) for y yields:

y � 600 � x (1.13)

Substituting (1.13) into (1.12) yields:

x � 1.5(600 � x) � 750, or

x � 900 � 1.5x � 750, or

0.5x � 150, or

x* � 300 (1.14)

Substituting (1.14) into (1.13) determines y*, that is:

y* � 300 (1.15)

The simultaneous approach is very handy for double-checking to see if the graphical solu-
tion is correct. The reader should always use this as a way of checking whether the graph-
ical solution is correct or not. If a different answer is found than the graphical solution,
then go back and re-do the graphs. This technique is also useful for determining exact solu-
tion values when the optimal value of an activity is not an integer such as x* � 22.29.
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To recap, use the following steps to find the optimal solution for two-activity maxi-
mization problems.

Step 1: Find the feasible region.

Step 2: Draw an iso-contribution line. An iso-contribution line is a set of solutions lying
on a line whose objective function values are all the same. Note that all iso-contribution
lines are parallel to one another, since their slopes are the same. Also, assuming that the
objective function coefficients are positive, the value of iso-contribution lines increases as
they move northeast from the origin.

Step 3: Continue to move the iso-contribution line away from the origin in a northeast direc-
tion until a further movement makes all points lying on the iso-contribution line infeasible. The
optimal solution should occur at one of the extreme points along the feasibility region.

Step 4: Verify that the graphical solution is correct by using the simultaneous equations
approach.

Some Comments on the Optimal Solution

Suppose that the objective function coefficient for x fell substantially from $40 to $10.
How would this effect the optimal solution? The constraints would be unaffected since the
profit parameters are not included in any constraint. However, the objective function would
change to:

Max: Z � 10x � 45y.

This would change the slope of the iso-contribution line. The new iso-contribution line, in
slope intercept form, is:

45y � Za � 10x, or

y � 1/45Za � 2/9x (1.16)

Note that the slope switches from �8/9 to �2/9. The optimal solution now occurs at point
A in Figure 1.4 (x* � 0, y* � 500,). Notice that the first constraint is no longer binding,
that is, substitute x* and y* into this constraint:

x* � y* � 0 � 500 � 500 � 600 (1.17)

There are 100 units of the resource endowment that are not used now. What about the sec-
ond constraint? This constraint is binding since

x* � 1.5y* � 0 � 1.5(500) � 750 � 750 (1.18)

Finally, the last constraint is not binding since x* � 0, that is:

x* � 400 (1.19)

This illustrates a very important condition stated earlier:
An optimal solution to an LP problem will always occur at an extreme point of the

feasible region.
Another important condition of LP which may be apparent from this example is the following:

If the slope of the iso-contribution line is not the same as the slope of any of the con-
straints, then the optimal solution will be unique.
The term “unique” here means that there is one and only one optimal solution.
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Economic Interpretation

The economic interpretation of this profit maximization example comes from neoclassi-
cal economic theory of the firm. In this case, a firm is producing two outputs (x and y)
and has a fixed amount of three resources (b1, b2, b3) used to produce these outputs. The
feasible region in this example is identical to the notion of a production possibility set,
which is defined as any pair of output levels for x and y that is feasible to the firm given
its technology and endowment of resources. It follows that the linear frontier to the fea-
sible region (labeled ABCD in Figure 1.2) is the production possibility frontier (PPF),
which gives the maximum amount of y that can be produced, given each possible level of
x, or vice versa.

The PPF will vary depending upon a firm’s resource endowment level and technology.
That is, an increase in b1, b2, and/or b3 will cause the PPF to shift towards the northeast
direction, and a decrease in b1, b2, and/or b3 will cause the PPF to shift towards the origin.
Likewise, an increase in the efficiency of converting inputs into outputs will cause the PPF
to shift towards the northeast, and a decrease in efficiency will cause the PPF to shift
towards the origin. Efficiency, in this context, means a reduction in the amount of each
resource it takes to produce a unit of x and y. The term “technology,” or phrase “technol-
ogy of the firm,” will sometimes be used to refer to a firm’s technical coefficients.

Note that the PPF is concave to the origin, which means that as more and more of y is
produced, the sacrifice in producing x becomes larger and larger. Likewise, increases in
the production of x are accompanied by even larger sacrifices in the production of y. This
notion is the same as the economic concept of increasing opportunity cost of one output
in terms of the other. The only difference between the LP representation of the PPF 
and the neoclassical economic representation of the PPF is that the LP PPF does not 
result in a smooth and continuous frontier, whereas the neoclassical PPF is smooth and
continuous.
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Figure 1.4 New optimal solution when profit for x decreases from $40 to $10 per unit.
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In this example, it is assumed that the firm is a “price taker”: that is, the firm cannot
influence the price it receives for x or y by varying production. This is consistent with
the assumption of perfect competition. The iso-contribution lines derived earlier are
completely analogous to iso-revenue lines in economic theory. The slope of both of
these lines is the price (or unit profit) of one output divided by the other output. As was
shown earlier, to maximize total profit, the level of x and y produced should be chosen
by the respective point of tangency between the iso-contribution line and the PPF. At 
this point, the slope of the iso-contribution line is equal to the ratio of the two prices (or
unit profits). This corresponds to the economic notion of efficiency, namely, to maxi-
mize profit, the ratio of prices (or unit profits) must be equal to the rate of transforma-
tion of the two products, which is the same as the slope of the PPF. This is why the slope
of the PPF is sometimes called the marginal rate of product transformation, as it
gives how much of one product has to be sacrificed in order to produce one more unit of
the other product.

Special Cases

There are three “special cases” that may arise in solving LP problems that should be noted.
These special cases are: (1) unbounded solution, (2) no feasible solution, and (3) multiple
optimal solutions. Each of these cases is discussed in the context of the graphical method
below.

Unbounded Solution An unbounded solution occurs whenever the feasible region is
not constrained from above, which results in an infinite feasible region. For example, the
following maximization problem is “unbounded from above,”

Max: Z � 1x � 9y (0)

s.t.:

x, y � 0 (1)

It should be clear that no finite optimal solution exists for this problem. The objective
function value will consistently become larger with increases in x and/or y. Since both x
and y are not bounded from above, Z will approach infinity as x and/or y approaches
infinity.

Graphically, an unbounded solution for a maximization problem can be detected when-
ever the feasible region extends without limits upwards from the x and/or y axes assum-
ing that the objective function coefficients are positive.

An unbounded solution is usually the result of leaving out one or more constraints. In
any case, the problem needs to be reformulated by adding constraints that bound the fea-
sible region in order to get a finite solution. Figure 1.5 illustrates several examples of
unbounded feasible regions.

No Feasible Solution The case of no feasible solution occurs whenever the feasible
region is an empty set (a set containing no points), which is due to conflicting constraint
specification. Obviously if the feasible region is empty, a feasible solution cannot be
obtained. This case usually arises due to an error in specification. It may also arise 
when the decision maker is attempting to satisfy inconsistent constraints. For example, 

CHAPTER 1 INTRODUCTORY CONCEPTS AND THE GRAPHICAL APPROACH TO LINEAR PROGRAMMING 21

c01.qxd  12/1/10  2:00 PM  Page 21



a decision maker might want to reduce costs, while at the same time triple output. The fol-
lowing model has no feasible solution:

Max: Z � 1.5x � 10y (0)

s.t.:

1x � 2y � 100 (1)

1x � 2y � 50 (2)

x, y � 0 (3)

Figure 1.6 gives several specifications that result in no feasible solution.

Multiple Optimal Solutions Multiple optimal solutions, or “alternative optimal 
solutions” as they are sometimes called, mean that there is more than one solution that is
optimal, that is, “the optimal solution is not unique.” This occurs whenever the slope of the
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Figure 1.5 Four examples of LP models that result in unbounded feasible regions.
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iso-contribution line is the same as the slope of one of the line segments connecting two
extreme points in the feasible regions. In this case, there will be an infinite number of opti-
mal solutions; each point along this line segment is an optimal solution.

As an example, consider the following maximization problem:

Max: Z � x � y (0)

s.t.:

x � y � 100 (1)

x, y � 0 (2)

In this case, the slope of the iso-contribution line and the slope of constraint (1) are both
�1. Using the approach outlined earlier in this chapter, the reader can see that the iso-
contribution line lies tangent to the entire line segment of constraint (1) rather than a 
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Figure 1.6 Four examples of LP models that result in no feasible solution.
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single extreme point. Hence, there are an infinite number of solutions for this problem. The
solution to this problem is:

x* � 100 � y*,

y* � 100 � x*,

Z* � 100.

The existence of multiple optimal solutions is not a problem. In fact, such a situation is
beneficial, as it gives the decision maker more flexibility in pursuing the optimal solution.
That is, it offers the decision maker alternatives, which should be preferred. In such cases,
alternative decision rules may be used by the decision maker in selecting one of the opti-
mal solutions. For example, a decision maker may wish to choose an option that special-
izes in either x or y if the level of profitability is the same among a set of different optimal
solutions.

An Example with Mixed Structural Constraints

The example presented earlier in this chapter had structural constraints that were all less-
than-or-equal-to (�) restrictions. Not all maximization problems are like this; many con-
tain equal-to (�) as well as greater-than-or-equal-to (�) constraints. This does not present
a problem when solving such LP formulations. The same procedures apply.

For example, consider the following maximization problem with mixed structural 
constraints:

Max: Z � 2x � 4y (0)

s.t.:

x � y � 100 (1)

x � 25 (2)

x � 0.5y � 0 (3)

x, y � 0 (4)

Notice that not only does this example differ from the previous examples in that there are
mixed constraints, but also in that there is a negative technical coefficient in the third con-
straint. There is no requirement that aij coefficients have to be non-negative. In this exam-
ple, the negative technical coefficient (�0.5) is used because it forces x to equal 0.5y,
which can be seen by bringing �0.5y to the RHS of the equation.

The first step in solving this problem graphically is to plot all constraints to determine
the feasible region. Figure 1.7 displays the four constraints to this problem. Figure 1.7(a)
shows the non-negativity restrictions on x and y. The first structural constraint is graphed
in Figure 1.7(b).

Since it is a � constraint, it is similar to the restrictions given in the previous example.
The second structural constraint simply requires x to be at least as large as 25. This is
demonstrated graphically in Figure 1.7(c). The last structural constraint requires that x be
exactly 50% of the value for y. This is a very precise constraint, and unlike the two previ-
ous structural constraints, has a feasible region that is only a line segment following the
equation:

x � 0.5y � 0.
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Figure 1.7 The four constraints for the maximization problem with mixed constraints illus-
trated graphically.

Superimposing all four constraints onto one another results in the feasible region for this
problem, which is illustrated in Figure 1.8. The feasible region for this example is the thick
line segment labeled AB. The optimal solution to this problem occurs at point A (x* �
33.33, y* � 66.66), where the iso-contribution line (Z* � 333.33) is tangent to the north-
eastern boundary of the feasible region.

From this graph, it can be seen that constraints (1) and (3) are binding at extreme point
A, while constraint (2) is not binding. To verify the optimal solution to this problem alge-
braically, use the simultaneous equation approach with the two binding constraints. That
is, rewrite constraints (1) and (3) as equalities:

x � y � 100 (1.20)

x � 0.5y � 0 (1.21)
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Solve (1.21) for x yields:

x � 0.5y (1.22)

Substitute (1.22) into (1.20) and solve for y*:

0.5y � y � 100, or

y* � 66.66 (1.23)

Finally, substitute (1.23) into (1.22) to get x*:

x* � 0.5(66.66) � 33.33 (1.24)

This checks out with the graphical solution and therefore the solution is verified.

1.6 THE GRAPHICAL APPROACH FOR SOLVING LINEAR
PROGRAMMING MINIMIZATION PROBLEMS

The graphical approach to solving minimization problems is completely analogous to that
of maximization. In this section, the reader will learn how to solve a two-activity mini-
mization example. Since most of the concepts are analogous to the previous section, this
section will emphasize the steps involved in the solution procedures. If any of the concepts
are unclear, consult the previous section for more detail.

Consider the following LP problem written in general form.

Min: Z � 500x � 750y (0)

s.t.:

1/2x � y � 50 (1)

4/5x � 5/2y � 100 (2)

x � y � 75 (3)

x, y � 0 (4)
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Figure 1.8 Optimal solution for the maximization problem with mixed constraints.
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The optimal solution to minimization problems is found exactly as were found in the max-
imization problem using the following steps.

Step 1: Find the feasible region.

Step 2: Draw an iso-cost line. An iso-cost line is a set of solutions lying on a line whose
objective function values are all the same. Similar to iso-contribution lines, all iso-cost
lines are parallel to one another since their slopes are the same. Also, assuming that the
objective function coefficients are positive, the value of iso-cost lines decreases as they
move towards the origin.

Step 3: Continue to move the iso-cost line towards the origin until a further movement
makes all points lying on the iso-cost line infeasible. Unlike the maximization problem,
the preferred direction of Z is towards the origin because minimum values of Z are desired.

Step 4: Verify that the graphical solution is correct by using the simultaneous equations
approach.

The feasible region for this problem is again determined by graphing the constraint line
for each constraint and then finding the intersecting area of all constraints. Consider the
first constraint:

1/2x � y � 50 (1.25)

As in the maximization problem, derive the constraint line corresponding to (1.25). To do
this, rewrite (1.25) as an equality:

1/2x � y � 50 (1.26)

Then, compute the x and y intercepts:

x � 50/(1/2) � 100,

y � 50.

Because this is a � constraint, the feasible region corresponding to (1) is all solutions lying
on or above this constraint line (see Figure 1.9(b)).

The second constraint is:

4/5x � 5/2y � 100 (1.27)

The constraint line for (1.27) is:

4/5x � 5/2y � 100 (1.28)

The intercepts are:

x � 100/(4/5) � 125,

y � 100/(5/2) � 40.

The feasible region for constraint 2 is all points lying on or above the equation (1.28) (see
Figure 1.9(c)).

The third constraint is:

x � y � 75 (1.29)
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Figure 1.9 The four constraints for the minimization problem illustrated graphically.

The constraint line is:

x � y � 75 (1.30)

The intercepts are:

x � 75, y � 75.

The feasible region for constraint 3 is all points lying on or above equation (1.30) (see
Figure 1.9(d)).

The feasible region to this problem is shown in Figure 1.10. The same observations
made regarding the feasible region of a maximization problem apply to the minimization
problem as well. That is:

1. Any solution that does not violate the constraints is a feasible solution.

2. The set of solutions in the feasible region is generally infinite, due to the assumption
of perfect divisibility (i.e., all variables are continuous).
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3. The feasible region is a convex set. Recall that a convex set means that if one picks
any two points in this region and draws a line connecting them, all points lying on this
line are also in this region. This condition will hold for any two points that lie within
the feasible region.

4. The optimal solution will always be found at one of the extreme points in the feasi-
ble region. In Figure 1.10, the extreme points are labeled as A, B, C, and D.

Unlike the maximization problem, the feasible region for this minimization problem does
not include the origin. Furthermore, the structural constraints for this problem bound the
feasible region from below, while it is unbounded from above. This is due to the fact that
the constraints are � type that represent some sort of minimum conditions on the activities.

The Iso-Cost Line

The iso-cost line is found by choosing an arbitrary objective function value, Za:

Za � 500x � 750y or in slope intercept form:

y � 1/750Za � 2/3x, or

x � 1/500Za � 3/2y.

The y and x intercepts are Za/750 and Za/500, respectively. Next, choose an arbitrary
numeric value for Za. Letting Za � $40,000, the intercepts are:

x � 80, y � 53.3.

This line is plotted in Figure 1.11. It is not feasible since all points lie outside the feasible
region. After trying this several times, the optimal solution is found at

x* � 50, y* � 25, and Za
* � 43,750.

Again, the same short-cut approach used in the maximization problem can be used in this
case. That is, plot one Za line and determine visually which extreme point the optimal Za

line will be tangent to.
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Which constraints are binding and which are nonbinding? You can answer this by
inspecting the graphical solution, or you can substitute the optimal activities into the con-
straint. Plugging x* and y* into Constraint 1 yields:

1/2(50) � (25) � 50 (1.31)

which is exactly equal to the RHS value, and hence the first structural constraint is
binding.

Substituting x* and y* into Constraint 2 yields:

4/5(50) � 5/2(25) � 102.5 (1.32)

which is greater than the RHS value of 100, and hence the second structural constraint is
nonbinding. This minimum requirement was overachieved by 2.5 units.

Plugging x* and y* into Constraint 3 yields:

(50) � (25) � 75 (1.33)

which is exactly equal to the RHS value, and hence the third structural constraint is
binding.

The optimal (minimum) value of the objective function is:

Z* � 500x* � 750y*, or

Z* � 500(50) � 750(25) � $43,750.

Simultaneous Equations Approach

As was true for the maximization problem, the simultaneous equations approach can 
be used to solve the minimization problem once the binding constraints have been 
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determined. In this case, Constraints 1 and 3 are binding. Therefore, they can be written as
equalities:

1/2x � y � 50 (Constraint 1) (1.34)

x � y � 75 (Constraint 3) (1.35)

Solving (1.35) for y yields:

y � 75 � x (1.36)

Substituting (1.36) into (1.34) yields:

1/2x � 75 � x � 50, or

1/2x � 25, or

x* � 50 (1.37)

Substituting (1.37) into (1.36) determines y*, that is:

y* � 25 (1.38)

In this case, the simultaneous equation method has verified that the graphical solution is
indeed correct. Again, always use this approach to verify the graphical solution.

The Standard Form of the Model for Maximization and
Minimization Problems

Recall the first maximization problem solved previously:

Max: Z � 40x � 45y (0)

s.t.:

x � y � 600 (1)

x �1.5y � 750 (2)

x � 400 (3)

x, y � 0 (4)

Another way to formulate the model is to use slack variables to represent idle capacity.
Slack variables represent the difference between how much of the resource is available and
how much is used. There should be one slack variable added to each structural constraint
in the problem, excluding the non-negativity constraint. Therefore, in this problem there
are three slack variables. Also, since slack variables measure the unused amount of each
resource endowment in the optimal solution, each of the structural constraints is now
stated in terms of an equality (�) rather than a weak inequality. For example, consider
Constraint 1 of the problem above. To represent the amount of unused resource 1, define
slack variable 1 (s1), which equals:

s1 � 600 � x � y.

Rearranging this equation to put the constant on the RHS yields:

x � y � s1 � 600.

To include a slack variable for a � type constraint add it to the constraint and replace the
� restriction with an equality restriction.
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Since slack variables do not contribute to the objective function value, they are included
as activities in the objective function with zero objective function coefficients. The model
with slack variables is written as the following:

Max: Z � 40x � 45y � 0s1 � 0s2 � 0s3 (0)

s.t.:

x � y � 1s1 � 600 (1)

x �1.5y � 1s2 � 750 (2)

x � 1s3 � 400 (3)

x, y, s1, s2, s3 � 0 (4)

This is called the standard form of the LP model. The difference between the general and
standard forms of an LP model is that the standard form includes slack variables (and/or 
“surplus” variables, which are discussed later in  this section) and structural equality con-
straints, while the general form uses weak inequality constraints and does not include slack
(or surplus) variables. At the optimal solution, the values of the slack variables are found by
solving equations (1) through (3), given the values for x* and y*,

s1
* � 0, s2

* � 0, and s3
* � 100.

The slack variables can now be used to distinguish whether a constraint is binding or not.
A binding constraint is one where its slack variable is zero. A nonbinding constraint is one
where its slack variable is positive.

Another way to write the standard form of the model is using tableau form as shown
below.

Equation x y s1 s2 s3 b

(0) 40 45 0 0 0 —
(1) 1 1 1 0 0 600
(2) 1 1.5 0 1 0 750
(3) 1 0 0 0 1 400

The activities are arranged as columns, and the last column is the resource endowment 
(b). The first row contains the objective function coefficients. The rest of the rows correspond
to the constraints of the LP problem. Finally, the non-negativity constraint is not included in
the tableau, but is assumed. Alternatively, all zero coefficients could be left as blanks.

To illustrate the standard form of the model for minimization problems, consider the
previous LP problem written in general form.

Min: Z � 500x � 750y (0)

s.t.:

1/2x � y � 50 (1)

4/5x � 5/2y � 100 (2)

x � y � 75 (3)

x, y � 0 (4)

One difference between this minimization problem and the previous maximization prob-
lem has to do with the standard form of the problem. In the previous problem where all
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constraints were of the � type, the standard form incorporated slack variables in order to
rewrite the weak inequality restriction as an equality. Slack variables are used whenever
the constraints are � for maximization or minimization problems, implying some sort of
maximum restriction on resource use: for instance, you cannot use more than 24 hours of
your own labor per day to study. Whenever � constraints are encountered, surplus vari-
ables are used in the standard form of the model in order to convert the relation from a
weak inequality to an equality. Surplus variables represent the amount by which a mini-
mum condition is overachieved. Unlike slack variables, a surplus variable is subtracted off
each constraint, and an equality is used in the standard model. Surplus variables carry a
negative sign in the constraint equations in order to guarantee that non-negativity holds for
each surplus variable.4 When a surplus variable is zero in the optimal solution (the con-
straint is binding), this means that the minimum condition has been exactly achieved.
When a surplus variable in the optimal solution is greater than zero (the constraint is non-
binding), this means that a minimum condition has been more than achieved.

The standard form of the general model above is:

Min: Z � 500x � 750y � 0s1 � 0s2 � 0s3 (0)

s.t.:

1/2x � y � s1 � 50 (1)

4/5x � 5/2y � s2 � 100 (2)

x � y � s3 � 75 (3)

x, y, s1, s2, s3 � 0 (4)

In tableau form, this problem is:

Equation x y s1 s2 s3 b

(0) 500 750 0 0 0 �
(1) 1/2 1 �1 0 0 50
(2) 4/5 5/2 0 �1 0 100
(3) 1 1 0 0 �1 75

1.7 SENSITIVITY ANALYSIS WITH THE GRAPHICAL APPROACH

So far in this book, we have discussed the formulation and graphical solution techniques
for small LP problems. To the decision maker, this is probably the least important aspect
of LP. The decision maker wants to know how the results of your hard work relate to the
problem at hand. What do the LP results tell the decision maker to do? This phase of a
decision problem is called analysis.

Some analysis has already been performed in the previous section. For example, 
the optimal solutions derived in the maximization and minimization problems provide the
decision maker with optimal strategies, assuming that all parameters in the problem have
been correctly specified and the model adequately depicts the decision process.
Unfortunately, LP models are models, not reality. Hence, we need to verify that the results
of such models give plausible answers. In addition, “what if” questions on key parameters
of the model are frequently asked. If they are not asked, they should be asked. The “what
if” questions fall into a category of analysis called sensitivity analysis.
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Sensitivity analysis is the examination of how changes in the parameters of an LP model
(ci, bi, and aij) affect the optimal solution: that is, how sensitive the optimal solution is to
changes in these parameters. There are two general uses of sensitivity analysis in eco-
nomics. First, it is used in LP models as a means to conduct “what if” analyses of the prob-
lem. If two additional hired workers are added to the family farm, then how would the
optimal solution on how much of x, y, and Z change? If the government increased its pol-
lution control standards on pollutant A by 50%, how would the objective of adopting the
lowest-cost method of reducing air pollution using two alternative abatement methods
change? Sensitivity analysis is used to answer these types of questions. Second, and more
important to economists, sensitivity analysis is used to derive output supply (and input
demand)5 functions. This is accomplished by holding all parameters in the model except
for the price of one of the outputs constant. By varying this price, the model solution traces
out a price-quantity schedule, which is the definition of supply.

Two types of sensitivity analysis are presented in this section: objective function coeffi-
cient and resource endowment sensitivity analysis.6 Each will be discussed separately in
the context of a maximization problem.

Objective Function Coefficients (Ci) Sensitivity Analysis

Consider the following simple example of a feed dealer that wants to maximize total profit
(Z) from the weekly sale of two types of feed. The dealer receives a profit of $50 for each
ton of feed 1 (x) sold and $60 for each ton of feed 2 (y) sold. Labor and machinery are the
only two resources needed to manufacture x and y. The feed dealer faces the following
technical coefficients and resource endowments in the production of x and y.

Resource Requirement

Resource x y Resource Endowment Units

Labor 1.66 1.00 500 Hours
Machinery 1.00 1.33 400 Hours

The LP problem is:

(Objective Function) Max: Z � 50x � 60y (0)

s.t.:

(Labor Constraint) 1.66x � 1.00y � 500 (1)

(Machinery Constraint) 1.00x � 1.33y � 400 (2)

(Non-negativity) x, y � 0 (3)

The graphical solution to this problem is shown in Figure 1.12. The optimal solution is:

x* � 219.41, y* � 135.78, and Z* � $19,117.30 (weekly profit).
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Question: What range of values can the objective function coefficients on x and y be with-
out changing the optimal solution (x*, y*)? The answer to this question is called the range
of optimality for ci.

As long as the slope of the iso-contribution line is between the slope of the two binding
constraints, the optimal solution will always occur at extreme point B. This region is
shaded in Figure 1.12. The region is equal to the area between the two binding constraints
of the problem. Why is this the case? We can easily see graphically that if the iso-contri-
bution line rotates around its point of tangency to B, then point B will remain optimal as
long as the iso-contribution line remains within the shaded area. This is due to the fact that
solution B still represents the highest achievable profit, given the structural constraints of
the problem.

It is important to note that while the optimal activities will remain at x* � 219.41, 
y* � 135.78 if the slope of the iso-contribution line changes, but remains within this
region, the value of the objective function at the optimal solution will change. Hence, the
range of optimality for the objective function coefficients is defined by the activity values
remaining unchanged, not the value of the objective function.

Why Calculate the Range of Optimality? If we know the range of optimality, then
the problem does not have to be re-solved whenever the objective function coefficients are
changed, as long as the iso-contribution line remains within this range. Also, knowledge
of this range provides information as to how “sensitive” the model solution is with respect
to parameters in the objective function, which is important as parameters are often esti-
mates rather than exact measures.

Algebraic Solution

At extreme point B, both constraints are binding; hence they can be written as equalities:

1.66x � 1.00y � 500 (1.39)

1.00x � 1.33y � 400 (1.40)
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Transforming (1.39) into slope-intercept form (solving for y) yields:

y � 500 � 1.66x (1.41)

In equation (1.41), 500 is the intercept, and �1.66 is the slope of the first constraint.
Transforming (1.40) into slope-intercept form (solving for y) yields:

y � 300.75 � 0.75x (1.42)

In equation (1.42), 300.75 is the intercept, and �0.75 is the slope of the second constraint.
From (1.41) and (1.42), the following condition is derived:

Extreme point B will remain optimal if and only if:

�1.66 � slope of iso-contribution line � �0.75 (1.43)

Consider the following objective function in more general form:

Max Z � c1x � c2y.

Writing this in slope intercept form results in:

c2y � Z � c1x, or

y � (1/c2)Z � c1/c2x (1.44)

Thus, the slope of the iso-contribution line is � c1/c2.
Substituting this into condition (1.43) yields:

�1.66 � � c1/c2 � � 0.75, or multiply all sides by �1:

0.75 � c1/c2 � 1.66 (1.45)

Condition (1.45) is the range of optimality for c1 and c2. To calculate the specific range
given the objective function coefficients, first hold c2 at its initial level (c2 � 60) and sub-
stitute into (1.45):

0.75 � c1/60 � 1.66 (1.46)

Using the right-hand side of (1.46), we have

c1/60 � 1.66, or

c1 � 99.6 (1.47)

Using the left-hand side of (1.46), we have

0.75 � c1/60, or

45 � c1 (1.48)

Combining (1.47) and (1.48) yields the following condition for the range of optimality 
for c1:

As long as 45 � c1 � 99.6, given c2 � 60, the optimal solution will always occur at
extreme point B.

What about the range for c2? To answer this question, hold c1 constant at its initial level,
that is, c1 � 50 and substitute c1 � 50 into (1.45), that is:

0.75 � 50/c2 � 1.66 (1.49)
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Using the right-hand side of (1.49), we have

50/c2 � 1.66, or

c2 � 30.12 (1.50)

Using the left-hand side of (1.49), we have

0.75 � 50/c2, or

c2 � 66.67 (1.51)

Combining (1.50) and (1.51) yields the following condition for the range of optimality 
for c2:

As long as 30.12 � c2 � 66.67, given c1 � 50, the optimal solution will always occur
at extreme point B.

Deriving an Output Supply Curve

We can use this algebraic approach, which is called parametric programming, to gen-
erate this decision maker’s supply function for either x or y. We will consider x. Strictly
speaking, a supply schedule is a price-quantity relationship. However, the objective
function coefficients for this problem are unit profits, not prices. For the sake of discus-
sion, assume that these coefficients are now unit prices, not unit profits. This will not
detract from the concepts that follow since this problem can easily be reformulated by
disaggregating the objective function activities and coefficients in terms of marketing
and production.

Holding the price for y constant at $60, we know from our analysis above that it is opti-
mal for the feed dealer to sell 219.4 units of x when the price is between $45 and $99.60.
In price-quantity space, this represents the dealer’s supply schedule for the price range
between $45 and $99.60 (see Figure 1.13).

What about a price below $45? If we resolved the problem using the same constraint set,
but change the x objective function coefficient to $45, the new solution would occur at
extreme point A in Figure 1.12 (x* � 0, y* � 300). Furthermore, parametric programming
would reveal that as long as the price of x was within the range of minus infinity to $45,
this solution would remain optimal. Thus, within the range of $0 to $45 it is optimal to
supply 0 units of x.

Finally, if the price of x is above $99.60, the new solution would occur at extreme point
C in Figure 1.12 (x* � 300, y* � 0). Based on these parametric programming results, the
supply function for x is generated and presented in Figure 1.13. Figure 1.13 also shows the
seller’s supply function for y, which was derived in an analogous manner. It should be
noted that these supply functions are for a single seller (in this example of a feed dealer)
rather than for the entire market. To obtain the market supply function, we need to aggre-
gate all individuals’ supply functions within the market.

Note that the number of changes in optimal solutions is equal to the number of extreme
points. This will always hold. Each optimal solution is called a basis. Each change in the
optimal solution is called a change in the basis. We will discuss this more in the next
chapter.

Resource Endowment (bi) Sensitivity Analysis Sensitivity analysis can also be
conducted on the resource endowments. If we change (increase or decrease) a resource
endowment (holding constant all other parameters), what happens to the optimal solution?
Resource endowment sensitivity analysis addresses this question.
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We can demonstrate graphically this type of analysis. However, doing so can be very
imprecise and can actually result in a wrong answer. This is due to the fact that one of the
key results obtained from this type of analysis, “shadow prices,” is defined by very small
changes in resource endowments. The change in the feasible set due to very small changes
in the bi’s is very difficult to see graphically, and hence will not be demonstrated here.

A shadow price (SP) gives the unit value of each resource to the objective of the prob-
lem. For example, the SP of labor shows how much one unit of labor increases profit
(assuming the objective function is profit). Likewise, the SP of machinery gives how much
one unit of machinery increases profit. Mathematically, an SP is defined as the change in
the value of the objective function, given a one-unit change in the RHS parameter of a
constraint, holding all other parameters constant.

Shadow Price b1 (SPb1) � (Z*� � Z*) / (b1� � b1),

where:

Z*� � optimal value of the new solution when b1 is changed by one unit

Z* � optimal value of the original solution

b1� � new level of resource 1 after the change

b1 � original level of resource 1
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What is the SP for a nonbinding constraint? It is zero because an increase in the
resource endowment for such a constraint will only affect the amount of the slack vari-
able and add nothing to the objective function since a slack variable’s objective function
coefficient is zero.

An Algebraic Way of Calculating Shadow Prices In the optimal solution, both
constraints are binding. These two binding constraints can be used with the simultaneous
equation method to calculate SPs. First consider the SP for the labor constraint (SPb1).

Increase b1 one unit, for instance, from 500 to 501.7 Now there is one more hour of labor.
Then solve for x*, y*, and Z* using the two binding constraints. The new constraint 1
expressed as an equality is:

1.66x � 1.00y � 501 (1.52)

Constraint 2 expressed as an equality constraint is:

1.00x � 1.33y � 400 (1.53)

Solve (1.52) for y,

y � 501 � 1.66x (1.54)

Substitute (1.54) into (1.53) and solve for x:

1.00x � 1.33(501 � 1.66x) � 400, or

x* � 220.51 (1.55)

Substitute (1.55) into (1.54) to determine y*:

y � 501 � 1.66(220.51), or

y* � 134.95 (1.56)

Substitute the new optimal values for the decision variables into Z to obtain the new Z*

(which will be denoted as Z*�):

Z*� � 50(220.51) � 60(134.95) � 19,122.50 (1.57)

Recall that the original Z* � 19,117.30. The formula for the SP is:

SPb1 � (Z*� � Z*)/ (b1� � b1), or

SPb1 � (Z*� � Z*),

since b1� � b1 � 1.
Hence, in this example, the SP for labor is:

SPb1 � 19,122.50 � 19,117.30 � 5.20 per hour.

If you added one more hour of labor, total profit would increase by $5.20. The value of
labor to the firm is worth $5.20 per hour, given its current level of resource endowments.
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Next consider the SP for the machinery constraint (SPb2). As before, first increase 
b2 � 400 to b2� � 401. Then using the simultaneous equation approach Constraint 1 expressed
as an equality is:

1.66x � 1.00y � 500 (1.58)

The new Constraint 2 expressed as an equality constraint is:

1.00x � 1.33y � 401 (1.59)

Solve (1.58) for y,

y � 500 � 1.66x (1.60)

Substitute (1.60) into (1.59) and solve for x:

1.00x � 1.33(500 � 1.66x) � 401, or

x* � 218.58 (1.61)

Substitute (1.61) into (1.60) to determine y*: y � 500 � 1.66(218.58), or

y* � 137.16 (1.62)

Substitute the new optimal values for the decision variables into Z to obtain the new Z*�:

Z*� � 50(218.58) � 60(137.16) � 19,158.43 (1.63)

Recall that the original Z* � 19,117.30. Hence, in this example, the SP for machinery is:

SPb2 � 19,158.43 � 19,117.30 � 41.13 per hour.

If you added one more hour of machinery time, total profit would increase by $41.13. The
value of machinery to the firm is worth $41.13 per hour, given its current level of resource
endowments.

Sensitivity Analysis and Minimization Problems

Consider the minimization problem discussed earlier. Recall the LP problem was to:

Min: Z � 500x � 750y (0)

s.t.:

1/2x � y � 50 (1)

4/5x � 5/2y � 100 (2)

x � y � 75 (3)

x, y � 0 (4)

where:

x � usage of filters to reduce pollution (units � filters)

y � usage of cleansing additive to reduce pollution (units � additive)

The optimal solution is:

x* � 50, y* � 25, and Z* � $43,750.
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Figure 1.14 shows this optimal solution.

Question: What range of values can the cost of x and y be without changing the optimal
solution? That is, what is the range of optimality for ci? In Figure 1.14, the optimal solu-
tion is at extreme point B. As long as the slope of the iso-cost line is between the slope of
constraint 1 and the slope of constraint 3 the optimal solution will always occur at extreme
point B. This region is shaded in Figure 1.14. While the optimal decision variables will
remain at x* � 50 and y* � 25 if the slope of Z changes but remains within this region, the
value of the objective function will change.

Algebraic Solution

Note that at extreme point B, constraints 1 and 3 are binding. Solving constraint 1 for y
yields:

1/2x � y � 50 (since this constraint is binding, use an equality relation), or

y � 50 � 1/2x (1.64)

In equation (1.64), 50 is the intercept of constraint 1 and �1/2 is its slope. Solving 
constraint 3 for y yields: x � y � 75 (since this constraint is binding, use an equality 
relation), or

y � 75 � x (1.65)

In equation (1.65), 75 is the intercept of constraint 3, and �1 is its slope. From equations
(1.64) and (1.65), the following condition is derived:

Extreme point B will remain optimal if and only if:

�1 � slope of iso-cost line � � 1/2 (1.66)

Consider the objective function in more general form as:

Min: Z � c1x � c2y.
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Figure 1.14 Optimal solution and range of optimality for the slope of the iso-cost line.
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Writing this in slope-intercept form we have:

y � (1/c2)Z � (c1/c2)x (1.67)

Thus, the general slope of the iso-cost line will be � c1/c2. Substituting into condition
(1.66) yields:

�1 � � c1/c2 � �1/2, or multiply by �1:

1/2 � c1/c2 � 1 (1.68)

To calculate the range of optimality, first hold the cost of cleansing additive (y) at its ini-
tial level, that is c2 � $750. Then we can calculate the range for c1. Substituting c2 � 750
into (1.68) yields:

1/2 � c1/750 � 1 (1.69)

Using the left-hand side of inequality (1.69):

c1/750 � 1/2, or

c1 � 375 (1.70)

Using the right-hand side of inequality (1.69):

c1/750 � 1, or

c1 � 750 (1.71)

Combining algebraic results (1.70) and (1.71) gives the following condition for c1 for the
range of optimality:

375 � c1 � 750 (1.72)

As long as the cost of x is between $375 and $750, given that the cost of y is $750, the
optimal solution will always occur at extreme point B.

Verify that repeating this procedure yields the similar condition for c2 that:

500 � c2 � 1,000 (1.73)

Right-Hand-Side-Value (bi)

Suppose the state changes its requirement on pollutant C from reducing emission by 75
units to reducing pollution by 74 units:

x � y � 75 (old constraint),

x � y � 74 (new constraint).

By decreasing this requirement by one unit, the size of the feasibility region has been
increased. SPs are calculated the same way as in maximization problems, except that
decreasing the bi’s for the � constraints yields a negative number. The negative SP means
that if you reduce the RHS value by one unit, the objective function value will decrease 
by k units.

For example, to compute the SP for the third minimum condition (Constraint 3), substi-
tute 74 for 75 into Constraint 3, and solve the two binding constraints (i.e., Constraint 1
and the new Constraint 3) simultaneously for Z*�.

1/2x � y � 50 (Constraint 1) (1.74)

x � y � 74 (New Constraint 3) (1.75)
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Solving (1.75) for y yields:

y � 74 � x (1.76)

Substituting (1.76) into (1.74) yields the new x*:

1/2x � (74 � x) � 50, or 1/2x � 24, or

x* � 48 (1.77)

Plugging (1.77) into (1.76) yields the new y*:

y* � 74 � 48 � 26 (1.78)

Hence, the new solution is (x*, y*, Z*) � (48, 26, 43,500). The old solution was

(x*, y*, Z*) � (50, 25, 43,750).

Using this information, the SP for the third minimum condition is:

SPb3 � 43,500 � 43,750 � �250 (1.79)

If the minimum condition reflected by the third constraint is relaxed by one unit, this
would decrease total pollution abatement costs to the firm by $250. Verify that the SPs for
Constraints 1 and 2 of this problem are:

SPb1 � �500,

SPb2 � 0.

Interpret what these SPs mean in the context of this example on your own.

SUMMARY

The goals of this chapter were to (1) provide a general overview of what the com-
ponents of an LP model are, (2) describe how to set up simple problems as LP prob-
lems, (3) show how to solve simple two-activity LP problems, and (4) introduce the
notion of sensitivity analysis in LP. It was argued that the setting up of LP problems is
more of an art than a science. The examples presented in the text will not be enough to
make the reader an expert. This takes a lot of practice. Therefore, it is advised that you 
work through the section problems presented at the end of this chapter. The practice
will help you become more familiar and comfortable with the topics covered in this
chapter.

The reader should now be able to set up simple LP maximization and minimization
models and solve them using the graphical approach. To recap, once the LP problem has
been set up, the way to find the optimal solution is to perform the following steps:

1. Graph each constraint line by finding the two intercepts, drawing a line to connect
them, and shading in the feasible region for each constraint.

2. Superimpose all constraints onto one graph and find the complete feasible region for
the problem. The feasible region is equal to the intersection of all points that satisfy
all the constraints.

3. Find the iso-contribution or iso-cost line by setting the objective function equal to an
arbitrary numeric level, Za, and convert it to its slope-intercept form.

4. Plot the iso-contribution (or iso-cost) line for various levels of Za onto the feasible
region graph. If for any value of Za more than one solution lies on the line, increase
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(or decrease for minimization problems) the level of Za. The optimal solution is found
by moving the iso-contribution line out to the right (or to the left for minimization
problems) as far as possible until only one point on the line touches (is tangent to) a
point on the feasible region. This holds for all cases except multiple optimal solutions.

5. Verify that your graphical solution is correct by using the simultaneous equations
approach. This is done by solving for x and y using the binding structural constraints
written as equations.

Three special cases were also presented. In the case of an unbounded feasible region,
there is no finite solution. The no feasible solution case exists whenever the feasible
region is an empty set. Finally, multiple optimal solutions occur whenever the slope of
the iso-contribution line is the same as one of the line segments connecting two extreme
points in the feasible region.

Once an optimal solution is found, it is generally recommended that sensitivity analysis
be performed. Sensitivity analysis is the examination of how changes in the parameters of
a LP model (ci and bi) affect the optimal solution. That is, how sensitive is the optimal solu-
tion to changes in these parameters? It was argued that since LP models are models not
reality, the results of such models need to be verified to ensure that they give plausible
answers. It is essential that you, as LP solvers ask and answer “what if ” questions regard-
ing key parameters of the model.

Two general uses of sensitivity analysis common in economics were discussed: (1)
“what if” analyses of the problem and (2) derivation of output supply functions (this chap-
ter illustrated supply not demand, which will be covered in a later section). In addition, two
types of sensitivity analyses were examined: parametric programming on objective func-
tion coefficients and parametric programming on resource endowments. These concepts
will be extremely useful later on in the book.

Unfortunately, two-variable LP problems are very unrealistic and are used only for
teaching purposes. The real power of LP is found in much larger and more realistic appli-
cations. In order to solve larger LP problems, we need an alternative to the graphical
approach. Fortunately, there exists an alternative approach called the simplex method,
which we will begin to discuss in the next chapter.

EXERCISES

1. Set up the general form of the LP model for the following word problem.

A cash grain farmer in Central Iowa has 600 acres of cropland available on which she
plans to grow corn and soybeans in the spring of 2011. She has made some budgets,
which take into account corn (x) and soybeans (y). The gross margin for corn is $40 per
acre and for soybeans is $45 per acre. She has a maximum of 750 hours of tractor time
available in the last half of May at the peak planting periods for both crops. It takes 
1 hour per acre for field operations for corn (x) and 1.5 hours per acre for soybeans (y).
The maximum acreage she can use for corn is 400 acres. Her sole objective is to select
a cropping plan that will maximize net returns for this set of conditions in 2011.

2. Set up the general form of the LP model for the following word problem.

A new pollution control law has been passed by the state legislature requiring manu-
facturers to reduce pollution by 20%. A local industrialist manufactures copper, which
results in the emission of three pollutants into the air: A, B, and C. Under the state law,
the industrialist is required to reduce A by at least 50 units, B by at least 100 units,
and C by at least 75 units. There are two pollution abatement methods available to the
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industrialist: (1) to use filters (x) or (2) to use cleansing additive for fuel (y). For each
filter that is used, the emission of the three pollutants can be reduced by 1/2, 4/5, and
1 units, respectively, for A, B, and C. For each ton of cleansing additive added to the
fuel, the three pollutants can be reduced by 1, 5/2, and 1 units, respectively, for A, B,
and C. The cost of one filter is $500, and the cleansing additive costs $750 per ton.
Based on this information, the industrialist’s objective is to adopt the lowest-cost
method of reducing pollution according to the law.

3. Set up this decision problem as an LP model in general form.

You have been given $100,000 by a client to invest in the stock market. After some
preliminary analysis, you find that there are five stocks that you want to consider for
your client’s investment portfolio. The price per share, expected annual rate of return,
and risk index for each of the five stocks are summarized in the table below:

Price per Expected Annual Risk Index
Stock Share ($) Return ($) per Share ($)

Monsanto 85 15 0.15
Dean Foods 20 5 0.06
Kraft Foods 23 8 0.09
General Mills 52 10 0.12
Whole Foods 20 6 0.05

The risk index for each stock is your client’s opinion of the riskiness of each invest-
ment. Your client has put a limit of 200 as the total amount of risk she will bear for
the entire portfolio (total risk � risk index per share 	 number of shares). In addition,
she does not want to invest in more than 500 shares of Monsanto stock. Finally, you
cannot invest more than the $100,000 that your client has given to you. Your objective
is to maximize the expected annual return for your client’s portfolio. Assume that your
commission does not figure into this exercise.

4. A steel factory that uses coal as its major source of energy causes three primary types of
air pollution by releasing (1) particulate matter, (2) sulfur oxides, and (3) hydrocarbons.
These three types of air pollution are caused by blast furnaces and open-hearth furnaces
used in producing steel. The state has just passed a new clean air bill, which means that
this factory must reduce its annual emission rate of particulates by 60 million pounds,
sulfur oxides by 150 million pounds, and hydrocarbons by 125 million pounds. There
are six pollution-abatement techniques (three for each type of furnace) that the factory
can use to reduce air pollution. These six techniques, along with their per unit reduction
for each pollutant, and their estimated annual cost per unit are listed below:

Taller Smokestacks Filters Better fuels

Open- Open- Open-
Blast Hearth Blast Hearth Blast Hearth

Pollutant Furnace Furnace Furnace Furnace Furnace Furnace

(per unit reduction in million pounds)

Particulate 12 9 25 20 17 13
Sulfur Oxides 35 42 18 31 56 49
Hydrocarbons 37 53 28 24 29 20
Cost/Unit $80,000 $100,000 $70,000 $60,000 $110,000 $90,000
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Assume that the factory’s sole objective is to minimize the total cost of reducing emis-
sions of these three pollutants to the new government standards by using any combina-
tion of the six pollution abatement techniques. Set this up as an LP problem.

5. A food firm is researching the profitability of introducing six new “healthy choice”
food products (call them x, y, z, a, b, c). The firm currently has idle resource capacity
on labor, machinery, and land of 100 hours, 300 hours, and 30,000 square feet, respec-
tively. Hence, producing any or all of the new products will help solve the costs of
excess capacity. The selling prices, total costs, and resource requirements for the pro-
duction technology are summarized below.

New Product

Resource (Unit) x y z a b c

Labor (hours) 0.50 0.10 1.00 0.45 0.20 0.15
Machinery (hours) 1.00 0.45 3.50 1.00 1.10 2.00
Land (sq ft) 100 200 50 25 10 75
Unit Costs ($) 10 3 33 22 12 9
Unit Price ($) 12 4 36 23 15 11

Food products y and z are complements in the sense that for every unit of y produced
and sold, 2 units of z must be produced and sold. Also, the firm requires that the
amount of product c produced and sold be at least 50% of the total units of products
a and b that are produced and sold. Set up an LP model that will result in a solution
that maximizes total profit from the sale of any combination of these food products,
subject to all constraints that were specified.

6. Now suppose that the firm in Exercise 5 can hire additional labor at $8 per hour.
Reformulate Exercise 5 to allow for the firm to hire up to an additional 500 hours of
labor. Note that now hired labor should be modeled as an activity in Exercise 5.

7. A farmer owns 500 acres of land, which is suitable for growing corn, soybeans, and
sunflowers. His expectations are that the net profit from producing each crop is $55
per acre for corn, $60 per acre for soybeans, and $50 per acre for sunflowers. He and
his family can supply 3,000 hours per year in performing all the farm operations nec-
essary to grow these crops. In addition, he is endowed with the equivalent of 4,500
hours of tractor time necessary to grow these crops. Assume that the only resources
necessary in crop production are land, labor, and tractor time.

Crop

Resource (Unit) Corn Soybeans Sunflowers Endowment

Land (acres) 1.0 1.0 1.0 500
Labor (hours) 0.4 0.2 0.3 3,000
Tractor (hours) 0.5 0.2 0.4 4,500

Assuming that the farmer’s objective is to maximize total profits, what is the LP model
for this exercise?

8. Now suppose that the farmer in Exercise 7 can rent an additional 100 acres of land at
a cost of $15 per acre. Reformulate Exercise 7 to allow the farmer to rent up to 100
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more acres of land. Note that now renting additional land should be modeled as an
activity in Exercise 7.

9. An ice cream maker has hired you to help him decide next month’s production sched-
ule. He needs to determine the quantities of each flavor that should be produced based
on the profitability of each flavor and several restrictions. He can produce six differ-
ent flavors of ice cream: (1) super-super premium mocha chip, (2) super premium
chocolate chocolate chip, (3) super premium Snickers bar crunch, (4) vanilla, (5)
chocolate ice milk, and (6) Yuppie’s Delight frozen yogurt. Each product is only avail-
able in quarts and has the following unit profits for the ice cream maker:

Product Unit Profit ($/quart)

Super-super premium mocha chip 1.00
Super premium chocolate chocolate chip 0.75
Super premium Snickers bar crunch 0.88
Vanilla 0.43
Chocolate ice milk 0.50
Yuppie’s Delight frozen yogurt 1.05

The total production capacity of the ice cream maker’s plant is 10,000 gallons per
month. He also knows that he can only sell 1,000 gallons of super-super premium
mocha chip, and he must produce at least 2,500 gallons of chocolate ice milk for the
local school district. Finally, because he is introducing Yuppie’s Delight frozen yogurt
and doesn’t yet know the market for this product, he only wants to produce 500 gal-
lons in the next month. Assuming he wishes to maximize profit and given these
restrictions, formulate this decision problem as an LP model in general form.

10. A farmer has the following resource endowments: 1,000 acres of land, 1,500 hours of
family labor, and $30,000 of capital investment. She can use these resources to grow
the following crops: corn, sorghum, wheat, and soybeans. The farmer expects the fol-
lowing in terms of crop yields, prices, variable costs, and labor requirements.

Yield Labor Requirement 
Crop Price ($/bushel) (bushel/acre) Variable Cost ($/acre) (hours/acre)

Corn 2.75 120 250 3.25
Sorghum 2.65 100 200 3.00
Wheat 3.15 105 245 3.15
Soybeans 6.75 45 230 3.30

Also, the farmer can invest any part of her $30,000 to rent additional land at $100 per
acre and hire additional labor at $6 per hour.

Assume that the farmer works to maximize net revenue (gross revenue minus vari-
able costs) from the production of these four crops. Formulate this as an LP.

11. A college student on a tight budget wishes to plan a diet which will minimize his food
expenditure while maintaining minimum nutritional requirements, according to the
Recommended Daily Allowance (RDA). The student wants to plan his menu from
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the following goods: hamburgers, hot dogs, salad, chicken, pizza, carrots, and
cookies. The dietary information (in mg per pound) and cost of each of these foods
is as follows:

Nutrient Hamburger Hotdog Salad Chicken Pizza Carrots Cookies RDA

Calories 2200 2100 500 700 2500 300 2600 2500
Calcium 100 200 400 300 475 400 150 80 mg
Protein 50 70 20 45 35 25 10 25 mg
Iron 25 15 30 10 5 15 20 15 mg
Cost/lb 2.50 2.00 1.75 3.00 5.00 2.25 3.50

Furthermore, assume that the student wants to eat at least 0.25 pounds of cookies each
day and will eat at most 0.50 pounds of carrots per day. Formulate an LP model that
minimizes daily food expenditures while meeting the RDA and the other constraints
given in this problem.

12. You have just been hired as an advertising manager for a generic advertising program
for dairy farmers, Dairy Management, Inc. (DMI). DMI wants to conduct generic
advertising to increase the demand for milk. DMI decided to consider both TV and
radio, and wants you to do an analysis of how many TV and radio commercials to pur-
chase for the month. You expect that one TV commercial will increase sales by 25,000
gallons, and one radio commercial will increase sales by 7,000 gallons. It costs
$10,000 per TV commercial and $5,000 per radio commercial. Your boss tells you that
you can’t spend more than $200,000 on this project. Furthermore, the radio and TV
stations tell you they have a combined maximum of 90 minutes for your commercials
for the month. Each TV commercial takes 1 minute and each radio commercial takes 
2 minutes to air. The boss tells you that he doesn’t want more than 15 TV commer-
cials because he gets sick of watching the same thing over and over again. The 
objective is to find the combination of TV (x) and radio (y) commercials that maxi-
mize the sale of milk.

a. Set up this problem as an LP model.

b. Write this problem in standard form (using slack variables) and in general form
without slack variables.

c. Graph the feasible region for this problem.

d. Find the optimal solution for this problem.

13. Consider the following problem:

Max: Z � 15x � 10y (0)

s.t.:

1x �3/5y � 300 (1)

1x � 1y � 400 (2)

1x � 200 (3)

x, y � 0 (4)

Solve this problem using the graphical approach and the simultaneous equations
approach to verify the graphical solution.
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14. Write the following problem in standard form:

Max: Z � 15x � 10y (0)

s.t.:

1x �3/5y � 300 (1)

1x � 1y � 400 (2)

1x � 200 (3)

x, y � 0 (4)

Solve this problem using the graphical technique. Then derive the solution using the
simultaneous equations approach. Show all your work.

15. What is the feasible region for the following problem?

Max: Z � 5x � 7y (0)

s.t.:

x � y � 100 (1)

5x � 5y � 500 (2)

x, y � 0 (3)

16. What is wrong with the following LP model? Explain.

Max: 5x (0)

s.t.: x � 100 (1)

x � 0 (2)

17. For the following problem in general form, show graphically which constraints are
binding and which are nonbinding. Clearly label your constraints.

Max: Z � 3x � 5y (0)

s.t.:

x � y � 200 (1)

0.25x � y � 100 (2)

y � 50 (3)

x, y � 0 (4)

18. Write the following problem in standard form.

Max: Z � 35x � 15y (0)

s.t.:

2x �1/2y � 300 (1)

1x � 1y � 500 (2)

1y � 100 (3)

x, y � 0 (4)
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Solve this problem using the graphical technique. Then derive the solution using the
simultaneous equations approach. Show all your work.

19. A car manufacturing company produces an SUV (x) and a sedan (y). Long-term pro-
jections indicate an expected demand of at least 100 SUVs and 80 sedans each day.
Because of limitations on production capacity, no more than 200 SUVs and 170
sedans can be made daily. To satisfy a shipping contract, a total of at least 200 cars
must be shipped each day. If each SUV sold results in a $2,000 loss but each sedan
produces a $5,000 profit, how many of each type should be made daily to maximize
net profits?

20. Solve the following maximization problem:

Max: Z � 10x � 12y (0)

s.t.:

x � y � 500 (1)

x � 250 (2)

x � y � 0 (3)

x, y � 0 (4)

21. Consider the following LP problem:

Min: Z � x � y (0)

s.t.:

3.5x � y � 7 (1)

�0.5x � y � 1 (2)

�8x �10y � 40 (3)

x, y � 0 (4)

a. Write this problem in standard form using slack and surplus variables.

b. Graph the feasible region for this problem.

c. Find the optimal solution for this problem.

d. Use the simultaneous equations method to double check your graphical solution.

22. Write the following problem in standard form.

Min: Z � 4x � 3y (0)

s.t.:

2x � y � 10 (1)

x � y � 6 (2)

x, y � 0 (3)

Solve this problem using the graphical technique. Also, derive the solution using the
simultaneous equations approach. Show all your work.
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23. Write the following problem in standard form.

Min: Z � 20x � 15y (0)

s.t.:

x � y � 100 (1)

3x � 2y � 250 (2)

y � 90 (3)

x, y � 0 (4)

24. Write the following problem in general form:

Max: Z � 100x � 25y � 0s1 � 0s2 � 0s3 (0)

s.t.:

x � y � 1s1 � 100 (1)

y � s2 � 25 (2)

x � s3 � 25 (3)

x, y, s1, s2, s3 � 0 (4)

25. Solve the following LP problem with the graphical approach.

Max Z � 3x � 3y (0)

s.t.:

4x � 2y � 70 (1)

3x � 4y � 90 (2)

x � 20 (3)

x, y � 0 (4)

26. A small-scale poultry industry grows broilers, layers, and turkeys, and sells them at a
profit of $4, $5, and $6 respectively. The house is divided into three chambers sepa-
rated by wooden bars to house the three kinds of birds. The house can accommodate
no more than 45 birds. The labor time required for broilers and layers is 3 hours each.
The turkeys require 4 hours of labor time. The house can grow a maximum of 20
broiler birds, and a maximum of 100 hours of labor are available. Formulate this prob-
lem as an LP model to maximize the total profit.

27. Solve the following problem using the graphical approach:

Min: Z � x � 2y (0)

s.t.:

x � y � 100 (1)

y � 45 (2)

x � y � 0 (3)

x, y � 0 (4)
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28. Consider the following LP problem.

Max: Z � 3x � 2.5y (0)

s.t.:

25/18x �25/6y � 100 (1)

2x � 2y � 60 (2)

4x � 2y � 96 (3)

x, y � 0 (4)

a. Solve this problem using the graphical approach.

b. Compute algebraically the optimal range for the objective function coefficient for
x, that is, c1.

c. Compute algebraically the optimal range for the objective function coefficient for
y, that is, c2.

d. Compute algebraically the SP for the resource endowment in constraint (1).

e. Compute algebraically the SP for the resource endowment in constraint (2).

f. Compute algebraically the SP for the resource endowment in constraint (3).

g. Give one value for c2 that would cause the optimal solution to contain multiple
optimal solutions.

29. Consider the following LP problem.

Min: Z � 100x � 100y (0)

s.t.:

x � 2y � 70 (1)

20x � 10y � 500 (2)

x �55/9y � 110 (3)

x � y � 160 (4)

x, y � 0 (5)

a. Solve this problem using the graphical approach.

b. Compute algebraically the optimal range for the objective function coefficient for
x, that is, c1.

c. Compute algebraically the optimal range for the objective function coefficient for
y, that is, c2.

d. Compute algebraically the SP for constraint (1).

e. Compute algebraically the SP for constraint (2).

f. Compute algebraically the SP for constraint (3).

g. Compute algebraically the SP for constraint (4).

h. Give one value for c2 that would cause this new optimal solution to contain mul-
tiple optimal solutions.

52 PART 1 LINEAR PROGRAMMING

c01.qxd  12/1/10  2:00 PM  Page 52



30. Solve the following LP problem graphically:

Max: Z � 3x � 3y (0)

s.t.:

4x � 2y � 70 (1)

3x � 4y � 90 (2)

x � 20 (3)

x, y � 0 (4)

31. A small Mexican food restaurant is open from 11:00 A.M. to 10:00 P.M. on weekdays.
There are only two full-time employees, the chef and the owner. The waiters and wait-
resses are part-time, scheduled for 4-hour shifts. Due to variance in the arrival of cus-
tomers throughout the day, the total number of full-time and part-time employees
required and the wage-rate for part-time employees varies with the time of the day as
follows:

Wage-Rate for Part-Time
Hour Number of Employees Required Employees ($/hour)

11:00 A.M.–1:00 P.M. 6 8
1:00 P.M.–4:00 P.M. 4 9
4:00 P.M.–6:00 P.M. 5 9
6:00 P.M.–9:00 P.M. 10 10
9:00 P.M.–10:00 P.M. 8 8

The owner of the restaurant arrives at 11:00 A.M., works two hours, takes one hour off,
and returns for three hours, takes another hour off and then works till 10:00 P.M. when
the restaurant is closed. The chef also arrives at 12:00 A.M., works four hours, takes
two hours off, and returns for another four hours. Develop a minimum-cost Monday
schedule for the part-time employees. Set up the LP model in general form.

32. Consider the following LP model:

Max: Z � 15x � 10y (0)

s.t.:

1x �3/5y � 300 (1)

1x � 1y � 400 (2)

�1x � �200 (3)

x, y � 0 (4)

a. Solve this problem graphically. Label all lines drawn on the graph and the axes.

b. What is the optimal solution to this problem?

c. Compute the range of optimality for c1.
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d. Compute the range of optimality for c2.

e. What is the SP for constraint (1)? What is the economic interpretation of this
number? Show all your work.

f. What is the SP for constraint (2)? What is the economic interpretation of this
number? Show all your work.

g. What is the SP for constraint (3)? What is the economic interpretation of this
number? Show all your work.

33. Consider the following minimization problem:

Min: Z � 4x � 3y (0)

s.t.:

2x � 1y � 10 (1)

1x � 1y � 6 (2)

x, y � 0 (3)

a. Solve this problem using the graphical approach.

b. Compute the range of optimality for c1. How do you interpret this range?

c. Compute the range of optimality for c2. How do you interpret this range?

d. What is the SP for constraint (1)? (Show your work.)

e. What is the SP for constraint (2)? (Show your work.)
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2
The Simplex Method to Solving
Linear Programming Problems

Obviously most, if not all, real-world applications of linear programming (LP) involve
more than two activities. Linear programming problems with thousands of activities and
constraints are common. Hence, the graphical approach cannot be relied upon to solve
realistic problems.

Instead, we rely on computers, which solve LP models using the simplex method (or
modified simplex method).1 The simplex method is an algebraic method, which systemati-
cally finds an optimal solution to the LP problem using iterative procedures. It is an iterative
procedure because the simplex method uses basic steps that are repeated over and over again
until an optimal solution is found by certain criteria. This chapter focuses on solving LP
models using this technique. Understanding the simplex method provides an excellent basis
for comprehending the logic behind many computer LP solvers, which are capable of solv-
ing large problems.

There are three objectives of this chapter. First, an overview is provided for solving
simple maximization problems (with � constraints) using the simplex technique. While
a two-activity problem is used to illustrate the important concepts, all results are gener-
alizable to more than two-activity applications. The second objective is to demonstrate
how to use the simplex method for general maximization problems that include �, �,
and � type constraints. The notion of “artificial variables,” which are required to solve
problems with � and � constraints, is presented. Finally, the chapter concludes with a
discussion of how to solve minimization problems with the simplex method. The funda-
mental goal of this chapter is to provide students with a sufficient knowledge of the sim-
plex method to understand how computers solve LP problems and what the computer
output means.

1 There are other solution techniques for LP, but this chapter focuses on the simplex method.
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2.1 THE SIMPLEX METHOD FOR A SIMPLE MAXIMIZATION
PROBLEM

Consider the following maximization problem expressed in standard form with slack vari-
ables and equality constraints:

Max: Z � 35x1 � 50x2 � 0s1 � 0s2 � 0s3 (0)

s.t.:

x1 � x2 � s1 � 1,000 (1)

2.5x1 � 0.75x2 � s2 � 1,500 (2)

1.5x2 � s3 � 800 (3)

x1, x2, s1, s2, s3 � 0 (4)

Constraints (1) through (3) form a system of three linear equations with five variables.2 Since
this system has more variables than equations, it cannot be solved using the simultaneous
equation approach. Instead, the simplex method uses an iterative procedure to get a solution
for this system by assigning zeros to two variables, and then solving for the remaining three
variables. More generally, when there are n variables and m constraints (n � m), then n � m
variables are set to zero, and the m constraints (equations) are solved for the remaining 
m variables. The solution to this is called a basic solution.

For example, if we let x1 � 0 and s1 � 0, then the above system becomes:

x2 � 1,000 (2.1)

0.75x2 � s2 � 1,500 (2.2)

1.5x2 � s3 � 800 (2.3)

From (2.1) we know that x2 � 1,000. Substituting (2.1) into (2.2) results in the solution
for s2:

0.75(1,000) � s2 � 1,500, or 

s2 � 750.

Substituting (2.1) into (2.3) gives s3:

1.5(1,000) � s3 � 800, or

s3 � �700.

Hence, the basic solution when x1 � 0 and s1 � 0 is:

x1 � 0, x2 � 1,000, s1 � 0, s2 � 750, s3 � �700.

In general, the n � m variables set to zero are called nonbasic variables and the m
(nonzero) variables are called basic variables. In this example, x1 and s1 are the nonbasic
variables and x2, s2, and s3 are the basic variables for this basic solution.

A basic solution can either be feasible or infeasible. A basic feasible solution (BFS)
satisfies all constraints, including non-negativity. A basic infeasible solution violates at
least one constraint. Is the above basic solution feasible or nonfeasible?

Fact: A BFS always occurs at an extreme point of the feasible region.

2Note that the term “variable” is used synonymously with the term “activity” in this book.
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A BFS and an extreme point are one and the same. Since we know that an extreme 
point will be optimal (if any optimal solution exists), it seems reasonable to focus 
our attention on extreme points. The simplex method is based on this observation. It
examines a sequence of BFSs, based on an iterative algorithm, until the optimal BFS 
is found.

The Simplex Tableau

The simplex method starts out by setting all “productive” activities to zero (i.e., the solu-
tion is the origin), and a simplex tableau is formed to do the first iteration. All nonslack
and nonsurplus activities (i.e., the xi’s) will be referred to as “productive” activities in the
discussion that follows. The first tableau is:

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b bi/aij

s1 0 1 1 1 0 0 1,000
s2 0 2.5 0.75 0 1 0 1,500
s3 0 0 1.5 0 0 1 800

zj

Net Eval (cj � zj)

Comments on Columns

1. The basis column includes all the basic variables. In the first iteration, the nonbasic
variables are the productive activities (x1 � x2 � 0), and the basis therefore consists of
the three slack variables s1, s2, and s3. 

2. The CB column contains the objective function coefficients for the basic variables.
CB stands for the contribution of the current basis. Since the basic variables in the first
iteration are all slack variables, c1,c2, and c3 � 0.

3. Columns x1, x2, s1, s2, and s3 are the activities and slack variables to the problem. They
include the basic and nonbasic variables.

4. The b column contains the right-hand-side (RHS) values (resource endowments) of
the problem.

5. The bi/aij column will be used to determine the pivot row, as will be explained later. 

6. Note that the columns associated with the basic variables (s1, s2, and s3 in this case) look
like an identity matrix (1’s on the diagonal and 0’s in the off diagonal), for instance,

s1 s2 s3

s1 1 0 0
s2 0 1 0
s3 0 0 1

Each of these columns is known as a unit column or unit vector. It is desirable to
always have all basic variables forming unit vectors for the following reason:

When all basic variables are unit vectors, the solution for each basic variable is given by
the value under the resource endowment b column associated with row i in the simplex
tableau.
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Comments on Rows

1. The first row under the activities row contains the objective function coefficients for
the basic and nonbasic variables.

2. The next three rows correspond to the constraints of the problem. It is identical to the
LP problem above, only expressed in tableau form.

3. The last two rows are called the zj and cj � zj rows.

The zj and cj � zj Rows

The zj and cj � zj rows provide a criterion for selecting which nonbasic variable, if any,
should enter the next solution in order to increase the value of the objective function. There
are two contrasting effects that bringing a nonbasic variable into the new basis will have
on the value of the objective function.

1. Direct Rate of Increase. The objective function will increase at a rate of ci per unit of
xi forced into the basis, where xi is a nonbasic variable and ci is its objective function
coefficient.

2. Indirect Rate of Decrease. The objective function will decrease owing to a downward
adjustment in the current basic variables due to bringing a nonbasic variable into the
solution. The zj row measures this indirect rate of decrease for each nonbasic variable.

The net effect of the direct rate of increase and the indirect rate of decrease in the objec-
tive function for each nonbasic variable is measured by the cj � zj row.
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Digression on the zj Row

At first glance, it may sound counter-intuitive that bringing a nonbasic variable into the
solution may result in a decrease in the value of the objective function. To see why this
may occur, consider the somewhat analogous situation of adding a new marble to a bag of
marbles that is already full. In order to make room for the new marble, an old marble has
to be taken out, which, by itself, reduces the weight of the bag.

In the case of LP, forcing in a nonbasic variable requires a reduction in the value of 
current basic variables because scarce resources are now needed for the new variable, which
competes with the old variables. To illustrate, consider the three linear equations of this
example, where x1 and x2 are nonbasic and s1, s2, and s3 are basic variables.

1x1 � 1x2 � 1s1 � 1,000,

2.5x1 � 0.75x2 � 1s2 � 1,500,

0x1 � 1.5x2 � 1s3 � 800.

Now, solve each equation for the basic variables:

s1 � 1,000 � 1x1 � 1x2,

s2 � 1,500 � 2.5x1 � 0.75x2,

s3 � 800 � 0x1 � 1.5x2.

Suppose that x1 is forced into the solution. What happens to the current basic variables?
s1 will decrease from its current solution level of 1,000 at a rate of 1 per unit increase in
x1; s2 will decrease from its current solution level of 1,500 at a rate of 2.5 per unit increase
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in x1; and s3 will decrease from its current solution level of 800 at a rate of 0 per unit
increase in x1.

Suppose that x2 is forced into the solution. What happens to the current basic variables?
s1 will decrease from its current solution level of 1,000 at a rate of 1 per unit increase in
x2; s2 will decrease from its current solution level of 1,500 at a rate of 0.75 per unit increase
in x2; and s3 will decrease from its current solution level of 800 at a rate of 1.5 per unit
increase in x2.

These rates of decrease in basic variable levels are called substitution coefficients, as
they indicate the tradeoff between current basic variables and how much they would have
to decrease if a nonbasic variable were substituted into the system. The indirect rate of
decrease (zj row) measures this effect in economic terms by taking the product of the objec-
tive function coefficient for the basic variable and the substitution coefficient of the non-
basic variable. The general formula for this is: 

Note that the appendix at the end of Chapter 3 provides a basic primer on summation
notation and matrix operations.

While computing the indirect rate of decrease is only necessary for the nonbasic vari-
ables (z1 and z2 in this case), this measure is computed below for all variables:

z1 � 0(1) � 0(2.5) � 0(0) � 0,

z2 � 0(1) � 0(0.75) � 0(1.5) � 0,

z3 � 0(1) � 0(0) � 0(0) � 0,

z4 � 0(0) � 0(1) � 0(0) � 0,

z5 � 0(0) � 0(0) � 0(1) � 0.

As you can see, the zj values for the nonbasic variables, x1 and x2, are zero. In other words,
no profit is given up by forcing x1, or x2 into the solution because the slack variables, which
are the current basic variables, have objective function coefficients equal to zero.

A zj value corresponding to the b column should also be computed. The formula for the
RHS column for zj is:

Since the current solution values for the basic variables are contained in this column, the
zb value gives the value of the objective function for the current solution. In the initial
tableau, zb is equal to zero because only the slack variables are the basic variables.

In order to ascertain whether bringing a nonbasic variable into the solution will improve
the subsequent solution, an examination of the net effect, that is, the cj � zj row, is neces-
sary. In essence, this row measures the gains minus the cost of making each nonbasic 
variable basic. Hence, if cj � zj is positive for a nonbasic variable, then forcing it into the
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3The technical coefficients, aij, form an m � n matrix with m rows and n columns. The subscript i references the
row location and the subscript j references the column location in the matrix, for example, a32 is the element in
the third row and second column.
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next solution would be an improvement over the current solution. If it is zero or negative,
then it would be an inferior move. The values for the cj � zj row are calculated by simply
subtracting zj from cj for each variable.

As before, while computing cj � zj is only necessary for the nonbasic variables, this
measure is computed below for all variables:

c1 � z1 � 35 � 0 � 35,

c2 � z2 � 50 � 0 � 50,

c3 � z3 � 0 � 0 � 0,

c4 � z4 � 0 � 0 � 0,

c5 � z5 � 0 � 0 � 0.

So the first tableau for this problem is:
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First Tableau

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b bi/aij

s1 0 1 1 1 0 0 1,000 1,000
s2 0 2.5 0.75 0 1 0 1,500 2,000
s3 0 0 1.5 0 0 1 800 533.33

zj 0 0 0 0 0 0

Net Eval (cj � zj) 35 50 0 0 0

Improving Upon the Solution (Changing the Basis)

It is clear that the current solution can be improved since the values of the nonslack variables
and total profit are zero. The criterion for selecting a new variable to enter the basis is:

Choose the nonbasic variable that yields the highest net contribution (cj � zj) value.
In this example, this variable is x2 since c2 � z2 � 50. This seems logical since bringing

in x2 yields a higher contribution to profit than the other nonbasic variable x1. The column
containing the new variable, which is the x2 column in this case, is called the pivot col-
umn. To add a new basic variable to the new basis means that one of the old basic vari-
ables has to be forced out of the basis, that is, has to become a nonbasic variable. To do
this, the simplex method finds the basic variable that is the most restrictive in terms of con-
straining the problem and makes this variable nonbasic. This variable is determined by
dividing all the RHS values by their respective positive, non-zero coefficients in the pivot
column, x2, that is, bi/ai2 for i � 1, 2, and 3 and where the subscript “2” on ai2 indicates that
x2 is the pivot column. Note that if any row has a zero or negative aij coefficient in the pivot
column, the ratio should not be computed for that row. Simply cross out that row from con-
sideration. In this example, these ratios are:

b1/a12 � 1,000/1 � 1,000,

b2/a22 � 1,500/(0.75) � 2,000,

b3/a32 � 800/(1.5)     � 533.33.

The row with the smallest non-negative ratio represents the most restrictive row in the
sense that it either requires more resources per activity, or has the least amount of resource
endowment relative to the other rows. As such, the basic variable associated with this row
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becomes nonbasic. Since a slack variable is currently associated with this row (e.g., s3

since it has the smallest non-negative ratio), s3 becomes nonbasic (i.e., s3 � 0) and is
replaced in the new basis by the new entering variable, x2. Intuitively, this represents the
most restrictive constraint and hence making it nonbasic makes sense since s3 � 0 implies
it is a binding constraint. This row is called the pivot row. The element in the pivot col-
umn and the pivot row is called the pivot element. In this case, the pivot element is 1.5.

Sometimes there may be a tie among two variables which have the smallest bi/aij ratio.
If this occurs, then simply choose one at random to become the pivot row.

The Next Iteration

The new basis will be s1, s2, and x2 which replaces s3. The old s3 row needs to be replaced
with the new x2 row. The problem is that unlike the old s3 column, the x2 column is not a
unit vector, that is:
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Basis x2

s1 1(a12)
s2 0.75(a22)
s3 1.5(a32)

where ai2 (i � 1, 2, 3) are the original coefficients in the A matrix (a 3 � 5 matrix), x2

column. The goal is to transform the ai2 coefficients so that they form a unit vector, that is:

Basis x2

s1 0(a12)
s2 0(a22)
x2 1(a32)

where ai2 (i � 1, 2, 3) are the transformed coefficients in the A matrix, x2 column. Recall that
when all basic variables are unit vectors, their solution values are listed in the b column.

Digression on Two Facts About Matrix Algebra

1. Multiplying both sides of any row in a system of linear equations by a constant will
not change the original solution. For example, multiplying both sides of the equa-
tion [5x1 � x2 � 100] by 2 does not change the equation, that is:

2(5x1 � x2) � 2(100) ± 5x1 � x2 � 100.

2. Replacing any row of a system of linear equations by the result of adding or sub-
tracting a multiple of another row will not change the solution. Consider the fol-
lowing two equations:

x1 � 5x2 � 100 (2.4)

7x1 � 2x2 � 200 (2.5)
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The solution is:

x1 � 24.24, x2 � 15.15. 

Now multiply (2.5) by 0.5:

3.5x1 � x2 � 100 (2.6)

and add it to (2.4):

x1 � 5x2 � 3.5x1 � x2 � 100 � 100, or

4.5x1 � 6x2 � 200 (2.7)

Solving (2.6) and (2.7) simultaneously yields

x1 � 24.24, x2 � 15.15, 

the same as before.
These two elementary row operations are used in the simplex method.
To do this for the current example, the following procedures are used:

Step 1: Transform the old s3 row to get a 1 for the x2 parameter.
The new x2 row in second tableau is created by dividing all aij and bi coefficients in the
pivot row (old s3 row) by 1.5 in order to get a 1 coefficient in the x2 column for a32. That
is, divide:

0x1 � 1.5x2 � 0s1 � 0s2 � 1s3 � 800 (old s3 row) 

by 1.5 to get:

0x1 � 1x2 � 0s1 � 0s2 � 0.67s3 � 533.33 (new x2 row)

This results in each coefficient now being stated in terms of x2 instead of s3.

Step 2: Transform the old s1 row to get a zero coefficient for a12.
The new s1 row in second tableau is created by transforming the old s1 row to get a zero
coefficient for a12.

To do this, first multiply the new x2 row by the negative of the a12 coefficient, which is
�1 in this case. Then add the resulting row to the old s1 row to get the new s1 row, that is:

0x1 � 1x2 � 0s1 � 0s2 � 0.67s3 � �533.33 (new x2 row times �1)

1x1 � 1x2 � 1s1 � 0s2 � 0s3 � 1,000 (old s1 row)
_________________________________________ (add together)

1x1 � 0x2 � 1s1 � 0s2 � 0.67s3 � 466.67 (new s1 row)

Step 3: Transform the old s2 row to get a zero coefficient for a22.
The new s2 row in the second tableau is created by transforming the old s2 row to get a zero
coefficient for a22. To do this, first multiply the new x2 row by the negative of the a22 coef-
ficient, which is �0.75 in this case. Then add the resulting row to the old s2 row to get the
new s2 row, that is:

0x1 � 0.75x2 � 0s1 � 0s2 � 0.5s3 � �400 (new x2 row times �0.75)

2.5x1 � 0.75x2 � 0s1 � 1s2 � 0s3 � 1,500 (old s2 row)

_____________________________________________ (add together)

2.5x1 � 0x2 � 0s1 � 1s2 � 0.5s3 � 1,100 (new s2 row)
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Using the information from steps 1, 2, 3, the second tableau becomes:

Second Tableau

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b bi/aij

s1 0 1 0 1 0 �0.67 466.67 466.67
s2 0 2.5 0 0 1 �0.50 1,100 440
x2 50 0 1 0 0 0.67 533.33 —

zj 0 50 0 0 33.5 26,666.67

Net Eval (cj � zj) 35 0 0 0 �33.5

Check to see that the new tableau has the elements of an identity matrix formed from
the three columns of the basic variables s1, s2, and x2. If not, an error has been made and
should be corrected before proceeding to the next step. If all basic variables form an iden-
tity matrix, then calculate the zj and cj � zj values.

Stopping Rule: If the new cj � zj values for all nonbasic variables are zero or negative,
then stop since the solution is optimal.

Since the c1 � z1 entry is 35, which is positive, an optimal solution has not yet been
found. Proceeding to the next iteration, the pivot column is:

Pivot Column � x1.

Next Iteration

Divide all bi elements by the positive coefficients in the pivot column, bi/ai1 (note that the “1”
subscript on ai1 represents that x1 is the pivot column). Choose the row with the smallest
resulting ratio as the pivot row. This is the row that is replaced by x1 in the new basis. In 
this case, it is row s2. Notice that the x2 row is not considered here because it has a zero aij

coefficient in the pivot column. The new basis in the third tableau will be s1, x1, and x2.

Step 1: Transform the old pivot row replacing s2 with x1.
The new x1 row in the third tableau is created by dividing all aij and bi coefficients in the
pivot row (old s2 row) by 2.5 in order to get a 1 coefficient in the x1 column for a21. That
is, divide:

2.5x1 � 0x2 � 0s1 � 1s2 � 0.5s3 � 1,100 (old s2 row) 

by 2.5 to get:

1x1 � 0x2 � 0s1 � 0.4s2 � 0.2s3 � 440 (new x1 row)

Step 2: Transform s1 row.
The new s1 row in the third tableau is created by transforming the old s1 row to get a zero
coefficient for a11. To do this, first multiply the new x1 row by the negative of the a11 coef-
ficient, which is �1 in this case. Then add the resulting row to the old s1 row to get the
new s1 row, that is:

�1x1 � 0x2 � 0s1 � 0.4s2 � 0.2s3 � �440 (new x1 row times �1)

1x1 � 0x2 � 1s1 � 0s2 � 0.67s3 � 466.67 (old s1 row)
____________________________________________ (add together)

0x1 � 0x2 � 1s1 � 0.4s2 � 0.47s3 � 26.67 (new s1 row)

CHAPTER 2 THE SIMPLEX METHOD TO SOLVING LINEAR PROGRAMMING PROBLEMS 63

c02.qxd  11/29/10  7:36 PM  Page 63



Step 3: Transform x2 row.
The new x2 row is created by transforming the old x2 row to get a zero coefficient for a31. 

Note that this coefficient is already zero. Hence, no transformation is needed.
Using the information from steps 1, 2, and 3, the third tableau becomes:

Third Tableau

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b bi/aij

s1 0 0 0 1 �0.4 �0.47 26.67
x1 35 1 0 0 0.4 �0.20 440
x2 50 0 1 0 0 0.67 533.33

zj 35 50 0 14 26.5 42,066.67

Net Eval (cj � zj) 0 0 0 �14 �26.5

Check to see that the new tableau has the elements of an identity matrix formed from
the three columns of the basic variables s1, x1, and x2. Calculate the new cj � zj values for
the third tableau. Since no positive entries exist, we have found the optimal solution to the
problem. Consequently, this iterative procedure can stop because no positive values are
found in the cj � zj row.

The optimal solution is given by the b column in the final simplex tableau. Reading
down this column, the optimal solution is:

x1
* � 440, x2

* � 533.33, s1
* � 26.67, s2

* � 0, s3
* � 0, and Z* � 42,066.67.

A flow chart of the simplex method for a maximization problem is presented in Figure 2.1,
and the three simplex tableaus for this problem are presented in Figure 2.2. To recap, the
simplex method starts by writing the LP problem in simplex tableau form. In this first
tableau, the slack variables are basic (non-zero) and the nonslack variables, xi’s, are made
nonbasic (zero). Next, calculate the zj and cj � zj rows. The column of coefficients associ-
ated with the highest cj � zj value is called the pivot column. The rule for selecting a new
basic variable is to choose the nonbasic variable that yields the highest positive net contri-
bution value. If all nonbasic variables have nonpositive net contributions, then stop, as the
current simplex tableau contains the optimal solution. If it is determined that a new basic
variable should be added to the next tableau, then determine which of the old basic vari-
ables has to leave the next basis. This is done by dividing all bi column values by the aij

coefficients in the pivot column. The ratio with the smallest non-negative value represents
the current basic variable that should be forced out of the subsequent basis. The row asso-
ciated with this variable is called the pivot row. In a case where there is a tie between two
variables having the smallest value, flip a coin to determine the pivot row.

Next, perform all the elementary row transformations required to make all new basic
variables form unit vectors. This is somewhat cumbersome, but after some practice it
becomes quite simple. Then, the new tableau can be written out, and the zj and cj � zj rows
can be computed. Use the same criteria as before in selecting new basic activities, delet-
ing old basic activities, and determining whether or not to stop.

2.2 THE SIMPLEX METHOD FOR MAXIMIZATION 
PROBLEMS: GENERAL CASE

In the previous section, the simplex method for solving LP models using � constraints was
described. In this section, solution techniques using the simplex method for LP models 
containing �, �, and � types of constraints are discussed. 
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Start
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tableau form. Make all
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pivot row and other rows to get 

unit vectors

Write new tableau. Check that 
elements in columns of all basic 

variables form unit vectors. If not, 
an error has been made and must 

be corrected

Calculate zj and cj � zj rows

Are all cj � zj
negative or zero?

Optimal solution reached

Stop

Yes
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Figure 2.1 Flow chart of the simplex method for a maximization problem.
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Figure 2.2 Three simplex tableaus for first maximization problem with pivot columns and rows
highlighted, and pivot elements in bold.

First Tableau

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b bi/aij

s1 0 1 1 1 0 0 1,000 1,000

s2 0 2.5 0.75 0 1 0 1,500 2,000

s3 0 0 1.5 0 0 1 800 533.33

zj 0 0 0 0 0 0

Net Eval (cj � zj) 35 50 0 0 0

Second Tableau

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b bi/aij

s1 0 1 0 1 0 �0.67 466.67 466.67

s2 0 2.5 0 0 1 �0.50 1,100 440

x2 50 0 1 0 0 0.67 533.33 –

zj 0 50 0 0 33.50 26,666.67

Net Eval (cj � zj) 35 0 0 0 �33.50

Third Tableau

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b bi/aij

s1 0 0 0 1 �0.4 �0.47 26.67

x1 35 1 0 0 0.4 �0.20 440

x2 50 0 1 0 0 0.67 533.33

zj 35 50 0 14 26.50 42,066.67

Net Eval (cj � zj) 0 0 0 �14 �26.50
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Greater-Than-Or-Equal-To Constraints

Consider the following two-activity maximization problem:

Max: Z � 500x1 � 400x2 (0)

s.t.:

30x1 � 50x2 � 1500 (1)

10x2 � 200 (2)

80x1 � 50x2 � 3000 (3)

10x1 � 10x2 � 250 (4)

x1, x2 � 0 (5)

This problem is different from the previous maximization problems discussed because
one of the constraints is a � restriction. It is totally permissible and indeed quite 
common for many maximization problems to include � (and �) as well as � types of
constraints. Likewise, minimization problems do not necessarily have to include only
� constraints.

The above problem can be expressed in standard form as the following:

Max: Z � 500x1 � 400x2 � 0s1 � 0s2 � 0s3 � 0s4 (0)

s.t.:

30x1 � 50x2 � 1s1 � 1,500 (1)

10x2 �1s2 � 200 (2)

80x1 � 50x2 � 1s3 � 3,000 (3)

10x1 � 10x2 � 1s4 � 250 (4)

x1, x2, s1, s2, s3, s4 � 0 (5)

To see why using the same simplex procedures discussed in the last section would cause
problems for this example, let x1 � x2 � 0 and start the simplex method. Solving (1) through
(4) yields:

x1 � 0, x2 � 0, s1 � 1,500, s2 � 200, s3 � 3,000, s4 � �250.

This solution is not feasible! Why? Because s4 � �250, which violates the non-negativity
restriction in (5). This problem is due to the � in constraint (4). Since s4 is a surplus rather
than slack variable, the initial basic solution is not feasible. Hence, the previously described
simplex method cannot be relied upon as a means to solve this problem. The problem is that
the simplex method starts off at the origin, but in this case the origin is not part of the feasi-
ble region.

Artificial Variables To solve this problem, artificial variables are used. Artificial vari-
ables (ai) are “dummy” variables used to obtain an initial basic solution that is feasible when
there are � or � constraints. They are dummy variables in the sense that they are included in
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the initial simplex tableau in order to get a feasible solution, but are forced out in subsequent
tableaus because they do not have any real economic meaning. In the case of � constraints, add
an artificial variable, ai, to the � constraint (a4, where the subscript value denotes the constraint
number). The new constraint set becomes the following:

30x1 � 50x2 � 1s1 � 1,500 (1)

10x2 � 1s2 � 200 (2)

80x1 � 50x2 � 1s3 � 3,000 (3)

10x1 � 10x2 �1s4 � 1a4 � 250 (4)

Letting x1 � x2 � s4 � 0, the new solution is:

x1 � 0, x2 � 0, s1 � 1,500, s2 � 200, s3 � 3,000, s4 � 0, a4 � 250.

This is now a BFS in a mathematical sense. However, in reality, it is still not feasible
since constraint (4) in the general form of the model is still not satisfied since s4 � 0.
That is, this solution procedure is a mathematical means for using the simplex tech-
nique, but it does not make sense as a “real-world” solution. Therefore, a procedure
needs to be devised that guarantees that no artificial variable will appear as a basic vari-
able in the final solution. One approach that accomplishes this is called the penalty
approach. This approach is very simple in that a very large cost is assigned to the arti-
ficial variable in the objective function. Rather than using a very large number, it is
more convenient to denote this cost as m. This large penalty will have the effect of
guaranteeing that the artificial variable will not be part of the optimal solution. The
objective function becomes:

Max: Z � 500x1 � 400x2 � 0s1 � 0s2 � 0s3 � 0s4 � ma4.

In larger models that contain more than one � constraint, the procedure is the same. Add
a surplus variable and an artificial variable for each � constraint. Also, for each of these
artificial variables in the objective function, assign its objective function coefficient a very
large penalty m. In the case of maximization problems, the penalties are assigned by sub-
tracting mai from the objective function. In the case of minimization problems, the penal-
ties are assigned by adding mai to the objective function.

Which variables will be basic variables for the initial simplex tableau? The following
rule will help determine the answer to this question:

The basic variables in the initial simplex tableau will all be slack and artificial vari-
ables that form unit vectors (i.e., have a coefficient of 1).

Using this rule, it is apparent that the basic variables for the initial tableau in this exam-
ple are s1, s2, s3, and a4. The first tableau is presented below:
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First Tableau

x1 x2 s1 s2 s3 s4 a4

Basis CB 500 400 0 0 0 0 �m b bi/aij

s1 0 30 50 1 0 0 0 0 1,500 50
s2 0 0 10 0 1 0 0 0 200 –
s3 0 80 50 0 0 1 0 0 3,000 37.5
a4 �m 10 10 0 0 0 �1 1 250 25

zj �10m �10m 0 0 0 m �m �250m
cj � zj 500�10m 400�10m 0 0 0 �m 0
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Again notice that this first solution is feasible in the context of the simplex technique,
but not in a real-world context. What happens to the artificial variable? In this case, the
pivot column is x1, and the pivot row is a4. Hence, the artificial variable becomes nonbasic
in the next tableau, which implies that the next iteration will be a “real” BFS. As was the
case before, transformations are required to transform the new basic variable (x1) for 
the next tableau into unit vectors.

Step 1: Divide old row a4:

10x1 � 10x2 � 0s1 � 0s2 � 0s3 � 1s4 � 1a4 � 250 (old a4)

by 10 to get:

1x1 � 1x2 � 0s1 � 0s2 � 0s3 � 0.1s4 � 0.1a4 � 25 (new x1 row)

Step 2: Create new s1 row by multiplying new x1 row by �30 (�a11) and adding to the old
s1 row:

�30x1 � 30x2 � 0s1 � 0s2 � 0s3 � 3s4 � 3a4 � �750 (new x1 times �30)

30x1 � 50x2 � 1s1 � 0s2 � 0s3 � 0s4 � 0a4 � 1,500 (old s1)

_________________________________________________________ (add together)

0x1 � 20x2 � 1s1 � 0s2 � 0s3 � 3s4 � 3a4 � 750 (new s1 row)

Step 3: New s2 row � old s2 row since there is a zero coefficient in the x1 column.

Step 4: Create new s3 row by multiplying new x1 row by �80 (�a31) and adding it to the
old s3 row:

�80x1 � 80x2 � 0s1 � 0s2 � 0s3 � 8s4 � 8a4 � �2,000 (new x1 times �80)

80x1 � 50x2 � 0s1 � 0s2 � 1s3 � 0s4 � 0a4 � 3,000 (old s3 row)

_________________________________________________________ (add together)

0x1 � 30x2 � 0s1 � 0s2 � 1s3 � 8s4 � 8a4 � 1,000 (new s3 row)

Using these results, the second tableau becomes:
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Second Tableau

x1 x2 s1 s2 s3 s4 a4

Basis CB 500 400 0 0 0 0 �m b bi/aij

s1 0 0 20 1 0 0 3 �3 750 250
s2 0 0 10 0 1 0 0 0 200 –
s3 0 0 �30 0 0 1 8 �8 1,000 125
x1 500 1 1 0 0 0 �0.1 0.1 25 –

zj 500 500 0 0 0 �50 50 12,500
cj � zj 0 �100 0 0 0 50 �m�50
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Notice that now the net contribution of a4 is negative and the new solution is feasible.
However, since not all net contributions are negative, this solution is not optimal, and it is
necessary to proceed to the next iteration. Now the pivot column and pivot row are:

Pivot Column � s4, 

Pivot Row � s3.

The following transformations are needed for the third simplex tableau.

Step 1: Divide old row s3

0x1 � 30x2 � 0s1 � 0s2 � 1s3 � 8s4 � 8a4 � 1,000 (old s3 row)

by 8 to get: 

0x1 � 3.75x2 � 0s1 � 0s2 � 0.125s3 � 1s4 � 1a4 � 125 (new s4 row)

Step 2: Create the new s1 row by multiplying the new s4 row by �3 (�a16) and adding to
the old s1 row: 

0x1 � 11.25x2 � 0s1 � 0s2 � 0.375s3 � 3s4 � 3a4 � �375 (new s4 times �3)

0x1 � 20x2 � 1s1 � 0s2 � 0s3 � 3s4 � 3a4 � 750 (old s1)
___________________________________________________________ (add together)

0x1 � 31.25x2 � 1s1 � 0s2 � 0.375s3 � 0s4 � 0a4 � 375 (new s1 row)

Step 3: New s2 row � old s2 row since there is a zero coefficient in the s4 column.

Step 4: Create the new x1 row by multiplying the new s4 row by 0.1 (�a46) and adding it
to the old x1 row:

0x1 � 0.375x2 � 0s1 � 0s2 � 0.0125s3 � 0.1s4 � 0.1a4 � 12.5 (s4 times 0.1)

1x1 � 1x2 � 0s1 � 0s2 � 0s3 � 0.1s4 � 0.1a4 � 25 (old x1 row)
___________________________________________________________ (add together)

1x1 � 0.625x2 � 0s1 � 0s2 � 0.0125s3 � 0s4 � 0a4 � 37.5 (new x1 row)

Using these results, the third tableau becomes:
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Third Tableau

x1 x2 s1 s2 s3 s4 a4

Basis CB 500 400 0 0 0 0 �m b bi/aij

s1 0 0 31.25 1 0  �0.375 0 0 375 12
s2 0 0 10 0 1 0 0 0 200 20
s4 0 0 �3.75 0 0 0.125 1 �1 125 –
x1 500 1 0.625 0 0 0.0125 0 0 37.5 60

zj 500 312.5 0 0 6.25 0 100 18,750
cj � zj 0 87.5 0 0 �6.25 0 �m
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Since not all net contributions are negative, this solution is not optimal, and we proceed to
the next iteration.

Pivot Column � x2,

Pivot Row � s1.

Step 1: Create the new x2 row by dividing old s1 row:

0x1 � 31.25x2 � 1s1 � 0s2 � 0.375s3 � 0s4 � 0a4 � 375 (old s1 row)

by 31.25 (a12) to get:

0x1 � 1x2 � 0.032s1 � 0s2 � 0.012s3 � 0s4 � 0a4 � 12 (new x2 row)

Step 2: Create the new s2 row by multiplying the new x2 row by �10 (�a22) and adding to
the old s2 row:

0x1 � 10x2 � 0.32s1 � 0s2 � 0.12s3 � 0s4 � 0a4 � �120 (new x2 times �10)

0x1 � 10x2 � 0s1 � 1s2 � 0s3 � 0s4 � 0a4 � 200 (old s2 row)
__________________________________________________________ (add together)

0x1 � 0x2 � 0.32s1 � 1s2 � 0.12s3 � 0s4 � 0a4 � 80 (new s2 row)

Step 3: Create the new s4 row by multiplying the new x2 row by 3.75 (�a32) and adding to
the old s4 row:

0x1 � 3.75x2 � 0.12s1 � 0s2 � 0.045s3 � 0s4 � 0a4 � 45 (new x2 times 3.75)

0x1 � 3.75x2 � 0s1 � 0s2 � 0.125s3 � 1s4 � 1a4 � 125 (old s4 row)
__________________________________________________________ (add together)

0x1 � 0x2 � 0.12s1 � 0s2 � 0.08s3 � 1s4 � 1a4 � 170 (new s4 row)

Step 4: Create the new x1 row by multiplying the new x2 row by �.625 (�a42) and adding
to the old x1 row:

0x1 � 0.625x2 �0.02s1 � 0s2 � 0.0075s3 � 0s4 � 0a4 � �7.5 (new x2 times �0.625)

1x1 � 0.625x2 � 0s1 � 0s2 � 0.0125s3 � 0s4 � 0a4 � 37.5 (old x1 row)
__________________________________________________________ (add together)

1x1 � 0x2 �0.02s1 � 0s2 � 0.02s3 � 0s4 � 0a4 � 30 (new x1 row)

Using these results, the fourth tableau becomes:
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Fourth Tableau

x1 x2 s1 s2 s3 s4 a4

Basis CB 500 400 0 0 0 0 �m b bi/aij

x2 400 0 1 0.032 0 �0.012 0 0 12
s2 0 0 0 �0.32 1 0.12 0 0 80
s4 0 0 0 0.12 0 0.08 1 �1 170
x1 500 1 0 �0.02 0 0.02 0 0 30

zj 500 400 2.8 0 5.2 0 �m 19,800
cj � zj 0 0 �2.8 0 �5.2 0 0
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This is the optimal solution because all cj � zj values are negative. The optimal solution is
given in the b column. The solution is:

x1
* � 30, x2

* � 12, Z* � 19,800, s1
* � 0, s2

* � 80, s3
* � 0, s4

* � 170.

Equal-to Constraints

Consider the following LP problem:

Max: Z � 7x1 � 3x2 � x3 (0)

s.t.:

x1 � x2 � 5x3 � 775 (1)

Plus other structural constraints and non-negativity.
There is now an equality constraint in the problem. In this case, an artificial variable (a1)

is necessary to create a BFS for the initial simplex tableau. Use the same procedures as
those outlined for the � constraints. The standard form of the model with the artificial
variable is:

Max: Z � 7x1 � 3x2 � x3 � ma1 (0)

s.t.:

x1 � x2 � 5x3 � 1a1 � 775 (1)

This can be solved with the simplex method in an identical fashion as before. As can be
seen, the only difference between handling an equality constraint and a � constraint is
that the equality constraint has an artificial variable, but not a surplus variable associated
with it.

Handling Negative Right-Hand-Side Values

At times constraints with negative RHS or b parameters are encountered. The problem
with negative RHS parameters is that they violate the property of the tableau form that all
RHS values be non-negative. Fortunately, there is an easy way to deal with this problem.
Consider, for example:

�5x1 � x2 � �100 (2.8)

This can be corrected by considering the following fact:
Multiplying both sides of a constraint or equation by �1 yields an identical constraint

or equation.
Multiplying both sides of (2.8) by �1 results in:

5x1 � x2 � 100 (2.9)

While multiplying both sides by a negative number reverses the sign of the inequality, con-
straint (2.9) remains mathematically identical to (2.8), and since (2.9) no longer has a neg-
ative b value, the simplex method can be used. Simply replace (2.8) with (2.9), add an
artificial and surplus variable for (2.9), and solve via the simplex method.

2.3 THE SIMPLEX METHOD AND MINIMIZATION PROBLEMS

The following are two ways to approach the simplex method for minimization problems.

Approach 1: The first approach is the same as the one for maximization problems, except
that the two rules for variable selection and stopping when the optimal solution is reached
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are reversed. First, the selection criterion for a new, nonbasic variable entering the solution
is changed to the following:

Choose the nonbasic variable with the most negative cj � zj value.
This makes sense, since cj � zj gives the amount by which the objective function will

change if one unit of a nonbasic variable is forced into the solution. In minimization prob-
lems the goal is to minimize the objective function value.

Second, the stopping criterion is now to halt the iterative simplex method whenever all
the cj � zj values are zero or positive. This should be clear as adding any nonbasic vari-
able with a positive net contribution would make the subsequent objective function value
higher.

Approach 2: The second approach is to convert the minimization problem to an equiva-
lent “maximization” problem and solve using the same procedures as before. Consider the
following fact:

Any minimization problem can be solved as a maximization problem and the result
will be identical to the solution obtained by minimization. This is done by multiply-
ing the objective function by �1 and maximizing.

To illustrate, consider the following minimization problem:

Min: Z � 10x1 � 4x2 (0)

s.t.:

3x1 � 2x2 � 60 (1)

7x1 � 2x2 � 84 (2)

3x1 � 6x2 � 72 (3)

x1, x2 � 0 (4)

The graphical solution to this problem is given in Figure 2.3. The iso-cost line is:

x2 � 0.25Za � 2.5x1 (2.10)

The optimal solution is (x1
*, x2

*) � (6, 21) and Z* � 144. This problem could be equivalently
formulated and solved by multiplying (0) by �1 and solving it as a maximization prob-
lem. That is, min � �max, or

Max: Z � �1(10x1 � 4x2) (0)

s.t.:

3x1 � 2x2 � 60 (1)

7x1 � 2x2 � 84 (2)

3x1 � 6x2 � 72 (3)

x1, x2 � 0 (4)

The objective function now is:

Max: Z � �10x1 � 4x2 (0)

The iso-contribution line, in slope-intercept form is:

x2 � �0.25Za � 2.5x1 (2.11)
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Since constraints (1) through (4) are the same, the feasible region is the same. All that
needs to be done is to find the “maximum” using the “iso-profit” line and the feasible
region. The only difference between the “iso-profit” line given by (2.11) and the iso-cost
line defined by (2.10) is that the intercept in (2.11) is negative while the intercept of (2.10)
is positive. Let Za � �200. Then the intercepts are:

x1 � �0.1(�200) � 20,

x2 � �0.25(�200) � 50.

Let Za � �144. (Note �144 � �200.) Then intercepts are:

x1 � �0.1(�144) � 14.4,

x2 � �0.25(�144) � 36.

So the optimal solution using this approach is (x1
*, x2

*) � (6, 21) and Z* � �144 (see Figure
2.4). This illustrates that Min � � Max, since Zmin � Zmax (i.e., 144 � �(�144)). This is
not the same concept as “duality,” which is covered in a later chapter. It is simply a proce-
dure for converting a minimization problem to an equivalent maximization problem.

74 PART 1 LINEAR PROGRAMMING

0

10

20

30

40

x2

10 20 30 40 x1

A

B

C
D

Z* � 144

Figure 2.3 Graphical solution to the minimization problem.

An Example
Consider the following four-activity minimization problem:

Min: Z � 11x1 � 12x2 � 13x3 � 9x4 (0)

s.t.:

1x1 � 1x2 � 1x3 � 1x4 � 100 (1)

2x1 � 3x2 � 1x3 � 2x4 � 250 (2)

x1, x2, x3, x4 � 0 (3)
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Using approach 1, the first tableau for this problem is:

CHAPTER 2 THE SIMPLEX METHOD TO SOLVING LINEAR PROGRAMMING PROBLEMS 75

0

10

20

30

40

x2

10 20 30 40 x1

A

B

C
D

Z*� �144

Z* � �200

Figure 2.4 Graphical solution to the minimization problem using maximization of �1 times
the objective function.

First Tableau

x1 x2 x3 x4 s1 a1 s2 a2

Basis CB 11 12 13 9 0 m 0 m b bi/aij

a1 m 1 1 1 1 �1 1 0 0 100 100
a2 m 2 3 1 2 0 0 �1 1 250 83.33

zj 3m 4m 2m 3m �m m �m m 350m
cj � zj 11�3m 12�4m 13�2m 9�3m m 0 m 0

In this case, the pivot column is the column with the most negative cj � zj value, which is
column x2. Since a2 has the smallest bi/aij ratio, it becomes the pivot row.

Next Iteration

Step 1: Create the new x2 row by dividing the old a2 row:

2x1 � 3x2 � 1x3 � 2x4 � 0s1 � 0a1 � 1s2 � 1a2 � 250 (old a2 row)

by 3 to get:

0.67x1 � 1x2 � 0.33x3 � 0.67x4 � 0s1 � 0a1 �0.33s2 � 0.33a2 � 83.33 (new x2 row)
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Step 2: Create the new a1 row by multiplying new x2 row by �1 and adding to the old a1 row:

�0.67x1 � 1x2 � 0.33x3 � 0.67x4 � 0s1 � 0a1 � 0.33s2 � 0.33a2 � �83.33 (new x2

row times �1)

1x1 � 1x2 � 1x3 � 1x4 � 1s1 � 1a1 � 0s2 � 0a2 � 100 (old a1 row)

________________________________________________________ (add together)

0.33x1 � 0x2 � 0.67x3 � 0.33x4 � 1s1 � 1a1 � 0.33s2 � 0.33a2 � 16.67 (new a1 row)

Using these results, the second tableau becomes: 
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Second Tableau

x1 x2 x3 x4 s1 a1 s2 a2

Basis CB 11 12 13 9 0 m 0 m b bi/aij

a1 m 0.33 0 0.67 0.33 �1 1 0.33 �0.33 16.67 25
x2 12 0.66 1 0.33 0.67 0 0 �0.33 0.33 83.33 250

zj 8 � 0.33m 12 4 � 0.67m 8 � 0.33m �m m �4 � 0.33m 4 � 0.33m 999.96�

16.67m
cj � zj 3 � 0.33m 0 9 � 0.67m 1 � 0.33m m 0 4 � 0.33m 1.33m� 4

Since not all cj � zj are positive, this tableau is not the optimal solution. The new pivot col-
umn is x3 since it has the most negative cj � zj value and the new pivot row is a1.

Next Iteration

Step 1: Create the new x3 row by dividing the old a1 row:

0.33x1 � 0x2 � 0.67x3 � 0.33x4 � 1s1 � 1a1 � 0.33s2 � 0.33a2 � 16.66 (old a1 row)

by 0.67 to get:

0.5x1 � 0x2 � 1x3 � 0.5x4 � 1.5s1 � 1.5a1 � 0.5s2 � 0.5a2 � 25 (new x3 row)

Step 2: Create new x2 row by multiplying new x3 row by �0.33 and adding to the old
x2 row:

�0.17x1 � 0x2 � 0.33x3 � 0.17x4 � 0.5s1 � 0.5a1 � 0.17s2 � 0.17a2 � �8.33 (new x3

times �0.33)

0.67x1 � 1x2 � 0.33x3 � 0.67x4 � 0s1 � 0a1 � 0.33s2 � 0.33a2 � 83.33 (old x2 row)
________________________________________________________________ (add 

together)

0.5x1 � 1x2 � 0x3 � 0.5x4 � 0.5s1 � 0.5a1 � 0.5s2 � 0.5a2 � 75 (new x2 row)
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Using these results, the third tableau becomes:
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Third Tableau

x1 x2 x3 x4 s1 a1 s2 a2

Basis CB 11 12 13 9 0 m 0 m b bi/aij

x3 13 0.5 0 1 0.5 �1.5 1.5 0.5 �0.5 25 50
x2 12 0.5 1 0 0.5 0.5 �0.5 �0.5 0.5 75 150

zj 12.5 12 13 12.5 �13.5 13.5 0.5 �0.5 1,225
cj � zj �1.5 0 0 �3.5 13.5 m � 13.5 �0.5 m � 0.5

Since not all cj � zj are positive, this tableau is not the optimal solution. The new pivot col-
umn is x4 since it has the most negative cj � zj value and the new pivot row is x3.

Next Iteration

Step 1: Create new x4 row by dividing old x3 row:

0.5x1 � 0x2 � 1x3 � 0.5x4 � 1.5s1 � 1.5a1 � 0.5s2 � 0.5a2 � 25 (old x3 row)

by 0.5 to get:

1x1 � 0x2 � 2x3 � 1x4 � 3s1 � 3a1 � 1s2 � 1a2 � 50 (new x4 row)

Step 2: Create new x2 row by multiplying new x4 row by �0.5 and adding to old x2 row:

�0.5x1 � 0x2 � 1x3 � 0.5x4 � 1.5s1 � 1.5a1 � 0.5s2 � 0.5a2 � �25 (new x4 row 
times �0.5)

0.5x1 � 1x2 � 0x3 � 0.5x4 � 0.5s1 � 0.5a1 � 0.5s2 � 0.5a2 � 75 (old x2 row)

____________________________________________________________ (add together)

0x1 � 1x2 � 1x3 � 0x4 � 2s1 � 2a1 � 1s2 � 1a2 � 50 (new x2 row)

Using these results, the fourth tableau becomes:

Fourth Tableau

x1 x2 x3 x4 s1 a1 s2 a2

Basis CB 11 12 13 9 0 m 0 m b bi/aij

x4 9 1 0 2 1 �3 3 1 �1 50
x2 12 0 1 �1 0 2 �2 �1 1 50

zj 9 12 6 9 �3 3 �3 3 1,050
cj � zj 2 0 7 0 3 m � 3 3 m � 3

Since all cj � zj are positive or zero, this tableau represents the optimal solution. The opti-
mal solution is:

x1
* � 0, x2

* � 50, x3
* � 0, x4

* � 50, s1
* � 0, a1

*� 0, s2
* � 0, a2

* � 0, and Z* � 1,050.

This problem could have also been solved using the second approach, and an identical
answer would have been found.
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Special Cases

As was true in the graphical method, four special cases need to be mentioned for the sim-
plex method. These are the cases of the unbounded solution, no feasible solution, multiple
optimal solutions, and the special case of degeneracy.

Unbounded Solution An unbounded solution exists for a maximization problem
whenever it is possible for the value of the objective function to approach positive infinity.
Such cases are recognized using the graphical approach whenever the feasible region
extends to infinity in the x1 and/or x2 axes. An unbounded solution for a minimization 
problem occurs whenever it is possible for the value of the objective function to approach
negative infinity.

Unbounded solutions are detected using the simplex method whenever the following
occurs:

For a maximization problem, if a nonbasic variable’s cj � zj value is positive and its
respective substitution coefficients (aij) are all nonpositive for any simplex tableau, then the
solution is unbounded. For a minimization problem if a nonbasic variable’s cj � zj value
is negative and its respective substitution coefficients are all nonpositive for any simplex
tableau, then the solution is unbounded.

Why is an unbounded solution detected in this way? Recall that the substitution coef-
ficients give the per unit decrease in the basic solution values for each unit increase in 
a nonbasic variable. If all of the substitution coefficients for a nonbasic variable are non-
positive, this implies that the solution values will actually increase (or not decrease) for
every unit of the entering nonbasic variable being forced into the next solution. Hence, an
unlimited amount of the new basic variable can be brought in without causing the exist-
ing basic variables to become zero or nonbasic. Therefore, for a maximization problem,
the value of the objective function could increase forever at a rate of the net contribution
(cj � zj) of the nonbasic variable since an infinite amount of it can be brought into the
solution. This implies that the LP has no optimal solution because it is unbounded from
above.

In the case of a minimization problem, if the cj � zj value for the nonbasic variable is
negative and if its substitution coefficients are all nonpositive, then an infinite amount of
it could be brought into the solution, and the value of the objective function would
approach negative infinity. Thus, this problem would have an unbounded solution. For
either maximization or minimization problems, the conditions for being unbounded only
occur for any nonbasic variable, not necessarily for the nonbasic variable that is in the
pivot column.

No Feasible Solution Recall from the previous chapter that no feasible solution occurs
when the feasible region is empty. This is usually due to an inconsistency in the constraints.
The case of no feasible solution is very easily recognized in the simplex approach with the
use of the following rule:

If an artificial variable has a positive value in the final simplex tableau, then there is no
feasible solution to the problem.

This should not be surprising since artificial variables are used to make infeasible 
solutions feasible, recognizing that they need to be made nonbasic in the final tableau. 
If artificial variables are basic in the final tableau, then you know that the solution is
infeasible.
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An infeasible solution can never occur for a problem that has all � constraints because
the origin will always be a feasible solution.

Multiple Optimal Solutions Multiple optimal solutions occur whenever the slope of
the iso-contribution line is the same as the slope of a line segment connecting two extreme
points in the feasible region. The existence of alternative optima is recognized with the
simplex method whenever the following occurs:

If any nonbasic variable in the final simplex tableau has a net contribution of zero (i.e.,
cj � zj � 0), then the optimal solution is not unique, but rather multiple optimal solutions
exist.

Suppose that all nonbasic activities had zero net contributions. Then, if the simplex
tableau continues to be iterated, a new solution will be found for the optimal activi-
ties, but each new solution would have the same objective function value because each
new basic variable would have a net contribution of zero. This process could go on
indefinitely.

Degeneracy A final type of “special” solution is called degeneracy. Degeneracy is
an optimal solution that is characterized by having at least one basic variable with a
value of zero. Practically speaking, degeneracy is not usually a problem. However,
degeneracy can theoretically be a problem if it results in “cycling.” Cycling occurs
whenever a degenerate basic variable is removed from one simplex tableau and brought
back through the iterative process in a subsequent simplex tableau such that there is no
improvement in the solution. Cycling therefore causes the possibility of the iterative
simplex process becoming an infinite loop, implying that the stopping criterion is never
satisfied.

There are methods designed to cure the potential problem of cycling. For example, a
very small number can be added to or subtracted from the RHS or technical coefficients to
cure degeneracy. However, degeneracy is usually more of a theoretical problem than one
that is actually encountered in applications, and therefore it is not covered here in any
detail.

SUMMARY

This chapter has focused on an algebraic technique used to solve LP problems. In order
to fully understand the simplex method, it is recommended that the student rework the
examples presented in this chapter and then try to answer the problems presented in the
exercises. The more problems the student works through, the easier this technique
becomes.

Solution techniques using the simplex technique for LP models containing �, �,
and � types of constraints for maximization and minimization problems were discussed in
this chapter. The student should now be able to use this technique to solve any smaller (i.e.,
two- to five-activity) LP problems. Problems larger than this should be left to the computer
as solving this type of problem can be dangerous to your health! A discussion of special
cases of solutions including unbounded, multiple optimal, and no feasible solutions using
the simplex approach was also presented. The case of degeneracy was examined, and it
was argued that this is almost never a problem in applied LP. 
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EXERCISES

1. Consider the following LP maximization problem: 

Max: Z � 90x1 � 120x2 (0)

s.t.:

1x1 � 1x2 � 200 (1)

2x1 � 3x2 � 480 (2)

1x1 � 150 (3)

x1, x2 � 0 (4)

a. If x1 and x2 are both equal to 0, then what are the solution values for the slack 
variables?

b. If x1 � 90 and x2 � 100, then what are the solution values for the slack variables?
c. Write out the initial simplex tableau for this problem.
d. Solve the second simplex tableau for this problem.
e. Solve the third simplex tableau for this problem.
f. State the simplex criterion that indicates that an optimal solution has been reached.

2. An LP model is as follows:

Min: Z � 4x1�39x2 � 60x3 (0)

s.t.: 

x1 � 2x2 � 52 (1)

3x1 � 5x3 � 36 (2)

x2 � 3x3 � 3 (3)

x1, x2, x3 � 0 (4)

a. Transform the model into standard form.
b. Solve the problem using the simplex method.

3. For the following LP:

Max: Z � 3x1 � 4x2 (0)

s.t.:

x1 � 3x2 � 8 (1)

x1 � x2 � 4 (2)

x1, x2 � 0 (3)

a. Formulate in standard form.
b. Identify all basic solutions and decide if they are feasible or nonfeasible.
c. Determine the optimal solution and what path the simplex method would follow

to get to it.
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4. Solve the following LP model using the simplex method:

Max: Z � 7x1 � 9x2 � 4x3 � 6x4 � 12x5 (0)

s.t.:

1x1 � 2x2 � 2x3 � 2x4 � 1x5 � 500 (1)

2x1 � 1x2 � 3x3 � 22x4 � 900 (2)

1x5 � 200 (3)

1x1 � 350 (4)

x1, x2, x3, x4, x5 � 0 (5)

Summarize the optimal solution (e.g., find the optimal productive and slack activity
values, Z*, and which constraints are binding).

5. Solve the following exercise using the simplex method:

Max: Z � 5x � 3y (0)

s.t.:

2x � y � 20 (1)

x � 2y � 36 (2)

3x � y � 24 (3) 

x, y � 0 (4)

6. A cheese plant produces and sells three types of cheese: Cheddar, Monterey Jack, and
Swiss. The sole objective is to maximize total profit from the production and sale of the
three cheeses. The data below describes the production hours per unit in each of the three
production operations required to produce each cheese and other data for the exercise.

Labor (hours/100 pounds)

Type of Cheese 1 2 3 Profit ($/100 pounds)

Cheddar 0.2 0.5 0.5 50.00
Monterey Jack 0.5 0.5 0.2 40.00
Swiss 1.0 0.3 0.2 70.00
Weekly Time Available 90 40 60
(hours)

a. Write this problem in standard form (including slack variables).
b. Solve this problem using the simplex method. Write each tableau on additional

sheets of paper. Label tableau 1 as 1, tableau 2 as 2, etc. What is the optimal solu-
tion for this problem?

7. Consider the following model:

Max: Z � 5x1 � 6x2 � 3x3 (0)

s.t.:
x1 � x2 � x3 � 1,000 (1)

x1 � x2 � 0 (2)

x1 � x2 � x3 � 2,000 (3)

x1, x2, x3 � 0 (4)
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a. Set up this problem in standard form.
b. Solve this problem using the simplex method.
c. Report the optimal solution.

8. Consider the following simplex tableau:
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x1 x2 x3 s1 s2 s3 s4

Basis CB 3 4 2 0 0 0 0 b bi/aij

s1 0 �0.33 0 0 1 �0.66 �1 0 2
x2 4 2 1 0 0 1 0 0 8
x3 2 �0.66 0 1 0 �0.33 1 0 2
s4 0 1.33 0 0 0 0.66 �2 1 2

zj

cj � zj

a. Complete this simplex tableau including the zj and cj � zj rows, and the bi/aij

column.
b. What is the total value of the objective function for this simplex tableau?
c. Does this provide the optimal solution? If so, indicate what the solution is and

how you decided it was optimal. If not, indicate how you decided and what the
next variable introduced into the basis should be.

d. What is the meaning of the cj � zj value obtained in the x1 column?

9. Solve the following LP problem:

Max Z � 14x1 � 5x2 � 12x3 �9x4 (0)

s.t.:

4x1 �2x2 � x3 � 500 (1)

5x1 � 4x4 � 2000 (2)

x2 � 2x3 � 1000 (3) 

x1, x2, x3, x4 � 0 (4)

10. Solve the following LP model using the simplex method:

Max: Z � 9x1 � 9x2 � 4x3 � 8x4 � 14x5 (0)

s.t.:

2x1 � 4x2 � 1x3 � 1x4 � 2x5 � 500 (1)

3x1 � 2x2 � 2x3 � 25x4 � 900 (2)

3x5 � 200 (3)

2x1 � 350 (4)

x1, x2, x3, x4, x5 � 0 (5)

Summarize the optimal solution (e.g., find the optimal productive and slack activity
values, Z*, and which constraints are binding).
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11. Solve the following LP model using the simplex method:

Max: Z � 25x1 � 20x2 � 2x3 � 16x4 (0)

s.t.:

2x1 � 8x2 � 4x3 � 6x4 � 400 (1)

7x1 � 3x2 � 1x3 � 15x4 � 600 (2)

x1, x2, x3, x4 � 0 (3)

Summarize the optimal solution (e.g., find the optimal productive and slack activity
values, Z*, and which constraints are binding).

12. A horticulturist is considering growing five types of flowers to sell in retail stores. The
flowers are (1) roses, which net a profit of $2.00 per flower, (2) carnations, which net
a profit of $0.75 per flower, (3) daisies, which net a profit of $0.35 per flower, (4)
chrysanthemums (mums), which net a profit of $0.25 per flower, and (5) daffodils,
which net a profit of $0.70 per flower. The horticulturist owns 9 acres of land, which
is suitable for growing any of these five flowers. Assume the horticulturist faces the
following production technology:

Resource Requirement Resource
Unit Resource Roses Carnations Daisies Mums Daffodils Endowment

Acres per Flower 0.001 0.0005 0.0003 0.0001 0.0004 9
Hours of Labor 0.100 0.0700 0.0600 0.0500 0.0700 1,200

Further assume that (1) at most, 2,500 roses can be grown and (2) the combination of
daisies and mums cannot exceed 5,000 flowers. The sole objective is to maximize
profits. Find the optimal solution to this problem using the simplex method. Write out
each simplex tableau, and show all your work in arriving at each tableau. Clearly label
each tableau.

13. A company manufacturing copper releases three pollutants into the air: A, B, and C. The
state has just passed a law that mandates that the company’s plant must reduce its emis-
sions of A, B, and C by at least 15, 10, and 20 units, respectively. The company can
reduce its emissions of A, B, and C by using three pollution abatement processes: x1, x2,
and x3. Use of 1 unit of x1 will reduce pollutants A, B, and C by 1, 1, and 2 units, respec-
tively. Use of 1 unit of x2 will reduce pollutants A, B, and C by 3, 0, and 1 units, respec-
tively. That is, only pollutants A and C can be reduced by using x2; 
pollutant B cannot be reduced by using x2. Finally, use of 1 unit of X3 will reduce pol-
lutants A, B, and C by 0, 2, and 0 units, respectively. That is, only pollutant B can be
reduced under pollution control device x3. Each unit of x1, x2, and x3 costs the company
$4, $2, and $3, respectively. The objective of the company is to install the least expen-
sive combination of pollution control devices (x1, x2, and x3) that also satisfies the state’s
requirement that A, B, and C be reduced by at least 15, 10, and 20 units, respectively.

a. State this problem in standard form.
b. Restate the objective function of this problem in such a way that it is technically

a maximization problem, with a solution identical to a minimization problem
given the constraints stated in part a.
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Nutrient Content Per Pound
Cost

Feed A B C ($/pound)

f1 5 22 3 0.25
f2 10 25 2 0.50
f3 7 12 5 0.27

c. Solve this problem using the simplex method.
d. What is the optimal solution to this problem?

14. Consider the following LP problem:

Max: Z � 4x1 � 2x2 � 3x3 � 5x4 (0)

s.t.:

2x1 � 1x2 � 1x3 � 2x4 � 50 (1)

3x1 � 1x3 � 2x4 � 80 (2)

1x1 � 1x2 � 1x4 � 60 (3)

x1, x2, x3, x4 � 0 (4)

a. Write the first tableau for this problem in standard form including artificial 
variables.

b. Solve this problem using the simplex method.

15. Solve the following maximization problem using the simplex method:

Max: Z � 10x � 5y � 15v (0)

s.t.:

x � y � v � 1,000 (1)

y � 100 (2)

x, y, v � 0 (3)

16. A dairy farmer’s cows need three nutrients (A, B, and C) to subsist and produce milk
each day. Each cow must receive the equivalent of 100 units of nutrient A, 200 units
of nutrient B, and 50 units of nutrient C in order to maximize milk output. The farmer
can use any combination of three feeds ( f1, f2, and f3) in meeting these minimum
requirements. The local feed dealer sells all three feeds, which have the following cost
per pound and nutrient equivalents (for A, B, and C) per pound.
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Assume that the farmer’s objective is to minimize the cost per cow of buying any com-
bination of these three feeds that satisfy the daily nutrient requirements of the cow.

a. Write the standard form of this LP problem.
b. Solve this problem using the simplex method. 
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17. Solve the following LP model using the simplex method:

Max: Z � 10x1 � 8x2 � 2x3 � 6x4 (0)

s.t.:

5x1 � 3x2 � 4x3 � 2x4 � 200 (1)

6x1 � 5x2 � 1x3 � 10x4 � 300 (2)

x1, x2, x3, x4 � 0 (3)

Summarize the optimal solution (e.g., find the optimal productive and slack activity
values, Z*, and which constraints are binding).

18. Consider the following problem:

Max: Z � 10a � 20b � 5c � 15d (0)

s.t.:

1a � 2b � 3c � 4d � 1,000 (1)

1a � 2b � 2c � �500 (2)

4c � 7d � �100 (3)

a, b, c, d � 0 (4)

a. Reformulate this problem so that the negative RHS values are eliminated from the
constraints.

b. Write the first simplex tableau for this problem using the reformulated problem
from part a.

19. A farmer owns 500 acres of land, which are suitable for growing corn, soybeans, and
sunflowers. His expectations are that the net profit from producing each crop is: $55
per acre for corn, $60 per acre for soybeans, and $50 per acre for sunflowers. He and
his family can supply 3,000 hours per year in performing all the farm operations
necessary to grow these crops. In addition, he is endowed with the equivalent of 
4,500 hours of tractor time necessary to grow these crops. Assume that the only
resources necessary in crop production are land, labor, and tractor time. The technol-
ogy is summarized below.

Crop
Resource

Resource (Unit) Corn Soybeans Sunflowers Endowment

Land (acres) 1.0 1.0 1.0 500
Labor (hours) 0.4 0.2 0.3 3,000
Tractor (hours) 0.5 0.2 0.4 4,500

Assuming that the farmer’s objective is to maximize total profits, what is the LP model
for this problem? Solve this problem using the simplex method.

20. A farmer has the following resource endowments: 1,000 acres of land, 1,500 hours of
family labor, and $30,000 for capital investment. She can use these resources to grow

c02.qxd  11/29/10  7:36 PM  Page 85



corn, wheat, and soybeans. The farmer expects the following in terms of crop yields,
prices, variable costs, and labor requirements:

Price Yield Variable Cost Labor Requirement
Crop ($1 bushel) (bushel/acre) ($/acre) (hours/acre)

Corn 2.75 120 250 3.25
Wheat 2.65 100 200 3.00
Soybeans 6.75 45 230 3.30

Assume that the farmer works to maximize net revenue (gross revenue minus variable
costs) from the production of these three crops. Formulate this as an LP problem, and
solve it using the simplex method.

21. Explain what is wrong with the following problem: 

Max: Z � 10x � 7y (0)

s.t.:

1x � 2y � 100 (1)

10x � 20y � 2,000 (2)

x, y � 0 (3)

22. Write the following LP problem in general form:

Max: Z � 5k � 10l � 9a � 20f � 0s1 � 0s2 � Ma2 � Ma3 � 0s4 � Ma4 (0)

s.t.:

1k � 1l �1a � 1f �1s1 � 1,000 (1)

1k � 1l �1a � 1f � 1s2 � a2 � 1,000 (2)

1k � a3 � 200 (3)

1a � 1s4 � 1a4 � 150 (4)

k, l, a, f, s1, s2, a2, a3, s4, a4 � 0 (5) 

23. What is wrong with the following model?

Max: Z � 10a � 15c � 5e (0)

s.t.:

a � c � e � 100 (1) 

a � c � 0 (2)

a, c, e � 0 (3)

How would you tell from the final simplex tableau that there is a problem with this model?

24. You have just been hired as an advertising manager for a generic advertising program
for dairy farmers, Dairy Management, Inc. (DMI). DMI wants to conduct generic
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advertising to increase the demand for milk. DMI has decided to consider both TV and
radio, and wants you to do an analysis of how many TV and radio commercials to pur-
chase for the month. You expect that one TV commercial will increase sales by 25,000
gallons and one radio commercial will increase sales by 7,000 gallons. It costs
$10,000 per TV commercial and $5,000 per radio commercial. You have a budget of
$200,000 for this project. Furthermore, the radio and TV stations have a combined
maximum of 90 minutes for your commercials for the month. Each TV commercial
takes 1 minute, and each radio commercial takes 2 minutes to air. Marketing research
indicates that milk consumers do not want more than 15 TV commercials because they
find watching the same commercial multiple times irritating. The objective is to find
the combination of TV (x) and radio (y) commercials that maximize the sale of milk.
Solve this problem using the simplex method.
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3
Sensitivity Analysis Using the
Simplex Method and Duality

In the previous chapter, the reader learned how to solve linear programming (LP) models
using the simplex method. In this chapter, simplex-based sensitivity analysis is examined
for both maximization and minimization problems. As was argued in the first chapter, sen-
sitivity analysis is an essential element of any analysis because it provides answers to
“what if” types of questions. More important to economists, sensitivity analysis can be
used to derive output supply and input demand functions from an LP model.

This chapter also examines the notion of duality, which is the presentation of the same
problem in two different ways. It cannot be emphasized enough that duality is one of the
most important concepts in mathematical programming and is also an important topic in eco-
nomics. Duality is fundamental to sensitivity analysis particularly with respect to shadow
prices (SP). Recall that an SP gives the value of the change in the objective function given a
one unit change in a constraint’s right-hand-side (RHS) value. The SP is also fundamental to
solution algorithms for mathematical programming, as well as LP, because it provides two
possible formulations of the problem, which yield identical solutions. Obviously this adds
computational efficiency, since the easier of the two problems may be solved.

There are three objectives of this chapter. The first objective is to learn how to use the
simplex method to conduct sensitivity analysis. A solid understanding of simplex-based
sensitivity analysis will enable a better understanding of how to interpret sensitivity reports
from LP software. Second, several properties, concepts, and examples of duality are
explained. A better understanding, as well as appreciation for the importance of duality as
it relates to LP will be gained upon completion of this section. Finally, a brief overview of
how to solve LP problems with Solver is presented. Solver is an add-in software optimiza-
tion package that is used in conjunction with Excel, and can be used to solve linear and
nonlinear programming models. The ability to set up, solve, and analyze LP models with
Solver will be gained upon completion of this chapter.

In the duality section of this chapter, there is some use of summation and matrix nota-
tion to present LP models more compactly. This chapter includes an appendix that pro-
vides a basic primer on summation notation and matrix operations. For readers that are
unfamiliar with the use of matrix and summation notation, read the appendix prior to this
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section because knowledge of this notation is necessary for understanding the presentation
on duality. In addition, some models in future chapters will use both summation and matrix
notation; therefore, readers not possessing a basic knowledge of this notation or needing
their knowledge refreshed should refer to this appendix.

3.1 SIMPLEX-BASED SENSITIVITY ANALYSIS FOR 
MAXIMIZATION PROBLEMS

Sensitivity analysis can be performed using the final simplex tableau, which gives the opti-
mal basic feasible solution (BFS). The information contained in the final tableau allows us
to compute SPs for the constraints, and to do sensitivity analysis for objective function
coefficient values and resource endowments.

Objective Function Coefficients (ci) Sensitivity Analysis

Recall that the range of optimality refers to that range of objective function coefficient val-
ues such that the optimal solution will not change. This can be computed for nonbasic and
for basic variables using the final simplex tableau.

Consider the following maximization problem expressed in standard form with slack
variables and equality constraints:

Max: Z � 35x1 �    50x2 � 0s1 � 0s2 � 0s3 (0)

s.t.:

x1 �    x2 �  s1 � 1,000 (1)

2.5x1 � 0.75x2 � s2 � 1,500 (2)

1.5x2 � s3 � 800 (3)

x1,          x2,     s1,     s2,     s3 � 0 (4)

The final simplex tableau is:

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b bi/aij

s1 0 0 0 1 �0.4 �0.47 26.67
x1 35 1 0 0 0.4 �0.2 440
x2 50 0 1 0 0 0.66 533.33

zj 35 50 0 14 26.33 42,066.67
Net Eval (cj – zj) 0 0 0 �14 �26.33

The range of optimality for this simplex tableau is defined based on the optimal solu-
tion condition: that is, cj – zj � 0. That is, find the range of objective function coefficients
such that cj – zj � 0, for all values of j (meaning basic and nonbasic variables).

Finding the Range of Optimality for a Basic Variable

Finding the range of optimality for a basic variable is done by replacing its numeric
objective function coefficient in the final tableau with the more general ci. For example,
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the range of optimality for the basic variable x1 is determined by replacing c1 � 35 with c1

in the final tableau, which results in the following:

x1 x2 s1 s2 s3

Basis CB c1 50 0 0 0 b

s1 0 0 0 1 �0.4 �0.47 26.67
x1 c1 1 0 0 0.4 �0.2 440
x2 50 0 1 0 0 0.66 533.33

zj c1 50 0 0.4c1 �0.2c1 � 33.33 440c1 � 26,666.5
Net Eval (cj – zj) 0 0 0 �0.4c1 0.2c1 � 33.33

It is now well known that this tableau will be the optimal solution if and only if:

cj – zj � 0 for all j (3.1)

Using condition (3.1), the following must hold:

�0.4c1 � 0, and (3.2)

0.2c1 – 33.33 � 0 (3.3)

In order for (3.2) to hold,

c1 � 0 (3.4)

since it is being multiplied by a negative coefficient. In order for (3.3) to hold,

c1 � 166.67 (3.5)

(i.e., solve (3.3) for c1). Combining conditions (3.4) and (3.5) provides the range of opti-
mality for c1, that is:

0 � c1 � 166.67 (3.6)

Verify that when c1 � 0 or c1 � 166.67, the result is that cj – zj � 0 for all j.

Finding the Range of Optimality for cS2, a Nonbasic Variable

What about the range of optimality for a nonbasic variable? You may use the exact same
procedure as that for a basic variable to obtain this range. Consider the nonbasic vari-
able s2 for this example. Replacing the 0 objective function coefficient on s2 with cS2 in
the final simplex tableau yields:

x1 x2 s1 s2 s3

Basis CB 35 50 0 cS2 0 b bi/aij

s1 0 0 0 1 �0.4 �0.47 26.67
x1 35 1 0 0 0.4 �0.2 440
x2 50 0 1 0 0 0.66 533.33

zj 35 50 0 14 26.33 42,066.67
Net Eval  (cj – zj) 0 0 0 cS2 � 14 �26.33
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Condition (3.1) will now hold if and only if:

cS2 – 14 � 0, or

cS2 � 14 (3.7)

Since there is no lower bound (LB) on what cS2 would have to be in order to satisfy con-
dition (3.1), it is convention that the range of optimality for cS2 be written as:

�� � cS2 � 14 (3.8)

A relevant question is: Should one be concerned with the range of optimality for a non-
basic variable? The answer becomes clear when looking at larger models, where it is quite
common to have some productive activities (the xi’s) as nonbasic variables in the optimal
solution. In such cases, sensitivity analysis can be used to determine how much the objec-
tive function coefficients of the nonbasic productive activities need to change before the
basis changes. A research example determining what minimum price is necessary to make
a new energy crop, velvet beans, economically viable for Alabama cotton–corn farmers to
produce is illustrated in Chapter 4.

For example, suppose that a food company may sell up to 100 different products (xi, i �
1,…,100). Given the product prices (pi) and all the structural constraints, suppose that the
optimal solution includes 90 of these products as basic variables. An important question to
the analyst is: What would it take for the 10 nonbasic products to become profitable enough
to become basic? The answer to this question is found by determining the range of opti-
mality for the nonbasic variable objective function coefficients, which are product prices for
this example.

Resource Endowments (b) Sensitivity Analysis

Shadow prices are easy to calculate based on the final simplex tableau. They are found in
the zj row. Again, consider the final simplex tableau:

x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b

s1 0 0 0 1 �0.4 �0.47 26.67
x1 35 1 0 0 0.4 �0.2 440
x2 50 0 1 0 0 0.66 533.33

zj 35 50 0 14 26.33 42,0665.67
Net Eval (cj – zj) 0 0 0 �14 �26.33

The SPs for the three structural constraints (which are all � type constraints) to this
maximization problem are equal to the zj value given in the final tableau for each of the
slack variables. Hence, in this example:

SPb1 � 0,

SPb2 � 14,

SPb3 � 26.33.

For � structural constraints in a maximization problem, the SPs are equal to the negative
of the zj value for each surplus variable associated with the � constraint in the final
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tableau. Finally, for equality structural constraints in a maximization problem, the SPs are
equal to the zj value associated with each � constraint in the final tableau.

Range of Feasibility for Less-than-or-Equal-to Constraints

The range of feasibility is the range of values of bi for which it can vary without caus-
ing any basic variables in the current solution to become infeasible (e.g. negative). In
addition, this concept can also be interpreted as the range for bi values where its SP do
not change. The discussion that follows is applicable for � structural constraints.

For example, suppose b2 in the original problem (constraint (2)) was increased from
1,500 to 2,000. Will the current basis still yield a feasible basic solution? If so, then we
know that given its SP of 14, the value of the objective function will increase by 14(500) �
7,000. To find the new solution, use the final simplex and the following formula:

New Solution � Old Solution � �bi (si Column)

where � means “change in,” and si is the column of aij coefficients in the final tableau for
the slack variable associated with constraint i. For this example, the new solution is:

Clearly when b2 is increased by 500 units the new solution is not feasible since s1 �
�173.33. What if b2 was increased from 1,500 to 1,560? Then:

New Solution � Old Solution � �b2 (s2 Column) or

For this level of increase in b2, the new solution is feasible. More generally, to find the
range for which b2 can vary without making the current solution infeasible, manipulate 
the formula above by solving for the permissible range of values for b2, which satisfy that
the new solution is still non-negative. In this case, solve the following for �b2:

To be feasible, s1, x1, and x2 � 0. Hence, the RHS of the above system of equations can be
rewritten as (3.9), (3.10), and (3.11), and this range can be solved algebraically:

26.67 � �b2(�0.4) � 0 (3.9)

440 � �b2(0.4) � 0 (3.10)

533.33 � �b2(0) � 0 (3.11)
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Solving each inequality separately for �b2 results in:

�b2 � 66.67 (3.12)

�b2 � �1,100 (3.13)

Can’t be solved for �b2 (3.14)

The range of feasibility for b2 is given by the following condition, which satisfies both
(3.12) and (3.13) simultaneously:

�1,100 � �b2 � 66.67 (3.15)

or adding the upper limit of 66.67 and the lower limit of �1,100 to the current b2 level of
1,500, the range of feasibility is:

400 � b2 � 1,566.67 (3.16)

In other words, as long as the change in b2 is between �1,100 and 66.67, the current opti-
mal basis will remain optimal. As a separate exercise, determine the range of feasibility
for the other bi values for this problem.

3.2 SIMPLEX-BASED SENSITIVITY ANALYSIS FOR MINIMIZATION
PROBLEMS

Consider the following minimization problem:

Min: Z � 11x1 � 12x2 � 13x3 � 9x4 (0)

s.t.:

1x1 � 1x2 � 1x3 � 1x4 � 100 (1)

2x1 � 3x2 � 1x3 � 2x4 � 250 (2)

x1,     x2,      x3,    x4 � 0 (3)

The final tableau for this problem is:

CHAPTER 3 SENSITIVITY ANALYSIS USING THE SIMPLEX METHOD AND DUALITY 93

x1 x2 x3 x4 s1 a1 s2 a2

Basis CB 11 12 13 9 0 m 0 m b bi/aij

x4 9 1 0 2 1 �3 3 1 �1 50
x2 12 0 1 �1 0 2 �2 �1 1 50

zj 9 12 6 9 �3 3 �3 3 1,050
cj – zj 2 0 7 0 3 m�3 3 m�3

The range of optimality for this simplex tableau is defined based on the optimal 
solution condition, that is, cj – zj � 0. In other words, find the range of the objective func-
tion coefficients such that cj – zj � 0, for all values of j (meaning basic and nonbasic 
variables).

As was true in the maximization problem, finding the range of optimality for a basic
variable is done by replacing its numeric objective function coefficient in the final
tableau with the more general ci. For example, the range of optimality for the basic 
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variable x2 is determined by replacing c2 � 12 with c2 in the final tableau, which results
in the following:
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x1 x2 x3 x4 s1 a1 s2 a2

Basis CB 11 c2 13 9 0 m 0 m b bi/aij

x4 9 1 0 2 1 �3 3 1 �1 50
x2 c2 0 1 �1 0 2 �2 �1 1 50

zj 9 c2 18 – c2 9 �27 � 2c2 27 � 2c2 9 – c2 �9 � c2 1,050
cj – zj 2 0 �5 � c2 0 27 � 2c2 m�27 � 2c2 c2 � 9 m �9 � c2

The following condition is used to derive the range of optimality:

cj – zj � 0 for all j (3.17)

Using condition (3.17), the following must hold:

�5 � c2 � 0 (3.18)

27 – 2c2 � 0 (3.19)

m – 27 � 2c2 � 0 (3.20)

c2 – 9 � 0, and (3.21)

m � 9 – c2 � 0 (3.22)

In order for (3.18) to hold,

c2 � 5 (3.23)

In order for (3.19) to hold,

c2 � 13.5 (3.24)

In order for (3.20) to hold,

c2 � 13.5 – 0.5m (3.25)

In order for (3.21) to hold,

c2 � 9 (3.26)

In order for (3.22) to hold,

c2 � m � 9 (3.27)

First consider all the � conditions in (3.23) through (3.27), that is, conditions (3.23),
(3.25), and (3.26). Choose the most restrictive of these conditions as the LB for the
range of optimality. By “most restrictive,” we mean that it is a subset of the other con-
ditions.1 Condition (3.23) is more restrictive than (3.25) since if we let m approach
infinity, then condition (3.25) implies that c2 � negative infinity. Condition (3.26) is
more restrictive than condition (3.23) since (3.26) restricts c2 to a smaller range on the
number line than (3.23). Hence, the LB on c2 for its range of optimality is condition
(3.26), c2 � 9.

1For example, the condition x � 13 is more restrictive than the condition x � 0 because the first is a subset of the
second. Put differently, the condition x � 13 comprises a smaller range of real numbers than the condition x � 0.
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Now consider all the � conditions in (3.23) through (3.27), that is, conditions (3.24)
and (3.27). Choose the most restrictive of these conditions as the upper bound (UB) for
the range of optimality. Condition (3.24) is clearly more restrictive because if we let m
approach infinity, condition (3.27) implies that c2 � �. Hence, the UB is condition
(3.24), c2 � 13.5. Combining conditions (3.24) and (3.26) yields the following range of
optimality for c2:

9 � c2 � 13.5 (3.28)

What about the range of optimality for a nonbasic variable? The exact same procedure can
be followed for the basic variable to obtain this range. Consider the nonbasic variable x1

for this example. Replacing the 11 objective function coefficient on x1 with c1 in the final
simplex tableau yields:

CHAPTER 3 SENSITIVITY ANALYSIS USING THE SIMPLEX METHOD AND DUALITY 95

x1 x2 x3 x4 s1 a1 s2 a2

Basis CB c1 12 13 9 0 m 0 m b bi/aij

x4 9 1 0 2 1 �3 3 1 �1 50
x2 12 0 1 �1 0 2 �2 �1 1 50

zj 9 12 6 9 �3 3 �3 3 1,050
cj – zj c1� 9 0 9 0 3 m � 3 3 m � 3

Now the final basis will remain optimal if and only if:

c1 – 9 � 0, or

c1 � 9 (3.29)

Since there is no UB on what c1 would have to be in order to satisfy condition (3.29), it is
convention that the range of optimality for c1 be written as:

9 � c1 � � (3.30)

Right-Hand-Side Sensitivity Analysis

Shadow prices are easy to calculate based on the final simplex tableau. They are found in
the zj row. Again, consider the final simplex tableau:

x1 x2 x3 x4 s1 a1 s2 a2

Basis CB 11 12 13 9 0 m 0 m b bi/aij

x4 9 1 0 2 1 �3 3 1 �1 50
x2 12 0 1 �1 0 2 �2 �1 1 50

zj 9 12 6 9 �3 3 �3 3 1,050
cj – zj 2 0 7 0 3 m � 3 3 m � 3

The SP for the two structural constraints (which are both � type constraints) to this min-
imization problem are equal to the zj value given in the final tableau for each of the artifi-
cial variables. Hence, in this example:

SPb1 � 3,

SPb2 � 3.
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More generally, SPs are found in the zj row of the final simplex tableau for all types of LP
problems. The table below presents a summary of SPs for minimization and maximization
problems involving all three types of structural constraints.

Type of Constraint SP for Either a Maximization or Minimization Problem

� zj value of slack variable associated with that constraint
� zj value of artificial variable associated with that constraint
� zj value of artificial variable associated with that constraint

Range of Feasibility for Greater-than-or-Equal-to and 
Equal-to Constraints

The following formula is used to calculate the range of feasibility for � or � structural
constraints:

New Solution � Old Solution � �bi (ai column),

where � means “change in,” and the ai column refers to the column of aij coefficients in
the final simplex tableau for the artificial variable associated with constraint i. Use this 
formula again by setting it � zero to derive the range of values for �bi to satisfy non-
negativity.

For example, consider the RHS value for constraint (1) in the minimization problem on
the previous page. In this case, the following conditions are derived:

x4 � 50 � 3�b1,

x2 � 50 – 2�b1.

To be feasible, x4 and x2 must be non-negative. Rewriting the system of equations above as
individual inequalities yields:

50 � 3�b1 � 0 (3.31)

50 – 2�b1 � 0 (3.32)

Solving each inequality for �b1 results in:

�b1 � �16.67 (3.33)

�b1 � 25 (3.34)

The range of feasibility for b1 is thus given by the following condition:

�16.67 � �b1 � 25 (3.35)

or expressing it in terms of b1 instead of in terms of �b1:

83.33 � b1 � 125 (3.36)

As an exercise, determine the range of feasibility of b2 for this problem.

3.3 DUALITY

This section examines the notion of duality. For those that are unfamiliar with the use of
matrix and summation notation, read the appendix prior to this section because knowl-
edge of this notation is necessary for understanding the presentation on duality.
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All LP problems exist in pairs. For every LP problem there exists another LP problem
whose formulation is different, but whose solution gives identical results to the original
problem. This important notion is called duality.

The Relationship Between the Primal and Dual Problems

Duality is the formulation of one problem in two different ways. To illustrate, it is well
known that under certain conditions, the solution to a problem that maximizes profits
subject to technology constraints is identical to the solution to a problem that mini-
mizes costs subject to equilibrium conditions (e.g., marginal costs � marginal
revenue).

To understand the notion of duality, it is useful to begin with the definition of the two
problems that result in identical solutions. As a matter of convention, the original LP prob-
lem will be called the primal problem, which has the following characteristic:

If the original problem is a minimization problem, then the primal is a minimization
problem; and if the original problem is a maximization problem, then the primal is a max-
imization problem.

For example, consider the following maximization problem, whose primal problem is:

Max: Z � c1x1 � c2x2 (0)

s.t.:

a11x1 � a12x2 � b1 (1)

a21x1 � a22x2 � b2 (2)

: :    : : : :

am1x1 � am1x2 � bm (m)

x1, x2 � 0 (m�1)

The essence of duality is that for every primal problem there exists a dual problem. The
dual problem is an alternative way of expressing the primal problem, and it has the fol-
lowing relationships with the primal problem:

1. The number of activities of the dual problem will equal the number of structural con-
straints (not including non-negativity) in the primal problem. In the example above,
the dual problem will have n activities since the primal problem has n structural con-
straints.

2. The number of structural constraints of the dual problem will equal the number of
activities in the primal problem. In this example, the dual problem will have two struc-
tural constraints because the primal problem has two activities.

3. The objective function coefficients for the dual problem are the RHS (bi’s) values in
the primal problem. In this example, the dual problem’s objective function coefficients
will be the coefficients b1, b2, … , bn from the primal problem.

4. The RHS values for the dual problem correspond to the objective function coefficients
of the primal problem. Hence, for this example the dual problem’s RHS values will be
c1 and c2.

5. If all activities in the primal maximization problem are non-negative and all constraints
are � restrictions, then all activities in the dual minimization problem must also be
non-negative and all constraints will be � restrictions.
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6. The collection of technical coefficients (aij) in the dual problem is the same as the col-
lection of technical coefficients in the primal, except that the dual problem uses the
transpose of this matrix of coefficients, that is, the row elements become the column
elements and vice versa. In this example, this implies that all the coefficients aij in the
dual are equal to aji in the primal, for i � 1, … , m; and j � 1,2.

7. The activities in the dual problem, which will be denoted as yi to distinguish the dual
from the primal problem’s activities (i.e., the xi’s), are called the dual variables. The
meaning of these variables will be discussed later in this section.

Using these facts, the dual problem for this example can be constructed:

Min: Z � b1y1 � b2y2 � … � bnyn (0)

s.t.:

a11y1 � a21y2 � … � an1yn � c1 (1)

a12y1 � a22y2 � … � an2yn � c2 (2)

y1, y2, … , yn � 0 (3)

The dual variables (yi) in the dual problem give the marginal value of the RHS values asso-
ciated with the primal problem. Does this sound familiar? It should! This is precisely the
definition of a SP. Hence, the solution to the dual problem directly provides a solution for
all the SPs for the constraints in the primal problem.

The relationship between the primal and dual problem can be stated more compactly
by using matrix notation. Let the m 	 2 matrix A be the technical coefficients of the pri-
mal problem. Let the m 	 1 vector b represent all the RHS (the bi’s) values of the primal
problem. Similarly, let the vectors c (1 	 2) and x (2 	 1) represent the objective func-
tion coefficients and the activities, respectively, in the primal problem. Using this more
compact notation, the primal problem (for a maximization problem) can be expressed
generally as:

Max: Z � cx (0)

s.t.:

Ax � b (1)

x � 0 (2)

The dual problem then becomes:

Min: V � b
y (0)

s.t.:

A�y � c� (1)

y � 0 (2)

where y is a row vector of dual variables and A� is the transpose of matrix A.

Additional Properties of Duality

Duality is completely symmetric in that every element of the primal is contained in the
dual. The following are several common properties of duality that illustrate this symmetry.
The example above of the primal and dual problem is used for this illustration.
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Weak Duality Property Let x� � (x1�, x2�) be a 1 	 2 vector of solution values
that represents a feasible solution for the primal problem (which is a maximization prob-
lem), and let y� � (y1�, y2�, … , yn�) be an n 	 1 vector that represents a feasible solu-
tion for its dual problem. The weak duality property states that the following condition will
always hold:

c1x1� � c2x2� � b1y1� � b2y2� � … � bnyn�

or using matrix notation,

cx� � b
y�.

This means that the value of the objective function for any feasible solution to a primal
problem will never be greater than the value of the objective function for its dual counter-
part problem. If the primal problem is a minimization problem, then the reverse is true, that
is, � becomes � for this property.

Strong Duality Property Let x* � (x1
*, x2

*) be the optimal solution for the primal 
problem, and let y* � (y1

*, y2
*, … , yn

*) be the optimal solution for its dual problem. The
strong duality property states that the following condition will always hold at 
optimality:

c1x1
* � c2x2

* � b1y1
* � b2y2

* � … � bnyn
*,

or using matrix notation,

cx* � b�y*.

This simply means that the optimal value of the objective function for a primal problem is
equal to the optimal value of the objective function for its dual problem.

Complementary Optimal Solution Property The final simplex tableau for the pri-
mal property generates not only an optimal solution for the primal activities (xi

*), but also
a “complementary” solution for the dual problem activities (yi

*), where these optimal dual
variables are the SPs found in the primal problem’s zi row for the slack variables.

Symmetry Property The dual of the dual problem is the primal problem. This prop-
erty is easily proven. Let the dual problem be defined in matrix form as follows:

(3.37) Min: V � b�y (0)

s.t.:

A�y � c� (1)

y � 0 (2)

This problem is identical to the following:

(3.38) Max: –V � –b�y (0)

s.t.:

–A�y � – c
 (1)

y � 0 (2)
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That is, (3.38) was obtained by multiplying the objective function and constraint set of
(3.37) by �1 and then maximize it. Hence, problem (3.38) is identical to problem (3.37)
and both are by definition the dual problem. Now, what is the dual of this dual problem?
The dual of (3.38) is:

(3.39) Min: –Z � – cx (0)

s.t.:

–Ax � –b (1)

x � 0 (2)

Note that the transpose of a transpose is the original matrix, for instance, [A
]
 � A. By
performing the same conversion of problem (3.39) that was done to transform problem
(3.37) to (3.38), the net result is:

(3.40) Max: Z � cx (0)

s.t.:

Ax � b (1)

x � 0 (2)

Since (3.40) is by definition the primal problem, this proves that the dual of the dual is the
primal problem.

The Relationship Between the Primal and Dual Solutions

Previously, the following maximization problem was solved using the simplex method.

Max: Z � 35x1 � 50x2 (0)

s.t.:

x1 � x2 � 1,000 (1)

2.5x1 � 0.75x2 � 1,500 (2)

1.5x2 � 800 (3)

x1, x2 � 0 (4)

The final simplex tableau was:
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x1 x2 s1 s2 s3

Basis CB 35 50 0 0 0 b

s1 0 0 0 1 �0.4 �0.47 26.67
x1 35 1 0 0 0.4 �0.2 440
x2 50 0 1 0 0 0.66 533.33

zj 35 50 0 14 26.33 42,066.67
Net Eval  (cj – zj) 0 0 0 �14 �26.33

The optimal solution therefore is:

(x1
*, x2

*, s1
*, s2

*, s3
*) � (440, 533.33, 26.67, 0, 0) and z* � 42,066.67.
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In addition, the SPs for the three resources are:

(SPb1, SPb2, SPb3) � (0, 14, 26.33).

Now, consider solving the dual of this problem. The dual problem is:

Min: Z � 1,000y1 � 1,500y2 � 800y3 (0)

s.t.:

1y1 � 2.5y2 � 0y3 � 35 (1)

1y1 � 0.75y2 � 1.5y3 � 50 (2)

y1, y2, y3 � 0 (3)

In standard form with surplus and artificial variables this dual problem is:

Min � 1,000y1 � 1,500y2 � 800y3 � 0s1 � 0s2 � ma1 � ma2 (0)

s.t.:

1y1 � 2.5y2 � 0y3 – 1s1 � 1a1 � 35 (1)

1y1 � 0.75y2 � 1.5y3 – 1s2 � 1a2 � 50 (2)

y1, y2, y3, s1, s2, a1, a2 � 0 (3)

Note that the two m objective function coefficients for the two artificial variables are pos-
itive rather than negative. This is due to the fact that for minimization problems, the penal-
ties are positive. To solve this using the simplex tableau method, either solve as a
minimization problem and reverse the cj � zj rule, or multiply the objective function by
�1 and solve as a maximization problem. Consider using the reverse cj – zj rule approach.
Then the first tableau becomes:

First Tableau
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y1 y2 y3 s1 s2 a1 a2

Basis CB 1,000 1,500 800 0 0 m m b bi/aij

a1 m 1 2.5 0 �1 0 1 0 35 14
a2 m 1 0.75 1.5 0 �1 0 1 50 66.6

zj 2m 3.25m 1.5m –m –m m m 85m
cj – zj 1,000 – 2m 1,500 – 3.25m 800 – 1.5m m m 0 0

While the subsequent simplex tableaus are listed below, the student should independ-
ently work through the simplex method to make sure the same tableaus are derived.

Second Tableau

y1 y2 y3 s1 s2 a1 a2

Basis CB 1,000 1,500 800 0 0 m m b bi/aij

y2 1,500 0.4 1 0 �0.4 0 0.4 0 14 —
a2 m 0.7 0 1.5 0.3 �1 �0.3 1 39.5 26.3

zj 600 � 0.7m 1,500 1.5m �600 � 0.3m –m 600 – 0.3m m 21,000 � 

cj – zj 400 – 0.7m 0 800 – 1.5m 600 – 0.3m m 1.3m – 600 0 39.5m
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Third Tableau

y1 y2 y3 s1 s2 a1 a2

Basis CB 1,000 1,500 800 0 0 m m b

y2 1,500 0.4 1 0 �0.4 0 0.4 0 14
y3 800 0.47 0 1 0.2 �0.67 �0.2 0.67 26.33

zj 976 1,500 800 �440 �533.33 440 533.33 42,066.67
cj – zj 24 0 0 440 533.33 m – 440 m – 533.33
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An optimal solution has been reached since cj – zj � 0 for all j. The optimal solution is:

(y1
*, y2

*, y3
*) � (0, 14, 26.33) and z* � 42,066.67.

In addition, the SPs for the two constraints are:

(SPb1, SPb2) � (440, 533.33).

Comparing the final tableau of the dual with the final tableau of the primal illustrates sev-
eral additional very important and useful properties of the final simplex tableaus for the
primal and dual problems.2 These properties are listed below.

Property 1 If the dual problem has an optimal solution, then the primal problem has an
optimal solution and vice versa.

Furthermore, the value of the objective function of the dual and primal problems will be
identical. For instance, if the optimal value is $42,066.67 when the dual problem is solved,
then the solution for the primal problem is also $42,066.67.

Property 2 The optimal values of the productive activities for the primal problem are
given by the absolute value of the SPs from the dual solution. Also, the optimal values of 
the primal slack variables are given by the absolute value of the cj – zj values for the yi vari-
ables in the final simplex tableau of the dual problem.

For this example, the absolute value of the zj values of the surplus variables in the final
tableau of the dual problem are 440 and 533.33, which are identical to x1

* and x2
*, respectively,

in the primal. The absolute value of the cj – zj values of the dual variables in the final tableau
of the dual problem are 26.67, 0, and 0, which are identical to s1

*, s2
*, and s3

*, respectively, in
the primal.

Property 3 If the primal problem is unbounded from above, then the dual problem will
not have a feasible solution.

Property 4 If the dual problem is unbounded from below, then the primal problem will
not have a feasible solution.

2The signs in the relationship between the primal and dual solution may be different in some cases. This is the
reason for using absolute values.
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Property 5 The range of optimality on objective function coefficients for the primal
problem is the range of feasibility on RHS values for the dual problem, and vice versa.

The complete primal solution can be obtained from the dual, and vice versa. These prop-
erties enable either the use of the primal or dual LP problem to get the same solution and
sensitivity analysis results, which is important since the dual can be easier to solve than the
primal, and vice versa. Generally speaking, the problem that has the fewest structural con-
straints will be the easiest to solve with the simplex method. For example, if the primal
problem is a three-activity problem with 10 structural constraints, then the dual problem
will only have three constraints (with 10 activities) and probably will be easier to solve
computationally.

Figure 3.1 summarizes some of these properties by illustrating a simple example.

The Normal Form of a Linear Programming Model

Most of the models encountered thus far have been in normal form. For a maximization
problem, normal form means that the objective function is maximized subject to all structural
constraints being the � type plus the non-negativity constraint on the activities. For a mini-
mization problem, normal form means that the objective function is minimized subject to all
structural constraints being the � type plus the non-negativity constraint on the activities. A
mixed linear programming model for either a maximization or a minimization problem
means that there is at least one � and at least one � type of constraint in the problem.

Normal form is important in duality theory because it is much easier to find the dual of
a problem expressed in normal form than in mixed form. Thus, the first step in deriving
the dual for a primal problem is to check whether the primal is in normal form. If it is not,
the primal should be converted into normal form before the dual problem is constructed.
To illustrate, consider the following minimization problem with mixed constraints:

Min: Z � 200x1 � 175x2 (0)

s.t.:

3x1 � 5x2 � 1000 (1)

1x1 � 800 (2)

30x1 – 5x2 � 30 (3)  

x1, x2 � 0 (4)

Before formulating the dual to this problem, convert this primal problem into normal form.
For a minimization problem, normal form requires that all structural constraints be � con-
straints. Therefore, constraints (2) and (3) in this problem need to be transformed. The fol-
lowing steps are recommended for this example.

Step 1: Convert � constraint in (2) to a � constraint by multiplying (2) by �1, which
results in the following:

�1x1 � �800 (2)


Step 2: Convert the equality in (3) to two constraints, that is:

30x1 – 5x2 � 30 (3a)

30x1 – 5x2 � 30 (3b)

Note: These two constraints imply an equality.
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x1 x2 s1 s2 s3

Basis CB 3 4 0 0 0 b

x1 3 1 0 0 �1.3

�1.3

1.3

�1.3

666.7 1000

1000

1000 600 500

500

333.3

333.3

266.7s2 0 0 0 1

s2 4 0 1 0

zj 3 4 0 3,333.3

cj � zj 0 0 0

Final Tableau Final Tableau

Range of Optimality for cj <---------------> Range of Feasibility for bi
Range of Feasibility for bi <---------------> Range of Optimality for cj

Primal Problem

Max: Z � 3x1 � 4x2 (0)

1x1 � 1x2  �  1,000     (1)
1x2  �  600        (2)

0.25x1 � 1x2  �  500        (3)
1x,        x2 �  0            (4)

Dual Problem

Min: V � 1,000y1 � 600y2 � 500y3 (0)
s.t.:

y1

y1, y2, y3 �  0        (0)

1y1 1y2 1y3 �  4        (2)� �

�
s.t.:

0.25y3 �  3        (1)

y1 y2 y3 a1 s1 a2 y2

Basis CB m 0 m 0 b

y1 1 0 1.3�0.3 �0.3 0.3 2.7

5 y3 0 1 �1.3

�1.3

�1.3 1.3

_

500 �666.7 3,333.3

0 266.7 0

zj

zjcj �

1.3

0.3

1.32.7

�2.7

�0.3

1.3 1.3 1.3

333.3666.7

666.7 333.3

�333.3

(m�666.7) (m�333.3)

Figure 3.1 Relationships between primal and dual problems and solutions.
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Step 3: Convert (3a) into a � constraint by multiplying (3a) by �1, that is:

�30x1 � 5x2 � �30 (3a)


Using (0), (1), (2)
, (3a)
, and (3b), the equivalent primal problem in normal form is:

Min: Z � 200x1 � 175x2 (0)

s.t.:

3x1 � 5x2 � 1,000 (1)

�1x1 � �800 (2)


�30x1 � 5x2 � �30 (3a)


30x1 – 5x2 � 30 (3b)

x1, x2 � 0 (4)

Now, the dual to this problem will be much easier to solve. The dual to this problem is:

Max: V � 1000y1 – 800y2 – 30y3 � 30y4 (0)

s.t.:

3y1 – 1y2 – 30y3 � 30y4 � 200 (1)

5y1 � 0y2� 5y3 – 5y4 � 175 (2)

y1, y2, y3, y4 � 0 (3)

The Economic Intuition Behind Duality

Consider a farmer who produces and sells five crops: corn (a), soybeans (b), oats (c),
wheat (d), and sunflowers (e). The resource requirements, resource endowments, and net
selling prices of each crop are summarized below.
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Crop Resource Requirement

Resource 
Resource (unit) a b c d e Endowment

Labor (hours) 1.5 1.3 1.0 0.8 0.3 2,700
Land (acres) 1 1 1 1 1 2,500
Machinery (hours) 0.5 0.4 0.3 0.2 0.1 1,000
Net profit/acre $500 $400 $450 $350 $300

The primal problem therefore is:

Max: Z � 500a � 400b � 450c � 350d � 300e (0)

s.t.:

1.5a � 1.3b � 1.0c � 0.8d � 0.3e � 2,700 (1)

1.0a � 1.0b � 1.0c � 1.0d � 1.0e � 2,500 (2)

0.5a � 0.4b � 0.3c � 0.2d � 0.1e � 1,000 (3)

a, b, c, d, e � 0 (4)
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Consider the dual to this problem from a buyer’s point of view. That is, suppose that 
a buyer was interested in buying the farmer’s resources to go into the farm business. The
buyer needs to submit a bid for each of the three resources used to produce the five crops.
Let the dual variables y1, y2, and y3 represent the buyer’s bids for the fixed supply of labor,
land, and machinery, respectively. Furthermore, the buyer is interested in making the low-
est possible bid to acquire each resource. Since the fixed supply of labor, land, and machin-
ery is 2,700 hours, 2,500 acres, and 1,000 hours, the objective function from the buyer’s
perspective is:

Min: V � 2,700y1 � 2,500y2 � 1,000y3 (0)

Obviously, if there were no constraints on the buyer’s bids, then the optimal solution would
be to offer $0 for each resource. However, the farmer would probably not be interested in
selling resources for nothing. A resource will only be sold if the farmer can receive an
amount that is at least as much as the resource’s value in producing the five crops. The
value of these resources is reflected in the net profit of all five crops.

For example, for each acre of corn that is produced and sold, the farmer currently makes
a profit of $500. This implies that the bid prices for the three resources, when multiplied
by their respective resource requirements and summed up, must be at least $500. This
restriction must be true for the profitability of all five crops. Hence, for crop e, the bid
prices for the three resources, when multiplied by their respective resource requirements
and summed up, must be at least $300. Mathematically, this is reflected by constraints (1)
through (5) below.

1.5y1 � 1.0y2 � 0.5y3 � 500 (1)

1.3y1 � 1.0y2 � 0.4y3 � 400 (2)

1.0y1 � 1.0y2 � 0.3y3 � 450 (3)

0.8y1 � 1.0y2 � 0.2y3 � 350 (4)

0.3y1 � 1.0y2 � 0.1y3 � 300 (5)

The meaning of these five constraints can also be explained by economic theory. Recall
that according to neoclassical economic theory, it is optimal to produce up to a point where
marginal cost of producing each crop is equal to the marginal revenue for each crop. It is
actually more accurate to state that economic theory requires that marginal costs be � mar-
ginal revenue in order to have an optimal allocation of resources. In constraints (1) through
(5), the marginal costs of producing each crop are given by the left-hand-sides (LHS) and
the marginal revenues from each crop are given by the RHSs. For example, the marginal
cost of producing crop c is: 1.0y1 � 1.0y2 � 0.3y3.

Optimization therefore requires that constraints (1) through (5) all be satisfied. Note that
any of these constraints will be binding (i.e., marginal cost will equal marginal revenue) if
the solution indicates that it is optimal to sell a positive amount of the crop. Hence, 
if a* � 0, then constraint (1) will be binding; this is also true for b*, c*, d*, and e*.

Now consider an example, where the primal problem is a minimization problem, such
as pollution abatement. Assume a new law requires a factory to reduce its emissions of
three contaminants—methane (M), nitrous oxide (NO), and carbon dioxide (CO2)—by
100 million pounds, 200 million pounds, and 300 million pounds per year, respectively.
The plant has two devices it can use to cut emissions of each pollutant: scrubbers (s),
which cost $500,000 per device, and large smokestacks (ls), which cost $2 million per
device. One installed scrubber will remove 50 million pounds of M, 75 million pounds of
NO, and 125 million pounds of CO2. One taller smokestack will remove 100 million
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pounds of M, 150 million pounds of NO, and 175 million pounds of CO2. Therefore, the
primal for this problem is:

Min: Z � 500,000s � 2,000,000ls (0)

s.t.:

50,000,000s � 100,000,000ls � 100,000,000 (1)

75,000,000s � 150,000,000ls � 200,000,000 (2)

125,000,000s � 175,000,000ls � 300,000,000 (3)  

s, ls � 0 (4)

Consider the dual to this problem from a seller’s point of view. That is, suppose that a
seller was interested in selling the reductions in the three pollutants (M, NO, and CO2) to
the factory. The seller needs to submit an offer to sell each of the three minimum reduc-
tions in M, NO, and CO2. Let the dual variables y1, y2, and y3 represent the seller’s offers
for the fixed minimum reductions in M, NO, and CO2, respectively. Furthermore, the seller
is interested in making the highest possible offer for the reduction in each pollutant. Since
the fixed minimum reductions for M, NO, and CO2 are 100 million, 200 million, and 300
million, respectively, the objective function from the seller’s perspective is:

Max: V � 100,000,000y1 � 200,000,000y2 � 300,000,000y3.

Obviously, if there were no constraints on the seller’s offers, then the optimal solution
would be to offer an infinite amount for the reduction in each pollutant. However, the fac-
tory would not be interested in buying the seller’s services for such a hefty price. The 
factory owner will only be interested in buying the seller’s service if the factory owner can
pay an amount that is less-than-or-equal to the cost of installing scrubbers and/or large
smokestacks to meet the minimum reductions. The cost of s and ls is reflected in the net
unit cost of installing scrubbers and large smokestacks.

For example, each scrubber (s) that is installed costs $500,000. This implies that the
offer prices for the three minimum reductions, when multiplied by their respective unit
reductions (yi) and summed up, must be no more than $500,000. Likewise, the cost of
installing each large smokestack is $2,000,000. This implies that the seller’s offer prices
for the minimum reductions, when multiplied by their respective unit reductions and
summed up, must be no more than $2,000,000. Hence, mathematically, the dual to this
problem is:

Max: V � 100,000,000y1 � 200,000,000y2 � 300,000,000y3 (0)

s.t.:

50,000,000y1 � 75,000,000y2 � 125,000,000y3 � 500,000 (1)

100,000,000y1 � 150,000,000y2 � 175,000,000y3 � 2,000,000 (2)

y1, y2, y3 � 0 (3)

3.4 SOLVING LINEAR PROGRAMMING PROBLEMS USING SOLVER

Microsoft Excel has become a ubiquitous tool for data analysis in business. It can also be
used for modeling and solving optimization problems. This is accomplished through an
add-in called Risk Solver Platform for Education (generally hereafter as Solver), which is
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available for free for those who purchase this textbook.3 Solver offers an implementation
of the Simplex Algorithm, along with several other optimization algorithms all within the
context of Excel spreadsheets. This enables users to take advantage of Excel equations and
features, including graphically displaying model results and customization of mathemati-
cal programming models using Visual Basic with Applications (VBA).

This section provides a walkthrough of building and solving an LP in Excel with the
most recent version of Solver. Supplementary materials related to this example and all the
other examples in this textbook are available online at www.wiley.com/college/kaiser.
These materials include the initial model set-up, the solved model, and the related sensi-
tivity analyses are provided to help students and instructors learn the art of modeling using
spreadsheets.

Step 1: Set up an LP in spreadsheet form.

Consider the following LP problem:

Max: Z � 10x � 5y � 9z – 3a � 7b (0)

s.t.:

2.5x � y � z � a � b � 100 (1)

z � 70 (2)

a � 25 (3)

z – b � 0 (4)

x, y, z, a, b � 0 (5)

This problem can be set up in an Excel spreadsheet as displayed in Figure 3.2. Cells B2
through F2 (referred hereafter simply as Cells B2:F2) are reserved to hold the values of the
decision variables. In this case, they are left blank, implying a zero starting point for the algo-
rithm. This works fine with LPs; however, with nonlinear algorithms the initial values of the
decision variables should be feasible. The objective function coefficients are typed into Cells
B3:F3. The coefficients of the constraints are in the block of cells from B5:F8 and the RHS
values are in Cells I5:I9. The formulas to calculate the total values of the objective function
and constraints in Cells G3 and G5:G9 will be covered shortly.

Next, range names are set up, which assign certain blocks of cells a meaningful identi-
fier. The use of range names is not required; however, they are highly recommended as they
make setting up the problem in Solver easier and also help individuals not involved with the
development of the model interpret the model results. Range names offer several advantages
in organizing a spreadsheet and working with formulas. Range names can be set using the
Name Box next to the Formula Box in Excel, or through the Define Name button on 
the Formulas ribbon. Here, for instance, Cells B2:F2 are named DecisionVars. The full list
of defined range names is displayed in Figure 3.2. Range names can be used in place of the
row and column identifiers so that now it states “Z � SUMPRODUCT(DecisionVars,
ObjFuncCoef)” instead of the more difficult to interpret version of this equation “G3 �
SUMPRODUCT(B2:F2, B3:F3).”

The sumproduct function can be used to set up formulas for the objective function and
constraints. Sumproduct is used in Excel to perform vector multiplication of two ranges. For
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example, typing �SUMPRODUCT(B1:B3, C1:C3) in a cell produces the same result as 
typing �B1*C1 � B2*C2 � B3*C3. Using the previously defined name ranges, we can set
our objective function cell to �SUMPRODUCT(DecisionVars, ObjFuncCoef). Likewise,
each constraint total in the G column will be the sum product of the coefficients in that row
and the decision variables. G5, for instance, will be �SUMPRODUCT(DecisionVars,
B5:F5). Once G5 is defined, it can be copied and pasted down the column. In this case, the
reference to the constraint coefficients will move, but the DecisionVars reference will stay
put. The formulas used in the model are displayed in Figure 3.3. As a final touch, labels, bor-
ders, and shading have been included to make the model easier to interpret for others who
might need to work with it or have access to the results.

The model is now set up in Excel and ready to be solved. At this point, you should
review the input data and formulas, and try a few test values to make sure that everything
is working properly before proceeding to define the model in Solver. Sometimes functions
will display error codes starting with hash symbols (#) instead of the expected value as the
result. Usually this indicates that there is something wrong with the formula that needs to
be fixed. It can sometimes be a hassle to track down the source of the error, but there are
some tools that make the troubleshooting process easier.
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Figure 3.2 The model in spreadsheet form.

Figure 3.3 The formulas used in the model.
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To display the functions instead of the results, hold down the CONTROL key and press
the tilde (�) key. Use the same key combination to toggle back to displaying the numeri-
cal results. This makes it possible to review and compare multiple equations at once. The
“Trace Precedents” and “Trace Dependents” buttons on the Formula tab on the Ribbon are
also useful in resolving formula errors. Selecting a formula and clicking Trace Precedents
displays arrows pointing to all of the cells that the cell’s formulas reference, while the
Trace Dependents displays arrows pointing to all of the other cells with formulas refer-
encing that cell. The use of this feature can help an analyst review the entire model to
ensure that it has the proper flow from the initial information given through the decision
variables and constraints to the desired objective function.

Other common errors in Excel include the following:

• If a cell displays “#######” it means that the cell is too small to display the values
in the cell. In most cases, this does not affect the model as the underlying values still
exist; it just makes reading the model on the screen or in printed form difficult. To
correct this problem, adjust the column width to display the numerical results.

• The “#VALUE!” error usually means that a function is receiving the wrong type of
data, for instance, a range of cells containing text used as an argument for the
�SUM() function.

• If “#NUM!” is displayed it means that there is some sort of numerical error in the cal-
culation. An example of this could be �(�1)^.5, which would return the square root
of �1, an imaginary number. To correct this problem, correct the formula.

• The error message “#REF!” is usually caused when the cell or range that a formula
references is deleted by moving or copying over. To correct this problem, update the
equation with the proper reference cells.

Step 2: Define the model with Solver.

A model can be defined and run in Solver in several different ways. We will focus on using
the Solver Options and Model Specification box, which shows up on the right side of
Excel, which is available on the Risk Solver Platform tab in Excel’s Ribbon (Figure 3.4).4

The Risk Solver Platform has four tabs: Model, Platform, Engine, and Output. Starting 
on the Model tab, the center pane lists Sensitivity, Optimization, Simulation, and Decision
Tree icons. This is where the objective function, decision variables, and constraints all
need to be defined within the model. First, to define the objective function, expand the
Optimization Model options by clicking on the small plus sign next to Optimization. Select
(by clicking on) Objective under the Optimization Icon, then select the objective function
cell (G3) in the spreadsheet, and finally select the Add Button (a green plus sign below the
tabs at the top of the Model Specification box), which adds it to the model as a maxi-
mization objective.

The objective function is set to be maximized by default, and it can be changed by click-
ing on the objective in the Model Specification box. This will bring up the Change
Objective dialog box as shown in Figure 3.5. This allows the selection of an objective of
Max, Min, or Value Of, which will respectively attempt to Maximize, Minimize, or
achieve a predefined value for the objective function. Decision variables can likewise be
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4If the Risk Solver Platform tab is not on the Ribbon it is likely not installed properly. Refer to the Risk Solver
documentation for further troubleshooting.
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Figure 3.4 The Solver Options and Model Specification box.

Figure 3.5 The Change Objective dialog box.

defined by selecting Variables, highlighting the DecisionVars cells and clicking the Add
Button.

The three types of constraints, �, �, or �, have to be defined separately. To define the
� constraints, select Constraints in the Model Specification box, highlight the first two
LHS totals, Cells G5 and G6, and click the Add Button. This will bring up the Change
Constraint Dialog box as shown in Figure 3.6. Make sure the center pull-down box dis-
plays “��”, click inside the Constraint box, highlight the two corresponding 
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RHS values in the spreadsheet (Cells I5 and I6), and click the Add button in the Change
Constraint dialog box. This will add the � constraints to the model and clear the Cell
Reference and Constraint boxes so that the � constraint can be added. Click inside the
Cell Reference box and highlight the LHS totals for the second two constraints, G7 and
G8. Then click inside the Constraint box and highlight the RHS values for the second two
constraints, I7 and I8. Finally, in the pull-down menu between the two, change the “��”
to “��” and click OK. Equality constraints can be added in a similar fashion through the
pull-down menu.

Now the LP is defined in Solver, and the Model Specification box should look like
Figure 3.7. If there are any errors, items can be changed by double-clicking on an item and
making the necessary changes in the resultant dialog box, or deleted by selecting the item
and clicking on the big red “x” next to the add button. Before running the model, click on
the Engine tab to check some important settings. Immediately underneath the tabs is a
dropdown box that specifies which engine is being used. Make sure that “Standard
LP/Quadratic Engine” is selected. Also, under the General section, if it says “False” next
to Assume Non-Negative, click on it and change it to “True.” Finally, to have Solver solve
the LP, click on the Output tab and click the green arrow.

A message bar at the bottom of the Model Specification box will indicate whether the
model is successfully optimized. If it is successful, it will turn green and say “Solver found
a solution. All constraints and optimality conditions are satisfied.” If it is not successful, it
will turn red and give a message indicating what is wrong. For example, if the problem is
unbounded, it will indicate that “The objective (Set Cell) values do not converge.” Also, if
the problem does not have a feasible solution, it will indicate that “Solver could not find a
feasible solution.”

In the example presented above, Solver successfully solved the problem with an objec-
tive function value of 590. The optimum values of the decision variables are displayed in
the DecisionVars cells. The final spreadsheet is displayed in Figure 3.8. Now that the LP
has been optimized there are several useful reports that Solver can generate. These can be
found under the Reports button on the Risk Solver Platform ribbon, under the
Optimization menu, as shown in Figure 3.9.

The Answer Report, which provides the optimal values for all decision variables 
and the objective function, is presented in Figure 3.10. All optimal values are listed under
the column labeled “Final Value.” In this example, the optimal activities and objective
function value are:

x* � 0, y* � 0, z* � 70, a* � 25, b* � 5, z* � 590.

The answer report also provides information on whether the constraints are binding as well
as slack values for unbinding constraints.
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Figure 3.6 The Change Constraint dialog box.
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Figure 3.7 The complete model and options.

Figure 3.8 The solution to the model.

The Sensitivity Report, listed in Figure 3.11, provides information on the shadow val-
ues, ranges of optimality for all activities, and range of feasibility for all RHS values. The
range of optimality is presented in the middle portion of Figure 3.11 under the heading
“Decision Variable Cells.” The numbers under the column heading “Final Value” list the
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Figure 3.9 Accessing the analysis reports.

Figure 3.10 The answer report.

optimal values for the activities. The numbers in the “Objective Coefficient” column are
the original objective function coefficients for the problem. The numbers under the
“Allowable Increase” and Allowable Decrease” columns give the amount that the objec-
tive function coefficient can be increased or decreased without changing the optimal activ-
ity level. For example, the allowable increase for x is 7.5, which means as long as x’s
objective function coefficients are less than 17.5 (i.e., 10 � 7.5), x* will remain 0 in the
optimal solution. The allowable decrease in this example is 1E�30, which is a large num-
ber and a proxy for infinity, and it means if the objective function coefficient is decreased
by infinity, x* will remain 0 in the optimal solution.
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The SP or dual values for each constraint are listed under the column labeled “SP” 
in the bottom portion of Figure 3.11 called “Constraints.” In this example, the SPs are:

SPb1 � 7, SPb2 � 2, SPb3 � �10, SPb4 � 0.

The range of feasibility is provided in Figure 3.11 in the “Allowable Increase” and
“Allowable Decrease” columns. For example, for the first constraint, the RHS value of 100
can be increased by 65 to 165, or decreased by 5 to 95 without changing the current SP of 7.

The last item in Figure 3.11 is a column labeled “Reduced Cost.” The reduced cost is
relevant for each activity that is currently zero, and provides a measure of how much the
objective function would change if one unit of the variable were forced into the solution.
For example, if one unit of x were forced into the current solution, the objective function
would decrease by 7.5 to 582.5.

The Limits Report is presented in Figure 3.12. The Limits Report re-solves the model
to find the lower and upper bounds that each variable can take while satisfying the con-
straints and holding all other variables constant. For example, if an optimal value for a
variable is 10, and the lower and upper bounds are 5 and 15, then the variable could take
on any value between 5 and 15, and still all the same constraints would be satisfied as
with the optimal value 10. In Limits Report, you can also find the value of the target cell
for both upper and lower bound values for the variable. For example, if the optimal value
where a decision variable is 10 leads to a profit of $10,000, Limits Report specifies how
much the objective function value would fall if the decision variable were set to, say, 5.

The Risk Solver Platform has additional powerful tools, including Parameter Analysis,
which can do more powerful sensitivity analysis beyond the limits of what’s available
through the Sensitivity Report, as well as built-in probabilistic simulation tools. Some of
these will be covered in later chapters.

CHAPTER 3 SENSITIVITY ANALYSIS USING THE SIMPLEX METHOD AND DUALITY 115

Figure 3.11 The sensitivity report.
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SUMMARY

This chapter focused on simplex-based sensitivity analysis, duality, and software for
solving LP problems. Sensitivity analysis can be performed using information from the
final simplex tableau, which provides the optimal feasible solution. The information
contained in the final tableau includes the SPs and sensitivity analysis that can be per-
formed on the objective function coefficients and resource endowments. Finding the
range of optimality for a basic or nonbasic variable is done by replacing its numeric
objective function coefficient in the final tableau with the more general ci, and solving
the optimality condition that cj – zj � 0 for all j. The range of feasibility can be found
given the range of values of bi. This range indicates how much variable values can
change without causing any basic variables in the current solution to become infeasible
(e.g. negative). The SPs for all structural constraints are also contained in the final sim-
plex tableau. Sensitivity analysis for both maximization and minimization problems was
also presented.

This chapter also provided an overview of duality, which is one of the most important
concepts in mathematical programming, as well as an important topic in economics. Duality
is simply the formulation of one problem in two different ways. While the attention given
to this topic has been rather limited, the reader should now have a basic understanding of
the important relationships between the primal and dual problems and solutions. Duality is
powerful for two reasons. First, it is fundamental to sensitivity analysis since the solution
of the primal problem also contains a “complementary” dual solution, which gives the SPs
for the primal problem’s resources. Second, duality adds tremendous computational effi-
ciency to solution techniques. Since identical results may be obtained from two different
problems, the reader may solve the easier of the two (which generally will be the problem
with fewer constraints).

Finally, the Solver software package that will be used in this textbook to solve linear and
nonlinear programming was introduced. A five-activity example was presented to demon-
strate how to set up an LP in Excel and solve it with Solver.
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Figure 3.12 The limits report.
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APPENDIX: SUMMATION AND MATRIX NOTATION

A.1 Summation Notation

So far in this book, the general form of a maximization problem has been expressed as 
follows:

Max: Z � c1x1 � c2x2 � … � cnxn (0)

s.t.:

a11x1 � a12x2 � … � a1nxn � b1 (1)

a21x1 � a22x2 � … � a2nxn � b2 (2)

: : :  : : :

am1x1 �am2x2 � … � amnxn � bm (m)

x1, x2, … xn � 0 (m�1)

Note that the subscript on the single subscripted activities (xi) refers to the activity num-
ber, the subscript on the single subscripted RHS variables (bi) refers to the RHS value for
constraint i, and the subscripts on the double subscripted technical coefficients (aij) refers
to the amount of resource i required of the jth activity (put differently, i refers to the row
and j refers to the column for aij).

Whenever there is a set of mathematical equations that have a logical sequence of sub-
scripts, these equations can be expressed in a more compact manner by using summation
notation. For example, consider the following equation:

y � b1x1 � b2x2 � b3x3 � b4x4 � b5x5 � b6x6 (A.1)

In this case, equation (A.1) has a logical sequence of subscripts because each pair of b and
x variables contain the same subscript, beginning with 1 and increased in increments of 1
until the number 6 is reached. Using these characteristics of equation (A.1), it can be
expressed as follows:

y � the sum over i from i equal 1 to i equal 6 of bixi (A.2)

This is precisely the verbal interpretation of summation notation. That is, we will define

(A.3)

to mean, “the sum from 1 to 6 of the product bixi.” The summation notation used in (A.3)
is equivalent to the full and complete mathematical expression in (A.1).

y x�
�

bi i
i

6

1
∑
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EXAMPLES

The following examples will make this type of notation easier to understand.

Example 1. 

Consider the following equation:

y � b1x1 � b2x2 � b3x3 (A.4)

Using summation notation, (A.4) can be written as:

(A.5)

Example 2.
The following is an example of double subscripted variables:

y � b11x11 � b12x12 � b13x13 � b21x21 � b22x22 � b23x23 � b31x31

� b32x32 � b33x33 (A.6)

Using summation notation, (A.6) becomes:

(A.7)

In this case, start with the first subscript (i) set to 1, and the second subscript (j) is var-
ied from 1 to 3; then i is set to 2 and j is again varied from 1 to 3, and so on. Whenever
there are more than one summation signs, the left-most summation sign is varied only
after the ones on its right have been varied for their entire range.

Example 3.
Consider the following system of equations:

y1 � b11x1 � b12x2 � b13x3 � b14x4 (A.8)

y2 � b21x1 � b22x2 � b23x3 � b24x4 (A.9)

y3 � b31x1 � b32x2 � b33x3 � b34x4 (A.10)

y4 � b41x1 � b42x2 � b43x3 � b44x4 (A.11)

This system can be expressed in two different ways using summation notation. First,
all four equations can be written, that is:

(A.12)y x1 1j j
j

4

b�
�1
∑

y x�
��

bij ij
j

3

i

3

11
∑∑

y x�
�

bi i
i

3

1
∑
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(A.13)

(A.14)

(A.15)

The second way is to use subscripts for the equation number, which makes the model
even more compact, that is:

(A.16)

In this case, the ith subscript refers to each of the four equations, and the jth subscript
is what is being summed.

Using this information, the general form of the LP model depicted in equations (0)
through (m�1) of the original problem can be expressed as:

(0)

s.t.:

(1)

xj � 0 for j � 1, … , n (2)

The somewhat longer way of expressing the constraints individually can also be done,
as with the first approach in Example 3.

a b for i 1, , mij j i
j 1

n

x � �
�

∑ …

Max: Z ci i
i

n

�
�

x
1

∑

y xi ij j
j

4

b (for i and� �
�

1 2 3 4
1

, , , )∑

y x4 j j
j

4

b�
�

4
1

∑

y x3 j j
j

4

b�
�

3
1

∑

y x2 j j
j

4

b�
�

2
1

∑
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A.2 Basic Matrix Operations and Notation

A matrix is a rectangular array of numbers. For example, define matrix A to be:

A �

4 6 10

5 9 9

1 2 3

7 9 12

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.
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In this example, A is a 4 	 3 array of numbers because it has 4 rows and 3 columns. More
generally, a matrix’s dimension is given by the number of rows it has by the number of
columns it has, for instance, an m 	 n matrix has m rows and n columns. Each number in
the matrix is called an element of the matrix. Consider the more general m 	 n matrix A,
where:

The elements that have the same subscript numbers for i and j (i.e., i � j) are called the
diagonal elements of matrix A. In this example, a11, a22, a33, … are the diagonal elements.
All other elements whose subscript numbers for i and j are not the same are called the off-
diagonal elements.

A vector is a special type of matrix. Like a matrix, a vector is an array of numbers with
the special characteristic that it either has only one row, or only one column. A row vector
has one row and m columns, while a column vector has one column and n rows. Vector x
below is an example of a row vector (1 	 n) and vector k is an example of a column 
vector (m 	 1).

Basic Matrix Operations While a matrix does not have a numeric value, matrices can
be added, subtracted, and multiplied. The following discussion focuses on these simple
matrix operations.

Matrix Addition. The elements of an m 	 n matrix A can be added to the elements of
another m 	 n matrix B to form a new m 	 n matrix C by adding each aij element in A
with each aij element in B. The only requirement for matrix addition is that all matrices to
be summed have the same row–column dimension. For example, let

B �
�11 1 12

10 2 44

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ .

A �
�

�

2 5 10

9 7 22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ , and

k �

a

a

a

a m

11

21

31

1

�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

x � a a a a n11 12 13 1�⎡
⎣⎢

⎤
⎦⎥ ,

A �

a a a a

a a a a

a a a

n

n

11 12 13 1

21 22 23 2

31 32 33

...

...

....

...

a

a a a a

n

m1 m m mn

3

2 3

� � � � �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
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Since both A and B have the same dimension (2 	 3), they can be added together to form
a new 2 	 3 matrix C:

A � B � C, or

Matrix Subtraction. The same rule holds for matrix subtraction as was true for matrix
addition. Two matrices, A and B, with dimensions m 	 n may be subtracted by taking the
difference between each similar element (aij) for both matrices. Using the above two matri-
ces A and B,

A – B � C, or

Scalar Multiplication. A scalar is simply a constant number (i.e., a 1 	 1 matrix). To
multiply a scalar, k, by an m 	 n matrix, multiply each element of the matrix by k. For
example, suppose A is a 3 	 2 matrix as shown below.

Then, k multiplied by A yields the following:

If k � 2, then kA equals

Matrix Multiplication. Matrix multiplication is a bit more complicated than the previous
elementary operations. Multiplication of two matrices A and B is permissible if and only
if the two matrices have the following characteristic regarding their dimensions:

The number of columns in matrix A must be equal to the number of rows in matrix B
in order to perform matrix multiplication.

Hence, an m 	 n matrix A can be multiplied by another matrix B if and only if B has
m rows. The only exception to this condition is scalar multiplication. If this condition
holds, then multiplication of A and B can be done to form a new matrix C, which has the
following characteristic regarding its dimensions:

The new matrix C formed by the multiplication of an m 	 n matrix A with an n 	 t
matrix B will have an m 	 t dimension.

kA �

10 8

12 6

4 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

k k

k k

k k

k k

A � �

5 4

6 3

2 1

5 4

6 3

2 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

A �

5 4

6 3

2 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

A B� �
� � � �

� � � �
�

�2 11 5 1 10 12

9 10 7 2 22 44

9 6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− 222

19 5 22� �
�

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ C.

A B� �
� � �

� � �
�

�2 11 5 1 10 12

9 10 7 2 22 44

13 4+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

��
�

2

1 9 66

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ C.
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For example, if A is 12 	 15, and B is 15 	 3, then the new matrix C � AB will be a
12 	 3 matrix. If A and B are compatible for multiplication, then the following rule is used
for multiplication to obtain the new matrix C:

The new element in the ith row and jth column of C (i.e., element aij) is equal to the
summation of the product of each element in row i of matrix A multiplied by each element
in column j of matrix B. Mathematically speaking, if A is m 	 n, and B is n 	 t, then the
result of their product is a new m 	 t matrix C whose element for any row i and column j
is equal to:

For example, let A and B be the following:

Since A is a 3 	 2 matrix and B is a 2 	 2 matrix, you may multiply the two matrices to
get a new 3 	 2 matrix C:

Note that unlike ordinary multiplication of two variables, the direction of the multiplica-
tion for matrices does matter. In this case, you can multiply A times B, but not B times A.
Verify this on your own.

Transpose of a Matrix. The transpose of an m 	 n matrix A (denoted by A
) is a sim-
ple operation by which a new matrix A
 is formed by interchanging the row elements in A
by its column elements, and the column elements in A are replaced by its row elements,
such that the matrix is now n 	 m. That is, if A is defined as:

, (A is an m 	 n matrix)A �

a a a a

a a a a

a a a a

11 12 13 14

21 22 23 24

31 32 33 3

...

...

44

1 2 3 4

1

2

3...

...

...

� � � � �
a a a a

a

a

a

am m m m

n

n

n

mn

⎡

⎣⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

C �

40 45

115 120

32 26

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

C AB� � �

5 10

20 25

10 4

2 1

3 4

5⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

		 � 	 	 � 	

	 � 	 	 � 	

	 � 	

2 10 3 5 1 10 4

20 2 25 3 20 1 25 4

10 2 4 3 100 1 4 4	 � 	

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

or

A B� �

5 10

20 25

10 4

2 1

3 4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ .

C AB�
�

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑a bik kj

k

n

1

.
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then the transpose of A (A
) is defined as:

Because of the multiplication requirement that the number of columns in A must equal
the number of rows in B to multiply A times B, the transpose property is very useful. For
example, suppose that A is a 10 	 12 matrix and B is a 14 	 12 matrix. Clearly, you can-
not multiply A times B or multiply B times A because their dimensions are not compat-
ible for matrix multiplication. However, A can be multiplied by the transpose of 
B because A is a 10 	 12 and B
 is a 12 	 14 matrix. The product, AB
 is therefore 
permissible.

Using Matrix Notation to Express a Linear Programming Model Recall that
the general form of the model has been expressed thus far in the course as:

Max: Z � c1x1 � c2x2 � … � cnxn (0)

s.t.:

a11x1 � a12x2 � … � a1nxn � b1 (1)

a21x1 � a22x2 � … � a2nxn � b2 (2)

:        :            :       :    : :

am1x1 � am2x2 � … � amnxn � bm (m)

x1, x2,   … xn � 0 (m�1)

Now consider the following matrices and vectors. Let:
c � (c1 c2 c3 … cn) be a 1 	 n row vector of objective function coefficients;
x � (x1 x2 x3 … xn) be a m 	 1 column vector of activities;

be an m 	 n matrix of technical coefficients; b � (b1 b2 b3 … bm) be an m 	 1 column
vector of RHS values.

Using these matrices and vectors, the original LP problem can be expressed much more
compactly as:

Max: Z � cx (0)

s.t.:

Ax � b (1)

x � 0 (2)

A �

a a a

a a a

a a a

11 n

n

m m mn

12 1

21 22 2

1 2

�
�

� � � �
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

A
�

a a a a

a a a a

a a a a

11 21 31 41

12 22 32 42

13 23 33

...

...

443

1 2 3 4

1

2

3...

...

...

� � � � �
a a a a

a

a

a

an n n n

m

m

m

mn

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

, ( is an n m matrA
 	 iix)
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The procedures for solving LP problems with the simplex or revised simplex methods can
be presented using matrix algebra. While this approach was not used in this chapter, the
interested reader can refer to a more general book on LP, such as Gass (1985).

EXERCISES

1. Write the dual to this LP problem in general form.

Max: Z � 4x1 � 3x2 (0)

s.t.:

x1 � 4 (1)

x2 � 1 (2)

x1 � x2 � 24 (3)

x1 � x2 � 120 (4)

x1, x2 � 0 (5)

2. Consider the following LP problem:

Min: Z � 5x1 � 3x2 � 2x3 (0)

s.t.:

x1 � x2 � 50 (1)

2x2 � x3 � 350 (2)

3x1 – 2x3 � 25 (3)

4x1 � x2 � x3 � 33 (4)

x1, x2, x3 � 0 (5)

a. What is the dual to this primal problem?
b. Which would be easier to solve: the primal or the dual problem?

3. Write the dual of the following primal problem, and solve it using the simplex 
method.

Max: Z � 4x1 � 2x2 (0)

s.t.:

–x1 – x2 � �3 (1)

–x1 – x2 � 2 (2)

x1, x2 � 0 (3)
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4. Solve the dual of the following problem with the simplex method:

Min: Z � 12x1 � 5x2 � 20x3 (0)

s.t.:

x1 – x2 � x3 � 140 (1)

2x1 � x3 � 160 (2)

2x2 – x3 � 15 (3)

x1, x2, x3 � 0 (4)

5. The final simplex tableau for a maximization problem is:
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x1 x2 s1 s2 s3 s4

Basis CB 10 9 0 0 0 0 b

x2 9 0 1 30/16 0 �21/16 0 252
s2 0 0 0 �15/16 1 5/32 0 120
x1 10 1 0 �20/16 0 30/16 0 540
s4 0 0 0 �11/32 0 9/64 1 18

zj 10 9 70/16 0 111/16 0 7,668
cj– zj 0 0 �70/16 0 �111/16 0

a. Calculate the range of optimality for the profit contribution of x1, that is, the c1

coefficient.

b. Calculate the range of optimality for the profit contribution of x2, that is, the c2

coefficient.

c. Calculate the range of feasibility for b1.

d. Calculate the range of feasibility for b2.

6. Consider the following LP problem, and its final simplex tableau:

Max: Z � 2x � 3y � w (0)

s.t.:

x � 4y � w � 300 (1)

3x � 2y – w � 150 (2)

–y � w � 100 (3)

x, y, w � 0 (4)

Final simplex tableau:

x y w s1 s2 s3

Basis CB 2 3 1 0 0 0 b

w 1 0 0 1 0.2142 –0.0714 0.7143 125
y 3 0 1 0 0.2142 –0.0714 –0.2857 25
x 2 1 0 0 –0.0714 0.3571 0.4286 75

zj 2 3 1 0.7143 0.4285 0.7143 350
cj – zj 0 0 0 –0.7143 –0.4285 –0.7143
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Based on the final simplex tableau, find the following:

a. The optimal solution.

b. The SPs for each constraint.

c. The range of optimality for the objective function coefficients.

d. The range of feasibility for each RHS value.

7. A company imports electronic components that are used to assemble two different
types of computer modules for tractors. One model, A, generates a profit contribution
of $50 per unit whereas the other, B, generates a profit contribution of $40 per unit.
For next week’s production, a maximum of 150 hours (b1) of assembly time can be
made available. Each unit of A requires three hours of assembly time, and each unit
of B requires five hours. In addition, the company currently has in inventory 20 dis-
play units used in B; thus, no more than 20 units of B can be assembled. Finally, only
300 (b2) square meters of warehouse space can be made available next week. Each unit
of A requires eight square meters, and each unit of B requires five square meters.

a. Construct an LP problem to find the optimal production for next week to maxi-
mize profit.

b. Find the dual of the LP problem from part a.

c. Solve either the primal or the dual problem using the simplex method.

d. Calculate the range of feasibility for b1.

e. Calculate the range of optimality for the profit contribution of part a.

8. A dairy farmer’s cows needs three nutrients (A, B, and C) to subsist and produce milk
each day. Each cow must receive the equivalent of 100 units of nutrient A, 200 units
of nutrient B, and 50 units of nutrient C in order to maximize milk output. The farmer
can use any combination of three feeds (f1, f2, and f3) in meeting these minimum
requirements. The local feed dealer sells all three feeds, which have the following cost
per pound and nutrient equivalents (for A, B, and C) per pound.
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Nutrient Content Per Pound

Cost
Feed A B C ($/pound)

f1 5 22 3 0.25
f2 10 25 2 0.50
f3 7 12 5 0.27

Assume that the farmer’s objective is to minimize the cost per cow of buying any com-
bination of these three feeds that satisfies the daily nutrient requirement of the cows.

a. Solve this problem using the simplex method.

b. Your optimal solution should indicate that no amount of feed f2 should be pur-
chased and fed to the farmer’s cows. By how much should feed f2’s current price
of $0.50 per pound decrease in order for the optimal solution to change?

c. Your optimal solution should indicate that some amount of feed f3 should be pur-
chased and fed to the farmer’s cows. By how much should feed f3’s current price
of $0.27 per pound increase in order for the optimal solution to change?

d. What is the range of feasibility for the minimum requirement for nutrient A?
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e. What is the range of feasibility for the minimum requirement for nutrient B?

f. What is the range of feasibility for the minimum requirement for nutrient C?

g. How would you interpret these ranges for this problem?

h. What are the SPs for each constraint of this problem? What is their economic
interpretation for this problem?

9. Consider the following model:

Max: Z � 5x1 � 6x2 � 3x3 (0)

s.t.:

x1 � x2 � x3 � 1,000 (1)

x1 – x2 � 0 (2)

x1 � x2 � x3 � 2,000 (3)

x1, x2, x3 � 0 (4)

a. Solve this problem using the simplex method.

b. Report the SPs for each constraint.

c. Derive the range of optimality for all objective function coefficients.

d. Derive the range of feasibility for all RHS values.

10. A farmer owns 500 acres of land, which is suitable for growing corn, soybeans, and
sunflowers. His expectations are that the net profit from producing each crop is: $55
per acre for corn, $60 per acre for soybeans, and $50 per acre for sunflowers. He and
his family can supply 3,000 hours per year in performing all the farm operations nec-
essary to grow these crops. In addition, he is endowed with the equivalent of 4,500
hours of tractor time necessary to grow these crops. Assume that the only resources
necessary in crop production are land, labor, and tractor time; the technological rela-
tionships are summarized below.
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Crop
Resource

Resource (unit) Corn Soybeans Sunflowers Endowment

Land (acres) 1.0 1.0 1.0 500
Labor (hours) 0.4 0.2 0.3 3,000
Tractor (hours) 0.5 0.2 0.4 4,500

Assume that the farmer’s objective is to maximize total profits.

a. Solve this problem using the simplex method.

b. Derive and graph the output supply functions for each crop. Output supply in 
this context is the relationship between acres produced and net profitability of the
crop.

c. Derive and graph the input demand functions for land and labor.
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11. Consider the following LP problem:

Min: Z � 10x � 20y � 5z (0)

s.t.:

1x � 1y � 1z � 100 (1)

1z � 50 (2)

1x � 25 (3)

x, y, z � 0 (4)

a. Solve this problem using the simplex method.

b. Would the optimal solution change if the objective function coefficient for x were
increased from 10 to 19? Explain.

c. If the RHS of constraint (3) were increased from 25 to 60, would there be a
change in the basis? Explain.

d. By how much would the value of the objective function change if the RHS of con-
straint (1) was increased by one unit?

e. Is the solution (found in the final simplex tableau in part a) unique, or is it part of
a set of multiple optimal solutions? Explain.

12. Consider the following LP model:

Min: Z � c1x1 � c2x2 � c3x3 � … � cmxm (0)

s.t.:

a11x1 � a12x2 � a13x3 � … � a1mxm � b1 (1)

a21x1 � a22x2 � a23x3 � … � a2mxm � b2 (2)

a31x1 � a32x2 � a33x3 � … � a3mxm � b3 (3)

: :          : :           : :          : :          : : :

an1x1 � an2x2 � an3x3 � … � anmxm � bn (n)

x1, x2, x3, …, xm � 0 (n�1)

a. Rewrite this problem using summation signs.

b. Write the standard form of this model using summation notation.

c. Write the standard form of this model using matrix notation. Again, define any
new matrices or vectors used in your model.
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13. Consider the following LP problem:

Min: Z � c1x1 � c2x2 � c3x3 � c4x4 � c5x5 (0)

s.t.:

a11x1 � a12x2 � a13x3 � a14x4 � a15x5 � b1 (1)

a21x1 � a22x2 � a23x3 � a24x4 � a25x5 � b2 (2)

a31x1 � a32x2 � a33x3 � a34x4 � a35x5 � b3 (3)

a41x1 � a42x2 � a43x3 � a44x4 � a45x5 � b4 (4)

a51x1 � a52x2 � a53x3 � a54x4 � a55x5 � b5 (5)

a61x1 � a62x2 � a63x3 � a64x4 � a65x5 � b6 (6)

a71x1 � a72x2 � a73x3 � a74x4 � a75x5 � b7 (7)

a81x1 � a82x2 � a83x3 � a84x4 � a85x5 � b8 (8)

a91x1 � a92x2 � a93x3 � a94x4 � a95x5 � b9 (9)

x1, x2, x3, x4, x5 � 0 (10)

a. Write this problem in general form using summation signs.

b. Write this problem in general form using matrix notation.

c. Write this problem in standard form (with slack variables) using summation signs.

d. Write this problem in standard form using matrix notation.

e. Write the dual to this problem using any form you want.

f. Which would probably be easier to solve: the primal or the dual? Why?

14. Write the dual to the following primal problem:

Min: Z � c1x1 � c2x2 � c3x3 � c4x4 (0)

s.t.:

a11x1 � a12x2 � a13x3 � a14x4 � b1 (1)

a21x1 � a22x2 � a23x3 � a24x4 � b2 (2)

a31x1 � a32x2 � a33x3 � a34x4 � b3 (3)

a41x1 � a42x2 � a43x3 � a44x4 � b4 (4)

a51x1 � a52x2 � a53x3 � a54x4 � b5 (5)

x1, x2, x3, x4 � 0 (6)
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15. Consider the following LP problem:

Max: Z � 4x1 � 2x2 – 3x3 � 5x4 (0)

s.t.:

2x1 – 1x2� 1x3 � 2x4 � 50 (1)

3x1 –  1x3 � 2x4 � 80 (2)

1x1 � 1x2 � 1x4 � 60 (3)

x1, x2, x3, x4 � 0 (4)

a. Write this problem in its equivalent normal form.

b. Write the dual to the primal problem in part a.

c. Solve either the primal or the dual problem using the simplex method.

16. Consider the following LP problem:

Max: Z � 7x1 – 1x2 � 10x3 (0)

s.t.:

1x1 �1x2 � 1x3 � 500 (1)

5x1 – 1x2 � 0 (2)

1x1 � 400 (3)  

1x2 � 400 (4)

1x3 � 400 (5)

1x1 �1x2 � 450 (6)

x1, x2, x3 � 0 (7)

a. What is the dual to this primal problem?

b. Which do you think would be easier to solve, the primal or the dual problem?

17. Consider the following LP problem:

Min: Z � 5x1 � 4x2 (0)

s.t.:

1x1 � 1x2 � 100 (1)

–5x1 � 3x2 � 1 (2)

x1, x2 � 0 (3)

a. Solve this problem using the graphical approach.

b. Write the dual to this primal problem.

c. Solve the dual problem using the graphical approach.
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18. Consider the following model:

Min: Z � c1x1 � c2x2 � c3x3 � c4x4 � c5x5 (0)

s.t.:

a11x1 � a12x2 � a13x3 � a14x4 � a15x5 � b1 (1)

a21x1 � a22x2 � a23x3 � a24x4 � a25x5 � b2 (2)

a31x1 � a32x2 � a33x3 � a34x4 � a35x5 � b3 (3)

a41x1 � a42x2 � a43x3 � a44x4 � a45x5 � b4 (4)

a51x1 � a52x2 � a53x3 � a54x4 � a55x5 � b5 (5)

a61x1 � a62x2 � a63x3 � a64x4 � a65x5 � b6 (6)

a71x1 � a72x2 � a73x3 � a74x4 � a75x5 � b7 (7)

a81x1 � a82x2 � a83x3 � a84x4 � a85x5 � b8 (8)

a91x1 � a92x2 � a93x3 � a94x4 � a95x5 � b9 (9)

x1, x2, x3, x4, x5 � 0 (10)

a. Write the dual of this problem in general form using summation signs.

b. Write the primal of this problem in matrix notation (define all matrices and vectors).

c. Write the dual of this problem in general form using matrix notation.

d. Which would be easier to solve (take fewer iterations), the primal or the dual?
Explain.

19. Consider the following model:

Min: Z � 1.1x1 � 5.1x2 (0)

s.t.:

x1 � x2 � 500 (1)

x1 � 325 (2)

x2 � 125 (3)

x1 � x2 � 750 (4)

x1, x2 � 0 (5)

a. Write the dual of this problem. (Hint: Put primal into normal form first).

b. Solve the primal problem using the simplex method. Show all your work.

c. Solve the dual problem using the simplex method. Show all your work.

d. Summarize the similarities between the two optimal solutions.
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20. Consider the following model:

Max: Z � �3x1 � 2x2 � 3x3 – 9x4 (0)

s.t.:

x1 � 1,000 (1)

x2 � 1,000 (2)

x3 � 1,000 (3)

x4 � 1,000 (4)

x1 � x2 � x3 � x4 � 3,000 (5)

x1 � 250 (6)

x4 � 250 (7)

x1 – x4 � 0 (8)

x1, x2, x3, x4 � 0 (9)

Write the dual to this problem.

21. A farmer has 5,000 acres of land, 1,000 hours of labor, and 2,000 hours of tractor time
to grow two crops: corn and wheat. He expects that he can earn $250 per acre for corn
and $200 per acre for wheat. It takes 0.25 hours per acre in labor to grow corn and
0.15 hours per acre in labor to grow wheat. Finally, it takes 0.30 hours per acre of trac-
tor time to grow corn and 0.15 hours per acre of tractor time to grow wheat. The
farmer’s objective is to maximize total net income, given his production constraints.
State the dual to this problem intuitively (without equations). Think of the dual prob-
lem from a buyer’s perspective, someone who wants to buy the resources to the farm.
Give enough detail to fully explain the economic interpretation of the dual problem
using only words.

22. Give the dual to the following primal problem:

Min: Z � 5x1 � 2x2 (0)

s.t.:

3x1 � 1x2 � 125 (1)

2x1 � 75 (2)

1x2 � 500 (3)

5x1 � 1,000 (4)

x1, x2 � 0 (5)

23. You have just been hired as an advertising manager for a generic advertising program
for dairy farmers, Dairy Management, Inc. (DMI). DMI wants to conduct generic
advertising to increase the demand for milk. DMI decided to consider TV, radio, print,
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and outdoor advertising and wants you to determine how much money should be allo-
cated for each type of media for the next month. You expect that one TV commercial
will increase sales by 25,000 gallons; one radio commercial will increase sales by
7,000 gallons; one print advertisement will increase sales by 3,500 gallons; and one
billboard will increase sales by 5,000 gallons. It costs $10,000 per TV commercial,
$5,000 per radio commercial, $1,000 per print advertisement, and $3,500 per bill-
board. Your boss tells you that you can’t spend more than $500,000 on this project.
Furthermore, the radio and TV stations tell you they have a combined maximum of 45
minutes for your commercials for the month. Each TV commercial takes 1 minute,
and each radio commercial takes 0.5 minutes to air. The boss tells you that he doesn’t
want more than 25 TV commercials because he gets sick of watching the same thing
over and over again. The objective is to find the combination of TV, radio, print, and
billboard advertisements that maximizes milk sales. Solve this problem with Solver.
Report and analyze the solution.

24. A steel factory that uses coal as its major source of energy causes three major types of
air pollution by releasing: (1) particulate matter, (2) sulfur oxides, and (3) hydrocar-
bons. These three types of air pollution are caused by blast furnaces and open hearth
furnaces used in producing steel. The state has just passed a new clean air bill, which
means that this factory must reduce its annual emission rate of particulate matter by
60 million pounds, sulfur oxides by 150 million pounds, and hydrocarbons by 125
million pounds. There are six pollution abatement techniques (three for each type of
furnace) that the factory can use to reduce air pollution. These six techniques, their per
unit reduction for each pollutant, and their estimated annual cost per unit are listed
below:

Taller Smokestacks Filters Better Fuels

Blast Open-Hearth Blast Open-Hearth Blast Open-Hearth
Pollutant Furnace Furnace Furnace Furnace Furnace Furnace

(per unit reduction in million pounds)

Particulate 12 9 25 20 17 13
Sulfur Oxides 35 42 18 31 56 49
Hydrocarbons 37 53 28 24 29 20
Cost/Unit $80,000 $100,000 $70,000 $60,000 $110,000 $90,000

Assume that the factory’s sole objective is to minimize the total cost of reducing emis-
sions of these three pollutants to the new government standards by using any combi-
nation of the six pollution abatement techniques. Set this problem up as a linear
program, and solve it with Solver. Report and analyze the solution.

25. A food firm is researching the profitability of introducing six new “healthy choice”
food products (call them x, y, z, a, b, c). The firm currently has idle resource capacity
on labor, machinery, and land of 100 hours, 300 hours, and 30,000 square feet, respec-
tively. Hence, producing any or all of the new products will help solve the costs of
excess capacity. The selling prices, total costs, resource requirements, and endow-
ments for the production technology are summarized on the next page.
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New Product

Resource (Unit) x y z a b c

Labor (hours) 0.50 0.10 1.00 0.45 0.2 0.15
Machinery (hours) 1.00 0.45 3.50 1.00 1.10 2.00
Land (sq ft) 100 200 50 25 10 75
Unit Costs ($) 10 3 33 22 12 9
Unit Price ($) 12 4 36 23 15 11
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Food products y and z are complements in the sense that for every unit of y produced
and sold, 2 units of z must be produced and sold. Also, the firm requires that the
amount of product c produced and sold be at least 50% of the total units of products
a and b that are produced and sold. Set up a LP model that will result in a solution
that maximizes total profit from the sale of any combination of these food products,
subject to all constraints that were specified (use Solver).

26. An ice cream maker has hired you to help him decide next month’s production sched-
ule. He needs to determine the quantities of each flavor that should be produced
based on the profitability of each flavor and several restrictions. He has the capabil-
ity of producing six different flavors of ice cream: (1) super-super premium mocha
chip, (2) super premium chocolate chocolate chip, (3) super premium snickers bar
crunch, (4) vanilla, (5) chocolate ice milk, and (6) Yuppie’s Delight frozen yogurt.
Each product is only available in quarts and has the following unit profits for the ice
cream maker:

Unit Profit
Product ($/quart)

Super-Super Premium Mocha Chip 1.00
Super Premium chocolate chocolate chip 0.75
Super Premium Snickers Bar Crunch 0.88
Vanilla 0.43
Chocolate Ice Milk 0.50
Yuppie’s Delight Frozen Yogurt 1.05

The total production capacity of the ice cream maker’s plant is 10,000 gallons per
month. He also knows that he can only sell 1,000 gallons of super-super premium
mocha chip, and he must produce at least 2,500 gallons of chocolate ice milk for the
local school district. Finally, because he is introducing Yuppie’s Delight frozen yogurt
and doesn’t know the market for this product, he only wants to produce 500 gallons
in the next month. Assuming he wishes to maximize profit, given these restrictions,
formulate this decision problem as an LP model in general form. Solve it using Solver,
and report and analyze the optimal solution.
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4
Farm-Level Linear 

Programming Models

Modern farming is a complicated business. Farmers have to make a lot of complex
production and marketing decisions throughout the year. For example, in crop agriculture,
decisions need to be made about which crops will be grown, how the soil will be prepared,
how much land to rent, how much labor to employ, and the optimal timing of these oper-
ations. Marketing decisions involve how and when to sell the harvested output throughout
the marketing year. Linear programming (LP) is an excellent tool for assisting farmers in
this decision making and is widely used in agriculture.

Agriculture is one of the principal economic sectors that uses LP modeling. Many land
grant universities, through their cooperative extension programs, offer numerous types of
LP models to assist farmers in their decision-making process. Such models tend to be
developed for the characteristics of the region, but also allow farmers to input characteris-
tics of their own farms as LP parameters.

The primary goal of this chapter is to provide a detailed overview of several types of LP
models that have been used to assist farmers and used by researchers to address problems
within the agricultural sector.

The purposes of this chapter are six-fold:

1. To illustrate several types of LP models used to assist farmers in making production
and marketing decisions.

2. To introduce the topic of sequencing constraints, which guarantee that basic opera-
tions incurring costs are performed and in the proper sequence.

3. To demonstrate how to disaggregate activities into individual operations in the pro-
duction process.

4. To discuss how to validate and calibrate a mathematical programming model, which
applies not only to farm LPs, but to all applications of mathematical programming.

135
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5. To illustrate how time may be incorporated into these basic models to make them
dynamic, multiperiod models.

6. To examine two research applications that demonstrate the usefulness of LP modeling
in agricultural economics.

The second, third, fourth, and fifth objectives apply to LP models for any type of enterprise,
not just farming. It should be noted that some of the parameters in the agricultural examples
that follow are hypothetical and are only used for illustrative purposes.

4.1 STATIC MODELS OF A CROP FARM

The term static means that the element of time is not included. It is useful to begin the dis-
cussion of agricultural applications with static models since they are the simplest. After sev-
eral static models are presented, the discussion proceeds to the more realistic dynamic model.

A Simple Model

Consider a decision problem for a crop farmer who owns 600 acres of tillable land. Farmer
Pat wants to decide what combination of corn, soybeans, and wheat to produce in order to
maximize net revenue (NR � total revenue minus variable costs). In order to produce corn,
soybeans, and wheat, Farmer Pat has to perform the following field operations: plow (pl)
and disk (d) all land, plant corn (pc), plant soybeans (ps), plant wheat (pw), harvest corn
(hc), harvest soybeans (hs), and harvest wheat (hw). On the marketing side, we will assume
that the farmer sells the entire harvested crop at harvest time. Farmer Pat is also constrained
by the amount of family labor that is available to perform all operations. It is assumed that
Pat’s family can contribute up to 1,700 hours of “endowed” labor per year. However, Pat
can also hire up to 900 hours of additional “hired” labor at $6.00 per hour.

Farmer Pat has the following expectations regarding labor requirements (hours per acre)
and variable costs for each operation.1

Labor Variable cost 
Operation (hour/acre) ($/acre) Other

Plowing (pl) 0.60 10
Disking (d) 0.50 10
Plant Corn (pc) 0.45 60
Plant Soybeans (ps) 0.45 45
Plant Wheat (pw) 0.30 30
Harvesting Corn (hc) 1.48 100
Harvesting Soybeans (hs) 1.00 50
Harvesting Wheat (hw) 1.00 40
Hired Labor (hl) ($/hour) 6
Corn Price at Harvest ($/bushel) 2.60
Soybean Price at Harvest ($/bushel) 6.35
Wheat Price at Harvest ($/bushel) 3.70
Corn Yield (bushel/acre) 135
Soybean Yield (bushel/acre) 45
Wheat Yield  (bushel/acre) 65
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1These and other parameters in this chapter are based on farm conditions in the late 1980s and are not reflective
of current market conditions.
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The simplest model aggregates all the production and marketing operations into three
activities: corn, soybean, and wheat output. The model is used to maximize net revenue by
choosing the amount of corn, soybeans, and/or wheat to produce and sell subject to land,
family labor, and hired labor constraints:

Max: Z � 171.00c � 170.80s � 150.50w � 6.00hl [units � NR/acre] (0)

s.t.:

c � s � w � 600 (units � acres) (1)

3.03c � 2.55s � 2.40w � hl � 1700 (units � hours) (2)

hl � 900 (units � hours) (3)

c, s, w, hl � 0 (units � acres) (4)

The objective function coefficients represent net revenue per acre. They are computed
from the information given in the table above, where:

cc � (2.60)(135) � (10 � 10 � 60 � 100) � 171.00,

cs � (6.35)(45) � (10 � 10 � 45 � 50) � 170.80,

cw � (3.70)(65) � (10 � 10 � 30 � 40) � 150.50.

The first constraint is simply a land constraint requiring the combined amount of corn,
soybeans, and wheat produced and sold to be 600 acres or less.

The second constraint is a labor constraint that limits the amount of labor used in produc-
ing corn, soybeans, and wheat to not exceed 1,700 hours. The technical coefficient for the
corn operations in the second constraint is equal to the sum of the technical coefficients for
all corn operations, that is, 0.60 (plowing) � 0.50 (disking) � 0.45 (plant corn) � 1.48 (har-
vest corn) � 3.03. For soybeans, the technical coefficient is calculated the same way: that is, 
0.60 (plowing) � 0.50 (disking) � 0.45 (plant soybeans) � 1.00 (harvest soybeans) � 2.55. 
The technical coefficient for wheat is calculated similarly: that is, 0.60 (plowing) � 0.50 
(disking) � 0.30 (plant wheat) � 1.00 (harvest wheat) � 2.40.

The optimal solution to this problem is:

c* � 354.2, s*� 245.8, w*� 0, hl*� 0, s1
*� 0, s2

*� 0, s3
* � 900, Z*� 102,551.

The shadow prices (SP) for land and labor are $169.74/acre and $0.41/hour, respectively.
This suggests that Farmer Pat should be willing to pay up to $169.74 per acre, and $0.41
per hour for an additional hour of hired labor.

The range of optimality for the objective function coefficient for per unit profitability of
corn (cc), soybeans (cs), and wheat (cw) are:

170.80 � cc � 173.68,

168.12 � cs � 171.00,

�� � cw � 170.74.

These ranges are very narrow, suggesting that the current solution is quite sensitive to the
estimate of the unit profitability for each crop. In this case, further sensitivity analysis in
the form of varying the objective function coefficients and examining the corresponding
solutions is highly recommended. Later on in this chapter, this type of sensitivity analysis
in the form of deriving output supply functions will be demonstrated.
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The range of feasibility for land, family labor, and hired labor are:

561.1 � land � 666.67

1,530 � family labor � 1,818

0 � hired labor � �.

Recall that these are the ranges for which the respective SPs will hold. Also, these ranges
are used to estimate input demand functions for each of the resources. This will be demon-
strated later in this chapter.

Obviously this model does not provide the farmer with much information since it aggre-
gates all of the operations (plowing, disking, planting, and harvesting) into one activity for
each crop.

A More Disaggregated Model

Consider the following model, where all field operations are explicitly incorporated. Table 4.1
illustrates the LP tableau for this problem. The activities in this tableau are defined as
follows:

pl � plowing

d � disking

pc � plant corn

ps � plant soybeans

pw � plant wheat

hc � harvesting corn

hs � harvesting soybeans

hw � harvesting wheat

hl � hired labor

hsc � harvest sale of corn

hss � harvest sale of soybeans

hsw � harvest sale of wheat

The objective function (0) differs from the previous problem in that the individual field
operations and marketing activities are now explicit in the formulation. For each operation,
the objective function coefficients are the variable costs (per acre) and are entered as neg-
ative numbers since they are costs. Note that all production operations are expressed in
units of acres. The marketing activity objective function coefficients are the prices (per
bushel) for the selling activities in the model and are entered as positive numbers since
they represent contributions to net revenue.

The first constraint is a land restriction that limits total amount of acres planted to
corn, soybeans, and wheat to not exceed 600 acres. The second constraint limits the
amount of labor used in all the operations to not exceed 1,700 hours of family labor
plus any additional hired labor, which costs $6.00 per hour. Notice that there is also a
hired labor constraint restricting total amount of hired labor to not exceed 900 hours.
This type of constraint is needed when there are labor shortages in the area, which is
often common.
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In order to make costs and revenues comparable, you must convert the marketing activ-
ities, which are currently expressed in $/bushel, to gross revenue per acre. The third set of
constraints in Table 4.1—equations (3), (4) and (5)—make this transformation. The first
of these constraints is for corn:

�135hc � 1hsc � 0.

This is easy to interpret if we rewrite it as:

1hsc � 135hc.

This simply means that the number of bushels of corn sold at harvest must not exceed the
number of acres of corn harvested times its yield per acre (135 bushels). In other words, if
the optimal solution is to plant and harvest 100 acres of corn, then the total amount of corn
marketed cannot exceed 13,500 bushels. An identical interpretation holds for the soybeans
and wheat output constraints. Through these three constraints, the measurement units in
the objective function are consistent. The value of the objective function will be expressed
in dollars of total net revenue.

Finally, the sequencing constraints (constraints (7) through (11) in Table 4.1) assure
the proper order of the field operations, as well as guarantees that all operations are per-
formed. Notice that without these constraints, the activities that incur costs would not end
up being performed, which is not an unrealistic assumption. Constraint (7) is a plow-before-
disk constraint (pl/d), which requires that before an acre of land is disked, it must be
plowed:

�1pl � 1d � 0 implies 1d � 1pl.

Constraint (8) is a disk-before-planting constraint (d/p), which requires that before an acre
of land is planted, it must be disked:

�1d � 1pc � 1ps � 1pw � 0 implies 1pc � 1ps � 1pw � 1d.
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Table 4.1 Linear Programming Tableau for Static Crop Farm Problem

pl d pc ps pw hc hs hw hl hsc hss hsw

�10 �10 �60 �45 �30 �100 �50 �40 �6 2.6 6.35 3.7 (0)

1 1 1 � 600 (1)

0.6 0.5 0.45 0.45 0.3 1.48 1 1 �1 � 1,700 (2)

�135 1 � 0 (3)

�45 1 � 0 (4)

�65 1 � 0 (5)

1 � 900 (6)

�1 1 � 0 (7)

�1 1 1 1 � 0 (8)

�1 1 � 0 (9)

�1 1 � 0 (10)

�1 1 � 0 (11)

pl d pc ps pw hc hs hw hl hsc hss hsw � 0 (12)
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Constraints (9), (10), and (11) require that in order to harvest an acre of corn (or an acre
of soybeans, or wheat), an acre must have been planted with corn (or soybeans, or wheat):

�1pc � 1hc � 0 implies 1hc � 1pc,

�1ps � 1hs � 0 implies 1hs � 1ps,

�1pw � 1hw � 0 implies 1hw � 1pw.

One of the first things to check from the solution of these types of problems is 
whether the sequencing constraints have been formulated correctly. To do this, make sure
that all acres of land that are harvested and sold have also been plowed, disked, and
planted. You can see that this is the case here by examining the optimal solution, which is:

pl* � 600, d* � 600, pc* � 354.2, ps* � 245.8, pw* � 0, 
hc* � 354.2, hs* � 245.8, hw* � 0, hl* � 0, hsc* � 47,812.5, 

hss* � 11,062.5, hsw* � 0, Z* � $102,539.

That is, the farmer will plow and disk 600 acres of land. The farmer will then plant 354.2 acres
of corn and 245.8 acres of soybeans. In the fall, all acres planted with corn and soybeans will
be harvested and sold on the cash market. The farmer’s expected net revenue is $102,539.

The important SPs are:

SPland � 169.42, SPfamily labor � 0.52.

This implies that the farmer should be willing to pay up to $169.42 for another acre of land
and up to $0.52 for another hour of family labor. The SP of hired labor is zero because this
constraint is not binding.

Note that sequencing constraints are correct since 600 acres of land are plowed, then
disked, then planted, and finally harvested.

The crop output constraints are binding, and their SPs are 2.60, 6.35, and 3.70, respec-
tively for corn, soybeans, and wheat. These SPs are simply the market prices per bushel
that were given for the three crops.

The SPs for the sequencing constraints vary from 10.31 to 250.23. Consider the plant-
before-harvest sequencing constraints. For corn, the SP for this constraint is 250.23 and is
interpreted as follows. The sequencing constraint is:

�pc � hc � 0, or

hc � pc.

This means that for each acre of corn harvested, you need to plant 1 acre of corn. Now
increase the RHS from 0 to 1, that is,

hc � pc � 1.

This means that the farmer gets one “free” acre of corn harvested that does not have to be
planted, plowed, or disked. The farmer does, however, have to pay the variable cost of har-
vesting and additional labor costs. Hence, the SP is equal to:

(corn price)(corn yield) � (harvest variable cost) � (harvesting corn 
technical coefficient)(SPfamily labor), or

(2.60)(135) � 100 � (1.48)(0.52) � 250.23

Notice that the subtracted labor cost is a derived cost based on the family labor SP and
the additional amount of labor required to harvest the “free” acre of corn. The SPs for
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soybeans and wheat plant-before-harvest sequencing constraints are derived the same
way and are equal to:

(6.35)(45) � 50 � (1)(0.52) � 235.23,

(3.70)(65) � 40 � (1)(0.52) � 199.98.

Output Supply Functions

An output supply function gives the relationship between optimal quantity and price of
each crop, holding all other parameters of the problem constant. For example, the corn
output supply function maps optimal corn acreage for different corn prices, holding
constant all other prices, costs, technical coefficients, and resources endowments. To
derive an output supply function, use the range of optimality with a simple iterative
procedure.

For instance, to derive the corn supply function, prepare a two-column table that lists the
range of optimality for the corn price in one column and optimal corn acreage in the other.
For the current solution, the range of optimality for the corn price is

2.60 � cc � 2.62.

The current optimal corn acreage is c* � 354.2. As long as the price of corn is between
$2.60 and $2.62 per bushel, 354.2 acres of corn should be produced and sold (note that you
could also express quantity in terms of bushels marketed, which would be equivalent).
Therefore, the first entry in the supply function table is:
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Corn Price Range of Optimality Optimal Corn Acreage

2.60 to 2.62 354.2

What happens to corn acreage if the corn price is decreased slightly below the lower
limit for its range of optimality? The answer to this question will give the next entry in
the supply function table. When resolving the model using a corn price of $2.59, opti-
mal corn acreage falls to zero. Not surprisingly, the range of optimality associated with
this solution is

�� � cc � 2.60.

As long as the price of corn is below $2.60, no corn should be produced and sold. Entering
the new range of optimality and optimal corn acreage into the supply function table yields:

Corn Price Range of Optimality Optimal Corn Acreage

0 to 2.59 0
2.60 to 2.62 354.2

Since the lower bound (LB) of zero has been reached for optimal corn acreage, you need
not consider further solutions that decrease the corn price below its original price. Now
consider what happens if the price of corn is increased above the upper bound (UB) for its
initial range of optimality, which in this case is $2.62. When resolving the model using a
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corn price of $2.63, optimal corn acreage increases to 600 acres. The new range of opti-
mality for this solution is:

2.62 � cc � �.

As long as the corn price is higher than $2.62, the optimal solution is to only grow corn on
the farmer’s land. Adding the new range of optimality and corn acreage to the supply func-
tion table yields:
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Corn Price Range of Optimality Optimal Corn Acreage

0 to 2.59 0
2.60 to 2.62 354.2
2.63 to � 600

All the information necessary to graph an output supply function for corn is now complete
since the lower range for the price is zero and the upper range is infinity. Figure 4.1 dis-
plays the output supply function for corn. In applications that are larger than this, the num-
ber of “kinks” in the supply schedule increases.

Input Demand Functions

An input demand function gives the relationship between the level (amount) of the
resource endowment and its SP, holding all other parameters of the problem constant.
For example, the land input demand function maps the SP of land for different levels of
land endowments, holding constant all other prices, costs, technical coefficients, and
resource endowments. To derive an input demand function, use the range of feasibility
with a simple iterative procedure.

For instance, to derive the land input demand function, again prepare a two-column
table that lists the range of feasibility for the land endowment in one column and the
land SP in the other. For the current solution, the range of feasibility for the land
endowment is:

561.06 � land � 666.67.

Acreage

Corn price

2.60

2.62

354.2 6000

Figure 4.1 Corn output supply function.
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The current SP for land is 169.42. As long as the amount of land endowed is between
561.06 and 666.67 acres, the land SP will be $169.42 per acre. Therefore, the first entry in
the input demand function table is:
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Land Range of Feasibility Land SP

561.06 to 666.67 169.42

Land Range of Feasibility Land SP

0 to 561.06 171.00
561.06 to 666.67 169.42

Land Range of Feasibility Land SP

0 to 561.05 171.00
561.06 to 666.67 169.42
666.68 to 1,019.60 155.45

What happens to the land SP if the land endowment is decreased slightly below the lower
limit for its range of feasibility? The answer to this question will give the next entry in the
input demand function table. When resolving the model using a land endowment of 560
acres, the SP for land rises to $171.00 per acre. In this case, the range of feasibility is:

0 � land � 561.06.

As long as the amount of land is less than 561.06 acres, the SP for land will be
$171.00. Entering the new range of feasibility and SP into the input demand function table
yields:

Since the LB of zero has been reached for the range of feasibility, you need not consider
further solutions that decrease land acreage below its original level. Now consider what
happens if land acreage is increased above the UB for its initial range of feasibility, which
in this case is 666.67. When resolving the model using total acreage equal to 667, the SP
declines to 155.45. The new range of feasibility for this solution is:

666.67 � land � 1,019.60.

Adding the new range of feasibility and SP to the input demand function table yields:

Since the land constraint is still binding, you must re-solve the problem again setting
land acreage above the new upper limit from the range of feasibility, which in this case
is above 1,019.60 acres. Resolving the model with acreage set at 1,020 acres results in
the land constraint no longer binding. Hence, the SP falls to zero and the range of
feasibility is:

1,019.60 � land � �.
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Adding this to the input demand function table yields:
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Land Range of Feasibility Land SP

0 to 561.05 171.00
561.06 to 666.67 169.42
666.68 to 1,019.60 155.45

1,019.61 to � 0

All the information necessary to graph an input demand function for land is now complete
since the LB for the range of feasibility in the table above is zero and the UB is infinity.
Figure 4.2 displays the input demand function for land. On your own, derive the input
demand function for labor for this problem.

Discussion

There are many modifications you could make in this model to account for various farm-
ing practices. For example, many farmers practice crop rotation where they grow corn on
last year’s soybean acreage and soybeans on last year’s corn acreage. To accommodate for
crop rotation, you could add maximum corn and soybeans constraints. The RHS parame-
ters for each constraint would be the amount of acres devoted to corn and soybeans con-
sistent with crop rotation patterns. Alternatively, you could require corn acreage to equal
soybean acreage by adding the following constraint:

pc � ps � 0.

There are also many other resource constraints that farmers are confronted with that should
be added to the model. For example, in addition to labor, farmers have machine time con-
straints. Suppose the farmer owns one tractor (for planting) and one combine (for harvest-
ing). You should then add to the model a tractor-time and a combine-time constraint. The
technical coefficients for these constraints would be the hours per acre that it takes to plant
corn and soybeans with the tractor, and harvest corn and soybeans with the combine. The
RHS-values would be the number of tractors (or combines) times the number of hours
available.

How are the technical coefficients and RHS values for farm models derived? Technical
coefficients are based on machinery size and can be generated from computer programs

Acreage

Land price ($/acre)

561.06 666.67

155.45

0

169.42

171.00

1,019.60

Figure 4.2 Land input demand function.
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written by farm management experts (such programs are often available from farm man-
agement professors and extension associates in departments of agricultural economics). A
general formula for machinery technical coefficients is:

Field rate (acres per hour) � (mph)(ft)(e)/8.25, where

mph is the speed of the machine in miles per hour, ft is the width covered by the machine
measured in feet, e is the efficiency of the machine, and 8.25 is the width-to-area conver-
sion factor and is used when width is measured in feet. Labor technical coefficients are
usually based on a percentage of the machinery coefficients, for instance, 110 percent of
machinery rates.

Right-hand-side parameters for labor and machinery time are based on the number of
available machines and persons, and field time availability, which depends on weather and
soil conditions, that is, rainfall, temperature, and soil type. Often much of this data are avail-
able from historical daily data from county agricultural experiment stations. For example,
if you wanted an estimate of available field time for a two-week period, May 1 to May 15,
you could take the average number of field hours (hours that farmers could actually be per-
forming operations in the field) over the past three years from the local agricultural experi-
ment station. Suppose that amounted to 84 hours, and the farm owned two tractors, then
total tractor time availability for this two week period would be 2(84) � 168 hours.

This model is also very naive from a marketing point of view. In reality, there are many
other marketing strategies available to farmers than simply selling the entire crop at harvest
time. For example, one strategy is to include on-farm storage of crops, which enables the
farmer to store the crop at harvest when prices are typically low and sell the crop from stor-
age at a later date when the prices are higher. This could be done by defining additional mar-
keting strategies that require storage, adding a maximum storage constraint, and modifying
the crop output constraints so that the additional marketing activities are also included in
these constraints. Other strategies would be to include futures market activities like hedg-
ing or forward marketing. This would be done by adding additional marketing activities to
the objective function along with their expected prices as objective function coefficients.

In this example, the optimal solution does not tell the farmer anything about timing
because it is a static model. When should the field be plowed and disked, when should the
crops be planted and harvested, and so on? In reality, the timing of such operations is crit-
ical information for farmers in order to make sound management decisions. Hence, it is
desirable to look at “dynamic” models so that time, as well as operations, can be explic-
itly accounted for in the model.

4.2 A MULTIPLE-YEAR MODEL

Multiple-year farm models are useful in planning longer-term operations. A crucially impor-
tant decision for a person deciding whether or not to go into farming is what type of enterprises
to pursue. Suppose a person has inherited 90 acres of land that is suitable for fruit and vegetable
production, and is close to a major city for direct sales to consumers via a close-by farmers’
market. The major decision for this person is whether to grow a perennial crop, apples, versus
two annual crops: organic tomatoes and organic lettuce. When deciding what to produce, the
person is not interested in simply looking at revenue streams for the coming year, but rather
wants to take a longer-term view. In this case, a multiple-year model is necessary.

To illustrate such a model, consider a four-year planning period. The person can grow
organic tomatoes and lettuce in years 1, 2, 3, and 4 and expect to receive positive unit
profits for each crop each year. If the future farmer decides to put in apple trees, negative
unit profits will be incurred in year 1 since there is no revenue from the harvest in the first
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year, but costs are still incurred. However, positive profits are expected in years 2, 3, and
4. Assume the following profit per acre expectations for each crop for each year:

Year Apples (ap) Tomatoes (tm) Lettuce (lt)

1 �800 500 600
2 750 600 500
3 950 700 550
4 999 450 600

Also assume that the unit profits for each crop for each year are discounted,2 so the objec-
tive function is to maximize discounted net revenue for the farmer over a four-year period.

There are two resources that the farmer controls: land (90 acres) and family labor (a total
of 60 person weeks available from the entire family). Suppose that the apple operation
requires 0.6 person weeks per acre per year, organic tomatoes requires 0.8 person weeks
per acre per year, and organic lettuce requires 0.9 person weeks per acre per year in labor.
In the interest of diversification, the farmer wants to grow a minimum of 10 acres of
apples, 10 acres of tomatoes, and 10 acres of lettuce in year 1; however, there are no min-
imum requirements for years 2, 3, and 4. The LP tableau corresponding to this problem is
presented in Table 4.2.

The objective function in (0) is to maximize discounted profit (r) over the four-year
period. Constraint (1) is a definitional constraint that defines total profit for the four-
year period as equaling the sum of profits in years 1 through 4 (r1, r2, r3, and r4). Likewise,
constraints (2) through (5) define yearly profits for each of the four years from the pro-
duction and sale of apples (api), tomatoes (tmi), and lettuce (lti), where i � 1, 2, 3, 4.
Constraints (6) through (13) are structural constraints for land availability (90 acres) and
labor availability (60 weeks) for each of the four years. Unlike annual crops such as toma-
toes and lettuce, apples require apple trees to be planted, and it takes a minimum of one
year before they bear fruit. Hence, the model needs a set of constraints that guarantee that
the number of acres devoted to apple production in each year is the same since this pro-
duction decision, once made, is more permanent than annual crop decisions. Constraints
(14) through (16) assure this by requiring apple acreage in year 1 to be the same as in 
year 2 (constraint 14), year 2 acreage to be the same as year 3 (constraint 15), and year 3
acreage to be the same as year 4 (constraint 16). Constraints (17) through (19) are the 
10-acre minimum conditions for apples, tomatoes, and lettuce in year 1. Finally, (20) is
the non-negativity restriction for all activities except for r1, which is allowed to be neg-
ative since if the model chooses a solution with significant apple acreage in year 1, 
negative profits are allowable.

The optimal solution to this problem yields a total discounted profit of $184,607 with 
r1 � �$32,333, r2 � $63,000, r3 � $78,000, and r4 � $75,940. In year 1, the farmer
should devote 60 acres to apple production, 10 acres to tomato production, and 17.78
acres to lettuce production. In the first year, all but 2.22 acres are used because the
labor constraint is binding with a SP of 666.66: that is, one more additional week of
labor would yield $666.66 in extra profit. In years 2 and 3, 60 acres are devoted to apple
production, and the remaining 30 acres to tomato production. Both land and labor 
are binding constraints in year 2, and have SPs of 496 and 130, respectively. The SPs
for land and labor in year 3 are 875 and 0. In year 4, 60 acres of apples and 26.67 
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2One could discount the stream on expected profits each year by the following net present value (NPV) formula:
NPV � 	rt /(1 + i)t, where rt is the net cash flow at time t, i is the discount rate, and t is the time period.
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Table 4.2 Linear Programming Tableau for Multiyear Fruit–Vegetable Farm Problem

r r1 r2 r3 r4 ap1 tm1 lt1 ap2 tm2 lt2 ap3 tm3 lt3 ap4 tm4 lt4

1 (0)

�1 1 1 1 1 � 0 (1)

�1 �800 500 600 � 0 (2)

�1 750 600 500 � 0 (3)

�1 950 700 550 � 0 (4)

�1 999 450 600 � 0 (5)

1 1 1 � 90 (6)

0.6 0.8 0.9 � 60 (7)

1 1 1 � 90 (8)

0.6 0.8 0.9 � 60 (9)

1 1 1 � 90 (10)

0.6 0.8 0.9 � 60 (11)

1 1 1 � 90 (12)

0.6 0.8 0.9 � 60 (13)

�1 1 � 0 (14)

�1 1 � 0 (15)

�1 1 � 0 (16)

1 � 10 (17)

1 � 10 (18)

1 � 10 (19)

r r1 r2 r3 r4 ap1 tm1 lt1 ap2 tm2 lt2 ap3 tm3 lt3 ap4 tm4 lt4 � 0 (20)
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acres of lettuce are grown. The SPs for land and labor in the last year are 0 and 666.66,
respectively.

If perennial crops like apples have values that are positive at the end of the last year of
the problem, then a terminal value must be computed and included in the analysis. In this
example, an apple tree would still be valuable at the end of the fourth year. One way to
compute a terminal value is to calculate the discounted stream of future profits that the
apple tree would have, and then add that value to the year 4 unit profit coefficient. In this
way, the future value of this asset is explicitly accounted for.

4.3 CROP-LIVESTOCK ENTERPRISES3

So far, only crop enterprises have been examined. Another common farm enterprise is a joint
crop and livestock operation such as a dairy farm. The basic difference between these enter-
prises and crop-only farms is that the former consumes part (or all) of what it produces by
feeding it to the livestock. Of course, some of the crop can still be sold in the market place.

To illustrate how LP can be used to assist these farmers, consider the second (disaggre-
gated) static farm problem presented in this chapter. You could easily extend this to a
dynamic model using identical logic, but it is not done here in the interest of space.
Suppose that this crop farmer wants to evaluate whether or not it would be profitable to
add up to 60 dairy cows to the farm. Assume that the cost per cow is $500, and each cow
can produce 15,000 pounds of milk per year which sells for $0.12 per pound. Because a
joint crop and dairy farm requires more labor than the crop farm, assume that the amount
of family labor is 5,000 hours per year and the farmer can still hire up to an additional 900
hours of labor at $6.00 per hour.

To maximize milk production, dairy cows must be fed a certain diet. Assume that each
cow requires the following annual diet, which will be produced entirely on the land owned
by the farmer:

1. Concentrate made out of 35 bushels of corn grain mixed with 9 bushels of soybeans

2. 1.22 tons of hay

3. 0.6 tons of forage from pasture

4. 7.9 tons of corn silage

Therefore, in addition to corn grain, soybeans, and wheat, the farmer must now grow pas-
tureland, hay, and corn silage. Assume that the farmer will grow only as much pastureland
and corn silage that is necessary to feed the herd, but may grow additional hay beyond that
needed for the herd. Any excess hay that is grown can be sold at harvest for $75.00 per
ton. The farmer expects the following variable costs and yields for each of these additional
crops (assume all other parameters for the other crops are as defined previously).
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3This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 4 supplemental materials
available at www.wiley.com/college/kaiser.

Variable Technical
Crop Cost Yield Coefficient

Plant corn silage 60 0.45
Plant hay 15 0.25
Plant pastureland 15 2.3 0.25
Harvest corn silage 65 4.0 1.00
Harvest hay 16 2.5 0.50
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Table 4.3 Linear Programming Tableau for Static Crop–Livestock Farm Problem

pl d pc pcs psb pw ph pp hc hcs hh hsb hw cow hl hsc hsh hss hsw ms

�10 �10 �60 �60 �45 �30 �15 �15 �100 �65 �16 �50 �40 �500 �6 2.6 75 6.35 3.7 0.12 (0)

1 1 1 1 1 1 � 600 (1)

0.6 0.5 0.45 0.45 0.45 0.3 0.25 0.25 1.48 1 0.5 1 1 65 �1 0 0 0 0 0 � 5,000 (2)

1 � 60 (3)

�135 35 1 � 0 (4)

�45 9 1 � 0 (5)

�65 1 � 0 (6)

�15,000 1 � 0 (7)

1 � 900 (8)

�2.3 0.6 � 0 (9)

�4 7.9 � 0 (10)

�2.5 1.22 1 � 0 (11)

�1 1 � 0 (12)

�1 1 1 1 1 � 0 (13)

�1 1 � 0 (14)

�1 1 � 0 (15)

�1 1 � 0 (16)

�1 1 � 0 (17)

�1 1 � 0 (18)

pl d pc pcs psb pw ph pp hc hcs hh hsb hw cow hl hsc hsh hss hsw ms � 0 (19)
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The mathematical formulation of this problem is presented in tableau form in Table 4.3. The
activities for this problem are denoted as:

pl � plowing

d � disking

pc � plant corn

pcs � plant corn silage

psb � plant soybeans

pw � plant wheat

ph � plant hay

pp � plant pasture

hc � harvesting corn

hcs � harvesting corn silage

hh � harvesting hay

hsb � harvesting soybeans

hw � harvesting wheat

cow � number of cows purchased

hl � hired labor

hsc � harvest sale of corn

hsh � harvest sale of hay

hss � harvest sale of soybeans

hsw � harvest sale of wheat

ms � milk sales

The objective function (0) differs from before only by the addition of several activities
for the dairy operation, that is, plant corn silage (pcs), plant hay (ph), plant pasture
(pp), harvesting corn silage (hcs), harvesting hay (hh), number of dairy cows to
purchase (cow), harvest sale of hay (hsh), and sale of milk (ms). The land (1) and
labor (2) constraints have been modified to include technical coefficients for these
additional activities, where appropriate. Constraint (3) is a herd size limitation which
restricts the farmer from purchasing more than 60 cows. This is followed by the crop
output constraints, (4) to (7). Notice that the corn and soybean crop output constraints
have been modified so that the amount of crop sold at harvest must not exceed the
amount harvested times its respective yield minus the amount required for feeding
cows, that is,

�135hc � 35cow � 1hsc � 0 (for corn),

�45hsb � 9cow � 1hss � 0 (for soybeans).

To see this more clearly, rearrange the corn output constraint as:

35cow � 1hsc � 135hc.

This means the number of cows added times their annual requirement of 35 bushels of
corn, plus the bushels of corn sold at harvest cannot exceed the number of acres harvested
to corn times its yield, 135 bushels per acre.
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The wheat output constraint is the same as before, since it is assumed that wheat is not
used as feed for the cows.

The next constraint, (7), is a cow output constraint that restricts the total pounds of
milk sales to be � 15,000 pounds times the number of cows that are purchased. Recall that
each cow can produce 15,000 pounds of milk per year. Constraint (8) restricts the total
amount of hired labor to 900 hours or less. This is followed by three constraints relating
pasture, corn silage, and hay yields per acre to cow feed intake requirements. For example,
the first constraint, (9), is:

�2.3pp � 0.6cow � 0, or

0.6cow � 2.3pp.

This constraint requires that the farmer must plant enough pasture to satisfy the feeding
requirements of the herd, given a yield of 2.3 tons per acre for pasture. The same inter-
pretation holds for the other two constraints.

Finally, the sequencing constraints are similar to those presented earlier, but now they
are modified to account for the dairy operation. Examine these on your own to see how
they differ from the crop-only farm.

The optimal solution to this problem shows that establishing a dairy operation will be
profitable to the farmer. The solution suggests that 54.52 cows4 should be purchased and
milked, and in order to have enough feed for the herd, the farmer must produce 14.1 acres
of corn grain, 107.7 acres of corn silage, 26.6 acres of hay, and 14.2 acres of pasture. While
no wheat is produced, the remaining 437.4 acres of land is used to grow and sell soybeans.
Based on the farmer’s expectations, the net revenue from this operation is $123,244, which
is more than $20,000 higher than the crop-only solution.

The SPs for the resource endowments show that the implicit values of the farmer’s land
and labor in this example are $155.47 per acre and $5.99 per hour. Since the maximum
herd size constraint is not binding, its respective SP is zero. If you wanted to see what a
positive SP for cows is, one way to make this constraint binding is to increase the amount
of family labor from 5,000 hours to say 10,000 hours. In this case, the herd constraint
becomes binding and its SP is $380.60 per cow. That is, adding an additional cow would
increase net revenue by $380.60. The new constraint could then be used to derive an input
demand function for cows, which would provide useful information for the farmer, par-
ticularly in deciding how many cows to purchase. Derivation of output supply functions
for corn grain, hay, soybeans, wheat, and milk, and of input demand functions for land,
labor, and other fixed resources would also be useful information to the farmer.

4.4 DYNAMIC MODELS

The term dynamic here means a model that incorporates time. However, while uncer-
tainty is usually incorporated into dynamic models, it will be ignored in this model.
Later in the book, the concept of risk and uncertainty will be covered. The multiple-
year model presented in a previous section is actually one type of dynamic model
since time was explicity considered. In this section, a within-year model with discrete
time periods disaggregated across a crop production and marketing year is pressented.
In other words, it is a model useful for planning over a one-year time horizon.
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cussed in Chapter 7.
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A One-Year Model With Discrete Time Periods5

Suppose that the farmer provides the following information regarding time periods and the
production process (assume that the 1,700 hours are divided as displayed in the table below):

Available
Labor

Planting Harvesting Harvest Sales

Period (hours) Plow Disk Corn Beans Wheat Corn Beans Wheat Corn Beans Wheat

1 Mar 15–May 9 283 X X X X
2 May 10–May 23 283 X X X X X
3 May 24–Jun 6 283 X X
4 Sep 13–Sep 26 283 X
5 Sep 27–Oct 17 283 X X X X
6 Oct 18–Nov 7 285 X X X X X X

Corn and soybean yields are influenced by planting and harvesting dates (wheat is not).
The corn and soybean yields by their respective planting and harvesting dates are given
below. For this variety of corn, it is better to plant early and harvest late in order to obtain
the highest yield: for instance, planting period 1 and harvesting period 6 gives the highest
corn yield. The same is true for soybeans in this example.

Yield (bushels/acre) by Planting Date

Corn Soybeans
Harvest
Period 1 2 2 3

4 — — 35 40
5 140 130 55 50
6 150 120 — —

Assume that plowing may take place in the spring prior to disking and/or in the fall after
harvest (e.g., periods 5 and 6). This assumption serves as a link between an annual model
and a longer-run model. The only difference between this model and the last model is that
now there is an activity for each operation and each time period. For example, rather than
having just one plowing activity (pl ), now the model has four plowing activities, one for
period 1 (pl1), one for period 2 (pl2), one for period 5 (pl5), and one for period 6 (pl6).

The mathematical formulation of this problem is:

Max: Z �� 10pl5 � 10pl6 � 10pl1 � 10pl2 � 10d1 � 10d2 � 10d3

� 60pc1 � 60pc2 � 45ps2 � 45ps3 � 30pw1 � 30pw2 � 100hc15

� 100hc16 � 100hc25 � 100hc26 � 50hs24 � 50hs25 � 50hs24

� 50hs35 � 40hw15 � 40hw16 � 40hw25 � 40hw26 � 2.60hsc
� 6.35hss � 3.70hsw � 6hl1 � 6hl2 � 6hl3 � 6hl4

� 6hl5 � 6hl6 (0)

s.t.:

Land Constraint

1pc1 � 1pc2 � 1ps2 � 1ps3 � 1pw1 � 1pw2 � 600 (1)
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Labor Constraints

Period 1: 0.60pl1 � 0.50d1 � 0.45pc1 � 0.30pw1 � 1hl1 � 283 (2)

Period 2: 0.60pl2 � 0.50d2 � 0.45pc2 � 0.45ps2 � 0.30pw2

� 1hl2 � 283 (3)

Period 3: 0.50d3 � 0.45ps3 � 1hl3 � 283 (4)

Period 4: 1.00hs24 � 1.00hs34 � 1hl4 � 283 (5)

Period 5: 0.60pl5 � 1.48hc15 � 1.48hc25 � 1.00hs25 � 1.00hs35 

� 1.00hw15 � 1.00hw25 � 1hl5 � 283 (6)

Period 6: 0.60pl6 � 1.48hc16 � 1.48hc26 � 1.00hw16 � 1.00hw26

� 1hl6 � 285 (7)

Output Constraints

Corn: � 140hc15 � 150hc16 � 130hc25 � 120hc26 � 1hsc � 0 (8)

Soybeans: � 35hs24 � 55hs25 � 40hs34 � 50hs35 � 1hss � 0 (9)

Wheat: � 65hw15 � 65hw16 � 65hw25 � 65hw26 � 1hsw � 0 (10)

Hired Labor Maximum Constraints

Period 1: 1hl1 � 150 (11)

Period 2: 1hl2 � 150 (12)

Period 3: 1hl3 � 150 (13)

Period 4: 1hl4 � 150 (14)

Period 5: 1hl5 � 150 (15)

Period 6: 1hl6 � 150 (16)

Plow Before Disk Sequencing Constraints

Period 1: � pl5 � pl6 � pl1 � d1 � 0 (17)

Period 2: � pl5 � pl6 � pl1 � pl2 � d1 � d2 � 0 (18)

Period 3: � pl5 � pl6 � pl1 � pl2 � d1 � d2 � d3 � 0 (19)

Disk Before Plant Sequencing Constraints

Period 1: � d1 � pc1 � pw1 � 0 (20)

Period 2: � d1 � d2 � pc1 � pc2 � ps2 � pw1 � pw2 � 0 (21)

Period 3: � d1 � d2 � d3 � pc1 � pc2 � ps2 � ps3 � pw1 � pw2 � 0 (22)

Plant Corn Before Harvest Corn Sequencing Constraints

Period 1: � pc1 � hc15 � hc16 � 0 (23)

Period 2: � pc2 � hc25 � hc26 � 0 (24)
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Plant Soybeans Before Harvest Soybeans Sequencing Constraints

Period 2: � ps2 � hs24 � hs25 � 0 (25)

Period 3: � ps3 � hs34 � hs35 � 0 (26)

Plant Wheat Before Harvest Wheat Sequencing Constraints

Period 1: � pw1 � hw15 � hw16 � 0 (27)

Period 2: � pw2 � hw25 � hw26 � 0 (28)

Non-negativity: All Activities � 0 (29)

The formulation of this problem has a similar interpretation as before, except now the
activities are disaggregated to include time periods. The single numeric subscript for each
activity refers to the time period the operation occurs in, for instance, pw2 is the wheat
planting activity in period 2. The two subscripts for the harvesting activity give the time
period in which the crop was planted and the time period in which it is harvested. For
example, hc25 means harvest an acre of corn that was planted in period 2 and is harvested
in period 5.

Constraint (1) is the land restriction and is similar to the previous model except that
activities are further disaggregated by time period. Constraints (2) through (7) are the
labor constraints for the six time periods. Each time period corresponds to the activities
that are permitted in that time period. The output constraints (8) to (10) are similar to the
previous model except the crop yield coefficients are now disaggregated by planting and
harvesting dates.

Note that the sequencing constraints appear to be the most different. The first set of
sequencing constraints require that prior to disking an acre of land, you must plow an acre
of land. Plowing can take place in either the fall of the previous year (periods 5 and 6), or
in the spring prior to disking (periods 1 and 2). That is, it is assumed that the plowing activ-
ities begin in periods 5 and 6 of the previous year and may carry through into periods 
1 and 2 of the current crop year. Plowing is the between-year linkage in the model.

Consider the first constraint in this set, plow before disk, period 1. This restricts all
period 1 disking from exceeding all the land that was plowed in the previous year (periods
5 and 6) and in period 1. The next constraint for period 2 restricts combined disking in
periods 1 and 2 from exceeding combined plowing in periods 5, 6, 1, and 2. The same logic
applies to the last of these constraints for period 3.

The second set of sequencing constraints requires that before an acre of land is planted
with corn, soybeans, or wheat, it must be disked. These three specific constraints do just
that, assuring that the operations are performed in the correct order by time period.

Finally, the last set of sequencing constraints require that in order to harvest an acre of
corn, soybeans, or wheat, you must have planted an acre of corn, soybeans, or wheat.

The optimal solution is that 167 acres of corn and 433 acres of soybeans be produced and
sold. The sequencing constraints are constructed appropriately since all the field operations
take place and are done in proper order. Plowing takes place in periods 1, 2, and 6, while
all disking takes place in periods 1 and 2. Note that the amount of disking in period 1 and/or
2 never exceeds the amount of acres plowed prior or concurrent to it. All corn is planted in
period 1, while all soybeans are planted in period 2. The farmer makes extensive use of
hired labor in periods 1, 2, and 5 when the majority of operations must be performed.

What about the SPs for each resource? The Solver sensitivity analysis shows that the SP
for land is 191.82. The SPs for labor give interesting information. These SPs range from
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zero (periods 1, 2, 3 and 4) to $27.13 per hour for period 5. This suggests that the labor
supply for period 5 operations is the tightest. Look at the rest of the SPs and make your
own economic interpretations.

As was the case before, it is recommended that detailed sensitivity analysis be con-
ducted for this problem. At a minimum, output supply functions for the three crops should
be derived in order to see how sensitive output decisions are to various prices. It is also
interesting to compare the price responsiveness of the crops to one another. Is corn more
price elastic than wheat or soybeans? Additionally, you should generate input demand
functions for land and labor. The labor demand functions would be disaggregated by the
six time periods when field operations take place.

You could expand this model to include additional resources that farmers use, including
important constraints for their use. Machinery constraints would be important for U.S.
crop farmers. In developing countries, animal power (instead of machinery) would be an
important resource constraint to add to the problem.

4.5 MODEL VALIDATION

Model validation is one of the most important steps in any quantitative modeling, includ-
ing mathematical programming. Model validation is the process of determining how
well the model represents the real world. Are the model outcomes consistent with real-
ity? This section, which is based exclusively on McCarl and Spreen (2003), examines
several systematic methods for model validation. While this section is contained in the
farm LP chapter, model validation applies to all remaining chapters on both linear and
nonlinear programming models.

McCarl and Spreen (2003) argue that model validation is basically a subjective process
since the modelers themselves are the ones who choose the way the model is to be judged.
Modelers select the validity tests, which variables to examine, the thresholds for passing
the tests, and so on. However, while the subjective nature of validation may give rise to bad
models passing validation tests, at the very least, the process of validation reveals model
strengths and weaknesses.

The authors present two general validation approaches: validation by construct and
validation by results. Each is discussed separately below.

Validation by construct is always a part of good modeling. Validation by construct
means that the correct procedures were used in building the model. For example, the model
is built on the basis of economic theory and is consistent with expert opinion. All model
coefficients have a sound basis, coming from other reputable sources, sound scientific
models, and/or accurate data. All model constraints are imposed on the basis of real-world
limitations in the decision process. To be fully transparent for validation by construct, it is
essential that the modeler openly document and make available all the steps involved in
building the model and determining the model coefficients. In this way, other researchers
can judge the validity of the model. McCarl and Spreen (2003) point out that the major
flaw of validation by construct is that this approach assumes rather than tests model valid-
ity. Hence, while validation by construct is a useful tool in model building, a more rigor-
ous validation procedure is validation by results.

Validation by results compares values of variables generated by the model to actual
observations in the real world. McCarl and Spreen (2003) outline five steps involved in this
validation process:

Step 1: Real-world observations are collected to compare against model results.

Step 2: Validation experiment is designed.
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Step 3: Experiment is conducted with the model to obtain solutions.

Step 4: Statistical tests are used to measure how closely model solutions conform to
actual observations.

Step 5: Model is judged valid or not valid.

Real-world observations are used to compare with both model inputs and outputs. For
example, in the crop models presented in this chapter, model inputs include crop prices,
costs, yields, and available field time. The analyst needs to have relative certainty that
these model inputs are reflective of reality. Model outputs include optimal crop mix and
marketing solutions. Comparing optimal crop mix and marketing solutions from the crop
model with actual acreage and marketing outcomes in the location to be modeled would
be an obvious test of validating the model.

There is a variety of validation experiments that could be used in model validation.
McCarl and Spreen (2003) present several general types. The most common is the pre-
diction experiment, which involves solving the model and comparing solutions directly
with real-world outcomes. For example, how close is the optimal crop mix from a farm LP
model to real-world crop mix in the location being studied? The second experiment is
called a change experiment, which examines whether the model can correctly predict
changes in key variables. In order to do this, you need observed data for different situa-
tions. For example, you could look at two different time periods that have different crop
prices and crop mixes, and use the two sets of data with the model to see how well the
model solutions coincide with actual changes in the real world. The third experiment 
discussed by McCarl and Spreen (2003) is called a tracking experiment, which is simi-
lar to the change experiment, but rather than looking at two different situations, tracking
looks at a greater number of situations over time. For example, the analyst could look at
the real-world data from eight consecutive quarters and compare it with model solutions
for the same time intervals.

In addition to these, McCarl and Spreen (2003) discuss three other validation exper-
iments: feasibility, quantity, and price experiments. Under the feasibility experiment,
the model is solved by setting the decision variables to their observed levels to deter-
mine whether the solution is feasible. This is done by adding equality constraints to the
model that restrict the variables to equal their real-world observed level. There is also
a dual feasibility experiment, which involves testing whether the observed SPs from
the primal problem are feasible in the dual problem. Under the quantity experiment, the
output supply (or input demand) term in the objective function is dropped, but an out-
put equality constraint is added, setting output to the real-world value. Then, the cor-
responding SPs for the output constraint are compared with real-world market prices.
In the input demand version, the input term is dropped from the objective function,
while an equality constraint is added that sets the input level equal to observed levels.
Then, the corresponding SPs for inputs can be compared with the actual market prices
for the inputs. The price experiment is only conducted for price endogenous models
(covered in a later chapter), and it entails setting objective function coefficients at real-
world levels, then comparing the solution values for optimal quantities to real-world
quantity levels.

McCarl and Spreen (2003) identify a systematic process for conducting the validation
experiment involving the following steps:

Step 1: Depending on type of experiment, adjust the variables, equations, constraints, and
data for the model.

Step 2: Solve the model.
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Step 3: Examine the model solutions to determine whether they are infeasible, unbounded,
or optimal. If infeasible, find cause of infeasibility, then proceed to Step 5 below.
If unbounded, then place an UB and continue to Step 6 below. If optimal, then
measure how close solution is to real-world levels (see discussion on statistical
tests below).

Step 4: Assuming the model solution is sufficiently close to real-world values, then either
judge the model to be valid for application, or do additional “higher-level” vali-
dation experiments (one or more of the experiments described above).

Step 5: Assuming the model fails the validation experiment, diagnose the model by look-
ing at whether there are errors in any data, or the objective function is properly
specified, or the model structure provides an accurate depiction of the real-world
decision environment.

Step 6: Correct the model. This will obviously depend upon the problem at hand, as well
as the type of experiment being conducted. Consider, for example, the case of a
corn–soybean farmer and the prediction validation experiment. Assume that the
solution indicates that all the acreage is being grown to soybeans, whereas in real-
ity the crop mix found in the location is 65% corn and 35% soybeans. Determine
from the model structure why this is occurring. Is the price (and/or costs) for corn
lower (higher) than it actually is causing soybeans to be over-represented in the
model solution? Is the price (and/or costs) for soybeans higher (lower) than it
actually is causing soybeans to be over-represented in the model solution? Are the
RHS values for field day availability lower than in reality, thus making the more
time-consuming corn production less feasible? Look thoroughly at all the possi-
ble reasons why corn is being understated by the model solutions.

Step 7: Assuming these steps fail to lead to a valid model, then either abandon the model,
use the model but point out its deficiencies, limit the scope of the validation tests
to fewer variables, or use a different validation test to see if it passes.

There are numerous evaluation criteria for establishing how well the model solutions
approximate reality. McCarl and Spreen (2003) discuss the use of regression analysis,
which is performed by regressing model solutions on a constant and observed values. In this
case, a perfect fit would be indicated by a constant value of zero and a slope coefficient of
one. Other statistical measures include simple correlation coefficients between observed
and model results, as well as means, standard deviations, and mean absolute deviations.

An Example

Consider the dynamic corn–soybean model presented earlier in this chapter. The optimal
solution to this model involved producing 27.8% of the farmer’s crop acreage to corn and
72.2% to soybeans. In reality, this region (Southern Minnesota) devotes more cropland to
corn than to soybeans. For instance, in 2007 and 2008, the average crop mix for Minnesota
was 56.5% corn and 43.5% soybeans. In validating the model based on the prediction
experiment, a key concern would be that the model results in too much soybeans and too
little corn being grown. Why might that be the case?

There are at least three possibilities for corn production being understated in the model
solution. First, the price of corn relative to the price of soybeans used in the model may be
lower than the actual relative prices. In fact, that is the case here. The price of corn and
soybeans used in the model were $2.60 and $6.35 per bushel, respectively, which yields a
relative corn–soybean price ratio of 0.409. The actual average corn–soybean price ratio has
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been higher in recent years. For example, the average ratio in 2007 and 2008 was 0.42. In
other words, the actual corn–soybean price ratio is 2.8% (i.e., 0.42/0.409) higher than the
one used in the model. Second, the cost of corn relative to soybeans used in the model may
be higher than the actual relative costs. Again, that is the case here. The ratio of corn to
soybean costs used in the model is equal to 1.684, while recent relative costs in the region
were substantially lower, that is, 1.297. In other words, the model overstates corn costs rel-
ative to soybean costs by 29.8% (i.e., 1.685/1.297). Finally, the model corn yields relative
to soybean yields may be lower than what is actually observed in this region. Again, this
is the case here. The ratio of corn to soybean yields used in the model was 2.27, while in
2007 and 2008, that ratio averaged 3.85.

If the model is re-solved by inflating the corn price by 2.8%, inflating soybean costs by
29.8%, and making the ratio of corn to soybean yields equal to 3.85, the new solution gives
an optimal crop mix of 49% corn and 51% soybeans, which is much closer to the real-
world percentage. With these adjustments, the model actually wants to grow more corn
than this, but is limited by the amount of labor the farm has in the six production periods.
If the amount of labor is increased, then the model will grow even more corn. Hence, mak-
ing this adjustment to the model will produce results that are even closer to real-world
observations on crop mix. These sorts of adjustments in the model that make the results
more reflective of reality are sometimes called model calibration.

Any sound research should include model validation and calibration. The use of valida-
tion by construct is important for constructing a sound model. But even sound models will
usually produce initial results that deviate from real-world observations. In these cases, it
is useful to perform model validation and calibration similar to the example above.

4.6 RESEARCH APPLICATION: CROP FARM MODEL

There have been many research applications using crop LP models for solving real-world
problems. For example, LP models have been used in examining agricultural-environmental
problems involving “best management practices” by farms. For instance, what would the
environmental impacts of a large dairy farm in an environmentally sensitive region be if
the farm followed best management practices rather than actual practices? Crop LP mod-
els have been used to examine the economics of new farm technologies such as reduced
tillage, new crop varieties, and irrigation technologies to answer whether such new tech-
nologies are more profitable than existing ones. Another area of use of these models has
been the economics of sustainable agriculture in developed and developing countries.
Here, LP models have been used to determine the most optimal sustainable practices for
agriculture. Linear programming models have been used extensively to formulate least-
cost feed rations for livestock, optimal cropping patterns for individual farms, optimal
marketing plans for selling farm output, and countless other applications.

To illustrate the usefulness of the crop model, consider the following application based on
a previous student’s research project that deals with an important policy question facing grain
farmers (Watanabe, 1988). While federal crop subsidy programs have changed since the late
1980s, this out-of-date study is still an excellent example of how a farmer could use LP to
answer an important research question: is it profitable to participate in federal commodity
programs? There are benefits to participation, such as price supports and deficiency pay-
ments, as well as costs, such as forgone production on acreage that is required to be set aside
as part of the participation requirements. In this application, the commodity is rice, and a
farm-level LP model is used to analyze the problem. This problem is examined for the two
most important rice producing regions in the United States: Arkansas and California.

158 PART 1 LINEAR PROGRAMMING

c04.qxd  11/29/10  7:39 PM  Page 158



Rice was designated as one of the original seven commodities covered by the
Agricultural Adjustment Act of 1933. This Act established a price support and deficiency
payment program for rice. Participation in this program, which is voluntary, requires that
rice producers set aside some of their production. In return, they are guaranteed a mini-
mum price if market prices fall below that price. Hence, it offers greater price stability and
higher expected prices.

The rice program has affected the prices received by rice producers, their incomes, the
costs and values of resources used in rice production, and rice growers’ productions plan-
ning process. Rice producers have higher program participation rates than producers of
other commodities (85–95 percent in recent years) and government payments to produc-
ers have accounted for 42 percent of gross income from rice, contributing significantly to
producers’ welfare.

The traditionally high program participation rates of rice producers may be explained by the
fact that rice production is so capital-intensive that resources may be more fixed than for
other crops. Irrigation systems, land leveling, the construction of levees around fields, and
harvesting equipment may not easily be adjusted from season to season. Also, as the rice
industry has been facing market prices below target prices since 1981 due to rising pro-
duction capacity, weak foreign demand, and hefty supplies and stocks, the rice program
now seems to play a more important role in a rice grower’s decision-making process com-
pared to when the first deficiency payments were paid for the 1976 crop.

The objective of this study is to examine whether a profit-maximizing rice farmer is bet-
ter or worse off participating in the government’s rice program. The impacts of risk and
uncertainty, while important, are ignored in this deterministic model. In a later chapter, we
will explore how to include risk in crop models.

The total U.S. rice crop is produced by six states: Arkansas, Louisiana, Mississippi,
Missouri, Texas, and California. Rice production costs and, as a consequence, the
returns to its producers vary widely among the regions due mainly to the differences in
operating characteristics, production practices, and types of rice produced. According
to “Economic Indicators of the Farm Sector: Costs of Production” published by the
U.S. Department of Agriculture (USDA), cash expenses were lowest in the non-Delta
area of Arkansas (the major rice production region) and highest in California (the sec-
ond-largest, producing 20 percent of the total U.S. rice) in 1986. Medium/short-grain
varieties predominate in California, where yields are 50 percent higher than those 
of long-grain growers in other regions. However, the average price for medium/short-
grain rice is 10–15 percent lower, so the higher California costs are not necessarily bal-
anced by higher receipts. For this reason, Arkansas (non-Delta) and California were
selected as different cases of rice production among the four rice production regions
(the others are the Mississippi River Delta and Gulf coast) cited in the USDA report
mentioned above.

The principal alternative crops in Arkansas are soybeans and cotton. In California, a
number of alternatives are similarly important: hay, sugar beets, vegetables, wheat, and
feed grains. All of these alternative crops in California are irrigated. However, only
one-fifth of the soybean area is irrigated in Arkansas. In order to simplify the crop mix
problem, soybeans were chosen as the alternative crop in Arkansas and wheat was chosen
as the alternative crop for California.

To formulate LP models for both regions, data for production costs and farm prices and
other relevant information were collected from the USDA report. Production costs,
yields, and farm prices are the averages of those in 1984–1986, respectively, for each
region, and data for the Arkansas model is displayed in Table 4.4, and for the California
model in Table 4.5.
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In Arkansas, the average land endowment of rice growers (land operated � land owned
plus land rented in minus land rented out) is 950 acres, and total labor of 1,600 hours is
available to perform all of the production operations. The model is static and assumes that
each production operation occurs at once and therefore the optimal solution does not tell
us anything about timing. Also, it is assumed that there is only one type of marketing activ-
ity for each crop, namely, to sell at harvest when not participating in the program. This
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Table 4.4 Data for Arkansas Rice–Soybean Crop Farm Model

Labor Variable Cost
Operation (hour/acre) ($/acre)

Plowing (pl) 0.35 4.00
Disk rice (dr) 0.40 43.60
Disk soybeans (ds) 0.25 2.00
Plant rice (pr) 0.30 52.00
Plant soybeans (ps) 0.25 10.00
Fertilize rice (fr) 0.20 32.80
Fertilize soybeans (fs) 0.20 16.50
Irrigate rice (ir) 0.10 35.40
Harvest rice (hr) 0.60 38.50
Harvest soybeans (hs) 0.36 12.00
Rice harvest price (sr, $/bushel) 7.01
Soybean harvest price (ss, $/bushel) 4.97
Rice target price ($/bushel) 11.66
Soybean loan rate ($/bushel) 5.02
Rice yield (bushel/acre) 50.00
Soybean yield (bushel/acre) 30.00

Table 4.5 Data for California Rice–Wheat Crop Farm Model

Labor Variable Cost
Operation (hour/acre) ($/acre)

Plowing (pl) 0.35 29.30
Disk rice (dr) 0.40 47.00
Disk wheat (dw) 0.25 15.00
Plant rice (pr) 0.20 35.00
Plant wheat (pw) 0.20 40.60
Fertilize rice (fr) 0.20 71.30
Fertilize wheat (fw) 0.20 54.00
Irrigate rice (ir) 0.15 33.30
Irrigate wheat (iw) 0.10 11.30
Harvest rice (hr) 0.60 70.80
Harvest wheat (hw) 0.28 21.00
Rice harvest price (sr, $/bushel) 6.23
Wheat harvest price (sw, $/bushel) 4.02
Rice target price ($/bushel) 11.66
Wheat loan rate ($/bushel) 4.38
Rice yield (bushel/acre) 73.00
Wheat yield (bushel/acre) 73.00
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assumption was made due to the fact that farm prices for rice are generally higher during
the first five months of the marketing year, that is, around and immediately after harvest.
Finally, it is assumed that there is no risk aversion by the farmer, that is, the farmer is risk
neutral or profit maximizing.

In California, the average land endowment of rice growers is 1,150 acres, and a total
labor of 2,000 hours is available to perform all of the production operations shown. The
assumptions made to formulate this model are the same as those in the Arkansas model.
In addition, for wheat, which has deficiency payments associated with acreage reductions,
the 1987 target price is used as support price.

With respect to the support price, the target price is used for rice, and the loan rate is
used for soybeans since these prices are actually received by farmers if they participate in
the respective commodity programs. To be eligible for program benefits, rice producers
must reduce their planting, but acreage reductions are not required as a condition of eligi-
bility for price support loans under the Food Security Act of 1985. The support prices and
acreage reduction levels used in this model are for 1987 (35% for rice, 0% for soybeans).
Hence, if the market price is below the target (or support) price, the government price
replaces it as a parameter in the model.

The LP tableau for the nonparticipating and participating Arkansas farm is shown in
Tables 4.6 and 4.7 (for brevity the California LP tableau is not shown, but is similar to the
Arkansas model). The activities are denoted as follows:
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Table 4.6 Linear Programming Tableau for Nonparticipating Arkansas Crop Farm

pl dr ds pr ps fr fs ir hr hs sr ss

Max �4 �43.6 �2 �52 �10 �32.8 �16.5 �35.4 �38.5 �12 7.01 4.97 (0)

s.t.:

Land 1 1 � 950 (1)

Labor 0.35 0.4 0.25 0.3 0.25 0.2 0.2 0.1 0.6 0.36 � 1,600 (2)

RI Yield �50 1 � 0 (3)

SB Yield �30 1 � 0 (4)

pl/d �1 1 1 � 0 (5)

dr/pr �1 1 � 0 (6)

pr/fr �1 1 � 0 (7)

fr/ir �1 1 � 0 (8)

ir/hr �1 1 � 0 (9)

ds/ps �1 1 � 0 (10)

ps/fs �1 1 � 0 (11)

fs/hs �1 1 � 0 (12)

Non-neg pl dr ds pr ps fr fs ir hr hs sr ss � 0 (13)
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Table 4.7 Linear Programming Tableau for Participating Arkansas Crop Farm

pl dr ds pr ps fr fs ir hr hs sr ss

Max �4 �43.6 �2 �52 �10 �32.8 �16.5 �35.4 �38.5 �12 11.66 5.02 (0)

s.t.:

Land 1.35 1 � 950 (1)

Labor 0.35 0.4 0.25 0.3 0.25 0.2 0.2 0.1 0.6 0.36 � 1,600 (2)

RI Yield �50 1 � 0 (3)

SB Yield �30 1 � 0 (4)

pl/d �1 1 1 � 0 (5)

dr/pr �1 1 � 0 (6)

pr/fr �1 1 � 0 (7)

fr/ir �1 1 � 0 (8)

ir/hr �1 1 � 0 (9)

ds/ps �1 1 � 0 (10)

ps/fs �1 1 � 0 (11)

fs/hs �1 1 � 0 (12)

Non-neg pl dr ds pr ps fr fs ir hr hs sr ss � 0 (13)

pl � plow

dr � disk for rice

ds � disk for soybeans

pr � plant rice

ps � plant soybeans

fr � fertilize rice

fs � fertilize soybeans

ir � irrigate rice

hr � harvest rice

hs � harvest soybeans

sr � sell rice

ss � sell soybeans

Net revenue is maximized subject to constraints for land, labor, and crop output and
sequencing restrictions. Notice that the 35 percent reduction in acreage as required for the
participating case in Table 4.7 is accomplished by putting a coefficient of 1.35 instead of
1 for the rice planting activity.

The optimal results for Arkansas are as follows. If not participating in the commodity
programs, the farmer should plow 950 acres of land, disk 482.4 acres for rice planting and
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467.6 acres for soybean planting, and plant rice and soybeans to the disked acreage. After
planting occurs, fertilizer should be applied to the rice and soybean acreage, and the rice
should be irrigated (there is no irrigation for soybeans). In the fall, all rice and soybeans
are harvested with 24,120.37 cwt of rice sold at $7.01 per cwt and 14,027.78 bushels of
soybeans sold at $4.97 per bushel. The net revenue for the nonparticipating Arkansas farm
is $118,473. The important SPs are 1.20 for land and 73.33 for labor, implying that the
farmer should be willing to pay up to $1.20 for another acre of land and up to $73.33 for
another hour of labor. The extremely low SP of land relative to labor tells us that labor is
a much scarcer resource than land for this particular problem.

If the Arkansas rice farmer participates in the government programs, all resources
should be devoted to rice production. In this case, 703.7 acres of land (the remaining
acreage is set aside) are plowed, disked, planted, fertilized, irrigated, and harvested for rice
production. After harvest, 35,185.18 cwt. of rice is sold at the higher government price of
$11.66 per cwt. Net revenue for this participating farmer is $265,085. Therefore, even
though total acreage planted is reduced by 35 percent, the farmer is significantly better off
by $146,612 through participating in the program. The SP for land is $279.04 for land,
which is $277.84 higher than the case of nonparticipation. This implies that if the farmer
added one more acre of land, net revenue would increase by $279.04, and therefore the
farmer should be willing to pay up to $279.04 for another acre of land. The SP for labor is
zero since not all 1,600 hours are used. Notice that the SP for land is significantly larger
than in the nonparticipation case, which illustrates how commodity programs become cap-
italized into land values.

In California, if not participating in the commodity programs, the rice farmer will plow
1,150 acres of land, and disk 794.23 acres for rice planting and 355.77 acres for wheat
planting. After planting, fertilizer and irrigation is applied to the rice and wheat acreage.
At harvest (rice in fall and wheat in early summer), all acreage planted to rice and wheat
are harvested and sold at 57,987.84 cwt. for rice at $6.23 per cwt. and 25,971.16 bushels
of wheat at $4.02 per bushel. Net revenue for the nonparticipating California farm is
$176,999. The important SPs are 198.98 for land and 88.13 for labor. This implies that the
farmer should be willing to pay up to $198.98 for another acre of land and up to $88.13
for another hour of labor.

Similar to the Arkansas farmer, if the California rice farmer participates in the government
programs, then all resources should be devoted to rice production. That is, 851.85 acres are
plowed, disked, planted, fertilized, irrigated, and harvested to rice. After harvest, 62,185.18
cwt of rice is sold for $11.66 per cwt. Net revenue for the participating California farm is
$480,853. Therefore, even though the farmer is required to reduce total acreage planted by
35 percent, the farmer is significantly better off by $303,854 by participating in the program.
The SP for land is 418.13 for land, which is 2.1 times higher than the case of nonparticipa-
tion. The SP for labor is zero since not all 2,000 hours are used.

The results of this research indicate that government payments to rice growers, which
have been set very high relative to market prices since the 1981 Act, contribute signifi-
cantly to their revenue. The results also explain the extremely high participation rates in
the rice commodity program. This is particularly true in California, where rice production
costs are higher and farm prices for rice are lower than the southern states, since the rice
program does not distinguish between the various types of rice. The results also imply sig-
nificant profitability of rice production if farmers participate in the program. A USDA
study shows that the relative economic advantage of producing rice is evident when returns
including government payments are compared across major crops produced in rice grow-
ing regions. These results partly explain why rice growers tend to be generally heavier pro-
gram participants than other grain producers.
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4.7 RESEARCH APPLICATION: ECONOMIC FEASIBILITY OF AN
ENERGY CROP FOR A SOUTH ALABAMA COTTON–PEANUT
FARM

The U.S. government has encouraged the development of alternative fuel sources as a means
to become more energy self-sufficient. Crop residues have the potential of displacing the
equivalent of over 12 percent of petroleum imports or 5 percent of electricity consumption
in the United States (Gallagher et al., 2003). While currently corn-based ethanol has been the
main bio-fuel employed in the United States, there are other fuel crops that could be used to
produce ethanol. However, farmers will only grow such crops if it is profitable to do so.

The research study summarized here used an LP model to determine the minimum price
that would make production of velvet beans, a potential energy crop, profitable for a
cotton–peanut farm in Alabama (Frank et al., 2004). The biomass from velvet beans can be
used to produce fuel, and they are desirable in a rotation with other crops because they have
positive effects on soil and enhance the yield of other crops. However, Alabama farmers
tend to grow cotton and peanuts, which are currently more profitable than velvet beans.

In an effort to promote bio-fuels, the federal government offers several subsidies to
firms to produce alternative fuels. This has the potential to increase the demand for crops
like velvet beans, which would raise the farm price and encourage its expansion. To deter-
mine what the minimum price would be to make it economically attractive for the typical
cotton and peanut Alabama farm, Frank et al. (2004) developed a farm-level LP model
along with crop enterprise budgets. The data for the model came from a variety of
sources including an experimental station (crop yields), and cost data from the Alabama
Cooperative Extension Service. Because there were no enterprise data for velvet beans, the
authors assumed a yield of 7 tons per acre and that velvet beans were intercropped with
sorghum. The authors used data from the Alabama Cooperative Extension Service and the
Alabama Agricultural Experiment Station to construct an enterprise budget for it.

The LP model used by Frank et al. (2004) is small and very simple, yet it is an innova-
tive application of LP to a very important topic. The objective function maximizes profit
over a three-year period. The objective function is:

Max: Z � 84.43vb1 � 34.82pt1 � 152.51ct1 � 103.25ptvbrot2 � 103.64ptctrot2

� 187.40ptvbrot3 � 194.69ptctrot3, 

where:

vb1 � velvet bean acres, year 1

pt1 � peanut acres, year 1

ct1 � cotton acres, year 1

ptvbrot2 � peanut–velvet bean rotation, year 2

ptctrot2 � peanut–cotton rotation, year 2

ptvbrot3 � peanut–velvet bean rotation, year 3

ptctrot3 � peanut–cotton rotation, year 3

The objective function coefficients are the net revenues, per acre, for each crop. The first
constraint in the LP is a land constraint, which limits the total acreage for all these activi-
ties to not exceed 1,000 acres, which is the average size for cotton-peanut farms in
Southeastern Alabama, that is,

vb1 � pt1 � ct1 � ptvbrot2 � ptctrot2 � ptvbrot3 � ptctrot3 � 1,000.
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The second constraint in the LP model is a velvet bean–peanut rotation constraint, that is,

�vb1 � ptvbrot2 � 0.

This constraint limits the peanuts acreage in year 2 under this rotation strategy to not
exceed the acreage grown for velvet beans in year 1.

The third constraint is a cotton–peanut rotation constraint, that is,

�ct1 � ptctrot2 � 0.

This constraint limits the peanuts acreage in year 2 under this rotation strategy to not
exceed the acreage grown for cotton in year 1.

The fourth constraint is a velvet bean–peanut second year rotation constraint, that is,

�0.5vb1 � ptvbrot3 � 0.

This constraint limits peanut acreage under this rotational strategy in year 3 to not exceed
50% of the velvet bean acreage in year 1. Similarly, the last constraint is added for the rota-
tional strategy of cotton and peanuts in year 3, that is,

�0.5ct1 � ptctrot3 � 0.

The first run of the model is solved using net revenues for velvet beans assuming a base
price of $30.00 per ton. Then, the model is resolved parametrically by increasing this price
while holding all other parameters in the model constant.

The results indicate that when the price of velvet beans is less than $41.00 per ton, the
optimal solution is a rotation of cotton in year 1, cotton in year 2, and peanuts in year 3,
with profits equaling $166,568. If the price of velvet beans is between $41.00 and $44.00
per ton, then the optimal rotation for the farm is velvet beans in year 1, velvet beans in
year 2, and peanuts in year 3, with profits ranging from $169,418 to $183,418. Finally, if
the price of velvet beans is higher than $44.00 per ton, then the optimal rotation is to grow
velvet beans in all three years, and profit is above $188,000.

Frank et al.’s (2004) results are similar to a previous study examining the potential of
switch grass as a bio-fuel. De La Torre Ugarte et al. (2003) found that at a price of $40 per
dry ton, 42 million acres of idled pasture or Conservation Reserve Program acres would
be converted to biomass production of switch grass. Frank et al.’s (2004) findings suggest
that velvet beans will not be economically attractive for Alabama farmers until the farm
price reaches $41.00 per ton of dry biomass. Until the price reaches this level, farmers in
this region will not consider a rotation other than cotton-cotton-peanuts. The price will
have to be greater than $45.00 per ton of dry biomass before farmers in this region would
switch to a velvet beans-only rotation. The authors conclude that depending upon distance
to the power plant, and pending federal subsidies, this level of price is possible in the
near future.

One shortcoming of this research is that the sensitivity analysis for the price of velvet
beans assumes that the prices of other competing crops would not change. However, it is
likely that if the price of velvet beans changed, so would the price of competing crops,
probably in the same direction. Hence, you need to bear in mind the assumption of chang-
ing one price without the other prices changing when interpreting these results.

SUMMARY

This chapter examined farm-level LP models. The purposes of this chapter were to 
(1) illustrate several basic farm LP models that could be used to assist farmers in making
production and marketing decisions; (2) illustrate how time may be incorporated into these
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basic models both in the context of within-year decisions and multiple-year decisions; 
(3) demonstrate how to disaggregate production activities by operation; (4) discuss how to
validate and calibrate mathematical programming models; and (5) illustrate two examples
of these models used to research real-world problems. These types of models are used
frequently by agricultural economists.

The chapter began with a discussion of static models that ignore the timing of opera-
tions. The discussion began with a simple and highly aggregate crop model, which was
later disaggregated to include the various field operations required to grow crops. We then
discussed how sensitivity analysis could be used to derive output supply and input demand
functions. The output supply function for a specific crop maps optimal crop acreage for
different crop prices, holding constant all other crop prices, costs, technical coefficients, and
resources endowments. The range of optimality was used to derive the output supply,
and an iterative procedure that sets the price above and below the limits of the range and
resolves the problem to get the new optimal acreage. An input demand function gives the
relationship between the level (amount) of the resource endowment and its SP, holding all
other parameters of the problem constant. The range of feasibility was used to derive the
input demand functions using a similar iterative procedure.

In reality, the timing of field operations is just as critical to farmers as the choice of crop
mix in making sound management decisions. Hence, the chapter also examined “dynamic”
models so that time, as well as operations, can be explicitly accounted for in the model. An
annual, multiperiod crop model with discrete time periods was presented, along with the con-
cept of sequencing constraints. Sequencing constraints insure that all operations occur and
are in proper order. A multiyear model for annual and perennial crops was also presented.

Another common farm enterprise is a joint crop and livestock operation such as dairy
farms. The basic difference between these enterprises and crop-only farms is that the for-
mer consumes part (or all) of what it produces by feeding it to the livestock. Of course,
some of the crop can still be sold in the market place. This chapter demonstrated how to
extend the crop farm model into a dairy and crop farm model.

Determining how well the model reflects reality is called model validation. Two types
of calibration were examined: validation by construct and validation by results. The first
is implied in sound development of the model, which includes thorough and open docu-
mentation of data and all model coefficients. The second is much more rigorous testing of
the model, comparing it with real-world results. An example was presented to show how
to diagnose and calibrate a model through validation to get more realistic results.

Finally, two research examples were examined. The first developed a farm-level LP
model to examine the benefits and costs of participating in farm commodity programs. A
case study for rice was examined, and the results indicated substantial benefits for partic-
ipation in the form of increased net farm revenue. The second example looked at the eco-
nomics of velvet beans as a potential energy crop to be added to a cotton-peanut farm in
Alabama. The results showed what the minimum output price would need to be for velvet
beans to enter the optimal solution for the farm.

REFERENCES

De La Torre Ugarte, G. D., Shapouri, H., Walsh, M. E., & Slinsky, S. P. (2003, February). The eco-
nomic impacts of bioenergy crop production on U.S. agriculture. Washington, D.C.: USDA.

Frank, E. T., Duffy, P., Taylor, C. R., Bransby, D., Runge, M., & Rodriguez-Kabana, R. (2004,
February 14–18). Economic feasibility of an energy crop on a south Alabama cotton-peanut
farm. Selected paper at the Southern Agricultural Economics Association annual meeting,
Tulsa, Oklahoma.

166 PART 1 LINEAR PROGRAMMING

c04.qxd  11/29/10  7:39 PM  Page 166



Gallagher, P., Dikeman, M., Fritz, J., Wailes, E., Gauther, W., & Shapouri, H. (2003). Biomass from
crop residues: Cost and supply estimates. Agricultural Economic Report 819. U.S. Department
of Agriculture, Office of Chief Economist, Office of Energy Policy and New Uses.

McCarl, B., & Spreen, T. (2003) Applied Mathematical Programming Using Algebraic Systems.
[online] Unpublished monograph. Available: http://agecon2.tamu.edu/people/faculty/
mccarl-bruce/books.htm. [Revised 10 July 2003].

Watanabe, S. (1988). Should rice farmers participate in commodity programs? Course project,
Introduction to Mathematical Programming, Department of Applied Economics and
Management, Cornell University.

EXERCISES

1. A farmer can grow three crops on 1,000 acres of land: corn, soybeans, and wheat. In
producing these three crops, the farmer has to: (1) plow the land (pl), (2) plant corn
(pc), (3) plant soybeans (ps), (4) plant wheat (pw), (5) harvest corn (hc), (6) harvest
soybeans (hs), (7) harvest wheat (hw), (8) sell the corn after harvest (sc), (9) sell the
soybeans after harvest (ss), and (10) sell the wheat after harvest (sw). The farmer must
plow the land prior to planting and must plant the crops prior to harvesting the crops.
In addition to the land endowment of 1,000 acres, the farmer has a total of 1,200 hours
available to perform all of the above production operations. The farmer does not want
to plant more than 400 acres to corn for soil conservation reasons. The farmer’s expec-
tations regarding the labor requirements (hours per acre) and variable costs for each
operation, as well as expected price and yield (bushels per acre) at harvest for the three
crops are presented below:

Labor Requirement Variable Cost Crop Yields 
Operation (hours/acre) ($/acre) and Prices

Plowing (pl) 0.40 4.00
Plant Corn (pc) 0.39 114.00
Plant Soybeans (ps) 0.30 80.00
Plant Wheat (pw) 0.30 78.00
Harvest Corn (hc) 0.60 48.00 120
Harvest Soybeans (hs) 0.30 17.00 40
Harvest Wheat (hw) 0.28 10.00 70
Corn Price ($/bushel) 2.90
Soybean Price ($/bushel) 5.75
Wheat Price ($/bushel) 3.00

Assume that the farmer’s objective is to maximize net revenue from corn, soybeans,
and wheat production.

a. Write the LP tableau for this problem.

b. There are many assumptions regarding the decision process this farmer follows in
this model. List three of these assumptions.

c. Solve this exercise using Solver. Summarize the optimal solution and SPs. List
three factors (other than relative crop prices) that influence the optimal crop mix
in this exercise.

2. For the previous exercise, derive and graph the output supply functions for corn, soy-
beans, and wheat. Compare the price responsiveness of the three supply functions.

3. For the previous exercise, derive and graph the input demand functions for land and
labor. Compare the price responsiveness of the two input demand functions.

CHAPTER 4 FARM-LEVEL LINEAR PROGRAMMING MODELS 167

c04.qxd  11/29/10  7:39 PM  Page 167

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm


4. In addition to the parameters laid out in the first exercise, suppose that the farmer pro-
vides the following information regarding time periods and the production process
(assume that the 1,200 hours are divided as displayed in the table below):

Available
Labor

Planting Harvesting Harvest Sales Post-Harvest Sales

Period (hours) Plow Corn Beans Wheat Corn Beans Wheat Corn Beans Wheat Corn Beans Wheat

1 Mar 15–May 9 175 X X X
2 May 10–May 23 175 X X X X
3 May 24–Jun 6 150 X
4 Sep 13–Sep 26 150 X X
5 Sep 27–Oct 17 275 X X X X X
6 Oct 18–Nov 7 275 X X X X X
7 Jan 27 – X X X

In addition, the farmer has a 10,000 bushel on-farm storage facility in which any com-
bination of corn, soybeans, and wheat can be stored. There are now six instead of three
marketing activities. Any portion of the crop can be sold at harvest for the following
prices: $2.90 per bushel of corn, $5.75 per bushel of soybeans, and $3.02 per bushel of
wheat (note that the wheat harvest price has been changed). Assume that the stored crop
can be sold on January 27 at the following prices: $3.10 per bushel of corn, $6.30 per
bushel of soybeans, and $3.20 per bushel of wheat. Again, the farmer has 1,000 acres
of land and will not grow more than 400 acres of corn. Corn and soybean yields are
influenced by planting and harvesting dates, but wheat is not. The corn and soybean
yields by their respective planting and harvest dates are given below.
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Yield (bushel/acre) by Planting Date 

Harvest
Corn Soybeans

Period 1 2 2 3

4 � � 40 30
5 100 115 50 15
6 135 110 � �

Assume that plowing may take place in the spring prior to planting and/or in the fall
after harvest (e.g. periods 5 and 6).

a. Write out this problem as an LP model assuming maximization of net revenue.
You may do so in general form or in tableau form (without slack variables).

b. Solve this problem in Solver. Summarize the optimal solution and SPs.

5. For the previous exercise, derive and graph the input demand functions for land and
storage. In which periods is labor the most scarce?

6. For the previous exercise, how would hired labor be incorporated as activities into this
model?

7. A farmer can plant two crops in a 450-acre plot of land. One acre of land can produce
2.7 bushels of crop A and 2.4 bushels of crop B. Crop A requires $30 for plowing,
disking, and harvesting altogether per bushel, and crop B requires $40 for plowing, disk-
ing, and harvesting per bushel (the cost includes labor for both crops). Now the same
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crops could be sold at $120 per bushel and $180 per bushel respectively. The family
has 15,000 total hours available, and crop A requires 40 hours per acre, and crop B
requires 60 hours per acre. The family can arrange 10,000 hours for $6.00 hour as
additional labor. As for the availability of seeds, crop A could be planted for 300 acres,
and crop B could be planted for 200 acres. If the farmer has $30,000 to invest in his
crops, what is his maximum potential profit?

8. Consider an organic chili pepper farm in New Mexico. They can grow a combination
of jalapenos, habaneros, and poblanos. For inputs, they use land, labor, and organic
fertilizer of which they have endowments of 350 acres, 500 hours, and 300 bags,
respectively. They have a total working budget of $45,000. Based on the following
production information, use Solver to calculate the farm’s output supply and input
demand functions for all factors and products.

Labor Cost Fertilizer
(hours/acre) ($/acre) (bags/acre) Yields/Prices ($)

Plowing 0.75 4
Plant Jalapenos 0.40 110 0.70
Plant Habaneros 0.45 75 0.75
Plant Poblanos 0.35 95 0.70
Harvest Jalapenos 0.30 20 100 bushels/acre
Harvest Habaneros 0.45 20 95 bushels/acre
Harvest Poblanos 0.40 30 85 bushels/acre
Jalapeno Price 4.00/bushel
Habanero Price 3.75/bushel
Poblano Price 4.75/bushel

9. A farmer has 100 acres of land to plant tomatoes, radishes, and lettuce. She can sell
tomatoes at $2.00 per lb., radishes at $2.00 per lb., and $1.00 for lettuce heads. The
fertilizer costs are $50.00 for tomatoes and radish each and $25.00 for lettuce. A total
of 400 man days of labor are available at $20.00 per man day. The other variable costs
and labor costs are tabulated below.

Tomato Radish Lettuce

Price per lb 2 2 1
Yield per acre 2,000 1,000 3,000
Fertilizer cost 50 50 25
Labor days required 5 5 4

Formulate this problem as an LP model to maximize the profit. Also find the input
demand function for labor and land constraints.

10. ABC Company produces feedstuff for chicken. According to national standards, the
feedstuff produced should meet nutritional criteria.

Crude Protein Coarse Fiber Lysine Calcium Phosphor Salt

National Criteria 135 �145g/kg �50g/kg �5.6g/kg 23�40g/kg 4.6�6.5g/kg 3.7g/kg
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The company produces feedstuff from several raw materials including corn, wheat,
wheat bran, DL-met, and salt. The nutrition fact of different raw materials is listed in
the following table.

Price Crude Protein Coarse Lysine Calcium Phosphor Salt 
($/kg) (g/kg) Fiber (g/kg) (g/kg) (g/kg) (g/kg) (g/kg)

Corn 0.68 78 16 2.3 0.7 0.30
Wheat 0.72 114 22 3.4 0.6 0.34
Wheat Bran 0.23 142 95 6.0 0.3 10.00
Rice Bran 0.22 117 72 6.5 1.0 13.00
DL-met 23.00
Bone-meal 0.56 300 140
Calcium Carbonate 1.12 400
Salt 0.42 1,000

How would you mix those raw materials, according to national standards, to produce
1kg mixed feedstuff with least cost?

11. Use the dynamic crop farm model presented in this chapter to derive an output supply
function for corn, soybeans, and wheat.

12. Use the dynamic crop farm model presented in this chapter to derive an input demand
function for land and for labor by period.

13. With respect to the dynamic crop farm model presented in this chapter, what would be
some useful and relevant parameters to vary for sensitivity analysis?

14. Make up your own production schedule by time period to make the example of
the static crop-livestock farm presented in this chapter. Formulate the LP problem and
solve it using Solver.

15. Consider the dynamic crop farm problem in this chapter. Modify this problem to
include the following. The farmer has an on-farm storage capacity of 20,000
bushels for corn, soybeans, and wheat (assume they can be stored together). The
farmer has decided to evaluate another marketing strategy in addition to harvest
sales. Specifically, the farmer expects the net price of corn, soybeans, and wheat
in March of the following year to be $3.05, $7.00, and $4.50 per bushel respec-
tively. Include these three marketing strategies in the model (remember the stor-
age constraint).

a. Solve this exercise using Solver, and report the solution.

b. For each of the six marketing strategies, derive a supply function in tabular and
graphical form.

16. Consider the dynamic crop farm problem in this chapter. Modify this problem to
include the following. The farmer can rent up to 100 acres of land from his neighbor,
Mr. Bishop, at a cost of $140 per acre. The farmer can also rent up to another 200
acres of land from another neighbor, Mr. Nichols, at a cost of $165 per acre. Add
these rental possibilities to the model. Solve this exercise using Solver, and report the
solution.

17. Consider the dynamic crop farm problem in this chapter. Modify this problem to
include the following. In reality, corn must be dried to a 15% moisture content to be
sold or stored. Suppose that corn has the following moisture contents, which vary
depending upon when it is planted and harvested:
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Note that corn harvested with moisture contents of 15% or below does not need to be
dried. Assume that it costs $0.02 per bushel per percentage point to dry corn. Then,
for example, if corn is harvested with a 20% moisture content and a yield of 150
bushels per acre, the per acre drying cost is:

Drying cost/acre � (20 � 15) (0.02) (150) � $15

In the model, calculate the corn drying costs per acre for each combination of plant-
ing and harvesting periods, and add these costs to the corn harvesting variable costs.
Solve this exercise using Solver, and report the solution.

18. List and explain 10 factors that influence the optimal crop mix for the dynamic crop
farm problem presented in this chapter.

19. A farmer owns 1,000 acres of cropland suitable for growing corn, soybeans, sorghum,
and wheat. The expected at-harvest price for each of these crops is: $2.50 per bushel
for corn, $6.35 per bushel for soybeans, $2.75 per bushel for sorghum, and $3.10 per
bushel for wheat. The farmer expects the following yields for each crop: 135 bushels
per acre for corn, 45 bushels per acre for soybeans, 95 bushels per acre for sorghum,
and 100 bushels per acre for wheat. In order to grow each crop, the farmer has to plow
the land, plant each of the crops, and harvest each of the crops. The following sum-
marizes the labor requirements and variable cost for each operation:

Labor Requirement Variable Cost
Production Operation (hours/acre) ($/acre)

Plow 0.50 10
Plant Corn 0.30 75
Plant Soybeans 0.30 35
Plant Sorghum 0.30 45
Plant Wheat 0.30 40
Harvest Corn 1.35 50
Harvest Soybeans 0.65 20
Harvest Sorghum 0.75 25
Harvest Wheat 0.60 44

Assume that the farmer is endowed with 5,000 hours of family labor and can hire up
to an additional 600 hours of hired labor at a cost of $5.00 per hour. The farmer can
rent up to 200 acres of land from a neighbor at a cost of $100 per acre. On the other
hand, the farmer can also rent out up to 500 acres of her own 1,000 acres to another
neighbor, who is willing to pay $100 per acre.

Suppose that this crop farmer wants to evaluate whether or not it would be profitable
to add up to 60 dairy cows to her farm. Assume that the cost per cow is $500, and each
cow can produce 15,000 pounds of milk per year which sells for $0.12 per pound.
Assume that each cow requires the following annual diet, which will be produced
entirely on the land owned by the farmer: (1) a concentrate made out of 35 bushels of
corn mixed with 9 bushels of soybeans, and (2) 1.22 tons of hay. Therefore, in addition
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Planting Period

Harvest Period 1 2

5 17% 21%
6 13% 18%
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to corn, soybeans, sorghum, and wheat, the farmer must now grow hay. Assume that
any excess hay that is grown beyond the need of the dairy herd can be sold at harvest
for $75.00 per ton. The farmer expects a yield of 2.5 tons per acre for hay, a cost of
$15 per acre for planting hay, and $16.00 per acre for harvesting hay. Also, it takes
0.25 hours per acre for planting hay, 0.50 hours per acre for harvesting hay, and 65
hours per cow for milking cows.

a. Formulate the LP model for this problem.

b. Solve it with Solver.

c. Derive an output supply function for milk, corn, and soybeans.

d. Derive an input demand function for land and another for family labor.

20. Consider the example of the multiyear apple, tomato, and lettuce farm presented in
this chapter. Show how you would modify this problem to account for the following:

a. The option of renting an additional 50 acres from a neighboring farmer and being
able to hire up to 25 weeks of labor from immigrant workers for $12.00 per hour.

b. Derive an output supply function for apples.

21. Consider the example of the multiyear apple, tomato, and lettuce farm presented in
this chapter. How would you modify this problem to account for a crop rotation strat-
egy between tomatoes and lettuce? Crop rotation means that you grow tomatoes where
lettuce was grown the previous year, and grow lettuce where tomatoes were grown the
previous year.

22. Consider the example of the crop-livestock farm presented in this chapter. Formulate
this problem in Solver and derive the solution. Next, using sensitivity analysis in
Solver, derive an output supply function for cows.

23. Suppose you were interested in a farm family in a developing country that sold part of
its harvest each year for needed currency, but mainly relied on the farm to meet its own
food needs. The farm grows beans, corn, and lettuce for sale and its own consumption.
Suppose the limiting production resources are land and labor, and it is endowed with
10 acres of land and 5,000 hours of family labor. It faces the following per acres
resource requirements:
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Resource Beans Corn Lettuce

Land 1 1 1
Labor 1,000 1,300 1,400

For every acre, the farmer can produce 60 bushels of beans, 80 bushels of corn, and
1,000 head of lettuce. It can receive the following unit profits if the produce is sold on
the market: $8 per bushel of beans, $6 per bushel of corn, and $2 per head of lettuce.
In addition, the farm-family needs to produce enough to have 50 bushels of beans, 100
bushels of corn, and 365 head of lettuce for their own consumption. Formulate an LP
model that maximizes profit from the sale of produce while meeting the constraints
outlined in this exercise including the minimum consumption constraints. Solve the
exercise using Solver.

24. For the previous exercise, derive a supply function for beans, lettuce, and corn.

25. For the previous exercise, derive an input demand function for land and labor.
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5
Transportation and Assignment

Models for Food and 
Agricultural Markets

A frequent application of linear programming (LP) is transportation decision problems.
Transportation problems are a special class of LP models known as network optimization
problems. Transportation problems involve determining how to move a product in the most
efficient way given certain constraints such as available supply (plant capacity) from each
production location and prevailing demand at each consumption destination. Generally, the
objective is to minimize transportation costs, but other objectives may be modeled, such as
maximization of the profits net of transportation costs.

Transportation costs are particularly important for agricultural commodities. Most agri-
cultural commodities are bulky, and many are highly perishable. Consequently, trans-
portation costs are relatively high for many agricultural commodities. As a result, food
manufacturers and agricultural cooperatives are interested in designing farm assembly
routes that are as efficient as possible. Linear programming models are often used to help
design efficient routes.

In the next section, the transportation problem is presented as an LP problem. The
standard assumptions of the LP model are discussed, and a simple example is used to
illustrate the basic structure of such models. In addition, the general model involving n
supply and m demand nodes is described along with several modifications in the basic
transportation model. Next, the transshipment model is presented, which extends 
the transportation model to include warehouse and/or processing activities that represent
intermediate nodes in the network. This is especially important for agricultural com-
modities, since most involve some form of processing or transformation along the mar-
keting chain. A special case of the transportation model, called the assignment
problem, is then described. The assignment model, which is quite similar to the trans-
portation model, involves matching resources with tasks in the most efficient way
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possible. The chapter concludes with a research application of a large transportation LP
model involving the production and distribution system of the U.S. dairy industry.

This chapter will not cover other special-purpose solution procedures for network opti-
mization problems discussed elsewhere. Interested readers should consult any standard
management science or operations research text to learn more about these special-purpose
solution procedures, which are more efficient than the simplex method for solving specific
transportation problems.

5.1 GENERAL TRANSPORTATION MODEL

The following assumptions are standard for the transportation model:

1. One good (x) is produced and sold in different geographic locations.

2. There are n supply nodes where x is produced. Denote a supply node as *.

3. There are m demand nodes where x is consumed. Denote a demand node as �.

4. Supply and demand at each location are known and fixed.

5. The objective is to minimize total transportation costs for shipment flows from sup-
ply to demand nodes.

6. The only costs assumed in this problem are transportation costs; that is, the product
has already been produced.

7. The amount of total supply is � the amount of total demand.

Later on in this section, modifications are made in the model in order to relax some of
these assumptions.

Any supply node, i, can sell to any demand node, j. The model determines the flow of
x from supply node i to each demand node j based on the network of transportation costs
and the quantities supplied and demanded.

To illustrate the potential movements of x, let n � m � 2. The diagram below shows
these potential movements. The lines connecting the supply and demand nodes are called
arcs. An arc gives the possible direction of shipments from a supply origin to a demand
destination. For example, supply in location 1, denoted as (1*) in this diagram, can be
shipped to demand locations (�1) and/or (�2). Likewise, supply in location 2, denoted as
(2*) in this diagram, can be shipped to demand locations (�1) and/or (�2). This type of
diagram is called a network because it shows the relationship between supply and demand
areas connected by transportation distances.

Consider the case of n supply origins and m demand destinations. Let:

i � the ith supply node; i � 1, … , n,

j � the jth demand node; j � 1, … , m,

cij � the unit transportation costs from supply i to demand j (e.g., C36 is the unit
transportation cost from supply location 3 to demand location 6),

(1*)

(2*)(�2)

(�1)
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xij � the amount of product shipped from supply origin i to demand destination j (e.g.,
x19 is the amount of good x that is transported from supply location 1 to demand 
location 9),

si � supply (fixed plant capacity) at supply origin i,

dj � demand (fixed consumption level) at demand location j.

This problem can be formulated as an LP problem as follows:

(0)

s.t.:

(1)

(2)

xij � 0, i�1, … , n; j�1, … , m (3)

The objective function (0) is the total cost of transportation from all supply origins to all
final demand destinations in the model. The cij parameters are the unit transportation costs
for shipping the output from origin i to destination j. The xij activities represent the level
of shipments from origin i to destination j.

Constraint (1) requires that the amount shipped from any supply origin i to the demand
destinations not exceed the available supply from supply origin i. For example, if supply
origin 4 has 400 units of product to distribute, then this constraint requires that the ship-
ment out of origin 4 to the demand destinations not exceed 400 units. There are n of these
constraints, which is equal to the number of supply nodes in the network.

Constraint (2) requires that the amount shipped to any demand destination j from the
supply origins not be less than the fixed demand for demand destination j. It is therefore
implicitly assumed that all demand destinations always receive at least as much product as
is demanded. For example, if demand destination 2 consumes 500 units of the product,
then this constraint requires that at least 500 units be shipped to destination 2 from the sup-
ply origins. An equality constraint could also be constructed so that s � d. There are m of
these constraints, which is equal to the number of demand nodes in the network.

Constraint (3) requires non-negativity on all activities, xij.
It is clear that the structure of the LP transportation model is quite simple. Regardless of

how large the problem is in terms of the number of supply and demand nodes, the basic struc-
ture of the problem is to minimize total shipment costs subject to all demand nodes being sat-
isfied and all supply nodes not shipping more than their fixed capacity.
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1This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 5 supplemental materials
available at www.wiley.com/college/kaiser.

An Example1

A large food manufacturer produces premium ice cream (x) in three different supply
plants in the United States. The firm sells their ice cream to four different demand
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destinations in the U.S. The supply origins, demand destinations, and unit transportation
costs of shipping ice cream are summarized below.2

Supply nodes: Boston, Milwaukee, San Diego.
Demand nodes: Orlando, San Antonio, St. Paul, Seattle.
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2All costs, supply, and demand for this example are fictitious and not based on real-world data.

Fixed Weekly Supplies (in 1,000 gallons)

Location 1 Boston 2 Milwaukee 3 San Diego

Supply 125 75 100

Fixed Weekly Demands (in 1,000 gallons)

Location 1 Orlando 2 San Antonio 3 St. Paul 4 Seattle

Demand 50 75 100 50

Unit Transportation Costs ($/1,000 gallons)

From/To 1 Orlando 2 San Antonio 3 St. Paul 4 Seattle Total Supply

1 Boston 25 50 40 125 125
2 Milwaukee 55 65 25 75 75
3 San Diego 90 45 75 45 100
Total Demand 50 75 100 50

Using this information, the LP tableau, which minimizes total transportation costs
can be constructed as follows:

x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

Obj (Min) 25 50 40 125 55 65 25 75 90 45 75 45 RHS

Supply 1 1 1 1 1 �125
Supply 2 1 1 1 1 �75
Supply 3 1 1 1 1 �100
Demand 1 1 1 1 �50
Demand 2 1 1 1 �75
Demand 3 1 1 1 �100
Demand 4 1 1 1 �50
Non-neg x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 �0

The formulation of this problem in Solver is presented in Figure 5.1. The optimal
solution to this problem is:

x11 � 50, x12 � 25, x13 � 25, x23 � 75, x32 � 50, x34 � 50, Z* � $9,875, 
and all other xij � 0

SPsup1 � 0, SPsup2 � �15, SPsup3 � �5, SPdem1 � 25, SPdem2 � 50, 
SPdem3 � 40, SPdem4 � 50
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Summary and Interpretation of Optimal Solution There are several steps that
are quite useful in summarizing and interpreting the optimal solution for a transportation
model. These are summarized below.

Step 1: Draw a map of the supply origins and demand destination nodes. In this map, 
specify the fixed demands, fixed supplies, and transportation costs. Figure 5.2 displays an
example of such a map for this problem. In Figure 5.2 the fixed supplies and demands are
given by the [ ] type brackets, and the amount imported or exported is given by the ( ) type
parentheses.

Step 2: Draw the optimal shipments arcs and values from the supply origins to the demand
destinations. Check to see that none of the supply and demand constraints are violated.
Note: for optimal shipments with zero values, the arcs and values should not be drawn, oth-
erwise the map will become very cluttered. In Figure 5.2, the optimal shipment levels are
listed aside the arc lines.

Step 3: Interpret the shadow prices (SP) on the supply and demand constraints. The map
constructed in steps 1 and 2 will be very useful in doing this.

Supply Shadow Prices Boston Supply: The SP equals zero because the total supply
of 125 units at the Boston plant is not fully utilized; only 100 units are shipped.
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Figure 5.1 Solver formulation for ice cream transportation problem.
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Consequently, increasing the 125 available units by one to 126 units will add zero to the
optimal value of the objective function, which in this case is total transportation cost.

Milwaukee Supply: The SP equals �15. This means that if the plant capacity in
Milwaukee is increased by one more unit, total transportation costs would decrease by
$15. Why?

If the Milwaukee supply is increased by one unit, it will be shipped to St. Paul, which
causes total transportation costs to increase by $20. However, if one more unit is shipped to
St. Paul from Milwaukee, then one less unit will be shipped from Boston to St. Paul, which
will cause total transportation costs to decrease by $35. The net result is 20 � 35 � �15.

San Diego Supply: The SP equals �5. This means that if the plant capacity in San Diego is
increased by one more unit, total transportation costs would decrease by $5. Why?

If San Diego’s supply is increased by one unit, then the additional unit would be shipped
to San Antonio rather than Seattle since Seattle’s demand is fixed and its sole supplier is
San Diego. The additional unit shipped from San Diego to San Antonio adds $35 to total
transportation costs. However, San Antonio would then require one less unit from Boston,
which would lower total transportation costs by $40. The net result is 35 � 40 � �5.

Demand Shadow Prices Orlando Demand: The SP equals 20. This means that if
demand in Orlando increases by one unit then the total transportation cost would increase
by $20. Why?

Boston would ship an additional unit (from its slack of $30) to Orlando at a cost of $20.

San Antonio Demand: The SP equals 40. This means that if demand in San Antonio
increases by one unit then the total transportation costs would increase by $40. Why?

Boston would ship an additional unit (from its slack of $30) to San Antonio at a cost of $40.

St. Paul Demand: The SP equals 35. This means that if demand in St. Paul increases by
one unit then the total transportation costs would increase by $35. Why?

Boston would ship an additional unit (from its slack of $30) to St. Paul at a cost of $35.
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Figure 5.2 Map of supply and demand nodes for the ice cream example.
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Seattle Demand: The SP equals 45. This means that if demand in Seattle increases by one
unit then the total transportation costs would increase by $45. Why?

The derivation of this SP is more complicated. If Seattle’s demand increased by one
unit, then ice cream would be shipped from San Diego at a cost of $40 per unit. However,
one less unit would be shipped from San Diego to San Antonio, which means a savings of
$35. San Antonio would then receive an additional unit from Boston at a cost of $40. Thus,
the change in the objective function would be equal to 40 � 35 � 40 � 45.

Sensitivity Analysis

Most decision problems are not complete without some sort of sensitivity analysis. In this
problem, as well as all transportation problems, the actual solution will depend upon the
key parameters in the model. In these applications, the key parameters will be the unit
transportation cost estimates (cij), the level of plant capacity for each supply origin i (bi),
and the level of demand in each demand destination j (bj). Hence, it follows that basic sen-
sitivity analysis should focus on “what if ” questions regarding these parameters. What if
plant capacity in origin i was increased from A to Z? What if the demand in destination j
decreased from Y to W? What if the unit transportation costs for several arcs in the net-
work increased or decreased? And so on.

Another general rule regarding sensitivity analysis is to use this type of analysis on
parameter estimates that are suspected to be the least accurate. For example, suppose that
exact estimates on the amount of ice cream produced in each supply origin and the amount
demanded from each demand destination are available, while good estimates on some or
all of the unit transportation costs are not available. In this case, the sensitivity analysis
should focus on the objective function coefficients in order to ascertain how sensitive the
model is to the estimates of cij. If the model is not very sensitive to these estimates, that 
is, the results do not change much, then the results are more credible. On the other hand,
if the results do change significantly with changes in the cij parameters, then great caution
should be taken in using the model results to make decisions unless better estimates of cij

can be obtained.
Another type of sensitivity analysis is to modify the problem to add and/or delete new and

old supply and demand locations to see if the firm can construct a better distributional net-
work. With respect to supply, it may not be possible to consider building a lot of new plants
or close down existing plants. But, this type of analysis might be useful to a firm consider-
ing adding one or two new plants and/or closing down one or two old plants. Such analysis
would provide insights into efficiency gains due to new plant investment. Analogous exam-
ples for this type of sensitivity analysis for demand exist as well, but are left to the reader for
further consideration.

5.2 EXTENSIONS OF THE MODEL

There are several extensions of the basic transportation model. Three of these are briefly
listed and described below.

1. Maximizing Revenue Rather than Minimizing Transportation Costs

A manager might be interested in maximizing revenue or profit net of the transporta-
tion costs rather than simply minimizing costs. To modify the model, first replace the
objective function with:

(0)Max: Z cij ij
j

m

i 1

n

�
��

x
1

∑∑
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where cij is net revenue per unit of the good shipped, that is, total revenue minus variable
production costs minus transportation costs.

This can be maximized subject to the same constraints above. It should be noted, how-
ever, that since this is a maximization model, the total supply and demand should be
equal in order for all the constraints to be binding and make sense. That is, if total sup-
ply is greater than total demand, one of the regions will receive more shipments than it
demands, since the objective function is being maximized. If demand is indeed fixed,
then it would not make sense to have additional flows to these markets. On the other
hand, if demand is not fixed, then use a formulation with total supply being greater than
demand.

2. Incorporating Route Constraints

Suppose only k amount of good x can be shipped from Seattle to Boston. To account for
this, simply add the following constraint to the original problem:

x32 � k,

where k is the amount of the shipment constrained by the routing constraint.

3. Incorporating Unacceptable Routes into the Network

Suppose that, due to construction, several key roads are closed, which makes it physically
impossible to ship by truck any amount of a good from supply i to demand j. In this case,
simply remove the activity from the problem for which the route is unavailable. For exam-
ple, suppose that the manager says it is impossible to ship ice cream from San Diego to
Seattle. Then simply delete decision variable x34 from the objective function and con-
straint set.
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An Example

Consider the following hypothetical transportation problem in international trade. The
United States produces more oranges than it consumes, and exports to England,
Germany, Canada, Japan, and China. The two states that orange exports come from are
California and Florida. Suppose that on an annual basis, each region has the following
fixed supply and demand for oranges:

Fixed Annual Supplies (in millions of tons):

Location 1 Florida 2 California

Supply 750 1,000

Fixed Annual Demand (in millions of tons):

Location 1 England 2 Germany 3 Canada 4 Japan 5 China

Demand 400 300 300 250 500
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The following is the net revenue (net of all variable costs including transportation
costs) for shipping a ton of oranges to and from the various locations:

From/To 1 England 2 Germany 3 Canada 4 Japan 5 China

1 Florida 1,000 950 1,100 750 800
2 California 800 850 1,200 1,375 1,500

Consider the following trade policy scenarios:

1. Free trade—there are no restrictions on U.S. exports to any countries.

2. Import quota—same as free trade, except Japan puts an import quota on U.S.
orange exports of no more than 150 million tons.

3. Fixed rate tariff—same as free trade, except China puts a fixed rate tariff of $200
per ton of U.S. oranges.

4. Trade embargo—same as free trade, except the United States places a complete
orange export embargo on China.

A transportation LP model could be used to examine the revenue impacts of the
four trade policies on U.S. orange exports. Consider the free trade scenario first,
which can be used as a baseline to compare the trade restriction scenarios. The prob-
lem is:

Max: Z � 1,000x11 � 950x12 � 1,100x13 � 750x14 � 800x15 � 800x21

� 850x22 � 1,200x23 � 1,375x24 � 1,500x25 (0)

s.t.:

x11 � x12 � x13 � x14 � x15 � 750 (1)

x21 � x22 � x23 � x24 � x25 � 1,000 (2)

x11 � x21 � 400 (3)

x12 � x22 � 300 (4)

x13 � x23 � 300 (5)

x14 � x24 � 250 (6)

x15 � x25 � 500 (7)

xij � 0 i�1, 2; j�1, … , 5 (8)

To model the second trade scenario, simply change the right-hand-side (RHS) value of
constraint (6) from 250 to 150. However, we need to make an assumption regarding
what happens to the 100 million tons of oranges that were previously exported to Japan.
For this problem, assume that they can be shipped to any of the other markets without
impacting unit net revenues. In reality, unit net revenues would likely decline in the
region receiving the additional oranges.

To model the third trade scenario, modify the free trade objective function by chang-
ing the objective function coefficients on unit profits from Florida to China from 800 to
600 (i.e., 800 � 200 � 600) and from California to China from 1,500 to 1,300 (i.e.,
1,500 � 200 � 1,300).
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To model the fourth trade scenario (ban on Chinese exports), eliminate constraint (7)
from the free trade model so that there are no Florida and California exports to China.
Also, eliminate the two activities for trade flows to China, x15 and x25. An assumption
again needs to be made about where the 500 million tons of oranges previously shipped
to China would go. Assume here it is free to go to any other market without changing
unit net revenues.

The optimal solution to the free trade problem is: Florida should sell 400 million tons
of oranges to England, 300 million tons to Germany, and 50 million tons to Canada.
California should sell 500 million tons of oranges to China, 250 million tons to Japan,
and 250 million tons to Canada. The total net export revenue to the U.S. orange indus-
try is $2,133,750.

In the second Japanese import quota scenario, the optimal solution is: Florida should
sell 400 million tons of oranges to England, 300 million tons to Germany, and 50 mil-
lion tons to Canada. California should sell 600 million tons of oranges to China, 150
million tons to Japan, and 250 million tons to Canada. The total net export revenue to
the U.S. orange industry is $2,146,250. Note that in this case, China picks up an addi-
tional 100 million tons of oranges from California, and total industry net revenue actu-
ally increases by 0.6 percent due to Japan’s import quota. In reality, revenue would
likely fall in this case because in order for China to increase its imports from California
by 100 million tons, unit net revenues would need to decline.

In the third scenario, where the Chinese impose a $200 per ton fixed-rate tariff,
Florida should sell 400 million tons of oranges to England, 300 million tons to
Germany, and 50 million tons to Canada. California should sell 500 million tons of
oranges to China, 250 million tons to Japan, and 250 million tons to Canada. These
trade flows are identical to the free trade case. However, in this case, total net export
revenue to the U.S. orange industry falls to $2,033,750, which is 4.7 percent lower than
the free trade scenario.

The optimal solution to the fourth scenario, that is, the ban of exports to China, is that
Florida should sell 400 million tons of oranges to England, 300 million tons to Germany,
and 50 million tons to Canada. California should sell 750 million tons to Japan, and 250
million tons to Canada. The total net export revenue to the U.S. orange industry is
$2,071,250. Note that in this case, Japan picks up an additional 500 million tons of
oranges from California, and total industry net revenue declines by 2.9 percent due to the
export ban to China. In reality, revenue would likely fall by more than this because in
order for Japan to increase its imports from California by 500 million tons, unit net rev-
enues would need to decline.

This type of model would be useful for examining different types of trade barriers
and their impacts on industry revenues.
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5.3 THE TRANSSHIPMENT MODEL

In reality, distributional systems often include not only plant-to-retail routes, but also
intermediate nodes as well. For example, supermarket chains usually ship products from
their point of creation to warehouses rather than directly to the supermarkets.
Supermarkets then receive shipments of goods from the warehouses. The warehouse in
this network is called a transshipment node. Transshipment nodes do not need to be
physical storage areas, as is the case in this example. They may also be processing cen-
ters. For example, raw milk is produced on the farm and then is delivered to processing
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plants. These plants, in turn, process the raw milk into fluid products, soft dairy products,
or hard dairy products. From there, the processed milk products are shipped to super-
markets. In this case, the transshipment nodes not only serve as a storage function, but
also as a processing function.

The Transshipment Warehouse Model3

In general, a transshipment model is any transportation model involving an intermediate
node in the distributional network. In this class of models, shipments are permitted
between any pair of nodes, for instance, shipments can occur between supply and demand
locations, between supply and transshipment locations, or between transshipment and
demand locations. A transportation model that includes shipments within nodes can also
be designed, but this will not be considered here. Figure 5.3 shows an example of shipment
between nodes.

Consider the transshipment problem corresponding to Figure 5.3. The objective function
is to minimize transportation costs. The possible shipments, as indicated in Figure 5.3, are:

x13 (Supply 1 to intermediate location 3),

x14 (Supply 1 to intermediate location 4),

x23 (Supply 2 to intermediate location 3),

x24 (Supply 2 to intermediate location 4),

x35 (Intermediate location 3 to demand 5),

x36 (Intermediate location 3 to demand 6),
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3 This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 5 supplemental materials
available at www.wiley.com/college/kaiser.
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Figure 5.3 Network diagram of transshipment problem (n�m�k�2).
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x45 (Intermediate location 4 to demand 5),

x46 (Intermediate location 4 to demand 6).

Let cij be the transportation costs for each shipment from node i to node j. Then the
objective function is:

Min: Z � c13x13 � c14x14 � c23x23 � c24x24 � c35x35 � c36x36

� c45x45 � c46x46

There are three sets of constraints, including (1) supply constraints, (2) transshipment con-
straints, and (3) demand constraints. The first set of constraints is identical to that of the
transportation problem that limits the amount shipped from each supply origin to not
exceed available supply.

Suppose supply 1 � 300 and supply 2 � 700. Then the first two constraints are:

x13 � x14 � 300,

x23 � x24 � 700.

The constraints for the transshipment nodes require that the amount shipped in equals the
amount shipped out. This assumes that the capacity for each transshipment node can han-
dle any or all supplies coming in from the supply nodes. For transshipment node 3, the
number of units shipped in is:

x13 � x23,

and the number of units shipped out is:

x35 � x36.

Hence, to guarantee that units shipped in equals units shipped out

x13 � x23 � x35 � x36, or rearranging to be suitable for LP

x13 � x23 � x35 � x36 � 0.

Likewise, the corresponding constraint on transshipment node 4 is:

x14 � x24 � x45 � x46, or

x14 � x24 � x45 � x46 � 0.

Finally, the last set of constraints is on the demand nodes, because demand in this model
is constructed by satisfying the transshipment nodes, not the supply nodes. Assuming
demand node 5 requires 600 units and demand node 6 requires 400 units of x, then the con-
straint for demand node 5 is:

x35 � x45 � 600, and the constraint for demand node 6 is:

x36 � x46 � 400.

Given the transportation costs, cij, this model can be solved.
For example, suppose there are two supply nodes, two transshipment nodes, and two

demand nodes. Also, assume supply can be shipped to either transshipment node, 
or demand node. A diagram of this problem is given in Figure 5.4. The possible 

184 PART 1 LINEAR PROGRAMMING

CH005.qxd  11/29/10  4:54 PM  Page 184



shipments between any two pairs of nodes and the unit transportation costs are defined
below:

x13 � Supply 1 to transshipment 3, unit transportation cost � $40,

x14 � Supply 1 to transshipment 4, unit transportation cost � $50,

x15 � Supply 1 to demand 5, unit transportation cost � $90,

x16 � Supply 1 to demand 6, unit transportation cost � $125,

x23 � Supply 2 to transshipment 3, unit transportation cost � $40,

x24 � Supply 2 to transshipment 4, unit transportation cost � $50,

x25 � Supply 2 to demand 5, unit transportation cost � $75,

x26 � Supply 2 to demand 6, unit transportation cost � $85,

x35 � Transshipment 3 to demand 5, unit transportation cost � $40,

x36 � Transshipment 3 to demand 6, unit transportation cost � $95,

x45 � Transshipment 4 to demand 5, unit transportation cost � $85,

x46 � Transshipment 4 to demand 6, unit transportation cost � $50.
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Figure 5.4 Network diagram of transshipment example.
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The LP tableau and optimal solution to the problem are given below.

x13 x14 x15 x16 x23 x24 x25 x26 x35 x36 x45 x46
Shadow

Obj. (Min) 40 50 90 125 40 50 75 85 40 95 85 50 b Price (SP)

Supply 1 1 1 1 1 �300 0
Supply 2 1 1 1 1 �700 �5
Trans 3 �1 �1 1 1 �0 �40
Trans 4 �1 �1 1 1 �0 �40
Demand 5 1 1 1 1 �600 80
Demand 6 1 1 1 1 �400 90
Non-neg x13 x14 x15 x16 x23 x24 x25 x26 x35 x36 x45 x46 �0

Solution 300 0 0 0 0 0 300 400 300 0 0 0 Z* � 80,500

In this example, shipments are occurring both from supply to final demand and from sup-
ply to transshipment to demand nodes. Supply origin 1 ships all 300 of its units to warehouse
3, and supply origin 2 ships 300 units directly to demand 5 and 400 units directly to demand
6. Transshipment node 3 receives 300 units from supply 1 and ships them to demand 5.
Hence, demand 5 receives 600 units in total (300 from warehouse 3 and 300 from supply 2),
and demand 6 receives 400 from supply 2. The cost of the optimal shipment flows is
$80,500. The interpretation of the SPs is analogous to the transportation problem’s SPs. The
reader can independently determine how each SP is derived.

The Transshipment Model with Product Conversion

The transshipment model is also very useful in spatial problems that involve the movement
and conversion of a product. The dairy sector provides an excellent example of this.

For example, consider a cheese processor who buys raw milk (m) from two small dairy
cooperatives and sells cheese (c) to two supermarkets. It takes approximately 10 pounds of
raw milk to make one pound of cheese. Ignoring other factors of production, the cheese
“production function” is:

c � 1/10m.

That is, every pound of raw milk produces 1/10 pound of cheese. Suppose that each of the
two cooperatives sells raw milk in separate locations: cooperative 1 sells 200,000 pounds of
raw milk per day, and cooperative 2 sells 400,000 pounds of raw milk per day to the cheese
processor. The cheese processor has two cheese plants where the raw milk can be delivered
and processed (assume both plants have unlimited plant capacity to handle the raw milk).
Finally, supermarket 1 wants to buy 10,000 pounds of cheese per day, and supermarket 2
wants to buy 50,000 pounds of cheese per day from the processor. The following table sum-
marizes the per unit transportation costs for raw milk and for cheese (cooperative to plant
costs are expressed as dollars per pound of raw milk and plant to supermarket costs are
expressed as dollars per pound of cheese).

From/To Plant 1 Plant 2 Supermarket 1 Supermarket 2

Coop 1 (m) $0.50 $0.60
Coop 2 (m) $0.40 $0.30
Plant 1 (c) $0.20 $0.30
Plant 2 (c) $0.25 $0.20
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The formulation of this problem is almost identical to the previous example. However,
recognize that the units being shipped from cooperatives to the plant are not the same as
those being shipped from the plant to the supermarkets (i.e., pounds of raw milk are not
the same as pounds of cheese). Using the formula for the cheese production function,
incorporate this conversion directly into the LP formulation, or convert all raw milk into
cheese equivalents or vice versa.

Figure 5.5 gives a graphical overview of the network for this example. As before, the
first set of constraints restricts each cooperative from selling more raw milk than it pro-
duces each day. Denoting each cooperative as c1 and c2, and each cheese plant as p1 and p2,
this restriction is equivalent to:

c1p1 � c1p2 � 200,000, and

c2p1 � c2p2 � 400,000.

Let s1 and s2 denote the two supermarkets. The transshipment constraints in this 
case require that the incoming raw milk be converted into cheese and then shipped out 
to the supermarkets. For the first plant, this requirement is equivalent to the following 
constraint:

c1p1 � c2p1 � 10p1s1 � 10p1s2 � 0.

This constraint implies that all milk going into plant 1 equals all cheese shipments going
out of the plant, where the coefficient 10 gives the transformation from pounds of raw milk
into pounds of cheese. Likewise, the equivalent constraint for plant 2 is:

c1p2 � c2p2 � 10p2s1 � 10p2s2 � 0.

Finally, the last set of constraints are the typical demand constraints, namely:

p1s1 � p2s1 � 10,000, and

p1s2 � p2s2 � 50,000.

With an objective function of minimizing total transportation costs, the entire LP model
for this problem is:

Min: Z � 0.50c1p1 � 0.60c1p2 � 0.40c2p1 � 0.30c2p2 � 0.20p1s1 

� 0.30p1s2 � 0.25p2s1 � 0.20p2s2(0)
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Figure 5.5 Network of transshipment model with product conversion.
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s.t.:

c1p1 � c1p2 � 200,000 (1)

c2p1 � c2p2 � 400,000 (2)

c1p1 � c2p1 � 10p1s1 � 10p1s2 � 0 (3)

c1p2 � c2p2 � 10p2s1 � 10p2s2 � 0 (4)

p1s1 � p2s1 � 10,000 (5)

p1s2 � p2s2 � 50,000 (6)

c1p1, c1p2, c2p1, c2p2, p1s1, p1s2, p2s1, p2s2 � 0 (7)

The Solver formulation of this problem is presented in Figure 5.6. The total minimum cost
of the shipments in this problem is $233,000. Cooperative 1 should supply all 200,000
pounds of raw milk to cheese plant 1, while cooperative 2 should supply all of its 400,000
pounds of raw milk to cheese plant 2. Cheese plant 1 processes 20,000 pounds of cheese,
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Figure 5.6 Solver formulation of transshipment model with product conversion.
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supplies 10,000 pounds to supermarket 1, and 10,000 pounds to supermarket 2. Cheese
plant 2 processes 40,000 pounds of cheese, supplying all of it to supermarket 2.

The SPs are as follows:

SPsup1 � 0, SPsup2 � �0.21, SPtran1 � 0.5, SPtran2 � 0.51, SPdem1 � 5.2, SPdem2 � 5.3.

As an illustration of how these SPs are derived, consider the SP for supply 2, which equals
�0.21. If cooperative 2 increased supply by one unit (one pound of raw milk), then one
more unit would be shipped to cheese plant 2, which would increase transportation costs by
$0.30. Transportation costs would also rise by $0.20/10, or $0.02 because an additional 1/10
pound of cheese is now shipped to supermarket 2 from cheese plant 2. Hence, total costs
would increase by $0.32. With cheese plant 2 shipping an additional 1/10 pound of cheese
to supermarket 2, cheese plant 1 will now ship 1/10 less pound of cheese to supermarket 2,
which results in a cost savings of $0.30/10, or $0.03. Finally, since cheese plant 1 now needs
one less pound of raw milk from cooperative 1, transportation will also decline by $0.50. In
summary, given the $0.32 increase in costs and the $0.03 and $0.50 decrease in costs, SP
for cooperative 2’s SP is consequently �0.21. As extra practice, calculate the other SPs for
this problem.

5.4 THE ASSIGNMENT MODEL

Another basic application of LP involves determining the most efficient way to assign
tasks among people, machines, and other resources in order to carry out an assignment or
job. This type of application is called an assignment problem. The assignment problem
is a special case of the transportation problem where the decision maker wants to assign
or match one “resource” to one “job.” Hence, it can be thought of as a transportation
model where each supply node has a fixed supply of 1 and each demand node has a fixed
demand of 1.

To illustrate, suppose that a farmer has just hired three workers to carry out three jobs.
Each of the workers can do any of the jobs; however, the productivity of each worker is
different. The following table gives the number of hours required of each worker to com-
plete each job:
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Worker

Job a b c

1 100 110 120
2 70 85 86
3 20 20 24

If the farmer’s objective is to minimize the time involved in completing all three jobs,
then the objective function is:

Min: Z � 100a1 � 70a2 � 20a3 � 110b1 � 85b2 � 20b3 � 120c1

� 86c2 � 24c3 (0)

s.t.:

a1 � a2 � a3 � 1 (1)

b1 � b2 � b3 � 1 (2)

c1 � c2 � c3 � 1 (3)
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a1 � b1 � c1 � 1 (4)

a2 � b2 � c2 � 1 (5)

a3 � b3 � c3 � 1 (6)

a1, a2, a3, b1, b2, b3, c1, c2, c3 � 0 (7)

Here, ai refers to worker a doing job i, bi refers to worker b doing job i, and ci refers to
worker c doing job i.

The optimal solution to this problem is to have worker a do job 2, worker b do job 1,
and worker c do job 3. Assigning workers in this way would “cost” the farmer 204 hours
to complete all three jobs.

More generally, an assignment problem can be expressed as:

(0)

s.t.:

(1)

(2)

xij � 0 i �1, … , n; j � 1, … , n (3)

x ij
i

n

i n� �
�

1 1
1

, ,…∑

x ij
j

n

i n� �
�

1 1
1

, ,…∑

Min: Z cij ij
j

n

i

n

�
��

x
11

∑∑
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An Example

The assignment problem need not have an objective function that is being minimized.
Here is an example where total profits are maximized within an assignment problem.
Consider an agricultural input company which sells farm inputs such as fertilizer, feed,
herbicide, seed, and so on to farmers in the Upper Midwest. It has a team of nine sales-
people who can cover nine territories in the Upper Midwest. The company needs to
assign each salesperson to one and only one of the nine territories. The nine sales-
people have different sales ability, and the president of the company estimates the follow-
ing profitability for each salesperson in each territory:

Salespeople profits ($1,000 per month)

Territory s1 s2 s3 s4 s5 s6 s7 s8 s9

1 25 22 18 23 19 15 14 22 20
2 19 20 17 14 16 10 9 13 11
3 19 18 23 21 22 20 24 10 19
4 7 9 15 10 11 7 8 4 14
5 6 8 6 9 9 15 5 17 11
6 12 13 10 16 17 11 19 15 8
7 15 10 6 8 12 13 11 9 19
8 21 15 16 19 18 10 8 14 13
9 9 3 6 8 5 10 3 15 12
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Assuming the company’s sole objective is to maximize total profits from assigning the
nine salespersons to the nine regions, the problem is:

(0)

s.t.:

(1)

(2)

sij � 0 (3)

The first set of nine structural constraints in (1) restricts each territory to have only one 
salesperson. The second set of nine structural constraints in (2) restricts each sales-
person to work in only one territory.

The optimal solution to this problem is: s11
* � s22

*  � s37
*  � s43

*  � s56
*  � s65

*  � s79
* � s84

*  � 
s98

*  � 1, Z* � 169. That is, the firm can obtain a maximum profit of $169,000 per month
by allocating salesperson 1 to territory 1, salesperson 2 to territory 2, salesperson 3 to
territory 7, salesperson 4 to territory 3, salesperson 5 to territory 6, salesperson 6 to ter-
ritory 5, salesperson 7 to territory 9, salesperson 8 to territory 4, and salesperson 9 
to territory 8.

sij
i

9

j� �
�

1 1 9
1

( , , )…∑

sij
j

9

i� �
�

1 1 9
1

( , , )…∑

Max: Z cij ij
j

9

i

9

�
��

s
11
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5.5 RESEARCH APPLICATION: U.S. DAIRY SECTOR SIMULATOR

There are many applications of LP transportation models that have been used to study opti-
mal shipment patterns of milk in the U.S. dairy sector.4 An excellent example is a large
transshipment model developed by Pratt et al. (1996) called U.S. Dairy Sector Simulator
(USDSS), which has been used to examine several real-world research problems.

The dairy industry is one of the most regulated industries in the United States, both in
terms of safety and economic regulations. Most of the economic regulations date back to
the Great Depression and the New Deal. One of the main economic programs impacting
dairy farm prices is the Federal Milk Marketing Order Program (FMMOP). The federal gov-
ernment historically has made it a national goal to have all regions of the continental
United States be self-sufficient in producing enough fluid milk to satisfy regional con-
sumption. Traditionally, the Upper Midwest and Northeast have had an economic com-
parative advantage in producing milk relative to other parts of the nation such as the
Southeast (more recently, some of the western states, such as California, have also become
large producers of milk). To encourage all regions to be self-sufficient in milk produced
for beverage purposes, the FMMOP has established regional milk markets that set mini-
mum prices that fluid milk handlers must pay farmers. These minimum prices generally
increase with distance from the Upper Midwest. Because milk is expensive to ship, the basic

4See, for example, the following studies: Babb et al. (1977); Beck and Goodin (1980); Boehm and Conner (1976);
Buccola and Conner (1979); Francis (1992); Fuller et al. (1976); Jensen (1985); King and Logan (1964); Kloth
and Blakely (1971); McLean et al. (1982); Novakovic et al. (1980); Pratt et al. (1986; 1996); and Thomas and
DeHaven (1977).
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idea is to provide market incentives via a higher price in milk deficit regions to encourage
greater production. However, regional pricing of fluid or Class I milk has been highly con-
troversial, with opposition coming mainly from the surplus milk regions, such as
Wisconsin, who argue it is unfair because they receive a significantly lower milk price than
dairy farmers in the Southeast.

The level of regional Class I milk prices has been debated in almost every piece of farm
legislation in recent history. On more than one occasion, Congress has called upon the U.S.
Department of Agriculture (USDA) to study whether the Class I price surface (i.e.,
regional variations in Class I prices throughout the U.S.) makes economic sense. One way
to examine this question is through a transshipment model of the U.S. dairy industry. The
USDSS model has been used to study this and other issues regarding regional milk pro-
duction, distribution, location, and pricing issues.

USDSS is a transshipment model very similar to the milk example presented above, but
with far greater detail and size. There are three markets in the USDSS network: (1) farm
milk market, where raw milk is produced for further processing; (2) dairy product pro-
cessing market, where raw farm milk is shipped, processed into five different dairy prod-
ucts, and shipped out of; and (3) dairy product consumption markets, where milk and dairy
products are bought at supermarkets. In all three markets, products are expressed on a raw
milk fat equivalent basis, and to handle milk component balancing, interplant transfers of
intermediate dairy products are allowed. The model is a regional depiction of the 48 con-
tiguous states.

The farm milk market is represented by 240 regional supply nodes. In reality, there 
are 100,000s of dairy farmers in the United States, and thus the 240 milk supply nodes are
more of a representation of regional milk sheds than of individual dairy farms in the U.S.
USDSS has 234 dairy product consumption markets throughout the United States with
each market consuming five dairy products: (1) fluid milk, (2) soft products, (3) hard
cheeses, (4) butter, and (5) dried, condensed, and evaporated products. Hence, there are
1,170 consumption nodes in total (5 � 234). The dairy processing market is represented
by 507 regions where each of the five dairy products can be processed (2,535 nodes: 
5 � 507). The model assumes that all raw milk is homogenous in its quality, fat content,
and non-fat content.

Using actual data on regional milk production for the 240 farm milk nodes, dairy prod-
uct demand for the 234 dairy consumption nodes, and assembly, processing, and distribu-
tion costs, USDSS provides optimal organization of milk, interplant, location, and
distribution movements that minimizes the total costs for the U.S. dairy location network.
It is assumed that raw farm milk can go to any regional processing node in the network,
and consequently there are over 600,000 activities representing shipment flows of milk in
the model.

The data demands of USDSS are quite enormous, and it would take many pages to
describe here how Pratt et al. (1996) collected and estimated the model parameters. In gen-
eral, milk supply for each of the 240 farm nodes in the network was calculated from USDA
estimates of multicounty milk production for 1993, which is the base year for the model.
Milk demand for the five dairy products for the 234 consumption nodes in the network was
estimated on a county basis and then aggregated for each node. Various techniques were
used to convert the final dairy product demand into a raw milk fat equivalent basis.
Demand for most products is primarily based on prorating national demand to the popula-
tion sizes of each consumption node. The transportation cost parameters, of which there
are over 600,000, were estimated as a function of distance for each flow, and mapping soft-
ware was used to compute the road distance for each flow. It was assumed that it cost $0.35
per hundred miles to move 100 pounds of raw milk. In 1993, there were 1,596 dairy 
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processing plants in operation, and each was assigned to one of the 507 processing nodes
in USDSS.

The output of USDSS is massive, and the following provides just some of the results.
The optimal solution to the model provides several interesting pieces of information. First,
it provides the optimal shipments from the raw milk supply nodes to the processing plants.
Second, it provides which processing plants, by product, are active in the optimal solution.
Third, it provides the optimal flow of processed dairy products from the plant to the con-
sumption nodes.

Pratt et al. (1996) make several important conclusions from the solutions. First, the loca-
tions of fluid processing plants are generally closer to major population centers than other
dairy processing plants. The majority of fluid milk processed by these plants is sold within
the consumption area where the plant is located. This is due to the fact that packaged fluid
milk products are much more expensive to ship than manufactured dairy products, and
therefore, it is more efficient to locate fluid milk plants close to major consumption points.

Second, soft processing plants are generally located slightly farther away from major
population centers than fluid milk plants, but nearer than other product plants. As with
fluid milk, the majority of soft products processed is sold to supermarkets within the con-
sumption area where the milk is processed.

Third, cheese, butter, and dry, condensed, and evaporated milk processing plants are pri-
marily located near major farm milk supplies. While the farm milk supply is close to these
processing plants, the distribution of processed cheese, butter, dry, condensed, and evapo-
rated milk products can move a long way from where it is processed to multiple con-
sumption nodes. This is due to the fact that transportation costs for these manufactured
dairy products are much lower than for products like packaged fluid milk since manufac-
tured products are less bulky.

The authors note two important observations regarding the optimal solution relative to
the actual location of plants and milk movements. First, a comparison of the optimal solu-
tion to the actual network on milk and dairy product movements in the United States
reveals numerous reasons for differences in results. However, based solely on efficiency or
“market rationalization,” the optimal solution can be thought of as a target for the industry
to aspire to. Second, the solution is presented in terms of an annual situation, but in real-
ity, milk movements occur on a daily basis 365 days per year. Because of seasonality in
both supply and demand for milk and dairy products, some deviations between the opti-
mal annual solution and the actual daily movements with the dairy industry should be
expected.

Perhaps the most important piece of information from this model is the SPs on raw milk
by location. That is, based on all the parameters of the model, what would an additional 100
pounds of raw milk delivered to a processor at each location be worth? The SPs for raw milk
delivered to fluid processing plants can be used as a basis to evaluate the Class I price sur-
face used by the FMMOP. Pratt et al. (1996) did this in the following manner. Since there
are no production costs in the model, the SPs solely reflect the transportation component of
the Class I price. To make these SPs more comparable to actual Class I prices, the authors
added a constant, $1.20, to reflect the Class I differential in the largest fluid milk surplus
market in the network, Minneapolis, Minnesota. The constant $1.20 is then added to all
fluid milk SPs in the solution to represent what the Class I price surface would look like
under optimal conditions.

The actual and optimal Class I price surface is shown in Figures 5.7 and 5.8. The opti-
mal Class I price surface is similar to actual Class I prices. Prices increases with distance
from the Upper Midwest states of Wisconsin and Minnesota to the southeastern U.S. in
both cases. However, the optimal price structure has a greater degree of spatial specificity,
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Figure 5.7 Actual Class I prices surface, May 2001, $/cwt Class I milk.
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Figure 5.8 Optimal Class I prices surface, May 2001, $/cwt Class I milk.
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especially in the Western states. In the late 1990s, the USDA used these results as a basis
for revising the actual regional Class I prices in the U.S. and as a means for consolidation
of federal milk marketing orders into fewer, but larger orders. The LP transshipment model
proved to be an extremely useful tool for the policy debate and for justifying the resulting
decisions reached by USDA.

SUMMARY

This chapter has dealt with three frequently used applications of LP: the transportation,
transshipment, and assignment problems. Transportation problems involve determining
how to move a product, or to schedule routes, in the most efficient way possible, given
such constraints as available supply (plant capacity) from each production location, pre-
vailing demand at each consumption destination, road systems, and so on. Generally, the
objective is to minimize transportation costs, but other objectives may be modeled, such as
maximization of profits net of transportation costs. Two examples of transportation mod-
els were highlighted for agricultural markets: an optimal ice cream distribution network,
and optimal international trade flows under four different trade policies. Since agricultural
commodities tend to be quite bulky and sometimes perishable, their transportation costs
tend to be quite high relative to other products. Hence, determination of the most efficient
distribution network is critical for this industry.

Transshipment models are transportation models with another set of nodes (intermedi-
ate transshipment nodes) included in the model. This makes it possible to extend the trans-
portation model from plant to consumer networks to plant to wholesale to consumer
networks, which is usually a more realistic depiction of actual distributional networks. An
example of a warehouse transshipment model was provided, as well as an example of
product transformation, such as raw farm milk processed into cheese. In addition, the
chapter featured a research example of a large transshipment model for the U.S. dairy
industry.

The last network model presented was the assignment problem. The assignment prob-
lem is a special case of transportation problems. These types of models are designed to
minimize the cost of assigning resources to jobs on a one-to-one basis. Alternatively, they
can be used to maximize revenue or profits associated with assigning different people to
different jobs. An example of this was provided for an agribusiness that sells farm inputs
in the Upper Midwest.
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EXERCISES

1. Due to poor weather, the shipping costs from Milwaukee have recently doubled. Solve
the ice cream transportation problem presented in Section 5.1 and generate a sensitiv-
ity report using Solver.

2. Consider the transshipment example in Figure 5.5. Assume that the demand from a third
supermarket is 20,000 lbs. Also assume that cooperative 1 now has 400,000 lbs of raw
milk. Solve the problem using Solver. Compare the answer with that in the chapter.
Conduct sensitivity analysis on the supply, demand, and transshipment constraints.

3. A company has three plants: a, b, and c, and there are two major distribution centers,
d and e. In the current quarter, factories a, b, and c have the capacities 1,000, 1,500,
and 1,200 units, respectively. The demands of distribution centers d and e are 2,300 and
1,400 items, respectively. The transportation is conducted by truck at the cost of 
8 cents per item per kilometer. Design a transportation problem to minimize transporta-
tion costs. The distances are listed (in kilometers):
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d e

a 80 215
b 100 108
c 102 68

4. A distillery produces two types of whiskey: a high end aged single malt Scotch and a
more plebian blended Scotch whiskey. They can both be bottled in any combination of
any of their three plants (p1, p2, and p3) and need to be shipped to their five retail out-
lets, r1 through r5. The plants have capacities of 700, 400, and 650 cases, respectively.
r1 needs 100 cases of single malt and 150 cases of blended; r2 needs 150 of each; r3

needs 100 single malt and 175 blended; r4 needs 150 single malt and 200 blended; and
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r5 needs 200 single malt and 250 blended. They also have two distribution centers, d1

and d2; however, only d1 has the necessary environmental controls to handle the sen-
sitive single malt. They have capacities of 550 and 650 cases, respectively. Given the
following per case transport costs, find the shipping schedule to minimize costs.

d1 d2 r1 r2 r3 r4 r5

p1 $4.00 $5.00 $10.00 $12.00 $13.00 $15.00 $14.00
p2 $7.00 $3.00 $11.00 $15.00 $12.00 $13.00 $10.00
p3 $5.00 $6.00 $15.00 $14.00 $13.00 $15.00 $11.00
d1 $3.00 $4.00 $2.00 $6.00 $4.00
d2 $2.00 $5.00 $3.00 $4.00 $7.00

5. A producer wholesaler has three factories, and the fruit and vegetables it ships are supplied
to four different distribution centers. The table below gives unit shipping costs to each
warehouse, along with factory capacities and warehouse demands.

Warehouse 1 2 3 4 Capacity

Factory 1 $0.40 $0.80 $0.30 $0.60 800
Factory 2 $1.60 $0.40 $1.20 $1.00 1,000
Factory 3 $1.20 $0.20 $0.80 $0.40 600
Demand 400 400 600 1,000

Write the LP problem to minimize transportation costs.

6. A plant has four warehouses (a, b, c, and d ) to ship the products to customers directly.
The warehouses a, b, c, and d have 14, 16, 17, and 15 units in stock, respectively. The
customer’s demands are 18, 19, and 20 units for x, y, and z. The cost associated with
each possible shipment is given below.
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Warehouse

Customer a b c d Demand

x 8 10 8 3 16
y 4 6 7 5 18
z 7 12 5 3 20
Stock 14 16 17 15

Find the optimal transportation routes by minimizing transportation costs.

7. There are three warehouses in Detroit, Pittsburgh, and Buffalo with the following
fixed supplies of watermelons: 250, 130, and 235, respectively. The business owner
has the following fixed demand for watermelons: Boston (75), New York (230),
Chicago (240), and Indianapolis (70). The unit cost of shipping the watermelons is:

From/To Boston (BS) New York (NY) Chicago (CH) Indianapolis (IN)

Detroit (DT) 15 20 16 21
Pittsburgh (PT) 25 13 5 11
Buffalo (BF) 15 15 7 17

Find the optimal transportation plan of this problem.
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8. The following is a more realistic transportation problem for a flour processor.

Tom Miller, who owns a small, old-fashioned mill in Holyoke, Massachusetts, became
aware of the great increase in demand for stone ground flour. More people were
becoming health-conscious and learning that the heat caused by the steel-milling of
wheat destroyed many of the natural B vitamins, whereas the slower and cooler stone
milling process did not. Also, the freshness of the flour is a consideration since the
vitamin content of the flour is reduced with age.

Our young entrepreneur, Tom, had access to considerable venture capital through
his family. He saw how money could be made by buying up some of these old, water-
powered, stone mills; refurbishing them; and training people to operate them.

After several years of hard work, Tom has acquired mills in these locations with the
weekly output capabilities given in 100 lb. sacks of flour.

Holyoke, Massachusetts 150
Bingham, Maine 75
Carthage, New York 125
Woodstock, Vermont 300
Millerton, New York 250
Nashua, New Hampshire 100

Total weekly output capacity 1,000

Tom sells most of his flour to natural food distributors, a wholesale market. He has also
entered the lucrative Boston retail market and has acquired a bagging facility and ware-
house in Framingham. This serves as a collection point for weekly deliveries into Boston.
He has a contract with a trucking company to make the run to his city customers (mostly
natural food retail stores plus a few restaurants and small bakeries) with one dual-purpose
truck with a capacity of 16 tons. He nets a profit of 5 cents per pound more than the
wholesale on this retail flour even after the additional bagging and transportation costs.

He also has customers in the following locations with the following weekly
demands (in 100 sacks).

Portland, Maine 40
Manchester, New Hampshire 60
Albany, New York 100
Rochester, New York 200
Waterbury, Connecticut 140
Framingham, Massachusetts 320

Total weekly demand 860

At the moment, there are 140 sacks per week excess production capacity. This doesn’t
cause any waste of flour because he doesn’t grind any wheat he can’t sell, but he
knows he will make more money if he uses his mills to capacity.

Tom would like to break into the more lucrative New York City market. He will be
able to get the same premium in New York that he now does in Boston. He is consid-
ering the same sort of arrangement with a trucking company to ship from his warehouse
into the city. He has found a warehouse he can buy in Ossining, NY. To buy the ware-
house and install a bagging facility would cost him $50,000. To supply the New York
market, he will need another 320 sacks a week. He suspects that it would pay him well
to abandon the Rochester market in favor of New York City. This would give him 200
sacks currently being sold in Rochester, and the remaining 120 sacks could be made up
by his existing excess capacity.
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He has asked for our help on two points:

1. What is the best shipment arrangement for the existing setup?

2. What profit, if any, is there in abandoning the Rochester and supplying New York
instead?

His current transportation costs in dollars per 100 lb. bag is the following:

Supply Nodes

Holyoke Bingham Carthage Woodstock Millerton Nashua

Weekly Output 50 75 125 300 250 100

Demand Weekly
Nodes Demand

Framingham 320 $0.15 $0.55 $0.65 $0.30 $0.30 $0.10
Portland 40 $0.25 $0.25 $0.20
Manchester 60 $0.20 $0.40 $0.15 $0.05
Albany 100 $0.15 $0.30 $0.25 $0.15 $0.30
Rochester 200 $0.60 $0.35 $0.70 $0.55 $0.80
Waterbury 140 $0.10 $0.50 $0.35 $0.10 $0.30
Ossining 320 $0.20 $0.55 $0.50 $0.15 $0.40

a. What is the objective function and constraint set for the existing situation? Write
out the LP tableau.

b. What is the objective function and constraint set for the New York market situa-
tion? Write out the LP tableau.

9. Solve the LP problem in Exercise 8a using Solver.

a. What are the weekly total transportation costs of all shipments?

b. What is the SP of a sack of flour demanded in Rochester? What does this mean?

c. Which mills have excess capacity?

10. Solve the LP problem in Exercise 8b using Solver.

a. What changes have been made relative to the solution to Exercise 8a?

b. The SP of shipping one more sack of flour to Framingham is 55 cents. Explain
how this is derived and why it is that amount. Some of the SPs are very compli-
cated. It may be necessary to alter the RHS of the constraint by one sack and then
examine all the changes that happen. For example, the SP for Holyoke is 50 cents.
That means that if one more sack of flour is produced in Holyoke, it will reduce
the total cost by 50 cents. But none of the transportation arcs from Holyoke are
50 cents. So how is this arrived at? Alter the RHS of the Holyoke constraint (2)
to 151. Alternatively, you could print out all these changes, but that is time con-
suming and unnecessary. Solve the problem. Now compare the solutions. Note
the changes in the objective function values: BF � 14, WF � 206, HW � 106,
and WW � 34. So this is what happens. That extra sack produced at Holyoke is
shipped to Waterbury at a cost of 10 cents. That saves a sack being shipped from
Woodstock to Waterbury, saving 35 cents. Woodstock now has an extra sack that
gets shipped to Framingham at a cost of 30 cents, which saves a sack being
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shipped from Bingham to Framingham, saving 55 cents. So altogether 55 � 30 �
35 � 10 � 50 cents. (Don’t forget to change the RHS of the Holyoke constraint
back to 50 before you go on to the next SP.)

Now that you have had this one done for you, explain the SPs of Manchester and
Waterbury.

11. Compare the two solutions in Exercises 9 and 10. How much flour is he selling in each
case, and how much are his transportation costs?

12. Based on the solutions to Exercises 9 and 10, how much more per week is his income
with the New York market than with Rochester? (Remember the 5 cents/lb. retail 
premium.)

13. Payments on a $50,000 loan at 12% for 5 years are $1,112.23 per month. Is it a good
move for Tom to shut down the Rochester market and open one in New York based at
Ossining? Explain your answer. (You do not need to know a price per pound for all
the flour sold to discuss this issue intelligently. Simply knowing that the flour sold out
of the Ossining warehouse goes for 5 cents more per pound than the wholesaled flour
should be sufficient information.)

14. An organic apple processor produces apple juice in four locations in the United States
with the following yearly capacities:

San Francisco 110,000
Chicago 50,000
San Antonio 40,000
New York 100,000

Total supply 300,000 gallons/year

It currently sells 300,000 gallons per year to the following regions of the United States:

East 150,000
South 25,000
West 75,000
North 50,000

Total demand 300,000 gallons/year

The company expects that the demand for the next year will increase by 30,000 gal-
lons in the East, 5,000 gallons in the South, 10,000 gallons in the West, and 1,000 gal-
lons in the North. Hence, total demand for the United States will increase from
300,000 to 346,000 gallons. In addition, the company has just negotiated a sale of
200,000 additional gallons to Japan. Thus, while the business currently can produce
only 300,000 gallons, they face a demand of 546,000 gallons in the next year. The
company has identified three options in meeting this new demand:

1. Purchase one new processing plant in Portland, Oregon, with a capacity of
300,000 gallons per year.

2. Purchase one new plant in Birmingham, Alabama, with a capacity of 150,000 gal-
lons per year and another new plant in Syracuse, New York, with a capacity of
150,000 gallons.

3. Purchase a new plant in Seattle, Washington, with a capacity of 100,000 gallons,
and expand their San Francisco plant from its current capacity of 110,000 to
310,000 gallons per year.
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The total variable production cost (not including transportation costs) for each exist-
ing facility and the three expansion options are listed below:
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Variable Production Costs
Plant ($/gallon)

San Francisco (110,000 capacity) 5.00
Chicago 4.50
San Antonio 4.00
New York 5.50
Portland 5.00
Birmingham* 5.76
Syracuse* 6.00
Seattle* 6.20
San Francisco (310,000 capacity)* 6.30

*Includes expansion costs.

The transportation cost per gallon from each supply to each demand node is:

Demand Location

East South West North Japan Supply
Plant (cents per gallon shipped) (1,000 gallons)

San Francisco 100 85 10 45 200 110
Chicago 50 50 55 5 300 50
San Antonio 75 5 80 75 400 40
New York 10 70 120 15 450 100
Portland 105 100 15 30 250 300
Birmingham 65 10 95 70 500 150
Syracuse 0 90 130 15 485 150
Seattle 110 110 25 25 220 100
San Francisco 100 85 10 45 200 310
New Demand (1,000) 180 30 85 51 200

Assume that the firm’s objective is to minimize the sum of total variable production
costs and transportation costs. (Note that the transportation costs are in cents per gal-
lon, while the variable production costs are in dollars per gallon.)

a. Formulate and solve an LP problem that involves the first option for expansion.

b. Formulate and solve an LP problem that involves the second option for
expansion.

c. Formulate and solve an LP problem that involves the third option for expansion.

d. Based on the results of parts a, b, and c, which of the three options would you 
recommend?
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15. Explain the shortcomings of the type of analysis in Exercise 14.

16. A lumber company produces premium mahogany hardwood for flooring in three
plants and ships them to four sales areas. The three supply plants are located in
Raleigh, Peoria, and Columbus. The four demand destinations are located in Atlanta,
Buffalo, Chicago, and Denver. The fixed supply and demand in each market are
expressed in units of tons. The unit transportation costs, fixed supply for each plant,
and fixed demand for each sales area are summarized below:
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Supply Regions

Raleigh (R) Peoria (P) Columbus (C) Demand

($/ton)

Atlanta (A) 200 500 400 13
Buffalo (B) 450 350 250 7
Chicago (C) 600 150 250 15
Denver (D) 900 500 600 10
Supply 25 15 10

a. Determine the least-cost method of distribution for the firm.

b. Make a map of this problem and fill in the optimal shipments in the map.

c. What is the optimal number of shipments that should be made from the plant at
Raleigh?

d. How many units should be shipped from Peoria to Buffalo?

e. How much would costs be reduced in the optimal solution if additional lumber
were produced at the Peoria plant?

f. If demand in Atlanta were increased by three units, how much would the objec-
tive function value in the optimal solution increase?

g. How much can the cost of shipping from Raleigh to Atlanta increase before a new
optimal solution is required? How much could this cost decrease?

h. How much must the cost of shipping from Columbus to Buffalo decrease before
this shipping route could become part of the optimal transportation system?

i. Which plant is the most efficiently located plant with respect to transportation
costs?

j. What is the meaning of the dual values on demand constraints in LP transporta-
tion models?

17. The following exercise is a larger example of a local dairy market. There are three
dairy cooperatives that produce the following amounts of raw milk on an annual basis:
cooperative 1 (c1) produces 5 billion pounds of milk, cooperative 2 (c2) produces 4.808
billion pounds of milk, and cooperative 3 (c3) produces 12 billion pounds of milk.
Each of the three cooperatives may sell any or all of their milk to two different cheese
processors (p1 and p2) or to two different fluid milk bottlers ( f1 and f2). Assume that
the cheese and fluid milk production functions are:

cheese � 1/10 raw milk, where cheese is in pounds, and every pound of 
raw milk produces 1/10 pound of cheese
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Supply Regions

Demand Raleigh (R) Peoria (P) Columbus (C)
Regions ($/ton) Demand

Atlanta (A) 200 500 400 13
Buffalo (B) 450 350 250 7
Chicago (C) 600 150 250 15
Denver (D) 900 500 600 10
Supply 25 15 10

fluid � 1/8.63 raw milk, where fluid is in pounds, and every pound 
of raw milk produces EXR1/8.63 gallons of fluid milk

Assume that both cheese processors and both fluid bottlers have unlimited capacity to
handle and process any amount of raw milk. There are three supermarket chain stores
that demand the following amounts of cheese and fluid milk each year: supermarket 1
(s1) needs 100 million pounds of cheese and 200 million gallons of milk, supermarket
2 (s2) needs 400 million pounds of cheese and 800 million gallons of milk, and super-
market 3 (s3) needs 300 million pounds of cheese and 600 million gallons of milk. The
following table summarizes the per unit transportation costs for raw milk and for
cheese. cwt � 100 pounds.
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From/To (unit) p1 p2 f1 f2 s1 s2 s3

c1 cwt $0.50 $0.60 $0.95 $0.75
c2 cwt $0.40 $0.30 $0.99 $0.89
c3 cwt $0.87 $0.99 $0.75 $0.99
p1 lb $0.02 $0.01 $0.03
p2 lb $0.04 $0.06 $0.05
f1 gal $0.34 $0.32 $0.41
f2 gal $0.28 $0.29 $0.16

a. Write the LP tableau for this problem that minimizes total transportation costs of
raw milk hauling from farm to the cheese-fluid plants and from cheese-fluid
plants to the supermarkets.

b. Use Solver to find the optimal solution for this problem.

c. Summarize the optimal solution. What are the shipments from the cooperatives 
to the plants; from the plants to the supermarkets? Interpret the dual values (SPs)
on the various nodes of the problem.

18. Recall Exercise 16 in which a company produces mahogany hardwood in three plants
and ships them to four sales areas. The three supply plants are located in Raleigh,
Peoria, and Columbus. The four demand destinations are located in Atlanta, Buffalo,
Chicago, and Denver. The unit transportation costs, fixed supply for each plant, and
fixed demand for each sales area are summarized below.
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This company is thinking about building two warehouses at two locations midway
between its plants and the demand regions. These warehouses would serve as a loca-
tion for aging all the wood. That is, all wood must now be shipped first to either ware-
house 1 (w1) or warehouse 2 (w2). The four demand areas are then serviced from the
two warehouses. Formulate this problem.

a. Compared to the answer to the previous question (Exercise 16), what are the new
supply constraints for this problem for Raleigh, Peoria, and Columbus plants?
(Define your activities.)

b. What are the new demand constraints for this problem for the Atlanta, Buffalo,
Chicago, and Denver sales areas? (Define your activities.)

c. What are the transshipment constraints for the two warehouses for this problem?
(Define your activities.)

19. Juice, Inc. produces and sells cranberry juice nationwide. They currently have five
processing plants located around the country where cranberries are squashed and
made into juice. These processing plants are located in the following five major
cities: Los Angeles (LA), St. Paul (SP), Boston (B), Atlanta (A), and Dallas (D).
Based on their plant technology, 1 ton of cranberries produces 75 gallons of cranberry
juice.

Crancoop Inc. is a large cranberry cooperative that sells bulk cranberries to Juice,
Inc. They have four large transfer stations located in the North (NOR), South (SOU),
East (EAS), and Western (WES) United States. These transfer stations are where all
the cranberries from each region’s farms are stored, and they represent the supply
sources for each processing plant.

After processing the raw cranberries into juice, Juice, Inc. ships the juice to four
cold storage facilities in the nation, where supermarkets get their supply of cranberry
juice. The cold storage facilities are located in California (CAL), Minnesota (MN),
New York (NY), and Florida (FL).

You have been hired as a consultant to determine the most efficient raw
product–final product distribution network for Juice, Inc. You have been given the fol-
lowing unit transportation costs, supply capacities, and demand levels:

Cranberries: ($/ton of bulk cranberries)

From/To LA SP B A D Supply
($/ton) (tons)

NOR 500 75 80 650 700 900
SOU 450 455 666 150 100 100
EAS 1,000 225 50 100 950 500
WES 120 350 1,100 1,150 450 700
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Cranberry Juice ($/gallon of cranberry juice)

From/To CAL MN NY FL

($/gallon)

LA 0.10 1.00 3.00 3.50
SP 1.00 0.05 1.25 2.35
B 2.50 0.75 0.35 1.45
A 3.00 1.10 0.80 0.55
D 0.90 1.05 2.00 0.95
Demand 60,000 20,000 40,000 30,000
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a. Assuming the processing plants can handle unlimited amounts of cranberries, for-
mulate an LP model that minimizes total distribution costs for transporting cran-
berries to the plants and cranberry juice to the cold storage facilities. Show either
the LP tableau, or mathematical representation of the model.

b. Using Solver, solve the problem in part a.

c. Write a summary of the optimal solution.

d. Write a summary of your sensitivity analysis with respect to objective function
coefficients.

20. A New York State wine maker owns two wineries, one in Niagara Falls (w1) and one
in the Finger Lakes (w2). The wine maker also owns three grape farms that supply all
grapes needed for his two wineries. Grape farm 1 is located in Tompkins County (g1),
grape farm 2 is located in Seneca County (g2), and grape farm 3 is located in Niagara
County (g3). Define any shipment of grapes from grape farm i to winery j as giwj. The
unit transportation costs from each grape farm to each winery, as well as the annual
supply of grapes are given below:

From/To w1 w2 Total Supply
($/ton of grapes) (tons)

g1 $400 $150 105
g2 $250 $70 70
g3 $25 $220 50

The wine maker has a contract to sell 25,000 bottles of wine to a distributor in Buffalo
(d1), 15,000 bottles to a distributor in New York City (d2), and 70,000 bottles to a
distributor in Albany (d3). Define any shipment of wine from winery j to distributor k
as wj dk (*make j and k subscripts). The unit transportation costs and from each win-
ery to each distributor are:

From/To d1 d2 d3

($/bottle)

w1 $0.25 $1.10 $1.00
w2 $0.70 $0.75 $0.65
Total Demand 25,000 15,000 70,000
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One ton of grapes will make 500 bottles of wine. Assume that the wine maker’s sole objec-
tive is to minimize total transportation costs and that he has infinite capacity at each winery.

a. Write this LP problem in general form using the notation outlined on the previous
page, i.e., giwj denotes grape shipments from grape farm i to winery j, wjdk denotes
wine shipments from winery j to distributor k.

The following is the optimal solution for the problem.
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Dual Problem Solution

Constraint Status Dual Value RHS Value Usage Slack

g1sup Nonbinding 0.00 105.00 100.00 5.00
g2sup Binding �80.00 70.00 70.00 0.00
g3sup Binding �305.00 50.00 50.00 0.00
w1tran Binding 0.66 0.00 0.00 0.00
w2tran Binding 0.30 0.00 0.00 0.00
d1dem Binding 0.91 25,000.00 25,000.00 0.00
d2dem Binding 1.05 15,000.00 15,000.00 0.00
d3dem Binding 0.95 70,000.00 70,000.00 0.00

Objective Row Ranges

Variable Status Value Return/Unit Minimum Maximum

g1w1 Nonbasis 0.00 400.00 330.00 NONE
g1w2 Basis 100.00 150.00 70.00 220.00
g2w1 Basis 0.00 250.00 �55.00 295.00
g2w2 Basis 70.00 70.00 25.00 150.00
g3w1 Basis 50.00 25.00 NONE 330.00
g3w2 Nonbasis 0.00 220.00 �155.00 NONE
w1d1 Basis 25,000.00 0.25 �0.66 0.34
w1d2 Nonbasis 0.00 1.10 0.39 NONE
w1d3 Nonbasis 0.00 1.00 0.29 NONE
w2d1 Nonbasis 0.00 0.70 0.61 NONE
w2d2 Basis 15,000.00 0.75 �0.30 1.46
w2d3 Basis 70,000.00 0.65 �0.30 1.36

Primal Problem Solution

Variable Status Value Return/Unit Value/Unit Net Return

g1w1 Nonbasis 0.00 400.00 330.00 70.00
g1w2 Basis 100.00 150.00 150.00 0.00
g2w1 Basis 0.00 250.00 250.00 0.00
g2w2 Basis 70.00 70.00 70.00 0.00
g3w1 Basis 50.00 25.00 25.00 0.00
g3w2 Nonbasis 0.00 220.00 �155.00 375.00
w1d1 Basis 25,000.00 0.25 0.25 0.00
w1d2 Nonbasis 0.00 1.10 0.39 0.71
w1d3 Nonbasis 0.00 1.00 0.29 0.71
w2d1 Nonbasis 0.00 0.70 0.61 0.09
w2d2 Basis 15,000.00 0.75 0.75 0.00
w2d3 Basis 70,000.00 0.65 0.65 0.00
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Right-Hand-Side Ranges

Constraint Status Dualvalue RHS Value Minimum Maximum

g1sup Nonbinding 0.00 105.00 100.00 NONE
g2sup Binding �80.00 70.00 65.00 170.00
g3sup Binding �305.00 50.00 45.00 50.00
w1tran Binding 0.66 0.00 0.00 2,500.00
w2tran Binding 0.30 0.00 �50,000.00 2,500.00
d1dem Binding 0.91 25,000.00 25,000.00 27,500.00
d2dem Binding 1.05 15,000.00 0.00 17,500.00
d3dem Binding 0.95 70,000.00 20,000.00 72,500.00
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b. Draw a network diagram of the optimal shipments. Include in the diagram the
optimal quantities, unit transportation costs, and fixed supplies and demands.

c. The SP on the supply of grapes from grape farm 2 is �80. Explain how that num-
ber is derived.

d. Suppose that winery 1 has a capacity of handling 180 tons of grapes, and winery
2 has a capacity of 80 tons of grapes. Show how you would modify your model
to account for these capacities.

e. From the wine maker’s point of view, which distributor is in the most efficient
location? Why?

f. How much would transportation costs change if additional grapes were grown on
the first grape farm (g1)? Why?

21. Solve the first example of a transshipment problem with warehouses presented in this
chapter using Solver. Conduct sensitivity analysis on the supply, demand, and trans-
shipment constraints.

22. Solve the transshipment with product conversion (fluid milk and cheese) example
presented in this chapter using Solver. Conduct sensitivity analysis on the supply,
demand, and transshipment constraints.

23. There are three dairy cooperatives that produce the following amounts of raw milk on
an annual basis: Cooperative 1 (c1) produces 8 billion pounds of milk, cooperative 2
(c2) produces 10 billion pounds of milk, and cooperative 3 (c3) produces 15 billion
pounds of milk. Each of the three cooperatives may sell any or all of their milk to two
different cheese processors (p1 and p2), or to two different fluid milk dealers ( f1 and
f2), or to two different butter manufacturers (b1 and b2). Assume that the cheese, fluid
milk, and butter production functions are characterized by the following:

1 pound of cheese requires 10 pounds of raw milk.

1 gallon of milk requires 5 pounds of raw milk.

1 pound of butter requires 21 pounds of raw milk.

Assume that the cheese processors, fluid dealers, and butter manufacturers have
unlimited capacity to handle and process any amount of raw milk. There are two super-
market chain stores that demand the following amounts of cheese, fluid milk, and butter
each year: Supermarket 1 (s1) needs 100 million pounds of cheese, 200 million gallons
of milk, and 150 million pounds of butter. Supermarket 2 (s2) needs 400 million pounds
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of cheese, 800 million gallons of milk, and 250 million pounds of butter. The following
table summarizes the per unit transportation costs for raw milk and for cheese.
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From/To (unit) p1 p2 f1 f2 b1 b2 s1 s2

c1 lb $0.05 $0.06 $0.11 $0.08 $0.15 $0.05
c2 lb $0.04 $0.03 $0.09 $0.08 $0.04 $0.07
c3 lb $0.07 $0.12 $0.08 $0.10 $0.16 $0.04
p1 lb $0.02 $0.01
p2 lb $0.04 $0.06
f1 gal $0.34 $0.32
f2 gal $0.28 $0.29
b1 lb $0.03 $0.02
b2 lb $0.01 $0.03

a. Write the LP model for this problem that minimizes total transportation costs of
hauling raw milk from the farm to the cheese, fluid, and butter plants and from
the cheese, fluid, and butter plants to the supermarkets. Make sure to define all
notation used in your model.

b. Show how you would modify the model in part a to account for the following
capacity constraints: cheese plant 1 having a capacity of handling 3 billion
pounds of milk, cheese plant 2 having a capacity of handling 5 billion pounds of
milk, fluid plant 1 having a capacity of handling 4 billion pounds of milk, fluid
plant 2 having a capacity of handling 3 billion pounds of milk, butter plant 1 hav-
ing a capacity of handling 7 billion pounds of milk, and butter plant 2 having a
capacity of handling 8 billion pounds of milk (for clarity, consider listing all of
these separately instead of in paragraph form).

24. A large dairy farmer has nine employees to handle nine different jobs on his farm to
complete a small construction project. Assume each employee takes the following
amount of time to complete the nine jobs:

Hours to complete each job by employee(s)

Employee/Job s1 s2 s3 s4 s5 s6 s7 s8 s9

1 25 22 18 23 19 15 14 22 20
2 19 20 17 14 16 10 9 13 11
3 19 18 23 21 22 20 24 10 19
4 7 9 15 10 11 7 8 4 14
5 6 8 6 9 9 15 5 17 11
6 12 13 10 16 17 11 19 15 8
7 15 10 6 8 12 13 11 9 19
8 21 15 16 19 18 10 8 14 13
9 9 3 6 8 5 10 3 15 12

Solve this assignment problem using Solver to determine the one-to-one assignment
of the nine workers to the nine jobs in a way that minimizes the total time to complete
all tasks.
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25. Modify Exercise 24 by assuming that rather than hours to complete each job, the
parameters in the matrix are net revenues that the dairy farmer can make by assigning
each worker to a specific project. Solve the new assignment exercise using Solver.

26. A dairy cooperative wants to improve employee morale and implements a survey to
its milk truck drivers on the preferred routes that each would like to drive. Suppose
there are five drivers and five routes, and that the drivers have indicated the following
preferences for each route on a scale of 1–5 with 1 being their first choice and 5 being
their last choice:
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Driver Route 1 Route 2 Route 3 Route 4 Route 5

1 1 1 2 3 1
2 4 5 4 2 2
3 5 2 5 1 3
4 3 3 3 5 4
5 2 4 2 4 5

Formulate this as an assignment problem that minimizes the sum of the numeric pref-
erences of all drivers.

27. In a move to lower their carbon footprint and save money, a supermarket chain decides
to re-evaluate its distribution of food from its warehouse to its six stores. It currently
hires six independent truckers to transport food from the warehouse to each store with
the following distances (in miles):

Truck Store 1 Store 2 Store 3 Store 4 Store 5 Store 6

1 120 100 175 135 85 85
2 130 200 125 100 100 65
3 150 150 110 90 125 75
4 200 175 140 65 135 95
5 175 155 150 75 150 55
6 155 120 185 125 75 65

Solve this problem to minimize the total miles traveled by assigning each truck to each
store.

28. Solve the salesperson assignment problem presented in this chapter using Solver.
Conduct sensitivity analysis on the constraints.
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6
Natural Resource and

Environmental Economics
Applications of Linear

Programming

Decision making in the management of natural resources can be a complicated process
as the planner needs to account for competing demands—the desire to protect ecosys-
tems, the pressures of increased economic development, the demand for a sustainable
and safe food supply, and concerns about preserving endangered species and scenic
landscapes. In this chapter, several examples are presented that illustrate how linear pro-
gramming (LP) can be used to improve decision making in a wide variety of contexts.
The scope of applications of LP in the context of natural resource and environmental
economics cannot be sufficiently covered in a single chapter. Instead, this chapter intro-
duces some common applications and illustrates how these types of problems can be ini-
tially set up. More realistic and advanced models can then be developed from this
foundation. The examples in this chapter include forest management, land use planning,
wildlife management, agricultural production and irrigation decisions, optimal forest
rotations, and the establishment of ecological corridors.

6.1 FOREST MANAGEMENT1

Consider a fictitious example of a forest inventory problem in the Pacific Northwest of the
United States. By the mid-1950s, less than 15% of the Douglas fir inventory remained in
the area compared to the 1800s. Johnsonville Timber Company wants to identify a harvest
rotation plan to maximize its profit from its remaining stands of Douglas firs. After
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1This example is based on a related problem outlined in Dykstra (1984). This problem set-up and solutions
for this problem and the other problems discussed in this chapter are provided in the supplemental materials for
Chapter 6 available at www.wiley.com/college/kaiser.
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allowing the harvest of a section of the forest, Johnsonville would sell the logs, and the
area would be replanted. Johnsonville needs to decide when to allow the harvest of each
section of its forest to maximize its profits.

Johnsonville’s forest tracks are divided into two age-classes: one is 12 hectares of 
40-year-old trees and the other 24 hectares of 60-year-old trees. Douglas fir trees can live up
to 200 years. Their growth function is nonlinear and can be estimated as y � 2,113e0.36a,
where y is the timber value per hectare and a is the age of the trees. However, since
Johnsonville assumes that only timber from trees over 30 years old is merchantable and it
cares only about making decisions for the next four decades, the forest managers of
Johnsonville are able to estimate the timber value for the trees between the ages of 30 and
100 years using a linear approximation of this relationship of y � �3,000 � 225a. The
per hectare timber values for each of the age classes is shown in the table below where 
the timber value is presented in dollars for the current time period.
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Timber Value
Age Class ($/hectare)

30 3,750
40 6,000
50 8,250
60 10,500
70 12,750
80 15,000
90 17,250

100 19,500

Johnsonville wants to make its timber harvest schedule based on the assumption that
harvesting would be made at the beginning of each decade. They want to maximize the
timber value produced by its forest over a 40-year period. Thus, there are six types of man-
agement prescriptions that could be applied. All of them are listed in Table 6.1, where x
denotes the choice to harvest trees and replant the parcel at the beginning of the decade.

Applying these six management prescriptions to the two forest age classes would gen-
erate different values of merchantable timber. These values are shown in Table 6.2.

Inspection of Table 6.2 shows the best strategy for Johnsonville is simply to not allow
the harvest of the trees (management prescription 1) as after the four decades they will
own 12 hectares of 80-year old timber valued at $15,000 per hectare and 24 hectares of
100-year old timber valued at $19,500. Therefore, Johnsonville’s forests would be worth a
total of $648,000.

When the local community learned of Johnsonville’s forest management plan, they were
concerned as they feared that their local economy would suffer if no timber harvesting 

Table 6.1 Management Prescriptions

Harvest in Planning Period (decade)

Management Prescription 1 2 3 4

1 – No harvesting
2 – Harvest in 1st and 4th decade x x
3 – Harvest in 1st decade only x
4 – Harvest in 2nd decade only x
5 – Harvest in 3rd decade only x
6 – Harvest in 4th decade only x
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occurred for at least 40 years. Therefore, local political leaders negotiated a deal with
Johnsonville where they agreed to allow the harvest of at least five hectares of forest in
the first decade, six hectares in the second decade, seven hectares in the third decade, and
eight hectares in the fourth decade. To account for these additional constraints, Johnsonville’s
forest managers set up the following LP model where the variables xij represent the hectares
of age class i (i�1 for the original 40 Age Class and i�2 for the original 60 Age Class) when
assigned to management prescription j ( j�1, … , 6). Thus the problem is:

Max: Z � 15,000x11 � 9,750x12 � 12,000x13 � 12,000x14 �10,500x15

� 12,750x16 � 19,500x21 � 14,250x22 � 16,500x23 � 16,500x24

� 15,000x25 �17,250x26 (6.1)

s.t.:

x11 � x12 � x13 � x14 � x15 � x16 � 12 (6.2)

x21 � x22 � x23 � x24 � x25 � x26 � 24 (6.3)

x12 � x13 � x22 � x23 � 5 (6.4)

x14 � x24 � 6 (6.5)

x15 � x25 � 7 (6.6)

x12 � x16 � x22 � x26 � 8 (6.7)

xij � 0 (6.8)

Model Development

Figure 6.1 shows the Excel spreadsheet for this problem. The decision variables, xij, are
listed from Cells B2 to C7, and the per hectare value for each of the six management pre-
scriptions for the each of the forest stands are listed from Cell D2 to E7. Cells B15 to E20
represent the six harvest schedules for the management prescriptions shown in Table 6.1.
Constraint 1—the total hectares of forest originally of the 40 Age Class—can be depicted
by using the function “�SUM(B2:B7)” in Cell B8. Constraint 2 can be similarly developed
in Cell C8. These constraints ensure that the hectares of forest assigned to the six management
prescriptions are equal to the total available forest land. In Solver, these constraints can be
written as “B8:C8 � B10:C10”. Constraints 3 through 6 can be developed by first using the
equation “�SUMPRODUCT(B15:B20,$B$2:$B$7) � SUMPRODUCT(B15:B20,$C$2:
$C$7)” in Cell B21. Note that the use of the $ signs in the function allows for proper cell
referencing, such that the equation in Cell B21 can be copied and pasted into Cells
C21 to E21. These totals can then be used to ensure that the harvested hectares are greater
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Table 6.2 Timber Value by Management Prescription

Value per Value per  
Management Prescription Hectare of 40 Age Class Hectare of 60 Age Class

1 – No harvesting $15,000 $19,500
2 – Harvest in 1st and 4th decade 6,000 � 3,750 � $ 9,750 10,500 � 3,750 � $14,250
3 – Harvest in 1st decade only 6,000 � 6,000 � $12,000 10,500 � 6,000 � $16,500
4 – Harvest in 2nd decade only 8,250 � 3,750 � $12,000 12,750 � 3,750 � $16,500
5 – Harvest in 3rd decade only $10,500 $15,000
6 – Harvest in 4th decade only $12,750 $17,250
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than or equal to the minimum harvesting requirement constraints as depicted in Cells B23
to E23. Finally, the objective of maximizing profit can be written in Cell B12 as
“�SUMPRODUCT (B2:B7,D2:D7)�SUMPRODUCT(C2:C7,E2:E7)”.

The results of this model are shown in Figure 6.1. To meet these new minimum harvest
requirements, Johnsonville will harvest five and four hectares of trees from the 60 Age
Class in the first two decades, respectively. Harvest two and seven hectares of trees from
the 40 Age Class for the second and third decade, respectively. In the fourth decade,
Johnsonville will harvest three hectares of trees from the 40 Age Class and five hectares
of trees from the original 60 Age Class. The remaining 15 hectares from the 60 Age Class
will be not be harvested during the next four decades (management prescription 1). The
resulting profit for Johnsonville is $565,500, which is a loss of $82,500 (�14.6%) in com-
parison to the problem without the minimum harvest constraints.

This forest management problem is intended to provide the reader with a basic
understanding about how this type of forestry problems can be modeled using LP. This
model could be readily extended in a number of areas, such as having more frequent har-
vest choices, permitting different species to be planted after the harvest, accounting for
variability in the growth rate depending upon the soil and location of the trees, including
ending inventory constraints, and accounting for varying regulatory environments.
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Figure 6.1 Solver spreadsheet for the forest management problem.
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6.2 LAND USE PLANNING

Land use planning seeks to develop efficient and ethical ways to regulate and manage the
allocation of land for a variety of competing uses. The most common application of LP to
such decisions is a type of allocation (or assignment) problem in which a finite land
resource must be divided among various uses. The example examined here is a modified
version of a model developed by Dykstra (1984) that demonstrates the capabilities and
limitations of LP when applied to land use planning.

This problem concerns the planning of land use for a small town that is confronted with
challenges about how to both enhance its open space and parkland amenities and maintain
a reasonable pace of economic development to enhance its residents’ welfare, given an
increasing population. Recent increases in the demand for residential development and
municipal services along with a reduction in local open space have led to a strong interest
in land use planning for the town’s remaining undeveloped property. A special planning
committee has been appointed to manage and coordinate the project as a series of general
directives from the city council has been identified:

1. The prime purpose of the land use plan is to increase the property tax base as much as
possible.

2. The property tax rate should not increase above its present level of 3%.

3. At least 30% of currently undeveloped fields should remain undeveloped (reserved
land) for potential use by future generations.

4. In addition to the reserved areas, every acre assigned for development (defined as res-
idential, commercial, or industrial) should be offset by at least one-third of an acre of
open space land (defined as farm or park land).

5. A minimum of one-tenth of an acre of commercial land and one-sixteenth of an acre
of industrial land should be developed for every acre of residential land to provide
basic municipal and other services.

6. Due to concerns about excessive development, while seeking the objective of maxi-
mizing the property tax base, the city council expects that the total amount of land
developed for commercial and industrial purposes will not provide more goods and
services than demanded by the total increase in the local population.

7. At least two-fifths of an acre of forest land should be preserved for every acre of res-
idential land developed.

8. Finally, the council wants this plan to account for the recreational needs of a growing
population.

The planning committee includes not only government officials but also experts in
demography, ecology, sociology, forestry, and economics. They have held a series of
public meetings with current residents and have discussed the findings and their plans
with the city council. To facilitate this process, an LP model is applied that integrates the
available data and constraints into an acceptable plan for land allocation for the next
decade.

Table 6.3 shows five undeveloped areas within the town and the number of acres within
each area that are available for various kinds of uses. The total area of these five parcels is
9,240 acres, and the total area available for other land uses ranges from 3,850 acres for
farming to 5,780 acres for industrial use. Note that the columns in this table do not need
to sum to the total acreage for the undeveloped parcel because some areas are suitable for
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multiple types of development. Table 6.4 shows how much each kind of development
would increase the city’s property tax base and how much it would cost the city to provide
municipal services.

Decision Variables and Constraints

In this model, the key decision is the allocation of land from undeveloped areas to
one of six uses. The objective of the LP problem is to maximize the increase in the
town’s property tax base, subject to the policy restrictions and other limitations set
forth. Therefore, the decision variables should measure the acreage from each proposed
development area allocated to each land use type. These variables are defined as 
follows:

xij � acres of area i allocated to use j i�1, … , 5; j�1, … , 7 (6.9)

where j � 1 for residential development, 2 for commercial development, 3 for industrial
development, 4 for forests, 5 for farms, 6 for park, and 7 for reserved land.

To maximize the expected increase in tax base from all the new developed areas, the
objective function is written as:

(6.10)Max: Z c j ij
ij

�
��

x
1

5

1

6

∑∑
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Table 6.3 Acres Suitable for Each Proposed Land Use

Type of Land Use
Undeveloped Total
Area Acreage Residential Commercial Industrial Forest Farm Park 
(i) (bi) ( j�1) ( j�2) ( j�3) ( j�4) ( j�5) ( j�6)

1 2,050 1,435 990 1,220 750 790 1,120
2 3,120 1,710 1,850 2,530 1,335 1,250 370
3 820 250 450 500 280 80 560
4 1,330 520 490 610 1,110 810 960
5 1,920 1,080 700 920 690 920 1,090
Total 9,240 4,995 4,480 5,780 4,165 3,850 4,100

Table 6.4 Expected Increase in the Property Tax Base and in the Cost of Municipal Services for
Each Acre Allocated to Development (in $’000)

Type of Land Use

Residential Commercial Industrial Forest Farm Park 
( j�1) ( j�2) ( j�3) ( j�4) ( j�5) ( j�6)

Increase in the Property 200 520 1,070 300 11.5 5
Tax Base per Acre (cj)
Cost of Municipal 9 14 33.5 6.5 0.8 2
Services per Acre (dj)
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where cj are the increases in the property tax base per acre found in the first row of
Table 6.4.

Constraint on the Property Tax Rate The property tax rate is calculated from the
amount of property tax required (i.e., the cost of new municipal services related to the
development) minus the property tax base resulting from the development. The city
council wants to ensure that the property tax rate will not be greater than the current
3%. This requires a constraint formulated as:

(6.11)

where dj are values from the second row of Table 6.4, reflecting the estimated cost of
municipal services required for each acre of new development.

Constraint on Excessive Development Another important goal is to control for
an “excessive” increase in commercial and industrial land. The planning commission
suggests that the increase in acres of commercial and industrial land should not exceed
the possible demand for the goods and services provided by those uses from the
increased local population at the end of the tenth year.

The present population of the town is 32,753. Demographers estimate that the annual
birth and death rates will be relatively stable for the next ten years, 0.8% and 0.5% respec-
tively. Thus, the model assumes that the total population of the town will increase by 0.3%
(0.8% – 0.5%) by the end of each year. Additionally, demographers estimate that there will
be net immigration of 1,200 people every year. For the sake of simplicity, this model
assumes that the immigration occurs at the end of each year. Based on this information,
the town’s total population by the end of the tenth year can be estimated using the follow-
ing equation:

(6.12)

where pi represents total population of the town at the beginning of the ith year. In this way,
by the end of the tenth year, the estimated increase in the total population is 13,196.
Experts estimate that, on average, every acre of new commercial land can service 11 new
residents and every acre of new industrial land can support 16 new residents. Thus, the
constraints for these types of land use can be set up as follows:

(6.13)

(6.14)

Minimum Development Rate The plan should also consider the areas of residen-
tial, commercial, and industrial land necessary to assure the availability of adequate liv-
ing, shopping, and other service facilities for new residents. Experts estimate that one
acre of residential development can accommodate at most 22 people. In addition, at
least one-tenth of an acre of commercial land and one-sixteenth of an acre of industrial
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land should be developed for every acre of residential land. These constraints can be
written as follows:

(6.15)

(6.16)

(6.17)

Open Land Requirement Residents were concerned that the increase in develop-
ment would diminish the scenic beauty of the town. Therefore, the council decided that the
total acreage of farms and parks should be at least one-third as much as the amount of land
allocated to residential, commercial, and industrial uses:

(6.18)

Forest Land Requirement Given the increasing population, the city council thought
it was necessary to ensure sufficient forested land. To simplify this constraint, the model
assumes that there should be at least two-fifths of an acre of forest for every acre of resi-
dential land:

(6.19)

Recreation Requirement The city council also wanted to increase the amount of
park land. Therefore, they set the goal that by the end of the ten-year planning period, 
there should be at least one new acre of park land for recreation for every 50 new
residents:

(6.20)

Environmental Index The ecologists involved with this project wanted to test an 
environmental measurement index (referred to as E-Index) that involves a 10-point grading
system to evaluate the environmental quality provided by different land uses. Generally
speaking, the more intensively a place is developed, the lower its score. 
Table 6.5 shows the scores for each of the different land uses considered.
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Table 6.5 Environmental Benefit Score for Each Land Use

Industrial Commercial Residential Farm Forest Park Reserved 
( j�3) ( j�2) ( j�1) ( j�5) ( j�4) ( j�6) ( j�7)

E-Index 1.5 2.5 3 4.5 6.5 8.5 10
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To maintain a high-quality environment, the land planning commission proposed that
the average E-Index for these five undeveloped areas should be no less than 6.0. The aver-
age E-Index is calculated from the weighted average of the seven different types of land
by acreage. This restriction is written as:

(6.21)

where 9,240 is the total acres of undeveloped land.

Development Feasibility Constraints The first condition of feasibility is that all of
the development, including land reserved, should not exceed the total amount of available
undeveloped land:

(6.22)

As directed by the city council, at least 30% of the undeveloped land should be reserved
for future plans:

(6.23)

Additionally, constraints are required to ensure that for each of the five undeveloped areas,
the sum of the acres of each type of land use does not exceed the upper bound (UB) of the
suitable acres for that use:

xij � sij i � 1, … , 5; j � 1, … , 7 (6.24)

where sij is the number of acres in area i suitable for use j as given in Table 6.3.
Finally, the land allocated to all uses within each proposed development area cannot

exceed the total available land for development:

(6.25)

where bi is the total number of acres in area i. From Table 6.3, b1 � 2,050, b2 � 3,120, 
b3 � 820, b4 � 1,330, and b5 � 1,920.

Non-negativity Constraint Since all the decision variables represent allocated
acreage, all decision variables should be non-negative:

(6.26)

Problem Set-Up and Finding a Solution

To solve this LP problem with Solver, four categories of information must be
defined: the given information, the objective function, the decision variables, and the
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constraints.2 The data listed in Tables 6.3, 6.4, and 6.5 are shown in the spreadsheet in Cells
A2 through I10 of Figure 6.2. The formula for the objective function (Cell B13) is
“�SUMPRODUCT(C8:H8,C22:H22).” As discussed in Chapter 3, when setting up this prob-
lem, it can be useful to enter a simple “guess” for the initial value. This helps to ensure that the
formulas used in the model are functioning correctly and can help to identify any problems.

Cells C17 to I21 represent the decision variables (e.g., Cell D18 represents the acreage
from undeveloped area 2 that will be allocated to commercial land use). Solver will rec-
ognize each cell in this area as an independent variable during the optimization process,
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2This problem set-up and solution are provided in the supplemental materials for Chapter 6 available at
www.wiley.com/college/kaiser.

Figure 6.2 Land use problem model.
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and by changing the values of these cells, will provide an optimal solution given the con-
straints and information provided in the problem.

The formulas that comprise the series of constraints are shown in the bottom part of
Figure 6.2. For example, the first Excessive Development constraint (equation (6.13)) is in
Cell B26. The formula is “�11*SUM(E17:E21)” and the associated right-hand-side (RHS)
value for this constraint is in Cell D26.

Once all of the given information has been entered into the spreadsheet and the objec-
tive function and constraints have been properly set up, the problem is ready to be solved.
Click the “Model” tab in Solver and select the option to maximize the property tax base
(Cell B13). Continue by defining the decision variables and the constraints, and be espe-
cially careful to get the signs of the constraints correct. The completed model should look
like Figure 6.3. Finally, the appropriate algorithm must be selected. In this case, the
“Standard LP/Quadratic Engine” should be selected, and the “Assume Non-Negative”
option should be set as “True.”
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Figure 6.3 Land use model set-up.
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The solution to this problem is shown in Table 6.6. Given this allocation plan, the total
tax base will increase by $2,525,344, in thousands (Figure 6.2). The planning committee
can also obtain some other important information from this model. For instance, the actual
property tax rate will be 2.78% (Cell F25), which is lower than the city council’s goal of
3.0%, and the E-Index for this optimal land use plan turns out to be 6.28 (Cell F34), which
is higher than the recommended level of 6.0, meaning that the land use plan exceeds the
expectations in this regard.

6.3 OPTIMAL STOCKING PROBLEM FOR A GAME RANCH

The management of wildlife in public reserves and on private game ranches often must
account for the various competing needs of its inhabitants. In the case of private game
ranches, owners seek to make a profit from the sustained viability of these natural
resources. The following example builds upon LP models developed by Davis (1967)
and Dykstra (1984), and uses a case study that seeks to assist Heart’s Bluff Ranch in
managing its three most popular wild game: deer, bison, and wild hogs.

Located in eastern Texas, Heart’s Bluff Ranch offers game hunting and various recre-
ational opportunities on nearly 5,000 acres. Based on 10 years of data on population
trends for the game on the ranch, an LP model is developed to help Heart’s Bluff better
manage its game populations to increase customer satisfaction and, ultimately, to
generate more profit. Several things are known about the ranch and its game farm
business:

1. The ranch’s land is divided into two primary conditions: areas with no special man-
agement and small cleared areas with higher forage production quantities. The forage
production differs depending on whether and when the land is managed. Unmanaged
lands result in forage production of only 5 kilograms per hectare. Cleared lands pro-
duce more but this effect declines over time (Table 6.7).

2. The ranch hires labor to patrol the land, check hunter permits, weigh harvested 
animals, and create clearings. Available labor is limited to 1,300 person-days during
the busy hunting season. No hunting or forage clearing activities are done in the win-
ter. The cost and labor required for each of the three main activities are provided in
Table 6.8.
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Table 6.6 Optimal Allocation of Undeveloped Land

Undeveloped
Area Residential Commercial Industrial Forest Farm Park Reserved

1 263.9 1,786.1
2 509.8 124.4 889.1 610.7 985.9
3 90.0 450.0 280.0
4 220.0 1,110.0
5 405.3 824.8 690.0
Total 599.8 1,199.6 824.8 2,969.1 610.7 263.9 2,772.0

Table 6.7 Quantity of Forage for the Years after Treatment by Land Type (kg per hectare)

1 Year 2 Years 3 Years 4 Years 5 Years

Unmanaged Land 5 5 5 5 5
Cleared Land 150 110 100 50 25
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3. Historical data shows that about 78% of the wild hogs, 72% of the deer, and 80% of
the bison can survive the winter if those animals successfully evade hunters during
previous hunting season. All animals that survive winter are assumed to be available
for harvest during the subsequent hunting season.

4. Fertility studies show that, on average, each surviving wild hog will lead to the birth
of 0.4 live wild hogs the next year. Likewise, each surviving deer will lead to the
birth of 0.3 live deer, and each surviving bison will lead to the birth of 0.4 live bison.
For hunting purposes, it is assumed that hunters will not harvest the newborns because
their smaller size makes them easy to identify as immature and, therefore, not permit-
ted to be hunted. For each of the three animals, the newborns that survive the winter
will reach sexual maturity by the following year.

5. Sufficient forage should be provided for each animal to survive, even though some
will perish in winter. Forage requirements annually are estimated to be 200 kg per
wild hog, 170 kg per deer, and 300 kg per bison.

6. Presently the ranch keeps 90 wild hogs, 150 deer, and 40 bison. To maintain viable
populations and to ensure the scenic beauty of the ranch that can generate nonhunting
revenue, the population of each species on the ranch has to be kept at or above a min-
imum number.3 The wild hog population should be at least 20, the deer population
should be at least 60, and the bison population should be at least 30.

7. Based on previous years, the ranch estimates that hunters can harvest up to 20 wild
hogs, 30 deer, and 10 bison annually.

8. The price for harvesting a wild hog is $300, the price for a deer is $250, and the price
for a bison is $350. Extra forage can be sold for $3 per kilogram.

Problem Formulation

The objective for this LP problem is to maximize profit over a five-year time horizon. The
formulation of the problem is as follows:

6.27)

where the decision variables for each of the five years, t, are given as follows:

l1t � hectares of unmanaged land

l2t � hectares of land cleared for game
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Table 6.8 Cost and Labor Requirements by Activity

Cost ($) Labor (person-days)

Game Clearing (1 hectare) $50 3.00
Patrolling, Weighing, and Permit 
Checking (per animal harvested) $30 2.67
Forage Harvest for Sale (kg) $2 0.3

3Other than this constraint to ensure scenic beauty, this problem does not consider the nonhunting revenue gen-
erated by ranch guests.
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ft � kilograms of extra forage sold

wht � number of wild hogs harvested

dht � number of deer harvested

bht � number of bison harvested

wst � number of wild hogs surviving

dst � number of deer surviving

bst � number of bison surviving

The revenue and selling prices in equation (6.27) are as follows:

cf � revenue of forage sold per kilogram

cw � selling price for a wild hog

cd � selling price for a deer

cb � selling price for a bison

Labor Constraint The labor requirements for game clearings, hunting patrols, and 
forage harvests given in Table 6.8 are represented by:

3l2t � 0.3ft � 2.67 (wht � dht � bht) � 1,300, t � 1, … , 5 (6.28)

Population Constraints The sum of the number of animals harvested and surviving in
a particular year should be equal to the number of animals at the start of the year. For the first
year, the constraint would be:

Wild hogs: wh1 � ws1 � 90 (6.29)

Deer: dh1 � ds1 � 150 (6.30)

Bison: bh1 � bs1 � 40 (6.31)

Additionally, the current number of animals (whether harvested in this year’s hunting sea-
son or not) should be equal to the sum of the number of that species that survived the pre-
vious winter and the number of newborns that survived the winter and thus matured. For
example, for wild hogs in year t, the constraint would be:

wht � wst � (1.4)(0.78) ws,t-1 t � 2, … , 5 (6.32)

Similarly, the herd constraints for deer and bison would be:

dht � dst – (1.3)(0.72) ds,t-1 � 0 t � 2, … , 5 (6.33)

bht � bst – (1.4)(0.8) bs,t-1 � 0 t � 2, … , 5 (6.34)

Forage Production and Requirements The three sources of forage are from (1)
unmanaged lands, (2) land cleared in the current year, and (3) land cleared in the previous
years. The forage production in year t must meet the demand of the animals that survived
the hunting season. Extra forage can be sold.

The amount of forage produced from unmanaged land is given by 5l1t (Table 6.7).
Production declines with time on previously cleared lands. Forage produced from land
cleared in the current year is given by 150l2t. For land cleared during the preceding year, 
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the amount is 110l2,t-1, for land cleared two years prior it is 100l2,t-2, and so forth. Note that an
assumption of this model is that all land in t � 0 is unmanaged land, so all land in t � 1 is
either newly cleared or still unmanaged.

The quantity of forage provided in year t should be adequate to meet the herd’s require-
ments. In winter, the total number of surviving wild hogs and wild hog infants would sum
up to 1.4wst, which would require an amount of 200 � 1.4wst forage. All deer would need
170 � 1.3dst forage to survive winter, and bison would need 300 � 1.4bst forage. For year 
t � 5, the constraint could be constructed in the following form where the left-hand-side
(LHS) presents the forage produced on the various types of land, and the RHS accounts
for the forage needed for the three species and the amount of forage sold:

5l1t � 150l2t � 110l2,t�1 � 100l2,t�2 � 50l2,t�3 � 25l2,t�4 – (200)(1.4)wst

– (170)(1.3)dst – (300)(1.4)bst – ft � 0 (6.35)

Genetic Diversity and Scenic View Sustainability As previously discussed, the
managers of Heart’s Bluff Ranch require that a minimum number of animals of each
species be present at the ranch at any given time to ensure genetic diversity and scenic view
sustainability:

0.78 � 1.4wst � 20 t � 1, … , 5 (6.36)

0.72 � 1.3dst � 60 t � 1, … , 5 (6.37)

0.8 � 1.4bst � 30 t � 1, … , 5 (6.38)

Market Limitation Ranch managers estimated that hunters can harvest a maximum of
20 wild hogs, 30 deer and 10 bison annually:

wht � 20 t � 1, … , 5 (6.39)

dht � 30 t � 1, … , 5 (6.40)

bht � 10 t � 1, … , 5 (6.41)

Land Availability Constraints are also needed to account for the limitations on the size
of the ranch:

l11 � l21 � 2,000, (6.42)

(6.43)

For years 1 through 5, these constraints can be written as:

l11 � l21 � 2,000 (year 1) (6.44)

l12 � l21 � l22 � 2,000 (year 2) (6.45)

l13 � l21 � l22 � l23 � 2,000 (year 3) (6.46)

l14 � l21 � l22 � l23 � l24 � 2,000 (year 4) (6.47)

l15 � l21 � l22 � l23 � l24 � l25 � 2,000 (year 5) (6.48)
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Non-negativity Constraints Finally, the decision variables should be non-negative.

Problem Set and Interpretation of the Solution

The model specification shows that the objective is to maximize profit (Cell B23) and
that the decision variables are in Cells B14 to F22 (Figure 6.4). Figure 6.5 shows the ref-
erences for the various constraints. The Standard LP/Quadratic Engine should be selected,
and the “Assume Non-Negative” option should be set as “True”.

The optimal solution will yield Heart’s Bluff Ranch a total profit of $43,727, as can be
seen in Table 6.9. The optimal solution would gradually reduce the animal populations to
the minimum number required for genetic and scenic purposes. Consequently, after the
fifth year, the ranch would need to permit limited hunting and focus its efforts only on
managing the land to meet the needs of the animals and of selling forage.
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Figure 6.4 Game farm model set-up and solution.
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Figure 6.5 Game farm constraints.

Table 6.9 Game Ranch, Optimal Results

Unmanaged Cleared
Harvested Survived

Forage
Area Area Wild Wild Sold 

(hectares) (hectares) Hogs Deer Bison Hogs Deer Bison (kg)

Year 1 1661.2 338.8 20 30 10 70 120 30 411
Year 2 1638.6 22.6 20 30 6.8 56.4 82.3 26.8 3602.1
Year 3 1638.6 0 20 3.9 0 41.7 73.1 30 4121.1
Year 4 1572.6 66 20 0 6.8 25.5 68.5 26.8 3434.7
Year 5 1507.8 64.8 9.5 0 3.2 18.3 64.1 26.8 3571.9

Although this solution could make sense given that Heart’s Bluff Ranch can also earn
revenue from guests interested in nonhunting recreational activities who are drawn 
to the ranch as an attractive destination, this solution also arises from the model’s
assumptions. For example, the population growth functions were assumed to be linear.
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Dealing with nonlinear functions will be discussed in Chapters 8 and 9. This model
lacks stochastic components that could have been added into many of the constraints,
such as winter survivability rates, the selling price of forage and the animals, and the
growth of forage in a particular year. Finally, inspection of the results also shows 
the unrealistic assumption that the model allows for the harvesting of animals and the
birth of partial animals. How to address decision variables that should be integers is
discussed in Chapter 7.

6.4 EFFICIENT IRRIGATION AND CROPPING PATTERNS

Effective management of limited fresh water resources is critical to meet the needs of a
growing human population and to support healthy ecosystems. As the world’s largest water
user, irrigation agriculture will increasingly be asked and/or required to use less water than
it would ideally use. As farmers account for water limitation, they may need to adjust their
cropping patterns. This example builds upon the work of Haouari and Azaiez (2001) and
illustrates how LP can help identify optimal crop rotations and irrigation levels given
various water restrictions.

Farmer Madeline Johnson owns a 100-hectare farm. At the end of the summer growing
season, the local water authority has determined that she can use no more than 200,000
cubic meters (m3) of water for irrigating her crops in the upcoming year. Farmer Johnson
wants to develop a cropping plan for the entire year (winter and summer growing seasons)
for her farm that will maximize her profits given the available water, various crop yields
and water demands, and expected market conditions.

Farmer Johnson has several choices of cropping patterns: rice as an annual crop (a),
wheat (w1) and maize (w2) as winter crops, and wheat (s1) and cotton (s2) as summer
crops. Additionally, Farmer Johnson can choose one of three different irrigation levels for
each of these crops: 100% irrigation (full), 80% irrigation, and 60% irrigation. When the
crops are not fully irrigated, the yield from the crops will be less than the maximum yield.
Data related to the full irrigation demand, the maximum yield per hectare, the expected
profit per ton, and ratios of actual-to-maximum yield under the three different irrigation
levels are shown for each of the crops in Tables 6.10 and 6.11.

Farmer Johnson understands that with crop rotations, the expected yield from a partic-
ular crop in the current growing season is dependent upon which crop was cultivated on
that land the previous season. As shown in Table 6.12, discounting factors can express the
impact that the cultivation of last season’s crop will have on the yield of the current cul-
tivated crop.

In the previous growing season, Farmer Johnson allocated 30 hectares for rice, 20 hectares
for summer wheat, and 30 hectares for cotton. Additionally, she had 20 hectares of land
enrolled in a conservation program; therefore, no crops were actively cultivated on those 20
hectares. This land will be available for cultivation in the subsequent growing season.
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Table 6.10 Water Demand, Maximum Yield, and Profit by Crop

Water Demand (m3/hectare) Maximal Yield (tons/hectare) Profit ($/ton)

Rice (a) 1,200 7 180
Wheat (w1) 800 6 150
Maize (w2) 1,200 9 220
Wheat (s1) 1,300 10 170
Cotton (s2) 1,600 8 300
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Model Development

The objective of this problem is to select a crop pattern that maximizes Farmer Johnson’s
overall profit from her farm. Therefore, the decision variables will be related to the fol-
lowing three questions:

1. Which crops and what kinds of cropping patterns should be chosen for next year in
order to get maximum profit?

2. For all of these selected crops, how much land should be allocated for each crop?

3. How much water should be allocated to each crop under the limitation of the water
available?

Farmer Johnson’s objective function can be expressed as:

(6.49)

Therefore, the profit from this year’s crops, given the land use of the previous year, is
derived using the following variables:

aij � profit per hectare for cultivating annual crop i (rice) on land that was planted last
season with crop j

wij � profit per hectare for cultivating winter crop i (winter wheat or maize) on land that
was planted last season with crop j

sij � profit per hectare for cultivating summer crop i (summer wheat or cotton) on land
that was planted last season with crop j

xij � amount of land that was cultivated last season with crop j and is to be cultivated
with crop i for all of next year
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Table 6.11 Maximum and Actual Yield by Irrigation Percentage by Crop

Maximum Yield by Actual Yield (tons/acre) by 
Irrigation Level Irrigation Level

100% 80% 60% 100% 80% 60%

Rice (a) 100% 88% 72% 7.00 6.16 5.04
Wheat (w1) 100% 85% 71% 6.00 5.10 4.26
Maize (w2) 100% 56% 24% 9.00 5.04 2.16
Wheat (s1) 100% 83% 73% 10.00 8.30 7.30
Cotton (s2) 100% 69% 51% 8.00 5.52 4.08

Table 6.12 Discounting Factors on Yield with Respect to Crop Predecessors

Crop from Last Year

Crop for Current Year None Rice (a) Wheat (s) Maize (s) Wheat (s) Cotton (s)

Rice (a) 1.0 0.8 – – 0.8 0.7
Wheat (w1) 1.0 1.0 – – 1.0 0.9
Maize (w2) 0.9 1.0 – – 0.9 1.0
Wheat (s1) 1.0 – 0.8 0.9 – –
Cotton (s2) 1.0 – 1.0 0.6 – –
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yij � amount of land that was cultivated last season with crop j and is to be cultivated
with crop i for next winter

zij � amount of land that was cultivated last season with crop j and is to be cultivated
with crop i for next summer

Land usage constraints The land used in winter and summer should both be less
than or equal to the 100 hectares of available land:

(6.50)

(6.51)

Other constraints need to be included to reflect the land availability for each type of crop
given the previous land use. For instance, the following constraint accounts for the 20
hectares of land that is enrolled in a conservation program and is currently available for
planting as either an annual or winter crop:

(6.52)

where xi0 is the land that was not cultivated with any crops last year and could be planted
with crop i next year, and yi0 is the land that was not cultivated with any crops last year and
could be planted with crop i next winter. Similarly, zi0 can be defined as the land that was
not cultivated with any crops last year and would be planted with i next summer.

The other constraints on the cropping pattern are as follows:

(6.53)

(6.54)

for every crop d planted in winter, and

(6.55)

The first constraint reflects that last season, Farmer Johnson cultivated 30 hectares of rice,
and, therefore, the amount of annual and winter crops that have rice as a precedent should
be less than or equal to 30. Constraint (6.54) requires that the amount of land cultivated
with a certain crop in summer should be less than or equal to the amount of land cropped with
its predecessors in the winter season. Finally, constraint (6.55) is related to the amount of
land that needs to be cultivated in the next winter season.

Irrigation Water Constraint The irrigation needs for the various crops can be pre-
sented with the following constraint:
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where ii is the irrigation level for crop i. Irrigation water demand per unit area multiplied
by the total areas cultivated by that crop represents the demand for irrigation water of that
crop. This equation requires that the overall water demand should be less than or equal to
the overall water supply.

Non-negativity Constraints In this problem, all decision variables should be greater
than or equal to zero.

Problem Set-up and Interpretation of the Solution

To be considered a linear model, the model should be developed to treat the same crop with
different irrigation levels as different crops. Additionally, the land that is planted with a
certain crop in winter should be planted again in the summer with a different crop.4

As shown in Figure 6.6, the first two tables in the first 16 rows, which are shaded in grey,
contain the information provided in Table 6.10 through Table 6.12. Additionally, the crop-
ping pattern from the previous season is shown in Cells B38 through G38. The spreadsheet
also contains the given information regarding the size of the farm (100 hectares (ha)) and
the maximum water supply (200,000 m3/ha).

The decision variables representing the cropping pattern are shown in Cells B21 through
G35.5 This matrix shows how the land that was cultivated last season will be cultivated in
the upcoming year. For instance, a value of 30 in Cell C27 means that the 30 hectares that
were cultivated with the annual crop of rice last year will now be planted with maize with
a 100% irrigation level for next winter.

The annual and seasonal yields for each crop are totaled in Cells H21 to H35. The total
water demand for each crop that arises from the selected cropping and irrigation plan is
calculated in Cells J21 to J35. For example, the total water demand for maize under full
irrigation is shown in Cell J27 and is calculated with the equation “�H27*B5”, which
multiplies the total area dedicated to fully irrigated maize (60 hectares) by its water
demand (1,200 m3/ha). The total water demand for the cropping and irrigation plans is
summed in Cell J36 (200,000 m3/ha).

Cells B41 through G55 calculate the profit for each crop and irrigation level combination,
given each possible precedent crop. For instance, in the optimal solution, Cell C47 shows that
Farmer Johnson will earn $59,400 profit from growing maize next year using a 100% irri-
gation level on 30 hectares of land that was cultivated with rice in the previous season. The
formula used in Cell F47 is “�C27*C14*$H$5*$D$5”, which is the product of the cropping
pattern for 30 hectares of maize; the discount factor based on the predecessor crop (1.0), the
final yield based on the 100% irrigation level selected (9 tons/ha), and the profit received per
ton of maize ($220). The total profit for the cropping pattern and selected irrigation level is
shown in Cell J49, which is the objective to be maximized in this problem.

With regard to model constraints, the previous year’s summer cropping pattern is shown
in Cells B38 through G38, and the inequalities and equalities in row 37 require that this
year’s winter cropping pattern be derived correctly. Note that the total land having the
precedent of maize and winter wheat is restricted to being equal to zero since the cropping
pattern is being determined after the summer. Cells H53 and H54 are the constraints on the
total area (100 hectares) that can be cultivated in winter and summer, respectively. Note
that the area of rice cultivation needs to be accounted for in both constraints as rice is an
annual crop. Cell H55 is the constraint (6.52). Figure 6.7 shows the model specifications
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4In this case, wheat cultivated in the summer is considered a different crop from wheat cultivated in the winter as
the water needs and growing characteristics are different.
5To ensure that the model is linear, the same crop with different irrigation levels is treated as a different deci-
sion variable.
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for this problem including the objective function, the decision variables, and the con-
straints described above.

The optimal solution, Cells B21 to G35 of Figure 6.6, shows that during the next grow-
ing season, Farmer Johnson should plant 60 hectares of maize in winter, of which 30
hectares were cultivated with rice and 30 hectares were cultivated with cotton during the
previous summer growing season. The maize will be fully irrigated and will achieve its
maximum yield. Additionally, 35.8 hectares of wheat will be planted in winter with 60%
irrigation. Of these 35.8 hectares, 15.8 will come from previously noncultivated areas, and
20 hectares will come from acres that were planted with wheat in the summer. In the sum-
mer, the 60 hectares of maize would be converted entirely to cultivating wheat with 60%
irrigation. Note that both winter and summer wheat yield relatively high amounts when not
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Figure 6.6 Crop pattern and irrigation problem set-up and optimal solution.
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receiving full irrigation, 71% and 73% of the maximum yield, respectively. The other 40
hectares will be planted with cotton with 100% irrigation. For cotton, 4.2 hectares of this
land will come from previously uncropped land, and the other 35.8 hectares will come
from land previously planted with wheat in the winter. Both maize and cotton experience
large declines in yield when not receiving full irrigation. This entire cropping plan yields
a profit of $304,712 for Farmer Johnson and exhausts the water allocation.

6.5 RESEARCH APPLICATION: OPTIMIZING GRIZZLY BEAR
CORRIDOR DESIGN

Within the field of conservation biology, a branch of research has used mathematical pro-
gramming to aid in selecting reserve sites. This research identifies areas to protect based
on a variety of objectives, such as maximizing species richness, minimizing costs given a
certain threshold of species protection (a type of covering problem), or optimization of cer-
tain biophysical attributes of an area. Economists have extended these models to include
economic factors such as acquisition costs and the likelihood that the land would be devel-
oped in the absence of an acquisition program.

A recent focus of this research has been the spatial distribution of reserve sites. As habi-
tat fragmentation has become recognized as a leading cause of species decline and extinc-
tion, several models have been proposed that emphasize the compactness and connectivity of
protected land. One concept that has been advocated is a “wildlife corridor” or network of
protected areas that connect existing reserves of protected land. There are several ecological
advantages to wildlife corridors, including an increased area accessible to species that have
large ranges, the ability to sustain greater genetic diversity, and the ability of species to
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Figure 6.7 Crop pattern and irrigation model specifications.
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escape natural disasters and respond to long-term climate change. Wildlife corridor programs
have been established in many regions of the world, including the National Ecological
Network in the Netherlands, the Siju-Rewak Corridor connecting elephant reserves near the
India–Bangladesh border, and the Amapa Biodiversity Corridor in northern Brazil.

Most existing studies that focus on optimal corridor selection have formulated the problem
as some variant of the traditional network problem and used a Least Cost Path model to con-
nect reserves. A drawback of Least Cost Path models is that they can produce narrow pathways
that ignore large areas of ecologically valuable land. Additionally, by only focusing on areas
with the lowest cost, the models have an incentive to select areas with large amounts of unsuit-
able habitat if that habitat ends up being the lowest-cost option. To avoid these problems, Suter
et al. (2008) proposed using a Budget Constrained Optimal Path model and applied this model
to an optimal corridor design for grizzly bears in the northern Rocky Mountains.

Grizzly bears in particular are often targeted for conservation as an “umbrella species.”
An umbrella species is one that has fairly demanding ecological requirements and whose
protection has beneficial spillover effects on other species in its ecosystem. In the case of
grizzly bears, protecting bear habitat would, by extension, protect habitat for elk, moose,
bison, and a host of other species. There are currently three large regions that are protected
in the northern U.S. Rocky Mountains: the Yellowstone Ecosystem in northwestern
Wyoming and southern Montana, the Salmon–Selway Ecosystem in central Idaho, and 
the Northern Continental Divide Ecosystem in northwestern Montana. The protected
regions and the region being considered for conserved parcels are displayed in Figure 6.8.
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Montana
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Figure 6.8 The grizzly bear corridor study region.6

6Map created by Jacob Fooks, University of Delaware.
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The authors used an LP model to construct a corridor through Idaho and Montana to con-
nect these three reserves. The corridor maximizes habitat suitability subject to a budget
constraint.

The study focused on 64 counties in Idaho and western Montana. Habitat suitability was
determined based on the Habitat Suitability Index (HSI) score developed by the Craighead
Environmental Research Institute that ranks parcels on a scale from 2 to 4, with parcels
scored as 4 being the most suitable. The cost to protect a parcel was calculated based on
the amount of private land within the parcel multiplied by the average value of agricultural
land within the county. The study considered varying size resolutions for the parcels under
consideration for protection. Land was considered in six different grid resolutions ranging
from 5 to 60 kilometers as well as on the whole-county level. There was also a variation
for the 5-kilometer grid size that incorporated transaction costs.

To establish a connected corridor, the problem is set up as a connected sub-graph that is
solved as a linear program as follows:

Max: Z � Σ uixi (6.57)

s.t.:

Σ cixi � b (6.58)

x0 � y0t � n (6.59)

y0t � Σ xi (6.60)

yij � nxj, for all edges (6.61)

Σyij � xj � Σyji, for all nodes (6.62)

xt � 1, for terminal nodes t (6.63)

xi � 0, 1, yi � 0 (6.64)

Each cell in the grid is represented by xi, with x0 being an artificial source cell that injects
flow into the network. The cost for each cell is ci, and the HSI score is represented by ui. The
xi variable is binary choice, implying that the cell is either purchased (equals 1) or not pur-
chased (equals 0). Binary constraints will be discussed in greater depth in Chapter 7.
Constraint (6.58) is the budget constraint, and b is the total budget available. Constraints (6.59)
through (6.62) establish the connected subgraph. This is somewhat similar to the networks
seen in Chapter 5. Each cell, xi, is a node in the network, and yij is an edge connecting
nodes i and j. The total number of nodes in the network is n. Constraints (6.59) and (6.60)
limit the total injected flow to the total number of nodes and ensure that all flow used by
the network was injected by the source node. Constraint (6.61) causes the flow to decrease
from node to node across the network so that each node retains one unit of flow. Constraint
(6.62) causes the flow into a node to equal the flow out of a node plus the flow retained by
the node so that flow is conserved across the network. Finally, Constraint (6.63) ensures
that the path passes through each of the existing reserves or terminals.

Several different paths were calculated for different budget levels and parcel granulari-
ties. The least-cost corridors were determined for each budget level. Table 6.13 reports the
minimum cost path for each resolution level. As would be expected, as the resolution
increases, the area and cost decreases. The area goes from 9.6 to 1.4 million acres, and the
total cost ranges from $1.9 billion to $11.8 million. However, the cost per acre also dras-
tically decreases from $197.40 to $9.80, as a smaller parcel size offers greater possibilities
for selecting parcels of entirely public (and thereby free) or inexpensive land. The total
HSI also decreases at finer resolutions; however, the average HSI per acre increases.
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Table 6.13 Minimum Cost Corridor Results

Corridor Total Acres 
Parcel Number Parcels Cost HIS Preserved Percent Cost per 
Size of Parcels Selected (thousand) (thousand) (thousand) Private Acre ($)

County 64 5 1,904,355 7,038 9,649 27.2% 197.4
60km 118 11 1,657,740 7,188 8,234 27.1% 201.3
50km 167 12 1,329,090 5,902 6,777 30.7% 196.1
40km 239 16 891,052 5,807 5,409 13.6% 164.7
25km 570 23 449,430 3,743 3,408 12.5% 131.9
10km 3,296 120 99,341 3,679 4,096 1.9% 24.3
5km 12,788 265 10,865 2,147 1,637 0.5% 6.6
5km† 12,788 196 11,824 1,576 1,210 0.7% 9.8
†Includes a $5,000 transaction cost per parcel selected.

Table 6.14 Budget Constrained Maximum HIS Results

Corridor Total Acres 
Parcel Number Parcels Cost HIS Preserved Percent Cost 
Size of Parcels Selected (million) (thousand) (thousand) Private per Acre

County 64 5 1,904 7,038 9,649 27.2% 197.3
60km 118 20 1,821 14,240 14,209 32.1% 128.2
50km 167 22 1,461 12,188 11,303 19.4% 129.3
40km 239 23 999 11,832 9,932 8.4% 100.6
25km 570 – – – – – –
10km 3,296 – – – – – –
5km 12,788 – – – – – –

Table 6.15 50-kilometer Budget Variation Results

Budget Cost Total HIS Acres Preserved Percent Cost per HIS
(million) (million) (thousand) (thousand) Private Acre ($) (per Acre)

– 1,329 5,902 6,777 30.7% 196.1 0.87
1,396 1,394 9.842 9,608 22.2% 145.1 1.02
1,462 1,461 12,188 11,303 19.4% 129.3 1.08
1,528 1,526 13,220 12,176 18.5% 125.3 1.09
1,595 1,594 14,145 12,874 15.5% 123.8 1.10
1,728 1,727 15,533 14,131 15.7% 122.2 1.10
1,861 1,857 16,777 15,119 15.2% 122.8 1.11
1,994 1,992 17,811 16,239 16.1% 122.7 1.10
2,658 2,658 22,151 20,105 16.2% 132.2 1.10
3,323 3,321 25,500 23,298 16.5% 142.5 1.09

As cell size becomes smaller, greater average habitat suitability scores are achievable at
lower costs, but the number of cells also increases. The increasing cell number presents
computational issues at too fine of a resolution for the cost-constrained HSI maximization
problem. Because of this difficulty, this model was solved only from the county level to
the 40-kilometer level. For these results, a maximum budget 10% higher than the mini-
mum feasible corridor cost was used. These results are reported in Table 6.14.

Finally, the budget level considered for the 50-kilometer resolution ranged from the min-
imum cost corridor to 50% above minimum cost. These results are displayed in Table 6.15.
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They show that increasing the budget above the minimum cost amount increased marginal
habitat suitability benefits but at a decreasing rate, suggesting that the greatest benefits from
optimization are when the budget is close to the minimum cost amount.

SUMMARY

This chapter introduced several natural resource and environmental problems where LP
can be applied. These examples included a forest management example that demonstrated
how forest harvest rotations could be determined. A land use allocation model was devel-
oped where city planners sought to increase the local tax base by using previously unde-
veloped lands while also setting goals to prevent excessive development and ensure the
protection of open space including forests, parks, and farms. In another example, LP was
applied to wildlife and forage management in a wild game park. The results suggest a plan
that manages hunting to bring the population down to a minimum threshold necessary for
scenic and genetic purposes, while maximizing profits. The fourth example showed how,
in the face of mandated water restrictions, a farmer could use LP to determine optimal
cropping patterns and irrigation practices to maximize profits. Finally, a research example
was presented where LP was used in a type of covering program to derive an optimal habi-
tat corridor for grizzly bears in the northern Rocky Mountains.

These examples demonstrated how LP can address a diverse set of circumstances and
yield information to decision makers that can enhance the achievement of the natural
resource and environmental objectives. In many cases, natural resource and environmen-
tal problems involve aspects that linear models, at their best, can be reasonably good
approximations for the real world. In later chapters more advanced techniques will be
introduced that build upon this understanding of linear models to account for more com-
plex relationships.
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EXERCISES

1. Consider the land use planning problem presented earlier in this chapter. The city
council is seeking to balance the conflict between development and environmental
protection. Notice in this problem that the minimum value of the E-index of 6 is likely
to influence the final tax base increase. Keeping the other information constant, plot
the relationship between the actual tax base increase and the minimum E-index value.
In particular, evaluate the influence of the minimum E-index value in the range from
5.8 to 7.2 with intervals of 0.2.

2. Reconsider the land use planning problem presented earlier in this chapter. Suppose
the environmental issues are the primary concern for the public, such that the city
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council determines that the primary purpose of the land use plan is to maximize the
E-index described, as long as the increase in the property tax base is at least $2.2
billion. Meanwhile, the resource economist on this planning committee notices that,
according to the problem set-up, farmland can neither make a significant contribution
to the tax base nor can it help increase the E-index. Consequently, the model may sug-
gest a dramatic decrease in farmland. This observation draws considerable public
attention, such that the city council decides to add a new requirement for farmland
development. The new requirement is that farmland acreages should be at least one
half of residential land use. Given that all the other constraints remain the same, for-
mulate and solve this exercise in Solver.

3. A county is planning to develop 750 acres of available land in an environment-friendly
way. Available land use types include parks, farmland, wildlife reserves, residential
areas, and forests. The county expects to develop at least 90 acres of parks and 110
acres of wildlife reserve areas. The county wants to ensure a diversity of land uses so
it would like to restrict wildlife reserve areas to a maximum of 350 areas. Additionally,
the county wants to make sure that at least 50 acres of land is allocated each to farm-
land and forest, and 70 acres of land is allocated to residential areas. Formulate and
solve this exercise to maximize the environmental benefit for the county. The yearly
environment benefits for each type of land use per acre are scored as follows:
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Types Environment Benefit

Park 108
Farmland 75
Wildlife Reserve 150
Residential Area 53
Forest 116

Types Cost ($1,000)

Park 9.6
Farmland 8.1
Wildlife Reserve 6.6
Residential Area 2.9
Forest 11.2

4. Suppose that in Exercise 3, the county also needs to consider if it has enough budget for
the land use project. It is estimated that the available budget is $4 million for the next
year. The yearly costs needed for each type of land use per acre are estimated as:

In this case, derive and graph the input demand function given the budget.

5. Suppose in Exercise 4, the official estimate is that the county can provide at most $3.5
million for the land use project in the coming year. Otherwise, the county has to apply
for a loan from a bank with a yearly interest rate at 2%. In order to obtain the highest
environmental benefit score, how much of a loan should the county apply for, and how
much interest will the county pay during the upcoming year?

6. A group of experts is considering building different biogas power generation projects
at five possible locations in Newport County. The experts would ideally like to build
a small biogas power plant at each location to convert agricultural material and
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residues into usable biomethane, which can then be used to generate electricity. However,
the total budget for these biogas projects is only $8 million which is not enough to
build all five power plants. Construction costs and future revenue of the biogas power
plant project at each location are summarized in the following table (in thousands).
Given the budget, decide which locations should be selected to build power plants so
that net revenue (revenue minus construction cost) can be maximized.
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Locations 1 2 3 4 5

Construction Cost 80 120 160 240 270
Revenue 40 48 64 84 85

7. Consider the previous biogas power plant exercise. Due to more sophisticated consid-
erations, the experts decide that only one power plant can be built on either location 1
or location 2. Also, power plants should be built on both locations 1 and 5, otherwise
neither location should be considered to locate a power plant. Given the $8 million
budget, decide which locations should be selected to build the power plants so that net
revenue can be maximized.

8. Reconsider the wild game management example discussed in this chapter. If the man-
ager’s objective is to have the maximum number of animals harvested over a five-year
period, how can you modify the model to achieve this new objective?

9. Reconsider the wild game management example discussed in this chapter. What if the
available budget is only $20,000 each year to do jobs such as land clearing, foraging,
and animal harvesting? The labor force, on the other hand, is for practical considera-
tions unlimited in this area as a large number of volunteers are interested in helping.
Given this situation, what would you recommend to the managers so that they can
maximize profit? How much labor will be required each year?

10. Again consider the wild game management example discussed in this chapter. Note
that the time value of money is ignored in this example. Assume a discount rate of
10% and make adjustments to the model and calculate the maximum discounted value
of profit at the end of five years.

11. The U.S. Forest Service needs an allocation plan for its forest firefighters in Florida.
It currently hires 200 experienced firefighters at the beginning of the year. The work-
load required in the forest varies from season to season as the firefighters not only
work directly on combating existing fires, but also in a variety of fire prevention activ-
ities. The estimated work requirement is as follows: 31,000 hours in the spring, 32,000
hours in the summer, 40,000 hours in the autumn, and 38,000 hours in the winter.
Approximately 10% of the firefighters leave at the end of each season, and new
trainees are hired. For each new trainee recruited, it takes 90 hours of experienced 
firefighters’ time to conduct training. An experience firefighter is expected to finish
170 hours of work during every season. A trainee usually does 100 hour of work due
to lack of experience. After one season, a trainee is considered an experienced fire-
fighter. However, about 20% of trainees leave after the first season. An experience
firefighter costs $6,500 per season. A trainee costs $3,500 per season. Formulate an
LP model to decide how many trainees the U.S. Forest Service should hire at the
beginning of every season to minimize total costs.

12. Consider Exercise 11, if the manager wants at least 200 forest firefighters to stay at
the end of year, what should the hiring plan be for the U.S. Forest Service?
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13. The State of Virginia is developing five forest protection sites. Each project has its
own required starting year and duration. The table below provides the basic informa-
tion about these projects.
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Ecosystem  
Cost Benefits

Year 1 Year 2 Year 3 Year 4 Year 5 ($ million) ($ million)

Project 1 Start End 4.5 0.050
Project 2 Start End 8.0 0.070
Project 3 Start End 14.0 0.135
Project 4 Start End 2.0 0.030
Budget ($ 2 4 2 6 7
million)

The Ecosystem Benefits score evaluates each project’s yearly contribution and calcu-
lates this contribution in dollar terms. Projects 1 and 4 must be finished within the dura-
tion period. For the other projects, they can be partially finished within budget limitation.
These protection sites can start functioning and realize partial annual benefits even when
unfinished. For example, if 10% of project 1 is completed in year 1 and the remaining
90% is completed in year 3, then the total benefits (measured in millions of dollars) that
can be calculated as 0.1 � 0.05 (year 2) � 0.1 � 0.05 (year 3) � (0.1 � 0.9) � 0.05
(year 4) � (0.1 � 0.9) � 0.05 (year 5) � 0.11 million dollars. Help the project coordi-
nator decide an optimal schedule for the projects that will maximize the total benefits
over five years.

14. Reconsider Exercise 13, what would be the best schedule if a constraint was added such
that at least 25% of each project was finished by the end of the five-year time period?

15. A fishery in Maine has about 120 tons of fish, including 30 tons of salmon, 50 tons
of tuna, and 40 tons of sardines. Every year, fishermen capture a certain amount of
fish and sell them to the market. Assume that in 2009, the market price for salmon
was $6.00 per kg, the market price for tuna was $5.00 per kg, and the market price
for sardines was $5.20 per kg. To maintain an ecological equilibrium, the fishery
manager would like to keep the amount of tuna less than twice the amount of
salmon. Suppose the overall average reproduction rate of these three fish is 12% per
year. The fishery manager would like to keep the expected amount of fish in the fish-
ery after five years to still be 120 tons. Additionally, the fishery manager would
like to have at least 12 tons of salmon, 25 tons of tuna, and 16 tons of sardines 
in the fishery at the end of the five years. Form an LP model to help the manager
find the optimal solution.

16. Paul is a farmer in Georgia and he is planning to grow rice, wheat, and cotton on his
farm. He has 100 hectares of land and 120,000 m3 of irrigation water to use. Farmer
Paul is planning to plant 30 hectares of rice, 40 hectares of wheat, and 30 hectares of
cotton this year. The first table contains the fully irrigated water demand, the maxi-
mum yield per hectare, and the expected profit per ton for these three crops. The ratios
of actual-to-maximum yield for each of these three crops under different irrigation
levels are shown in the second table. Help Farmer Paul find an optimal cropping
pattern so that he can maximize his profit for this year.
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Water Demand, Maximum Yield, and Profit by Crop

Water Demand Maximal Yield Profit 
(m3/ha) (tons/ha) ($/ton)

Rice 1,300 9 190
Wheat 1,200 12 180
Cotton 1,500 8 240
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Maximum and Actual Yield by Irrigation Percentage by Crop

Maximum Yield by Actual Yield  by 
Irrigation Level Irrigation Level (tons/acre)

100% 80% 60% 100% 80% 60%

Rice 100% 92% 78% 9.00 8.28 7.02
Wheat 100% 88% 80% 12.00 10.56 9.60
Cotton 100% 72% 69% 8.00 5.76 5.52

17. Farmer Paul has planted 30 hectares of rice, 40 hectares of wheat, and 30 hectares of cot-
ton this year as in Exercise 16. The current year’s planting period ends in the summer, and
Farmer Paul is planning for his cropping pattern for next year (starting from this summer).
For Paul’s farm, rice is an annual crop, and wheat, maize and cotton are seasonal crops.
Assume wheat can be planted in both winter and summer while maize can only be
planted in winter and cotton can only be planted in summer. The discounting factors with
respect to the predecessor crops are shown in the table below. In this case, a total of
180,000m3 of irrigation water is available. The subsequent table shows the fully irrigated
water demand, the maximum yield per hectare and the expected profit per ton for the
five crops. The final table contains the ratios of actual-to-maximum yield for each of
the five crops under different irrigation levels. Help Farmer Paul to find the optimal
cropping pattern for next year. In this exercise, consider winter wheat and summer wheat
as different crops. Note that it is possible that not all land will be used in each season.

Discounting Factors with Respect to Predecessor Crops

Predecessors

Rice (a) Wheat (w1) Maize (w2) Wheat (s1) Cotton (s2)

Rice (a) 1 0 0 0.9 0.8
Wheat (w1) 0.8 0 0 1 0.9
Maize (w2) 0.9 0 0 0.8 0.9
Wheat (s1) 0 1 0.8 0 0
Cotton (s2) 0 0.8 0.7 0 0

Water Demand, Maximum Yield, and Profit by Crop

Water Demand Max. Yield Profit
(m3/ha) (tons/ha) ($/ton)

Rice 1,200 8 $180
Wheat (w) 1,000 8 $180
Maize 1,200 9 $220
Wheat (s) 1,400 10 $170
Cotton 1,600 7 $280
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Maximum and Actual Yield by Irrigation Percentage by Crop

Maximum Yield by Actual Yield by Irrigation 
Irrigation Level Percentage (tons/hectare)

100% 80% 60% 100% 80% 60%

Rice 100% 90% 76% 1 0.9 0.76
Wheat (w) 100% 85% 72% 0.8 0.68 0.576
Maize 100% 72% 50% 1 0.72 0.5
Wheat (s) 100% 83% 73% 1 0.83 0.73
Cotton 100% 69% 56% 1 0.69 0.56
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18. Farmer Paul’s family can provide 1,600 hours of labor per year. The labor requirement
per hectares for the five different crops are as follows: 10 hours for rice, 7 hours for
winter wheat, 9 hours for winter maize, 9 hours for summer wheat, and 12 hours for
summer cotton. If all the other conditions are the same as in Exercise 17, help Farmer
Paul determine his optimal cropping pattern for next year. What is the optimal profit
of this problem? Compare the solution with Exercise 17 and describe the similarities
and differences that you find.

19. Compare the optimal solution for Exercises 17 and 18. Does the labor availability
become a constraint for the optimal cropping pattern? Conduct a sensitivity analysis
of the total labor available and explain the results. If Farmer Paul can hire at most 300
hours of labor from his neighbor at a cost of $12.00 per hour, what is the new optimal
cropping pattern?

20. The Gila River is a tributary of the Colorado River that runs through the city of Phoenix
from the south. The river is a major source of the city’s water, and the government has
a plan to expand the city’s development in the area along the river. A total of 100 acres
of land is projected to be needed for residential, business, and recreational use.
According to the plan, at least 20 acres of land should be designed for residential devel-
opment, 30 acres will be used for industrial development, and a recreational park will be
built on at least 10 acres. The initial investment cost for residential land is $8 million for
the first 20 acres of land and $300,000 for every extra acre of land thereafter. The initial
investment costs for industrial land and recreational land are $20 million and $12 mil-
lion, respectively, while the costs for additional land are $500,000 and $400,000 per
acre, respectively. An acre of residential land can yield a profit of $50,000 per year, and
the expected profits for industrial and recreational land are $120,000 and $150,000,
respectively. On average, every acre of residential land will use 20 m3 of water per
month, and every acre of industrial land and recreation land consumes 40 m3 and 25 m3

of water per month, respectively. The budget is $80 million, and the regulation of water
use from the Gila River is 40,000 m3. Set up an LP model to find the annual optimal
profit for this land development project.

21. Fertile Landscapes Associates (FLA) is a company that produces fertilizers for crop
use. They have just developed a new general fertilizer named Fertilizer A. Before
widely introducing Fertilizer A to the market, they are planning to do some research
on the efficiency and sales price of Fertilizer A. By selecting a sample of 50 farms,
FLA tested the efficiency of Fertilizer A under different cropping patterns and irriga-
tion levels. A 120-acre farm in Alabama was selected for the experiment. On this farm,
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rice can be planted on a yearly basis. Cabbage and maize can be planted in the win-
ter, and wheat and peanuts can be planted in the summer. The average amount of irri-
gation water that can be allocated to this farm is 220,000 m3. Water demand, profit,
and maximum yield for each crop are shown in the first table below. The second table
provides information about the maximum yield by irrigation level in percentage. The
third table shows the demand of Fertilizer A for each crop under different irrigation
levels and the effects on the maximum yield after Fertilizer A is used. This farm is
now planted with 50 acres of rice, 30 acres of wheat and 40 acres of peanuts. The fea-
sible cropping pattern for this farm is shown in the last table. The initial selling price
for Fertilizer A is set to be $12.00/kg. Evidence shows that a farm with 120 acres can
use up to 1,600 kg of fertilizer. Compare the maximum profit of the farm when
Fertilizer A is used and not used. Give a range for the selling price in which the use
of Fertilizer A is still profitable for this farm.
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Water Demand, Maximum Yield, and Profit by Crop

Water Demand Maximal Yield Profit 
(m3/acre) (tons/acre) ($/ton)

Rice (a) 1,200 12 190
Cabbage (w1) 1,100 10 180
Maize (w2) 1,200 11 190
Wheat (s1) 1,300 10 180
Peanuts (s2) 1,800 8 260

Maximum Yield by Irrigation Percentage by Crop

Maximum Yield by Irrigation Level

100% 80% 60%

Rice (a) 100% 90% 82%
Cabbage (w1) 100% 82% 72%
Maize (w2) 100% 78% 56%
Wheat (s1) 100% 83% 75%
Peanuts (s2) 100% 72% 56%

Demand and Effects of Fertilizer A for each crop in different irrigation

Fertilizer Demand (kg) Utilization of Fertilizer A

100% 80% 60% 100% 80% 60%

Rice (a) 60 50 42 120% 120% 115%
Cabbage (w1) 70 60 52 120% 110% 106%
Maize (w2) 65 57 50 118% 112% 102%
Wheat (s1) 80 68 55 115% 110% 105%
Peanuts (s2) 70 56 45 130% 120% 105%
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22. Global climate change models frequently suggest that some areas will experience
changes in the levels of expected rainfall. Assume that for this Alabama farm, these cli-
mate models estimate that less rainfall will occur such that the water demand for each
of the crops is going to increase by 50% as more irrigation water is needed. Assuming
that farm can still obtain 220,000 m3 of irrigation water what is the maximum profit
from the farm when Fertilizer A is used and not used? Provide the selling price for the
use of Fertilizer A given this situation.

23. Imagine that you are the Executive Director of a non-profit conservation group named
the Pangaea Conservancy, which has a budget of $10 million to purchase land from
private landowners so that these lands can be permanently protected. The six parcels
available for purchase are shown in light gray in the figure below, labeled A–F.
Pangaea already has two protected national parks, which are shown in this figure as
dark gray areas. Ecologists and conservation professionals from the Pangaea
Conservancy have evaluated each of the available parcels and assigned each with a
parcel-specific ecological benefit score, as shown in the table below, where a higher
score indicates a higher ecological benefit. As the Executive Director, which parcels
would you recommend that the Pangaea Conservancy acquire? Why?
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Feasible Cropping Pattern

Predecessors

None Rice Cabbage Maize Wheat Peanuts

Rice (a) 0 1 0 0 0.9 0.8
Cabbage (w1) 0 0.8 0 0 1 0.9
Maize (w2) 0 0.9 0 0 0.8 0.8
Wheat (s1) 1 0 1 0.9 0 0
Peanuts (s2) 1 0 0.7 0.8 0 0

F

E

D

B
C

A

Parcel ID

A
B
C
D
E
F

Ecological Score

2
5
4
6
2
9

Cost ($m)

$6
$3
$2
$6
$3
$4
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24. Most conservation organizations and government agencies in the United States and
throughout the world use what is called “Benefit Targeting” (also referred to as “Rank-
Based Models”) to select which parcels to acquire for conservation (Messer and Allen
2010). With Benefit Targeting, the organization prioritizes the parcels based solely on
the parcels’ benefits—in this case the Ecological Score—and then acquires the high-
est ranked parcel first, the second highest parcel second, and so forth, until the budget
is exhausted. Assume that the Pangaea Conservancy uses the Benefit Targeting
approach to solving Exercise 23. Which parcels would it select? Comment on whether
these parcels are similar to or different than the selections you recommended in
Exercise 23. In your comparison of the selected parcels, evaluate a number of criteria
including the total ecological score achieved, the total cost, the average values of the
selected parcels, and the spatial location of the parcels.

25. Environmental economists have raised concerns about the use of Benefit Targeting,
as this method does not take into account the costs of the selected parcels except
when determining whether there are sufficient funds. As an alternative, econo-
mists often have recommended that the selection be done based on benefit–cost
ratios, where the parcel with the highest ratios should be acquired first, the parcel
with the second highest ratio should be acquired second, and so forth, until the
budget is exhausted. This technique is frequently referred to as Cost Effectiveness
Analysis or Benefit-Cost Targeting. A parcel’s benefit-cost ratio is calculated by sim-
ply dividing its benefit score by its costs. For example, Parcel A would be assigned
the value of 0.33, as its ecological score of 2 is divided by its cost of $6 million.
(Note, to facilitate interpretation, the ratio is often multiplied by a large number. 
As long as the same large number is used for each parcel, then this multiplication
does not change the overall results). Given the same information that you used in
Exercises 23 and 24, which parcels would the Pangaea Conservancy select if it used
Cost Effectiveness Analysis? Comment on whether these parcels are similar or dif-
ferent than the selections you recommended in Exercise 23 and the parcels selected
by Benefit Targeting in Exercise 24. In your comparison of the selected parcels, eval-
uate a number of criteria including the total ecological scores, the total cost, the aver-
age values of the selected parcels, and parcels’ spatial location. Given the results
from Exercises 23, 24, and 25, what method of selection would you suggest that the
Pangaea Conservancy use? Why?

26. The Pangaea Conservancy is considering protecting another area. This area already
has four protected areas, shown below in dark gray. In this area, the Pangaea
Conservancy has budgeted $25 million to purchase land from private landowners so
that it can permanently protect these areas. The 12 parcels available for purchase 
by the Pangaea Conservancy are lettered from A-L below and are shown in light gray.
The Pangaea Conservancy has used a new and improved benefit assessment tech-
nique which calculates two benefit scores as shown below.7 For both of these
measures, the higher the score signifies the higher the quality. Assuming that the
Pangaea Conservancy considers the ecological score and the scenic value to be of
equal importance, which parcels would you recommend that it acquire if it wants to
use Benefit Targeting? Describe the selected parcels.
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27. Given the information provided with Exercise 26, identify the parcels that the Pangaea
Conservancy would select if it used Cost Effectiveness Analysis. Discuss these results
in comparison to the results of Exercise 26.

28. Given the information provided in Exercise 26, identify the parcels that the Pangaea
Conservancy would select if it used binary interger programming. The binary vari-
ables should be either 0 (not selected) or 1 (selected), and can be multiplied by the
original environmental benefit scores to calculate the overall benefits of the selected
parcels. For example, if Parcel A is selected, then by multiplying the Total Benefits
score of 226 by 1, the entire amount can be added into the aggregate Total Benefits cal-
culated for the selected parcels. If Parcel A is not selected, then by multiplying the
Total Benefits score by 0, makes the resulting value zero. Discuss these results in com-
parison to the results of Exercises 26 and 27.

29. The Board of Directors for the Pangaea Conservancy are concerned that the aggregate
ecological scores are lower in the analysis than desired. They would like to see that the
selected parcels achieve a minimum value of 500 for the Ecological Score. Which
method—Benefit Targeting, Cost Effective Analysis or Binary Integer Programming—
is best able to solve this problem? Using your preferred technique, identify a solution
that addresses this concern while continuing to maximize the weighted total of the eco-
logical score and scenic values given a budget of $25 million. Discuss the advantages
and disadvantages of adding this type of minimum value threshold.
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H

L

G F

E

K

I

C
DB

J

A

Parcel ID Ecological Score Scenic Value Total Benefits Cost ($m)

100
100
130
150
80

140
110
50
60
15

150
75

126
143
130
60

185
140
95
60
25
10

150
75

226
243
260
210
265
280
205
110
85
25

300
150

$4.50
$5.00
$6.00
$5.00
$6.50
$7.00
$7.00
$6.50
$9.00
$4.50

$12.00
$8.00

A
B
C
D
E
F
G
H
I
J
K
L
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7
Integer and Binary Programming

While linear programming (LP) is one of the more widely used problem-solving approaches
in quantitative methods, there are cases where the assumptions of LP may be too restrictive
and unrealistic to apply to the problem at hand. For instance, the assumption of divisibility
may not be appropriate for many capital budgeting problems, where the decision may
involve determining investment decisions on a variety of projects. In this case, the level of
many of the decision variables are required to take on only integer values, which violates
the assumption of divisibility. Likewise, the assumptions of additivity and proportionality
may not be reasonable for some applications. If, for example, there is economies of scale in
production, then LP may not be an accurate way to model the industry’s production tech-
nology. Furthermore, the assumption of certainty of all parameters is usually unrealistic for
crop farmers. These farmers face uncertainty in virtually all the parameters of their decision
problem, including prices, yields, availability of field time, and others. This section of the
book examines mathematical programming models that relax these assumptions.

So far in this book, we have concentrated on models assuming that the decision variables
are perfectly divisible. However, in reality, decisions are often constrained to be integers.
For example, when deciding to harvest a tree, generally a forester must cut down the entire
tree, not just a fraction of the tree. The allocation of seafood harvest quotas to different fish-
ing operations cannot be fractional amounts. Obviously, a quota system cannot allow the
catching of 107.54 lobsters, 33.33 crabs, and 255.79 tuna. In most cases, integer activity
values are the most common units for decision making, and examples are abundant through-
out the areas of agricultural, natural resource, and environmental economics, such that most
decision problems are characterized by activities that should be integer values.

One way to achieve integer values is to formulate the problem as an LP model and then
round off the optimal decision variables. This may cause two problems, however. First,
rounding creates uncertainty that this will give the optimal solution. Second, the rounded-
off integer solution may actually be infeasible, even though the LP solution is feasible.
Infeasibility in maximization problems may occur if activities are rounded up; in mini-
mization problems it may occur if activities are rounded down. To deal with such poten-
tial problems, integer programming (IP) has been developed.

Scientists began working on IP algorithms in the early 1960s. Thus, initially IP appli-
cations were relatively slow due to the large computational requirements that even
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modest IP problems require. However, with the dramatic increase in computer power,
most IP problems can be solved within reasonable time allowances. Despite these
improvements, it should be stressed that IP should only be used whenever the assump-
tion of perfect divisibility is clearly inappropriate as requiring integer solutions adds
another constraint that limits the feasible space and potentially reduces the value of the
objective function.

Integer programming is basically the same as LP, with the exception that some or all
variables are restricted to be integers. Integer programming can be all or mixed; all-integer
programming means all decision variables are constrained to be integers, while mixed-
integer programming means that at least one decision variable is constrained to be an
integer and at least one activity is divisible.

In this section, the basic concepts underlying IP are presented. Specifically, the most
efficient IP solution procedure to date, known as the branch-and-bound method, is exam-
ined. This is followed by a discussion of binary linear programming and several impor-
tant applications of IP.

7.1 BACKGROUND ON INTEGER PROGRAMMING

Consider the following LP problem where H-Bolt, a manufacturer of automobile batteries,
is deciding how many batteries they should make in the next week. Small batteries are used
in gas-electric hybrid engines for cars and generate $4,000 profit each, whereas larger bat-
teries are designed for plug-in electric cars and generate 50% more profit—$6,000 each.
The smaller batteries used in gas-electric hybrid cars are frequently referred to as “nickel
metal hydride” batteries due to their reliance on nickel, while the larger batteries designed
for plug-in electric batteries are referred to as “lithium ion” batteries due to their reliance
on lithium.

In this example, each small battery is manufactured with 0.5 pounds of nickel, 2 pounds
of lithium, and 97.5 pounds of other metals. In contrast, each large battery requires 
20 pounds of lithium and 136.5 pounds of other metals. In any week, H-Bolt can obtain 
2 pounds of nickel, 70 pounds of lithium, and 682.5 pounds of other metals. If we assume
that no more of the metals can be purchased during that week and there are no limits on
the number of hybrid batteries that H-Bolt can sell this week, how many small and large
hybrid batteries should H-Bolt make this week to maximize its profit?

Max: Z � 4x1 � 6x2 (0)

s.t.:

0.5x1 � 2 (Nickel Constraint) (1)

2x1 � 20x2 � 70 (Lithium Constraint) (2)

97.5x1 � 136.5x2 � 682.5 (Other Metals) (3)

x1, x2 � 0 (Non-negativity Constraint) (4)

The optimal solution to this LP problem, which is shown graphically in Figure 7.1, is:

x1
* � 2.44, x2

* � 3.26, Z* � 29.30 (in thousands).
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Now suppose that the decision variables are restricted to be integers. A naive way of 
handling this would be to round off the optimal LP solution activities to their nearest inte-
gers. If you round off x1

* and x2
* in this case, the solution is:

x1
* � 2, x2

* � 3, Z* � 26.

The first question is: Is this solution feasible? To see, substitute x1
* � 2 and x2

* � 3 into the
three constraints. It should be obvious that this solution will be feasible since both activities
were rounded down rather than up.

The next question is: Is this an optimal integer solution? The answer to this question is
no. The optimal IP solution is:

x1
* � 4, x2

* � 2, Z* � 28.

The value of the optimal solution for a maximization IP model will always be less than or
equal to the value of the optimal solution of its non-integer LP counterpart. For minimiza-
tion problems, the reverse is true. This is due to the fact that IP adds an additional
constraint to LP.

The feasible region to an integer linear program is found in two steps:

1. Graph all constraint lines and find the border where all constraints are satisfied. This
is exactly the same as before.

2. The feasibility region corresponds to all integer values lying within the feasible region
determined in step 1.

Because IP violates the standard LP assumption of perfect divisibility, the simplex
method could not be applied to IP to obtain an optimal solution. However, as will be
shown shortly, the simplex method plays an integral part in obtaining the optimal IP
solutions.

7.2 THE BRANCH-AND-BOUND SOLUTION PROCEDURE

The branch-and-bound method uses the simplex procedure along with an iterative
process which resembles a decision tree to solve an IP problem (see Figure 7.2). To illus-
trate this procedure, consider an IP problem where all of the activities must be integers.
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x1
* � 2.44

x2
*   � 3.26
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Z � 4x1 � 6x2

0

Figure 7.1 Graphical solution to H-Bolt example.
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For instance, imagine that the government is going to provide subsidies for renewable
energy sources. The government has a budget of $6,666,000, and it is considering pro-
viding subsidies to two different energy production sources: solar power panels (x1) and
wind power turbines (x2). The government has determined that due to the higher efficien-
cies involved with wind power, the public benefits of wind power ($6 million) are twice
as high as the benefits of solar power ($3 million).

In order to get private investments in the various energy sources, they will need to get 
$900,000 for each wind power plant and $600,000 for each solar power plant. The government
has also agreed to provide $560,000 to help build the smart grid transmission lines necessary
to reach these new energy sources, which cost 10 times more for wind power ($160,000) than
solar power ($16,000). Solar power plants can be built close to the existing energy infrastruc-
ture, but wind power plants need to be placed in locations that receive high winds, which are
often located in remote areas far removed from the existing infrastructure. Finally, due to the
concerns that environmentalists raised about wind power’s potential impacts on migratory
birds, they have forbidden any more than four new wind power plants to be built. If the gov-
ernment agency seeks to maximize public benefits given its objective function, subsidy budget,
transmission, and total construction constraint, the LP problem is as follows:

Max: Z � 3x1 � 6x2 (0)

s.t.:
600x1 � 900x2 � 6,666 (1)

16x1 � 160x2 � 560 (2)

x2 � 4 (3)

x1, x2 are integers (4)

x1, x2 � 0 (5)

To start off the branch-and-bound procedure, the LP equivalent of the problem must be
solved. This step is sometimes called initialization.

The LP solution to this problem is Z* � 37.5 (in millions), x1
* � 6.89, x2

* � 2.80. Note
that both activities in this solution are non-integers; hence the solution violates the integer
constraint specified above.
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x1 � 9

x2 � 3x2 � 2

x1 � 8

Z*(upper) � 36.3, x1
*   � 8.11,

 x2
*  � 2

Z*(upper) � 36, x1
*   � 8,

 x2
*  � 2

Z*(upper) � 37.5, x1
*   � 6.89, x2

*  � 2.80

Z*(lower) � 30, x1
*   � 6, x2

*  � 2

Z*(lower) � 33,  x1
*  � 5,

x2
*  � 3

Z*
 � 35.4,  x1

*   � 9,  x2
*  � 1.4

Figure 7.2 Decision tree for alternative energy example.
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From a property stated earlier in this section, it is known that the optimal IP solution can
never exceed the optimal LP solution. Hence, 37.5 becomes the upper bound (UB) for
this problem as it is the optimal LP objective function value.

A lower bound (LB) for the optimal IP should be determined by rounding down all
optimal LP activities to the nearest integer values, and by substituting this value into the
objective function.1 In this case, the LB is 30 since, 3(6) � 6(2) � 30. Although we have
not yet determined the optimal IP solution, we have established a lower and an upper
bound for what the optimal IP objective function value can be. That is, now the optimal IP
solution is known to have an objective function value between 30 and 37.5. This informa-
tion is useful because if this range is relatively small, then this process could be stopped at
this point, and the LB solution could be used as a “nearly optimal solution.” While that
solution would not be optimal, it may be acceptable, especially considering the amount of
work that is necessary in finding the true optimal IP solution.

If the process is stopped here, then it would be possible to compute a “maximum per-
centage error” (MPE), which gives the maximum possible error (in objective function val-
ues) that is possible if the LB is used instead of the true IP optimal solution. The maximum
percentage error formula is equal to:

In this case, the maximum percentage error is 20% because:

This formula implies that if the current all-integer solution found by rounding down the
initial LP solution is used, then the value of that objective function would be at most 20%
lower than the value of the true optimal IP solution.2 If this is not acceptable, then proceed
to the next phase of the branch-and-bound procedure.

The next phase is called branching. To branch, use the following rule:
Using the initial LP solution, choose the activity value that is the furthest away

from being an integer value to branch on.
In this case, x2

* � 2.8 is selected. For the optimal IP solution, x2 will either be less than
or equal to 2, or � 3 since it is restricted to being an integer. This suggests that branch 1
should be based on the initial problem modified by including the structural constraint x2 �
2, and branch 2 should be based on the initial problem modified by including the structural
constraint x2 � 3.

Branch 1 is the following LP:

Max: Z � 3x1 � 6x2 (1.0)

s.t.:

600x1 � 900x2 � 6,666 (1.1)

16x1 � 160x2 � 560 (1.2)

x2 � 4 (1.3)

MPE
.

.
%.�

37 5 30

37 5
100 20

�
� �

MPE 100.�
UB LB

UB

� 
  �  
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1In the case of minimization problems, generally one should round up all activities instead of rounding down.
2The maximum percentage error formula for minimization problems is the same as it is for maximization
problems. However, in this case, the UB is not as “good” as the LB since smaller objective function values
are preferred to larger values.
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x2 � 2 (1.4)

x1, x2 � 0 (1.5)

The optimal solution for branch 1 is: Z* � 36.3, x1
* � 8.11, x2

* � 2.
Branch 2 is the following LP:

Max: Z � 3x1 � 6x2 (2.0)

s.t.:

600x1 � 900x2 � 6,666 (2.1)

16x1 � 160x2 � 560 (2.2)

x2 � 4 (2.3)

x2 � 3 (2.4)

x1, x2 � 0 (2.5)

The optimal solution for branch 2 is: Z* � 33, x1
* � 5, x2

* � 3.
Notice that x2 is an integer value for both branch solutions. The value of the objective

function for the first branch is a UB for all solutions that include the structural constraint
x2 � 2 since this is an LP solution. Also, the value of the objective function for the second
branch is a UB for all solutions that include the structural constraint x2 � 3 since it is an 
LP solution.

The next step is to compute a new UB using the following rule:
The new UB will always be the highest objective function value of the LP problem

for the current branches.
In this case, the UB will be the larger of branch 1 and branch 2 objective function val-

ues. Since the first branch has a higher objective function value, its value (36.3) becomes
the new UB. What about the LB?

The LB value will always be the highest objective function value for the most recent
all-integer solution.

Recall that the original LB was 30. However, note that the second branch solution is also
an all-integer solution that has a higher objective function value of 33. Consequently, the
new LB becomes 33. The new maximum percentage error can now be calculated:

After one iteration the maximum percentage error has been reduced from 20% to 9.1%. If
the new maximum percentage error is acceptable, the process could be stopped at the cur-
rent LP solution of x1

* � 5, x2
* � 3, Z* � 33.

The stopping rule for when the branch-and-bound method reaches the optimal IP solu-
tion is as follows:

The optimal IP solution has been found whenever the iteration results in the UB
being equal to the LB, in which case the maximum percentage error is zero.3

MPE
.

.
. %.�

� 
� �

36 3 33

36 3
100 9 1
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3For complicated problems that may require a long time to solve, you may consider establishing cut-off rules
other than having the maximum percentage error of zero. However, in general, it is best to initially set the Solver
Tolerance to zero and to allow some small level of error.
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In this case, since the UB is larger than the LB, the process needs to continue in order
to find the true optimal IP solution. Since the first branch has a higher objective function
value, branch from this problem. Because x2 is an integer in the first branch solution, the
next two branches will be based on adding the constraints for x1 which is not currently an
integer. As the current value of x1 is 8.11, the third branch will be identical to the first
branch, except that we add the structural constraint x1 � 8. Similarly, let the fourth branch
be the same as the first, except that we add the constraint x1 � 9. These two additional
branches and their solutions are shown below.

Branch 3 is:

Max: Z � 3x1 � 6x2 (3.0)

s.t.:

600x1 � 900x2 � 6,666 (3.1)

16x1 � 160x2 � 560 (3.2)

x2 � 4 (3.3)

x2 � 2 (3.4)

x1 � 8 (3.5)

x1, x2 � 0 (3.6)

The optimal solution for the branch 3 is: Z* � 36, x1
* � 8, x2

* � 2.
Branch 4 is:

Max: Z � 3x1 � 6x2 (4.0)

s.t.:

600x1 � 900x2 � 6,666 (4.1)

16x1 � 160x2 � 560 (4.2)

x2 � 4 (4.3)

x2 � 2 (4.4)

x1 � 9 (4.5)

x1, x2 � 0 (4.6)

The optimal solution for branch 4 is: Z* � 35.4, x1
* � 9, x2

* � 1.4.
Clearly, the branch 3 solution is superior to the branch 4 solution because it has a higher

objective function value. Therefore, the branch 3 solution becomes the new UB. In addi-
tion, branch 3’s objective function value of 36 becomes the new LB since it is the most
recent all-integer solution. Is branch 3 the optimal solution? The answer is yes because the
UB and LB solutions are equal.

To generalize, the following steps illustrate the logic behind the branch-and-bound
method.

1. Set up the problem as an LP without integer restrictions to initialize the problem and
to compute the original UB.

2. If the optimal solution is all integers, then stop because the optimal IP solution is equal
to the optimal LP solution.

254 PART 2 RELAXING THE ASSUMPTIONS OF LINEAR PROGRAMMING

c07.qxd  11/29/10  4:04 PM  Page 254



3. If the optimal solution is not all integers, then round down (for a maximization
problem) all non-integer values, and compute the LB. The maximum percentage error
can then be computed, that is:

4. Stopping Rule: If the UB is equal to the LB, then the solution is optimal with the value
equal to the lower and upper bound value. Stop when this condition is achieved.

5. If the UB is greater than the LB, then branch on the LP with the highest objective
function value. If this is immediately following the initial LP, then branch on the non-
integer variable that is the furthest away from being an integer. Create two branches
for the variable, one with xi � xii and the other with xi � xii � 1, where xii is the inte-
ger value of xi.

6. Solve each branch as an LP problem without the integer restriction.

7. Recompute the upper and LBs. The UB is the LP solution with the largest objective
function value for which there are no branches. The LB is the most recent (largest val-
ued) all-integer solution.

8. Go to step 2 and continue the process until you have satisfied the stopping rule.

7.3 MIXED-INTEGER PROGRAMS

The branch-and-bound method is also applicable to mixed-IP. The procedures are essen-
tially identical, with the exception that the LB values are calculated using only integer val-
ues for the variables constrained to be integers. To illustrate, suppose that only x2 in the
previous example is constrained to be an integer. That is:

Max: Z � 3x1 � 6x2 (0)

s.t.:

600x1 � 900x2 � 6,666 (1)

16x1 � 160x2 � 566 (2)

x2 � 4 (3)

x2 is an integer (4)

x1, x2 � 0 (5)

Using the branch-and-bound method, once again start off with the initialization phase, where
the problem is solved as an LP. The LP solution is: Z* � 37.5, x1

* � 6.89, x2
* � 2.80.

The LB is computed next. However, this time substitute x1 � 6.89 and x2 � 2 into the
objective function to get the LB since x1 can be a real number. Therefore, the LB in 
the case of mixed-IP will always be greater than or equal to the LB for its all IP counter-
part. In this case, the LB is 32.67 (recall that the equivalent LB for the all-IP was 30).
Using the UB and LB values, the maximum percentage error for this problem is 12.9%.

Therefore, branch only on the x2 variable for this problem. The first and second branches
are identical to the case before.

MPE 100.�
UB LB

UB

� 
  �  
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Branch 1 is the following LP:

Max: Z � 3x1 � 6x2 (1.0)

s.t.:

600x1 � 900x2 � 6,666 (1.1)

16x1 � 160x2 � 560 (1.2)

x2 � 4 (1.3)

x2 � 2 (1.4)

x1, x2 � 0 (1.5)

The optimal solution to this problem is: Z* � 36.3, x1
* � 8.11, x2

* � 2.
Branch 2 is the following LP:

Max: Z � 3x1 � 6x2 (2.0)

s.t.:

600x1 � 900x2 � 6,666 (2.1)

16x1 � 160x2 � 560 (2.2)

x2 � 4 (2.3)

x2 � 3 (2.4)

x1, x2 � 0 (2.5)

The optimal solution to this problem is: Z* � 33, x1
* � 5, x2

* � 3.
The new UB is given by the value of the branch 1 objective function since it is larger

than the branch 2. The new LB is also given by the branch 1 objective function because
it represents the highest value solution that restricts x2 to be an integer. Since the UB is
equal to the LB, branch 1 represents the optimal mixed-IP solution. Comparing the solu-
tion to this problem to the solution to the all-integer problem reveals that the mixed-
integer solution yields a higher objective function value than the all-integer solution.
Again, this is due to the fact that the mixed-integer problem is less constrained than the
all-integer problem.

It should be clear that mixed-IP problems are easier to solve than all-IP problems.
Consequently, only the activities that are absolutely restricted to being integers should be
constrained. All other activities should not be constrained to be integers.

7.4 SOLVER’S INTEGER AND BINARY PROGRAMMING OPTIONS

Using the branch-and-bound procedure, Solver can handle both all-IP problems and
mixed-IP problems. To invoke IP, additional constraints need to be added in the Solver
dialogue box. To activate IP in Solver, first highlight the decision variable(s) that should
be constrained to an integer value and then click the “Constraints” folder. Then use the
drop-down menu to select “int” to signify an integer constraint. As shown in Figure 7.3,
this can be accessed in the Solver dialogue box where we have previously adjusted the
inequality constraints.
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Solver can also handle a further restricted class of IP problems called binary inte-
ger programming. This means that all integer variables are restricted to be either 0 or
1. Solver also uses the branch-and-bound method to solve binary IP problems. To con-
strain a decision variable to be binary select the “bin” (for binary) option in the con-
straint section of the Solver dialogue box and then continue to solve as normal (see
Figure 7.3).

A key option with integer and binary programming is the Integer Tolerance parame-
ter, which sets the stopping rule for Solver. In earlier versions of Solver, the default
Integer Tolerance level was 5%, which means that Solver would stop if it found a solu-
tion with an objective function value that was within 5% of the optimal (nonconstrained)
solution. Given the improvements in computer speed and the capability of Solver, the
default setting is now 0% (Figure 7.4). We recommend you keep this setting at 0, since,
if a solution exists, this solution will be guaranteed to be optimal. If you are dealing with
more complicated problems that are more difficult to solve quickly, then the Integer
Tolerance can be increased, which should decrease the amount of time needed to find a
solution.

In the following sections, several applications of IP are demonstrated and are designed
to help you become more familiar with setting integer and binary constraints.

7.5 CAPITAL BUDGETING—A CASE OF WATER CONSERVATION

Capital budgeting involves the allocation of a finite amount of capital to alternative proj-
ects. Capital can mean money or it can mean human-made resources, such as machinery.
In business applications, capital is often defined as a type of money or financial measure,
such as cash, stocks, bonds, and savings. Economists generally define capital more
broadly. For example, McConnell, Brue, and Flynn (2010) defines capital as “all manu-
factured aids used in producing consumer goods and services. Included are all tools,
machinery, equipment, factory, storage, transportation, and distribution facilities.” (p. 10.)
Hence, the uses of capital budgeting may include monetary investments among alternative
projects, or the allocation of human-made aids to production or project alternatives.

The use of IP in capital budgeting is particularly appropriate as investments in projects
tend to be either all or nothing, rather than continuous. It is often unrealistic to assume
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Figure 7.3 Setting integer constraints in Solver.
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that fractional amounts of projects like constructing buildings, power plants, or highways
can be done.

Consider, for example, the following application. Suppose that a metropolitan water dis-
trict in the arid southwest is evaluating how much to invest in several projects, which will
yield different expected water conservation benefits over a five-year period. A summary of
the expected water savings, capital requirements (cost of investment), and available capi-
tal for each project is given below. The water district is considering investment in three
water savings projects: a public outreach campaign to encourage voluntary water conser-
vation (cons), a plan to identify and replace existing pipes that have leaks (pipes), and
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Figure 7.4 Integer tolerance in the Solver Options and Model Specification menu.
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a one-time program to offer subsidies for homeowners buying low flow toilets (lflow).
Additionally, the water district is required to fund the provision of new service to a recently
built housing project (home).

Water
Savings Cost of Investment

Project (acre-feet) Year 1 Year 2 Year 3 Year 4 Year 5

Conservation Campaign (cons) 500,000 100,000 110,000 75,000 60,000 60,000
Replace Bad Pipes (pipes) 600,000 100,000 100,000 100,000 100,000 100,000
Low Flow Toilets (lflow) 200,000 110,000 0 0 0 0
New Housing Project (home) �50,000 15,000 15,000 15,000 15,000 15,000
Available Capital 350,000 220,000 210,000 210,000 110,000

The linear (non-integer) programming problem is:

Max: Z � 500cons � 600pipes � 200lflow � 50home (0)

s.t.:
(Year 1 Cap) 100cons � 100pipes � 110lflow � 15home � 350 (1)

(Year 2 Cap) 110cons � 100pipes � 15home � 220 (2)

(Year 3 Cap) 75cons � 100pipes � 15home � 210 (3)

(Year 4 Cap) 60cons � 100pipes � 15home � 210 (4)

(Year 5 Cap) 60cons � 100pipes � 15home � 110 (5)

(Max cons) cons � 1 (6)

(Max pipes) pipes � 1 (7)

(Max lflow) lflow � 1 (8)

(Min home) home � 1 (9)

cons, pipes, lflow, home � 0 (10)

The objective function here is to maximize the expected water savings (measured in 
acre-feet) among four capital projects over the next five years. The first five constraints
restrict the investment requirements for all projects from exceeding a specific annual
budget for each year. The next three constraints insure that an investment is not made in
more than one of each of the projects; for instance, investments cannot take place in two
public outreach efforts promoting voluntary water conservation. Finally, the last struc-
tural constraint requires that the service to the new housing development, which actually
entails a loss of water, is conducted. Presumably this project is required by law, and the
water district must provide this service. As shown in Figure 7.5, the optimal solution to
this problem is:

cons* � 1, pipes* � 0.35, lflow* � 1, home* � 1, Z* � 860.

That is, the company should adopt the public outreach conservation program and the
subsidy program for low flow toilets, as well as providing service to the new housing
development. However, the solution says to invest only 35% in replacing leaky pipes.
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While replacing 35% of the leaking pipes may seem like a realistic outcome, it may not
make sense if a large part of the cost involves identifying which pipes are leaking in
the first place and acquiring the equipment to replace them. In this case, investing just
35% of the needed budget could yield no water savings as no pipes are actually
replaced.

The non-integer solution to this problem is unrealistic for two reasons. First, we are
not using IP, and consequently all solution activities are completely divisible. Second,
we are implicitly assuming that project revenue (capital) cannot be carried over
between years in this five-year period. If the model includes the ability to transfer cap-
ital that is not used in the present year for use in succeeding years, then there might be
enough money to invest in all four projects. In fact, with the optimal solution shown
above (with divisibility but no transfers), the first four constraints are slack yielding
unspent funds of $90,000, $60,000, $85,000, and $100,000, respectively, for the first
four years. Therefore, before the IP counterpart is introduced, this problem will be
modified by introducing transfer activities and then solved as an LP problem.

Transfer Activities and Capital Budgeting

To introduce transfer activities into the LP, let:

ci � Unused capital in year i with i � 1, … , 5.

Assuming that these new activities do not influence the value of the objective function,
these objective function coefficients should be assigned values of zero. So the new objec-
tive function is:

Max: Z � 500cons � 600pipes � 200lflow � 50home
� 0c1 � 0c2 � 0c3 � 0c4 � 0c5.

In the former model, any unused capital in a given year was discarded: that is, any slack
was not available for future years. Under the new formulation, it is assumed that if there is
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Figure 7.5 Solution for water conservation problem.
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slack in the first year, then it will become available for use in the next year. Hence, the first
constraint becomes:

(Year 1 Cap) 100cons � 100pipes � 110lflow � 15home � 1c1 � 350.

Rearranging this constraint by solving for c1 gives the definition of c1, that is:

c1 � 350 � 100cons � 100pipes � 110lflow � 15home.

Since c1 � 0, capital savings in Year 1 will always be non-negative. If c1 � 0, then the amount
of c1 becomes available for use in Year 2. To model this, we write the second constraint as:

(Year 2 Cap) 110cons � 100pipes � 15home � c1 � c2 � 220.

Rearranging terms, this constraint is equivalent to:

(Year 2 Cap) 110cons � 100pipes � 15home � 220 � c1 � c2.

That is, the amount of capital available for Year 2 is equal to the original amount (220) plus
the amount carried over from Year 1 (c1) minus the amount that will be carried over to
Year 3 (c2). The third, fourth, and fifth constraints are:

(Year 3 Cap) 75cons � 100pipes � 15home � c2 � c3 � 210,

(Year 4 Cap) 60cons � 100pipes � 15home � c3 � c4 � 210,

(Year 5 Cap) 60cons � 100pipes � 15home � c4 � c5 � 110.

These three constraints have the same interpretation as constraint (2). The new model is:

Max: Z � 500cons � 600pipes � 200lflow � 50home � 0c1 � 0c2 � 0c3

� 0c4 � 0c5 (0)
s.t.:

(Year 1 Cap) 100cons � 100pipes � 110lflow � 15home � c1 � 350 (1)

(Year 2 Cap) 110cons � 100pipes � 15home � c1 � c2 � 220 (2)

(Year 3 Cap) 75cons � 100pipes � 15home � c2 � c3 � 210 (3)

(Year 4 Cap) 60cons � 100pipes � 15home � c3 � c4 � 210 (4)

(Year 5 Cap) 60cons � 100pipes � 15home � c4 � c5 � 110 (5)

(Max cons) cons � 1 (6)

(Max pipes) pipes � 1 (7)

(Max lflow) lflow � 1 (8)

(Min home) home � 1 (9)

cons, pipes, lflow, home, c1, c2, c3, c4, c5 � 0 (10)

The optimal solution to this problem is:

cons* � 1, pipes* � 1, lflow* � 1, home* � 1, c1
* � 25, 

c2
* � 20, c3

* � 40, c4
* � 75, c5

* � 10, Z* � 1,250.
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The company can now adopt all four projects and increase its water savings by 390,000
acre-feet. Hence, in this example the need to use IP has been eliminated by allowing for
the possibility of unused capital in year t to transfer to the next year t � 1. The use of
transfer activities, however, may not always result in an all-integer solution.

Integer Programming Formulation of Capital Budgeting

To formulate the original problem (without transfer activities) as an IP problem, simply
eliminate constraints (6) through (8) and specify that all activities must be binary integers
(0 or 1). Figure 7.6 shows the revised formulation of this problem. The solution to this
problem is:

cons* � 1, pipes* � 1, lflow* � 1, home* � 1, Z* � 4,825.

Multiple Choice and Mutually Exclusive Constraints

Suppose that the public outreach campaign to encourage voluntary water conservation
(cons) actually has three possible projects that represent that amount and type of advertis-
ing that will be purchased as part of this effort. To help determine which of these three
options is best for the metropolitan water district given its other choices, additional binary
constraints can be added to the problem:

consi� 1 if original leaky project is adopted for i � 1,2,3; 0 otherwise.

Also, assume that only one of these three projects can be selected. To reflect this, the fol-
lowing multiple choice constraint is added:

cons1 � cons2 � cons3 � 1.

Since cons1, cons2, and cons3 can either be 0 or 1, this constraint will cause only one proj-
ect to be selected. For example, if cons2 � 1, then:

cons1 � 1 � cons3 � 1.
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Figure 7.6 Revised problem formulation for water conservation problem, transfer and capital
budgeting.
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Solve for cons1 yields:

cons1 � 1 � 1 � cons3, or

cons1 � 0 � cons3.

The only possible value for cons1 and cons3 is zero, if the binary requirement and non-
negativity are to hold. Note also that this constraint requires that one public outreach effort
must be adopted. If you wanted to constrain the problem so that at most one public out-
reach project is adopted (which includes the possibility of no public outreach projects in
the solution), then the constraint is:

cons1 � cons2 � cons3 � 1.

This is called a mutually exclusive constraint. Alternatively, constraints can be used to
require that at least one project be selected.

cons1 � cons2 � cons3 � 1.

Binary constraints can also be used in a number of other ways: for instance if project 3 can
only be done if project 2 is also done, the constraint is cons3 � cons2.

7.6 DISTRIBUTION SYSTEM DESIGN

In the transportation model introduced in Chapter 5, we derived the optimal shipment
flows given fixed locations and amounts of supply and demand. Integer programming can
also be used to find optimal plant locations.

Consider a planning problem in which m potential plant locations with plant capacities si

and n retail outlets with demand dj have been identified. Recall that in this problem, the
objective is to select the amount to ship from site i to j, xij, with transportation costs cij. Now
the problem is to minimize transportation and plant costs and find optimal plant locations.

Let yi � 1 if a plant is constructed on site i; 0 otherwise,

fi � fixed cost of constructing plant; with capacity si.

We need a constraint that specifies that nothing can be shipped from site i if a plant is not
constructed. This is accomplished by the following constraint:

If site i is not selected, then yi � 0, and the sum of all shipments from i must be zero. If
site i is selected, then yi � 1 and the sum of all shipments from i cannot exceed the capac-
ity of i (si). Additionally, another term must be included in the objective function to repre-
sent the fixed cost of plant construction, that is:

fi i
i 1

m

y
=
∑

x s yij
j 1

n

i i i m.
=

∑ � � �0 1 2, , ,…

x s yij
j 1

n
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The complete model is:

(0)

s.t.:
(1)

(2)

xij � 0 for all i and j (3)

yi � 0, 1 i � 1, 2, … , m (4)

A Distribution System Design Example

A person is thinking about going into the organic yogurt distribution business. The person has
solicited business from four supermarkets located in different geographical areas: Locations
A, B, C, and D. There are six possible plant sites to rent for organic yogurt factories: Locations
1, 2, 3, 4, 5, and 6. The weekly costs of renting out the factories are: $100 (Factory 1), $1,000
(Factory 2), $2,000 (Factory 3), $400 (Factory 4), $1,300 (Factory 5), and $1,000 (Factory 6).
The weekly output of organic yogurt from the factories is: 500 (Factory 1), 700 (Factory 2),
1,000 (Factory 3), 1,000 (Factory 4), 750 (Factory 5), and 700 (Factory 6). The demand from
each location is 500 cases of yogurt (Location A), 400 cases of yogurt (Location B), 600 cases
of yogurt (Location C), and 800 cases of yogurt (Location D). The transportation costs (per
case of yogurt) from each potential factory to each demand location are:

Demand Location

A B C D
Supply Location (cents/case of yogurt)

1 20 40 30 25
2 10 15 45 20
3 20 10 50 20
4 100 95 60 50
5 60 60 15 15
6 120 130 10 40

Assuming the objective is to minimize weekly factory and transportation costs, the IP
problem can be set up as follows:

Min: Z � 100s1 � 1000s2 � 2000s3 � 400s4 � 1300s5 � 1000s6 � 0.2x1A

� 0.4x1B � 0.3x1C � 0.25x1D � 0.1x2A � 0.15x2B � 0.45x2C

� 0.2x2D � 0.2x3A � 0.1x3B � 0.5x3C � 0.2x3D � x4A � 0.95x4B

� 0.6x4C � 0.5x4D � 0.6x5A � 0.6x5B � 0.15x5C � 0.15x5D

� 1.2x6A � 1.3x6B � 0.1x6C � 0.4x6D (0)

s.t.:

�500s1 � x1A � x1B � x1C � x1D � 0 (1)

�700s2 � x2A � x2B � x2D � x2C � 0 (2)

x dij
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�1000s3 � x3A � x3B � x3C � x3D � 0 (3)

�1000s4 � x4A � x4B � x4C � x4D � 0 (4)

�750s5 � x5A � x5B � x5C � x5D � 0 (5)

�700s6 � x6A � x6B � x6C � x6D � 0 (6)

x1A � x2A � x3A � x4A � x5A � x6A � 500 (7)

x1B � x2B � x3B � x4B � x5B � x6B � 400 (8)

x1C � x3C � x4C � x5C � x6C � x2C � 600 (9)

x1D � x2D � x3D � x4D � x5D � x6D � 800 (10)

s1, s2, s3, s4, s5, s6 � 0, 1 (11)

Non-negativity (12)

In the model, si denotes supply location i (i�1, … , 6), and xij denotes shipment from sup-
ply location i to demand location j.

The optimal IP solution for this problem is presented in Figure 7.7. The solution indi-
cates that factories 1, 2, 4, and 6 should be rented for yogurt production. These four sites
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Figure 7.7 Solution to the distribution system design example.

c07.qxd  11/29/10  4:04 PM  Page 265



are optimal given their location and rental costs. In addition, the solution shows the
seven routes that are optimal to minimize costs given the demands from the different
locations.

7.7 SENSITIVITY ANALYSIS IN INTEGER PROGRAMMING

Sensitivity analysis for IP is generally more critical than for LP, as a very small change in
one coefficient can lead to large changes in the value of the optimal solution, as well as
changes in the optimal activity values. The primary reason for these potential large
changes is the discontinuous nature of IP problems.

Consequently, effort should be dedicated to conducting sensitivity analysis on all key
parameters in IP models. This analysis shows that if the model is very sensitive (i.e., tiny
parameter changes result in substantial changes in the optimal solution), then the validity
of the model’s results could be questioned. This potential problem is particularly acute
when the accuracy of the parameters in the model is insufficient.

Unfortunately, due to the discontinuous nature of these problems, Solver does not pro-
vide a sensitivity report as it does with standard LP problems. Therefore, to conduct sen-
sitivity analysis, the Optimization Parameter tool offered by Solver should be used. This
automates the Parameter Analysis process, which can be used to perform sensitivity
analysis on IP models. This approach can also be used to extend sensitivity analysis for
linear programs beyond the reports discussed in Chapter 3 and automate Parametric
Programming in applications like the input supply and output demand derivation discussed
in Chapter 4.

Solver can quickly vary a parameter over a large range of possible values and report 
the optimization results for each value of the parameter. A cell that contains a parameter
in the Excel spreadsheet can be replaced with a PSI Optimization Parameter formula.
This formula defines a set of values over which that parameter may be varied. This set 
of values may be defined by the minimum and maximum values of an interval, or 
explicitly by referring to a range of cells containing different parameter values. The 
syntax for this function is “�PSIOPTPARAM(MinVal, MaxVal)” for the interval 
definition and “�PSIOPTPARAM(RangeRef)” for the range definition, where MinVal
and MaxVal define the bounds of the interval and RangeRef is a reference to a range of
values.

Once a cell is defined as a PSI Optimization Parameter, click on the Reports button, and
bring up the Optimization menu where the Answer, Sensitivity, and Limits Reports are
usually found. From this menu, clicking on the Parameter Analysis button will bring up
the Multiple Optimizations Report window, which should look similar to Figure 7.8. The
top-left pane offers a list of the decision variables and the objective function value, any of
which may be reported in the Parameter Analysis output. To track the value of an individ-
ual cell, click on its reference in the list and then click on the “�” button between the top-
left and top-right panes to move it to the top-right pane of the window. To add all the values
at once to the top-right pane, click on the “��” button.

The bottom-left pane of this window lists the defined PSI Optimization Parameter cells.
Click on the reference cell that should be tracked, and then click on the “�” button
between the bottom-left and bottom-right panes to move this reference cell to the bottom-
right pane of this window. The Major Axis Points field in the bottom-left of this window
specifies how many values in the interval defined for the PSI Optimization Parameter will
be used in the sensitivity analysis. For example, if the interval is from 0 to 10, then 11
major axis points are chosen, and in the sensitivity analysis the parameter will be varied
over 11 values: 0, 1, 2, … , 10. To generate a new Analysis Report click OK. Solver will
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then produce a report that lists all of the parameter values as well as the values of the
tracked variables for the corresponding optimal solution.

To illustrate how to do these reports, let us again consider the example presented earlier in
this chapter regarding alternative energy investments. In this situation, we found that the third
branch of the problem yielded the optimal solution of Z* � 36, x1

* � 8, x2
* � 2. Inspection of

the result shows that none of the constraints are binding in the optimal solution (Figure 7.9).
A reasonable sensitivity analysis in this case is to test how much the optimal solution would
change by varying the constraints by 	10%. As shown in Table 7.1, the results of the sensi-
tivity analysis show that the only constraint that affects the optimal solution with a change of
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Figure 7.8 The Multiple Optimizations Report window.
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plus or minus 10% is Constraint 1. When the value for this constraint is changed in this 10%
range, the optimal solution varies from 33 to 39. Thus, the sensitivity analysis suggests that of
the three constraints, Constraint 1 is the most binding.

7.8 RESEARCH APPLICATION: OPTIMIZING AGRICULTURAL LAND
PROTECTION IN DELAWARE4

Between 1990 and 2005, the population of the State of Delaware grew at a rate nearly
28% faster than the rest of the United States. Most of this population growth was accom-
modated by converting agricultural land to residential use. Due to the large population
growth and relatively small area, the American Farmland Trust designated the Mid-
Atlantic coastal plain, including all of Delaware to be “endangered” (American Farmland
Trust, 1997).

The Delaware Agricultural Lands Preservation Foundation (DALPF) was formed in the
early 1990s with the goals of preserving agricultural open space and supporting the agri-
cultural economy. The program traditionally receives more offers from landowners willing
to sell conservation easements on their agricultural lands than the DALPF program can
afford to acquire. According to the Delaware Department of Agriculture, as of 2009,
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Table 7.1 Sensitivity Analysis for the Alternative Energy Investments Problem

Constraint 1 Z Constraint 2 Z Constraint 3 Z

5,999.4 33 504 36 3.6 36
6,132.72 33 515.2 36 3.68 36
6,266.04 33 526.4 36 3.76 36
6,399.36 33 537.6 36 3.84 36
6,532.68 33 548.8 36 3.92 36
6,666 36 560 36 4 36
6,799.32 36 571.2 36 4.08 36
6,932.64 36 582.4 36 4.16 36
7,065.96 36 593.6 36 4.24 36
7,199.28 36 604.8 36 4.32 36
7,332.6 39 616 36 4.4 36

4This example is based on Messer and Allen (2010).

Figure 7.9 Optimal solution to alternative energy investments problem.
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DALPF had acquired easements on over 500 farms (of a total state population of 2,300
farms) consisting of nearly 91,000 acres (17.5% of the state’s 520,000 acres) for a total
cost of approximately $150 million.

To determine which lands it will acquire, DALPF selects parcels using a sealed-bid auc-
tion mechanism and purchases conservation easements on the selected properties. The
selection is determined by the highest percentage discount submitted by the landowner rel-
ative to the parcel’s appraised market value. For example, if the easement is appraised at
$1 million and a landowner offers a 40% discount, DALPF would pay the landowner
$600,000 for the easement.

This selection approach by DALPF is a variant of a “greedy agent” algorithm as it seeks
to acquire lands with the greatest discount until a constraint is met—in this case, the annual
program budget. This selection approach—hereto referred to as the DALPF Algorithm—
can be compared to a grocery shopper who buys a food item only because it is marked
down in price more than any other item. However, this selection process has potential
problems since no assurances exist that the item purchased, due to its high percentage dis-
count, will have the taste and/or nutrition attributes that the shopper likes. Likewise, prob-
lems can arise if the foods with the most deeply discounted prices are also the most
expensive (for instance, caviar or truffles) so that they are relatively more expensive, even
with the large discount, than other high-quality foods with a smaller percentage reduction
in price.

An alternative selection mechanism that is commonly used by conservation founda-
tions is the Benefit Targeting (BT) Algorithm. Like the DALPF Algorithm, BT is a
greedy agent algorithm except that instead of selecting the parcels being offered at the
highest discount, BT selects, in an iterative process, parcels that have the highest levels
of agricultural value until the budget is exhausted. Despite its widespread use in the con-
servation community, BT can lead to inefficient results from both an economic and
conservation perspective (see, e.g., Underhill (1994); Rodrigues et al. (2000); Rodrigues
and Gaston (2002); Azzaino et al. (2002); Messer (2006)). The source of the problem is
that a parcel’s price is only explicitly factored into the decision process to determine
whether there is enough money still available.

As shown in Messer and Allen (2010), substantial efficiency gains can be achieved
using binary LP. Their analysis used cost data from 509 willing sellers who had submitted
offers to sell conservation easements to DALPF in its first decade of existence. Benefit
information regarding agricultural suitability and the quality of the green infrastructure
(Figure 7.10) was derived from geographic information systems (GIS) data. Relative
weightings were determined through an Analytical Hierarchy Process involving 23 stake-
holders representing 18 private conservation partners and local, state, and federal govern-
ment agencies. The budget level was set at $93 million, approximately the total amount
spent by DALPF in its first decade.

As seen in Table 7.2, the DALPF and BT greedy agent algorithms and binary LP are
used to select acquisitions from the set of 509 parcels given a $93 million budget. The
DALPF Algorithm protected 65,683.4 acres with an aggregate agricultural suitability
score of 4,460,437 and an aggregate ecological services score of 1,736,429.5 The aggre-
gate results from the BT analysis were consistent with those of the DALPF Algorithm
in terms of the number of acres protected (71.5 acres fewer), and the aggregate agri-
cultural suitability scores were 1.3% higher. The most significant difference was that
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5Unlike number of acres, aggregate scores for LESA and Core GI are not necessarily intuitive to interpret since
they have been scaled by parcel size. However, the numbers are cardinal.
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BT Algorithm produced those results by selecting easements on 38.6% fewer farms, as
the average selected farm was 277 acres for BT compared to 170.2 acres for DALPF.

Binary LP produced more conservation benefits than either the DALPF or BT
Algorithms as it protected 447 farms (15.8% percent more than DALPF and nearly double
the number protected by BT) with the same $93 million budget. Binary LP also protected
20.5% more acres (13,446) and yielded higher levels of aggregate agricultural values—as
measured by Land Evaluation and Site Assessment (LESA) scores—and higher ecologi-
cal values—as measured by Core Green Infrastructure (Core GI) scores. Relative to the
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Figure 7.10 Map of Core Green Infrastructure areas in the state of Delaware.
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aggregate scores obtained by DALPF, these scores were 20.6% and 19.1% higher, respec-
tively. Similarly, in comparison to BT, binary LP protected 20.6% more acres and pro-
duced aggregate LESA and Core GI values that were 19.1% and 12.9% higher. More
importantly, these gains in conservation benefits did not occur by purchasing smaller
farms—in fact, the size of the average farm protected by binary LP was 7 acres (4.0%)
larger than the one protected by the DALPF Algorithm.

Calculations of the relative cost effectiveness, which measured the amount of the addi-
tional funds that would be needed for the DALPF and BT Algorithms to achieve an equiv-
alent number of acres (79,129.5) as binary LP with a $93.0 million budget, suggest that the
DALPF and BT Algorithms would have required an additional $20.7 million and $19.8
million, respectively.

7.9 RESEARCH APPLICATION: FARMLAND CONSERVATION WITH
A SIMULTANEOUS MULTIPLE-KNAPSACK MODEL

This research application introduces a multiple-knapsack binary IP model and shows how
in situations where there are multiple conservation programs, higher levels of benefits can
be achieved by developing a model that simultaneously considers all potential funding
sources and selects an optimal set of parcels for each program. The application of this
approach is farmland preservation in Baltimore County, Maryland. Baltimore County has
one of the 10 largest agricultural protection programs in the United States (Sokolow,
2006). According to staff estimates, they will have protected over 30,000 acres of farm-
land by 2006.

Baltimore County has gained recognition in the conservation community by being the
first conservation program to incorporate the concept of benefit-cost ratio targeting in its
selection of which agricultural land to preserve from a pool of willing sellers. Benefit-cost
ratio targeting has been a selection approach advocated by economists as a way of getting
improved aggregate benefit results that can approach the optimal results described above
with binary IP (Messer 2006).

According to Wally Lippincott, Baltimore County Land Preservation Administrator,
“After trying for years to balance price with farm quality using rank based methods, we
switched to optimization through benefit–cost ratio targeting. In the first three years,
Baltimore County has been able to protect an additional 680 acres for the same amount of
funds that would otherwise have been spent. This also translates into a savings of approx-
imately $5.4 million.”

Baltimore County staff seeks to preserve agricultural lands by receiving funds from a
variety of sources including the Maryland Agricultural Land Preservation Foundation
(MALPF), the State’s Rural Legacy Program, and direct financing through the County’s
own budget process. Interestingly, while these programs tend to share the definition of
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Table 7.2 Benefit Results

Number Aggregate Values

of Farms Total Cost Agricultural Ecological
Selection Algorithm Protected ($) Acres Suitability Services

DALPF 386 92,986,682 65,683.4 4,640,437 1,736,429
Benefit Targeting 237 92,997,985 65,611.9 4,701,728 1,831,548
Binary LP 447 92,999,225 79,129.5 5,597,928 2,067,438
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how to measure the benefits of agricultural land, they differ with respect to how much
they are willing to pay for it. In the case of MALPF, the program conducts independent
appraisals of the properties easement value (i.e., the non-agricultural value of the prop-
erty that the landowner could receive if she sold the land for residential or commercial
development). MALPF also asks landowners to provide a discount on this appraised
amount when they want to sell their easement to the program in exchange for increasing
the likelihood of being accepted. In contrast, for funds coming from Baltimore County’s
budget, the staff and an advisory board have developed a formula that determines the
maximum amount that the County will pay for the land based on the size of the parcel,
the type of soils on the property, and other factors. Thus, in any given year, the cost of
conservation for a particular parcel may differ depending on the program funding source.
Owners are aware of this discrepancy and therefore decide whether to submit their offer
to sell to one or both of the programs.

Traditionally, the selection method used by the staff and advisory board of Baltimore
County proceeds in a sequential manner where first selections are made for the MALPF
program. For the second phase of the selection process, the County selects among the
parcels that are not selected in the initial MALPF phase (and are still interested in being
considered for County funds) and the parcels that applied only for county funds. Similarly,
the remaining parcels are considered for a third phase, which represents the Rural Legacy
Program, and, in some cases, a fourth phase is added which includes end-of-year discre-
tionary funding from Baltimore County. This sequential approach fails to take advantage
of the disparity between the programs. Additionally, by making the selections sequentially,
Baltimore County cannot take full advantage of the remainder of program budgets, which
can frequently be large, given the costs of conservation traditionally range in the hundreds
of thousands of dollars per project.

The process of selection of parcels for conservation can be viewed as a classic 0-1
knapsack problem. The mechanism behind a knapsack model is to pick some of the
available items to achieve maximum total utility, while the total weight of the chosen
items must not exceed the stated limit of the knapsack. This research considers the sep-
arate conservation programs as separate knapsacks and then evaluates the overall bene-
fits that can be achieved by making the selection for each knapsack sequentially or
simutanously. The budget of each of the programs in the simultaneous case is taken as
the weight limit of the knapsack, and the conservation benefits are maximized using
binary IP.

The model specification for the sequential knapsack method is as follows. The decision
variables of the model are defined as xij �{0,1} where 0 denotes parcel i is not selected
and 1 denotes parcel i is selected in program j. The objective function seeks to maximize
the conservation benefit for conservation program j.
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where i�1, 2, … , I denotes an index for land parcels, j denotes an index for conservation
programs and also the order of program participation. In this simplified example, j�1
denotes the state MALPF program and j � 2, … , J denotes Baltimore County programs.
Additionally, vi denotes the conservation value for parcel i, bj denotes budget for program
j, cij denotes cost of parcel i appraised by program j, and v is the aggregate conservation
value, such that:

(4)

In contrast, the simultaneous multiple-knapsack model can be expressed as the following:

Max: (5)

s.t.: 

For all i (6)

For all j (7)

Note that for both models, a parcel may not be able to participate in all programs. If par-
cel i fails to participate in program j, then there is no xij in decision variables. Equations
2 and 6 imply that once a parcel is purchased, this parcel is not available for further con-
sideration, and a parcel need not be selected in any program.

This research used data from the applicants to Baltimore County for acquisition with
MALPF and/or County funding in 2008 and 2009. As shown in Table 7.3, the simulta-
neous multiple-knapsack model yields significant improvements in the overall conser-
vation outcome. For instance, in 2008, the simultaneous model would have protected
an additional 9.6% more conservation benefit and 7.2% more acres compared to the
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Table 7.3 Results of 2008 and 2009 Portfolios

Aggregate Amount
Conservation Parcels Spent

Benefit Acres Selected ($)

2008 Data
Simultaneous Model 134,649 2,016 29 10,728,994
Sequential Model 122,879 1,880 29 10,725,157

Improvement �11,770 �136
�9.6% �7.2%

2009 Data
Simultaneous Model 46,929 594 11 3,596,608
Sequential Model 43,744 568 10 3,560,051

Improvement �3,815 �26
�7.3% �4.6%
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achievements of the sequential multiple knapsack model. In 2009, 7.3% more conser-
vation benefit and 4.6% more acres would be protected. Thus in summary, by using the
simultaneous multiple-knapsack approach, Baltimore County could use the same finan-
cial resources and protect an additional 162 acres of high quality agricultural land val-
ued at approximately $1.1 million. Recall these benefits would be in addition to the
nearly 700 acres and more than $5 million Baltimore County had already received in
benefits by moving away from the benefit targeting and selecting a more optimal
approach.

SUMMARY

Real-world problems often involve integer solutions: for instance, hybrid battery produc-
ers cannot build half a battery, and many investment decisions require a commitment to
either do it or not do it (a form of a binary solution). The theory behind integer and binary
programming advanced a great deal with the introduction of the branch-and-bound algo-
rithm and other IP methods not discussed here, such as Gomory cuts and implicit enu-
meration. However, applications lagged behind due primarily to the absence of computing
power sufficient to drive large IP models. This situation has since changed a great deal.
While larger IP models can still be complicated and time consuming, advanced computers
have made it possible to solve more realistic integer problems without sacrificing much
with regard to speed.

This chapter introduced integer and binary programming and discussed how a variety
of problems could be set up to involve all-integer, mixed-integer, and binary solutions.
A simple example was provided that illustrated the procedures involved with the branch-
and-bound method and how it uses an iterative process to move from an initial set-up to
an optimal, feasible integer solution by identifying and comparing upper and lower
bounds.

A variety of problems were presented that illustrated the use of integer and binary pro-
gramming. These problems and research examples were related to hybrid battery choice,
water conservation investments, distributive system designs, and agricultural preservation.
This chapter also discussed how models can be constructed to include multiple choice or
mutually exclusive constraints, which can be used in the development of more sophisti-
cated models.

Finally, this chapter discussed how to solve integer and binary programming problems
using Solver and what model specifications, such as “Integer Tolerance,” are important for
finding optimal solutions. Additionally, this chapter discussed how to conduct sensitivity
analysis in the context of IP.
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EXERCISES

1. At every harvest season, the wine estate has to manage the transportation of grapes
from its three vineyards (denoted as v1, v2, and v3) to its two wineries (denoted as
w1 and w2). It is estimated that this year the total output from the three vineyards is
300 crates, 250 crates, and 350 crates, and stock capacity of the two wineries is
300 crates and 250 crates. Handling cost of shipments from each vineyard to each
winery is listed in the following table.

v1 ($/crate) v2 ($/crate) v3 ($/crate) Demand (crate)

w1 10 7.5 4.5 300
w2 5.5 7 6 250
Supply (crate) 200 250 350

Formulate the problem as an IP problem to minimize handling cost, and then solve it
in Solver.

2. Suppose in the previous wine estate case, in order to simplify the shipping pattern, the
owner of the wine estate would like that either all crates from one vineyard be fully
shipped to one winery or not at all, given the condition that the stock capacity of each
winery should be fully used. In the case that the output quantity from the vineyard is
greater than the stock capacity of winery, $3 of overstock fee will occur for each crate
over the stock capacity. Formulate the exercise as a binary programming problem and
solve it in Solver.

3. Solve the following problem using the branch-and-bound method.

Max: Z � 20x1 � 30x2 (0)

s.t.:

x1 � 5x2 � 20 (1)

2x1 � x2 � 115 (2)

x2 � 3.5 (3)

x1, x2 � 0 and integer (4)
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4. Solve the following problem using the branch-and-bound method.

Max: Z � 35x1 � 40x2 (0)

s.t.: 

8x1 � 12x2 � 5300 (1)

4.5x1 � x2 � 600 (2)

x1, x2 � 0 and integer (3)

5. Solve the following problem using the branch-and-bound method.

Max: Z � 6x1 � 3x2 (0)

s.t.:

3.42x1 � 4.15x2 � 14 (1)

3x1 � x2 � 70 (2)

1.4x1 � 25 (3)

x1, x2 � 0 and integer (4)

6. Solve the following problem using the branch-and-bound method.

Max: Z � 4x1 � 6x2 (0)

s.t.:
97.5x1 �136.5x2 � 682.5 (1)

2x1 � 20x2 � 70 (2)

0.5x1 � 2 (3)

x1, x2 � 0 and integer (4)

7. Solve the following problem using the branch-and-bound method.

Max: Z � 60x1 � 48x2 (0)

s.t.:
3x1 � 6.5x2 � 33.5 (1)

4x1 � 2.5x2 � 27.5 (2)

x1, x2 � 0 and integer (3)

8. A farmer wishes to invest $12,000 in one of the four crops A, B, C or D in the farm
so as to maximize its profit. The fixed cost of each crop and their revenues are sum-
marized in the table below. According to the market situation, the farmer decides to
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include the following principles: if C is planted, then D has to be planted; if A is
planted, then B cannot be planted.

Project A B C D

Price ($) 6000 5000 5000 4000
Value ($) 8000 7000 8000 6000

Formulate an integer program to select the best crop.

9. An international trade company is considering opening warehouses in four possible
states adjacent to the water: California, Texas, Louisiana, and South Carolina. The
company’s business is mainly importing latex around the world to supplement the
U.S. latex market. The four exporters are from Thailand, Indonesia, Mexico, and
Vietnam. Suppose each warehouse has to supply the U.S. market with at least 60 tons
of latex per week. The Thai exporter can supply 80 tons per week, the Indonesia
exporter can supply 70 tons per week, the Mexican exporter can supply 60 tons per
week, and the Vietnamese exporter can supply 40 tons per week. The shipping costs
per ton are shown below (in thousands of dollars).

From/To California Texas Louisiana South Carolina

Thailand 20 40 42 45
Indonesia 26 18 23 48
Mexico 18 15 18 35
Vietnam 24 50 45 50

Model the exercise as an IP problem to help decide the best shipping pattern that will
minimize the total cost of importing latex.

10. Reconsider the previous international latex trade example. Suppose the weekly fixed
cost of keeping each warehouse open is $7,000 for California, $4,000 for Texas,
$3,000 for Louisiana, and $3,500 for South Carolina. Moreover, only three sites will
be selected from the four possible locations. In order to minimize the total operation
cost, rebuild the exercise as a mixed-integer problem and solve it in Solver.

11. Using the example in Exercise 10, instead of selecting three sites out of four possible
locations, add the following conditions:

a. If the California warehouse is opened, the Texas warehouse must be opened.
b. At least two warehouses should be opened.
c. Either the Texas or Louisiana warehouse must be opened, but not both.

What are your additional constraints?

12. First Farm is an agricultural processer in Miami who supply mango smoothies to
restaurants at Miami beaches. They can import mangos from the Philippines or from
Mexico. Mangos from the Philippines cost $3.25 per case, and mangos from Mexico
cost $4.05 per case. They have a budget of $200 per month to invest in mangos. From
a survey, they found that in restaurants, customers prefer smoothies made with
Mexican mangos, which they have been able to sell for $3.99 each. Smoothies made
with mangos from the Philippines sell for $3.25 since customers don’t seem to like
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these as much. Making a smoothie from Mexican mangos takes about 1 minute while
from Filipino mangos, it takes 3 minutes. Employees make $12 per hour, so Mexican
mango smoothies cost the company $0.20 each and Filipino smoothies cost the com-
pany $0.60 each in labor. There is a total of $480 per week available for labor cost,
and since the company uses Mexico mangos already, they estimate that 0.5 cases of
Mexican mangos are always available. Employees only make whole smoothies, so no
partial smoothies are made. Using the branch-and-bound method maximize the restau-
rant’s profit from smoothies.

13. Consider the following integer LP problem to select a combination of projects from
projects x1 through x6:

Max: Z � 4x1 � 8x2 � 6x3 � 3x4 � 4x5 � 7x6

s.t.: 500x1 � 700x2 � 550x3 � 400x4 � 450x5 � 750x6 � 2200

10x1 � 7x2 � 9x3 � 9x4 � 8x5 � 5x6 � 35

x1, x2, x3, x4, x5, x6 � 0, 1

a. What is the optimal solution for this problem as stated?
b. Formulate constraints and find the optimal solutions for the following conditions:

i.  Exactly two projects out of x2, x3, x4, and x5 must be selected.
ii. Project x1 may be selected if and only if project x6 is selected.
iii. If project x2 is selected, projects x4 and x5 must both be selected.
iv. If projects x1 and x2 are both selected, x6 must be selected.

14. David has three different kinds of crops, A, B, and C, that he could plant on his farm.
The total budget he has is $1,000. The cost and expected annual revenue per acre for
each crop is:

Crop Fixed Cost ($) Annual Revenue ($)

A 140 20.00
B 100 10.00
C 25 3.50

There are labor costs that apply to these three crops:

Labor cost for A � $0 if no acres of A are cropped, or

$100 if one or more acres of A are cropped

Labor cost for B � $0 if no acres of B are cropped, or

$80 if one or more acres of B are cropped

Labor cost for C � $0 if no acres of C are cropped, or

$25 if one or more acres of C are cropped

If David has enough land available to plant crops, what is his optimal cropping pat-
tern to maximize the annual profit (expected annual revenue minus labor cost) of 
the farm.
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15. A fabric store sells three products each week: cotton, wool, and hemp. The unit sell-
ing prices for the three goods are $3.75 per kilogram of wool, $2.00 per kilogram of
cotton, and $4.25 per kilogram of hemp. The store owner faces two constraints. First,
the owner only has 500 square feet for stocking these three products. Assume that
each kilogram of wool requires 1 square foot of shelf space, each kilogram of cotton
requires 0.20 square feet, and each kilogram of hemp requires 0.9 square feet. Second,
the store cannot spend more than $5,000 each week to stock these three products.
Assume that the costs for the three products (before the sin tax) are $2.00 per kilogram
of wool, $1.50 per kilogram of cotton, and $1.50 per kilogram of hemp.

The state has just passed a new sin tax on cotton and hemp to discourage stores
from selling these two products and to help finance a growing state budget deficit.
Specifically, the state applies the following weekly fixed tax on each store that sells
cotton or hemp:

Weekly tax on cotton � $0 if store does not sell any kilograms of cotton over the 
week, or $1500 if store sells 1 or more kilograms of cotton
over the week

Weekly tax on hemp � $0 if store does not sell any kilograms of hemp over 
the week, or $500 if store sells 1 or more kilograms
of hemp over the week

Formulate and solve an IP problem that chooses the weekly amount of cotton, wool,
and hemp to sell that maximizes the store’s net profit (gross revenue minus variable
costs minus the fixed sin taxes) subject to the square footage and budget constraints.
Clearly define all variables and constraints in your answer.

16. With a monthly budget of $350, Arial wants to shop for the following shopping items
from a grocery store, which has a nutrition value of at least 2,300 RDA, while maxi-
mizing the taste index points. Use IP and formulate the best grocery items Arial
should buy based on the table below. Also, due to storage constraints, Arial cannot buy
more than seven of each item.

Items Soda Chicken Banana Juice Pastry Eggs Milk

Price 14 9 15 10 17 7 9
RDA 50 80 100 110 70 90 105
Taste 15 10 8 12 17 8 7

17. Paul is a farmer in Maryland. He is planning to plant 30 hectares of rice, 40 hectares
of wheat, and 30 hectares of cotton in his farm this year. He has 100 hectares of land
and 125,000m3 of irrigation water to use. The first table below contains the fully irri-
gated water demand, the maximum yield per hectare, and the expected profit per ton
for the three crops. The ratios of actual-to-maximum yield for each of these three
crops under different irrigation levels are shown in the second table. Assume that
Farmer Paul can select only one irrigation level for each crop. Help Farmer Paul find
an optimal cropping pattern so that he can maximize his profit for this year.

Water Demand (m3/ha) Maximal Yield (tons/ha) Profit ($/ton)

Rice 1,300 9 190
Wheat 1,200 12 180
Cotton 1,500 8 240
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Maximum Yield Actual Yield (tons/acre)
by Irrigation Level by Irrigation Level

100% 80% 60% 100% 80% 60%

Rice 100% 92% 78% 9 8.28 7.02
Wheat 100% 88% 80% 12 10.56 9.6
Cotton 100% 72% 69% 8 5.76 5.52

18. Recall our farmer from Chapter 1, Exercise 1. She was deciding how many acres
of corn (with a gross profit of $40 per acre, tractor time requirement of 1 hour per
acre, and a maximum suitable acreage of 400) and soybeans (with a gross profit of
$45 per acre and tractor time requirement of 1.5 hours per acre) to plant subject to
a 600 acre farm and 750 hours of tractor time set of constraints. Since then, the
farmer has decided that she wants to set aside 200 acres (specifically the 200 that
had been unsuitable for corn production) to participate in a government subsidy
program and now only has 400 acres available. However, her neighbor has decided
he may want to give up farming, so he is offering to rent her a 300-acre lot, which
is entirely suitable for both corn and soybeans for the year at a cost of $5,500.
Additionally, he has contracted for 250 hours of tractor time, which he will sell to
her for $2,600. Formulate and solve a mixed binary LP to maximize her profit
under these new conditions.

19. As the leader of a wildlife exploration venture, you must determine the best selection
of four out of eight possible sites. The sites are labeled as s1, s2, … , s8 and the expected 
associated benefits quantified and given in the table below:

Site s1 s2 s3 s4 s5 s6 s7 s8

Benefit 3 4 6 4 2.5 7 2 4.5

If site s2 is explored, then site s3 must also be explored. Furthermore, regional restric-
tions are such that exploring sites s1 and s7 will prevent you from exploring site s8.
Exploring sites s3 or s4 will prevent you from exploring site s5.

20. The U.S. Forest Service needs to set up sites for district rangers. The forest is made
up of a number of districts, as illustrated in the following figure.

A district ranger can be placed in any district and is able to handle the job of protect-
ing the forest resources for future generations and to protect visitors for both its
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district and any adjacent districts. The objective is to minimize the number of district
rangers hired.

Use an IP model to solve this problem.

21. Love Apple is a company that produces and sells apples in Delaware. In 2008, they
had an overall harvest of 1,400 tons of apples. The company has several routes to
sell these apples. They can export these apples to foreign countries, sell them 
to supermarkets, transport them to some companies in the food industry for
reprocess, or directly sell them in the local market. If some apples cannot be sold or
handled by these routes, the company should dispose all the remaining apples under
federal regulation. For each of these selling routes, certain operations are needed for
preparation. The apples selling and distribution process for the company is shown
in the following graph.

For each operation, the fixed charge for the equipment (an, $/year), unit fixed cost for
the capacity of operation (bn, $/t), unit processing cost for the apples (dn, $/t) and the
capacity of the operation (LB: Ln; UB: Un) are shown in the table below. The annual
fixed cost Cn for operation n is defined as a fixed charge function reflecting economies
of scale: Cn � anyn � bn fn.

n an ($/year) bn ($/t) dn ($/t) Ln (t/yr) Un (t /year)

1 1,300 40 42 60 1,400
2 7,200 70 117 300 1,400
3 4,200 43 120 300 1,400
4 7,000 105 80 150 1,400
5 2,000 95 88 150 1,400
6 600 30 32 100 1,400
7 1,200 20 75 150 1,400
8 3,600 60 126 300 1,400
9 700 26 18 100 1,400

The following table contains the final selling price (Sm), the distribution cost (Im) 
and the capacity (LB: Lm; UB: Um) for each route.
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m Im ($/t) Sm ($/t) Lm (t/year) Um (t/year)

1 70 1,200 100 500
2 80 1,100 200 400
3 80 1,000 25 120
4 90 700 70 150
5 30 400 100 200
6 0 0 0 —

The supply cost is fixed in $200/t. We do not need to consider transportation cost
in this process. The labor has been accounted into the cost in operations. As the
whole process is in a short time period, inflation is not considered. Try to help the
manager of Love Apple find the optimal route selections so that the company can
maximize profits.
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8
Optimization of Nonlinear

Functions

In many real-world problems, the assumption of linear relationships is not realistic, and we
must therefore turn to nonlinear models to depict the problem at hand. For example, natu-
ral resource problems often need to account for the growth rate of the resource in question,
and these growth rates are often nonlinear. In this chapter, we introduce the general solu-
tion procedure for solving nonlinear problems. This chapter explains the conditions that
are both necessary and sufficient for determining optimal solutions for any nonlinear func-
tion for both unconstrained and constrained problems.

A basic understanding of calculus is required in order to understand these procedures.
Hence, this chapter begins with a very elementary review of several concepts of differen-
tial calculus, followed by a discussion of the procedures for determining optimal solutions
for unconstrained nonlinear functions. Students proficient in introductory differential cal-
culus may choose to skip Sections 8.1 and 8.2 and begin with Section 8.3. Section 8.3 is
followed by a section on procedures for solving constrained nonlinear problems with
emphasis on how to use Solver to find the solution to such problems. Solver is capable of
handling both linear and nonlinear constrained optimization problems. The use of nonlin-
ear models is then illustrated with a fisheries example. The chapter concludes with two
research applications of nonlinear programming (NLP). The first application relates to
agricultural marketing and illustrates an NLP model that optimally allocates advertising
across various media types to maximize net revenue subject to several structural con-
straints. The second example is from the field of environmental economics, which presents
an NLP model for water pollution abatement in India.

8.1 SLOPES OF FUNCTIONS

Recall that the slope of a linear function y � a � bx is equal to:

b � (Δy)/(Δx),

where Δ means “change in.”
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Furthermore, the slope (b) is the same at every point along any linear function. What
about the slope for a nonlinear function? Consider the following nonlinear function, which
is also presented graphically in Figure 8.1:

y � x2 � 0.5x (8.1)

Let x1 and x2 represent two different points within the domain of the function y, and y1 and
y2 be their respective values determined by function (8.1). The changes in x and y are
defined as:

Δx � x2 � x1 (8.2)

Δy � y2 � y1

Now consider calculating the slope of this function as was done above for specific values
of Δx and Δy. First, let x1 � 1 and x2 � 5. Then the slope is equal to 6.5 since y1 � 1.5
and y2 � 27.5, that is:

b � Δy/Δx � (27.5 � 1.5)/(5�1) � 6.5.

On the other hand, if the slope of this function is computed for a smaller change in x, then
the answer will be different. Consider x1 � 1 and x2 � 2. Then y1 � 1.5 and y2 � 5. In this
case,

b � 3.5.

Finally, let x1 � 1 and x2 � 1.25. Then y1 � 1.5 and y2 � 2.2 and

b � 2.8.

Note that the slope of this nonlinear function is approximated by the slope of a straight line
passing between two points (x1, y1) and (x2, y2). In this example as the change in x becomes
smaller, the slope of the line becomes flatter (b becomes smaller) until the two points on
the curve are close enough such that this line just touches the curve but does not cut
through it. In other words, the slope of a nonlinear function at any point on this function
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is given by the slope of a line that is tangent to the curve. Since this is defined for very
small changes in x, let Δx be a very small number. First consider a specific case where the
slope is calculated for the following point along the function (x1, y1) � (1, 1.5). Then define
x2 using Δ as being equal to x1 � Δx, that is:

x2 � x1 � Δx, or

x2 � 1 � Δx, since x1 � 1 in this case (8.3)

Substituting this into y, calculate the value for y2:

y2 � x2
2 � 0.5x2, or

y2 � (1 � Δx)2 � 0.5(1 � Δx), or

y2 � (Δx)2 � 2.5Δx � 1.5 (8.4)

Recall that y1 � 1.5. Now calculate Δy. Δy � y2 � y1, by substituting y1 � 1.5 and
using (8.4), Δy is:

Δy � (Δx)2 � 2.5Δx � 1.5 � 1.5, or

Δy � (Δx)2 � 2.5Δx (8.5)

So the slope is:

b � Δy/Δx � ((Δx)2 � 2.5Δx)/Δx, or

b � Δx � 2.5 (8.6)

As Δx becomes smaller, the slope of this line approaches the slope of the tangent line. This
is equivalent to what is called taking the limit of Δy/Δx as the value of Δx approaches
(but does not equal) zero. This is stated mathematically as:

Limit {Δx � 2.5} � 0 � 2.5 � 2.5 (8.7)
Δx → 0

The statement in (8.7) means that as Δx approaches zero, the slope of this nonlinear func-
tion at the point (x1, y1) � (1, 1.5) approaches 2.5.

Unlike linear functions, the slope of a nonlinear function will vary by the point along
the curve. More generally, let

x1 � x (8.8)

x2 � x � Δx

Then, the values of y1 and y2 are found by plugging in x1 and x2 into function (8.1).

y1 � x2 � 0.5x, and (8.9)

y2 � (x � Δx)2 � 0.5(x � Δx), or

y2 � x2 � (Δx)2 � 2xΔx � 0.5x � 0.5Δx

Using (8.9), the general expression for Δy is:

Δy � y2 � y1, or (8.10)

Δy � x2 � (Δx)2 � 2xΔx � 0.5x � 0.5Δx � (x2 � 0.5x), or

Δy � (Δx)2 � 2xΔx � 0.5Δx
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Now, the slope becomes:

b � ((Δx)2 � 2xΔx � 0.5Δx)/Δx, or (8.11)

b � Δx � 2x � 0.5

Taking the limit of (8.11) yields:

Limit {Δx � 2x � 0.5} � 0 � 2x � 0.5 (8.12)
Δx → 0

The statement in (8.12) means that as Δx approaches zero, the slope of this nonlinear func-
tion approaches 2x � 0.5. So, for x � 1, b � 2.5. For x � 2, b � 4.5. For x � 3, b � 6.5,
and so on. Taking the limit of Δy/Δx as Δx approaches zero gives the slope of a function
at any point along the function. This is the definition of the derivative of a function y with
respect to x (denoted as dy/dx).

8.2 SHORTCUT FORMULAS FOR DERIVATIVES

The first derivative for a nonlinear function of the form y � cxn (where c is a constant) is
the following:

dy/dx � ncx(n�1) (8.13)

Consider the following functions and their first derivatives:

y � x2,

dy/dx � 2x(2�1) � 2x.

y � 5x9,

dy/dx � (9)(5)x(9�1) � 45x8.

y � 55 � x�1,

dy/dx � �1x(�1�1) � �x�2.

y � 0.5x0.5,

dy/dx � (0.5)(0.5)x(0.5�1) � 0.25x�0.5.

The second derivative is defined as the derivative of the first derivative. While the first
derivative gives the slope of the function at any particular point along the function, the sec-
ond derivative measures the rate of change in the slope of the function. That is, the second
derivative is a measure of the curvature of the function. The second derivative is calculated
exactly the same way as the first derivative, except now you are taking the derivative of the
derivative instead of the original function. Let d2y/dx2 denote the second derivative and
consider the following functions, their first derivatives, and their second derivatives:

y � x2,

dy/dx � 2x(2�1) � 2x,

d2y/dx2 � 2.

y � 5x9,

dy/dx � (9)(5)x(9�1) � 45x8,
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d2y/dx2 � 8(45)x(8�1) � 360x7.

y � 55 � x�1,

dy/dx � �1x(�1�1) � �x�2,

d2y/dx2 � (�2)(�1)x(�2�1) � 2x�3.

y � 0.5x0.5,

dy/dx � (0.5)(0.5)x(0.5�1) � 0.25x�0.5,

d2y/dx2 � (�0.5)(0.25)x(�0.5�1) � �0.125x�1.5.

8.3 UNCONSTRAINED OPTIMIZATION

There are two types of optima: local and global. A local optimum (i.e., maximum or min-
imum) is defined as the highest (lowest) function value y(x1) for all x values in the neigh-
borhood (in proximity) to x1. A global optimum (maximum or minimum) is defined as the
highest (lowest) function value y(x1) for all x in the domain of y.

Both local and global optima have the same first-order conditions (FOCs), namely that
in order for some point x1 to be an optimum, the slope of y � f(x) at x1 must be zero. Hence,
the FOCs consist of deriving the derivative of a function and setting it equal to zero.
Consider, for example, the following function, which is depicted graphically in Figure 8.2:

y � f(x) � 10 � x � x2 (8.14)

The derivative of this function is:

dy/dx � 1 � 2x (8.15)

The FOCs for optimization require taking the derivative of y with respect to x, setting it equal
to zero, and solving for x. Setting (8.15) equal to zero yields the following value for x:

x* � 0.5 (8.16)
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Figure 8.2 Graph of the function y � 10 � x � x2.
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The FOC tells us that at x � 0.5, we have a point that satisfies a necessary condition for
it to be optimal (this is called a critical or stationary point). This is a necessary but not
sufficient condition.

In order to distinguish whether this point is a maximum, minimum, or neither, we need
to check the second-order sufficient conditions (SOCs). The SOCs use the second deriv-
ative of the function, evaluated with the optimal value of x, and examine whether it is pos-
itive, negative, or zero. The second derivative of this function is found by taking the
derivative of (8.15) with respect to x (i.e., the derivative of the first derivative).

d2y/dx2 � �2 (8.17)

In the case of a single variable function, for y � f(x) to be a maximum, d2y/dx2 � 0. 
For y � f(x) to be a minimum, d2y/dx2 � 0. For y � f(x) to be neither a maximum nor a
minimum, d2y/dx2 � 0. In this example, x* � 0.5 is a maximum for this function since
d2y/dx2 � �2 � 0. Plot this function and examine the rationale for these three rules.

So far, we have not distinguished between local and global optima. In order to ascertain
whether the critical point is a local or global optimum, find all the critical points in the
domain of x (dy/dx � 0), plug them into the function to get y, and compare y. In this
example, there is only one critical point (x* � 0.5), and hence we know that this is a global
optimum. Furthermore, we know that this point is a global maximum since the second
derivative evaluated at (x* � 0.5) is negative. However, there are many nonlinear functions
that have multiple critical points. The equation:

y � f(x) � 55 � 2x � 10x2 � x3 (8.18)

is such an example. Differentiating (8.18) yields:

dy/dx � 2 � 20x � 3x2 (8.19)

Setting (8.19) equal to zero and using the quadratic formula1 to solve for x*, we get:

x* � 6.5651 or 0.1015 (8.20)

Taking the second derivative of (8.18) yields:

d2y/dx2 � �20 � 6x (8.21)

Plug x* � 6.5651 into (8.21) yields:

�20 � 6(6.5651) � 19.391 � 0 (8.22)

Hence, x* � 6.565 is a minimum since its second derivative is positive. Now plug x* �
0.1015 into (8.21):

�20 � 6(0.1015) � �19.391 � 0 (8.23)

Hence, x* � 0.1015 is a maximum since its second derivative is negative. However,
plotting this cubic function, illustrates that x* � 6.5651 is a local, not global, minimum and
x* � 0.1015 is a local, not global, maximum.
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1For a quadratic function y � ax2 � bx � c (where a, b, and c are constant parameters), the quadratic formula
states that the solution to ax2 � bx � c � 0 is x* � [�b � (b2 � 4ac)0.5]/2a and [�b � (b2 � 4ac)0.5]/2a.
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8.4 MULTIVARIATE FUNCTIONS

So far the discussion has focused on single variable functions. These results may be
extended to multivariate functions. Consider the following:

y � f(x, z) � x2 � z2 � xz (8.24)

Now y partially depends upon X and partially depends on z. Hence, we introduce the
notion of a partial derivative. A partial derivative gives the slope of a function y with
respect to one of the exogenous variables (in this case x or z). The rule for taking a par-
tial derivative of y with respect to x or z is the same as before, except that you treat
the other exogenous variables as constants. In cases where the exogenous variables 
(x and z) are not multiplicative (e.g., x � z or x2 � z6), the partial derivative of y with
respect to x (which we will denote as ∂y/∂x) is found by taking the derivative of all
terms in the function that contain x, ignoring the z terms. The partial derivative of y with
respect to z (∂y/∂z) is found by taking the derivative of all terms in the function that
contain z, ignoring the x terms. Some examples of nonmultiplicative functions will help
clarify this:

y � f(x, z) � 2x2 � 3z2,

∂y/∂x � 4x,

∂y/∂z � 6z.

y � f(x, z) � 3x6 � 5x3 � 3x2 � z8 � 7z,

∂y/∂x � 18x5 � 15x2 � 6x,

∂y/∂z � 8z7 � 7.

y � f(x, z, w, t, v) � x2 � z3 � 7w � 2t6 � v3,

∂y/∂x � 2x,

∂y/∂z � 3z2,

∂y/∂w� �7,

∂y/∂t � 12t5,

∂y/∂v � �3v2.

In cases where the exogenous variables (x and z) are multiplicative (e.g., xz or x2z6), ∂y/∂x
is found by taking the derivative of all terms in the function that contain x, treating the z
term as a constant. The partial derivative of y with respect to z (∂y/∂z) is found by taking
the derivative of all terms in the function that contain z, treating the x term as a constant.
Some examples of multiplicative functions will help clarify this:

y � f(x, z) � x3z7,

∂y/∂x � 3x2z7,

∂y/∂z � x3(7)z6 � 7x3z6.

y� f(x, z) � x2z3 � xz � x � 7z,

∂y/∂x � 2xz3 � z � 1,

∂y/∂z � 3x2z2 � x � 7.
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y � f(x, z, t) � xzt � x2,

∂y/∂x � zt � 2x,

∂y/∂z � xt,

∂y/∂t � xz.

The FOCs for multivariate functions are the same as before, except that now you must set
each partial derivative to zero and solve for the critical points. The SOCs are a little more
complicated, so only the case for a two-variable function is given.

Consider the function y � f(x, z). Define fxx � ∂2y/∂x2, fzz � ∂2y/∂z2, and fxz � ∂2y/∂x∂z
(where fxz means the partial derivative is first taken with respect to x and then with respect
to z in that order, and fxz � fzx if the derivatives exist). For y � f(x, z) to be a maximum, the
SOCs are the following:

fxx � 0, fzz � 0, and fxx fzz � fxz
2 � 0.

For the same function to be a minimum, the SOCs are:

fxx � 0, fzz � 0, and fxx fzz � fxz
2 � 0.

Note that the last term needs to be positive for both maximum and minimum. This condi-
tion is equivalent to assuring that the function is concave (maximum SOCs) or convex
(minimum SOCs). Since several matrix algebra concepts not covered in this class are nec-
essary to show the logic behind these SOCs, it will not be covered here.

8.5 CONSTRAINED OPTIMIZATION WITH EQUALITY CONSTRAINTS2

There are several steps that are necessary to solve a nonlinear constrained optimization
problem with equality constraints. Consider the following general problem to illustrate
these basic steps:

Max or Min: Z � f(x1, ... , xn),

s.t:

gi(x1, ... , xn) � bi (i � 1, ... , m, m � n).

Notice that non-negativity on all variables is not imposed in this problem.
There are several steps to solving a constrained optimization problem, which start with

forming the LaGrange function for the problem. The LaGrange function (L) is a mathe-
matical technique used for solving constrained optimization problems, and is essentially the
problem re-expressed in functional form, and includes two components. The first compo-
nent is simply the objective function for the problem. The second component is the sum of
each structural constraint times its respective LaGrange multiplier (λi). The optimal solu-
tion for the LaGrange multipliers is the shadow price (SP) for each structural constraint.

Step 1: Form the LaGrange function for the problem. The LaGrange function for this
problem is:

L( f b gn m n i i ix x x x x1 1 1 1, , , , , ) ( , , ) ( ( ,… … … − …λ λ λ� � ,, )).xn
i 1

m

�

∑
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2For a more detailed presentation of optimization theory, see Sundaram (1996).
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Note that the variables of the LaGrange function include the original activities in the model
and the LaGrange multipliers.

Step 2: Take the first-order necessary conditions for the problem. This is done by partially
differentiating L with respect to all decision variables (xi) and all LaGrange
multipliers (λi) and setting the resulting expressions equal to zero. In this example,
the FOCs are:

(1)

: : 

(n)

Lλ1 � b1 � g1(x1,..., xn) � 0 (n�1)

: : 

Lλm � bm � gm(x1,..., xn) � 0 (n�m)

where:
Lxi � partial derivative of L with respect to xi

fxi � partial derivative of the objective function with respect to xi

gixi � partial derivative of the ith constraint with respect to xi

Lλ1 � partial derivative of L with respect to λ1

Note that the partial derivative of L with respect to λi is simply the ith constraint of the
original problem.

Step 3: Find all values for xi
* and λi

* that satisfy equations (1) through (n�m).

Step 4: Check the SOCs to determine whether the solution (xi
*, λi

*) is a maximum, a mini-
mum, or neither. For a two-variable, one-constraint problem, the sufficient
conditions are found by substituting (xi

*, λi
*) into the following expression:

S � �(gx2)2Lx1x1 � (gx1)2Lx2x2 � 2gx1gx2Lx1x2,

where:
gxi � partial derivative of the constraint (g) with respect to xi (i � 1, 2)

Lxixi � second partial derivative of L with respect to xi, and

Lxixj � cross partial derivative of Lxi with respect to xj (for i not equal j)

If S is positive, then (xi
*, λi

*) is a maximum; if S is negative, then (xi
*, λi

*) is a minimum; and
if S is zero, then (xi

*, λi
*) is neither a maximum nor a minimum. More complicated matrix

algebra is necessary to show the SOCs for problems involving more than two variables.
Consult any basic textbook in calculus or mathematical economics to learn the SOCs for
problems involving more than two variables.

L f gn n i i n
i 1

m

x = −∑x xλ = 0
=

L f g1 1 i i 1
i

m

x x x� � �
�

λ 0
1

∑
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Example 1

Consider the following constrained maximization problem with one equality constraint:
Max: Z � 2x � 1y,
s.t.:

�x2 � 2y � 100.

The LaGrange function for this problem is:

L(x, y, λ) � 2x � 1y � λ(100 � x2 � 2y).

The FOCs are:

Lx � 2 � 2λx � 0 (8.25)

Ly � �1 � 2λ � 0 (8.26)

Lλ � 100 � x2 � 2y � 0 (8.27)

To solve (8.25) through (8.27) for (x*, y*, λ*), first solve (8.26) for λ*. From (8.26),

λ* � �0.5 (8.28)

Next, substitute λ*� �0.5 into (8.25) to solve for x*. This yields

2 � 2(�0.5)x � 0, or

x* � 2 (8.29)

Next, substitute x* � 2 into (8.27) and solve for y*:

100 � (2)2 � 2y � 0, or

y* � 52 (8.30)

Finally, check to see whether the solution (x*, y*, λ*) � (2, 52, �0.5) is indeed a max-
imum. To do this, evaluate the following expression:

S ��(gy)2Lxx � (gx)2Lyy � 2gxgyLxy, or

S ��(�2)2(2λ) � (2x)2 (0) � 2(2x)(�2)(0), or

S ��8λ� 4.

Since S � 0, this solution is a maximum. The optimal value of the objective function is:

Z* � 2(2) � 1(52) � �48 (8.31)
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Example 2

To illustrate a constrained minimization problem with one equality constraint, consider
the following example:

Min: Z � x2 � 4xy � 4y2 �x � y,

s.t.:

x � y � 200.
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The LaGrange function for this problem is:

L(x, y, λ) � x2 � 4xy � 4y2 � x � y � λ(200 � x � y).

The FOCs are:

Lx � 2x � 4y � 1 � λ � 0 (8.32)

Ly � 4x � 8y � 1 � λ � 0 (8.33)

Lλ � 200 � x � y � 0 (8.34)

To solve (8.32) through (8.34) for (x*, y*, λ*), first solve (8.32) and (8.33) for λ to get:

λ � 2x � 4y � 1 (8.35)

λ � 4x � 8y � 1 (8.36)

Next, equate (8.35) and (8.36) and solve for either x or y. Solving for x yields:

2x � 4y � 1 � 4x � 8y � 1, or

�2x � 4y, or

x � �2y (8.37)

Substitute x � �2y into (8.34) and solve for y*

200 � (�2y) � y � 0, or

y* � �200 (8.38)

Plug y* ��200 into (8.37) to get x*

x* � �2(�200) � 400 (8.39)

Next, substitute (8.38) and (8.39) into either (8.35) or (8.36) to get λ*. Substituting
(8.38) and (8.39) into (8.35) yields:

λ* � 2(400) � 4(�200) � 1 � �1 (8.40)

Finally, check to see whether the solution (x*, y*, λ*) � (400, �200, �1) is indeed a
minimum:

S � �(gy)2Lxx � (gx)2Lyy � 2gxgyLxy, or

S � �(�1)2 (2) � (�1)2 (8) � 2(�1)( �1)(4), or

S � �2 � 8 � 8 � �2.

Since S is negative, this solution is a minimum. The optimal value of the objective func-
tion is:

Z* � (400)2 � 4(400) (�200) � 4(�200)2 � 400 � (�200) � �200 (8.41)
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8.6 KUHN–TUCKER CONDITIONS AND CONSTRAINED OPTIMIZATION
WITH INEQUALITY CONSTRAINTS

Consider the following problem:

Max: Z � f(x),
s.t.:

x � 0.
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Unlike the previous problems, this problem restricts x to be a non-negative value. This
restriction introduces a special problem that makes the previously described first-order
necessary conditions no longer appropriate. This can be seen by examining Figure 8.3,
which shows the three possible solutions for this maximization problem: (1) x* � 0 and
dZ/dx � 0, (2) x* � 0 and dZ/dx � 0, and (3) x* � 0 and dZ/dx � 0. The graph on the
left-hand-side (LHS) of this figure shows the case where the optimal solution occurs for
a positive level of x*. In this case, the slope or derivative of Z with respect to x is zero at
x*, which is positive. This solution is similar to the previous cases and is sometimes called
an interior solution because the solution occurs in the interior of quadrant 1 rather than
on one of the axes. The middle graph illustrates the case where the maximum value of Z
actually occurs for x � 0. However, since x is restricted to be zero or positive, the opti-
mal constrained solution occurs at the origin (x* � 0). Notice that at x* � 0, the derivative
of Z with respect to x is negative. Finally, the graph on the right-hand-side (RHS) of this
figure shows the situation where the maximum value of the function occurring at x* � 0.

Kuhn and Tucker used these three possible solutions to restate the first-order necessary
conditions for constrained optimization problems with inequality constraints. The
Kuhn–Tucker FOCs simply require that a maximum will occur where either dZ/dx � 0
if x is strictly positive, or where dZ/dx � 0 if x is equal to zero. Restate the Kuhn–Tucker
conditions for this problem using the following mathematical restrictions:

dZ/dx � 0, x � 0, and (dZ/dx) x � 0.

These three conditions simply state that (1) if x � 0, then dZ/dx � 0; and (2) if x � 0, then
dZ/dx � 0. The same type of logic applies to minimization problems, but dZ/dx � 0. For
example, consider the following minimization problem:

Min: Z � f(x)

s.t.: x � 0

The three possible solutions for this problem are illustrated in Figure 8.4:

x* � 0 and dZ/dx � 0 (1)

x* � 0 and dZ/dx � 0, and (2)

x* � 0 and dZ/dx � 0 (3)
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Z � f(x)
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x0 x* � 0

dZ/dx � 0
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Z � f(x)
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Z

x

Z � f(x) 

x* � 0

Figure 8.3 Three possible solutions for max: Z � f(x) s.t.: x � 0.
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The graph on the LHS of this figure shows the interior solution where the optimal solution
occurs for a positive level of x*. In this case, the slope or derivative of Z with respect to x
is zero at x*, which is positive. The middle graph illustrates the case where the minimum
value of Z actually occurs for x � 0. However, since x is restricted to be zero or positive,
the optimal constrained solution occurs at the origin (x* � 0). Notice that at x* � 0, the
derivative of Z with respect to x is positive. Finally, the graph on the RHS of this figure
shows the situation where the minimum value of the function occurs at x* � 0 
and the derivative of Z with respect to x is also zero. The Kuhn–Tucker FOCs are:

dZ/dx � 0, x � 0, and (dZ/dx) x � 0.

Consider the following NLP problem:

Max: Z � xy (0)

s.t.:

x � y � 10 (1)

x � 2y � 18 (2)

x, y � 0 (3)

The LaGrange function for this problem is:

L(x, y, λ1, λ2) � xy � λ1(10 � x � y) � λ2(18 � x � 2y).

The Kuhn–Tucker FOCs are:

Lx � y � λ1 � λ2 � 0, x � 0, (y � λ1 � λ2)x � 0 (8.42)

Ly � x � λ1 � 2λ2 � 0, y � 0, (x � λ1 � 2λ2)y � 0 (8.43)

Lλ1 � 10 � x � y � 0, λ1 � 0, (10 � x � y)λ1 � 0 (8.44)

Lλ2 � 18 � x � 2y � 0, λ2 � 0, (18 � x � 2y)λ2 � 0 (8.45)

The last part of constraints (8.44) and (8.45) is the product of the LaGrange multiplier (λi)
and constraint i (i � 1, 2). These conditions are sometimes called the complementary
slackness conditions. These conditions imply that the LaGrange multiplier must equal
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Z

x0 0
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x* � 0
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Z � f(x)
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x* � 0
dZ/dx � 0

x* � 0
dZ/dx � 0

Figure 8.4 Three possible solutions for min: Z � f(x) s.t.: x � 0.
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zero if the constraint is not binding or the constraint has to be binding if the LaGrange mul-
tiplier is not zero.

Note that three possible solutions (x* � y* � 0, x* � 0, y* � 0, and x* � 0, y* � 0) can
be ruled out immediately since each would result in Z* � 0 because the objective function
is the product of x and y. This implies that the optimal solution will be x* � 0 and y* � 0.
Because both x* and y* will be positive, conditions (8.42) and (8.43) may be rewritten as:

Lx � y � λ1 � λ2 � 0, x � 0, (y � λ1 � λ2)x � 0 (8.46)

Ly � x � λ1 � 2λ2 � 0, y � 0, (x � λ1 � 2λ2)y � 0 (8.47)

That is, in order for x* and y* to be positive, Lx and Ly must be equal to zero. Therefore,
there are three possible solutions to this problem defined by the possibilities for the two
structural constraints:

1. x � y � 10 and x � 2y � 18,

2. x � y � 10 and x � 2y � 18,

3. x � y � 10 and x � 2y � 18.

Each one of the three cases must be solved for (x*, y*, λ1
*, λ2

*). Then the values must be sub-
stituted into the Kuhn–Tucker conditions to check if any condition is violated. If the solu-
tion for a case violates one of these conditions, then the case is ruled out because it
represents an infeasible solution.

Case 1: Both Constraints are Binding

In this case, because the two constraints are assumed to be binding, simply solve the two
equations for x and y using the simultaneous equation method:

x � y � 10 (8.48)

x � 2y � 18 (8.49)

Solve (8.48) for y:

y � 10 � x (8.50)

Plug (8.50) into (8.49) solve for x*:

x � 2(10 � x) � 18, or

x � 20 � 2x � 18, or

x* � 2 (8.51)

Next, plug x* � 2 into (8.50) and solve for y*:

y* � 8 (8.52)

To obtain solutions for λ1, λ2, substitute x* � 2 and y* � 8 into the first two FOCs and
solve for λ1, λ2:

y � λ1 � λ2 � 0, or 8 � λ1 � λ2 � 0 (8.53)

x � λ1 � 2λ2 � 0, or 2 � λ1 � 2λ2 � 0 (8.54)

Now solve (8.53) for λ1 to get:

λ1 � 8 � λ2 (8.55)
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Then substitute (8.55) into (8.54) and solve for λ*
2:

2 � 8 � λ2 � 2λ2 � 0, or

λ2
* � �6 (8.56)

Finally, substitute λ2
* � �6 into (8.55) to get λ*

1:

λ1
* � 14 (8.57)

For case 1, the solution is

(x* � 2, y* � 8, λ1
* � 14, λ2

* � �6).

Is this solution feasible? To see, check if it satisfies all of the Kuhn–Tucker conditions.
Obviously this solution is not feasible since λ2

* � �6 violates the non-negativity condition
listed in FOC (8.45).

Case 2: Constraint 1 is Not Binding and Constraint 2 is Binding

In this case, the two constraints can be written as:

x � y � 10 (8.58)

x � 2y � 18 (8.59)

Because constraint (8.58) is not binding, λ1
* must equal zero because of the third

Kuhn–Tucker condition. From (8.46) we have:

y � λ1 � λ2 � 0.

Since λ1 � 0, we get

y � λ2 (8.60)

From (8.47) we have

x � λ1 � 2λ2 � 0.

Noting that λ1 � 0 and λ2 � y:

x � 2λ2 (8.61)

Equations (8.60) and (8.61) imply that

x � 2y (8.62)

Substituting (8.62) into constraint (8.59), that is, x � 2y � 18 yields

2y � 2y � 18, or (8.63)
y* � 4.5

Substitute y* � 4.5 into (8.62),

x* � 2(4.5) � 9 (8.64)

Substitute y* � 4.5 into (8.60) to get λ2
*:

λ2
* � y � 4.5 (8.65)

Hence, the solution for case 2 is:

(x* � 9, y* � 4.5, λ1
* � 0, λ2

* � 4.5).
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Is this a feasible solution? To see, again check if the solution satisfies all of the Kuhn–Tucker
conditions. This solution is not feasible because Kuhn–Tucker condition (8.44) is violated.

Case 3: Constraint 1 is Binding and Constraint 2 is Not Binding

The two structural constraints for this case may be written as:

x � y � 10 (8.66)

x � 2y � 18 (8.67)

Because constraint (8.67) is not binding, λ2
* must equal zero in order to satisfy

Kuhn–Tucker condition (8.45). From (8.46) we have:

y � λ1 � λ2 � 0.

Since λ2 � 0, we get:

y � λ1 (8.68)

From (8.47) we have:

x � λ1 � 2λ2 � 0.

Noting that λ2 � 0 and λ1 � y implies:

x � λ1 � y (8.69)

Using information from (8.69), solve (8.66) for either x or y. Solving for x yields:

x � x � 10, or

2x � 10, or

x* � 5 (8.70)

Substitute x* � 5 into (8.69) to get y* and λ1
*:

y* � 5 and λ1
* � 5 (8.71)

Hence, the solution for case 3 is:

(x* � 5, y* � 5, λ1
* � 5, λ2

* � 0).

Is this a feasible solution? This solution is feasible because none of the Kuhn–Tucker con-
ditions are violated. To determine whether the solution is a maximum, it would be neces-
sary to check the SOCs. These conditions will not be derived here due to the matrix algebra
required to learn them. This solution, however, is indeed a maximum.

There are several useful observations to consider regarding optimization problems with
inequality constraints and the Kuhn–Tucker conditions. These include:

1. For each constraint, there will be one LaGrange multiplier and complementary slack-
ness condition.

2. If there is only one constraint, then there are two possibilities: the constraint is either
binding or not binding.

3. If there are n constraints, then there are 2n possibilities in terms of binding and not
binding constraints. In the example above, since there were two constraints, there were
four possibilities (22 � 4).

The logic in solving these problems with the Kuhn–Tucker conditions is fairly complicated.
You should work through the above problem several times to see the logic more clearly.
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Solving Nonlinear Programming Problems

Three categories of methods have been used to computationally solve NLP models: 
(1) separable linear programming, (2) special-purpose algorithms for quadratic pro-
gramming (QP), and (3) general NLP algorithms. Separable LP models use the simplex
method to solve linearized versions of the nonlinear problem. This approximation is done
by using piecemeal linear functions as proxies for the nonlinear objective function and/or
nonlinear constraint equations. For the second category, Wolfe’s method can be used to
solve a special type of NLP model known as QP, where the objective function is a quad-
ratic form, but all constraints are linear. This method uses a modified version of the sim-
plex method because with the exception of the complementary slackness conditions, all
other Kuhn–Tucker conditions are linear equations. Finally, there are other methods to
solve more general NLP models such as gradient, heuristic, and interior point methods.
Some of these will be discussed in the next section and Chapter 9.

8.7 SOLVING CONSTRAINED OPTIMIZATION PROBLEMS 
WITH SOLVER

Nonlinear programming problems can be set up and solved with Solver in the same manner as
LPs. However, several different methods exist for solving nonlinear problems. Therefore, sev-
eral different engines in Solver need to be used to analyze and solve a problem. For instance,
quadratic programs can be solved using the LP/Quadratic (referred to as LP/QP) Engine exactly
as in past chapters. For more complex nonlinear problems, a different engine will have to be
selected. Traditionally, Solver offered one nonlinear engine that used the GRG, or Generalized
Reduced Gradient algorithm. For a maximization problem, the GRG algorithm starts from some
initial point and calculates the direction of greatest increase in the objective function at that point.
The algorithm moves a given distance in that direction and repeats until it reaches a point at
which the objective function can no longer be increased, at which time the algorithm declares
the solution to the maximization problem. This GRG is a fast and flexible engine, but it has a
couple of significant weaknesses. Because the stopping criterion is met whenever the algorithm
gets to a “flat spot,” there is no way to know whether the solution found is a local or global opti-
mum. In fact, the solution may not even be an optimum, but instead simply a flat area or “sad-
dle point.” Consequently, this engine is very sensitive to the initial solution entered into the
spreadsheet, and it would be worthwhile to try several different initial solutions, especially if 
the topology of the feasible region is not well understood. Also, sometimes re-running the engine
from the solution given by a prior run will offer an improvement to the initial solution.

Another difference between analyzing linear and nonlinear programming in Solver is in
the Sensitivity Analysis. The Sensitivity and Limits reports are generated by the user the
exact same way; however, the Sensitivity reports will offer different information depend-
ing on the engine used.3 The primary difference in the sensitivity reports arises in the
ranges of optimality, which are not easily calculated for nonlinear programs. Therefore, the
Allowable Increases and Decreases are not reported. The reports do provide the LaGrange
multiplier, which is exactly the same as the SPs offered on the LP Sensitivity report.

This section presents two examples of nonlinear problems that can use the LP/QP
Engine and one example that requires the GRG Engine. The recent version of Solver offers
several more advanced engines with global solution techniques for certain types of non-
linear problems, which will be covered in the next chapter.
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3Since the default engine in Solver is frequently the GRG Nonlinear Engine, this can result in fewer informative
sensitivity reports than would be provided if the LP/QP Engine was used.
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A Constrained Quadratic Maximization Example4

Consider a problem where the objective is to minimize a quadratic function subject to
a set of linear constraints. For example,

Min: Z � x2 � y2 � xy (0)

s.t.:

2.5x � y � 100 (1)

x � 70 (2)

y � 45 (3)

x, y � 0 (4)

To solve this problem using Solver, three pieces of information need to be put into a
spreadsheet: Decision Variables, Objective Function, and Constraints. Figure 8.5 illus-
trates the Excel spreadsheet used for data input to solve the above example.

The formula for the objective function is entered using the cells that define the decision
variables. Recall that in order to enter a formula in Excel, first input an equation sign in the
cell, then the formula itself in terms of the cells that define the decision variables, and then
press the “Enter” key to finish the input. In this example, Cell B5 is the location for inputting
the objective function Z � x2 � y2 � xy. The function formula can be entered as

“� (B2^2)� (C2^2)�B2*C2”

where ^ is used to indicate an exponent and * represents the multiplication operator.
The value appearing in Cell B5 will represent the result of the objective function for the
values of x and y in Cells B2 and C2.

Now enter the formulae that define all constraints for the problem. In this step, it is always
good practice to first input the technological coefficients matrix (i.e. the aij coefficients) and
RHS values into the spreadsheet. Based on what has been inputted in this step, enter the
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Figure 8.5 Excel spreadsheet for quadratic example.

4The problems, solutions, and corresponding sensitivity analysis for the following three examples are shown
in the Chapter 8 supplemental materials available at www.wiley.com/college/kaiser.
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formulae for each of the constraints. For instance, the first constraint, 2.5x � y 	 100, can be
inputted as “�SUMPRODUCT(B2:C2,B8:C8)” into Cell D8. Note that the non-negativity
constraints of the problem do not need to be entered. Instead, the “Assume Non-negative”
option can be selected from the Engine tab in Solver.

Add the objective, variables, and constraints to the Solver model the same way as
was done for an LP in Chapter 3. The completed model should look like Figure 8.6. On
the Engine tab set the Assume Non-negative option to True, and, since the objective
function is quadratic, select the LP/QP Engine and solve the problem.

In this example, the optimal value of the objective function is 10,075, which is
accomplished by producing 70 units of x and 45 units of y.
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Figure 8.6 Completed model for quadratic example.

A Two-Product Firm Example

A large produce cooperative produces and sells two products—apples and oranges
(denoted as x and y in this example)—and wishes to determine simultaneously how

c08.qxd  11/29/10  7:40 PM  Page 301



much of x and y to produce and sell and how much the price should be for 
x and y.5 The firm’s economist has estimated the following demand functions for x
and y:

x � 100 � 10px � 0.3py,

y � 200 � 25py � 0.2px,

Note that (1) the demand functions are linear and (2) x and y are substitute products
since py appears with a positive coefficient in the demand for x, and px appears with a
positive coefficient in the demand for y. The firm’s variable costs are $0.50 per unit for
producing x and $1.20 per unit for producing y. Finally, the firm faces the following
resource requirements and endowments in producing both products:

Technical Coefficients

Resource x y Resource Endowment (hours)

Labor (L) 1.5 2.5 450
Machine 1 (M1) 1.4 1.0 150
Machine 2 (M2) 1.0 1.0 140

This problem can be formulated as the following nonlinear program:

Max: Z � (px � 0.50)x � (py � 1.20)y

s.t.:

10px � x �0.3py � 100 (Define Demand for x)

� 0.20px � 25py � y � 200 (Define Demand for y)

1.5x � 2.5y � 450 (Labor Constraint)

1.4x � 1.0y � 150 (Machine 1 Constraint)

1.0x � 1.0y � 140 (Machine 2 Constraint)

px, x, py, y � 0 (Non-negativity)

The objective function here is to maximize total net revenue, which is equal to the
price of each product minus the variable cost of each product times the quantity pro-
duced. Figure 8.7 illustrates this problem entered into Excel spreadsheet form for
Solver.

The optimal solution is to sell 47.29 units of x at a price of $5.41 per unit, and sell
83.8 units of y at a price of $4.69 per unit. This strategy would result in a total profit of
$524.85.
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5Notice that in this nonlinear example, price is no longer a constant parameter, but rather a decision variable
that depends on the amount that is supplied. In other words, both quantity and price are endogenous variables,
which is different from all the LP models illustrated so far in the book. This example also implies that the
cooperative has some market power (i.e., is not a “price-taker”) because it can control the price by setting sup-
ply. See the later chapter on price-endogenous mathematical programming for a more detailed discussion of
these models.
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A Utility Maximization Example6

The prior examples of NLP had a quadratic functional form. Solver can also handle
other nonlinear functional forms.

Consider, as an example, the following basic economics problem of utility maxi-
mization. Suppose that a consumer’s utility (or welfare) depends upon the consumption
level of two goods, x and y. Furthermore, assume that the person’s utility can be
measured by the following nonlinear utility function:

U(x,y) � x1/3 y1/3.

The consumer has up to $500 that she can spend on goods x and y over the next week,
and assume the price of x is $2.00 and the price of y is $1.00. The problem is to maxi-
mize utility subject to the budget constraint that one cannot spend more than $500 on
these two goods. This constrained nonlinear maximization problem can be entered into
Excel as the following model, shown in Figure 8.8.

This time, trying to solve using the Standard LP/QP Engine will produce the error
message, “The linearity conditions required by this Solver engine are not satisfied”
in the bottom of the Solver window. Instead, in the drop-down menu at the top of the
Engine tab, select “Standard GRG Nonlinear Engine.” Now solve the problem as
before. If the initial values for x and y in the spreadsheet were both zero or both
negative, Solver may converge to the solution x � 0, y � 0. This is because (0, 0) is
a critical point of the function, which means that it is “flat” at this point or its gra-
dient is the 0 vector, so the Standard GRG Engine cannot find a direction to improve
it. Instead select some positive initial values for x and y, and Solver will converge
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Figure 8.7 The Solver model for two-product firm problem.

6This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 8 supplemental materials
available at www.wiley.com/college/kaiser.
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to the optimal solution. The complete model and engine options are displayed in
Figure 8.9.

In this case, the consumer will maximize utility by purchasing 125 units of x and
250 units of y. Looking at the Sensitivity Report, the SPs, or LaGrange multipliers,
can be identified for each constraint. For instance, the SP for the budget constraint
is $0.042 and should be interpreted as the marginal utility of money.
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Figure 8.9 The model and engine set-up for utility maximization problem.

Figure 8.8 The Solver model for utility maximization problem.
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8.8 FISHERY MANAGEMENT USING NONLINEAR PROGRAMMING

In Chapter 6, a linear function was used to describe the growth rate of Douglas fir trees.
While linear approximations may be helpful for harvest decisions about a resource with
relatively consistent growth rates, in most cases, growth rates of renewable resources are
nonlinear. This example considers the optimal management of a fishery. In this fishery
stocking problem, managers are asked to develop an optimal harvest plan that maximizes
the present value of profits. This type of analysis may be helpful to prevent overfishing due
to the well-known problem of the “tragedy of the commons.” In this case, individuals pur-
sue individual profits in an open-access fishery such that the fishery is depleted and the
overall profits from the fishery are diminished. By knowing the harvest amounts that can
lead to optimal profits, managers can establish policies such as individual transferrable
quotas, harvest season length, and fishery equipment regulations to achieve a more sus-
tainable and socially optimal result.

To solve this problem, several functions related to the fishery and harvest effort need to
be established.7 First, a general function describing the population of the renewable fish
stock is as follows:

xt�1 � xt � F(xt) � yt (8.69)

where xt denotes the stock of the renewable resource at the beginning of year t, F(xt) is
the net growth in year t, and yt is the amount of fish harvested in year t. Thus, the LHS 
in the equation is the change of stock from year t to year t � 1, and the RHS is the differ-
ence between the net increase in the fish stock and the harvest amount. If the amount har-
vested each year equals to the amount of net growth, a steady-state will be achieved where
the size of the fish stock does not change:

yt � F(xt) (8.70)

The natural growth of the fish stock can be described using a logistic growth function:

(8.71)

where r � 0 is the intrinsic growth rate, such that a larger number indicates stronger repro-
ductive ability of fish, and k � 0 is the environmental carrying capacity that limits the size
of the fish stock that the ecological environment can sustain. Figure 8.10 shows the non-
linear change of F(x) according to x. At the points x � 0 and x � k, the growth function
denotes two steady-states, absent of fishing, where the size of fish stock will not increase
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Figure 8.10 Logistic growth function.

7For an excellent review of the modeling of renewable resources, see Conrad (1999).
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through time. When x � 0, there are no fish to reproduce and when x � k, the fish stock
reaches the environmental carrying capacity such that the rising death rate offsets the net
growth rate.

With the harvesting of fish, equations (8.69) and (8.71) can be combined to determine
the fish stock size xt�1 at the beginning of year t�1.

(8.72)

Let πt � π (xt,yt) denote the net profits in year t from harvesting yt from a fish stock of 
size xt. πt is directly related to yt in that generally harvesting more fish generates more rev-
enue. Though the market for fish is limited and a flooding of the market with fish would
generally decrease the market price, this example assumes that the fishery is sufficiently
small that harvesting in this fishery does not have a significant influence on the overall
market price for the fish. If the fish stock size, xt is small, the fish population could be 
more scattered, and the cost of fishing would thus rise. The following function can be used
to denote the net profit where a � 0 is the market price for fish (in bulk), yt is the harvest
level in year t, and c � 0 is the cost parameter reflecting the cost of effort for fishing. Thus,
net profits in year t can be written as:

(8.73)

Next, assume that δ is the discount rate that captures the effect of the change in the value
of money over time. For example, in traditional banking situations, the value of $100 after
10 years when δ � 0.05 can be calculated as 100(1 � δ)10. Therefore, after 10 years, the
original $100 is now worth $162.89. In this fishery example, the discount rate is used to
determine the present value of a future payment. For example, the value today of a $100
payment made in 10 years would be calculated by multiplying the future payment by the 

function Thus, the present value of a payment made in 10 years with a 0.05

discount rate is only $61.39. Therefore, the present value of a payment of πt made in year t 

can be expressed as Converting equation (8.73) into present value terms yields:

(8.74)

In this example, the fishery manager’s objective is to maximize the present value of prof-
its, Pt. Assume that after t � T years, the fishery will be well managed and continue to
operate in a steady-state condition, yt � F(xt), and that the annual harvest amount will
equal the net growth of the fish stock. In other words, the size of fish stock, xt, will remain
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unchanged, and the net profit, π�t, made every year until T will also remain unchanged,
such that by using equations (8.70), (8.71), and (8.73), πt can be expressed as:

Building upon equations (8.74) and (8.75), all profits made after year T can be defined as

As a result, the present value of at the beginning when t � 0 is

Model Set-Up

This fishery management problem can then be solved by developing a model as shown in
Figure 8.11. In this spreadsheet, Cells C2 to C6 contain the given parameters that do not
change over time. In this example, assume the market price for fish in bulk is $10,000, the
cost of each unit of fishing effort is $1,000, the environmental carrying capacity is 1,000
fish (in thousands), and the discount rate is 0.05.

The initial stock level of fish, x0, is given in Cell D10 as 200 (in thousands). The func-
tion for x1 follows equation (8.72) such that Cell D11 can be written as �D10�$C$4*
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D10*(1–D10/$C$5)�C10. Note that by using proper cell referencing notation, where “$”
signs are used to indicate the absolute location of the given information, the fish stock for
years 2 through 9 can be calculated by simply dragging down the equation in Cell D11 to
Cells D12 through D20, so that the function in Cell D20 is �D19�$C$4*
D19*(1–D19/$C$5)–C19.

The present value profits, Pt, can be calculated in Cell E10 by using the function 
� ((1/(1�$C$6))^B10)*($C$2*C10–$C$3*C10/D10) as depicted in equation (8.74). Likewise,
this equation can be dragged down to capture the present value of profits in years 1 through 9.

Cell E20 captures the stream of present value profits that occur when the fishery and its
annual harvest are in a steady-state as depicted in equation (8.77). This function captures
the present value profit for all years after year T and can be written as:

�((1/(1�$C$6))^B20)*($C$2*$C$4*D20*(1–D20/$C$5)–$C$3*$C$4*D20
*(1–D20/$C$5)/D20)/$C$6.

Finally, the objective that the fishery manager wants to maximize, net present profit, is
expressed as the function �SUM (E10:E20) in Cell E22.

In Solver, the decision variables are defined as the harvest amounts, yt, as shown in 
Cells C10 to C19. Constraints should also be set to ensure that the harvest amounts and 
the fish stock are non-negative. Finally, given the nonlinear nature of the problem, the
Standard GRG Nonlinear Engine should be used with the starting values set at zero.

The solution to this problem is shown in Figure 8.11. To maximize present value prof-
its no harvesting should occur in the fishery during the first two years. This will allow the
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Figure 8.11 Initial solution to nonlinear fishery problem.
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fish stock to grow. Harvest levels then increase until they reach their highest level of
126.25 (in thousands) by year 9. The resulting present value profit for this management
plan is $22,126,375.

As with most problems of this type, numerous real-world technological and political con-
straints can be incorporated into the model to evaluate how these constraints impact the
management decisions and overall profit. In this case, one could imagine that the fishing
community may be reluctant to accept a closure of the fishery for two years, even if it would
lead to higher long-term profits. Therefore constraints can be set that raise the minimum
harvest amount from 0 to 70. In this case, the optimal harvest amount would remain at the
minimum permitted amount until the eighth year when fish stocks would have recovered
sufficiently to permit more fishing. Interestingly, in this fictitious example, despite these
higher levels of initial harvesting, the present value profit is just 4% less ($21,232,927).

8.9 RESEARCH APPLICATION: OPTIMAL ADVERTISING

Dairy farmers in the United States collectively contribute over $250 million per year to be
used to advertise and promote milk products. Much of this money is used to advertise fluid
milk and dairy products. The popular “Got Milk?” advertisements are but one example of
these marketing activities. The national dairy promotion program finds its roots in the
Dairy and Tobacco Adjustment Act (1983), which authorized the current assessment of 
15 cents per hundred pounds of milk marketed (which is usually about 1% of the price
received by farmers) in the continental United States. Because of the significant investment
over time on these advertisements, there have been a lot of studies conducted on whether
farmers are getting the biggest bang for their buck. In this section, we review one such
study that used NLP to answer this question.

Pritchett, Liu, and Kaiser (1998) conducted a study that evaluated whether fluid milk
advertising was being optimally allocated across the four major types of media: televi-
sion, radio, print, and outdoors. The authors combined an econometric model of demand
and supply with a dynamic, NLP model to determine the optimal allocation of milk
advertising across media outlets. The econometric model, which will not be covered here,
was used to derive the key parameters for the NLP model. These include the advertising
elasticities of demand, own price elasticities of demand and supply, and other elasticities.8

This was the first study to determine optimal mixes of advertising across type of media
over time.

The model consists of a dynamic objective function (i.e., a quarterly model that allo-
cates the advertising budget across types of media) and a set of constraints on supply and
demand. The objective function for the NLP problem is to maximize:

where ρ �(1 � r)�1, r is the interest rate, p t
b is the milk price received by farmers in time

period t, st is the milk supply in period t, ai,t is advertising expenditures in time t spent on
media type i (i � television, radio, print, and outdoor), and V(dT, sT) is a salvage term
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8Recall from economic principles that elasticity measures the percentage change in demand or supply given a
small (e.g., 1%) change in one of its determinants. For example, the television advertising elasticity of demand
measures the percentage change in demand given a 1% change in television advertising.
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including terminal cash flow values and the terminal value of the decision variables dT and
sT.9 The objective is to maximize the discounted net revenue stream for a selected period
of time (t � 1,2, ... , T) by choosing advertising expenditures for the ith media outlet {ai,: 
t � 1, ... , T} so as to drive the decision variables, fluid milk sales {dt: t � 1, ... , T} and
farm milk supply {st: t � 1, ... , T}, to the optimal path. This objective is maximized sub-
ject to a set of dynamic (quarterly) constraints.

The first constraint in the model defines farm milk supply in time period t � 1, and is
given by:

st�1 � f(p t
b, st, wt�1).

That is, milk supply in period t�1 is a function of the price farmers receive for their milk
in period t, milk supply in period t, and other determinants of milk supply such as tech-
nology, input prices, etc (wt�1). An explicit milk supply function was estimated economet-
rically, and its result is used in the optimization model. Note that the authors used a “naïve
price expectations” assumption that milk supply in t � 1 depends upon the price in the pre-
vious period, t. It is called “naïve” since it assumes that price observed in the most recent
past period is what farmers collectively believe the price will be in the next period for mak-
ing supply decisions.

The second constraint defines the milk price that farmers receive:

pt
b � δt dt/st � pt,

where δt is a premium that farmers receive for milk sold to fluid milk processors (i.e., Class
I premium that was discussed in the transportation chapter) in time period t, dt is the demand
for milk by fluid milk processors in period t, st is total farm milk supply available for fluid
and nonfluid demand in period t, and pt is the base price for milk for nonfluid use (this is
sometimes called the Class IV price) in period t. Note that this equation is nonlinear.

The next constraint limits fluid milk demand in period t to be less than or equal to total
farm milk supply in period t, that is:

dt � st.

Finally, the last constraint in the model limits the sum of advertising across all four media
types in period t to be less than or equal to its total advertising budget for that period:

To discount the stream of net revenue over time, the interest rate, r, is defined as 25% of
the effective annual rate index. The authors used 6.155% as the annual rate index, since it
was the average rate on six-month Treasury Bills between 1985 and 1995. The optimiza-
tion problem is solved for the period beginning in the first quarter of 1984 through the final
quarter of 1993. The authors used two estimated fluid milk demand models with the NLP
model (Model A and Model B) in their analysis. The only difference between the two
models is the way each addressed the carry-over effect advertising has on demand. One

a ai,t t
i

4

�
�1
∑ .
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9In any dynamic model like this, you need a “terminal value” for the decision variables because at the end of the
optimization time period, some or all of these variables still have value and must be added to the value of 
the objective function.
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model restricted the advertising carry-over effect according to a predetermined pattern
(Model A), while the other placed no restriction on the carry-over effect (Model B).

The results of the optimization suggest there are important benefits to redistributing
media expenditures. Using Model A, the optimal media mix increases the discounted
profit in (1) by $950 million ($95 million per year) over the simulation period. While this
represents only a small portion of the revenue stream in (1), this additional profit can be
obtained virtually cost-free. A similar result was obtained with Model B, but profits
increase by only $427 million ($43 million per year). Increased profits are due to an
increase in fluid milk demand resulting from the reallocation of advertising dollars across
various types of media.

What does the optimal media allocation look like? In absolute terms, it would be
expected that the most effective media outlet has the largest share of expenditures. The
econometric results indicate that television has the largest advertising elasticity. As a
result, television has the largest share of expenditures relative to print, radio, and outdoor
advertising expenditures. However, due to diminishing marginal returns, overspending on
television is possible, which would reduce profitability. To improve profitability, funds
should then be diverted from television to the media outlet with the greatest marginal ben-
efit. The optimality principle dictates that the marginal benefit must be equal for each
media outlet.

The result from both optimization models supports this principle. From 1984 to 1993,
the actual average allocation of advertising dollars was to invest 88% on television, 5.2%
on print, 4.4% on radio, and 2.4% on outdoor. Obviously, the actual plan heavily favored
television as the dominant media type for advertising. The two optimal solutions signifi-
cantly reduce television’s share of the budget. The optimization results from Model A, for
instance, reduce television to 70%, with outdoor increasing to 15%, print to 9%, and radio
to 6%. The optimization results from Model B reduce television to 58%, increases outdoor
to 29%, print to 8%, and radio to 5%. Regardless of optimization model, the qualitative
results suggest that a reallocation away from television to other media types was in order
during the 1984 to 1993 simulation period. These results suggest that print, radio, and out-
door advertising are more cost effective at the margin than was envisioned by the adver-
tising agency running the dairy farmers’ marketing campaign.

While the policy direction is that television expenditures should have been reduced in
favor of other media outlets, several caveats apply. First, this analysis evaluates the over-
all performance of advertising campaigns over a period of 10 years. Hence, the effec-
tiveness of specific campaigns within subperiods of the analysis are not measured. It is
entirely possible that television advertising expenditures were optimal for a specific
campaign, while they were overused for other campaigns on average. Further research
on specific campaigns over the study period might be useful in resolving this issue.
Second, the study considers the optimal mix of media expenditures for the period
1984–1993, and the results may not necessarily be applicable to the future. This would
be particularly true if a more effective television campaign is developed. In fact, the
“Got Milk?” campaign, which was not part of the time period in this study, may be a
case in point. Third, it is possible that the dairy promotion unit receives price discounts
for high-volume media purchases. In that event, shifting funds from television to other
media outlets might compromise these discounts. Obviously, the validity of this issue
can be best assessed by the program managers themselves. Finally, the model assumes a
national milk marketing order. In truth, there are regional differences in both advertising
responses and utilization percentages of dairy products. Further analysis is needed to
address these issues.
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8.10 RESEARCH APPLICATION: WATER POLLUTION 
ABATEMENT POLICIES

Goldar and Pandey (2001) applied a nonlinear mathematical programming model to
examine alternative government policies aimed at reducing water pollution in India. A
major problem in India has been firms’ practice of using groundwater to dilute effluent
streams in order to satisfy government environmental standards. Firms do this because the
environmental regulations define limits on the maximum concentration of pollution, but
not on the volume of wastewater pollution. This has given polluters an incentive to dilute
effluent levels by mixing groundwater with wastewater until the concentration levels are
just under those mandated by the law. As a result, the volume of wastewater discharged
by factories is not regulated and is significantly higher than it would be in the absence of
the regulations.

Water is underpriced in India, which induces this behavior. Without government inter-
vention, water pricing does not incorporate the true social costs of pollution, and hence
polluting entities have no economic incentive to reduce effluents. This study focused on
water pollution caused by the distilleries industry in India, and addressed the following
issue: how should the government price water to distilleries to bring down the level of pol-
lution to adequate levels prescribed by existing legislation?

Two general policy scenarios were examined. The first was the actual command and
control (CAC) instruments used by the government. The inclusion of this scenario in the
optimization model was to determine whether current policies with cheap groundwater
induce firms to dilute effluent with groundwater. The second scenario was a replacement
of the CAC instruments with pollution taxes based on imputed pollution load. Under this
scenario, both the tax rate and price of groundwater have an important impact on the extent
of dilution used. The pollutant chosen for the study was biological oxygen demand (BOD),
which is a measure of the amount of oxygen required to oxidize various compounds pres-
ent in water.

A NLP model was used to investigate several alternative water pricing strategies. The
objective function is a pollution abatement cost function for treating wastewater emitted
from the distilleries. Water pollution abatement requires reducing influent concentrations
to target acceptable levels of effluent concentrations. Influent is the wastewater resulting
from production before being treated, while effluent is the residual emitted after treatment.
The nonlinear cost function was estimated econometrically with cross-sectional data on 45
distilleries. The authors used a Cobb–Douglas (exponential) functional form in estimating
the model, that is:

c � A qI
�1 qE

�2 qI
�3 pL

�4 pK
�5 pE

�6 pM
�7,

where:
c � pollution abatement cost function

A � constant term

qI � quantity of influent

qE � pollution level of effluent

qI � pollution level of influent

pL� price of labor

pK� price of capital

pE� price of energy
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pM � price of materials

βi � parameters of cost function to be estimated, β4 � β5 � β6 � β7 � 1

Using the cross-sectional data, the authors estimated this cost function. The resulting
cost function was used as one of the main parts of the objective function in the NLP
model.

The NLP model is:

Min: Z � ct � cgw � tbrdn (0)

s.t.:

� ln ct�CONSTANT�0.943 ln volw�0.923 ln prtbod�0.0998 ln pstbod � 0 (1)

� cgw � (prgw)(gwp) � 0 (2)

� tbrdn � TR[(fbod � 30)volw] � 0 (3)

� volw � 15out � 10out � 0 (4)

� fbod � (pstbod)(volw)/(volw � gwp) � 0 (5)

prtbod � pstbod � 0 (6)

pstbod � 30 (7)

Non-negativity (8)

where:

ct � cost of treatment, based on estimated cost function

cgw � cost of groundwater extraction

tbrdn � tax burden to distillery

volw � volume of water treated

pstbod � post-treatment BOD concentration level

gwp � volume of groundwater extracted

fbod � BOD concentration level in final water discharge

ln � natural logarithmic operator

prtbod � pretreatment BOD, which is the index of pollutants in wastewater, and is
set to 46,000 mg/liter

CONSTANT � price variables in estimated cost function set at sample means

prgw � price of groundwater, which is assigned different values under various
scenarios

TR � tax rate, which is assigned different values under various scenarios

out � annual output of alcohol from distillery, set at 10,000 KL

The objective function consists of three costs: treatment, groundwater extraction, and
pollution tax burden. Constraint (1) defines the treatment cost for the firm, which is
based on the econometrically estimated cost function. Constraint (2) defines the cost of
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groundwater extraction as the product of volume of groundwater extracted times the
price of groundwater, which is set to different levels in various scenarios. Constraint (3)
defines the cost of total pollution taxes levied on the distillery for BOD concentration
levels larger than 30. If the BOD concentration levels are 30 or less, then the total taxes
are zero. Constraint (5) sets the total volume of water treated, which depends upon
wastewater spent on wash generation per KL of alcohol produced, and wastewater
process water generation per KL of alcohol produced. Constraint (5) defines the level of
BOD concentration levels in the final water discharged. Constraints (6) and (7) require
the post-treated BOD concentration levels to be lower than the pretreatment BOD levels
of 30 or higher.

Under the first set of scenarios, the model was run assuming that the distillery is
required to reduce BOD concentrations of its final discharge to 30 mg/liter. It can do so
by treatment of wastewater in the effluent treatment plant (ETP) and/or by dilution with
clean groundwater. The extent of each practice depends on the relative cost of ground-
water versus the ETP. The authors found that current prices for groundwater are so cheap
that the optimal solution for the distillery is to use groundwater rather than the ETP. As
the price of groundwater is increased, the optimal solution relies less and less on ground-
water for dilution and more on the ETP. The authors simulated nine scenarios increasing
the groundwater price from 0.25 rupees per KL (current price) to 3.50 rupees. At 3.5
rupees, no groundwater was used to dilute the wastewater. A main policy conclusion is
that more realistic pricing of groundwater to reflect its true cost is one solution to this pol-
lution abatement problem.

The second set of scenarios involved taxing pollution. Under this scheme, there is an
incentive to use groundwater to dilute wastewater after treatment in order to lessen the tax
burden. The authors found that high tax rates coupled with low groundwater prices provide
a strong incentive for firms to use groundwater to dilute the wastewater. However, as the
price of groundwater increases, this incentive goes down.

Based on these results, the authors have three recommendations in terms of curbing the
use of clean groundwater to dilute wastewater from distilleries. First, raise the price of
groundwater to its economic value, taking into account its many diverse uses such as
drinking water, irrigation, and so on. The price should be different for different regions of
the country. Second, set a pollution tax at a level such that distilleries and other industries
have little incentive to dilute their effluent. The level of the tax should also be set region-
ally in accordance to the price of groundwater. Third, set effluent standards taking into
account regional water quality and the absorptive capacity of the environment in each
region.

SUMMARY

This chapter presented an overview of NLP. The chapter began with a basic review of cal-
culus concepts required for unconstrained and constrained nonlinear optimization prob-
lems. We introduced the general solution procedure for solving nonlinear problems using
differential calculus. This included a discussion of the first-order necessary conditions and
SOCs for determining a solution to a maximum and minimum problem. The fundamental
necessary and sufficient conditions for determining optimal solutions for any nonlinear
function for both unconstrained and constrained problems were presented. As was dis-
cussed in the introduction, a basic understanding of calculus is necessary to understand
these procedures.

Next, the Kuhn–Tucker conditions and procedures for constrained nonlinear problems
were examined. Constrained optimization problems are a little more complicated to solve
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because of the possibility of corner solutions. We demonstrated how to use the
Kuhn–Tucker conditions to solve such problems.

Also, an overview of how to solve these problems using Solver was presented.
Several simple examples were presented to illustrate how to use Solver for NLP. It is
important to note that while these were small problems, Solver is capable of handling
much larger and more realistic NLP problems with exactly the same logic. Hence, it is
a nice tool for applied research, though it is important to understand the basic problem
to avoid finding local instead of global solutions.

The chapter concluded with two research applications of NLP in the agricultural mar-
keting and environmental economics literature. In the first application, NLP was used to
determine the optimal allocation of advertising by media type over time. In the second
application, an NLP model of water pollution abatement in India was presented.

In the next chapter, greater detail is provided on the issues and concepts central to under-
standing global approaches to nonlinear optimization.
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EXERCISES

1. For each of the following functions, find the critical point and determine whether the
critical point is a maximum, minimum, or neither.

a. y(x) � x2 � 15x � 7.

b. y(w,z) � w2 � z2wz.

c. y(a,b) � a2 � 5ab � 100.

2. Determine the minimum of the following function:

y(x) � x3 � 10x2 � 100.

3. Determine the maximum of the following function:

y(x) � 200x � 10x2 � 100.

4. A firm faces the following inverse demand curve:

p � 500 � 0.3q, 

where q is the monthly production, and p is price, measured in dollars per unit.
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The firm also has a total cost (TC) function of:

TC � 6,000 � 20q.

Assuming the firm maximizes profits, answer the following:

a. Compute the total and marginal revenue for the firm.

b. Assuming the firm operates as a monopolist, calculate the following: price, quan-
tity, and profit. (Hint: the firm maximizes profit by equating marginal revenue and
marginal costs). Graph and show the equilibrium price and quantity.

c. Assuming perfect competition, what are the price, quantity, and profit? Show on
the graph from above.

5. You have been assigned the task of helping the Midland Milk Producers Marketing
Co-operative Association (MMPMCA), the sole marketing agency for milk produced
in the Island State of Midland. In the past, the producers have been marketing their
milk as a homogeneous commodity to all processors of milk. However, you have stud-
ied the market extensively and realize that the market can actually be segmented into
two separate units: (1) the market for fluid milk (milk for drinking) and (2) the mar-
ket for processing milk (for manufacturing of cheese, etc.). In fact, you have done
some preliminary analysis and generated demand curves for the two separate markets
for the MMPMCA’s milk output.

Fluid milk market:

Inverse demand curve: pfluid � 10 � 2qfluid.

Marginal revenue curve: MRfluid � 10 � 4qfluid.

Processing milk:

Inverse demand curve: pprocessing � 5 � 0.5qprocessing.

Marginal revenue curve: MRprocessing � 5 � 1qprocessing.

Cost of production:

Assume that individual firms have the same cost function as follows:

TC � 10 � 3q, where 
q � qfluid � qprocessing.

a. Determine the marginal cost of milk production.

b. What is the desired allocation of milk production between the two markets, and
what is the price they should charge for fluid and processing milk in the respec-
tive markets, assuming that the MMPMCA wishes to maximize profits for the
farmers they represent? In other words, given that they can practice price dis-
crimination in the market, how much should they sell into each of the fluid milk
and processing milk markets, and at what price?

c. Given that the price of milk without price discrimination is $4.50, how have
prices changed for fluid milk and processing milk buyers?
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d. How have total revenues changed if the actual total production of milk remains
unchanged?

e. Calculate the own-price elasticities of demand for fluid and processing milk at the
equilibrium values for p and q.

6. Assume that the market demand, marginal revenue, and total costs faced by a food
firm are:

p � 1000 � 10q (demand),

TR � 1000q � 10q2 (total revenue), and

TC � 300q (total cost),

where p is the price, and q is the total quantity (in thousands).

a. Assuming that the firm acts as a monopolist, calculate the optimal price, quantity,
and profit (i.e., TR – TC) for the organization. After using algebra to find the
solution, present your results graphically.

b. The Department of Justice claims that the monopoly solution in part a is socially
inefficient, and passes a law that requires the firm to set its output and price lev-
els as if it were a perfect competitor. Assuming the firm follows the new law, what
would the price, quantity, and profit now be?

7. Solve the following consumer utility maximization problem.

Max: U(q1,q2) � q1q2

s.t.: 

p1q1 � p2q2 � y,

where q1 and q2 are goods, p1 and p2 are the prices of the goods, and y is income.

8. A person’s utility function (U) is given by the following expression:

U(x,y) � (x � 2)(y � 1),

where x and y are products the consumer may purchase. Suppose that the price of x is
$2.00 and the price of y is $5.00, and the consumer wants to spend exactly $51.00 on
both products. The consumer’s objective is to maximize her utility function subject to
the stated budget constraint.

a. Write the LaGrange function for this problem.

b. Derive the optimal purchases for x and y. Show your work.

c. Verify whether the SOC for a maximum is satisfied. Show your work.

9. To reduce pollution, two devices can be implemented (a and b). Assume the total cost
function for these two devices is:

Z(a,b) � 2a2 � 4b2 � 2ab � 6a � 8b � 25.

Solve this function for the cost minimizing values of a and b.

10. A supermarket chain has devised the following formula for maximizing its sales:

S � �30x2 � 5a2 � ax � 100x � 1,000,
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where s � sales, x � square feet of the store in units of 50,000 square feet, and 
a � annual advertising in units of 100,000. Suppose a � 10. Find the square footage
for the store that maximizes sales.

11. Solve the following constrained optimization problem with equality constraints (make
sure to write out the first- and second-order conditions):

Max: Z � �x2 � 2y2 � 8x � 12y � 34 (0)

s.t.:

�2x � 4y � �8 (1)

12. Solve the following constrained optimization problem with equality constraints (make
sure to write out the first- and second-order conditions):

Min: Z � x2 � y2 � 12x � 10y � 61 (0)

s.t.:

20x � 30y � 60 (1)

13. A firm manufactures a product using two inputs (x and y) and has the following cost
function:

Cost � f(x,y) � 35x2 � 2xy � 10y2 � 200x � 100y.

The firm may use any combination of the inputs x and y so long as x � y � 100.
Find the amount of x and y that should be used to minimize cost while satisfying
the restriction that x � y � 100. In addition, what is the minimum cost and SP 
for the constraint?

14. Write the LaGrange function and take the Kuhn–Tucker FOCs for the following
problem:

Max: Z � x0.2 y0.4 (0)

s.t.:

x �y � 100 (1)

y � 75 (2)

15. Consider the following constrained optimization problem with inequality constraints:

Max: Z � xy (0)

s.t.:

x � y � 100 (1)

x, y � 0 (2)

a. Give the Kuhn–Tucker FOCs conditions for this problem.

b. Solve this problem by hand.
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16. Consider the following problem:

Max: Z � xy (0)

s.t.:

x � y � 200 (1)

x, y � 0 (2)

a. Write the Kuhn–Tucker FOCs for this problem.

b. Solve this problem for x*, y*, and λ1
*.

c. Verify whether the SOC for a maximum is satisfied.

17. Consider the following maximization problem:

Max: Z � �a2 � 10b2 � 6ab � 15a � 40b (0)

s.t.:

a � b � 4 (1)

a, b � 0 (2)

a. Write the Kuhn–Tucker FOCs for this problem.

b. Solve this problem for a*, b*, and λ1
*.

c. Verify whether the SOC for a maximum is satisfied.

18. Write the Kuhn–Tucker conditions for the following problem:

Max: Z � 2x � y (0)

s.t.:

x2 � y2 � 2 (1)

x, y � 0 (2)

19. Consider the following NLP problem:

Min: Z � (x � 2)2 � (y � 3)2 (0)

s.t.:

x � y � 8 (1)

x, y � 0 (2)

a. Write the Kuhn-Tucker FOCs for this problem.

b. Solve this problem by hand.

c. Solve this problem using Solver.

20. An economist has derived the following formula for a profit function of an agribusi-
ness firm as follows:

π � �a2 � 2b2 � 10a � 15b � 1,000,
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where a and b are inputs of production. The firm also faces the following production
constraint:

2a � 2b � 6,000.

Solve this problem by hand. Then verify your answer using Solver.

21. Solve the following problem using Solver:

Max: Z � �10a2 � b2 � 5c2 � 100a � 25b � 50c � 100 (0)

s.t.:

a � b � 60 (1)

a � b � c � 15 (2)

c � 7 (3)

a, b, c � 0 (4)
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321

9
Global Approaches to Nonlinear

Optimization

An astoundingly large number of problems not only in economics but also in mathematics,
engineering, and the sciences can be formulated as optimization problems. This realization
is not as useful as it might seem at first because most optimization problems are intractably
difficult to solve with the current technology and techniques available to researchers. So far,
most of this book has focused on the useful and very well understood special case of linear
problems. In Chapter 8, we introduced nonlinear optimization problems, discussed some
basic mathematical techniques, including using calculus to find optima for both uncon-
strained and constrained functions, and briefly discussed the Generalized Reduced
Gradient (GRG) Algorithm. We also saw some of the difficulties with the GRG Algorithm,
specifically its tendency to converge to nonglobal solutions and saddle points.

Dealing with nonlinear problems can be very challenging in reality, and much of the
current research in the field is devoted to developing new approaches to different classes
of nonlinear programs. Some difficult problems require the development of altogether new
algorithms specific to their particular attributes. Solver offers several different engines
built on relatively recently developed algorithms that can be applied successfully to fairly
general categories of nonlinear problems and that will usually find global optimal, or at
least near-optimal, solutions.

In this chapter, we will first go into greater detail about some of the issues and concepts
central to understanding global optimization techniques. We will then venture beyond the
standard linear programming (LP) and GRG Solver Engines that we have used in prior chap-
ters and explore some of the other tools that Solver offers for special types of problems. First,
we will look at the SOCP (Second-Order Conic Problem) Barrier Engine, which can be
used for a broad range of convex problems, allowing a substantial relaxation of the linear
constraint requirement. Then we will discuss Solver’s Evolutionary Engine. This engine
uses a variation on a popular metaheuristic algorithm to search for the feasible region semi-
randomly for good solutions; given sufficient time, it will usually find a very good, though
not necessarily optimal, solution. Finally, we will introduce the Interval Global Engine,
which uses an algorithm related to the branch-and-bound algorithm to find global solutions
to any relatively small-constrained optimization problem, regardless of its structure.
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The algorithms discussed in this chapter are simplified versions of the ones used by
Solver. They are described to provide greater understanding, comfort, and competence
with the processes by which the solutions are obtained than would be possible with just a
“black box” understanding of the techniques. The details of some of these algorithms can
be rather complex. For practical purposes, understanding the inner workings of the algo-
rithms detailed here is less important than understanding the appropriateness, strengths,
and limitations of each one.

9.1 DEVELOPMENT OF NONLINEAR PROBLEMS

In analyzing a problem, there are a variety of decisions and tradeoffs involved in formu-
lating, designing, solving, and presenting the results. The deeper the understanding an ana-
lyst has of both the problem and the solution techniques available, the more effective the
analyst will be in finding a solution that meets the needs of the problem and in communi-
cating that solution. A basic understanding of a few issues that come up in optimization
theory can be valuable in approaching and solving more complex problems. These issues
should be kept in mind when considering the techniques detailed later in this chapter.

Problem Formulation

Often for complex problems, a well-formulated model can make obtaining a solution much
easier. Sometimes functions that are not linear can easily be made linear through algebraic
manipulation or techniques like the use of binary variables and weighting to represent log-
ical constraints.

Say, for instance, that there is a constraint-limiting option a out of activities a, b, and c
to be no more than 20% of the total amount. The natural formulation of this would be

a/(a � b � c) � 0.2,

which is clearly nonlinear. However, with some algebraic manipulation this becomes

a � (0.2a � 0.2b � 0.2c), or

0.8a � 0.2b � 0.2c � 0,

which is now linear.
Another possibility is a situation where there is a fixed cost that must be paid before any

number of units of a variable activity may be performed. This could be modeled with a
logical condition like �IF(Activity1 � 0, 1, 0). However this would not only be non-
linear, but would also be nondifferentiable, so the GRG Engine would not be applicable.
Instead, this situation can be modeled with a binary variable associated with the fixed cost
in the objective function and a constraint linking it to the variable activity.

If the variable activity is represented by the variable x, and the binary variable is b, such
a constraint would look something like x – mb � 0, where m is an upper bound (UB) to
x. In minimizing, the algorithm will try to push b to zero since there is a cost associated
with it; however if there is a nonzero value associated with x, b will have to be set to 1, or
the constraint will be violated. This can then be solved as a linear MIP.

Other nonlinear functions can be closely approximated by linear functions on the par-
ticular domain of the problem. For instance, often for a small interval with midpoint x1, the
first-order Taylor polynomial approximation, defined by

f(x) � f(x1) � [df/dx(x1)](x – x1),
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can give a reasonable linear estimate of a smooth function of one variable on that interval.
Furthermore, second-order Taylor Polynomials, defined as

f(x) � f(x1) � [df/dx(x1)](x – x1) � {[df2/d2x(x1)]/2}(x – x1)2,

can provide a convex approximation. For many nonlinear algorithms it is important, or at
least useful, to have definite bounds on the decision variables.

Finally, for many algorithms, especially nonlinear ones, the starting values used (which
would be the values in the decision cells when using Solver) play a big role in how the
algorithm performs. Generally, all initial values should be feasible and ideally in the same
general neighborhood as the optimal solution.

Convexity

In terms of difficulty in solving problems, the distinction has classically been between lin-
ear and nonlinear problems. As technologies and techniques advance however, the dis-
tinction is increasingly shifting towards convex versus nonconvex problems. As we
discussed in Chapter 1, a convex set is essentially one for which a line segment connect-
ing any two points in the set will be totally contained within the set. A function is convex
if the area above the function is convex.

A moment’s consideration should reveal that linear problems are always convex, as are
many quadratic objective functions and quadratically constrained problems. Many other
types of problems are convex, can be transformed, or are at least approximated as convex
problems. Commonly used techniques can be helpful in making problems convex, but a
full exploration of these techniques requires a fairly high degree of mathematical sophis-
tication. Therefore, readers interested in pursuing this topic further should consult one of
the excellent texts available on Convex Optimization.1

As more research is done in the field and more stable algorithm implementations are
developed, convex optimization is becoming increasingly accessible to applied analysts.
The SOCP Barrier Engine that we discuss in the following section can be used to solve
most types of convex problems.

Deterministic versus Nondeterministic Algorithms

One key difference between different types of algorithms is whether they are determinis-
tic, meaning that given the same initial input, they will follow the same path. In general,
deterministic algorithms tend to have better (or at least more rigidly) defined decision and
stopping criteria and are very predictable.

The evolutionary algorithm presented below is nondeterministic, as are other popular
“heuristic” algorithms. The decision path for the Evolutionary Solver commonly involves
some random elements and relies upon arbitrary time limits or convergence criteria to deter-
mine when to stop. One implication is that you can let the algorithm run for an arbitrarily
long period of time, and could potentially continue to see increases in the objective func-
tion. Therefore, you can never be certain that the solution is entirely optimal; however, the
longer you run the algorithm, the more certain you can be that it is at least a good solution.

Because of their randomness, nondeterministic algorithms tend to be much more adept
with problems that have irregular feasible regions.
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1See, for example, Berkovitz (2002) or Boyd and Vandenberghe (2004).
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Algorithm Efficiency

In theory, any problem could be solved to a certain level of precision using an exhaustive
algorithm. Simply start at the lowest feasible values and try every possible combination of
feasible solutions to a certain level of decimal precision. This process is impractical for
even small problems, so ideally we want our algorithms to be faster or more efficient than
an exhaustive search.

The relative speed or efficiency of algorithms essentially depends upon the number of
calculations required to solve the problem. Often, the time required to solve a problem
grows exponentially, in which case the time required to solve reasonably large or complex
problems can be astronomical. Interior point algorithms, like that used by the SOCP
Engine detailed below, are usually fairly fast.

The simplex method is a bit of a special case. Depending on the composition of the fea-
sible region, it is always possible that the simplex method will evaluate every extreme
point before it finds the optimal solution. When this scenario occurs, the simplex method
can be quite slow. In reality this seldom happens, and the simplex method is usually very
efficient. The Global Interval method, also described below, is usually very slow, so it is
really only useful for small problems.

A slow algorithm could take days, weeks, or possibly even longer to solve a moderately
sized problem. For instance, in the last chapter we offered an example with 30 decision
variables and about 20 constraints (which is relatively small when compared to common
real-world problems). Using the LP/Quadratic Engine, it took several seconds to solve on
a fairly new personal computer. Solving it using the Interval Global Engine on the same
computer took 5 hours and 17 minutes. This was unnecessary since the problem is linear;
however, it illustrates the disparity in efficiency between different algorithms and empha-
sizes that it is always preferable to state or approximate models in forms that lend them-
selves to fairly efficient methods of computation.

9.2 SECOND-ORDER CONIC PROBLEM BARRIER SOLVER

Linear programming and quadratic problems are both subcategories of convex problems.
They can both be further generalized into the category of SOCPs, a mathematical catego-
rization that is essentially equivalent to convex problems with quadratic objective func-
tions and constraints. They are referred to as conic because the decision variables when
taken as an n-dimensional vector can be thought of as constrained within a closed 
n-dimensional cone. To approach these types of problems, SOCP Barrier Solver uses a
Barrier or Interior Point algorithm.

In contrast to the simplex algorithm, which traverses the boundary of the feasible region
examining extreme points for optimality, interior point algorithms start at a feasible point
and then move through the interior of the feasible region to converge on the optimal solu-
tion. Barrier algorithms work by assigning a penalty to the objective function with a
Barrier function that grows as the function approaches a constraint.

As a result, the boundaries to the feasible region will essentially push the optimal solu-
tion to the barrier-adjusted problem towards the center of the feasible region. Then, by
iteratively decreasing the weight given to the barrier function, the progressive solutions
will trace an increasing path towards the most extreme point. This process will cause the
best solution found to approach, but never quite reach, the optimal solution. We can con-
tinue to decrease the weighting on the barrier function until the successive iterations
demonstrate a desired level of convergence. Another way this can be visualized is that the
barrier function represents a distortion to the objective function. We are simultaneously
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optimizing the distorted objective function while having it converge to the true objective
function.

There are many variations on barrier algorithms. For illustrative purposes, consider the
following problem:

Max: Z � –ex � (25x)0.5 � x (0)

s.t.:

x2 �x � 3 (1)

x � 0 (2)

This problem has both a quadratic objective function and quadratic constraints, which
means that the LP/Quadratic Engine cannot be used as in Chapter 8. Instead, consider the
barrier function:

�(x) � 1/x � 1/(3– x2).

Applying a weighting factor, 	, to the barrier function and using it to penalize the original
function f(x) gives the new function:

f1(x, �) � f(x) – �*�(x).

Maximizing this function gives the unconstrained maximization problem:

Max: Z � –ex � (25x)0.5 � x – �[1/x � 1/(3– x2)]

Since 1/x approaches infinity as x approaches 0, and 1/(3 – x2) approaches infinity as x2

approaches 3, the closer the function is to the original constraints, the more it will be penal-
ized. Then, by using decreasing values of � such as 1, 0.5, 0.1, 0.05, and so on, f1(x, �) can
be forced arbitrarily close to f(x). Note in particular that f1(x, 0) � f(x) except at roots of
the constraints.

Starting with � � 1 and an initial value of x � 0.75, optimizing using the GRG method
provides an optimal solution of x* � 0.9438, Z* � 1.1395. From that solution as a starting
point, decreasing 	 to 0.5 and then optimizing again reveals a new optimal solution of 
x* � 0.9847, Z* � 2.2834. Continuing, the first several steps are displayed below.

This will eventually converge to the solution x* � 1.1911, Z* � 3.3573. The original
function is displayed in Figure 9.1a, and a series of f1(x, �) for � � 1, 0.5, 0.1, 0.05 is dis-
played in Figure 9.1b, along with the interior path followed by the algorithm. Notice that
the series f1(x, �) has vertical asymptotes at x � 0 and x � 1.3027 which represent the two
constraints. Notice also that in this case the maximum was not at a boundary; however,
even if it were, it would still converge to the proper solution.
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� x Z

0.75 1.0372
1 0.9438 1.1395
0.5 0.9847 2.2834
0.1 1.0789 3.1062
0.05 1.1109 3.2224
0.01 1.1605 3.3264
0.005 1.1605 3.3264
0.001 1.1726 3.3412
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f1(x, .05)
f1(x, .1)
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Figure 9.1a The nonlinear function f(x).

Figure 9.1b Approximations of f(x) for progressive values of �.
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Figure 9.2 SOCP Barrier Engine settings.

Using Second-Order Conic Problem Barrier Solver

The SOCP Barrier Engine can solve problems with up to 200 variables, 8,192 (or 213) gen-
eral constraints, 400 bounds on the variables, and 200 integer constraints. The engine set-
tings are shown in Figure 9.2. The following settings are of interest when using Solver’s
SOCP Barrier Engine:

• Gap Tolerance: Gap tolerance is the primary convergence criteria used by the SOCP
Barrier Solver. The algorithm implemented works with both primal and dual formula-
tions to the problem simultaneously. When both the primal and dual solutions get
within the amount specified, the problem is considered to be solved. The gap tolerance
must be between 0 and 1. A larger gap tolerance will lead to a quicker but less precise
solution.
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• Step Size Factor: Step size factor determines the rate at which � decreases, or the rate
at which the modified objective function is allowed to approach constraints. The step
size factor must be between 0 and 0.99.

• Feasibility Tolerance: Because the algorithm is working with both the primal and
dual problems, there is a possibility that a solution may be feasible for one, but not the
other. This determines how close a solution must be to being feasible for both prob-
lems in order to be acceptable. The feasibility tolerance must be between 0 and 1.

• Search Direction: Search direction specifies the method used to determine the direc-
tion in which the algorithm will search for an improved solution for each iteration,
each with the option of a prediction-correction term.

• Power Index: Power index must be greater than zero. It can be used to specify the
behavior of search direction methods.

9.3 EVOLUTIONARY SOLVER

Evolutionary algorithms are one of a variety of metaheuristic algorithms, which are a class
of generalizable search algorithms. Evolutionary algorithms are nondeterministic approaches
which use a type of semistochastic method, often modeled after natural phenomena, to sam-
ple a search space in order to find a “best” solution. These algorithms work well with non-
linear functions and do not have the same issues with local maxima and discontinuous
feasible regions that gradient algorithms do. That said, as the feasible region becomes more
irregular, the likelihood of finding the true optimal solution in a reasonable amount of time
decreases. Unlike deterministic methods, evolutionary algorithms use arbitrary stopping cri-
teria, like maximum time or the number of iterations since the last improvement, which
means there is no way of knowing for sure that the best known solution is truly optimal.

Another major drawback of such algorithms is that they usually take much longer than
deterministic algorithms to converge on a solution, especially as the number of decision
variables increases. Since the size of the solution space grows exponentially as new deci-
sion variables are added, problems with hundreds to thousands of decision variables may
take a prohibitively long amount of time to converge on a reasonably optimal solution.

Description of Evolutionary Algorithms

Evolutionary algorithms are based on the theory of evolution and use a filtering technique
analogous to natural selection to iteratively improve solutions over a series of several gen-
erations. First, a population of some number of possible feasible solutions is generated and
evaluated based on a fitness criterion. Then a proportion of the solutions that best satisfy
the fitness criterion is kept to become parent solutions. These are interacted, and a new
generation of offspring solutions is generated using a cross-over method, which com-
bines attributes of different parent solutions along with a random element to produce
mutations. The length of time required to achieve a reasonable solution can vary and is a
function of several factors including the level of certainty desired, the amount of random-
ness introduced, the amount of time between identifying new solutions, and the speed of
the computer and processor.

The evolutionary algorithm implemented by Solver adds an additional step of conduct-
ing a local search after a new optimum is found to see if it can be further improved upon.
By default it uses a gradient search, but other methods can be selected with the Local Search
option, which is useful in dealing with functions that are not particularly smooth. In gen-
eral, evolutionary algorithms tend to have problems with more than a handful of inequality
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constraints. Solver, however works around this in situations like integer and equality con-
straints by using various algorithms to make infeasible offspring solutions feasible.

Example of an Evolutionary Algorithm

First let us look at how the Evolutionary Solver would go about solving a simple problem.
Consider an analyst who is seeking to understand the relationship between vehicle weight
and fuel efficiency (measured in miles per gallon in city driving conditions). The analyst
is particularly interested in looking at SUVs since those vehicles pose the greatest chal-
lenge to companies as they seek to meet the 2009 revisions to the Corporate Average Fleet
Economy (CAFE) standards, which call for each carmaker’s fleet to average 42 miles per
gallon by the 2016 model year.2

However, the x-y Scatter Plot of the data (Figure 9.3) suggests that the relationship
between weight and fuel efficiency is nonlinear (at least in this simple model). The ana-
lyst’s supervisor suggests that a power curve (y � 	x
) be estimated and parameters 	 and

 found to minimize the sum of squared errors. This problem can be solved using the
Evolutionary Solver.

For an illustration of this process, let us look at what happens with a population of six,
and let us assume that the analyst knows something about the data and thus can limit the
search for possible answers for alpha between 0 and 500,000 and the possible answers for
beta between 0 and –1.
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2A sample of the data publically available from the U.S. Environmental Protection Agency (www.epa.gov/
otaq/tcldata.htm) suggests that the analyst is correct in assuming that as the weight of an SUV without four-wheel
drive increases, its fuel efficiency decreases (Table 9.1).
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Figure 9.3 Scatter plot of SUV weight versus fuel efficiency.
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Table 9.1 Sample of SUV Fuel Efficiency

Manufacturer Car Line Weight MPG

Chrysler Grand Cherokee 4,500 19.3
Chrysler PT Cruiser 3,625 23
Ford Escape 3,625 28.3
Ford Expedition 6,000 17
GM Envoy 5,000 18.4
GM Tahoe 5,500 17.5
Honda Element 3,875 24.8
Honda Pilot 4,750 20.5
Hyundai Tucson 3,625 25.5
Mitsubishi Endeavor 4,250 19.1
Nissan Murano 4,250 22.7
Land Rover Range Rover 6,000 14.8
Mazda Mazda 5 3,750 26.4
Toyota Highlander 4,500 22.1
Toyota Sequoia 6,000 17.3

Step 1: Random Numbers

Solution Alpha Beta Fitness

1-1 62,349 �0.98 358
1-2 96,039 �0.91 9,384
1-3 51,353 �0.05 17,023,858,049
1-4 82,672 �0.41 102,302,852
1-5 36,738 �0.87 208
1-6 93,738 �0.26 1,653,924,926

The next six offspring solutions evolve by keeping one of the genes of the original
parent solution. For instance in Step 2, the first two solutions retain the beta gene of
their parent solutions (1-1 and 1-2), but exchange their alpha value using the cross-over
method. Thus, Solution 2-1 is (96,039, �0.98) and Solution 2-2 is (62,349, �0.91). The
third offspring solution (77,779, �0.05) retains the beta gene from its parent (Solution
1-3), but has its alpha determined at random. Offspring solutions 2-4 (82,672, �0.87)
and 2-5 (36,738, �0.41) retain the alpha value from the parent solutions and exchange
their beta values. Finally, the sixth solution has its beta value generated randomly
(93,738, �0.10).

While the average fitness of these offspring solutions is actually worse than the original
parent solutions (approximately 10.6 billion), some of the individual offspring solutions
have better fits than their parents.

The initial six possible solutions, presented in Step 1 below, are generated at random
and are referred to as the parent solutions. The fitness criterion in this case is the sum
of squared errors, which we want to minimize. Not surprising given their random gen-
eration, these solutions have a wide variation of fitness ranging from 288 (Solution 
1-1) to over 16 billion (Solution 1-3). The average fitness of the six solutions is more
than 3.1 billion.
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Step 2: Cross-Over and Random

Solution Alpha Beta Fitness

2-1 96,039 �0.98 329
2-2 62,349 �0.91 1,171
2-3 77,779 �0.05 39,069,356,586
2-4 82,672 �0.87 17,757
2-5 36,738 �0.41 19,792,233
2-6 93,738 �0.10 24,455,270,249

Step 3 selects the six solutions with the best fit and makes them the new parent solutions
and discards the other solutions from consideration. This new population of parent solu-
tions has a dramatically better average fit—down to 4,868.

Step 3: Best Six

Solution Alpha Beta Fitness

2-4 82,672 �0.87 17,757
1-1 62,349 �0.98 358
2-1 96,039 �0.98 329
1-2 96,039 �0.91 9,384
1-5 36,738 �0.87 208
2-2 62,349 �0.91 1,171

As with Step 2, the cross-over method is applied to this new population of solutions
where the beta genes are held constant and the alpha values are exchanged for the first
two new offspring solutions (62,349, �0.87) and (82,672, �0.98), respectively. The
fourth and fifth solutions retain the same alpha gene and exchange their beta values
(96,039, �0.87) and (36,738, �0.91), respectively. The third solution retains its beta
gene and has a randomly selected alpha value (41,411, �0.98) while the sixth solution
has its random gene entering in the beta gene while it retains its parent’s alpha value
(36,738, �0.85).

Step 4: Cross-Over and Random

Solution Alpha Beta Fitness

3-1 62,349 �0.87 6,440
3-2 82,672 �0.98 46
3-3 41,411 �0.98 1,617
3-4 96,039 �0.87 28,276
3-5 36,738 �0.91 237
3-6 36,738 �0.85 973

Step 5 is similar to Step 3 as it selects the best six solutions to date, as the new popula-
tion of parent solutions. Note that since the six best solutions were already selected in Step
3, the previously discarded solutions no longer need to be considered. Therefore, the best
six solutions will come from either the parents’ solutions identified in Step 3 or the new
offspring solutions developed in Step 4.
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This example illustrates how the cross-over method used in the Evolutionary Solver uses
an iterative process to find better and better solutions for the problems. In this case, the fit-
ness criteria of minimizing the sum of squared errors improved each time the best six solu-
tions were selected.

For evolutionary algorithms to be effective they require a somewhat larger population
mutated over many iterations, so this is necessarily implemented on a computer. Solver con-
tains the Evolutionary Solver Engine, which is based on this algorithm, with a few alterations
to make it more efficient under some conditions. To solve this problem using the
Evolutionary Solver (Figure 9.4), one needs to first set the objective function as the mini-
mization of the sum of squared errors between the actual mpg values (D6:D20) and the pre-
dicted values (E6:E20). The predicted values are calculated based on the values of Cells B2
and C2, so, for instance, E6 should contain the formula “�$B$2*(C6^$C$2)”. We can then
calculate the difference as shown in the column F6:F20, and use the “�SUMSQ” formula in
F22 to get our fitness criteria. A constraint can be put on alpha (B2) that represents its lower
bound (LB) (0) and its UB (500,000). The bound constraint for beta is �1 and 0 for the lower
and upper bounds, respectively. The final model is shown in Figure 9.5.

The dialogue box in Figure 9.6 shows the selection of the “Standard Evolutionary
Engine” and a number of important user-defined options are available, which are particu-
larly important since the Evolutionary Solver does not guarantee an optimal solution.
Therefore, the user must determine when enough searching is sufficient to find a reason-
able solution.

Note that the solution derived from Evolutionary Solver (55,917, �0.94) after less than
30 seconds has a better fit (35.2) than the trend line estimated by Excel (44,825, �0.912)
which had a fit of 35.5.

Using Evolutionary Solver

The Evolutionary Engine can solve problems with up to 200 variables, 100 general con-
straints, 400 bounds on the variables, and 200 integer constraints. The engine settings are
shown in Figure 9.6. The following settings are of interest when using Solver’s
Evolutionary Engine:

• Tolerance: As the Evolutionary Solver identifies possible solutions, it will evaluate
any new solution against the previous best. Tolerance establishes the bound by which
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In this case, three of the new offspring solutions were among the six best-fitting solu-
tions and thus form a new population of parent solutions from which further evolutions of
potential solutions could occur. In this case, the lowest identified fitness is from Solution
3-2 (fitness of 46), and the average fitness of the new parent population is down to 358.

Step 5: Best Six

Solution Alpha Beta Fitness

3-2 82,672 �0.98 46
1-5 36,738 �0.87 208
3-5 36,738 �0.91 237
2-1 96,039 �0.98 329
1-1 62,349 �0.98 358
3-6 36,738 �0.85 973
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Figure 9.4 Evolutionary problem set-up.

a new solution is considered an improvement over the previous one. It is best to keep
it at its default value of 0, unless the problem is taking considerable time to solve.

• Max Time without Improvement: This parameter sets the time (in seconds) that
Evolutionary Solver will continue to search for a new best solution before stopping the
search. As described above, Evolutionary Solver will use the definition of an improve-
ment based on the tolerance set for the program. The default value is 30 seconds,
which in most cases may provide a good initial estimate. However, to help ensure that
the best possible solution is identified, this constraint should be relaxed considerably
in order to help avoid merely identifying local maxima. For important problems, an
analyst should set the time very high after an initial good answer is identified and let
the computer seek improvements for hours or overnight.

• Population: In general, the more solutions considered, the more likely that a better
answer will be identified. Therefore, having a large population has its advantages;
however, since this Evolutionary Solver uses an iterative process, the number of
solutions considered is mostly determined by the tolerance permitted by the user
and the maximum time allowed without improvements in the objective function. By
default, it uses 10 times the number of decision variables with a maximum popula-
tion size of 100.
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• Mutation Rate: The more mutations, the more likely that Evolutionary Solver will
find a global instead of a local solution. However, a high mutation rate also means that
a large number of possible solutions will be introduced for consideration that will
result in poor fitness for many candidate solutions.

• Random Seed: For generating mutations, Solver uses an algorithm that is initialized
with some value and generates a series of random numbers. If a unique value is spec-
ified for the random seed, it will generate the same series for every run of the algo-
rithm, so the results will be exactly reproducible. If a value is not specified, it uses the
value of the system clock to seed the algorithm.

• Require Bounds: Whenever possible, set bounds on the decision variables as it will
limit the range of random values selected for random genes. The tighter the bounds
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Figure 9.5 Evolutionary problem model definition.
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are, the more rapidly Evolutionary Solver will converge; however, be careful not to
exclude potential solutions by making the bounds too restrictive. If the variables can-
not be bounded, the required bounds option can be set to “False.” However, this will
substantially decrease the likelihood of achieving the true global optimum.

• Iterations: Max Time and Iterations both place limits on how long the algorithm can
run before stopping.

• Precision: Instead of dropping infeasible offspring, Evolutionary Solver uses a vari-
ety of techniques to “repair” the solution, depending on the nature of its infeasibility.
Precision dictates how close to the constraint the repaired solution must be. It must
have a value between 10�4 and 10�9. For most problems, the default value should usu-
ally be acceptable.

CHAPTER 9 GLOBAL APPROACHES TO NONLINEAR OPTIMIZATION 335

Figure 9.6 Evolutionary engine settings.
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• Convergence: Convergence dictates when the algorithm will be satisfied with a solu-
tion. If the objective function changes less than this amount for five iterations, it will
stop on that value.

• Local Search: Determines what method Evolutionary Solver uses to find a better
local optimum once a new best solution is found. For relatively smooth functions, 
the Gradient Local option should work well. If the function is not very smooth, the
Randomized Local option will probably be more effective.

• Limits Options: Dictates how long before the algorithm gives up if it is not able to
satisfy the convergence criteria. By default they are left at zero, meaning that they will
not be used. They should be left at zero unless the algorithm is having issues con-
verging. If they are used and activated by the algorithm, the solution provided will
likely not be as good as it otherwise might be.

The Evolutionary Solver offers a special analysis report to help gauge the effectiveness
of the most recent optimization. The population report is found under the Reports menu
where the sensitivity, answer, and limits reports are located. The population report gives
statistics for the entire population of solutions considered by the algorithm including
mean, standard deviation, minimum, and maximum values. If the standard deviations are
small and minima and maxima are fairly consistent across trials, then the answer is likely
optimal. If not, the engine’s settings may need to be adjusted.

9.4 INTERVAL GLOBAL SOLVER

Interval Global Solver uses a technique called Interval Analysis that was first developed
during the early 1960s. Instead of considering discrete numbers (also referred to as
scalars), Interval Analysis considers a subset of the real numbers called an interval. For
example, in one dimension, the interval x � [1, 10] represents all numbers with 1 � x � 10.
Arithmetic operations can be extended to intervals; hence, functions can be generalized to
operate on intervals.

Thus, an operation applied to two intervals results in a new interval, such that when the
scalar equivalent to that operation is performed on any values from the original intervals,
the result will be in the new interval. For instance, if we let x � [1, 10] and y � [4, 11],
then we know that x � y � [1, 10] � [4, 11] � [1 � 4, 10 � 11] � [5, 21]. Additionally,
we know that x – y � [1, 10] – [4, 11] � [1 – 11, 10 – 4] � [�10, 6]. It can be easily ver-
ified that choosing numbers from the two intervals and combining them with the standard
arithmetic operations will yield a number in the respective resultant interval. Interval oper-
ations are similar to their scalar counterparts and have many similar properties, though
there are important differences. The distributive property, for example, does not hold as
strongly for intervals as it does with scalars.

Evaluating an interval function, f(x) will map to an interval y, which will result in a box
for every (x, y) instead of a point. A set of x’s that covers the domain of a function, when
evaluated with the corresponding interval function, will result in a set of boxes, which
approximate and completely contain the original function. Interval branch-and-bound
algorithms use an iterative process similar to that introduced in the prior chapter to con-
sider increasingly fine covers of the domain.

If x represents the entire feasible range for a function f, considering the interval equiv-
alent function f(x) � [y1, y2], then y1 and y2 are initial lower and upper bounds for the
optimal objective function solution. x is then branched into two subintervals x1 and x2

with f(x1) � [y3, y4] and f(x2) � [y5, y6]. The greater of y3 and y5 is the new LB, and the
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greater of y4 and y6 is the new UB. If y5 � y4, x2 can be dropped from consideration, and
if y3 � y6, x1 can be dropped. The remaining intervals are branched, and the process is
repeated until the upper and lower bounds converge within an acceptable level of error.
An example of such a process is very computationally intensive and requires a deeper
treatment of interval algebra, so it will not be covered here.

The algorithm that Solver uses in its Interval Global Solver Engine is based on a clas-
sic version of a method known as the Moore–Skelboe algorithm. The algorithm was orig-
inally published in 1974 and has been the basis for many modified approaches since. There
has been substantial research on different branching methods and other acceleration tech-
niques. Interval branch-and-bound algorithms are exciting because they can find the opti-
mal solution with certainty to within a given level of error for absolutely any problem.
Nonetheless, they also tend to be extremely slow, especially for problems with more than
a few variables. As was mentioned above, a problem with just a couple of dozen variables
and constraints can take several hours or more to solve. Since solution time can grow expo-
nentially as more variables are added, it becomes impossible to solve large problems
within any practical time frame.

Using Interval Global Solver

The Interval Global Engine can solve problems with up to 200 variables, 100 general con-
straints, 400 bounds on the variables, and 200 integer constraints. The engine settings are
shown in Figure 9.7. The following settings are of interest when using Solver’s Interval
Global Engine:

• Accuracy: Accuracy must be between 0 and 1. It represents how small an interval
must become before it is considered a solution. The smaller this number is, the more
precise your solution will be, and the longer it will take to converge.

• Resolution: Resolution must be between 0 and 100. It is a percentage difference used
in comparing two different intervals. If the intervals’ relative difference is less than the
resolution, the two solutions are considered identical. If the relative difference is
greater than the resolution, then a new solution is treated as a unique value. The
smaller this value is, the slower and more precise the algorithm will be.

• Max Time without Improvement: This represents the amount of time in seconds that
Solver will run without finding new optimal solutions.

• Absolute versus Relative Stop: If this is set to “True,” Solver will use a scaled relative
comparison between the difference between the UB and the objective function and the
Accuracy; if it is set to “False,” it will use an absolute difference comparison.

• Assume Stationary: This will speed up Solver considerably if set to “True”; however,
Solver will not consider values of the decision variables at their bounds.

• Method: Method presents two different techniques for solving the problem. The
Classic Interval method uses interval bounding and interval gradients, and can employ
the Second-Order method to accelerate it. The Linear Enclosure method is an alterna-
tive method that approximates a series of linear boundaries that enclose the problem.
If Linear Enclosure is used, the LP options can be used to break this approximation
into a series of LPs, and approximate solutions and bounds using the simplex method
can be used.

• Second-Order: The Second-Order option can only be applied when the Classic
Interval method is being used. It can increase the speed with which the algorithm is
able to shrink or discard intervals, usually leading to a faster solution time.
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• LP Test: When the Linear Enclose method is being used and LP Test is set to “True,”
Phase I of the simplex method will be applied to the problem defined by linear enclo-
sure on the current box.

• LP Phase II: When the Linear Enclose method is being used and LP Phase II is set
to “True,” LP Test will be run, and the simplex method will be used to solve and pos-
sibly update the bound on the globally optimal solution.

9.5 A FORESTRY EXAMPLE USING NONLINEAR 
EXCEL FUNCTIONS

Excel offers a variety of functions that can be useful in building models, but they are nec-
essarily nonlinear. For example, suppose that a lumber company has eight teams of loggers
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Figure 9.7 Interval global engine settings.
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that they want to deploy among 25 different lots for selective harvesting. Each lot has a
different size and density score. Each team has a known productivity rate, and the amount
that each team harvests is a function of the lot’s density multiplied by the team’s produc-
tivity. Additionally, each lot has a maximum amount of timber that is allowed for harvest
set by the federal agency that manages the land. The problem is to match each team with
a lot to maximize the amount of lumber produced. This type of problem is known as a
Combinatorial Optimization problem, because the objective is to find the best combi-
nation from a discrete set of possibilities. These types of problems tend to be very com-
putationally intensive and have their own set of specialized techniques and algorithms;
however, this problem can be modeled in Excel using some specialized logical and lookup
functions. Using this approach, a reasonably good solution can be obtained.

This model is displayed in Figure 9.8. The decision cells are the Assignment and
Amount Harvested columns. The Potential Harvest column calculates the maximum that
the team could potentially harvest from a lot based on its productivity multiplied by the lot
density corresponding to the value in the Assignment column. In Excel, this can be done
using the VLOOKUP function. The first cell, Cell L2, contains the function
“�VLOOKUP(I2,A2:B26,2)*H2” that means look-up the row that has I2 in the first cell
from the range A2:B26 and return the value in the second column. In this case, I2 is 15,
so the corresponding density is 400. This value is then multiplied by the value in Cell H2,
or 1.30, for a total potential harvest of 520.

The Total Harvested column uses the SUMIF function to calculate the total amount
harvested from each lot. Cell C2, for example, contains the formula “�SUMIF(I2:I9,
“�”&A2, J2:J9).” This function compares every cell in the range I2:I9 to see if they are
equal to the value in Cell A2. Note that the use of the “&” symbol in the equation refers
the value in Cell A2 as text (also known as a “string”), which is required for this SUMIF
function. Those cells that are equal to this value are added together. These totals are con-
strained to be less than the Maximum Harvest amount.3

The combination of logical, lookup, and arithmetic functions lead to a very irregular,
noncontinuous feasible region. Since the problem is nonlinear, nonconvex, and non-
smooth, the LP, SOCP, and Interval Global engines will not work. The GRG Engine will
run, but will likely not be able to offer much improvement beyond whatever values the user
initially supplies. Therefore, this type of problem is best suited for Solver’s Evolutionary
Engine. Because the solution space for this problem is so irregular, it might be helpful to
increase the mutation rate, and to loosen some of the time and convergence constraints to
give the algorithm more time to search for a good solution. For this example, several trial
runs with different settings produced a greatest maximum value of 3,035, though better
solutions may be possible.

Excel has several other functions, such as IF, COUNTIF, HLOOKUP, and INDEX,
which can be used in similar situations. These are useful tools and can sometimes make
modeling easier and clearer. As shown with this example, these functions are nonlinear,
thereby making it difficult for Solver to find a good solution. Therefore, at times, it may
be easier to find creative ways to reformulate the problem to make it linear, or at least con-
vex or continuous.
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3It might be tempting to set the Amount Harvested to be equal to the lesser of the potential and maximum har-
vest instead of having it as a decision cell and using Maximum Harvest as a constraint. However, this approach
would require a constraint that all Assignment cell values be unique. This additional constraint would make the
problem much more computationally difficult in the search for a feasible solution.
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Figure 9.8 Model of forestry problem.
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9.6 RESEARCH APPLICATION: CROP FARMING IN 
NORTHEAST AUSTRALIA

Generally, the problems that apply nonlinear optimization methods are complex.
Evolutionary and genetic algorithms have been applied extensively to problems in agri-
culture and natural resources, especially in models that involve several interconnected
decision systems, like large agricultural operations or problems that have an intensive spa-
tial component and are formulated in a GIS environment. Interior point methods have been
used in problems that involve game theory or equilibrium systems, such as supply and
demand models. In this chapter an example of each type is considered.

The first example comes from a study by deVoil et al. (2006), which considers a crop
rotational model similar in concept to those discussed in Chapters 4 and 6. Specifically, the
authors look at dryland crop farming in northeastern Australia. Farmers in this region face
highly uncertain seasonal rainfall conditions. There are several types of crops commonly
planted, each with different water requirements, which may be planted across two seasons.
Planting too intensively will deplete soil moisture and make crop yields more dependent
on the uncertain seasonal rainfall. Because of this uncertainty, a mix of crops is usually
planted to hedge against unfavorable weather conditions. Recently there has also been
increased attention to preventing nutrient depletion and soil erosion, which not only offers
an external environmental benefit, but can also affect the long-term profitability of the
operation.

One interesting facet to this study is that instead of a single objective value, this model
searches for a continuous set of optimal solutions. The multiple objectives of maximizing
gross return, minimizing soil erosion, and minimizing financial risk are all considered. If
the entire space of combinations of all three attributes is considered with constraints to the
cropping systems available, there will be an outer shell of solutions that are all Pareto-
optimal solutions, meaning that from this optimal point, an increase in any one objective
will lead to a decrease in another. The model is used to determine the set of Pareto-
optimal solutions, so that the tradeoffs involved between different goals can be examined.

The decisions involve land use during the summer and winter over two years and the
amount of moisture in the soil before the different crops are planted. The four crops con-
sidered in the model are cotton and sorghum, which can be planted during the summer, and
wheat and chickpea, which can be planted during the winter. All have different costs, mar-
ket prices, and possible levels of soil moisture thresholds. Historical rainfall data were
used, and crops were planted if the rain received over a three-day period during certain
planting windows was sufficient such that the total amount of water in the soil exceeded
the minimum threshold for that crop.

This model was optimized several times using an Evolutionary Algorithm with different
replacement rates, along with several variations on population size, mutation rate, and
cross-over rate. The authors report that the final model required several minutes to evaluate
each generation, so a network of computers was used simultaneously to evaluate popula-
tions in parallel so that a single optimization could be completed in a matter of hours. Sixty
generations were used for each run, and it was found that populations that were smaller or
had lower mutation rates were more likely to converge to a Pareto-optimal solution.

The results of the model emphasized the tradeoff between gross margin and soil erosion,
and the tradeoff between gross margin and financial risk. In general, planting sorghum
instead of cotton during the summer increased profit, but also increased risk. Also, plant-
ing wheat as a winter crop substantially decreased erosion, but represented a considerable
loss of profit versus chickpeas. The authors offer these results along with several tables and
graphical representation of the frontiers obtained to assist in decision making for these
crop planting systems.
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9.7 RESEARCH APPLICATION: AN ANALYSIS OF ENERGY 
MARKET DEREGULATION

One common model that lends itself to interior point algorithm solutions is a
Mathematical Program with Equilibrium Constraints (MPEC). This type of model is
used by Hobbs et al. (2000) in analyzing the effects of deregulation of energy markets. The
composition of energy markets can be quite complex. One reason for this complexity is
due to geographical distribution issues: the market tends to be very regionalized with pro-
ducers having a large degree of market power within their local markets. Because of this,
even in the absence of regulation, competition tends to be fairly low, and prices can be fre-
quently maintained above marginal costs. This study considers the short-run effects of
deregulation on prices and market power, and the interaction between the two.

The model used by Hobbs et al. (2000) is based on a pricing system where producers
offer bids to an Independent Service Operator (ISO), a type of organization established by
the Federal Energy Regulatory Commission, which is in charge of setting prices and coor-
dinating the market. Producers place linear bid functions for a megawatt-per-hour rate in
the form of a linear supply curve with a set slope. It is assumed that firms have the power
to shift their supply up or down. The ISO determines pricing and distribution based on an
Optimal Power Flow function.

This study considers two cases. The first is a single-firm case, in which the model con-
siders the bid of one “leader” firm based on how the other firms are expected to follow. The
second is the multiple-firm case where the actions of each firm are considered as attempting
to maximize profit based on both the other firms and the market as a whole. In this case, equi-
librium should be reached in which no firm can increase profits by changing its strategy.

The problem is stated as considering the ISO’s behavior setting electricity prices to
maximize consumer welfare based on the firm’s bids, constrained by production capaci-
ties, transmission network constraints, and constraints dealing with the physical properties
of electrical circuits. Then, based on the ISO’s pricing behavior, the producer will make
their supply bid to maximize their profit. The model covers a network with 30 nodes, 41
arcs, 12 loops, 6 suppliers, and 21 consumers.

The case of a single firm is considered first using an interior point algorithm. For this case,
the solution obtained represents the equilibrium to a Stackleberg competition. Then, a mul-
tiple-firm case in which several firms use strategic pricing behavior is solved with a similar
but somewhat more complex interior point algorithm than the one used in the single-firm
case. In this case the equilibrium prices are lower in some cases and higher in others than the
Stackleberg equilibrium. The primary conclusion from this research is that the network
asymmetry inherent in electrical power networks will cause firms to operate differently from
the way they would under pure competition, suggesting that deregulation analysis will
require different assumptions about firm behavior from those usually employed.

SUMMARY

In this chapter further topics and techniques useful in nonlinear optimization were pre-
sented. Some specific issues important to consider in building and solving linear problems,
including aspects of problem formulation, categorization of different types of problems,
and some properties useful in categorizing algorithms were presented and discussed.

Next, three Solver engines useful in solving nonlinear problems were introduced, including
descriptions of the concepts behind the underlying algorithms and some of the significant
options they use. The first engine, the SOCP Barrier Engine, uses an interior point, or barrier,
algorithm. It is able to find the optimal solution to a very broad class of convex problems,
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known as “Second-Order Conic” problems. This includes LPs and problems with concave
quadratic objective functions and constraints. The second engine, the Evolutionary Engine,
uses a metaheuristic algorithm to semirandomly search the feasible region for a very good, but
not necessarily optimal solution. How good the solution ultimately is depends on the length
of time the algorithm is allowed to run, along with other user-defined options. The third engine
was the Interval Global Engine. It uses a variation of the branch-and-bound method applied
to successively finer intervals until it converges on the optimum. It is capable of finding the
absolute optimal solution to any problem, but is prohibitively slow for many situations.

Finally, research examples were presented. The first one used the Evolutionary
Algorithm to solve a cropping problem given the highly uncertain rainfall patterns in
northeastern Australia. The second example used the SOCP Barrier Engine to evaluate
market power in a deregulated electricity market.
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EXERCISES

1. Maximize the following equation:

y � (x – 2)(x � 4) � x(x – 3)(x – 1) for 5 � x � 8.

2. Maximize the following equation:

y � x6 � 2x5 – x4– 3x3 � 6x2 for 1 � x �10.

3. Minimize the following:

y � (x1 – 6)2 � (x2 – 8)2 (0)

s.t.:
x1 � 7 (1)

x2 � 5 (2)

x1 � 2x2 � 12 (3)

x1 � x2 � 9 (4)

x1, x2 � 0 (5)

4. Minimize the following:

y � 20,000 – 440x1 – 300x2 � 20x1
2 � 12x2

2 � x1x2 (0)

s.t.:

x1 � x2 � 100 (1)

x1, x2 � 0 (2)
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5. Find the global minimal point of the following nonlinear function:

f(x) � x2 – 2x � 1.

6. Find the minimal point of the following nonlinear function:

f(x) � x3 – 2x2 � x � 1,

where �10 � x � 10.

7. Find the global minimal point of the following nonlinear function:

f(x) � x3 – x2 � x � 1.

8. Consider the following problem:

Max: Z � x3 – 5x2 � 2x � 3y2 �4xy (0)

s.t.:

x2 – 3 �13 (1)

x � 0 (2)

a. Solve using GRG, starting from x � 0, y � 0, as well as from x � 2, y � 0.

b. Solve using the Interval Global Engine.

9. Solve the following problem (by hand and using Solver):

Max: Z � x � x2 � x3 � ……. � x20 (0)

s.t.:

0 � x � 1 (1)

10. Consider the function:

f(x, y) � x! / y! (x – y)!

Find the maximum of f(x, y) with the constraints:

x2 � y2 � 100,

x, y � 0.

11. Consider the function:

y � (x – 2)(x – 4)(x – 6)(x – 8)(x – 10) (0)

s.t.:

2 � x � 10 (1)

Find the local or global maxima.

12.
Max: Z � 20,000 – 440x1 � 20x1

2 � 12x2 (0)

s.t.:

x1 � x2 � 7 (1)

x1 � 7, x2 � 5 (2)

13. Maximize the following equation:

Z � x(x – 2)(x – 4)(x � 6)(x – 1) (0)

s.t.:

0 � x � 6 (1)
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14. Maximize the following equation:

Z � 0.01x1
2 � x2

2 – 20 (0)

s.t.:

10x1 – x2 � 10 (1)

2 � x1 � 50 (2)

0 � x2 � 50 (3)

15. John is considering investing in an annuity. He expects to invest anywhere between
5% and 20% of his monthly income. John currently makes $72,000 per year and
expects an average raise of 4% in his salary until he retires; he doesn’t know exactly
when he will retire but expects that it will be anywhere from 15 to 20 years from today.
The annuity’s interest rates (depending on the time period) are listed below:
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Time Length of Expected Effective 
Annuity Annual Interest Rate (%)

15 4.25
16 4.00
17 3.95
18 3.75
19 3.60
20 3.50

Find the optimal annuity value for John, that is, for how many years John should work
and how much he should invest every month.

16. Cola Company has introduced a new Raspberry Cola in the market, which customers
initially find attractive; however, once there is too much cola the price reduces, so we
have to develop a model that gives us the maximum profit with a single price model.
Raspberry Cola has four customers from North, East, West, and South. Develop the
model using a unit price of $0.50; the respective market size of each customer is 10,
25, 18, and 12 in thousands.

17. Consider the following problem:

Max: Z � ln(x) � (36x)0.5 � x3 (0)

s.t.:

x2 – 4x � 35 (1)

x � 0 (2)

To solve, use the following equation:

Max: Z � ln(x) � 6(x)0.5 � x3 – 	(1/x � 1/(35 – x2 � 4x)).

Find a maximum value of Z with initial value of x � 1 and 	 ranging from 0 to 1.
Describe the distribution of Z.

18. What are some benefits of the following engines?

a. Standard LP
b. GRG
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c. SOCP Barrier Engine
d. Solver’s Evolutionary Engine
e. Interval Global Engine

19. What are some drawbacks of the following engines?

a. Standard LP
b. GRG
c. SOCP Barrier Engine
d. Solver’s Evolutionary Engine
e. Interval Global Engine

20. Determine the optimal solution for a dairy firm which produces two kinds of ice
cream. One is priced ($/box) at P1 � 220 – 0.4x1, the other is P2 � 180 – 0.2x2. There
are 800 hours available in the production department and 500 hours available in the
inspection department. The firm maximizes its profit:

Max: (P1 – 60)x1 � (P2 – 45)x2 (0)
s.t.:

2x1 � 3x2 � 800 (1)

2x1 � x2 � 500 (2)

21. Paul is considering opening a book club in New York City. The monthly cost includes
a facility fee, rent, and wages. Also, he needs to invest $30,000 initially on a total of
5,000 books and $10,000 on the furniture. To decide how much he should charge on
every book rented, he did an online survey with a random size of 500 people. After
receiving the responses, he categorized them into three groups based on their income
level. The final result is as follows:
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Number of books
Price Willing to Pay (marginal value of books)

read (per month) Low Medium High

1 2.00 2.50 3.35
2 1.50 2.01 2.56
3 1.20 1.52 2.45
4 1.02 1.33 2.01
5 0.92 1.03 1.34
6 0.89 0.95 1.03
7 0.80 0.76 1.02
8 0.63 0.60 0.98
9 0.42 0.26 0.87

10 0.25 0.22 0.79

Assume that books depreciate over one year and the furniture depreciates over five years.
a. What should the rent for each book be?
b. Given the fixed cost for each month in the table below, should Paul open the book

club? Why?

Fixed Cost ($)

Rent Facility Wage

1,000 200 512
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10
Risk Programming Models

Risk and uncertainty are constant problems for agricultural decision makers. In fact, there
is no other sector in the economy that faces such extreme volatility. Farmers and agribusi-
nesses face risk in many dimensions, including price, production, and finance. For some
commodities, it is not uncommon for price to fluctuate by over 50% between months, a
phenomenon demonstrated by milk prices in the past decade. Within crop agriculture, pro-
duction faces the most extreme volatility due to its dependence on many uncontrollable
factors such as weather conditions, plant disease, and pests. Crop yields can easily fluctu-
ate over 50% for a given farm from year to year. Like other businesses, farmers rely on
bank credit to finance their production. Therefore, financial credit risk in the form of inter-
est rate variability adds yet another source of risk to the agricultural sector.

Agricultural decision analysis has emerged as an important topic in the research litera-
ture within the last several decades. Considerable evidence suggests that farmers adjust
their farm plans according to their risk posture. The impacts of risk and uncertainty on
investment, marketing, production, and resource allocation decisions in agriculture have
been studied extensively. One conclusion that has resulted from these studies is that profit-
maximizing models, which ignore risk preferences by farmers, have failed to give accurate
normative or positive economic results when applied to many farming situations.1 Such
models tend to overstate optimal output levels, exaggerate specialization in cropping pat-
terns, give biased estimates of supply elasticities, overvalue resources, and incorrectly pre-
dict technology choices on the part of producers (Hazell, 1985). Thus, in order to properly
study most farm-level decision-making problems, the decision environment must be for-
mulated in such a way that risk and uncertainty are critical components in the model.

This chapter is devoted to the topic of mathematical programming models that incorpo-
rate risk and uncertainty into the decision environment. There are several risk program-
ming models that have been extensively used in food and agricultural applications,
including quadratic risk programming (i.e., mean-variance analysis), minimization of total
absolute deviations (MOTAD), target MOTAD, chance-constrained programming, and

1“Normative” analyses refer to studies that focus on explaining how decision makers ought to behave in order to
be consistent with their goals and plans. “Positive” analyses are concerned with describing or predicting how
decision makers actually behave.
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discrete sequential programming.2 Each of these techniques is discussed in this chapter.
Since these models are based on basic statistics and decision theory, the chapter begins
with some definitions of basic statistical moments and an overview of the theory of farm
decision analysis under risk and uncertainty. We then examine the more popular risk pro-
gramming techniques used in applied economics. The chapter concludes with a summary
of three empirical applications of risk programming. The first involves applying quadratic
risk programming to identify optimal production and marketing plans for a representative
cotton–grain farm in Texas. The second application develops a discrete stochastic sequen-
tial programming (DSSP) model for a representative Minnesota corn-soybean farm. The
last application links a DSSP model for a representative Minnesota corn–soybean farm
with a climate and agronomic model to simulate farm adaptation strategies in response to
several climate change scenarios.

10.1 EXPECTED VALUE, VARIANCE, AND COVARIANCE

Let x and y be two random variables. Let the possible random events be x1, x2, … , xn with
probabilities p(x1), p(x2), … , p(xn) for x; and y1, y2, … , yn with probabilities p(y1), p(y2), … ,
p(yn) for y. Then the expected values for x and y are defined as:

If we assume equally likely probabilities (i.e., p(x1) � p(x2) � … � p(xn)), then the
expected values are the simple means or averages of the observations:

A measure of the variability of these random variables is given by the variance. The vari-
ances of E(x) and E(y) are defined as:

The estimated variances for x and y from a sample of the population are:

where x– and y– are sample means.
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2There are additional mathematical programming models that incorporate risk. These include mean-gini analy-
sis, focus loss models, Wicks and Guise models, and others. The interested reader can refer to Boisvert and
McCarl (1990) for an excellent and thorough overview of mathematical risk programming models.
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If we assume that x and y are independent, that is, they do not influence one another, then
the covariance of x and y is zero. The covariance is a measure of how x will vary with y, and
vice versa. For example, if the covariance is positive, then high values of x will tend to be
associated with high values of y. The covariance for dependent random variables x and y is:

C(x,y) � E[(x – E(x)) (y – E(y))].

The estimated covariance for x and y from a sample of the population of n and m
observations are:

10.2 AGRICULTURAL DECISION ANALYSIS UNDER RISK 
AND UNCERTAINTY

Decision making involves selecting a course of action from a set of potential actions that
offer different outcomes for some intended purpose. A decision problem exists when pos-
sible consequences are perceived as important, but there is uncertainty regarding the best
course of action. When the decision maker is uncertain of the future consequence of a cur-
rent decision, the decision maker is said to face a risky choice.

Since agricultural decisions occur over time with current decisions dependent upon
uncertain future events, the decision-making process should be based on a probabilistic
decision model. Bayesian decision theory is one way to represent sequential decision mak-
ing under uncertainty.3 The Bayesian decision problem under risk can be divided into sev-
eral components. The first element of the decision problem is the identification of the set of
acts or actions available to the decision maker for which a choice or plan must be made.
For example, a set of actions (denoted as all aj belonging to a, j � l, … , n) that could be
identified for a producer includes all potential risk-reducing strategies to manage produc-
tion and marketing variability. Decision analysis improves as the list of potential acts iden-
tified approaches the set of actual opportunities and when each act is clearly defined.

The next component of the decision problem is the identification of the possible events
or states of nature (denoted as all si belong to s, i � l, … , m), which are exogenous ran-
dom variables beyond the decision maker’s control. Several state variables critical to farm
planning include crop yields and the number of field days available, which depend prima-
rily on weather conditions, and harvest and post-harvest prices, which depend primarily on
market conditions. Specification of the set of possible events, similar to identifying the
acts, improves the decision process when the set is comprehensive and clearly defined.

The third major part of decision analysis is quantifying the decision maker’s subjective
beliefs about the probabilities associated with the occurrence of the states. This step
involves specifying the agent’s perceptions of the probability distribution (denoted as all
p(si) belonging to p, i � 1, … , m). The next element of the problem is identifying the con-
sequences (cij belonging to C, i � 1, … , m; j � 1, … , k) of the decision maker’s action,
aj, when state of nature si occurs. The consequences are frequently defined in terms of pay-
offs, such as net income.

Finally, the last major component of the decision process involves the selection of evalua-
tive or choice criterion, which provides the basis for selecting the course of action, given the
other dimensions of the problem. The choice criterion should be closely tied with the objec-
tives of the decision maker. Studies concerned with the role of risk and uncertainty in the deci-
sion process usually specify maximization of expected utility as the major choice criterion.
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3The discussion on the components of the Bayesian decision problem is based on an excellent presentation in
Anderson et al. (1977).
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The Expected Utility Hypothesis

The expected utility hypothesis (EUH), which was first developed by Bernoulli in 17384

and later refined by von Neumann and Morgenstern in the 1940s, provides the basis for
many evaluative criteria used to help farmers make decisions under risk. Simply put, the
EUH states that an agent will prefer one risky action, a1, over another risky action a2, if 
the former has a greater expected utility associated with it. A utility function [u(aj)] is an
analytical method of expressing an agent’s preferences, which translates the outcome of
the choice of some action, aj, to a real number index of its desirability, u(aj). When used
with a decision rule such as maximizing utility, the utility function serves as the basis for
determining optimal decision strategies for the decision maker. In order for a well-defined
single-dimensional utility function to exist, the decision maker’s risk preferences must sat-
isfy three axioms, which are sufficient conditions in deducing the EUH. These conditions
are represented by the following three axioms.

1. Ordering and Transitivity. Ordering implies that for any two risky prospects,5 al and
a2 belonging to a, the agent either prefers al to a2, a2 to al, or is indifferent between
them. Transitivity is a logical extension of ordering for situations involving more than
two risky prospects. Transitivity implies that for any three risky prospects al, a2, and
a3 belonging to a, if the decision maker prefers al to a2 (or is indifferent between them)
and prefers a2 to a3 (or is indifferent between them), then the agent will prefer al to a3

(or be indifferent between them).

2. Independence. Independence implies that for any three risky prospects al, a2, and a3

in a, if the agent prefers al to a2, then the agent will prefer a lottery composed of al and
a3 as its possible outcomes to a lottery involving a2 and a3 as possible outcomes when
the probabilities of al and a2 are equal.

3. Continuity. Continuity implies that for any three risky prospects al, a2, and a3 in a, if al

is preferred to a2, and a2 is preferred to a3, then there exists a probability p, other than
zero or one, which will make the decision maker indifferent between a2 for certain and
a lottery composed of a1, with probability p, and a3, with probability (l � p).

The EUH or Bernoulli’s principle can now be formally stated, having defined these
axioms. The EUH states that if a decision maker’s preferences are consistent with the
axioms of ordering and transitivity, continuity, and independence, then a utility function
defined on risky prospects exists that assigns a single real number utility value for each
prospect and has the following properties:

1. If a1 is preferred to a2, then U(a1) � U(a2), and vice versa, for all a1 and a2 in a.

2. The utility of a risky prospect (aj) is equal to the expected utility of its outcome, 
that is, U(aj) � E[U(aj)].

3. The utility value of each risky prospect is assigned an arbitrary origin and unit of scale.

The EUH establishes a basis for comparing risky prospects in a manner that is consis-
tent with the decision maker’s preferences. The theorem implies that agents select risky
prospects so as to maximize expected utility (von Neumann & Morgenstern, 1944).

Although human behavior is goal oriented and no single attribute, such as income, alone
can completely describe an agent’s true utility function, it is common in decision problems
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4An English translation of Bernoulli’s 1738 paper has been subsequently published (Bernoulli, 1954).
5The term “risky prospect,” in this context, means an act or choice that has a probability distribution of outcomes
associated with it.

c10.qxd  12/1/10  2:17 PM  Page 350



to express monetary outcomes (m) as the sole attribute of the utility function. This is used
primarily because of the difficulty analysts have had with using multiple objective utility
functions. Monetary outcomes have been quantified in several ways, which include such
variables as wealth, income, gains and losses, or rate of return.

Given a range of risky prospects defined over monetary outcomes, values of expected
utility can be determined by integrating a utility function over this range, or can be approx-
imated with a Taylor series expansion using derivatives and moments of the utility func-
tion and probability distribution of outcomes (Anderson et al., 1977). To represent certain
classes of economic behavior and risk preferences, it is necessary to look at the shape and
curvature of the utility of money function. It is usually assumed that all “rational” decision
makers prefer more money to less, which implies that the utility function increases monot-
onically, that is, U�(m) � 0. However, to represent different classes of risk preferences,
look at the curvature of the utility function. The three classes of risk preferences are risk
aversion, risk neutrality, and risk preferring or loving.

A utility function that is strictly concave has the property of decreasing marginal utility
of money [U�(m) � 0]. Agents displaying this type of utility function are risk averse
because they prefer a certain outcome to an uncertain outcome with the same expected
value. For a linear utility function, utility increases in direct proportion to increases in
money, which implies that the marginal utility of money is constant [U�(m) � 0]. Agents
with this kind of utility function are risk neutral because they are indifferent between a
certain outcome to an uncertain outcome with the same expected value. A utility function
that is strictly convex has the property of increasing marginal utility of money [U�(m) � 0]. 
Agents displaying this type of utility function are risk lovers because they prefer an uncer-
tain outcome to a certain outcome when the expected value of the uncertain outcome
equals the value of the certain outcome. Figure 10.1 illustrates graphically the shapes of
these three classes of utility functions.

To measure the degree of risk aversion, the concept of the risk premium (RP) has been
used. To illustrate the RP, consider panel (a) of Figure 10.1. Suppose there is a lottery with
two risky outcomes, m1 with probability p, and m2 with probability (l – p). The utility func-
tion in panel (a) is strictly concave and therefore the agent is risk averse. The expected
monetary value (EMV) of this lottery is EMV � pm1 � (l – p)m2. The RP is defined as
the difference between the EMV and the certainty equivalent (CE), which is the amount of
money exchanged with certainty that makes the agent indifferent between this exchange
and the lottery (Anderson et al., 1977). In panel (a), the EMV is given by point c, the CE
is given by point b, and the RP is equal to the difference. The RP will be positive, zero, or
negative for agents who are risk averse, risk neutral, or risk lovers, respectively. Panel (b)
and (c) of Figure 10.1 illustrate the above concepts for risk neutrality and risk preferring.

There have been many studies that have tried to determine the risk preferences of farm-
ers. The empirical results are inconclusive, particularly with respect to farmers in the United
States. Moreover, only a small sample of producers was used to elicit risk postures.
Nevertheless, the majority of risk analyses in agricultural economics have assumed farmers
are risk averse.

Since von Neumann and Morgenstern’s development of the EUH in the 1940s, much
attention has been given to operationalizing the hypothesis for empirical applications. The
empirical research that has surfaced has tended to follow two directions. One direction has
centered on devising elicitation procedures (direct elicitation approach) to directly estimate
decision makers’ utility functions. The other approach has been to focus on the probability
distribution and moments of the risky prospect (moment method) and to approximate the
utility of a prospect as a function of its mean and higher moments of the distribution
(Anderson et al., 1977).
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The direct elicitation approach has not been very successful in predicting actual behav-
ior of agents. This approach has been criticized because the results are often biased due to
agents lacking familiarity dealing with probabilities, agents’ preferences for specific prob-
abilities, differences in interview procedures, and attitudes towards gambling (Young,
1980). Consequently, some researchers have turned to approximating utility as a function
of the moments of the probability distribution. Under this approach, the primary concern
is the probability distribution rather than the estimation of the utility function. Due to the
limitations of the former approach, this chapter focuses on the moment approach.

When it is assumed or specified that utility depends solely on one argument, expected
utility can be restated in terms of the moments of the probability distribution of the sole
attribute. The moment method is equivalent to direct estimation of utility functions under
certain circumstances and is a fair approximation for others. In addition, the required com-
putations to derive utility functions using this approach are usually less than the direct
method (Anderson et al., 1977). To develop this reasoning, consider the case where utility
depends solely upon profit, Z. Taking the Taylor series expansion on the expected value of
profit yields:

U(z) � U[E(z)] � Ul[E(z)] [z � E(z)] � U2[E(z)] [z � E(z)]2/2! � …

� Un[E(z)] [z � E(z)]n/n! (10.1)

where Ui means the ith derivative of U.
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Figure 10.1 Three classes of expected utility functions.
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By the EUH, equation (10.1) may be restated, carrying through the expectations opera-
tor (E), as:

U(z) � U[E(z)] � Ul[E(z)] E[z � E(z)] � U2[E(z)] E[z � E(z)] 2/2! � …

� Un[E(z)] E[z � E(z)]n/n! (10.2)

Since E[z � E(z)] � 0 and E[z – E(z)]2 is the variance of Z [V(z)], equation (10.2) can be
further simplified to:

U(z) � U[E(z)] � U2[E(z)] V(z)/2! � U3[E(z)] M3(z)/3! � … (10.3)

where M3(z) is the skewness of the distribution of z. Hence, when profit is the only argu-
ment in the utility function, the function can be expressed in terms of the moments of the
probability distribution of z. Moreover, if profit is normally distributed, then the probabil-
ity distribution of z is completely described by the mean and variance. As a result, under
normality, the utility function of z can be written in general form as:

U(z) � U[E(z),V(z)] (10.4)

Many empirical studies have assumed a normal distribution of z and have estimated utility
as a function of the type expressed in equation (10.4) such as the case of quadratic risk pro-
gramming. The EUH represents a useful and popular tool used to study decision making
under risk and uncertainty.

10.3 QUADRATIC RISK PROGRAMMING

Markowitz (1959) used quadratic programming (QP) in an empirical application of a
stock portfolio problem. Under the QP formulation of the stock portfolio problem, risk is
considered solely in terms of revenue activities in the objective function, while resource
endowments and technical parameters in the opportunity set are assumed to be known
with certainty by the decision maker. The use of QP assumes that an agent has prefer-
ences among alternative strategies based entirely on their expected income (E) and asso-
ciated variance (V), that is, E-V criterion. According to this criterion, an agent prefers a
risky plan, p1, to another risky plan, p2, or is indifferent between them, if the expected
income of p1 is 	 to the expected income of p2 and the variance of p1 is not larger than
the variance of p2. If one of the above weak inequalities holds as a strict inequality, then
p1 is strictly preferred to p2. Use of QP in risk applications also assumes that the iso-util-
ity curves of the agent are convex, which implies that the farmer is risk averse. In other
words, the decision maker prefers a farm plan with a higher V only if E is also larger, and
E must rise at an increasing rate relative to increases in V. In general, these conditions
will hold if the agent’s utility of income function is quadratic and strictly concave
(Markowitz, 1959).

Given these assumptions, a rational decision maker will want to choose a strategy from a
set of farm plans that have a minimum variance for alternative levels of expected income or
a maximum expected income for alternative levels of variances. Quadratic programming
algorithms can be formulated to derive a set of efficient E-V pairs over a set of all feasible
farm plans. From the resulting efficiency set, an optimal strategy can be determined in one
of two ways. For a given utility function, iso-utility curves can be derived, and the point of
tangency between the E-V frontier and the highest iso-utility curve determines the optimal
farm plan. Point C in Figure 10.2 illustrates the determination of an optimal farm plan graph-
ically. One major drawback of this approach is that it requires estimation of a utility func-
tion, which is difficult. Thus a second and more frequently used approach is to derive the
efficiency set and allow the farmer to choose the most preferable farm plan.
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One method to derive the efficiency set is to use parametric QP. One formulation6 of
this technique is the following:

(0)

s.t.:

(1)

xj 	 0 j � 1, ... , m (2)
where:

E(cj) � expected returns of the jth activity

xj � level of jth activity

b � agent’s absolute risk aversion coefficient

Vij � variance of jth activity when j is equal to i, and covariance between jth and ith
activity when i is not equal to j

aij � amount of resource i required per unit of the jth activity

bi � amount of resource i available

Procedurally, a solution is derived for alternative levels of the risk aversion coefficient.
The risk aversion coefficient is a link between the objective function and the agent’s util-
ity function. When b is set to zero, the solution represents the risk-free or risk-neutral case
and is equivalent to maximizing expected net revenue. When b is greater than zero, the
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Figure 10.2 Graphical determination of the optimal farm plan in E-V analysis.

6This formulation was first used by Freund and is based on a negative exponential utility function, which has the
property of constant absolute risk aversion.
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solutions are optimal for agents with various degrees of risk aversion. The resulting set 
of solutions may be presented to the farmer for inspection to choose a particular plan, or a
utility function may be estimated and a unique optimum can be found by deriving the point
of tangency between the iso-utility curve and the E-V frontier.

The application of QP and the E-V criterion is consistent with the expected utility
hypothesis only under the following conditions: (1) the decision maker possesses a quad-
ratic utility function; (2) the probability distribution of returns is normally distributed; or
(3) the utility function can be truncated after the second-order moment of its Taylor series
expansion. These restrictions may limit the use of E-V analysis in risk applications. Still
the E-V approach has been used extensively in firm-level risk research.
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An Example7

A farmer produces three commodities corn, wheat, and soybeans using three resources:
hired labor, family labor, and machinery. Over a three-month production period, the
farm is endowed with 1,000 hours of hired labor, 500 hours of family labor, 2,000 hours
of machine time, and 600 acres of land. The resource requirements for each commod-
ity are summarized below:

Resource
Resource Soybeans Wheat Corn Endowment

(hours/unit of good)
Hired Labor 1.0 1.1 1.3 1,000 Hours
Family Labor 0.4 0.4 0.4 500 Hours
Machine Time 2.2 2.8 3.0 2,000 Hours
Land 1.0 1.0 1.0 600 Acres

There is a three-month time lag between planting and harvest for these three com-
modities. Because of certain random “states of nature,” which are exogenous to this
farm, the farmer does not know with certainty (at the time decisions must be made
regarding how much of each commodity to produce) the per unit profit of each com-
modity. The farmer expects that the unit profit of each good will be equal to the average
profit over the last 10 periods. Assume that the profit of the three commodities over the
previous 10 periods is the following:

Observation Soybeans Wheat Corn

$ per acre
1 100 93 200
2 95 99 100
3 97 97 150
4 94 110 45
5 91 111 200
6 85 120 190
7 92 100 75
8 90 121 25
9 86 127 210

10 80 129 192
Average 91 110.7 138.7

7This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 10 supplemental
materials available at www.wiley.com/college/kaiser.
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If a statistical computer package is used, the variance matrix is easily found and is 
equal to:

Soybeans Wheat Corn

Soybeans 32.6 �65.0 �101.7
Wheat �65.0 154.6 142.2
Corn �101.7 142.2 4,546.2

Since the farmer is risk averse, an optimal mix of commodities is needed to minimize
total profit risk based on a minimum level of expected profit (E*). The farmer measures
profit risk by multiplying the variance-covariance matrix by the interaction of the indi-
vidual investments in the portfolio. That is, risk is measured as:

R � 32.6g1g1 � 154.6g2g2 � 4,546.2g3g3 – 65.0g1g2 – 101.7g1g3 – 65.0g2g1

� 142.2g2g3 – 101.7g3g1 � 142.2g3g2

where: g1 is acreage of soybeans produced, g2 is acreage of wheat produced, and g3 is
acreage of corn produced.

Noting that the variance matrix is symmetric (i.e., Vij � Vji), the risk definition can
be written more compactly as:

R � 32.6g1g1 � 154.6g2g2 � 4,546.2g3g3 � 2{�65.0g1g2 – 101.7g1g3

� 142.2g2g3}, or

R � 32.6g1g1 � 154.6g2g2 � 4,546.2g3g3 � 130.0g1g2 � 203.4g1g3 � 284.4g2g3.

If it is assumed that the farmer wishes to minimize R, s.t.: E 	 E*, this problem is the
following:

Min: R � 32.6g1g1 � 154.6g2g2 � 4,546.2g3g3 – 130.0g1g2 – 203.4g1g3

� 284.4g2g3 (0)

s.t.:

91.0g1 � 110.7g2 � 138.7g3 	 E* (1)

1.0g1 � 1.1g2 � 1.3g3 
 1,000 (2)

0.4g1 � 0.4g2 � 0.4g3 
 500 (3)

2.2g1 � 2.8g2 � 3.0g3 
 2,000 (4)

1.0g1 � 1.0g2 � 1.0g3 
 600 (5)

g1, g2, g3 	 0 (6)

This problem can be easily solved using Solver. Figure 10.3 illustrates the Solver work-
sheet for this problem when E* � $82,220, which is the profit-maximizing solution. In
general, it is a good practice to start by setting E* equal to the profit-maximizing, or
risk-neutral solution. This parameter is found by solving the corresponding profit
maximization LP problem where risk is not included. The optimal value of this objec-
tive function gives the E* associated with the risk-neutral solution. After substituting
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this E* into the quadratic risk programming problem and solving, E* should then be
parametrically lowered in order to trace out the set of E-V efficient solutions. The range
of feasibility on E* can be used in selecting the new values of E* because it gives a new
solution to the problem in the parametric analysis.

In this example, the risk-neutral value for E* is $82,220. If you parametrically vary
E*, an efficient set of crop mixes based on alternative levels of risk is obtained. The fol-
lowing table summarizes some of these efficient plans for this example.

Expected Standard
Profit Variance Deviation Soybeans Wheat Corn

($) ($) ($) (acres) (acres) (acres)

82,220 1,636,631,995 40,455 0.0 0.0 600.0
80,000 1,087,286,890 32,974 0.0 115.0 485.0
75,000 465,789,543 21,582 0.0 293.6 306.4
70,000 125,950,359 11,223 0.0 472.1 127.9
65,000 32,919,362 5,738 118.8 448.3 32.9
60,000 2,843,412 1,686 341.8 247.1 11.2

The first row in this table corresponds to the risk-neutral, or profit-maximizing, solution.
This is the optimal plan for a farmer who wants to maximize profit regardless of risk. All
resources should be devoted to corn, which offers the highest expected profit ($82,220), but
also the highest risk (variance of $1,636,631,995). Notice that the variance gives an
extremely large value of risk. Hence, the standard deviation is generally the proxy for risk

Figure 10.3 Solver formulation for quadratic risk programming example.
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which is shown to the decision maker. For the risk-neutral solution, the standard deviation
is $40,455, or about one-half of its respective minimum expected return level of $82,220.

At the opposite extreme, the last row of this table provides an efficient plan for the
most risk-averse farmer. If the farmer is willing to accept a lower expected profit
($60,000), then risk can be reduced to a standard deviation of $1,686. Farmers display-
ing this type of risk preference can achieve this minimum risk level through diversifica-
tion and devoting most of their resources to the least risky commodity, soybeans.

It is important to note that all six plans given in this table are E-V efficient, or optimal.
They each provide for the lowest possible risk given a certain minimum expected profit
level. It is up to the farmer to choose the preferred plan from this efficient set of plans. There
are several observations to glean from this table. First, there is a trade-off between E and V.
To have higher expected profits, the farmer has to accept higher risk. Second, the “cost” of
this trade-off is higher at the extremes. For example, for E to increase from $80,000 to
$82,220, which is only a 4 percent increase in E, the farmer’s risk, as measured by the stan-
dard deviation, increases from $32,974 to $40,455, which is an increase of 22.7 percent.
Hence, once the farmer approaches the profit-maximizing level of E, the increase in risk to
achieve the desired E becomes larger. Third, there are two types of risk-reducing strategies.
The first is to switch from the riskiest crop, corn, to the less-risky wheat and least-risky soy-
beans. The second is to diversify the portfolio rather than rely on one crop. Diversification
is a risk-reducing strategy because of the negative covariance between several crop combi-
nations, such as wheat and soybeans, soybeans and wheat, and soybeans and corn.

Similar to LP solutions, the dual prices for each constraint have the same interpretation
in QP. For example, the dual value for the minimum E constraint (for E* 	 82,220) is
$188,743. This implies that if the farmer were to decrease E* by one dollar from $82,220
to $82,219, then the minimum variance would decrease by $188,743. Put differently, the
trade-off between E* and the variance (V) for E* in the neighborhood of $82,220 is
$188,743, that is, a marginal decrease in the minimum E* “saves” $188,743 in terms of
the variance. In the context of the expected profit–standard deviation trade-off, decreas-
ing E* by one dollar saves $434.45 in lowering the standard deviation. In general, the mag-
nitude of the trade-off between E and V, or E and the standard deviation will become
smaller as E* is lowered, reflecting diminishing marginal returns to risk.

The dual value on the land constraint is �20,723,200. This means that if acreage
could be increased by 1 acre, the total variance could be reduced by $20,723,200. This
large value is not surprising since this is the profit-maximizing level of E*. If the farmer
had one more acre of land, the high threshold E* � 82,220 can be more easily achieved.
Hence, the riskiest strategy of growing all 600 acres of the riskiest crop need not be fol-
lowed. Indeed, if this problem is re-solved with 601 acres, the optimal solution is to
grow 5 acres of wheat and the remaining 596 acres of corn. This less-risky optimal solu-
tion lowers the variance by $20,723,200.

An alternative formulation of this problem would be to maximize E subject to a max-
imum acceptable risk level. This formulation would yield an identical set of solutions
in terms of E-V efficient plans. Under this formulation, the model becomes:

Max: E � 91.0g1 � 110.7g2 � 138.7g3 (0)

s.t.:
32.6g1g1 � 154.6g2g2 � 4,546.2g3g3 � 130.0g1g2 � 203.4g1g3

� 284.4g2g3 
 R* (1)

1.0g1 � 1.1g2 � 1.3g3 
 1,000 (2)

0.4g1 � 0.4g2 � 0.4g3 
 500 (3)
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2.2g1 � 2.8g2 � 3.0g3 
 2,000 (4)

1.0g1 � 1.0g2 � 1.0g3 
 600 (5)

g1, g2, g3 	 0 (6)

Note that the first constraint is equivalent to setting the objective function of the previ-
ous problem to be less than or equal to the minimum variance found in the optimal solu-
tion to that problem.

For extra practice, verify that this formulation yields the same solutions as before,
and solve it using Solver.

A final and equivalent formulation of this problem would be to maximize E minus a
risk term as follows:

Max: E � 91.0g1 � 110.7g2 � 138.7g3 – b{32.6g1g1 � 154.6g2g2 � 4,546.2g3g3

–130.0g1g2 – 203.4g1g3 � 284.4g2g3} (0)

s.t.:
1.0g1 � 1.1g2 � 1.3g3 
 1,000 (1)

0.4g1 � 0.4g2 � 0.4g3 
 500 (2)

2.2g1 � 2.8g2 � 3.0g3 
 2,000 (3)

1.0g1 � 1.0g2 � 1.0g3 
 600 (4)

g1, g2, g3 	 0 (5)

where b is a risk-aversion parameter that is parametrically varied from zero (risk neutral)
to some positive number (risk averse) to generate an E-V efficient set of optimal activities.

For extra practice, verify that this formulation yields the same solutions as before.
Quadratic programming (QP) models are perhaps the most commonly used method for

analyzing agricultural risk. Although QP models are slightly more complicated to use and
understand than LP models, most computer systems have QP algorithms, which make
them readily available for use. Indeed, Solver uses a combined LP/QP algorithm as its
standard engine. As in LP, the constraint set is linear, and risk is captured solely in terms
of revenue activities in the objective function parameters. QP models provide specific
farm planning information on optimal resource use and activity levels, making them a
useful extension tool. In addition, when QP is used to derive E-V frontiers (parametric
QP), the resulting farm plans are efficient for risk-averse decision makers.

There are, however, several serious limitations with using standard QP models in
applied decision analysis. With regard to problem formulation, standard QP models
assume a nonsequential decision environment, and therefore, all optimal decisions
derived from these models are not adaptive. Agricultural production and marketing
decisions are adaptive by nature and occur sequentially through time. In fact, this is one
of the most important aspects of choices under uncertainty. Equally limiting is the fact
that parameters in the constraint set of standard QP models are modeled nonstochasti-
cally. In reality, factors such as availability of field days, which determine when the var-
ious field operations can occur, are quite variable, and farmers do not ignore this source
of production risk when planning their operations.

The determination of probability distributions in QP models has also drawn criti-
cism. The distributions are described by means, variances, and covariances in QP, while
higher moments are ignored. Thus, when the distribution is not normal, the results of
QP models may not include the preferred decision strategy of some agents.

Regarding the representation of agents’ risk attitudes, QP requires that either the util-
ity function be quadratic, or that returns be normally distributed (if parametric QP is
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used). These assumptions are quite restrictive and rule out many types of risk prefer-
ences. The most undesirable property, with respect to quadratic utility functions, is that
the absolute risk aversion coefficient increases with income (Kramer & Pope, 1981).
Proponents of QP, however, argue that it closely approximates a broad range of situa-
tions where these assumptions do not hold (Levy & Markowitz, 1979).
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10.4 LINEARIZED VERSION OF QUADRATIC RISK PROGRAMMING

One of the historical shortcomings of QP models is that due to algorithmic and other con-
straints, the analyst could not formulate very large mathematical programming models.8

Faced with these constraints, researchers developed linearized versions of QP. In this section,
one such linear version, which has been widely adopted in the area of risk analysis, will be
discussed. The procedure was developed by Peter Hazell (1971), who was a Ph.D. student in
agricultural economics at Cornell University at the time he developed the method, and has
been used extensively by agricultural economists and others.

MOTAD (Minimization of Total Absolute Deviations)

Hazell (1971) developed a linearized version of quadratic risk programming models called
“minimization of total absolute deviations” (MOTAD) in 1971. The basic idea behind
MOTAD is that rather than using the nonlinear variance-covariance measure of risk, the
analyst can use a linear approximation of expected income variability. MOTAD models use
the total absolute deviation (TAD) from expected net revenue to represent risk.

For example, consider net income as a random variable. Suppose that there are n risky
prospects (risky activities) and m past observations collected for each prospect. Assuming
that the agent expects the future outcome of net revenue for each prospect to be the sim-
ple average of past observations, then the expected net revenue for each prospect is:

The absolute deviation from the mean for each observation over all possible prospects is
equal to:

where: || is the absolute value operator. This represents the absolute deviation from the 
mean for one observation. Total absolute deviations from the mean are defined as 
the absolute deviations from the mean for all observations and all activity net rev-
enues in the sample, that is:

where crj is net revenue of the jth activity for the rth observation. If we define positive and
negative deviations from the mean as:

dj
� � (crj – E(cj)xj) � 0 positive deviation

dj
– � (crj – E(cj)xj) � 0 negative deviation,

TAD c E(c )) | r m,rj j j
j

n

� � �
�

| ( , ... ,x 1
1

∑

| (c E(c )) |,j j j
j

n

�
�

x
1

∑

E(c ) c /mj rj
r

m

�
�1

∑ .

8This was a historical limitation that is not much of a problem with the computational capabilities of today’s
computers.
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then total deviations from the mean can be stated as the following:

where d j
�, d j

� 	 0.
This implies that if dj � 0, then d j

� � 0 and d j
� � 0; and if dj � 0, then d j

� � 0 and 
d j

� � 0. For any random variable, it will always be true that the sum of the negative devi-
ations will equal the sum of the positive deviations.

TAD ( ) (j j
j

n

� �� �

�

d d
1

∑ ),
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An Example9

Recall the previous farm risk problem. The QP formulation of this problem was:

Min: R � 32.6g1g1 � 154.6g2g2 � 4,546.2g3g3 – 130.0g1g2 – 203.4g1g3

� 284.4g2g3 (0)

s.t.:

91.0g1 � 110.7g2 � 138.7g3 	 E* (1)

1.0g1 � 1.1g2 � 1.3g3 
 1,000 (2)

0.4g1 � 0.4g2 � 0.4g3 
 500 (3)

2.2g1 � 2.8g2 � 3.0g3 
 2,000 (4)

1.0g1 � 1.0g2 � 1.0g3 
 600 (5)

g1, g2, g3 	 0 (6)

The first step in formulating this problem as a MOTAD problem is to compute the absolute
deviations from the mean. The 10 observations and mean values for g1, g2, and g3 are:

Observation g1 g2 g3 devg1 devg2 devg3

1 100.0 93.0 200.0 9.0 �17.7 61.3
2 95.0 99.0 100.0 4.0 �11.7 �38.7
3 97.0 97.0 150.0 6.0 �13.7 11.3
4 94.0 110.0 45.0 3.0 �0.7 �93.7
5 91.0 111.0 200.0 0.0 0.3 61.3
6 85.0 120.0 190.0 �6.0 9.3 51.3
7 92.0 100.0 75.0 1.0 �10.7 �63.7
8 90.0 121.0 25.0 �1.0 10.3 �113.7
9 86.0 127.0 210.0 �5.0 16.3 71.3

10 80.0 129.0 192.0 �11.0 18.3 53.3
Average 91.0 110.7 138.7

The deviations from the mean for each activity net revenue (devg1, devg2, devg3) are
calculated by subtracting the mean from each observation. Note that the sum of the

9This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 10 supplemental
materials available at www.wiley.com/college/kaiser.

c10.qxd  12/1/10  2:17 PM  Page 361

www.wiley.com/college/kaiser


positive deviations equals the sum of the negative deviation for each of the three goods.
Risk (R) is now measured as the total absolute deviations.

TAD � d 1
� � d 1

– � d 2
� � d2

– � d 3
� � d3

– � d 4
� � d 4

–� d 5
� � d5

–

� d 6
� � d6

� � d7
� � d 7

� � d 8
� � d 8

� � d 9
� � d 9

� � d10
� � d10

�

where:

d 1
� � max (0, 9g1 – 17.7g2 � 61.3g3)

d 1
� � |min (0, 9g1 – 17.7g2 � 61.3g3)|

:

d10
� � max (0, –11g1 � 18.3g2 � 53.3g3)

d10
� � |min (0, –11g1 � 18.3g2 � 53.3g3)|

where y � max (a,b) means choose y � a if a � b, or choose y � b if b � a; and y � min
(a,b) means choose y � a if a � b, and choose y � b if b � a. If the deviation for obser-
vation i is positive, for instance, d1 � 100, then d1

� � 100 and d1
� � 0. On the other hand,

if the deviation for observation i is negative, for instance, d2 � –200, then d2
� � 0 and 

d2
� � |–200| � 200. Since non-negativity is required, all negative deviations are expressed

in terms of absolute values. The MOTAD problem for this example is the following:

Min: TAD � d 1
� � d 1

� � d 2
� � d2

� � d 3
� � d 3

� � d 4
� � d 4

�� d 5
� � d5

� � d 6
�

� d 6
�� d 7

� � d 7
� � d 8

� � d 8
� � d 9

� � d 9
� � d10

� � d10
� (0)

s.t.:

–d 1
� � d 1

� � 9g1 – 17.7g2 � 61.3g3 � 0 (Define d 1
� and d 1

�) (1)

–d 2
� � d 2

� � 4g1 – 11.7g2 – 38.7g3 � 0 (Define d 2
� and d 2

�) (2)

–d 3
� � d 3

� � 6g1 – 13.7g2 � 11.3g3 � 0 (Define d 3
� and d 3

�) (3)

–d 4
� � d 4

� � 3g1 –  0.7g2 –  93.7g3 � 0 (Define d 4
� and d 4

�) (4)

–d 5
� � d 5

� � 0g1 � 0.3g2 � 61.3g3 � 0 (Define d 5
� and d 5

�) (5)

–d 6
� � d 6

� – 6g1 � 9.3g2 � 51.3g3  � 0 (Define d 6
� and d 6

�) (6)

–d 7
� � d 7

� � 1g1 – 10.7g2 – 63.7g3 � 0 (Define d 7
� and d 7

�) (7)

–d 8
� � d 8

� – 1g1 � 10.3g2 – 113.7g3 � 0 (Define d 8
� and d 8

�) (8)

–d 9
� � d 9

� – 5g1 � 16.3g2 � 71.3g3 � 0 (Define d 9
� and d 9

�) (9)

–d10
� � d10

� – 11g1 � 18.3g2 � 53.3g3  � 0 (Define d10
� and d10

�) (10)

91.0g1 �110.7g2 � 138.7g3 	 E* (Minimum E) (11)

1.0g1 � 1.1g2 � 1.3g3 
 1,000 (Hired Labor) (12)

0.4g1 � 0.4g2 � 0.4g3 
 500 (Manager Labor) (13)

2.2g1 � 2.8g2 � 3.0g3 
 2,000 (Machine) (14)
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1g1 � 1g2 � 1g3 
 600 (Land) (15)

d i
�, d i

� g1, g2, g3  	 0 (Non-negativity) (16)

In the above model, equations (1) through (10) define the positive and negative devia-
tions for the three activities for each year. The number of positive and negative 
deviation variables will always be equal to the number of observations one has col-
lected. The interpretation of these equations becomes clearer when solving for d i

� or d i
�.

For instance, solving equation (1) for d 1
� yields:

d 1
� � d 1

� � 9g1 – 17.7g2 � 61.3g3, or

d 1
� � d 1

� � devg1,

where:

devg1 � 9g1 – 17.7g2 � 61.3g3.

If devg1 � 0, then d 1
� � devg1 and d 1

� � 0 because d 1
� is being minimized in the objec-

tive function. If devg1 � 0, then d 1
� � 0 and d 1

� � –devg1 � 0.
An approximation of the standard deviation using TAD is given by the following 

formula:

TAD SD � (1/s) TAD [(πs) /2(s–1)]1/2,

where:

s � sample size (number of observations),

π� the mathematical constant, pi, that is, 3.14…,

TAD � total absolute deviations.

The formula that converts the value of TAD into an approximation of the variance is
simply:

TAD VAR � (TAD SD)2.

In the previous section, this model was solved using QP for the following values of
E*: $82,220, $80,000, $75,000, $70,000, $65,000 and $60,000. Figure 10.4 illustrates
the Excel worksheet for the Solver formulation of the problem corresponding to
E*�$82,220. The QP and the corresponding MOTAD solutions for all values of E* are
summarized below.

QP Results

Expected Standard Soybeans Wheat Corn
Profit ($) Variance ($) Deviation ($) (acres) (acres) (acres)

82,220 1,636,632,000 40,455 0 0 600
80,000 1,087,286,890 32,974 0 115 485
75,000 465,789,543 21,582 0 293.6 306.4
70,000 125,950,359 11,223 0 472.1 127.9
65,000 32,919,362 5,738 118.8 448.3 32.9
60,000 2,843,412 1,686 341.8 247.1 11.2
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Figure 10.4 Solver formulation for MOTAD example.
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MOTAD Results

Expected Standard
Profit TAD Deviation Soybeans Wheat Corn

($) ($) ($) (acres) (acres) (acres)

82,220 371,760 49,098 0.0 0.0 600.0
80,000 303,450 40,079 0.0 115.0 485.0
75,000 198,497 26,217 0.0 293.6 306.4
70,000 102,393 13,524 0.0 472.1 127.9
65,000 51,074 6,746 126.5 435.2 38.3
60,000 13,537 1,788 349.2 234.4 16.4

In this case, comparisons between the optimal activity values from the MOTAD
model and those of the QP model show that they are quite similar. However, the vari-
ance estimates from the MOTAD model are higher than the ones given in the QP model.
This is due to the fact that the TAD estimate of the variance is not as efficient as the tra-
ditional nonlinear variance estimate. Hence, there is a trade-off when using a MOTAD
model between the advantage of being a linear problem and disadvantage of the TAD
not being as efficient of an estimate of the variance and standard deviation.

Note that the sensitivity analysis results for the case of E*�82,220 indicates 
the shadow price (SP) on the minimum E constraint is 21.2: that is, if the RHS value
for the minimum E constraint were reduced by $1, total absolute deviations could be
reduced by $21.20. The SP on the land constraint is –2,319.4: that is, an increase of
one acre would lead to a $2,319.40 reduction in total absolute deviations.

Since the total negative deviations (TND) equals the total positive deviations,
MOTAD models can be reduced substantially in size by minimizing total negative
deviations and multiplying the resulting objective function value by 2, that is,

TAD � 2 TND.

Now the deviations from the mean are calculated using the negative deviations for-
mula, that is:

d j
� � |min (0, cjr – E(cj))|,

for the jth activity’s net revenue, rth observation. The resulting smaller model (minimiz-
ing total negative deviations) will yield similar results to the larger model (minimizing
total absolute deviations, positive and negative). The negative deviations formulation to
this problem is:

Min: TND � d 1
� � d 2

� � d 3
� � d 4

�� d 5
� � d 6

� � d 7
� � d 8

� � d 9
� � d10

� (0)

s.t.:

–d 1
� � 0g1 � 17.7g2 � 0g3 � 0 (Define d 1

�) (1)

–d 2
� � 0g1 � 11.7g2 � 38.7g3 � 0 (Define d 2

�) (2)

–d 3
� � 0g1 � 13.7g2 � 0g3 � 0 (Define d 3

�) (3)

–d 4
� � 0g1 � 0.7g2 � 93.7g3 � 0 (Define d 4

�) (4)

–d 5
� � 0g1 � 0g2 � 0g3 � 0 (Define d 5

�) (5)

–d 6
� � 6g1 � 0g2 � 0g3 � 0 (Define d 6

�) (6)
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–d 7
� � 0g1 � 10.7g2 � 63.7g3 � 0 (Define d 7

�) (7)

–d 8
� � 1g1 � 0g2 � 113.7g3 � 0 (Define d 8

�) (8)

–d 9
� � 5g1 � 0g2 � 0g3 � 0 (Define d 9

�) (9)

–d10
� �11g1 � 0g2 � 0g3 � 0 (Define d10

�) (10)

91.0g1 � 110.7g2 � 138.7g3 	 E* (Minimum E) (11)

1.0g1 � 1.1g2 � 1.3g3 
 1,000 (Hired Labor) (12)

0.4g1 � 0.4g2 � 0.4g3 
 500 (Manager Labor) (13)

2.2g1 � 2.8g2 � 3.0g3 
 2000 (Machine) (14)

1g1 � 1g2 � 1g3 
 600 (Land) (15)

d i
� g1, g2, g3 	 0 (Non-negativity) (16)

There are two differences between this formulation and the one that minimizes TAD.
First, there are 10 fewer activities since the 10 d i

� activities have been eliminated.
Second, the definition of the deviations from the mean (equations (1) through (10))
now includes only the negative deviations (the positive deviations are set to zero).
Note that the absolute value of the negative deviations is used in equations (1)
through (10).

The general form of the MOTAD model, which minimizes TAD is:

(0)

s.t.:

(1)

(2)

(3)

xj, d j
�, d j

� 	 0 (4)

As was true with the QP formulations, three equivalent formulations for MOTAD can
be used. The first is to minimize TAD or TND s.t. E 	 E* and other constraints. The
second is to maximize E s.t. TAD or TND 
 target level and other constraints. The third
is to maximize E – b TAD (or TND) s.t. constraints.

Historically, the main advantage of MOTAD over QP is that it could be used with 
LP solvers. Consequently, greater detail could be specified in the production and mar-
keting strategies in the model formulation.10 TAD succeeds as a measure of risk because

a b for all iij j i
j

n

x 

�1
∑

E(c ) Ej j
*

j

n

x 	
�1
∑

( (c E(c )) r number of orj
j=

n

j j j j� � � � �� �

1

0∑ x d d bbservations)

Min:TAD j j
j

n

j

n

� �  � �

��

d d
11

∑∑

366 PART 2 RELAXING THE ASSUMPTIONS OF LINEAR PROGRAMMING

10As described in Chapter 9, with the Risk Solver Platform, the Standard LP/Quadratic Engine now finds optimal
solutions for both linear and quadratic problems.
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the approximation of the standard deviation is an unbiased estimate of the population
standard deviation for a normal population (Hazell, 1985). Additionally, MOTAD mod-
els are generally a reasonable approximation of QP models and may even be superior
to QP if distributions are skewed (Anderson et al., 1977). Finally, Boisvert and McCarl
(1990) dispel concerns that MOTAD appears to ignore the covariance element of the
variance-covariance matrix. However, the deviations in the MOTAD model exist across
all activities, so that negative deviations from one activity can partially or completely
mitigate positive deviations from another activity. This creates an incentive to lessen
risk through diversification, much as the covariance term does in QP.

A disadvantage of MOTAD is that, even under normality, the approximation of vari-
ance is less efficient than with QP. MOTAD models also suffer some of the same limi-
tations inherent in standard QP models, most notably treating the decision environment
nonsequentially and setting the parameters of a constraint nonstochastically.

10.5 TARGET MINIMIZATION OF TOTAL ABSOLUTE DEVIATIONS

Tauer (1983) developed an alternative to MOTAD models called target MOTAD. Target
MOTAD improves upon regular MOTAD in that its solutions are also efficient based on
another efficiency criterion known as second-degree stochastic dominance. The model,
which is similar to MOTAD models, adds a new constraint that sets a target level on total
revenue. One formulation of the model is:

(0)

s.t.:

(1)

(2)

(3)

xj, yk 	 0 (4)

where yk is the negative deviation in total net revenue in the kth state of nature below the
targeted net revenue level, pk is the probability of the kth state of nature, T is the target net
revenue level, and λ is maximum amount of shortfall in net revenue permitted. Note that
you may either use equally likely probabilities for each state of nature, or weight pk dif-
ferently for some states; for instance, more recent states could be weighted more heavily
than more distant states. Constraint (2) measures the relation between state of nature k net
revenue and the set target net revenue level. Notice that if net revenue falls below the tar-
get level in state of nature k, then yk measures by how much the target is underachieved.
Constraint (3) requires that, on average, the shortfall in net revenue not be larger than λ,
which is parametrically altered. Hence, unlike the regular MOTAD model, the target
MOTAD model requires parameterization on two parameters, λ and T instead of one.
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11This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 10 supplemental materials
available at www.wiley.com/college/kaiser.

An Example11

Consider the same example as was used for the QP and MOTAD examples. The target
MOTAD formulation is:

Max: E(NR) � 91.0g1 � 110.7g2 � 138.7g3 (0)

s.t.:
y1 � 100g1 � 93g2 � 200g3 	 T (1)
y2 � 95g1 � 99g2 � 100g3 	 T (2)

y3 � 97g1 � 97g2 � 150g3 	 T (3)

y4 � 94g1 � 110g2 � 45g3 	 T (4)

y5 � 91g1 � 111g2 � 200g3 	 T (5)

y6 � 85g1 � 120g2 � 190g3 	 T (6)

y7 � 92g1 � 100g2 � 75g3 	 T (7)

y8 � 90g1 � 121g2 � 25g3 	 T (8)

y9 � 86g1 � 127g2 � 210g3 	 T (9)

y10 � 80g1 � 129g2 � 192g3 	 T (10)

(11)

1.0g1 � 1.1g2 � 1.3g3 
 1,000 (Hired Labor) (12)

0.4g1 � 0.4g2 � 0.4g3 
 500 (Manager Labor) (13)

2.2g1 � 2.8g2 � 3.0g3 
 2000 (Machine) (14)

1g1 � 1g2 � 1g3 
 600 (Land) (15)

yi g1, g2, g3 	 0 (Non-negativity) (16)

It should be noted that the weights used in this example treat all 10 observations as equally
likely with a probability of 0.10. However, one could also assign a different weighting
scheme with different weights for various observations as long as the weights sum to 1.0.
Figure 10.5 presents this model for the case of λ � $20,000 and E* � 82,220. The fol-
lowing table gives the optimal target MOTAD results for selected values of T and λ.

T ($) 82,220 82,220 82,220 82,220 75,000 75,000 75,000
λ ($) 19,000 18,000 17,000 15,900 11,500 11,250 11,200
Soybeans (acres) 0.0 10.2 64.2 123.7 205.4 218.9 221.6
Wheat (acres) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Corn (acres) 600.0 589.8 535.8 476.3 394.6 381.1 378.4
Average Net Revenue ($) 83,220 82,936 81,422 79,757 77,469 77,090 77,015

In general, these results are similar to both the QP and MOTAD model results. The
risk-neutral, or profit-maximizing solution occurs for values of λ larger than 19,000
when T is set at 82,220. As λ is reduced, average net revenue falls, and optimal crop
mix becomes more diversified, and less dependent on corn. These solutions do not per-
fectly correspond to the QP and MOTAD solutions presented earlier because two
parameters are being varied here and the selected solutions do not exactly coincide with
the pairs of E and V (or E and TAD) presented earlier.

0 10. y i
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∑
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Figure 10.5 Solver formulation for target MOTAD example.

10.6 CHANCE-CONSTRAINED PROGRAMMING

While quadratic risk programming, MOTAD, and target MOTAD models represent sig-
nificant contributions to applied decision analysis, each make certain assumptions that
limit their use. First, risk is usually captured only in the objective function coefficients,
while parameters in the constraint set are treated deterministically. In reality, however,
resource availability and requirements in the constraint functions are also a source of risk
to the farmer. Second, these models usually assume a static, nonsequential decision
process. Farm production and marketing decision making, however, are adaptive
processes involving a sequence of decisions over time. In models assuming a single deci-
sion stage, decision variables are not adapted to new information received over the plan-
ning horizon.

Chance-constrained programming offers a solution to the first problem. This technique,
developed by Charnes and Cooper (1959), is the most popular approach for dealing with
right-hand-side (RHS) risk. One of the biggest sources of RHS risk in agriculture is avail-
ability of field time, which depends upon the weather. If the fields are too wet for agricul-
tural equipment, then operations such as plowing, disking, planting, harvesting, and so on
cannot be completed. In reality, this source of risk is very important to farmers.

This approach is fairly simple to model. Assume that the source of risk in the RHS vari-
able (bi) has a probability distribution known by the decision maker. Then, a chance con-
straint can be added to the mathematical programming model, which puts a lower limit (α)
on the probability that the constraint will be satisfied, for instance:

Denoting the average or expected value of bi as E(bi), subtracting it from both sides of the
above equation, and dividing both sides by the standard deviation of bi (σi) yields:
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Denoting Z � [bi – E(bi)]/σi and denoting Zα as the critical value on the probability distri-
bution such that a lower value than this has a chance of occurring α percent of the time,
rewrite the above equation as:

Finally, this expression can be rewritten and included in an LP model as:

This constraint says that the resource usage, aij xj, must be 
 the mean value of the RHS
parameter minus the product of its standard deviation and the critical value associated with
the set probability level. In other words, chance-constrained programming deals with RHS
risk by setting the availability of the resource (bi) to a lower limit, rendering the probabil-
ity of meeting this minimum level of resource availability so high that the decision maker
can depend upon it.

The advantage of chance-constrained programming is that it is fairly simple to use and
does not add much complexity to the linear or nonlinear programming model (Boisvert &
McCarl, 1990). Subsequently, it could be combined with MOTAD or quadratic risk pro-
gramming in order to incorporate RHS risk into the model. Its main drawback is its
assumption that the decision process is static and nonsequential. In models assuming a sin-
gle decision stage, decision variables are not adapted to new information received over the
planning horizon.
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An Example

Consider the following model:

Max: Z � 10x � 5y (0)

s.t.:

x � y 
 b (1)

5x � y 
 100 (2)

x, y 	 0 (3)

Assume that b is distributed normally with a mean of 50 and a standard deviation of 10.
To find a value for the RHS parameter b, call it b�, use the following relationship:

b� � E(b) – Zα � 50 – 10 Zα.

Parametric programming on Zα can be used to derive solutions for this problem. The
table on the next page gives some of the solutions.
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Chance Constraints with the Risk Solver Platform12

The Risk Solver Platform offers a simple way to deal with uncertainty in the constraints.
Using distribution functions, any cell can be defined as an uncertain value drawn from a
defined probability distribution. Solver offers over three dozen built-in distributions and also
allows for custom definition of distributions. The normal distribution with a mean of 50 and
a standard deviation of 10 used in the above example would be defined with the function
“�psinormal(50, 10)”. Additional distributions can be found under the “Distributions” menu
on the Risk Solver tab on the Ribbon.

A cell defined with a probability distribution can be identified in a constraint like a nor-
mal cell. The only problem is that it would try to generate a certain answer, or in other
words it would essentially treat the distribution as the lowest possible value of that distri-
bution. In the case of a normal distribution, that value would be negative infinity. Instead
a Chance Constraint needs to be defined.

The process for defining Chance Constraints in Solver is the same as for normal con-
straints except that an additional option must be set in the Add/Change Constraint window.
Use the pull-down menu to the right of the box where the RHS of the constraint is input.
Usually the pull-down menu is set to Normal, but it can be changed to one of several
options to make it a Chance Constraint. The options available are VaR (Value at Risk),
CVaR (Conditional Value at Risk, and USet (Uncertainty Set), which are measures of risk
commonly used in finance. By selecting VaR the chance value specified will be the prob-
ability that the value on the left-hand-side (LHS) of the constraint will be satisfied by the
uncertain RHS value. The probability is defined in the box labeled “Chance:” underneath
the pull-down menu. So if the constraint were defined as a VaR constraint with a Chance
of 0.4, the objective function would be maximized subject to the constraint being satisfied
40% of the time. Once this constraint is added, it will appear in the Model Specification
window under Chance Constraints as “VaR0.4(LHS) �� RHS”. For the above example this
would lead to a solution of x* � 15, y* � 25, and Z* � 275.

10.7 DISCRETE STOCHASTIC SEQUENTIAL PROGRAMMING

Discrete stochastic sequential programming (DSSP) is a mathematical programming tech-
nique capable of overcoming many of the limitations cited with the previous models.
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12This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 10 supplemental
materials available at www.wiley.com/college/kaiser.

Value of
Zα b Objective Function x y

0 50 312.5 12.5 37.5
1 40 275 15 25
2 30 237.5 17.5 12.5
3 20 200 20 0
4 10 100 10 0

It is clear from this table that the more conservative the value of b, the lower the
objective function value illustrating the classic trade-off of expected revenue and risk.
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However, there have been relatively few empirical applications of DSSP to farm produc-
tion and marketing problems. Despite its intuitive appeal, DSSP is often overlooked in
empirical research because the programming matrix becomes quite large as the number of
states of nature and decision stages increases. A related concern is the potentially formi-
dable data requirements associated with models that capture dynamic characteristics 
of decision problems with many sources of risk. However, with the proliferation of flexi-
ble data management software, mathematical programming solvers for large problems,
technical and economic databases, and simulation techniques for generating data, the cost 
of the added accuracy that techniques such as DSSP afford may be declining. Experience
in the construction of DSSP models should reduce the cost further.

Discrete stochastic sequential programming was developed by Cocks (1968) and refined
by Rae (1971a; 1971b) as a technique for modeling decision making as a multistage deci-
sion process characterized by a discrete specification of random problem parameters. As
the name implies, DSSP models consider the stochastic and sequential nature of resource
endowments, resource requirements, and objective function coefficients. This technique
requires that technical coefficients, objective function parameters, and/or resource endow-
ments be specified separately for each stochastic state of nature. Each state is then assigned
a probability of occurrence, based on the subjective assessment by the decision maker. The
solution to the DSSP problem is then found, which depends, in part, on the way the states
and probabilities are defined and assessed.

The DSSP technique is a probabilistic decision model, based on Bayesian decision the-
ory. Decisions in any stage are made with probabilistic knowledge of the occurrence of
the states of nature in future stages of the decision process. The stages in the decision
process are therefore interdependent. Decisions in later stages are restricted not only by
the occurrence of particular random events in this stage, but also by random outcomes and
decisions made in earlier stages. For example, the decision of when and how much corn
and soybeans to market in the fall not only depends upon current market conditions and
expectations on future conditions, but also on the past crop mix decision and the outcome
of yield events.

In addition to defining the possible states and possible activities for each stage that the
decision maker must choose, an information structure must be specified. The information
structure describes the flow and extent of information regarding the occurrence of events
in the various stages of the decision process. Decisions are assumed to be made at the
beginning of each stage. For any stage, the decision maker may either have perfect or prob-
abilistic knowledge of events in past, present, and future stages. For example, an informa-
tion structure of complete knowledge of the past and present implies that at the beginning
of stage t, the decision maker knows the outcome of random events in stages t, t � l, 
t � 2, … , 1 with certainty, but only has probabilistic knowledge of the outcome of events
in stages t � l, t � 2, … , t � n. An information structure of complete knowledge of the
past implies that the decision maker knows with certainty the outcome of events of stages
t � l, t � 2, … 1, but only has probabilistic knowledge of outcomes in stages t, t � l, … , 
t � n. Agricultural production and marketing decisions are best described by assuming an
information structure of complete knowledge of the past and present, and probabilistic
knowledge of the future.

The nature of a sequential decision environment under risk characterized in DSSP can
be illustrated with a decision tree, which illustrates the stages in the decision process and
the states of nature in each stage. An exemplary decision tree for a two-stage, two states of
nature, decision problem assuming complete knowledge of the past is shown in Figure 10.6.
The interpretation of the notation is the following: eijk represents the occurrence of the ith
state of nature in stage k and the jth set of activities. For example, at the beginning of
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stage 2, assuming complete knowledge of the past and that event eijl has occurred 
in stage 1, the decision maker knows with certainty eij1 and must decide, based on prob-
abilistic knowledge of events in stage 2, which activities to select. A general LP formu-
lation for this problem is constructed in Figure 10.7.

The objective function of maximization of expected net revenue will first be assumed.
Stochastic components of the problem are accounted for in the constraint function coeffi-
cients (Aijk), the resource endowments (bijk), and the objective function coefficients (cijk).
The vector of activity levels x11, x12, and x22 form a strategy, which is derived from optimal
solutions to the problem. At the beginning of the process, assume that decision vector x11 is
selected. Vector x11 must be permanently feasible because the outcome of stage 1 random
events is unknown when vector x11 is selected, which is implied by constraints 
(2) and (3) being satisfied regardless of which stage 1 event occurs. Stage 2 decisions must
be permanently feasible as well; however, two stage 2 decision vectors (x12 and x22) are
included since the decision maker, having complete knowledge of the past, will know at the
beginning of stage 2 which stage 1 state of nature has occurred. Thus stage 2 decisions are
made subject to the opportunities afforded jointly by stage 2 random events, by decisions
made in stage 1, and by the outcome of random events in stage 1. Hence, the decision rule
that is followed at the beginning of stage 2 is to “follow x12 if e111 occurred in stage 1, or
follow x22 if e211 occurred in stage 1.”

Constraints (8) and (9) imply that the two stages are interdependent. Through these con-
straints, the continuance of stage 1 activities into stage 2 and the transfer of resources
between the first and the second stage activities are insured. Matrices Dijk and Ejk are con-
structed in such a way as to preserve these relationships between stages. Given the out-
come of random events in stage 1, constraints (4) to (7) render decision vectors x12 and x22,
respectively, permanently feasible.
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Stage I Stage II Joint 
Probability

e111

e211

e212

e122

e222 a4

a3

a2

a1

Figure 10.6 Decision tree for two-stage, two-state DSSP problem assuming complete
knowledge of the past.
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Activities y1 through y4 are total net revenue associated with each possible sequence of
random events in the two stages (i.e., joint events (e111, e112), (e111, e212), (e211, e122) and (e211,
e222), respectively). The cijk vectors are objective function coefficients corresponding to the
associated events. Thus, through constraints (10) to (13), net revenue levels associated with
the occurrence of each combination of events are summed into y. Joint probabilities a1, a2,
a3, and a4 are objective function coefficients for y, so the objective (1) is expected net rev-
enue, which is maximized.13 With the problem formulated in this way, the optimal stage 1
vector is then selected with consideration of the expected explicit and implicit values of
stage 2 decision vectors.

Because the probability distributions of monetary outcomes are explicitly considered
in DSSP, the modeling technique can be easily extended from the expected net revenue
formulation presented above to a formulation for the maximization of expected utility.
The extension of expected utility concepts into the DSSP model is similar to those with
other risk programming models (e.g., QP, MOTAD, and expected utility functions),
except for special considerations of timing in the decision-making process. The follow-
ing discussion will focus on incorporating a MOTAD objective function into a DSSP
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Figure 10.7 Linear programming model for two-stage, two-state DSSP problem assuming
complete knowledge of the past.

Max: Z � a1y1 � a2y2 � a3y3 � a4y4 (1)

s.t.:

A111x11 
 b111 (2)

A211x11 
 b211 (3)

A112x12 
 b112 (4)

A212x12 
 b212 (5)

A122x22 
 b122 (6)

A222x22 
 b222 (7)

– D111x11 � E12x12 
 0 (8)

– D211x11 � E22x22 
 0 (9)

y1 – c�111 x11 – c�112 x12 
 0 (10)

y2 – c�111 x11 – c�212 x12 
 0 (11)

y3 – c�211x11 – c�122 x12 
 0 (12)

y4 – c�211x11 – c�222 x12 
 0 (13)

y1, y2, y3, y4, x11, x12, x22 	 0 (14)

13You could also use the appropriate marginal and joint probabilities to weight the vectors cijk and these coeffi-
cients could be placed directly in the objective function.  However, use of the vectors yi provides useful solution
information and facilitates later discussions of expected utility models.
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framework (DSSP/MOTAD approach). The incorporation of other variants of the EUH in
a DSSP model has been addressed elsewhere in the literature (see, for example, Rae
(1971a; 1971b)).

The modifications in the DSSP problem necessary to convert the problem into a
MOTAD model are straightforward. The DSSP/ED approach requires the measurement of
expected net revenue and absolute negative deviations from expected net revenue. The
occurrence of a particular joint event in the DSSP model is characterized by the multi-
nomial distribution (Cocks, 1968). That is, one of m joint events will occur (for each trial)
with probabilities aj, j�l, … , m. The expected value of the jth event is aj, where aj 	 0 and
Σ aj � 1.14 The absolute negative deviation, for any state i, is equal to the minimum value
of either yi –E(y) or 0, where yi is net revenue under joint event i, and E(y) is expected net
revenue for all joint events. The ED objective function corresponding to the problem in
Figure 10.7 is:

(29)

where Φ is the coefficient that converts total negative deviations into an approximation of
the standard deviation, r is the marginal risk coefficient, and di is the negative deviation for
state i.

Although DSSP models, in theory, conform quite well to how farm production and mar-
keting decisions are actually made, they have not been frequently used in empirical appli-
cations to agricultural problems due to the size and complexity of DSSP models. A
stochastic programming matrix will generally grow in size more than proportionally with
increases in the number of sources of risk (random variables), the number of discrete val-
ues taken by the random variables, and the number of stages in the decision process. The
formulation of an empirical DSSP/ED model, for example, that incorporates the risk inher-
ent in farming is more than an ambitious task.

Therefore, the central focus of model building using DSSP must be on selecting an eco-
nomical representation of the problem with the greatest level of detail specified in com-
ponents critical to the analysis. Although dimensionality remains a major problem inherent
in DSSP, it is becoming less of a barrier to implementing these models due to recent
advances in linear and nonlinear programming software.

In addition, the impediment of very large matrix data files common with DSSP may be
overcome by the use of matrix-generating computer programs. The replication in coeffi-
cient placement and parameter use inherent with these models makes the use of matrix
generators a fairly straightforward process. Also, when matrix generators have been writ-
ten for a deterministic (i.e., nonstochastic) version of a particular system, modification of
the software to allow for stochastic parameters and a sequential decision process may be a
relatively easy task.

Similarly, report generating computer programs, which may be written in conjunction
with the matrix generator, are useful in overcoming the problem of analyzing the formi-
dable set of solution values associated with a DSSP model. Report generators are basically
used to search through output and find and organize key components of the output critical
to the analysis.
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14The variance of this distribution is Vii � ai(1 � ai), and the covariance is Vij � �aiaj (for all i not equal j).
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A DSSP Example in Solver15

Solver offers the ability to model multiple-stage decisions with uncertainty in early-
stage parameters. Consider the simple example of a 750-acre farm that can choose to
plant corn and soybeans and raise cattle. The yields of the crops depend on the weather
for that season. A wet season will offer higher yields, 100 bushels per acre of corn and
55 bushels per acre of soybeans, while a dry season will only offer yields of 50 bushels
per acre of corn and 45 bushels per acre of soybeans. It is believed that there is a 60%
chance of a wet year and 40% chance of a dry year. Soybeans can be sold for $8 per
bushel. Corn may be sold for $5 per bushel, fed to cattle, and bought for $6 per bushel.

Each cattle requires 120 bushels of corn and can be sold for $500. Before the grow-
ing season begins, the farmer must first decide on the number of acres to plant and the
number of cattle to raise. Once the season begins and its type is revealed, the farmer must
determine the amount of corn to buy or sell. These decisions are made to maximize
expected profit subject to acreage and the amount of corn necessary to feed the cattle.

The set-up of this problem in Excel is fairly straightforward, with a couple of new
elements. First, the probability of the weather outcome for the year must be modeled
using a distribution function. Since two discrete outcomes are offered, a discrete distri-
bution can be specified with the function “�PsiDiscrete({1,0}, {0.6,0.4})”. This will
return a 1, indicating a wet year 60% of the time, and a 0, indicating a dry year 40% of
the time. Second, in addition to the profit cell an expected profit cell must be defined
since that is what is being maximized. This is done with the function
“�psiMean(Profit)” where “Profit” refers to the cell containing the profit function.

The model definition is similar to static models. When defining the Decision Variables,
the first-stage variables should be defined as usual; however, the second-stage variables
should be defined as Recourse Variables. This is done in the Add/Change Variables win-
dow by changing the pull-down menu next to the “Cell Reference:” field from “Normal”
to “Recourse.” The expected profit cell is set as the objective function, and the objective
type must be changed from Normal to Expected. This is done in the Add/Change
Objective window by changing the pull down menu next to the “Set Cell:” field from
“Normal” to “Expected”. The model is then run as usual. In this case, the optimal solu-
tion is to plant all 750 acres with corn and use it to raise 625 head of cattle for a total
expected profit of $312,500.
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15This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 10 supplemental
materials  available at www.wiley.com/college/kaiser.

10.8 ISSUES IN MEASURING RISK IN RISK PROGRAMMING

As was stated earlier in this chapter, expected utility is a function of all statistical moments
of the probability distribution of the random variable on which utility depends upon.
However, the variance of a one-dimensional utility function (e.g., net income) has been
often used in empirical studies as the measure of risk. When the variance, or a linear
approximation of the variance, is used to measure risk, it is usually assumed that either the
decision maker’s utility function is quadratic or that net income is normally distributed,
thereby reducing utility to a function of the first two moments of the probability distribu-
tion. Often, these two moments are calculated from historical time series data and the
result is an “objective” measure of risk.

According to some decision theorists, objectively based measures of risk are not relevant in
decision analyses since decision makers subjectively perceive risk. These theorists contend
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that risk must be measured subjectively by eliciting probabilities directly from the decision
maker (Anderson et al., 1977). Additionally, supporters of this argument contend that risk
should be measured subjectively for positive, as well as normative, behavioral applications.

Young (1980) argues, however, that because of difficulties and costliness of obtaining
accurate subjective risk preferences, analysts should use historical indices of risk in nor-
mative (but not positive) applications. He argues that in normative applications,
researchers use the most accurate time series data possible to use as objective risk meas-
ures. The results can then be presented to managers, and they can revise them in accor-
dance with their own personal preferences.

The subjective measures of risk, at least conceptually, are the only relevant probabilities
for decision making for both positive and normative purposes. But because of such difficul-
ties associated with (1) developing elicitation procedures free of bias, (2) time-consuming
and expensive process of elicitation, and (3) lack of adequate methods of multivariate elici-
tation schemes, historical data must be used in many applications as proxies for production
and price risk. Because of these problems, elicitation procedures are likely to result in inac-
curate utility functions and subjective probability distributions. Due to these limitations, most
risk studies use an objective measure (variance) to estimate risk.

10.9 RESEARCH APPLICATION: QUADRATIC RISK PROGRAMMING

Falatoonzadeh et al. (1985) evaluated the optimality of various risk-management strategies
available to farmers using quadratic risk programming. The authors simultaneously exam-
ined the optimality of five risk management strategies: (1) hedging in the futures markets,
(2) crop diversification, (3) forward pricing to lock into certain prices, (4) call options, and
(5) participation in the Federal Crop Insurance Program (FCIP). All of these options pro-
vide means for lowering net income risk. The authors included four levels of participation
in the FCIP: (1) nonparticipation, (2) participation at 50%, (3) participation at 75%, and
(4) full participation. The higher the level of participation in the FCIP, the greater the ben-
efits and costs. A case study of a dry land cotton, wheat, and grain sorghum farm in Knox
County, Texas, was used. Risk was incorporated into the model using an E-V approach,
and it was assumed that output prices and production were the two sources of risk, while
all other parameters were assumed to be known with certainty.

Time series regression and Monte Carlo simulation techniques were used to generate 
the probability distributions for net revenue for each of the risky price and production
activities in the model. For instance, for yield risk, the authors regressed yield on a con-
stant and a time trend term over the annual period 1965–1979, and then used the predicted
equation and residual term from the regression to generate random yields for the simula-
tion model. Similar procedures were used to generate random cash and futures prices.
Expected net revenues and a variance-covariance matrix of net revenue were then calcu-
lated for each of the five risk-management strategies.

The authors used a standard E-V formulation for the objective function of the QP model.
The objective for each case is:

Max: E(U) � s�x – x�Qx,

where s� is a row vector of net income per unit for each production and marketing activity, x
is a column vector of all marketing, production, and FCIP participation activities, x� is its trans-
pose, a is a risk aversion coefficient, and Q is the variance-covariance matrix of net income for
each activity in x. By parametrically varying the risk-aversion parameter, a, from zero (risk
neutral) to a positive number (risk averse), an E-V efficient frontier can be determined.

a

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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The first set of constraints represents the usual technical and resource endowment
restrictions faced by the representative farmer:

Ax 
 b,

where A is a matrix of technical coefficients converting resource endowments into units of
each activity, and b is a vector of resource endowments. Following the technique of
chance-constrained programming, the authors constrained the volume of sales activities to
be less than or equal to total expected production adjusted downward by (1 – γ ), where 
0 
 γ 
 1. This constraint was included to represent the risk associated with an outcome
where production is lower than sales.

In the model, there are 76 activities for cotton, wheat, and grain sorghum, with only 3
representing participation levels in the FCIP. An additional 3 of the 76 are production
activities, while the remaining are marketing activities. The model was solved separately
for each participation scenario to generate efficient sets of activities for each scenario.

The main conclusion from the study is that full participation in the FCIP is the best option
available to farmers regardless of the level of risk aversion (including the risk-neutral case).
Basically, full participation offers the highest level of expected net income regardless of risk
aversion level. This is evident by examining Figure 10.8, which plots the expected utility-
risk aversion coefficient frontier for nonparticipation and full participation in the FCIP. In
this figure, participation dominates nonparticipation for every level of risk aversion. Hence,
participation in the FCIP is an optimal strategy for the representative Texas farm.

Not surprisingly, the study found that the degree of risk aversion greatly impacted the
optimal marketing and production strategy. For example, diversification across crops
increased with the level of risk aversion. The use of futures markets was found to be an
excellent strategy for minimizing risk. For example, wheat and grain sorghum hedging via
hedging in the futures markets and cotton sales via call options was found to be an excel-
lent strategy for minimizing price risk.
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The results of this study are useful for farmers in this region. At the time this study was
done, the policy implications were that farmers are better off by participating in the FCIP
and by using various marketing strategies to sell their crops. The authors suggested that edu-
cational programs should be conducted on these various strategies to better educate farmers
on how to use these options to improve their net income and reduce its variability.

10.10 RESEARCH APPLICATION: DISCRETE STOCHASTIC
SEQUENTIAL PROGRAMMING

A model developed by Kaiser and Apland (1989) is described to illustrate the formulation
and use of DSSP models. One of the purposes of Kaiser and Apland’s study was to iden-
tify risk-efficient production and marketing plans for a representative corn–soybean farm
in Minnesota. A subset of the production and marketing solutions will be reported here. A
MOTAD-type objective function was used in the model, which included random yields,
prices, harvest field rates, and harvest field time.

The model’s production activities and resource constraints were defined over 11 dis-
crete time periods for tillage, planting, cultivation, and harvest operations. The inclusion
of several periods is essential to capture critical timeliness characteristics of crop pro-
duction. Preharvest production decisions were assumed to be made in stage 1, harvest
production decisions were set in stage 2, and marketing decisions were made in stage 3.
The 11 intrayear production periods were defined from April 7 through November 30.
Preharvest (stage 1) operations included spring plowing, disking, herbicide application,
planting, and post-planting operations, which occur in periods 1 through 6 from April 7
to June 8. Stage 2 operations included harvesting and fall plowing, which take place in
periods 7 through 11 from September 15 to November 30. The constraining resources for
both stages were full-time and part-time labor by production period, machine time by pro-
duction period, crop acreage, and on-farm storage capacity.

Six corn and six soybean marketing alternatives were considered based on common
marketing practices in the region (Gois, 1983). These included a cash market sale at har-
vest, a storage hedge placed at harvest and lifted in May, and four alternative postharvest
cash market sales activities. Under the harvest sales activities, it was assumed that soy-
beans were sold in mid-October and corn was sold in mid-November. The storage hedge
option consisted of two separate transactions for corn and soybeans in the cash and futures
markets. First, July futures contracts were sold at harvest, and the contracted grain was
placed in on-farm storage. Then, in May, the July contracts were purchased back, and the
grain was sold in the cash market to lift the hedge. The postharvest sales activities involved
selling the stored crops in mid-February, April, May, and June.

Four important sources of risk to corn-belt farmers were to be included in the model: crop
yields, output prices, field time, and field rates. Yield variability was modeled in a conventional
manner using a 10-year time series of farm-level data. Each observation was used as an equally
likely yield state. Although yield time series are sometimes de-trended to remove the effects
of technological change, no statistically significant trend was found in the corn or soybean
yields. Production risk associated with field time variability was also included in the model.

Field time is defined here as the time during which weather and soil conditions are suit-
able for performing field operations. When field time is measured in days, as was the case
here, the RHSs of labor and machinery constraints are calculated as the product of field
days, working hours per day, and the number of units of the resource (workers or machines).
Thus with field time as a random variable, the RHSs of the resource constraints are random.
As with yields, 10 years of observations of field time were used to define the 10 discrete
states of nature. Since at the time planting decisions (and thus crop mix decisions) are made,
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harvest periods are relatively distant, it was decided that field time would be modeled as a
random variable in the harvest stage (stage 2). As a practical matter, stage 1 field time was
modeled deterministically. Harvest rates were adjusted based upon the yield per acre and
therefore varied by state of nature as well as planting and harvest period.

Output price states were defined to reflect the sequential nature of decisions and the flow
of market information. The model is of a decision process that begins in April. As such, pre-
vailing cash prices for corn and soybeans were assumed to be known at that time. To define
harvest price states of nature, 10 years of harvest price data were normalized to the previous
April cash price. These 10 observed price ratios were used to calculate 10 equally likely har-
vest price states for each crop based on the given April price, each corresponding to the yield
and field time state for the same year. At the beginning of stage 3, it was assumed that the
farmer knows the prevailing cash prices. However, only probabilistic knowledge regarding
postharvest prices is assumed. It was also assumed that current market information would be
available to farmers at harvest and that information would influence price expectations.
Therefore, rather than using relative historical values as with harvest prices, simple regres-
sion equations were estimated including market indicators, which would be known at har-
vest. The 10 observed error terms were added to the values of the regression equations for
each of the 10 observed harvest states to define 100 postharvest price states of nature.

The general structure of the model is illustrated by the decision tree in Figure 10.9. In
this figure, Si,t represents the occurrence of the ith state of nature in stage t. The mathe-
matical formulation of the model is as follows:

(1)

s.t.:

Accounting Constraints

yij � c11x11 � c12x12 � c21x21i � c22x22i � pijmij � 0

(i � 1, ... ,10, j � 1, ... ,10) (2)

(3)

yij � E � dij � 0 (i � 1, ... ,10, j � 1, ... ,10) (4)

Resource Constraints

A11x11 � A12x12 
 b1 (5)

l1x12 
 b2 (6)

A21ix21i � A22ix22i 
 b3i (i � 1, ... ,10) (7)

�hix21i � mij 
 0 (i � 1, ... ,10) (8)

smij 
 b4 (i � 1, ... ,10, j � 1, ... ,10) (9)

Sequencing Constraints

�B1x11 � B2x12 
 0 (10)

�Ix12 � B3x21i 
 0 (i � 1, ... ,10) (11)

a e E = 0i i ij
ji

y
==

∑∑ −
1
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�B4x21i � B5x22i 
 0 (i � 1, ... ,10) (12)

(13)

yij,dij,x11,x12,x21i,x22i,mij 	 0 (i � 1, ... ,10, j � 1, ... ,10) (14)

B B7 11 i
i

a 0 (i 1, ... ,10)x x−
=
∑ 1 6 22

1

10


 � 
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Figure 10.9 Decision tree for corn-soybean minnesota farm in research application Section 10.10.
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where:

yij � total net revenue (total receipts minus total variable costs), harvest
state i, post-harvest state j

dij � negative deviation from expected net revenue, harvest state i, post-
harvest state j

x11,x12 � spring tillage and planting vectors, stage 1

x21i,x22i � harvesting and fall tillage vectors, stage 2, harvest state i

mij � marketing decision vector, harvest state i, post-harvest state j

c11,c12,c21,c22 � variable cost vectors for field operations in stages 1 and 2

pij � net price vector for marketing activities, harvest state i, post-harvest
state j

A11,A12 � matrices of resource requirements for stage 1 field operations

A21i,A22i � matrices of resource requirements for stage 2 field operations, harvest
state i

hi � vector of crop yields, harvest state i

s � vector of zeros and ones for storage requirements of marketing activities

b1 � vector of stage 1 resource endowments

b2 � total crop land endowment

b3i � vector of stage 2 resource endowments, harvest state i

b4 � on-farm storage capacity

B1, ... ,B7 � sequence preserving matrices for field operations

I � identity matrix

l1 � vectors of ones

ai � probability of harvest state i

ej � probability of post-harvest state j, given harvest state i

u � (2/s)(ps/2(s�1))0.5, where s � number of joint events, and p is the
mathematical constant, pi�3.141….

r � risk aversion coefficient

The objective function (1) is expected net revenue (E) adjusted for risk. By (3), E is equal
to the sum of the 100 joint net revenue events (yij) each weighted by their probability (aiej).
Risk is measured as the standard deviation of net revenue as estimated by total negative
deviation from the mean times the coefficient u (Hazell 1985). Constraint (2) defines net
revenue activities yij, and constraint (4) defines negative deviation activities dij for each joint
event. Constraint (5) restricts the use of farm labor and machinery by field operations in
stage 1 to endowed levels. Constraint (6) is the land constraint. By constraint (7), the use 
of stage 2 resources under each of the 10 states of nature cannot exceed endowed levels. The
RHSs of the flow resource constraints for both stages are equal to the number of hours of
labor or machine services available for the associated production period and state of nature.
Constraints (8) and (9) are output and grain storage constraints, which restrict the total
amount of grain sales to the total output produced and limit the amount of grain sold from
storage to no more than on-farm storage capacity. Constraints (10) through (13) preserve the
proper sequence of field operations in the model. These constraints assure that spring tillage
occurs prior to planting (10), planting activities are matched to harvesting activities (11),
and harvesting is performed prior to fall plowing (12). Finally, constraint (13) assures that
any acreage not plowed in the fall is plowed in the spring.
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The case farm used in the analysis was selected to be representative of corn–soybean farms
in southern Minnesota. The base year for the analysis was 1983. A farm in Jackson County
with 612 tillable acres was selected from Minnesota Farm Management Association
(MFMA) records for time series data on corn and soybean yields. Other production and cost
data for the case farm were based on farm management studies applicable to southern
Minnesota. For yield, price and field time states of nature, a 1974–1983 sample period was
used. The machinery and equipment sets used in the model were typical of farms of
comparable size in this region of Minnesota. It was assumed that the farm used a conven-
tional tillage system. Field rates and other technical parameters used in the empirical model
were taken from Benson and Gillard (1985). Labor requirements for all operations were
assumed to be 110 percent of the machine time requirements (220% for harvest since it was
assumed that two workers were required for this operation).

Variable costs were adapted from MFMA records and Benson and Gillard (1985). These
costs included fuel, lubrication, and repairs for machinery and equipment as well as seed,
herbicide, insecticide, fertilizer, interest on cash expenses, variable drying costs, and insur-
ance. The operating costs (except drying) were assumed to be known by the farmer at the
beginning of the decision process. Variable drying cost per acre was a function of the mois-
ture content of the corn at harvest and the yield. Since yield and moisture content varied
by planting and harvesting date, and by harvest period state of nature, the drying cost per
acre was stochastic. Data on the number of field days by period were based on records
from the Southwest Experiment Station in Lamberton, Minnesota, for 1974–1983 (Nelson &
Straesser, 1985). Field days represent the number of days per period that farmers can per-
form field operations. The hours per field day were based, in part, on the number of hours
from sunrise to sunset in this region. A maximum of 11 hours was assumed, and the num-
ber of daylight hours was rounded down to the next lowest hour for each time period.

For each Stage 2 state of nature, the observed corn and soybean yields were adjusted for
each combination of planting and harvesting period to reflect the effects of timeliness on
yields. The coefficients used to adjust yields for timeliness were based on a study by Fuller
and Hasbargen (1973). These adjusted yields were incorporated in the model by specify-
ing a separate harvesting activity for each planting-harvesting period combination. A
moisture content level for corn adapted from Fuller and Hasbargen’s (1973) study was set
for each planting/harvest period combination to estimate per acre variable drying costs.

The 100 postharvest price states of nature (i.e., 10 for each of the 10 harvest states) con-
sisted of net selling prices for each of the postharvest marketing activities in the model. The
marketing year began at harvest and extended to mid-June of the following calendar year.
To represent expected price distributions prior to planting decisions, all monthly prices (for
the months corresponding to the marketing activities) were expressed as indices by divid-
ing the price associated with each marketing activity by the preceding April cash price.

As discussed earlier, the 10 observed price ratios (harvest price/April price) were
applied to the 1983 April cash price to define harvest price states of nature for both corn
and soybeans. For the postharvest marketing activities, price probability distributions were
desired that reflected market information available to farmers at harvest. The goal was not
to develop a forecasting model or a behavioral price expectations model. Rather, what was
sought was a representation of market risk faced by a farmer after harvest has been com-
pleted (yield time series data are frequently de-trended for similar reasons). To accomplish
this, the postharvest price states were generated using the following model:

pmt � eb0 pht
b1mt

b2eUt,

where pmt is the price of postharvest marketing activity m, pht is the harvest cash price, mt is a
harvest market indicator, b0, b1, and b2 are parameters to be estimated, and Ut is a stochastic
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disturbance term assumed to be normally distributed with a mean of zero and constant vari-
ance. The market indicators (mt) initially considered were: USDA forecasted carryover stocks
at harvest, ratios of expected supply to expected disappearance as reported by the USDA at
harvest, expected exports from USDA reports at harvest, monthly cash and futures prices
before harvest, and other lagged cash prices. This price equation was estimated by ordinary
least squares. All variables in the corn price expectations models were transformed into natu-
ral logarithms. The soybean price expectations models were estimated with all the same vari-
ables, except mt, transformed into natural logarithms. mt was expressed as its actual value in
the soybean models since it ranged from negative to positive numbers. Corn and soybean
monthly cash and futures prices for the 1974–1975 through 1984–1985 marketing years were
obtained from the All American Cooperative, Stewartville, Minnesota, and the Chicago Board
of Trade. The error terms from each of these equations were used to generate the 10 posthar-
vest states conditional on each of the 10 harvest states of nature.

There is a fairly wide range of values on the 10 states for corn and soybean yields and
prices. For example, corn yields range from a low of 50.5 bushels per acre in State 10 to a
high of 148 bushels per acre in State 6. With respect to harvest prices, corn prices range from
$2.01 per bushel (State 8) to $4.09 per bushel (State 1), and soybean harvest prices range
from $5.98 per bushel (State 2) to $10.77 per bushel (State 7). The values of these harvest
states, as well as the postharvest price states, significantly influence the crop mix and mar-
keting activities in the optimal solution to the problem, as is demonstrated in the results.

A risk frontier was generated by adjusting the risk coefficient (r) from zero to 1.5 in
increments of 0.5. Expected net revenue ranged from $109,498, in the risk-neutral case, to
$76,167 for the highest risk coefficient considered. The corresponding standard deviations
of net revenue were $52,987 and $21,189. Corn production tended to decline as the risk
coefficient was increased, which is not surprising since corn yields had a higher coefficient
of variation than soybean yields. The percentage of land planted to corn went from 63% to
45% as the r value was increased from 0.0 to 1.5. This result appears to adequately depict
actual ranges of crop mix in southern Minnesota. For example, based on the 1983 MFMA
annual report, the crop mix averaged 44% corn and 56% soybeans for southern Minnesota.

Optimal marketing activities varied substantially across the 10 harvest states of nature.
For example, in the risk-neutral case, a significantly higher proportion of corn relative to
soybeans is produced and sold under State 6 than in the rest of the states. The relatively high
corn-soybean sales ratio of 8.2 in this case is due to a very high corn–soybean yield ratio
and a favorable corn storage hedge price. On the other hand, the greatest proportion of soy-
beans relative to corn is produced and sold under State 3 than in the other states. The rela-
tively low corn-soybean sales ratio of 3.5 in this case is due to a very low corn–soybean
yield ratio and a favorable soybean May cash price. The distribution of marketing activities
also varies across the 10 states of nature. For example, under harvest State 6 in the risk-
neutral case, all corn marketing occurs at harvest with 29,134 bushels sold in the cash mar-
ket and 32,467 bushels hedged, while all soybeans are sold from storage in the cash market
in May. The reverse marketing strategy occurs under State 9. In this case, the storage capac-
ity constraint is binding for corn with 40,000 bushels being sold from storage in May and
the remaining corn (15,248 bushels) being sold at harvest. All soybeans are sold at harvest
since none can be placed in storage. As with the production activities, significant adjust-
ment occurred in the marketing activities as risk aversion increased.

On average, use of the storage hedge was greater for the risk-averse case than the risk-
neutral case, 55.5% versus 30.2% of corn production and 36.2% versus 18.2% of soybean
production. In the risk-neutral case, the storage hedge activity was used in 4 of the 10 har-
vest states for corn and 2 of the 10 harvest states for soybeans. In the risk-averse case, the
storage hedge was used in 7 of the 10 harvest states for corn and 4 of the 10 harvest states
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for soybeans. The marketing activities tended to be more diverse in the risk-averse case.
For the profit maximizer, of the 6 marketing activities for corn, only one activity was used
in 4 out of the 10 harvest states—2 were used in the other 6 states. Only one soybean mar-
keting activity was used for all 10 harvest states. On average in the risk-neutral case, 2.6
of the 12 marketing activities were optimal. While the average number of marketing instru-
ments used in the risk-averse case was only slightly greater at 2.9, under 3 harvest states
of nature, 4 or more of the 12 marketing activities were used.

The optimal levels of other activities in the model provide detail regarding the levels of
various production operations by time period. In the case of harvest and fall tillage activi-
ties, the schedule of operations is provided for each of the 10 fall states of nature. Thus, a
notion of variability of harvest completion dates and fall tillage levels can be gained.

A DSSP model provides detailed information to the decision maker about optimal con-
tingency plans. For instance, the model developed in this article provides the farmer with
different marketing strategies that depend upon the observed harvest production and mar-
keting conditions. The optimal marketing strategies vary greatly over harvest conditions.
Hence marketing strategies based on average harvest conditions may deviate significantly
from the “true” optimal solution. In such cases, the DSSP model may be preferable for the
farmer for use as a decision aid.

10.11 RESEARCH APPLICATION: AGRICULTURE AND 
CLIMATE CHANGE

Kaiser et al. (1993) linked a DSSP model along with climate and agronomic models to
examine the potential economic and agronomic impacts of gradual climate warming at the
farm level. A grain farm in southern Minnesota was used as a case study. This region is
part of the northern fringe of the United States corn belt, which could be affected by cli-
mate warming. Several climate warming scenarios were analyzed, which vary in severity
to simulate how sensitive crop yields, crop mix, and farm revenue are to climate change.
Climate change was simulated as a gradual and dynamic process rather than the more tra-
ditionally used comparative static approach of comparing a “doubled CO2” induced
change in climate with our present climate. Given the authors’ focus on farm-level adap-
tation issues, it was important that the climate, crop, and economic models be dynamic.
There was an emphasis on simulating the effects on “tactical” farm-level decisions. For
example, the model allows for adaptive management strategies such as changing plant cul-
tivar (variety) selection and changing planting and harvesting dates in response to a grad-
ually changing climate. Finally, changes in the variability, as well as in the averages of
climatic variables, are modeled. Climate change may result in more than changes in mean
values for climatic variables, with potentially important consequences.

The overall model consisted of three components: atmospheric, agronomic, and eco-
nomic. The atmospheric component simulated daily values for minimum and maximum
temperature, precipitation, and solar radiation over a 100-year period for several different
climate change scenarios. Based on the values of the climatic variables, the agronomic
component estimated crop yields, grain moisture content, and field time availability (i.e.,
the span of time during which weather-related soil moisture conditions allow farmers to
perform field operations). In turn, crop yields, grain moisture content, and field time avail-
ability became inputs in the farm-level economic component. Crop prices, which are also
a function of climate scenario, were generated by price reduced-form equations based on
supply and demand variables. Finally, the output of the economic model included optimal
crop mix, scheduling of field operations, and expected net farm income. In the discussion
that follows, details of the economic model are discussed.
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As the climate changes, farmers will be forced to re-evaluate their production decisions, and
in particular, the mix of crops. This study simulated future decisions for each climate scenario
using DSSP. The economic model divided the decision-making process into two stages: 
Stage 1 (preharvest) and stage 2 (harvest). Stage 1 decisions included spring plowing and plant-
ing operations, which can take place in four periods. Stage 2 decisions include fall plowing and
harvesting, which can take place in four periods. The constraining resources for both stages
included full and part-time labor by production period and crop acreage. Risk was captured by
a Freund-type (1956) objective function, which maximizes expected net revenue minus a risk
term adjusted by a risk-aversion coefficient.

Four important sources of risk were included in the model: field time availability, crop
yields, grain drying costs, and crop prices. At the beginning of stage 1, the farmer makes
spring plowing and planting decisions while facing three states of nature on field time
availability. Each of these states differed by field time availability in each of the four 
stage 1 periods. It was assumed that the farmer expects each of the three stage 1 states to
be equally likely. At the beginning of stage 2, the farmer makes harvest and fall plowing
decisions. Here the farmer has perfect knowledge of which stage 1 state has occurred, but
only probabilistic knowledge of which stage 2 state will occur. The stage 2 states (10
states, conditional on each of the three stage 1 states) consisted of discrete random param-
eters for field time availability, crop yields, grain drying costs, and crop prices. Each of
these states consisted of field hours available in each of the four stage 2 periods, crop
yields and drying costs associated with each of six planting and harvest dates, and output
prices for the three crops. Again, it was assumed that the farmer expected each of the 
stage 2 states to be equally likely. There were 30 joint net revenue events possible, each
corresponding to a unique sequence of a stage 1 state followed by a stage 2 state.

Values for the field time availability, yield, and crop moisture states of nature were gen-
erated by the agronomic model. Grain-drying cost states of nature were determined by
grain moisture content at harvest, yield level, and costs per bushel per percentage point of
moisture using the following formula:

dci � 0.024yi (mi – 17)i17i,

where dci is drying cost per acre, harvest state i, yi is yield per acre, harvest state i, mi is grain
moisture content, harvest state i, and i17i is equal to one if the moisture content in harvest
state i is greater than 17%, or equal to zero otherwise. It was assumed that it costs $0.024
per bushel to remove one percentage point of moisture, and that grain must be dried only if
it has a moisture content of 17% or higher. Values for each crop’s price states of nature were
generated by a price reduced-form equation of supply and demand that includes crop yield
as an explanatory variable (procedures are discussed in the next section).

The mathematical formulation of the economic model is as follows:

(1)

s.t.:

Accounting Constraints

rij � c11x11 � c12x12 � c21ijx21i � c22x22i � pmi � 0 (i � 1, ... ,3, j � 1, ... ,10) (2)

(3)

rij � E � dij 
 0 (i � 1, ... ,3, j � 1, ... ,10) (4)

a b E 0i j ij
j
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Resource Constraints

A11x11 � A12x12 
 b1i (5)

l1x12 
 b2 (6)

A21x21i � A22x22i 
 b3ij (i � 1, ... ,3, j � 1, ... ,10) (7)

�hijx21i � mi 
 0 (i � 1, ... ,3, j � 1, ... ,10) (8)

Sequencing Constraints

�B1x11 � B2x12 
 0 (9)

�Ix12 � B3x21i 
 0 (i � 1, ... ,3) (10)

�B4x21i � B5x22i 
 0 (i � 1, ... ,3) (11)

(12)

rij, dij, x11, x12, x21i, x22i, mi 	 0 (13)

where:

E � expected net revenue

r � risk aversion coefficient

Φ � constant that converts total negative deviations into proxy for
standard deviation (2/s) (sΠ/2(s � 1)0.5 s is the number of joint
states of nature, and Π is the mathematical constant, pi, 3.14.…

dij � negative deviation from expected net revenue, pre-harvest state
i, harvest state j

rij � total net revenue pre-harvest state i, harvest state j

c11, c12, c22 � variable cost vectors for spring plowing, planting, and fall plowing

x11, x12 � spring plowing and planting vectors, pre-harvest stage

c21ij � variable cost vector for harvest, pre-harvest state i, harvest state j

x21i, x22i � harvest and fall plowing vectors, pre-harvest state i

p � output price vector

mi � marketing decision vector, pre-harvest state i

ai � probability of pre-harvest state i occurring

bj � probability of harvest state j occurring, given pre-harvest state i

A11, A12, A21, A22 � matrices of resource requirements for all field operations in stages
1 and 2

b1i � vector of stage 1 resource endowments, pre-harvest state i

l1 � vector of ones

b2 � total crop land endowment

b3ij � vector of stage 2 resource endowments, pre-harvest state i, har-
vest state j

hij � vector of crop yields, pre-harvest state i, harvest state j

B1, ... , B7 � sequence preserving matrices for field operations

I � identity matrix

B B7 11
1

x x ,−
=

∑a 0 (i 1, ... 3)i 6 22i
j

3


 � 
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The objective function in (1) is to maximize expected net revenue (gross revenue minus
variable costs) minus a risk adjustment term, where risk is measured as the standard 
deviation of net revenue calculated by the product of total absolute negative deviations
from the mean times the parameter Φ (Hazell, 1985). The risk measure is discounted by
the risk aversion coefficient, r. Constraints (2) through (4) are accounting constraints that
define the 30 joint net revenue events (2), define expected net revenue (3), and define neg-
ative deviation from expected net revenue (4).

Constraint (5) restricts the use of farm labor (both full and part-time) by field operations
in the preharvest stage to endowed levels. Note that the RHS parameter in this constraint is
stochastic, corresponding to available field hours by production period for the three stage 1
states of nature. Constraint (6) is the land constraint, which limits acres planted to endowed
levels. Constraint (7) restricts the use of farm labor by field operations in the harvest stage
to endowed levels. The RHS parameters for this constraint are also stochastic, correspon-
ding to the available field hours by production period for the 30 stage 2 states of nature.
Crop output constraints are represented by (8), which limits the amount of crop that can be
sold to the amount that is harvested for each preharvest state of nature. Finally, constraints
(9) through (12) are sequencing restrictions, which preserve the proper sequence of field
operations in the model. These constraints guarantee that spring plowing occurs prior to
planting (9), that planting activities are matched with harvest activities (10), that harvesting
occurs before fall plowing for each stage 1 state (11), and that any acreage not plowed in
the fall is plowed in the spring (12).

The simulation procedures began with a Monte Carlo simulation of the stochastic
weather model to generate daily weather values for climates (scenarios) changing over
the 100-year period 1980–2079. These results were used by the agronomic model to gen-
erate annual values for crop yields, grain moisture, and field time availability. These 
values were tabulated decade by decade, yielding 10 sets of agronomic results for each
scenario. Finally, the resulting crop yields, grain moisture, and field time availability
parameters were used by the farm-level economic model, which generated optimal man-
agement strategies and expected net revenue. Costs, technical parameters, and resource
endowments were held constant at their 1980 values. However, cultivar selection, crop
yields, grain moisture content, and grain drying costs were different for each decade of
each climate change scenario, according to results of the agronomic simulations.

For each crop and each possible planting–harvesting combination, three cultivars were
simulated: early-, mid-, and late-maturing varieties. However, only one cultivar was used in
the economic model for each planting–harvesting combination for each decade based on the
following decision rule. It was assumed that farmers make cultivar decisions on the basis of
yield performance in the previous decade. Specifically, the cultivar having the highest aver-
age yield for a particular plant–harvest period in the previous decade was selected by the
farmer for the current decade.

To generate the 30 joint events (crop yields, grain moisture content, and field hours) for
the economic component, the weather component produced 30 realizations (“years”) of
daily data representative of each decade for the agronomic component. Based on these 30
weather realizations, the agronomic component then produced 30 yield, field time avail-
ability, and grain moisture states of nature per decade for the economic model. Since these
30 joint states of nature were assumed to be equally representative of a decade, the solu-
tion to the economic model could be thought of as a representative year within the decade.
This process was repeated 10 times for each climate change scenario to generate solutions
for each decade for 1980–2079.

Because this is a micro-level model, crop prices could not be endogenously deter-
mined. Yet it is unlikely that climate change would not affect crop prices over time. To
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construct price trajectories by decade for each crop based on each climate scenario, price
reduced-form equations were estimated using annual time series data from 1960 through
1988. In addition to several exogenous demand and supply shifters, county average crop
yield was included as an explanatory variable in the price reduced-form equation. In the-
ory, crop yield at the micro-level should not explain output price, but Minnesota yields
were highly correlated with national yields, which do influence price (correlation coeffi-
cients for corn and soybeans between county and national yields were 0.84 and 0.75,
respectively). The three estimated crop price reduced-form equations are:

ln pct � –46.33 – 0.44 ln yct � 9.11 ln popt � 0.34 ln pct–1 � 0.59 ln spct � 0.52 dum 73–75 – 0.08 tt

(26.5) (0.21) (5.05) (0.15) (0.29) (0.09) (0.05)

R2 � 0.87 D.W. � 1.81

ln psbt � 0.90 – 0.33 ln ysbt � 0.16 ln popt � 0.53 ln psbt–1 � 0.10 ln spsbt � 0.29 dum 73–75

(7.10) (0.33) (1.34) (0.17) (0.39) (0.17)

R2 � 0.68 D.W. � 2.33

ln psgt � 3.32 – 0.99 ln ysgt � 0.07 ln inct – 1.20 ln psgt–1 � 0.56 ln spsgt � 0.47 dum 73–75

(3.19) (0.34) (0.34) (0.16) (0.23) (0.10)

R2 � 0.88 D.W. � 1.61

where:

pct � real corn price per bushel (nominal price divided by Consumer Price Index
where 1988 � 1.0), year t

yct � county average corn yield, year t

popt � U.S. civilian population, year t

spct � real corn support price per bushel, year t

dum 73–75 � dummy variable equal to 1 for 1973–1975, equal to zero otherwise

tt � time trend, 1960 � 1, 1961 � 2, . . .

psbt � real soybean price per bushel, year t

ysbt � county average soybean yield, year t

spsbt � real soybean support price per bushel, year t

psgt � real sorghum support price per bushel, year t

ysgt � national average sorghum yield, year t

inct � U.S. per capita real income, year t

spsgt � real sorghum support price per bushel, year t

R2 � coefficient of variation,

D.W. � Durbin–Watson statistic and

( ) � standard error

To simulate crop prices from 1990 to 2079, future values for the exogenous variables were
necessary. It was assumed that U.S. civilian population increased by 1% per year throughout
the simulation period. Real support prices for the three crops were assumed to decrease by
1% per year, reflecting a trend towards a market-oriented farm policy. Real income was fore-
casted based on a regression equation with income in the two previous years and a time trend
as explanatory variables. For each decade, the price states of nature were generated by sub-
stituting the annual average yield states of nature (generated by the agronomic model) and
the values for the other exogenous variables into the price reduced-form equations.
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A hypothetical farm based on characteristics of southern Minnesota (Redwood County)
was used to illustrate the type of analyses that can be conducted using this model. This
region is the northern limit of corn production in southern Minnesota (Murray). The pre-
dominant soil series in this region is Ves, which is deep and has excellent water-holding
capacity. Most of the data for the economic component for the hypothetical Minnesota farm
not generated by the agronomic model are presented in Kaiser (1985), including resource
requirements and variable costs. It was assumed that the farm is endowed with 600 acres of
tillable land on which corn, soybeans, and/or sorghum can be grown. There were two full-
time workers and one additional part-time worker that could be hired at a cost of $6.00 per
hour. The farm used a conventional tillage system. Data for sorghum, which currently is not
commonly grown in this region, were based on national average statistics.

The climatic, agronomic, and economic components were solved for four climate sce-
narios. Scenario 1 is the no-climate-change situation, scenario 2 is the mildly warmer
(2.5°C) and wetter (10%) case, scenario 3 is the mildly warmer (2.5°C) and drier (10%)
situation, and scenario 4 is about twice as warm and dry as scenario 3.

The mildly warmer and wetter scenario 2 had no adverse impact on crop yields at this rel-
atively cool location. While the climate gradually warms, the accompanying increase in pre-
cipitation prevents the crops from experiencing water stress for the simulation period. In fact,
sorghum and soybean yields increase over time, while corn yields remain relatively stable,
increasing slightly from 2000 to 2060. For all three crops, the model predicted adoption of
later maturing, higher yielding cultivars over time as field time availability increases due to
climate warming. The robustness of yields to climate change in this scenario is a result of the
relatively mild change in climate assumed, the relatively cool location, the introduction of
later-maturing cultivars later on in the simulation period, and the absence of plant water-
stress due to the excellent water-holding capacity of this soil and the wetter climate.

As was the case for the wetter climate scenario, the drier climate scenario appeared to have
no adverse effects on soybean or sorghum yields. However, corn yields decreased marginally
over time. In this case the drier climate had two impacts on crop yields. First, the growing sea-
son was lengthened due in part to the drier climate, allowing greater flexibility in access to the
field. This had a positive effect since later-maturing cultivars can be adopted. Second, the
decrease in precipitation caused some water stress, which had a negative effect on yields.

In the last and most severe scenario, the average decrease in precipitation was twice as
large as in the previous scenario, and the increase in temperature was 4.2°C rather than
2.5°C in year 2060. Average soybean and sorghum yields were not adversely impacted by
even this relatively severe change in climate. Average corn yields, on the other hand, trend
downward. Moreover, the magnitude of decrease is larger than the previous scenario.

Two observations emerged from these results. First, the model predicted that soybean
and sorghum yields at this relatively cool location were not adversely affected by these
three climate change scenarios. Second, corn yields were somewhat adversely affected by
the more severe warmer and drier scenarios, but not by the mild warmer and wetter sce-
nario. At this location, corn appeared to be the most climate-sensitive of the three crops.

In all three scenarios, the real corn price increased, real sorghum price decreased, and
the real soybean price was relatively constant. The average prices were quite similar
between scenarios 2 and 3 because yields were comparable between the two cases.
However, the real corn price path was higher in the most severe climate scenario compared
to scenarios 2 and 3, because corn yields were lower in climate scenario 4.

For the risk-neutral case, net revenue was slightly lower for all three climate change sce-
narios compared with the no-climate change case (scenario 1) between 1990 and 2010.
However, after 2010, this pattern reversed with net revenue somewhat higher for the three
climate change scenarios compared to no-climate change. Net revenue actually increased
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over time for the three climate change scenarios. The optimal crop mix changed little over
time for all three scenarios with corn acreage representing about 70% of total acreage
planted, and soybean acreage comprising the rest of the acreage. Under none of these sce-
narios did sorghum become profitable enough to replace corn production.

The standard deviation of net farm revenue was lower for the two mild climate change
scenarios (scenarios 2 and 3) relative to no-climate change for all decades. The increased
stability of net farm revenue was due to a decline in yield variability for all crops compared
to the baseline no-climate change case. Crop yield variability, in turn, was lower than in
the no-climate change scenario because of the assumed decrease in the variance of tem-
perature. However, the 4.2° warmer, 20% drier climate (scenario 4) resulted in higher fluc-
tuations in revenue risk. Under this scenario, revenue risk was higher in five decades and
lower in four decades, compared to the no-climate change scenario.

To represent a risk-averse solution, a risk aversion coefficient of 1.25 was used, which is in
the range that Brink and McCarl (1978) found representative for Cornbelt farmers. In this case,
less corn and more soybeans were grown as compared to the risk-neutral case. The difference
was due to soybeans being less risky than corn in terms of net revenue variability. However,
under the risk-averse case, the share of corn as a percent of total acreage increased over 
time under all three scenarios, perhaps due to the accompanying decrease in variability of corn
yields for the climate change scenario. Sorghum, which was the most stable of all three crop
yields, was still not grown under any scenario. Expected revenue was lower in the risk-averse
case than in the risk-neutral case because of the positive trade-off between risk and income.

The results of this research are not intended as a basis for general conclusions about climate
change and agriculture across the nation. For example, while the relatively cool location cho-
sen for illustration generally benefits from warming climates, more southern locations could
suffer considerable declines in yields and revenue. Instead, the results are intended to illustrate
the importance of adaptive strategies in predicting outcomes. The results indicate that grain
farmers in the southern region of Minnesota can effectively adapt to a mildly and gradually
changing climate (warmer and either wetter or drier). Adaptive strategies include adopting
later-maturing cultivars, changing crop mix, and altering the timing of field operations to take
advantage of a longer growing season due to climate warming.

SUMMARY

Risk and uncertainty is pervasive for most agricultural decisions. Empirical evidence sug-
gests that farmers adjust their farm plans according to their risk posture. Specifically, stud-
ies indicate that profit-maximizing models, which ignore risk preferences by farmers, fail
to give accurate normative or positive economic results when applied to many farming sit-
uations. Thus, in order to properly study most farm-level decision-making problems, the
decision environment must be formulated in such a way that risk and uncertainty is a crit-
ical component in the model. In this chapter, we presented several alternative mathemati-
cal programming models that relax the assumption of parameter certainty. All models are
based on the EUH (expected utility hypothesis).

The first method discussed was quadratic risk programming. Quadratic programming
models use the variance-covariance matrix for net revenue as the measure of risk that is faced
by the decision maker. The model was initially developed by Markowitz (1959) and applied
to the stock market to derive optimal portfolio selection when risk is explicitly considered by
the decision maker. Quadratic programming models are characterized by linear equations for
all terms except the variance-covariance equation, which is quadratic. Two methods for solv-
ing the model were illustrated. When the risk posture of the decision maker is known, a
unique solution to the problem can be generated by using the specific risk-aversion parameter
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in the model. Alternatively, when the risk parameter is not known, which is usually the case,
parametric programming can be done to derive an efficient set of E-V solutions, which can
be presented to the decision maker for selection.

A popular alternative to QP is the MOTAD model. MOTAD is a linear version of QP, where
absolute deviations from mean net revenue are used rather than the variance-covariance matrix
as the risk measure. The advantage of MOTAD is that LP can be used to solve the problem.
However, the variance estimate from the MOTAD model is larger than the variance given in
the QP model. This is due to the fact that the TAD estimate of the variance is not as efficient
as the traditional nonlinear variance estimate. Hence, there is a trade-off when using a
MOTAD model between the advantage of being a linear problem and the disadvantage of the
TAD not being as efficient as an estimate of the variance and standard deviation.

The target MOTAD approach was discussed, which improves upon regular MOTAD in
that its solutions are also efficient based on another efficiency criterion known as second-
degree stochastic dominance. The model is similar to MOTAD models and simply adds a
new constraint that sets a target level for total revenue.

One problem with these three methods is that risk is captured only in the objective function
coefficients, while parameters in the constraint set are treated deterministically. However,
resource availability and requirements in the constraint functions are also a source of risk to
the farmer. A very important source of RHS risk in agriculture is availability of field time,
which depends upon the weather. Chance-constrained programming deals with RHS risk by
artificially reducing the availability of the resource to a lower limit whereby the decision
maker can be confident, in a probabilistic sense, of it being achieved. The advantage of
chance-constrained programming is that it is fairly simple to use and does not add a lot of
complexity to the linear or nonlinear programming model. So it could be combined, for
instance, with MOTAD or quadratic risk programming so that RHS risk is incorporated into
the model. The main drawback of it is that it assumes a static, nonsequential decision process.
In models assuming a single decision stage, decision variables are not adapted to new infor-
mation received over the planning horizon.

Discrete stochastic sequential programming is a mathematical programming technique capa-
ble of overcoming many of the limitations cited with the previous models. DSSP is a technique
for modeling decision making as a multistage decision process characterized by a discrete spec-
ification of random problem parameters. As the name implies, DSSP models consider the sto-
chastic and sequential nature of resource endowments, resource requirements, and objective
function coefficients. This technique requires that technical coefficients, objective function
parameters, and/or resource endowments be specified separately for each stochastic state of
nature. Each state is then assigned a probability of occurrence, based on the subjective assess-
ment by the decision maker. The solution to the DSSP problem is then found, which depends,
in part, on the way the states and probabilities are defined and assessed. The DSSP technique
is a probabilistic decision model, based on Bayesian decision theory. Decisions in any stage are
made with probabilistic knowledge of the occurrence of the states of nature in future stages of
the decision process. The stages in the decision process are therefore interdependent. Decisions
in later stages are restricted not only by the occurrence of particular random events in this stage,
but also by random outcomes and decisions made in earlier stages.

The chapter concludes with a summary of three empirical applications of risk program-
ming. The first involves applying quadratic risk programming to identify optimal production
and marketing plans for a representative cotton–grain farm in Texas. The second application
develops a DSSP model for a representative Minnesota corn–soybean farm. The third applied
a DSSP model to examine climate change and optimal farm adaptation strategies for
corn–soybean farmers in the Upper Midwest.
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EXERCISES

1. List three reasons why risk programming is a good choice for agricultural decision
makers.

2. Given the following variance-covariance matrix, write out the expression for profit risk.
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Soybeans Wheat Corn

Soybeans 45.4 �75.0 �115.3
Wheat �75.0 134.6 182.2
Corn �115.3 182.2 2,400.5

3. Suppose we have data for the unit costs of four agricultural products from 1998 to 2008.

Year Pork ($/lb) Beef ($/lb) Chicken ($/lb) Duck ($/lb)

1998 1.20 2.10 1.50 2.81
1999 1.45 2.40 1.35 3.10
2000 1.35 2.67 1.40 3.50
2001 1.23 2.78 1.56 3.67
2002 1.40 2.34 1.58 3.30
2003 1.20 2.55 1.53 3.52
2004 1.50 2.65 1.38 3.68
2005 1.55 2.87 1.62 3.70
2006 1.70 2.44 1.68 3.71
2007 1.60 2.60 1.70 3.73
2008 1.68 2.62 1.65 3.53

Use Excel or a statistical package to derive the variance-covariance matrix from the
data above.

4. A farmer is deciding between planting several vegetable (or fruit) crops on a 225-acre
farm. Based on the annual profits per acre returns for lettuce, tomatoes, peppers, and
cucumbers listed below, formulate a MOTAD problem and graph the E-TAD efficiency
horizon.

Lettuce Tomatoes Peppers Cucumbers
Year (annual profit per acre)

2000 12.5 �2.5 �12.5 �125
2001 125 50 10 75
2002 25 37.5 7.5 25
2003 �62.5 25 �50 �125
2004 275 87.5 137.5 125
2005 �50 50 50 37.5
2006 25 10 2.5 200
2007 �100 12.5 30 �150
2008 187.5 62.5 �62.5 250
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5. A farmer produces four kinds of crops: x1, x2, x3, and x4. The land and labor require-
ments are summarized below. Due to uncertainty in the weather, the farmer uses the
last six years’ average profit as the unit profit for each crop. Formulate the following
problem as a MOTAD problem where the objective function is to minimize the total
negative deviations from the mean with the expected profit constraint provided.

Resource x1 x2 x3 x4 Resource Endowment

Land 1 1 1 1 200 Acres
Labor 25 36 27 87 10,000 Hours
Year 1 profit 292 �128 420 579
Year 2 profit 179 560 187 639
Year 3 profit 114 648 366 379
Year 4 profit 247 544 249 924
Year 5 profit 426 182 322 5
Year 6 profit 259 850 159 569
Average profit 253 443 284 516

Deviations from the mean:
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Dev x1 Dev x2 Dev x3 Dev x4

39 �571 136 63
�74 117 �97 123

�139 205 82 �137
�6 101 �35 408
173 �261 38 �511

6 407 �125 53

6. A speculator in the futures market for corn, wheat, and sugar would like to construct
a marketing portfolio. Assume that the cost of each position is $20 (corn), $10
(wheat), and $12 (sugar) per share respectively. The investor has a total of $100,000
to invest. The investor has observed the following rates of return for each commodity
over the past four years:

Year Corn Wheat Sugar

1 �5% 10% 25%
2 15% 0% 12%
3 �2% 1% 2%
4 15% 2% �30%

a. Compute the variance-covariance matrix for this problem.
b. Formulate this problem as a quadratic risk programming problem, where the

objective function is to minimize the total variance-covariance matrix subject to
a minimum expected return constraint, which should be parametrically varied.

c. Formulate a MOTAD model to maximize return (where the expected return is the
four-year simple average).

7. A farmer produces corn, wheat, and soybeans using three resources: hired labor,
family labor, and machine time. Over a three-month production period, the farm is
endowed with 1,200 hours of hired labor, 800 hours of family labor, 2,000 hours of
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machine time, and 1,000 acres of land. The resource requirements for each commod-
ity are summarized below:

Resource
Resource Soybeans Wheat Corn Endowment

(Hours/unit of good)

Hired Labor 1.0 1.1 1.3 1,200 hours
Family Labor 0.7 0.6 0.8 800 hours
Machine Time 2.2 2.8 3.0 2,000 hours
Land 1.0 1.0 1.0 1,000 acres

Assume that the per acre unit profit of the three commodities over the previous 10
periods is the following:
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Observation Soybeans Wheat Corn

1 420 186 400
2 390 198 200
3 194 194 300
4 188 220 90
5 182 222 400
6 170 240 380
7 184 200 150
8 180 242 50
9 172 254 420

10 160 258 384
Average 224 221 277

The variance-covariance matrix of expected profit for this example is:

Soybeans Wheat Corn

Soybeans 8,318 �1,507 742
Wheat �1,507 687 569
Corn 742 569 18,185

a. Formulate and solve the following QP problem using Solver: minimize risk sub-
ject to a minimum expected profit constraint and all the other structural con-
straints given in this example. Trace out an E-V frontier by parametrically varying
the RHS value for the minimum expected profit constraint.

b. Formulate and solve the following QP problem using Solver: maximize expected
profit subject to a maximum risk constraint and all the other structural constraints
given in this example. Trace out an E-V frontier by parametrically varying the
RHS value for the maximum risk constraint.

c. Formulate and solve the following QP problem using Solver: maximize expected
profit minus the risk term times a risk aversion coefficient subject to all the struc-
tural constraints given in this example. Trace out an E-V frontier by parametrically
varying the RHS value for the minimum expected profit constraint.
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8. A feed dealer can purchase corn, soybeans, sorghum, and wheat that can be stored and
sold to livestock farmers later in the year. Assume that in the past 10 years, the unit
profits/losses ($) per bushel on the sale of each commodity are as follows:
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Year Corn Soybeans Sorghum Wheat

1 �0.05 �0.01 0.05 �0.25
2 0.50 0.30 0.04 1.00
3 0.10 0.15 0.03 0.50
4 �0.25 �0.20 0.10 �0.50
5 0.55 0.35 0.15 �0.20
6 0.50 0.20 0.20 1.10
7 0.10 0.12 0.05 0.80
8 �0.40 0.01 0.04 �0.60
9 0.75 0.60 0.15 1.00

10 0.25 0.25 0.10 �0.50
Average 0.21 0.18 0.09 0.24

Variance-Covariance Matrix of Expected Unit Profit

Corn Soybeans Sorghum Wheat

Corn 0.139 0.067 0.012 0.159
Soybeans 0.067 0.049 0.005 0.078
Sorghum 0.012 0.005 0.003 0.008
Wheat 0.159 0.078 0.008 0.531

Assume the feed dealer can buy and store 500,000 bushels of each of the grains.

a. Formulate the LP problem that maximizes expected profit, where the expected
profit is the average profit from the 10 years of observations.

b. Formulate Part a as a quadratic risk programming problem, where the objective
function is to minimize the total variance-covariance matrix subject to a minimum
expected return constraint. Use parametric programming and start off by setting
the minimum expected return RHS value to the profit-maximizing solution found
in part a.

c. Trace out the E-V frontier for this problem using parametric programming.

9. Use Excel or a statistical package to derive the variance-covariance matrix given in
Exercise 8. To do this in Excel, use the DVARP function for the variance terms and
the COVAR function for the covariance terms.

10. Solve Exercise 8 assuming the objective is to maximize expected profit subject to a
maximum constraint on the variance-covariance matrix. Use parametric programming
by first setting the RHS value for the risk constraint to a very large number, such as
999,999,999,999. Then, by using sensitivity analysis, systematically lower this num-
ber to trace out an E-V frontier.

11. Solve Exercise 8 assuming the objective is to maximize expected profit minus the vari-
ance-covariance matrix times a risk coefficient (b). Note that setting b � 0 gives the
profit-maximizing (risk-neutral) solution. Trace out an E-V frontier by parametrically
altering (b).

12. Climate change will impact agricultural yields, prices, profits, and other factors affect-
ing this sector. Suppose that you are looking at the impact of climate change on corn
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and soybean farming in the Upper Midwest. Working with agronomists and climatol-
ogists, you estimate the following series for a representative farm:
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Observation Corn Soybeans

1 313 250
2 250 275
3 363 288
4 188 163
5 125 163
6 388 313
7 313 250
8 250 275
9 238 250

10 63 63
Average 249 229

Net revenue per acre with climate change

1 263 350
2 289 275
3 302 425
4 175 225
5 188 200
6 328 426
7 263 344
8 289 275
9 263 261

10 66 75
Average 242 286

The resource requirements for each commodity are summarized below:

Formulate two LP models that maximize expected average profit with and without a
climate change. Is the farmer better off with or without climate change?

13. Reformulate Exercise 12 as two quadratic risk programming problems, with and with-
out climate change. Assume the objective function is to minimize total risk as meas-
ured by the variance-covariance matrix subject to a minimum expected profit
constraint. You will need to compute the variance-covariance matrix using Excel. Use
the DVARP and COVAR functions. Set the RHS value to the corresponding profit-
maximizing solutions for the two scenarios found in Exercise 12. Then, use paramet-
ric programming to trace out an E-V frontier for with and without climate change. Is
the farmer better off with climate change under all pairs of E and V?

Endowment
Resource Soybeans Corn Resource

Hired Labor 1.0 1.3 1,200 Hours
Family Labor 0.7 0.8 800 Hours
Machine Time 2.2 3.0 2,000 Hours
Land 1.0 1.0 1,000 acres
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14. Reformulate Exercise 12 assuming the objective is to maximize expected profit subject to
a maximum constraint on the variance-covariance matrix. Use parametric programming
by first setting the RHS value for the risk constraint to a very large number, such as
999,999,999,999. Then, by using sensitivity analysis, systematically lower this number to
trace out an E-V frontier. Compare it to the E-V frontier found in Exercise 7.

15. Solve Exercise 12 assuming the objective is to maximize expected profit minus the
variance-covariance matrix times a risk coefficient (b). Note that setting b�0 gives the
profit-maximizing (risk-neutral) solution. Trace out an E-V frontier by parametrically
altering (b).

16. Formulate Exercise 7 as a MOTAD problem where the objective function is to mini-
mize total absolute deviations from the mean and where there is a minimum expected
profit constraint. Use parametric programming on the minimum expected profit con-
straint to trace out a set of E-TAD efficient farm plans. Graph E and the estimated
standard deviation for TAD.

17. Formulate Exercise 7 as a MOTAD problem where the objective function is to mini-
mize total negative deviations from the mean and where there is a minimum expected
profit constraint. Use parametric programming on the minimum expected profit con-
straint to trace out a set of E-TND efficient farm plans. Graph E and the estimated
standard deviation for TND.

18. Formulate Exercise 8 as a MOTAD problem where the objective function is to mini-
mize total absolute deviations from the mean and where there is a minimum expected
profit constraint. Use parametric programming on the minimum expected profit con-
straint to trace out a set of E-TAD efficient farm plans. Graph E and the estimated
standard deviation for TAD.

19. Formulate Exercise 8 as a MOTAD problem where the objective function is to mini-
mize total negative deviations from the mean and where there is a minimum expected
profit constraint. Use parametric programming on the minimum expected profit con-
straint to trace out a set of E-TND efficient farm plans. Graph E and the estimated
standard deviation for TND.

20. Formulate Exercise 12 as a MOTAD problem where the objective function is to min-
imize total absolute deviations from the mean and where there is a minimum expected
profit constraint. Use parametric programming on the minimum expected profit con-
straint to trace out a set of E-TAD efficient farm plans. Graph E and the estimated
standard deviation for TAD.

21. Formulate Exercise 12 as a MOTAD problem where the objective function is to min-
imize total negative deviations from the mean and where there is a minimum expected
profit constraint. Use parametric programming on the minimum expected profit con-
straint to trace out a set of E-TND efficient farm plans. Graph E and the estimated
standard deviation for TND.

22. Formulate Exercise 7 as a target MOTAD problem. Set T to a level that is less than the
profit-maximizing solution and experiment with differing levels of λ. Analyze the
resulting plans that are derived with varying levels of T and λ.

23. Formulate Exercise 8 as a target MOTAD problem. Set T to a level that is less than the
profit-maximizing solution, and experiment with differing levels of λ. Analyze the
resulting plans that are derived with varying levels of T and λ.

24. Formulate Exercise 12 as a target MOTAD problem. Set T to a level that is less than
the profit-maximizing solution and experiment with differing levels of λ. Analyze the
resulting plans that are derived with varying levels of T and λ.
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25. A farmer can grow three crops on the 1,000 acres of land he owns: corn, soybeans, and
wheat. In producing these three crops, the farmer has to do the following steps: (1)
plowing (pl), (2) plant corn (pc), (3) plant soybeans (ps), (4) plant wheat (pw), (5) har-
vest corn (hc), (6) harvest soybeans (hs), (7) harvest wheat (hw), (8) sell the corn after
harvest (sc), (9) sell the soybeans after harvest (ss), and (10) sell the wheat after har-
vest (sw). The farmer must plow the land prior to planting and must plant the crops
prior to harvesting the crops. In addition to his land endowment of 1,000 acres, the
farmer expects to have a total of 1,200 hours available to perform all of the above pro-
duction operations. However, due to uncertain weather conditions, those 1,200 hours
are not certain. His expectations regarding the labor requirements (hours per acre) and
variable costs for each operation, as well as his expected price and yield (bushels per
acre) at harvest for the three crops are presented below.

Labor Requirement Variable Cost Crop Yields 
Operation (hours per acre) ($/acre) and Prices

Plowing (pl) 0.40 $4.00
Plant Corn (pc) 0.39 $114.00
Plant Soybeans (ps) 0.30 $80.00
Plant Wheat (pw) 0.30 $78.00
Harvest Corn (hc) 0.60 $48.00 $120.00
Harvest Soybeans (hs) 0.30 $17.00 $40.00
Harvest Wheat (hw) 0.28 $10.00 $70.00
Corn Price ($/bushel) $2.90
Soybean Price ($/bushel) $5.75
Wheat Price ($/bushel) $3.00

Assume that the farmer’s objective is to maximize net revenue from corn, soybean,
and wheat production. Assume that the RHS value for the available field time (b �
1,200) is distributed normally with a mean of 1,200 and a standard deviation of 50. To
find a value for the RHS parameter b, call it b�, you can use the following relationship:

b� � E(b) – Zα α � 1,200 – 50 Zα.

Formulate this problem using a chance-constrained programming model and use para-
metric programming on Zα to derive solutions for this problem. Summarize the effi-
cient plans for various levels of Zα.

26. Solve Exercise 12 as a chance-constrained programming problem. Assume that the
farmer’s objective is to maximize net revenue from corn and soybean production
under both climate change scenarios. Assume that the RHS value for the hired labor
(b � 1,200) is distributed normally with a mean of 1,200 and a standard deviation of
200. To find a value for the RHS parameter b, call it b�, you can use the following rela-
tionship:

b� � E(b) – Zα α � 1,200 – 200 Zα.

Formulate this problem using a chance-constrained programming model and use para-
metric programming on Zα to derive solutions for this problem. Summarize the effi-
cient plans for various levels of Zα.
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401

11
Price Endogenous Mathematical

Programming Models

All of the models examined thus far have been firm-level models, where it is assumed that
firms are “price-takers.” As a result both output and input prices have been treated as con-
stants. This approach is consistent with the assumption of perfect competition, where there
are so many sellers in the market that no one seller can influence output or input price lev-
els by altering output levels. When moving from the individual firm level to the market
level, which is composed of all sellers and buyers within some defined location, the assump-
tion of constant price is no longer valid. At the market level, price is determined by the inter-
action of market supply (the collection of all individual firms’ supply curves in the market)
and market demand (the collection of all individual consumers’ demand curves in the mar-
ket). Consequently, if the goal is to model a market or sector rather than an individual firm,
then a “price endogenous” or “sector programming” model is necessary. Price endogenous
models are also necessary at the firm level if the firm has some degree of market power,
because in such cases, the firm can influence price by altering its output.

The purpose of this chapter is to examine price endogenous mathematical programming
models at both the market and firm levels. The chapter begins with an overview of the mar-
ket under perfect competition. A simple price endogenous model is presented that features
a quadratic objective function composed of consumer and producer surplus (social wel-
fare), which when maximized yields a quantity and price solution that is equivalent to the
market equilibrium values found by equating the market supply and demand functions.
Next, the assumption of perfect competition is relaxed for both the output and input side
of the market. Five price endogenous models are presented including (1) monopoly on the
output side and monopsony on the input side, (2) monopoly on the output side and per-
fect competition on the input side, (3) perfect competition on the output side and monop-
sony on the input side, (4) perfect competition on the output side and perfect competition
on the input side, and (5) a general formula that approximates any degree of market com-
petition from perfect competition to monopoly in mathematical programming models.
Recall from microeconomics that a monopolistic market features one seller and many buy-
ers, a monopsonistic market features one buyer and many sellers, and a perfectly compet-
itive market features many buyers and many sellers.
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One of the most prominent uses of price endogenous mathematical programming models
is spatial equilibrium analysis. Takayama and Judge’s (1964a; 1964b) perfectly competi-
tive spatial equilibrium model is presented, followed by a numerical example of their model.
The model is similar to transportation models, except that demand and supply in each region
are not fixed, but determined endogenously, as are optimal trade flows and prices.

Next, sector-level mathematical programming is extended to industry models that encom-
pass multiple markets from the farm to retail levels. Industry models can accommodate mul-
tiple inputs and outputs as well. Finally, the chapter concludes with two research examples
of price endogenous mathematical programming models. The first is applied to the U.S.
dairy sector, which can be used for any degree of market competition, while the second
examines the potential impacts of climate change on the entire U.S. agricultural sector.

11.1 THE MARKET UNDER PERFECT COMPETITION

Under perfect competition, all firms are price-takers, and the equilibrium price is deter-
mined at the market-level by the interaction of supply and demand. At the market level,
demand is downward sloping, and supply is upward sloping, and equilibrium occurs at
their intersection. To illustrate how to model this as a mathematical programming problem,
consider the following simple example of the U.S. orange market.

Suppose that the market for oranges in the United States can be characterized by the fol-
lowing demand and supply functions:

qd � 100 � 5p,

qs � 25 � 10p,

where qd is market quantity demand, p is market price, and qs is market quantity supply. In
applied analyses, qd and qs are often estimated using econometric techniques and 
market-level data. Assuming that the market is competitive, the market equilibrium can be
solved by imposing the following condition for p:

qd � qs � q*.

Substituting q* for qs and qd, and solving for p* yields:

p* � 5.

Substituting p* � 5 into either the qd or qs equation yields:

q* � 75.

Hence, in equilibrium, the U.S. orange market would sell 75 units of oranges at a market
price of $5 per unit.

This problem could also be solved by transforming the supply and demand equations
into price inverse form. It is often more convenient in programming problems to express
market supply and demand in inverse form. To do this, simply solve each equation for P:

pd � 20 � 0.2qd,

ps � �2.5 � 0.1qs.

To solve for the equilibrium, impose the equilibrium condition:

ps � pd � p* and solve for q*,

q* � 75,

p* � 5,

which is the same solution as in the quantity-dependent original form of the problem.
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This simple problem can also be solved as an endogenous mathematical programming
problem by maximizing the sum of consumer and producer surplus,1 which is sometimes
called “social surplus” because it measures the welfare of both consumers and producers
in the market. Samuelson (1952) and others have shown graphically that the sum of con-
sumer and producer surplus is equivalent to the area between the demand and supply
curves and to the left of their respective intersection.2 The optimal solution to maximize
social welfare is equivalent to the market equilibrium solution determined above. To pro-
vide a more general representation of this problem, assume that the inverse market demand
and supply curves are linear:

pd � a � bqd, where a and b � 0, and

Ps � c � dqs, where c and d � 0.

Solving the following maximization problem yields the equilibrium q*:

Max: Z � aqd � 0.5bqd
2 � cqs � 0.5dqs

2 (0)

s.t.:

qd � qs � 0 (1)

qd,    qs � 0 (2)

In the objective function, the first term, aqd � 0.5bqd
2, is the area under the demand 

curve from 0 to q* in Figure 11.1 (area A � B). The second term in the objective function,
cqs � 0.5dqs

2, is the area under the supply curve from zero to q* (area B). Therefore, the 
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1 Consumer surplus, which is a measure of consumer welfare, is the area underneath the demand curve and above
the equilibrium price. Producer surplus, which is a measure of producer welfare, is the area above the supply
curve and below the equilibrium price.
2 Samuelson (1952) also stated this as being equivalent to the area under the excess demand curve (demand minus
supply), or the negative of the area under the excess supply curve (supply minus demand).

Figure 11.1 Graphical depiction of objective function areas in the maximization of social
surplus (consumer plus producer surplus) problem.

A

B

p

q0 q*

c � dqs

a � bqd
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difference between the first and second terms in the objective function is the area between
the demand and supply curves from 0 to q*, which is the sum of consumer and producer sur-
plus (area A).

The equilibrium p* can be determined in two ways. First, simply substitute q* into either
the supply or demand equation to get p*. Alternatively, p* is equal to the shadow price (SP)
of the demand and supply balancing constraint (1).

In the previous example where a � 20, b � 0.2, c � �2.5, and d � 0.1, the optimal
solution to this problem yields qd � qs � q* � 75, and the SP of the first constraint is 5,
which is the same as p*.

Why is the SP on the first constraint equal to the market equilibrium price? To answer
that, suppose that the right-hand-side (RHS) value was increased from 0 to 1. This would
mean that demand is permitted to be larger than supply by one unit. The value on that extra
unit of demand to the consumer would be approximately equal to the market equilibrium
price times 1 (the increase in quantity), or the market equilibrium price. Graphically, this
is equivalent to extending a vertical line from the quantity axis one unit above the equilib-
rium quantity to the market demand curve. Its intersection with the demand curve would
be very close to the market equilibrium price.

This simple example illustrates how endogenous mathematical programming can be
applied to an economic sector to determine market equilibrium output price and quantity.
This constrained optimization is a quadratic programming (QP) model, and was first devel-
oped by several economists including Enke (1951), Samuelson (1952), and Takayama and
Judge (1964a; 1964b).

11.2 THE MARKET UNDER MONOPOLY/MONOPSONY 
AND IMPERFECT COMPETITION

The extreme opposites of perfect competition are monopoly and monopsony, which are
markets characterized by a single seller or a single buyer. Under this form of market struc-
ture, the firm has complete control over its output price (monopoly) or input price (monop-
sony). To illustrate the market equilibrium in this case, consider the following example of a
monopoly.

Assume that an agricultural cooperative has complete control over its members’ output
and price in the market. It faces the following inverse demand curve:

pd � 100 � 2qd (11.1)

Assume the cooperative’s sole objective is to maximize profit, which is equal to:

pdqd �wqs (11.2)

where pd is price, qd is quantity demanded, w is variable cost to the firm, and qs is quantity
supplied. Assume in this example that variable cost w � 10.

Substituting (11.1) into (11.2) yields:

(100 � 2qd)qd � 10qs, or

100qd � 2qd
2 � 10qs, or assuming qd � qs

90qd � 2qd
2 (11.3)

To maximize profit, take the first derivative of (11.3), set it equal to 0, and solve for qd
*:

90 � 4qd � 0, or

qd
* � 22.5 (11.4)
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The equilibrium output price for the monopolist is found by substituting qd
* � 22.5 

into (11.1):

pd
* � 100 � 2qd

* � 55 (11.5)

Maximum profit in this example is:

�* � (22.5)(55) � (10)(22.5) � 1,012.50 (11.6)

This problem can be solved using price endogenous mathematical programming, as 
follows:

Max: Z � 100qd � 2qd
2 � 10qs (0)

s.t.:

qd � qs � 0 (1)

qd, qs � 0 (2)

The solution yields qd
* � qs

* � 22.5, which can be substituted back into the demand equa-
tion to get the equilibrium price of $55.

More generally, consider the following mathematical programming problem:

Max: Z � aqd � bqd
2 � cqs � dqs

2 (0)

s.t.:

qd � qs � 0 (1)

qd, qs � 0 (2)

where:

pd � a � bqd (output inverse demand equation), and

ps � c � dqs (input inverse supply equation).

The Kuhn–Tucker conditions to this problem can be found by forming the LaGrange
function and differentiating it with respect to qd, qs, and λ:

L � aqd � bqd
2 � cqs � dqs

2 � λ(qs � qd) (11.7)

Lqd � a � 2bqd � λ � 0, Lqdqd � 0, qd � 0 (11.8)

Lqs � �c � 2dqs � λ � 0, Lqsqs � 0, qs � 0 (11.9)

Lλ � qs � qd � 0, Lλλ � 0, λ � 0 (11.10)

Assuming an interior solution (qd � 0 and qs � 0), conditions (11.8) and (11.9) can be
rewritten as equalities:

a � 2bqd � λ, and (11.11)

c � 2dqs � λ, or combining the two conditions: (11.12)

a � 2bqd � c � 2dqs (11.13)

Condition (11.13) is the optimality condition from economic theory that marginal revenue
equals marginal cost. Nelson and McCarl (1984) summarize four possible market solutions
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involving monopoly, monopsony, and perfectly competitive behavior on the output and
input side:

Case 1. Monopoly on the output side and monopsony on the input side. In this case, the
mathematical programming problem is:

Max: Z � (a � bqd)qd � (c � dqs)qs (0)

s.t.:

qd � qs � 0 (1)

qd, qs � 0 (2)

Case 2. Monopoly on the output side and perfect competition on the input side. In this
case, the mathematical programming problem is:

Max: Z � (a � bqd)qd � (c � 0.5dqs)qs (0)

s.t.:

qd � qs � 0 (1)

qd, qs � 0 (2)

Note that the difference here is the 0.5 added to the slope term in the supply equation.

Case 3. Perfect competition on the output side and monopsony on the input side. In this
case, the mathematical programming problem is:

Max: Z � (a � 0.5bqd)qd � (c � dqs)qs (0)

s.t.:

qd � qs � 0 (1)

qd, qs � 0 (2)

Case 4. Perfect competition on the output and the input side. In this case, the mathemati-
cal programming problem is:

Max: Z � (a � 0.5bqd)qd � (c � 0.5dqs)qs (0)

s.t.:

qd � qs � 0 (1)

qd, qs � 0 (2)

Finally, Nelson and McCarl (1984) demonstrate the most general model that encompasses
any degree of market competition including monopoly, perfect competition, and every-
thing in between. This is done by substituting the following expression for the 0.5 coeffi-
cient in the supply and demand terms of the objective function:

(n � 1)/2n,

(m � 1)/2m,

where n is the number of equally sized firms in the input market, and m is the number of
equally sized firms in the output market. When n or m equal 1, this term equals 1, which
is the monopoly/monopsony model. When n and m approach infinity, this term approaches
0.5, which is the perfect competition model. Finally, any number in between represents an
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imperfectly competitive market on a scale of 0.5 being perfect competition and 1.0 being
monopoly. In this general case, the mathematical programming model is:

Max: Z � (a � [(m � 1)/2m]bqd)qd � (c � [(n � 1)/2n]dqs)qs (0)

s.t.:

qd � qs � 0 (1)

qd, qs � 0 (2)

11.3 SPATIAL EQUILIBRIUM MODELS

One of the principal applications of price endogenous sector programming models is spa-
tial equilibrium analysis, which is concerned with the geographic alignment of market
prices. Spatial price analysis is particularly important in the agricultural and food indus-
try, where transportation costs make up a large component of food costs. The spatial equi-
librium model is a partial equilibrium model of an economic sector that finds optimal
trade flows among regions. Low-cost producing regions become exporters to higher-cost
regions.

Takayama and Judge (1964a, 1964b) developed the following spatial equilibrium 
model that has become a popular model for analyzing spatial price analysis problems. Suppose
that there are n regions and denote the inverse demand and supply functions for region i as:

pdi � f(qdi), and

psi � f(qsi).

In this model, the equilibrium solution is equivalent to the optimal solution of the follow-
ing maximization problem, which Samuelson (1952) termed the “net social payoff ” (NSP)
from trade, which is the geometric area under each region’s excess demand function (or
excess supply function3) minus the sum of transportation costs for trade flows between all
regions. This is equivalent to:

(0)

s.t.:

(1)

(2)

qdi, qsi, tij � 0 for all i and j 
(i � 1, … , n, j � 1, … , n) (3)

where cij is unit transportation cost of shipping from region i to j, and tij is the level of ship-
ments from region i to j.
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3A region’s excess demand function is defined as the region’s demand minus the region’s supply function. A
region’s excess supply function is defined as the region’s supply minus the region’s demand function.
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The objective function is to maximize the NSP from trade among regions. Constraint (1)
is identical to the transportation model that requires the sum of shipments from all regions
to region i to be at least as large as region i’s demand level. Constraint (2) limits total ship-
ments from region i to not exceed its supply, and constraint (3) is the non-negativity
restriction on the variables. The solution to this problem gives equilibrium trade between
regions (tij

*), equilibrium consumption (qdi
* ), and equilibrium supply (qsi

* ).
Some interesting insights are gleaned from examining some of the Kuhn–Tucker first-

order necessary conditions to this problem. The LaGrange function for this problem is:

(0)

The Kuhn–Tucker conditions are:

Lqdi � pdi � λi � 0, (Lqdi)qdi � 0, qdi � 0, i�1, … , n (1)

Lqsi � �psi � θi � 0, (Lqsi)qsi � 0, qsi � 0, i�1, … , n (2)

Ltij � �cij � λi � θi � 0, (Ltij)tij � 0, tij � 0, i�1, … , n, j�1, … , n (3)

(4)

(5)

The first condition implies that for any positive demand (qdi � 0) the SP (λi) of constraint
(1) is equal to the demand price. Likewise, the second condition implies that for any pos-
itive supply (qsi � 0) the SP (θi) of constraint (2) is equal to the supply price. Hence, the
solution to the dual problem gives the equilibrium supply prices (θi

*) and demand prices
(λi

*). The third condition implies that the demand price in region j cannot exceed the sup-
ply price in region i plus the transportation cost, cij.

In the case of a linear demand (f(qdi) � ai � biqdi) and supply function (f(qsi) � ci � diqsi),
the objective function for this problem is:
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An Example4

Consider the following numerical example involving four regions of the United States:
North (n), South (s), East (e) and West (w). The inverse market demand functions for
each region are:

pdn � 300 � 0.5qdn

pds � 275 � 1.0qds

4This problem, solution, and corresponding sensitivity analysis are shown in the Chapter 11 supplemental mate-
rials available at www.wiley.com/college/kaiser.
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pde � 200 � 0.3qde

pdw � 155 � 0.75qdw

Suppose the four regions have the following inverse supply functions:

psn � 30 � 1.0qsn

pss � 75 � 0.9qss

pse � 20 � 0.8qse

psw � 15 � 1.10qsw

Further assume the following unit transportation costs across all regions:

North South East West

North 0 4 2 3
South 4 0 2 3
East 2 2 0 8
West 3 3 8 0

The objective function value, NSP, is 62,681. Demand levels in each of the regions
are 278.4 in the North, 114.2 in the South, 137.1 in the East, and 0 in the West. Supply
levels are 130.8 in the North, 95.4 in the South, 173.6 in the East, and 129.8 in the West.
Hence, the North and South are net importers, while the East and West are net
exporters. The East exports 36.6 units in total, exporting 36.5 to the North and 0.1 to
the South. The West exports its entire supply of 129.8, shipping 111.1 to the North and
18.7 to the South.

The equilibrium demand prices are $160.81 in the North, $160.78 in the South,
$158.87 in the East, and $157.83 in the West. Notice that the equilibrium demand prices
are lowest in the exporting regions and highest in the importing regions. The equilibrium
supply price in the East is approximately $2.00 lower than the demand prices in the
North and South, which is equal to the transportation costs to these two regions from 
the East. The equilibrium supply price in the West is $3.00 lower than the demand price
in the North and South, which is also approximately the transportation cost to those
regions from the West.

It may not be realistic for the West to export all their supply and consume nothing. If
that is the case, a minimum consumption constraint can be added for the West. For
instance, by adding a minimum demand constraint of 75 units for the West, the objec-
tive function is reduced from 62,681 to 60,093. The new results indicate a different
level of shipments, but are not reported here.

The above spatial equilibrium models assume perfect competition. However, some
researchers have modified the model above for imperfectly competitive markets (e.g.,
Kawaguchi, et al., 1997; Nelson & McCarl, 1984). The first research application in this
chapter summarizes the Kawaguchi et al. (1997) model for imperfectly competitive
milk markets in the United States.
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11.4 INDUSTRY MODELS

Often in agricultural-food problems, researchers are interested in modeling an entire
industry from the farm-to-processing-to-retail markets. Such “industry” models are very
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useful for tracing out impacts from one market to the other. For instance, what happens to
retail and processor prices if the farm price increases or decreases? Sector-level mathe-
matical programming can be extended to industry models in a similar fashion as the pre-
vious applications.

Consider the following industry model. A farm commodity (F) can be used to make two
food products: (1) Product 1 (P1) and (2) Product 2 (P2). Suppose the industry is composed
of two markets: (1) farm market, where F is produced, and (2) a processing-retail market,
where F is processed and sold as P1 and P2 directly to consumers.

Assume the inverse supply function for F is:

pF � 0.5 � 0.004qF.

Assume the inverse demand functions for P1 and P2 are:

pP1 � 0.75 � 0.009qP1,

pP2 � 0.90 � 0.004qP2.

One unit of the farm input produces 8 units of P1 or 10 units of P2 ignoring processing
costs. Hence, the production functions for converting F into P1 and P2 are:

qP1 � 8qF,

qP2 � 10qF.

Assume the producers in this manufacturing market are price-takers in the input and out-
put markets. The objective function for this problem is:

Max: Z � (0.75 � (0.5)(0.009)qP1)qP1 � (0.90 � (0.5)(0.004)qP2)qP2

� (0.5 � (0.5)(0.004)qF)qF.

The farm input needs to be converted into Product 1 and Product 2 for this problem, and
this is accomplished by the following constraint:

1/8qP1 � 1/10qP2 � qF � 0.

11.5 RESEARCH APPLICATION: A SPATIAL EQUILIBRIUM MODEL
FOR IMPERFECTLY COMPETITIVE MILK MARKETS

Spatial equilibrium models have been frequently used to analyze interregional competition
problems in agriculture, including regional competition issues associated with the dairy indus-
tries in the United States (e.g., Chavas, et al., 1994; McDowell, 1982; Yavuz et al., 1996), as
well as other countries such as Japan (e.g., Sasaki, 1969; Kobayashi, 1983; Hayashi, 1984).
These models are a class of nonlinear programming (NLP) known as QP, which feature a
quadratic objective function and a linear constraint set. Originally developed by Enke (1951)
and Samuelson (1952) and then refined by Takayama and Judge (1964a; 1964b), spatial price
equilibrium models have assumed that markets are either perfectly competitive or monopolis-
tic. However, the structure of dairy markets in most countries is often neither. Therefore, a
more plausible model for analyzing interregional milk movements would be a spatial imper-
fect competition equilibrium model. Accordingly, the purpose of the research of Kawaguchi
et al. (1997) was to develop a generalization of Takayama and Judge’s (1964a; 1964b) spatial
equilibrium model that allows for the incorporation of any degree of market structure from
perfect competition to monopoly. The usefulness of the model was demonstrated by applying
it to interregional milk movements in the Japanese dairy industry and comparing the solutions
for alternative scenarios regarding the degree of market competition.
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Dairy policy in Japan features a quota system in the manufacturing milk market to pre-
vent excess milk production from occurring because of higher-than-competitive market
prices. As a result, the Japanese dairy industry can be divided into three distinct markets:
fluid milk market, manufacturing market within-payment quotas, and manufacturing mar-
ket over-payment quotas. Prices in the manufacturing markets are set by the government
based on a deficiency payment program. For manufacturing milk sold within-payment quo-
tas, prefectural milk marketing boards (the consignment milk sellers for farmers) receive
deficiency payments equal to the difference between the guaranteed price and the standard
transaction price for manufacturing milk. Both prices are determined by the national gov-
ernment: the guaranteed price is based on milk production costs, while the standard trans-
action price is based on dairy product market conditions, and all buyers of manufacturing
milk are required to pay this price. To discourage excess production, over-payment quota
manufacturing milk receives the lower standard transaction price. Payment quotas for the
guaranteed price are not given to individual producers, but to each prefectural milk market-
ing board. Individual producers are paid the prefecture-wide uniform pooled price
(weighted average prices for milk sold in the fluid and manufacturing milk markets).

Given manufacturing milk prices determined by the government, discriminated price
formation for fluid milk occurs through negotiations between each prefectural milk-
marketing board and the processors it supplies. Since the fluid milk market is more price
inelastic than the manufacturing milk market, the fluid market has higher prices. The struc-
ture of the Japanese milk market includes an oligopolistic group of consignment milk sell-
ers (prefectural milk marketing boards) who allocate milk to maximize sales revenue, and
a large number of perfectly competitive producers who receive pooled returns (blend
prices). We refer to this situation as a “dual structure” because dairy farmers are perfectly
competitive in producing milk, but they are oligopolistic in selling it through their milk
marketing boards. Previous spatial price equilibrium models have not accounted for this
“dual structure” in the Japanese milk market.

Nonlinear Price Endogenous Programming Model

Consider n milk producing and consuming regions with the geographical scope of pro-
ducing region i the same as consuming region i. In each consuming region, there are three
administratively different markets: fluid milk market (fmmi), manufacturing milk market
within-payment quota (wpqi), and manufacturing milk market over-payment quota (opqi).
Unit transportation cost for shipping raw milk from producing region i to consuming
region j (tij) is assumed to be the same for both fluid and manufacturing milk.5

Buyers of fluid milk in each consuming region are assumed to behave as price-takers,
which is reasonable considering the many fluid processors in Japan. Within-payment quota
milk is traded at the fixed guaranteed price, fp1, and the quantity of milk is limited to the
fixed-payment quota. Over-payment quota milk is traded at the lower fixed standard trans-
action price, fp2, and it is assumed that the demand for this milk is perfectly elastic. It is
also assumed that each region has a linear marginal raw milk cost function and a linear
fluid demand function, with all functions known by all agents (or consignment sellers).

CHAPTER 11 PRICE ENDOGENOUS MATHEMATICAL PROGRAMMING MODELS 411

5Unlike cooperatives in the United States, Japanese cooperatives only have a small share of the milk manufac-
turing market and function primarily as raw milk shippers who negotiate a price for their farmer members.
Therefore, the focus of our model is on transactions between raw milk shippers (cooperatives) and manufactur-
ing companies. Consequently, it is realistic to assume the same transportation costs for raw milk being shipped
for fluid and manufacturing product processing.
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Milk producers in region i consign their annual milk supply, fsi, to agent i. Agent i’s role
is to allocate farmers’ milk among the 3n markets to maximize sales revenues net of trans-
portation costs. The following notation is used based on the variables described above:

dj � quantity of milk demanded in fluid market j ( j � 1, 2, … , n)

fsi � quantity of raw milk supplied and consigned in region i (i � 1, 2, … , n)

psi � marginal revenue net of transportation costs for each market for region i (i � 1, 
2, … , n)

xij � quantity of raw milk shipped from region i to market j (i � 1, 2, … , n; j � 1, 
2, … , 3n)

xi(n�j) � quantity of raw milk shipped from region i to the manufacturing milk market
within-payment quotas (wpqj) (i � 1, 2, … , n; j � 1, 2, … , n)

xi(2n�j) � quantity of raw milk shipped from region i to the manufacturing milk market
over-payment quotas (opqj) (i � 1, 2, … , n; j � 1, 2, … , n)

pdj � demand price in the fluid market j ( j � 1, 2, … , n)

pppi � producer’s pooled (blend) price in region i (i � 1, 2, … , n)

dj � 
j��jpdj � demand function in fluid market j (j � 1, 2, … , n)

fsi � ��i�ipppi � marginal cost function for raw milk in region i (i � 1, 2, … , n),
where pppi means marginal cost

tij � unit transportation cost of shipping raw milk from producing region i to con-
suming region j (i � 1, 2, … , n; j � 1, 2, … , 3n)

qi � limited quantity (payment-quota) paid the differences between the guaranteed
price (fp1) and the standard transaction price (fp2) (i � 1, 2, … , n)

spj � SP of the right to sell a unit of milk in the manufacturing milk market within-
payment quotas (wpqj) (i � 1, 2, … , n)

Ri � total milk sales revenue net of transportation costs in region i (i � 1, 2, … , n)

Using the above notation, agent i’s milk sales revenue maximization problem net of
transportation costs can be expressed as:

(1)

Total revenue maximization problem for all n agents is expressed as:

(2)

Agent i’s fluid sales revenue in market j (pdjxij) can be written as:

(3)
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where m (m � i) indicates all agents other than i. When agent i believes that a change in
his fluid supply to market j will cause changes in all other agents’ fluid supply to market
j, agent i’s “perceived” marginal fluid revenue in market j is:

(4)

where rij is agent i’s conjectural variation regarding changes in all other agents’ fluid sup-
ply to market j caused by a change in agent i’s supply.

Using the relationship (4), the total revenue maximization problem for all n agents can
be respecified as the following NSP maximization problem adjusted for imperfectly com-
petitive markets (ANSP):

(5)
(5)

s.t.:
(6)

(7)

(8)

dj � 0, xij � 0, for all i and j (9)

The difference between ANSP in (5) and the NSP in the conventional spatial competitive
equilibrium model by Takayama and Judge (1964a; 1964b) is the term:

When the market is perfectly competitive (rij � �1), the term is zero and (5) is equal to
the original Takayama and Judge (1964a; 1964b) model. When Cournot–Nash behavior is
assumed (rij � 0), the term is equivalent to:

which is shown in Hashimoto’s (1985) spatial Nash equilibrium model. Cournot–Nash
behavior means that agent i believes that the other agents will not change their supply in
response to the agent’s action.

Using the LaGrange function (L) with the multipliers, λ, ω, and θ for the constraints (6),
(7), and (8), respectively, the Kuhn–Tucker optimality conditions for the maximization
problem can be expressed as follows:

∂L/∂dj � αj/βj � (1/βj)dj � λj � 0, dj(∂L/∂dj) � 0, for all j (10)

∂L/∂xij � �(1/βj)(rij � 1)xij � tij � λj � θi � 0, xij(∂L/∂xij) � 0, for all i and j (11)
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∂L/∂xi(n�j) � fp1 � tij � ωj � θj � 0, xi(n�j)(∂L/∂xi(n�j)) � 0, for all i and j (12)

∂L/∂xi(2n�j) � fp2 � tij � θi � 0, xi(2n�j)(∂L/∂xi(2n�j)) � 0, for all i and j (13)

(14)

(15)

(16)

The LaGrange multipliers (or dual variables), λ, ω, and θ, measure the fluid demand
price (pdj), the SP for the right to sell milk in the within-payment quota manufacturing
market (spj), and marginal revenue net of transportation costs for each market (psi),
respectively. The Kuhn–Tucker conditions, represented by (11), (12), and (13), indicate
that each agent must equalize marginal revenue net of transportation costs across all
markets where it sells milk. The equilibrium values can be calculated by the QP model
solution.

The term (1/βj)(rij � 1)xij in (11) indicates the difference between the fluid demand price
and agent i’s marginal revenue in market j. The greater the degree of market power by
agents, the larger this difference. For example, in the case of perfect competition, the term
becomes zero because rij � �1. On the other hand, the term becomes (1/βj)xij when
Cournot–Nash behavior (rij � 0) is assumed. In this research, Cournot–Nash behavior 
is assumed to illustrate the imperfect competition solution, and coalition among agents is
treated as follows. To illustrate, consider Cournot–Nash agent 1 whose “perceived” mar-
ginal revenue in fluid market j is pdj � (1/βj)x1j. If agent 1 forms a coalition with agent 2,
then marginal revenue for agent 1’s and agent 2’s coalition is pdj � (1/βj)(x1j � x2j). In the
case of monopoly where agent 1 forms a coalition with all other agents, marginal revenue

for agent 1 is Because any agent can sell the consigned milk indi-

vidually or in coalition with other agents, as a price-taker or according to Cournot–Nash
behavior, many combinations of agents’ marketing behavior can be simulated.

To complete the model, individual farmers’ milk supply needs to be incorporated.
Unlike the oligopolistic marketing behavior of agents, individual farmers’ milk production
is competitively determined. Producers in region i, as price-takers, determine their supply
given the producer pooled price. That is, their production level is determined by equating
marginal cost to the producer pooled price. Thus,

pppi � Ri/fsi for all i, (17)

fsi � �νi � ηipppi for all i. (18)

In the comparative-static equilibrium, fsi in (18) must be equal to fsi given in the above
milk sales maximization problem. To solve the model, the following iterative solution
process is used to find equilibrium values for fsi.

First, the QP model is used to generate equilibrium fluid milk prices and equilibrium quan-
tities of milk shipments in the sales maximization problem expressed by (5) to (16), based
on initial values for fsi and given patterns of behavior of agents in the oligopolistic milk mar-
ket. Second, producer pooled prices are calculated in (17). Third, new values of fsi for the
next iteration are computed based on the calculated producer pooled prices and marginal cost
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functions of producing regions, and the assumption that producers behave as price-takers in
(18). Finally, the QP problem is solved again with new parameter values for fsi to obtain new
equilibrium fluid milk prices and quantities of milk shipments. This iteration process is con-
tinued until values for fsi become stationary.

This model is applied to the Kyushu area of Japan as a case study. Region 1 includes
Fukuoka, Saga, and Nagasaki prefectures, region 2 is the Kumamoto prefecture, region 3
is the Oita prefecture, and region 4 includes Miyazaki and Kagoshima prefectures.

Based on the long-run price elasticity of Kyushu milk supply by Ito (1989) (0.429), 
the Kyushu fluid demand price elasticity by Suzuki and Kobayashi (1993) (�0.77), and the
regional price and quantity observations in Table 11.1, linear marginal cost and fluid milk
demand functions for each region are specified as follows:

fs1 � 135.162 � 0.967ppp1, d1 � 361.434 � 1.438pd1,

fs2 � 118.078 � 0.832ppp2, d2 � 181.071 � 0.666pd2,

fs3 � 43.490 � 0.293ppp3, d3 � 88.146 � 0.324pd3,

fs4 � 119.121 � 0.874ppp4, d4 � 163.371 � 0.639pd4,

where: fsi and dj are measured by tons (in thousands), and pppi and pdj are measured by
yen per kilogram. Unit transportation costs, tij, are:

t12 � t21 � ¥4.58/kg,

t13 � t31 � ¥3.95/kg,

t14 � t41 � ¥7.80/kg,

t23 � t32 � ¥4.71/kg,

t24 � t42 � ¥6.11/kg,

t34 � t43 � ¥6.00/kg.
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Table 11.1 Observations in 1989 (unit: 1,000 tons and ¥/kg)

Manufacturing Milk Market

Fluid Milk Market Within Quota Over Quota

From/To 1 2 3 4 1 2 3 4 1 2 3 4 Total

1 128.4 19.1 12.0 1.7 34.0 0 0 0 10.9 0 0 0 206.1
2 33.1 74.7 1.5 1.6 0 32.9 0 0 0 0 0 0 143.8
3 31.4 0 34.3 0 0 0 8.1 0 0 0 1.2 0 75.0
4 11.3 8.5 2.0 89.0 0 0 0 39.1 0 0 0 8.3 158.2
Total 204.2 102.3 49.8 92.3 34.0 32.9 8.1 39.1 10.9 0 1.2 8.3 583.1

Producer’s
Region Fluid Milk Price Pooled Price
(i or j) (pdj) (pppi)

1 109.35 101.62
2 118.22 103.21
3 118.22 107.75
4 111.20 99.07
Average 112.75 102.91
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Because little milk is traded between Kyushu and other regions of Japan, this milk is
treated as exogenous to simplify the model. Payment quotas qi for the four regions are
q1�34.0, q2�32.9, q3�8.1, and q4�39.1 thousand tons. The fixed guaranteed price for
within-payment quota is fp1 � ¥79.83/kg, and the fixed standard transaction price 
for over-payment quota is fp2 � ¥67.25/kg.

Results

To demonstrate how solutions vary based on the assumption of market structure, the model
is solved for perfect competition, monopoly, and imperfect competition scenarios. To repre-
sent the perfectly competitive solution, the model is solved assuming that the four agents are
all price-takers. For the monopoly solution, the model is solved with the assumption that
there is a coalition of four agents. To represent imperfect competition, 15 separate combina-
tions of price-takers and Cournot–Nash players are solved. In the first case, the four agents
are all individual Cournot–Nash players (Cournot–Nash equilibrium). In the next four cases,
one agent is a price-taker, and the other three are individual Cournot–Nash players, thereby
creating four combinations of market structure. For cases 6 to 11, two agents are price-tak-
ers, and the other two are individual Cournot–Nash players, thereby creating six new com-
binations of market structure. Finally, in the last four cases, three agents are price-takers, and
the other agent is a Cournot–Nash player, thereby creating four combinations. Although
there are other combinations with coalitions, they are not analyzed since the purpose here is
to simply demonstrate examples of imperfectly competitive solutions.

The “dual structure” spatial perfect competition solution is shown in Table 11.2. In
this case, virtually all raw milk is allocated to the fluid market, except for a trivial
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Table 11.2 “Dual-Structure” Spatial Perfect Competition Equilibrium (unit: 1,000 tons and
¥/kg)

Manufacturing Milk Market

Fluid Milk Market Within Quota Over Quota

From/To 1 2 3 4 1 2 3 4 1 2 3 4 Total

1 193.2 0 0 0 0 0 0 0 0 0 0 0 193.2
2 4.8 125.8 0 0 0 0 0 0 0 0 0 0 130.6
3 7.0 0 61.0 0 0 0 0 0 0 0 0 0 68.0
4 30.5 0 0 112.4 0 0 0 1.4 0 0 0 0 144.3
Total 235.5 125.8 61.0 112.4 0 0 0 1.4 0 0 0 0 536.1

Agent’s Marginal Producer’s
Region Fluid Milk Price Revenuea Pooled Priceb

(i or j) (pdj) (psi) (pppi)

1 87.63 87.63 88.23
2 83.05 83.05 87.19
3 83.68 83.68 83.68
4 79.83 79.83 83.32
Average 83.55 83.55 85.61

apsi is agent i’s “perceived” marginal revenue (net of transportation costs) equalized
in each market (marginal revenue � market price in perfect competition).
bExogenously given milk shipments from each region to the outside of Kyushu are
taken into account in calculating pppi.
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amount shipped to the within-payment quota manufacturing milk market in region 4.
Also, there is only a small amount of interregional shipments of fluid milk, mostly to
region 1. The amount of milk allocated to the fluid market in the perfect competition
solution is substantially higher than the actual amount allocated (see Table 11.1). This
is due to the assumption that agents act as price-takers, which results in equality of
price across markets net of transportation costs instead of equality of perceived mar-
ginal revenue across markets net of transportation costs. Consequently, fluid milk
prices and producer pooled prices in the perfect competition case are much lower than
actual levels.

The “dual structure” spatial monopoly solution is shown in Table 11.3. In this case, the
allocation of raw milk to the fluid market is about one-half of the amount allocated under
perfect competition and is also less than actual levels (Table 11.1). Instead, the monop-
oly solution allocates significant amounts of raw milk to the within-payment and over-
payment quota manufacturing milk markets. The model predicts no interregional
shipment of milk in all three markets. Because the demand for fluid milk is inelastic,
restricting allocations to the fluid milk market results in higher pooled returns to farm-
ers. In fact, producer pooled prices under monopoly are 30% higher than in the perfect
competition case, as well as 10 percent higher than actual prices. It should be noted
that the monopoly distribution of pooled returns to farmers is based on the assumption that
the differences in producer pooled prices among regions are the same as the differentials
generated in the perfect competition solution. Alternatively, one national producer
pooled price for all regions could have been allocated. It should also be noted that total
milk supply is largest in monopoly equilibrium under the “dual structure.” Unless agents
have power to control supply, individual producers increase milk supply as higher blend
prices are given. Consequently, real monopoly rents cannot be realized under the “dual
structure.”
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Table 11.3 “Dual-Structure” Spatial Monopoly Equilibrium (unit: 1,000 tons and ¥/kg)

Manufacturing Milk Market

Fluid Milk Market Within Quota Over Quota

From/To 1 2 3 4 1 2 3 4 1 2 3 4 Total

1 132.4 0 0 0 34.0 0 0 0 51.8 0 0 0 218.2
2 0 68.1 0 0 0 32.9 0 0 0 50.9 0 0 151.9
3 0 0 33.2 0 0 0 8.1 0 0 0 34.3 0 75.6
4 0 0 0 60.2 0 0 0 39.1 0 0 0 67.5 166.8
Total 132.4 68.1 33.2 60.2 34.0 32.9 8.1 39.1 51.8 50.9 34.3 67.5 612.5

Agent’s Marginal Producer’s
Region Fluid Milk Price Revenue Pooled Pricea

(i or j) (pdj) (psi) (pppi)

1 159.30 67.25 114.03
2 169.56 67.25 112.99
3 169.65 67.25 109.48
4 161.46 67.25 109.13
Average 164.99 67.25 111.41

aEstimated ppp differentials in the perfect competition equilibrium are used to allo-
cate monopoly pooled returns and to calculate pppi of each region.
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The Cournot–Nash equilibrium is shown in Table 11.4. The regional fluid milk and pro-
ducer pooled prices in this solution are the closest to actual prices for the four regions
(Table 11.1). Not surprisingly, the allocation of raw milk among the three markets in this
case is somewhere between the perfect competition and monopoly cases. Unlike the
two previous cases, however, the Cournot–Nash equilibrium solution results in the same
two regions shipping milk to each other: for instance, region 2 ships 51,400 tons of fluid
milk to region 1, and region 1 ships 29,500 tons of fluid milk to region 2. While these ship-
ping patterns are unintuitive, they do occur in reality as shown in Table 11.1. The other two
spatial competition models did not predict these interregional milk shipment patterns. This
suggests that the current complicated interregional milk movements may be caused by
imperfectly competitive behavior.

To explain why the actual situation in Japan conforms more closely to the Cournot–
Nash solution than the monopoly or perfectly competitive solutions, the market power of
the prefectural milk marketing boards should be examined. Each prefectural milk market-
ing board controls total milk supplied in the prefecture, and therefore has some market
power, particularly within the prefecture. However, at the national level, the prefectural
milk marketing boards compete with one another, which lessens the market power of each
marketing board. This suggests that the prefectural marketing boards are neither price-
takers nor pure monopolists, but rather behave at some intermediate level between the two
market power extremes. Therefore, it is reasonable that the actual situation conforms more
with the Cournot–Nash solution than other solutions.

Compared with the other imperfect competition cases where at least one region is
assumed to be a price-taker (an example is given in Table 11.5), fluid and producer pooled
prices in the Cournot–Nash equilibrium solution in Table 11.4 are closer to actual prices.
Price-takers’ returns tend to be greater than Cournot–Nash players’ when both price-takers
and Cournot–Nash players exist as shown in Table 11.5. This is because Cournot–Nash
agents try to keep fluid milk prices higher based on their “perceived” marginal revenues,
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Table 11.4 “Dual-Structure” Spatial Cournot–Nash Equilibrium (unit: 1,000 tons and ¥/kg)

Manufacturing Milk Market

Fluid Milk Market Within Quota Over Quota

From/To 1 2 3 4 1 2 3 4 1 2 3 4 Total

1 64.6 29.5 14.5 24.7 34.0 6.6 8.1 0 20.5 0 0 0 202.5
2 51.4 29.5 12.8 22.9 0 26.3 0 0 0 0 0 0 142.9
3 33.5 17.6 10.1 14.6 0 0 0 0 0 0 0 0 75.8
4 50.6 27.2 13.2 28.5 0 0 0 39.1 0 0 0 0 158.6
Total 200.1 103.8 50.6 90.7 34.0 32.9 8.1 39.1 20.5 0 0 0 579.8

Agent’s Marginal Producer’s
Region Fluid Milk Price Revenue Pooled Price
(i or j) (pdj) (psi) (pppi)

1 112.18 67.25 97.94
2 116.10 71.83 102.09
3 115.99 84.96 109.91
4 113.76 69.20 99.70
Average 114.51 73.31 102.41
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and price-takers obtain benefits by moving their milk to the fluid milk markets. In this
case, acting as a price-taker is like “cheating” in a cartel agreement.

11.6 RESEARCH APPLICATION: CLIMATE CHANGE 
AND U.S. AGRICULTURE

A study by Adams et al. (1990) was one of the first comprehensive analyses of potential
agronomic and economic impacts of climate change on the U.S. agricultural sector. The
authors combined the results of two climate scenarios generated from global circulation
models with agronomic crop yield models. The yield results were then used in a mathe-
matical programming model of the U.S. agricultural sector.

The two climate models simulated the impact of a doubling of atmospheric concen-
trations of carbon dioxide from industrial revolution levels on daily temperatures and
precipitation levels for various representative locations in the United States. The
Goddard Institute for Space Studies (GISS) model predicted that a doubling of carbon
dioxide in the atmosphere would increase mean winter and summer temperatures by
5.46°C and 3.50°C and mean winter and summer precipitation by 0.13 mm and 0.24 mm
per day. The Princeton Geophysical Fluid Dynamics Laboratory (GFDL) model pre-
dicted that a doubling of carbon dioxide in the atmosphere would be more severe with
an increase in mean winter and summer temperatures by 5.25°C and 4.95°C and an
increase in mean winter precipitation of 0.19 mm and a decrease in mean summer pre-
cipitation of 0.08 mm per day.

The temperature and precipitation changes due to climate change were used as model
inputs in three crop yield models: SOYGRO for soybeans, CERES-Maize for corn, and
CERES-Wheat for wheat. These models simulated crop yields based on soil characteristics,
water availability (including irrigation), temperature, precipitation, and solar radiation. The
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Table 11.5 “Dual-Structure” Spatial Equilibrium in the Case Where Agent 1 Is a Price-Taker
and the Others Are Individual Cournot–Nash Players (unit: 1,000 tons and ¥/kg)

Manufacturing Milk Market

Fluid Milk Market Within Quota Over Quota

From/To 1 2 3 4 1 2 3 4 1 2 3 4 Total

1 107.9 47.8 24.1 28.1 0 0 0 0 0 0 0 0 207.9
2 36.0 22.8 9.4 20.0 16.3 32.9 0 0 0 0 0 0 137.4
3 30.6 16.7 9.5 17.3 0 0 0 0 0 0 0 0 74.1
4 36.0 20.9 10.0 26.0 13.0 0 8.1 39.1 0 0 0 0 153.1
Total 210.5 108.2 53.0 91.4 29.3 32.9 8.1 39.1 0 0 0 0 572.5

Agent’s Marginal Producer’s
Region Fluid Milk Price Revenue Pooled Price
i or j pdj psi pppi

1 104.89 104.89 103.45
2 109.47 75.25 95.45
3 108.84 79.68 104.16
4 112.69 72.03 93.37
Average 108.97 82.96 99.11
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yields of other crops such as cotton, barley, sorghum rice, and alfalfa were adjusted by the
average yield changes of the modeled crops. Because a doubling of carbon dioxide would
also have some beneficial effects on crop yields (i.e., the CO2 “fertilizer effect”), the authors
assumed a 35%, 25%, and 10% increase in photosynthesis rates for soybeans, wheat, and
corn, respectively. The average crop yields in most regions were predicted to increase in the
milder GISS scenario, with the CO2 fertilizer effect more than offsetting the warmer climate
effects. However, the hotter and drier GFDL scenario generally resulted in lower crop yields
for most regions, even with the CO2 fertilizer effect. Not surprisingly, rain-fed crop yields
were both lower and more variable than irrigated crop yields.

The authors also simulated the impact of the two climate scenarios on irrigation water
use in the United States. The authors found considerable increases in irrigated crop water
use, especially in the Southeast and Delta States particularly under the GFDL scenario.
Small declines were predicted for the Southern Plains and for other regions in the wetter
GISS scenario.

The authors used a price endogenous spatial equilibrium model of the U.S. agricultural
sector similar to the ones presented in this chapter in order to simulate the economic
impacts of the two climate change scenarios. The objective function of the model maxi-
mized NSP, and it was assumed that agricultural markets are perfectly competitive. The
outputs of the model included consumer and producer welfare, equilibrium prices, quanti-
ties supplied and demanded, agricultural exports and imports, and food processing. Most
crops (irrigated and non-irrigated) and livestock produced in the United States were
included in the model. A total of 1,683 primary (farm) and secondary (processing) activi-
ties were represented in the model.

The model divided the United States into 64 geographic regions based on resource
endowments. The model was then aggregated into 10 larger regions on the basis of land,
labor, and water supplies. Water supply was of interest in this study since climate change
will have a major impact on available water for agricultural uses. Both irrigated and non-
irrigated crops were included in the model.

The model offered a comparative static depiction of the equilibrium of the U.S. agricul-
tural sector. In other words, the model compared two or more market equilibrium scenar-
ios, which in this case involved a baseline scenario and the two climate scenarios. The
baseline scenario was based on no climate change and market conditions in 1982. The two
climate change scenarios used the crop yield and irrigated water availability and require-
ments results from the agronomic models along with the GISS and GFDL climate change
forecasts. Hence, the comparison among the three scenarios could be thought of as long-
term market equilibriums for these three different climate situations.

Table 11.6 provides a broad summary of U.S. economic results in terms of changes in
prices and quantities. The economic impacts were vastly different for each climate change
scenario. In the mildly warmer and wetter GISS scenario, consumer surplus, producer sur-
plus, and social welfare increased by $9.30 billion, $1.59 billion, and $10.89 billion,
respectively. Under this climate scenario, real crop and livestock prices decreased by
almost 20%, and crop and livestock outputs increased by 9% and 6%, respectively. The
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Table 11.6 Agricultural Commodity Price and Quantity Bases for Climate Change Scenarios
(base � 1.00)

Climate Model Field Crop Price Field Crop Quantity Livestock Price Livestock Quantity

GISS 0.83 1.09 0.84 1.06
GFDL 1.34 0.80 1.08 0.98
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output gains were mainly increased crop yields caused by the warmer, but wetter climate
forecasted by GISS.

On the other hand, under the more severe (hotter and drier) GFDL scenario, consumer
surplus and social welfare decreased by $13.89 billion and $10.33 billion, respectively,
while producer surplus increased by $3.55 billion. In this scenario, crop yields decreased
substantially, even with the CO2 fertilizer effect, and costs increased due to increased irri-
gation of crops. Overall, field crop output fell by 20% and livestock output declined by
2%. Consumers were the group most severely affected under this scenario because of the
substantial price increase for food. Producers actually gained under the severe climate sce-
nario because the production decreases were more than offset by price increases for both
crops and livestock. The average increase in field crop prices was 34%, while livestock
price increased 8% in this climate scenario.

The authors found that climate change results in lower crop acreage in the United States.
In the GISS scenario, yields are higher, and therefore total acreage declines. In the GFDL
scenario, acreage is reduced because of shifts in cropping patterns, that is, some land and/or
resources are no longer productive for agricultural output, and hence are removed. This is
particularly true of non-irrigated cropland. A general pattern for crops is a shift north and
northwest. These regional changes in agricultural production will have major environmen-
tal implications for regions in terms of ground water and soil quality, as well as quality of
wildlife habitats. Since crop production under climate change will favor irrigation, this
change will also have a major impact on water availability and uses in most regions.

The authors made several overall conclusions based on the model results for the two cli-
mate scenarios. First, especially with respect to the more adverse climate scenario, climate
change may imply a major reduction in the role of the United States as a major agricul-
tural exporter. Second, climate change may result in major shifts in regional agricultural
production in the United States, which would be due to major irrigation requirements.
Third, there are important environmental concerns for any major changes in agricultural
land use as a result of climate change impacts on water availability for irrigated crop agri-
culture, especially in the GFDL scenario. Fourth, climate change does not appear to pres-
ent a major food insecurity problem for the United States. In the GISS scenario,
agricultural output actually increases, while in the GFDL scenario output is reduced, and
prices rise, but much of the loss is borne upon foreign consumers since the United States
is a major agricultural exporter.

One major shortcoming of the analysis is that the authors did not include any technologi-
cal innovations or major adaptations to climate change. In reality, climate change will be
more gradual in nature than the comparative static model presented in this study. Even under
the most rapid climate change scenario, the agricultural sector will have some chance at
adapting, especially in developed countries like the United States. New plant cultivars will
be developed to take advantage of warmer climates, such as longer growing conditions.

While these estimates of gains and losses are relatively large from a sector perspective,
for instance, the $10 billion figure was about 8% of the value of the 1982 crop and live-
stock sector total, they are relatively small compared with actual Gross Domestic Product
in the United States.

SUMMARY

In this chapter, we examined price endogenous mathematical programming models at both
the market and firm levels. The chapter began with a price endogenous model for a per-
fectly competitive market with linear supply and demand functions. The model included a
quadratic objective function composed of consumer and producer surplus (social welfare),

CHAPTER 11 PRICE ENDOGENOUS MATHEMATICAL PROGRAMMING MODELS 421

c011.qxd  11/29/10  7:41 PM  Page 421



which when maximized yields a quantity and price solution that is equivalent to the market
equilibrium values found by equating the market supply and demand functions.

Five price endogenous models for imperfectly competitive markets were then presented.
The first assumed monopoly on the output side and monopsony on the input side. The sec-
ond assumed monopoly on the output side and perfect competition on the input side. The
third assumed perfect competition on the output side and monopsony on the input side. The
fourth assumed perfect competition on the output side and perfect competition on the input
side. Finally, a general formula that approximates any degree of market competition from
perfect competition to monopoly in mathematical programming models was presented.

Takayama and Judge’s (1964a; 1964b) perfectly competitive spatial equilibrium model
was presented. The model is similar to transportation models, except that demand and sup-
ply in each region is not fixed, but determined endogenously, as are optimal trade flows
and prices.

Next, sector-level mathematical programming was extended to industry models that
encompass multiple markets from the farm to retail levels. Industry models can accom-
modate multiple inputs and outputs as well.

Finally, the chapter concluded with two research examples of price endogenous mathemat-
ical programming models. The first was applied to the Japanese dairy sector, while the second
examined the potential impacts of climate change on the entire U.S. agricultural sector.
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EXERCISES

1. Suppose that the U.S. market for apples is characterized by the following supply and
demand functions:

qs � 6ps,

qd � 100 � 10pd.

a. Solve for the equilibrium price and quantity.
b. Put the supply and demand equations in the price-inverse form. Re-solve the equi-

librium price and quantity and verify that the values are the same as in part a.
c. Solve for the equilibrium values using Solver to maximize the difference between

consumer and producer surplus.
d. Verify that the SP from the Solver sensitivity analysis is the same as the equilib-

rium price found in part a.

2. The market for avocados is depicted by the following market supply and demand
functions:

ps � 10 � 5qs,

pd � 100 � 1qd.

a. Solve this problem by hand for the equilibrium price and quantity.
b. Solve for the equilibrium values using Solver to maximize the difference between

consumer and producer surplus.

3. Consider the following inverse demand and supply functions for a market:

qd � 50 � 5pd,

qs � 20 � 10ps.

Find the equilibrium price and quantity by hand and then by using Solver to maximize
the difference between consumer and producer surplus.

4. Consider the following inverse demand and supply functions for a market:

pd � 50 � 2qd,

ps � 100 � qs.

Use Solver to solve the case when the market is a monopoly on the output-side and a
monopsony on the input-side.

5. Consider the following inverse demand and supply functions for a market:

qd � 500 � 5pd,

qs � 50 � 10ps.

Solve this problem as a monopolist on the output-side and monopsonist on the input-
side using Solver.
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6. Solve the following problem by hand and with Solver:

qs � 2ps,

qd � 100 � 25pd.

7. Solve the following problem using Solver and verify by hand:

pd � 100 � 15qd,

ps � 10qs.

8. Consider the following supply and demand functions:

qs � �360 � 40ps,

qd � 240 � 16pd.

Solve for the equilibrium price and quantity using Solver.

9. Why are spatial equilibrium models particularly applicable for agricultural and food
industry analysis?

10. Find the equilibrium quantity and price by solving the following supply and demand
system algebraically and by using Solver to maximize the difference between con-
sumer and producer surplus.

pd � 1,000 � 100qd,

ps � 25qs.

11. Solve the following problem by hand and with Solver:

pd � 100 � 15qd,

ps � 25 � 20qs.

12. Consider the following market supply and demand functions for onions:

qs � 2.5ps,

qd � 100 � 0.75pd.

a. Solve this problem for the equilibrium price and quantity.
b. Put the supply and demand equations in the price-inverse form. Re-solve the

equilibrium price and quantity and verify that the values are the same as in part a.
c. Solve this problem using Solver to maximize the difference between consumer

and producer surplus.
d. Verify that the SP from the Solver sensitivity analysis is the same as the equilib-

rium price found in part a.

13. Compute the equilibrium values for the following problem using Solver:

pd � 1,000 � 10qd,

ps � 200 � 40qs.

14. A regional feed dealer has an effective monopoly on the feed he sells to local farmers.
Assume he faces the following demand curve and average variable cost for his product:

pd � 100 � 15qd,

AC � 10qs.

Solve for the profit maximizing output (qs � qd � q*) and price (p*) by hand.
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15. Solve the monopoly problem in Exercise 14 using Solver and the follow functional
form:

Max: Z � (a � bqd)qd � (c � dqs)qs (0)

s.t.:

qd � qs � 0 (1)

qd, qs � 0 (2)

16. A monopsonist milk buyer buys milk from a lot of dairy farmers, which makes it
a perfect competition-monopsonist market situation. Suppose that the demand and
supply curves are:

pd � 250 � 2.5qd,

ps � 10 � 1qs.

Solve for the equilibrium p and q values using Solver and the mathematical program-
ming formula given in this chapter.

17. Consider the following supply and demand functions:

qs � 25 � 1ps,

qd � 100 � 0.5pd.

Solve this problem as a monopolist on the output-side and monopsonist on the input-
side using Solver.

18. Solve Exercise 17 as a monopolist on the output-side and as perfect competition on
the input-side using Solver.

19. Solve Exercise 17 as a perfect competition on the output-side and a monopsonist on
the input-side using Solver.

20. Solve Exercise 17 as a perfect competition on the output-side and a perfect competi-
tion on the input-side using Solver. Which of the previous four solutions result in the
highest and lowest output price and highest and lowest input price?

21. Consider the following supply and demand functions:

qs � 100 � 0.5ps,

qd � 1,500 � 0.25pd.

Suppose that there are four equally sized firms in the market and 100,000 consumers.
Solve this problem using Solver with the following formula for market competition:

(n � 1)/2n, and

(m � 1)/2m.

22. Suppose that the market for cheese has the following supply and demand functions:

ps � 10qs,

pd � 2,000 � 5qd,

There are four equally sized firms in the market, and two large buyers of the firms’
cheese. Solve this price endogenous, imperfectly competitive problem using Solver.
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23. Consider the following spatial example involving trade and the following five coun-
tries: U.S. (u), Japan (j), Canada (c), England (e), and Russia (r). The inverse market
demand functions for each country are:

pdu � 300 � 1qdu

pdj � 275 � 1qdj

pdc � 200 � 1qdc

pde � 155 � 1qde

pdr � 220 � 1qdr

Suppose the five countries have the following inverse supply functions:

psu � 30 � 1qsu

psj � 75 � 1qsj

psc � 20 � 1qsc

pse � 15 � 1qse

psr � 45 � 1qsr

Further assume the following unit transportation costs across all countries:
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u j c e r

u 0 8 1 4 5
j 8 0 9 10 6
c 1 9 0 3 4
e 4 10 3 0 2
r 5 6 4 2 0

Write the spatial equilibrium mathematical programming model corresponding to this
problem assuming perfect competition.

24. Solve Exercise 23 using Solver.

25. Summarize the optimal solution to Exercise 23 using a map with the equilibrium trade
flows, production, demand, and prices.

26. Consider Exercise 23 with the following modification. The United States decides to
implement an import quota that restricts total imports into the United States to no
more than 50 units. Modify the problem to account for this policy and solve the new
problem using Solver. By how much is social welfare reduced due to this trade restric-
tion by the United States?

27. Reconsider Exercise 23 with the following modification. England decides to implement
an export quota that restricts the total exports from England to not exceed 50 units.
Modify the exercise to account for this policy and solve the new problem using Solver.
By how much is social welfare reduced due to this trade restriction by England?

28. Reconsider Exercise 23 with the following modification. England decides to implement a
fixed-rate export tariff of $10 per unit of exports. Modify the exercise to account for this
policy and solve the new problem using Solver. By how much is social welfare reduced
due to this trade restriction by England? By how much are exports reduced from England?

29. Reconsider Exercise 23 with the following modification. England decides to implement a
fixed-rate export subsidy of $3 per unit of exports. Modify the exercise to account for this
policy and solve the new problem using Solver. By how much is social welfare changed
due to this trade policy by England? By how much are exports increased from England?
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12
Goal Programming

One important, and sometimes limiting, assumption of mathematical programming
models is that the objective or goal of the decision maker is optimizing a single objec-
tive, such as maximize profits or minimize costs. In reality, individuals and institutions
usually have multiple objectives. For example, an agricultural producer is not only con-
cerned with maximizing profits, but is also interested in maximizing the probability of
staying in business, maintaining worker morale, increasing the size of the business, and
promoting good environmental stewardship. Some of these objectives may in fact be in
conflict with maximizing profits. Likewise, in environmental and natural resource prob-
lems, such as pollution abatement, managing fisheries, and managing forest, there are
often multiple competing goals such as environmental quality goals and economic
growth goals.

To address the single objective limitations of mathematical programming models,
Charnes et al. (1955) developed goal programming (GP), which is a technique that relaxes
the sole objective assumption. Under this approach, the analyst can specify multiple goals
or targets for the decision maker and minimize the deviations from not achieving each goal.
Both linear and nonlinear programming models can incorporate multiple goals using this
approach, but the majority of GP problems have been linear.

Goal programming has been used extensively in environmental, natural resource, and
agricultural economics as a planning tool for forestry management, land use planning,
pollution mitigation, and farm planning. In this chapter, the usefulness of GP is illustrated
by an example of a parasite control program and an example of forest protection.

The objectives of this chapter are to:

1. Provide an overview of the concepts behind GP, including how to set up and solve
such problems.

2. Present several illustrations in agricultural and resource economics of how a linear
programming (LP) model can be extended to have multiple objectives rather than a
single objective.

3. Provide two research examples of GP to illustrate its usefulness in decision analysis.

427
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12.1 GOAL PROGRAMMING

Goal programming was developed in order to model situations where the decision maker
has multiple objectives. Goal programming is similar to other programming models in that
it usually has constraints on resources controlled by the decision maker. However, GP also
specifies certain goals or targets of the decision maker such that all goals cannot be satis-
fied simultaneously. Goal programming solutions then provide the optimal solution that
comes closest to achieving all goals.

The basic idea of GP is to specify a numeric target value for each goal and then formulate
a model that minimizes the weighted sum of the unwanted deviations from each goal. There
are two types of GP: nonpreemptive and preemptive (also referred to as lexicographic).
Nonpreemptive GP should be used when the decision maker has multiple goals, and the
goals can be weighted “cardinally” by preferences: for instance, goal 1 is twice as important
as goal 2. Cardinally ordered preferences imply the decision maker knows not only which
goals are preferred, but also by how much each goal is preferred. For example, as described
in Chapter 7, land conservation officials in Maryland gave a parcel’s measured ecological
and habit value three times more value than its proximity to other protected lands, while giv-
ing a parcel’s size a value twice that of the proximity to other protected lands (Messer, 2006).

Preemptive GP is used when the decision maker has a clear hierarchy of priority levels as
goals, where the first tier goal is substantially more important than the second tier goal, and
so on. This is sometimes referred to as lexicographic preferences; for instance, a farmer’s
ultimate goal is to have more profit, but if there is a strategy that yields the same level of
profit, then the farmer’s next goal is to choose the strategy that is least harmful to the envi-
ronment. The following examples illustrate nonpreemptive and preemptive GP using LP.

12.2 NONPREEMPTIVE GOAL PROBLEM

Suppose a semi-retired farmer has four goals: (1) spend 43 hours per week with his fam-
ily, (2) work enough to earn $2,000 per week, (3) spend 15 hours per week volunteering
at the local food pantry, which supplies free food to low-income families, and (4) have 70
hours of sleep per week. Let:

x1 � hours spent with family per week

x2 � hours worked per week (wage � $40/hour)

x3 � hours spent at the food pantry per week

x4 � hours spent sleeping

Goal 1: Spend 43 hours per week with family

Goal 2: Make $2,000 per week from working

Goal 3: Spend 15 hours per week at the food pantry

Goal 4: Spend 70 hours per week on sleep

The four goals in this problem are expressed in terms of target values (43 hours of
leisure, $2,000 of income, 15 hours volunteering, and 70 hours sleeping). Target values are
included in all GP problems. Rather than maximizing or minimizing a single goal, the
objectives are expressed in terms of reaching or coming as close as possible to the desired
level for each goal.

To formulate a GP problem, every similar goal must be expressed in the same unit.
In this example, if goal 2 is converted from income into hours, then all four goals will
be stated in terms of hours. Assume that the farmer makes $40 per hour, which means
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goal 2 can be restated as spending 50 hours ($2,000/$40�50) per week on work. Since
there is a total of 168 hours each week, it is clear that the farmer cannot achieve all four
goals in this problem because they sum to 178 hours. Hence, it is clear that all goals
will not be met.

The first goal could be written as the following constraint:

x1 � 43 (12.1)

However, if goal 1 is expressed in this manner, then goal 1 would have to be met, which
may not be possible given the other three goals. To remedy this, deviation variables are
used. Let:

d 1
� � number of hours of family time above the desired 43 hours,

d 1
� � number of hours of family time under the desired 43 hours.

Both d 1
� and d 1

� must be non-negative. Does this sound familiar? This is similar to the pos-
itive and negative deviation variables introduced in Chapter 10 when the MOTAD model
was presented.

Constraint (12.1) can be restated as:

x1 � 43 � d 1
� � d 1

�, or

x1 � d 1
� � d 1

� � 43 (12.2)

For example, suppose x1 � 53. Then d 1
� � 10 and d 1

� � 0.
Likewise, the second goal could be written as:

40x2 � 2,000 (12.3)

Recall that in order to get the goals or target levels in the same units, the right-hand side
(RHS) of the second constraint should be transformed into hours required to earn $2,000.
Dividing both sides of (12.3) by $40.00 per hour yields:

x2 � 50 (12.4)

Again, if goal 2 is expressed in this manner, then goal 2 would have to be met, which may
not be possible given the other goals. Let:

d 2
� � number of hours of work above the targeted 50 hours

d 2
� � number of hours of work under the targeted 50 hours

Then, the second constraint becomes:

x2 � 50 � d 2
� � d 2

�, or

x2 � d 2
� � d 2

� � 50 (12.5)

For the third goal, let:

d 3
� � number of hours spent at the food pantry above the desired 15 hours

d 3
� � number of hours spent at the food pantry under the desired 15 hours

In the model, this goal can be accounted for by the following constraint:

x3 � 15 � d 3
� � d 3

�, or

x3 � d 3
� � d 3

� � 15 (12.6)
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For the fourth goal, let:

d 4
� � number of hours spent sleeping above the desired 70 hours

d 4
� � number of hours spent sleeping under the desired 70 hours

In the model, this goal can be accounted for by the following constraint:

x4 � 70 � d 4
� � d 4

�, or

x4 � d 4
� � d 4

� � 70 (12.7)

Finally, a last constraint is necessary to assure that total hours spent on the various activi-
ties for the week do not exceed 168 hours:

x1 � x2 � x3 � x4 � 168 (12.8)

Thus, there are eight structural constraints and 12 decision variables for this problem.
It is clear that given 168 hours available per week, all four goals of the farmer cannot be

met. In order to determine the objective function, create a weighting scheme for the devi-
ation variables. A simple weighting scheme would be to assign a 0 value to the positive
deviations and a value of 1 to the negative deviations and then minimize the total devia-
tions, that is:

The reason for assigning a 0 coefficient for the positive deviations is that there is no
penalty associated with over-achieving a goal.1 The reason for assigning a coefficient of 
1 on the negative deviations is that there is a penalty associated with under-achieving a
goal. By assigning a 1 to the negative deviations for the four goals, it is assumed that the
farmer gives equal importance to achieving all goals. On the other hand, if one goal is more
important than the other goals, then a different weighting scheme could be used.

The nonpreemptive GP problem is:

(0)

s.t.:

1x1 � 1d 1
� � 1d 1

� � 43 (1)

1x2 � 1d 2
� � 1d 2

� � 50 (2)

1x3 � 1d 3
� � 1d 3

� � 15 (3)

1x4 � 1d 4
� � 1d 4

� � 70 (4)

(5)

xi, d i
�, d i

� � 0 i�1, … , 4 (6)

x i
i

�
�

168
1

4

∑

Min: Z 0 i i
i 1

4

� �� �

�

d d1( )∑

Min: Z 0 i i
i 1

4

� �� �

�

d d1( )∑ .
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1For goals where over-achievement is bad and under-achievement is good, such as lower risk or lower pollution,
one should assign a 0 coefficient to the negative deviation and a positive coefficient such as 1 to the positive 
deviation.
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The optimal solution to this problem is:

x1
* � 43, x2

* � 50, x3
* �15, x4

* � 60, d 1
�* � 0, d 1

�* �0, d 2
�* � 0, d 2

�* � 0, 
d 3

�* � 0, d 3
�* �0, d 4

�* �0, d 4
�* �10.

According to the solution, the farmer can meet the target levels of the first three goals of
family time, income, and volunteer service, but will get 10 hours less sleep per week than
desired. This result is based on equal weights. Suppose that the farmer values the sleeping
goal twice as much as the other goals, and values the volunteer goal one-half as much as
Goals 1 and 2. Then the objective function of the problem becomes:

In nonpreemptive GP, the objective function, Z, is sometimes referred to as the achieve-
ment function, since it gives a numerical value to the goals that are unmet. The new solu-
tion to this problem achieves Goals 1, 2, and 4, but under-achieves Goal 3, the volunteer
service, by 10 hours.

There are three characteristics of this problem:

1. Each goal appears as a separate constraint with the right-hand-side (RHS) value reflect-
ing the target level of the goal.

2. Positive and negative deviation variables are included for each goal to reflect over-
achievement and under-achievement of the goal.

3. The objective function requires minimization of the weighted sum of deviation vari-
ables, where the weights represent the relative preferences for achieving each goal.
The non-negative weights are applied to the undesirable deviations, that is, weighting
positive deviations for goals where under-achievement is preferred and weighting neg-
ative deviations where over-achievement is preferred.

This problem is fairly trivial since nonpreemptive GP is not necessary to determine the
optimal solution to this problem. That is, if the farmer prefers the nonwork activities 
to income, then the nonwork goals would be achieved at the expense of the income
goal, and vice versa. However, this is a very simplistic GP problem, and in more
complicated problems, the optimal solutions may not be as clear without the use of non-
preemptive GP.

12.3 PREEMPTIVE GOAL PROGRAMMING

In many decision problems, goals are lexicographic in nature. In these cases, preemptive
GP should be used, as it is the same as nonpreemptive GP except that substantially higher
weights are placed on under-achieving the most important goals.

Consider the example of a centrally planned developing country that is currently for-
mulating its agricultural plan for the next several years.2 The Minister of Agriculture has
under her control 200,000 acres of agricultural land to be put into production, and the gov-
ernment has several goals. First, the country is in dire need of foreign currency, and there-
fore, the Minister would like to export food to other countries in exchange for currency.
Second, in order to develop the industrial sector of the economy, the Minister knows that
a significant amount of food that is grown on this land is needed to feed industrial workers

Min: Z 0 i 1 2
i 1

4

� � � � �� � � � �

�

d d d d d1 1 0 5 23 4. .∑
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materials available at www.wiley.com/college/kaiser.
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in the urban areas of the country. Finally, the Minister also has environmental concerns
about water pollution caused by agricultural production and wants to limit this because it
has negative consequences for the nation’s drinking water supply. Assume there are four
basic food commodities to be grown on this acreage: rice, beans, wheat, and maize.
Assume the following parameters apply to this problem:

Item Rice Beans Wheat Maize Endowment

Net Revenue—Domestic Sales 400 600 300 500
Net Revenue—Foreign Sales 500 650 350 450
Yield (bushels/acre) 50 25 75 100
Land (per acre) 1 1 1 1 200,000
Labor (hours/acre) 15 20 8 25 4,000,000
Water pollution (contaminants/acre) 10 1 2 5

Suppose that the Minister has a hierarchy of preferences for attaining the goals: goal 1
(gaining foreign currency) is the most important goal, goal 2 (domestic production to feed
workers) is the next most important goal, and goal 3 (environmental quality) is the least
important. So there are three levels of priorities in this case. Assume the Minister has the
following target levels for the three goals:

Goal 1: at least $40 million in foreign sales

Goal 2: at least 13 million bushels of rice, beans, wheat, and maize for domestic sales

Goal 3: no more than 1 million contaminants of pollution

The first goal is expressed as the following constraint:

500 frice � 650 fbeans � 350 fwheat � 450 fmaize � d 1
� � d 1

�� 40,000,000,

where:

d 1
� � over-achievement of goal 1

d 1
� � under-achievement of goal 1

frice, fbeans, fwheat, fmaize � acres devoted to foreign sales of the commodities

Since the top priority is to achieve goal 1, the form of the model should place top priority
on forcing d 1

� to zero.3 The second goal can be expressed as:

50drice � 25dbeans � 75dwheat � 100dmaize � d 2
� � d 2

� � 13,000,000,

where:

d 2
� � over-achievement of goal 2

d 2
� � under-achievement of goal 2

drice, dbeans, dwheat, dmaize � acres devoted to domestic sales of the commodities4
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3Deviation variables are always complements in the sense that if one variable is positive the other must be zero.
4The coefficients on the commodities are the per-acre yields given in the problem.
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The third goal is expressed as:

10drice � 1dbeans � 2dwheat � 5dmaize � 10 frice � 1 fbeans
� 2 fwheat � 5 fmaize � d 3

� � d 3
� � 1,000,000,

where:

d 3
� � over-achievement of goal 3

d 3
� � under-achievement of goal 3

Finally, the model requires two additional structural constraints for land and labor. The
land constraint is:

drice � dbeans � dwheat � dmaize � frice � fbeans � fwheat � fmaize � 200,000.

The labor constraint is:

15drice � 20dbeans � 8dwheat � 25dmaize � 15 frice
� 20 fbeans � 8 fwheat � 25 fmaize � 4,000,000.

The full model is:

Min: Z � G1d 1
� � G2d 2

� � G3d 3
� (0)

s.t.:

500 frice � 650 fbeans � 350 fwheat � 450 fmaize � d 1
� � d 1

� � 40,000,000 (1)

50drice � 25dbeans � 75dwheat �100dmaize � d 2
� � d 2

� � 13,000,000 (2)

10drice � 1dbeans � 2dwheat � 5dmaize
� 10 frice � 1 fbeans � 2 fwheat � 5 fmaize � d 3

� � d 3
� � 1,000,000 (3)

drice � dbeans � dwheat � dmaize
� frice � fbeans � fwheat � fmaize � 200,000 (4)

15drice � 20dbeans � 8dwheat � 25dmaize
� 15frice � 20 fbeans � 8fwheat � 25fmaize � 4,000,000 (5)

non-negativity (6)

Notice that the objective function coefficients penalize the negative deviations for the first
two goals since under-achievement is undesirable, and penalize the positive deviation for
the third goal since over-achievement is undesirable. Let G1 � 1,000,000, G2 � 500,000,
and G3 � 1.

In this case, it is optimal for the government to devote 40,723.98 acres to domestic
wheat production, 97,737.56 acres to domestic maize production, and 61,538.46 acres to
foreign bean production, thus utilizing all 200,000 acres of land.

Has goal 1 been satisfied? Yes, substitute fbean* � 61,538.46 into (1):

d 1
�* � 0.

In this case, goal 1 is exactly achieved.
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Has goal 2 been satisfied? No, plug dwheat* � 40,723.98, dmaize* � 97,737.56, and
fbean* � 61,538.46 into (2):

d 2
�* � 171,946.

Hence, goal 2 is under-achieved by 171,946 bushels.
Has goal 3 been satisfied? Yes, plug dwheat* � 40,723.98, dmaize* � 97,737.56, and

fbean* � 61,538.46 into (3):

d 3
�* � 368,326 and 

d 3
�* � 0.

Thus, goal 3 is over-achieved. Notice that even though the decision maker prefers goal 2
to goal 3, goal 3 is achieved while goal 2 is not achieved. This is due to the fact that both
goals 1 and 2 cannot be achieved simultaneously in this example, but goals 1 and 3 can be
achieved simultaneously.

A Risk Example of Preemptive Goal Programming

Goal programming can also be used to model decision making under risk. Consider the
following example of a food manufacturer who faces price and income uncertainty.

A food manufacturer sells five products to supermarkets: A, B, C, D, and E. Due to
input seasonality, the firm is forced to purchase all five commodities from farmers in the
summer. The firm may then process and sell the products immediately in October after
harvest or store them in a warehouse for later sale. Suppose that the commodities are har-
vested in October and either immediately processed and sold in October or processed and
stored for later sale in February or June. Sales in either February or June require storage,
and the firm has a storage capacity of 1,000 units of either A, B, C, D, or E. The firm
knows with certainty all technical parameters (e.g., technical coefficients and resource
endowments) but only has probabilistic knowledge of the net profitability of each com-
modity due to price uncertainty. The firm has the following expectations regarding profit
and risk (standard deviation):
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Month Product Profit Risk

October A 100 0
October B 200 20
October C 150 10
October D 350 80
October E 250 40
February A 120 10
February B 275 35
February C 200 20
February D 400 100
February E 100 10
June A 125 5
June B 235 25
June C 200 15
June D 360 90
June E 250 60
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The firm perceives the total profit risk it faces as the sum of the number of products it
sells each month multiplied by its standard deviation in profit per unit. Let the marketing
activities be denoted as mij, where i refers to product (A, B, C, D, or E) and j refers to
month (October, February, or June). Then risk (R) is equal to:

where SDij is the per unit profit standard deviation for product i in month j.
The firm’s production technology is summarized in the table below. Each food product

requires certain amounts of machinery, labor, management, and nonmachinery capital.

Unit Resource Requirement 
Resource

Resource (unit) A B C D E Endowment

Labor (L) (hours) 0.90 0.80 1.20 1.50 0.85 1,350
Machinery (M) (hours) 1.35 1.00 0.30 1.30 0.25 2,500
Management (MG) (hours) 0.10 0.05 0.00 0.20 0.15 190
Capital (C) (hours) 1.00 0.90 0.95 1.10 0.75 3,000

This problem could be formulated in at least three different ways. The first would be to
maximize profit ignoring risk, by using the expected profit for each marketing activity as
the relevant objective function coefficient. The second would be to maximize profit sub-
ject to a constraint on risk, which could be parametrically varied in order to generate a risk-
efficient set of solutions. Finally, GP can be used where the two goals are to maximize
income and to minimize risk.

The profit maximizing formulation is:

Max: Z � 100oa � 200ob � 150oc � 350od � 250oe
� 120fa � 275fb � 200fc � 400fd � 100fe
� 125ja � 235jb � 200jc � 360jd � 250je (0)

s.t.:

0.90oa �0.80ob �1.20oc �1.50od �0.85oe
�0.90fa � 0.80fb � 1.20fc � 1.50fd � 0.85fe
�0.90ja � 0.80jb � 1.20jc � 1.50jd � 0.85je � 1,350 (1)

1.35oa �1.00ob �0.30oc �1.30od �0.25oe
� 1.35fa � 1.00fb � 0.30fc � 1.30fd � 0.25fe
� 1.35ja � 1.00jb � 0.30jc � 1.30jd � 0.25je � 2,500 (2)

0.10oa �0.05ob � 0.00oc �0.20od � 0.15oe
� 0.10fa � 0.05fb � 0.00fc � 0.20fd � 0.15fe
� 0.10ja � 0.05jb � 0.00jc � 0.20jd � 0.15je � 190 (3)

1.00oa �0.90ob �0.95oc �1.10od �0.75oe
� 1.00fa � 0.90fb � 0.95fc � 1.10fd � 0.75fe
� 1.00ja � 0.90jb � 0.95jc � 1.10jd � 0.75je � 3,000 (4)

fa � fb � fc � fd � fe � ja � jb � jc � jd � je � 1,000 (5)

oa, ob, oc, od, oe, fa, fb, fc, fd, fe, ja, jb, jc, jd, je � 0 (6)

where o � October, f � February, j � June, and a,b,c,d, and e are the five products.

R SD ,ij ij
ji

�
��

m
1

3

1

5

∑∑
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The profit-maximizing solution is to process 1,000 units of product B, which is stored and
sold later in February, and to process 647.06 units of product E, which is sold immediately
in October. The total expected profit from this solution is $436,764.71. The binding
constraints include labor, which has a shadow price (SP) of $249.12, and storage capacity,
which has an SP of $39.71.

The model with the risk constraint is:

Max: Z � 100oa � 200ob � 150oc � 350od � 250oe
�120fa � 275fb � 200fc � 400fd � 100fe
�125ja � 235jb � 200jc � 360jd � 250je (0)

s.t.:

0oa � 20ob � 10oc � 80od � 40oe
� 10fa � 35fb � 20fc � 100fd � 10fe
� 5ja � 25jb � 15jc � 90jd � 60je � 40,000 (1)

0.90oa �0.80ob �1.20oc �1.50od �0.85oe
� 0.90fa � 0.80fb � 1.20fc � 1.50fd � 0.85fe
� 0.90ja � 0.80jb � 1.20jc � 1.50jd � 0.85je � 1,350 (2)

1.35oa �1.00ob �0.30oc �1.30od �0.25oe
� 1.35fa � 1.00fb � 0.30fc � 1.30fd � 0.25fe
� 1.35ja � 1.00jb � 0.30jc � 1.30jd � 0.25je � 2,500 (3)

0.10oa �0.05ob �0.00oc �0.20od �0.15oe
� 0.10fa � 0.05fb � 0.00fc � 0.20fd � 0.15fe
� 0.10ja � 0.05jb � 0.00jc � 0.20jd � 0.15je � 190 (4)

1.00oa �0.90ob �0.95oc �1.10od �0.75oe
� 1.00fa � 0.90fb � 0.95fc � 1.10fd � 0.75fe
� 1.00ja � 0.90jb � 0.95jc � 1.10jd � 0.75je � 3,000 (5)

fa � fb � fc � fd � fe � ja � jb � jc � jd � je � 1,000 (6)

oa, ob, oc, od, oe, fa, fb, fc, fd, fe, ja, jb, jc, jd, je � 0 (7)

The risk constraint here is set at $40,000, that is, the sum of the product of the standard
deviation times marketing activity for all activities cannot exceed $40,000. The right-
hand side of this constraint can be parametrically altered to derive a set of plans that are
efficient for expected profit and standard deviation. This formulation leads to a more
diversified production-marketing plan for the firm. In this case, 687 units of product B 
are processed and sold immediately in October, and an additional 1,000 units of B are
processed and stored for sales of 125 units in February and 875 units in June.
Diversification of marketing or production activities is a classic way to reduce risk 
in portfolio problems. Total expected profitability in this case is $222,500, which is 
lower than the profit maximizing solution of $436,764.71; however, the risk is also lower
($40,000 in this case versus $60,882.40 in the profit-maximizing case). The binding con-
straints include labor, which has an SP of $294.12, and storage capacity, which has a SP
of $39.71.

The third way to formulate this problem is to use GP, which can be done in two ways.
The first formulation weights risk (risk) as being the top priority followed by income
(income), as follows:
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Min: Z � din � 10,000drp (0)

s.t.:
100oa � 200ob � 150oc � 350od � 250oe

�120fa � 275fb � 200fc � 400fd � 100fe
�125ja � 235jb � 200jc � 360jd � 250je � income � 0 (1)

0oa � 20ob � 10oc � 80od � 40oe
� 10fa � 35fb � 20fc � 100fd � 10fe
� 5ja � 25jb � 15jc � 90jd � 60je � risk � 0 (2)

din � income � dip � 600,000 (3)

� drp � risk � drn � 40,000 (4)

0.90oa �0.80ob �1.20oc �1.50od �0.85oe
� 0.90fa � 0.80fb � 1.20fc � 1.50fd � 0.85fe
� 0.90ja � 0.80jb � 1.20jc � 1.50jd � 0.85je � 1,350 (5)

1.35oa �1.00ob �0.30oc �1.30od �0.25oe
� 1.35fa � 1.00fb � 0.30fc � 1.30fd � 0.25fe
� 1.35ja � 1.00jb � 0.30jc � 1.30jd � 0.25je � 2,500 (6)

0.10oa �0.05ob �0.00oc �0.20od �0.15oe
� 0.10fa � 0.05fb � 0.00fc � 0.20fd � 0.15fe
� 0.10ja � 0.05jb � 0.00jc � 0.20jd � 0.15je � 190 (7)

oa �0.90ob �0.95oc �1.10od �0.75oe
� 1.00fa � 0.90fb � 0.95fc � 1.10fd � 0.75fe
� 1.00ja � 0.90jb � 0.95jc � 1.10jd � 0.75je � 3,000 (8)

fa � fb � fc � fd � fe � ja � jb � jc � jd � je � 1,000 (9)

oa, ob, oc, od, oe, fa, fb, fc, fd, fe, ja, jb, jc, jd, je, din, dip, rpp, drn � 0 (10)

This formulation would be useful to a decision maker who is risk averse. The two goals are
modeled by putting a positive deviation variable for risk (drp) and a negative deviation vari-
able for income (din) into the objective function. Since risk is the top priority, drp has a
higher valued objective function coefficient than din in this formulation. Constraints (1) and
(2) define income and risk for the problem. Constraint (3) models the income goal with the
target-level set at a higher figure than is obtainable ($600,000). Constraint (4) models the
risk goal with the target-level set at $40,000. Note that both negative and positive deviation
variables are included in constraints (3) and (4) so as to allow for the possibility of over- or
under-achieving each goal (din, dip, drp, and drn). The structural constraints (5) through (9)
are all the same as in the profit-maximizing case. The Solver solution to this problem gives
an identical solution to the model with the risk constraint.

The second formulation is identical to the first, except it weights income as being the
top priority followed by risk, that is:

Min: Z � 10,000din � drp (0)

s.t.: the same constraint set as before.
This formulation gives an identical solution to the profit-maximizing case. Hence, by

using GP the results of two different models can be derived by simply altering the weight
of the two objective function coefficients.

Many different ways to extend this current model to include other goals are simple in
conception. For example, perhaps the food manufacturer would have an additional goal of
using all of one resource, or a goal of using all resources in certain proportions. While not
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illustrated here, this extension would be relatively simple, that is, just add the appropriate
deviation variables, constraints, and penalties in the objective function.

12.4 DERIVING WEIGHTS FOR GOAL PROGRAMMING

When using GP, the analyst needs to devise a way to elicit weights that accurately and con-
sistently depict the decision maker’s relative preferences for achieving each of the goals. For
preemptive GP, the priority levels must be determined and then large weights must be assigned
to the top priorities. However, for nonpreemptive GP, a more precise cardinal weighting of the
goals is necessary. There are a number of techniques that various researchers have used to
elicit these weights, including multiple regression and “hybrid rating” regression analysis
(Bell 1976). Other common approaches of systematically measuring and ranking preferences
include the Analytic Hierarchy Process (Saaty, 1990; Duke & Hyde, 2002) and the Logic
Scoring of Preferences approach (Dujmovic, 2007; Dujmovic et al., 2010). One of the more
popular techniques—Churchman-Ackoff—is discussed here.

To illustrate this technique, consider the following example. Assume a decision maker
has four goals: G1, G2, G3, and G4, and needs to develop a relative preference ranking to
achieve each goal. For this example, assume G1 is the most preferred goal followed by G2,
G3, and finally G4. To elicit relative numeric weights for each goal, this technique assigns
a value of 1.0 for the most preferred goal, G1. G2 is then given a numeric value less than
1.0 to reflect how much the decision maker values achieving it relative to G1, for instance,
if G2 is valued one-half as much as G1, then G2 receives a weight of 0.5. Suppose in this
example, the decision maker expresses the following values for Goals 1 to 4: W1 � 1.0,
W2 � 0.6, W3 � 0.5, and W4 � 0.1.

The next step in the process is to conduct a test to determine if these elicited weights are
consistent with the decision maker’s true preferences. The decision maker is asked whether
achieving G1 is preferred over achieving all three other goals. Assuming the answer is yes,
then W1 should be greater than W2 � W3 � W4 combined. In this example, W2, W3, and
W4 sum to greater than W1, and therefore would need to be adjusted downward so that the
sum is less than 1.0, for instance, W2 � 0.4, W3 � 0.3, and W4 � 0.05. So those become
the new adjusted weights given W1 � W2 � W3 � W4.

Next, compare the weight given to the second goal to that of the third and fourth goal
combined. Assume that the decision maker indicates that G2 is more important than
achieving G3 and G4. This means that W2 � W3 � W4. Currently, this condition holds, so
no adjustment needs to be made. If this condition did not hold, one would need to decrease
the relative values of W3 and W4 so that W2 � W3 � W4. Finally, the fact that W3 � W4

means that no further adjustments in the weights need to be made.
Based on this technique, a relative set of weights has been constructed that are consis-

tent with the decision maker’s true preferences for achieving each of the four goals. These
weights can be used as objective function coefficients in the GP model on the under-
achievement deviation variables.

There are a couple of caveats with this approach that need mentioning. First, this
approach elicits relative rather than absolute weights for achieving each goal. Second, it
assumes that preferences are additive. Finally, the approach is not precise since the method
of adjustment only requires the weights to sum to the appropriate strict inequality.

12.5 RESEARCH APPLICATION: OPTIMAL PARASITE 
CONTROL PROGRAMS

Johnson et al. (1991) used nonpreemptive GP to examine parasite control programs for
sheep in developing countries. Increasing livestock production is one way to reduce global
hunger, but a severe limitation on livestock production systems in many developing
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countries is poor animal nutrition, which is aggravated by parasites. Parasite control pro-
grams are essential for improving livestock production efficiency. The authors present a
hypothetical example of a GP model to illustrate its usefulness for finding efficient para-
site control plans.

GP has been used in many natural resource applications to address forestry decision
problems.5 In contrast, there have been relatively few applications of GP to livestock pro-
duction systems. Several exceptions include: Wit et al. (1988) who developed a GP model
to evaluate sheep husbandry possibilities in a semiarid area of the Mediterranean basin;
Bong-Soon (1983) who demonstrated a farm-planning GP model for subsistence farms in
South Korea; El-Shishiny (1988) who developed a single-time-period GP model for plan-
ning the development of reclaimed lands in Egypt; Rehman and Romero (1973) who pro-
posed treating livestock diet formulation problems as a GP model; and Neal et al. (1986)
who took a similar approach to formulate least-cost rations for pregnant ewes.

The GP model of Johnson et al. (1991) assumes three goals, to (1) maximize the num-
ber of geographic zones involved in a parasite control program to increase farmer
participation, (2) maximize total wool production from all zones, and (3) minimize per-
sonnel required for program administration. All three goals cannot be simultaneously
satisfied.

Success of parasite control is partially dependent on the number of annual strategic
anthelmintic (i.e., drugs that eliminate parasitic worms) treatments. Production losses
decrease as the frequency of appropriate treatments increases up to a saturation point of
control. With unlimited resources, wool production and participation would be maxi-
mized by applying the saturation number of anthelmintic treatments to every zone.
However, the model constructed here contains more realistic scenarios of limited
resources: given finite resources and conflicting goals, how many zones should receive
0, l, 2, … , x anthelmintic treatments each year, where x is the treatment saturation point?
It is assumed each zone will use only one treatment strategy to maximize treatment
effects.

The model requires that the impact of anthelmintic treatment frequency on wool pro-
duction be determined for each control program area. Investigations and observations from
parasitologists can be used to determine these impacts. In addition to production effects,
treatment cost and field personnel requirements also need to be quantified.

The model is illustrated using a hypothetical case based on the senior author’s work with
a parasite control program in Peru. The region can be subdivided into 200 zones, each hav-
ing approximately 3,500 untreated native sheep. Wool production averages two pounds of
wool per year per sheep when no anthelmintic treatment is administered. Albendazole, a
broad-spectrum anthelmintic, was chosen for the program at a cost of $0.20 per sheep for
one treatment dose.

Field personnel administer the program. The first time a zone is treated, an extension
agent will need three days to complete the work. The second treatment requires two days
since efficiency is improved. If a zone receives a third or fourth treatment, no extension
agents will be needed because the villagers can administer treatments.

The impact of anthelmintic treatment on wool production is based on aggregating 12
investigations reported in Barger (1982) and the senior author’s personal observations.
Table 12.1 summarizes the numerical information for the hypothetical case providing pro-
gram cost, expected wool production, and personnel required for the different strategies.
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The model includes the following constraints:

1. The total program budget is set at $200,000.

2. No more than 200 zones may participate since this is the maximum number in the area.

3. A certain number of areas should act as showcases to publicize benefits. The model
incorporates the condition that at least 2 zones receive 4 treatments per year, and at
least 10 zones receive either 3 or 4 treatments per year.

Table 12.2 indicates the available strategies if only one goal were to be considered
where $200,000 must be spent. Based on these results, the following target levels were set:

Goal 1: 200 zones

Goal 2: 1,587,180 pounds of wool

Goal 3: 355 people days

The GP model minimizes deviations between the achievement of goals and their target
levels. By attaching numerical weights to each goal, their relative priority levels can be
quantified. For example, if maximum participation is desired, the negative deviation cor-
responding to the number of zones receiving treatment would be weighted higher than
those for goals 2 or 3. When wool production is considered a top priority, the negative
deviation for goal 2 will be weighted higher and so forth. Equal weighting of goals may
be used to strive to equitably balance all three goals.

The mathematical formulation for this nonpreemptive GP problem is as follows:
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Table 12.1 Cost, Wool Production, and Personnel by Anthelmintic Treatments for a
Hypothetical Parasite Control Program (one zone � 3,500 sheep)

Number of Anthelmintic Treatments Per Year

0 1 2 3 4

Cost/Sheep ($) 0 0.20 0.40 0.60 0.80
Cost/Zone ($) 0 700 1,400 2,100 2,800
Increased Wool Production (%) 0 5 14 28 35
Wool production/zone (lb) 7,000 7,350 7,980 8,960 9,450
Extension agents/zone (person days) 0 3 5 5 5

Table 12.2 Linear Programming Solutions for a Number of Zones by Number of Treatments
and Different Objective Functions

Objective Function

Number of 
Treatments/Year Maximum Wool Maximum Participation Minimum Personal

0 105 0 129
1 0 190 0
2 0 0 0
3 93 8 0
4 2 2 71
Value of Objective 1,587,180 lb 200 zones 355 people days
Function
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Min: Z � 0.5W1d 1
� � 0.63W22d 2

� � 0.28W31d 3
� (0)

s.t.:

x0 � x1 � x2 � x3 � x4 � 200 (1)

700x1 � 1,400x2 �2,100x3 � 2,800x4 � 200,000 (2)

x1 � x2 � x3 � x4 � d 1
� � 200 (3)

0.7x0 � 0.735x1 � 0.789x2 � 0.896x3 � 0.945x4 � d2
� � d2

� � 158.718 (4)

3x1 � 5x2 � 5x3 � 5x4 � d 3
� � d 3

� � 355 (5)

x4 � 2 (6)

x3 � x4 � 10 (7)

x0, x1, x2, x3, x4, d 1
�, d 2

�, d 2
�, d 3

�, d 3
� � 0 (8)

where:

x0 � number of zones receiving zero anthelmintic treatments per year

x1 � number of zones receiving one anthelmintic treatment per year

x2 � number of zones receiving two anthelmintic treatments per year

x3 � number of zones receiving three anthelmintic treatments per year

x4 � number of zones receiving four anthelmintic treatments per year

d 1
� � number of zones not included in the project

d 2
� � pounds of wool above the goal

d 2
� � pounds of wool below the goal

d 3
� � people days above the goal

d 3
� � people days below the goal

W1 � weighted priority for goal 1

W22 � weighted priority for goal 2

W31 � weighted priority for goal 3

The objective function (0) minimizes the weighted deviations from the three goals’ tar-
get levels. Penalties (the W coefficients) are positive for each deviation variable that is not
preferred by the decision maker, that is, production of wool that is less than the target level
(d2), or number of people days above the target level (d3), and zero for over-achievement
deviation variables. To make the different units of goals comparable (zones, pounds of
wool, people days), the deviations from the three goals are expressed as percentages
(Romero & Rehman, 1984). This corresponds to 100/200�0.5, 100/158�0.63, 100/355 �
0.28, for Goals 1, 2 and 3, respectively.

Constraint (1) forces the number of zones receiving the various treatment strategies to be
exactly 200. Constraint (2) is the budget constraint that limits the entire plan to not exceed
$200,000. The next three constraints quantify the definition of the three goals. The first goal,
maximizing the number of zones receiving at least one treatment, is reflected by constraint (3). 
Similarly, constraints (4) and (5) define the desired wool production (pounds/10,000) and
field personnel for the problem. Finally, constraints (6) and (7) apply to the showcase
requirement specified by the decision maker. The non-negativity constraint (8) restricts all
problem activities from taking on negative values.
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The model was solved using different priority levels for the three goals. Several meth-
ods have been proposed for selecting goal weights. Weights can be arbitrarily chosen and
adjusted until output coincides with the decision maker’s actual behavior (Candler &
Boehlje, 1971). Goal weights can be inferred from past activities and adjusted until a sat-
isfactory solution is produced. Preferences for goals may be directly elicited from decision
makers with surveys (Barnett et al., 1982). Willis and Perlack (1980) suggest avoiding
objective weights and presenting an efficient set of solutions to the decision maker. This is
the approach selected here.

The authors first ran the model by assigning a proportional goal weight of 1:1:1 to the
three goals. Based on sensitivity analysis of the objective function coefficients, deviation
from Goal 1 had maximum and minimum limits on its weights of 0.817 and 0.176,
respectively; d 2

� had a maximum limit on its weight of 1.785; and d 3
� had a minimum limit

on its weight of 0.1740. Therefore, four goal priority changes could change the optimal
solution. The model was run assigning numerical goal priorities of 0.01:0.63:0.28, for
which another optimal solution was generated. For the new solution, four goal priority
changes were indicated to search for other optimal solutions. Recall that this type of sen-
sitivity analysis is called the range of optimality for objective function coefficients. This
range gives the values that the objective function coefficients can take without changing
the optimal solution.

The process of reviewing objective row ranges for the three variables whose deviations
were being minimized, and then running the model with new priorities suggested by the
maximum limits, continued until all optimal solutions were identified. This coincides with
the process reported by Romero and Rehman (1984).

For a GP model with n goals, the number of different optimal solutions will be less than
or equal to n!, depending on model constraints. For this three-goal model (participation � N,
wool � W, personnel � P), a maximum number of six goal permutations exist (N � W �
P; N � P � W; W � N � P; W � P � N; P � N � W; P � W � N). Fourteen model runs
were needed to determine the results. Six different optimal solutions were identified (Table
12.3). One solution corresponds to the case of assigning equal priorities to the three goals
(N � W � P). The same optimal solution was generated for priority levels W � N � P
and W � P � N.

By comparing Tables 12.2 and 12.3, it is evident that the solution for a goal priority of
P � W � N is the same as the solution obtained by simple minimization of the personnel
objective function. Simple maximization of wool production coincides with the solution
for a priority of W � N � P or W � P � N. The simple maximization of participation 
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Table 12.3 Linear Goal Programming Solutions for Number of Zones and Deviation from
Goals for Different Goal Preferences

Goal priorities: participation (N)/wool(W)/personal(P)

N � P � W N � W � P N � W � P W � P � N P � N � W P � W � N
W � N � P

x0 0 0 0 105 88 129
x1 190 158 171 0 102 0
x2 0 0 0 0 0 0
x3 0 40 0 93 0 0
x4 10 2 29 2 10 71
d 1

� 0 0 0 105 88 129
d2

� 95,340 47,970 56,340 0 126,300 12,390
d 3

� 265 329 302 118 0 0
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is not duplicated when goals are simultaneously considered, although a priority level of 
N � P � W closely approximates it.

Maximum participation can be completely achieved with three choice solutions (N � P
� W; N � W � P; N � W � P). Wool production and personnel requirements vary for
the three solutions: wool production can fall 95,340, 47,970, or 56,340 pounds short of its
goal and personnel can exceed its goal by 265,329, or 302 people days.

When wool maximization is given priority over participation and personnel, prefer-
ence assigned to the other two goals is irrelevant. The wool target level will be reached
with a participation level of 47.5% and 118 extra people days needed to administer the
program.

If personnel use is given priority over the other two goals, two different solutions are
obtained depending on whether the second-highest priority is put on wool or participa-
tion. The personnel goal is achieved under both scenarios, but wool production can be
12,390 or 126,300 pounds below its goal, and the level of participation can be 36% or
56% of its goal.

While the model is set up as a nonpreemptive GP model, the solutions partially mimic the
results expected from a preemptive or lexicographic model. That is, the model satisfies the
highest priority goal first, and then considers the lesser-ranked goals.

The model generated six “choice” solutions that provide different degrees of multiple
goal realization. Decision makers can be presented with Tables 12.2 and 12.3 and choose
an optimal solution that coincides with their goal realization preferences. Trade-offs for
different options can be easily understood. The model was illustrated for sheep, but the
same principles are applicable to other farm animals. For example, instead of using wool
production, weight gain or milk production could be incorporated.

Sensitivity analysis for model constraints could provide additional information for deci-
sion makers. For example, the current model assumes that $200,000 would be spent on par-
asite control. One unanswered question is whether $200,000 is the most efficient amount.
The expected pay-offs for control programs using fewer dollars could be addressed through
sensitivity analysis of the budget constraint. The constraint representing the number 
of showcase areas desired could be handled in a similar manner. When doing sensitivity
analysis, guard against generating dominated solutions by not allowing target levels to fall
to pessimistic levels.

Three conflicting goals are included in the model and seven constraints. Additional
goals could be incorporated in the same manner. For most situations, however, four goals
or less should be adequate. The number of allowable constraints is very flexible.
Yazdanian and Peralta (1986) found that linear GP worked well with up to 90 constraints.

12.6 RESEARCH APPLICATION: FOREST LAND PROTECTION

The Forest Legacy Program (FLP) is a program administered by the USDA Forest Service
to support the acquisition of conservation easements and other voluntary protection mech-
anisms on privately held forest land.6 FLP is the largest federal forest protection program
in the U.S. with an annual acquisition budget in the range of $50 to $55 million per year.
From 2006 to 2009, FLP has helped to protect nearly 1.9 million acres across 41 states and
Puerto Rico.

One aspect of the FLP, which is also true for many other conservation programs, is that
applicants must offer some in-kind cost sharing. FLP requires that states provide at least 25%
of the total project costs, but does not place a cap on the percentage of in-kind cost sharing
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that can be offered by the applicants. In the past, some applicants to the FLP have submitted
in-kind cost shares of nearly 90%. For instance, in 2009, the State of Utah submitted a proj-
ect to FLP to protect 4,868 acres of forest in Northern Utah, including a segment of a river
which is host to a large population of wild Bonneville Cutthroat Trout, a popular sport fish
and the only salmonid native to the region. The total cost for the project was $6,935,000, 
the conservation partners in Utah offered an in-kind cost share of $1,727,000, or 25% of total
costs of funding out of its own budget. Thus, to protect these 4,968 acres, FLP would only
have to pay $5,208,000 (USDA, 2009).

Several justifications are given for factoring in the amount of the in-kind costs share
into the selection of which forest projects should received FLP funding. A primary jus-
tification provided is that asking applicants to commit to pay for some of the costs them-
selves ensures that the project has local benefits and the local partners are committed to
the project and consider it worthy of being protected. In other words, the applicant is
willing to “put their money where their mouth is” for the project. Another justification
is that cost sharing helps extend the reach of FLP as it can be considered a type of dis-
count on the total project price. From the point of view of the funding agency, this could
mean that there would be more money available to fund additional projects and also help
increase the number of forest acres protected with FLP funds.

FLP program managers have been interested in demonstrating how they have used their
funds to leverage funds from other agencies and organizations. Thus, these managers seek
to maximize both environmental benefits and in-kind cost sharing. This research example
sets up a GP model that seeks to maximize these two objectives. This GP problem can best
be understood by looking at the two extreme cases. The first case is where only environ-
mental benefits are maximized. This model is similar to the binary linear program intro-
duced in Chapter 7, which selected projects to maximize benefits subject to the constraint
that the total costs are less than the available budget. With this type of model, in-kind cost
sharing only affects the bottom-line costs of the project being considered by the FLP. In this
case, binary linear programming will still select high-quality projects that can be protected
for a relatively good price; however, this is unlikely to yield the highest total in-kind cost
share possible. The second case is where only the total in-kind cost share is maximized.

This research example uses data from the 83 proposed forest projects considered for
funding by FLP in 2009. For that year, the acquisition budget was $53 million. To deter-
mine the environmental benefit score for each project, the FLP assembled a group of 10
experts and asked each of them to score the projects from 0 to 30 based on importance,
threat, and strategic value. FLP administrators then added these three scores such that each
project had a score between 0 and 90 from each reviewer. The FLP administrator then dis-
carded the lowest and highest of the ten scores and averaged the remaining eight to give
the project a final score.

When the goal is to maximize the total environmental benefit score, the maximum
aggregate environmental benefit obtained is 3,024. In this case, the total project cost for
the 45 selected projects is $99.4 million, with $45.6 million (or 46.8%) being in-kind cost
shares. In the other case, where the goal is to maximize the total in-kind cost 
share, the model selects 22 projects, such that the total in-kind cost share is $124.3 million
(70.1% of the $177.3 million total cost). In this case, the total environmental 
benefits are just 1,534. Thus, when in-kind cost share is the sole goal to be optimized, only
51% of the possible environmental benefit score is achieved, and when environmental ben-
efits are the sole goal to be optimized, then only 37% of possible cost share is achieved.

Using these two extremes as targets, a GP problem can be set up, and then the weight
between the two can be varied parametrically to examine the tradeoffs. This problem is
stated as follows:
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Min: Z � λ(dC
�/124,272,474) � (1 � λ)(dB

�/3,024) � �0xi (0)

s.t.:

(1)

(2)

(3)

xi � {0,1}; d i
�, d i

�, � 0 (4)

where xi is a binary variable indicating whether project i is chosen. ci is the pledged in-
kind cost sharing amount, bi is the environmental benefit score, and pi is the funding
request amount. In the objective function, the negative deviations are divided by the tar-
get value so that each represents a percentage deviation and, thus, are of comparable
magnitudes. The weight factor, λ, can be varied parametrically from 0 to 1 and repre-
sents the percentage of the optimization given to in-kind costs, such that when λ is 0,
100% of the priority will be given to maximizing environmental benefits, and when λ is
1, 100% of the priority will be given to maximizing in-kind cost share. For example,
when λ is 0.3, this means that 30% of the weight will be on in-kind cost share, and 70%
will be on environmental benefits. The results of varying λ from 0 to 1 in increments of
0.1 are shown in the table below.

Total In-Kind Total Cost in
Cost Share Project Cost In-Kind Number Total 

λ Benefits ($) ($) (%) of Projects Acres

1.0 1,534 124,272,474 177,268,827 70 22 196,554
0.9 1,919 123,103,470 176,071,810 70 28 197,455
0.8 2,169 121,081,918 173,985,818 70 32 193,528
0.7 2,301 119,440,251 172,414,151 69 34 192,933
0.6 2,604 112,792,251 165,751,151 68 39 195,287
0.5 2,689 109,685,751 162,564,651 67 40 194,405
0.4 2,753 105,830,251 158,829,151 67 41 193,120
0.3 2,753 105,830,251 158,829,151 67 41 193,120
0.2 2,937 84,600,001 137,473,651 62 44 87,628
0.1 2,997 70,600,001 123,573,651 57 45 88,743
0.0 3,024 46,515,001 99,413,651 47 45 100,975

Figure 12.1 displays the results as an Efficiency Frontier, or Pareto Efficient Set7 for this
problem such that at each point along the curve one of the criteria cannot be improved 
without making the other worse. This type of figure can provide decision makers with an intu-
itive visual representation of the trade-off between cost sharing and environmental benefits.

For instance, it can be readily seen that as the priority of cost sharing in the decision
process is increased with increases in λ there are large improvements at relatively little
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7Note that solutions to goal programs are not necessarily Pareto efficient, particularly when the target values are
very easily achieved (see Tamiz et al., 1999). In this research example, this is not likely to be a problem as the
target values represent two jointly exclusive extremes.
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cost in terms of total environmental benefits. For example, when λ � 0.2, the program
could increase its cost share by 82% (from $46.5 million to $84.6 million) while decreas-
ing benefits by less than 3% (from 3,023 to 2,936). Interestingly, if the program manager
also cared about the number of acres protected, then a good result might be λ � 0.3. In
this case, there would be a 127% increase in cost share (from $46.5 million to $105.8
million) and a 91% increase in total acres protected (from 100,975 acres to 193,120 acres),
with only a 9% decrease in total environmental benefits (from 3,023 to 2,936). These
examples illustrate how GP can be used by conservation managers to balance priorities and
to make better-informed decisions for their limited conservation dollars.

SUMMARY

This chapter has focused on GP models, which relax the sometimes limiting assumption
of mathematical programming models that the decision maker wants to optimize only a
single goal. In many situations, decision makers have multiple goals that cannot all be
achieved simultaneously.

Using GP, multiple goals or targets can be specified for the decision maker and the devi-
ations from not achieving each goal are minimized. The basic idea of GP is to specify a
numeric value for each goal and then formulate a model, which minimizes the weighted sum
of the unwanted deviations of each goal. This chapter provided an overview of the concepts
behind GP, including how to set up and solve such problems. Both nonpreemptive and pre-
emptive GP were examined. Nonpreemptive GP is used when the decision maker has a con-
crete ranking scheme for the multiple goals. Preemptive GP is used when the decision maker
has lexicographic preferences among the multiple goals.

This chapter presented several illustrations of how an LP model can be extended to have
multiple objectives rather than a single objective. Also, two research applications were exam-
ined. The first application of GP was for developing countries interested in implementing
parasite control for sheep. The second application was for forest protection where the con-
servation agency sought to both maximize the conservation value and the in-kind cost share
for the projects being considered.

446 PART 2 RELAXING THE ASSUMPTIONS OF LINEAR PROGRAMMING

1,500
$45,000,000 $65,000,000 $85,000,000

Total In-Kind Cost Share

$105,000,000 $125,000,000

1,700

1,900

2,100

2,300

2,500

2,700

2,900

3,100 λ � 0.0 λ � 0.1
λ � 0.2

λ � 0.3, 0.4

λ � 0.5
λ � 0.6

λ � 0.7

λ � 0.8

λ � 0.9

λ � 1.0

To
ta

l E
nv

ir
on

m
en

ta
l B

en
ef

it

Figure 12.1 Goal programming results for forest legacy example by changes in the weight of goals.
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EXERCISES

1. Suppose a farmer has four equally ranked goals: (1) spend 50 hours per week with his
family, (2) work enough to earn $3,000 per week, (3) spend 15 hours per week vol-
unteering at the local food pantry, which supplies free food to low-income families,
and (4) sleep for 70 hours per week. Assume that the farmer earns $50 per hour of
work. Assuming that each goal is equally ranked, set up this exercise as a GP problem
and solve it using Solver.

2. Resolve Exercise 1 as a preemptive GP problem with the following weights:

Spend 50 hours per week with family � 0.5

Earn $3,000 per week � 1

Spend 15 hours per week volunteering at food pantry � 0.1

Spend 70 hours per week sleeping � 0.7

3. Decide how many units of product 1 and product 2 should be produced by using GP
given the following information:
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Item Product 1 Product 2 Endowment

Profit/unit 16 12
Labor 3 6 72
Material/unit 2 1 30

The company has the following goals:

a. Total profit should be at least 260.

b. At least 5 units of product 2 should be produced.
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4. Explain the difference between preemptive and nonpreemptive GP. Give an example
where preemptive is more appropriate than nonpreemptive GP.

5. A corn–soybean farmer has three goals for his farm: maximize profits, minimize risk,
and minimize the carbon footprint. He currently uses a conventional tillage system but
is considering using a minimum tillage system that is less costly, less risky, and has a
substantially lower carbon footprint, but is also less profitable. Assume he expects the
following profits, risk, and index of carbon footprints:

Crop/Tillage System Profit/acre Risk/acre Carbon emission/acre

Conventional Corn 415 200 500
Conventional Soybeans 350 100 350
Minimum Tillage Corn 325 75 75
Minimum Tillage Soybeans 250 25 45

The farmer owns 1,000 acres of land and can rent up to an additional 2,000 acres from
his neighbors for $275 per acre. He also has 10,000 hours of family labor available
and can hire an additional 30,000 hours of hired labor at $14 per hour. Assume it takes
10 hours to grow an acre of conventional corn, 6 hours to grow an acre of conventional
soybeans, 7 hours to grow an acre of minimum tillage corn, and 3 hours to grow an
acre of minimum tillage soybeans.

Formulate this scenario as a profit-maximizing LP model where risk and carbon
footprint are not considered. Note there should be separate activities for conventional
corn, conventional soybeans, minimum tillage corn, and minimum tillage soybeans.
Solve this exercise using Solver.

6. Modify Exercise 5 by adding a maximum risk constraint setting an upper limit of
$350,000 on total risk. Solve the exercise using Solver, and parametrically alter the
RHS value of the risk constraint downward using sensitivity analysis.

7. In addition to the maximum risk constraint of $350,000 in Exercise 6, add a maximum
carbon emission constraint of 500,000. Solve the exercise using Solver, and paramet-
rically alter the RHS value of the maximum emission constraint downward using sen-
sitivity analysis.

8. Set up and solve Exercise 7 using nonpreemptive GP, where the three goals are:

Profit � at least $690,000

Total risk � no more than $350,000

Total emission � no more than 500,000

9. Solve Exercise 8 using preemptive GP and the following weights: the total profit goal is
the most important, followed by risk, followed by carbon emission.

10. Smalltown is a city of 20,000 inhabitants. The city council is in the process of devel-
oping an equitable city rate tax table. Taxes come from a combination of four
sources:

a. Property taxes ($550M base)

b. Food and Drugs ($35M base)

c. Other Sales ($55M base)

d. Gasoline (Consumption: 7.5 million gallons per year)
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Smalltown would like to come up with a “fair” city tax with the following conditions:

a. Tax revenues must be at least $16M

b. The property tax rate should be � 1%

c. Food and drug taxes must be � 10% of all taxes collected

d. Sales taxes must be � 20% of all taxes collected

e. The gasoline tax must be � $0.02/gallon

Use nonpreemptive GP to minimize the sum of possible tax-types (property, food
and drug, etc).

11. John, a farmer in Maryland, is preparing a farming business plan for next spring. He
owns 5,000 acres and plants three crops on the farm: corn, beans, and rice. This com-
ing spring, he decides to plant one more crop on his farm: wheat. Assume the follow-
ing parameters apply to this exercise:

Corn Beans Rice Wheat Endowment

Profit ($/bushel) $4.50 $3.50 $2.50 $3.00
Risk ($/acre) $200.00 $100.00 $50.00 $80.00
Yield (bushels/acre) 100 50 60 85
Labor (hour/acre) 25 20 10 15 80,000
Land (per acre) 1 1 1 1 5,000

Although John wants to diversify his farm products, he is reluctant to change the cur-
rent planting pattern of 1,500 acres of corn, 500 acres of beans, and 2,000 acres of
rice, because changes in planting will cause an unknown risk and cost. Use GP to
determine what John should do for next spring. He would like to make at least $1.07
million in profit and not bear more than $0.45 million in risk.

12. A centrally planned developing country is currently drafting its agricultural plan for the
next several years. The Minister of Agriculture controls 300,000 acres of agricultural land
to be put into production and has several goals. First, the country is in dire need of for-
eign currency, and therefore the Minister would like to export food to other countries in
exchange for currency. Second, in order to develop the industrial sector of the economy,
the Minister knows that a significant amount of food that is grown on this land is needed
to feed industrial workers in the urban areas of the country. Third, there are also environ-
mental concerns about water pollution caused by agricultural production, which the
Minister wants to limit because it has negative consequences for the nation’s water sup-
ply. Fourth, the Minister wants to limit the total risk associated with growing the com-
modities. Assume there are four basic food commodities to be grown on this acreage:
rice, beans, wheat, and maize. Assume the following parameters apply to this exercise:

Rice Beans Wheat Maize Endowment

Item thousands of bushels

Net Revenue Domestic Sales 400 600 300 500
Net Revenue Risk Domestic 100 150 75 125
Net Revenue Foreign Sales 500 650 350 450
Net Revenue Risk Foreign 115 165 100 150
Yield (bushels/acre) 50 25 75 100
Land (per acre) 1 1 1 1 300,000
Labor (hours/acre) 15 20 8 25 2,400,000
Water Pollution (contaminants/acre) 10 1 2 5
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Assume that the Minister’s objective is to maximize net revenue from domestic and
foreign sales of the four commodities. Formulate the LP model for this exercise, and
solve it using Solver.

13. Modify Exercise 12 as follows: add a maximum water pollution constraint of
1,200,000, and solve it using Solver. Use parametric programming, and alter the RHS
value for this constraint to see how the solution changes.

14. Modify Exercise 13 to include a minimum constraint for domestic production.
Specifically, assume that the country needs at least 10 million bushels of rice, beans,
wheat, and maize in total.

15. Modify Exercise 14 to also include a maximum amount of risk for domestic and foreign
production of $45 million.

16. Solve Exercise 15 as a nonpreemptive GP problem with the following goals:

Goal 1: at least $45 million in foreign sales

Goal 2: at least 13 million bushels of rice, beans, wheat, and maize for domestic sales

Goal 3: no more than 1 million contaminants of pollution

Goal 4: no more than $25 million in total risk

17. Solve Exercise 16 as a preemptive GP problem with the following weights:

Goal 1 � 1, Goal 2 � 100, Goal 3 �1, and Goal 4 �1

18. Solve Exercise 16 as a preemptive GP problem with the following weights:

Goal 1 � 1, Goal 2 � 100, Goal 3 � 1, and Goal 4 � 50

19. A firm manufactures two types of wood beams. Each top-quality super beam (x1)
nets the firm $200 profit and each lower-grade beam (x2) nets $100 profit. Each
super beam requires two Grade-1 logs and one Grade-2 log. Each lower grade beam
requires one Grade-1 log and three Grade-2 logs (Grade-1 logs are better quality
than Grade-2 logs). The firm can acquire a total of 15 Grade-1 logs and 20 Grade-2
logs per week. Formulate this as an LP problem assuming the firm’s goal is to max-
imize profits.

20. Now suppose that rather than maximizing profits in Exercise 19, the firm has the fol-
lowing preemptive goals:

Goal 1: Achieve a $2,000 weekly profit

Goal 2: Completely utilize all Grade-1 logs

Goal 3: Completely utilize all Grade-2 logs

Formulate this as a nonpreemptive GP problem. Solve it using Solver.

21. Formulate Exercise 20 as a preemptive GP problem where the priorities are Goal 1 �
Goal 2 � Goal 3.

22. Formulate Exercise 20 as a preemptive GP problem where the priorities are Goal 3 �
Goal 2 � Goal 1.

23. A new energy business is considering selling and installing three types of alternative
energy systems for residential homes in addition to its conventional system (conv). The
first is a thermal solar (solar1) hot water system that provides both hot water and heat to
the home. The second is a solar system (solar2) that provides electricity to the home. The
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third is a geothermal (geo) heating and cooling system. The business has 10 installers
and faces the following parameters for the year:

conv solar1 solar2 geo Endowment

Profit/unit $2,000 $1,500 $2,500 $1,000
Labor (weeks) 0.5 1.0 1.5 0.75 520

The firm has four goals:

Goal 1: Make at least $1,500,000 per year from the sale of these four systems

Goal 2: Sell at least 160solar1 systems each year

Goal 3: Sell at least 160solar2 systems each year

Goal 4: Sell at least 160geo systems each year

Formulate and solve the profit maximizing solution to this exercise ignoring the four
goals.

24. Formulate and solve Exercise 23 as a nonpreemptive GP problem.

25. Formulate and solve Exercise 23 as a preemptive GP problem with the following
weights:

Goal 1 � 1, Goal 2 �5, Goal 3 � 5, and Goal 4 � 1

26. Reconsider the first preemptive GP example in this chapter, for the food manufacturer
with profit and risk goals. Modify this exercise by incorporating the following addi-
tional goals besides profit and risk:

Goal 3: Provide at least 100 units of A, B, C, D, or E in October

Goal 4: Provide at least 100 units of A, B, C, D, or E in February

Goal 5: Provide at least 100 units of A, B, C, D, or E in June

Formulate and solve this new GP model.

27. A farmer is considering planting some combinations of corn, soybeans, and rice. She has
10,000 acres of land available and 200,000 hours of labor. The following table details the
profit, risk, pollution, and labor requirements (all per-acre) associated with each activity.

Corn Soybeans Rice

Revenue 350 525 400
Risk 75 90 65
Pollution 5 7 12
Land 1 1 1
Labor 20 17 15

Given that she wants to maximize profit and minimize risk and pollution:

a. Find the optimal feasible level for each goal independently, assuming that all of
the land is used.

b. Find the optimal solution for a GP using the results from part a as target values,
assuming that she places about two-thirds more emphasis on minimizing risk than
on the other objectives.

c. Find the optimal solution for a preemptive GP assuming her first priority is risk,
followed by revenue, then pollution.
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13
Dynamic Programming

With the exception of the dynamic farm models presented earlier in this book, the previ-
ously presented mathematical programming models have all been static models. In gen-
eral, the majority of linear, integer, binary, goal, sector, and nonlinear programming
models are static, one-period models. These static problems, in essence, assume all activi-
ties occur at once. Although these models have been extremely useful and used widely in
real-world problem solving, some problems require treating the decision process dynami-
cally. The technique of dynamic programming (DP), which is the focus of this chapter,
is particularly well suited for solving such problems.

Dynamic programming is a method used to solve large and complicated problems by
splitting them into smaller subproblems that are both easier to solve and yield the same
optimal solution as the original large problem. These smaller subproblems are referred to
as stages in DP nomenclature. Dynamic programming problems are solved most com-
monly by working backwards. It is not a solution algorithm like the simplex method, but
rather a solution approach that varies with each problem.

As the term “dynamic” implies, DP is often used in applications where each stage has a
time dimension, and there is a certain timing sequence for each stage. For example, crop
agricultural decision problems might be divided into planting, preharvest, harvest, 
and postharvest stages. Within each stage, certain decisions need to be made, and DP mod-
els provide optimal solutions for these decisions. In addition, DP can also be used in static
problems where stages correspond to something else besides time, such as cities in a net-
work. Because DP is often used for problems without a time dimension, the term “dynamic
programming” is a bit misleading. Perhaps a better term than DP would be “recursive pro-
gramming,” as the essence of DP is the relationship between multiple stages in the 
problem, and a stage may or may not involve time.

Dynamic programming is used both in solving mathematical programming optimization
problems and in solving huge problems involving a lot of computational power in com-
puter science. Of course, the focus here is on mathematical programming problems. There
are two general categories of DP: deterministic and probabilistic. Deterministic, which is
the focus in this book, means that there is certainty regarding all parameters of the model,
whereas probabilistic or stochastic DP relaxes this assumption.
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This chapter illustrates several problems that can be solved using DP. As will be seen, the
solution approach varies with each problem presented in this chapter. Three examples are
presented, including a network problem, an inventory-purchase problem, and a capital 
budgeting problem. The chapter also includes a discussion of the general elements of DP, and
the advantages and disadvantages of DP. The chapter concludes with two research applica-
tions of DP. The first deals with animal health control policies in Malawi, while the second
illustrates the use of DP in converting conventional farm land to organic farming.

13.1 A NETWORK PROBLEM

Consider the following simple network example displayed in Figure 13.1, where a person
wants to go from node 1 (e.g., Washington, D.C.) to node 9 (e.g., San Francisco). Assume
the person wants to travel the shortest distance to get from 1 to 9. In this example, the num-
ber inside each circle represents a city, and the number on each arc represents the distance
between each city.

A critical underpinning of any DP problem is the principle of optimality, which is attrib-
uted to the creator of DP, Richard Bellman. This principle, which is also called the Bellman
equation, is the basis for decomposing a complex problem into much simpler subproblems
that can be solved “recursively.” Recursive means each stage is interconnected, and hence
can be broken up and solved in subproblems. In the context of this example, the principle
of optimality implies that if a node in the network is part of the optimal arc, then the short-
est distance from that node to the final node is also part of the optimal arc. This is impor-
tant because it allows us to split the larger problem into smaller ones that, when solved, give
the same solution as solving the larger problem by itself.

The DP method solves each stage by working backwards. For instance, in the problem
at hand, the first stage of the problem consists of the nodes that are just prior to the final
destination: nodes 7 and 8 in Figure 13.1. The second stage includes the nodes just prior
to stage 1 nodes (e.g., 5 and 6). Note that 5 and 6 are the input nodes, and 7 and 8 are the
output nodes for stage 2. Stage 3 includes input nodes that are just prior to stage 2 (2, 3,
and 4) and output nodes that are the input nodes to stage 3 (5 and 6). Finally, stage 4
includes one input node (1) and three output nodes (2, 3, and 4).
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Figure 13.1 Shortest route problem by stage in the network.
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Stage 1. There are two input nodes in stage 1: 7 and 8. For each of these nodes, there is
only one way to get to the final destination, and so each represents the shortest route. If
travelling from 7 to 9 is 100 miles and if travelling from 8 to 9 is 50 miles, the stage 1
solutions can be summarized as:

CHAPTER 13 DYNAMIC PROGRAMMING 455

Input Nodes Route Minimum Distance to 9

7 7–9 100 miles
8 8–9 50 miles

Stage 2. For stage 2, the traveler can start at either input nodes 5 or 6. Consider node 5
first. There are two possible routes leaving node 5, from 5 to 7 with a distance of 50 miles,
and from 5 to 8 at a distance of 85 miles. If arc 5–7 is selected, the total distance to the
destination is 50 � 100 � 150 miles. If arc 5–8 is selected, the total distance to the desti-
nation is 85 � 50 � 135 miles. Hence, if we are at node 5, the minimum distance to the
destination is through arc 5–8.

Next consider node 6. There are two possible routes leaving node 6, from 6 to 7 with a dis-
tance of 40 miles, and from 6 to 8 at a distance of 100 miles. If arc 6–7 is selected, the total
distance to the destination is 40 � 100 � 140 miles. If arc 6–8 is selected, the total distance
to the destination is 100 � 50 � 150 miles. Hence, if we are at node 6, the minimum dis-
tance to the destination is through arc 6–7. The stage 2 solutions can be summarized as:

Input Nodes Route Output Nodes Minimum Distance to 9

5 5–8 8 135 miles
6 6–7 7 140 miles

Stage 3. There are three input nodes to consider in stage 3: 2, 3, and 4. Considering node
2 first, there are two possible routes: from 2 to 5 at a distance of 200 miles, or from 2 to 6
at a distance of 225 miles. When going from 2 to 5, the minimum distance is 200 miles to
get to 5 plus the minimum distance from 5 to the final destination 9, which is given in the
table above as 135 miles, that is, 200 � 135 � 335 miles to get from 2 to 9. Going from 
2 to 6, the minimum distance is 225 miles to get to 6 plus the minimum distance from 6 to
the final destination 9, which is given in the table above as 140 miles, that is,
225 � 140 � 365 miles to get from 2 to 9. In this case, because 335 miles is less than 365
miles, route 2–5 is the optimal route.

Next consider node 3, which has two possibilities: from 3 to 5 at a distance of 175 miles,
or from 3 to 6 at a distance of 150 miles. Going from 3 to 5, the minimum distance is 175
miles to get to 5 plus the minimum distance from 5 to the final destination 9, which is
given in the table above as 135 miles, that is, 175 � 135 � 310 miles to get from 3 to 9.
Going from 3 to 6, the minimum distance is 150 miles to get to 6 plus the minimum dis-
tance from 6 to the final destination 9, which is given in the table above as 140 miles, that
is, 150 � 140 � 290 miles to get from 3 to 9. In this case, because 290 miles is less than
310 miles, route 3–6 is the optimal route.

Finally, node 4 also has two possibilities: from 4 to 5 at a distance of 230 miles, or from
4 to 6 at a distance of 230 miles. Going from 4 to 5, the minimum distance is 230 miles to
get to 5 plus the minimum distance from 5 to the final destination 9, which is given in the
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table on page 455 as 135 miles, that is, 230 � 135 � 365 miles to get from 4 to 9. Going
from 4 to 6, the minimum distance is 230 miles to get to 6 plus the minimum distance from
6 to the final destination 9, which is given in the table above as 140 miles, that is,
230 � 140 � 370 miles to get from 4 to 9. In this case, because 365 miles is less than 370
miles, route 4–5 is the optimal route. The stage 3 solutions are summarized as:
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Input Nodes Route Output Nodes Minimum Distance to 9

2 2–5 5 335 miles
3 3–6 6 290 miles
4 4–5 5 365 miles

Stage 4. There are three possibilities: from 1 to 2 at a distance of 115 miles, from 1 to 3
at a distance of 175 miles, and from 1 to 4 at a distance of 65 miles. Now it is easy to see
that the optimal solution to this problem is given as:

min(115 � 335 � 450, 175 � 290 � 465, 65 � 365 � 430) � 430 miles.

The optimal route is from 1 to 4 to 5 to 8 to 9 at a total distance of 430 miles.
While it would have been possible to evaluate all possible routes by hand to come up with

the optimal solution, this example serves to illustrate the efficiency of DP. That is, with DP,
evaluation of all possible routes is not necessary to find the optimal solution. In this network,
there are (3)(2)(2) � 12 possible paths to get from node 1 to node 9. Using DP, fewer than
12 computations were made because by moving backwards, not all possible routes needed 
to be considered. Moreover, in substantially larger networks, the number of computations to
evaluate all routes explodes exponentially, and the use of DP becomes significantly more
economical.

Components of a Dynamic Programming Problem

Consider the following notation in reference to the problem above. Let:

xi � input for stage i, and output for stage i�1

di � decision at stage i

For example, x3 in the problem above is the input for stage 3, which represents the location
in the network at stage 3, and the output for stage 4, which represents the node reached due
to the decision in the previous stage; d3 is the decision variable at stage 3, which is the route
selected. In general, the input/output variables (xi) in a DP are called the state variables.
State variables connect the subproblems or stages together in the DP problem. These vari-
ables define the condition or state in the current stage of the system. For example, if cur-
rently in Cincinnati on a trip from Washington, D.C., to San Francisco, the passenger’s next
stage involves deciding to go to Chicago, Kansas City, or Ames. In this case, Cincinnati rep-
resents the current state of the system.

The decision variables (di) in a DP problem, which are sometimes called control vari-
ables, are more analogous to the decision variables in mathematical programming models.
The term “control” implies that the decision maker has control over these variables. In the
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simple network problem above, the control variables are the routes chosen, which are con-
ditional on the state variable. For example, the decision to go to either Chicago, Kansas
City, or Ames is made conditional upon being in Cincinnati.

More generally, in DP, a state variable can be written as:

xi�1 � fi(xi, di),

where fi is a function at stage i that transforms the input into stage i output. This function
is sometimes called the stage transformation function. The functional form depends
upon the particular problem. For example, the following would be the transformation for
stage 2 of the previous problem (x1 � f2(x2, d2)), where the routes are the decision variables
in the middle cells of the table:
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Output State x1

Input State x2 Node 7 Node 8

Node 5 5–7 5–8
Node 6 6–7 6–8

To evaluate the various outcomes, a value must be placed on each possibility, such as
miles of the various routes. In DP, this is called a return function, and can be expressed as:

ri � ri(xi, di).

Hence, there are two inputs and two outputs for each stage; the two inputs are the state (xi)
and the decision variable (di), and the two outputs are the new values for the state variable
(xi-1) and the return for that stage (ri). Figure 13.2 illustrates this process, where each box
represents a stage of the problem, and the value of the state variable is determined by the
transformation function, xi�1 � fi(xi, di) and the value of the return for each stage is deter-
mined by the return function, ri � ri(xi, di). The total return function, which links all stages
together, given the total return from stage T-1, (where T is the total number of stages) given
input state T-1 and the decision made in stage T-1 is:

rT � rT (xT, dT).

x��1 � fM(xM, dM)

dM

rM(xM, dM) r��1(x��1, d��1)
r1(x1, d1)

Input 
state
xM

Output 
state
x��1 x��1

Input 
state

d��1

Output 
state
x��2

Input 
state
x1

d1

Output 
state
x0x��2 � f��1

(x��1, d��1) x1 � f1(x1, d1)

Figure 13.2 Decomposition of dynamic programming problem by decision and state variables
and return and stage transformation functions.
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13.2 CHARACTERISTICS OF DYNAMIC PROGRAMMING 
PROBLEMS

There are several characteristics of all DP problems. First, the problem can be divided into
multiple stages in which decisions are made in each stage, and each stage can be solved
separately. In the example above, each stage represented nodes in a network, and the deci-
sion for each stage was the route to choose to get to the next set of nodes. In a crop farm
problem, the planting stage would include a host of decisions related to how much acreage
should be planted with the various crops and the timing of planting for each crop.

A second attribute of DP is that certain states are associated with each stage of the prob-
lem. A state in DP provides a means of going from one stage to another. For instance, in
the network problem, each state represents a node within the network.

Third, decisions made in any individual stage transform the state in that stage into the
state in the next stage. That is, stage i decisions transform the state in stage i into the state
in the next stage. If a decision has been made to travel from Washington, D.C., to
Cincinnati, then that transforms the state in the next stage such that Cincinnati becomes
the state to travel from in subsequent decisions involving routes.

Fourth, conditioned on the current state, the optimal solution for remaining stages does
not depend on previous states attained or previous decisions made. This is the so-called
principle of optimality. Consider the network example. Suppose that it is known that path
M is the shortest route from node 1 to 9, and it is known to pass through node 4. Then the
path of M going from 4 to 10 must be the shortest path from 4 to 10. If this were not 
the case, then it would be possible to find an alternative path from 1 to 10 that was shorter
than M by adding the shortest path from 4 to 10 to the portion of M from 1 to 4. This 
would result in a shorter route than M, which contradicts the proposition that M is the
shortest path.

Finally, the problem involves a recursive relationship determining the optimal decision for
stage i, given that stage i�1 has already been solved, and the final stage must be solvable by
itself. For example, suppose the initial state for Stage 1 is S1. In DP, we work backwards
beginning with the last stage, and use recursion to determine fi(xi, di) and ri(xi, di) starting with
stage T-1. In other words, start by determining fT-1(xT-1, dT-1) and rT-1(xT-1, dT-1) for each stage T-
1 state, then use recursion to determine fT-2(xT-2, dT-2) and rT-2(xT-2, dT-2) for each stage T-2 state,
and so on until f1 is solved.

13.3 A PRODUCTION INVENTORY PROBLEM

Consider the following problem for a large food distributor who buys cheese from a dairy
cooperative and distributes and sells it to local food outlets throughout the United States.
In this problem the stages in the DP will coincide with periods of time, specifically three
months: January, February, and March. At the beginning of each month, the company must
purchase enough cheese to satisfy the demand of its customers. Assume the following data
has been gathered for this problem:
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Cost per million lbs. Storage cost per
Demand of cheese million lbs.

Month (millions of pounds) ($ million) ($ million)

January 1 1.00 0.10
February 3 1.25 0.10
March 2 1.50 0.10
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Define the following:

dn � decision variable at stage n, which is the amount of cheese purchased for
month n � 1, 2, 3

xn � state variable at stage n, which is the amount of cheese inventory at the
beginning of month n

Dn � demand for cheese in month n

rn(xn, dn) � sum of costs of acquiring and storing cheese in month n

rT(xT, dT) � overall return function, which is the total sum of costs of acquiring and
storing cheese for all three months

To solve this DP, work backwards letting March be stage 1, February be stage 2, and
January be stage 3. Denoting the cost of acquiring the cheese in stage n as pn, and the cost
of storing it as cn, the total cost of acquiring and storing the cheese in stage n is:

rn(xn, dn) � pndn � cn(xn � dn � Dn).

Note that the second term represents total storage costs for that month. Also, note that the
term in parentheses, xn � dn � Dn, represents the amount by which beginning inventories
plus cheese purchases exceed the current month’s demand for cheese. Therefore, this
amount is also equal to the beginning inventory level in the subsequent month, that is:

xi-1 � xi � di � Di.

This is the stage transformation function for this problem, which simply states that begin-
ning cheese inventories for month i-1 are equal to cheese inventories in the previous
month, plus cheese purchases in the previous month, minus demand in the previous month.
Figure 13.3 illustrates the stage transformations for this problem across the three stages.

The last element of the DP is an expression for the overall return function from this
recursive problem, rT(xT, dT):

rT(xT, dT) � rn(xn, dn) � rT-1(xT-1, dT-1).

This recursion says that the overall return of this problem is the sum of the current deci-
sion plus cumulative earlier decisions made.

Stage 1 (March). Assume no inventories are desired for the final month in this problem.
Demand for March is given as 2 million pounds of cheese. Hence, at most, we cannot have
more than 2 million pounds of cheese in inventories at the beginning of March. The least
amount of cheese that can be in inventories at the beginning of March is 0. Assume that
the food company can only purchase cheese in integer amounts from the dairy cooperative
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x2  � x3 � d3 � D3 x1  � x2 � d2 � D2 x0  � x1 � d1 � D1
Beginning 
inventory 
January

x2

r3(x3, d3) r2(x2, d2)

x1 � 0

d3 D3

x3  � 0

Beginning
inventory
February  

d2 D2

x1

Beginning 
inventory 

March

d1 D1

r1(x1, d1)

Figure 13.3 Stage transformation process for three-stage cheese inventory DP problem.
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(e.g., 1, 2, 3, 4, … , million pounds). In this case, there are three possibilities for the state
variable in this stage, x1 can be 0, 1, or 2. For each possible state, the total purchase and
storage costs can be computed from the following function:

r1(x1, d1) � 1.50d1 � 0.10(x1 � d1 � D1).

The following table calculates values of r1 given each possible cheese inventory state:
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Cheese Inventory 
States x1 d1 � 0 d1 � 1 d1 � 2 r1

*(x1, d1) d1
*

0 3.0 3.0 2
1 1.5 1.5 1
2 0 0 0

Note that not all the cells in this table have values; the cells are empty in cases where
March demand (2) is not exactly met. In this table, if March begins with zero cheese inven-
tories, the optimal solution is to purchase 2 million pounds of cheese, which costs $3 mil-
lion. If March begins with 1 million pounds of cheese inventories, the optimal solution is to
purchase 1 million pounds of cheese, which costs $1.5 million. If March begins with 2 mil-
lion pounds of cheese inventories, the optimal solution is to purchase no cheese since
demand is exactly met by the 2 million pounds of cheese in inventories. In the final state,
costs are equal to zero.

Stage 2 (February). Again, we start out by defining the possible states. Now there are six
possibilities for the state variable in order to meet demand in February and March (i.e., 
3 � 2 � 5), that is, x2 can be 0, 1, 2, 3, 4, or 5. For each possible state, the total purchase
and storage costs can be computed from the following function:

r2
*(x2, d2) � 1.25d2 � 0.10(x2 � d2 � D2) � r1

*(x2 � d2 � D2).

The following table calculates values of r2 given each possible cheese inventory state:

Cheese Inventory
States x2 d2 � 0 d2 � 1 d2 � 2 d2 � 3 d2 � 4 d2 � 5 r2

*(x2, d2) d2
*

0 6.75 6.60 6.45 6.45 5
1 5.50 5.35 5.20 5.20 4
2 4.25 4.10 3.95 3.95 3
3 3.00 2.85 2.70 2.70 2
4 1.60 1.45 1.45 1
5 0.20 0.20 0

Note that not all the cells in this table have values; the cell is empty in cases where the
decision variable levels are either too small or too large to satisfy demand for February and
March. For example, consider x2 � 3 and d2 � 2. Denoting that as r2(3, 2), this yields:

r2(3, 2) � 1.25(2) � 0.10(3 � 2 � 3) � r1
*(3 � 2 � 3),

� 2.50 � 0.20 � r1
*(2),

� 2.70 � 0,

� 2.70.
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Notice that the second term, r1
*(2), was actually derived already in stage 1, and here is

equal to 0.
As another example, consider x2 � 1 and d2 � 2. Denoting that as r2(1, 2), this yields:

r2(1, 2) � 1.25(2) � 0.10(1 � 2 � 3) � r1
*(1 � 2 � 3),

� 2.50 � r1
*(0),

� 2.50 � 3 � 5.5.

Here, the second term, r1
*(0), derived already in stage 1, is equal to 3.

Stage 3 (January). In stage 3, there is one state variable assuming beginning inventories
in January are zero. Hence, x1 � 0. The decision variable, cheese purchases, however, can
vary between 1 (January demand) to 6 (January � February � March demand) units. For
each possible state, the total purchase and storage costs can be computed from the follow-
ing function:

r3(x3, d3) � 1.00d3 � 0.10(x3 � d3 � D3) � r2
* (x3 � d3 � D3), or since 

x3 � 0 and D3 � 1,

r3
*(x3, d3) � 1.10d3 � 0.10 � r2

*(d3 � 1), 

where the * indicates the optimal solution in this stage.

The following table calculates values of r3 given each possible cheese inventory state:
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Cheese Inventory
States x3 d3 � 1 d3 � 2 d3 � 3 d3 � 4 d3 � 5 d3 � 6 r3

*(x3, d3) d3
*

0 7.45 7.30 7.15 7.00 6.85 6.70 6.70 6

Consider the d3 � 1 entry for zero beginning inventories:

r3
*(0, 1) � 1.10(1) � 0.10 � r2

*(1 � 1),

� 1 � r2
*(0),

� 1 � 6.45,

� 7.45.

Consider the d3 � 2 entry for zero beginning inventories:

r3
*(1, 2) � 1.10(2) � 0.10 � r2

*(2 � 1),

� 2.10 � r2
*(1),

� 2.10 � 5.20,

� 7.30.
Consider the d3 � 3 entry for zero beginning inventories:

r3
*(1, 3) � 1.10(3) � 0.10 � r2

*(3 � 1),

� 3.20 � r2
*(2),

� 3.20 � 3.95,

� 7.15.
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Consider the d3 � 4 entry for zero beginning inventories:

r3
*(1, 4) � 1.10(4) � 0.10 � r2

*(4 � 1),

� 4.30 � r2
*(3),

� 4.30 � 2.70,

� 7.00.

Consider the d3 � 5 entry for zero beginning inventories:

r3
*(1, 5) � 1.10(5) � 0.10 � r2

*(5 � 1),

� 5.40 � r2
*(4),

� 5.40 � 1.45,

� 6.85.

Consider the d3 � 6 entry for zero beginning inventories:

r3
*(1, 6) � 1.10(6) � 0.10 � r2

*(6 � 1),

� 6.50 � r2
*(5),

� 6.50 � 0.20,

� 6.70.

The optimal decision in stage 3 is d3
*�6 for zero beginning inventories (x3

* � 0).
The optimal decision in the previous two stages can be found by the stage transforma-

tion function:

x2
* � x3 � d3 � D3 � 0 � 6 � 1 � 5

d2
* is equal to:

d2
* � min(D2 � x2

*, 0),

� min(3 � 5, 0),

� 0.

The optimal solution for stage 1 is:

x1
* � x2

* � d2
* � D2 � 5 � 0 � 3 � 2.

d1
* is equal to:

d1
* � min(D1 � x1

*, 0),

� min(2 � 5, 0),

� 0.

So the optimal solution to this problem is to purchase 6 million pounds of cheese in January,
sell 1 million pounds, and store the remaining 5 million pounds for sale in February and
March. In February and March, the company will not purchase any cheese, and will meet
demand exactly from inventory sales. This least-cost strategy costs a total of $6.70 million.
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13.4 A CAPITAL BUDGETING PROBLEM

A large agribusiness firm is considering funding four possible projects for the future and has
a total budget of $20 million. Suppose that the four projects have the following expected
costs and returns:
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Expected cost Expected returns 
Project ($ million) ($ million)

1 11 12
2 13 19
3 7 14
4 6 6

This problem could be solved as a binary programming problem, as funding fractional
amounts of projects is not a possibility. Rather, the decision is whether to fund or not to fund
each project. This problem could also be solved using DP, which is formulated as follows.

Here there is no time element involved, but the stages correspond to the projects. Hence,
there are four stages.

The state variables are the amounts of money available at each stage. Define the state
variable, xi, as the amount of capital available for stage i.

The decision variable for each stage is whether or not to fund the project. Hence, di � 0
or 1 for each stage.

The stage transformation function for this problem relates the amount of capital avail-
able from one stage to the next. This can be written mathematically as:

xi�1 � xi � cidi,

where ci is the cost of project i. This equation states that the amount of capital in stage i�1
depends on how much was spent in the previous stages.

The final component of the DP problem is the return function. Define the return func-
tion as:

ri(xi, di) � pidi,

where pi is the expected return for project i. The total return function is:

ri(xi, di) � pidi � r*
i�1(xi � cidi), and

di � 0 or 1.

Stage 1: The return function is:

Max: r1(x1, d1) � 12d1

d1 � 0 or 1.

As we are working backwards, we do not know how much capital is available for stage 1; 
we do know, however, that $20 million is available for Stage 4. We also know that the
available capital for stage 1 will range between $0 and $20 million. Assume that the man-
agers must fund at least one project prior to stage 1. This helps us define the states for
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stage 1. Because the manager must fund at least one project prior to stage 1, there are five
possibilities for available capital in stage 1:

20 � 6 � 14,

20 � 6 � 7 � 7,

20 � 7 � 13,

20 � 6 � 13 � 1,

20 � 7 � 13 � 0.

The return function for stage 1 is r1 � 12d1. The following table calculates the values of r1

given each possible available capital state:
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Available Capital
States x1 d1 � 0 d1 � 1 r1

*(x1, d1) d1
*

0 0 0 0
1 0 0 0
7 0 0 0

13 0 12 12 1
14 0 12 12 1

Available Capital
States x2 d2 � 0 d2 � 1 r2

*(x2, d2) d2
*

7 0 0 0
13 12 19 19 1
14 12 19 19 1
20 12 19 19 1

Stage 2: Available capital in stage 2 will depend upon whether projects 3 or 4 were funded.
There are four possibilities:

20 � 6 � 0 � 14,

20 � 6 � 7 � 7,

20 � 7 � 13,

20 � 0 � 20.

The stage 2 return function is:

r2(x2, d2) � 19d2 � r*
1(x2 � 13d2), and

d2 � 0 or 1.

The following table calculates values of r2, given each possible available capital state:

Notice that even if d2 � 0, there are entries of $12 million under three of the four states
in that column. This is due to the fact that there is enough capital to fund d1 for three of
these four states, and that project returns $12 million.
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Stage 3: Available capital in stage 3 will depend upon whether project 4 was funded. There
are two possibilities:

20 � 6 � 14,

20 � 0 � 20.

The stage 3 return function is:

r3(x3, d3) � 14d3 � r2
*(x3 � 7d3), and

d3 � 0 or 1.

The following table calculates values of r3 given each possible available capital state:
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Available Capital 
States x3 d3 � 0 d3 � 1 r3

*(x3, d3) d3
*

14 19 20 14 0
20 19 33 33 1

Available Capital 
States x4 d4 � 0 d4 � 1 r4

*(x4, d4) d4
*

20 33 20 33 0

Notice again that even when d3 � 0, there are entries of $19 million under all two states
since there is enough budget to fund project 2, which returns $19 million.

Stage 4: Available capital in stage 4 is $20 million.
The stage 4 return function is:

r4(x4, d4) � 6d4 � r*
3(x4 � 6d4), and

d4 � 0 or 1.

The following table calculates values of r4, given each possible available capital state:

So the optimal solution is as follows: d4
* � 0, which means that x3

* � 20 because none of
the budget is spent on project 4.

From the stage 3 table, when x3
* � 20, d3

*� 1, and the remaining budget is therefore
20 � 7 �13 � x2

*.
From the stage 2 table, when x2

* � 13, d2
* � 1, and the remaining budget is therefore

20 – 7 – 13 � 0 � x1
*.

From the stage 1 table, for x1
* � 0, d 1

* � 0.
Hence, the optimal solution is to fund projects 2 and 3 and to not fund projects 1 and 4.

The expected total return is $33 million.

13.5 COMMENTS ON DYNAMIC PROGRAMMING

All three examples of DP that were presented here are very simple applications of DP,
which were chosen by design in order to illustrate the logic behind recursion in the sim-
plest manner possible. Even these simple applications can be fairly tricky to comprehend.
Nevertheless, the logic behind larger and more realistic DP is essentially the same. 
The reader can imagine network, inventory, and capital budgeting problems with hundreds
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or even thousands of stages that would require solving by computer. Indeed, there are DP
software packages available for the types of problems illustrated in this chapter.

When setting up a DP problem, it should be clear from these three examples that there
are five basic elements of the problem. First, determine the stages. Second, define the pos-
sible states in the system. Third, indentify the decision variables. Fourth, specify the stage
transformation function mathematically. Finally, determine the total return function and
the recursive relationship. These five elements comprise any DP.

The primary disadvantage of DP is that, unlike most mathematical programming mod-
els, DP is not very generalizable like the simplex method, or some of the NLP algorithms
discussed in previous chapters. As a result, each problem requires a unique specification.
DP also suffers from the curse of dimensionality. This means the number of computations
explodes exponentially with the number of stages and state variables. Also, solving a DP
is not as efficient as other mathematical programming solution techniques such as the sim-
plex method. However, this is not as much of a problem with the large computational
power of modern personal computers.

There are several advantages of DP. First, for some problems, DP is the only solution
approach. For instance, DP has been widely used in inventory problems for this reason.
Second, for decision-tree type problems, DP is particularly well suited. Third, DP is appli-
cable to a wide host of problems, so it is quite flexible.

13.6 RESEARCH APPLICATION: ANIMAL HEALTH 
IN DEVELOPING COUNTRIES

Hall et al. (1998) developed a DP model to determine efficient animal health control for
developing countries. Many economically important animal diseases remain a problem in
developing countries despite expensive control attempts. In such cases, there remains a need
for modeling more cost-effective control method alternatives. A good example is the East
Coast Fever (ECF) situation in eastern and central Africa. ECF is a protozoan disease caused
by Theileria parva parva, transmitted to cattle by the Rhipicephalus appendiculatus tick.
Annual calf mortality from ECF can be greater than 75% and closely parallels the tick bur-
den on pasture, which is greatest in the rainy season. Most parts of East Africa control ECF
by dipping cattle at acaricide dip tanks, but tick resistance to acaricides and concerns regard-
ing the cost-effectiveness and human health risk of frequent dipping have prompted consid-
eration of alternative disease control methods (Pegram & Chizyuka 1990).

Several methods have been used to evaluate the economics of animal health control
programs, including cost-benefit analysis and LP. Hall et al. (1998) developed the first 
DP model to look at this issue. Their DP model estimated the economic benefits of con-
trolling ECF in Malawi Zebu cattle herds in the Lilongwe plateau of Malawi. For alter-
native treatment scenarios, the model determined optimal net benefits of treatment and
optimal treatment frequency.

Dynamic Programming Model

The investigative unit of their model is the herd of all cattle within the same ecozone, at
which the disease control program is targeted. The objective function of the model maxi-
mizes the net present value (NPV) of the difference between savings from reductions in
mortality and the costs of the control program for a specific planning horizon. Thus, the
objective function considers both government costs of disease control and the producer
benefits in terms of the value of reduced mortality. The value of the objective function
therefore acts as a proxy for the net social benefits of the control program.
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The mathematical formulation of the DP model is:

Max:  Z = (13.1)

s.t.:
Herd inventory and structural constraints:

(13.2)

(13.3)

Nutritional constraints:

(13.4)

(13.5)

(13.6)

Budgetary constraints:

(13.7)

where:

Z � net benefits of mortality savings – programs costs (the objective function)

di � 1/(1 � interest) i in time period i, where interest � 10%

PDTBDZij � the difference in the probability of death from the target disease between
control and treatment groups, calculated for cohort j in time period i

VALUEj � total sales (milk, meat, and livestock) from one animal in cohort j – salvage
value (i.e., potential sale value – salvage value if animal had died)

XNij � variable number of animals to be treated, recommended by the model;
decision variable

RESij � vector of drug and labor costs to carry out control measure in time period i

aij � chosen percent of animals of age cohort j in the herd at time period i

bij � chosen total number of animals in the herd at the time of period i

MEij � metabolizable energy requirements of an animal of age cohort j at time i

MPij � metabolizable protein requirements of an animal of age cohort j at time i

NDFij � neutral detergent fiber intake limit of an animal of age cohort j at time i

MEFORGi � metabolizable energy available from forage (kg DM per ha) at time i

MPFORGi � metabolizable protein available from forage (kg DM per ha) at time i

NDFFORGi � neutral detergent fiber available from forage (kg DM per ha) at time i

FORGHASi � hectare of forage available at time i

DMIij � dry matter intake of an animal in cohort j at time i

Nij � number of animals of cohort j in the herd at time period i, state variable

BUDG � total control program budget

d (RES BUDGi ij ij
ji

)( )XN∑∑ �

(NDF (FORGHAS NDFFORG DMIij ij
ji
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The stages in the model correspond to time periods for the animal treatment program. The
state variables in the model are the number of cattle of each age cohort in the herd (Nij),
and the decision variables are the number of cattle of each age cohort to treat (XNij). Thus,
in order to maximize overall net social benefits, the model solves for the number of ani-
mals to treat at each stage. The model also uses rates of culling and offtake (sales) to main-
tain herd structure and to meet nutritional constraints.

The mortality savings portion of the objective function considers the difference in mor-
tality between the control group and the treatment group, using the variable number of ani-
mals to be treated generated by the model. The difference in the probability of death from
the target disease between control and treatment group (PDTBDZ) is thus defined to value
only the mortality losses from the target disease that are prevented by treatment and not
the losses that would occur despite treatment. The model is solved separately for each
alternative treatment scenario, and the net benefits between treatments are compared.

The herd is divided into four cohorts based on age and immune status (susceptible calves,
immune calves, susceptible adults, and immune adults), each of which is a state variable.
The dynamic nature of the herd size, composition, and immune status is described by a
series of interdependent equations, which differ slightly depending on treatment. As calves
mature, they are transferred into the appropriate adult cohorts. Using susceptible calves
(SCALF) as an example, the basic form of the equations describing changes in the size of
a cohort at time i � 1 is:

N(i � 1, SCALF) � N(i, SCALF) � {(1 � PDT(i, SCALF))(1 � OFFT(i, SCALF))}
� (CR)(N(i, SADULT))

where:

PDT � total probability of death (from the target disease plus other causes, where
mortality varies depending on treatment group)

OFFT � rate of offtake

CR � calving rate of dams (proportion of cows calving per time period)

SADULT � susceptible adult cohort

An aggregate value was derived for each of the four cohorts, which reflected the market
prices and offtake potential of each cohort, using weighted mean market prices (e.g., sale
price of steers) and proportions of animals sold in each cohort (e.g., percentage of adults sold
as steers). These aggregate values are used in estimating the value of the offtake loss pre-
vented by the treatment of one animal, in each of the four cohorts. It is perhaps clearer to
think of this as the replacement value of an animal, or as the shadow price (SP) of treatment,
since it is indicative of the potential increased value of offtake from treating one animal.

The structure of the herd is maintained subject to constraints consistent with the assumed
management capabilities of the herder and the assumed reproductive potential of the herd.
Following the start of the control program, it is expected that the rate of growth of the herd
will increase due to improved health. To prevent oversized herds, a constraint is set on the
maximum size of each cohort, consistent with historical patterns of feed and other resources,
current and future objectives of herders, and herd management. Excess cattle are sold as meat
or replacement stock. The ratio of calves to adults is also monitored to prevent undesirable
stratification of the herd. The proportions of steers, bulls, heifers, and cows are assumed to
remain constant in the adult cohorts. The right-hand-side (RHS) values (the assumed desired
levels of herd composition, aij of equation (13.2) described below, are set prior to running the
model. Culling and offtake rates are adjusted by the model to meet these constraints.

In order to prevent herd growth to a size inconsistent with available feed resources, con-
straints are set based on estimated available nutrients of feeds and nutrient requirements of
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cattle. The nutrient requirements of the herd are evaluated based on the nutrient require-
ments of each age and sex cohort. If the available nutrients are less than the minimum
nutrient requirements, growth of the herd to expected levels predicted by disease control
is prevented. In this case, the level of offtake is increased to adjust herd size to a level con-
sistent with available nutrients. In the event that the level of available nutrients is greater
than or equal to the level required, the herd expands in a way consistent with other con-
straints and reproductive parameters.

The cost of the control program over the entire length of the planning horizon is con-
strained so as to not exceed the budget. There is no constraint on costs per time period, other
than not exceeding the total budget, which allows the costs of control to be higher in earlier
time periods of the program.

Calvings per month are calculated by the multiplication of a known monthly calving rate
by the number of dams of calving age, and by a vector of dummy variables to indicate in
which month calvings occur. This avoids having to code a separate model for seasonal and
nonseasonal calvings. The calving rate is not adjusted as dams are treated. This is not realis-
tic since reproductive rates are known to decrease in diseased dams, although without a quan-
titative relationship expressing this decrease, this factor could not be taken into account.

The model was developed using secondary data from Malawi tick dipping field trials
(Soldan & Norman, 1994) in which the cost-effectiveness of preventing ECF by dipping cat-
tle in ticks acaricide was investigated. Data were collected from approximately 1,800 Malawi
Zebu cattle belonging to 143 farmers, monitored at six dip tanks in the Lilongwe plateau using
a cohort study type of investigative approach. The Rhipicephalus appendiculatus tick occurred
in all trial areas, and ECF was endemic to the region. The data set included details of herd size,
age, and status of animals, sale prices, and labor and treatment costs. The nutritional parame-
ters of the model were based on the Cornell Net Carbohydrate and Protein System (CNCPS)
microcomputer software program and data described in Hall et al. (1998).

Model Results

Hall et al. (1998) demonstrated the model with an initial hypothetical herd size of 500
adults and 100 calves. A representative time series of the results of the decision variables
and herd structure for a chlorfenvinphos treatment group over a five-year time horizon is
presented in Table 13.1. The costs, mortality savings, NPV benefits (objective function
values), and offtake values of the model run for the control and treatment groups over five
time horizons are presented in Table 13.2.

Calves and adults in Table 13.1 are considered susceptible until dipped and immune
when treated until the next treatment period. The decision variables generated by the
model recommended that adults never be dipped, which is reasonable since the probabil-
ity of mortality is low in adults facing continuous field challenge. Calves are dipped in
periods with a higher probability of mortality. Interestingly, either all or no calves were
dipped in each period, reflecting a high marginal value of treatment and adequate avail-
ability of resources. Thus, the calves were either all in the susceptible cohort or all in the
immune cohort. Similarly, adults were always in the susceptible cohort, since treatment of
adults was never recommended. The percentage of animals treated and the percentage in
each cohort changed when nutrition was restricted and when costs of treatment were
changed, reflecting a change in the marginal value of treatment. As calves mature to adult-
hood, in month 5 for example, they are transferred to the adult cohorts.

Treatment resulted in higher NPV benefits than did no treatment. In all scenarios vacci-
nation treatment resulted in the highest net benefits, exceeding NPV benefits of dipping treat-
ment by between 10 and 41%. This finding runs counter to the current government policy of
dipping cattle for ticks. The net benefits of treating total cattle at risk as a percentage of the
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Table 13.1 Number of Animals per Cohort and Percent Treated Over 5 Years Using
Chlorfenvinphos on the Lilongwe Plateau, Malawi

Month Calvesa Treatedb Adults Treated Month Calves Treated Adults Treated

1 100 0 500 0 31 83 100 533 0
2 99 100 495 0 32 80 0 523 0
3 96 100 489 0 33 78 0 515 0
4 93 100 483 0 34 77 0 509 0
5 26 100 563 0 35 76 100 503 0
6 56 0 556 0 36 74 0 498 0
7 86 100 548 0 37 13 0 491 0
8 84 0 537 0 38 72 100 485 0
9 81 0 530 0 39 70 100 479 0

10 80 0 523 0 40 68 100 474 0
11 79 100 517 0 41 24 100 531 0
12 77 0 511 0 42 53 0 524 0
13 76 0 504 0 43 81 100 516 0
14 75 100 499 0 44 78 0 506 0
15 73 100 493 0 45 76 0 499 0
16 71 100 487 0 46 75 0 493 0
17 32 100 546 0 47 74 100 487 0
18 70 0 539 0 48 73 0 482 0
19 107 100 531 0 49 71 0 475 0
20 104 0 521 0 50 70 100 470 0
21 101 0 514 0 51 68 100 464 0
22 99 0 507 0 52 67 100 458 0
23 98 100 501 0 53 24 100 514 0
24 96 0 496 0 54 54 0 508 0
25 95 0 489 0 55 83 100 500 0
26 93 100 484 0 56 80 0 490 0
27 91 100 478 0 57 78 0 483 0
28 88 100 472 0 58 77 0 477 0
29 23 100 548 0 59 16 100 472 0
30 53 0 541 0 60 74 0 467 0

a Calves and adults reported as number of animals.
b Treated reported as percent of animals treated.

short-term projected agriculture sector GDP were 0.80% and 0.89% for dipping and vacci-
nating, respectively. Long-run benefits (25 years) as a percentage of the projected agricul-
tural GDP were 0.74% and l.10%, respectively.

The costs of vaccination in the short run (5 to 10 years) were six to seven times the costs
of dipping with chlorfenvinphos. In contrast, mortality savings from vaccination were
more than twice the mortality savings when using chlorfenvinphos. If the cost of treatment
is the sole criterion for treatment choice due to, for example, severe budget constraints, and
the benefits of mortality savings are ignored, then vaccination appears to be a worse option
than dipping. Mortality savings (deaths prevented) directly affect total offtake per time
horizon and herd population structure. If mortality savings are high and the herd is expand-
ing, higher offtake rates are possible. However, observation of offtake rates alone can also
lead to false conclusions regarding the economic efficiency of treatment. The chlorfenvin-
phos treatment option in the shortest term (five years) resulted in the highest offtake at
nearly 50% greater than the level of the control group, although the same treatment
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resulted in lower NPV benefits than from vaccinating. Clearly neither maximum mortality
savings nor minimum costs should be considered as a sole criterion for treatment choice.

In the long term (15 to 25 years), the costs of vaccination were higher than the costs of
chlorfenvinphos treatment. Despite the high cost, vaccination treatment provided very high
levels of protection from ECF, resulting in the highest calf survival rates and greatest mor-
tality savings. This strongly influenced the high net benefits of vaccination. Vaccination
was more attractive as a treatment option where production costs were low and cattle mar-
ket prices were stable. Both treatments improved offtake over the control group across all
planning horizons. In all cases offtake rates paralleled mortality savings.

Herd structure was considerably more stable for both treatments than for the control,
although minor variations resulted between treatments. Dipping frequency was reduced in
longer planning horizons. Optimal dipping frequencies suggested by the model were less
frequent than is currently the practice. Vaccination was only indicated by the model for
calves, which was not surprising since vaccination costs were high and previously exposed
adults were relatively immune to ECF.

13.7 RESEARCH APPLICATION: CONVERSION TO 
ORGANIC ARABLE FARMING

Due to its increasing popularity and potential market growth, organic farming attracts
increasing attention in modern agriculture operations. Consumer demand has stimulated
the conversion of many conventionally farmed lands into organic farming systems.
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Table 13.2 Costs, Mortality Savings, Maximum NPV and Offtake From Tick Control Using
Chlorfenvinphos Dip or Vaccination on the Lilongwe Plateau, Malawi

Mortality 
Treatment Costs Savings NPV Offtake

5-year planning horizon
Control 0 0 0 151,536
Chlorfenvinphos 1,997 8,377 6,380 231,026
Vaccine 11,238 18,307 7,069 190,202

10-year planning horizon
Control 0 0 0 206,650
Chlorfenvinphos 3,223 13,533 10,331 363,918
Vaccine 23,575 35,939 12,364 308,485

15-year planning horizon
Control 0 0 0 229,371
Chlorfenvinphos 3,977 16,737 12,760 444,827
Vaccine 26,742 43,720 16,979 394,571

20-year planning horizon
Control 0 0 0 239,131
Chlorfenvinphos 4,445 18,711 14,267 494,494
Vaccine 31,017 51,113 20,096 461,649

25-year planning horizon:
Control 0 0 0 241,621
Chlorfenvinphos 4,736 19,938 15,203 525,522
Vaccine 35,019 56,088 21,069 511,100

c13.qxd  11/29/10  4:24 PM  Page 471



However, due to a series of factors and restrictions set by the requirements of organic farm-
ing, farmers have to take the risk of undergoing an economically difficult conversion
period in order to arrive at the profitable phase of organic farming. Though in reality this
conversion is a very complicated biological and technical process, which requires profes-
sional expertise and strict operations, the example examined here is a simplified version
from a previous problem discussed by Acs, Berentsen, and Huirne (2007). The purpose
here is to demonstrate the capabilities of DP to assist in decision making in farmland
conversion.

Consider a farmer, who is contemplating a conversion to organic farming on a 48-
hectare typical arable farm in the Netherlands central clay region, which is currently
cultivated in conventional ways. The conversion is not a simple one-step task, but
requires careful planning and is a continuous endeavor, requiring things such as train-
ing labor, improving soil condition, accumulating experience, and developing markets.
As a result, the farmer may have to go through an economically difficult “conversion
period,” which involves farming organically with relatively high input costs and low
revenues before being eligible to receive the higher organic prices. In this example, the
entire planning horizon is limited to three stages, which are one year of conventional
farming, one year of conversion, and one year of organic farming. A DP model can be
developed to help determine how much land should go from conventional cultivation 
to organic farming and how many hectares of different crops should be grown at 
each stage.

Decision Variables

In this dynamic model, the key decision is to determine which crops and how much of
them should be produced at each stage in order to maximize total revenues over the three
stages. As shown in Tables 13.3a to 13.3c, suppose that the farmer has two crop options in
the first conventional period: seed potatoes and carrots. During the following conversion
and organic periods, more diverse crop selections are available.
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Table 13.3a Crop Selection Options at Conventional Stage

Seed Potatoes Carrots

Total Land Yes Yes

Table 13.3b Crop Selection Options at Conversion Stage

Seed Potatoes Carrots Winter Wheat Alfalfa

Seed Potatoes No Yes Yes Yes
Carrots Yes No Yes Yes

Table 13.3c Crop Selection Options at Organic Stage

Seed Potatoes Carrots Winter Wheat Alfalfa Spring Barley Kidney Beans

Seed Potatoes No Yes Yes Yes Yes Yes
Carrots Yes No Yes Yes Yes Yes
Winter Wheat Yes Yes No Yes No Yes
Alfalfa Yes Yes Yes No Yes Yes
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A basic concern of organic farming is crop rotation, the practice of growing a series of dis-
similar types of crops in the same area in sequential seasons. In this example, assume:

1. One crop planted in one stage cannot be planted again on the same land in the fol-
lowing stage. For example, if 12 hectares of land are planted with winter wheat at the
conversion stage, no winter wheat can be planted on this area at the organic stage.

2. Crops of the same type cannot be planted on the same land in two sequential stages.
For example, if 12 hectares of land are planted with winter wheat at the conversion
stage, spring barley cannot be planted on this area at the organic stage either. This 
12-hectare land should be shifted to other types of crops at the organic stage.

Based on the crop rotation requirements, more specific crop selection options at each
stage are provided below.

Table 13.3a shows that at the first stage, the farmer has two possible crops to grow on
his land. Table 13.3b shows that at the conversion stage, the area where seed potatoes were
planted during the first stage can be cultivated with carrots, winter wheat, or alfalfa.
Similarly, the area where carrots were planted at the first stage can be cultivated with seed
potatoes, winter wheat, or alfalfa. In the same way, the “Yes” in any cell of Table 13.3c
indicates that the crop in its column can replace the crop in its row at the organic stage.
Therefore, the decision variables should measure the hectares of land cultivated for each
possible crop at each stage. These variables are defined as follows:

(13.8)

(13.9)

(13.10)

where i, j, k � 1 for seed potatoes; i, j, k � 2 for carrots; j, k � 3 for winter wheat; j, k � 4
for alfalfa; k � 5 for spring barley and k � 6 for kidney beans.

Crop Rotation

Constraints on crop rotation ensure the flow of land from stage to stage. For example, at
the conversion stage, the total area of land planted with carrots, winter wheat, or alfalfa
should not exceed the area of land allocated to seed potatoes in the previous conventional
stage. Therefore, a series of constraints are formulated as follows:

(13.11)

(13.12)

(13.13)

(13.14)

Notice that constraint (13.14) actually restricts the value of each of the variables in this
equation to 0 when combined with non-negative constraints. It reflects the requirement of
organic farming of growing different crops on the same land in sequential stages.
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Soil Improvement

Organic farming requires that a minimum of one-sixth of the total land farmed be planted
with legume crops in the organic period. Legume crops contribute to soil organic matter,
nutrient supply (nitrogen fixation), and yield improvement. In our example, a minimum of
8 hectares needs to be planted with kidney beans in the organic period. The constraint is
written as follows:

(13.15)

Environmental Regulations

Environmental regulations are an import factor in the farming process. One such regulation in
the Netherlands is MINAS (Dutch Mineral Accounting System). MINAS focuses on the
restriction of nutrient surpluses within the farm, specifically nitrogen and phosphate, and
states an acceptable level of surplus at the hectare level (100kg N and 25kg P2O5). If the farm
is above this acceptable level, the farmer must pay a levy of €2.3/kg for nitrogen and 
€9/kg for phosphate. Given the nutrient requirement for each of these crops at different stages
in our example, the following tables of nutrient surplus for each possible crop selection can
be developed at each stage.

Levies are an essential cost during organic farming. By multiplying the per-hectare levy
for each crop at each stage with the actual area of each crop at each stage, we can get the
total cost of the levy for the entire conversion process:
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where t1i are values of the last column of Table 13.4 and t2j are values of the last column
of Table 13.5, and t3k are values of the last column of Table 13.6.

Table 13.4 Nutrient Surplus and Levy for Each Crop at the Conventional Stage

Conventional N (kg/ha) P (kg/ha) Levy (€/ha)

Seed Potatoes 25 95 912.5
Carrots 0 95 855

Table 13.5 Nutrient Surplus and Levy for Each Crop at the Conversion Stage

Conventional N (kg/ha) P (kg/ha) Levy (€/ha)

Seed Potatoes 0 22 198
Carrots 0 32 288
Winter Wheat 25 37 390.5
Alfalfa 0 108 972

Table 13.6 Nutrient Surplus and Levy for Each Crop at the Organic Stage

Organic N (kg/ha) P (kg/ha) Levy (€/ha)

Seed Potatoes 0 22 198
Carrots 0 32 288
Winter Wheat 25 37 390.5
Alfalfa 0 108 972
Spring Barley 0 35 315
Kidney Beans 0 0 0
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Farm Labor Supply

In general, growing organic crops requires farm laborers with some special knowledge and
training. Therefore, the farmer has to hire skilled labor at the conversion and organic
stages, unlike the unskilled labor used in the conventional stage. Suppose skilled labor
costs €18/hr, and unskilled labor costs €9/hr. Currently, the farmer has 2,255 hours of fam-
ily labor available for each stage. It is assumed that the family labor hours can be regarded
as skilled labor and add no extra costs. Given the needed labor requirement for each of
these crops at different stages, the total cost of hired labor can be formulated 
as follows:

(13.17)

where lai are values of the column titled as “Labor” in Table 13.7, lbj and lbk are values
of the column titled as “Labor” in Table 13.8. Notice that there is a nonlinear component
of “max” function appearing in this equation.
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Table 13.7 Revenue, Production Cost, Labor and Nutrient Requirements of Conventional Crops
(per hectare per year)

Conventional

Nutrient 

Revenue P-Cost Labor 
Requirement

Crops (€) (€) (hour) N(kg) P(kg)

Seed Potatoes 7,740 3,245 95.3 125 120
Carrots 12,320 9,450 29.3 80 120

Table 13.8 Revenue, Production Cost, Labor and Nutrient Requirements of Conversion 
and Organic Crops (per hectare per year)1

Conversion and Organic

Conversion Organic
Nutrient 

Revenue Revenue P-Cost Labor
Requirement

Crops (€) (€) (€) (hour) N(kg) P(kg)

Seed Potatoes 5,200 9,620 2,226 77.1 50 47
Carrots 8,800 18,700 12,450 185.7 40 57
Winter Wheat 1,246 1,926 439 13 125 62
Spring Barley � 1,691 393 12.1 25 60
Kidney Beans � 2,817 624 25.6 50 20
Alfalfa 840 960 169 2.2 0 133

1Spring wheat and kidney beans are only available at the organic stage.
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Production Costs

Production costs include the cost of pesticide (conventional stage), nutrients, energy use,
field operations, and other relevant costs such as insurance. Production costs in this case
do not include the cost of labor. Given the production costs of each crop at each stage, the
total production costs of the three stages can be formulated as follows:

(13.18)

where pai are values of the column entitled “P-Cost” in Table 13.7 and pbj are values of the
column entitled “P-Cost” in Table 13.8.

Revenue and Net Revenue

In our example, the farmer’s revenue is the total revenue over three stages. In each stage,
the yearly revenue is calculated by summing up all crop revenues, which are the product
of revenue per hectare multiplied by hectares. This can be written as:

(13.19)

where rai are values of the column titled as “Revenue” in Table 13.7 and rbj and rbk are val-
ues of the column titled as “Conversion Revenue” and “Organic Revenue” in Table 13.8.
The final objective function of our model can be expressed as:

(13.20)

In conclusion, Tables 13.7 and 13.8 show the model input data on revenues, production costs,
needed labor, and nutrient requirements. Notice that even though the conversion farming
stage shares the same production cost, labor, and nutrient requirements as the organic stage,
the revenue at the conversion stage is assumed to be less than that at the organic stage. This
is mainly because the crop yields at this stage are relatively low compared to the organic
stage, and the crop price is lower than in the organic stage.

Non-negativity Constraints

All the decision variables represent allocated hectares, so they should be non-negative:

(13.21)

Solution

As shown in Figure 13.4, in order to maximize the total net revenue over the three stages,
the optimal plan is to plant 35.69 hectares of seed potatoes and 12.31 hectares of carrots
in the conventional farming period. At the conversion stage, the area where seed potatoes
was cultivated in the previous conventional stage is now planted with 1.66 hectares of
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carrots, 4.33 hectares of winter wheat, and 29.70 hectares of alfalfa. Similar information
is provided for the other lands in Figure 13.4.

According to the optimal land conversion plan, the farmer’s final net revenue is €252,411.
From the structure of gross revenue at the top of Figure 13.4, it can be seen that production
costs are the largest of all possible costs, followed by the levy cost then labor cost.

This model also provides other useful information to the farmer. Figure 13.5 gives the
farmer an idea of the amount of levy he is going to pay for each crop at each stage. Notice
that the levy decreases from the conventional stage to the organic stage. This trend results
from less manure use and agricultural soil improvement during the land conversion process.
Similarly, the results shown in Figure 13.6 shows the farmer’s labor cost, production cost,
and revenues at every stage. Notice that the labor cost increases from the conventional stage
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Figure 13.4 Optimal solution of farmland conversion example.

Figure 13.5 Levy cost at each stage under the optimal land conversion plan.
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to the organic stage since organic crops generally require more labor than conventional crops.
More labor input results in more work on the field, so the production costs increase over the
stages. However, because of the price advantage of organic crops, revenues obtained in the
organic stage are higher than those in the previous stages.

SUMMARY

This chapter provided an overview of DP. Dynamic programming is a method used to
solve large and complicated problems by splitting them into smaller subproblems, called
“stages,” that are both easier to solve and yield the same optimal solution as the original
large problem. Dynamic programming is often used in applications where each stage has
a time dimension, and there is a certain timing sequence of each stage. In addition, DP can
also be used in static problems, where stages correspond to something else besides time
such as cities in a network. Dynamic programming is not a solution algorithm like the sim-
plex method, but rather a solution approach that varies with each problem.

Two of the most important elements of DP are recursion and the principle of optimality or
Bellman’s equation. Simply put, recursion means that each stage is interconnected. The prin-
ciple of optimality means that if a decision in a specific stage is part of the optimal decision,
then the overall optimal decision will include that stage’s decision regardless of which initial
state or previous decisions occurred. This is important because it allows us to split the larger
problem into smaller ones that, when solved, give the same solution as solving the larger prob-
lem itself. The DP method discussed in this chapter solves each stage by working backwards.

This chapter illustrated several problems that can be solved using DP. Three examples
were presented: (1) a network problem, (2) an inventory and purchases problem, and (3) a
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Figure 13.6 Labor cost, production cost, and revenue at each stage under the optimal land
conversion plan.
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capital budgeting problem. The chapter also discussed the general elements of DP, and the
advantages and disadvantages of DP. The chapter concluded with two research applica-
tions of DP. The first applied DP to animal health control policies in Malawi. The second
applied DP to conventional farm conversion to organic farming.
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EXERCISES

1. Use DP to solve the network problem given in figure below.

2. List all possible routes from 1 to 8 in the figure for Exercise 1 and calculate by hand
each possible total distance. Explain why DP is more efficient than this approach.

3. Use DP to solve the network problem given in figure below.
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4. List all possible routes from 1 to 7 in the figure for Exercise 3, and calculate by hand
each possible total distance. Explain why DP is more efficient than this approach.

5. Reconsider the network in Figure 13.1. Find the shortest route from node 1 to node 9
using DP assuming that node 4 is not a possibility.

6. A manager of the New York State Department of Conservation has four environmental
projects needed to be completed. His sole objective is to minimize the total time to com-
plete all four projects. The following data pertain to the problem:

480 PART 2 RELAXING THE ASSUMPTIONS OF LINEAR PROGRAMMING

Number of Workers

Project 1 2 3

1 10 6 4
2 14 10 6
3 18 16 14
4 22 16 16

Assume the manager has 12 workers to assign to each project. Formulate this as a DP
problem that minimizes the completion time of all projects.

7. A food company buys butter from a dairy cooperative and distributes and sells it to
restaurants. The next three months have estimated demands of 3,000, 7,000, and
5,000 pounds. The estimated purchase costs for months 1, 2, and 3 are $1,000 per
thousand pounds (month 1), $1,200 per thousand pounds (month 2), and $900 per
thousand pounds (month 3). The storage costs are $100 per thousand pounds (month 1), 
$110 per thousand pounds (month 2), and $115 per thousand pounds (month 3).
Assume no inventories are desired at the end of month 3, and there are no beginning
inventories in month 1. Solve this problem using DP to minimize total purchase plus
storage costs.

8. The C&Y Company has five auditors available to allocate to three overseas projects. The
auditors are to be allocated so that TOTAL decreased risk is maximized.

Decreased Risk (in thousands of dollars)

Number of auditors Project 1 Project 2 Project 3

0 0 0 0
1 45 20 50
2 70 50 70
3 90 75 80
4 100 110 120
5 120 145 135

Formulate this as a DP problem to determine how many auditors, if any, should be
allocated to each project. Define stages, state variables, decision variables, return
functions and recursive functions. (Do not solve it.)
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9. Given the following network with noted distances, use DP to find the shortest path
from A to Z.

10. A farmer in Georgia has 24 hectares of land available this year. A seed salesman
introduced the farmer to new products. The salesman has three different types of
seeds: corn, wheat, and cotton. One bag of corn can be used to plant 4 hectares, and
one bag of wheat and cotton can each be used to plant 6 and 8 hectares, respec-
tively. The expected profits for these three seeds are shown in the following table.
Formulate and solve it as a DP problem to help the farmer to maximize his
expected profit.

N3

N1 N6

N2 N7

40

25
75

100

180

8060

75

95

120 50

45

3055

40

20

A ZN4

N5

Corn Wheat Cotton

Profit ($/bag) 8,000 15,000 22,000

11. An agribusiness firm is considering funding four possible projects for the future and
has a total budget of $18 million. Suppose that the four projects have the following
expected costs and returns:

Expected cost Expected returns 
Project ($ million) ($ million)

1 10 15
2 14 18
3 8 13
4 7 7

Solve this as an integer programming (IP) problem, where the objective is to maximize
total expected return from these projects. Assume that each project is either funded (1)
or not funded (0).
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Number of People Exposed to Advertisement Per $100,000 Spent

Media 1 2 3 4 5 6 7 8 9 10

Print 10 15 25 30 50 75 80 85 90 95
Outdoor 15 30 35 40 55 60 65 70 75 75
Radio 8 16 25 31 35 39 41 45 51 55
Television 9 25 45 50 65 80 85 90 90 90

Assume the Department’s objective is to maximize exposure to the advertisement,
given the $1 million budget. Formulate and solve the DP problem that maximizes
exposure by choosing each media type.

14. A feed dealer buys corn from grain farmers and distributes and sells it to livestock
farmers. In this exercise, the stages in the DP problem coincide with periods of
times, specifically three months: January, February, and March. At the beginning of
each month, the dealer must purchase enough corn to satisfy the feed demand of its
customers. Assume the following data has been gathered for this exercise:

Demand Cost per million bushels Storage cost per
Month (million lbs) of corn ($ million) million bushels ($ million)

January 1 4.00 0.15
February 3 4.15 0.15
March 2 4.25 0.15

Assume no inventories are desired at the end of March, and there are no beginning
inventories in January. Solve this exercise using DP to minimize total purchase plus
storage costs.

15. A local government has five parcels of land and would like to rent these parcels to
three different farmers. The profits for the three farmers when a different number of
parcels are allocated are shown in the following table. The local government can get
20% revenue from each farmer’s profit. Formulate and solve the DP problem that
maximizes the profit for the local government.

12. Solve Exercise 11 using DP. Show all your calculations.

13. The State Department of Environmental Safety is considering an advertising cam-
paign aimed at reducing littering in the state. It has a budget of $1 million that can be
spent in increments of $100,000 across four types of media: print, outdoor, radio, and
television. The Ad Agency has told the Department that the following exposure index
(0 to 100) can be expected from various amounts spent (in $100,000 increments) on
advertising by type of media:
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Profit ($’000s)

Number of Parcels Farmer A Farmer B Farmer C

0 0 0 0
1 32 65 45
2 70 102 63
3 90 110 110
4 120 110 120
5 140 120 122

Supply Canning Time Profit
(tons) (days/ton) ($/ton)

Salmon 3 30 8,000
Tuna 4 10 2,000
Sardine 2 40 11,000
Mackerel 2 70 20,000

16. As in Exercise 15, if the local government only has four parcels to rent to these same
three farmers, what is the optimal allocation solution?

17. A Maryland cannery buys fish from the local fishery and sell cans of fish to the
regional supermarket. In January, one of his major fish suppliers has three tons of
salmon, four tons of tuna, two tons of sardines, and two tons of mackerel. According
to the experience in the market, the highest demand for the canned fish will come in
April. The cannery owner is thinking that it is better to finish canning in 100 days so
that he could have some time to focus on other parts of his business, such as trans-
portation and advertising. The profits and days required for canning each kind of fish
is shown in the following table. Suppose there is no budget constraint for the owner.
Formulate and solve this exercise using DP to determine the optimal canning strategy.
Confirm this answer by using IP.

18. Based on Exercise 17, suppose the cannery owner finds that he will only have 70 days
for canning the fish and he needs to can some sardines. What will his optimal canning
strategy be? Use DP to solve this exercise.

19. A farmer has a budget of $60,000, and wants to invest the money to buy crop seeds for
her farm. She is considering four different crops: corn, wheat, soybeans, and cotton.
The profit coming from these four crops depends on the amount the farmer invests 
in her land while growing these crops. The relationships between on-farm investment
and her profit for these four crops are shown in the following table.
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Investment ($’000s)

Profit 0 10 20 30 40 50 60

Corn 0 20 50 65 80 85 85
Wheat 0 20 40 50 55 60 65
Soybean 0 25 60 85 100 110 115
Cotton 0 25 40 50 60 65 70

484 PART 2 RELAXING THE ASSUMPTIONS OF LINEAR PROGRAMMING

Use DP to assist the farmer in developing the best crop and investment strategy.
Confirm this answer using IP.

20. Regarding Exercise 19, suppose the farmer discovers that the demand for cotton in the
market this year may be lower than initially expected. Thus, she decides to only grow
corn, wheat and soybeans on her farm. Furthermore, she wants to reduce her budget
to $50,000. Formulate and solve this question as a DP problem.
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A
Absolute stop, 337
Accuracy, 337
Achievement function, 431
Actions, 342
Activities, linear programming (LP) problems

formulation, 8
Additional properties of duality, 98–100, 

See also under Duality
Additivity assumption of LP model, 7
Adjusted for imperfectly competitive markets

(ANSP), 413
Aggregate model, 116
Agricultural Adjustment Act of 1933, 159
Agricultural decision analysis under risk and

uncertainty, 349–353
Agricultural production decisions, 432
Agriculture, LP application in, 3–5
Algebraic solution, 41–42
Algebraic way of calculating SPs, 39–40
Algorithm efficiency, 324
All-integer programming, 249
Allocation problem, 4
Allocation problem, LP application in, 4
Alternative optimal solutions, 22
Analysis, 33
Answer Report, 112
Anthelmintic treatment, 439–441
Arcs, 174
Artificial variables, 67–68
Assignment model for food and agricultural

markets, 189–191
Assignment problem, 189
Assumptions of LP models, See Standard

assumptions of LP models

B
Barrier algorithm, 324
Basis, 37
Basis Column, 57
Basic feasible solution (BFS), 56
Basic infeasible solution, 56
Basic solution, 56
Basic variables, 56
Bayesian Decision Theory, 349, 372, 392
Bellman equation, 454
Benefit Targeting Algorithm, 269
Binary integer programming, 248–282

capital budgeting, 257
transfer activities and, 260–262

research application, 268–274, See also
Delaware Agricultural Lands Preservation
Foundation (DALPF) program

Solver’s, 256–257
Binary linear programming, 4
Binding constraint, 146
Biological Oxygen Demand (BOD), 312
Branch-and-bound solution procedure, 250–255,

See also under Integer programming (IP)
Branching, 252

C
Capital budgeting problem, LP application in, 4,

257, 463–465
IP formulation of, 262
transfer activities and, 260–262

Carbon abatement problem, LP application 
in, 3

Carbon dioxide, 9–10
Certainty assumption of LP model, 7
Chance-constrained programming, 369–371

advantage of, 370
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Chance-constrained programming (continued)
Chance Constraint, 371
CVaR (Conditional Value at Risk), 371
USet (Uncertainty Set), 371
VaR (Value at Risk), 371

Change Experiment, 156
Change in basis, 37
Chlorofluorocarbons, 10
Choice Criterion, 349
Classic interval method (Solver), 337
Climate change, 419–421
Cobb-Douglas Functional Form, 312
Column Vector, 120
Combinatorial optimization problem, 339
Command and Control Instruments (CAC), 312
Comparative-static equilibrium, 414
Complementary optimal solution property,

99–100
Complementary slackness conditions, 295

both constraints are binding (Case 1), 296–297
constraint 1 is binding and constraint 2 is not

binding (Case 3), 298
constraint 1 is not binding and constraint 2 is

binding (Case 2), 297–298
Computer software, LP, 13
Consequences, 349
Constrained nonlinear functions optimization

with equality constraints, 290–293
with inequality constraints, 293–299

Constrained quadratic maximization, 300
Constraint line, 14
Constraint set, LP model, 6

equal-to restrictions, 6
greater-than-or-equal-to, 6
less-than-or-equal-to, 6
non-negativity constraint, 6
structural constraints, 6

Constraints, 473
Consumer surplus, 403n1, 420, 421
Continuity axiom, EUH, 350
Control variables, 456
Convergence, 336
Convex optimization, 323
Convex problems, 324
Convex set, 16, 29
Convexity, 323
Cournot–Nash behavior/equilibrium, 

414, 416–418
Covariance, 348–349
Critical point, 288
Crop diversification, 358, 377
Crop farm, static models of, 136–145

disaggregated model, 138–141
input demand functions, 142–144

land input, 144
labor constraint in, 137
land constraint in, 137

output supply functions, 141–142
range of feasibility, 138
range of optimality, 137
research application, 158–163

economic feasibility of, 164–165
simple model, 136–138

Crop farming in northeast Australia, 341
Crop-Livestock enterprises, 148–151
Crop Rotation, 473
Cross-over method, 328
Curse of dimensionality, 466

D
Decision theory, 348
Decision tree, 466
Decision variables, 456
Degeneracy, 79
Delaware Agricultural Lands Preservation

Foundation (DALPF) program, 268–271
Benefit Targeting (BT) Algorithm, 269
Core Green Infrastructure (Core GI), 270
geographic information systems (GIS), 269
Land Evaluation and Site Assessment (LESA),

270
Demand nodes, 174
Demand, 401
Derivatives for nonlinear function, 286–287

first derivative, 286
second derivative, 286

Deriving weights, 438 
Deterministic algorithm, 323
Development feasibility constraints, 219
Development rate, 217
Diet problem, LP application in, 3
Differential calculus, 283 
Direct elicitation approach, 351
Direct rate of increase, simple maximization

problem, 58
Disaggregated model, crop farm, 138–141

sequencing constraints, 139
Discount rate, 306
Discrete stochastic sequential programming

(DSSP), 371–376, 379–385
accounting constraints, 380
field time, 379
resource constraints, 380
sequencing constraints, 380
sequential decision environment 

under, 372
Discrete time periods, one-year model 

with, 152–155
Distribution system design, 263–266
Divisibility assumption of LP model, 7
Domain, 284, 287
Dual feasibility experiment, 156
Dual problem, 97, 328
Dual structure, 411
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Dual variables, 98, 414
Duality, 96–107

additional properties of, 98–100
complementary optimal solution property,

99–100
strong duality property, 99
symmetry property, 99–100
weak duality property, 99

economic intuition behind, 105–107
primal and dual problems, relationship

between, 97–98, 104
dual variables, 98
number of activities, 97
number of structural constraints, 97
objective function, 97
primal maximization, 97
RHS values, 97
technical coefficients collection, 98

primal and dual solutions, relationship
between, 100–103

Dynamic farm-level models, 151–155
one-year model with discrete time periods,

152–155
disk before plant sequencing 

constraints, 153
hired labor maximum constraints, 153
labor constraints, 153
land constraint, 152
output constraints, 153
plant corn before harvest corn sequencing

constraints, 153
plant soybeans before harvest soybeans

sequencing constraints, 154
plant wheat before harvest wheat

sequencing constraints, 154
plow before disk sequencing constraints, 153

Dynamic models, 151
Dynamic Objective Function, 309
Dynamic programming (DP), 453–479

Bellman equation, 454
capital budgeting problem, 463–465
characteristics, 458
components of, 456–457

decision variables, 456
state variables, 456

conversion to organic arable farming
application, 471–478

crop rotation, 473
decision variables, 472–473
environmental regulations, 474
farm labor supply, 475
non-negativity constraints, 476
production costs, 476
revenue and net revenue, 476
soil improvement, 474

input nodes, 454
network problem, 454–457

output nodes, 454
principle of optimality, 454
production inventory problem, 458–462

Stage 1 (March), 459
Stage 2 (February), 460
Stage 3 (January), 461

Recursive, 454
research application, 466–471

animal health in developing countries,
466–471

E
Economic Feasibility, 164
Economic interpretation, maximization problem

solving, 20–21
Economic intuition behind duality, 

105–107
Effluent Treatment Plant (ETP), 314
Endogenous variables, 302
Environment, LP application in, 3–5
Environmental economics applications of LP,

211–246
Environmental index, 218
Environmentally sensitive region, 158
Equality constraints, 32, 290
Equal-to constraints, 72, 96
Equilibrium Constraints, 342
Events, 348–392
Evolutionary Engine (Solver), 339
Evolutionary solver, using, 328–336

convergence, 336
cross-over method, 328
description, 328–329
fitness criterion, 328
iterations, 335
limits options, 336
local search, 336
max time without improvement, 333
mutations, 328
offspring solutions, 328
parent solutions, 328
population, 333
precision, 335
random seed, 334
require bounds, 334
tolerance, 332

Excessive Development, 217
Exogenous variables, 289
Expected monetary value (EMV), 351
Expected profit, 435
Expected utility hypothesis (EUH), 350–353

continuity, 350
independence, 350
ordering, 350
transitivity, 350

Expected value, 348–349
Extreme points, 16
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F
Farmland conservation with simultaneous

multiple-knapsack model, 271–274
Farm-level LP models, 135–172, See also Crop

farm, static models of; Multiple-year
model, crop farm

crop–livestock enterprises, 148–151
dynamic models, 151–155, See also Dynamic

farm-level models
model calibration, 158
model validation, 155–158

change experiment, 156
dual feasibility experiment, 156
feasibility, 156
prediction experiment, 156
price experiments, 156
quantity, 156
tracking experiment, 156
validation by construct, 155
validation by results, 155

Feasibility, 56, 92
Feasibility experiment, 156
Feasibility tolerance, 328
Feasible region, 14, 16

convex set, 16
extreme points, 16

Feasible solution, 14
Federal Milk Marketing Order Program

(FMMOP), 191
Field time, 379
Firm level, 401
First derivative, 286
First-order conditions (FOCs), 287–288
Fishery management using nonlinear

programming, 305–309
discount rate, 306
model set-up, 307–309

Fitness criterion, 328
Fixed rate Tariff, 181
Fluid Processing Plants, 193
Forage Production and Requirement, 224
Forest Land requirement, 218
Forest management, LP applications in, 211–214

model development, 213–214
Formulating LP problems, 7–13

activities, 8
objective function coefficients, 8
objective function, 8
RHS parameters, 8
structural constraints, 8
technical coefficients, 8

Free trade, 181
Frontier, 14

G
Game Ranch, 222–228
Gap tolerance, 327

General form of LP model, components, 5–6
Generalizable search algorithms, 328
Generalized Reduced Gradient (GRG)

Algorithm, 299, 321
Genes (of parent solution), 330
Genetic Diversity and Scenic View 

Sustainability, 225
Global optimum, 287
Goal programming (GP), 427–447

achievement function, 431
deriving weights for, 438
nonpreemptive GP, 428
preemptive/lexicographic GP, 428, 431–438
research application, 438–443

forest land protection, 443–446
optimal parasite control programs, 438–443

Graphical approach to LP, 2–54, See also
Sensitivity analysis in IP

maximization, 2, 13–26, See also
Maximization problem solving

minimization, 2, 26–33
right-hand-side-value (bi), 42–43

Greater-than-or-equal-to constraints, 67–72, 96
Greedy agent algorithm, 269
Grizzly bear corridor study, 233–237

Budget Constrained Optimal Path model, 234
design, optimizing, 233–237
Habitat Suitability Index (HSI), 235
Least Cost Path model, 234

H
Habitat Suitability Index, 235
Hedge, 341
Hunting, 223–228
Hybrid Rating Regression Analysis, 438

I
Identity matrix, 57, 387
Idle capacity, 31
Imperfectly competitive milk markets, 410–419

spatial equilibrium model for, 410–419
“dual structure” spatial monopoly 

solution, 417
“dual-structure” spatial Cournot–Nash

equilibrium, 418
“dual structure” spatial perfect competition

solution, 416
nonlinear price endogenous programming

model, 411–419
Import Quota, 181
Independence axiom, EUH, 350
Independent Service Operator (ISO), 342
Indirect rate of decrease, simple maximization

problem, 58
Inequality constraints, 32
Infeasible solution, 14
Information structure, 372
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Initialization, 251
Input demand functions, crop farm static model,

142–144
Input nodes, 454
Integer activity values, 248
Integer programming (IP), 7, 248–282, See also

Binary integer programming; Mixed
integer programming

branch-and-bound solution procedure,
250–255

branching phase, 252
initialization phase, 251
lower bound (LB), 252
upper bound (UB), 252

of capital budgeting, 262
multiple choice constraints, 262–263
mutually exclusive constraints, 262–263
sensitivity analysis in, 266–268

Major Axis Points, 266
MaxVal, 266
MinVal, 266
Multiple Optimizations Report, 266
Optimization Parameter tool, 266
Parameter Analysis process, 266
PSI Optimization Parameter formula, 266
RangeRef, 266

Solver’s, 256–257
Integer tolerance, 257
Interior point, 299, 324
Interior solution, 294
Intermediate transshipment nodes, 182
Interregional, 410
Interval branch and bound, 336
Interval function, 336
Interval global solver, using, 321, 336–338

absolute versus relative stop, 337
accuracy, 337
assume stationary, 337
LP Phase II, 338
LP test, 338
max time without improvement, 337
method, 337
resolution, 337
second-order, 337

Irrigation decisions, 211
Irrigation water constraint, 230
Iso-contribution line, 17, 19
Iso-cost line, 27, 29–30
Iso-profit line, 17
Iso-revenue lines, 21
Iso-utility curves, 353 
Iterations, 335

K
Kuhn–Tucker conditions, 293–299, 414

complementary slackness conditions, 295
interior solution, 294

L
LaGrange function, 290
LaGrange multipliers, 414
Land Availability, 225
Land Endowment, 142
Land usage constraint, 230
Land use planning, LP applications in, 

215–222
constraints, 216–219

development feasibility, 219
environmental index, 218–219
excessive development, 217
forest land requirement, 218
minimum development rate, 217–218
non-negativity, 219
open land requirement, 218
problem set-up and finding a solution,

219–222
property tax rate, 217
recreation requirement, 218

decision variables, 216–219
Less-than-or-equal-to constraints, range of

feasibility for, 92–93
Lexicographic, 428
Limit, 3
Limits options (Solver), 336
Limits Report, 115–116
Linear enclosure method (Solver), 337
Linear function, 6
Linearized version of QP, 360–367
Linear programming (LP)/LP applications, 

See also Delaware Agricultural Lands
Preservation Foundation (DALPF)
program; Graphical approach to LP; Land
use planning, LP applications in; Natural
resource applications of LP; Solver,
solving LP problems using; Standard
assumptions of LP models

activities, LP problems formulation, 8
additivity assumption of LP model, 7
agriculture, 3–5
allocation problem, LP application in, 4
capital budgeting problem, 4, 257, 463–465
carbon abatement problem, 3
certainty assumption of LP model, 7
computer software, LP, 13
constraint set, LP model, 6, See also 

individual entry
diet problem, 3
divisibility assumption of LP model, 7
environment, 3–5
farm-level LP models, 135–172, See also

indvidual entry
forest management, 211–214
formulating LP problems, 7–13, See also

individual entry
normal form of LP model, 103–105
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Linear programming (LP)/LP (continued)
objective function, LP problems formulation,

8, 27
portfolio problem, 3
product mix problem, 3
proportionality assumption of LP model, 7, 248
resources economics, 3–5
standard assumptions of LP models, 7
structural constraints in LP application, 5–6, 8
technical coefficients, LP problems

formulation, 8
transportation problem, 4

Local optimum, 287
Local search, 336
Lower bound, 252

M
Major Axis Points, 266
Management of wild game farms, 237
Marginal rate of product transformation, 21
Market equilibrium, 401–420
Market Limitation, 225
Market Rationalization, 193
Market under perfect competition, 402–404
Marketing decision, 135, 359
Maryland Agricultural Land Preservation

Foundation (MALPF), 271–274
Mathematical Program with Equilibrium

Constraints (MPEC), 342
Matrix algebra, 61
Matrix notation, 117

basic operations and notation, 119
addition, 120
multiplication, 121
subtraction, 121
transpose of, 122

diagonal elements, 120
dimension, 120
element, 120
to express an LP model, 123–124
vector, 120

Max time without improvement, 333, 337
Maximization problem solving, graphical

approach, 2, 13–26
constraints, 15
economic interpretation, 20–21
no feasible solution, 21
multiple optimal solutions, 22
optimal solution, finding, 16–18
simplex method, 13, 56–64, See also Simple

maximization problem
simultaneous equations approach, 18–19
two-activity maximization problems, solving,

14–16
unbounded solution, 21

Maximize profit, 243
Maximizing revenue, 179

Maximum percentage error (MPE), 252–253
Maximum Time without Improvement, 313, 337
Mean-variance analysis, 347
Metaheuristic algorithm, 321
Methane, 10
Minimization of Total Absolute Deviations

(MOTAD), 347, 360–367
target MOTAD, 367–369

Minimization problem solving, graphical
approach, 2, 26–33

iso-cost line, 27, 29–30
and sensitivity analysis, 40–41
simultaneous equations approach, 30–31
standard form of, 31–33

Minimize Cost, 318
Minimize Transportation Cost, 173
Minnesota Farm Management Association

(MFMA), 383
Mixed integer programming, 103, 249, 255–256
Mixed structural constraints, 24–26
Model Calibration, 158
Model Validation, 155–158
Modified simplex method, 55
Moment method, 351
Monopoly, 404–407
Monopsony, 404–407
Monte Carlo Simulation, 377
Moore–Skelboe algorithm, 337
Multi-period models
Multiple choice constraints, 262–263
Multiple goals, 427
Multiple-knapsack model, 271–274
Multiple optimal solutions, 22, 79
Multiple Optimizations Report, 266
Multiple-year model, crop farm, 145–148

LP tableau for, 147
terminal value, 148

Multivariate nonlinear functions, 289–290
partial derivative, 289

Mutations, 328, 334
Mutually exclusive constraints, 262–263

N
Natural resource applications of LP, 211–246,

See also Land use planning; Optimal
stocking problem for game ranch

efficient cropping patterns, 228–233
efficient irrigation, 228–233

constraints, 230–231
forest management, 211–214
research application, 233–237, See also

Grizzly bear corridor study
Natural Resource, 211–237
Necessary condition, 288
Negative RHS values, handling, 72
Net Social Payoff (NSP), 407
Network optimization problem, 173

490 INDEX

bindex.qxd  11/29/10  7:03 PM  Page 490



Networks sensitivity analysis, 179
Nitrous oxide, 10–11
No feasible solution, 21, 78
Nonbasic variable, 60
Nonbasic variables, 56
Non-convex problems, 323
Nondeterministic algorithms, 323
Nonlinear functions optimization, 283–320

constrained optimization
with equality constraints, 290–293
with inequality constraints, 293–299

constrained optimization problems, solver
solving, 299–304

fishery management using, 305–309
general algorithms, 299
Kuhn–Tucker conditions, 293–299
multivariate functions, 289–290
research application, 309–311

optimal advertising, 309–311
water pollution abatement policies, 312–314

separable linear programming, 299
shortcut formulas for derivatives, 286–287
slopes of functions, 283–286
special-purpose algorithms for quadratic

programming, 299
unconstrained optimization, 287–288

critical or stationary point, 288
first-order conditions (FOCs), 287
global optimum, 287
local optimum, 287
second-order sufficient conditions 

(SOCs), 288
Nonlinear optimization, global approaches to,

321–343, See also Evolutionary solver
forestry example using, 338–340
research application, 341

crop farming in northeast Australia, 341
energy market deregulation analysis, 342

SOCP barrier solver, 324–328
Nonlinear price endogenous programming model,

411–419
Nonlinear problems, development of, 322–324

convex versus nonconvex problems, 323
convexity, 323
deterministic versus nondeterministic

algorithms, 323
problem formulation, 322–323

Nonlinear programming (NLP), 2
Non-negativity constraint, 6, 11, 476
Nonpreemptive GP, 428
Nonslack variables, 64
Normal form of LP model, 103–105

O
Objective function coefficients (Ci) sensitivity

analysis, 5, 8, 34–37, 89
range of optimality, calculation, 35–37

Objective function, LP problems formulation, 8, 27
Offspring solutions, 328
Oligopoly, 411
Open land requirement, 218
Optimal advertising, 309–311
Optimal forest rotation, 211
Optimal integer solution, 250
Optimal parasite control program, 438–443
Optimal power flow function, 342
Optimal solution, 6, 16–18
Optimal stocking problem for game ranch,

222–228
forage production and requirements, 224–225
genetic diversity, 225
interpretation of solution, 226–228
labor constraint, 224
land availability, 225
market limitation, 225
non-negativity constraints, 226
population constraint, 224
problem formulation, 223
problem set, 226–228
scenic view sustainability, 225

Optimal value, 3
Optimization of nonlinear functions, 283–315
Optimization parameter tool, 266
Ordering axiom, EUH, 350
Ordering, 350
Output nodes, 454
Output supply curve, deriving, 37–39

parametric programming, 37
resource endowment (bi) sensitivity analysis,

37–39
shadow price (SP), 38

Output supply functions, crop farm static model,
141–142

P
Parameter analysis process, 266
Parametric programming, 37
Parametric Quadratic Programming, 354
Parent solutions, 328
Pareto-optimal solutions, 341
Partial derivative, 289
Penalty approach, 68
Perfect competition, 401

market under, 402–404
Pivot column, 60, 64
Pivot element, 61
Pivot row, 61, 64
Plant Capacity, 188
Polluter’s problem, 8–11

carbon dioxide, 9–10
chlorofluorocarbons, 10
methane, 10
nitrous oxide, 10–11
non-negativity, 11
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Population (Solver), 333
Population Constraint, 224
Portfolio problem, LP application in, 3
Power index (Solver), 328
Precision (Solver), 335
Prediction experiment, 156
Preemptive/lexicographic GP, 428, 431–438
Present value, 306
Price endogenous mathematical programming

models, 401–422
industry models, 409–410
monopoly, 401

market under, 404–407
monopsony, 401

market under, 404–407
perfect competition, 401

market under, 404–407
research application, 410–419, See also

Imperfectly competitive milk markets
climate change and U.S. agriculture,

419–421
Price experiment, 156
Price takers, 401
Primal and dual problems, relationship between,

97–98, 100–104, See also under Duality
Primal problem, 97
Principle of optimality, 454
Probability distribution, 349
Problem formation
Producer surplus, 403n1
Product conversion, 186
Product mix problem, LP application in, 3
Production decision, 146
Production inventory problem, 458–462
Production possibility frontier (PPF), 20
Production possibility set, 20
Property Tax Rate, 217
Proportionality assumption of LP model, 

7, 248
PSI optimization parameter, 266

Q
Quadratic risk programming, 253, 353–360,

377–379
linearized version of, 360–367
parametric quadratic programming, 354

Quantity Experiment, 156

R
Random seed (Solver), 334
Range names, 108
Range of feasibility, 92–93

for greater-than-or-equal-to and equal-to
constraints, 96

for less-than-or-equal-to constraints, 92–93
Range of optimality, 35, 41, 442

for basic variable, finding, 89–90

calculation, 35–37
for cS2, a nonbasic variable, 90–91

Recreation requirement, 218
Recreational Opportunities, 222
Recursive, 454
Relative Stop, 337
Require bounds (Solver), 334
Residential land, 215
Resolution (Solver), 337
Resource endowment (bi) sensitivity analysis,

37–39, 91–92
Resources economics, LP application in, 3–5
Return function, 457
Right-hand-side (RHS) value, 6, 8, 42–43, 72,

95–96
Risk programming models, 347–392, See also

Discrete stochastic sequential
programming (DSSP); Quadratic risk
programming

agricultural decision analysis, 349–353
chance-constrained programming, 369–371
covariance, 348–349
direct elicitation approach, 351
discrete stochastic sequential programming,

379–385
expected monetary value (EMV), 351
expected utility hypothesis (EUH), 350–353
expected value, 348–349
issues in measuring risk, 376–377
moment method, 351
research application, 377–385, See also

Discrete stochastic sequential
programming

agriculture, 385–391
climate change, 385–391

risk averse, 351
risk lovers, 351
risk neutral, 351
risk premium (RP), 351
risk solver, 107, 371
risky prospect, 351
variance, 348–349

Route Constraints, 180

S
Saddle point, 299
Scalar multiplication, 121
Search direction (Solver), 328
Second derivative, 286
Second order (Solver), 288
Second-Order Conic Problem (SOCP) barrier

solver, 321, 324–328
feasibility tolerance, 328
gap tolerance, 327
power index, 328
search direction, 328
step size factor, 328
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Second-order sufficient conditions 
(SOCs), 288

Sector Programming Model, 401, 407
Sensitivity analysis in IP, 2, 179, 266–268, See

also under Integer programming (IP)
with graphical approach, 33–43

analysis, 33
objective function coefficients (Ci)

sensitivity analysis, 34–37
Sensitivity Report, 113
Separable Linear Programming, 299
Sequencing constraints, 139
Sequential method
Shadow price (SP), 38

algebraic way of calculating, 39–40
Simple maximization problem, 56–64

basic solution, 56
columns, comments on, 57
rows, comments on, 58

direct rate of increase, 58
indirect rate of decrease, 58
zj and cj – zj rows, 58

simplex tableau, 57–60
solution improvement by changing 

basis, 60–61
substitution coefficients, 59

Simple model, crop farm, 136–138
Simplex-based sensitivity analysis, 88

for maximization problems, 89–93
objective function coefficients (ci), 89
range of feasibility for less-than-or-equal-to

constraints, 92–93
range of optimality for basic variable,

finding, 89–90
range of optimality for cS2, a nonbasic

variable, 90–91
resource endowments (b) sensitivity

analysis, 91–92
for minimization problems, 93–96

range of feasibility for greater-than-or-
equal-to and equal-to constraints, 96

right-hand-side sensitivity analysis, 95–96
Simplex method for maximization problems,

64–72
equal-to constraints, 72
flow chart, 65
greater-than-or-equal-to constraints, 67–72
negative RHS values, handling, 72
penalty approach, 68

Simplex method for minimization problems,
72–79

converting minimization problem to an
equivalent maximization problem, 73–74

degeneracy, 79
no feasible solution, 78
graphical solution to, 74–75
multiple optimal solutions, 79

selection criterion for a new, nonbasic 
variable, 73

special cases, 78–79
unbounded solution, 78

Simultaneous equations approach, 18–19, 30–31
Slack variables, 31, 33, 59, 64
Slope(s), 19

of functions, 283–286
of nonlinear functions, 283
slope-intercept form, 17

Social surplus, 403
Social welfare, 403
Solver, 88

binary programming options, 256–257
integer programming options, 256–257

Solver, solving LP problems using, 107–116
Answer Report, 112, 114
constraints, 111

�, 111
�, 111
�, 111

integer and binary programming 
options, 256

Limits Report, 115–116
range names, 108
Risk Solver Platform for Education, 107

Engine tab, 110
Model tab, 110
Output tab, 110
Platform tab, 110

Sensitivity Report, 113, 115
sumproduct, 108
troubleshooting process, 109
Visual Basic with Applications (VBA), 108

Spatial distribution, 233
Spatial equilibrium analysis, 402, 407–409
Species protection, 233
Stackleberg competition, 342
Stage transformation function, 457
Stages, 372, 453
Standard assumptions of LP models, 7

additivity, 7
certainty, 7
divisibility, 7
proportionality, 7

Standard deviation, 435
Standard form for maximization and

minimization problems, 31–33
State variables, 456
States of nature, 349
Static models of crop farm, 136–145, See 

also Crop farm, static models of
Stationary, 337
Stationary point, 288
Step size factor (Solver), 328
Stopping rule, 63
Strong duality property, 99
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Structural constraints, in LP application, 5–6, 8
Subsidies, 164
Substitution coefficients, 59
SUMIF function, 339
Summation notation, 117–119
Sumproduct, 108
Supply, 401

supply nodes, 174
Surplus variables, 33
Sustainable practices, 158
Symmetry property, 99–100

T
Tableau form, 32, 57
Tangent, 285
Target MOTAD, 367–369
Target Values, 428
Taylor polynomial approximation, 322
Technical coefficients, LP problems 

formulation, 8
Terminal Value, 148
Time dimension, 453
Tolerance, 332
Total Absolute Deviation (TAD), 360
Tracking Experiment, 156
Trade embargo, 181
Transfer activities, 260–262
Transhipment model, 182–189
Transitivity axiom, EUH, 350
Transportation model for food and agricultural

markets, 173–210
extensions of the model, 179–182
general model, 174–179

arcs, 174
demand nodes, 174
network, 174
supply nodes, 174

incorporating route constraints, 180
incorporating unacceptable routes into

network, 180–182
maximizing revenue rather than minimizing

transportation costs, 179–180
optimal solution, 177
research application, 191–196
sensitivity analysis, 179

Transportation problem, LP application in, 4
Transpose, 122
Transshipment model, 173, 182–189

with product conversion, 186–189
transshipment node, 182
Warehouse Model, 183–186

demand constraints, 184
supply constraints, 184
transshipment constraints, 184

Transshipment warehouse, 183–186
Troubleshooting process, 109–110
Two-activity maximization problems, 

solving, 14–16

U
U.S. Dairy Sector Simulator (USDSS), 

191–196
LP transportation model application in,

191–196
U.S. Department of Agriculture (USDA),

158–159, 192, 443
Unacceptable Routes, 180
Unbounded feasible region, 44
Unbounded solution, 21, 78
Unconstrained optimization, nonlinear functions,

287–288
Unit column, 57
Unit vector, 57
Unmanaged Land, 222
Upper bound, 252
Utility Maximization, 303–304

V
Validation by construct, 155
Validation by results, 155
Variance, 348–349
Visual Basic with Applications (VBA), 108
VLOOKUP function, 339

W
Water limitation, 228
Water pollution abatement policies, 312–314
Weak duality property, 99
Wildlife Corridor, 233
Wolfe’s method, 299
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