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Foreword
Precision agriculture technologies have developed over the last three decades to aid 
plant agriculture. This book reviews what has happened in the past, what the cur-
rent situation is, and predicts what the future may hold for these technologies. Top 
experts who have contributed to the development of precision agriculture provide the 
information.

Agriculture must provide an ever-increasing amount of quality food, fiber, feed, 
and fuel for humankind. And it must do this in a manner that is environmentally, 
economically, and sociopolitically sustainable. This will become even more chal-
lenging in the future as there is no single technology that can solve this problem. The 
development and proper implementation of precision agriculture therefore can be a 
great help toward achieving this very important task.

NEED FOR PRODUCTION

The Food and Agriculture Organization of the United Nations (UN) estimates that 
we will need 60% more food by 2050. This is partially due to increasing population. 
In 2012, the world’s population passed the 7 billion mark. Although the population 
growth rate has halved since its peak, the UN predicts that the world’s population 
will increase to 9.6 billion by 2050. Those extra mouths need to be fed.

But a bigger cause of the need for the increased production is the changing diets 
of many consumers, especially those in high-population emerging economies. For 
example, the consumption of meat increased about 800% in China from 1978 to 
2008. The move from diets heavy in staple crops to diets that include substantial 
amounts of animal products and fruits and vegetables demands much more produc-
tion from plant agriculture. At the same time, the average total calories consumed 
per capita have increased from 2250 in 1961 to 2750 in 2007 and are predicted to 
reach 3070 in 2050. The confluence of more people and more per capita demands 
leads to the need for great increase in plant agriculture production.

The world depends heavily upon fossil fuels for its fuel, chemicals, and fibers. 
However, easily accessible supplies of oil and gas are finite and we will soon reach 
their limit. In addition, the extraction of fossil fuels from below the earth’s sur-
face unfortunately brings carbon to the surface and into the atmosphere, thereby 
increasing the greenhouse effect. Plant agriculture removes carbon dioxide from 
the atmosphere. More plant production is needed to replace fossil fuels and conse-
quently to provide the raw materials for biofuels, chemical feedstock, and natural 
fibers. However, increasing such uses of plants could consume agricultural resources 
that could contribute to food production. This again shows the need for increased 
productivity.

As discussed above, it is obvious that more agricultural production is needed to 
support increased populations and changing diets while reducing fossil fuel depen-
dence. By properly responding to spatial and temporal variability in soils, crops, and 
pests, precision agriculture technologies help increase the productivity and efficiency 
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of plant agriculture. The best way to meet the production needs of the future is to use 
precision agriculture in combination with the best genetics, cultural practices, equip-
ment, and agronomic management, to achieve maximum production.

NEED FOR SUSTAINABILITY

Humans are now dominating the earth. In order to ensure the health and happiness 
of future generations, we must live in a sustainable manner. There needs to be envi-
ronmental, economic, and sociopolitical sustainability. This sustainability can be 
improved through the use of precision agriculture.

The growing and harvesting of crops remove nutrients from the soil, which must 
be replaced for long-term environmental sustainability. In low-income countries 
where the supplies of fertilizers are limited, they should be applied in the areas 
where they will do the most good. In high-income countries, fertilizers are often 
uniformly overapplied to avoid the economic consequences of nutrient deficiencies 
in any area. The mobility of the overapplied nitrogen and phosphorus can then cause 
those nutrients to be removed from agricultural fields and subsequently lead to drink-
ing water contamination or excessive algae growth. Applying the right fertilizers in 
the right place at the right time is important to maintaining a proper crop-growing 
environment without pollution.

Water is a similar environmental issue. Agricultural irrigation represents about 
70% of humans’ water usage. There are competing demands for our limited water 
resources. Precision agriculture irrigation can help maximize water use efficiency.

Traditionally, pesticides are applied uniformly in an agricultural field. However, 
insect, disease, and weed pests tend to be spatially variable. Therefore, the uniform 
application of pesticides often results in pesticides being released into environments 
where they are not needed. It would promote environmental sustainability if preci-
sion agriculture was utilized and pesticides were applied just where and when they 
are needed.

Economic sustainability is also promoted by precision agriculture. Inputs such as 
water, fertilizers, and pesticides contribute very significantly to the costs of produc-
tion. Reductions in those inputs and increases in quality production from precision 
agriculture can make farming more economically rewarding. There are also second-
ary economic benefits in the increased input use efficiency, thus reducing embedded 
energy costs and environmental costs.

Over half of the world’s population now lives in urban, rather than rural, envi-
ronments as the migration to cities continues. A disproportionate percentage of 
the migrants are young adults in search of better economic opportunities and 
more rewarding jobs. Their migration from rural areas has a detrimental effect 
on sociopolitical sustainability in both rural and urban areas. Although the effect 
may be small, the introduction of advanced precision agriculture technologies 
may prove attractive enough to some potential migrants to encourage them to 
remain in rural communities. The infrastructure, personnel, and experience of 
precision agriculture may help reduce the digital divide between rural and urban 
populations.
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POTENTIAL OF PRECISION AGRICULTURE 
TO HELP MEET THESE NEEDS

Meeting the production and sustainability needs for plant agriculture in the future is 
a difficult task. The greatest chance of meeting those needs is if there is an integra-
tion of advances in many areas. There need to be better technologies in genetics, 
cultural practices, weather prediction, equipment, and farm management. Existing 
and to-be-developed precision agriculture technologies must be effectively and effi-
ciently integrated into the crop production systems to contribute to increased produc-
tion and sustainability.

The purpose of this book is to facilitate that integration by conveying informa-
tion on precision agriculture technology to other researchers and practitioners. The 
chapters are written by experts who have contributed significantly to the develop-
ment of precision agriculture technologies. They discuss the developments of the 
past, describe the current situation, and provide some predictions of the likely future.

ORGANIZATION OF THIS BOOK

The first chapter gives a brief review of the history of precision agriculture to estab-
lish a background to the discussion of particular technologies and applications. The 
next chapters provide details on technologies for sensing, data handling, modeling, 
and control. The technologies, when integrated, are the vital tools needed for preci-
sion agriculture to be successful. The following chapters show how precision agri-
culture can be used in large-scale agriculture, community agriculture, diversified 
farming, and as a good agricultural practice. Finally, the needs for the future are 
proposed.

Of course, there is much more information on precision agriculture than can be 
included in one book. The authors have utilized their vast experience and knowledge 
to select the most important and relevant information. I hope you find the book as 
interesting and informative as I have.

John K. Schueller
Mechanical and Aerospace Engineering Department

University of Florida
Gainesville, Florida
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1 A History of Precision 
Agriculture

David Franzen and David Mulla

1.1  INTRODUCTION

There is little evidence that the ancients, although they recognized production dif-
ferences between fields, considered within-field variation to be worthy of concern 
(Cato, 160 bc). Romans bought land based on their impression of the care of the 
farm, its location on the landscape, and soil characteristics. Farms were fertilized 
using a variety of manures, composts, and the liquid left over after olive pressing. 
Perhaps, owing to the intense workload of performing basic farming practices, little 
thought appears to be given to within-field variability. Often the landowners con-
cerned themselves much more with slave or freeman management than within-soil 
differences. Much more attention was given to acquisition of land rather than dealing 
with deficient areas of individual fields (Slavin, 2012). In colonial America and the 
new United States, similar practices were adopted as that of ancient peoples with 
regard to certain crops on certain soils, crop rotation, and the use of manures on 
worn-out soils (Jefferson, 1824).

1.2  BRIEF REVIEW OF PRECISION AGRICULTURE HISTORY

When scientists from the new U.S. land-grant colleges first met to discuss agricul-
tural school objectives, the very first experimental subject proposed was dealing with 
variability in plot crop yield due to soil heterogeneity (Hatch, 1967). Despite efforts 
to find the most uniform areas possible to conduct field experiments, the problem of 
field heterogeneity continued to confound researchers (Harris, 1920). Serious steps 
forward in improving decisions confounded with spatial variability on a small spa-
tial scale began in the early 1920s. Robert A. Fisher started his breakthrough work 
on the foundation of experimental design at the Rothamsted Experiment Station in 
Harpenden, Hertfordshire, England in 1919 (Box, 1978). Over the following 7 years, 
he developed a series of statistical tools used as a foundation for most small-plot and 
even full-field experiments (Fisher, 1935). The use of principles established by Fisher 
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2 Precision Agriculture Technology for Crop Farming

and the expansion of statistical tools to include problems associated with slopes and 
systematic differences in soils, such as a Latin-square design or the use of replica-
tion blocks, have been greatly useful in decreasing the effect of spatial variabil-
ity in small-plot experiments for generations of field researchers. However, none of 
these tools is particularly helpful for managing field variability of nutrients, weeds, 
insects, seeding rate, or other management inputs.

Most of the work in site-specific agriculture conducted since 1920 has concen-
trated in crop nutrient management. Soil testing has received a great deal of atten-
tion, since it was identified as a means of determining the nutrient supplying capacity 
of soil since the writings of Sprengel (1839). In soil analysis, a soil sample is taken 
from the field, processed to take out small stones, then usually subjected to mixing 
with a liquid extractant, filtered and the nutrient of interest is determined so that a 
relative amount of the nutrient can be compared to the amount correlated with some 
degree of possible crop response. The response can be beneficial to the crop or it 
might sometimes be toxic, depending on the extracted element or compound and 
the amount in the soil (Melsted, 1967). Although laboratory errors are possible, and 
minimized commercially through a system of laboratory checks and blanks (SSSA, 
2004), the greater source of error in determining the usefulness of a soil analy-
sis recommendation is from sampling error (Cline, 1944; Reed and Rigney, 1947; 
Hemingway, 1955; Graham, 1959).

The first known recommendation for soil sampling to address field heterogeneity 
was published by Linsley and Bauer in 1929. Figure 1.1 shows the sampling strategy 
that was recommended for a 12.5-ha field. The inspiration for advising farmers to 
soil sample to 15 cm depth and analyze in a 0.4-ha grid, with additional sample cores 
to a 30 cm depth was related to the effort it took to spread agricultural limestone onto 
an acidic farm field. At that time, the ground limestone was delivered by rail car. The 
transport, usually a horse-drawn wagon, was filled with shovels from the rail car by 
hand, driven back to the farm where the limestone was scooped out of the back of 
the wagon onto the field by hand. With recommended limestone rates well over a 
T ha−1, the labor of sampling was far less than that of applying limestone to areas of 
the field where it was not required. However, the practicality of these recommenda-
tions quickly disappeared by the development of mechanical, self-propelled fertilizer 
application equipment. By 1938, there were many fertilizer application machines 
available to farmers and many were regularly used, including broadcast, hill-placed, 
and near-seed-banded equipment (Salter, 1938). Salter references several sources 
where studies of over 20 different types of machines were compared. These early 
machines were small, but they were great labor-saving tools that made laborious soil 
sampling more difficult than addressing field variability.

The basic soil sample from the 1950s to the present day in many areas is the com-
posite sample that represents a field (Melsted and Peck, 1973). Although research-
ers familiar with crop nutrient spatial variability included cautions to only include 
relatively uniform, similar soils in a composite sample, sample cores were typi-
cally taken from multiple areas of fields described by farmer field boundaries and 
not by soils within them. Melsted and Peck (1973) describe two fields that were 
periodically sampled in a 24.3-m (80-ft) grid pattern from 1961. Figure 1.2 shows 
images of Melsted and Peck, the visionaries who helped build the foundation for 
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FIGURE 1.1  Recommended sampling strategy for a 12.5-ha square field. Rectangles are 
for 0–15 cm surface cores, and circles denote locations for a deeper, 0–30 cm core. The 44 or 
65 designations are for steps between sampling points, because that was the only reasonably 
efficient location producer at the time. (Adapted from Linsley, C.M. and F.C. Bauer. 1929. 
Test Your Soils for Acidity. University of Illinois Circular 346, Urbana, IL.)

FIGURE 1.2  S.W. Melsted (a) and T.R. Peck (b), the visionaries who helped build the foun-
dation for successful variable-rate fertilizer application.
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4 Precision Agriculture Technology for Crop Farming

successful variable-rate fertilizer application. The Urbana field was soon abandoned 
due to urban sprawl; however, the Mansfield site was sampled periodically until 
1994. The data set from this long-term study has been summarized (Franzen, 2007). 
The summary of this data set indicated that initial soil pH and P and K levels in the 
Mansfield site and later the Thomasboro, Illinois site were related to native soil dif-
ferences, man-made intervention with tree-rows at Thomasboro and hill-top erosion 
at Mansfield. The data set later included site-specific soybean and corn yield data, 
elevation, satellite imagery, soil electromagnetic sensor data, and fertilizer applica-
tion rates early in the study years.

The early 1960s also saw the emergence of new statistical tools to deal directly 
with spatial variability of soil nutrients. The statistical subfield of geostatistics was 
introduced by a Canadian scientist (Matheron, 1963). Matheron’s approach was 
based on principles outlined by a South African scientist working on gold mining 
spatial problems (Krige, 1951). Thus, terms such as “nugget variance” come to us 
from the gold-mining tradition. Since soil sampling or any sampling within a farm 
field only identifies the small area from which cores, plants, plant parts, or measure-
ments are taken, the vast majority of areas within the field are unknown from the 
observed values. Therefore, the values from unsampled areas of the field must be 
estimated or “interpolated” for anything to be done in response to the sampling. 
Kriging is the preferred method to accomplish this (Gotway et al., 1996), although 
to do so requires a minimum sample set of at least 30 observations. The most used 
interpolation strategy used in the United States is inverse distance squared. For a lay-
man’s description of interpolation strategy, see Isaaks and Srivastava (1989).

Initial soil sampling patterns were based on a philosophy of unbiased sampling 
and the lack of locating instruments within fields that are taken for granted today, 
such as radar and especially global positioning satellite (GPS) receiving devices. The 
unbiased sampling approach discouraged taking sample cores from unusual areas or 
in a random manner over the field. Rather, regular grid sampling, with equal distance 
between sampling locations was most recommended, with the Melsted/Peck data set 
being most extensive product of that philosophical approach. The regular grid sam-
pling pattern was the most widely researched and recommended approach until the 
1990s (Cline, 1944; Yates, 1948; McIntyre, 1967; Peck and Melsted, 1973; Burgess 
et al., 1981; McBratney and Webster, 1983; Webster and Burgess, 1984; Petersen and 
Calvin, 1986; Sabbe and Marx, 1987).

Variability of soil nutrients can be the result of natural soil processes, parent 
material differences, organic matter differences, and erosion patterns, but they can 
also be caused by systematic fertilizer application errors (Jensen and Pesek, 1962; 
Franzen, 2007) and land leveling artifacts (James and Dow, 1972; Knighton and 
James, 1985) used to prepare for irrigation.

Owing to the variability of crop nutrients within fields and the varying degree of 
variation of those properties, the density of soil sampling should reflect soil nutrient 
patterns. Depicting soil nutrient patterns became particularly important as a practical 
issue rather than an academic question with the advent of the variable-rate fertilizer 
applicator in the late 1980s. AgChem Equipment Company of Jackson, Minnesota 
was the first successful variable-rate broadcast granular fertilizer spreader, with 
commercial equipment used in 1988 in central Illinois. The founder and president of 
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the company, Al McQuinn, attended the first International Conference of Precision 
Agriculture in 1992 in Minneapolis, Minnesota and gave an impassioned scold-
ing directed at the general academic community for not providing adequate direc-
tion and recommendations for soil sampling to direct the new equipment (Franzen, 
2014, personal experience). The required research was already being conducted in 
at least Illinois (Franzen and Peck, 1992), Wisconsin (Wollenhaupt et al., 1994), and 
Nebraska (Gotway et al., 1996) at this time; however, the data generated was very 
large in these experiments and computational power was not nearly as great or as 
rapid as what is available today. In analyzing data in Illinois, for example, generating 
just one map of a 12.5-ha test field with 256 sampling points took 2 h to calculate 
and print. The same process today takes about 10 s from start to finished printed 
page if the sampling results are already uploaded. The publication of results from 
the Illinois and Wisconsin experiments and the Nebraska experiments that followed 
therefore took longer than most fertilizer rate experiments conducted at the time. 
The results from the Illinois (Franzen and Peck, 1995), Wisconsin (Wollenhaupt 
et al., 1994), and Nebraska studies (Gotway et al., 1996) all indicated that to reveal 
soil P, K, and soil pH patterns adequately to direct a meaningful variable-rate fertil-
izer or lime application, a 0.4-ha grid (one sample per acre) was necessary.

Although most researchers that have sampled whole fields at small spatial scale 
(less than 0.4 ha sampling density) have found that 0.4 ha is a minimum density to 
sample if nutrient variability is in a range where variable-rate fertilizer application 
would make a positive difference to the farmer, most grid soil sampling today is 
conducted in a 1 sample ha−1 grid (2.5 acre grid). The reason that this is acceptable in 
the central Corn Belt of the United States today is that most fields and areas within 
those fields have soil P and K levels in the high range. Although there is considerable 
variability of P and K levels within the field, most of the field, regardless of soil test 
level, will result in the same P and K fertilizer recommendation. Therefore, a less 
dense grid is acceptable, because failure to represent the P and K nutrient level still 
results in the proper recommendation as provided by university soil fertility experts 
(Bullock, 2002; Wittry and Mallarino, 2004).

With advances in grid sampling density, considerable energy was given to deter-
mine the best manner to map grid-sampled data and how to generate improved soil 
sampling strategies. Using large soil sampling data bases, several researchers con-
cluded that maps should be developed using kriging estimation rather than interpo-
lation procedures such as inverse distance (Russo, 1984; Laslet et al., 1987; Laslet 
and McBratney, 1990; Laslet, 1994; Gotway et al., 1996; Kravchenko and Bullock, 
1999; Kravchenko, 2003). Several publications were offered to aid practitioners in 
understanding the principles and uses of geostatistical methods and sampling strate-
gies that might help support improved variable-rate fertilization strategies (Mulla, 
1991; Wollenhaupt, 1996; Mulla and McBratney, 2002). Although kriging is the pre-
ferred interpolation method with which to map soil nutrients, it is necessary to have 
a sample size of over 30 points, and it is also particularly helpful if a systematic 
unaligned grid was used. Both of these parameters result in sufficient variogram 
points to produce the relationship regression curve/line between variogram and dis-
tance between points. Use of a regular grid, such as that used in Franzen (2007) 
produces limited points to construct the regression relationship, in the Illinois case, 
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perhaps 30 distances. If a systematic unaligned grid was used, the number of dis-
tance possibilities would exceed 100 for the same number of sampling points.

Grid sampling strategies other than a regularly spaced grid design, and subse-
quent within-field variable-rate fertilizer application would not be practical with-
out reliable locating devices that could be linked with input rate. Before automatic 
locating systems, any within-field application relied on limiting it to smaller field 
boundary marked with posts or flags. Some elementary within-field lime or fertilizer 
application was possible using brightly marked flagging (Franzen, personal experi-
ence, 1980s). The first automatic locating devices worked on radar. The U.S. Navy 
first utilized radio positioning devices in the 1920s. With satellite technology, the 
Navy deployed a radio-directed locating system called NAVSAT in 1964 (Danchik, 
1998). In agriculture, with the emergence of commercial variable-rate input applica-
tion equipment, the availability of application equipment preceded the GPS network 
available from the U.S. Department of Defense. For a short time, radar positioning 
systems were used. These systems were cumbersome, with the radar posts needing 
deployment to define field boundaries before an applicator could begin work (Tillet, 
1991).

The U.S. Department of Defense was granted congressional funding for a satellite 
positioning system that became known as GPS. The GPS idea was tested in phases, 
with 11 satellites launched up to 1985. Deployment of the remaining GPS satellites 
was delayed by the space shuttle Challenger explosion in 1986, which was the only 
launch platform for the satellites at the time. In 1989, satellite launches resumed with 
enhanced satellites compared with the first 11 previously launched, including greater 
longevity probability. The GPS satellite network of 24 satellites was completed in 
1994. In 1993, a joint Department of Defense and Department of Transportation 
agreement was signed that allowed civilian use of the GPS system. The availability 
of GPS for agriculture was a huge development for precision agriculture, and before 
long several companies offered GPS for agricultural use. The positioning of the orig-
inal systems would not allow location within a few meters of an intended location, 
but real-time kinetic correction towers were built by agribusinesses and farmers so 
that better location could be provided (Allen et al., 2004). GPS signals directly from 
satellite signals have inherent errors associated with atmospheric layer differences. 
Corrections are made using corrective satellite differential receivers and transmit-
ters, such as those used in the John Deere GreenStar™ system (Brimeyer, 2005), 
and through subscription to ground-based real-time kinematics differential towers 
often managed by third parties, such as the North Dakota/Minnesota Rural Tower 
Network (http://www.ruraltowernetwork.com/).

The activity of grid sampling research stimulated thinking into alternative meth-
ods of determining spatial nutrient patterns in soil and plants. One of the earlier 
alternative methods was to use soil survey as a delineation tool (Carr et al., 1991; 
Mausbach et al., 1993; Wibawa et al., 1993) with some success. Others documented 
that landscape, or landscape position had an influence on crop yield and crop nutri-
ent availability (Malo et al., 1974; Malo and Worcester, 1975). Canadian researchers 
in particular documented the influence of topography on soil nutrients and yield 
early in the process (Spratt and McIver, 1972; Pennock et  al., 1987, 1992; Nolan 
et al., 1995; Penney et al., 1996). Others observed that terrain position was related to 
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differences in crop yield and quality (Fiez et al., 1994a,b; Kravchenko and Bullock, 
2000). A breakthrough in sampling design occurred when intensively sampled fields 
for nitrogen exhibited similar patterns of residual nitrate in successive years. A gen-
eral understanding of soil nitrate was previously that it would change in value from 
year to year. Soil nitrate levels indeed change between years in values, but the rela-
tive amounts are present in relatively stable areas or zones. Figure 1.3 shows a field 
sampled in 1994 and 1995 in a 33-m grid. The field was in spring wheat in 1994, 
fertilized with a uniform rate of N in spring 1995, and a substantial sunflower crop 
was harvested in 1995. The images from each year depict residual nitrate following 
the harvest of each crop.

Since soil P and K levels vary little between years, it is difficult to attribute sta-
bility of P and K patterns to some logical, underlying reason. However, for residual 
soil nitrate patterns to remain stable over years, there must be an underlying rea-
son for this result. One of the five soil forming factors is topography (Jenny, 1941). 
Ruhe (1969) explained that water (and presumably any solutes it contains) moves 
through and within a landscape, but it always moves to the same places (Figure 1.4). 
The Valley City residual nitrate is strongly related to topography patterns in the 
field (Figure 1.5). From the mid-1990s, delineation of fields into nutrient manage-
ment zones became a strategy that makes variable-rate nutrient application in many 
regions practical, including nitrogen in the northern Great Plains of the United States 
(Franzen et al., 1998; Fleming et al., 2000; Fridgen et al., 2000; Inman et al., 2005; 
Hornung et al., 2006).

Determination of topography may be difficult. While elevation measurement is 
key to success, it is not just elevation measurement, but the development of topo-
graphic shapes that are important to soil development and soil water movement, 
and therefore crop productivity. Elevation can be measured with a transit, as has 
been done for hundreds of years. However, with GPS, particularly differential GPS, 
the height measurement of the GPS location is provided along with latitude and 
longitude (Department of the Army, 1998). A remote sensing approach was pro-
vided with the development of LiDAR (light detecting and ranging). LiDAR origi-
nated shortly following the invention of the laser in the early 1960s. It combined the 

Divergent Convergent
Profile curvature

Convergent
Divergent

FIGURE 1.3  Water movement through and over the landscape. (Adapted from Ruhe, R.V. 
1969. Quaternary Landscapes in Iowa. Ames, IA: Iowa State University Press.)
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narrow-focused properties of lasers with the distance calculating ability of radar 
(Carter et  al., 2012). Its use in determining small-scale elevation differences and 
mapping them has been useful in many aspects of site-specific management, includ-
ing soil conservation (Galzki et al., 2011).

In addition to topography, several other tools have been used to develop nutri-
ent management zones. Satellite imagery has been used by numerous researchers to 
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FIGURE 1.5  (See color insert.) Residual soil nitrate from Valley City, North Dakota, over 
the landscape.
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FIGURE 1.4  Residual soil nitrate in a 12.5-ha field near Valley City, North Dakota, after 
spring wheat (left) and the following year after sunflower.
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delineate nutrient management zones, particularly for nitrogen. Some of the early 
research on the use of satellite imagery for precision nitrogen management include 
Anderson and Yang (1996), Bausch et al. (1994, 1995), Faleide and Rosek (1996), 
Henry and Nielsen (1998), Johannsen et al. (1998), Schepers et al. (1996). The earli-
est research on the use of satellite imagery for precision agriculture was hopeful of 
using it to direct in-season nitrogen availability status for crops. Elaborate proce-
dures including sheets of plywood painted with specific colors from specific paint 
companies were erected in the corners of the research fields. However, problems 
with degree of light, light angle, and differences between crop cultivar colors made 
this objective unattainable. However, satellite imagery has been found to be useful 
in delineating nitrogen management zones for in-season nitrogen management using 
soil sampling and other methods (Franzen, 2004; Franzen et al., 2011).

The sensors that exploit soil electrical transmittance properties are also used 
in delineating nutrient management zones. The two most common sensors are 
the EM-38 (Geonics Ltd., Missasauga, Ontario, Canada) and the Veris EC detec-
tor (Veris Technologies, Salina, Kansas). Various models of the EM-38 have been 
available since 1980 (McNeil, 1980). The Veris electrical conductivity detector was 
commercialized in the late 1990s. Field zones can be delineated due to soil clay 
content (Doolittle et al., 1994; Kitchen et al., 1996; Banton, 1997). Electrical conduc-
tivity has also been related directly to soil nitrate levels in otherwise uniform soils 
(Eigenberg, 2002). In addition, EC and magnetism can be used to detect differences 
in water-holding capacity or soil water content, cation exchange capacity, porosity, 
salinity, and temperature gradients (Grisso et al., 2009). If fields have relatively uni-
form properties except for one measurable variable, as in the case of soil nitrate in 
some fields in Nebraska, or low salt coastal plain soils of the eastern United States, 
electrical conductivity can be used to directly relate to any of the variable factors that 
are singularly present in the field. However, in many fields, more than one factor var-
ies independently of others. This is particularly the case in the northern Great Plains, 
where salinity may be present in soils with more or less clay content in different lev-
els of landscape position due to internal water movement. In multivariable fields, the 
EC and magnetic flux sensors are pattern detectors with similar ability to delineate 
zones compared to other tools (Franzen, 2008a; Franzen et al., 2011).

Other common soil delineation tools are multiyear yield maps (Basnet et al., 2003; 
Franzen, 2008b; Franzen et al., 2011), aerial imagery (Blackmer and Schepers, 1996; 
Franzen et al., 2011), and grower information (Khosla et al., 2002). Although it may 
be sometimes possible to delineate nutrient management zones using just one tool, 
greater stability of the constructed zones is made possible with the use of more than 
two zone delineation tools (Franzen et al., 2011).

Soil sampling for nutrients may not be practical due to very small spatial vari-
ability. This was found in Oklahoma (Raun et al., 1998). Residual nitrate variability 
before top-dress timing of Bermuda grass was in the range of <1 m. Soil sampling 
for variability at this small scale is unreasonable to expect. The result of this pre-
liminary grid sampling study resulted in the development of an active-optical sensor 
to detect differences in nitrogen status for winter wheat, Bermuda grass, and other 
crops, which was linked to a variable-rate real-time on-the-go nitrogen fertilizer 
application.
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Directly after the microvariability of nitrogen status of Bermuda grass was 
realized, Raun was approached by Marvin Stone and John Solie, two agricultural 
engineers at Oklahoma State University with an idea for a normalized differential 
vegetative index (NDVI) detector and light emitter and asked if he thought there 
might be an application. Thus, the team of Raun, Stone, and Solie was formed, with 
the objective to address small-scale variability of nitrogen in regional crops (W.R. 
Raun, 1995, personal communication). Sensor development and the link between 
sensor readings and winter wheat nitrogen began very soon (Stone et  al., 1996). 
This report included early sensor descriptions and the first correlation data of sensor 
readings with winter wheat yield. Estimating plant nitrogen status in Bermuda grass 
using sensors was reported in 1998 (Taylor et al., 1998). As work in Oklahoma pro-
gressed, the relationship between sensor reading and wheat yield prediction became 
very evident. The construction of algorithms with the goal of in-season nitrogen 
application is based on sensor prediction of yields in a nitrogen nonlimiting strip 
compared to other areas within the field (Raun et al., 2001). The result of the work 
was the commercialization of the GreenSeeker™ active-optical sensor (Solie et al., 
2002). This applicator had the ability to operate at field sprayer speeds and apply 
N to each m2 of crop independently due to its array of sensors and nozzle clusters 
arranged every 1 m of spray boom width.

The GreenSeeker sensor has since been tested and is used in many countries in 
wheat, corn, and other crops (http://www.nue.okstate.edu/). Most recently, a series 
of algorithms for North Dakota corn growers was published (Franzen et al., 2014). 
The procedure for use is to establish an N nonlimiting strip within field, within 
cultivar. At the time of top-dress/side-dress, the algorithm to be used is loaded into 
the rate-controller software, along with the growing degree days from the date of 
planting to the date of in-season application. When the field is entered with the in-
season nitrogen applicator, the first activity is to operate the sensor over the N-rich 
strip. The reading is divided by the growing degree days to provide a value called 
INSEY, which the Raun group coined as an acronym for in-season-estimate-of-
yield. Algorithms are produced for a specific crop growth stage; however, expecting 
a grower to arrive at the field at exactly the specific algorithm growth stage is unrea-
sonable due to workload challenges combined with weather restrictions. Dividing 
the readings by the growing degree days results in a normalized value that makes 
the algorithm useful for plus–minus one or two growth stages before and after the 
stage for which the algorithm was developed. As the applicator moves through the 
field, the yield prediction between the N nonlimiting standard and the other parts 
of the field are developed. The difference in yield is multiplied by the controller 
software times the presumed N content of the grain to be produced and divided by 
an efficiency factor from the grower reflective of field conditions and the method of 
application. The result is a rate of N applied to a small area of the field on-the-go as 
the applicator moves through the field.

More recently, the Holland Scientific Crop Circle Sensor was introduced. Some 
of the basic principles of active-optical sensors developed by Oklahoma State were 
incorporated into the development of this sensor (Holland and Schepers, 2010); how-
ever, the instrument relies on an internal field standard rather than a separate N-rich 
strip for application (Holland and Schepers, 2013). When the applicator with the 
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sensor enters the field, the greenest portion of the field is used as the standard. Using 
the sensor in this manner assumes that the greenest area of the field has as much 
nitrogen as required for the highest yield.

Active-optical sensors have clear advantages over passive light/radiation sensors 
from satellites or airplanes because they only detect the radiation that they emit. The 
light emitted by these sensors operates on the same principle as a remote control for a 
television or an automatic garage-door opener. The light emitted is released in rapid 
pulses of varying lengths of time, separated by gaps in light emission of varying 
lengths of time. The light emission is very much similar to the UPC code in effect 
found on many grocery item packages in the United States. For that reason, active-
optical sensors can be used in any kind of light, at night or during the day whether 
clear or hazy or with intermittent cloud cover. The only conditions not conducive 
to gathering good data are rain or wet leaves, which would refract and disperse the 
light.

A number of additional sensors have been developed since the precision agri-
culture movement was initiated. One sensor was developed and marketed as the 
“Soil Doctor” during the early 1990s. Although the commercial operational proce-
dure was not disclosed to the public, the device apparently grew out of an electri-
cal conductivity apparatus developed from a Department of Energy grant (Colburn, 
1986). The unit was sold through the early 1990s, but it is apparently not marketed 
at present. Other sensors were developed during the late 1980s into the early 1990s, 
but most did not come to market. These included a real-time organic matter sensor 
developed at Purdue (Shonk et al., 1991), an organic matter sensor using near-infra-
red spectroscopy (Sudduth and Hummel, 1993), and ion-selective electrodes (Birrell 
and Hummel, 1997). Successful commercialization of nutrient-related soil sensors 
includes the Veris Technologies soil pH sensor (Schirrmann et  al., 2011). In one 
study, the use of the Veris pH sensor related mapped sensor pH better with actual 
field pH patterns compared with standard site-specific soil sampling techniques, 
with errors in the liming rate recommendations reduced by half. Veris also markets 
the Optic Mapper™, which uses a within-soil near-infrared detector to estimate soil 
organic matter content (Lund, 2011).

Analysis of grain protein during harvest was researched largely by Long first 
at Montana State in Havre, and then in Oregon (Engel et  al., 1998; Long et  al., 
1998; Long and Rosenthal, 2005). Although several combine protein monitors were 
tested over the years, the last one referred to in 2005, the Zeltex model marketed 
as AccuHarvest™, is commercialized for use in wheat, barley, corn, and soybean 
(http://www.zeltex.com/products/grain, 2014).

Adoption of precision agriculture technologies by growers and their suppliers and 
practitioners has been slow for input control, but the adoption of machinery traffic 
control systems has been relatively rapid. The adoption of yield monitors by growers 
is provided in Table 1.1.

Variable-rate technology has been adopted by many farm supplier retailers, but 
its adoption by grower is relatively low, with 12% of corn growers adopting by 2005, 
and about 14% of wheat growers.

In contrast, adoption of tractor guidance systems by growers increased from about 
5% in 2001 to 35% in 2009 (Schimmelpfennig and Ebel, 2011). In a 2010 survey of 
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corn growers, yield monitor use increased to over 72%, with about 34% of those 
using a yield monitor able to develop a map. Variable-rate fertilizer application was 
made by 19.3% of producers (USDA, 2010).

1.3  SUMMARY OF CURRENT STATUS

A 2013 survey of agricultural retailers in the United States (Erickson et al., 2013) 
found that some precision agriculture technologies increased while some remained 
at 2011 levels. Guidance with light bars with GPS of applicators was being used by 
82% of retailers, which is about the same as in 2011. GPS-enabled sprayer booms 
(differential shut-offs) increased from 39% to 53% adoption from 2011 to 2013. For 
diagnosis of crop nutrient status and presumably to help develop nutrient manage-
ment zones, satellite imagery and aerial imagery increased from 31% in 2011 to 40% 
in 2013. Active-optical sensor use increased from 4% in 2011 to 7% in 2013. Soil 
EC sensors remained about 12%, while use of other soil sensors remained about 
3% from 2011 levels. Variable-rate single-nutrient fertilizer application is offered by 
more than 70% of retailers, while about 60% of retailers offer multinutrient variable-
rate application. About 29% of retailers offer variable-rate pesticide application in 
2013, but the survey indicates intentions to increase to 45% of retailers by 2016.

Site-specific weed control research has received limited research compared with 
crop nutrients. The focus of the research has been in mapping weed infestations 
(Koller and Lanini, 2005) and weed imaging discrimination (Lin, 2009). Of the two 
approaches, the weed imaging strategy has been the most difficult to implement. 
Studies on weed identification by instruments date to the 1990s, but have achieved 
little commercial success (Singher, 1999; Tellaeche et al., 2011).

TABLE 1.1
Yield Monitor Adoption for Corn and Soybeans by Region 1996–2006

1996 1997 1998 1999 2000 2001 2002 2005 2006

Percent of Planted Acres

Corn
Corn Belt 21 18 28 34 28 44  

Lake states 10 19 18 29 17 39

Northern Plains 15 24 19 28 27 43

Soybean
Corn Belt 13 15 21 23 28   24   49

Lake states 16 11 16 15 30   29   48

Northern Plains 9 17 21 22   17   48

Source:	 Adapted from Schimmelpfennig, D. and R. Ebel. 2011. On the Doorstep of the Information 
Age. Recent Adoption of Precision Agriculture. Economic Information Bulletin No. 80, August, 
2011. USDA, Washington, DC, http://www.ers.usda.gov/media/81195/eib80_1_.pdf.
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Site-specific strategies for insects and disease are researched less than even weed 
control. However, one potentially useful tool to use is the ability of plants to emit 
unique volatile organic compounds when influenced by specific stressors (Spinelli 
et al., 2011; Niinemets et al., 2013). Specific compounds have been identified as a 
result of Fusarium infestation in winter wheat (Wenda-Piesik, 2011). With the proper 
nano-sensing or remote sensing instrument, one could imagine that in the future 
an array of sensors to a specific insect or weed in a field, and at an early infection, 
directed treatment could be provided.
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2 Sensing Technology for 
Precision Crop Farming

Marvin L. Stone and William R. Raun

2.1  INTRODUCTION

Precision agriculture (PA) or site-specific crop management is a concept based on 
sensing or observing and responding with management actions to spatial and tem-
poral variability in crops. The “sensing” component of the concept is a fundamental 
element of PA. Conventional PA technology is commonly associated with geoloca-
tion through global positioning system (GPS) or global navigation satellite system 
(GNSS) technology. A conventional PA application might employ yield monitoring 
where yield is sensed at GNSS-defined positions in a field. The sensed data are later 
used to manage the treatment of particular regions of the field based on the earlier 
yield at those locations. The process between sensing and management actions and 
the associated time delay can result in two fundamentally different PA techniques, 
real-time sense and apply (RTSA), and conventional georeferenced PA.

RTSA is based on sensing a parameter and immediately using that information 
to effect a management action. Geolocation is not required for RTSA, as the site of 
the measurement can be the same as the site where the management action is per-
formed. In contrast, conventional georeferenced PA technology employs sensing and 
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association of location with sensed data, a map of the sensed information. The man-
agement action is not performed immediately but at a later time and the location data 
of the map is used to allow the management action to be performed at the appropri-
ate site. Both RTSA and conventional georeferenced PA technology employ sensing 
technology, but the latter required GPS technology to emerge for the technique to be 
viable. The inclusion of RTSA technology under the definition of PA broadens the 
definition of PA. RTSA technology emerged earlier than conventional PA and is not 
necessarily distinguished by its association with GPS technology.

The application of sensing to better manage crop production is a long-practiced 
technology. Crop irrigation is an example where irrigation is performed to mitigate 
crop water stress. The Egyptians and Mesopotamians irrigated agricultural crops 
before 2000 bc (Garbrecht, 1983). Sensing no doubt consists of observing wilt in 
the crops and irrigating the site to counter the observed crop water stress. Before the 
current widespread availability of electronics and sensing technology, nonelectronic 
technologies were developed for sensing soil water availability. Classical tensiome-
ters, for example, required only mechanical technology to effect sensing and allowed 
irrigation to be performed at sites where water stress existed, perhaps an example of 
early PA.

The emergence of modern electronics has made broad sensing technologies 
available for management of crop production. Electronics and sensor systems were 
exploited for application in agricultural equipment early after the availability of 
emerging electronics technologies. Logic integrated circuits were introduced in 
1964 by Texas Instruments, followed by monolithic amplifiers by Fairchild in 1965. 
These introductions were quickly followed by the introduction of a seed flow planter 
monitor by DICKEY-john in 1967 and a spray rate controller by ASCI in 1970 (Stone 
et al., 2008). Both of these controllers sensed operating parameters on an agricul-
tural machine and in the first case allowed the operator to adjust the machine and in 
the second case automatically adjusted the machine. By the late 1980s, research was 
being conducted on conventional PA technologies. A yield measuring system was 
demonstrated with a local microwave positioning system by Searcy et al. in 1989.

The first satellite in the Navstar GPS system was launched in 1989 and the sys-
tem became fully operational in 1995 (Hegarty and Chatre, 2008). One of the first 
combine yield monitors to utilize GPS location data was introduced by Ag Leader 
in 1982. Soon after, other yield monitoring systems became available, including the 
John Deere Greenstar system in 1985 (Stone et al., 2008). The sensing component 
of these systems was a grain flow sensor coupled with a grain water content sensor.

The emergence of yield sensing in a PA system focuses our attention to the mat-
ter of the need to effect a management action based on yield measurements. That is, 
if yield can be effectively measured, what beneficial management action should be 
taken? This relationship between the sensed parameters and the management action 
will be referred to here as the “control algorithm.” The fundamental components of 
a PA system consist of sensor or sensors, the control algorithm, and management 
action. Figure 2.1 shows the relationship in a classical block diagram form and as a 
feedback system. In the case of yield monitoring, the “controlled variable” would be 
yield and the sensor system would provide the measured variable, measured yield. 
The measured variable would be compared to the “desired level of the measured 
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variable,” the yield, and the control algorithm would act upon this comparison to 
drive a management action. The action might be to increase or decrease fertilizer 
application rate. External influences, for example, the weather, affect the yield. The 
process for managing fertilizer application based on harvested yield may encompass 
many years of farming. In contrast, the timing in some RTSA systems, for example, 
using canopy reflectance to manage fertilizer application, may encompass only a few 
hundred microseconds between sensing and taking management action.

The ultimate controlled variable in a precision farming system may be profit-
ability. Profitability should at least be a major factor as we consider development of 
sensing technologies. It is worthwhile to look at a typical farm budget to allow identi-
fication of promising sensing technologies. There is little sense in focusing significant 
efforts into developing technology if some reasonable return cannot be envisioned. 
The potential for significant increases in yield as well as significant decreases in 
production costs become the targets for potential sensor technology. Environmental 
issues, labor issues, and a myriad of other issues may affect profitability, and must 
play a role, but a simple examination of a typical farm budget provides some assis-
tance in identifying important target areas for a focus on sensor technology.

Table 2.1 presents example farm production costs for continuous farming of corn 
and for small grains in Iowa. For both of the cases shown, the fixed land and machin-
ery costs rank in the top four categories. The primary variable costs identified are 
for nitrogen, phosphorus, and seed. The potential for both seed technologies in corn 
and nitrogen fertilizer management technologies are very good. In the case of nitro-
gen fertilizer, nitrogen use efficiency (NUE) is 33% worldwide (Raun and Johnson, 
1999), indicating that two-thirds of the fertilizer that is applied is not recovered in 
harvests. The environmental impact of nitrogen use inefficiency is significant and 
well understood (Matson et al., 1997; Whitson and Walster, 1912). Major portions of 
that inefficiency can be addressed through precision nitrogen management (Cassman 
et al., 2002; Roberts, 2007) and crop reflectance-based sensor technology has been 
demonstrated to be effective in that role (Li et al., 2009).

Iowa corn and small grains production costs cannot of course provide the broad 
perspective regarding the potential for sensor technology, but do provide a technique 
for identification of the potential with those crops. A very different perspective exists 
with irrigated crop production where water use is a major factor and with other crops 

Control
algorithm

Management
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Sensor
system

Desired level of the
measured variable Controlled variable

–

Measured variable

External influences

+

FIGURE 2.1  Block diagram of a precision farming control system.
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where other potential applications exist. The sensor technologies reviewed below are 
not comprehensive, but address those technologies that appear to have good potential.

2.2  CONTROL ALGORITHMS

2.2.1  Sensor-Based Algorithms for Fertilizer Nitrogen

It is important to begin this section with work coming from the late Norman E. 
Borlaug. Borlaug (2000) stated that agricultural scientists have an obligation to 
inform others concerning the magnitude and seriousness of arable land, food, and 
population problems that lie ahead, even with breakthroughs in biotechnology. One 
of these problems has been the seriousness of how fertilizer nitrogen is used and the 
aftermath/consequences of its potential misuse for cereal grain production in the 
world. Algorithms that can objectively apply the right source, at the right rate, at 
the right time, and in the right place (IPNI, 2012) will be those that impact our world 
both today and well into the future.

In this light, this review hopes to highlight algorithms and methodologies that 
will make a difference in how nitrogen is managed. What exactly comprises these 
algorithms and how each of the components is used is delineated in the following 
discussion.

2.2.2 A lgorithm Components

Yield goal: Grain yield goals have been used for many years to estimate preplant 
fertilizer N rates. Early work by Dahnke et al. (1988) noted that the yield goal was 

TABLE 2.1
Crop Production Costs Estimated with the Iowa State University “Ag 
Decision Maker” Based on Continuous Conventional Tillage for Year 2012

Continuous Corn (US $) Continuous Oats (US $)

Land (rent) 129,000 32% Land (rent) 50,000 31%

Nitrogen (N) 56,700 14% Machinery 22,650 14%

Seed 51,000 13% Nitrogen (N) 20,400 13%

Machinery 43,650 11% Phosphate (P) 20,250 13%

Drying, handling 30,030 7% Labor 16,500 10%

Phosphate (P) 19,840 5% Lime 14,500 9%

Labor 16,673 4% Seed 10,000 6%

Potash (K) 13,750 3% Potash (K) 7,200 4%

Insurance 11,250 3% Herbicide 0 0%

Herbicide 10,000 2% Insecticide 0 0%

Insecticide 9,200 2% Insurance 0 0%

Interest 7,331 2% Miscellaneous 0 0%

Lime 4,835 1% Interest 0 0%

Miscellaneous 4,500 1% Drying, handling 0 0%

Total 407,759 100% Total 161,500 100%
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the “yield per acre you hope to grow.” They further noted that what you hope to grow 
and what you end up with are two different things. Early work by Allison (1955) 
noted that accurate values for N removed in harvested crops were commonly avail-
able. However, leaching of N as NO3–N and volatilization losses remained problem-
atic in N balance studies. As a result, he noted that N balance sheets seldom added 
up (outputs minus inputs) and that helped to explain why recoveries of nitrogen in the 
crop were often only 50% of that added as fertilizer.

The yield goal concept at North Dakota State University recommends using the 
highest yield attained in the last 4–5 years and is usually 30%–33% higher than the 
average yield. Rehm and Schmitt (1989) noted that with favorable soil moisture at 
planting, it would be smart to aim for a 10%–20% increase over the recent average 
when selecting a grain yield goal. They also indicated that if soil moisture is limit-
ing, the use of history and past maximums (used to generate the average) may not be 
the best method for setting a grain yield goal for the upcoming crop. In Nebraska, 
fertilizer N rate recommendations for corn and that use yield goals are 1.2 pounds 
N/bushel (0.02 kg N/kg grain), and that can include soil test and soil organic matter 
credits (Shapiro et al., 2008). For winter wheat, the yield goal-based N rate recom-
mendation is 2 pounds of N for every bushel (0.03 kg N/kg grain) you hope to pro-
duce (Zhang et al., 2010).

The use of farm or county averages was not suggested for progressive farmers 
concerned with high farm profitability (Rehm and Schmitt, 1989). Black and Bauer 
(1988) reported that the grain yield goal should be based on how much water is avail-
able to the winter wheat crop from stored soil water to a depth of 1.5 m in the spring 
plus the anticipated amount of growing-season precipitation.

More recent sensor technologies, weather forecasting, and crop modeling have 
enabled the development of methods for predicting potential grain yields, and have 
allowed for in-season nutrient adjustments to reflect early crop development and 
growing conditions. Nonetheless, “yield goals” as we understand them are an incred-
ibly useful term/concept because they embed intrinsic knowledge about the environ-
ment, climate, terrain, and a holistic understanding of the crop management system 
that is being practiced. Furthermore, these yield goals are understood to be unique 
for each and every producer, as he or she will know within certain boundaries, what 
their yield goal should be for any given year. This is predicated on years of experi-
ence, on that farm, and encompass the environmental conditions encountered over 
time.

Their “yield goal” embeds added information and experiences that include sea-
sonally late or early planting, variety and/or hybrid, weed pressure, and even sensi-
tivity to whether or not the ground is being rented, or that it was owned. All of this 
impacts the “yield goal” that a producer might establish at the very beginning of 
the season, with no knowledge whatsoever of what the environment/climate might 
deliver. As such, the yield goal can take on transitory properties that may or may not 
be the same, for the same producer, next year. It is also likely that for the exact same 
set of conditions, land being farmed, and crop being grown, two different producers 
would have completely different yield goals. This variability does not diminish the 
value and/or importance of yield goals, but rather highlights its intrinsic anthropo-
logical nature.
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Yield potential (YP0): Because “yield goal” can take on so many different forms, 
some clearly numeric and linear, and others that are more composite and literal, it 
remains in fact, a highly desirable term. Sequential to this is thinking that research-
ers could indeed generate the parameters and inputs to predict yield goal. Is it even 
possible? If yield goals could indeed be predicted, they would make complete sense 
since known nutrient removal amounts are understood at a given level of yield (IPNI, 
2014). Replenishing those nutrients at X-yield level using an expected efficiency for 
each nutrient in question would indeed be diligent and acceptable to any producer. 
Or, would it rather be possible to predict one of the important fragments of “yield 
goal” that is again understood as a more holistic all-encompassing quantity? An 
all-important fragment of “yield goal” is “yield potential” or the upper level yield 
boundary that is dictated by a host of factors. Nonetheless, can the menagerie of 
information and data available to a producer prior to planting be used to predict yield 
potential? At this juncture, the answer is likely no, again, for a preplant decision.

Raun et  al. (2001) has focused on the task of predicting what that upper yield 
boundary might be midseason (rather than preplant), not what the actual yield would 
be, but what it could be. And this is based on midseason “progress” or the midseason 
“report card.” Their work further showed that a normalized difference vegetative 
index (NDVI)-based formula accounted for 83% of the variability in actual grain 
yield, and ended up being the cornerstone of their entire YP0-RI concept paper (Raun 
et al., 2002). In this work, they went on to define the prediction of yield potential as 
INSEY or in-season estimated yield, and that continues to be used in the literature 
today. Their prediction of yield potential or INSEY was robust in that it accounted 
for the number of days from planting to sensing where growth was possible. This for 
winter wheat would be days where GDD >0 (GDD = [Tmin + Tmax]/2–4.4°C), where 
Tmin and Tmax represent daily ambient low and high temperatures. This index in turn 
represented growth rate, since total biomass can be estimated using NDVI, and when 
divided by the number of days where growth was possible was equivalent to biomass 
produced per day. This midseason estimate of growth rate was then found to highly 
correlate with actual yield. INSEY or yield potential could thus be estimated at any 
location where the planting date was known, and an accurate field value of NDVI 
was collected. And this was provided that sufficient data had been collected to gener-
ate the INSEY-measured grain yield equation (Lukina et al., 2001; Raun et al., 2001) 
and that is likely to be environment-specific as present research has shown (http://
www.nue.okstate.edu/Yield_Potential.htm).

Basing fertilizer N rates on the amounts removed in forages and/or from cereal 
grains has also been an important practice. Work by Lukina et al. (2001) noted that 
INSEY could be used to compute the potential N that was removed from the grain. 
In-season N fertilization needs were then considered to be equal to the amount of 
predicted grain N uptake (potential yield times grain N) minus predicted early-sea-
son plant N uptake (at the time of sensing), divided by an efficiency factor. The use 
of INSEY could replace N fertilization rates determined using production history 
(yield goals), provided that the production system allows for in-season application 
of fertilizer N.

Response index (RI) or N responsiveness: Some of the earlier sensor work with 
algorithms was conducted by Mullen et al. (2003) who predicted N responsiveness or 
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the likelihood of obtaining a response to applied fertilizer using NDVI data collected 
from an N-rich strip (area where preplant N had been applied at a rate where no N 
deficiency would be encountered during the growing season) and the farmer prac-
tice. Dividing the NDVI from the N-rich strip by the NDVI value from the farmer 
practice was termed the response index or RINDVI. The response index determined 
from these same two plots, but using grain yield at harvest, or RIHarvest (yield of the 
N-rich strip/yield of the farmer practice) was found to be highly correlated with 
RINDVI. Or in other words, the midseason RINDVI could be used to project what kind 
of final RI would be found at the end of the season, or RIHarvest. Being able to predict 
this environmentally dependent statistic empowered those developing sensor-based 
applications for nutrient management.

What was interesting from this work was the value of the N-rich strip by itself. 
Independent of any methodology for predicting midseason yield potential, knowl-
edge of what the N-rich strip or RI was could dictate whether or not a producer 
applied N fertilizer. This was simply a yes or no question and that was in no way 
bound to a specific rate. If producers could not see the N-rich strip in the middle 
of the season, it was then highly likely that they would not see a response to added 
fertilizer N and the decision to not apply any more N was embraced. Alternatively, 
if visible differences in biomass and intensity of green color were clearly different, 
the demand for added N was evident. Equally important concerning work with the 
N-rich strip was that the responsiveness or RI changed radically from year to year 
and at the same location (Arnall et al., 2013). This was noted for both corn and wheat 
throughout the Great Plains region (Raun et al., 2011).

Combined use of yield potential (YP0) and RI or (YP0-RI): Algorithms and N fer-
tilization methods have been present in the sensing world for some time. Raun et al. 
(2004) noted that basing midseason N fertilizer N rates on predicted yield potential 
and a response index could increase NUE by over 15% in winter wheat when com-
pared to conventional methods. Their work further noted that using a sensor-based 
algorithm employing both yield potential and N responsiveness could increase yields 
and decrease environmental contamination due to excessive N fertilization.

Fundamental to this work were pointed findings in the entire Great Plains 
region documenting that yield potential (yield level) and nitrogen responsiveness 
were independent of one another (Raun et  al., 2011; Arnall et  al., 2013). Their 
independence and knowledge that both impact crop demand for N necessitates the 
inclusion of both in any reasonable algorithm expected to determine accurate mid-
season fertilizer N rate recommendations. This was facilitated by early NDVI sen-
sor work that made midseason fertilizer N rate recommendations possible (Stone 
et al., 1996).

A variant of the YP0-RI approach has two added findings that clearly apply to 
sensor-based N rate algorithms. The first is the knowledge that not only did the 
YP0-RI approach work to improve fertilizer NUE over conventional methods, but 
that the spatial scale at which sensor-based systems should operate is 0.4 m2 (Raun 
et al., 2005b). Furthermore, and that is tied specifically to the GreenSeeker™ NDVI 
sensor, is determining the spatial variability within each 0.4 m2 area using the coef-
ficient of variation (CV) from NDVI readings. When CVs were higher (within each 
0.4 m2), N rates were lowered due to the expressed variability within that area. When 
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CVs were lower, N rates were increased due to the improved homogeneity of the 
plant stand and that reflected a higher yield potential.

Sufficiency: Roger Bray’s original nutrient mobility concept helped to clarify why 
sufficiency could only be used for immobile nutrients (Bray, 1954). In this work, he 
delineated the root system sorption zone for mobile nutrients and the root surface 
sorption zone for immobile nutrients.

In soils, plants respond to the total amount present for mobile nutrients and to 
the actual concentration for immobile nutrients. Or, yield is directly related (pro-
portional) to the total amount of a mobile nutrient present in the soil. As such, nutri-
ent depletion of the root system sorption zone is dependent on the environment, or 
growing conditions. Response of crops to mobile nutrients is considered to be linear 
(mobile nutrient availability is unaffected by reaction with the soil). However, yield 
response to an immobile nutrient is not related to the total amount present in the soil, 
but instead is a function of the concentration at, or near, the root surface. Because of 
this, nutrient depletion in the root surface sorption zone is considered to be indepen-
dent of the environment.

Varvel et  al. (1997) used chlorophyll meter readings to calculate a sufficiency 
index ([as-needed treatment/well-fertilized treatment] × 100). This was then used to 
make in-season N fertilizer applications when index values were below 95%. The 
rate used was 30 lb N/ac, checked every 7 days and N was applied (if needed) all the 
way to the R3 corn growth stage.

Why is this so important? If sufficiency is dependent on the environment and in-
season growing conditions, midseason fertilizer rates should be tied to yield level. 
This is precisely why this issue has been raised because those using the sufficiency 
approach have not included yield level or an expected yield potential to refine the 
final recommended rate.

Maximum return to nitrogen (MRTN): MRTN provides N rate recommendations 
based directly from analysis of N response trials and return to N (corn nitrogen rate 
calculator; http://extension.agron.iastate.edu/soilfertility/nrate.aspx). This approach 
does not employ the use of sensors, and remains relatively popular. Fertilizer N rates 
are determined from yield increases to applied N and current grain and fertilizer 
prices; but not to yield level (Sawyer et  al., 2006). Further clarification by Larry 
Bundy noted that their results provided no clear indication of a change in N rates over 
time. Reasons for similar optimum N rates where yields have increased substantially 
include more efficient utilization of available N by the crop and increased soil N 
supplying capability.

Their summary indicates that the flat net return surrounding the N rate at MRTN 
reflects small yield changes near optimum N thus indicating that choosing an exact N 
rate is not critical to maximize profit. In light of the known environmental problems 
coming from excess N in agriculture, particularly corn, this laissez faire approach is 
highly disconcerting.

2.2.3 A lgorithm Applications and Concepts

Work by Roberts et al. (2009) noted that because sensor information can be processed 
into an N rate that approximates optimum N, sensor-based N applications can also 
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have environmentally beneficial effects. Added studies in Missouri (Scharf et  al., 
2011) showed that sensor-based N management reduced N applied by 25% beyond 
what was removed in the grain, thus reducing unused N that can move to water or 
air. They further noted that a midseason sensor-based approach could choose N rates 
for corn that perform better than rates chosen by producers. Comprehensive field 
work by Kitchen et al. (2010) showed that crop-canopy reflectance sensing delivered 
improved N management over conventional single-rate applications. More recent 
studies by Torino et al. (2014) showed that early season estimates of crop N status 
and yield potential may be more accurate if red-edge vegetation indices were used.

What is apparent in the literature is that sensor-based N management has taken 
hold in the developed world. It is a technology that embeds sound agronomic prin-
ciples within engineering applications that can be delivered at whatever scale pro-
ducers seek.

2.3  YIELD MONITORING

Yield monitoring is an important source of information in PA systems. Comparative 
yield information may be used to assess the performance of farming practices. 
Absolute yield levels may also be used directly in control algorithms. The obvious 
example is in managing fertilization where removal of nutrients through harvesting 
can be determined as a fraction of yield and an algorithm may be used to compute 
the necessary nutrient replacement. In both cases, site-specific yield information 
may be required at a spatial resolution and accuracy suitable for the application.

Georeferenced yield monitoring emerged as a commercial product in the early 
1990s and was the first conventional PA technology to become widely used. 
Fundamental types of yield monitor sensing systems have evolved and are reviewed 
by Demmel (2013). Table 2.2 presents a classification of yield sensing systems and 
identifies typical crop applications where the technology has been used.

Yield is normally expressed as a volume per unit area and might be better referred 
to as area-specific yield. Expressed this way, yield comparisons may be made without 
regard to area and total harvest mass or volume (total yield) can be readily computed 
from average yield and area. The expression of yield as an area-specific quantity 
requires monitoring area harvested as an input to provide yield data. Harvested area 

TABLE 2.2
Yield Sensor Types

Type Typical Crop Application

Momentum difference Grain

Mass flow detection Grain

  Load cell based Grain

  Radiation based Grain

  Optical density Cotton, sugarcane, peanuts

Volumetric metering Grain

Batch weighing systems Potatoes, specialty crops
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is usually computed as effective harvesting width w multiplied by the length of travel 
over which the measurement of harvested mass or volume is made. Yield may be 
expressed as the volumetric flow rate divided by the product of travel velocity and 
effective harvesting width as shown in Equation 2.1 (the variables are defined further 
in Table 2.3). Error in yield monitoring systems arises from not only the crop flow 
measuring system but also from the speed and effective width inputs.

	
Y =

Q
v wt 	

(2.1)

The first principle equations governing flow measuring techniques are reviewed 
below. The purpose of examining the governing equations is to gain a better under-
standing of the operating principles and identification of some of the potential inter-
ferences affecting these sensors.

2.3.1 M ass Flow-Based Yield Measuring Systems

Figure 2.2 depicts a continuous weighing system. This type of flow measuring device 
may be modeled as a control volume of fixed length, l, and a mass detection means 
denoted in the figure by m. The harvested crop flows through the control volume at 
an average velocity, v.

Flow through the system may be calculated as cross-sectional area multiplied by 
average material velocity as shown in Equation 2.2. This equation may be expressed 
in terms of mass flow rate by multiplying Equation 2.2 by density, ρ, as show in 
Equation 2.3.

	 Q Av= 	 (2.2)

TABLE 2.3
Variables in Yield Monitoring Equations

Variable Definition Unit (L—Length, M—Mass, T—Time)

Q Volumetric rate L3/T

A Cross-sectional area L2

V Average velocity of the material L/T

vt Travel velocity of the machine

m Mass flow rate M/T

M Mass measurement M

ρ Density M/L3

ρb Crop bulk density M/L3

V Volume of the control volume L3

L Control volume length L

F Reaction force ML/T2

Y Yield L3/L2

W Effective harvesting width L
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	 m Q Av= =ρ ρ 	 (2.3)

The density of the crop flowing through the sensor can be expressed as mass 
divided by the control volume or cross-sectional area multiplied by the length as 
shown in Equation 2.4. Substituting this density into Equation 2.3 as shown in 
Equation 2.5 provides a mass flow equation:

	
ρ =

m
V

m
Al

=
	

(2.4)

	
m Av

m
Al

Av
mv
l

= = =ρ
	

(2.5)

The mass flow Equation 2.5 no longer includes density of the crop in the control 
volume and issues of partial fill in the control volume are eliminated. Equation 2.5 
may be converted to a volumetric flow equation as shown in Equation 2.6 by dividing 
both sides of the equation by bulk density of the harvested crop. Equation 2.1 may 
then be used to compute yield from the mass measurement by substituting Q from 
Equation 2.6 into Equation 2.1.

	
Q

m mv
lb b

= =
ρ ρ 	

(2.6)

	
Y

mv l
v w

mv
lv w

b

t b t

= =
( )/ρ

ρ 	
(2.7)

Equation 2.7 demonstrates that the variables that contribute to yield sensing with 
this type of flow meter include mass detection, m, as well as crop bulk density, travel 
velocity, and effective harvesting width. The control volume length and material 
velocity would normally be fixed and probably included in a calibration coefficient.

Figure 2.3 depicts a momentum difference-based mass flow meter. The momen-
tum equation from fluid mechanics can be applied in this concept to determine the 
effect of the momentum change of the material flowing through the sensor. Equation 

A
l

m

v

FIGURE 2.2  Weighing conveyor (mass flow detecting) sensor.
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2.8 presents the classical fluid mechanics equation for conservation of momentum 
in one direction (x). Based on that equation, we can write the equations for reaction 
forces in Fx and Fy due to the change in momentum of the material flowing through 
the sensor, Equations 2.9 and 2.10. The volumetric flow rate based on Fy can be 
found by rearranging Equation 2.10 as shown in Equation 2.11 and an equation for 
yield found by substituting Equation 2.11 into 2.1 giving Equation 2.12. Equation 
2.12 demonstrates that momentum-based flow meters are susceptible to errors in 
bulk density, travel speed, and effective harvesting width and require that the mate-
rial velocity through the meter remain constant or be accounted for

	
Fx = ρQ(vx2 − vx1)∑ 	

(2.8)

	 F Qvx = −ρ 1 	 (2.9)

	
F Qvy = ρ 2 	 (2.10)

	
Q

F

v
y=

ρ 2 	
(2.11)

	
Y

F

wv v
y

b t

=
ρ 2 	

(2.12)

Equation 2.12 does not account for friction of the material flowing through the 
meter on the force measurements. That effect is important and can be visualized 
with a geometry where there is no curvature through the meter. In this case, the 
incoming and outgoing velocity would be the same. In this case too, the friction of 
the material would tend to force the deflector toward the discharge. This frictional 
effect is managed by minimization where a deflector friction coefficient with the 
flowing material is kept low and through calibration.

Fy

Fx
v1x

v2y

FIGURE 2.3  Deflection plate-based (momentum difference) sensor.
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Crop flow meters that utilize force or mass measurement are susceptible to errors 
due to motion of the harvesting machine. Gravity forces act on the devices and 
though they may be removed by calibration for a machine on the level, tilting of the 
machine produces errors. In addition, accelerations of the machine also act on the 
meters. Taylor et al. (2011) investigated these effects in grain flow yield monitors 
with corn in field tests and found typical errors of −1.1 ± 3.6% (where the random 
error is expressed as ±2 standard deviations here), which were confirmed in bench 
testing by Demmel (2013) with errors of −1.9 ± 3.4%. Yield monitors with these 
errors have been successful in the market. Micromachined silicon accelerometers 
and gyroscopes are now available that would allow measurements of accelerations 
and removal of gravitational and motion effects.

Force-based crop flow meters have also been applied in sugarcane and root crops. 
Root crop systems have been reviewed by Demmel (2013) and research regarding 
sugarcane systems has been reviewed by Price et al. (2011). These root crop systems 
were found to have errors similar to those for grain. The sugarbeet systems had 
significantly higher error and Price et  al. (2011) developed an alternative optical 
system.

2.3.2 O ptical and Radiation-Based Yield Measuring Systems

Optical and radiation-based crop flow meters have been reported and eliminate 
the inertial and body force effects of the force measuring devices. Optical-based 
systems typically utilize an optical density measurement where light transmis-
sion through the flowing crop is related to the crop mass (Thomasson et al., 1999; 
Wilkerson et  al., 2001). These systems have been applied in cotton and are the 
basis of commercial cotton yield monitors (Vellidis et al., 2003). Optically based 
flow meters have been applied in sugarcane where optical fiber was used to effect 
a volume measurement of conveyor sections (Price et al., 2011). Thomasson (2006) 
described an optical method used in peanut yield monitoring and this technol-
ogy is now available from several commercial manufacturers. Porter et al. (2013) 
described field testing of Ag leader cotton yield monitors applied in peanuts with 
under 10% error. Persson et al. (2004) demonstrated an optical yield measurement 
with potatoes and the sensor worked well and is a potential option for tuber yield 
monitoring with errors in the 1% range.

Radiation-based mass detection using a radioactive sealed source has been 
employed in commercial grain yield monitors in Europe. These devices delivered 
accuracy comparable to force-based designs (Demmel, 2013) but face heavy regula-
tory limitations in some countries and decommissioning the devices is expensive 
and regulated (Government of the UK, 2008). X-ray systems have been considered 
for forage applications (Kormann, 2004; Wild et al., 2014) with promising results.

Most combine yield monitors also incorporate grain moisture measurement. This 
measurement can contribute to applications in precision farming. With regard to 
nutrient replacement control algorithms, the nutrient contents in the grain are calcu-
lated on a dry weight basis and correction for moisture content of yields should be 
done.

  



34 Precision Agriculture Technology for Crop Farming

2.3.3  Yield Maps

Data from combine yield maps are normally recorded with geographical coordinates 
associated with each measurement. The data are typically placed into commercial 
farm GIS packages where the data are placed into map form. Interpolation is used to 
allow a spatially continuous representation of yield to be made. Noack et al. (2006) 
discuss the issues regarding the effect of interpolation methods on the representation 
of the data.

2.4  CROP CANOPY REFLECTANCE SENSING

2.4.1  Spectral Indices and Their Relationship to Crop Management

The green color of plants is largely due the scarcity of red light from their reflected 
energy. The strong absorption of red light by chlorophyll is associated with this effect 
and provides a convenient remote sensing method for the assessment of chlorophyll 
in plant canopies. Canopy reflectance sensing technology is based on measurements 
of reflected energy in different portions of the spectrum and is generally reliant on 
ratios of one portion of the spectra to another. This ratio technique allows spectral 
differences to be assessed and yet the ratio is largely invariant to the variation of total 
spectral energy.

Rouse et  al. (1974) identified several “vegetative indices” and developed the 
NDVI. NDVI was used to relate green biomass development during spring “green-
up.” NDVI is a spectral index relating the difference between reflected energy in the 
near-infrared (NIR) portion of the spectrum and reflected energy in the red portion 
of the spectrum. The difference was normalized into a ratio by dividing this differ-
ence by the sum of both the NIR and red portions of the spectral energy, as shown 
in Equation 2.13.

	
NDVI NIR red

NIR red

=
−
+

ρ ρ
ρ ρ 	

(2.13)

NDVI is effective in distinguishing chlorophyll-containing plants against a soil 
background as seen in Figure 2.4. Spectra for wheat at Feekes 5 (a short grass stage) 
is compared to bare soil spectra. The NIR and red regions of the spectra are marked 
by the arrows. The NIR reflectance of the wheat is much greater than the NIR reflec-
tance of the soil while the red reflectance of the wheat plant is much less than the 
red reflectance of the soil. The resulting NDVI for the wheat is much greater than 
that for the soil.

The potential interference due to variations in soil background is a potential issue. 
Figure 2.5 shows the spectral reflectance of soils taken from across Oklahoma. Soils 
in this region vary widely in color and texture. NDVI for each of the soils shown are 
tabulated on the right side of the figure. The resulting variation in NDVI is small 
enough so as not to be a significant factor in the measurement of crop NDVI against 
a soil background.
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FIGURE 2.4  (See color insert.) Typical combine-derived yield map.
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Many indices have been examined for potential use in PA. Care must be taken 
regarding the proposed use of the index and the purpose for which the index is being 
selected. Tucker et al. (1979) demonstrated that contrasts between the red chloro-
phyll absorbing bands and the internal leaf-scattering NIR bands could be related to 
crop biomass. Peñuelas et al. (1994) compared narrow-band indices and NDVI taken 
on single leaves and found the first derivative of the green reflectance at 525 nm 
(Dg) a better indicator of chlorophyll concentration in sunflower leaves than NDVI. 
Narrow-band indices like Dg were found to track diurnal photosynthetic light use 
efficiency where NDVI did not. This result would first appear to be a disadvantage 
for application of the more spectrally spread indices like NDVI, but lack of diurnal 
variation and ability of NDVI to correlate to biomass favors the use of wider band 
indices if biomass detection is required.

The connection between chlorophyll content and nitrogen uptake by the vegeta-
tive portions of plants is fundamental to the use of canopy reflectance indices for 
nitrogen fertilization management. Gamon et  al. (1995) demonstrated that NDVI 
is well correlated to vegetative biomass as well as area-specific chlorophyll content 
(g/m2). Their results indicated that the correlations were independent of plant type. 
Photosynthetic proteins represent a large proportion to total leaf nitrogen content 
(Evans, 1983). Thomas and Oerther (1972) demonstrated that nitrogen content in 
plant vegetative biomass could be estimated with 550 nm reflectance measurements. 
Serrano et al. (2000) also demonstrated that biomass was highly correlated with the 
simple ratio (SR), a ratio of NIR to red reflectance. Serrano et al. was also able to cor-
relate yield to SR. High correlation of NDVI to specific chlorophyll content (g/m2) 
while at the same time low correlation of NDVI to chlorophyll concentration was 
demonstrated by Jones et al. (2007) and confirmed by Eitel et al. (2008). Vegetative 
indices are likely to be different depending on whether correlation of the index to 
chlorophyll concentration or chlorophyll content is sought. Chlorophyll content is 
mainly determined by nitrogen availability (Moorby and Besford, 1983), a necessary 
result to recommend the use of reflectance indices in determining nitrogen avail-
ability. Figure 2.6 shows the spectral relationship between nitrogen availability and 
changes in the reflectance spectra of winter wheat. Note particularly the lowering of 
the spectra with higher nitrogen availability in the red region of the spectra and the 
rise in the spectra with higher nitrogen availability in the NIR region.

Selection of an optimum reflectance index for a particular purpose is appropri-
ate. Reusch (2005) searched the 400–1000 nm spectra of in situ winter wheat for all 
possible two-channel ratio vegetative indices for correlation to nitrogen uptake. They 
found that ratios with one NIR channel and one channel in the 730–750 nm band 
produced the best correlations. Strong correlations were found by Mistele (2006) 
between nitrogen uptake in winter wheat and the index, the red-edge inflection point 
(REIP) given in Equation 2.14 below.

	
REIP

/
= +

+ −
−

700 40
2670 680 700

740 700

[( ] )ρ ρ ρ
ρ ρ 	

(2.14)

REIP was developed by Guyot et al. (1988) and has been associated with better 
sensitivity to biomass where canopy coverage is high. Horler et al. (1983) attributed 
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the shift of the inflection point toward the NIR for higher chlorophyll concentrations 
to higher internal scattering within the leaf tissue. Figure 2.7 illustrates the shift 
where the horizontal grey arrow is placed near the inflection points. The inflection 
moved to the right (toward the NIR) with the higher nitrogen availability.

Normalized difference red edge index (NDRE) has been successfully used to 
describe nitrogen stress in wheat by Rodriguez et al. (2006). Barnes et al. (2000) 
developed the NDRE to detect crop nitrogen and water stress as shown in Equation 
2.15. The spectral ranges are shown in the subscripts for reflectance data with this 
index. Barnes et al. (2000) used NDRE with NDVI to compute a canopy chlorophyll 
content index (CCCI), which they found well correlated with nitrogen uptake.

	
NDRE =

+
− −

− −

ρ ρ
ρ ρ
760 850 690 730

760 850 690 730

−

	
(2.15)

2.4.2 A pplication of Canopy Reflectance Indices

Canopy reflectance technology has been developed for use in nitrogen management 
for most major field crops. Nitrogen uptake, the nitrogen content of the vegetative 
biomass, has been used in control algorithms as an input parameter in the algorithms 
for top-dressing fertilization (fertilizer applied after the crop has emerged) (Raun 
et al., 2002; Liang et al., 2005). In winter wheat, for example, nitrogen uptake by the 
plant provides a measure of nitrogen availability. The availability of nitrogen in the 
soil is heavily dependent on the climatic conditions and canopy reflectance is used to 
assess the need for additional nitrogen fertilizer (Johnson and Raun, 2003).
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Raun et al. (2002) proposed an algorithm for use in wheat that uses canopy reflec-
tance to predict yield potential as well as assessing soil nitrogen availability. Figure 
2.8 illustrates their yield potential prediction method. Yield potential is the maxi-
mum yield that would be expected for a particular soil condition with ideal weather 
conditions. The actual yield as seen in the figure is distributed along the yield axis 
and is normally reduced from the yield potential due to weather, insects, disease, and 
other stressors. The yield potential is represented by some maximum envelope and a 
standard deviation above the average was used by Raun et al. (2002) to estimate yield 
potential. The reflectance index used in their method, INSEY, was NDVI modi-
fied by a measure of growing days since planting. NUE averaged over all of their 
sites was improved by 15% over conventional nitrogen fertilization practice. Ortez-
Monasterio et al. (2014) reported improved profitability through nitrogen savings of 
greater than $60 per ha over 432 field trials covering more than 6000 ha in farmers’ 
fields in Mexico using a similar system.

Mistele and Schmidhalter (2010) validated the use of REIP for application in 
biomass and nitrogen uptake measurement in wheat with a tractor mounted system 
in a 3-year field study. They concluded that the system could be used for nitrogen 
management in heterogeneous fields.

Wright et  al. (2004) examined the use of canopy reflectance as a means for 
managing grain protein in wheat. They examined various spectral indices and 
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concluded that NDVI was as effective as other indices and recommended that can-
opy reflectance could be effective in using nitrogen fertilization to manage grain 
protein.

Kitchen et al. (2010) used a transformed NDVI index, that is, the inverse simple 
ratio (ISR) of a nitrogen-sufficient strip created in maize fields to allow computation 
of a sufficiency index, SI, ISR sufficient/ISR target crop using a Holland Scientific 
ACS-210-based system. They conducted 16 field-scale experiments in maize fields 
over four seasons in three different soil areas. They developed and applied a max-
imum profitability algorithm and achieved a $25–$50 per ha profit improvement 
using the technique.

Raper et al. (2013) evaluated three commercial sensor systems for application in 
management of nitrogen in cotton. The Yara N-Sensor® (Yara International ASA, 
Oslo, Norway), GreenSeeker® Model 505 Optical Sensor Unit (NTech Industries, 
Inc., Ukiah, CA), and Crop Circle® Model ACS-210 (Holland Scientific, Inc., 
Lincoln, NE) systems were evaluated. Plant height relationships with NDVIs were 
strong but sensor readings did not consistently predict cotton leaf N status before 
early flowering.

In rice culture in China, Xue et al. (2004) found the relationships between leaf N 
accumulation and reflectance in the green band and NIR to green ratio index were 
consistent across the whole growth cycle. The ratio of NIR to green (R810/R560) 
was linearly related to total leaf N accumulation, independent of N level and growth 
stage with correlation in the 0.96 range. Yao et al. (2012) demonstrated an increased 
partial factor productivity of rice farmers by 48% and 65% with a GreenSeeker-based 
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precision management and chlorophyll meter-based site-specific N management, 
respectively, without significant change in grain yield.

Potential exists for weed detection and spot spraying of weeds through the use 
of canopy reflectance. Weeds may be distinguished from a strongly contrasting 
background, for example, soil. Some research efforts have been focused on distin-
guishing weeds from similar backgrounds, for example, crops, using spectral reflec-
tance (Wang et al., 2000; Vrindts et al., 2002). The laboratory study conducted by 
Vrindts et al. (2002) was successful in discriminating weed species from maize and 
sugar beet but the field study conducted by Wang et al. (2000) was less successful. 
Imaging-based systems have also been studied (Zhang and Chaisattapagon, 1995; 
Tian et al., 1997; Borregaard et al., 2000; Burks et al., 2000) with promising results. 
Zhang et al. (2012) field tested an image-based spot sprayer that included the ability 
to target a microdosing system that used hot vegetable oil to treat weeds in tomatoes. 
Their system successfully eliminated greater than 90% of two weed species while 
damaging less than 3% of the crop. This system was targeted at organic farming of 
tomatoes. The image-based technologies result in costly implementations and use of 
spectral reflectance alone is relatively insensitive and has not been very successful 
in field implementations. Variable-rate herbicide spraying systems are a concern due 
to the potential for weeds to be undertreated and develop resistance to herbicides.

2.4.3 I mplementations of Canopy Sensing for Field Applications

Field canopy reflectance measuring systems are generally based on multispectral 
measuring systems. Various implementations of canopy reflectance-based systems 
exist, including those targeted for fertilizer management and one targeted for weed 
management.

Commercial systems using canopy reflectance for weed management employ 
simple ratio (ρNIR/ρred) to discriminate between weed and soil background. An early 
commercial system patented by McCloy and Felton (1992) used natural illumination. 
The system was effective in discriminating between weeds and soil backgrounds 
(Felton et  al., 1991). The commercial system, DetectSpray®, based on the patent 
was marketed and appears to no longer be available. A later system patented by 
Beck and Vyse (1995) is available in the market today. This system is known as the 
Weedseeker® and is marketed by Trimble Navigation Ltd. This system uses a ratio of 
NIR to red to distinguish green weeds from background material and uses a thresh-
old comparison to trigger a spray nozzle integrated with the sensor (Beck, 1995).

At least four commercial field-machine-based canopy reflectance systems 
designed for fertility management exist. Table 2.4 summarizes the characteristics of 
those systems. A vegetative index that can be used with the system is given, though 
most systems are capable of providing alternate indices. The Claas system uses two 
derived indices to present to users, the IRMI vegetation index and the IBI biomass 
index. The Claas system uses a yield potential map combined with sensing in their 
algorithm to vary fertilization.

The Claas, AgLeader, and Trimble units are designed for boom mounting and 
view the plant canopy from directly above. The Claas system provides the boom for 
mounting as shown in Figure 2.9a. The Trimble and AgLeader systems are designed 
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to be mounted on the booms of sprayers. Figure 2.10 shows the sensed area for these 
sensors, which are typically operated at 1 m above the crop canopy. The Topcon 
system is designed to be mounted on a tractor cab and views the crop at an oblique 
angle as shown in Figure 2.9b.

Satellite- and aircraft-borne sensing systems may be used to develop variable-
rate application maps using the same algorithms as those for ground-based systems. 
Some differences exist between sensor systems. Satellite data must be corrected for 
atmospheric interference and illumination effects (Mather, 2004). It is common that 
NDVI and other indices are computed directly from the corrected data. Some dif-
ferences between systems exist due to the variations in bandwidth of the particular 
spectral channels of the measuring system. Figure 2.11 shows the relative spectral 
response (RSR) of sensors on the Quickbird satellite (Forestier et al., 2011). In con-
trast, Figure 2.12 shows a typical spectral transmittance for interference filters that 
might be used in a polychromatic LED-based sensor design (Holland, 2008). Sensors 
based on either technique may be used to generate an NDVI but the response may be 
slightly different due to the bandwidths used in the sensor.

A third sensor design, one that depends on monochromatic LEDs to provide the 
bandwidth control (Stone et al., 2003), provides again a slightly different spectral 
sensitivity. Figure 2.13 provides a typical LED relative spectral power output. The 

TABLE 2.4
Commercial Field Machine-Based Canopy Reflectance Systems

Claas AgLeader Trimble Topcon

Model number ISARIA™ OptRx© GreenSeeker™ CropSpec™

Visible wavelength 
(nm)

670 670 660 735

NIR wavelengths 
(nm)

700, 740, and 
780

730, 780 770 808

Sensor geometry NADIR NADIR NADIR Oblique 45–55°

Sensor to crop 
distance (m)

0.4–1.0 0.25–2.1 0.6–1.6 2–4

Sensing footprint – 32° × 6° 0.61 × 0.015 m 
(invariant with 
height)

2–4 m

Vegetative index REIP NDRE NDVI SR

Resource Haas (2014) Suddeth et al. 
(2011), AgLeader 
Technology, 2014. 
OptRx Crop 
Sensors. http://
www.agleader.com/
products/
directcommand/
optrx-crop-sensors/, 
Holland (2008)

Suddeth et al. 
(2011), Stone 
et al. (2003)

Tevis (2012), 
Reusch (2010), 
Kumagai and 
Shugo (2011)
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spectral response is similar to the satellite bands, though narrower in the NIR band 
and NDVIs calculated from this sensor do not match exactly those calculated from 
Quickbird data.

Without standardization of bandwidths, band shape, as well as center wave-
lengths, we should expect that algorithms using a particular sensor will have to be 
adjusted for the particular sensor type.

Another issue that must sometimes be addressed in utilizing data from image-
based systems is the need to convert camera image data into reflectance images. This 
task normally requires that a white plate (100% reflectance object) be included in 
the image or that the camera capture a white plate image for use in calibration. This 
process is difficult but necessary if the data are to be used in an algorithm that uses 
canopy reflectance. Ideally, each pixel of the camera would be calibrated in the same 
way a reflectance is calibrated. The typical calibration equation is given in Equation 
2.16 where the DN values are the raw response for each pixel. Dark current, the 
DN value for the case where the camera is viewing a completely dark field must be 
subtracted from any camera measurement. Reflectance is then the result of the ratio 
of the dark corrected measurement to the dark corrected white plate measurement.

	
ρ =

−
λ

λ λ

λ

DN DN
DN DN

,dark_currrent

,white_plate ,dark_currrent− λ 	
(2.16)

3 m

3.1 m

(a)

(b)

FIGURE 2.9  Sensor mounting geometries for boom-mounted reflectance sensors, Claas 
Isario™ (a) and the Topcon CropSpec™ (b).
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Once the camera has undergone correction for dark current and white plate 
response, the camera is susceptible to changes in scene illumination between those 
under which the camera was calibrated and when the images were captured. These 
changes may be due to sun-angle changes or changes in clouds or haze. It would 
be preferable to have a white plate object within the captured image to compensate 
for these changes. With proper calibration, imaging-based reflectance measurements 
calibrate well with sensor-based measurements (Jones, 2007).

2.5  SOIL PROPERTY SENSING

Crop performance is predicated on an adequate crop environment, including soils 
in which the crop grows. Management to improve crop performance may include 
decisions based on soil characteristics and dictate sensing of soil properties. The 

30.0º6.0º

61 cm

92 cm

Direction of
travel

(a)

(b) Direction of
travel

FIGURE 2.10  Optical geometry for the Trimble GreenSeeker reflectance sensor (a), and the 
AgLeader OptRx (b).
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particular soil properties sensed is dependent on the potential economic return from 
management actions based on the sensed properties and the difficulty in integrating 
the sensing technology into management practices for the crop. The type of sensing 
necessary for precision farming is also dependent on the spatial as well as temporal 
variation in properties.

Temporal variability of soil nutrients is well understood and the major soil nutri-
ents are classified with regard to mobility (Bray, 1954). Nitrogen is a mobile nutri-
ent and its availability varies from season to season (Johnson and Raun, 2003). 
Phosphorus (P) and potassium (K) are classified as immobile and uptake changes 
depending on crop demand. Organic carbon (OC) changes in soils where the total 
content is largely controlled by climate. Carbon supply to plants actually comes via 
CO2 assimilation in the atmosphere via photosynthesis. The impact on sensing is that 
parameters that are associated with nitrogen need sampling before, during, and after 
the growing season whereas sensing parameters associated with P, K, and OC may 
be sampled once per season.

Spatial variability of soil nutrients impacts the requirements for soil sampling. 
Solie et al. (1996) reported semivariance of soil N, P, K, OC, and pH, where soils 
were sampled at a 0.3 m resolution for two sites. They reported soil property 
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semivariance ranges of 1.9–5.3 m with most properties near 4 m and P and K at near 
2 m. The range of the semivariance is a measure of the distance beyond which the 
samples are not related and the average difference in the value square of the sample 
pairs does not increase. These distances would be greater than the optimum treatable 
resolutions for precision management of soil properties. Solie et al. (1996) concluded 
that the optimum field element size based on the parameters they measured would 
be 0.75 × 0.75 m.

Spatial resolution in precision farming systems also depends on technical feasi-
bility, cost of the technology, and acceptance by the users of the technology in addi-
tion to optimum agronomic resolution. Section width (boom width) resolution is now 
commonplace in sprayer technology and allows application of soil nutrients at near 
3 m resolutions. Overlap and rate control technology is available for spray equipment 
that operates at meter-level resolution (Capstan, 2013). Variable-rate planting equip-
ment is available from most agricultural planter manufacturers and from agricultural 
electronics suppliers. The availability of high-resolution application equipment pro-
vides opportunity for soil sensing systems. Soil sampling systems while effective in 
securing soil samples for analysis cannot easily provide the spatial resolutions that 
can be delivered by current application equipment. Ten by ten meter resolution soil 
sampling would require 100 samples per hectare. The cost to analyze the samples let 
alone the cost to handle them would not make economic sense. The availability of 
high-resolution application equipment obviates the need for on-the-go soil sensing 
systems that can deliver cost-effective soil property information.

Adamchuk et al. (2004) and Heege (2013) have reviewed on-the-go soil sensing 
systems. Several technologies have shown good promise and some of those are avail-
able on the market. Veris Technologies, Inc. manufactures various types of on-the-
go soil property sensing systems for monitoring soil electrical conductivity (EC), 
organic matter (OM) using optical reflectance, and pH. Veris specifies that their 
sensing system can sample EC and OM at 1 Hz and pH roughly on a 20-m grid. 
Control algorithms to apply lime at variable rates according to soil pH are straight-
forward. The on-the-go pH sensing system has good potential for a readily justified 
economic return. Veris’ OM system is based on a dual-wavelength soil reflectance 
measurement that operates on a probe under the soil surface, similar to the tech-
nology reported by Shonk et al. (1991). Colburn (2000) patented an EC-based sys-
tem that implements on-the-go variable-rate fertilizer application control. Geonics 
Limited manufactures EC instruments that are readily adaptable for agricultural 
field use (Sudduth et al., 2005). The availability of high-resolution EC sensing has 
been recognized as an opportunity in control of variable-rate seeding (Doerge, 1999; 
Doerge et al., 2006). Development of effective control algorithms to associate EC, 
OM, and pH with seed population is a remaining significant challenge in refining 
this technology.

Soil strength measuring systems have been reported (Raper et al., 2003; Adamchuk 
et al., 2006). These systems provide soil data that may be used for variable-rate till-
age or to manage compaction. The technology has the potential to be integrated into 
conventional tillage operations, allowing the costs of sensing to be reduced.

Direct sensing of soil nutrient concentrations with on-the-go sensors could dra-
matically improve the efficiency of the production of agricultural crops. These 
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technologies would have the potential to provide low-cost sensed data and could 
be integrated into precision farming systems. Technology for direct sensing of soil 
nutrients is currently an active part of research programs but not yet commercialized 
(Kim et al., 2009). Success of on-the-go pH sensing may be a precursor to practical 
soil nutrient sensing. Some promising technologies have been investigated, includ-
ing solid-state ion-selective membrane technology (Birrell and Hummel, 2001) but 
further development is needed in this important area.

2.6  ISOBUS SUPPORT FOR SENSOR SYSTEMS

Much of the technology being developed for application in precision farming is based 
on integrated ISOBUS support. ISOBUS is the standardized network communica-
tions system for agricultural equipment. ISO 11783, the standard on which ISOBUS 
is based, was developed with the support of precision farming as a requirement. The 
capabilities for transferring application maps to mobile implement control systems 
(MICS), that is, field systems and to transfer back to farm management information 
systems (FMIS) as applied maps is integrated into ISOBUS (ISO/TC23/SC19, 2014). 
Not surprisingly, support for sensor-based control systems is also integrated into 
ISOBUS through ISO 11783 Part 10.

ISOBUS support for sensor-based rate control systems allows standardized com-
munication between sensor systems and rate control systems. This capability allows 
sensor systems manufactured by one manufacturer to communicate with rate control 
systems made by another manufacturer as well as between components made by the 
same manufacturer. The provisions in the part 10 document specify that the task 
controller, the component of ISOBUS systems that sends prescription-based com-
mands to implements, manages the connections between sensor systems and rate 
control systems. ISOBUS support for sensor systems also includes the capability 
to allow map-based prescriptions information to be provided to sensor systems and 
allow sensor systems to use algorithms that combine map-based information with 
sensed information to command rate controllers. An expected ISOBUS supported 
function of the rate control system is that it would supply “as applied” information 
back to the task controller, which would allow the task controller to supply as applied 
maps back to the FMIS.
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3.1  INTRODUCTION

To achieve the goal of demand-oriented input and variable-rate fertilization for dif-
ferent crops and farmland environments, a high-density, high-speed, and low-cost 
supply of spatial information on crops, soil, and environmental conditions is nec-
essary. Such information can guide management decisions, including variable-rate 
fertilization, variable-rate pesticide application, and irrigation to form a prescription 
map for agricultural production.

Conventional techniques for acquiring information on crop nutrition, crop growth, 
yield, and soil nutrition rely mainly on surveys, field sampling, and laboratory analy-
sis. For production managers in precision agriculture, the antecedent data, real-time 
data, point data, and relevant materials can be acquired and used as a reference for 
decision making in variable-rate operations. So far, the greatest barrier to the imple-
mentation of precision agriculture lies in the rapid and cost-efficient acquisition of 
spatial information about farmlands. In addressing the requirements for decision 
making in precision agriculture, this section presents methods for acquiring spatial 
information about farmlands using remote sensing techniques.

3.1.1 � Acquisition of Crop Information Based on Remote 
Sensing Techniques

Crop growth status can be delineated through leaf area, leaf color, leaf inclination 
angle, plant height, and stalk diameter during the growth period. Other characteriza-
tions use factors closely related to crop growth such as crop nitrogen, leaf area index, 
and biomass. The monitoring and diagnosis of crop nutrition is the core content of 
regulation and management of crop growth. Compared with healthy vegetation in 
the growth period, vegetation restricted by nitrogen deficiency may undergo a series 
of changes in physiological status, biochemical composition, and canopy structure. 
The vegetation may suffer from small leaves and low biomass if there is a reduction 
in nitrogen and chlorophyll and decreased synthesis of organic nitrogen-containing 
compounds such as proteins, nucleic acids, and lipids. Water stress is one of the most 
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common limitations to photosynthesis and plant primary productivity, and its mea-
surement is important for irrigation practices and in drought assessments of natural 
communities (Penuelas et al., 1993). In response to changes in these parameters, the 
plants’ spectra would exhibit a certain change, which serves as the physical basis for 
remote sensing detection of nitrogen content or water content of crops.

3.1.1.1  Chlorophyll in Crops
Chlorophyll is the crucial compound for photosynthesis in crops. It also serves as an 
indicator of the growth status of crops. Standard methods for the measurement of 
chlorophyll content include the chemometrics method (McKinney, 1941) and nonde-
structive measurement with SPAD (Minolta Camera Co. Ltd., 1989).

Chlorophyll shows obvious absorption characteristics in the visible band, which 
is strongly correlated with nitrogen in plants, and it usually increases in the upper 
leaves at the expense of the lower leaves when fertilizer is deficient. Hinzman et al. 
(1986) reported that canopy chlorophyll density (CCD), the total amount of chloro-
phyll present in the canopy per unit of ground area, was a sensitive indicator of N 
deficiencies in wheat. During the past few decades, various types of spectral indices 
have been used to estimate chlorophyll content (Datt, 1994; Carter, 1994; Brantley 
et al., 2002; Huang et al., 2011; Hunt et al., 2013; Li et al., 2013). Liao et al. (2013) 
used a continuous wavelet transform (CWT) to estimate the chlorophyll content 
of maize leaves in different layers from their visible to near-infrared (NIR) (400–
1000 nm) spectra.

3.1.1.2  Nitrogen in Crops
Nitrogen (N) is a very important nutrient element for crop growth. Timely and 
optimal N fertilizer supply can increase wheat production, minimize environment 
pollution, and increase N use efficiency (NUE). Laboratory-based methods, such as 
preplanting (or pre-sidedress) soil NO3–N (nitrate N) (or NH4

+–N, ammonium N) 
tests, and plant tissue (sap or petiole) tests, are effective ways for making N fertilizer 
recommendations (Fox et al., 1989; Wu et al., 2007).

Previous studies have shown that leaf chlorophyll concentration in plants was 
closely correlated to leaf N concentration (LNC) (Shadchina et al., 1998; Serrano 
et al., 2000). Thus, crop N status can be determined from the measurement of leaf or 
canopy spectral reflectance. Generally, assessment of crop N status is based on the 
relationships between LNC of single leaf or whole canopy and spectral parameters. 
Since the spectra are always acquired based on canopy level, the N status should 
also be based on canopy level, when establishing estimation models for N status 
assessment.

Canopy N density (CND) is a sensitive indicator to detect N deficiency in wheat 
(Zhao et al., 2011). CND defined as the total leaf nitrogen per unit land area can be 
calculated by the following formula:

	 CND LNC SLW LAI= × × 	 (3.1)

where LNC is leaf nitrogen content; SLW is specific leaf weight; and LAI is leaf 
area index.
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Under nitrogen stress, the nitrogen in old leaves migrates to new leaves. As a 
result, the lower leaves turn yellow under nitrogen stress, and then such phenom-
enon propagates to the upper leaves (Lu et al., 1994). Thus, considering the vertical 
distribution of nitrogen and the corresponding spectral response is of practical sig-
nificance. Few field studies have concentrated on the challenging issue of capturing 
leaf N distribution in the crop canopy using remote sensing technology. The existing 
studies can be grouped into three classes according to the hyperspectral data used. 
One class estimated the leaf N content of different vertical layers using spectral data 
obtained from top-view observations (Wang, 2004; Wang et al., 2007). Another class 
employed multiangle canopy reflectance data (Zhao et al., 2006), and the third inves-
tigated the spectral reflectance and fluorescence characteristics of different vertical 
leaf layers and their relationships to corresponding leaf N or chlorophyll content 
(Wang et al., 2004). These studies have made important progress in detecting leaf N 
distribution by means of remote sensing.

3.1.1.3  Water Content of Crops
Water is an important component of plants since it participates in photosynthesis 
and transpiration. It is also a critical parameter in agricultural irrigation. Tissue 
water content is an indicator of the physiological status of plants, which is usually 
measured by the weighting method (Woods et al., 1982; Zhang et al., 2012).

Spectral characteristics of leaves are determined by the light absorption and scat-
tering characteristics of leaf water, pigments, and dry matter. Leaf water contributes 
primarily to the leaf spectrum by absorbing incident light at the doubling frequency 
or combination frequency of water molecule vibration (e.g., 975, 1200, 1450, and 
1950 nm).

Remote sensing of liquid water in vegetation has important applications in 
agriculture and forestry (Jackson and Ezra, 1985; Gao and Goetz, 1995). Water 
stress is one of the most common factors limiting photosynthesis and plant 
primary productivity, and its measurement is important in irrigation practices and 
in drought assessments of natural communities (Penuelas et  al., 1993). The pri-
mary effect of water content on leaf spectral reflectance is its absorption of radia-
tion. The reflectance spectra of green vegetation in the 1300–2500 nm region are 
dominated by liquid-water absorption, and are weakly affected by absorption due 
to other biochemical components, such as protein, lignin, and cellulose (Carter, 
1991; Gao and Goetz, 1995). The spectral reflectance in NIR bands is determined 
by the leaf’s internal structure, its dry matter content (mainly protein, lignin, 
and cellulose) and two minor water-related absorption bands at 975 and 1200 nm 
(Jacquemoud et al., 1996; Penuelas et al., 1997). In addition, there are secondary 
effects of water content on reflectance that cannot be explained solely by the radia-
tive properties of water. Some of the secondary effects of water content on leaf 
reflectance are influenced by the transmissive properties rather than the absorp-
tive properties of water. When leaf water content (LWC) decreases, the internal 
structure (e.g., the fraction of air spaces in the spongy mesophyll) may also change, 
thereby inducing variations in NIR reflectance (Carter, 1991; Filella and Penuelas, 
1994; Liu et al., 2004).
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It may be possible to use crop reflectance to estimate LWC. LWC was calculated as

	
LWC

LFWC LDWC
LFWC

%=
−

× 100
	

(3.2)

where LFWC is the sample fresh leaf mass (kg) and LDWC is the sample dry leaf 
mass (kg).

3.1.1.4  Crop LAI
LAI is an important indicator of the growth status of crops and an important basis 
for variable-rate fertilization. It can also be used as a reference for variable-rate 
irrigation. LAI was estimated by multiplying the plant population by the leaf area 
per plant as described in Kar et al. (2006). Direct or semidirect methods involve a 
measurement of leaf area, using either a leaf area meter or a specific relationship of 
dimension to area via a shape coefficient (McKee, 1964; Marshall, 1968; Manivel 
and Weaver, 1974). LAI can also be measured using the LAI-2000 instrument 
(LI-COR, USA).

The method for LAI inversion based on remote sensing technology utilizes the 
variation in spectra of crops under LAI measurement data. Timely, accurately, and 
dynamically obtaining crop LAI is beneficial for suitable field management strate-
gies in agricultural production. Until now, the methods for LAI estimation mainly 
include statistical algorithms (Broge et al., 2001; Wang et al., 2011), nonparametric 
algorithms (Smith et  al., 1991; Fang et  al., 2003; Kalacska et  al., 2005), physical 
models (Qin et al., 2009; Xiao et al., 2009; Richter et al., 2011; Dorigo, 2012), and 
data assimilation algorithms (Dente et al., 2008; Sabater et al., 2008; Thorp et al., 
2010; Wang et al., 2010).

3.1.2  Acquisition of Farmland Data by Machine

Acquisition of farmland information by machine refers to the acquisition of farm-
land information using calculators and sensors carried by tractors and reapers. In 
this section, a detailed description is provided for rapid acquisition of crop yield and 
soil nutrition information by machine-borne equipment (Zhao, 2009).

3.1.2.1  Acquisition of Crop Yield Information by Combine Harvester
Acquisition of crop yield data in the plot and plotting the spatial distribution 
diagram are the starting points of precision agriculture. They are also the basis 
for achieving scientific regulation of input and making decisions about crop pro-
duction. The commercialized yield estimation systems carried by a combine har-
vester mainly include the AFS system (CASE, USA), the FieldStar system (Massey 
Ferguson, UK), the GreenStar system (John Deere, USA), and the PF system (Ag 
Leader, USA).

The yield estimation system mounted on axial flow−type combine harvesters 
(CASE) includes a DGPS device, an intelligent terminal, a wheel rotation speed 
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sensor, a grain elevator rotation speed sensor, a header height potentiometer, a grain 
flow sensor, a grain water content sensor, a memory card, and graphic software 
(Figure 3.1). The grain flow sensor is located on top of the grain elevator. After the 
grain enters the top of the elevator, it hits the impact plate of the sensor under the 
guidance of the deflector. The impact signals are converted to electric signals as 
output. The output of the signal is proportional to the grain flow. The Hall sensor is 
used to measure grain elevator rotation speed. The output signals of the sensor are 
used to correct the output signals of the flow sensor and to restrict the working status. 
The signal processing unit is responsible for integration and processing of output 
from the wheel speed sensor, the elevator rotation speed sensor, the grain water con-
tent sensor, the header height potentiometer, and the grain flow sensor. The distance 
traveled by the machine, working area, transient grain water content, and transient 
grain flow are measured. Differential GPS (DGPS) provides position information 
on these signals. After these signals are transmitted to the intelligent terminal, the 
measurement errors are effectively reduced by software through in situ calibration. 
Then the data are recorded on the data card, and the crop yield of each plot at each 
spatial location is obtained. The data card is carried back to the office, and special 
data processing software is used to generate the spatial distribution diagram of yield. 
The result is utilized by yield analysis and serves as the basis for implementation of 
variable-rate farming.

Instant Yield Map, a software program for generating yield diagrams by CASE, 
can not only generate point diagrams, grid maps, smooth grid maps, and other line 
graphs of yield based on the original data stored in the data card, but also enables 
the management of yield data by harvest time and place. The yield data are classified 
at equal intervals or at those defined by the user. Each category is represented by 
different colors, allowing the field conditions to be rapidly visualized and low-yield 
areas to be marked out.

Control unit

Grain flow
sensor

Header high
speed sensor

High speed
sensor

Grain water
content sensor

GPS receptor

Display terminal SMS software

FIGURE 3.1  Yield estimation system on an axial flow−type combine harvester.
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3.1.2.2  Acquisition of Soil Nutrition Data
Spatial distribution of soil fertility is a very important factor that affects decision 
making in precision agriculture. Determination of the spatial variation of soil fertil-
ity and the application of relevant data to mechanized variable-rate fertilization are 
major concerns in the field of precision agriculture. The Beijing Research Center for 
Agricultural Information Technology has developed an automatic soil sample collec-
tion system consisting of a sampling device and a recording device. This system can 
arrange the sampling points and design the sampling paths with geographic infor-
mation system (GIS). Soil samples are positioned by GPS and the sampling is done 
automatically. The coordinates of the sampling points and the results of soil analysis 
are managed by this information technique.

	 1.	Recording device
		  The recording device is the auxiliary system for soil sampling. It not 

only acquires the geographical coordinates and other information on the 
sampling points, but also provides a platform for sampling design and 
management. A complete soil information sampling system consists of five 
basic functions: sampling design, sampling navigation, sample positioning, 
data analysis, and detection.

		    Structurally, the soil information sampling system is composed of 
peripherals and the software. Peripnherals include the GPS receiver and 
various types of sensors. The software includes application programs and 
databases. Users are connected with each functional module via the man–
machine interface. The structure of the system is shown in Figure 3.2.

	 2.	Collection device
		  The collection device has 12 components (Figure 3.3): sampling tube, a 

hydraulic cylinder of guider, a locator on sampling head, a slide rail for 

User

Sampling
design module

Sampling
route design

Database of
geographical

locations

Database of
analysis
results

Sampling
point

arrangement

Navigation
module

Sampling
positioning

module

Data
analysis
module

Analysis
module Peripherals

GPS receiver

Sensor

Man–machine conservation interface

FIGURE 3.2  Schematic of the soil information sampling and recording system.
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the supporting frame of the hydraulic cylinder, a reinforcing sleeve of the 
seat, a hydraulic power unit, a fixed bearing of the power unit, a supporting 
base of the pillar-oriented fixator, a pillar, and a GPS recording system. The 
hydraulic power unit is driven by a direct-current motor. Through the pres-
surization of hydraulic oil in the hydraulic oil tank, high-pressure hydraulic 
power is supplied to the system.

		    The automatic soil collection device is fixed on the top of the lateral 
trough of a pickup. The soil sampling device slides outward via the slide 
trail of the fixed frame of the hydraulic cylinder. The sampling depth is 
adjusted by the operator. Once the soil sampling depth is confirmed, the 
hydraulic module performs the work.

3.2 � INTERPRETATION OF CROP INFORMATION 
FROM REMOTE SENSING

The greatest barrier to the implementation of precision agriculture is cost efficiency. 
Development of fast and low-cost methods to acquire spatial information on farm-
lands is needed. The recent development of airborne and spaceborne remote sensing 
provides a potential means for the efficient and low-cost acquisition of farmland 
information needed in precision agriculture.

Agricultural remote sensing relies on spectral theory for ground objects and green 
vegetation, with the focus placed on spectral information of ground objects such as 
plants and soil. The physiological and biochemical parameters of the leaves of green 
vegetation determine the absorption, scattering, and reflection characteristics at 
different wavelengths, which form the basis for agricultural remote sensing. At pres-
ent, remote sensing technology has been widely applied in the extraction of key bio-
logical and physicochemical parameters of crops, such as chlorophyll, nitrogen, LAI, 
aboveground biomass, water content and plant type. The relationship between crop 
characteristics (geometric structure of canopy, biochemical composition of leaves, 
and internal tissue structure) and spectral reflection characteristics of the canopy 
(especially in the visible, NIR, and middle-infrared band) is critical. Remote sensing 
has already proven to be an important means of farmland information acquisition. 

Sampling tube
Guider Hydraulic cylinder Column

Supporting foundation

Fixed bearing
of power unit Hydraulic power unit

Pillar-oriented fixator
Locator of sampling head

Slide trail

Reinforcing sleeve of foundation

FIGURE 3.3  The automatic soil collection system. (From NERCITA, China.)
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However, remote sensing data cannot be directly applied in decision making in pre-
cision agriculture. Information interpretation is needed to establish models repre-
senting the correlation between remote sensing information and the growth status 
of crops. A method for the inversion of agricultural parameter space and map plot-
ting techniques should be established to provide support for farmland production 
management.

3.2.1 �C rop Chlorophyll and Nitrogen Content 
Inversion through Remote Sensing

In this section, LNC and CND were inverted through remote sensing spectral 
parameters (Zhao et al., 2012). Then, using maize as the subject material, the ver-
tical distribution of chlorophyll is retrieved with sensitive parameters and wavelet 
transform techniques (Liao et al., 2013).

3.2.1.1 � Wheat Leaf Nitrogen Concentration and 
Canopy Nitrogen Density Estimation

3.2.1.1.1  Experiment and Data Collection
The experiment was conducted at the China National Experimental Station for 
Precision Agriculture. Twenty-five winter wheat cultivars, including Xiaoyan 54, 
Lumai 21, Laizhou 3279, P7, Gaocheng 8901,76-2, Jing 411, Jingwang 10, Nongda 
3214, Nongda 3291, I-93, Lunxuan 201, Chaoyou 66, Chaoyou 69, CA 9722, 95128, 
9428, Jingdong 8, Zhongyou 9507, Baili 981, Zhongmai 9, Zhongmai 16, 95021, and 
Linkang 2 and 6211, were investigated in the experiment. A randomized complete 
block design with three replications was used. The plot size was 5 × 3 m. Each plot 
received 180 kg ha−1 area, 225 kg ha−1 (NH4)2HPO4 (diammonium phosphate), and 
150 kg ha−1 K2SO4 before sowing. Topdressing N with 280 kg ha−1 urea was applied 
with two splits, 50% at Feekes 3.0 (March 25, 2003) and 50% at Feekes 7.0 (April 
16, 2003). The Feekes scale is a system used by agronomists to identify the growth 
and development of cereal crops.

In each plot, a 1-m2 area of wheat canopy was selected for canopy spectral reflec-
tance measurements, and physiological and biochemical analyses. Measurements 
were performed eight times at Feekes 4.0 (April 4, 2003), Feekes 5.0 (April 12, 
2003), Feekes 8.0 (April 21, 2003), Feekes 10.0 (April 29, 2003), Feekes 10.5.1 (May 
8, 2003), Feekes 10.5.3 (May 16, 2003), Feekes 10.5.4 (May 24, 2003), and Feekes 
11.1 (June 1, 2003). Feekes 4.0 is the beginning of erection of the pseudostem. At 
Feekes 5.0, the wheat plants become strongly erect. When approaching Feekes 8.0, 
the flag leaf is visible. Feekes 10.0 is the booting stage. At Feekes 10.5.1, the wheat 
is flowering. Flowering is complete at the base of the spike at Feekes 10.5.3. Upon 
reaching Feekes 10.5.4, wheat flowering is complete and the kernels are watery ripe. 
Feekes 11.1 is the milky ripe stage. Feekes 4.0, Feekes 5.0, Feekes 8.0, and Feekes 
10.0 are growth stages in which vegetative growth develops synchronously with 
reproductive growth. These stages determine the spike number and grain number 
per spike. Field management is always applied at these stages. Feekes 10.5.1, Feekes 
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10.5.3, Feekes 10.5.4, and Feekes 11.1 are reproductive growth stages and the wheat 
1000 kernels weight and grain quality are significantly affected by N availability at 
these stages.

Canopy spectral measurements were taken from a height of 1.3 m above 
ground (the height of the wheat was 90 ± 5 cm at maturity), under clear sky con-
ditions between 10:00 and 14:00 hrs, using an ASD FieldSpec Pro spectrometer 
(Analytical Spectral Devices, Boulder, CO, USA) fitted with a 25° field of view 
(FOV) fiber optics, operating in the 350–2500 nm spectral region with a sam-
pling interval of 1.4 nm between 350 and 1050 nm, and 2 nm between 1050 and 
2500 nm, and with spectral resolution of 3 nm at 700 nm, and 10 nm at 1400 nm. 
After canopy spectral measurements were completed, a flag was placed in the FOV 
of the ASD to mark the location of measurement. Samples for LAI, SLW (g m−2), 
and LNC determination were collected on the same day as canopy spectral reflec-
tance measurements. All plants in the FOV of the ASD were cut at ground level 
with scissors immediately after spectral measurements, placed in a plastic bag, and 
transported to the laboratory for subsequent analysis. For each sample, all green 
leaves were separated from stems. LAI was determined by a dry weight method. 
LNC (%) was determined by the Kjeldahl method (Bremner, 1965) with a B-339 
Distillation Unit.

3.2.1.1.2  Results and Conclusions
Thirteen narrow-band spectral indices (difference vegetation index [DVI], normal-
ized difference vegetation index [NDVI], soil-adjusted vegetation index [SAVI], 
red-edge position [REP], photochemical reflectance index [PRI], structure insensi-
tive pigment index [SIPI], green normalized difference vegetation index [GNDVI], 
optimized soil-adjusted vegetation index [OSAVI], normalized difference water 
index [NDWI], water band index [WBI], transformed chlorophyll absorption in 
reflectance index [TCARI], nitrogen reflectance index [NRI], and TCARI/OSAVI), 
three spectral features parameters associated with absorption bands centered at 670 
and 980 nm, and another three related to reflectance maximum values located at 
560, 920, 1690, and 2230 nm were calculated. It was demonstrated that REP is a 
good indicator for winter wheat LNC estimation. For CND, the largest R2 among 
the growth stages was observed for GNDVI (R2 = 0.83**) at Feekes 10.5.3 (Table 
3.1 and Figure 3.4). The LWC ranged from 61% to 84% from Feekes wheat cul-
tivars and decreased with plant development. The strongest relationships of LNC 
and CND with spectral parameters at later growth stages were also attributed to the 
lower LWC. Plant water status provided information that can be used to assess crop 
growth under drought conditions. The two narrow-band spectral indices involving 
water absorption bands NDWI and WBI were well correlated with CND through 
the growth stages (Table 3.1). To show the relationships of LNC and CND to a given 
spectral parameter in two opposite growth stages, the NDVI and ABD normalized to 
the area of absorption feature (NBD) at 670 nm (NBD670) were plotted against LNC 
and CND (Table 3.2). When taking only these two spectral parameters, NDVI and 
NBD670, into consideration, the differences in correlation results for LNC with both 
NDVI and NBD670 between Feekes 4.0 and Feekes 11.1 were greater than those for 
CND (Figures 3.4 through 3.6).
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TABLE 3.1
Pearson’s Correlation Coefficients (r) for LNC and CND, and the 13 Narrow-Band Spectral Indices

Growth Stages

Feekes 4.0 
(Average 

LAI = 0.28)

Feekes 5.0 
(Average 

LAI = 0.47)

Feekes 8.0 
(Average 

LAI = 1.12)

Feekes 10.0 
(Average 

LAI = 2.22)

Feekes 10.5.1 
(Average 

LAI = 2.09)

Feekes 10.5.3 
(Average 

LAI = 2.00)

Feekes 10.5.4 
(Average 

LAI = 1.52)

Feekes 11.1 
(Average 

LAI = 1.12)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

DVI 0.293 0.791** −0.066 0.522** 0.330 0.836** 0.048 0.470* 0.225 0.470* 0.340 0.743** 0.234 0.608** 0.598** 0.599**

NDVI 0.210 0.796** −0.045 0.480* 0.145 0.705** 0.299 0.615** 0.342 0.462* 0.526** 0.890** 0.220 0.786** 0.741** 0.739**

SAVI 0.211 0.797** −0.045 0.480* 0.149 0.710** 0.293 0.614** 0.342 0.466* 0.525** 0.892** 0.220 0.785** 0.740** 0.737**

REP 0.189 0.625** 0.122 0.353 0.457* 0.759** 0.352 0.222 0.443* 0.307 0.453* 0.846** 0.304 0.827** 0.857** 0.865**

PRI 0.357 0.634** −0.091 0.387 0.107 0.620** 0.199 0.603** 0.340 0.516** 0.566** 0.769** 0.224 0.710** 0.749** 0.786**

SIPI −0.209 −0.826** 0.113 −0.560** −0.066 −0.650** −0.230 −0.581** −0.373 −0.528** −0.596** −0.798** −0.169 −0.730** −0.731** −0.691**

GNDVI 0.185 0.790** −0.029 0.494* 0.213 0.754** 0.378 0.614** 0.359 0.408* 0.474* 0.910** 0.236 0.822** 0.784** 0.789**

OSAVI 0.208 0.808** −0.050 0.478* 0.142 0.706** 0.291 0.616** 0.339 0.466* 0.525** 0.888** 0.219 0.785** 0.740** 0.738**

NDWI 0.143 0.777** −0.109 0.382 0.131 0.753** 0.296 0.679** 0.298 0.524* 0.424* 0.780** 0.257 0.812** 0.701** 0.702**

WBI 0.147 0.807** −0.106 0.405* 0.205 0.796** 0.294 0.624** 0.242 0.525** 0.413* 0.765** 0.289 0.856** 0.673** 0.714**

TCARI 0.120 −0.361 0.001 −0.373 0.128 −0.196 −0.511** −0.569** −0.327 −0.277 −0.387 −0.569** −0.200 −0.807** −0.764** −0.764**

NRI 0.219 0.820** −0.082 0.405* 0.058 0.589** 0.222 0.640** 0.229 0.464* 0.488* 0.778** 0.212 0.719** 0.585** 0.605**

TCARI/
OSAVI

−0.108 −0.752** 0.083 −0.546** 0.022 −0.465* −0.419* −0.583** −0.349 −0.362 −0.457* −0.706** −0.177 −0.767** −0.725** −0.683**

Source:	 Zhao, C.J. et al. 2012. International Journal of Remote Sensing, 33(11):3472–3491. With permission.
Note:	 LNC is leaf N concentration and CND is canopy N density. DVI, NDVI, SAVI, REP, PRI, SIPI, GNDVI, OSAVI, NDWI, WBI, TCARI, NRI, and TCARI/OSAVI 

are the 13 narrow-band spectral indices. * and ** indicate significance at 0.05 and 0.01 levels, respectively. The number of samples is 25 except for the data at 
Feekes 10.5.1, where 24 samples were involved.  
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Pearson correlation analysis indicated that significant correlations between 31 
spectral parameters and LNC existed at Feekes 8.0, Feekes 10.0, Feekes 10.5.1, 
Feekes 10.5.3, and Feekes 11.1 (Table 3.3). In contrast, relationships between the 
31 spectral parameters and CND were consistently significant. Meanwhile, the 
correlation coefficient (r) values between the 31 spectral parameters and CND were 
generally higher than those of LNC. Thus, CND was more sensitive to winter wheat 
canopy spectral variation than was LNC. The spectra used in this study were can-
opy-level parameters, but LNC was a leaf-level parameter, which is a possible reason 
why LNC is less sensitive than CND to winter wheat canopy spectra.

For the 31 spectral parameters, REP showed the best relationship with LNC at 
Feekes 11.1 (R2 = 73**, **significant at 0.01 level), followed by SIPI at Feekes 10.5.3 
(R2 = 36**) and TCAR at Feekes 10.0 (R2 = 26**). REP was also significantly cor-
related with LNC at Feekes 8.0 (R2 = 21*, *significant at 0.05 level) and Feekes 10.5.3 
(R2 = 21) (data not shown). Danson and Plummer (1995) stated that the red edge 
responded more linearly to LAI and chlorophyll compared to the classical NDVI, 
which often suffers from saturation problems, even at relatively low LAI values 
(<3.0). Our research demonstrated that REP is a good indicator for winter wheat 
LNC estimation. For CND, the largest R2 values among the growth stages were 
observed for GNDVI (R2 = 0.83**) at Feekes 10.5.3. A_Area670, SIPI, DVI, NDWI, 
R_Area1690, WBI, and REP were significantly correlated with CND at Feekes 
4.0 (R2 = 0.68**), Feekes 5.0 (R2 = 0.31**), Feekes 8.0 (R2 = 0.69**), Feekes 10.0 
(R2 = 0.46**), Feekes 10.5.1 (R2 = 0.29**), Feekes 10.5.4 (R2 = 0.73**), and Feekes 
11.1 (R2 = 0.75**), respectively, as well.

The most encouraging findings in this section were that REP was a good indica-
tor for winter wheat LNC estimation and the absorption features derived from the 
wavelength centered at 670 nm, especially NBD670, proved to be reliable indicators 
for assessing wheat canopy N status. Therefore, winter wheat canopy N status can be 
assessed with both CND and spectral features parameters. This information is useful 
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FIGURE 3.4  The best correlations between LNC (a) (at growth stage Feekes 11.1) or CND 
(b) (at growth stage Feekes 10.5.3) and the narrow-band spectral indices. Note: n is the sam-
ple number and p is the statistical significance. (From Zhao, C.J. et al. 2012. International 
Journal of Remote Sensing, 33(11):3472–3491. With permission.)
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TABLE 3.2
Pearson’s Correlation Coefficients (r) for LNC and CND, the Spectral Features Parameters Associated with Absorption 
Features Located at 670 and 980 nm

Growth Stages

Feekes 4.0 
(Average 

LAI = 0.28)

Feekes 5.0 
(Average 

LAI = 0.47)

Feekes 8.0 
(Average 

LAI = 1.12)

Feekes 10.0 
(Average 

LAI = 2.22)

Feekes 10.5.1 
(Average 

LAI = 2.09)

Feekes 10.5.3 
(Average 

LAI = 2.00)

Feekes 10.5.4 
(Average 

LAI = 1.52)

Feekes 11.1 
(Average 

LAI = 1.12)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

ABD670 0.212 0.820** −0.068 0.489* 0.120 0.692** 0.279 0.609** 0.338 0.467* 0.529** 0.879** 0.210 0.778** 0.734** 0.725**

A_Area670 0.216 0.826** −0.055 0.475* 0.163 0.727** 0.304 0.619** 0.349 0.462* 0.523** 0.902** 0.232 0.804** 0.763** 0.767**

NBD670 −0.177 −0.805** 0.078 −0.552** −0.292 −0.826** −0.367 −0.620** −0.372 −0.437* −0.498* −0.908** −0.259 −0.835** −0.802** −0.789**

ABD980 0.199 0.634** −0.081 0.397* 0.198 0.825** 0.394 0.611** 0.328 0.469* 0.326 0.712** 0.244 0.778** 0.756** 0.735**

A_Area980 0.180 0.717** −0.063 0.391 0.209 0.829** 0.354 0.589** 0.308 0.500* 0.361 0.749** 0.286 0.819** 0.738** 0.739**

NBD980 0.092 0.600** −0.120 0.409* 0.065 0.539** 0.341 0.184 0.213 −0.072 −0.098 −0.013 −0.140 0.148 0.128 −0.022

Source:	 Zhao, C.J. et al. 2012. International Journal of Remote Sensing, 33(11):3472–3491. With permission.
Note:	 LNC is leaf N concentration and CND is canopy N density. ABD is the absorption band depth, A_Area is area of the absorption feature, and NBD is the absorption 

band depth normalized to the area of the absorption feature. * and ** indicate significance at 0.05 and 0.01 levels, respectively. The number of samples is 25 except 
for the data at Feekes 10.5.1, where 24 samples were involved.
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for developing nondestructive monitoring techniques for spatial variation in N status 
in wheat with ground-based hyperspectral data or airborne and satellite imagery.

3.2.1.2 � Estimation of Crop Vertical Chlorophyll Content and 
Nitrogen Content Distribution with Remote Sensing

3.2.1.2.1  Experiment and Data Collection
The experiment was conducted at the China National Experimental Station for 
Precision Agriculture during 2011–2012. The crop was summer maize, including 
Nongda 108 and Jinghua 8, a semicompact and a compact maize with respect to can-
opy morphology. Three nitrogen treatments with 0 kg (N0), 337 kg (N1), and 675 kg 
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FIGURE 3.5  Relationship of LNC (a) and CND (b) with NBD670 at Feekes 4.0 and Feekes 
11.1. Note: n is the sample number and p is the statistical significance. (Adapted from Zhao, 
C.J. et al. 2012. International Journal of Remote Sensing, 33(11):3472–3491.)

y = 3.30x – 0.05
R2 = 0.63

y = 6.44x – 2.51
R2 = 0.55

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
NDVI

CN
D

 (g
 m

–2
)

Feekes 4.0
Feekes 11.1

n = 25, p < 0.01

n = 25, p < 0.01

y = 1.34x + 5.28
R2 = 0.04

y = 3.64x + 1.19
R2 = 0.55

0

1

2

3

4

5

6

7

0.0 0.2 0.4 0.6 0.8 1.0
NDVI

LN
C 

(%
)

Feekes 4.0
Feekes 11.1

n = 25, p > 0.05

n = 25, p < 0.01

(a) (b)

FIGURE 3.6  Relationship of LNC (a) and CND (b) with NDVI at Feekes 4.0 and Feekes 
11.1. Note: n is the sample number and p is the statistical significance. (From Zhao, C.J. et al. 
2012. International Journal of Remote Sensing, 33(11):3472–3491. With permission.)
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TABLE 3.3
Pearson’s Correlation Coefficients (r) between LNC and CND, and the Spectral Features Parameters Associated with 
Reflectance Features Located at 560, 920, 1690, and 2230 nm

Growth Stages

Feekes 4.0 
(Average 

LAI = 0.28)

Feekes 5.0 
(Average 

LAI = 0.47)

Feekes 8.0 
(Average 

LAI = 1.12)

Feekes 10.0 
(Average 

LAI = 2.22)

Feekes 10.5.1 
(Average 

LAI = 2.09)

Feekes 10.5.3 
(Average 

LAI = 2.00)

Feekes 10.5.4 
(Average 

LAI = 1.52)

Feekes 11.1 
(Average 

LAI = 1.12)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

LNC 
(%)

CND 
(g m−2)

RBH560 0.211 0.825** −0.054 0.435 0.072 0.637** 0.244 0.626** 0.194 0.408* 0.431* 0.782** 0.215 0.714** 0.551** 0.555**

R_Area560 0.225 0.821** −0.055 0.431* 0.068 0.639** 0.242 0.626** 0.177 0.388 0.415* 0.766** 0.215 0.712** 0.531** 0.534**

NBH560 −0.364 −0.007 0.118 −0.226 0.067 −0.556** −0.163 −0.507* −0.010 −0.083 −0.193 −0.429* −0.177 −0.495* −0.287 −0.238

RBH920 0.195 0.338 −0.055 0.388 0.186 0.758** 0.476* 0.582** 0.373 0.409* 0.287 0.659** 0.215 0.650** 0.737** 0.657**

R_Area920 −0.176 −0.218 0.083 −0.369 0.412* 0.785** 0.497* 0.548** 0.363 0.382 0.281 0.684** 0.254 0.704** 0.690** 0.634**

NBH920 0.254 0.414* 0.007 0.339 −0.064 0.577** 0.196 0.571** 0.306 0.461* 0.178 0.101 0.028 0.380 0.697** 0.556**

RBH1690 0.121 0.779** −0.090 0.412* −0.006 0.426* 0.375 0.604** 0.352 0.528** 0.417* 0.732** 0.250 0.811** 0.641** 0.703**

R_Area1690 0.121 0.784** −0.083 0.410* −0.045 0.357 0.379 0.613** 0.358 0.536** 0.442* 0.731** 0.250 0.801** 0.656** 0.715**

NBH1690 −0.135 −0.779** 0.100 −0.517** 0.357 0.240 −0.381 −0.588** −0.382 −0.515** −0.415* −0.325 −0.200 −0.516** −0.608** −0.580**

RBH2230 −0.236 0.457* 0.140 0.277 0.028 0.339 0.335 0.565** 0.180 0.210 0.475* 0.374 0.240 0.689** 0.405* 0.410*

R_Area2230 −0.227 0.516** 0.123 0.281 −0.023 0.291 0.355 0.589** 0.222 0.264 0.499* 0.425* 0.250 0.709** 0.457* 0.472*

NBH2230 −0.201 −0.316 0.316 −0.085 0.367 0.463* −0.139 −0.138 −0.273 −0.332 0.346 0.021 0.052 0.382 −0.134 −0.222

Source:	 Zhao, C.J. et al. 2012. International Journal of Remote Sensing, 33(11):3472–3491. With permission.
Note:	 LNC is leaf N concentration and CND is canopy N density. RBH is the reflectance band height, R_Area is the area of reflectance feature, and NBH is the reflectance 

band height normalized to the area of reflectance feature. * and ** indicate significance at 0.05 and 0.01 levels, respectively. The number of samples is 25 except for 
the data at Feekes 10.5.1, where 24 samples were involved.  
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(N2) per ha were designed to produce different chlorophyll contents. The maize was 
divided into two layers at the jointing stage and three layers at the other stages; leaf 
samples were collected from the different layers at each stage. Hyperspectral reflec-
tance was measured using the ASD Fieldspec FR spectroradiometer (Analytical 
Spectral Devices; Boulder, CO, USA). After the spectra were measured, leaf samples 
were collected using a hole punch. The leaf samples were extracted with 80% ace-
tone for 24 h in the dark at 22°C. Chlorophyll a, chlorophyll b, and total chlorophyll 
content were analyzed in lab (Liao et al., 2013).

To investigate the performance of chlorophyll spectral indices, 10 different spec-
tral indices designed to estimate chlorophyll content were selected (Table 3.4). The 
determination coefficient (R2) and root mean square error (RMSE) were used to 
evaluate precision of the fit of the linear regression model to experimental data. 
A CWT was used to extract accurate spectral information from the hyperspectral 
reflectance, using a mother wavelet function to convert the hyperspectral reflectance 
into several wavelet coefficients at specific scales, then generating the correlation 
scalogram between the wavelet coefficients and chlorophyll content. As the reflec-
tion peak of chlorophyll at 550 nm is similar to the Mexican hat wavelet, it was 
used as the basis for the mother wavelet. The CWT was conducted at dyadic scales 

TABLE 3.4
Correlation Analysis between Spectral Indices and Chlorophyll Content 
Derived from the Calibration Dataset

Spectral Indices Upper Layer Middle Layer Lower Layer All Data

R2 (%) RMSE R2 (%) RMSE R2 (%) RMSE R2 (%) RMSE

SR705: R750/ R705 80.85a 5.55 82.40a 7.95 81.49a 9.68 78.87a 7.99
ND705: (R750−R705)/ 
(R750 + R705)

81.04a 5.52 79.81a 8.52 81.03a 9.67 78.13a 8.13

mSR705: (R750−R445)/ 
(R705−R445)

81.20a 5.54 83.23a 7.87 78.03a 10.25 78.06a 8.21

mND705: (R750−R705)/ 
(R750 + R705−2R445)

82.92a 5.32 83.46a 7.79 80.53a 9.59 79.70a 7.89

DD: (R750−R720) − (R700−R670) 82.50a 5.31 83.83a 7.63 83.24a 8.97 81.81a 7.43
BmSR: (BR750−BR445)/ 
(BR705−BR445)

83.30a 5.35 83.31a 7.72 80.84a 9.78 81.85a 7.23

Green model: (R800/ R550)−1
(R800/ R550)−1

79.66a 5.73 82.87a 7.85 82.74a 9.09 81.05a 7.57

Red edge model: (R800/ R700)−1 75.72a 6.25 76.82a 9.15 78.08a 10.24 73.52a 8.94
Chlgreen: (R760−800)/(R540−560)−1 79.37a 5.75 82.59a 7.93 82.47a 9.16 80.72a 7.64
Chlred edge: (R760−800)/
(R690−720)−1

80.14a 5.67 83.21a 7.78 81.87a 9.31 80.02a 7.78

Source:	 Liao, Q.H. et  al. 2013. Intelligent Automation & Soft Computing, 19(3):295–304. With 
permission.

Note:	 ap < 0.001, bp < 0.01, cp < 0.05.
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21, 22, 23,…, 210. The scales were defined as 1, 2, 3,…, 10, discarding scales greater 
than 210 as they carried little spectral information. This CWT was conducted using 
MATLAB® 7.1 (Natick, MA, USA).

The maize dataset consisted of 65 upper layer leaves, 69 middle layer leaves, 
and 46 lower layer leaves. The dataset for each layer was randomly divided into 
calibration (60%) and validation (40%) subsets. The calibration dataset was used to 
build estimation models between the wavelet coefficients and chlorophyll content by 
simple linear regression, whereas the validation dataset was used to test the regres-
sion model. The R2 and RMSE were used to assess the predictive performance of the 
estimation models. All statistical analyses were conducted using SPSS 16.0.

3.2.1.2.2  Results and Discussion
It is known that variation in chlorophyll content can be induced by different N 
treatments. For this reason, three nitrogen gradients were designed. Since the chlo-
rophyll content differs little between Nongda 108 and Jinghua 8, in order to inves-
tigate the variation of chlorophyll content in different maize leaf layers, means and 
standard deviations were calculated. The mean values of chlorophyll content in the 
middle layer can reach 49.14 µg cm−2, which is greater than that in the upper layer 
(40.02 μg cm−2), but the differences among the three layers later vanished as nutri-
ent (such as N, P, and K) were transported to the middle and upper layers in the 
trumpet stage. During the anthesis–silking and maturation stages, the chlorophyll 
content of the lower layer was obviously reduced as a result of nutrient accumulation 
in the earleaf for grain-filling, and as the lower and upper leaves aged, the chloro-
phyll content decreased from 38.29 to 25.30 μg cm−2. Leaves with lower chlorophyll 
content had the highest reflectance in the visible range and the lowest reflectance in 
the NIR waveband, similar to other crops. The most obvious change in leaf spectral 
reflectance in the visible region was near 550 nm, especially at the maturation stage; 
the spectral reflectance ranged from 11.1% to 17.8% between the middle and lower 
layers. This waveband is usually not used directly to construct the spectral indi-
ces because of the effects of other pigments; the red-edge region (670–800 nm) is 
usually used to investigate the variation of chlorophyll content.

To compare the estimation capacity of the spectral indices with that of the wavelet 
transform, we used 10 leaf-scale spectral indices of chlorophyll content. These spec-
tral indices mainly included simple ratios of reflectance (Rx/Ry), normalized ratios of 
differences of reflectance ([Rx − Ry][Rx + Ry]), and reflectance derivatives (dRx/dRy).

As spectral indices, first derivative reflectance of modified simple ratio index 
(BmSR) and double difference index (DD), which is defined in Table 3.4, considered 
plant functional type, leaf structure, leaf developmental stage, specular reflection, 
and the variation range of chlorophyll content. These indices exhibited good results 
for estimating chlorophyll content.

The hyperspectral reflectance of the different layers and all datasets were trans-
formed using a CWT. Figure 3.7a, c, e, and g shows the correlation between the 
wavelet coefficients and chlorophyll content, with the vertical axis and horizontal 
axis representing the decomposition scale and wavelength, respectively. The high-
lighting represents the wavelet regions with high R2, whereas the dark portion rep-
resents regions that are less sensitive to chlorophyll content. Figure 3.7b, d, f, and h 

  



72 Precision Agriculture Technology for Crop Farming

10
8
6
4
2

500 600 700
Wavelength (nm)

Sc
al

e

10
8
6
4
2

Sc
al

e

800 900 1000 R2

0.8
0.6
0.4
0.2

10
8
6
4
2

500 600 700

Wavelength (nm)

800 900 1000

500 600 700 800 900 1000 R2

R2

0.8
0.6
0.4
0.2

10
8
6
4
2

Sc
al

e
Sc

al
e

Wavelength (nm)

Wavelength (nm)

500 600 700 800 900 1000
10

8
6
4
2

500 600 700 800 900 1000

10
8
6
4
2

500 600 700 800 900 1000
10(g)

(f )

(e)

(d)

(c)

(b)

(a)

(h)

8
6
4
2

500 600 700 800 900 1000

10
8
6
4
2

500

All data

F
B D E

CA

Lower layer

C D E
BA

Middle layer

C
D E
B A

Upper layer

C F GD E
BA

600 700 800 900 1000

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

FIGURE 3.7  Hyperspectral reflectance of maize leaves in different layers and at different 
growth stages. (a, c, e, g) are correlation scalograms between the wavelet coefficients and 
chlorophyll content, with the vertical axis and horizontal axis representing the decomposition 
scales and wavelength, respectively, (b, d, f, h) are selected wavelet features sensitive to chlo-
rophyll content. A, B, C, D, E, F in (b, d, f, h) indicate the wavelet feature regions that were 
found to be sensitive to the chlorophyll content for the different maize layers. (From Liao, 
Q.H. et al. 2013. Intelligent Automation & Soft Computing, 19(3):295–304. With permission.)
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indicates the extraction of wavelet features that are sensitive to chlorophyll content. 
These features were chosen as follows. First, the R2 values for chlorophyll content and 
the wavelet coefficients were computed using the CWT. Second, all significant fea-
tures (p < 0.0001) were ranked in descending order based on R2, and the top 1% was 
retained. The highest R2 and corresponding scales and wavelengths for the significant 
features were then identified. Figure 3.7b shows that seven sensitive wavelet features 
were found for the upper layers, and the wavelengths of all the wavelet features were 
in the 550 or 700 nm region, which is sensitive to chlorophyll content. This result is 
similar to the selection of wavebands used to design the chlorophyll spectral indices. 
The highest R2 of this layer was 92.25% (Table 3.5), which is higher than those of 
the spectral indices for this layer. It should be noted that the most sensitive wavelet 
region was located at 569 nm, which is close to the strong reflection peak of chlo-
rophyll. Figure 3.7d demonstrates that five sensitive wavelet features were extracted 
from the correlation scalogram (Figure 3.7c). The most sensitive feature was located 
at 766 nm and scale 2; the corresponding R2 was 91.46% (Table 3.5), which was also 
an improvement over the spectral indices. The chlorophyll content of this layer is 
much higher than that of the upper layer, such that all wavelet features moved to the 
red-edge region (680–800 nm), in accordance with other studies. Figure 3.7f shows 
that five wavelet features were sensitive to chlorophyll content in the lower layer; the 
highest R2 (94.85%) was obtained at 760 nm and scale 1. These wavelet features were 
also evident in the red-edge region. Many studies have found that when chlorophyll 
content decreases, the red edge shifts toward a shorter wavelength.

Figure 3.7a, c, e, and g shows the correlation scalogram between the wavelet coef-
ficients and the chlorophyll content; Figure 3.7b, d, f, h indicates the extraction of 
wavelet features that are sensitive to the chlorophyll content.

TABLE 3.5
Correlation Analysis between the Wavelet Features and Chlorophyll 
Content Derived from the Calibration Dataset

Code

Upper Layer Middle Layer Lower Layer All Data

Feature 
Location 
and Scale R2 (%)

Feature 
Location 
and Scale R2 (%)

Feature 
Location 
and Scale R2 (%)

Feature 
Location 
and Scale R2 (%)

A 567, 2 91.62a 766, 2 91.46a 760, 1 94.85a 768, 2 89.91a

B 568, 3 91.99a 722, 3 90.31a 759, 2 94.18a 721, 3 89.89a

C 692, 3 92.13a 770, 3 91.06a 721, 3 93.54a 770, 3 89.90a

D 509, 4 91.77a 726, 4 90.76a 765, 3 93.75a 724, 4 90.50a

E 569, 4 92.25a 782, 4 90.43a 778, 4 93.41a 782, 4 89.64a

F 724, 4 91.96a − − − − 723, 5 89.80a

G 725, 5 91.87a − − − − − −

Source:	 Liao, Q.H. et  al. 2013. Intelligent Automation & Soft Computing, 19(3):295–304. With 
permission.

Note:	 ap < 0.001, bp < 0.01, cp < 0.05.
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The results support this conclusion and show that the position of a sensitive wave-
let feature in the upper layer moved 6 nm to a shorter wavelength when compared 
with the middle layer. Figure 3.7h shows that in the dataset of all the layers subjected 
to the CWT, the highest R2 was 90.50%, which is higher than the spectral indices of 
all the layers.

The position of the most sensitive wavelet feature was located at 724 nm, close to 
the red-edge position, indicating that this wavelength position is a good indicator to 
use in estimating the variation of chlorophyll content. Next, they applied the linear 
regression models resulting from the calibration dataset to the validation dataset. 
Figure 3.8a–d shows that data points dispersed close to the 1:1 line, and all the pre-
dicted R2 values of the different layers exceeded 90%.

3.2.1.3 � Evaluation of Crop Nutrition and Growth Status 
Based on Airborne Remote Sensing

Hyperspectral remote sensing can obtain refined spectral data on the crop canopy 
or leaves, from which we can determine the growth status, water and fertilizer 
deficiency, nutrition content, as well as grain quality and yield information on crops. 
Thus, precision agriculture has led to progress in hyperspectral remote sensing 
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FIGURE 3.8  Plots of measured versus predicted chlorophyll content based on the mod-
els developed from the most sensitive wavelet features. (a) Upper layer, (b) middle layer, (c) 
lower layer, and (d) all the data. (From Liao, Q.H. et al. 2013. Intelligent Automation & Soft 
Computing, 19(3):295–304. With permission.)
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techniques (Moran et al., 1997). Utilizing the red-edge characteristics of operative 
modular imaging spectrometer (OMIS) images, statistical analysis is performed on 
the correlation of leaf chlorophyll, total nitrogen (TN), soluble sugar, and water con-
tent with spectral characteristics. The remote sensing model of biochemical param-
eters is established based on OMIS images. Maps of biochemical parameters are 
generated and then used for the analysis of growth status of crops (Liu, 2002).

The experiment was carried out at the National Experiment Station for Precision 
Agriculture in 2001 using winter wheat. OMIS images were acquired by airborne 
sensors on April 25, 2001. During the flight, biochemical parameters were also sam-
pled, including chlorophyll, TN, soluble sugar, LWC, and LAI. Using the inverted 
Gaussian model, the red-edge parameters of the spectra were calculated, and cor-
relation analysis was performed with the biochemical composition of the canopy. 
Table 3.6 lists the multiple correlation coefficients of chlorophyll, TN, sugar, and 
LWC with red-edge spectral parameters of OMIS images. The remote sensing model 
of chlorophyll, TN, sugar, and LWC was established according to the position of the 
red edge (Table 3.7).

Using the above model, maps of biochemical parameters such as chlorophyll, TN, 
soluble sugar, and LWC were plotted, as shown in Figure 3.9a–d. Figure 3.10 shows 
the results for color composition of the maps of three biochemical parameters, which 
are chlorophyll ab content (R), TN (G), and soluble sugar (B). R, G, and B in the 
brackets represent the three primary colors (red, green, blue) used for color composi-
tion. In the late jointing stage, the plots grown with winter wheat having high sugar, 
low nitrogen, and low chlorophyll are shown in blue. For the plots, the crops lack 
fertilizer and may enter the reproductive growth state before those with fertilizer. 
The plots of winter wheat having high nitrogen, high chlorophyll, and low sugar are 
shown in yellow. These nutritionally adequate plots are still in the vegetative growth 
stage. The growing status of winter wheat can be evaluated by color, facilitating 
decisions on agricultural management.

TABLE 3.6
Coefficients of Correlation between Biochemical Composition and 
Red-Edge Spectral Parameters of OMIS Images (n = 45)

Chemical λp λo σ IG-R2 NDVI

Chlorophyll 0.408 0.429 0.182 0.305 0.430

Total nitrogen 0.568 0.532 0.176 0.515 0.422

Sugar 0.560 0.510 0.202 0.485 0.460

Foliar water 0.247 0.147 0.006 0.176 0.301

Source:	 Liu, L.Y. 2002. Hyperspectral Remote Sensing Application in Precision Agriculture. 
Postdoctoral research report of Institute of Remote Sensing Applications, Chinese 
Academy of Sciences. With permission.

Note:	 λo is the spectral position of the red trough corresponding to chlorophyll absorption; λp is 
the spectral position of the red edge; and σ is the variance term of the inverted Gaussian 
model and the difference between the spectral position of the red edge and red trough for 
vegetation. It corresponds to the width of the absorption trough of the red edge.
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3.2.2 C rop LAI Estimation through Remote Sensing

The LAI is a major indicator for crop growth monitoring and yield estimation. Actual 
observed data provide statistical properties of crop LAI, whereas crop simulation 
models provide physical properties of LAI within the whole crop growth period. In 

TABLE 3.7
Remote Sensing Model of Chlorophyll, Total Nitrogen, Sugar, 
and Leaf Water Content

Model R2

N = −126.4563 + 0.3051*λp − 0.0061*λo − 84.9024*IG-R2 0.597

Chlorophyll = −285.3746 + 0.1117*λp + 0.2115*λo + 61.9571*IG-R2 0.458

Sugar = 93.386 – 0.3042*λp + −0.4114*λo + 421.9152*IG-R2 0.443

Water = 74.7180 + 1.0473*λp + 0.6955*λo − 276.5877*IG-R2 0.301

Source:	 Liu, L.Y. 2002. Hyperspectral Remote Sensing Application in Precision 
Agriculture. Postdoctoral research report of Institute of Remote Sensing 
Applications, Chinese Academy of Sciences. With permission.
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FIGURE 3.9  (See color insert.) Map plots of biochemical parameters, including chloro-
phyll, total nitrogen, soluble sugar, and leaf water content. (a) Chlorophyll concentration 
(mg g−1), (b) nitrogen concentration (%), (c) soluble sugar concentration (%), and (d) leaf water 
content (%). (From Liu, L.Y. 2002. Hyperspectral Remote Sensing Application in Precision 
Agriculture. Postdoctoral research report of Institute of Remote Sensing Applications, 
Chinese Academy of Sciences. With permission.)
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the work of Dong et al. (2012), a data assimilation scheme of integrating observa-
tions and CERES-Wheat model based on the ensemble Kalman filtering (EnKF) 
algorithm is proposed for LAI estimation (Kalman, 1960; Evensen, 2003).

3.2.2.1  Experiment and Data Collection
The field experiments of winter wheat Jingdong 8 were conducted in 2002 at the 
Xiaotangshan National Experiment Station for Precision Agriculture in Changping 
district, Beijing. In the experiment, there were 16 testing areas, each 32.4 m × 30 m; 
four water treatments and four fertilizer treatments were conducted in these areas. 
March 25, April 2, April 10, April 18, May 6, May 17, May 24, and May 31, in 
2002, were chosen as the dates in the sequence of observations covering the key 
growth stages of winter wheat. All of the information were obtained from the above 
experiments, including meteorological data, soil data, management data, time series 
remote sensing data of winter wheat, and so on. Meteorological data such as daily 
solar radiation, maximum air temperature and minimum air temperature, and pre-
cipitation were recorded by observation equipment at the DAVIS meteorological 
site in the Xiaotangshan National Experiment Station for Precision Agriculture in 
Changping district, Beijing. Soil data, such as soil moisture and soil nutrients, were 
recorded in the experiments. Moisture content values of soil layers (5, 20, 40, 60, 
80, and 100 cm) were determined by the oven drying method. Management data 
were recorded during the experiments, including information on seeding, fertil-
izing, irrigation, and other practices. In addition, the sequential canopy spectral 
reflectance and LAI of winter wheat were obtained with an ASD FieldSpec Pro FR 
(350–2500 nm) spectrometer (ASD, USA) and the SLW method, respectively. Actual 
observed data provide statistical properties of crop LAI, whereas crop simulation 
models provide physical properties of LAI within the whole crop growth period.

Grow poorly
in areas with
high sugar,
low nitrogen,
and low
chlorophyll. 

Grow well in
areas with
low sugar,
high nitrogen,
and high
chlorophyll.

FIGURE 3.10  (See color insert.) Pseudocolor composition map of biochemical parameters, 
including chlorophyll, total nitrogen, and soluble sugar. Red lines: The crops grow poorly 
in areas with high sugar, low nitrogen, and low chlorophyll. Green lines: The crops grow 
well in the areas with low sugar, high nitrogen, and high chlorophyll. (From Liu, L.Y. 2002. 
Hyperspectral Remote Sensing Application in Precision Agriculture. Postdoctoral research 
report of Institute of Remote Sensing Applications, Chinese Academy of Sciences. With 
permission.)
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3.2.2.2  Methods
There are two types of physical models used in this section, the crop growth model 
CERES-Wheat and the canopy radiative transfer model PROSAIL. CERES-Wheat 
was used to simulate the growth status of winter wheat in different stages daily and 
continuously. With canopy physiological and biochemical parameters, soil param-
eters as input information, and canopy reflectance as output information, PROSAIL 
served to calculate vegetation canopy reflectance under various biochemical levels 
and different observation conditions.

On the basis of the existing research, a data assimilation algorithm based on 
EnKF algorithms was proposed. This algorithm was designed to make full use of 
sequential remote sensing observations and the crop growth model CERES-Wheat 
in an effort to realize the high estimation precision of LAI. The conceptions and 
assimilation strategies of EnKF are described in detail as follows. EnKF is a sequen-
tial assimilation method combined with ensemble forecasting and Kalman filtering. 
The assimilation scheme is shown in Figure 3.11.

(1) Initialization of background field. The initial background field dataset Xa(t0) 
obeying Gaussian distribution and its error covariance matrix Pa(t0) of the state vari-
able LAI is determined by remote sensed observations and the crop growth model 
CERES-Wheat. (2) Ensemble forecasting. At the k + 1 moment, the forecasted 
dataset Xf(tk+1) and its error covariance matrix Pf(tk+1) are calculated according to 
Equation 3.3. (3) Analyzing. The gain factor K(tk+1) of the k + 1 moment is calcu-
lated according to Equation 3.3. (4) Updating. At the k + 1 moment, the analysis field 

Assimilated LAI

Crop growth model
CERES-Wheat

Minimize the
difference
between

observed NDVI and
estimated NDVI
based on EnKF

algorithm at every
obseved time

Observed NDVI

Estimated NDVI

Spectrometers, satellites … (NDVI was
calculated based on hyperspectral data or multispectral data) …

Canopy radiative transfer model PROSAIL
LAI

Crop growth model CERES-Wheat

FIGURE 3.11  Data assimilation mode integrating observations with the CERES-Wheat 
model for LAI estimation based on the EnKF algorithm. (From Dong, Y.Y. et  al. 2012. 
Advances in Intelligent and Soft Computing, 165:831–837. With permission.)
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dataset Xa(tk+1) and its error covariance matrix Pa(tk+1) are calculated according to 
Equation 3.3. If there are still observations, the algorithm will move on to the next 
moment and return to ensemble forecasting. Otherwise, the assimilation process will 

be ended and Xa
kt( )+1  will be taken as the optimal state variable.
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(3.3)

Regions with poor growth of wheat tend to have high sugar, low nitrogen, and 
low chlorophyll, whereas regions with good growth of wheat have low sugar, high 
nitrogen, and high chlorophyll. In Equation 3.3, N is the size of the dataset, M is 
the CERES-Wheat model operator, and H is the PROSAIL model operator. Xa(tk) 
is the analysis field dataset at moment k. Xa

kt( )+1  and X f
kt( )+1  are the mean values 

of the analysis field dataset and the forecasted dataset at moment k + 1, respectively. 
Y0(tk+1) is the observed dataset at moment k + 1, and Qk is the model error. N(0,Qk) 
is the Gaussian white noise dataset, and R(tk) is the observation error covariance 
matrix. The EnKF algorithm scheme is effective in solving the nonlinear problems 
involved in model operation and observation by the operator.

In order to validate the feasibility and effectiveness of the data assimilation 
algorithm, a comparative study was made between the EnKF algorithm and the 
CERES-Wheat model. In the comparison experiments, the RMSE, coefficient of 
determination (R2), and accuracy were selected to analyze the precision of estimates.

3.2.2.3  Results and Analysis
In the numerical experiments, sequential remote sensed observations are taken 
as input parameters of CERES-Wheat. The initial background field and its error 
covariance matrix of the state variables are calculated according to the EnKF assim-
ilation strategy, and the model error is set as Qk = 3% × y(tk) on the basis of given 
experience. Results of the EnKF assimilation experiments are shown in Figures 3.12 
and 3.13.

In comparing the EnKF assimilations with the CERES-Wheat simulations, the 
three model testing indicators RMSE, R2, and accuracy had values of 0.84, 0.87, and 
0.42; 0.38, 0.92, and 1.05, respectively. In the whole EnKF assimilation process, the 
model simulations were effectively constrained by the observations. Confirmatory 
analysis showed that the EnKF-assimilated LAI not only agrees with the actual 
observations and the crop growth disciplines, but also reaches higher estimation 
precision.

For winter wheat, the NDVI became saturated when the LAI of crop canopies 
was greater than or equal to 3.00. The dataset of LAI was subsequently divided into 
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two categories: one subset included LAI values less than 3.00, and the other included 
LAI values greater than or equal to 3.00. Figure 3.13 shows that, for LAI ≤3.00, the 
EnKF-assimilated LAI is better than that of the CERES-Wheat simulations, but for 
LAI ≥3.00, these two methods show no improvement in LAI estimation.

In order to solve the existing problem of unsatisfactory and low-efficiency LAI 
assimilation, the data algorithm, the sequential remote sensed observations, and the 
crop growth model simulations were comprehensively utilized to enhance the preci-
sion of LAI assimilation.
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FIGURE 3.12  Estimation results of EnKF assimilation algorithms. (From Dong, Y.Y. et al. 
2012. Advances in Intelligent and Soft Computing, 165:831–837. With permission.)
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FIGURE 3.13  Scatter plots of observed LAI and EnKF-assimilated LAI. (From Dong, Y.Y. 
et al. 2012. Advances in Intelligent and Soft Computing, 165:831–837. With permission.)
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In the assimilation process, the LAI dynamic changing information was provided 
by sequential observations, and the LAI changing tendency was constrained by 
the CERES-Wheat simulations; all of these results were in accordance with actual 
observations and crop growth principles. Theoretical analysis and numerical experi-
ments proved that the data assimilation scheme based on the EnKF algorithm effec-
tively improves the estimation of crop LAI values.

3.2.3 C rop Water Estimation and Inversion through Remote Sensing

In this section, regression models that are based on gray relational analysis–partial 
least squares (GRA–PLS), the optimal band ratio normalized difference, and three 
bands algorithms were developed and tested for winter wheat LWC estimation (Jin 
et al., 2013).

3.2.3.1  Experiment and Data Collection
The experiment site is located in Tongzhou District (39°36′–40°2′N, 116°32′–
116°56′E) and Shunyi District (40°0′–40°18′ N, 116°28′–116°58′E) of the Beijing 
suburbs, China. Four local wheat cultivars, Nongda 195, Jingdong 13, Zhongyou 206, 
and Jing 9428, were planted from September 25 to 30, 2007 and from September 28 
to October 2, 2008 at seeding rates of 190–225 kg ha−1 in 2007 and 215–265 kg ha−1 
in 2008. Spectral measurements were performed at the following growth stages (the 
first date is from 2008, the second date is from 2009): jointing (15 April, 13 April), 
heading (29 April, 30 April), and anthesis (15 May, 18 May) of winter wheat. All 
canopy spectral measurements were taken using the ASD Field Spec Pro spectrom-
eter (analytical spectral devices) mounted on a tripod boom and held in a nadir ori-
entation 1.3 m above the canopy. Vegetation radiance measurements were taken by 
averaging 16 scans at an optimized integration time, with a dark current correction 
at every spectral measurement. A panel radiance measurement was taken before and 
after the vegetation measurement by two scans each time.

After the spectral positions of the biomass were collected, the aboveground bio-
mass was sampled destructively. In each plot, average-looking plants were selected 
for sampling, and then 60 × 60-cm biomass sections from the scanned plants were cut 
at ground level. Collected plant samples were placed in a paper bag, sealed in a plastic 
bag, and placed in a cool, dark container to avoid as much water loss as possible. Upon 
returning from the field, leaves and stems were separated and weighed. All plant sam-
ples were then oven dried for 48–72 h at 85°C to constant mass, which was recorded 
(Woods et al., 1982; Zhang et al., 2012). LWC was calculated as Equation 3.2.

3.2.3.2  Methods and Analysis
Based on the published literature, 10 spectral parameters that better elucidate the 
relationship between LWC and WVIs (Table 3.8) were used. Linear and nonlinear 
regression analysis was conducted, with the selected spectral parameters serving as 
independent variables. The results indicated that relationships between LWC and 
all spectral parameters were significant with the exception of the water index (1300, 
1450) and the normalized difference infrared index. The water index (1148, 1088), 
water index (1300, 1450), and vegetation dry index (VDI) were negatively correlated 
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with LWC; the respective correlation coefficients (r) were −0.32, −0.14, and −0.23. 
The remaining parameters were positively correlated with LWC. The water index 
(1300, 1200) had the highest r value of 0.56 and an R2 value of 0.32. The following 
parameters were significantly correlated with LWC.

The highly correlated area was located in the range of 1500- to 1750-nm wave-
lengths, occurring mainly in the water absorption wavelengths (R2 > 0.35). The 
selected band ratio (R1723/R1535) performed better than did the empirical model based 
on reflectance spectra for the band ratio, with an R2 value of 0.39.

A similar correlation analysis was applied to aggregated datasets with band-nor-
malized difference indices. The highly correlated area was located in the narrow 
spectral region of 1600–1750 nm (R2 > 0.35). The most sensitive band normalized 
difference was utilized to establish the LWC estimation model. Of all the water 
index combinations, the best normalized difference water index was (R1720 − R1530)/
(R1723 + R1530), with an R2 of 0.37.

3.2.3.3  Results
The three-band algorithm was similar to the band ratio algorithm; the best three-
band water index was (R973 − R1720)/R1447, with an R2 value of 0.60 and RMSE of 
13.15% (Figure 3.14).

The final selected spectral parameters included water index (900, 970), water 
index (1148, 1088), water index (1100, 1200), water index (1070, 1200), water index 
(1300, 1200), NDWI–Hyperion, 1650, 1722, and 970 nm (Table 3.9).

These results suggested that the relationship between the nine water spectral vari-
ables and LWC were relatively stable and the influences of experimental conditions 

TABLE 3.8
Summary of Selected Vegetation Indices, Wavebands, and References for 
Leaf Water Content

Spectral Parameters Wavebandsa Reference

Water index (900,970) R900/R970 Penuelas et al. (1993)

Water index (1148,1088) R1148/R1088 Schlerf et al. (2003)

Water index (1100,1200) R1100/R1200 Jin et al. (2013)

Water index (1300,1450) R1300/R1450 Seeliga et al. (2008)

Water index (1300,1200) R1300/R1200 This study

Normalized difference water 
index–hyperion

(R1070 − R1200)/(R1070 + R1200) Ustin et al. (2002)

Vegetation dry index (R970 − R900)/(R970 − R900) Penuelas et al. (1993)

Normalized difference infrared index (R850 − R1650)/(R850 + R1650) Hunt and Rock (1989)

Normalized difference matter index (R1649 − R1722)/(R1649 + R1722) Wang et al. (2011)

Normalized heading index ([R1100 − R1200]/[R1100 + R1200])/
([R850 − R670]/[R850 + R670])

Pimstein et al. (2009)

Source:	 Jin, X.L. et al. 2013. Agronomy Journal, 105:1385–1392. With permission.
a	 Ri denotes reflectance at band i (nm).

  



83Data Processing and Utilization in Precision Agriculture

were relatively small; so the model established in this study could be used to estimate 
LWC in winter wheat from 2008 data (n = 90). The regression equation was
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with an R2 value of 0.74. To validate the model, the predicted values using the GRA–
PLS model were compared with the actual values acquired during the entire growth 
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FIGURE 3.14  Nonlinear regression of leaf water content (LWC) against the optimal 
three-band algorithm. (From Jin, X.L. et al. 2013. Agronomy Journal, 105:1385–1392. With 
permission.)

TABLE 3.9
Spectral Variables for the Gray Relational Analysis–Partial Least 
Squares Model Implementation at All Growth Stages (n = 90)

Evaluation Index Gray Correlation (ξ = 0.5) Orders

Normalized difference water 
index–Hyperion

0.9599 2

Water index (900,970) 0.9404 3
Water index (1148,1088) 0.9201 4
Water index (1100,1200) 0.9004 5
Water index (1070,1200) 0.8981 6
Water index (1300,1200) 0.9781 1
1650 nm 0.8920 7
1722 nm 0.8902 8
970 nm 0.8870 9

Source:	 Jin, X.L. et al. 2013. Agronomy Journal, 105:1385–1392. With permission.
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season of 2009 (n = 72). Our results showed good correlations between predicted and 
actual values, with an RMSE of 9.82% (Figure 3.15).

3.2.3.4  Model Application
NIR (760–900 nm) and short-wave near-infrared (SWIR) bands (1550–1750 nm) of 
landsat thematic mapper (TM) data were used to test the potential of the GRA–PLS 
models in the discrete spectral bands of contemporary spaceborne sensors. Because 
of the absence of water bands (e.g., 970–1300 nm) in Landsat TM data, the GRA–
PLS regression equation was simplified to

	

y = + − +

− +

30 563 10 245

0 462 0

. ( ) . ( ) ( )

. .

NIR/SWIR NIR SWIR / NIR SWIR

NIR 8843 17 454SWIR + . 	
(3.5)

with an R2 value of 0.65. The measured value was consistent with the predicted value 
from the Landsat TM data, with an RMSE of 11.62%. The results indicated that 
GRA–PLS could be used to improve the estimation accuracy of winter wheat LWC 
by using Landsat TM data.

3.3  PRESCRIPTIONS FOR PRECISION MANAGEMENT

As mentioned above, the precision agriculture experiments can generate a large 
amount of farmland data. These data need to be managed, analyzed, and processed, 
and can be used to generate prescription maps for decision making. The generation 
of a prescription map and the decision-making process not only involves graphic 
processing and calculation but also includes the representation and inference of 
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FIGURE 3.15  The relationship between the leaf water content (LWC) predicted by gray rela-
tional analysis–partial least squares and actual LWC (left) and landsat thematic mapper image 
data (right). (From Jin, X.L. et al. 2013. Agronomy Journal, 105:1385–1392. With permission.)
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experience and knowledge. Determining how to apply information technology to 
support variable-rate operations is an important task in precision agriculture.

The data sources for precision agriculture include antecedent data and real-time data. 
Antecedent data are divided into yield data and soil nutrition data over years. Real-time 
data consist of airborne and spaceborne remote sensing data (for the inversion of chloro-
phyll and LAI) as well as data reflecting plants’ growth status (by SPAD reading, LAI).

This chapter first analyzes the procedures for supporting decision making in 
precision agriculture management and for prescription generation. Then, based on 
recent studies and progresses in precision agriculture, we introduce several theoreti-
cal and methodological studies about decision making for management zone (MZ) 
partitioning and variable-rate operations.

3.3.1 P rocedures in Decision Making and Prescription Generation

It is known that the whole process from sowing to harvest is influenced by vari-
ous factors, including climate, soil, the biosphere, and cultivation. To generate a 
prescription for precision agriculture management, it is necessary to obtain farm-
land environmental information and utilize GIS, artificial intelligence technology, 
and simulation modeling (Figure 3.16). GIS can be used to create different graphic 
layers. The relationship between crop yield and the attributes from other layers is 
analyzed (including soil type, soil fertility, weed population, field irrigation, and 
drainage). Based on the analysis of yield potential of each prescription unit, the 
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Data
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FIGURE 3.16  (See color insert.) Key links in decision making for precision agriculture 
management and prescription generation. (From Chen, L.P. et al. 2002. Transactions of the 
CSAE, 18(2):1145–1148. With permission.)
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decision scheme for production management can be developed with the model. The 
prescription map is generated to provide guidance for decision making using intelli-
gent precision agriculture equipment, which thus optimized the inputs of fertilizers, 
water, and pesticides from the economic and ecological perspectives (Chen, 2002).

The first is a scheme for variable-rate fertilization (Larscheid, 1997), which is the 
easiest approach to decision making. Based on the principle of nutritional balance, yield 
maps are used to calculate the theoretical amount of nutrients taken from the soil by 
crops in the current season. The input amount in the following season should equal the 
amount being consumed. This fertilization method is known as “supplementary fertil-
ization.” Owing to the leaching loss of nutrients, additional fertilization may be required 
(i.e., an additional 10%). This method assumes a constant yield restricting factor for the 
two growth seasons, which is based on the yield information for 1 year and a model of 
fertilizer supplementation. However, such a method requires less supporting informa-
tion, and the prescription maps can be easily generated by software. Therefore, this 
method can serve as a good start for formulating the scheme for variable-rate operations.

The second approach to variable-rate fertilization decision making uses a series 
of yield maps over multiple years. According to the yield data from multiple years 
of a plot, the spatial distribution map of yield and the interannual variation map of 
yield can be obtained. Using these two types of maps, separate regions having stable 
high yield, stable low yield, and unstable low yield can be identified. Hence, a clas-
sified management map can be generated. Based on this map, decisions on the input 
amount of fertilization in the next season can be made (Larscheid, 1997).

This second method requires yield data from multiple years, which thus provide 
a more reliable foundation for decision making, despite making the analysis more 
complicated. It is highly risky to make decisions based on a yield map from only 
1  year, since many spatial and temporal factors are still unknown. By using the 
yield data of 3 or 4 years, the effect of temporal and spatial factors can be mitigated. 
Accordingly, targeted investigations of certain areas can be performed to analyze 
the factors restricting yield. The economic benefit principle is to adopt remedial 
measures for dealing with the impacts of specific restricting factors, or to manage 
the plot according to its potential.

The decision-making results for variable-rate fertilization should be represented in 
the form of a prescription map to guide the agricultural machine for implementation 
of variable-rate fertilization. The generation of a prescription map includes several 
steps: determining the size of units of the prescription map, converting the format, and 
developing the coordinate system. The size of the units of a prescription map can be 
determined by the operation width of the agricultural machine. To facilitate the opera-
tion, it can be set to integer multiples of the width. Considering the limited sensitivity of 
variable-rate fertilization machines and the wear problem of machines, adjacent regions 
with similar results can be merged. The study about the scale effect in variable-rate 
fertilization showed that decrease of the unit plot size might cause an increase of fertil-
ization amount. When determining the size of the unit plot for fertilization, the standard 
of soil nutrition, variation, and spatial autocorrelation levels should also be considered. 
Different variable-rate fertilizer applicators have different requirements for the format 
of prescription maps (e.g., vector or raster data). Since the results of models are almost 
always in raster format, a format conversion is necessary if a vector format is required by 
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the machine. Since GPS is usually used for navigation, the coordinate system of the pre-
scription map should be WGS-84 coordinates, which may require coordinate conversion.

3.3.1.1  Generation of the Soil Nutrition Map

3.3.1.1.1  Experiment and Data Collection
The automatic soil collection experiment was carried out on June 2007 at 
Xiaotangshan National Experiment Station for Precision Agriculture. The entire plot 
was divided into 20 × 20 m grids for sampling, with 950 sampling points arranged, 
using DGPS for the determination of sampling points. The ploughed layer was sam-
pled at a depth of 0–20 cm, which is most closely related to crop growth. At each 
sampling point, soil drilling was performed on four points on a concentric circle with 
a diameter of 10 m and at the center of the circle. The soil samples were air dried 
within 24 h after sampling, and then sieved for nutrition determination. Indicators of 
TN, organic matter (OM), available phosphorus (AP), and available potassium were 
measured (Cui et al., 2013).

3.3.1.1.2  Methods and Analysis
3.3.1.1.2.1    Spatial Structure Analysis of Soil Nutrition  Using geostatistical prin-
ciples, semivariance analysis was carried out on soil nutrition in 2007. The optimal 
model for each nutrient was obtained; the model parameters are shown in Table 3.10. 
For model validation, cross validation was performed. Root-mean-square standard-
ized (RMSS) was used as an indicator of goodness-of-fit. The closer the RMSS value 
to 1, the better the goodness-of-fit.

3.3.1.1.2.2    Soil Nutrition Interpolation  Based on the optimal semivariance 
model of soil nutrition, Kriging interpolation was employed to estimate the unmea-
sured data points and the map was plotted. Hence, a spatial variation map of the 
content of each nutrient in the open field was generated (Figure 3.17). In 2007, AP 
was higher in the south and northeast corner, with a gradual decrease toward the 
middle area. The content of AP was lower in the western area. The northeastern 

TABLE 3.10
Spatial Feature Values of Soil Properties

Soil Properties Model
Sill Value 
(Co + C)

Nugget 
Value (Co) Range (m)

Co/(Co + C) 
(%) RMSS

Available phosphorus 
(mg kg−1)

Gaussian 23.6053 6.8053 830.4 28.83 1.0320

Available potassium 
(mg kg−1)

Gaussian 170.8587 77.8400 393.0 45.56 0.9392

Total nitrogen (%) Gaussian 0.0001 0.00003 608.4 28.33 0.9880

Organic matter (%) Gaussian 0.03815 0.010811 560.2 28.34 0.9984

Source:	 Cui, B. et al. 2013. Scientia Agricultura Sinica, 46(12):2471–2482. With permission.
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and southwestern areas had higher content of available potassium, with a decrease 
toward the middle area. TN had a similar spatial distribution pattern in the whole 
research area to OM. The areas high in TN were mainly in the northeast corner and 
in the south, with a gradual decrease toward the middle area. OM content was higher 
in the south and in the northeast, with a gradual decrease toward the middle area.

3.3.1.2  Generation of Crop Yield Distribution with a Combine Harvester
Crop yield is the result of agricultural production, and it serves as a reference for 
agricultural production decision making for the next year. Obtaining crop yield 
information for the plot and plotting the spatial distribution map of yield are the 
starting points of precision agriculture, and also the basis for reasonable input and 
for formulating management decisions. Accuracy of the yield map is closely related 
to the accuracy of the decision variable.

3.3.1.2.1  Experiments and Data Collection
A CASE IH 2366 combine harvester equipped with an AFS yield monitoring system 
was used to acquire the yield data for wheat at Xiaotangshan National Experiment 
Station for Precision Agriculture in June 2001 and 2002. In addressing the errors 
of yield data, yield information and records of harvest processes were utilized. The 
statistical characteristics and spatial distribution of yield data points were combined 
to identify and remove abnormal velocity data and yield fluctuations.

3.3.1.2.2  Comparison of Spatial Distribution Characteristics
The semivariance of spatial distribution of yield for 2001 and 2002 was calculated. 
Fitting was done with a spherical surface model, and parameters of the semivariance 
model were obtained (Table 3.11).
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FIGURE 3.17  Kriging interpolation analysis of soil nutrition. (From Cui, B. et  al. 2013. 
Scientia Agricultura Sinica, 46(12):2471–2482. With permission.)
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Kriging interpolation was performed over the filtered yield data for 2001 and 
2002. The spatial distribution map (Figure 3.18) was generated with large variations 
in spatial distribution of yield. In the left figure (2001), the yields of plots A, B, and D 
were higher, and the variation was higher. The yields of plots F and G were lower and 
the variation was smaller. In the right figure (2002), yield showed a different spatial 
distribution pattern compared with 2001, especially for plots F and G.

3.3.1.3  Generation of a Yield Map Based on Remote Sensing
Crop yield data can be sampled and weighted in field. The essence of modeling yield 
per unit area is to treat remote sensing data as an input variable, so as to directly 
or indirectly represent the factors or parameters influencing the growth and yield 
of crops. The statistical model of the spectral index of yield is commonly used for 

TABLE 3.11
Parameters of the Semivariance Model with Yield Data for 2 Years 
(Spherical Surface Model)

Year Nugget Sill N/S Range R2

2001 365802.30 543654.2 67.29% 28.163 0.9111

2002 265950.40 551857 48.19% 23.838 0.9871

Source:	 Chen, L.P. 2003. Theoretical and Experimental Studies on Variable-Rate Fertilization in 
Precision Farming. Doctorate dissertation of China Agriculture University. With 
permission.
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FIGURE 3.18  Spatial distribution maps of yield in each plot using filtered data. (Note: 
the left and right images are the yield maps of the same plot in 2001 and 2002, respec-
tively.) (From Chen, L.P. 2003. Theoretical and Experimental Studies on Variable-Rate 
Fertilization in Precision Farming. Doctorate dissertation of China Agriculture University. 
With permission.)
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yield estimation based on remote sensing technology. The relevant experiments are 
designed as follows (Song et al., 2004).

3.3.1.3.1  Experiment and Data Collection
The experiment was conducted at the China National Experimental Station for 
Precision Agriculture in 2002. Three winter wheat cultivars, Jingdong 8, Jing 9428, 
and Zhongyou 9507 were planted in 48 small plots with areas of 30 × 32.4 m2. Wheat 
yield data were collected manually during the harvest season, within a sampling area 
of 5 × 5 m. In 2002, a push-broom hyperspectral image (PHI) sensor carried by a 
Yun-5 aircraft acquired data in three flights (April 18, May 17, and May 3). The 
height was 1000 m, and the ground resolution of subsatellite points was about 1 m.

The actual after-harvest yields were collected on a grid of 5 × 5 m in 48 subareas. 
Three PHI images of April 18, May 17, and May 3 were collected.

3.3.1.3.2 � Construction of the Yield Estimation Model 
Using Remote Sensing Technology

NDVI and PRI are two widely used vegetation indices that are sensitive to crop 
growth conditions. Furthermore, in order to seek the widest variance parameters 
in the scene, principal components analysis (PCA) transformation and minimum 
noise fractionation (MNF) transformation are used for all spectrum bands and the 
first five components are kept for analysis. The transformation produces a new set of 
compound indices, each made of a linear combination of the original spectrum. The 
correlation coefficients reached 0.62 for PC1 and yield, −0.77 for yield and PC2, and 
0.87 for NDVI and yield. Then, yield prediction models in three growth stages were 
established and shown as follows (Equations 3.6 through 3.8):
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3.3.1.3.3 � Results of Yield Estimation Based on Remote 
Sensing and Actual Yield Measurement

Based on the three wheat yield models, within-field yield variability was mapped for 
the entire field (Figure 3.19a–c).

All three models were validated by the combine harvest yield data. Statistical 
analysis showed that R2 values of three models are 0.112, 0.108, and 0.129, corre-
sponding to correlation coefficients of 0.335, 0.328, and 0.360. This study demon-
strated the potential of using hyperspectral airborne remote sensing in the visible 
and NIR regions to predict winter wheat yield.
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3.3.2 M ethod for Generating Management Zones

3.3.2.1 � Extraction of Precision Agriculture Management 
Zone Based on Multiyear Yield Data

Two yield data processing software programs Yield Editor and Yield Check were 
employed for error treatment of yield data from 2001 to 2004. Given the variation in 
wheat varieties and abnormal factors (such as natural disasters), the wheat yield for 
the same plot may vary across the years. To remove interannual differences, the yield 
data for each point were normalized by dividing the measured value by the mean 
value (Chen, 2003). For the sake of partitioning, ordinary Kriging was employed to 
interpolate the yield data points in vector form on the surface of the grid. Ordinary 
Kriging interpolation consists of three steps, including calculation of the semivari-
ance of samples, establishment of the semivariance model, and spatial interpolation 
(Isaaks and Srivastava, 1989). For the calculation of the semivariance of samples, 
the minimum step length should be equal or close to the average sampling interval. 
This is recommended for obtaining reasonable semivariance. During the Kriging 
interpolation, the number of sampling points for single-point interpolation should be 
restricted to 10–20. Since the distance between the two sampling points in the direc-
tion of combine harvester movement is usually smaller than 4 m, the size of output 
pixels should be selected as 4 × 4 m during interpolation.

3.3.2.1.1  Generation of Management Zones
After a series of treatments (error treatment, normalization, and spatial interpola-
tion), the 4-year yield data were then subjected to a grid averaging operation, so as to 
obtain a synthetic yield grid map. In order to remove the isolated pixels or fragments 
from the partition map, square filtering windows with scales of 12, 20, 28, 36, 44, 52, 
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FIGURE 3.19  Wheat yield estimation maps based on PHI hyperspectral data (image dates 
from a to c are April 18, May 17, and May 31, 2002, respectively; image d is a vector yield 
data map obtained from combine harvester data). (a) The yield map estimated by PHI image 
collected in April 18, 2002; (b, c) the yield maps estimated by PHI images collected in May 
17, 2002, and May 31, 2002, respectively; (d) the yield data map obtained from combine 
harvester. (From Song, X.Y. et al. 2004. IGARSS ‘04. Proceedings 2004 IEEE International,  
6:4080–4083. With permission.)
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and 60 m (equivalent to 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, and 15 × 15 pixels) 
were used for mode filtering on the partition image with 4-m resolution. To further 
analyze the changes in partitions after filtering, statistical analysis was carried out 
on various indicators (intraplot variance, coefficient of variation, mean, spatial con-
sistency, and fragmentation degree) of the partition image (4, 12, 20, 28, 36, 44, 52, 
and 60 m). With comprehensive consideration of the indicators, a proper threshold 
was selected to generate the optimal partition map.

3.3.2.1.2  Analysis of Results
3.3.2.1.2.1    Changes in the Reduction Rate of Variance  The smaller the varia-
tion within the partition, the more convenient it is to implement uniform manage-
ment measures within the partition. The greater the variation reduction rate, the 
better. As the number of partitions increases, the variation reduction rates at vari-
ous scales tend to be consistent, all showing a gradual increasing trend. When the 
number of partitions increases to four, the variance reduction rate remains basically 
unchanged in spite of further increases in the number of partitions. This indicates 
that it is useless to divide the plot into more than four partitions. The appropriate 
number of partitions is four. For the same number of partitions, as the scale of the 
filtering window increases, the variance reduction rate gradually decreases, which 
is unfavorable for precision agriculture management. Hence, it is necessary to adopt 
other methods to determine the appropriate scale of the filtering window.

3.3.2.1.2.2    Significant Changes in Lag Differences  When the number of parti-
tions is four, the variance reduction rate decreases as the scale of the filtering window 
increases. This means that the intraplot variance gradually increases after filtering. 
As the scale continues to increase, the F value decreases. When the scale is 4–44 m, 
there is a significant difference between the partitions. At the scale of 4–28 m, the dif-
ference between partitions is highly significant. When the scale is further increased to 
52 and 60 m, the difference within the plot is no longer significant. Multicomparison 
between the partitions indicates that when the scale is 4–44 m, there is a highly sig-
nificant difference among the four partitions at various scales. This indicates that the 
scale of the filtering window should be no greater than 44 m.

3.3.2.1.2.3    Changes in the Mean, Standard Deviation, and Coefficient of 
Variation  As shown in Figure 3.20a, as the scale increases, the means of each 
partition remain unchanged (except that the mean of partition 1 with the lowest yield 
increases slightly). Accordingly, if the mean yield of each partition is used to calcu-
late the fertilization amount, the fertilizer requirement of the partition before and 
after filtering does not change. However, the standard deviation and coefficient of 
variation increase at larger scales, as shown in Figure 3.20b and c. This indicates 
that it is undesirable to implement the same management scheme within the same 
plot. A more appropriate scale of filtering window must be selected. As the scale 
increases, the proportion of the area of each partition also varies (Figure 3.20d).

3.3.2.1.2.4    Changes in Fragmentation Degree of the Partition Map  The land-
scape structure index quantitatively and intuitively reflects the differences between 
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partition maps at different window scales. As the scale increases, the patch density 
(PD) gradually decreases logarithmically. As shown in Figure 3.21a, the smaller 
the PD, the smaller the fragmentation degree of the partition will be, and hence the 
smaller the error of the decision variable with the partition as a unit. This is favorable 
for variable-rate operations in precision agriculture. The small patches are usually in 
isolated areas caused by the use of points with large deviations from adjacent points 
in terms of yield measurements for interpolation. Yield variation is induced by ran-
dom causes, so the actual yield distribution pattern cannot be revealed. Moreover, 
small patch areas make it inconvenient to carry out variable-rate operations.

It is evident from Figure 3.21 that as the scale increases, the total core area 
increases logarithmically. As the scale of the filtering window increases, the patches 
with smaller areas are smoothed out, and PD decreases. As a result, the uncertain 
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area caused by the random yield variation decreases, and the core area increases. 
This is especially favorable for variable-rate operations in precision agriculture. The 
core area refers to the central part remaining after subtraction of the buffer zone 
with a designated margin width. In landscape ecology, this buffer zone is the transi-
tion belt between two adjacent landscape elements, and it is called the ecotone. In 
precision agriculture, the core area is considered unstable because of errors in mea-
surement and interpolation. Obviously, the larger the designated margin width, the 
smaller the core area will be. Here, the cutting width (6 m) during yield acquisition 
by the combine harvester is the margin width. The core area of a patch is the area 
with stable yield potential. The size of the core area is the basis to judge whether a 
patch can be used as a unit for the implementation of one management prescription. 
For example, if the area of a patch is large enough to differentiate it from the adja-
cent patches, but the core area cannot meet the requirements of field operations (the 
diameter of core area is smaller than the cutting width), then the patch is not suitable 
for use as a decision-making unit and it has to be merged with adjacent patches.

The mean patch area can be a criterion for choosing the optimal scale. As shown 
in Figure 3.21c, the mean core area increases linearly with increasing scale. When the 
scale is smaller than 20 m, the mean core area of the patch is smaller than 0.05 ha. A 
large number of small patches are caused by random yield variation across the years. 
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They cannot accurately characterize the stable yield structure. However, when the 
spatial scale is 36 m, the mean core area of the patch increases to 0.16 ha, which is 
favorable for variable-rate operations.

As shown in Figure 3.21, as the scale increases, the concentration degree of the 
partition map increases. That is to say, there are fewer fragments or isolated pixels 
on the partition map. This is a favorable trend for precision agriculture management.

3.3.2.1.2.5    Changes in Spatial Consistency  As shown in Figure 3.22, when the 
scale of the filtering window increases from 12 to 36 m, Kappa varies in the range 
of 0.54–0.87. The partition map after filtering shows good spatial consistency with 
the original partition map. After filtering, the partition map reflects the general yield 
distribution pattern.

When the spatial scale is increased further, Kappa becomes smaller than 0.5. The 
partition map after filtering has poor consistency with the original partition map 
(4 m). This indicates that a filtering window of the proper size can effectively remove 
the random yield variation (small patches), and thus better reflect the spatial distribu-
tion pattern of yield. However, if the scale is excessive, some real yield variation may 
be smoothed out as well, and a stable yield structure cannot be characterized.

3.3.2.2 � Extraction of Management Zones Based on the 
Spatial Contiguous Clustering Algorithm

Many data sources have been used for partitioning of precision agriculture regions 
(including elevation, slope, slope aspect, electric conductivity of soil, depth of top soil, 
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FIGURE 3.22  (See color insert.) Partition map after filtering with different scales of window. 
(From Li, X. 2005. Research of Precision Agriculture Management Zone Generating Methods 
Based on ‘3S’ Technique. Doctorate dissertation of Beijing Normal University. With permission.)
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and yield). The existing methods are either monitoring-based or nonmonitoring-based 
classifications. However, only the attribute data of spatial units are considered during 
classification; the spatial distribution of units and the spatial dependence are neglected. 
As a result, there are many isolated units of fragments, making variable-rate operations 
inconvenient in precision agriculture. Based on the conventional K-mean algorithm, we 
introduce an approach involving the mutual dependence of positions of spatial units. 
The spatial contiguous K-means clustering algorithm (SC-KM) is proposed. High-
resolution images obtained with an OMIS at the Xiaotangshan National Experiment 
Station for Precision Agriculture were taken as the data source. The K-means and 
SC-KM algorithms were employed to extract the partitions based on the difference in 
growth status of wheat during periods with higher demand for fertilizer and water. The 
partitioning effects with the two algorithms were compared (Li, 2005).

3.3.2.2.1  Overview of the Study Area and Data Sources
The experiment was carried out at the Xiaotangshan National Experiment Station 
for Precision Agriculture. The planting area of winter wheat at the experimental 
base was about 39.2 ha. OMIS images were obtained by an airborne sensor on April 
26, 2001 (jointing stage). The OMIS system uses a linear sensor for imaging by 
optical mechanical scanning. The instantaneous field of view of the spectrometer 
was 3 mrad, and the total field of view was 70°. The visible/near-infrared, short- and 
medium-infrared, and thermal infrared bands (0.4–12.5 μm) were covered, includ-
ing 128 spectral ranges. The visible/near-infrared region (0.46–1.1 μm) had 64 spec-
tral ranges, with a spectral resolution of 10 nm. When the flight height was 1000 m, 
the resolution of subsatellite point was about 3 m. OMIS images showing the wheat 
plot with flat terrain and obvious variation in large field productivity were selected. 
This plot had an area of about 5 ha.

3.3.2.2.2  Selection of Management Zone Parameters
The NDVI is the most widely used index in remote sensing monitoring of crop 
growth. In this article, OMIS images after reflectance conversion were studied. Two 
ranges with central wavelengths of 789.2 and 675.8 nm were selected.

Because of differences in fertility and management measures, different partitions 
of the plot may differ in terms of the growth status of wheat. The variation (variance) 
over the entire plot without partitioning is the intraplot variation with the partition 
number being 1. With this variance as a reference (100%), the relative variances at dif-
ferent partition numbers were calculated. To select an appropriate partition number, it 
was necessary to determine a threshold for variance. When the partition number was 
five, the overall variance of the plot decreased to about 10% of the original. As the 
partition number increased further, the relative changes in variance were no longer 
significant. For this reason, a partition number of five was considered appropriate.

As shown in Figure 3.23, the aggregation with the SC-KM algorithm for each 
plot is consistently higher than with the K-M algorithm. There is less fragmentation 
than with the latter algorithm. This indicates that the SC-KM algorithm can greatly 
improve the aggregation and continuity of each plot by considering the spatial asso-
ciation of pixels. For these reasons, the SC-KM algorithm is suitable for open-field 
variable-rate operations.
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3.3.2.3 � Delineation of Agricultural Management 
Zones with Remotely Sensed Data

Remote sensing images can reflect the growth status of crops in real time, whereas 
the spectral reflectance of crops characterizes the growth status of crops. Moreover, 
the  growth status of crops is closely related to soil texture and soil nutrition. 
Hence, the monitoring of growth status and nutrition diagnosis of crops using remote 
sensing data and the partitioning of the plot are key components of variable-rate 
fertilization in modern precision agriculture.

3.3.2.3.1  Experiment and Data Collection
A field experiment at the National Experimental Station for Precision Agriculture 
of China was designed during the 2005–2006 winter wheat growing season (Song 
et al., 2009). Soil samples were taken, and levels of five crop nutrients, TN, nitrate 
nitrogen [NN], AP, extractable potassium [EP], and OM, were determined using 
standard laboratory procedures. Meanwhile, one scene of Quickbird imagery dur-
ing the heading stage of wheat was acquired and processed. Spectral parameters of 
OSAVI were extracted from the imagery. The winter wheat was sown on September 
29, 2005, with a row spacing of 15 cm. The wheat cultivar was Jingdong 8, which is 
one of the main winter wheat varieties in northern China. Base fertilizer was applied 
on September 27, 2005, and supplementary fertilizer was applied on April 22, 2006. 
A square plot (90 × 90 m) in the wheat field was selected as the soil sampling area.

3.3.2.3.2 � Kriging of Crop Nutrients and Determining 
the Optimal Number of MZs

The spatial structure of soil AP and EK on April 4 and OM on June 16 was evalu-
ated by isotropic variogram models. The model types and their parameters were 
calculated and ordinary Kriging was applied to the three soil properties (AP, AK, 
and OM) and wheat yield (Figure 3.24).

The OSAVI and Kriged values of soil AP, EK, OM, and wheat yield were analyzed 
with the fuzzy K-means algorithm. To determine the optimal number of classes, the 
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FIGURE 3.23  (See color insert.) (a) Partitioning results of the K-M algorithm. (b) 
Partitioning results of the SC-KM algorithm. (From Li, X. 2005. Research of Precision 
Agriculture Management Zone Generating Methods Based on ‘3S’ Technique. Doctorate 
dissertation of Beijing Normal University. With permission.)
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number of classes was increased by one at a time from two to six. To determine the 
optimal number of classes, the fuzziness performance index (FPI) and modified par-
tition entropy (MPE) were used. It was shown that the FPI and MPE had the same 
change in trend with an increase in cluster number, and the minimum FPI and MPE 
values were obtained with three clusters for the study area.

3.3.2.3.3  Management Zone Delineation and Evaluation
Based on the optimal number of classes, three MZ maps were generated using dif-
ferent data (e.g., soil, yield, and RS data). Figure 3.25 shows the resulting maps. The 
Kappa coefficient was then used to compare the homogeneity of the zones in the 
three different MZ maps. The results indicated that zones based on soil and yield 
(Figure 3.25a), and soil, yield, and RS data (Figure 3.25b) are the most similar; the 
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FIGURE 3.24  The spatial structure of soil AP, EK, and wheat yield was evaluated by iso-
tropic variogram models. (From Song, X.Y. et al. 2009. Precision Agriculture, 10(6):471–487. 
With permission.)
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using different combinations of data (soil, yield, and OSAVI). (From Song, X.Y. et al. 2009. 
Precision Agriculture, 10(6):471–487. With permission.)
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similarity between Figure 3.25a and c is the greatest with a Kappa coefficient of 
0.91. The Kappa coefficient based on comparison of the zones in Figure 3.25a and 
b was 0.16.

The statistical analyses indicated significant differences between the crop nutri-
ents and yield in each zone of the three maps. MZ 3 had the highest nutrient sta-
tus and potential crop productivity, whereas MZ 1 had the lowest. The results also 
showed that the coefficients of variation (CVs) for wheat yield decreased in the three 
zones for all maps.
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4 Control of Precision 
Agriculture Production

Qin Zhang

4.1  INTRODUCTION

Precision agriculture (PA) is a farming management method that allows farmers to 
optimize their resource inputs to achieve their production potential in response to 
observed inter- and intrafield variability in soil properties and crop growth condi-
tions. Motivated by the potential that PA technology can offer, farmers in the United 
States and other parts of the world have adopted it as a management strategy to bring 
data from multiple sources to assist decisions associated with crop production (Batte 
and Arnholt, 2003). However, owing to the biological and environmental complexity 
involved in crop production, farmers had difficulty incorporating their collected data 
into management practices to improve their production making them more profitable 
and sustainable. Many farmers now ask the question, “What do I do with the data?” 
after a few years of data collection (Carter, 2012). Such a shortcoming left a gap 
between the promises of PA technology and the tangible results the farmers have 
realized.

Precision crop production normally includes a course of action from measuring 
soil properties, observing crop growth conditions, selecting adequate resource inputs 
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based on field variations, and performing the required actions to deliver the right 
amount of selected input to the right location at the right time. The relationship 
between these elements in a PA system can be represented using a block diagram 
(Figure 4.1). This block diagram shows that decisions for PA processes are made 
based on observed crop variability, and applying adequate resource or cultivation 
actions, which could improve crop growth and therefore realize yield potential.

As represented by the block diagram, a PA process is very similar in format to 
the process of many industrial controls: it is concerned with understanding and con-
trolling resource inputs in order to achieve a best possible return on inputs. Ideally, 
to control such a process effectively, gaining a comprehensive understanding of the 
responses of crop growth to resource inputs is required. However, the spatial and 
temporal variability of crop growth makes the task of “gaining a comprehensive 
understanding” very challenging. Such insufficient understanding originates from 
the transdisciplinary nature of implementing a precision crop production, as the 
understanding and controlling of such a production involves crop and soil sciences, 
engineering, and economics. Without finding a satisfactory solution to solve this 
problem, we will have to consider the control of a poorly understood system in preci-
sion crop production.

Gaining an understanding of responses of crop growth to resource inputs in a 
precision crop production process is similar to figuring out the dynamic behaviors of 
a system responding to corrections in control systems engineering. A typical control 
system uses sensors to monitor the performance and collect measured data of the per-
formance of the system being controlled. Those measurements are then used to give 
feedback to the controller to make corrections, normally derived by mathematical 
modeling of the system, toward obtaining a desired performance. Similarly, preci-
sion crop production processes also use sensors to collect relevant crop growth data, 
and use the collected data to support making resource input decisions with respect 
to the goal of optimizing returns on inputs. While similar in format, a precision crop 
production process does present some noticeable differences from a conventional 
control system, and the most significant one could be its spatial variability, that is, 
optimizing the resource inputs based on crop yield potential at different locations 
within a field that forms the basis of PA (Pierce and Nowak, 1999). To cope with 
spatial variability in field, an automatic data gathering and storing method (Schueller 
and Bae, 1987) has been invented allowing PA practitioners to overlay field topog-
raphy, soil fertility, and crop yield data in the form of a georeference map. Another 
major difference from a conventional control system is the less systematic nature of 
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FIGURE 4.1  Representation of a typical PA system using a system block diagram.
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temporal crop data as it is subjected to numerous natural disturbances. The use of 
multiyear datasets could help to stabilize the temporal variability of PA data (Kaspar 
et al., 2003).

The spatial and temporal variability of field data could result from a number of 
factors, from the agriculturally important climatic states (such as drought, flooding, 
hail, and other extreme weather), soil properties (such as texture, organic and inor-
ganic matter, moisture content, electrical conductivity, pH, and nitrogen levels), to 
crop growth conditions (such as water, nitrogen, or disease stress). A PA production 
system aims at precisely applying adequate amounts of selected resources in terms 
of accurate agriculturally important information.

One practical method of determining appropriate resource inputs in response to 
such field variability in the PA process is the control approach: measuring system 
parameters to determine the yield potential, controlling the resource inputs to reach 
the yield potential, and implementing a variable-rate application (VRA) to deliver 
the right amount of selected inputs precisely to target locations. This chapter will 
discuss the sensing, control, and implementation characteristics and solutions suit-
able for precision crop production practices.

4.2  SENSING FOR PRECISION AGRICULTURE

As in any control system, sensing in a PA system plays an important role in gaining 
an understanding of crop growth responses to soil properties and resource inputs, 
and providing an indication of production outcome. However, the inherent spatial 
and temporal variability in the PA process is attributed to the fact that much of 
the collectable data are not directly observable, namely, some measured data are 
unable to provide a direct indication on production outcome (Zhang et al., 2013). 
This section will discuss the technologies and methods commonly used in spatial 
and temporal sensing, the information spatial and temporal data could bring in, and 
the challenge for making such data observable in controlling a precision crop pro-
duction system.

4.2.1  Spatial Sensing

The measurement of the spatial variability of crop growth affected by soil properties 
within a field is one of the fundamental tasks in PA. Some of the soil properties, such 
as soil type, topography, past usage, and organic matter content, may be unchanged 
or have very little change over a considerably long period of time; thus, one mea-
surement could provide such spatial variability information for years. In compari-
son, the variability of some other soil properties, such as soil nitrogen and moisture 
content, could change rapidly and requires real-time or near-real-time measurement 
(Hummel et al., 1996).

Defined as a mechanism for detecting a gradient in which the property is com-
pared at different points within and/or between fields, spatial sensing is commonly 
used in PA for gathering such information. In terms of the methods for obtaining the 
data of interest, spatial sensing can be classified into categories of remote sensing 
and georeferenced sensing.
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Remote sensing, a technology for detecting and measuring reflected and emitted 
electromagnetic radiation from a distance, was quickly adopted in PA in the 1980s, 
and initially focused on limited wavelengths in a few visible and near-infrared (NIR) 
bands and then expanded to a much broader range from ultraviolet to microwave, and 
with different spatial resolution using satellite, aerial, or ground vehicle-mounted 
sensors to meet different requirements for PA management (Mulla, 2013). There are 
two categories of electromagnetic radiation sensors, namely, nonimaging (e.g., spec-
troradiometers) and imaging (e.g., spectrum cameras), available for PA applications. 
Spectroradiometers are devices designed to measure the spectral power distribution 
of a source often used in georeferenced sensing, and spectrum cameras are devices 
designed to acquire a spectrally resolved image of an object or scene often used in 
satellite-, aerial-, and ground vehicle-based remote sensing.

A remotely acquired spectrally resolved image carries two forms of resolution: 
the spectral resolution and the spatial resolution, with the former solely determined 
by the sensor design and the latter able to be changed by the distance between the 
sensor and the scene. The spectral resolution is specified by the number of spectral 
bands in which the sensor can collect reflected radiance. Both the high-resolution 
hyperspectral camera (up to 220 bands) and the low-resolution multispectral cameras 
(as low as 3 bands) covering visible to NIR spectrum of reflected radiations are com-
monly used in PA remote sensing. The spatial resolution is specified by the pixel size 
of spectral images covering the field surface. Constrained by current sensor technol-
ogy, remotely sensed spectral images can only offer either a high spatial resolution 
associated with a low spectral resolution or vice versa.

It is noted that in acquiring spectral images for PA use, the number of bands for 
a sensor is not the only important aspect of spectral resolution; the position of those 
bands in the electromagnetic spectrum is equally, if not more, important. For example, 
one widely used crop sensing method in PA application is the use of a multispectral 
CCD (charge-coupled device) camera to measure the NIR and red bands of crop can-
opy reflectance to calculate a normalized difference vegetation index (NDVI). This 
NDVI could provide a quick determination of vegetated areas and a simple estimation 
of plant growth conditions (Rouse et al., 1973). However, the soil reflectance from 
low-density canopy areas and the insensitivity to leaf chlorophyll content change in 
high-density canopy areas would affect the validity of NDVI data for indicating crop 
conditions (Thenkabail et al., 2000). Various studies for formulating different veg-
etation indices (VIs) and other sensing enhancement methods using different bands 
have been investigated, and researchers found that the use of right combinations of 
different bands could improve the accuracy and robustness of the data collected for 
measuring crop nutrition (Noh et al., 2006), diseases or pests (Prabhakar et al., 2011), 
weeds (Tang et al., 2000), and water stresses (Méndez-Barroso et al., 2008).

Another common method for obtaining spatial data for precision crop production 
is georeferenced sensing, which could be applied to both soil and crop sensing. In 
georeferenced sensing, sensors are often coupled with a global positioning system 
(GPS) to generate field maps of measured parameters. Figure 4.2 shows an example 
of such a sensing system installed on a mobile sprayer for implementing VRA based 
on a georeferenced application map. Depending on the spacing between passes, 
travel speed, and measurement/sampling frequency, the number of sensed points per 

  



107Control of Precision Agriculture Production

area can be varied to change the density of the sampled grid, which in turn changes 
the resolution of the georeferenced field map.

As most soil characteristics within a field are relatively stable over a reasonable 
time, soil property measurement could often be performed via georeferenced grid 
soil sampling and laboratory testing, or georeferenced real-time measurement using 
on-the-go sensors during field operations. Grid soil sampling and testing is often 
done by collecting a few soil samples using either a soil probe or simple hand tools 
within a predefined uniform grid overlaid on the field being sampled. The samples 
are normally sent to soil laboratories for analysis. This method requires time to com-
plete the process, and is commonly used to support making more profitable use of 
fertilizers and lime (Franzen and Peck, 1995). Georeferenced real-time measurement 
can use some electrical and optical sensors to measure soil properties, such as soil 
conductivity, texture, organic matter, moisture content, and nutrient and pH levels, 
and generate appropriate soil property maps (Heege, 2013). A number of successful 
applications for collecting soil property data have been reported, such as checking 
soil moisture for planting depth control (Norman et al., 1992), sampling soil nutrient 
levels for controlling variable-rate fertilization (Bermudez and Mallarino, 2007), 
and variable-rate injections of herbicides based on soil texture and organic matter 
content (Qiu et al., 1998).

While the spatial variation data of both soil properties and crop growth condi-
tions are collectable using different sensing technologies, such data are often not 
directly observable in estimating crop yield as there are many other factors, such as 
climate, diseases, insects, and weeds, which could affect it. One solution is to moni-
tor the spatial variation of the yield.

Introduced in early 1990s, yield monitoring is often the first step many farmers 
take in practicing PA. A yield monitor coupled with a GPS receiver on a harvester 
can measure crop yield data combining mass, moisture, area covered, and location 
being harvested to generate a yield map showing the spatial variability across a field. 
As one of the most valuable sources of spatial data for PA, yield maps can be used in 
evaluating the year-to-year variation of yield distribution within a field to find areas 

FIGURE 4.2  An example of a georeferenced sensing system installed on a mobile sprayer 
for implementing variable-rate application based on a georeferenced application map.
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with potentially high and low yields, which is essential for analyzing and identifying 
the limiting factors of spatially variable yield, and setting up realistic yield goals to 
vary inputs according to yield potentials in specific areas.

4.2.2 T emporal Sensing

Temporal measurement of spatial variability of crop growth information, such as 
color, density, and height, during different growing stages, contains essential infor-
mation indicating crop growth conditions and is more observable than soil properties 
in estimating yield. As crop growth conditions are spatially variable within a field, 
the temporal measurement could be treated as a series of spatial measurements over 
the same field during certain periods of the growing season for obtaining either crop 
stress or phenotyping information. Spectral image sensing also plays an important 
role in temporal sensing. The resolution for temporal measurement is specified as the 
measurement frequency of a specific location, often in days or sometime in weeks 
depending on the rate of change of the variable being measured.

Temporal measurement of crop stresses during the development stage could often 
provide important information for predicting crop yield, thus alerting farmers to take 
remedial measures to mitigate yield loss. There have been many promising develop-
ments in temporal sensing technologies capable of detecting crop stresses. One well-
studied technology is multispectral imagery sensing that collects light reflectance 
from some carefully selected spectral bands within the visible and NIR spectrums, 
which are sensitive to variables related to plant development and crop yield. NDVI 
has been widely adopted in measuring crop stresses during its development stage. 
Based on some extensive studies, Jackson and Huete (1991) suggested that when the 
NDVI value is between 0.30 and 1.00, it indicates the vegetation is most likely in 
healthy condition; when the value drops to between 0.10 and 0.30, it indicates the 
vegetation could be unhealthy or sparse; and when the value is close to zero or even 
negative, it often indicates there is no vegetation.

However, the capability of using NDVI to indicate healthy crop conditions based 
on Jackson and Huete’s classification may only be applicable within a limited win-
dow of the crop growth season. Quarmby et al. (1993) found that yield estimation of 
wheat, cotton, rice, and maize crops using NDVI data could be stabilized at 50–100 
days prior to harvest. Xiang and Tian (2011) have studied the temporal change of the 
NDVI readings of corn canopy within a 0.8-ha field in Central Illinois from 14 days 
after planting (DAP) to 122 DAP, and found that the NDVI for both fertilized and 
unfertilized crops began at very similar levels from below 0.2 before 25 DAP, and 
reached a level around 0.7 for both conditions around 31 DAP (V6 stage, defined as 
the corn growth stage of the collar of the 6th leaf being visible). A noticeable NDVI 
values disparity (greater than 0.1) was observed between fertilized and unfertilized 
crops after V7 stage, and then became close again around 58 DAP (VT stage, defined 
as the corn growth stage of the last branch of the tassel being completely visible). 
Figure 4.3 illustrates the NDVI variation corresponding to the DAP. This research 
verified an assumption that there exists an optimal window for using multispectral 
sensors to detect temporal changes of crop nitrogen stress by means of measuring 
some types of crop VIs such as NDVI.
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Temporal measurement of soil moisture dynamics with depth plays an important 
role in irrigated crop production to achieve effective irrigation control. Balenzano 
et al. (2011) investigated the potential of using satellite remote sensing data to map 
temporal changes of surface soil moisture content underneath crops, and found that 
soil moisture content could be retrieved during the whole growing season, with accu-
racies ranging between 5% and 6%. Based on their studies using a wireless soil mois-
ture sensing network to assess temporal stability patterns of soil moisture at different 
locations, Hedley and Yule (2009) found that the temporal stability of soil moisture 
could have substantial spatial variability from moderate to strong. A sensor network 
could provide the needed information to predict soil water status in different zones 
in the field to support automated variable-rate irrigation control in order to improve 
water use efficiency.

4.2.3 M aking Data Observable

Measuring plant and soil properties continuously could gain an understanding of 
crop growth changes over time under different conditions. However, most of the data 
could not directly provide an indication of what the expected crop yield will be until 
being harvested (Lamb et al., 2008). To solve this problem, it is essential to make 
the collectable data observable. In PA management, observable data are defined as 
a measurement of yield-indicating crop growth conditions, which could provide 
an indication of expected yield, as a result of some field operations. Therefore, it 
is essential to obtain some observable data of a precision crop farming system for 
effectively controlling the process in the hope of getting the expected yield. One 
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FIGURE 4.3  An example of temporal changes of canopy NDVI values for fertilized and 
unfertilized corn plants over a growth season. (Data courtesy of Dr. Haibo Xiang.)
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common way to extract the observable data from the collectable data is the use of 
some yield estimation model based on the collectable plant and/or soil property data.

The most directly observable data for managing precision crop production is the 
yield. Numerous research projects about getting such information accurately and in 
a timely manner have been reported. Yield monitoring on harvesters is probably the 
most direct measure of the crop yield, and many successful yield monitoring technol-
ogies have been developed and/or introduced (Arslan and Colvin, 1999; Thomasson 
and Sui, 2003; Price et al., 2011). However, because the data can only be obtained 
after the crop is harvested, from a production management point of view, these data 
are obtained too late to be observable. Different means of assessing or estimating 
the yield before the crop is harvested is essential to obtain the needed observability 
to support a timely management of the production process. Using remotely sensed 
imagery to estimate crop yield variability within a field has been widely studied, and 
much success reported (Quarmby et al., 1993; Uno et al., 2005; Yang et al., 2007).

The effectiveness of controlling precision crop production relies strongly on the 
capability of getting the observable data from a large volume of collected data, and 
then determining some appropriate actions in the hope of obtaining the expected 
yield. Field operations normally create a large volume of data as a typical yield moni-
tor would collect over 600 data points per hectare, each with several characteristics 
(latitude, longitude, yield, moisture, etc.). The rapidly increasing and overwhelming 
volume of recorded production-related data, plus the need for special skills and/or 
tools to analyze and interpret such data, makes it very difficult for farmers to effec-
tively make use of those collected data. This data-driven decision-making process 
in PA poses a number of data mining problems, and one of the fundamental ones is 
yield prediction. Creating some automatic means for predicting yield, based on these 
data, will help farmers remove a major obstacle to precision crop production, and 
thereby gain efficiency and economic benefits. Numerous efforts toward develop-
ing robust and trustworthy yield prediction tools, from classical regression-based 
approaches to machine learning-based neural networks modeling or support vector 
machines methods (Uno et al., 2005), have been undertaken. However, the ability to 
make a trustworthy yield prediction using those tools is still a big challenge due to 
the extreme conditional complexity induced by many factors, ranging from changes 
in climate patterns to individual differences among plants during growth season. 
A study of spatial and temporal variation yield data over a 5-year period of a com-
mercial field located in Central Illinois showed that the spatial variation of the yield 
could be presented in different patterns within a field over the years (Zhang and Han, 
2002). Randomly picking yield data from a few monitoring zones scattered over 
the field as presented in Figure 4.4, it is shown that the normalized yield in zones 5 
and 8 varied marginally with different patterns around the average yield of the year 
over the studied period. In comparison, the normalized yield at zones 1 and 4 were 
noticeably lower than the average, while zone 9 was always higher over the period.

The wide range of yield variation across zones and over time shows that yield 
responses to the management input did not result in a consistent outcome. Such poor 
robustness in yield responses may be attributed to numerous factors that will require 
further analysis to uncover. For example, an investigation of the effect of seasonal 
precipitation on yield revealed that the amount of winter precipitation correlated 
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with the yield variation most noticeably compared with other seasons. Knowing 
what results to expect from inputs applied is one of the greatest challenges in mak-
ing the collected data observable.

In addition, as almost all field operations are performed using some type of 
machinery in motion, the machine drivers need actionable instructions, namely, 
ready-to-use commands, rather than some forms of raw or processed data to apply a 
controlled input in real time. For example, in performing variable-rate fertilization, 
what an applicator needs to know is how much a nozzle should be opened while the 
machine is traveling at a certain speed within a specific region in a field. Any other 
format of the information would induce some difficulties for the driver to effectively 
perform the work. Therefore, one of the basic requirements for a data-based deci-
sion-making process is the ability to extract actionable instruction from the collected 
data using a “transparent-to-user” method “on-the-go.”

4.3  CONTROL FOR PRECISION AGRICULTURE

As a data-intensive management system, precision crop production is a site-specific 
management concept that observes and responds to intrafield variations to optimize 
returns on resource inputs. Effective implementation of PA requires having a good 
understanding of how to control resource inputs effectively using a transdisciplinary 
approach. Like many control systems in industrial processes, control of agricultural 
production is also applied through obtaining and processing production data, mak-
ing operational decisions based on the processed data, and implementing the deci-
sion (Schueller, 2013). This section will focus on analyzing and discussing a few 
fundamental issues in making PA decisions.

A PA production management system shares many similar features in format 
with a control system. For example, in managing PA production, farmers often have 
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FIGURE 4.4  An example of yield variation (normalized to the average yield of the year) 
over a 5-year period (bars from left to right represent data of 1996–2000) from 10 randomly 
picked zones within a commercial field in Central Illinois.

  



112 Precision Agriculture Technology for Crop Farming

their expected outcomes in mind when planning and conducting the best possible 
operations in response to the situations they face to achieve their production goal. If 
comparing such a logic flow to a control system, they are almost identical in format.

To control a system requires having a set point for the expected output from the 
system being controlled, and using a controller to regulate the system operation at an 
optimal condition to obtain an output matching the set point. To implement PA pro-
duction, farmers must keep an expected yield in mind to determine the right amount 
of resource inputs for the situation in hope of getting the anticipated harvest based on 
their knowledge and experience. Lack of a systematic method for managing variable 
inputs to obtain predictable outputs remains a major obstacle to effectively adopt PA 
production (Robertson et al., 2012). One potential approach to solving this problem 
is to use control theory to formulate a systematic scheme for selecting inputs in pre-
cision crop production. Such an approach is similar to that of controller functioning 
in a control system.

4.3.1 P rescriptive Control

The theory behind control systems and the practices in managing precision crop 
production lays the foundation for formulating PA control schemes. The core prem-
ise of PA control is the variation of resource inputs to obtain the expected yield with 
minimal deviation. One of the major challenges in controlling such a process is that 
the actual yield is measurable only at harvest time. Therefore, the adoption of a pre-
scriptive control is the logical choice for this application.

Typically, a prescriptive control uses a yield prediction model, either mathemat-
ics-based or knowledge-based, to estimate the appropriate resource inputs needed to 
get the desired yield at the specific site in terms of the yield potential of this loca-
tion. Conventionally, farmers have a management strategy for their production. They 
manage resource inputs accordingly in the hope of achieving their production goal. 
Such resource input management strategy, often formed over years of experience on 
specific fields, constitutes the base of the prescription control. As the crop response 
to planned implementations will be disturbed by changes in climate conditions dur-
ing the growth season, it is often difficult to manage this type of production system 
and to have the final yield exactly match the expected production goal. Therefore, 
such a prescriptive management practice could be symbolized using a basic open-
loop control as the farmers conduct their field operations based only on their plans 
(or only on experience) as they can do very little to change the crop growth during 
the season. Using a block diagram presentation commonly used in control system 
modeling, a typical process of prescriptive crop production management could be 
represented as in Figure 4.5, with a transfer function expressed as follows:

	 Y GY D PA P= −( ) 	 (4.1)

where YA is the yield from the production; G is the resource input management plan; 
P is the crop responses to the input; YP is the yield potential; and D is the climate 
and/or field condition disturbance.
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This prescriptive control is very similar to gain scheduling control in control the-
ory, which is a practical approach for controlling nonlinear systems using a family of 
linear controllers adequate for different operating points of the system (Levine, 1995). 
Because precision agricultural systems are normally nonlinear, gain scheduling con-
trol could offer an effective means for handling the nonlinear feature. However, it 
may require some special processes to make the control scheme be practically usable 
in precision crop production. One such essential process could be the creation of an 
input management model based on the collected input–yield relationship using statis-
tical modeling methods. Owing to the complicity of the ecobiological process of crop 
growth, such input management models are normally empirical-based, which often do 
not intend to describe any physical or biological processes of the crop growth, but only 
attempt to represent the relationship between inputs and outputs using any expressible 
means. One of the unique issues in PA control is its extremely slow responses to the 
input, which are normally impossible to observe after days, or weeks, of the inputs 
being applied. The actual yield corresponding to a certain input could not be directly 
measured until after harvest, even though many of the collectable data could provide 
information indicating the attribution of the input(s).

The extremely slow and uncertain responses of yield to management input causes 
difficulty in implementing time-domain-based gain scheduling control in PA pro-
duction. We could apply the format of a gain scheduling control concept, but use a 
non-time-domain statistical input–output relationship to formulate the control law for 
the prescriptive control to make it suitable for PA applications. Figure 4.6 presents an 
example of the yield response of hybrid corn to the amount of nitrogen (N) obtained 
from a set of tests conducted at the Monsanto Water Utilization Learning Center at 
Gothenburg, Nebraska in 2010. From this figure, it shows that the yield of this par-
ticular type of hybrid corn responded largely to the first 135 kg ha−1 N applied, and the 
yield increases diminished quickly with additional N applications (Monsanto, 2010).

This first-order-like nitrogen-to-yield model to describe the crop growth response 
to nitrogen input could provide the base for PA decision making, and could be 
defined as the transfer function of nitrogen application rate to crop yield in a PA 
control system. When the transfer function of a system is identified, it offers a con-
venient method of using its inverse transfer function to design a controller for the 
system. In this example of variable-rate nitrogen management for controlling hybrid 
corn yield, the prescriptive controller could be designed using an inverse nitrogen-to-
yield model as illustrated in Figure 4.7 to determine the appropriate rate of nitrogen 
application for obtaining an expected yield.

Crop
yield, YAPlant

growth (P)
Resource input

plan (G)

Yield
potential, YP

Climate/field condition
disturbance, D

+
–

FIGURE 4.5  A system block diagram of a basic open-loop prescription control system for 
PA production.
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This basic open-loop prescriptive control approach is suitable for site-specific 
resource input management for minimizing the influences of soil property varia-
tion in a field to best attain the yield potential on a site. Being inherently limited 
by the inability to respond to the climate or other disturbance occurring during the 
plant growth season, a robust enhancement method based on multiple years of yield 
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FIGURE 4.6  An example yield response model of a hybrid corn to a different nitrogen 
application rate based on the data published by Monsanto (2010).
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history using some robust statistical analysis methods on the site has been applied 
in hope of minimizing such effect. Another improvement to the basic open-loop 
prescriptive control is to use the economically achievable yield potential of a zone, 
instead of reducing the variation between zones of high and low yield potentials, 
since the yield in some regions of a field could hardly reach the average yield of the 
field (as illustrated in zone 4 in Figure 4.4). Figure 4.8 shows the system block dia-
gram of such an enhanced open-loop prescriptive control.

Numerous studies have been reported in support of effective decision making for 
profitably managing variable-rate inputs. An example reported by Havlin and Heiniger 
(2009) is the development of a VRA decision support tool to help make precise deci-
sions for fertilizer inputs by determining the level of sufficiency of soil nutrient status 
at a specific location relative to the needed fertilizer input levels to obtain the potential 
maximum yield for corn, soybean, wheat, and cotton production in North Carolina.

4.3.2 R esponsive Control

While the enhanced open-loop control offered a potential to have a more robust 
result by using on-spot yield potential determined by multiyear yield data, it is still 
unable to respond to any climate disturbance and other condition changes during the 
growth season. An enhancement capable of responding to such disturbances/changes 
in the decision-making process, or developing a responsive control scheme, is the 
logical next step. The assumption for this type of enhancement is that the difference 
in climate and/or field condition would require an adjustment to resource inputs for 
realizing the yield potential, and such climate/field condition changes could either 
be forecasted or measured. This type of enhancement is suitable for crops requiring 
most inputs to be applied at an early stage of, or even before, the growing season. 
Figure 4.9 illustrates a conceptual system block diagram for such a responsive con-
trol scheme. Its transfer function could then be expressed as follows:

	 Y G Y D PA A P= ( )− 	 (4.2)

where GA is an optimal input management plan corresponding to the identified situ-
ation, and YP is the yield potential of the specific zone.
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Resource input
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Site-specific
yield potential, YP
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yield potential

Climate
disturbance, D

+
–

FIGURE 4.8  A system block diagram of an enhanced open-loop prescription control sys-
tem for precision crop production to achieve the yield potential of a specific site.
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The core of this enhancement would allow farmers to include either climate fore-
casts or the latest measurable site-specific field condition data into the resource man-
agement decision-making process by best utilizing the historic yield data in similar 
conditions to adjust the input(s) responsively to the situation. Mid- to late-vegeta-
tive growth-stage variable-rate nitrogen side-dress application is a good example 
of responsive control. Either based on the data obtained from in-season canopy 
reflectance sensing or from late spring soil nitrate tests, N-deficient crop plants will 
respond to additional nitrogen fertilizer being side-dress applied. It could potentially 
achieve higher yield efficiency with a smaller amount of total nitrogen fertilizer 
being applied if the amount of side-dressed fertilizer could be properly determined.

Differential spraying in weed control is another example of applying a respon-
sive control. As weeds are normally irregularly distributed in cereal crop fields, to 
achieve an operation goal of minimizing the use of herbicides, precision weed con-
trol management requires making responsive application decisions to differentiate 
the location and amount of herbicides to be sprayed corresponding to the detected 
weed quantity and distribution in the fields.

Another application of responsive control for crop production is in precision irri-
gation. For example, Goumopoulos et al. (2014) have developed a proactive closed-
loop irrigation control system using an adaptive decision-making layer, which 
employed a machine learning approach to determine significant thresholds of plant-
based parameters to optimize irrigation control in response to detected plant growth 
conditions.

4.3.3  Feedback Control

With advances in PA technology, different sensing technologies can provide farm-
ers with effective means of detecting crop growth indices which then can be used 
to estimate final yields and make necessary adjustments to inputs in response to the 
estimated yield (Shanahan et al., 2008). As this management practice could improve 
crop growth by modifying the resource application plan in the hope of getting the 
production output closer to the expected level, it can be considered a closed-loop 
feedback control. As previously pointed out, the control goal of precision crop pro-
duction is to achieve the yield potential of a site. Since the actual yield cannot be 

Crop
yield, YAPlant

growth (P)

Alternative
resource input

plan (GA)

Site-specific
yield potential, YP

Robust statistics
of site-specific
yield potential

Climate or other
disturbance, D

Disturbance
forecasting or
measurement

+
–

FIGURE 4.9  A system block diagram of an enhanced climate/field condition responsive 
control system for PA production.
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measured until it is harvested, it should be noted that in this closed-loop control sys-
tem, the feedback information to the controller is not the actual system output, but an 
estimated output based on collected data that indicates the state of crop growth. Such 
feedback contains inherent uncertainty in representing the actual output. Figure 4.10 
shows a block diagram of such a closed-loop feedback control scheme for sensor-
based PA production with its transfer function expressed as follows:

	 Y G Y Y D PA P E= − −[ ( ) ] 	 (4.3)

where YE is the estimated yield based on the sensed crop growth condition.
In control theory, system response is used to describe how a system is responding 

to the changes in inputs and/or disturbances to the system and making an estimation 
of system output based on some measurable parameters. A set of time behaviors, such 
as delay time, rise time, peak time, settling time, overshoot, and steady-state error, 
is commonly used to determine a response. Figure 4.11 shows typical responses of 
system output to a change in set point for both the first- and second-order (with a 
high damping ratio) systems. The two curves in the figure demonstrate how systems 
respond to a change in the control set point and approach its final value within a 
finite period of time. A first-order system normally responds to the input slowly 
to gradually reach a stabilized output. In comparison, a second-order system often 
responds to the set point change at a much faster rate but will overshoot before the 
output is stabilized. However, owing to the biological nature of crop production, the 
time behavior in PA control is quite different from many industrial controls. From 
knowledge of agronomy, we know that the yield corresponding to the amount of 
fertilizer input exhibits a similar behavior to a first-order system with regard to the 
input amount (not time) domain. Such behavior implies that the yield control could 
be achieved through analyzing the system behavior similar to a first-order system 
and creating a system response constant analogous to the time constant in a time-
domain system for predicting yield responses to resource inputs. Meanwhile, for 
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FIGURE 4.10  A system block diagram of a closed-loop feedback control system for preci-
sion crop production.
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many field operation controls, such as canopy reflectance sensing-based side-dress 
nitrogen application to correct crop N stress, the crop responses to resource inputs 
are often presented similar to those of a second-order system with a large damping 
ratio in the time domain just as shown in Figure 4.11.

As many unexpected disturbances originated from a natural production environ-
ment may draw the output away from the desired set point, a study on how to effec-
tively reduce the influence of those disturbances is a particularly important research 
goal for agricultural system controls.

While a PA control shares many features similar in format to industrial control 
systems, there are some unique ones that are not commonly seen in industrial con-
trols due to the biological nature of crop production. One of the essential differences 
between PA systems and industrial control systems is that some of the inputs to a 
precision crop production system could improve crop growth only within limited 
time windows or under a few states (Ogunlela et  al., 1982; Johnson et  al., 1996). 
Unlike industrial control systems, the lack of a systematic method for varying the 
inputs to obtain desirable outputs remains another major obstacle, preventing preci-
sion crop production from being effectively adopted (Zhang et al., 2002; Jochinke 
et al., 2007; Robertson et al., 2012).

Another major difference in PA control is the uncertain response of adjusting 
input(s) to the output. The foundation of PA is built on an idea of applying the right 
amount of inputs at the right time in the right place in the hope of obtaining an 
expected output, which is similar to conventional industrial control in theory. As 
illustrated in Figure 4.6, some empirical models can be used to describe such rela-
tionships between input and output. However, such a regression model can only pro-
vide some information supporting an uncertain estimate of the yield as it is normally 
formulated based on collected data from previous seasons, and the predicted yield 

Second-order system

Y (t)

t

First-order system

Set
point

FIGURE 4.11  An example of a dynamic response of system output to a set point. The solid 
line is the response from a second-order system and the double dashed line represents a first-
order system.
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response is not a tie behavior. These are some of the major obstacles for farmers in 
effectively managing their precision crop production since the collected data during 
the crop growth season is not directly useful as feedback to support making control 
decisions. One essential requirement for making feedback control of precision crop 
production manageable is making the collected data observable.

In adopting control theory in PA management, researchers have started to apply 
state-space modeling to understand and explain the spatial correlation of crop and 
soil in the hope of gaining a more reliable prediction of yield (Wendroth et al., 1992; 
Timm et al., 2000). In state-space analysis, observability is a measure of the abil-
ity to tell what is going on inside the system and whether the desired output could 
be obtained from the system through observing system behaviors. Formally, a sys-
tem is said to be observable if its current state can be determined in finite time in 
terms of only its outputs. If a system is not observable, the current values of some 
state variables cannot be determined by the sensed output data. This implies that 
the controller cannot adjust those parameters to an appropriate level to obtain the 
desired output. Referring to control of crop production systems, this observability 
is reflected in the relationship between collectable crop growth data and the yield. 
To attain such observability is a practical challenge in effectively controlling crop 
production since the yield is not measurable until harvested (Lamb et al., 2008). The 
good news is that it is technically possible to detect the crop growth condition dur-
ing its growing season using certain types of crop sensors. Figure 4.12 illustrates an 
example of visually detectable difference in corn plant growth conditions randomly 

FIGURE 4.12  An example of visually detectable growth condition differences among corn 
plants randomly found in a commercial corn field in the Midwest Corn Belt of the United 
States. The noticeably smaller plants could lead to a distinguishable lower yield.
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captured in a commercial corn field in the Midwest corn belt of the United States. 
While there is still a lot of uncertainty, the noticeably smaller plants often lead to a 
measurably lower yield.

One method to improve observability is the use of data fusion, a process of inte-
grating multiple data sources to obtain a more accurate and robust estimation of crop 
yield. A study based on remote sensing data from 37 fields in Texas showed that it 
could improve the average yield estimation from about 30% underestimation using 
only the raw satellite imaging data to a 2% overestimate after using three state vari-
ables (stage of crop development, green leaf area index, and aboveground dry mass) 
(Maas, 1988). In a study on the spatial dependence between crop yield, effective soil 
N and N2 fixation, Wendroth et al. (1992) proved that it was possible to use a state-
space approach to determine spatial variability of yields from local field observations.

Another major challenge in practicing PA is the uncertain responses of adjust-
ing inputs(s) to the output. While PA requires employing a responsive management 
strategy based on detailed, site-specific information, it also requires determining 
how much of the observed yield variability was caused by natural variation in yields, 
how much by variations in management practices, and thereby to determine what 
management practices are most appropriate for what conditions, both edaphic and 
climatic, in a management zone. To solve this problem, a study on the controllabil-
ity of precision crop production systems is essential. As the collectable data from 
the production process is often indirect measurement of factors that could affect the 
final yield, we can use two definitions of controllability: state controllability and 
output controllability. The former describes the ability of an external input to change 
the internal state of a system from any initial state to any other final state in a finite 
time interval; and the latter defines the ability to change the output. As a precision 
crop production system is often not directly observable with regard to the yield, but 
observable in terms of the crop growth condition (plant growing status) or crop yield 
potential (soil fertility status), the controllability in precision crop production typi-
cally means the state controllability if not specifically notified. Many variable-rate 
resource input decisions are made based on crop growth condition or yield potential, 
which is a state variable rather than the production output.

One essential assumption for variable-rate-based site-specific crop production is 
that it could attain a higher crop yield by varying the resource(s) input to bring crop 
everywhere in a field to its yield potential (McKinion et al., 2001). However, such 
an assumption does not always lead to the best solution in practice. Based on an 
extensive study, Peng et al. (2010) found that there was no correlation between grain 
yield and total N input in rice production in China, and that such poor correlation 
could be attributed to many factors, including location, season, variety, pest damage, 
and other crop management practices. Raun et al. (2011) investigated the relation-
ship between grain yield and its response to N in long-term wheat and corn experi-
ments, and also found no clear relationship between response to N and grain yield. 
Upon further study, they found that both yield and response to N were consistently 
independent of one another. As both affect the demand for fertilizer N, estimates of 
both should be combined to calculate realistic in-season N rates. As N management 
is a common practice in realizing state controllability, such findings present a chal-
lenge to understand whether state controllability is sufficient for PA management or 
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a study on output controllability is essential to advancing PA. Control system theory 
has proven that a state controllable system is not necessarily output controllable, and 
vice versa. Numerous reports have been published on predicting grain yield based on 
crop growth conditions (Diker and Bausch, 2003; Wendroth et al., 2003; Tremblay 
et al., 2010). Such research offers a method for utilizing the controllable crop grow-
ing state to achieve the controllability on final yield.

A common precision crop production practice that many farmers are following 
today is first collecting yield maps of their fields during harvest, and then utilizing 
these maps combined with other relevant information, such as weather data, to make 
field management decisions for implementing variable-rate preplant fertilizer appli-
cations, precision planting, and/or postplanting fertilizer applications (McKinion 
et al., 2010). However, the use of yield maps in making accurate decisions on pro-
duction management for the next season is always difficult due to many mitigating 
factors (Kaspar et al., 2003). Research revealed that the standard deviation for crop 
yield at different parts of a field under the same management practice could surpass 
20%, with the possibility of the yield from one zone being less than 60% of the yield 
from a neighboring zone (Zhang and Han, 2002). Such inconsistency in final yield 
adds another layer of complexity to PA, the lack of robustness in agricultural system 
control under the same management actions.

Crop fields often vary between and within themselves in landscape position, ter-
rain attributes, erosion class, and soil properties (Stone et al., 1985). Such frequent 
and random variations, along with uncertain weather changes, play a major role in 
affecting the lack of robustness in controlling precision crop production. A success-
ful precision agricultural control system should be observable, controllable, and 
robust. However, this is difficult due to the uncertainty inherent to crop produc-
tion, often entering an agricultural control system through uncertain states caused 
by spatial or temporal variation and actions constrained by technical or economic 
difficulties (Adams et al., 2000). This presents challenges to creating robust agricul-
tural control systems. For example, some transient spatial factors, such as insect or 
disease pathogen spreading, planter or applicator malfunctions, and measurement 
error in yield monitoring, can substantially affect the yield or yield observation in 
specific areas in 1 year but not every year (Colvin et al., 1997; Lark et al., 1997). How 
to robustly manage an uncertain crop production system with unknown dynamics 
subject to unknown disturbances is still the key problem a precision agricultural 
control system needs to solve.

4.4  PRECISION AGRICULTURE IMPLEMENTATION

Another essential element in controlling a PA process is the reliable implementa-
tion of planned field operations as any management plans will never result in any 
effectiveness unless such plans are accurately implemented. A typical field crop 
production process normally includes some or all the following operations: plan-
ning, planting, resource input management (often implemented in the forms of either 
VRAs or targeted applications), and harvest. To provide farmers with reliable tools 
to effectively implement those operations, many automated technologies have been 
developed in the past few decades.
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4.4.1 P lanning and Planting

Effective PA management begins with planning. An appropriate site-specific pro-
duction plan based on soil property and yield potential plays a vital role in practicing 
precision crop production. Farmers have doubts about investing in precision agricul-
tural technologies because of their inability to directly apply the collected data as 
feedback for improved management practices. While this remains one of the biggest 
obstacles for farmers to gain the promised benefits, a transformation of a long-term 
yield-map dataset into profit maps based on economic thresholds for profitability at 
different zones could help create a profitable site-specific management plan (Massey 
et al., 2008). This method uses actual input costs, crop prices, published custom rates 
for field operations, and region-specific land rental prices to transform yield maps 
into profitability maps, which could map yield into profitability metrics for differ-
ent management options to support farmers in planning a profitable precision crop 
production.

After a production plan is made, it needs to be implemented precisely following 
the implementation plan, and sometimes also requires having the capability of adapt-
ing to scenario changes by modifying or changing some specific actions during field 
operation. In the preplanting to planting process, there are a few typical field opera-
tions that could be controlled precisely in implementation. Normally, the first field 
operation in crop production is field preparation. A zone tillage, a form of modified 
deep tillage in which only narrow strips are tilled, requires positioning the plows 
precisely to target strips to agitate the soil to reduce soil compaction and improve 
soil internal drainage. To achieve precise tillage depth control, both an auto-steering 
system and a tillage depth control system would be required. An auto-steering sys-
tem could accurately guide a tractor following the target strips to achieve improved 
operation efficiency, accuracy, and speed, therefore gaining financial benefits from 
practicing precision zone tillage. Using an automated tillage depth control system, 
the plows could automatically follow a predetermined tillage control plan to adjust 
the tillage depth. Xie et al. (2013) have developed a depth control system capable 
of adjusting tillage depth from −100 to −200 mm within a 3.5 s response time and 
with ±8 mm depth control accuracy. Wells et al. (2005) verified that deep tillage in 
general could result in a yield improvement for corn, soybean, and wheat compared 
to those receiving no deep tillage. The use of an RTK-DGPS-guided auto-steering 
system could accurately navigate a tractor to perform controlled-traffic farming by 
traveling only on a few fixed traffic lanes in a field to create nontrafficked cropping 
zones with optimum soil structure. In addition, the auto-steering function has dra-
matically improved operator comfort by those who have adopted this technology.

Planting or seeding is another critical operation in precision crop production. It 
requires putting the exact number of seeds or seedlings precisely at the right place, 
and is implemented using machines in modern mechanized agricultural productions. 
Precision planting or seeding often requires having an accurate control of the num-
ber, as well as the location and depth of seeds or seedlings being planted. Numerous 
commercial products of planters and seeders capable of attaining the required 
seeding/planting numbers and depth accuracy are available in today’s market. One 
addition to improve the position accuracy is the increasing adoption of GPS-based 
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auto-steer technology for those planters/seeders. As it could help to reduce overlap 
and eliminate skips, and therefore could result in a reduction of input costs for labor, 
seeds, and fuel, the auto-steer planting or seeding technology has been praised by 
farmers as the most effective PA technology. Based on Deere & Co., a high-accuracy 
auto-steering system could reduce overlap by up to 90% through accurate and repeat-
able guidance in both curved and straight tracks in crop fields (Deere & Co., 2013).

Yuan et al. (2011) have developed a variable seeding–fertilizing planter suitable 
for no-tillage cultivation practices to realize yield potential. This precise seeding 
and fertilizing system could adjust the seeding distance and control the amount of 
fertilizer being applied in terms of a predeveloped seeding and fertilizing plan (or 
prescription), supported by a GPS. In adjusting the seeding space, a seed releasing 
mechanism was automatically controlled according to the planned seeding rate and 
the detected planter traveling speed at the location. Meanwhile, a predetermined 
amount of fertilizer would be applied according to a prescription using an automatic 
variable-rate applicator. Yuan’s prototype could control the seeding space from 10 
to 20 cm with a maximum error of 4.5%. Variable-rate fertilization accuracy was 
within ±3.3%.

4.4.2 V ariable-Rate Applications

Another critical PA operation is VRA of fertilizers, herbicides, or pesticides. Much 
success has been reported in developing applicators capable of implementing VRAs 
based on predetermined plans. While the specific designs could vary from one 
machine to another, the core element of variable-rate technology (VRT) normally 
involves an integrated sensor and rate controller system. The sensor system often 
includes a GPS receiver and is typically used to provide georeferenced information 
for setting the site-specific set points for rate controllers to deliver different rates of 
agrochemicals to the location. Most existing commercially available applicators use 
either pulse width modulated (PWM) actuated fixed orifice nozzles (PWM applicator) 
or fast close (FC) valve controlled variable orifice nozzles (FC applicator) to imple-
ment the VRT applications. A study of the response time of those designs showed that 
the PWM applicator resulted in a slightly faster response time than the FC applicator, 
but the latter could maintain a more stable flow rate and pressure with less applica-
tion error either under sensor-based or map-based controls (Bennur and Taylor, 2010).

Applying the right amount of fertilizer in response to detected crop nutrient stress 
on-the-go is one of the primary implementation mechanisms in precision crop pro-
duction. An on-the-go crop nutrient stress sensing system capable of self-calibrating 
to environment changes could provide the necessary machine intelligence to support 
more trustworthy intelligent variable-rate fertilization. Figure 4.13 shows an example 
of sensor-based intelligent applicator. In this intelligent machine, a model-based yield 
potential estimator based on sensed crop nitrogen stress using an applicator-mounted 
multispectral imaging sensor was used to determine the application rate (Noh et al., 
2006). A core element in this intelligent machine is the self-calibration system capa-
ble of automatically calibrating the detected crop canopy reflectance according to the 
current light conditions to remove all soil background and over/underexposure can-
opy surfaces for a more consistent measure of canopy reflectance (Noh et al., 2005).

  



124 Precision Agriculture Technology for Crop Farming

One of the fundamental requirements for VRA is the dose accuracy. However, 
there are a few factors that could make it difficult to achieve accurate dosage in field 
operations. For example, an uneven dose could result from some undesired sprayer 
boom vibrations of the extra-wide boom (Figure 4.14) caused by the sprayer travel-
ing on uneven ground surface at different speeds or under different wind effects. 
Based on a study reported by Langenakens et  al. (1995), the spray deposit could 
vary between 0% and 1000% induced by vertical boom vibrations and between 20% 
and 600% from the horizontal ones, which would lead to greatly reduced spray effi-
ciency, and therefore reduced yield. The control of undesired sprayer boom vibra-
tions is therefore essential for achieving precise VRA. Tahmasebi et al. (2012) have 
designed an iterative learning active force control for an active suspension system of 
spray boom, and reported having the potential to improve undesired vibration under 
given parameters and conditions.

Yet another technical challenge originates from the uneven amount of chemi-
cals at individual nozzles across an individual applicator. An unconfirmed applicator 
operator’s observations indicated that the difference in injected anhydrous ammonia 
could be over 50% of the norm between the nozzles on the same applicator, which 
could be caused by an imperfectly designed distribution manifold. To have sufficient 

FIGURE 4.13  An example of an intelligent variable-rate applicator. The machine-mount 
crop sensing system is capable of self-calibrating to natural lighting conditions.

Jolting Yawing Rolling

FIGURE 4.14  A few scenarios of unwanted sprayer boom vibrations or waving. (Data cour-
tesy of Professor J. De Baerdemaeker.)
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nitrates in the field, it is not uncommon for farmers to apply up to 20%–30% more 
fertilizer than necessary to compensate for this uneven application. An improved 
controllability of the ammonia application rate could effectively reduce the con-
sumption of nitrogen fertilizer and consequently reduce nitrate leaching.

A precision irrigation system is commercially available now. The system allows 
spatially variable delivery of water and fertilizers to different zones in a field. One 
example of such a system was a microsprinkler system with individually addressable 
nodes developed by Coates et al. (2006) for tree fruit orchard use. One microsprin-
kler node, assembled with a standard microsprinkler emitter, a latching solenoid 
valve, and a control circuit, was installed at each tree in the orchard, and a drip line 
controller was used to store the irrigation schedule and issued commands to indi-
vidual nodes. A master computer allowed remote access to the drip line controller 
using a wireless modem to update the schedule and monitor the implementation. The 
delivery of prescribed variable-rate water and fertilizer was implemented by operat-
ing the emitters for different durations at individual nodes.

4.4.3 P est and Weed Control

Accurate target pest control using target sprayers is a promising pest management 
method for precision horticulture production, especially for control of some specific 
pests in tree fruit/grape production. For example, control over cutworms, a primary 
pest in vineyards, could be accomplished using traditional broadcasting application 
methods, which could use a conventional canopy sprayer, or by a targeted barrier 
application, which requires using a robotic self-targeting sprayer. Kang et al. (2011) 
have developed a robotic target sprayer for vineyard pest control (Figure 4.15). This 
sprayer integrated an efficient target recognition system and a rapid and precision 
sprayer control system to ensure an adequate coverage of pesticide on grape trunks 
for effectively repelling climbing cutworms to attain the crop protection goal. Field 
efficiency tests revealed that a targeted application in a robotic precision operation 

FIGURE 4.15  A robotic target sprayer for vineyard pest control. It can use less than 10% 
of pesticides to achieve similar efficacy with certain pest control compared to conventional 
broadcast applications.
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could reduce pesticide usage 90% or more compared with a traditional broadcasting 
application and achieve a similar efficacy.

Precise weed management using target sprayers is another promising method for 
reducing labor dependency, decreasing chemical inputs, improving food safety, and 
lowering production costs for many crops, especially for vegetable crops. Supported 
by auto-guidance technologies, an auto-tracked tractor could run a cultivator closer 
to the crop row within a centimeter precision to achieve a high speed and high effi-
cacy in interrow (between crop rows) weed control (Han et al., 2002). As precise 
mechanical weed management also requires effective intrarow (within the crop row) 
weed control, and intrarow weeds are in general much more difficult to eliminate 
mechanically than the interrow weed due to their proximity to the crop rows, great 
effort has been directed to developing practical automated or robotic solutions for 
precise inter- and intrarow weed control. Such an effort requires bringing in exper-
tise in plant sciences, engineering, and economics together to address the challenge.

A few core technical barriers to effective target application exist: a robust real-
time sensing technology capable of detecting and mapping weeds and differentiat-
ing them from crops; a high-speed and high-accuracy weeding mechanism capable 
of removing both inter- and intrarow weeds. Numerous research projects focused 
on developing aforementioned core technologies have been initiated in the past few 
decades. Tang et al. (2000), among a few early researchers in this field, had studied 
the use of machine vision-based weed detection technology for applications in out-
door environments, and successfully developed a supervised color image segmenta-
tion method usable for field weed detection under natural lighting conditions of both 
sunny and cloudy days. Today, a few weeding robot products are becoming com-
mercially available. For example, a research team from the University of Southern 
Denmark has been working with their manufacturer partners to convert their 
research outcomes to a commercial product for a field weeding robot by integrating 
control systems, tractive mechanism, and weeding tools in one mobile platform, and 
had made it available to farmers performing more environmentally friendly crop 
production (Jensen, 2013).

4.4.4  Harvest Automation

Harvest automation, from site-specific yield monitoring, operation management, and 
machine control to selectively harvest, is an essential operation in control of agri-
cultural production. Since it was introduced in the early 1990s, yield monitoring has 
become a standard automation function for modern agriculture, and a large selec-
tion of yield monitors can be purchased either from the combine manufacturer or an 
independent yield monitor manufacturing company. A yield monitor, consisting of 
at least a grain flow sensor, a grain moisture sensor, and a GPS receiver, is simply 
an electronic data collection system for harvesters collecting yield data at a spe-
cific location. Collected georeferenced yield data are used either to build field yield 
maps for a given year or yield frequency maps over multiple years. As such spatial-
temporal variation maps could be predictive of yield potential, yield monitoring and 
mapping is considered the starting point for implementing precision crop production 
management.
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Efficient harvesting needs to have a harvester operating at its optimal condition. 
One of the most straightforward ways is to make the harvester very easy to operate 
so that every driver can operate the machine optimally, and machine automation is 
the key to providing such capability. Harvest efficiency is strongly influenced by 
the biological variability of the crop, which could be changed during harvest due to 
variations in weather, soil type, and environment. To keep a harvester operating at its 
optimal condition under varying field conditions, a standard practice is to automati-
cally regulate the forward speed, which directly changes the feeding rate based on 
measurable variables such as engine load and grain mass flow.

The harvest efficiency could also be increased by improving the overall opera-
tion efficiency. An innovative harvest system automation technology, based on auto-
guidance technology to synchronize grain carts in automated grain unloading from 
a working combine, has been extensively studied by both the academy and industry 
for filling the gap. Originated from a master–slave navigation, often using a manned 
combine harvester (the master) to control an unmanned grain cart (the slave) follow-
ing the master at a designated angle and distance, the core of multimachine synchro-
nization is a model of communication, which creates an in-field, high-speed wireless 
machine control network to facilitate synchronized speed and location control 
between neighboring machines. Similarly, machine synchronizing control systems 
have also been successfully marketed by major agricultural equipment manufactur-
ers. This multimachine coordinating and synchronizing harvesting technology could 
help farmers to increase their efficiency, reduce operation costs and improve safety.

Ideally, crops should be harvested at an optimal stage for the best quality and 
yield. However, owing to the biological and environmental complexity involved in 
agricultural production, it is almost impossible for all crops to mature uniformly. 
Mapping and monitoring the spatial variation of crop maturity during the harvest 
season will provide time-critical information for farmers to selectively harvest crops 
at their optimal maturity. Compared to the primary area of interest being the VRA 
of resource inputs in large-scale grain production, selective harvest is more attractive 
in fruit and vegetable production as the prime quality produce will often bring in a 
better economic gain. Selective harvesting of fruits or vegetables is often based on a 
maturity or quality sensing evaluation.

4.5  SUMMARY AND DISCUSSION

The PA process can be viewed as a control process of crop production with some 
unique features. It offers farmers the possibility for making the best use of resource 
inputs for reaching the yield potential from a specific site. However, in a recent inter-
national PA forum, the world research leaders collectively identified one of the major 
obstacles preventing farmers from gaining promised benefits of PA as the lack of a 
systematic and automated method for supporting them in making optimal and trust-
worthy operation decisions based on the collected data.

This chapter intends to use control system theory to lay a foundation for creating 
some systematic methods for making optimal and trustworthy decisions for more 
effective precision crop production. Technology development in PA over the past 20 
years has made the data collection and processing technology able to robustly obtain 
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necessary crop and soil data for estimating yield potentials and/or monitoring actual 
yield on specific locations in a field. Many agricultural equipment manufacturers 
have made machinery capable of implementing different site-specific precision oper-
ations. This chapter introduces a new concept of formulating a systematic method for 
making appropriate operation decisions based on yield potential or estimated yield 
in a format similar to a control system. It could provide an opportunity to integrate 
collected information of precision crop production in supporting more consistent 
precision management.

It is also worth pointing out that there are fundamental differences between a typ-
ical PA management system and the one described by traditional control theory. The 
most important difference is the system response to the input: in PA management, 
the system response such as the yield of a specific site to the amount of fertilizer 
being applied often describes how the final output would respond to the amount of 
input applied to the system, and present an input–output relationship; while in con-
ventional control theory, the system response is used to describe how fast a system is 
responding to the changes in inputs and/or disturbances to the system and presents a 
time-domain reaction. Such a fundamental difference presents the first challenge in 
applying control theory to create systematic methods for making trustworthy deci-
sions for supporting profitable precision crop productions.

The second major challenge is making the collected data observable as discussed 
in the text, and the development of some reliable and robust yield prediction tools, 
which could offer a solution to this problem. The ability to predict corn yields based 
on collectable production-related system parameters data, such as soil property, plant 
morphology, and weather data, would provide a useful tool to utilize control theory 
in making reliable precision crop production decisions. The lack of such models 
is one of the obstacles preventing PA production from being effectively adopted. 
Owing to the attribution of collected data to various fields of sciences and technolo-
gies, a transdisciplinary study could be pivotal in developing such models.

The last, but not the least, major challenge is the uncertain controllability of the 
system as discussed in the text. Such uncertainty could be mainly attributed to the 
numerous factors that can influence the response of crop growth to resource inputs, 
and to the timing of applying such inputs. The application of data fusion, a process of 
integrating multiple data sources for obtaining more accurate and robust information 
to gain a more confident estimation of responses to certain inputs within a definite 
time window, is a possible approach to solving this problem. However, finding the 
solution would require transdisciplinary research.
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5.1  INTELLIGENT MACHINE DESIGN FRAMEWORK

An “intelligent machine” can be defined in a variety of ways. One line of thought is 
that an intelligent machine is one that exhibits the same type of behavior as a human in 
the same context. Such a definition requires attributes such as reasoning, perception, 
learning, control, and supervision to be present for machines classified as intelligent 
(Jain et al., 2007). Another line of thinking results in a more functional definition: an 
intelligent machine is one that achieves a particular goal in the context of uncertainty 
and variability (Rzevski, 2003; Jarvis and Grant, 2014). This definition has a lower 
threshold for a machine to be considered intelligent. Probably almost any automated 
machine in agriculture would fit this definition because of the high uncertainty and 
variability associated with agriculture. The current technology level of agricultural 
machines is somewhere in between machines being automated, since they can repeat 
specific tasks with a decreasing requirement of human intervention, and being intel-
ligent with higher-level behavior than just doing specific tasks repeatedly.

Automated agricultural machines have a long history of development. Much 
progress was made during the 1970s when electronics for monitoring and control 
was introduced to agricultural machines. However, the most significant advance 
toward machine autonomy started in the 1990s when precision agriculture (PA) 
became the key driver for developing more intelligent machines. PA requires inten-
sive management of spatial and temporal variability of fields. Therefore, automated 
or autonomous operation of machines becomes necessary. As an example, variable-
rate application of inputs, one of the major PA practices, needs the application rate 
to be changed on-the-go and sometimes within every square meter of a field. Manual 
operation of the machine and its control is infeasible. Thus, automatic steering and 
map-based rate control have to be implemented on the machine. Use of small and 
smart machines (robots) is desired for many PA practices, such as soil sampling, crop 
scouting, site-specific weed control, and selective harvesting. Robotic applications 
are not only desirable but are also more economically feasible than conventional 
systems for some agriculture applications (Pedersen et al., 2006).

In building on the current state of technology toward machines that are more 
intelligent, conceptual frameworks have been developed to categorize the required 
technologies for intelligent agricultural machines. Some authors have thought of 
these categories as a set of building blocks for agricultural machines (Reid, 2004). 
However, an alternative framework with different technology layers naturally depen-
dent upon one another may be helpful. In this chapter, a framework, consisting of 
four layers that tend to build on each other, will be used (Figure 5.1). These layers 
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are, starting from the bottom, (1) machine architecture, (2) machine awareness, (3) 
machine control, and (4) machine behavior.

At the lowest level, the machine’s system architecture, consisting of both hard-
ware and software, must be in place to build the higher-level layers of an intelligent 
machine. Since the machine must interact with the physical world, physical hard-
ware architecture must be in place. For an intelligent agricultural field machine, 
or field robot, the hardware must enable mobility within the crop field, as well 
as provide the capability to perform field operations in an automated or intelli-
gent manner. The hardware architecture must be mechatronic to support intelligent 
operations; that is, be an integration of mechanical, electrical and electronic, fluid 
power, and computational systems. The necessary interconnections between sys-
tems must be included to communicate both data and power. Other hardware that 
must be present are the sensors that transduce physical or biological signals into 
electrical signals, and actuators that provide force and motion to interact with the 
crop or the environment.

Complementary to the hardware architecture, software and communications 
architectures must also be in place so that the development of higher-level layer tech-
nology can be built on preestablished software components enabling communication 
and reusing lower-level computational solutions. The ISOBUS standard (ISO 11783), 
for example, has enabled major technological advances in agricultural equipment. 
This standard was released over the period 2007 to present, and has had a major 
impact on the agricultural machinery industry enabling electronic control units 
(ECU) from different manufacturers to communicate with each other and generic 
virtual terminals to serve as user interfaces. The impact of the ISOBUS standard on 
the current state of agricultural automation cannot be overstated. Other examples 
of software architectures include the robot operating system (ROS) and the joint 
architecture for unmanned systems (JAUS), among others, which will be described 
further in Section 5.7.

The next layer, machine awareness, is built on the machine architecture layer. 
This layer mainly consists of localization and perception technologies. In field robot-
ics, localization is often accomplished through the global navigation satellite sys-
tem (GNSS) with inertial sensors. However, many agricultural applications require 
the machine to follow existing crop rows. In this case, machine localization using 

Mission planning

Navigation control

Perception

Hardware architecture Software architecture

Localization

Implement control

Machine supervisionMachine behavior layer

Machine control layer

Machine awareness layer

Machine architecture layer

Condition monitoring

FIGURE 5.1  A multilayer design framework for intelligent agricultural machines.
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relative position sensors has advantages. Included in this localization sublayer are 
sensor fusion methods enabling more robust localization through complementary 
sensors. Sensor fusion can extend localization when one of the sensor signals is lost 
and can improve localization accuracy when various error sources exist from any 
single sensor in the system.

Before a machine can be classified as intelligent, it must perceive its environment 
to carry out its tasks. The primary goal of machine perception is machine safeguard-
ing to ensure safe operation of the machine. Obstacle detection, recognition, and 
avoidance are typical examples in machine safeguarding. Perception algorithms and 
strategies are built on top of the perception sensors in the hardware architecture to 
achieve safeguarding functions.

Agricultural machines are designed to accomplish field operations such as till-
age, seeding, fertilizer and chemical applications, cultivation, and harvest. During 
these operations, the machine must interact with crop, soil, field topography, and 
weather conditions. Thus, for machine intelligence, perception systems must support 
machine awareness of these factors. Because agricultural machines are operated in 
unstructured environments and interact with highly variable bioproducts, perception 
system development is challenging. Section 5.3 describes different perception sen-
sors and sensor selection.

Another aspect of machine intelligence needing consideration is the condition 
of the machine itself, which to increase machine autonomy, must be monitored. In 
a human-operated machine, the operator is not only controlling the operation of the 
machine, but also monitoring the machine through visual, audio, or vibration cues to 
ensure that the machine is functioning correctly. Thus, machine health awareness is 
necessary, along with machine supervision. Section 5.4 outlines possible approaches 
to machine health awareness.

Once the machine is aware of its location, environment, and health, the machine 
control layer must be in place to navigate the vehicle through the field and to control 
the implements to accomplish the field operations. Navigation control of agricultural 
machines is highly developed and has progressed through several generations of 
automatic guidance technologies as applied to conventional agricultural vehicles and 
implements. However, for smaller, next-generation field robots, research questions 
exist since several vehicle platforms provide additional degrees of mobility freedom, 
through independent four-wheel steering (4WS) and four-wheel drive (4WD), that 
can be utilized for novel navigation control strategies (see Section 5.6).

Implement control has also been implemented commercially for various machine 
operations. For example, in the case of liquid chemical application, chemical appli-
cation rate control was first developed and commercialized in the late 1970s, upon 
which variable-rate application systems were developed in the 1990s. Since that time, 
more and more aspects of machine operations are controlled such as individual spray 
nozzles, boom sections, boom height, planter row unit, plant population, harvester 
feed rate, and harvester header height. More details are provided in Section 5.6.

The highest layer of the design framework, machine behavior, includes mission 
planning and machine supervision. Mission planning includes the optimization of 
vehicle or implement path based on criteria such as the shortest time to accomplish 
a given field operation. Some mission planners will also optimize machine functions 
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associated with the vehicle path, such as vehicle speed, implement position, and 
power-take-off (PTO) speed. Mission planning can be accomplished off-line prior 
to mission execution, or it can be done on-line, leading to adaptations of the mission 
based on new field and crop condition information being perceived during mission 
execution. Examples of mission planning include path planning, vehicle routing, and 
machine coordination, are further described in Section 5.5.

Machine supervision is similar to mission planning but focuses more on machine 
conditions and behaviors required in reaction to unforeseen events. In response to 
machine conditions in which either machine or environmental states are outside 
expected conditions, machine supervision will control the machine to a fail-safe 
condition. For example, if an autonomous vehicle detects a moving obstacle in front 
of its planned trajectory, the machine supervision algorithm will decide if the vehicle 
should stop, wait, or take a detour. As a first step of machine supervision, human 
operators will monitor the automated machines, but with continued development, 
increasing amounts of machine supervision will be done via higher-level intelligent 
supervisory control.

In addition to the technology layers mentioned above, this chapter also discusses 
classification of intelligent machines (Section 5.2), examples of autonomous vehi-
cles and field robots (Section 5.8), and summary and discussion of future directions 
(Section 5.9).

5.2  INTELLIGENT MACHINE CLASSIFICATION

Machine intelligence and automation technology found in agriculture are varied. 
Thus, to engage in a focused discussion about an intelligent machine, one must find 
a way to classify various machine systems. At the highest level, intelligent machines 
in agriculture can be classified according to the agricultural production systems in 
which the machines are used. Agricultural production systems include irrigation sys-
tems, animal facilities, fruit production systems, greenhouses, and field machinery 
(Figure 5.2).

In this classification scheme, the automation of irrigation systems is used to 
improve water use efficiency. Generally, automation technologies will site-specifi-
cally vary the rate at which water is applied to the crop based on current crop and 
soil status. This irrigation automation strategy is called variable-rate irrigation and 
is accomplished by either varying the speed that the irrigation system is passing over 
the crop or by controlling the flow rate of nozzles (LaRue, 2014).

Automation technology is also used in animal facilities. One application is main-
taining indoor animal environmental variables such as temperature, humidity, and 
gas concentrations at levels that maximize feed conversion efficiency and maintain 
animal health and welfare (Purswell and Gates, 2013). Feed distribution systems can 
also be automated to control and monitor feed for individuals or groups of animals 
(Aerts et al., 2003; Frost et al., 2003; Tu et al., 2011). Robotic or automatic milk-
ing systems (AMS) also fit in this automation class. AMS automatically harvest the 
milk from dairy cows without the need for human labor traditionally associated with 
milking. These systems are being adopted rapidly in North America and Europe 
(de Koning and Rodenburg, 2004; Lely, 2014) and are changing dairy production 
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in many ways—including the role of the farmer, dairy management systems, and 
farmer and dairy cow relationships (Butler et al., 2012).

Greenhouse plant production systems, another class of agricultural automation 
systems, have numerous environmental variables that can be controlled to optimize 
plant growth and health. These variables include air temperature, relative humidity, 
light intensity, and CO2 concentration. Many control strategies exist that may use 
artificial intelligence and physiological plant growth models (Ferentinos, 2006). In 
this class, we could also include robots designed for greenhouse use.

In developed countries, because of limited labor availability and high labor costs, 
automation and mechanization technologies are being rapidly developed and adopted 
for fruit production in orchard crops. Particular cultural practices developed include 
automated pruning and hedging systems, fruit thinning, precision chemical applica-
tion, and harvesting. Because robotic fruit harvesting is particularly challenging yet 
has potential for substantial impact to fruit production, research and development 
efforts have been undertaken in this area. Technologies have also been developed to 
monitor tree crops (Burks et al., 2013).

The last major class in this high-level classification is the automation for field 
crop production, including row crops such as corn, soybeans, and cereal grains. This 
class has seen much development as it was one of the early foci of PA research, par-
ticularly in North America and Europe. Characteristic of this type of agriculture are 
large machines and large field sizes.

Within this high-level classification scheme, we can further classify automation 
technology according to the machine or operation being automated. Many automa-
tion technologies that have been commercialized and made available to agricultural 

Irrigation systems Greenhouse

Applications

Animal facility
Guidance
controller

EH steering system

GPS
receiver

Field machinery

Fruit production

FIGURE 5.2  Intelligent machine classification based on the production systems. (From 
Edan, Y., S. Han, and N. Kondo. 2009. Automation in agriculture. Springer Handbook of 
Automation, 1095–1128. With kind permission from Springer Science+Business Media.)
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producers are in this category. These technologies are found in tractors and imple-
ments, combine harvesters, chemical applicators including sprayers, and planters.

The main focus of this chapter is on machine intelligence as applied to field crops 
and orchard crops. Technologies that are currently applied to agricultural machines, 
which generally tend to be larger equipment, will be surveyed as well as field robots, 
which are generally at the research stage of development. A main consideration for 
the development of machine intelligence for field and orchard crops is the semi-
structured or semicontrolled nature of the operating environment, as well as the 
crop, which presents many challenges to the development of this type of technology. 
Because of these challenges, the automation of machinery in agricultural fields has 
been, until recently, a slow evolution, starting first with the automation of machine 
function on conventional field machinery.

5.3  PERCEPTION SENSING TECHNOLOGIES

Human perception is the organization, identification, and interpretation of a sensa-
tion in order to form a mental representation (Schacter et al., 2011). In this definition, 
two aspects of human perception are involved: sensing of the environment (sensa-
tion) and interpretation of the sensory information (mental representation). A con-
ventional machine requires the human operator to perform both of these perception 
tasks to ensure its safe operation in the field. An intelligent machine, however, is 
equipped with sensors and processors to achieve some level of perception to reduce 
human intervention or to even completely eliminate the human operator.

In general, a perception system for an intelligent mobile machine requires one 
or more of the following capabilities: localization (where the machine is relative to 
the world), object recognition (what is around the machine), navigation and collision 
avoidance (how the machine can safely interact with the environment), and learn-
ing and inference (how the perception system can solve new problems). Abundant 
literature relates to these topics. For intelligent agricultural vehicles, navigation and 
safeguarding (obstacle detection) are two of the most important tasks in field opera-
tions. This section discusses perception sensors and their selection for agricultural 
applications primarily in vehicle navigation and vehicle safeguarding.

5.3.1  Perception Sensors

Human beings receive stimuli detected by our five senses: sight, hearing, taste, smell, 
and touch. Accordingly, perception sensors have been developed in each of these 
sensing categories, for example, vision sensors as sight, acoustic sensors as hearing, 
and tactile sensors as touch. However, modern perception sensors can respond to 
environment stimuli in the electromagnetic spectrum at a much wider range than a 
human being can (Figure 5.3). Each type of perception sensor in the electromagnetic 
spectrum will be briefly discussed below.

5.3.1.1  Monocular Vision
Although cameras were invented and used in photography centuries ago, their indus-
trial application as perception sensors did not start until the 1960s and 1970s when 
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Larry Roberts and David Marr undertook breakthrough research at MIT’s Artificial 
Intelligence Laboratory. Computer vision, or machine vision, the science of teaching 
a computer how to identify a physical object in its surroundings, was born during that 
time. In the 1980s, computer vision took off and saw great expansion with its mass 
adoption by semiconductor manufacturers. Presently, two technologies can be used 
for the image sensor in a camera: charge-coupled device (CCD) and complementary 
metal–oxide semiconductor (CMOS). To produce a color image, a filter in front of 
the image sensor allows the sensor to assign color tones to each pixel. Traditionally, a 
CMOS camera is less expensive and consumes less power, but a CCD camera produces 
better image quality. In recent years, however, these differences have disappeared.

The success of a perception application using image sensors is heavily dependent 
on image processing algorithms. Grayscale machine vision algorithms have been 
widely investigated (e.g., optical flow, motion detection, and pattern recognition), 
but at best, the results have been mixed. The main difficulty is that computer vision 
algorithms are almost all brittle; an algorithm may work in some cases but not in 
others (Huang, 1996).

Agricultural applications of computer vision were first studied in the late 1980s. 
Typical applications include guiding a tractor for row crop cultivation, or guiding a 
combine for harvest operation. In such applications, finding guidance information 
from row crop structure is the key to achieving accurate control of a vehicle. A num-
ber of image processing techniques have been investigated to find the guidance line 
(directrix) from row crop images. As examples, Reid et al. (1985) developed a binary 
thresholding strategy using Bayes classification to effectively and accurately seg-
ment crop canopy and soil background for cotton at different growth stages. Gerrish 
et  al. (1985) concluded in that the combination of noise filtering, edge detection, 
thresholding, and rescaling was the most promising technique. Image analysis using 
the Hough transform to find crop rows was reported in several studies (Marchant 
and Brivot, 1995; Marchant, 1996). Billingsley and Schoenfisch (1997) reported 
on a vision guidance system relatively insensitive to additional visual “noise” from 
weeds, while tolerating the fading out of one or more rows in a barren patch of the 
field. They showed their system is capable of maintaining an accuracy of 2 cm. In 
terms of vehicle safeguarding using a monocular vision system, the most successful 
application is perhaps the lane departure warning system in the automobile industry 
(e.g., Mobileye, 2015; TRW, 2015). No literature has been reported for agricultural 
vehicle safeguarding.

A monocular vision system can provide rich information, including color and 
shape of objects. The cost is low. It can be easily integrated onto a vehicle due to 
the small footprint. However, it is not robust to illumination variance and cluttered 
background.

5.3.1.2  Stereo Vision
Stereo vision may be passive or active. In a passive stereo vision system, two or 
more cameras are used to acquire different images of the same object from slightly 
different viewpoints in space. The depth information of the object can be calculated 
by the differences in these monocular views of the scene and by the geometry of the 
imaging system. In an active stereo vision system, one of the cameras is replaced by 
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a projector, which projects structured light, such as parallel lines and grids, onto the 
object surface. The structured light is distorted by the object geometry, and a new 
distorted pattern is formed. An object’s three-dimensional (3D) shape can be recov-
ered by analyzing images containing the distorted light pattern. Active stereo vision 
has been successfully used for applications in constrained indoor environments such 
as industrial inspection. However, the short detection range and the vulnerability to 
strong ambient light make it hardly useful in outdoor environment.

The most challenging task in using stereo vision to determine the 3D depth infor-
mation of objects is stereo correspondence matching—finding pairs of matched 
points corresponding to a single point on the 3D object. Stereo matching is one of 
the most active research areas in computer vision. Two general methods for ste-
reo matching are intensity-based and feature-based. The intensity-based approach 
attempts to establish correspondence by matching pixel intensities of the image pair. 
With the feature-based approach, features such as edges, corners, lines, and curves 
are first extracted from the images, and the matching process is applied to these fea-
tures. The selection of the best matching algorithm depends on the applications but 
unfortunately most algorithms are not robust for outdoor applications.

Several studies of stereo vision for agricultural vehicle navigation have been 
reported. For example, Kise et al. (2005) developed a stereo vision-based crop row 
detection system to automatically navigate a tractor in a soybean field with a lateral 
deviation of less than 0.05 m at speeds up to 3.0 m/s. They used stereo images to 
create an elevation map (i.e., a map of crop height). Since the search of the guidance 
parameter was based on the elevation map, not on color or intensity, their algorithm 
was robust under weedy field conditions. Wang and Zhang (2007) developed a stereo 
vision-based trajectory tracking method for automated navigation of an agricultural 
vehicle in an unstructured environment based on 3D feature tracking and motion 
estimation. Recently, Lin et al. (2014) reported an object tracking and collision avoid-
ance system utilizing a stereo vision system. For vehicle safeguarding applications, 
Wei et al. (2005) tested the safeguarding capability of a stereo vision system using 
a person standing in front of a vehicle as the potential obstacle. Obstacle detection 
in short-ranges (less than 12 m) was repeatable. In other research, Rovira-Más et al. 
(2007) showed that, in real-time applications, ranges up to 15 m can be sensed with 
acceptable accuracy using compact off-the-shelf binocular stereo cameras.

A stereo vision system has an advantage over a monocular vision system. It more 
effectively represents distance, size, and spatial relationships between different 
objects in the camera’s field of view. It is less sensitive to changing external envi-
ronments because it relies on size, shape, and distance, which are invariant under 
lighting changes. However, the lack of robust stereo matching algorithms and the 
high computation cost requirement have historically made stereo vision costly and 
impractical. Recently, low-cost stereo processors are more available on the market. 
Stereo vision systems are expected to replace monocular vision systems in the future.

5.3.1.3  Laser, Ladar, and Lidar
A laser is a device that emits light through a process of optical amplification based 
on the stimulated emission of electromagnetic radiation (Gould, 1959). A laser sys-
tem used for perception purposes is often based on the time-of-flight (ToF) principle. 
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The ToF method measures the time for the electromagnetic wave to travel to a target 
and back. The distance (range) is calculated as half of this time multiplied by the 
velocity of the wave. When a laser is used as the probe, the device is called Ladar or 
Lidar, which stands for laser detection and ranging or light detection and ranging, 
respectively. The light is short-pulsed for time measurement.

Ladar or Lidar are also called laser range finder. A laser range finder can only 
measure the distance to a single point on the object. For 3D object recognition and 
object modeling, the laser beam is often rotated, either by mechanical or by optical 
methods, to achieve two-dimensional (2D) or 3D range measurements. Those sys-
tems are called laser scanners or scanning lasers. One of the commonly used scan-
ning laser brands in agricultural applications has been SICK (SICK AG, Waldkirch, 
Germany), primarily due to their performance and affordable cost. For example, 
a SICK outdoor scanning laser range finder, LMS151, is a long-distance measure-
ment type series (at 75% reflectance) with a 50 m maximum measuring length. On 
the high end, Google has been using a roof-mounted Lidar (HDL-64E, Velodyne 
Acoustics, Inc., Morgan Hill, California), which spins a unit containing 64 fixed-
mounted lasers to capture a full 360° horizontal field of view. However, agricultural 
use of this sensor has not been reported due to its high cost.

Lidar has become well recognized in terrain model building since the late 1990s. 
It has advantages in measuring surfaces with accuracy and density (Ma, 2005). In 
agricultural applications, Ryo et  al. (2004) used a laser scanner to automatically 
guide a robotic gator in an orchard. They concluded that control by the laser scanner 
was more accurate and stable than control by a global positioning system (GPS) and 
an inertial measurement unit (IMU). Lateral and heading error were 0.1 m and 0.7°, 
respectively.

The major strengths of Lidar include accurate 3D shape information, accurate 3D 
position, and performance independent of varying illumination. However, Lidar does 
not produce color information, is dependent on weather conditions, and is expensive.

5.3.1.4  Radar
Radar stands for radio detection and ranging and uses radio waves in the range of 
3 MHz to 110 GHz (Figure 5.3) reflected from the surface of an object to determine 
the range, direction, and speed of the object. Radar signals are reflected especially 
well by materials of considerable electrical conductivity—especially by most metals 
and by wet ground. Radar can provide accurate distance information but no shape 
information. As such, it can be primarily used for object detection but not object 
identification. It is well suited for safeguarding applications.

Recent advancement in silicon germanium (SiGe) technology has made the high-
frequency millimeter-wave applications practical. Automotive radar (77 GHz) is 
now readily available at a low cost. The 77 GHz sensor may soon be integrated into 
agricultural vehicles for safeguarding applications.

5.3.1.5  Ultrasonic Sensor
Ultrasonic sensors work on the ToF principle similar to Lidar, but they use sound 
waves at a frequency just above the range of human hearing (>20 kHz, Figure 5.3). 
Most ultrasonic sensors operate at frequencies between 40 and 250 kHz. Because 
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the speed of sound travels much slower than the speed of light, an ultrasonic range 
sensor has a much shorter object detection range than Lidar. The detection range is 
typically less than 10 m.

Ultrasonic sensors were studied to detect a moving object in the vicinity of agri-
cultural machinery in real time under an outdoor environment (Guo et al., 2002). 
They were also used to measure the relative position between tree canopies and 
a vehicle for tractor navigation in an orchard (Iida and Burks, 2002). Because the 
speed of sound changes due to variations in air temperature and humidity, ultrasonic 
sensor measurement errors tend to be large. Thus, ultrasonic sensors alone may not 
be a good choice for vehicle navigation and safeguarding. However, they can be used 
as complementary sensors due to their low cost. One potential application is using an 
ultrasonic sensor array to safeguard a slow-moving automated vehicle.

5.3.1.6  Active 3D Range Camera
Active 3D range cameras share several traits with both scanning lasers and cameras. 
Like lasers, they measure distances with modulated light based on the ToF principle. 
Similar to cameras, distance measurements are obtained with a 2D array of pixels 
without any moving parts. The photonic mixer device (PMD) is one of the promis-
ing technologies for active 3D range cameras (Schwarte et al., 1998; Xu et al., 1998; 
Ringbeck and Hagebeuker, 2007). Recently, PMD-based cameras have been developed 
that are compact, affordable, and capable of capturing reliable-depth images directly 
in real time. The technology has been successfully demonstrated for tracking people 
in surveillance applications (e.g., Gokturk and Tomasi, 2004; Grest and Koch, 2007).

Active 3D range cameras are a competing technology with stereo vision-based 
surface reconstruction. Under optimal conditions, the PMD system outperformed 
the stereo vision system in terms of achievable accuracy for distance measurements 
(Beder et al., 2007). Agricultural applications of PMD cameras include classifica-
tion of plants (Klose et al., 2009) and mapping of apple trees for automatic pruning 
(Adhikari and Karkee, 2011). However, no research was found investigating PMD 
cameras for vehicle navigation and safeguarding in agriculture.

5.3.2  Selection of Perception Sensors

All the perception sensors mentioned above have been studied for agricultural appli-
cations. However, no single type of sensor has been shown to have clear advantages 
or disadvantages over the others. Compared with indoors manufacturing applications 
or even outdoors automobile applications, agricultural field operations are exposed 
to a much more challenging environment for perception sensors. Many factors need 
to be considered in the selection of perception sensors in agriculture. The following 
are some of the major performance and cost requirements for perception sensors.

5.3.2.1  Range
The requirement for range, or detection distance, depends on the type of application. 
In the case of perception-based vehicle navigation, only a small look-ahead distance 
is needed for straight crop rows, but a larger look-ahead is desired for curved rows 
at higher speed. All the sensors discussed above should meet the range requirement 
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for navigation applications. For vehicle safeguarding, a safe distance—the distance 
from the vehicle to the detected obstacle—is a function of vehicle speed, system 
response time, and vehicle stopping distance. Gray (2002) stated that the obstacle 
detection sensor used on the tractor must have a maximum detectable range of at 
least 15 m. Most of the sensors discussed above, except the ultrasonic sensors, can 
meet this range requirement.

5.3.2.2  Robust to Lighting
Unlike manufacturing operations under controlled environments, agricultural opera-
tions are normally performed under all kinds of ambient lighting conditions, such as 
dim light in the early morning and evening, bright sunlight during the day, overcast 
sky, partial clouds, or even complete darkness during night operations. Radar and 
ultrasonic sensors are not affected by lighting conditions since they use radio and 
ultrasonic waves, respectively. On the other hand, vision sensors (mono and stereo) 
are highly sensitive to changing lighting conditions since they operate in the visible 
light spectrum, which is directly affected by the ambient lighting.

5.3.2.3  Robust to Dust
Agricultural machinery is often exposed to very dusty conditions in field operations. 
Almost all the perception sensors based on the ToF principle will return some false 
“echoes” from dust particles. If the sensor is able to penetrate those dust particles, 
it is more robust to dust. The dust penetration capability of a sensor depends on the 
type of wave, power, etc. In general, vision sensors are the most robust sensors to 
dust, if an appropriate image processing algorithm is implemented. Lasers are most 
sensitive to dust.

5.3.2.4  Spatial Resolution
Spatial resolution refers to the size of the smallest possible object or feature in space 
that can be detected and identified. For image sensors, the spatial resolution is related 
to the pixel size of the imager. For Lidar sensors, the spatial resolution is dependent 
on the point density, which is a function of the scanning frequency. The spatial reso-
lution of the system is also dependent on the instantaneous field of view (IFOV) of 
the sensor. Thus, an image sensor mounted at a lower height will give a better spatial 
resolution of the ground surface than the same sensor mounted higher. Monocular 
vision provides the best spatial resolution, which is very helpful in applying feature-
based algorithms for object identification. Stereo vision and Lidar are often used 
in parallel with monocular vision through point cloud rendering to provide better 
object identification capability. Both radar and ultrasonic sensors have the lowest 
spatial resolution. They are commonly used only for object detection, not for object 
identification.

5.3.2.5  Maintenance
Reliability is essential for perception-based applications. Sensor performance will 
quickly degrade when exposed to harsh agricultural environments, and frequent sen-
sor maintenance is required. The ease of sensor maintenance is another consider-
ation in selecting a perception sensor. A sensor with an inherently stable design 
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will require less maintenance. Monocular camera, radar, and ultrasonic sensors all 
require low maintenance due to their small package size and simple design with no 
moving parts. Vibration may cause changes in the relative orientation between two 
stereo pairs leading to frequent calibration of stereo vision sensors. Lidar sensors 
have internal moving parts, which are vulnerable to sensor failure—making it hard 
to maintain long-term operation in agricultural fields.

5.3.2.6  Cost
The range of costs for perception sensors is wide. Cost ranges from over $100,000 for 
a high-end Lidar to under $100 for a monocular vision sensor. Cost is often a limit-
ing factor for agricultural perception applications. The cost target depends on the 
application, and is often defined by the ratio of the sensor cost to the machine cost. 
A high-end machine such as a large tractor can tolerate a higher cost for the add-on 
perception system.

Table 5.1 summarizes the ratings for each of the six types of perception sensors. 
These ratings can be used for the selection of particular sensors for specific appli-
cations. The conclusion is that no single type of perception sensor can meet all the 
requirements of agricultural operations. Compromise is required to find a sensor 
that can meet most of the requirements. Another approach is to use multiple low-cost 
sensors, either redundant or complementary to each other, in a sensor-fusion system.

5.3.3 C hallenges and New Development

Since the late 1970s, industrial robots have been widely used in manufacturing oper-
ations for fixed automation. Such robots can perform repetitive tasks in a carefully 
controlled environment, and the perception needs for these robots can be kept to a 
minimum. Machine automation in agriculture is significantly different from automa-
tion in the manufacturing industry. An automated agricultural machine needs the 
ability to sense its world and change its behavior on the basis of what it perceives. 
The workspace of agricultural machinery is typically a large open field, unstructured, 

TABLE 5.1
Perception Sensor Ratings

Sensor
Capability

Monocular 
Vision Stereo Vision Lidar Radar Ultrasonic

3D Range 
Camera

Range Average +  Average −  Good Good Poor Average − 

Robust to lighting Average −  Average +  Good Good Good Good

Light dust 
penetration

Good Good Average Good Average +  Average + 

Heavy dust 
penetration

Poor Poor Poor Good Poor Poor

Spatial resolution Good Average Average +  Poor Poor Average − 

Maintenance Good Poor Poor Good Good Average

Cost Good Average Poor Average Good Poor
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and with large topographical change. Numerous types of obstacles in the workspace 
are often unknown a priori and hard to classify. In addition, agricultural machinery 
is exposed to harsh environmental conditions, such as extreme weather, extreme 
temperature, dust, rain, and vibration. As such, operating agricultural machinery 
without human operators becomes extremely difficult. Agriculture has been one of 
the last industries to use robotics and intelligent machines mainly because of the lack 
of machine perception capabilities.

Machine vision is perhaps the most promising technology for agricultural percep-
tion applications because it can provide a vast amount of data at a relatively low cost. 
However, many challenges exist in the interpretation of these data. To derive shape 
information from images, the commonly accepted bottom-up framework developed 
by Marr (1982) is being challenged, as it has limitations in speed, accuracy, and 
resolution. A new approach, called purposive vision (Aloimonos, 1992), has been 
suggested. The purposive vision paradigm does not attempt to generate a complete, 
detailed, symbolic 3D model of the environment. Rather, it is task-oriented and 
focuses only on the parts of the environment relevant to its task. Purposive vision 
complements general machine vision techniques with domain-specific information. 
Collision avoidance for autonomous vehicle navigation is an appropriate applica-
tion of the purposive vision approach because precise obstacle shape description is 
unnecessary.

Future growth in machine vision is likely with smart camera technology. A smart 
camera is a stand-alone vision system with a built-in image sensor and processor. 
It is capable of extracting application-specific information from captured images, 
along with generating event descriptions or making decisions that are used in an 
intelligent and automated system (Belbachir, 2010). Stereo vision capabilities can 
also be built in the smart camera due to its processing power. Smart cameras have 
just recently become small and affordable enough to justify their use for agricultural 
machine automation. Several commercial applications of smart cameras in agricul-
tural machinery have already been developed.

Autonomous machines cannot be commercialized without proper safeguarding. 
Safe operation of agricultural machines is the single most critical requirement. Since 
no single type of perception sensor can meet all the requirements of agricultural 
operations, development of sensor fusion systems for machine perception will con-
tinue to be a major effort. Sensor fusion developments include not only the selection 
of multiple low-cost sensors, but also appropriate sensor fusion algorithms.

5.4  MACHINE HEALTH AWARENESS

With any machine, with or without intelligence, failures or breakdowns will occur. 
Thus, monitoring machine conditions may lead to preventative maintenance before 
a catastrophic failure occurs or corrective action after a malfunction has occurred. 
Because of increasingly higher-level complexity with automated machinery, it has 
become more difficult for human operators to detect faults. In addition, accompa-
nying machine automation may be lower-skill operators without the background 
knowledge to manually diagnose machine problems. Automation technology can 
also create conditions where the operator is more isolated from the working of the 
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machine, either by physical isolation (e.g., a more comfortable cab with climate con-
trol and more sound isolation) or by greater distraction as the operator’s attention 
has moved to other farm management tasks such as marketing produce or making 
decisions about input purchases.

As agricultural machinery becomes more automated, machine condition moni-
toring, along with fault detection and diagnosis, also needs to be more automated, 
although it can still have some reliance on human intervention when a human operator 
is present. For driverless, autonomous agricultural machines, machine intelligence 
to monitor machine health must be in place to produce machine health awareness 
with no human assistance—a considerable requirement for the development of these 
machines. Little attention has been given to the automation of condition monitor-
ing and fault detection system in agricultural machinery (Craessaerts et al., 2010; 
Khodabakhshian, 2013).

Machine health awareness requires a high degree of intelligence, perhaps higher 
than all other requirements for an intelligent machine. At the heart of machine health 
awareness are technologies often referred to as condition monitoring systems or fault 
detection and diagnosis systems. Condition monitoring is typically part of an overall 
maintenance strategy for a process, machine or machine system, which will involve 
a human manager. Condition monitoring uses signals from a machine acquired with 
sensors to provide some indication of the condition of machine components. Based 
on these signals and their changes over time, with some signal processing and pat-
tern recognition analysis, managers can make decisions about what maintenance 
interventions should be taken and when they should be scheduled.

As shown in Figure 5.4, implementing a machine health awareness system for an 
autonomous machine requires several layers of technology, which can be structured 
in a format similar to the intelligence machine framework presented in Section 5.1. 
For machine health awareness, there must first be a hardware layer consisting of sen-
sors that are measuring physical signals known to be related to machine component 
condition. Several sensing modes have been used for condition monitoring and will 
be described in greater detail below.

Machine health awareness

Decision
and action

Signal cleaning and processing

Sensor hardware

Fault diagnosis

Fault detection

FIGURE 5.4  Machine health awareness technology will require at least these five layers of 
technology as a part of any autonomous, driverless system.
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Second, the signals from the sensors must be cleaned to remove outliers and then 
processed to extract the features that are correlated to machine component condi-
tions. Next, fault detection applies automatic pattern recognition processes to deter-
mine if a fault has occurred in the system. Generally, this step involves finding a 
deviation from patterns associated with normal operation. Once a fault has been 
detected, it must be diagnosed to identify what the fault is and what might have 
caused it.

The last layer might be the most important for an autonomous machine, that is, 
to decide what action should be taken next and then execute it. Several possible 
actions can be taken when a fault occurs, including (1) initiate a graceful shut-
down and remain at current position, (2) stop operations and move to a designated 
location for maintenance, (3) stop operations, alert remote human supervisor for 
further instructions, or (4) continue operations, and send a warning message to 
human supervisor. Blackmore et al. (2002) identified six safety modes similar to 
those listed above.

Khodabakhshian (2013) surveyed the sensing modes found in the literature for 
machine condition monitoring and discussed those used for agricultural machines. 
Temperature measurement can be used to detect increased friction in bearings that 
are moving into a failure mode, but it is not typically applied to agricultural machines. 
Dynamic monitoring includes analysis of vibration signals or acoustic signals associ-
ated with rotating machines and relating vibration signatures to wear and machine 
life. While substantial work has been done in this area for rotating machinery in 
general, with ISO standards developed for it (ISO 13373-1:2001; ISO 17359:2003), 
not many efforts specifically for agricultural machinery have been reported. 
Exceptions include Heidarbeigi et al. (2009, 2010) who sought to diagnose faults in 
a Massey–Ferguson gearbox with the power spectral density of the vibration signals.

Another approach to condition monitoring is monitoring internal wear debris or 
particle contamination of oil. While light blockage particle sensors are available, they 
are typically not applied directly to off-road machines because of cost and robust-
ness limitations. Typically, this approach involves sampling oil from the machine 
being monitored and oil analysis done in a laboratory setting. This approach does not 
lend itself to automated machine health awareness. However, recent investigations 
into dielectric spectroscopic sensing technology for oil contaminants have produced 
an on-line sensor to be used continuously during machine operation (Kshetri et al., 
2014). This type of robust sensor technology could be applied to intelligent agricul-
tural machines.

Another promising approach to sensing the condition of a machine is to monitor 
machine performance variables, such as power consumption or hydraulic pressure, 
searching for anomalies in those dynamic variables. Craessaerts et al. (2010) took 
this approach applying self-organizing maps and neural networks to detect failures 
in a New Holland combine harvester.

The application of these technologies to intelligent agricultural machines has limi-
tations. They are more easily applied to rotating machinery such as planters, engines, 
and grain harvesters but not suitable to machines involving lateral motion or limited 
rotational motion. They are also better suited for more controlled machine operat-
ing environments found in factories rather than in fields. While some agricultural 
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machine monitoring technologies exist (e.g., planter monitors and combine yield 
monitors), development has focused typically on machine performance in affecting 
agronomic factors such as plant population or harvester crop loss. Little has been 
done to more broadly monitor agricultural machine health.

For autonomous operations, the correct operation of the implement must also 
be monitored. If anomalies occur, the machine must self-correct or transition to an 
appropriate fail-safe mode, and the remote operator must be notified to take further 
corrective action. A good example of this type of technology is planter monitors in 
which, if a seed tube is plugged, the planting operation must be stopped immediately 
and corrected.

New technologies may be on the horizon to more broadly monitor the health 
of agricultural machine implements. For example, the German auto supplier 
Continental AG (Hanover, Germany) recently introduced a surround view system, 
ASL360, to create a fully 360°, 3D bird’s-eye view of the vehicle and its surround-
ing local environment. The system consists of four fisheye cameras mounted on the 
front, rear, and sides of a vehicle and a special processor that stitches four images 
into a single 3D image. Although the system was originally intended for automotive 
applications such as assisted parking and safe maneuver, it can be easily adapted for 
agricultural applications (Continental AG, 2013).

5.5  MACHINE BEHAVIOR

5.5.1 R obotic Behavior

For a robot to be considered intelligent, it must exhibit behaviors similar to those 
observed of humans. Some of these behaviors include planning by determining the 
best plan of action to achieve a particular goal and supervision by monitoring the 
work environment and making modifications to the planned actions based on new 
information.

Blackmore et al. (2007a,b) promoted a structure for defining the behaviors field 
robots need to perform agricultural operations autonomously. At the highest level, a 
field operation is the action that a robot will carry out to meet the needs of a crops’ 
cultural practices. Within an operation, certain tasks must be carried out—either 
deterministic or reactive. Deterministic tasks can be planned before the operation 
starts, are goal-oriented to achieve the objective of the operation, and can be opti-
mized to best draw on the resources available. Reactive tasks are foreseen responses 
to uncertain situations that may occur during the operation. They are captured in 
terms of behaviors that the robot should do in response to new situations. For exam-
ple, when an unknown obstacle is perceived in the current path of the robot, the robot 
should behave according to the type of obstacle. If a tree is perceived in the path, 
the robot could alter its path to go around it. If an animal is detected in the path, the 
robot might wait until it moves away, or produce stimuli to scare the animal away, or 
stop and seek guidance from a human supervisor. An example deterministic task is 
field coverage where the robot covers a field by navigating through a predetermined 
coverage path. Several examples of intelligent machine behavior, including coverage 
path optimization research, are presented below.
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5.5.2 O ptimal Path Planning

With trends toward larger field sizes, lower-skilled operators of agricultural machin-
ery, and rapid automatic guidance systems adoption, automatic path planning will be 
an important farm management tool for optimizing field efficiencies and minimiz-
ing soil erosion. Field coverage is a deterministic task of an intelligent agricultural 
machine; path planning can be applied to both conventional agricultural machines 
with automatic guidance or to autonomous field robots (Oksanen and Visala, 2007, 
2009). The time and travel over field surfaces associated with field operations should 
be minimized within constraints associated with machine characteristics, field 
topography, and field operation-specifics characteristics. To achieve these goals, 
optimized coverage path planning algorithms are needed for both planar surfaces 
and fields with 3D terrain features.

5.5.2.1  Optimized Coverage Path Planning on 2D Planar Surface
Research has been done on coverage path planning of planar surfaces, but results 
have some limitations in being applied to agricultural fields. Fabret et  al. (2001) 
framed the coverage path planning problem as a traveling salesman problem (TSP), 
and first chose a “steering edge” that provided the direction to guide successive 
swaths. In the field headland, characteristic points were then collected. Those points 
were connected by lines in the steering direction via an associated graph constructed 
by a TSP solver. It was not clear how the steering edge was chosen. Neural net-
works have also been applied to this problem (Yang and Luo, 2004). Their approach 
planned collision-free complete coverage robot paths. The collision-free requirement 
is of low importance, however, for agricultural field coverage planning. Turning cost 
at field edges were not investigated in approach, so it may have limited application 
in agriculture.

Field decomposition has potential to further improve the efficiency of field 
operations before determining the best path directions in fields, particularly those 
with irregular field boundaries. Field decomposition must take place simulta-
neously with the path direction search for cases where the field can be decom-
posed into several subregions that can reduce the whole field coverage time. The 
trapezoidal decomposition method has been investigated as an approach to field 
decomposition (Berg et al., 2000). First, a direction was chosen, and lines parallel 
to this direction were drawn through all the field boundary vertices. The field was 
then divided into trapezoids according to these lines. Choset and Pignon (1997) 
explored trapezoidal decomposition for coverage path planning. However, they 
were not clear about how the direction of the trapezoidal decomposition lines was 
determined and if these parallel lines led to the field decomposition that mini-
mized coverage costs.

Determining the best path direction is the main goal of coverage path planning. 
Whole fields can usually be covered by boustrophedon paths (straight parallel paths 
with alternating directions) parallel to the optimal coverage path direction for each 
given field. Several approaches to optimal path direction discovery have been inves-
tigated. Following the longest edge of the field is a simple strategy (Fabret et al., 
2001), but it is only suitable for fields with simple convex shapes such as a rectangles.
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Field boundary irregularities must be considered for general coverage path plan-
ning solutions. Oksanen and Visala (2009) explored greedy search algorithms to find 
coverage paths of planar (2D) field surfaces. Their search algorithm iteratively found 
the optimal trapezoidal field decomposition and path direction using a split and 
merge strategy (Figure 5.5). Optimal decomposition was not guaranteed, but they 
demonstrated the important of simultaneous decomposition and direction search 
needed to minimize headland turning cost.

Jin and Tang (2010) developed an algorithm that optimally decomposed planar 
fields and planned optimized operational patterns (Figure 5.6). Their algorithm used 
a geometric model that represented the coverage path planning problem. The objec-
tive function accounted for operational costs, including turning costs and resulted 
from analysis of different headland turns. To reduce the total turning cost, the num-
ber of turns is minimized and turns with high operational costs are avoided. Their 
path planner was applied to planar fields with complexity ranging from simple con-
vex shapes to irregular polygons with multiple obstacles. Their algorithm produced 
better solutions than farmers’ solutions and showed good potential to improve field 
equipment efficiency on planar fields.

FIGURE 5.5  A coverage path planning in planar field. (a) A top-down trapezoidal decom-
position algorithm. (b) A bottom-up approach using prediction and brute-force method. (From 
Oksanen, T. and A. Visala. 2009. Journal of Field Robotics, 26:651–668. With permission.)

FIGURE 5.6  Examples of an optimized coverage path planning algorithm based on a head-
land turning cost function and a divide-and-conquer strategy for 2D terrains, where the inner 
polygons indicate nontraversable obstacles. (From Jin, J. and L. Tang. 2006. Optimal Path 
Planning for Arable Farming, ASABE Paper Number 061158, ASABE, St. Joseph, MI, USA; 
Jin, J. and L. Tang. 2010. Transactions of the ASABE, 53:283–295. With permission.)
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5.5.2.2  Optimized Coverage Path Planning on 3D Terrain
More factors must be considered when optimizing the coverage path over terrain 
with 3D topographic features. The main factors are headland turning, soil erosion, 
and skipped area. Jin and Tang (2011) approached the problem by first developing an 
analytical 3D terrain model with B-splines surface fits to facilitate the computation 
of various path costs. They then analyzed different coverage costs on 3D terrains 
and developed methods to quantify soil erosion and curving path costs of particular 
coverage path solutions. Similar to the planar field approaches, they developed a ter-
rain decomposition and classification algorithm to divide a field into subregions with 
similar field attributes and comparatively smooth boundaries. The most appropriate 
path direction of each region minimized coverage cost.

A “seed curve” search algorithm was successfully developed and applied to sev-
eral practical farm fields with various topographic features (Figure 5.7). The 3D 
path planning algorithm performed better on 3D terrain fields compared to the 2D 
planning algorithm. In one field, the 3D planning algorithm generated a result with 
69.5% reduction in estimated soil loss as compared with that of the 2D algorithm. 
Typically, the skipped area was also much smaller.

5.5.3 O ptimized Vehicle Routing

After optimal field decomposition and coverage path planning, the vehicle route, 
which is the sequence of an agricultural vehicle following individual paths, can 

FIGURE 5.7  (See color insert.) Examples of an optimized 3D coverage path planning 
algorithm for a 3D terrain where terraces and valleys exist. (From Jin, J. and L. Tang. 2011. 
Journal of Field Robotics, 28:424–440. With permission.)
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be further optimized to minimize the distance traveled in headland turning and 
improve field efficiency when performing an agricultural operation. Bochtis et al. 
(2009) developed a mission planner based on an algorithmic approach where field 
coverage planning was transformed and formulated, as a vehicle routing problem 
(VRP), which was formulated as an integer programming problem. Through this 
approach, nonworking travel distance was reduced by up to 50% compared to the 
conventional nonoptimized method. They also incorporated different operational 
requirements and produced a different field pattern for each particular operation, 
which were optimal in nonworking travel distance (Figure 5.8).

5.5.4 M achine Coordination

Machine coordination is a reactive task behavior in which multiple machines work 
together to achieve a particular field operational goal, for example, on-the-go unload-
ing of a combine harvester into a grain cart. When the grain tank of a harvester is 
full, the harvester operator will call the tractor driver to position the tractor with 
grain cart alongside the moving harvester to unload the grain. While unloading, the 
harvester operator will still need to perform other normal tasks such as steering, 
changing travel speed, and adjusting machine settings. An intelligent harvesting sys-
tem will not only automate the tasks of each individual machine (e.g., auto-steering 
of the harvester and the tractor) but also coordinate the tasks between the machines 
(e.g., maintaining the same offset distance between the harvester and the tractor 
while unloading on-the-go). To reduce operator stress and errors, the coordinated 
operation of the harvester and tractor will also ensure proper positioning of the grain 
cart without reducing harvesting speed.

In recent years, several equipment manufacturers have commercialized guidance 
systems that allow a tractor-and-grain-cart unit to be driven without operator input 
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while unloading combines. One example is the Machine Sync product from John 
Deere (Figure 5.9; Deere, 2015). Machine Sync creates an in-field wireless network 
that can include 10 machines (combines and tractors with grain carts). When a com-
bine’s grain tank is full, a “ready-to-unload” signal is sent to the network, and one of 
the tractors in the network will be driven to the location alongside the combine based 
on its proximity to the combine to minimize the wait-time. The combine operator 
then automatically controls the tractor’s speed and location while unloading.

5.6  NAVIGATION AND MACHINE CONTROL TECHNOLOGIES

An important layer of any intelligent agricultural machine is the control layer, which 
uses knowledge from the machine perception layer, and controls physical machine 
actuators and power systems to achieve the machine behaviors required to meet field 
operation goals. In many respects, agricultural machine control is the most devel-
oped technology of all technology layers required for machine intelligence. Closed-
loop control systems have been a part of agricultural machines for many years, from 
sprayer rate controllers being introduced in the late 1970s, to automatic guidance 
being commercialized in the early 2000s. Recent years have seen an explosion of 
newly commercialized controller technology on agricultural machines. There is no 
reason to expect this trend to diminish in the near future. In this section, we will thus 
provide examples of control technology in agricultural machines.

5.6.1 C ontrols Background

Control systems automatically regulate machine output variables such as a motor 
shaft speed or actuator position in the presence of uncertainty and disturbances. 

FIGURE 5.9  John Deere’s Machine Sync that can synchronize the operation of com-
bines and tractors with grain carts for “on-the-go” harvesting. (Photo courtesy of Deere & 
Company.)
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Control systems can be open-loop, which means with knowledge of the system being 
controlled, called the plant, a control signal to a plant input will result in desired 
plant output without measurement of the output. However, if the actual plant changes 
from how it is represented in the plant model, the output will deviate from the desired 
output value. In addition, the output will be sensitive to disturbances to the system. 
Deviation from the desired output is called controller error.

Closed-loop control measures the plant output and compares it with the desired 
output. The difference between the two, the error signal, is then fed as input to the 
controller, which modifies and amplifies this input and provides a control input to 
the plant. The closed-loop technique overcomes plant model deficiencies and makes 
the overall system less sensitive to disturbances. Closed-loop control is necessary for 
most intelligent agricultural machine applications, because of limited fidelity in the 
plant models and because of the uncertain environment in which the system must 
operate with many disturbances.

However, often for agricultural applications, the loop is closed at the point where 
the plant output can continually be measured with available sensing technology. 
The relationship between the measured value and the final output must be cali-
brated and operated according to a calibration relationship. For example, droplet 
size controllers on sprayers measure nozzle pressure and provide a controller input 
to the system to affect the size of droplets. Nevertheless, droplet size is not mea-
sured directly because of the high cost of droplet size measurement equipment. 
Similarly, the application rate of dry fertilizer is not measured directly. Rather the 
speed of the fertilizer metering system is measured, fed back to the controller, and 
compared with the desired speed. Based on the calibration curve relating the meter 
speed to the application rate, the meter speed is controlled to provide the desired 
application rate. So this system is closed loop to the meter speed, but the application 
rate is actually running open loop.

There are many intelligent machine control examples in agriculture. van Straten 
and van Willigenburg (2006) provide an overview of control systems, including 
a classification of different control methods. The subsections below will provide 
examples as applied in the areas of vehicle navigation, boom section control, and 
implement control.

5.6.2 N avigation Control

The main goal of navigation controls is to automatically guide or steer a vehicle along 
a path and to minimize the error between the actual trajectory that the vehicle takes 
and the desired path. Automatic guidance of mobile agricultural field equipment 
improves the productivity of many field operations by improving field efficiency and 
reducing operator fatigue. The idea of automatically guiding vehicles is by no means 
new, and relevant literature can be found from several decades back (Grovum and 
Zoerb, 1970; Parish and Goering, 1970; Smith et al., 1985; Tillett, 1991; Stombaugh 
et al., 1999; Wilson, 2000; Hagras et al., 2002; Zhang and Qiu, 2004; Zhou et al., 
2008; Gomez-Gil et al., 2011; Tu, 2013). The advent of GPS in the early 1990s led 
to a flurry of research investigating the use of GPS as a positioning system for auto-
matic guidance (Larsen et al., 1994; Elkaim et al., 1997; Griepentrog et al., 2006; 
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Burks et al., 2013). Commercialization of GPS-based automatic guidance occurred 
in the first decade of this century, and was adopted very quickly to become one of 
the most highly adopted PA automation technologies.

A typical navigation controller design process involves modeling, simulation, 
implementation, and field test and tuning steps. Different navigation control algo-
rithms have been developed based on different vehicle models. The selection of a 
proper kinematic or dynamic model is the necessary first step in controller design, 
as it will greatly influence the computation in system identification, the order and 
complexity of the system, and the dynamic and steady-state performance of the 
derived navigation controller. Kinematic model-based controllers are more suitable 
for lower-speed vehicles—for example, under 4.5 m/s—since they cannot represent 
dynamic effects such as side slip (Karkee and Steward, 2010). Since the majority 
of farm field tractors are front-wheel steered, bicycle models were typically used 
to develop various closed-loop feedback control laws, among which proportional, 
integral, and differential (PID) controllers are the most common. Zhang and Qiu 
(2004) developed a dynamic path search algorithm for tractor navigation based on 
a bicycle model (Figure 5.10). They achieved a lateral offset error of less than 0.1 m 
on straight paths, but experienced a noticeable degradation of tracking accuracy on 
curved paths. Other vehicle models have also been used in tractor controller develop-
ment. Stombaugh et al. (1999) created a double-integrator transfer function to relate 
vehicle lateral deviation to steering angle. They developed a proportional controller 
to auto-steer a tractor at speeds up to 6.8 m/s with less than 16 cm of lateral path 
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tracking error. Other methods for designing navigation controller for agricultural 
vehicles include linearization followed by linear quadratic regulator (LQR) optimi-
zation (O’Connor et al., 1996; Thuilot et al., 2002), fuzzy logic, and neural network-
based approaches (Cho and Ki, 1999; Hagras et al., 1999; Ashraf et al., 2003; Zhou 
et al., 2008).

Like other nonholonomic nonlinear systems, agricultural robotic vehicles have 
system uncertainties and time-varying parameters, especially when working in off-
road environments.

External factors such as soil conditions also affect vehicle dynamic character-
istics. Both unpredictable internal perturbations and external disturbances create a 
great challenge. In their early work to develop a self-tuning navigation controller for 
farm tractors, Noh and Erbach (1993) used a variable forgetting factor in an adaptive 
steering controller based upon a minimum variance control strategy to cope with 
nonlinear time-varying dynamics. More recently, Gomez-Gil et al. (2011) developed 
two control laws: one for tracking straight lines and the other for tracking circular 
arcs. These control laws were shown to have global asymptotic stability with no 
singularity points.

4WS and 4WD designs provide maneuverability and traction control advantages 
to a field robot. Tu (2013) reported on the development of a 4WD/4WS vehicle, 
AgRover, and developed a sliding mode control-based robust navigation controller. 
A backstepping method was used to decompose the complex nonlinear system to 
lower-dimension subsystems that were controlled through pseudocontrol variables. 
When compared with the feedback linearization method (Kim and Oh, 1999; Wang 
and Yang, 2005), backstepping does not require an accurate model. Sliding mode 
control has robustness to parameter perturbations and external disturbances (Cheng 
et al., 2007), making it suitable for off-road environments. In Tu’s work, errors of 
0.08 and 0.13 m were observed for straight-line and curved trajectory tracking, 
respectively, in field tests (Figure 5.11).
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5.6.3  Sprayer Boom Section Control

A widely adopted control system application in PA is automatic section control, 
which ranks second only to automatic guidance technology in terms of its com-
mercial success. To implement section control, the width of a field sprayer boom 
is divided into multiple sections, with individual sections controlled in an on/off 
fashion. Currently, the smallest unit of section control is the individual nozzle, but 
in most cases, several adjacent nozzles will be grouped into the minimum controlled 
section resolution. Boom section control can enable more efficient spraying by reduc-
ing pass-to-pass overlap as well as preventing application to off-target areas. Each 
section is controlled independently of the rest of the system based on the section’s 
location within the field or canopy. These systems rely on a task computer to control 
the desired state of each section based on the section’s location within the field, taken 
from accompanying sensors and/or on-board maps.

Map-based boom section control systems are commonly used in row crops. GIS 
maps are the central components in this system, which contain no-spray zones 
determined by the operator prior to spraying, as well as a dynamically updated “as-
applied” history where product has been applied to the field. The task computer uses 
vehicle location and orientation from a GPS receiver to determine the location of 
each of the boom’s sections and decides if each boom section should be on or off. If 
the area under the boom has not yet been sprayed and is an acceptable spray location 
(within the defined boundaries), the section is turned on. If the area has already been 
sprayed or is outside the field boundaries, the section is turned off.

A main benefit of using the boom section control technology for a sprayer is the 
reduction in the chemical application overlap (Figure 5.12). As the sprayer enters the 
headland (Figure 5.12a), the sections (nozzles) are sequentially turned off from (a) to 
(b); when the sprayer exits the headland (Figure 5.12b), they are sequentially turned 
on from (a) to (b). The savings realized through the adoption of section control tech-
nology is mainly based on the number of control sections and the field shape (Luck 
et al., 2011a,b).

Luck et  al. (2010) found that automated section control of row crop spraying 
with a seven section resolution reduced overapplication from a 12.4% overlap with 
a manually controlled five section system to only 6.4%. Savings typically increase 
with increases in the number of control sections. The greatest potential occurs with 
irregularly shaped fields and with fields containing inclusions such as grassed water-
ways. Average savings by using boom section control were estimated at 5% for a 
typical size machine and field shape. Section control can also be used for planters in 
a similar fashion. As the size of modern agricultural equipment increases, section 
control becomes a more important part of PA.

Nevertheless, boom section control can lead to substantial dynamic variation 
in nozzle pressures and flow rates as sections are turned on and off. Sharda et al. 
(2010) showed over a 10% increase in nozzle flow rate during boom and nozzle sec-
tion control without rate control compensation. The nozzle pressure variations also 
occurred when exiting and reentering point rows, leading to overapplication when 
exiting point rows and underapplication during reentry (Sharda et al., 2011). Even 
with the integration of rate control with section control, the variation in application 
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rate remains an issue due to the slower response of the rate control system (on the 
order of seconds) as compared to that of a section control system (on the order of mil-
liseconds). New controller technologies, such as a feed-forward control system using 
boom pressure and flow-rate measurements, boom section states, and a boom model 
could reduce these application rate errors.

5.6.4 I mplement Control

Implement control is also available so that the burden on the operator to control 
implement settings can be moved to automatic control. This reduces stress and 
fatigue on the operator and gives the operator freedom to take on more of a supervi-
sory role of the overall machinery system. In addition, implement control often leads 
to the reduction of errors in the field operation such as turning on or off the seeding 
at the wrong location and overlap of adjacent swaths or skips in chemical application. 
There are many implement control examples for field crop machines.

One good example is iTEC Pro, or intelligent Total Equipment Control, from John 
Deere (Figure 5.13). iTEC Pro is used for handsfree turns and implement control at 
headlands with a focus on optimizing implement field efficiency. The iTEC Pro inte-
grates AutoTrac automatic steering and implement management systems (IMS) on 
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FIGURE 5.12  Section control technology for a spray boom. (Courtesy of Luck, J.D., 
T.S. Stombaugh, and S.A. Shearer. 2011a. Basics of Automatic Section Control for Agri
cultural Sprayers. Available at http://www2.ca.uky.edu/agc/pubs/aen/aen102/aen102.pdf. 
Accessed on January 31, 2015. With permission.)
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certain tractors to control tractor speed, power-take-off (PTO) engagement, hydrau-
lic valve position, front and rear mounted implement height, and differential lock 
engagement during headland turns.

5.7  SYSTEM AND SOFTWARE ARCHITECTURE

In intelligent systems engineering, an architecture is a means for managing complex-
ity. Intelligent agricultural machines and field robots of necessity are complex sys-
tems comprised of various components and subsystems; many of which are complex 
systems themselves. Since individual humans and teams are limited in their time and 
resources, as well as their ability to keep track of details, they need a way to man-
age system complexity during development. The development of automatic guidance 
systems would be very slow, for example, if for each instance of development, the 
team would need to develop a new GPS receiver for that specific application. Rather, 
the complexity of a GPS receiver is physically encapsulated in the GPS package, the 
interface to the GPS is well defined through a common electrical connector, and the 
electrical signals conform to standardized communications protocols. The receiver 
accuracy can also be documented through measurements from standard test pro-
cedures and well-defined performance metrics. This principle of abstracting com-
plexity through encapsulation of components and clearly defined interfaces to the 
components is generally what is meant by the phrase “robotic system (or software) 
architecture.”

Intelligent agricultural machines require, to varying degrees, architecture for 
both hardware and software. Just thinking about the components required for a par-
ticular robotic application and how those components are connected to one another 
and are interacting with one another is an example of “architecture.” The potential 
is excellent for leveraging work across research teams through system architectures 

FIGURE 5.13  John Deere’s iTEC Pro for hands-free turns and implement control at head-
lands. (Photo courtesy of Deere & Company.)
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that can be shared, standardized, and distributed so that different researchers can 
build on the efforts of others. These architectures can be proprietary so that develop-
ment teams within a company can work together more effectively and can internally 
manage complexity. Architectures can also be open and public to facilitate more 
rapid development across development teams, as well as to facilitate the intercon-
nectivity of components and subsystems available on the market.

Many examples of robot system architectures exist. Kramer and Scheutz (2007) 
surveyed nine open-source robotic development environments, or system architec-
tures, for mobile robots, and evaluated their usability and impact on robotics develop-
ment. Jensen et al. (2014) surveyed available robotic system architectures, including 
CARMEN, CLARAty, Microsoft Robotics Developer Studio, Orca, Orocos, Player, 
and ROS. They also found examples of lesser-known architectures, which may be more 
relevant to agricultural robots, including Agriture, Agroamara, AMOR, Mobotware, 
SAFAR, and Stanley. Of these, four architectures, CARMEN, Agroamara, Mobotware, 
and SAFAR, had field trials for agricultural applications. However, open-source avail-
ability was limited and only Mobotware had been recently updated.

While different architectures may focus on different aspects of robotic systems, 
they tend to provide the means for (1) modularizing tasks for processes that are impor-
tant to a functioning robot, (2) defining messaging systems and protocols for interpro-
cess communication, and (3) defining operations that must occur across distributed 
processes. Several illustrative system architectures portray key features of architec-
tural thinking that is needed for present and future intelligent agricultural machines.

In early efforts to promote architectural thinking about agricultural robots, 
Blackmore et al. (2002) proposed a conceptual system architecture for autonomous 
tractors that consisted of a set of objects or agents that have well-defined narrow 
interfaces between them. The two types of agents are processes and databases. A pro-
cess carries out tasks to achieve a goal. Nine processes were defined and described: 
Coordinator, Supervisor, Mode Changer, Route Plan Generator, Detailed Route 
Plan Generator, Multiple Object Tracking, Object Classifier, Self-Awareness, and 
Hardware Abstraction Layer (Figure 5.14). Three databases were defined (Tractor, 
Implement, and GIS) and are used to store and retrieve data about the machine and 
its operational context.
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FIGURE 5.14  A conceptual system architecture for an autonomous tractor, which consists 
of 10 encapsulated processes, databases, and interprocess messaging. (From Blackmore, B.S., 
S. Fountas, and H. Have. 2002. Proposed system architecture to enable behavioral control of 
an autonomous tractor. In Zhang, Q. (ed.), Automation Technology for Off-Road Equipment: 
Proceedings of the 2002 Conference, St. Joseph, MI, USA: ASAE. With permission.)
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Hierarchical relationships existed between the processes. The Coordinator pro-
cess, for example, would reside on a computer in the farm office, and would facilitate 
the human farm manager to provide high-level operational directives to the robot 
(e.g., check nutrient status of corn in field 1 for 3 days) and provide robot status 
feedback to the farm manager. The Supervisor process would be hosted on the trac-
tor, and would relay messages from the Coordinator to manage lower-level process. 
While there was no reported implementation in Blackmore et al. (2002), the thought 
behind the architecture specifically for a tractor was useful and similar structures are 
observed in later architectures for intelligent agricultural machines.

Torrie et  al. (2002) described the Joint Architecture for Unmanned Ground 
Systems (JAUGS) Domain Model, which was in active development at that time, 
and highlighted some implementations of JAUGS in agriculture, including John 
Deere’s Autonomous Orchard Tractor and Autonomous Gator. Torrie et  al. stated 
that JAUGS was primarily a standard messaging architecture to enable components 
to communicate to one another in a standard manner. Thus, as long as different com-
ponents (i.e., controllers, user interfaces, and sensors) comply with the standard, they 
are able to communicate without problems.

Later, JAUGS was changed to JAUS to be more generally applied to all types 
of unmanned vehicles. In 2005, JAUS transitioned to be a Society of Automotive 
Engineers standard developed under its aerospace standards division. Rowe and 
Wagner (2008) provided a clear description of the JAUS standard. The standard 
has two parts, the domain model that describes the goals for JAUS and the refer-
ence architecture that specifies an architecture framework, a message format, and a 
standard message set. They described how they used JAUS in an implementation that 
was their organization’s entry into the DARPA 2007 Urban Challenge.

The Robotics Operating System (ROS; Open Source Robotics Foundation) is an 
open-source robotic operating system developed at the messaging layer to provide an 
interface for passing messages between processes running on different host comput-
ing platforms that make up the computer hardware architecture of a robot. ROS also 
provides a broad set of libraries and tools useful for robotics development. These 
resources have grown out of the experience of the ROS community. Libraries include 
(1) standard robot message definitions, (2) the transform library for managing coor-
dinate transform data, (3) a robot description language for describing and modeling 
a robot, (4) means for collecting diagnostics about the state of the robot, and (5) 
packages for common robotics problem such as pose estimation, localization, and 
mobile navigation. One tool is for 3D visualization of sensor data types and another 
for developing graphical interfaces for a robot. ROS also includes integration with 
other open-source projects, including the robot simulator, Gazebo, the well-known 
computer vision library, OpenCV, pointcloudlibrary—for processing 3D data and 
depth images, and the motion planning library, MoveIt! (Quigley et al., 2009; ROS.
org, 2015). While ROS is general and not specifically tailored to any specific applica-
tion, it does have applicability to intelligent agricultural machines and can be used as 
a part of larger system architectures for agricultural machines.

Jensen et  al. (2014) describe the development of a robotic software systems 
architecture called FroboMind intended to assist in the development of field 
robots for PA tasks (Figure 5.15). The authors make a case that, although there are 
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several examples of agricultural robots in the literature, the complexity of soft-
ware required for autonomous systems in agriculture makes it progressively dif-
ficult for individual research groups to make progress, and greater collaboration is 
needed. They propose that a software architecture designed for field robots doing 
PA tasks will enable field experiments and more efficient reuse of existing work 
across projects.

FroboMind has a four-part structure, which from lowest to highest level include 
operating system, middleware, architecture, and components. The Linux operating 
system Ubuntu was chosen because of its large distribution and long-term support. 
ROS was used for the middleware, the software that connects software components 
or mediates between software applications, to define the internal communication 
structure between processes.

The FroboMind architecture level consists of four modules, which are perception 
(consisting of sensing and processing submodules), decision making (consisting of 
mission planning and behavior), action (consisting of executing and controlling), and 
safety modules, all of which are encompassing the layered framework introduced 
at the beginning of this chapter. At the component level, the software components, 
written in C++ or Python, are implemented as ROS packages. FroboMind is open 
source and has been used in the development of several agricultural robots. It is not 
a hard real-time system, but its “soft” real-time performance appears to be sufficient 
for agricultural robotics applications. Jensen et al. (2014) observed relatively rapid 
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development of a new application using FroboMind in an experiment. A high level of 
software reuse was observed across several robotic implementations.

Robotics software system architectures provide services that are needed for 
future intelligent agricultural machine behavior. For small field robots, a common 
limitation is the low work rate associated with them. To overcome this limitation, 
multiple robots will need to operate collaboratively to meet agricultural timeliness 
requirements. Such an application requiring multiple vehicle coordination will thus 
need a distributed software architecture such as that provided by ROS. ROS enables 
the development of systems consisting of a number of processes running on different 
hosts, and potentially on different robots. These processes communicate on a peer-
to-peer network and via wireless links such as IEEE 802.11.

With a multiple vehicle team focusing on completion of a field operation, vehicle 
coordination will be required. Thus, system architectures are needed to provide the 
middleware required for vehicle coordination. In this scheme, it is important that 
each robot can flexibly assume different roles. For example, one robot might need 
to become a follower of another robot, or next become a leader of all local follow-
ers, or be a follower of one robot and the leader of another. For this flexibility, the 
system architecture will need to provide the means for a role manager in each robot 
to assemble the correct processes and messages needed to act out the current role 
of that vehicle. To facilitate these interactions, publish–subscribe middleware can 
be used. This middleware enables processes to publish messages into the commu-
nication channel without directly sending them to specific receivers. Subscribers, 
or the receivers of messages, can filter the messages they need and ignore the rest 
(Matteucci, 2003). This capability, along with peer-to-peer networking, provides a 
kind of flexible network structure in which any robot can be a leader or follower 
and robots can come in and out of system, with an ongoing scheme for discovering 
which robots are available to complete the field operation and real-time knowledge 
of each robot’s progress. While there may be a process providing overall coordina-
tion of the completion of the field operation, work by individual robots can be carried 
out in a flexible manner. Additionally, remote procedure calls, as enabled in ROS, 
for example, enable one process to call a function in another process, which also is 
a powerful tool in distributed systems like those associated with mobile field robots.

In summary, robotic software system architectures provide the means for han-
dling complexity through well-defined processes and messaging, as well as higher-
level features, such as those described above. These architectures also promote 
reusability, which enables research and development teams to build on one another’s 
work and move toward more intelligence embedded into agricultural machines.

5.8  AUTONOMOUS VEHICLES AND FIELD ROBOTS

5.8.1  Small Field Robots in Research

Several examples of small field robots are covered in the literature. By studying the 
designs of these robots, insight can be gained into what machine forms might emerge 
as future field robots. Earlier agricultural field robots were typically designed for a 
specific purpose such as automated weeding or field data collection. More recently, 
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field robots have been designed for more general field operations. The following are 
some examples of field robots.

Blasco et al. (2002) describe the development in Spain of a robot for weed control 
with a high-voltage electrode that eliminated weeds through electrical discharges. 
The electrode end-effector was positioned to the location of the weed plant by the use 
of a HEXA parallel linkage structure. Most of the work focused on machine vision 
perception for locating plants in images. In similar work, Astrand and Baerveldt 
(2002) reported on a robot developed in Sweden for the purpose of mechanical 
weeding in sugar beet. The robot had the capability to navigate along crop rows with 
a machine vision sensor and to distinguish between crop plants and weeds.

Bak and Jakobsen (2004) described the development of a 4WS/4WD robot 
designed to sense and map weed populations in row crops. The robot was guided 
along crop rows with a machine vision perception system. The robot’s line tracking 
performance was reported. Bakker et al. (2010a,b) also reported on a small robot 
developed at Wageningen University in the Netherlands. A well-documented design 
process resulted in a 4WS/4WD robot powered by a 31.3-kW diesel engine and 
propelled by hydraulic transmission (Figure 5.16). The robot was designed to be a 
research platform for intrarow mechanical weeding for sugar beet. Development of 
a navigation controller for the robot was reported, but no work about weed detection 
and mechanical weeder control could be found.

The BoniRob is a field robot developed jointly by Hochscule Osnabrück, Germany 
and Amazone and Robert Bosch companies (Bangert et al., 2014; Figure 5.17). The 
BoniRob was developed for plant phenotyping, but is also a reusable platform for dif-
ferent application modules such as mechanical weed control and precision spraying. 

FIGURE 5.16  A weeding robot developed at Wageningen University. (From Bakker, T., 
J. Bontsema, and J. Müller. 2010a. Journal of Terramechanics, 47:63–73. With permission.)
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The modules are mechanically attached to a frame in the center of the robot, which 
also has a plug for electrical power and ethernet connection to the robot platform. 
The application module concept was inspired by the conventional tractor and imple-
ment paradigm. Langsenkamp (2014) reported on the BoniRob mechanical weed 
control actuator that presses individual weed plants into the ground.

The majority of the above robots had a similar machine form consisting of a rela-
tively high clearance platform enabling movement over tall crop plants, as well as 
4WS/4WD. This machine form is also found in other robots, including the Iowa State 
AgRover and the Embrapa Brazil Agribot (Godoy, 2012; Diaz, 2013). This platform 
design enables flexibility in the type of tools that can be used with the platform, 
application over a wide range of crop growth stages, and high maneuverability.

5.8.2 O ther Robot Machine Form Approaches

More recent field robots have tended to take other approaches to machine form. 
One machine form is a low-clearance track vehicle with skid-steering. Field robots 
of this type emerged with the Armadillo robot designed and built as an electrically 
powered general-purpose tool carrier (Jensen et al., 2012). In the next generation, the 
Armadillo Scout was designed with main features of redesigned track modules and 
new battery technology (Nielsen et  al., 2012; Griepentrog, 2012). Emerging from 
these efforts is the Grassbots project (Sørensen, 2014; Anon., 2014), which uses a 
similar machine form with a low-clearance chassis and tracks—thereby providing a 
low-weight platform for lowland grass harvesting. The project involves multiple uni-
versity partners and enterprises who will lead commercialization efforts. The com-
mercial Robotti field robot has a similar machine form, is electrically powered, and 
has been demonstrated as a tool carrier for the cultivation of row crops (Kongskilde, 
2013; Grimstad, 2014).

FIGURE 5.17  BoniRob autonomous field robot with a soil penetrometer application mod-
ule. (From University of Applied Sciences Osnabrück, Germany. With permission.)
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Another approach has been to use commercially available machines into which 
machine intelligence is integrated to enable machine autonomy. This approach, 
building on proven machinery technology, has promise in the commercialization of 
intelligent agricultural machines. Noguchi (2013) presented several robotic vehicles 
that were built on small, conventional machinery platforms, including a wheeled 
tractor, a crawler tractor, a rice transplanter, and a small combine harvester. This 
approach used small, conventional agricultural machines typically found in Japan. 
Each machine was able to autonomously perform field operations for which it was 
designed. The wheeled tractor, for example, was able to carry out tillage, seeding, 
spraying, and harvesting autonomously when provided with a map. Similarly, the 
ASuBot was built on a Massey Ferguson 38-15 garden tractor (Jørgensen, 2011; 
Nielsen et  al., 2011; Jensen et  al., 2012). The Autonomous Mechanisation System 
(AMS; Blackmore et al., 2007a,b; Griepentrog, 2010; Jaeger-Hansen, 2013) was built 
on a 20-kW tractor (model Hakotrac 3000, Hako, Bad Oldesloe, Germany). These 
examples are similar to the early Demeter system built on a conventional windrower 
(model 2550 Speedrower, New Holland, Pennsylvania) using GPS and machine 
vision for localization. The system autonomously harvested over 40 ha each year in 
two cropping seasons (Pilarski et al., 2002).

5.8.3 C ommercial Autonomous Machines

Commercial introductions of machine autonomy have generally been leader–follower 
pairs of machines (Hest, 2012; Posselius and Foster, 2012). Several of these examples 
are for on-the-go unloading of combine harvesters into a grain cart pulled by a trac-
tor. For example, John Deere Machine Sync, described above, enables the combine 
to lead the tractor–grain cart follower (ASABE, 2013). The Case IH V2V system 
operates in a similar fashion (Case IH, 2011). The Kinze Manufacturing Autonomy 
project has demonstrated a fully autonomous tractor–grain cart product. With this 
system, combine operators call the autonomous tractor to follow the combine until 
the time of unloading when the tractor synchronizes with the combine. After unload-
ing, the grain cart is driven to the side of the field to await further instructions. This 
system is currently in a multiple year test program (Kinze, 2014).

Fendt’s entry into machine autonomy is a product called GuideConnect, which is 
a leader–follower system for two tractors performing field operations (Fendt, 2012). 
The leader tractor has an operator, and the following tractor is driverless. The fol-
lower tractor follows the course of the leader tractor at an operator-specified follow-
ing distance and a lateral distance from the path of the leader tractor. At the end 
of the field, the follower tractor pauses while the leader tractor turns, and then the 
follower takes the same turning pattern.

These commercial introductions demonstrate that for specific situations, semiau-
tonomous operations show potential to add value to farmers. Note that in each case, 
human operators are exercising supervision and are doing the high-level control and 
mission planning. That is, much of the high-level intelligence still resides in the 
human, and it can be amplified with machine intelligence to achieve higher produc-
tivity or efficiency goals.
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5.9  SUMMARY AND FUTURE DIRECTIONS

The growing worldwide population requires increased food production from agricul-
ture. However, the available land, water, and other production inputs are all limited. 
As such, about 70% of the additional food needs must come from efficiency-improv-
ing technologies (Simmons, 2011). PA is one of those technologies; machine automa-
tion is a key component in PA. Automation cannot only improve productivity, but 
also solve problems related to limited labor availability and high labor costs due to 
the aging farm population. Significant progress has been made since the early 2000s 
in automated guidance, variable-rate application, section control, machine coordina-
tion, and logistics support. The rapid adoption and impact of automation technology 
in agriculture cannot be understated. However, there is still a long way to go toward 
robotic farming. Many technologies, as required for developing intelligent agricul-
tural machinery and discussed in the previous sections, are still in early develop-
ment stages. Among those, the most challenging technologies are machine health 
awareness and safeguarding, mission planning, and implement monitoring. System 
architectures that will enable research teams to build upon one another’s work are 
also critically needed.

Future intelligent machinery for production agriculture may take the form of mul-
tiple small robots. There are many advantages in using small autonomous robots in 
PA. With a small machine form, the soil compaction problem caused by large and 
heavy agricultural machines traveling over fields can be minimized. Research also 
indicated that utilizing small machines have the potential to reduce energy require-
ments for field operations (Toledo et al., 2014). In addition, vehicle safeguarding for 
a small machine can be implemented more easily than for a large machine, which 
makes the small-sized robot a more desired machine form for robotic farming. 
However, small autonomous robots have a competitive disadvantage over conven-
tional machines because of their slow work rate.

Additionally, the right level of automation still needs to be sorted out in the mar-
ket. Although fully automated machines are desired, some argue that such machines 
may not be commercialized in the foreseeable future due to safety concerns. Future 
intelligent machinery may still need human operators for some supervisory control, 
reacting to unexpected situations that could arise in fields, although the majority of 
machine functions will be automated. The leader–follower configuration for the com-
bine harvester and tractor–grain cart combination for on-the-go grain tank unloading 
is an example. Development of this type of highly automated machine or semiautono-
mous machine will continue to be the focus of the agricultural equipment industry.

There are very few examples of successful commercialization of agricultural 
robots. The reasons for slow commercialization are mainly technical and economic. 
Technically, removing human operators from a machine performing a field operation 
means that the burden of the supervisory control of the machine must be placed on 
machine intelligence systems. To date, it has been difficult to achieve this level of 
intelligence. Economically, the high cost to equip the machine with the necessary 
intelligence is not feasible right now. Nevertheless, technology innovations in sens-
ing and controls, precision guidance, machine communications, information man-
agement, and power electronics may eventually make robotic farming a reality.
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in Large-Scale 
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Chenghai Yang, Ruixiu Sui, and Won Suk Lee

6.1 ​ INTRODUCTION AND CURRENT STATUS

Research activities in precision agriculture started with the development of yield 
monitors, grid soil sampling, soil sensors, positioning systems, and variable-rate 
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technology (VRT) at universities and research institutes in the United States and 
Europe in the late 1980s. By the early 1990s, grain yield monitors and variable-rate 
controllers became commercially available. With advances in global positioning sys-
tems (GPS), geographic information systems (GIS), remote sensing, and sensor tech-
nology, the agricultural community has experienced and witnessed the development 
and application of various precision agriculture technologies since the mid-1990s.

The central concept of precision agriculture is to identify within-field variability 
and to manage that variability. More specifically, precision agriculture uses a suite of 
electronic sensors and spatial information technologies (i.e., GPS, GIS, and remote 
sensing) to map within-field soil and crop growth variability and to optimize farm-
ing inputs (e.g., fertilizers, pesticides, seeds, and water) to the specific conditions 
for each area of a field with the aim to improve farm input efficiency, increase farm 
profits, and reduce environmental impacts. To automatically implement the concept 
of precision agriculture, the following four main steps are generally involved: (1) 
measuring spatial variability; (2) analyzing data and making site-specific recom-
mendations; (3) implementing the variable-rate application (VRA) of farm inputs; 
and (4) evaluating the economic and environmental benefits.

A broader view of precision agriculture would include more than VRA. It is 
more about helping farmers better manage their operations and correct inadver-
tent errors using sensing and control to automate and more precisely carry out field 
operations. For example, automatic guidance, boom section control, and planter 
monitoring are all examples of precision agriculture technology, but really have 
nothing to do with VRA.

Precision agriculture has the potential to improve the use efficiency of farm inputs, 
increase farm profits, reduce adverse environmental impacts, and improve sustain-
ability. These benefits are important for both producers and the general public and 
will affect the pace of adoption of precision agriculture. For a new farming practice 
to be widely adopted in production agriculture, the practice must yield an economic 
profit except for regulatory requirements. Precision agriculture requires additional 
costs associated with new equipment and data collection and analysis. If the initial 
investment for equipment is high, actual economic returns of VRA will be low or 
even negative for the first few years. Some costs associated with data collection for 
a field can be accurately determined, while other costs for new equipment and data 
analysis are difficult to estimate for each field. Nevertheless, it is certain that these 
costs will go down if the same equipment and data analysis software or services are 
used for multiple fields over multiple years.

Despite technological advances and potential benefits, the adoption of preci-
sion agriculture technologies has been slower than envisioned in the United States 
as well as in other parts of the world. Using the U.S. Department of Agriculture’s 
Agricultural Resource Management Survey (ARMS) data collected between 1996 
and 2009, Schimmelpfennig and Ebel (2011) examined trends in the adoption of 
four key information technologies, including yield monitors, VRA technologies, 
guidance systems, and GPS-based soil maps, in the production of major field crops. 
While yield monitoring was used on over 40% of U.S. grain crop acres, the adoption 
rates for VRT were only 12% for corn, 8% for soybeans, and 14% for winter wheat. 
The use of GPS-based soil maps declined to about 15%, while guidance systems 
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were adopted on 15%–35% of nationally planted acres for corn, soybeans, and win-
ter wheat. Some of the factors that could contribute to the low and mixed adoption 
rates include the lack of farm operator education, technical sophistication, and farm 
management acumen.

Using the 2010 ARMS data of corn producers, Ebel and Schimmelpfennig (2012) 
attempted to understand the lower VRT adoption rates and to see if the adoption is 
sequential. Based on 1445 observations from the survey, the adoption rates were 39% 
for yield monitors and 17% for VRT for corn in 2010. Only 45% of the yield monitor 
users actually created yield maps. About 40% of those who used yield monitors and 
created yield maps also made use of VRT. In comparison, only 10% of those who 
used yield monitors, but did not create yield maps, performed variable-rate fertilizer 
application.

In 2013, CropLife magazine and the Center for Food and Agricultural Business 
at Purdue University conducted the 16th survey of crop input dealers and their use 
of precision technology (Holland et al., 2013). About 51% of the respondents offered 
controller application of single-nutrient fertilizer, while 47% offered a multinutrient 
fertilizer option. Variable-rate pesticide application decreased from 22% in 2011 to 
16% in 2013, while variable-rate lime application made a minor gain from 45% in 
2011 to 47% in 2013. Variable-rate seeding increased to 32% in 2013 from 24% in 
2011. Precision agronomic services, such as soil sampling with GPS and GIS field 
mapping, were offered by 66% of the respondents, an increase from 59% in the 
2011 survey. GPS guidance systems with manual (light bar) and automatic (auto-
steer) control were offered by 65% and 61%, respectively, of responding dealerships. 
GPS-enabled sprayer boom sections (53%), satellite/aerial imagery (39%), field map-
ping with GIS for billing purposes (32%), and GPS for logistics (21%) all made gains 
from the 2011 survey. The use of telemetry for field-to-home office communica-
tions jumped from 7% in 2011 to 15% in 2013. Chlorophyll/greenness sensors also 
increased to 7% from 4% previously. Soil electrical conductivity mapping (12%) and 
other vehicle-mounted soil sensors for mapping (3%) were similar to the 2011 results.

When asked about their propensity to invest in precision technology in the future 
in the 2013 survey, the responding dealerships indicated that investment would con-
tinue to grow. About 81% of the respondents said they plan to allocate funds to 
precision technology, a slight increase from the 80% of the respondents investing in 
precision technology in 2011. Although most crop input dealers currently offer one 
or more precision agriculture technologies to their customers, the adoption rates of 
these technologies by farmers are still relatively low as shown by the ARMS data 
(Schimmelpfennig and Ebel, 2011). The adoption pattern has also been uneven geo-
graphically. The survey results show that precision technologies are clearly more 
popular in the Midwest than in other parts in the United States.

Many studies in the United States have shown that VRAs of farm inputs are 
superior to uniform rate application in terms of efficient input use, but evidence of 
profitability has been mixed (Swinton and Lowenberg-DeBoer, 1998; Bullock and 
Lowenberg-DeBoer, 2007). A principal cause of the nonprofitability of VRT has 
been that farmers have had insufficient information about crop yield response to 
managed inputs, field characteristics, and weather (Bullock et al., 2009). Review arti-
cles and book chapters on the adoption and profitability of VRT and other precision 
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agriculture technologies around the world can be found in the literature (Griffin 
and Lowenberg-DeBoer, 2005; Srinivasan, 2006; Bramley, 2009; Oerke et al., 2010; 
Robertson et al., 2011; Zhang and Pierce, 2013).

This chapter will discuss and illustrate with examples how precision agriculture 
technologies have been used for precision fertilizer application, water management, 
crop pest management, and specialty crop production in large-scale mechanized 
farming in the United States. Some of the challenges and research needs will also 
be discussed.

6.2 ​ PRECISION FERTILIZER APPLICATION

Fertilizer application is an essential and critical practice in agricultural production 
systems. Fertilization is one of the greatest cost inputs in crop production. Taking 
fertilizer nitrogen (N) as an example, it has been the largest increase in the use of 
agricultural inputs during the past few decades (Johnston, 2000). In conventional 
fertilization management systems, fertilizer N is uniformly applied across a field. 
Uniform N fertilizer rate across entire fields can result in over- and underapplications 
of N because crop responses to N fertilization are often variable within individual 
fields (Vetch et al., 1995) and plants in some parts of the field may need more N while 
plants in other parts may require less. Therefore, on some parts of the field, more N 
should be applied or much less to none on other parts of the field (Raun and Johnson, 
1999). Either underuse or overuse of N fertilizer can create negative effect on desired 
growth pattern of plants and cause decrease of yield and quality (Fernandez et al., 
1996; Gerik et al., 1998). Additionally, overfertilization with N will increase produc-
tion costs while increasing the potential for negative environmental impact (Bakhsh 
et al., 2002; USEPA, 2003). Owing to substantially increased environmental con-
cerns and rising N prices, there is an urgent need of innovative technologies and 
systems that can apply the fertilizer more precisely so as to increase fertilizer use 
efficiency, maximize farm profit, and minimize environmental impacts.

VRA technologies can be divided into two main categories: map-based and sen-
sor-based. Map-based VRA uses predetermined prescription maps in VRA opera-
tion while sensor-based VRA uses real-time information from various sensors to 
perform VRA “on-the-go.” No GPS receiver might be needed for the sensor-based 
VRA.

6.2.1 ​ Equipment for Fertilizer VRA

The practice of map-based variable-rate fertilizer application requires hardware and 
software, including a prescription map, a fertilizer applicator equipped with a VRA 
controller and relevant software, and a GPS receiver (Figure 6.1). In field operations, 
as the applicator travels, the GPS receiver determines the location of the applicator in 
the field. Based on the spatial information from the GPS receiver and the data from 
the prescription map, the VRA controller generates an electrical signal to control a 
mechanical actuator to apply fertilizer at a desired rate to that specific location in the 
field. Although most of the equipment for variable-rate fertilization was map-based, 
sensor-based fertilizer VRA systems have been developed in recent years. Instead of 
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using the application rates given in the prescription map in the map-based system, 
the sensor-based VRA applicator uses multiple sensors and data acquisition and pro-
cessing systems to collect and interpret real-time information of plant health condi-
tions, determine the application rate using predetermined algorithm, and control the 
actuator to apply the desired amount of fertilizer as the applicator travels across the 
field (Figure 6.2).

Fertilizers can be applied as solids and liquid. Both solid and liquid fertilizer 
applicators with VRA capability are commercially available for agricultural produc-
tion. Most VRA liquid fertilizer applicators use servo valves, flow meters, and speed 
sensors to directly control the flow of the liquid fertilizer to achieve a desired appli-
cation rate. As the applicator moves across the field, the VRA controller is constantly 
updated with the applicator location information provided by the GPS receiver and 
desired application rate at the location, and then adjusts the flow rate of the liquid 

FIGURE 6.1  ​A map-based variable-rate liquid fertilizer applicator. Prescription maps can 
be uploaded and displayed in the controller installed inside the cab. 

Actuator

Controls

Sensors

FIGURE 6.2  Illustration of a sensor-based variable-rate application system including sen-
sors, controls, and the actuator.
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fertilizer to match the desired rate by controlling the servo valve opening based on 
the inputs from the speed sensor and flow meter and the swath width of the applica-
tor (Yang, 2000; Grisso et al., 2011). Some other control methods such as chemical 
injection control and pulse width modulation (PWM) flow control are also available 
for VRA fertilization, especially for the top-dressing (Sui and Thomasson, 2006; 
Taylor and Fulton, 2010; Bora et al., 2011).

6.2.2 ​P rescription Map

Map-based variable-rate fertilization requires prescription maps. A prescription map 
provides the information to the VRA controller of the applicator to apply how much 
fertilizer at each specific location within the field. The prescription map for variable-
rate fertilizer should include spatial coordinates of each location and the fertilizer 
application rate associated with each location within the field. Normally, a prescrip-
tion map can be created using GIS or other software. One or multiple inputs, includ-
ing soil properties, crop yield, plant health conditions, and field topography, are often 
used to establish the management zone and calculate nutrient application rate. This 
input information can be obtained through various means, including soil sampling, 
soil survey maps, soil electric conductivity mapping, yield monitors, remote sensing 
imagery, and ground-based plant health sensing (Sui and Thomasson, 2006). No 
prescription map is needed for sensor-based variable-rate fertilization. Sensor-based 
applicators use sensors to collect the information for determining the nutrient appli-
cation rate in real time in situ. The information from the sensors such as soil proper-
ties and plant characteristics is processed for the rate control on-the-go. Though it 
does not involve a prescription map, a sensor-based system must have an algorithm 
programmed into the controller so that the controller can calculate the application 
rate using various sensor measurements as the applicator moves through the field. 
So far, the majority of variable-rate fertilizer applicators utilize prescription maps. 
A few sensor-based VRA systems are commercially available for fertilization appli-
cation. Optical sensors for plant canopy reflectance measurement and electrical or 
electromagnetic sensors for soil electrical conductivity measurement are the most 
popular sensing devices used for sensor-based VRA.

6.2.3 ​ Variable-Rate Fertilization Practice

Variable-rate fertilization has become a common practice in crop production for 
many producers in the United States and Europe. This technology applies plant 
nutrients based on plant needs in each location within a field rather than the aver-
age of the field. Adoption of this technology would increase fertilizer use efficiency 
resulting in improvement of crop yield and farming profitability and reduction of 
environment impacts. On-farm studies have been conducted to evaluate variable-
rate fertilization technologies and economic feasibility in field operation (Carr et al., 
1991; Mulla et al., 1992; Wibawa et al., 1993). The following are a few examples.

Yang et  al. (2000) investigated the differences in yield and economic return 
between uniform and variable-rate N and phosphorus (P) fertilizer applications 
for grain sorghum for 2 years in Texas, USA. Three 14-ha fields were used with 
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three fertilizer application strategies (uniform rate N, uniform rate N and P, and 
variable-rate N and P) in the study. Soil samples were collected from the fields and 
analyzed for soil properties, including soil texture, organic matter, electrical conduc-
tivity (EC), and nutrient contents. N and P application rates were calculated based 
on the yield goal and soil properties. Prescription maps for N and P application were 
created and the fertilizers were applied accordingly using a variable-rate fertilizer 
applicator. The sorghum was harvested with a yield monitor. Yield data analysis 
indicated that the variable-rate treatment resulted in significantly higher yields than 
the uniform N and P treatment for both years. Yield data also showed that yield in the 
area with variable-rate treatment was distributed more evenly than that with the two 
uniform rate treatments. The variable-rate treatment had positive relative economic 
returns of $27/ha in the first year and $23/ha in the second year over the uniform N 
and P treatment. However, if the costs for use of the VRA technology were consid-
ered, these returns would be lower.

Koch et  al. (2004) evaluated the economic feasibility of variable-rate N appli-
cation in two continuous corn cropping system fields in Colorado for two grow-
ing seasons. One field was 18.5 ha under furrow irrigation, and the other was 58 ha 
under center pivot irrigation. Commercial software was used to generate site-specific 
management zones (SSMZ) on the fields with GIS data layers, including bare soil 
aerial imagery, field topography, and the farmer’s past crop and soil management 
experience. Four N management strategies were compared, which were uniform N 
application with a constant yield goal, variable-rate N application based on grid soil 
sampling with a constant yield goal, variable-rate N application based on SSMZ 
using a constant yield goal (SSMZ-CYG), and variable-rate N application based on 
SSMZ using variable yield goal (SSMZ-VYG). Nitrogen application rate for each 
strategy was determined using an algorithm, which included yield goal, soil nitrate 
residual, and soil organic content as components in the calculating formula. After anal-
ysis of the yields, costs, and net returns, they found that the SSMZ-VYG N manage-
ment strategy used 6%–46% less total N fertilizer and produced $18.21 to $29.57/ha 
more net return when compared with the uniform N management. They also pointed 
out that it would be a more profitable way for producers to add VRA systems onto 
existing uniform N fertilizer applicators for variable-rate N fertilization.

The impact of variable-rate fertilization on surface and underground water qual-
ity was evaluated in wild blueberry fields in central Nova Scotia, Canada (Saleem 
et al., 2013a,b). Uniform and variable-rate fertilizer application treatments were used 
in these studies. The fertilizer was applied in the fields according to the experimental 
design. Surface runoff and subsurface water samples associated with different treat-
ments were collected from different zones. The runoff water samples were analyzed 
for water quality, including total phosphorus (TP), dissolved reactive phosphorus 
(DRP), particular phosphorus (PP), and inorganic N concentrations. After every 
heavy rainfall, the subsurface water samples were collected and analyzed for nitrate 
N and ammonium N. Compared to the uniform fertilizer application treatment, the 
variable-rate treatment significantly reduced the TP, DRP, PP, and inorganic N losses 
in the runoff, but did not affect the yield with 40% less fertilizer applied. The vari-
able-rate treatment significantly decreased nitrate and ammonium loading in subsur-
face water as compared with the uniform treatment.
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To make sensor-based fertilization, a real-time sensing and control system is 
required to determine the fertilizer needs and apply the desired rate at each specific 
location across the field. Sensors are the key components in the sensor-based fertil-
izer application system. Several sensors are commercially available for VRA use. 
Crop Circle and GreenSeeker crop sensors are commonly used for plant canopy 
reflectance measurement. The Crop Circle sensor is made by Holland Scientific Inc. 
(Lincoln, NE). It uses modulated LEDs as a light source and is able to measure 
the reflectance in three bands. The GreenSeeker sensor, manufactured by NTech 
Industries (Ukiah, CA), also uses modulated LEDs as light sources and measures the 
light reflected from the plant canopy in two bands. Plant canopy reflectance in dif-
ferent bands measured by these sensors has often been used to calculate vegetation 
indices, which indicate plant characteristics. The most commonly used index is nor-
malized difference vegetation index (NDVI). NDVI is calculated by dividing the dif-
ference between the reflectances at near-infrared (NIR) and red bands by the sum of 
the reflectances at the two bands; that is, NDVI = (NIR – Red)/(NIR + Red). Other 
vegetation indices, including reflectance band ratios and individual band reflectance, 
have also been employed for crop management.

Sui et al. (1989, 2005) and Sui and Thomasson (2006) reported the development 
of a ground-based sensing system for determining N status in cotton plants in real 
time in situ. The system includes an active optical sensor, an ultrasonic sensor, and 
a data acquisition unit (DAQ). The optical sensor was able to measure crop canopy 
reflectance in four wavebands, including a blue band (400–500 nm), green band 
(520–570 nm), red band (610–710 nm), and NIR band (750–1100 nm). The ultrasonic 
sensor determined plant height. The DAQ was an intelligent device, which simulta-
neously collected and processed data from the optical sensor, ultrasonic sensor, and 
spatial information from a GPS receiver on-the-go. Spectral reflectance and plant 
height data were compared to laboratory measurements of cotton plant leaf N con-
tent and used to train an artificial neural network (ANN) for predicting N status in 
cotton plants. The trained ANN was able to predict N status of the cotton plants at 
90% accuracy when N status was divided into two categories, deficient and nonde-
ficient. The results suggested that this real-time crop sensing system had promising 
potential for sensor-based fertilizer application.

For successful use of a sensor-based variable-rate fertilization system, an 
understanding of how the sensor works and what it actually measures is required. 
The knowledge of relationships between sensor measurements and plant needs is 
also necessary. Taking crop canopy sensor and soil EC sensor as examples, the 
crop canopy sensor is positioned above the crop canopy and measures crop canopy 
reflectance in specific spectral bands, and the soil EC sensor measures soil electri-
cal conductivity in different depths of the soil. The reflectance data and soil EC 
data can be processed and used for various applications based on the relationship 
between these data and other variables of interest. For example, Khalilian et al. 
(2008, 2011) used NDVI and soil EC data to develop an algorithm for N applica-
tion in cotton. The results indicated the potential for using midseason specific 
plant NDVI data for VRA of N for cotton. Similar studies and results in cotton 
have been reported by Taylor et al. (2007), Scharf et al. (2008), and Sharma et al. 
(2008).
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Scharf et  al. (2011) conducted an on-farm study on sensor-based variable-rate 
N applications in corn. In their research, multiple crop reflectance sensors were 
installed on the N application equipment to measure plant canopy reflectance to 
control side-dress N rate. Using the sensor’s outputs in the visible and NIR channels, 
a parameter referred to as relative visible/NIR was calculated by dividing the ratio 
of the reflectance at the visible band to the reflectance at the NIR band in the target 
area by the ratio of the reflectance at the visible band to the reflectance at the NIR 
band in the high-N area. The N application rate was determined using this relative 
visible/NIR parameter with an algorithm for N use in corn. According to the rate, 
N was applied site-specifically using the sensor-based variable-rate fertilizer appli-
cator. Fifty-five on-farm demonstrations were made in 5 years. The results showed 
that the sensor-based N application increased partial profit by $42/ha and yield by 
110 kg/ha while reducing N use by 16 kg/ha as compared to the producer’s N rate. 
It was obvious that the sensor-based variable-rate N application for corn produced 
economic and environmental benefits.

Raun et al. (2001) found that grain yield potential of winter wheat could be pre-
dicted using canopy spectral reflectance characteristics. In their work, canopy spec-
tral reflectances at the red and NIR bands were measured by utilizing an optical 
instrument. NDVI was calculated from the reflectance measurements. Yield poten-
tial was estimated using NDVI measurements and cumulative growing degree-days. 
Raun et al. (2002) reported that when compared with uniform rate N application, the 
variable-rate N fertilization in wheat could increase N use efficiency by more than 
15% using the N fertilization optimization algorithm, which was developed with 
the canopy optical reflectance measurements. Biermacher et  al. (2009) conducted 
on-farm evaluation of the profitability of a sensor-based variable-rate N applica-
tion system in comparison with the conventional uniform N application method. 
The variable-rate system used optical sensors to detect plant canopy spectral reflec-
tance in the field. The optical reflectance measurements were used by the system’s 
controller through the algorithm to calculate the N needs on each 0.37 m2 grid in 
real time in situ and applied the N fertilizer according to the needs on-the-go. The 
experiments were conducted in wheat crops for three growing seasons across nine 
locations in Oklahoma, USA. They found that the mean net returns with the sensor-
based variable-rate N application system were not statistically different from the net 
returns using the conventional uniform N application methods. The sensor-based 
VRA system used by Biermacher et al. (2009) was modified in the size of sensing 
grid and the algorithm for determining the on-the-go N application rate in wheat. 
Using the sensing method and the algorithm used in the modified VRA system, 
Boyer et al. (2011) did a similar study and obtained similar results.

6.2.4 ​C hallenges and Research Needs

Variable-rate fertilization technology has been developed for more than 20 years. 
Currently, various types of equipment and control devices for variable-rate fertil-
izer application are available on the market. Some producers have used variable-rate 
fertilizer application for crop production. However, the adoption of this technology 
has been slow. There are many reasons for the slow adoption. The main reason is 
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probably that the lack of sufficient evidence to demonstrate that variable-rate fer-
tilization can significantly increase net returns in crop production. Some research 
has shown that adoption of variable-rate fertilization could provide positive eco-
nomic returns, but results vary depending on how the technology is used and what 
the specific field conditions are. The uncertainty of the profitability and the cost of 
implementation are some of the producers’ concerns about investment in variable-
rate fertilization technology. To address these concerns to accelerate the adoption 
of this technology, further research needs to be conducted in the following aspects: 
(1) development of low-cost variable-rate components (i.e., sensors, controllers, and 
actuators) and integration of these components into/with existing fertilizer appli-
cation equipment; (2) development of low-cost and easy-to-use tools to determine 
site-specific fertilizer application rates and create prescription maps so that field 
profitability can be enhanced more effectively with minimum inputs; and (3) long-
term systematic studies on the economic feasibility and environmental impacts of 
variable-rate fertilization.

6.3  PRECISION CROP PEST MANAGEMENT

Pesticides are widely used to control a variety of crop pests to minimize yield loss 
and quality reduction in crop production. The three major types of crop pests tar-
geted by pest application are insects, weeds, and diseases. Pesticides (i.e., insecti-
cides, herbicides, and fungicides) are commonly applied by ground-driven sprayers 
or aerial applicators. Traditional uniform pesticide application has been commonly 
used for pest control, though VRA may be more appropriate for the management of 
certain patchy weeds and diseases. Since insects are mobile within and across fields, 
traditional uniform application may be appropriate. This section will discuss the 
approaches to variable-rate pest management and some research and commercial 
activities on the use of VRT for the control of crop weeds and diseases.

6.3.1  Variable-Rate Pesticide Application Methods

The map-based and sensor-based methods also apply to variable-rate pesticide appli-
cations. Both methods require the application rates to be determined based on site-
specific conditions, though only the map-based method requires a prescription map. 
The selection of the application methods depends on whether the pest can be identi-
fied and correct application rates determined quickly on-the-go.

Pest distribution and density over space and time are not uniform and can be 
affected by a variety of factors. Some crop pests occur randomly within a field, 
while others tend to occur in similar patterns spatially and temporally. For example, 
some weeds often occur in aggregated patches of varying size or in stripes along 
the direction of cultivation (Thornton et al., 1990; Gerhards and Christensen, 2006; 
Christensen et al., 2009). If pest occurrences are consistent in density and locations 
over years, maps from previous years can be used to regulate pesticide applications 
in subsequent years. Otherwise, either sensor-based VRA can be used for real-time 
pest control or map-based control can be used within the season if pest maps can be 
quickly generated using ground-based sensors or remote sensing imagery.
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The key to the implementation of variable-rate pesticide application is to generate 
pest maps or to detect pest presence on-the-go. Several techniques such as grid sam-
pling, ground-based spectral sensors, and remote sensing can be used to document 
the distribution and intensity of weeds or diseases within fields during the growing 
season. The maps derived from these methods can be used for both within-season 
and postseason control. Yield maps from yield monitors can also be used to map the 
distribution of a pest if that pest causes a significant yield loss. For real-time con-
trol, ground-based soil organic matter sensors can be used with VRA preemergence 
herbicides because the amount of soil organic matter influences the effectiveness 
of some herbicides, often mentioned on the label. Ground-based spectral sensors 
or digital cameras can be used to detect the presence of weeds or fungi for VRA of 
herbicides or fungicides.

6.3.2 ​ Variable-Rate Controllers

VRA will not affect the basic functions of existing pesticide applicators. The 
required changes will be necessary to accommodate the addition of a task com-
puter, a GPS receiver, a controller, sensors, and valves. There are different types of 
control systems on the market that are adaptable to precision application, including 
flow-based control of a tank mix, chemical injection control, and chemical injection 
control with carrier control (Humburg, 2003). The flow-based control of a tank mix 
is the simplest of the three and it combines a flow meter, a ground speed sensor (or 
GPS speed), and a controllable valve (servo valve), with an electronic controller to 
apply the desired rate of the tank mix. These systems can make rate changes across 
the boom quickly. However, the changes in flow rate directly affect the pressure to 
be delivered to the spray nozzles. This can result in large changes in droplet size in 
the spray when the commanded flow rate is outside the best operating range for the 
nozzles.

Direct injection of the chemical into a stream of the carrier (water) uses the con-
troller and a chemical pump to manage the rate of chemical injection rather than 
the flow rate of a tank mix. The flow rate of the carrier is usually constant, and 
the injection rate is varied to accommodate changes in the commanded application 
rate. However, the principal limitation of chemical injection systems without car-
rier control is the transport delay from the injection point to the application nozzles 
(Tompkins et al., 1990; Sudduth et al., 1995).

Chemical injection with carrier control can overcome some of the limitations 
and have many of the advantages of both of the earlier systems, but it requires that 
the control system change both the chemical injection rate and the water carrier 
rate to respond to application rate changes. One control loop manages the injection 
pump, while a second controller operates a servo valve to provide a matching flow 
of water. Chemical injection with carrier control will result in less application error 
than chemical injection without carrier control because carrier control minimizes 
the concentration variations to within dynamic response differences between the 
two subsystems, thus reducing the effect of transport delays (Steward and Humburg, 
2000). Nevertheless, the range of carrier control is limited to the workable pres-
sure range of the nozzles. With the advent of PWM nozzles (Giles et al., 1996) and 
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variable orifice nozzles (Bui, 2005), the range of flow rates has been expanded while 
minimizing changes in droplet size.

Several agricultural equipment vendors, including Raven Industries, Micro-Trak, 
Mid-Tech, and DICKEY-john, started to provide these variable-rate controllers in 
the 1990s. Many of the controllers have been adapted to existing applicators for 
variable-rate pesticide applications. Meanwhile, numerous research activities have 
continued on the development and evaluation of variable-rate pesticide application 
systems (Al-Gaadi and Ayers, 1999; Han et al., 2001; Dammer et al., 2009; Liu et al., 
2014). More advanced variable control systems have been developed in the last 20 
years and are available from more vendors.

6.3.3 ​ Variable-Rate Pest Management Activities

6.3.3.1  Herbicide Application
Reductions in herbicide use achieved with site-specific applications depend on the 
distribution and density of weeds in the field. In an evaluation of site-specific poste-
mergence weed control of broadleaf and grass weeds in corn based on grid sampling-
derived prescription maps, Williams et al. (2000) showed a reduction of herbicide 
use by 11.5%–98.0% compared with conventional herbicide spraying. Throp and Tian 
(2004) used a weed map developed from remote sensing imagery for variable-rate 
herbicide treatments in a soybean field. Of the four herbicide treatments, the VRA 
performed the best when considering both weed kill effectiveness and herbicide use 
efficiency. Koller and Lanini (2005) evaluated variable-rate herbicide applications 
based on weed infestation maps developed from the previous year using grid sam-
pling. Their results showed that when either the weed seedling map or the mature 
weed map was used, weed control in terms of subsequent weed cover was compara-
ble to uniform herbicide application, while the total amount of herbicide applied was 
reduced by 39% for the seedling map and 24% for the mature weed map. Nolte et al. 
(2011) reported that site-specific placement of herbicide in a field with nonuniform 
soil textures reduced levels of seedling injury by 30% in regions of the experimental 
field where soil texture was classified as light or sandy, while application rates were 
35% lower than the standard rate with no significant differences in weed control.

Detection of weeds in agricultural crops using airborne and satellite imagery 
has been a challenge due to the similarity in spectral reflectance between weed and 
crop plants and the complex interaction among crop, weed, and soil background. 
Therefore, other research has focused on the use of ground-based sensors for weed 
detection and variable-rate herbicide application. Shearer and Jones (1991) used 
photoelectric sensing to detect weeds between crop rows and to activate a spray 
nozzle on a ground-based spray system. Testing in soybeans showed a 15% reduc-
tion in herbicide usage with no compromise in weed control. Hanks and Beck (1998) 
investigated two commercial photoelectric sensor-based systems, the Detectspray 
Model S-50 and the WeedSeeker Model PhD 1620, and field testing of the two 
systems showed a 63%–85% reduction in herbicide use with no significant loss in 
weed control.

Photoelectric sensors can be easily incorporated into variable-rate herbicide 
application systems, but this type of sensor cannot distinguish weeds from crop 
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plants and is generally limited to the detection of significant weed cover between 
crop rows. Therefore, ground-based weed sensors using machine vision technology 
have been investigated. In machine vision, images are collected with ground-based 
cameras and then classified to distinguish weeds from crop and soil background 
using image processing techniques. Although most of the studies in this area have 
focused on the evaluation of different color indices, morphological or texture param-
eters, and complex algorithms for segmentation of weeds under naturally variable 
lighting conditions, only a few machine vision-based weed sensing systems have 
been tested for real-time herbicide application. Giles and Slaughter (1997) devel-
oped a machine vision-guided precision band sprayer for small plant foliar spraying. 
The system reduced application rates by 66%–80% and increased spray deposition 
efficiency on the target plants by 2.5–3.7 times greater than conventional broadcast 
spraying. Tian (2002) integrated a real-time machine vision sensing system and indi-
vidual nozzle controlling devices with a commercial map-driven herbicide sprayer 
to create an intelligent weed sensing and spraying system. Field experiments showed 
that the integrated system operated with a 91% overall delivery accuracy and that 
potential herbicide savings ranged from 52% for one single threshold to 71% for four 
threshold levels under normal weed conditions.

6.3.3.2 ​ Fungicide Application
Depending on types of pathogens and their spatial patterns, disease management 
plans differ greatly. The pattern of infection may be random for wind-dispersed or 
seed-borne diseases. For soilborne diseases, primary disease patterns may reflect 
previous disease occurrence in the field. If patterns of diseases or disease risk are 
predictable and stable between years, site-specific fungicide application can be 
implemented using the previous year’s or current year’s maps. On the other hand, if 
disease patterns vary from year to year, only the current year’s maps or sensor-based 
real-time application can be employed. Bjerre et al. (2006) provided an overview of 
site-specific management of crop leaf pathogens based on canopy spectral reflec-
tance and remote sensing imagery with VRT. Similar to weed management, grid 
sampling, ground-based sensors, and airborne and satellite imagery can be used to 
map the distribution and severity of various diseases.

Any pest that causes sufficient plant stress to distort the reflectance characteristics 
of crop foliage is a candidate for detection by means of remote sensing. Airborne 
and spaceborne imagery has been widely used to detect and map a large number 
of crop diseases, but early detection remains difficult to impossible. By the time 
disease symptoms can be detected on the remote sensing imagery, damage could 
have already been done to the crop in many cases. For some diseases, this may be 
early enough to take control measures to minimize the damage; for others, it may 
be too late to correct the problem within the season. However, remote sensing imag-
ery obtained in the current season can be useful for the management of recurring 
diseases, such as soilborne fungi, in the following seasons. Another challenge for 
remote sensing detection of crop diseases is that multiple biotic and abiotic condi-
tions may coexist and produce similar effects on the color, geometry, or vigor of 
the upper crop foliage. Crop diseases and insects and some soil problems can all 
cause morphological (wilting or stunting) and physiological (chlorosis, darkening, or 
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dehydration) changes in a crop. If only one dominant disease occurs or if multiple 
diseases or stresses with distinctive symptoms are present, remote sensing imagery 
will be able to discriminate the infected areas; otherwise, discrimination of the dis-
eases may be possible with additional knowledge of the dynamic behaviors of the 
diseases or other stresses and relevant information of the specific soil and crop con-
ditions. Moreover, high spatial resolution multispectral and/or hyperspectral imag-
ery taken at multiple times may be necessary. As remote sensing imagery with finer 
spatial and temporal resolution is becoming more available and less expensive, it 
will present a great opportunity for both growers and researchers to more effectively 
use this data source for the detection of crop diseases. Many crop diseases have 
been identified as good candidates for remote sensing, but practical procedures for 
farming operations are still lacking. Efforts need to be devoted to the development 
of operational methodologies for detecting and mapping these candidate diseases. 
Meanwhile, more research is needed to evaluate more advanced imaging systems 
and image processing techniques for distinguishing the diseases that are difficult to 
detect or occur with other stresses.

Although remote sensing has been successfully used to detect many diseases, 
very few ground-based disease detection sensors are available for real-time site-
specific fungicide application. However, plant cover sensors that may indirectly indi-
cate potential disease occurrence have been used to regulate fungicide application 
before the onset of disease symptoms. Dammer and Ehlert (2006) evaluated a plant 
cover sensor (CROP-Meter) for real-time VRA of fungicides against cereal diseases 
and they achieved a savings of 7%–38% over 11 fields without negative influences 
on yield and disease occurrence. The sensor’s signal was correlated with the leaf 
area index (LAI), which was then used to regulate the application rate based on the 
assumption that there is a tendency for higher disease occurrence in dense canopies 
for some diseases such as powdery mildew. However, this relatively simple method 
of controlling fungicide application does not take into account the differences in 
disease distribution. Dammer et al. (2009) incorporated a decision support system 
into the previous CROP-Meter-based variable-rate fungicide application system. The 
decision support system was used to create a map of management zones considering 
infection probabilities for fungal diseases using weather data and field-specific data. 
The application rates within these management zones were further adjusted based 
on the CROP-Meter measurements of local vegetation differences. Compared with 
conventional uniform spraying, variable-rate treatment with the plant cover sensor 
resulted in fungicide savings from 13.9% to 32.6% with a decision support map and 
from 11.1% to 20.3% without the decision support map.

Higher levels of biomass (thicker rice) are more likely to have higher incidences 
of sheath blight. Baker and Meggs (2006) compared two fungicides (Quadris and 
Stratego) at variable rates by NDVI zone derived from multispectral imagery and 
conventional blanket application. Savings averaged $2.59/ha ($1.05/ac) for Stratego 
in rice, $25.62/ha ($10.37/ac) for Quadris in rice, and $8.48/ha ($3.43/ac) for Quadris 
in soybeans after all costs for flying and imagery were factored. Follow up with the 
farmers on the rice fields with variable-rate fungicide applications indicated yields 
to be at or above 5-year averages, with good milling quality.
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Fungicide application can be regulated according to canopy density as previously 
discussed or according to disease incidence. When a critical threshold for a disease 
is exceeded, fungicides have to be sprayed immediately because some pathogens 
can quickly spread throughout the crop canopy. For some diseases, such as rusts and 
powdery mildew, early detection and variable-rate treatment may be appropriate. 
For some diseases that tend to spread quickly, treatment decisions based solely on 
disease observation may not be sufficient. In this case, uniform application may be 
more appropriate.

Some diseases tend to occur in similar spatial patterns within fields over years. 
Site-specific treatment can be performed before the onset of the disease based on 
previous years’ infection maps. One such disease is cotton root rot that is caused by 
the soilborne fungus Phymatotrichopsis omnivore. Cotton root rot is a serious and 
destructive disease that has affected cotton production in the southwestern and south 
central United States for over a century. Recent research has shown that the commer-
cial fungicide Topguard (flutriafol) is able to control the disease (Isakeit et al., 2010). 
Yang et al. (2005, 2012) monitored and mapped the progression of cotton root rot 
within and across growing seasons in south and central Texas using airborne multi-
spectral imagery, as infected plants had higher red reflectance and lower NIR reflec-
tance compared to noninfected plants. The imagery from 2010 to 2014 along with the 
image data collected from 2000 to 2002 has demonstrated that cotton root rot tends 
to occur in the same general areas within fields over recurring years, though other 
factors such as weather and cultural practices may affect its initiation and severity. 
This recurrent pattern of cotton root rot incidence should provide the producer with 
greater confidence to use aerial imagery for making site-specific treatment decisions.

Figure 6.3 shows two color-infrared images of a 105-ha (260-ac) cotton field near 
Edroy, Texas, over a 10-year period. The estimated percent infection areas were 17.0% 
in 2001 and 17.5% in 2011 under natural conditions. The overall infection patterns 
between 2001 and 2011 were similar, though there were changes in the locations of 
infected areas. A change detection analysis showed that 9.0% of the field was infected 
in both years, while 8.0% of the field was infected only in 2001 and 8.5% only in 2011 
in addition to the common infection areas. Thus, a total of 25.5% of the field was 
infected in either 2001 or 2011. To accommodate the potential variation of the infec-
tion, if a 5-m buffer is created around the infected areas on the overlaid map, about 40% 
of the field should be treated. Treatment plans for this disease should be simply on/off 
application and multiple levels of treatment are not necessary. Considering the cost of 
the fungicide flutriafol at $124/ha ($50/ac) for the recommended rate of 2.4 L/ha (32 oz/
ac), site-specific treatment will reduce fungicide use by 60% and the savings from fun-
gicide reduction will be $74/ha ($30/ac) per year for this particular field. Research is 
currently undergoing to demonstrate to cotton growers in Texas how to adapt variable-
rate controllers to their existing applicators for site-specific flutriafol application.

6.3.4 ​C hallenges and Research Needs

Field results have demonstrated that variable-rate pesticide application is appropriate 
and potentially profitable for managing crop weeds and fungal diseases. Although 
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the individual technologies required to implement site-specific pesticide application 
are available, it is still a challenge to integrate these technologies for either a weed 
or a disease management system. How to accurately and reliably detect weeds and 
diseases or to predict their risk and pressure for either real-time sensor-based appli-
cation or map-based application remains to be a major challenge. Producers do not 
want to see critical weeds and diseases left untreated in their fields. Treatment deci-
sions have to take into account the potential expansion of the targeted pest. Not all 
the weeds or diseases are good candidates for VRA and traditional uniform applica-
tion remains very effective for many crop pests. More research is needed to identify 
relevant weeds and diseases for which site-specific management will be both techni-
cally feasible and economically profitable in the long term.

(a) 2001

(c) Overlaid

0 200 400 800 m

N

Infected in both years (9.0%)
Infected only in 2001 (8.0%)
Infected only in 2011 (8.5%)
Noninfected in both years (74.5%)

(b) 2011

FIGURE 6.3  (See color insert.) Color-infrared images taken in (a) 2001 and (b) 2011 
and (c) overlaid classification map for an irrigated cotton field infected with root rot near 
Edroy, Texas. (Adapted from Yang, C., C.J. Fernandez, and J.H. Everitt. 2005. Transactions 
of the ASAE, 48(4):1619–1626; Yang, C. et  al. 2012. Proceedings of the Beltwide Cotton 
Conferences, Memphis, TN: National Cotton Council of America, pp. 475–480.)
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6.4 ​ PRECISION WATER MANAGEMENT

Irrigation plays a key role in agriculture production. Irrigated lands produce approx-
imately 40% of the world’s total food on 17% of its cropped lands (Fereres and 
Connor, 2004). In the United States, irrigated agriculture is a major consumer of 
freshwater, accounting for 80% of the nation’s consumptive water use. Irrigation is 
essential for crop production in arid and semiarid regions. However, in recent years, 
the acreage of irrigated land has increased rapidly in humid regions due to the uncer-
tainty in the amount and timing of precipitation. For example, crop producers in the 
Mid-South region of the United States, which has approximately 1300 mm annual 
precipitation, have become increasingly reliant on supplemental irrigation to ensure 
adequate yields and reduce risks of production losses due to water stress during the 
crop growing season. Increasing groundwater withdrawals are resulting in a decline 
in the aquifer levels across the region. Global agricultural production is facing a seri-
ous shortage of water. Improved irrigation technologies are needed to increase water 
use efficiency for sustainable use of water resources.

There are various irrigation methods, including surface irrigation, sprinkler irri-
gation, and microirrigation. A sprinkler irrigation system utilizes sprinkler nozzles 
to distribute irrigation water under pressure. Compared to surface irrigation meth-
ods, sprinkler irrigation can significantly improve irrigation efficiency. Majority of 
the sprinkler irrigation systems in production agriculture are center pivot systems.

As described in the previous chapters, soil and plant characteristics in agricultural 
fields can vary considerably within a field. It is desirable to treat the plants based on 
the plant needs at each specific location of the field. Precision agriculture technolo-
gies allow farmers to make site-specific adjustment of production inputs for optimal 
profit. Variable-rate irrigation (VRI) can be used for optimizing irrigation water use 
efficiency.

6.4.1  VRI Concept

VRI technologies were designed to site-specifically apply irrigation water at variable 
rates within the field to adjust the temporal and spatial variability in soil and plant 
characteristics. VRI is normally implemented on self-propelled center pivot and lin-
ear move sprinkler irrigation systems. Similar to other VRA systems in precision 
agriculture, VRI practices require hardware and software. VRI hardware require-
ments include a GPS receiver to determine the spatial position of the irrigation sys-
tem and an intelligent electronic device to control individual sprinklers or groups of 
sprinklers to deliver the desired amount of irrigation water on each specific location 
within the field according to VRI prescription. The software required includes the 
algorithms to calculate the water application rates and the computer programs to 
create VRI prescription maps.

Currently, two primary control methods are used to realize VRI: speed control 
and duty-cycle control (LaRue and Evans, 2012). The speed control method changes 
the travel speed of the sprinkler irrigation system to vary the water application depth. 
As the other operation parameters of the irrigation system remain constant, the water 
application depth is inversely proportional to the travel speed of the system in the 
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field. This means the higher the travel speed, the lower the water application depth. 
Although the speed control method is easy to implement and inexpensive, it is only 
able to vary the application rate in the travel direction of the irrigation system, not 
along the lateral pipeline, resulting in difficulty to develop VRI randomly shaped 
management zones to address the variability of soil and plant characteristics across 
the field. The duty-cycle control method changes the duty cycle of individual sprin-
klers or groups of sprinklers installed along the lateral pipeline. As the VRI system 
moves in a constant speed, the GPS receiver determines the system’s position in the 
field. Then, using a preloaded VRI prescription map or the real-time information col-
lected from the field, the VRI controller adjusts the on/off time of the sprinklers to 
achieve the desired water application rate. The duty-cycle control method is capable 
of varying the irrigation rate in the system’s travel direction and along the lateral 
pipeline, which offers the flexibility in the development of the management zone.

6.4.2  VRI Control

Studies on the development of controls for VRI using the sprinkler irrigation systems 
have been conducted since the 1990s. A few of these studies are reviewed as follows. 
Fraisse et al. (1992) evaluated the feasibility to apply different irrigation water depths 
using solenoid valves to control the flow to each sprinkler head or set of sprinkler 
heads. Performance of the low sprinkler heads and solenoid valves subjected to rapid 
pulsing was tested in the lab. Their results indicated that water distribution pattern of 
the sprinkler heads was not significantly affected at a pulsing frequency of 1 cycle/
min or higher, and the electrical solenoid valves could be employed to vary water 
application depth with self-propelled sprinkler irrigation systems (Fraisse et  al., 
1995a,b). McCann and Stark (1993) patented a method and apparatus for site-specific 
application of irrigation water and chemicals using center-pivot or linear-moving 
sprinkler irrigation systems. Evans et al. (1996) discussed site-specific applications 
of irrigation water and chemicals using self-propelled irrigation systems coupled 
with climatic data, soil properties, and plant growth conditions. Camp et al. (1997) 
and Omary et al. (1997) reported their work on the development of a site-specific 
center pivot irrigation system for precision management of water and nutrients. They 
added three parallel manifolds in each segment along the main pipeline of a com-
mercial center pivot system. The manifolds and nozzles were sized to provide 1×, 2×, 
and 4× nominal application rate. Using a programmable logic controller, the three 
manifolds could be operated individually or in various combinations to provide eight 
application rates. Comparing the measured water delivery to the designed param-
eters, this VRI system was able to deliver water to the control zones at rates very 
close to the design (Stone et al., 2006).

A prototype center pivot VRI system was developed by researchers at the 
University of Georgia and the Farmscan group (Perth, Western Australia). The VRI 
system changed irrigation water application rates by cycling sprinklers on and off 
and by varying the center pivot travel speed (Perry et al., 2003). Performance of this 
prototype VRI system was evaluated. The results showed uniformity coefficients of 
the system, with application rates of 20%, 80%, and 50%, were 86%, 94%, and 95%, 
respectively. King et al. (1998) patented a variable-flow-rate sprinkler head. In their 
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invention, the sprinkler nozzle size was reduced by inserting a retractable concen-
tric pin into the nozzle bore. The flow rate of the nozzle could be varied by cycling 
the concentric pin in and out of the nozzle bore using a linear actuator such as an 
electric solenoid. Following this approach, King and Kincaid (2004) constructed 
and tested prototypes of the variable-flow-rate sprinkler for site-specific irrigation 
management. The lab test results showed that cycling insertion of the concentric pin 
in the sprinkler nozzle bore was able to vary a time-averaged flow rate over a range 
of 36%–100%. The prototypes of this variable-flow-rate sprinkler were also tested in 
field on a three-span linear-move irrigation system to evaluate the water application 
uniformity (King et al., 2005). It was found that the application uniformity was equal 
to or greater than 90% with the tested application rates. Han et al. (2009) developed 
a variable-rate lateral irrigation system. To vary the irrigation water application rate, 
they used the pulsing system described by Perry et al. (2003) to control the duty cycle 
of individual sprinklers or groups of sprinklers and a speed control system to change 
the travel speed of the lateral irrigation system.

Evans et  al. (2010) reported their work on the development of a site-specific 
irrigation system. The site-specific system was tested on a linear move sprinkler 
system. Results indicated that the site-specific system was capable of switching 
between midelevation spray application (MESA) and low-energy precision appli-
cation (LEPA) irrigation methods and varying water application depths according 
to the defined location in the field. Pierce et al. (2006) and Chávez et al. (2010a,b) 
developed and tested a remote irrigation monitoring and control system (RIMCS) 
for continuous move systems. The RIMCS was installed on a linear move irriga-
tion system for site-specific irrigation. Coupled with a GPS receiver, a single board 
computer (SBC) with wireless Ethernet was employed to control sprinkler nozzles 
through solenoids to vary irrigation water application rates according to irrigation 
prescription maps. The SBC could wirelessly communicate with a remote server. 
The RIMCS was also able to monitor the irrigation system performance and soil and 
crop conditions through wireless sensor networks.

Sprinkler irrigation systems equipped with VRI controllers are now commercially 
available. Figure 6.4 shows a center pivot VRI system manufactured by Valmont 
Industries in 2011. The VRI zone control package of this system includes five VRI 
zone control units, a GPS receiver, and computer software. Each VRI zone control 
unit controls the duty cycle of the sprinklers in two independent zones by turning 
electric solenoid valves on and off to achieve desired application depths in individual 
zones. The GPS receiver determines the pivot’s position in the field for the identifica-
tion of control zones in real time. The VRI prescriptions could be created using the 
software and wirelessly uploaded to the system’s control panel. The performance 
status of the system could be remotely monitored using a smart device such as a 
smart phone (Sui and Fisher, 2014).

6.4.3  Application Uniformity Test

Some work has been reported on the evaluation of commercial VRI system perfor-
mance. Perry et al. (2004) and Dukes and Perry (2006) tested the uniformity of cen-
ter pivot and linear move VRI systems in Georgia and Florida, USA. They reported 
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that both the sprinkler cycling rate and the travel speed of the VRI systems had no 
significant effect on the uniformity of irrigation water application. O’Shaughnessy 
et al. (2013) tested the uniformity of two center pivot VRI systems in a windy loca-
tion in Texas, USA with five application rates ranging from 30% to 100%. The test 
results showed that uniformity coefficients at different application rates varied from 
84.4% to 90.8% with an average of 88.8%. Sui and Fisher (2014) evaluated the uni-
formity of the center pivot VRI system shown in Figure 6.4. They found that the 
average coefficient of uniformity over the application rates of 30%, 50%, 70%, and 
100% was 84.3%. The effect of application rate on the uniformity was significant, 
with higher application rates providing higher uniformity. The uniformity of a con-
trol zone could be influenced by the overlap of sprinkler coverage between the adja-
cent control zones.

6.4.4 ​C hallenges and Research Needs

Even though research efforts on VRI have been made for more than 20 years, adop-
tion of this technology by producers for agriculture production has been quite lim-
ited. There are about 175,000 center pivot and linear move sprinkler systems in the 
United States. However, there are only about 200 sprinkler systems that have zone 
control VRI capacities in the United States, and about 500 speed control VRI sys-
tems around the world (Evans et al., 2013).

The slow adoption of VRI technologies could be due to a number of reasons. The 
main reason could be that the economic benefits gained by VRI technologies are still 
not very clear to producers and irrigation industries. There is very little scientific 
information documenting that the VRI technologies conserve water or energy on a 

FIGURE 6.4  ​A center pivot variable-rate irrigation system running at the research farm of 
USDA-ARS Crop Production Systems Research Unit in Stoneville, Mississippi, USA.
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field scale for crop production (Evans and King, 2012). More research is needed to 
demonstrate that the adoption of VRI technology for water, and nutrient manage-
ment will increase farming profit and protect the environment. Evans et al. (2013) 
pointed out the needs and tools required to encourage adoption of VRI technologies, 
including (1) low-cost, reliable variable equipment such as frequency pump motors, 
solenoid valves, and pressure regulators; (2) guidelines and tools to assist consul-
tants and producers to develop management zones and write VRI prescriptions; (3) 
guidelines for placement of sensor networks and use of the information from the 
sensors installed across the fields; (4) easy-to-use basic, generalized decision support 
systems for VRI in both humid and arid regions; and (5) technical assistant training 
on VRI technologies for producers, consultants, and other relevant personnel.

6.5  PRECISION TECHNOLOGIES FOR SPECIALTY CROPS

Specialty crops are defined in law as “fruits and vegetables, tree nuts, dried fruits, and 
horticulture and nursery crops, including floriculture” (USDA, 2014). Plants commonly 
considered fruits and tree nuts include apple, avocado, banana, blueberry, citrus, cherry, 
coconut, coffee, cranberry, grape (including raisin), kiwi, mango, nectarine, olive, 
papaya, peach, pear, pecan, persimmon, pineapple, pistachio, raspberry, strawberry, 
and walnut. Some of the common specialty vegetable crops include artichoke, aspara-
gus, bean, beet, broccoli, Brussels sprouts, cabbage, carrot, celery, chives, cucumber, 
eggplant, garlic, horseradish, leek, lettuce, melon, mushroom, pea, onion, pepper, 
potato, pumpkin, radish, spinach, squash, sweet corn, sweet potato, taro, tomato, and 
watermelon (USDA, 2014).

Among these crops, the following are grown in large-scale production in the 
United States: apple, blueberry, citrus, cranberry, grape, peach, pecan, pistachio, 
strawberry, walnut, lettuce, potato, sweet corn, and tomato. However, compared to 
traditional grain crops, specialty crop productions are relatively small in scale; there-
fore, precision technologies for specialty crops have not been well developed and 
are still in developmental stages. Crop management practices are also different, and 
thus more creative approaches and solutions are needed. This section reviews some 
precision technologies used for precision fertilization, water management, and crop 
pest management for specialty crop production. Some other related research activi-
ties with application examples are also discussed.

6.5.1 ​P recision Fertilizer and Pesticides Application

To correctly prescribe proper fertilizer amounts for tree crops, it is vital to quantify 
the canopy volume. In the early 2000s, Tumbo et al. (2002) conducted a study to 
compare manual canopy volume measurements with those by ultrasonic and laser 
sensors for citrus production. They reported that the laser sensor yielded better results 
than those by the ultrasonic sensor due to a higher resolution, and was also faster in 
acquiring data. However, both sensors showed good potential in automatic canopy 
measurements. Then, Zaman et al. (2005) measured citrus tree canopy sizes using 
ultrasonic sensors with a differential global positioning system (DGPS) receiver, 
and used them for creating prescription maps for variable-rate nitrogen fertilizer 
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applications. They used a commercial granular fertilizer spreader (MidTech Legacy 
6000) for variable-rate nitrogen application, and reported cost savings of 38%–40% 
compared to uniform applications. Also, Miller et al. (2005) conducted a field trial 
for a commercial VRT controller with a spinner disk pull-type granular fertilizer 
spreader in a 16-ha citrus grove during the 2002–2004 fruit seasons. They tested 
the spreader with a prescription map and photocell-based canopy sensing. The total 
amount of applied granules was compared between actual applied and weighed 
amounts, and they found an average absolute difference of 8%. Also, they compared 
actual application rates with target rates, and found a good agreement between them 
with a coefficient of determination of 0.98.

Further, Schumann et al. (2006) investigated the performance of a variable-rate 
fertilizer spreader in a citrus grove, where tree sizes measured from an ultrasonic 
sensor were used to determine application rates. Six different nitrogen rates were 
applied variably throughout the grove, while actual application rates were calculated 
using gear tooth speed sensors by monitoring the conveyer chain speed. They found 
that there were time lags in the system due to the spreader’s response time, the DGPS 
receiver latency, and the time to read the prescription map, and those lags made 
the system inappropriate for single-tree variable-rate fertilization. They reported an 
average on–off response time of the spreader was less than 3 s, and an average time 
for changing rates was between 2 and 5 s. Zaman and Schumann (2006) conducted a 
study to find out important soil properties affecting citrus tree growth, and to imple-
ment variable-rate soil amendment applications by dividing the grove into different 
management zones using the identified soil properties. They reported that manage-
ment zones could be well divided by the NDVI and soil organic matter contents for 
implementing VRA of elemental iron and dolomite.

Instead of measuring canopy volume for citrus, another study was conducted 
using spectral characteristics to determine fertilization application rates, instead of 
analyzing leaf samples for nitrogen concentration in a laboratory. Min et al. (2008) 
developed a hyperspectral citrus leaf nitrogen sensing system using detector arrays 
in 680–950 nm and 1400–2500 nm, linear variable filters, a halogen light source, a 
longpass filter, and data acquisition cards. The detector arrays showed a very good 
linearity between integration time and voltage outputs (r > 0.99), and stabilities 
within ±0.1% and ±0.5% for the two sensors. They reported a root mean square dif-
ference (RMSD) of 1.69 g/kg in predicting citrus leaf nitrogen contents.

For apple production, Sharda et al. (2014) investigated spray coverage of various 
emitters using a solid set canopy delivery (SSCD) system for tree crops, which can 
be used for providing precise pesticide applications and reducing pesticide drift. Six 
different emitters were studied with four mounting configurations (upper side and 
underside of leaves). Based on spray depositions on water-sensitive paper cards, they 
found that an 80° hollow cone emitter produced the best coverages of 58% for the 
upper side and 21% of the underside of leaves.

In another study for blueberry production, Esau et al. (2014) developed a proto-
type variable-rate sprayer for spot application of herbicides in wild blueberry pro-
duction. The prototype consisted of digital color cameras, a variable-rate controller, 
solenoid valve nozzles, a height sensor, and a pocket PC, which were mounted on a 
tractor. Based on 97 weed patches mapped in a trial field, they reported that weed 
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areas were reduced from 28% to 3% after herbicide application, and that the sprayer 
performed well with a 69% herbicide savings.

6.5.2  Water Management

For tree and vine crops, microsprinkler irrigation is commonly used in the United 
States. Boman et al. (2012) described the current status of microsprinkler irrigation 
in the United States, which is commonly used for better freeze protection and more 
savings in water, energy, and fertigation than other irrigation methods. Especially, 
microsprinkler irrigation can be used for automatic irrigation along with real-time 
moisture sensors.

Torre-Neto et  al. (2001) demonstrated an automated microsprinkler irrigation 
system for citrus for VRI using tensiometers, temperature sensors, and RJ-485 
communication standard. They reported that the system performed well with lower 
power consumption and potential significant water savings. Further Torre-Neto et al. 
(2005) presented hardware implementation of wireless sensor and actuator nodes, 
field stations, a base station for automated and spatially variable irrigation in a six 
hectares grove for citrus production in Brazil. Parsons et al. (2010) utilized capaci-
tance moisture sensors to implement an automatic irrigation system for citrus. They 
installed the sensors at five different depths in an orange grove in Florida to trigger 
microsprinkler irrigation, which could be adjusted by soil type, season, and grower’s 
preference. In Israel, a similar system was also developed for apple production using 
tensiometers (Meron et al., 2001).

For nectarine production, Coates et al. (2006) developed a variable-rate micro-
sprinkler irrigation system for precise irrigation and automatic detection of faulty 
drip lines and damaged emitters. Based on monitoring line pressure, the system 
automatically turned off the microsprinklers when there were any drip line damages 
or breaks. The system was able to variably apply water across the orchard.

For cranberry production, Pelletier et al. (2013) conducted a study to determine 
the relationship between cranberry yield and soil water potential to determine the 
irrigation threshold. They tried three different water treatments (wet, dry, and con-
trol) and found that the dry treatment saved irrigation water by 21%–93% com-
pared to the control, and that yield was affected depending on soil water potential 
thresholds.

For detecting water stress in almond, walnut, and grape, Dhillon et  al. (2014) 
developed a mobile sensor system (Figure 6.5) to predict water status using an infra-
red thermometer and sensors for measuring microclimatic conditions (photosynthet-
ically active radiation, air temperature and humidity, and wind speed). Using leaf 
temperature and the microclimatic conditions, they conducted a stepwise regres-
sion and a canonical discriminant analysis to predict water stressed and unstressed 
leaves, and reported misclassification errors ranging from 1.6% to 9.6%, indicating 
the feasibility of using the developed sensor system for managing irrigation.

As an alternative irrigation method, Lamm et al. (2012) overviewed subsurface 
drip irrigation (SDI), which has been used since the 1960s. They suggested the use of 
an RTK GPS receiver to accurately place drip lines. One of the advantages of the SDI 
is that it enables irrigation of tree crops such as walnuts and almonds without wetting 
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the harvested nuts while they are being dried on the ground. They discussed chal-
lenges in design, installation, operation, management, cropping, and maintenance. 
For specialty crop production, SDI can provide uninterrupted management prac-
tices, including multiple harvests, spraying, mowing, and tilling, and reduce weed 
germination.

6.5.3 ​C rop Pest Management

There have been many studies for specialty crop disease detection. For tomato, 
Zhang et al. (2005) explored the feasibility of utilizing airborne multispectral imag-
ing to detect tomato late blight disease. They developed the following five vegetation 
indices using red (R) and NIR bands, and also spectra collected by a handheld spec-
trometer from the field: R, NIR, NIR/R, NIR-R, and NDVI. With cluster analysis 
and classification process, they were able to identify the diseased plants with an 
average accuracy of 87%.

Multiple studies were conducted to detect the Huanglongbing (HLB) disease, also 
known as citrus greening. The HLB was first found in the south Florida in 2005, 
and its insect vector (Asian citrus psyllid or ACP) was found in 1998. In California, 
the ACP was first found in 2008, and HLB was found in southern California in 
2012 (UC IPM Online, 2014). Typically, ground inspection is conducted to iden-
tify disease symptomatic canopies along with a polymerase chain reaction (PCR) 
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FIGURE 6.5  ​Mobile sensor suite for measuring leaf temperature and microclimatic condi-
tions. The pressure chamber was used to measure midday stem water potential for validation 
of the results. (From Dhillon, R. et al. 2014. Transactions of the ASABE, 57(1):297–304. With 
permission.)
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analysis; however, ground scouting is very labor intensive, time consuming, and 
costly. Thus, an aerial detection would be a good alternative. Kumar et al. (2012) 
acquired airborne hyperspectral and multispectral images of HLB-infected citrus 
groves in Florida, and identified the infected canopies using various analysis algo-
rithms, including image-derived spectral library, spectral angle mapping (SAM), 
mixture tuned matched filtering (MTMF), and linear spectral unmixing. They 
reported that MTMF yielded the best detection accuracy of 80%, while SAM using 
multispectral images produced an accuracy of 87%. Also, Li et al. (2012) conducted 
a study to detect HLB-infected canopies using airborne hyperspectral and multi-
spectral images. They utilized red edge position (REP) to distinguish infected citrus 
canopies and reported that REP worked better for indoor spectral data than those 
for outdoor measurements. Various detection algorithms were implemented such as 
parallelepiped, minimum distance, Mahalanobis distance, SAM, spectral informa-
tion divergence (SID), spectral feature fitting, and MTMF. Figure 6.6 illustrates the 
disease density maps obtained using these methods. They reported that detection 
accuracies were more than 60% for most methods and up to 95% for SID; however, 
simpler methods (minimum distance and Mahalanobis distance) yielded more con-
sistent results among all datasets.

Further, Li et al. (2014) proposed a new method, extended spectral angle mapping 
(ESAM), for identifying HLB-diseased citrus canopies using airborne hyperspectral 
imaging. The method consisted of the Savitzky–Golay smoothing, support vector 
machine classifier, vertex component analysis to find pure end members, SAM, and 
REP for removing false-positives. They reported that the ESAM method yielded a 

(a) (b) (c)

Legend:
(Trees/ha)

Low: 0–70
Medium: 71–140
High: 141–210
Severe: >210

(d) (e) (f )

TTT VVV

TTT VVV

FIGURE 6.6  ​(See color insert.) HLB disease density maps in a citrus grove, obtained using 
various detection algorithms. The dashed line in the middle of each map indicates the bound-
ary between training (T) and validation (V) sets. (a) Scouted infected trees, (b) MinDist 
result, (c) MahaDist result, (d) SAM result, (e) SID result, and (f) MTMF result. (From Li, X. 
et al. 2012. Computers and Electronics in Agriculture, 83:32–46. With permission.)
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correct detection accuracy of 86%, while tree maturity status affected the disease 
detection accuracy.

Instead of using standard manned aircraft, Garcia-Ruiz et al. (2013) utilized a low-
altitude unmanned aerial vehicle (UAV) to detect HLB disease for citrus. With a high 
spatial resolution, images acquired by the UAV performed better than those acquired 
by an aircraft when six spectral band images and seven vegetation indices were used 
for stepwise regression analysis. Accuracies and false-negatives were 67%–85% and 
7%–32% for UAV images, and 61%–74% and 28%–45% for aerial images.

Besides citrus, tomato is also one of the most consumed specialty crops in the 
United States. Jones et al. (2010) investigated the spectral signature of tomato bacte-
rial leaf spot disease in the ultraviolet, visible, and NIR regions, and analyzed reflec-
tance measurements of healthy and diseased samples using partial least squares 
regression, correlation coefficients, and stepwise multiple linear regression. They 
identified important wavelengths to distinguish diseased tomato leaves, developed 
disease prediction models, and reported an RMSD of 4.9% in predicting disease 
severity in percent using the best prediction model.

6.5.4 O ther Related Studies for Specialty Crops

Toward the development of an efficient mechanical harvester for cherry, Du et al. 
(2013) investigated vibratory energy requirements and harvest efficiency using 
kinetic energy on limbs of fruiting branches, and conducted experiments on upright 
fruiting offshoot trees for mechanical harvesting. They identified constant reso-
nant frequencies of 8–10 Hz within the upright offshoots. They calculated a relative 
kinetic energy ratio at different locations on the tree, and reported that resonant 
frequencies were different at different growth stages of budding and fruiting. They 
identified that only a portion of vibratory energy was transmitted through the trellis 
wires and that the fruit was removed mostly at the resonant frequency.

To develop an automated pruning system for apple, Karkee et al. (2013) initiated 
a study for developing a detection algorithm of pruning branches by constructing 
three-dimensional skeletons of apple trees from images acquired by a time-of-flight-
of-light camera. The test results indicated that the algorithm removed 19.5% of the 
branches, while human workers removed an average of 22% of the branches. The 
root mean squared deviation (RMSDEV) of identified branches was 10% between 
the algorithm and human workers, and branch spacing by the algorithm was 35.7 cm, 
while human workers’ spacing was 33.7 cm, resulting in 13% RMSDEV.

For peach production, Baugher et al. (2010) evaluated a prototype hybrid string 
thinner combining vertical and horizontal thinners with various tree forms at four 
different locations in the United States. They compared its performance with manual 
thinning and reported blossom removal rates of 17%–56% by the prototype, and 
reduced follow-up hand thinning by 19%–100%. The prototype also increased eco-
nomic savings of $236–$1490 per acre.

For lettuce production, commercial thinners are currently available (Agmechtronix, 
2014; Vision Robotics Corp., 2014). For crops at a seedling stage, machine vision is 
used to detect seedlings to be removed, and herbicide is sprayed to kill them. The 
system can be attached to a three-point hitch of a tractor, and the operation speed 
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is 3–4 miles/h. The system can provide advantages of savings over labor-intensive 
hand weeding and increase yield.

6.5.5 C hallenges and Research Needs

As illustrated above, currently there are not many precision technologies available 
for specialty crop production due to lack of low-cost and affordable commercial 
sensing systems. Many sensing systems are still in the research stages, and it is rela-
tively difficult to find sponsors for the specialty crop market due to its relatively 
small scale compared with other traditional grain and field crop markets. To address 
the needs of specialty crop industries, the U.S. government established the specialty 
crop research initiative (SCRI) program and provided $215 million for research and 
extension projects during 2008–2012 to encourage specialty crop research and com-
mercialization of developed tools and technologies. More integrated research will be 
needed among many disciplines, including growers, agricultural engineers, agrono-
mists, horticulturalists, and soil scientists, along with specialty crop growers to iden-
tify current challenges, and to develop more creative solutions with more investment 
and support from the general public.

6.6 ​ SUMMARY AND FUTURE DEVELOPMENT

Significant progress has been made in precision agriculture technologies over the last 
two decades, despite the fact that the integration and adoption of these technologies 
have been relatively slow. Precision agriculture as a farming strategy is gradually 
changing the way farmers manage their fields. Some technologies developed for pre-
cision agriculture have become standard practices in production agriculture. Yield 
monitors and guidance systems are the two most widely used precision agriculture 
technologies by individual farmers today. Other technologies such as GPS-based 
soil sampling, real-time crop and soil sensors, and remote sensing have been used by 
some producers, crop consultants, and agricultural dealers for VRAs of fertilizers, 
herbicides, fungicides, water, seeds, and lime. Although research and field opera-
tions have demonstrated the feasibility and potential economic benefits of VRAs of 
various farming inputs, it remains a major challenge for the farmer to integrate all 
the technologies into his or her routine farming practice. Moreover, the farmer is still 
not completely convinced that VRT will change his or her bottom line and will be 
suitable for all the crops or fields.

Survey results indicate that most agricultural dealers provide one or more pre-
cision agriculture technologies, including VRT, for their customers. Owing to the 
sophistication, initial costs, and time commitment of these technologies, it is more 
appropriate for the dealers to provide precision agriculture services until more user-
friendly and integrated systems are available. More research is needed to develop 
improved site-specific recommendation algorithms for sensor-based and map-based 
applications. It is important to keep the algorithms or decision rules simple enough 
for practical applications. VRA can be both profitable and environmentally ben-
eficial for fields with large variability in crop yield and soil nutrients as well as 
for fields with patched weeds and isolated disease infections. However, VRA may 
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not be suitable or necessary for fields with little soil and crop growth variability. 
More research is needed to develop criteria and guidelines to identify such fields 
or particular field operations (i.e., fertilization, pesticide application, irrigation, and 
seeding) for VRAs. VRA has great potential for high-value specialty crops such as 
vegetables and fruits, because of their high production cost, susceptibility to pests, 
and intensive labor requirements. More emphasis should be put on the development 
and application of precision agriculture technologies for specialty crop management.

Precision agriculture is an evolving technology. Although it is important to con-
tinue to develop new techniques and enhance existing technologies, more research 
should be devoted to the integration, application, and adoption of these technologies 
so that more and more farmers and dealers will be able to adapt them to current 
practices. Precision agriculture involves a great deal of technologies and requires 
additional investments of money and time, but it can be practiced at different lev-
els depending on the specific field and crop conditions and the resources and tech-
nology services available to the farmer. If practiced properly, precision agriculture 
can improve farm input efficiency, increase farm profitability and minimize adverse 
environmental impacts, thus improving the long-term sustainability of production 
agriculture. After all, precision agriculture is becoming an indispensable component 
of agricultural production systems.

DISCLAIMER

The mention of a commercial product is solely for the purpose of providing specific 
information and should not be construed as a product endorsement by the authors or 
the institutions with which the authors are affiliated.
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7 A Systems Approach 
to Community-Based 
Precision Agriculture

Sakae Shibusawa

7.1  INTRODUCTION

The term “precision agriculture” is widely known in Japan. For example, the term 
scored 120,000 hits on the BIGLOBE website and 1,001,000 hits on Yahoo-Japan 
in 2014, growing from a few hundred in 2000. The hits cover activities in indus-
try and agriculture, as well as information technology for scientists, engineers, and 
administrators. In general, they expect that precision agriculture has the potential 
to offer future solutions to complicated issues in agriculture, such as environment 
versus productivity and globalization versus localization. National Research Council 
(1997), SKY-farm (1999), and Vanacht (2001) mention that precision agriculture is a 
management strategy based on advanced information technology, including describ-
ing and modeling soil and plant variability and integrating variable-rate field opera-
tions to meet site-specific requirements, all aiming at increasing economic returns as 
well as reducing energy input and environmental impacts.

In the last decades, multiple concerns such as shortage of food and water, global 
warming, and energy crises have crept up on people. As for food supply, world food 
production has increased with food consumption of cereal crops in half a century, 
although in the last decade, production could not catch up with consumption, as 
shown in Figure 7.1a. The demand for crops has increased due to increases in popu-
lation, industrial needs, and meaty, fatty diets accompanying lifestyle changes. A 
major contribution to increases in the net yield of crops has been the increase in 
yield per unit area, that is, increased land productivity, while the area of harvest 
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has not increased during the last 50 years, as shown in Figure 7.1b. In general, land 
productivity depends on the crop variety, agricultural materials and facilities, and 
farm mechanization, as well as socioeconomic factors such as the organization of 
growers.

Keeping land productivity higher is one of the advantages of Japanese agricul-
ture, as shown in Figure 7.1c, because of its well-organized community of growers 
but with small-scale farms. In spite of the high land productivity and top-20 net 
production in the world (FAOSTAT, 2005), the population of Japanese growers has 
decreased by 150,000 per year during the last decade, resulting in a decrease to one-
tenth of 2.5 million by the year 2030 (Figure 7.1d). This is inducing rapid changes 
in the structure and system of Japanese agriculture, followed by some countries in 
the world.

Japanese government statistics in 2012 show that the number of growers was 2.5 
million, the number of commercial farmers was 1.78 million, and the number of 
young farmers was 0.17 million (Figure 7.2b). The same statistics show that there is 
368 million ha of arable land with an average scale of 2.2 ha, and that 32% of the 
arable land belongs to 2% of farmers with a farm scale of more than 20 ha. On the 
other hand, the Japanese population is decreasing dramatically, by 260,000 per year 
in 2013 and is projected to decrease by a million per year in 2025, which causes big 
changes in socioeconomic systems. For example, the needs of consumers tend to 
shift from price and calories to the safety and functions of foods.
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and (d) rapid decrease of Japanese farmers.

  



215A Systems Approach to Community-Based Precision Agriculture

Not only land productivity but also consumers’ needs have become targets of cur-
rent farm management in Japan. Transfer of skills and technology has also become 
big business from generation to generation, from industry to agriculture, and from 
agriculture to industry. That is why precision agriculture and its players have become 
the target of investigation. The community-based approaches of this chapter will 
provide a hint to creating a way of thinking.

7.2  COMMUNITY-BASED PRECISION AGRICULTURE

In this chapter, “community” implies practitioners and/or players of precision agri-
culture, and precision agriculture implies management practice on the farm. The 
combination of players and management requires us to rediscover the story of preci-
sion agriculture as follows. Community-based precision agriculture is a new regional 
farming system to gain high profitability and reliability under regional and environ-
mental constraints, promoted by expert farmers and technology platforms, by creat-
ing both information-oriented fields and information-added products, with supply 
chain management from field to table (Shibusawa, 2004). The definition brings us to 
a home ground where growers, engineers, and business people take action.

During the current quarter of a century, we have experienced five different phases 
in precision agriculture (Shibusawa, 2004). The first phase was site-specific crop 
management in the early 1990s. The second phase was mechanization as sensor-
based site-specific crop management with variable-rate operation in the mid-1990s. 
The third phase appeared in the latter part of the 1990s with precision agriculture 
defined by “a management strategy that uses information technologies to bring 
data from multiple sources to bear on decisions associated with crop production” 
(National Research Council, 1997). Furthermore, “a key difference between conven-
tional management and precision agriculture is the application of modern informa-
tion technologies to provide, process, and analyze multisource data of high spatial 
and temporal resolution for decision making and operations in the management of 
crop production” (National Research Council, 1997). The fourth phase appeared in 
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the latter part of the 1990s as cost-driven company-based precision agriculture. And 
the fifth phase appeared in the early 2000s as value-driven community-based preci-
sion agriculture.

The structure of community-based precision agriculture is composed of two orga-
nizations, that is, farmers and industry, and five stakeholders to collaborate with, as 
shown in Figure 7.3. On the side of the farmers, variable management focuses on 
within-field variability and between-field or regional variability. Within-field vari-
ability is embedded in a single field with a single plant variety in general. Between-
field variability implies variability among fields in which different crops and farm 
works tend to be managed. When it comes to describing between-field variability, 
each field can be treated as a unit of mapping. Which variability should be managed 
for increased economic returns with reduced cost and how to tackle environmental 
concerns needs consideration.

There are different stories regarding the practice of management in action when 
one looks at field variability on different scales. On a single small farm, the farmer 
can better understand what is going on in each field, which enables variable-rate 
application for site-specific requirements with the farmers’ knowledge and skills. 
When it comes to covering an area of a few tens of hectares, including lots of small 
fields, for example, a farm work contractor or a farm company has to manage regional 
variability due to cropping diversity. They also have to coordinate the farmers with 
different motivations due to different cropping styles. Here, we have hierarchical 
variability: within field, between field, and between motivations with different scales 
and different cropping styles.

Managing hierarchical variability requires two organizations, expert farmers and 
a technology platform, as shown in Figure 7.3. The groups of expert farmers play 
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the role of top management of innovation in the regional farming system, such as 
the rearrangement of the five factors of the farming system and the development of 
scenarios for introducing approaches in precision agriculture. The technology plat-
form develops and provides the technologies available with rural constraints as well 
as marketing channels for high-quality/traceable agro-products.

A combination of the wisdom/experience of the farmers and the technologies of 
the platform will produce information-oriented fields and information-added prod-
ucts, as shown in Figure 7.4, which can meet compliance as well as farmer’s motiva-
tion, such as traceability, productivity, and profitability, and environmental concerns.

Rural development by introducing precision agriculture is an attractive proposi-
tion in Japan because people face the serious concerns of depopulation, high aging, 
a downsizing economy, and exhausted infrastructure in rural villages and cities. The 
information-oriented fields produced by precision agriculture practices are easy to 
connect with the multifunctions of agriculture so as to manage environmental con-
servation and design landscape amenity if it merges with a geographical information 
system (GIS) covering the whole space of a rural area, aiming at gaining the trust of 
local inhabitants. The information-added products make access to the market with 
direct communication with consumers easier.

Shibusawa (2004) discussed adoption of precision agriculture in the cases of the 
United States and Japan in the early 2000s in terms of scale merit and added value. 
Adoption of precision agriculture in the United States followed a cost-driven scheme 
of big-farm management with reduced costs, and its profitability threshold was more 
than 500 ha in farm size (Vanacht, 2001). Cost reduction was 20% for fertilizer 
and 50% for herbicide, for example, but less or little increase appeared to occur in 
yield and total sales. Sales were about 1000 US$/ha for crop growers and 30% of 
that was expenses for fertilizer and chemicals. The cost reduction effect was around 
100 US$/ha. On the other hand, they paid about an extra 80 US$/ha/year for the 
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precision agriculture service and purchased machines such as variable-rate fertiliz-
ing machines costing hundreds of thousands of dollars. Big retailers pushed farmers 
for lower prices with the pressure of global food markets. The only avenue for com-
mercial farmers was to obtain scale merit for cost reduction. Profitable farm sizes 
tended to be large in Central America, for example, 200 ha in the 1990s, 500 ha in 
the 2000s, and 1000 ha in the 2010s (as heard from consultants).

On the other hand, a small farm in Japan had no scale merit. The expenses for 
machines and labor were relatively high, compared with the cost of fertilizer and 
chemicals; that is, overequipment with machinery on a small farm was a fatal issue. 
Evidence-based collaboration was one avenue. Note that sales were about 10,000 
US$/ha for rice crop growers, which was about 10 times as high as the sales of U.S. 
farmers. This motivated farmers to sell their products at high prices. If they could 
ensure the needs of consumers and supply quality products to the market, they could 
be competitive in the food supply chain. The distance between growers and consum-
ers might be very close in Japan, compared with the United States.

7.3 � LEARNING GROUP OF FARMERS CREATING BRANDED 
PRODUCE

One learning group was the Honjo Precision Farming Society (HPFS) organized by 
progressive farmers in April 2002, in collaboration with Waseda University, Tokyo 
University of Agriculture and Technology, people from the industry, and City Hall. 
The leader of the farmers recognized that City Hall had promoted zero-emission 
town planning and was awarded ISO 140001 certification in March 2002, and envi-
ronment-friendly agriculture was one of the main city projects.

Honjo is a city located 100 km north of Tokyo, having the longest daylight time 
and rich alluvial soil with rich irrigation water from the Tone river. The population 
of the city was 80,000, the farmed area was 1300 ha, the population of farmers 
was 1200, and 25% of these were professional farmers. The net sale of agricultural 
products accounted for more than 8 billion JPY, and of this, the sale of vegetables 
was 65%. Around 130 professional farmers formed “New Farmer 21,” a society of 
entrepreneurial farmers, and their leaders organized the HPFS.

A membership qualification of the HPFS was to implement environment-friendly 
management as “eco-farmers” certified by the local government, creating a homep-
age of their own, and attending to Internet communications, as well as managing the 
food quality with the highest price in the market. The next action was to organize 
seminars and workshops on precision agriculture. They invited professionals and 
scientists to their evening seminars every month in 2003, with topics on the motiva-
tions of buyers, branded produce, emerging technology, agricultural policy of the 
government, and so on, including an international seminar inviting Marc Vanacht 
(Figure 7.5). They then conducted a social experiment on in-shop sales of their infor-
mation-added products.

During the social experiment on in-shop sales, they invented a technology pack-
age creating an identification (ID) tag and its usage, as shown in Figure 7.6. At the 
farm, a grower of HPFS edited and printed his small ID tags with his photograph, 
and attached it to each package of vegetables in the packing process. At a department 
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store and at a wholesaler’s, high-quality vegetables with ID tags were put in the fresh 
vegetable corner at prices 20%–30% higher compared with the normal. The farm-
ers’ cooperative to which they belonged transported the vegetables from the farm 
to in-shop. It was easy for customers to access the respective growers through their 
websites by mobile phone by clicking the two-dimensional code on the tag. The 
growers wrote a farm work diary on their homepages every day, which helped direct 
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FIGURE 7.5  Activities of the Honjo precision farming society (HPFS).
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communication between growers and consumers. They put a simulator of retrieval 
action in the fresh vegetable corner in the department store. The growers stood at the 
corner and demonstrated using a mobile phone.

The cost of the ID tags was 3–5 JPY (0.03–0.05 US$) per sheet and nobody 
was willing to pay for it. A solution was a scheme of voluntary advertisement. The 
vegetables produced were specialized by environmental-friendly management and 
quality taste, and the produce could consequently connect environment-oriented 
people across the food chain from growers to consumers. They asked companies and 
organizations for a chance to advertise with them, and a couple of companies joined 
the scheme.

The activity of HPFS received an award from the prime minister of Japan in 2005 
for creating branded produce using information technology and specific patented 
skills.

Another precision agriculture learning group was the technology platform called 
the Toyohashi Precision Farming Network (Toyohashi PF-net) Society, located in 
Toyohashi, Aichi Prefecture, founded in May 2002 (Shibusawa, 2006).

Toyohashi is a middle-sized city with a population of 380,000, located in the 
middle of the main island along the coast of the Pacific Ocean, between the big 
cities of Tokyo and Nagoya. The net sale of agricultural products here was more 
than 50 billion JPY in 2000, which was the top sale in the cities in terms of agri-
cultural production. The Toyohashi-Atsumi area produced more than 100 billion 
JPY of agricultural products. The farmed area was about 15,000 ha, the population 
of farmers was about 10,000, the average farm size was about 1.5 ha, and 25% of 
the farmers were professional according to the statistics of 2000. People were moti-
vated to maintain the top sale of agriculture in Japan by introducing a new system 
of precision agriculture.

The Toyohashi PF-net Society conducted workshops on precision agriculture 
every 2 months, extending information technology to farmers, and consulting on 
collaboration between companies and farmers. They also collaborated with the city 
halls and farmers’ cooperatives, resulting in many achievements during the last 5 
years.

Atsumi Farmers’ Association has undertaken a workshop on real-time soil-sens-
ing technologies and an in-shop test on information-added products. JA Toyohashi, 
a local agricultural cooperative, has conducted in-shop tests on information-added 
products through supermarkets in Osaka and Tokyo as well as the Toyohashi area. 
They also distributed and collected questionnaires and confirmed that consumers 
asked to know date of harvest, about safety and health, and about the environment 
as well as price.

Four city halls in the area also encouraged such grassroots movements by promot-
ing a master vision for introducing precision agriculture. The master plan addressed 
six missions: introducing precision farming, managing the traceability of products, 
enriching resources of by-products, opening a community market, inviting a confer-
ence on precision agriculture, and running agricultural information networks. They 
organized the National Congress on Agricultural Information Networks with thou-
sands of attendants and the first Asian Conference on Precision Agriculture (ACPA) 
on August 5–6, 2005.
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The achievements of the two learning groups have taught us that the participat-
ing farmers (1) were familiar with Internet communication; (2) had higher education 
levels; (3) grew high-quality produce; (4) had good sales and marketing experience; 
and (5) were greatly outgoing and sociable. The most important factor was that they 
had the ambition to become good-practice farmers enhancing local communities 
and industries. The experience above partly followed the aspects mentioned by 
Blackmore (2002).

Blackmore (2002) identified eight principles in precision agriculture: that (1) pre-
cision agriculture is a management process, not a technology; (2) spatial and tempo-
ral variability must be measured; (3) the significance of variability in both economic 
and environmental terms should be assessed; (4) the required outcome for the crop 
and the farm must be stated; (5) the special requirements of the crop and the country 
should be considered; (6) ways to manage variability to achieve the stated outcome 
are to be established; (7) methods to reduce or redistribute the inputs and assess 
the risk of failure need to be considered; and (8) crops and soil must be treated 
selectively according to their needs. An attractive aspect is that the development of 
precision agriculture is characterized by continuous evolution based on independent 
thinking associated with multidisciplinary collaboration under the crossover of new 
ideas from other areas.

7.4  COMMUNITY-BASED APPROACH IN INDONESIA

A unique approach that emerged in Indonesia, as a project of education for sustain-
able development (ESD) based on the concept of precision agriculture, is called the 
“community learning activity center as the medium for precision agriculture tech-
nology implementation with a decision support system to optimize food crop man-
agement” sponsored by the Indonesian government (Virgawati et al., 2010). A strong 
motivation to embark on the project was a shortage of stable food production against 
demand due to an increasing population and changes of lifestyle in spite of increases 
in primary food production. Bottlenecks recognized were biophysical factors such as 
exploitation of land and water resources, economic factors such as shortage of fertil-
izer because of high cost and low income, social factors such as habits of chemical 
fertilizer use or stereotypical professional farmers, and technological factors such as 
less knowledge and poor instrumentation of precision agriculture.

The project team was organized by the Faculties of Agrotechnology, Communi
cation Science, Economics of Development, Agribusiness, and Informatics and 
Environmental Engineering of the University of Pembangunan Nasional “Veteran” 
Yogyakarta, Indonesia. The project covered the issues of sustainable economic 
growth through increased value-added food products, social justice through equal 
rights and opportunities for access to efficient technologies in food production sys-
tems, and preservation of natural resources by maintaining sustainable fertility. 
Action programs involved mapping the diversity of agricultural land characteristics 
to build a database; modifying the simulation model of the existing soil–plant–water 
system; producing precision agriculture technology adapted to local culture; and 
developing an ESD-based education system. Establishing the Center of Community 
Learning Activity for Precision Agriculture was a milestone of the project.
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In 2010, the agricultural agency in Magelang district selected six subdistricts for 
a social experiment, that is, Windusari, Tegalrejo, Secang, Salaman, Muntilan, and 
Salam. The activities were categorized by preliminary research, community service, 
and a socialization program.

The preliminary research consisted of mapping soil variability, identifying the 
farming system, determining the economic aspects, identifying social aspects, 
developing a crop management model, and recognizing the requirements for struc-
turing a decision support system. The community service provided six districts with 
25 students from four faculties for 40 days of activities, including collecting research 
data and supporting social activities for research and for local communities. The 
socialization program involved a field trip for professionals, an open lecture for stu-
dents, and a workshop on precision agriculture.

The author of this chapter was invited to join the field trip and workshop under 
the scheme (Figure 7.7). The project team had organized learning groups of farmers 
in collaboration with local government and people from the university using infor-
mation and communication technology (ICT) tools. Unfortunately, on October 26, 
2010, a great eruption of the Merapi volcano struck the Magelang district and the six 
subdistricts suffered serious damage. The project was halted by the disaster, but the 
people soon started restoration work.

7.5  PRECISION RESTORING APPROACH

3/11 in 2011 is the day that northeast Japan was hit by a tridisaster: a super earth-
quake measuring M 9.0, a huge tsunami of more than 10 m high, and the explosion of 

(a)

(b)

FIGURE 7.7  Community-based approach to education for sustainable development (ESD) 
in Magelang, Java. (a) Salam subdistrict, a flat site with mining and (b) Windusari subdistrict, 
a mountainous site.
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nuclear power stations. Huge damage was confirmed across the cities and rural com-
munities, including agricultural and industrial sectors. In the last 3 years, the resto-
ration process has changed rapidly. Fukushima prefecture still has issues regarding 
measuring both radioactive contamination and tsunami damage, while Miyagi and 
Iwate prefectures are focusing on recovery from tsunami damage.

The Japanese Society of Agricultural Machinery (JSAM, now the Japanese 
Society of Agricultural Machinery and Food Engineers or JSAM) provided help for 
recovery from the damage caused by the disasters (Shibusawa, 2012a). They had lim-
ited experience of combating such a huge catastrophe of complex disasters. One use-
ful approach was in precision agriculture that was applicable not only to agricultural 
sectors, but also to the environment and to the field of construction (Shibusawa, 2004; 
Berry et al., 2005), which led to evidence-based approaches with precision thinking.

On March 12, the first action started with a call for confirmation of the safety of 
the members of JSAM through e-mails, cellular phone, Internet service, and so on. 
It took 1 week for the Kanto area and 2 weeks for the Tohoku area to be completed. 
Unfortunately, information was received that three student members had been killed 
by the tsunami at Sendai airport.

Information through media and direct calls led to the organization of the working 
team of JSAM on March 30, 2011. The missions of the team were (1) to validate the 
facts and information on the disasters since there was confusion and complexity; (2) 
to investigate the damage in terms of agricultural machinery and farm management; 
and (3) to propose better solutions to reconstructing community-based agriculture. 
The working team reconfirmed the potential of Tohoku’s agriculture with references. 
The statistics compiled by the Tohoku regional agricultural administration office in 
Sendai in 2010 stated that agricultural production was worth 1359 billion JPY, com-
prising 16% of the total production in Japan, including 496 billion JPY of rice, 383 
billion JPY of livestock, and 228 billion JPY of vegetables. The number of growers 
was 463,000 with a ratio of 16% to all growers in Japan. The ratio of growers above 
65 years of age was 30% and it was lower than the national average of 58% in Japan. 
Local self-sufficiency in food production in the Tohoku region was more than twice 
the national average. Apples of Aomori prefecture occupied 53% of the entire pro-
duction of Japan, cherries of Yamagata prefecture accounted for 71%, and the share 
of peaches of Fukushima prefecture was 20%.

On September 12 and 13, the working team visited paddy fields in Kitakami of 
Ishinomaki city and fields of protected horticulture in Watari of Natori city in Miyagi 
prefecture. One site that they visited was the Kitakami riverside around 10 km dis-
tant from the coast, as shown in Figure 7.8. The people suffering from the tsunami 
emphasized the following: (1) The tsunami brought a large amount of rubble on a 
path of over 10 km distant from the coast and it had still not been removed (Figure 
7.8c). (2) They cut and removed the weeds in the paddy fields to prepare for the next 
cropping season (Figure 7.8a). (3) They were less concerned about salty sludge since 
the sludge used to be applied in the paddy for soil improvement. (4) They needed 
recovery of transportation, repair of drain pumps, and recovery of machines and 
facilities in order to restart farm work. A local dealer continued work on repairing 
machines flooded with seawater (Figure 7.8d). It was difficult to repair them per-
fectly because of salt and sludge invading unseen spaces.
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Based on the results of the survey, the JSAM proposed five recommendations: (1) 
to develop a strategy for land consolidation and for education of newcomers to be 
professional farmers; (2) to protect the intellectual properties of farmers; (3) to repair 
the service network of agricultural mechanization; (4) to simultaneously reconstruct 
the system for both producers and retailers; and (5) to maintain farm assurance and 
standard farm management such as GLOBAL G.A.P.

The Ministry of Agriculture, Forestry and Fisheries has launched many national 
projects for recovery from disasters, such as intensive arable farming (Figure 7.9), 
a highly automated greenhouse system, highly effective orchard cultivation, and an 

(a) (b) (c)

Sept 12, 2011 Sept 12, 2011Sept 12, 2011

(d)

FIGURE 7.8  People’s combat against tsunami disasters in Ishinomaki, Miyagi. (a) Weed 
control of overflooded paddy for the next cropping season. (b) Sludge of 10-cm thickness 
fully covering the paddy field. (c) Dumped rubble produced by the tsunami 7 km from the 
coastline. (d) On-service local dealer of agricultural machinery.
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intensive system of aquaculture. A major target was a business development cam-
paign of advanced technology for restoring agriculture accompanied by the local 
community. Figure 7.9 shows a project of national institutes and private companies 
for arable farming employing cereal crop rotation using a technology package of 
precision agriculture, such as a field mapping system and variable-rate technology. 
Then, the agricultural corporation KOYA joined the project. KOYA Corporation was 
founded by five local growers in 2003, and 90% of its 100 ha paddy fields suffered 
damage from the tsunami; in addition, the machinery and facilities were washed 
away. They restarted cultivation just after the catastrophe and the national project 
helped them.

Goto et al. (2013) have organized a JST (Japan Science and Technology Agency)-
funded 3-year project on precision restoring agriculture in the Fukushima area in 
2012, as shown in Figure 7.10. The project team is composed of organizations who 
had suffered from the tsunami: the agricultural corporation Denpata, the manufac-
turing company Kanda Ltd., support organizations, ADS Ltd., the National Institute 
of Advanced Industrial Science and Technology (AIST), and the Tokyo University of 
Agriculture and Technology (TUAT). These organizations suffered serious damage 
not only from the East Japan earthquake disaster, but also through rumors related to 
the collapse of the nuclear power plant. They also had rural issues of farmers’ aging, 
depopulation in the village, the “food desert” phenomenon, and so on. Therefore, 
they hungered for a future vision as well as sought measures against rumor damage. 
One idea was an evidence-based farm management scheme.

The goal of the project was to create an information-oriented field to meet the 
requests of consumers in the market. Within a limited budget, a real-time soil sensor 
was introduced to monitor the within-field soil condition, and sensor posts were set 
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FIGURE 7.10  (See color insert.) Precision restoring agriculture in Fukushima toward 
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up in the field to monitor the degree of radiation, wind velocity, wind direction, rain-
fall, etc. Yanmar Ltd. joined voluntarily to provide a combine harvester with a yield 
monitor in 2014. The project is still developing with community-based approaches.

7.6  AGRO-MEDICAL FOODS

The strategy for agro-medical foods was formed in 2009 when the concept of com-
munity-based precision agriculture encountered the concept of preventive medicine 
at the meeting of Dr. Sakae Shibusawa and Dr. Toshikazu Yoshikawa, and it then 
drove many collaborative projects in the fields of medicine, agricultural science, 
engineering, and industry, though it was not introduced in English (Shibusawa, 
2012b). This agro-medical approach promises to expand the fields of precision agri-
culture, and that is the reason it is introduced here.

Agro-medical foods are defined as agricultural products with a high content of 
functional materials with evidence of effects on health and wellness produced by 
precision agriculture, and they are created by an agro-medical initiative, as shown in 
Figure 7.11. The agro-medical initiative is a research group of medical, agricultural, 
and engineering scientists, aiming at the cure of lifestyle-related diseases by devel-
oping agricultural products with a high content of functional materials.

Figure 7.11 shows a research cycle of agro-medical foods. The agricultural sector 
supplies fairly controlled products to the medical sector, which requires controlled 
protocols of production with traceable management. The medical sector confirms the 
evidence of effectiveness against disease prevention and wellness in medical science. 
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The nutrition and dietetics sector provides personalized diets using agro-medical 
foods. The business sector commercializes the agro-medical foods and diets. The 
engineering sector provides biosensing and control technology to manage the system 
and communicate beyond disciplines.

Figure 7.12 shows a standard scheme of production in the categories of operation, 
work chain, and farming system. The operation standard involves the specification 
of mechanization and guidelines. The work chain requires the protocol of process 
jobs from soil preparation to shipping. The farming system is composed of the five 
factors of crop, field, technology, constraints, and motivation, and each factor has a 
substructure of farming elements such as crop variety and tillage machines. At least 
three production categories need clear description when they are put into practice in 
the shape of precision agriculture.

Table 7.1 shows a framework or roadmap of how to produce agro-medical foods. 
There are three control points and nine check items. The first control point is the 
target syndrome and medical examination with the four check items of cell culture, 
animals, intervention, and cohort. The second control point is the target material and 
analysis method with the two check items of food body base and biospecimen base. 
The third control point is crop variety and management with the three check items 
of breeding, cultivation, and processing/cooking. The test crops were onion, green 
tea, orange, soybean, spinach, tomato, and eggplant in 2011. Many more crops and 
functional materials will be examined in a couple of years.

7.7  SUMMARY

This chapter described the last 15 years’ experience of a Japanese model of commu-
nity-based precision agriculture accompanied by a learning group of farmers and 
a technology platform of companies. Community-based precision agriculture aims 
at high profitability and reliability under regional and environmental constraints, 
promoted by the expert farmers and/or the technology platform, by creating both 
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information-oriented fields and information-added products, with aggressive access 
to food chains. The two participating local learning groups were the technology-
driven Precision Farming Network of Toyohashi-Atsumi (PFNET) in Toyohashi and 
the farmers’ learning group Honjo Precision Farming Society (HPFS) in Honjo. The 
first action of the two groups was market research using information-added produce 
through in-shop experiments. The scheme of the community-based approach has 
been applied to a trial of ESD on Java island of Indonesia, to restoration post the 
catastrophe of the East Japan earthquake and tsunami in 2011, and the production 
of agro-medical foods in collaboration with professionals in the fields of medicine, 
agriculture, engineering, dietetics, and business.
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8.1 � INTRODUCTION

The cultivated land is the human survival and development. As is well known, China 
has 9.6 million square kilometers of land area. According to the China Statistical 
Yearbook 2007, the area of farmland resources in China was about 1.326 billion 
hectares, in which cultivated land refers to the area of land reclaimed for the regular 
cultivation of various farm crops, including crop-cover land, fallow, newly reclaimed 
land, and land lying idle for less than 3 years.

Cultivated land in China is divided into four regions: the eastern, central, west-
ern, and northeastern regions. It is also divided into three categories: paddy fields, 
irrigated land, and dry land (GB/T21010-2007). According to the agriculture census, 
the distribution of cultivated land is unbalanced in the country, the area of cultivated 
land in the western region being more than the others, and accounting for 36.9% of 
arable land; the area in the eastern, central, and northeastern regions being 21.7%, 
23.8%, and 17.6%, respectively. For cultivated land categories, the area of dry land 
accounts for 55.1% of arable land, while the area of paddy field and irrigated land are 
26.0% and 18.9%, respectively.

In recent years, economic development has had a profound impact on land-use 
patterns in China. There is increasing conflict between limited arable land resources 
and the requirements of agricultural production. Serious land degradation such as 
soil erosion, depletion, secondary salinization, and pollution is caused by long-term 
use. Mining activities also damage and take over a lot of cultivated land resources. 
Precision agriculture (PA) is a farming management method that allows farmers to 
optimize their resource inputs to achieve high yields (Wang et al., 2003; Wang, 2011; 
Zhao et  al., 2003). Modern technology promotes the development of agricultural 
mechanization. Thus, information perception, the Internet of Things (IoT), and tech-
nology application are introduced in this chapter (Wang, 1999).
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8.2 �​ KEY TECHNOLOGIES OF AGRICULTURAL 
INFORMATION PERCEPTION

In agricultural information perception technology, research in China and abroad all 
focus on two aspects: agricultural resource investigation and farmland production 
information perception. Fast acquisition, processing, and understanding of farmland 
information were the key points of development for PA.

Agricultural resource investigation includes the investigation of cultivated land 
resources, district plantation, atmosphere, level of agricultural production, etc. 3S 
(geographic information system [GIS], global navigation satellite system [GNSS], and 
RS) technology is utilized comprehensively. Some basic information such as cultivated 
land area, vegetation distribution, and atmosphere dynamics is acquired and analyzed 
based on remote sensing technology. Distribution characteristics of all kinds of data 
are calculated based on GIS and global positioning system (GPS). Transition char-
acteristic analysis and visualization expression of agricultural resources in time and 
space are realized by historical data. At present, much research has been conducted 
and many application achievements have been made in rating the quality of cultivated 
land, regional distribution of agricultural plantation, monitoring of crop growth and 
disease status, and agricultural atmosphere analysis (Kuang and Wang, 2003).

Farmland information perception is based on the research and development of 
advanced sensors, which concentrates on each link of agricultural production. It mainly 
focuses on fast acquisition of growth and physiological parameters of soil and plants, 
and distribution of insect pests and weeds, and can provide decision support for PA.

8.2.1 � Rapid Acquisition of Soil Information in Farmland

The detection of soil information could be divided into two types, laboratory 
measurement and in situ measurement. In laboratory measurement, samples should 
be collected in the field and taken back to the lab to conduct pretreatment such as dry-
ing, grinding, and sieving (Peng et al., 1998; Yu et al., 2002; Sha et al., 2003). Then 
these pretreated soil samples are analyzed by traditional chemical analysis methods 
or modern atomic absorption spectrometer, and chromatographs. Analysis results are 
accurate, but time consuming and energy consuming. Therefore, in order to meet the 
real-time and practical demands in field fertilizer management, the in situ measure-
ment technology directly toward the soil is becoming a hot spot of research with many 
methods of in situ measurement attempted. Among those, near-infrared spectroscopy 
(NIRS) analysis method only simply disposes the original soil to perform the analysis 
of soil (Bao et al., 2007; Song and He, 2008; Zhu et al., 2008; Zheng et al., 2009), 
and there is no need to do soil sampling from the field (Sun et al., 2006; Chen et al., 
2008; Yuan et al., 2009). The analysis result indicates that there is a high correlation 
between the NIRS predicted value and the laboratory chemical analysis value. Thus, 
it is feasible to use NIRS in the determination of contents of soil total nitrogen, soil 
organic matter, and soil alkaline hydrolysis nitrogen, and it may be used in the rapid 
analysis of soil in the field. In recent years, Chinese research teams have devoted 
themselves to the research of soil information acquisition based on spectroscopy, 
including soil moisture, soil total nitrogen, soil nitrate nitrogen, soil organic matters, 
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etc. They have made breakthroughs by developing highly precise prediction models. 
Besides theory analysis, they have also focused on the development of soil sensors 
based on spectral technology and have successfully developed a soil organic matter 
content sensor and soil nitrogen content rapid detector (Li et al., 2010).

8.2.1.1 � Development of Soil Organic Matter Content Detector
A practical portable detector for soil organic matter content was developed based on 
optical devices (Tang et al., 2007). The working mode is shown as Figure 8.1a. The 
optical signal at the NIR wavelength was transferred to the crop root zone (a depth 
of 300 mm). When the incident light reached the target soil, one part of the light 
was absorbed by the soil, and another part of the light was reflected from the soil 
as diffuse reflection light. If a certain wavelength is the sensitive waveband to the 
soil organic matter, the absorbed light is proportional to the content of soil organic 
matter. In other words, the intensity of the diffuse reflection light is inversely propor-
tional to the content of soil organic matter. As a result, soil organic matter content 
can be estimated by soil reflectance value.

Based on the working mode above, the developed detector consisted of an opti-
cal unit and a circuit unit as shown in Figure 8.1b. The optical unit included light 
source, incident and reflected optical fiber, and a photoelectricity conversion device. 
The circuit unit included a light-emitting diode (LED) drive circuit, an amplifier cir-
cuit, a filter circuit, an analog-to-digital converter (A/D) circuit, a liquid crystal dis-
play (LCD), and a U-disk storage component. When measuring, the probe part was 
pushed into soil in order to form a confined space. There were incident and reflected 
optical fibers installed in the probe with the optical fiber opening at the top. The 
light from the LED was transferred to the top of the probe through the incident fiber. 
The light then reached the soil around the probe. The reflected light from the soil 
was transferred to the photoelectrical conversion device through the reflected fiber. 

(a) (b) (c)

Probe

Depth limitation

Incident glass fiber
(5 mm diameter)

LED

Control circuit unit

Handlebar

Display and button

Straight bar

Photoelectrical
device

Probe (with 30 cm depth)

Soil

Bundled
reflected fiber

Photoelectric
device

Light
source

Bundled
incident fiber

FIGURE 8.1  Overall structure of the soil organic matter detector. (a) Optical system struc-
ture, (b) detector sketch, and (c) detector prototype.
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Subsequently, the electrical signal was transferred to the circuit unit to be amplified, 
filtered, A/D converted, displayed, and stored.

To minimize the loss of incident light and reflected light, the Y-type glass fiber 
consisted of a light-incident port, a light-reflected port, and a port with both irradia-
tion and detection. The diameter of the incident and reflected optical fiber bundle 
was 5 mm. The incident port was connected with a light source to receive the inci-
dent light. The reflected light measuring terminal was connected to the photoelectric 
sensor through reflective fiber. The incident fiber and the reflected optical fiber were 
gathered into a bundle at the soil detection port (diameter of 7 mm). The fiber bundle 
served the purpose of simultaneous transmission of incident light and reflected light. 
Glass fiber can make a tiny loss in the transmission process, and meet the require-
ments of Y-type structure because of its soft performance.

The circuit unit included an amplifier circuit, an A/D conversion circuit, an 
LCD, and a U-disk storage circuit. The block diagram of the circuit unit is shown in 
Figure 8.2. The optical signal was relatively weak, and the obtained electrical sig-
nal was weaker after conversion by the photodetector. Furthermore, there would be 
the influence of various noises. Therefore, the design of the amplifier played a very 
important role in the stability and reliability of the whole system.

8.2.1.2 � Development of a Portable Soil Total Nitrogen Detector
The operation of the soil total nitrogen detector is similar to the soil organic matter con-
tent detector. The soil total nitrogen used seven wavelengths in the NIR region (780–
2526 nm) (An et al., 2014). The detector also consisted of an optical unit and a control 
unit. The optical unit included six near-infrared LEDs in separate housings, a shared 
LED drive circuit, a shared incidence and reflectance Y-type optical fiber, a probe, and 
a photoelectric sensor. The control unit included an amplifier circuit, a filter circuit, an 
analog-to-digital converter (A/D) circuit, an LCD , and a U-disk storage component.

The LEDs were then rotated manually to align them with the Y-type optical fiber. 
The optical signal at each wavelength was then transferred from the LED to the 
surface of the target soil. The reflected light from the soil surface was acquired and 
transferred to the photoelectric sensor, through which the optical signal was con-
verted to an electrical signal. Subsequently, the electrical signal was digitized, and 
the absorbance at each wavelength was calculated. All six absorbance values were 
used as input data for the soil TN content estimation model. Finally, the calculated 
soil TN content was displayed on the LCD and at the same time stored in the U-disk. 
Figure 8.3 shows the system overall structure design.

Photoelectric
conversion

Amplifier
unit

Filtered
unit

A/D
conversion MCU

Display Storage Transmission

FIGURE 8.2  ​Block diagram of circuit unit.
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The designed Y-type fiber is shown in Figure 8.4. In order to reduce the complex-
ity of the circuit, the manual operation mode was adopted to control the seven light 
sources (1550, 1450, 1300, 1200, 1100, 1050, and 940 nm). The LED traversed the 
incident optical fiber position in a test cycle. Optical fiber mechanical structure and 
optical dial distribution are shown in Figure 8.5a and b, respectively.

Because the light source was weak with noise interference, a filtering operation 
was done before A/D conversion. In this module, an average filtering method was 
used to perform data filtering, whereas the hardware filtering method was a one-order 
R–C low-pass filter. The filtering method included two steps: amplitude limiting and 
mean. All data were taken an average of 10 times when the data were between 20 
and 2000 mV. If the data were either below 20 mV or above 2000 mV, the data were 
deleted as outliers. Then, LCD display, USB storage, and serial communication of 
the processed data were realized by a single-chip microcomputer.

Figure 8.6 shows the flowchart of the main program. When the detector starts 
working, the system completes initialization and LCD detection first. The system 
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FIGURE 8.4  ​Overall diagram of optical fiber structure.
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FIGURE 8.3  ​Overall structure of the portable soil total nitrogen detector.
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then enters sleep mode until it receives an interrupt. If an interrupt 0 is present, the 
detector begins to collect data. After the A/D conversion, the program enters the 
data processing subroutine. All the processed data are temporarily stored in a vari-
able. When detecting an microcontroller unit (MCU) period, all the collected data 
are calculated in the MCU. The result can be read in the LCD by using the LCD 
subroutine. After the result is displayed, the software then judges whether an inter-
rupt 1 is present, in which case the result is stored in the U-disk. The program then 
returns to the initial interface. Otherwise, the software directly returns to the initial 
interface to start the next detecting period. The subroutines are shown in Figure 8.7.

8.2.2 �​Q uick Detection of Crop Growth and Physiological Parameters

Acquisition of crop growth status information is very important to the precision 
management of crops in field. By using advanced detection methods, external and 
internal crop growth information can be acquired in field (Li et al., 2006). Since the 
size of field in China is quite small and topdressing is necessary to Chinese farmers, 
it is important to develop portable and low-cost sensors of crop growth and physi-
ological parameters.

Spectroscopy is an effective method to detect and acquire crop growth informa-
tion and nutrition status (Xue et al., 2004), which had achieved significant results in 
both basic theory research and practical application (Liu et al., 2004). Researchers 
had proposed several spectral indexes to describe crop growth, which were ratio 
vegetation index (RVI), normalized difference vegetation index (NDVI), agricul-
tural vegetation index (AVI), multitemporal vegetation index (MTVI), normalized 

(b)(a)

LED

The rotary
table

locating
dowel

Optical unit

90
0

3–
M

3

13
0

3
5

ϕ 4
0

ϕ 4
7

12
–ϕ

 5

Photoelectric
sensor

Straight
knurling

Clockwork
spring

Locating

ϕ 12.8

ϕ 30

M36x1.5

ϕ 40

FIGURE 8.5  ​Structure of optical fiber and distribution of LEDs. (a) Optical fiber structure. 
(b) Distribution of LEDs.

  



238 Precision Agriculture Technology for Crop Farming

differential green index (NDGI), normalized difference index (NDI), red-edge 
vegetation index, and differential vegetation index (DVI) (Feng et al., 2009; Yang 
et al., 2009; Tian et al., 2010). Among all these indexes, NDVI is the most sensitive 
to green crop, and thus can be used to detect crop growth and predict rainfall in 
semiarid regions, and can also be used in regional and global vegetation condition 
research (Chen et al., 2010). It is also the most commonly used vegetation index and 
plays an important role in vegetation analysis and monitoring in remote sensing.

Crop information detection is an important part of PA, and the development of 
the NDVI detector has a wide application environment (Yao et al., 2009). There are 
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FIGURE 8.6  ​Flowchart of the main program.  
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several marketed instruments such as the GreenSeeker spectral detector, which have 
been used. Although this equipment can detect the precise NDVI value of vegeta-
tion, it comes at a higher price to Chinese farmers. Also, some parameters are not 
suitable to the agricultural environment in China, thus making the promotion and 
application of this equipment difficult in China. In order to solve these problems, 
much research was carried out to develop a low-cost NDVI detector, which could 
detect and analyze crop growth information, and which would also be suitable to 
Chinese agriculture.

8.2.2.1 � Development of Crop Growth Detector with Optical Fiber
The principle of the crop growth detector with optical fiber was modeled based on 
NDVI, whose calculation required the reflectance in two different wavelengths, NIR 
and red. According to the correlation coefficients, two characteristic wavelengths 
were found in two highly correlated regions.

Choosing one wavelength from 410 to 650 nm and another wavelength from 660 
to 850 nm, NDVI values were then calculated based on these two wavelengths. A 
linear regression analysis was then conducted on NDVI value and leaf nitrogen con-
tent. These steps were repeated for a combination of different wavelengths, and the 
combination with the highest correlation coefficient was chosen as the best combina-
tion for the NDVI detector (Zhang et al., 2004).

This detector has been used in greenhouse cucumber, and two characteristic 
wavelengths are 530 and 765 nm. The correlation results are shown in Figure 8.8.

The correlation coefficient of calibration was 0.808, RMSEC was 0.880, and F 
test value was 43.730, which meant the model passed the F test. By using data from 
the validation set to test this model, the complex coefficient of determination was 
0.740; RMSEV was 0.836, which proved that the model was solid and reliable.
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Since the detector used spectral analysis technology to detect crop growth, it 
needed to conveniently and accurately acquire the leaf reflecting light. As the col-
lecting area for optical fiber was easy to control, optical fiber was chosen for the 
collecting part to avoid complexity from too many mechanisms. The overall struc-
ture of the detector is shown in Figure 8.9. It contains four parts: reflecting light col-
lecting unit, metering unit, signal conditioning unit, and data acquiring unit (Zhang 
et al., 2006).

The fiber was Y-shaped to separate the collected light for individual filtering 
and processing. Using this simple mechanism could easily provide incident light at 
both sensitive wavelengths. The incident light was introduced to the metering unit 
through the optical fiber, and filtered and converted to an electrical signal in the 
metering unit. As the incident light under this condition was too weak for photo-
electric conversion, a signal conditioning unit was designed after the metering unit, 
which included amplifier and noise canceler circuits. The signal processing unit was 
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FIGURE 8.9  ​Overall structure of the crop growth detector with optical fiber.
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designed to process data afterward, including A/D conversion circuit, data proces-
sor, data storage, and result display. In order to store results in other storage devices 
or in the host computer, the detector had a communication interface (usually serial 
communication interface).

The structure of the metering unit is shown in Figure 8.10, which includes filter, 
photoelectric sensor, metering interface, and back cover. The metering interface had 
a jack on one side to connect with the output end of the optical fiber, and the metering 
chamber on the other side to place the filter and photoelectric sensor. The back cover 
was used to seal the metering chamber. The converted electric signal was drawn 
through the wire passing through the back cover. This unit can measure the reflect-
ing light from the crop canopy and other parts, and change sensitive wavebands 
when necessary. The seal of the metering chamber can exclude external interference 
and reduce the distance between the photoelectric sensor and the exit end of optical 
fiber to increase metering efficiency.

Common photoelectric sensors include photoresistor, photodiode, phototransis-
tor, and photocell. After comparing all four photoelectric sensors, a silicon photocell 
was chosen as the photoelectric sensor. Using a photocell can provide a large photo-
sensitive area, high-frequency response, and linear photocurrent change.

The center wavelengths of the filter were 530 and 765 nm, and the half band width 
was 30 nm. As shown in Figure 8.10, the metering unit can collect the reflecting light 
from the standard plate or the leaf through the optical fiber, and then convert the light 
to an electrical signal via the photocell. The output signal from the photocell was 
amplified and converted to a digital signal for data storage and processing to get the 
final result. The final result could be displayed on the LCD screen and be stored in 
other storage devices or in the host PC.

8.2.2.2 �​ Development of Hand-Held Crop Growth Detector with ZigBee
In order to easily evaluate crop growth status in a farm, a hand-held crop growth 
detector based on spectroscopy and ZigBee was developed (Li et  al., 2009). As 
shown in Figure 8.11, the crop growth detector was made up of a sensor and a con-
troller. The sensor and the controller were connected with ZigBee, a kind of wireless 
sensor network (WSN) technology. Since the distance between the sensor and the 
controller can vary according to requirement, it was easy for use in an open field. As 
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the coordinator of the whole WSN, the controller was used to receive, store, process, 
and display the data from the sensor. The sensor was designed to collect, amplify, 
and transmit the optical signals. Because the system used sunlight as a light source, 
the sunlight intensity should be measured as well besides measuring the crop canopy 
reflectance spectra.

(1) Hardware Design: The block diagram of the sensor hardware is shown in 
Figure 8.12. The sensor consisted of an optical unit and a circuit unit. There were 
four optical channels in the optical unit. Channel 1 and channel 2 were used to 
detect the reflected light of crop canopy, and channel 3 and channel 4 were used to 
detect the sunlight. Channel 1 and channel 3 were sensitive at the red waveband, and 
channel 2 and channel 4 were sensitive at the NIR waveband. The circuit unit in the 
sensor included signal amplification, an A/D converter, and a wireless transceiver. 
The four optical channels had nearly the same components: an optical window, filter, 
convex lens, and photodiode. In order to avoid the influence of the changing angle 
of the incident sunlight, milky diffused glass was used as the optical windows of the 
two upward channels. The sensor is to be put vertically on the crop canopy while 
measuring, almost 20 cm, then the light went through the four optical channels and 
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FIGURE 8.12  Block diagram of the hardware of the sensor.
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was converted to a current signal by the photodiodes and then amplified to a com-
paratively large-voltage signal and finally collected and transmitted to the controller 
by a wireless module JN5139.

The JN5139 wireless module (Jennic Co, UK) was applied as the core element 
of the detection system. It provided all RF components and various peripherals, and 
gave users a comprehensive solution with high radio performance. A JN5139 micro-
controller as MCU was integrated into that module to implement IEEE802.15.4 or 
ZigBee compliant systems. This microcontroller included a 4-input 12-bit A/D con-
verter unit and was easy to use.

The block diagram of the controller is shown in Figure 8.13. The wireless trans-
mission modules JN5139 were also used as the MCUs of the controller. An antenna 
interface and a flash with a volume of 128 KB were integrated into this module, so 
the controller could implement the functions of receiving and processing data, and 
displaying and storing the result within the single module. The display was con-
nected to the MCU via two digital IO ports by means of serial communication. The 
keypad with nine keys provided several common functions such as reset, storage, 
review, format, and upload data.

(2) Software Design: The sensor and controller built up a simplest network 
(point-to-point network) together. The sensor was the end device of this network. 
Comparing with the application in the controller, the most distinct characteristic 
was its sleep mode. Once initialized after being started, the application activated 
a timer and then entered into sleep mode. It would be wakened by the interrupt, 
which was caused by the overflowing of the timer, then data would be collected 
and sent to the controller and then it went into sleep mode again. The sampling 
frequency was adjustable according to different requirements. One Hz was recom-
mended in this development. The flowchart of the software in the sensor is illus-
trated in Figure 8.14.
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FIGURE 8.13  Block diagram of the controller.
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The controller was the coordinator of this network. The coordinator was the core 
of the network and kept on working all the time as long as the network was active, 
and no sleep mode was allowed. The power consumption was about 60 mA, much 
higher than it was in the sensor. The flowchart of the software in the controller is 
illustrated in Figure 8.15. The controller would be initialized once powered, and then 
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searched and built up an independent ZigBee network. After that, it would enter into 
an idle mode to waiting for interrupts. Once an interrupt occurred, the system would 
check which interrupt source it came from; if it was defined, the proper function 
would be executed, and if it was not defined, the system would return to idle mode. 
The interrupt from RF reception had top priority and could lead the system to the 
subfunction of data reception. In this subfunction, the received data were immedi-
ately processed and calculated to NDVI value, then displayed on the LCD. Seven 
other interrupts from the keypad were also defined in this application. Before recog-
nizing which specific interrupt it was, an antiflutter function was strongly requested 
to eliminate the flutter caused by key pressing. In Figure 8.15, only three typical 
interrupts were listed.

The detector was applied in a Chinese state farm located in Heilongjiang Province, 
Northeast China. As shown in Figure 8.16, many field tests were conducted in the 
paddy fields of Qixing Research Center, Jiansanjiang Sub-bureau of Reclamation, 
Heilongjiang Province, on June 2008. After calculation, the prediction model of the 
chlorophyll content of rice was established based on NDVI (550,850), R (650), and 
R (766).

8.2.2.3 � Development of Vehicle-Mounted Four-
Waveband Crop Growth Detection System

In order to further extend the function of the crop growth detector, a new four-wave-
band crop growth detection system was developed to work as a ZigBee WSN with 
one control unit and one measuring unit. The measuring unit included several sen-
sor nodes, which were used to measure crop canopy (Li et al., 2011). All the units 
were installed on an onboard mechanical structure so that the detection system could 
measure crop spectral characteristics on-the-go and in real time.

As shown in Figure 8.17, the system consisted of two parts: the control unit and 
the measuring unit. The control unit was a CS350 type of personal digital assistant 
(PDA) with an attached ZigBee wireless communication module (JN5139 module). 
As the coordinator of the whole wireless network, it was used to establish the wire-
less network, waiting for the sensor nodes to join in, and receiving, displaying, and 

FieldSpec HH

Dual-wavebands crop
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FIGURE 8.16  Field test at the Chinese state farm located in the Heilongjiang Province.
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storing all the data from the different sensor nodes. Theoretically, each network can 
accommodate the maximum number of nodes for 65535.

The measuring unit consisted of several optical sensors, and each optical sensor 
was used as a sensor node in this WSN. Each sensor node consisted of an optical 
part and a circuit part. The optical part contained eight optical channels at four 
wavebands. Since the detection system used sunlight as the light source, besides the 
reflected light from the crop canopy, sunlight intensity should also be measured as a 
reference. Therefore, two solutions were put forward:

	 1.	A full function sensor node had to contain eight optical channels, the 
upward four for the sunlight and the downward four for the reflected light.

	 2.	Select one sensor node to measure the sunlight, as the type I sensor shown 
in Figure 8.17. Other sensor nodes were used to measure the reflected light, 
as the type II sensor shown in Figure 8.17.

Under the premise of measurement precision, this kind of design greatly reduced 
the production cost. As discussed above, the advantages of the four-waveband crop 
growth detection system mainly reflected in the following:

	 1.	The structure of the optical channel. The four optical channels were 
designed to integrate with compact structure and light. The filter can be 
replaced conveniently without opening the sensor node, which enhances the 
universality of the system.

	 2.	The signal process circuit. In the circuit part, the current signals were 
amplified and converted to voltage signals. A time-division multiplex chip 
(ADG704) was applied to share the amplification unit and an OPA333 
amplifier, which had the properties of high-precision, low-quiescent cur-
rent, and low power consumption, was chosen to amplify.

Measuring unitControl unit

Coordinator I

II

II

II

II

II

FIGURE 8.17  Structure of the vehicle-mounted crop detection system.
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	 3.	Flexibility and portability of the system structure. The sensor and control-
ler can set up the communication network in many ways. The networking 
mode between the hand-held and vehicle-mounted can be transformed into 
each other. The transmission distances can be up to hundreds of meters, 
which realized the real-time, continuous measurements of crops in the field. 
Furthermore, it increased the flexibility of the detector installation.

	 4.	The independence of the sunlight measuring unit. A sensor node was 
selected to measure the sunlight, and then the whole network shared the 
sunlight value. Under the premise of measurement precision, this type of 
design greatly reduced the cost of the system.

	 5.	Friendly operation platform. Using a personal digital assistant (PAD) as the 
controller of the system, and developing a visual interface for data acquisi-
tion, it was convenient and user-friendly, and easy for further development.

The newly designed system increased the optical channels and realized measured 
crop spectral characteristics on-the-go and in real time after being installed on an 
onboard mechanical structure (Zhong et al., 2013). Figure 8.18 shows the field test in 
Shaanxi Province. The distribution of chlorophyll content of wheat detected by the 
new system is shown in Figure 8.19.

8.3 � APPLICATION OF IoT IN AGRICULTURE

The IoT is defined by the Chinese Academy of Information and Communication 
Technology (CAICT) as follows: “Internet of Things is an expanded application and 
a network extension of a communication network and the Internet. It uses sensing 
technology and intelligent equipment to perceive and recognize the physical world, 
and communicate through a network to compute, process, and mine data. It can 

FIGURE 8.18  Field test of the vehicle-mounted crop detection system.
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exchange information and create seamless links between human–things or thing–
things, thus to realize real-time control, precise management and scientific decisions 
of the physical world.” Based on this definition, it is concluded that the IoT is an 
integration of the WSN, microelectromechanical systems (MEMS), and the Internet. 
Figure 8.20 shows the structure of the IoT. Usually, it includes three layers: percep-
tion layer, network layer, and application layer. As the nerve endings of the IoT, the 
perception layer achieves the function of the acquisition, identification, and control 
of all necessary information through sensors, radio-frequency identification device 
(RFID) readers, cameras, GNSS modules, smart meters, mobile phones, IC cards, 
etc. It is mainly related to sensors, bar codes, RFID, audio and video codec, and 
GNSS technology. The network layer is the nerve center of the IOT, and is used to 
transmit information. It uses WSN, Wi-Fi (wireless fidelity), communications net-
works including the Internet, GPRS (general packet radio service) network, 3G or 
4G network, LAN (local area network such as IPV4 and IPV6), radio and television 
networks, and the next generation of broadcast networks). The application layer is the 
brain of the IoT, and can realize the data processing and application. The fields used 
in the application layer include enterprise resource planning, expert system, cloud 
computing, system integrate, industry application, agricultural application in crop 
cultivation, husbandry, aquaculture, greenhouses, etc. (Li, 2012).

Currently, Chinese agriculture is in the process of moving from traditional agri-
culture to modern agriculture, and the development of modern agriculture requires 
the support of information technologies during the production, sale, management, 
and service process. With the progress of the IoT, the development of modern 

FIGURE 8.19  (See color insert.) Distribution of chlorophyll content of wheat.
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agriculture has greater opportunity than ever before. Modern agriculture urgently 
requires the IoT to provide digital design, intelligent control, precise operation, and 
scientific management to agricultural elements in agricultural industries such as field 
planting, protected horticulture, livestock breeding, aquaculture, and agricultural 
logistics. Thus, it is possible to realize “overall perception, reliable transmission, and 
intelligent processing” for a variety of agriculture elements, and achieve the goal of 
high yield, high efficiency, ecological sustainability, and safety.

8.3.1 �K ey Technologies of Agricultural IoT

Figure 8.21 shows the structure of agricultural IoT. The perception layer involves 
all the factors in field information acquisition with advanced sensing technology. 
After information acquisition, the network layer connects the sensing equipment to 
the transmission network, which provides the path for the upload of sensing data. 
Through a wired or wireless communication network, information and data can 
interact and share in real time. In the application layer, agricultural information 
management and intelligent decisions can be made based on the knowledge pro-
vided by acquired agricultural information using intelligent computing and process-
ing. Owing to this, transmission and processing of agricultural data are other key 
technologies besides sensing technology.

WSN and mobile communication are two important technologies of agricultural 
information transmission. Since WSN is a self-organized wireless communication 
network system, it can deploy a large number of sensor nodes in the detection area 
and monitor and collect information about all the subjects in the detection area, and 
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then send this information to gateway nodes to conduct detection and tracking on 
targets within a complex specified range. It is easy to deploy and hard to destruct. 
Currently, in Agriculture WSN, ZigBee technology is widely used.

Researchers worldwide have been using WSN technology in field information 
acquisition. By combining ZigBee and GPRS wireless communication technology, 
NDVI data can be wirelessly transferred to a server thus making it possible to analyze 
crop growth and support field management. In order to meet the needs of measuring 
farmland environmental parameters, the monitoring system of soil temperature and 
moisture in farmland was developed. The system included a field wireless sensing 
network and a remote data center. Using a JN5121 wireless microprocessor as the 
core of the sensor nodes, the wireless sensing network was built based on ZigBee 
protocol. The gateway nodes were developed based on an ARM9 microprocessor 
embedded Linux system, which could realize data aggregation and remote data for-
warding using GRPS. The management system FieldNet was installed in the remote 
data center, which could monitor the real-time change and analyze spatial variation 
by using the implemented ESRI GIS ArcEngine Library. The design and develop-
ment of the system provided an effective tool for the research of spatiotemporal vari-
ability and irrigation decisions in PA.

With the improvement of agricultural IT, mobile communication technology 
has become an important tool in remote transmission of agricultural information. 
Figure 8.22 shows the structure of a wireless field acquisition system for soil mois-
ture based on GSM technology. It includes a fast positioning system (GNSS device), 
a GSM module, a terminal computer, and other communication equipment. The 
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GNSS device can detect the position and moisture information of farmland, which 
will be sent to monitoring computer by text message through the GSM network. It 
is low-cost and reliable, and can also cover a wide range and transmit through an 
unlimited distance. It can provide an efficient solution for field information acquisi-
tion, transmission, and processing.

8.3.2 �​A gricultural IoT and Management 
Decision in Precision Agriculture

Management decisions based on agricultural information play an increasingly 
important role in agricultural modernization and digitization. Nanjing Agricultural 
University has developed an agricultural spatial information management and deci-
sion supporting system based on WebGIS (Liu et al., 2006). This system provided 
a great data management platform for PA information. Using a systematic approach 
and mathematical modeling techniques, a distributed network platform based on 
B/S structure was built, and a regional agricultural spatial information management 
and decision support system was designed and developed. Figure 8.23 shows the 
whole structure of the system. It included several subsystems such as Basic Map 
Operation, Data Query and Analysis, Cropping System Evaluation, Ecological 
Zoning, Potential Analysis, Precision Farming Management, Visual Outputs, and 
System Maintenance. It can perform the position query, topic query, and logical 
query, and can carry out the evaluation of climate adaptability, soil suitability, and 
comprehensive conditions. It can also conduct analysis on monoculture production 
potential and multicrop production potential.

In addition, the decision support system (DSS) of precision fertilization has also 
made great progress. An information system of soil and fertilizer was developed by 
the Chinese Academy of Agricultural Sciences (CAAS), which realized functions 
such as variation prediction of soil and fertilizers, expert system of soil and fertiliz-
ers, and output of agricultural maps. Based on this research, the National Engineering 
Research Center for Information Technology in Agriculture (NERCITA) has pro-
posed a DSS for precision fertilization. The overall structure of the system is shown 
in Figure 8.24. In order to solve the promotion and extension problems of precision 
fertilization software in China, this DSS was developed based on component-ori-
ented technology. It had distributed the tasks in precision fertilization into several 
different service units, which were mapped to corresponding service components. 
Furthermore, it had also provided a method how to develop a component-oriented 
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DSS of precision fertilization to meet personalized needs. Experiments showed that 
the component-oriented DSS of precision fertilization had great advantages in wide-
spread promotion and application.

8.3.3 �​A gricultural IoT and Field Information Acquisition

8.3.3.1 �​ Soil Moisture Monitoring System in Farmland Based on IoT
In northern China, drought is still a problem in agriculture. In order to prevent spring 
drought from damaging the growth of winter wheat, it is necessary to use soil mois-
ture information to guide irrigation and prevent drought. There is a serious shortage 
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of water resources in China and other problems such as low utilization rate of water 
resources. In this case, it is very important to improve water resource efficiency 
in PA. By adapting advanced communication and sensing technologies, a monitor-
ing system was constructed to realize accurate dynamic monitoring of agriculture 
water resources, thereby promoting scientific management and rational use of water 
resources.

A soil moisture monitoring system based on the IoT was constructed in Huaitai 
County, Shandong Province, China, as shown in Figure 8.25. WSN were constructed 
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to monitor the variation of soil moisture in a farmland using 6–10 monitoring nodes. 
The data of soil moisture content were integrated to a gateway node, and then uploaded 
to a web server (database) by using GPRS network or the Internet, dependant on 
the site’s condition. Thus, remote collection and monitoring of soil moisture were 
performed. The data can be browsed in a webpage (The Demonstration Platform of 
Huantai Precision Agriculture Information Management, http://www.htpa.cn/).

The Demonstration Platform of Huantai Precision Agriculture Information 
Management includes basic information management of farmland, soil moisture 
information acquisition and management, and video monitoring and information 
publication, which is shown in Figure 8.26. The basic information management 
module of the farmland is in charge of storage and maintenance of soil nutrition 
maps, precision fertilization information, and basic information such as area and 
facilities. The acquisition and management module of soil moisture information is 
in charge of management and analysis of the soil moisture data collected in real 
time by wireless sensor nodes. It can display information such as node number, data 
collecting time, and soil moisture data. Users can choose whether to display all the 
data or just the data from some particular sensors. The video monitoring module is 
in charge of monitoring the field environment. Users can adjust the focal length and 
tripod head of the camera.

8.3.3.2 �​ Integrated Agricultural Information Monitoring and 
Precision Management System Based on IoT

In order to obtain real-time crop growth information to enable scientific decisions 
and management, CAU has developed and built the Zhunge’er Intelligent Agriculture 
Information Platform for the cooperation project with Zhunge’er County of Inner 
Mongolia, as shown in Figure 8.27. The platform used B/S mode and could collect 
and store the data of greenhouse temperature, humidity, light intensity, CO2 con-
centration, and video, and had the functions of data analysis and alarm output. The 
application experiment in Zhunge’er County showed the platform was stable, easy to 
use, structured, and managed data effectively.

The Zhunge’er Intelligent Agriculture Information Platform included “one plat-
form and four systems,” which were the intelligent agriculture information platform, 

(b)(a)

FIGURE 8.26  Demonstration platform of Huantai precision agriculture information man-
agement. (a) Interface. (b) Video monitoring module.
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and the precision management system for field crop production, precision manage-
ment system for greenhouse, precision management system for animal production, 
and traceability system of agricultural products.

In the precision management system for greenhouse, for example, the subsystem of 
data acquisition and remote transmission consisted of several sensor nodes, gateway 
nodes, and relay routing nodes. The sensor nodes were connected with temperature, 
humidity, carbon dioxide, and light, which could be deployed at the center of differ-
ent greenhouses. Sensing data could be transmitted to the gateway node through the 
ZigBee wireless network, and were then sent to the local PC through serial commu-
nication. The stand-alone monitoring software also runs on this PC to receive data by 
scanning serial communication and furthermore processing and analyzing these data. 
The greenhouse administrator could check data in real time on this PC. The video cam-
era was connected to a local PC and server platform through the Internet, which was 
used to monitor crop growth and pest conditions. The server platform was designed 
based on B/S mode. Users can access web applications to manage or query monitoring 
data. Authorized users can watch the greenhouse monitoring video in real time.

8.3.4 �​A gricultural IoT and Agricultural Machinery Scheduling

With the rapid development of large-scale agricultural production in China, it is impor-
tant to execute rational allocation and effective scheduling of agricultural machinery 
resources to ensure the completion of agriculture production on time, and to improve the 
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utilization of agriculture machinery to avoid waste in resources and loss in agricultural 
production. By using GIS, GNSS, and wireless communication technology, agricultural 
machinery monitoring and scheduling based on agricultural IoT has been realized.

NERCITA has designed and developed an agricultural machinery scheduling 
system based on GPS, GPRS, and GIS technology (Li et al., 2008). As shown in 
Figure 8.28, the system consisted of a vehicle terminal base on PDA and agricultural 
machinery monitoring and dispatching center. The vehicle terminal can perform fast 
collection and real-time display of agricultural machinery information combined 
with GPS receiver, sensors, and MapX Mobile GIS component. The data collected 
were then sent to the data processing server through GPRS network in real time. 
The MapObjects component was used to develop the machinery management sys-
tem. According to the operation schedule, the management system could monitor 
the working status, dispatch, and track the historical information of the agricultural 
machinery. This system has provided a practical solution for remote information 
collection, real-time monitoring and effective scheduling of agricultural machinery 
(Wang et al., 2010; Wu et al., 2013).

The agricultural machinery monitoring and scheduling system contains three 
parts: the vehicle terminal, monitoring server, and user surveillance terminal.

	 1.	The vehicle terminal is a terminal device mounted on the agricultural vehi-
cle, which has an integrated GPS locating module, GPRS wireless commu-
nication module, center control module, and multiple sensors. It can acquire 
position data of agricultural machinery by the GPS module, and real-time 
condition data of agricultural machinery by a series of sensors such as fuel 
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cost sensor, signal sensor, and speed sensor. Finally, it can upload all these 
data to the monitoring server through the GPRS wireless network.

	 2.	The monitoring server consists of a vehicle terminal server, monitoring 
terminal server, and database server. The vehicle terminal server is in 
charge of communicating with the vehicle terminal to receive data from 
different terminals and to store these data in the database in the scheduling 
center. It can also send scheduling commands and information to the vehicle 
terminal. The monitoring terminal server is in charge of interfacing with 
the client scheduling center, parsing and responding to the request from the 
clients, and extracting data from the database to clients. The database serv-
ers are in charge of storing and managing agricultural machinery data such 
as position, condition, and operating parameters. It will also regularly back 
up and dump historical data, which provide data support for the vehicle 
terminal server and monitoring terminal server.

	 3.	The clients surveillance terminal can provide real-time remote monitoring 
and processing of agricultural machinery production position and condi-
tion, visual display of agricultural machinery position on a digital map, data 
query and statistical analysis for agricultural machinery operation monitor-
ing data, and the release of agricultural machinery scheduling information 
to managers. The surveillance terminal can also post scheduling commands 
by telephone, thus realizing real-time scheduling of agricultural machinery.

In general, an agricultural machinery scheduling management system can provide 
real-time information of working conditions and positions to agricultural machinery 
management and agricultural cooperation organizations based on a GSM digital pub-
lic communication network, GPS, and GIS technology. The agricultural machinery 
scheduling system can suggest the optimal number and route for agricultural machin-
ery usage by analyzing information such as area and position of production according 
to tasks given by the manager. Meanwhile, the supportive module can examine the 
efficiency and fuel cost of historical production, to suggest the optimal operation of 
agricultural machinery. By processing the data uploaded by the vehicle terminal, the 
system can accurately obtain information such as real-time position and fuel cost. The 
current condition of agricultural machinery can be displayed in real time and tracked 
on the monitor. Statistical analysis of effective mileage of operation and fuel cost can 
be provided. Also, by providing the historical track of agricultural machinery, remote 
monitoring of production can be achieved, which can support the scheduling of pro-
duction, thus increasing the efficiency of agricultural machinery usage.

8.4 � SYSTEM INTEGRATION AND APPLICATION 
OF PRECISION AGRICULTURE

8.4.1 �​D evelopment and Application of Intelligent 
Agricultural Equipment

Information and communications technology (ICT) and computer technology have 
brought about a revolution in traditional agricultural machinery. By introducing 
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sensing and detection technology, automatic control technology, information acqui-
sition and fusion technology, machine vision technology, and field bus technology, 
agricultural machinery has partly or overall realized automation.

The studies on the automation system of agricultural machinery include sensors, 
actuating devices or units, data fusion and processing software, field bus, visualiza-
tion of monitoring interface and control software, and overall system performance 
and structure. In order to increase performance/price ratio of agricultural machinery, 
electronic, sensor, power, mechanical, computer, and intelligent control technologies 
were applied to the design, manufacture, and application of agricultural machines. 
Consequently, production efficiency was greatly improved. Especially with the 
development and extension of PA ideas or technologies, it promotes the development 
and application of intelligent agricultural equipment. Many fruitful results have been 
achieved in automatic navigation technology, variable operating control technology, 
vehicle-mounted agriculture operation technology, and agricultural robot technol-
ogy in agricultural machinery.

8.4.1.1 �​ Application of VRT in Agricultural Machinery
The core of PA is variable agricultural resources management based on spatial and 
temporal variation. It is in accordance with the crop yield, environmental factors 
that affect crop growth, and growing requirements. Hence, variable-rate treatment 
(VRT) technology is the core of PA, while agricultural machines for VRT are impor-
tant and necessary (Wang et al., 2003).

VRT technology can be divided into two categories: map-based VRT and sensor-
based VRT. Thus, the variable targets are taken in two forms: previously generated 
electronic map and real-time decision data generated during machine movement.

For map-based VRT, a four-step procedure is needed to generate the prescrip-
tion map. The first step is obtaining the spatial and temporal variation information 
of a crop yield, soil parameters, etc. The second step includes establishing models 
on plant growth, environmental conditions, weather, germination rate, growth, and 
nutrient requirements. The third step involves generating the desired prescription 
map based on the previous comprehensive analysis by using GIS and DDS. The 
fourth step is implementing variable inputs in accordance with the prescription map 
by using corresponding VRT agricultural machinery.

NERCITA has developed a kind of variable fertilization machine matching with 
the domestic tractor. With the help of the GPS navigation system, it can realize vari-
able fertilization according to the prescription map designed in advance. The struc-
ture of the Geneva wheel was used as the fertilizer measuring device of the VRT 
machinery. By adjusting the rotation speed of the outside Geneva wheel, it can adjust 
the fertilizer quantity. The structure of the VRT fertilizing machine is shown in 
Figure 8.29.

After determining the soil fertilizer prescription based on the soil information of 
a field, the prescription map in the format of a .shp file was input into the AgGPS170 
computer by a TF card. A tractor mounted with receiving antennas received GPS 
signals and differential signals from the radio base station.

After processing the DGPS signals, the system software can determine the geo-
graphic location of the machinery. The AgGPS170 computer would put the on-site 
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fertilizer application rate from the prescription map into the fertilization controller 
through a data switch exchanger, and then, the fertilizer distributor controlled the 
hydraulic motor speed to achieve the goal of changing the fertilizer application quan-
tity. The start and stop of fertilizer distribution can also be compulsively controlled 
by the fertilization control switch in the driving cab, and the running of the tractor in 
the field is instructed through the guiding light signal.

The AgGPS170 computer will then display the next location coordinates of the 
tractor, and the fertilizer prescription data on the screen. The fertilizer was dis-
charged from eight rows of distributing wheels installed at the bottom of the fertil-
izer box, evenly scattered on the surface by the distributing plate, and then the back 
of the high-speed rotary tillage blade stirred the fertilizer into the soil.

8.4.1.2 � Laser-Control Land Leveling System
In a cyclic process of farmland operation, land leveling is an important measure 
to improve irrigation quality and therefore plays an important role in PA (Jia et al., 
1997). It can effectively improve farmland management and seedbed conditions, 
and realize precision irrigation so as to achieve the purpose of water saving and 
increased production. As the world’s most advanced mode of land leveling, laser 
control technology has been widely used in Europe, America, and other developed 
countries in the early 1970s. In the last decade, developing countries such as India, 
Turkey, Pakistan, China, and others have also successively used laser technology and 
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FIGURE 8.29  Variable rotary tillage and fertilizer machinery structure diagram. (1) 
Tractor. (2) Data exchanger. (3) AgGPS170 computer. (4) Guiding light bar. (5) Fertilization 
control switch. (6) Fertilization controller. (7) GPS-receiving antenna. (8) Radio-receiving 
antenna. (9) Junction box. (10) Branch box of power source. (11) GPS moving station. (12) 
Three-point suspension hitch. (13) Fertilizer can. (14) Transmission shaft sprocket. (15) 
Transmission chain. (16) Hydraulic motor. (17) Motor supporting structure. (18) Rotary till-
age side panel. (19) Rotary blade. (20) Subsoiler. (21) Gearbox. (22) Cardan shaft. (23) Oil 
return pipe. (24) Oil feed pipe. (25) Storage battery. (26) Speed measuring radar.
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achieved better economic benefit. Figure 8.30 shows the principle diagram of laser 
land leveling system (Li et al., 2007; Hu et al., 2009; Li and Zhao 2012).

Aiming at precision land leveling operation for dry fields in Northern China, 
China Agricultural University has developed a low-cost laser land leveling system as 
well as three-dimensional topography measurement system. The receiver of the sys-
tem adopted double optical filters, the controller utilized a fuzzy control algorithm, 
and the hydraulic system adopted a gear pump as the power output. Figure 8.31 
shows a land leveler in field operation. Equipped with a domestic JP300-type laser 
emitter, the system can work stably with high accuracy. The receiver has an accuracy 
of 3 mm, and the controller has good compatibility with both domestic and foreign 
hydraulic control valves (Lin, 2004; Zhao et al., 2008; Si et al., 2009; Li et al., 2012).

NERCITA has designed and developed a 3D-terrain rapid data acquisition sys-
tem based on all-terrain vehicle (ATV), which used high-precision RTK-GPS to 
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FIGURE 8.30  Principle diagram of laser land leveling system. (1) Tractor. (2) Controller. (3) 
Hydraulic system. (4) Receiver. (5) Land-leveling bucket. (6) Datum plane. (7) Laser emitter.

FIGURE 8.31  Land leveler in operation.
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automatically measure 3D terrain data. The onboard computers can record real-
time 3D terrain data. Furthermore, auxiliary parallel navigation devices can direct 
the data acquisition vehicle to implement regional coverage measurement, as well 
as improve the quality and efficiency of data collection. Field measurement tests 
showed that the 3D terrain automatic data collection system based on ATVs had a 
good consistency with artificial RTK-GPS measurement, and the maximum average 
deviation was 3.54 cm, and the largest standard deviation was 2.48 cm (Liu, 2005; 
Lang et al., 2009; Meng et al., 2009).

South China Agricultural University has developed a laser land leveling system 
for paddy fields, which has made an important breakthrough and entered the stage 
of application. The research of the laser control system focused on the level control 
system of the bucket. Different sensors were used to detect the dip angle of the 
bucket, among which two ultrasonic sensors were adopted to measure the distance 
between both ends of the bucket and the surface of reference, and then calculated the 
dip angle using a triangle relationship. When tested on flat cement ground, the tilt 
angle measurement error of the level control system was less than 1.0°. Therefore, the 
paddy field leveling accuracy could be controlled within 3 cm. Figure 8.32 shows the 
operation of the laser land leveler in a paddy field.

8.4.2 �​M anagement Platform of Agricultural Information

The management platform of production-related data is the core of the PA man-
agement system. It is responsible for the input, processing, spatial, and temporal 
variation analysis of all farmland data and the formulation of correct farming and 
implementation plans. At present, the agricultural information management plat-
form for PA is usually created based on GIS software, such as ArcGIS, MapInfo, 
and SuperMap, or based on components of GIS for secondary development, such as 
ArcEngine and MapX. Except for general GIS functions, the platform also supports 
data interface related to PA, professional models, special analysis functions, etc.

FIGURE 8.32  Operation of the laser land leveler in paddy field.
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The database is the bas of the farmland information management platform, as 
shown in Figure 8.33. The data come from field measurement, local investigation, 
historical data, economic data, etc. According to the functions, it includes the fol-
lowing four parts:

	 1.	Farmland geographic information database
	 a.	 Used as a geographical background of varying resolution satellite 

image data, aviation image data
	 b.	 Using GPS data of the distribution of farmland infrastructure such as 

canals, wells, and place for crop drying
	 c.	 Using GPS data of farmland terrain, such as land distribution, and land 

type (cultivated land, garden land, forest land, grassland, etc.)
	 d.	 Distribution of GPS control units
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Environment information
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Crop information
acquisition
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-infrastructure

-terrain

Production data

-crop variety

-sow area
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-production

-soil parameter
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-fertilization
 prescription
-spraying
 prescription
-irrigation
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Business strategy
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Knowledge
model
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Farming management
method
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-cultivation -irrigation
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FIGURE 8.33  Process diagram of precision agriculture.
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	 2.	Basic database of production
	 a.	 Crop type, crop varieties, ecological adaptability, agronomic shape, 

resistance, quality, etc.
	 b.	 Sow area, planting method, production level, etc.
	 c.	 Fertilizer input, condition of irrigation, volume of pesticides, etc.
	 d.	 Food prices and market demand, price of seed, fertilizer, pesticide, etc.

	 3.	Environmental database
	 a.	 Soil parameter data: Soil type, soil profile, soil texture, soil bulk den-

sity, soil nutrient content, soil organic matter content, soil total nitrogen 
content, soil total phosphorus content, soil total potassium content, soil 
alkali solution nitrogen content, soil available phosphorus and available 
potassium content, soil trace element (boron, manganese, copper, zinc, 
etc.), soil moisture, soil permeability, field capacity data, etc.

	 b.	 Meteorological data: Daily sunshine duration, average temperature, air 
relative humidity, wind speed, precipitation, air pressure, etc.

	 c.	 Water resources data: Water quantity, water quality, etc.

	 4.	Crop information collection
	 a.	 Seedling growth data: High-resolution sensors are used in different 

crop growing periods to comprehensively monitor seedling growth sta-
tus. Spectrophotometer or multispectral camera can be used to monitor 
the chlorophyll density, and analyze the relationship with nutrients.

	 b.	 Disease, insect, weeds distribution data: The type, period, distribution, 
and scale of farmland crop diseases and insect pests can be recorded 
through analyzing the remote sensing data or portable GPS field 
inspections.

	 c.	 Production distribution data: When harvesting, a combine harvester 
with yield monitor can be used to record crop yield distribution in farm-
land. At the same time, the accumulated historical data can be used for 
comprehensive analysis.

To establish all the above databases, data collected through various forms, some 
historic and some real time, are needed. When establishing the platform, data acqui-
sition begins. After gradually accumulating data, databases such as geographic data, 
basic production data, and some parameters of soil and water resource data are cre-
ated. These data acquisition is not restricted by the crop growth season, with lower 
sampling frequency. However, real-time data need to be collected in the crop growth 
season, such as crop growth, plant disease, insect pests, distribution of production, 
soil moisture, soil nitrogen content, and meteorological data. It needs higher spatial 
and temporal resolution and more rapid detection technology support.

Generating a thematic map is the basic function of a GIS system, which is able to 
show the spatial distribution of attribute data. Therefore, after real-time data such as 
soil parameters and crop information are collected, the farmland information man-
agement platform can analyze the data for the thematic map and understand the 
status of crop growth and development.
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8.4.3 �D iagnosis Decision-Making Expert System

Compared with traditional farming, precision farming can help to make better 
resource management decisions by utilizing various types of information. In order 
to make a full and accurate diagnosis-based decision in precision crop management, 
an expert system (ES) in the farmland information management platform is needed 
for intelligent diagnosis and decision making. ES can integrate the expert’s knowl-
edge and the crop growth model into the process of making a production decision 
scheme. It can make decisions according to the specific circumstances of each sam-
pling point. The decision scheme of the whole area could be calculated through 
computer interpolation. In this process, the knowledge of an expert can make the 
decisions more reasonable. Figures 8.34 and 8.35 illustrate the PA practices in wheat 
and corn production management with a decision-making ES.

A wheat production management ES provides a scientific basis for production 
targets (Bao and He, 2001; Chen et al., 2008). It can implement the production plan 
according to special software, and improve the foresight of scientific management. 
It can also forecast the wheat growth in good time, and adjust and control the pop-
ulation structure with the prediction, ideal plant type, and factors of wheat yield. 
Therefore, it can increase effective growth and accumulation. The ES can recom-
mend the varieties that are suitable for the region. The following can also be deter-
mined by the ES:

	 1.	Quantity of fertilizer, ratio of fertilizer elements, and fertilizing method 
according to soil fertility and yield target

	 2.	Reasonable planting density according to sowing time and fertility level
	 3.	 Irrigation time and water volume according to the soil moisture content, 

weather, rainfall, and crop growing status
	 4.	 Integrated system cultivation and management techniques according to the 

wheat growing process, population structure, and plant morphology
	 5.	Optimization of the management decision and practical scheme according 

to the local condition and crop growth information

A corn production management ES can set the proper field target based on local 
production conditions and the level of productivity. It can predict the growth of corn, 
adjust and control the group structure, and decide the ideal plant type and factors of 
the field. It can make decisions for different corn fields according to the requirements 
of different growth periods. The decisions include farm management technology 
such as planting farming technology, seed treatment, corn cropping systems before 
farming, crop varieties making full use of the resources of light and heat, reasonable 
density, seeding time, planting form, seeding method, seeding rate, seeding inspec-
tion, reseeding, replant, timely thinning, fix seeding, hoe weeding, and the use of 
growth regulators. According to the production targets, reasonable fertilization tech-
niques, water saving irrigation technology, and disease pest prevention and control 
technology are adopted. The reasonable harvest time and irrigation postharvest can 
be determined according to the corn growth indexes.
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FIGURE 8.34  Wheat production management expert system.

  



266 Precision Agriculture Technology for Crop Farming

8.4.4 �N ational Demonstration Base for Precision Agriculture in Beijing

As agricultural industrialization and modernization are fast developing, China 
has established several development and demonstration bases for PA to promote 
PA applications and make it become the incubator of new agricultural technolo-
gies as well as the new agricultural industry. These have propeled the introduction 
and absorption, research and development, and demonstration and application of PA 
technologies (Wang, 2011).

Since 2000, the National Development and Reform Commission of China and 
the Beijing Municipal Government invested together to establish the first National 
Demonstration Base for Precision Agriculture. Several large-scale demonstration 
bases of PA were constructed with a high level of mechanization and production in 
the northeast of China, Inner Mongolia, Xinjiang, etc. Here, we take two examples, 
one in Beijing and one in Heilongjiang, to introduce the application of practices 
related to PA as well as to provide a research overview.
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The National Demonstration Base for Precision Agriculture is located in 
Xiao Tangshan Modern Agriculture Technology Demonstration Park in Beijing 
(Figure  8.36). It has introduced and applied a large number of advanced domes-
tic and foreign PA machines, devices, and instruments, which included the com-
bine harvester with automatic yield monitor, the large-scale lateral move sprinkling 
machine, the DGPS positioning and navigation system, the VRT control system, etc. 
The base has the functions of scientific experiments, data analysis, system integra-
tion, and exhibition of achievements. Currently, the base has achieved fruitful results 
in terms of PA resource management GIS, field information collection systems, air-
borne remote sensing platform applications, intelligent production and measurement 
systems, and VRT machinery applications.

8.4.4.1 �​ Precision Agriculture Resource Management GIS
In PA practice, the establishment of the agricultural resources management platform 
based on GIS is one of the crucial steps. Through efficient management of field infor-
mation and timely spatiotemporal difference analysis of all kinds of farmland data, it 
can provide accurate information for the generation of prescription map and produc-
tion management decisions. The various farmland databases in the demonstration 
base have been developed as shown in Figure 8.37.

Except the basic GIS functions, the system designed and developed the display 
functions including layer operations, and remote sensing images superposition 
according to the specific practice of PA. Especially for non-GIS professional users, 
the functions of map labeling, land measurement, hot links, data query, data analy-
sis, and management were developed to realize the visual marking of the software 
interface, the record of field special features in the form of images, the accurate 
measurement of fields, assisting complete data conversion, analysis, and manage-
ment. For example, a set of yield data from the combine harvester and the soil data 

FIGURE 8.36  National Demonstration Base for Precision Agriculture (Beijing).
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of a field can be imported and then used to generate a map. Through the functions 
of the software, the yield data were analyzed and processed to meet the needs of the 
following analysis. According to the soil nutrient data collected, the software can 
achieve the calculation of fertilization scale effect to determine the best fertilization 
scale unit that should be used in production management.

8.4.4.2 � Field Information Collection System
Field information collection system based on a PC or PDA can collect farmland data 
through the coordination between GPS positioning equipment and different sensors, 
as shown in Figure 8.38. The system has the functions of communication and data 
processing of GPS systems from different manufacturers, the basic GIS functions, 
collecting and recording spatial distribution and attribute information of farmland 
objects, soil grid sampling, and navigation. It can also acquire the position of farm-
land and various factors that affected crop growth environment, such as soil nutri-
ents, crop diseases and insect pests, and water content of weeds. It provides the basis 
for PA management decisions.

8.4.4.3 �​ Airborne Remote Sensing Platform Applications
China has made great progress on aviation remote sensing and analysis system of 
crop information based on airborne hyperspectral imaging device PHI and operative 
modular imaging spectrometer (OMIS). It included a remote sensing platform and 
related application methods and laid the foundation of airborne remote sensing appli-
cations in PA. The system has been successfully applied in research fields such as 
assessment of winter wheat growing, wheat yield analysis, and crop growth analysis.

In terms of winter wheat growing assessment, several statistical models of 
remote sensing were established by using red edge position and Red Valley location. 
Through analysis of false color composites, crop growth and nutrient distribution 
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FIGURE 8.37  Precision agriculture resource management GIS.
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maps on chlorophyll, total nitrogen, soluble sugar, leaf water, and other biochemical 
parameters were obtained as shown in Figure 8.39.

8.4.4.4 �​ Intelligent Production and Measurement Systems
The National Demonstration Base for Precision Agriculture introduced a 2366 
Combine Harvester with an AFS (advanced farming systems) yield monitoring sys-
tem. It was used to harvest wheat and corn in summer and autumn, respectively.

After harvesting, yield maps were obtained according to test data, and the causes 
of yield variations were analyzed to provide a reference for future decisions. Different 
types of yield maps are shown in Figure 8.40. The yield was divided into six grades. 
It can be observed that the boundary section of the plots have lower yields, mainly 
due to the serious soil compaction near the block boundary. In addition, in some 
plots with lower yields, a lot of weeds were found. The analysis results of wheat and 
corn production show that errors were introduced in the data and could mainly be 
attributed in cutting amplitude and width setting error, filling time error, and delay 
time error. Thus, the processing of error correction was necessary.

The National Demonstration Base for Precision Agriculture introduced a U.S. 
Mid-Tech variable fertilization control system. The system mainly consisted of a 
console, a hydraulic control mechanism, and a fertilizing executing mechanism, and 
Figure 8.41 shows the structure diagram of the variable fertilizer spreader. To cope 
with variable fertilizing operations, the system also needs a field computer, a GPS, 
assisted navigation, radar guns, and other equipment.

In VRT fertilization, it is first necessary to import a fertilizing prescription map 
to the field computer. The computer also received real-time GPS data as well as 
radar speed data and real-time fertilizer amount in the prescription map. The fertil-
izing control instructions in the current fertilizing location were transmitted to the 
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FIGURE 8.38  Field information collection system for precision agriculture.
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central controller of fertilizing control system, and the central controller converted 
the digital signal into an analog signal, and then the valve opening was adjusted by 
an electrohydraulic proportional control mechanism. At the same time, the actual 
fertilizer amount was fed back to the field computer by the control systems, which 
would later be used for data processing and analysis.

The data were monitored and stored using a Trimble Ag170 field computer. The 
fertilizing operation was controlled and navigated by using a Trimble Ag132 DGPS 
receiver and a navigation light bar. The data with submeter positioning accuracy can 
meet the needs of the VRT fertilizing operations. The system showed good static and 
dynamic performances with better work precision. Comparing the prescription map 
with the practical distribution map of the fertilizer amount, it was indicated that the 
system could conduct the VRT fertilizing operation in accordance with the fertil-
izing prescription map.

8.4.5 �​P ractice of Precision Agriculture in Heilongjiang Province

Heilongjiang Province, as the major grain base of China, has already established 
several demonstration farms of PA across the province. Heilongjiang Agricultural 
Reclamation Bureau (HARB) is an administrative institution of state farms located 
in Heilongjiang Province. HARB started the practice of PA in 2002 and introduced 
a great number of advanced PA machines from John Deere and Case IH, and DGPS 
systems from Trimble. As an example, the Precision Agriculture Center of Hongxing 
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Farm, one of the 113 state farms in HARB, has integrated and utilized PA technolo-
gies such as farmland information computers, wireless sensor networks, navigation 
and management of agricultural machines, VRT agricultural machinery, and other PA 
equipment. The intellectualization, informatization, and mechanization of agricul-
tural production were all improved. The practice of PA also brought economic benefit 
for farmers, and played a demonstrable and leading role in agricultural production.

8.4.5.1 �​ Remote Sensing Image and Data System (RS)
Hongxing Farm has uploaded remote sensing images of 2.5 m resolution to the 
digital information network from September 2007. At this resolution, farmers can 
find buildings, roads, reservoirs, and other infrastructure on the farm and measure 
the distance between any two points and the area of any region on the map. Since 
October 2008, Hongxing Farm has updated the remote sensing images to a 1.0 m 
resolution. Farmers can clearly find trees and buildings on both sides of the road on 
the farm from updated remote sensing images.

8.4.5.2 �​ Geographic Information System
Hongxing Farm has built a GIS for its field based on RS data. Different management 
zones were divided into different colors based on individual farmers. The farmers 
can use the system to measure the distance between any two points and the area 
of any region. Clicking the query button, users can visually see brief information 
of each zone (zone name, area) and the details of the land, such as soil pH, soil 

Grid mapRaw data point

Smoothed grid map
Contour map

FIGURE 8.40  (See color insert.) Four different yield maps of winter wheat from the same 
field.
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nutrients, soil organic matter content, crops, land management, the pest control situ-
ation, and the harvesting situation. Depending on the records of the previous years of 
each zone, it is convenient and rational to design or plan rotation and fertilization for 
the next year. This GIS system established the foundation of precision crop manage-
ment in Hongxing Farm.

8.4.5.3 �​ Dynamic Tracking System of Agricultural Machines
The dynamic tracking system of agricultural machines of Hongxing Farm was also 
built on the basis of remote sensing and GIS. With this system, farmers can see the 
operation situation of agricultural machines within a farm or across farms. Some 
machines were equipped with GPS navigation devices. Those machines can upload 
parameters such as location and speed to the website of the dynamic tracking system 
of agricultural machines by mobile signals. The staff in the control center can log on 
to the system at any time to query the parameters of the agricultural machines such as 
latitude and longitude, operating time, speed, direction, status of network, and other 
data. Within the effective range, the controller can talk with the driver through the 
intercom, and observe the workspace, profit and loss of the machine and other infor-
mation. In addition, the dynamic tracking system can also store the records of a year 
and provide services for historical data queries and program management in the future. 
Based on the technologies mentioned above, the Hongxing Farm PA systems integra-
tion platform was developed, including public map service subsystem, digital farm 
management subsystem, and intelligent decision subsystem. The public map service 
subsystem provides basic map information, basic map tools (such as zoom, display, 
and measurement), query tools, and other general-purpose modules. The digital farm 
management subsystem provides management tools for managers, including produc-
tion information management, soil information management, and crop pest informa-
tion management. The production information management subsystem includes zone 

Fertilizer amount control shaft

Chain

Hydraulic motor Application volume controller

Connect the GPS signal

ConsoleSpeed measuring radar

Hydraulic oil entrance of tractor

Hydraulic oil circuit
Hydraulic control valve Valve drive electronics module

FIGURE 8.41  Structure diagram of variable fertilizer spreader.
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archives, information maintenance, and production plan information maintenance. 
The information management subsystem includes soil samples maintenance, admin-
istrative region maintenance, and index maintenance. Crop pest management includes 
pest, diseases, and pathogens control. The Hongxing Farm intelligent decision subsys-
tem provides analytical tools for the decision maker, including production archives sta-
tistical analysis, soil sensing and fertilization, and pest diagnostics. The main interface 
of the software is shown as Figure 8.42, which was divided into three modules: public 
map module, digital management module, and intelligent decision-making module.

The Map Search toolset was used for querying production archives of farm plots, 
attributes, and sampling point attributes. The query tool for production archives was 
used to query the production archives information of farm plots over the past several 
years. Clicking the farm plots button, production archives information can be sorted 
and shown by year, as shown in Figure 8.43. Clicking the more information button, 
the production archives information of the selected year can be displayed in detail, 
as shown in Figure 8.44.

Basic layer:

Business layer:

Street map
Image map
Farm field

Temporary layer
Sampling point
Plant diseases and
   insect pests

FIGURE 8.42  Main interface of the dynamic tracking system for agricultural machines.

Archival information
2007

2007
2008
2009
2010 2008

2009
2010

Detail information
Detail information
Detail information
Detail information

FIGURE 8.43  Production archive query.
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The attribute query tools for plot and sampling point were used to query the attri-
bute information of a plot or a sampling point, respectively, including basic informa-
tion, natural conditions, production conditions, crop information, soil information, 
and nutrient information.

8.4.5.4 �​ Straight Navigation of Agricultural Machines and 
Remote Scheduling of Field Operations

By using a good GPS base station infrastructure construction, a straight naviga-
tion system of agricultural machines and a remote scheduling system of agricultural 
operations were developed to improve work quality and operationing efficiency.

The straight navigation system of agricultural machines was developed for PA. It 
consisted of navigation software and a light target. Navigation software can receive 
positioning signals from the GPS receiver. After setting the navigation path, it can 
conduct straight and automatic navigation. By using a DGPS device, it can navigate 
the farm machine precisely straight without repeat or miss, and calculate the opera-
tion area. The system was installed on CASE 450 tractor (450 hp) and John Deere 
9520 tractor (450 hp). Since tractors have electrohydraulic control, they are easy to 
operate and drive, and are comfortable and stable. These type of tractors can pull 
a large wide variable-rate fertilization seeder and improve the reliability of the unit 
work. It can also work at night, which extends the operating time and improves the 
operating efficiency.

A rRemote scheduling system for agricultural operations was installed for 
Hongxing Farm. When it was started, the GPS receiver on the mobile terminal pro-
vided the longitude, latitude, altitude, time, speed, heading, and other data in 1 s 
interval. The status of the agricultural machine was then sent to a remote monitoring 
server via the GPRS, so that farmers could monitor all agricultural operations in real 
time on a web browser. It realized network GPS vehicle monitoring based on B/S 
structure, and furthermore incorporated user rights management to make it possible 
for multiuser online monitoring. The system supported massive spatial data and had 
a variety of statistical functions for users to compare with historical data. It also had 
an alarm function to make it intelligent for vehicle monitoring.

Archival information

Soil preparation
Ridging
Sowing
Fertilization
Tillage management
Extermination of disease and insect pests
Weed control
Natural calamities
Harvesting

Field information: Field number, area,
                                 year, crop, variety et al.

FIGURE 8.44  Production archive details.
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8.5 � SUMMARY AND DISCUSSION

China is at a critical stage for the practice of agricultural ICT. Thus, it is necessary to 
attach importance to international scientific progress and experience in the research 
of PA, digest and absorb advanced and relatively mature foreign technology, and 
focus attention on the research of application and innovation technologies suitable 
for the situation in China. With the development of scientific technology, a large 
number of emerging information collection and processing measures, such as the IoT 
and cloud computing, have provided a new platform for the development of PA. PA 
can guarantee the sustainable development of agriculture in technology and with the 
efforts of agricultural scientists and the attention and support of the Chinese govern-
ment, the practice of PA in China will make great progress.
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9 Good Agricultural 
Practices, Quality, 
Traceability, and 
Precision Agriculture

Josse De Baerdemaeker and Wouter Saeys

9.1  INTRODUCTION

Agricultural production is part of a long chain of activities that starts from seeding 
(or even earlier) and stretches all the way to the consumer. It should meet consumer 
expectations in terms of quality, safety, and also value or price. Many intermedi-
ate steps are involved and these often involve handling, storage, and transportation 
across national borders or continents. Information should be transferred across this 
chain. The automation that will be a major part of future agricultural and biological 
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production systems also faces some challenges posed by system characteristics that 
will have to be dealt with. When we look at the processes in agricultural production 
systems, we can say that they are complex in nature. Indeed, as we gain a better 
understanding of biological processes, we also find that they have a great complex-
ity and that in many cases this complexity remains difficult to formulate in exact 
terms. Complexity means that the system comprises numerous parts or processes 
that interact and yield outcomes that are not easily predicted. These processes and 
interactions occur in and across different spatial and temporal scales.

Crop growth is the result of photosynthetic activity and transport processes in 
the cells, in the leaves, and in the different organs of single plants. There is a close 
interaction with the physical environment around these single plants, such as solar 
radiation, temperature, humidity, soil texture, and its nutrient or water content. Of 
course, there is also the influence of neighboring plants within a field. There is also 
an interaction with many associated biota such as insects, pests, and microorganisms 
on the plant or near the plants and fields as well as soil microorganisms and inverte-
brates. All these biotic and abiotic effects can be variable in a field and also vary with 
time. At the farm level, there are complex interactions within the enterprise where 
many different activities occur, and with communities and economic operators. All 
these interactions affect the decision making at this level.

Society has high expectations from food production. However, at the same time, 
food production is increasingly subject to international agreements on trade. This 
makes competition between producers or regions of production an important factor 
in decision making. Nevertheless, this competition should not impair food safety to 
consumers or long-term food security for society. Transparency of the entire food 
chain for ensuring safety is a must. There are also needs for technology development 
because of the need to reduce land degradation or to optimize water use. For example, 
as a result of the (bio)technological revolution, genetically modified crops or crops 
for green chemicals need different planting, tending, harvesting, and handling equip-
ment. There is also a growing concern for maintaining biodiversity to preserve the 
abundant genetic resources as well as to have a basis for more efficient crop produc-
tion or pest management. A broad range of definitions dealing with transparency exist 
in the literature. However, that transparency is only reached if everybody with stakes 
and interests in food production and consumption understands the relevant aspects of 
products, processes and process environments, and other factors that allow them to 
make informed decisions (Schiefer and Deiters, 2013).

Since agricultural products are stored and shipped over long distances and time 
periods, there can be a considerable change in quality. So, one would like to know 
how quality will evolve after harvest. This may affect the timing of the harvest, the 
required storage conditions for maintaining a certain level of quality, or the available 
time between harvest and consumption.

9.2 � FOOD SAFETY AND GOOD AGRICULTURAL 
PRACTICES SCHEMES

Consumers show increasing concerns about food safety and about the properties of the 
food they eat. Indeed, food scandals and incidents in the food supply chain have raised 
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public concern over agricultural practices and the handling and processing of food. 
Reports of food poisoning incidents and deaths due to contamination of fresh, minimally 
processed, and processed fruit and vegetables and the occurrence of other emerging food 
pathogens have reduced consumer confidence in the safety of food systems (Opara and 
Mazaud, 2001). As a result, there have been major developments in the world related to 
food safety and traceability. Some of the initiatives have come from governments to pro-
tect the health of their citizens, while others are private initiatives by growers and retail-
ers in order to meet the expectations of their customers with respect to food safety and 
environmental sustainability. Everyone in the food chain assumes that these expecta-
tions can be satisfied if production is done in line with good agricultural practices (GAP). 
To ensure this, the qualified authorities or food safety departments at manufacturers or 
retailers demand that the origin and destination of animal feed, materials, and food in all 
stages of production and distribution are known and available as information.

All stakeholders in the food production chain now consider food safety to be an 
important issue and producers of food are increasingly subjected to greater scrutiny 
of their production practices. It is also then recognized that there is an increasing need 
for greater quality assurance, transparency, and traceability in the food supply chain 
(Opara and Mazaud, 2001). It has also been shown that traceability, in the absence of 
quality verification, is of limited value to individual consumers. Bundling traceability 
with quality assurances has the potential to deliver more value (Hobbs et al., 2005).

High-quality food, integrity, and associated services and information should be 
guaranteed. Consumers call for food that can be fully trusted. They ask for safety 
guarantees and information with integrity to confirm their trust. In this context, integ-
rity of information is defined as follows: “the information provided is in conformance 
with the reality it depicts.” Information that is accurate, relevant, precise, timely, and 
complete for a particular purpose can be termed to be “fit for purpose” (Trites, 2013). 
It also implies that tampering of the data is not possible. The call for integrity of 
information is voiced in particular by retailers who state transparency requirements to 
be met by their suppliers. Part of that transparency is concerned with realizing track-
ing and tracing systems as primary objectives to enable efficient recalls on the chain 
level when necessary, on proactive monitoring quality along chain processes, with 
an objective early warning in case of a possible emerging problem, and/or aiming at 
optimizing the remainder of processes along the supply chain downstream (Beulens 
et  al., 2005). In recent years, there have been major developments related to food 
safety regulations and international trade. Van Plaggenhoef et al. (2003) reviewed the 
legislation and standards and classified the regulations as follows.

9.2.1  International Institutions That Deal with Food Safety

These institutions are (Van Plaggenhoef et al., 2003)

•	 Codex Alimentarius. The Codex Alimentarius Commission (CAC) was 
created in 1963 by the Food and Agriculture Organization (FAO) and the 
World Health Organization (WHO) to develop food standards, guidelines, 
and related texts such as codes of practice under the Joint FAO/WHO Food 
Standards Programme.
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•	 Sanitary and Phytosanitary (SPS) Agreement of the World Trade 
Organization (WTO). The SPS agreement relates to protection of human, 
animal, and plant health and life. The basic aim of the SPS agreement is to 
maintain the sovereign right of any government to provide the level of health 
protection it deems appropriate, but to ensure that these sovereign rights are 
not misused for protectionist purposes and do not result in unnecessary 
barriers to international trade.

•	 Legislation from the European Community. The European Food Law 
(European Commission, 2012; Regulation EC No 178/2002) establishes the 
general principles upon which international trade in food shall be based. 
Food producers have the primary responsibility for the safety of food and the 
member states have to develop codes of good practice at the national level.

9.2.2  Internationally Acknowledged Food Safety Systems

A number of food safety systems with a worldwide application range are listed by SAI 
Global (http://www.saiglobal.com/assurance/food-safety/), a company specialized 
in certification of quality management systems:

•	 FSSC/FS 22000 (Food Safety System Certification standard) is a certifica-
tion scheme for food manufacturers.

•	 ISO 22000 takes a whole chain approach to food safety, providing a stan-
dard that goes all the way from the farm to the fork, including packaging 
and ingredient suppliers, caterers, storage and distribution facilities, and 
chemical and machinery manufacturers, and can be applied to primary pro-
ducers such as farms.

•	 BRC is one of the choices for retailers worldwide looking for confidence 
from food suppliers.

•	 SQF is one of the world’s leading food safety and quality management 
systems to assure that a supplier’s food safety and quality management 
system complies with international and domestic food safety regulations.

•	 HACCP (hazard analysis and critical control points) is a risk management 
system that identifies, evaluates, and controls hazards related to food safety 
throughout the food supply chain.

•	 IFS (International Food Standard) is a quality and food safety standard for 
retailer (and wholesaler) branded food products, which is intended to assess 
suppliers’ food safety and quality systems, with a uniform approach that 
harmonizes the elements of each.

•	 GFSI: Under the umbrella of the Global Food Safety Initiative (GFSI), seven 
major retailers have come to a common acceptance of GFSI-benchmarked 
food safety schemes.

•	 GlobalGAP (GlobalGAP, 2012) was introduced by FoodPLUS GmbH, 
but is now managed in the form of a retailer–producer alliance to raise 
standards in primary agricultural production. Certification to the standard 
ensures a level playing field in terms of food safety and quality, and proves 
that growers are prepared to constantly improve systems to raise standards.
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The GAP standards can be considered as the basis for food safety. They are in 
general based on the following concepts:

•	 Food safety: The standard is based on food safety criteria, derived from the 
application of generic HACCP principles.

•	 Reducing the inappropriate use of chemicals in general, and especially the 
use of chemical plant protection products (PPPs), or reducing the level of 
residues found on food crops.

•	 Environmental protection: The standard consists of environmental protec-
tion GAP, which are designed to minimize negative impacts of agricultural 
production on the environment.

•	 Occupational health, safety, and welfare: The standard establishes a global 
level of occupational health and safety criteria on farms, as well as aware-
ness and responsibility regarding socially related issues.

•	 Animal welfare (where applicable): The standard establishes a global level 
of animal welfare criteria on farms.

As an example, the GlobalGAP (GlobalGAP, 2012) scheme covers the whole agricul-
tural production process of the certified product, from before the plant is in the ground 
(seed and nursery control points) to nonprocessed end products (produce handling con-
trol points). In response to the challenges posed by fast-changing crop protection prod-
uct legislation, the GlobalGAP organization developed guidance notes to help farmers 
and growers to become fully aware of the maximum residue levels (MRLs) in operation 
in the markets where the product will be sold. A general regulations document explains 
the structure of certification to the GlobalGAP standard and the procedures that should 
be followed in order to obtain and maintain certification. The requirements for GAP 
certification are bundled in a document with control points and compliance criteria 
(Figure 9.1). Several other GAP schemes also have similar requirements although the 
emphasis may be different depending on the country where it was initiated or applied.

9.3  PRECISION AGRICULTURE, GAP, AND “LICENSE TO OPERATE”

Precision agriculture (PA) technologies share the underlying ideas of GAP and may 
become important tools for complying with regulations and for documentation of the 
production conditions as a proof of compliance.

PA can be seen as a summary of GAP that rely on (De Baerdemaeker, 2013)

•	 Correct information (soil, previous crops and treatment, etc.)
•	 Correct observation
•	 Correct analysis
•	 Correct genotype
•	 Correct dose
•	 Correct chemical/biological compound
•	 Correct place
•	 Correct time
•	 Correct (climatic) conditions
•	 Correct equipment
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FIGURE 9.1  Example of control points in the fruit and vegetables checklist of GlobalGAP. 
(Adapted from http://www.globalgap.org/uk_en/for-producers/crops/FV/.)
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It is clear that when such principles are adhered to, the requirements of GlobalGAP 
can be met. For example, a GAP scheme requires that fertilizer application doses are 
based on soil analysis and should be applied at a rate that can be taken up by the crop. 
The application equipment should be in good condition such that the operator can be 
sure about the dose. Pesticides should only be applied in the framework of a pest man-
agement scheme, for example, integrated pest management (IPM), that is based on the 
observation or risk of a pest or disease, while beneficial organisms must be preserved 
as much as possible. Application should not be done within the required preharvest 
time interval as stated by the government conditions for use. Of course, only approved 
pesticides or herbicides can be used. While applying the chemical protection, suffi-
cient distance from water sources must be maintained to avoid contamination of the 
surface waters. To ensure that all these principles have been respected, a record has to 
be kept of all the steps and treatments carried out during production.

A report on the environmental impacts of products (EIPRO) (Tukker et al., 2006) 
has  identified those products with the greatest environmental impact. The results 
are based on a life cycle analysis of the products consumed in the European Union. 
They found that three areas of consumption have the greatest environmental impact 
in Europe: housing, food and drink, and private transport. There is no clear rank-
ing, as products in the three areas identified are of approximately equal impor-
tance. Together, they are responsible for 70%–80% of the environmental impact of 
consumption, and account for some 60% of consumption expenditure. Life cycle 
analyses help to understand the environmental impacts of individual products on 
carbon, water, eutrophication, etc. across all the stages of the value chain: from the 
production of agricultural inputs, farming, processing, transport, and storage on the 
production side, to shopping, cleaning, cooking, home storage, and recycling behav-
ior on the consumer side (European Food SCP Round Table Working Group 2 on 
“Environmental Information Tools,” European Food SCP Round Table Report, 2011; 
European Food Sustainable Consumption and Production (SCP) Round Table). The 
principles of PA can become a major tool for communicating along the food chain, 
including to consumers, farming activities that have an environmental impact. The 
technology makes it possible to do so in a scientifically reliable and consistent way, 
understandable and not misleading.

Changes in society and consumer attitudes are such that agricultural practices 
will be increasingly questioned in the future. This will go further than “say what you 
do” and “do what you say,” but will also imply that communities will give a “license 
to operate” only when stringent production requirements are met and documented. It 
is not only that global consumers require GAP when buying products, but that local 
consumer action groups will only allow production when certain conditions are met 
and documented.

9.4  MEETING THE TRACEABILITY REQUIREMENT

Precision farming and the use of global positioning systems (GPS) on agricultural 
machinery provide location and time information for all treatments. This is of course 
very important for automation such as navigation during the different treatments or 
the collection of data on crop status, diseases, and yields.
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9.4.1 S ite History and Site Management

Planting a suitable crop (and variety) at the correct place implies that the farm 
manager or the decision support tool is aware of the soil condition and of what crops 
were grown in the previous seasons and what treatments were given. In a number of 
cases, residues from fertilizers, herbicides, or pesticides from treatments in a previ-
ous season may still be high because of environmental conditions that were less 
favorable for their degradation or breakdown. It is then important that the farmer 
or decision support algorithm can retrieve the data (dose, time, and location) about 
these earlier treatments to make informed decisions. The risk of chemical leaching 
in the soil may vary by location and soil type and can be taken into consideration 
for crop production decisions. In other cases, a sequence of crop rotations should be 
respected to avoid the effect or the spreading of soil-borne diseases. This means that 
there is also a need for a traceability system that is linked to a field and not just to a 
crop that is grown and commercialized.

9.4.2  Fertilizer Application

GAP implies that the correct dose of fertilizer is applied at the correct moment 
and in the correct way. Automation and control in fertilizer application can be of 
great value toward satisfying this GAP requirement. Accurate measurements of soil 
macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient 
agricultural production, including site-specific crop management (SSCM), where 
fertilizer nutrient application rates are adjusted spatially based on local requirements 
(Kim et al., 2009). Optical diffuse reflectance sensing has been reported to show 
potential for rapid, nondestructive quantification of soil properties, including nutri-
ent levels (Roy et  al., 2005; Maleki et  al., 2008; Chacon et  al., 2014). Kim et  al. 
(2009) also discuss electrochemical sensing based on ion-selective electrodes or 
ion-selective field effect transistors that have been recognized as useful in real-time 
analysis because of their simplicity, portability, rapid response, and ability to directly 
measure the analyte with a wide range of sensitivity. They also give examples of 
optical and electrochemical sensors applied in soil analyses, while advantages and 
obstacles for their adoption are discussed.

9.4.3 C rop Protection and Integrated Pest Management

9.4.3.1  Weed Control
Core technologies (guidance, detection and identification, precision in-row weed 
control, and mapping) are required to meet the GAP criteria for weed control 
(Christensen et al., 2009). Detection and identification of weeds under the wide range 
of conditions common to agricultural fields remains the greatest challenge. Various 
methods have been developed for weed detection (Vrindts et  al., 2002; Slaughter 
et al., 2008). They are all in some stage between research and commercial applica-
tion. Most are based on spectral characteristics and/or image-based shape recog-
nition to discriminate between weeds and the crop. In case population dynamics 
models are sufficiently developed, they can help to decide not to treat if the weeds 
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pose no direct threat to crop production or quality. An overview of the modeling 
approaches to field weed dynamics is given by Holst et  al. (2007). These models 
may become more accurate after each observation in time. The subsequent treatment 
can be a mechanical or thermal action or herbicide application. Precise herbicide 
treatment using microdosing nozzles on the most sensitive parts of the plant further 
reduces the chemical use (Young and Giles, 2013). When the detection and applica-
tion systems are equipped with a GPS receiver, place and time of weed populations 
and the applied treatments could be automatically registered in the GAP database as 
well as in the field database (in a field passport).

9.4.3.2  Pest and Disease Management
GAP reduce the incidence and intensity of pests and diseases, and also the use of 
chemical control methods. This also implies that observation and monitoring prac-
tices are established and that nonchemical approaches must be considered. Where 
possible, biological control and the use of natural predators should be favored. 
Specific chemical control should only be considered when the economic value of the 
crop would be affected if this is not done.

The European Community Directive 128/2009 on the Sustainable Use of 
Pesticides establishes a strategy for the use of PPPs in the European Community 
to reduce risks to human health and the environment. Integrated Pest Management 
(IPM) is a key component of this strategy, which will become mandatory in 2014. 
IPM is based on dynamic processes and requires decision making at strategic, 
tactical, and operational levels. Rossi et al. (2012) state that, relative to decision mak-
ers in conventional agricultural systems, decision makers in IPM systems require 
more knowledge and must deal with greater complexity. Different tools have been 
developed for supporting decision making in plant disease control and include warn-
ing services, on-site devices, and decision support systems (DSSs). These decision 
support tools operate at different spatial and temporal scales, are provided to private 
sources, focus on different communication modes, and can support multiple options 
for delivering information to farmers (Rossi et al., 2012).

There are indications that automatic observation of diseases may be possible at 
an early stage, but at this moment, a good visual and instrumental strategy must 
be used for scanning the crop for disease initiation and if possible combined with 
population dynamics models to make a treatment decision. Sankaran et al. (2010) 
reviewed advanced techniques for detecting plant diseases. Some of the challenges 
in these techniques are (i) the effect of background data in the resulting profile or 
data, (ii) optimization of the technique for a specific plant/tree and disease, and (iii) 
automation of the technique for continuous automated monitoring of plant diseases 
under real-world field conditions. The review suggests that these methods of disease 
detection show a good potential with an ability to detect plant diseases accurately. 
Spectroscopic and imaging technology could be integrated with an autonomous 
agricultural vehicle for reliable and real-time plant disease detection to achieve supe-
rior plant disease control and management. Some examples are the detection of dis-
eases in wheat using spectroscopic methods, which could potentially be developed 
further into airborne hyperspectral detection systems (Bravo et  al., 2003; Mewes 
et al., 2011).
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The spatiotemporal challenge for disease detection is also discussed by Mahlein 
et al. (2012) in the case of sugar beet. They reported that sugar beet diseases dif-
fered in their temporal and spatial development as well as in their effects on plant 
tissue associated with reflectance characteristics. High spatial resolution is crucial in 
particular for the detection of leaf diseases with discrete, roundish symptoms. The 
spatial resolution of the hyperspectral camera used in their study provided infor-
mation even on subareas of disease symptoms. Nevertheless, the tiny uredinia of 
Uromyces betae and limited spatial resolution of the sensor resulted in a high num-
ber of mixed pixels. Depending on the shape of the symptoms, pixel size should be 
smaller than the object of interest by a factor of 2–5. This rule from remote sensing 
still restricts the (early) sensing of plant diseases to proximal sensing technologies. 
Specific effects of diseases, disease stage, and the impact of disease severity on spec-
tral characteristics of plants are complex. The development of patterns in time and 
space, recorded by hyperspectral imaging, may help to identify disease or stress 
influencing crops at the tissue level and on the canopy level.

Since diseases are stressors of plants, this usually also affects the production 
and emission of volatile chemical compounds. If these could be detected in the field 
at an early stage and with sufficient spatial resolution, they could be the basis for 
decision making. Sensing systems of insects or animals or even plants are also a 
source of inspiration for novel developments, because of their uniqueness in type or 
sensitivity or also in the amount of information that is acquired and processed. For 
example, insects are able to perceive volatiles released by damaged plants in order 
to find food sources or mating partners. In order to use the highly developed olfac-
tory sense of insects for analytical purposes, the biological nose of insects has to be 
combined with some electronic instrument via a bioelectronic interface to yield a 
bioelectronic nose (Schütz et al., 2000). Such a bioelectronic sensor system is very 
sensitive to detect volatiles released from damaged plant parts or at the onset of 
fungal infection. For Phytophtora detection in potatoes, this could lead to interest-
ing applications.

The same is the case for pest control where traps are frequently used, but the read-
out of the traps is still time consuming and requires a lot of field travel because the 
traps must be spread out over a large area. However, there are also indications that 
it may be possible to identify insects and their population density through optical 
detection of the wing beat characteristics (van Roy et al., 2014).

9.4.3.3  Application Equipment
It is clear that any chemical treatment must be registered and correct application can 
only be done if the equipment is in good working condition. In the future, applica-
tion systems may be made such that the use of a specific chemical compound is 
only possible according to the license as specified on the label: the site or crop, pest 
stage or crop stage, application rate depending on the pest or soil type, the timing 
of application according to season, application method and type of equipment, and 
number of applications allowed per season. In addition, one has to respect a prehar-
vest interval in order not to exceed the MRLs, which can be country specific. At the 
time of pesticide application, all information about the crop would already be up 
to date in the farm database. The label information for a specific compound is also 
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available or could be scanned before the active ingredient is loaded in the sprayer. 
In that case, an alarm could be given if an erroneous treatment is planned, or maybe 
the equipment might be locked into a safe mode. Of course, such a system must be 
made reliable and foolproof to be effective. Measures should also be taken to avoid 
some chemicals contaminating neighboring crops by monitoring wind speeds and 
estimating the spray drift (Nuyttens et al., 2011). The development and use of such 
technology should be part of a management and decision system. Dose level and 
disease threats are one aspect of the decision; the other ones are the harvest plan 
and decision. Moreover, both aspects must be fine-tuned and can be spatially and 
temporally dependent.

Another possibility would be to use smartphones in the field to take pictures 
of perceived diseases or pests and send these together with the GPS coordinates 
of the location in the field where the picture was taken to the cloud. After some 
computations in the cloud, the system could provide information on the kind of dis-
ease and the potential or desirable treatment. This treatment advice would then be 
based on the crop information (type of crop, planting date, and expected harvest date) 
that is stored in the cloud. The advice can also include the required dose depending 
on the biomass density (Uschkerat, 2013) or even the microclimate variations in the 
field. The risk of spray drift and required distances to waterways can be calculated 
based on information on local weather conditions. Next, a scan of the barcode on the 
package of the pesticide will tell the operator if the treatment is allowed. Afterward, 
the applied dose and dose variation, together with the relevant information, would be 
recorded in the database of the field and the crop as part of the traceability system. 
It is expected that such a traceability system could improve disease and pesticide 
management as well as reinforce the confidence of the consumers in the safety of 
agricultural crops. Most elements of such a system have already been demonstrated 
in Japan (Nanseki, 2007).

9.4.4 M icrobial Safety

Microbial contamination can occur during the field stage and at harvest and postharvest. 
Worker hygiene is very important here, and systems could be contemplated to enforce 
hygiene of workers and repeated cleaning of harvesting and transport equipment.

The early detection and removal of an infected item, if possible even before it 
reaches the main parts of the harvesting machine or grading line, can help to avoid 
problems. This implies that design engineering must now also have a strong empha-
sis on design for food safety. For example, modular design with suitable cleaning 
procedures and the use of noncontact sensing tools are one way for reducing risks. 
Eventually, additional microbial sensing technology should be installed to warn the 
user in case of a problem item. This may alter the future concepts of harvesting, han-
dling, sorting, and packing equipment. All detections and subsequent removal and 
cleaning actions should be registered as part of the traceability system.

The core of this enhancement would allow farmers to include either climate fore-
casts or the latest measurable site-specific field condition data into the resource man-
agement decision-making process by best utilizing the historic yield data in similar 
conditions to adjust the input(s) responsively to the situation. Mid- to late-vegetative 
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growth stage variable-rate nitrogen side-dress application is a good example of 
responsive control. Either based on the data obtained from in-season canopy reflec-
tance sensing or from late spring soil nitrate tests, N-deficient crop plants will 
respond to additional nitrogen fertilizer being side-dress applied. It could potentially 
achieve higher yield efficiency with a smaller amount of total nitrogen fertilizer 
being applied if the amount of side-dressed fertilizer could be correctly determined.

9.5  CROP CONDITION SENSING

For all treatments such as fertilizer use, irrigation, or harvest scheduling, it is very 
important that the crop condition is known and also that the crop response to a treat-
ment is observed, such that this can be taken into account for subsequent actions. It 
is of interest that the acquired data can yield information on physiological processes 
through the use of underlying physiological models rather than just statistical cor-
relation models. In this way, control actions can be based on a better understanding 
of the physical and physiological processes. Optical measurement methods are con-
sidered to be the most appropriate for observing crop conditions and will be briefly 
discussed here.

Photonics offers many opportunities because photons are ultrafast, extremely 
focusable, and function contactless. This opens a number of possibilities for agri-
cultural diagnostics. Photonics can be the basis for measurement systems to observe 
plant responses at different spatial and temporal scales. Indeed, growers can also 
visually recognize when a problem arises or when there is a large variation in crop 
condition in the field. Human observation is mostly limited to a qualitative interpre-
tation. In the search for a more quantitative approach, numerous articles and reviews 
have been published on optical properties of crops and image analysis in relation to 
fertilizer use, crop stress, disease or weed detection, and product quality. In most of 
these cases, correlations have been established between a spectrum or an image and 
the particular crop characteristic that one wants to evaluate. These are then mainly 
empirical studies that have resulted in some practical implementations (Sims and 
Gamon, 2002; Reyniers et  al., 2004, 2006; Lenk et  al., 2007; Saeys et  al., 2009; 
Gorbe and Calatayud, 2012; Tremblay et al., 2012).

There is a growing desire to link the measurable optical characteristics to physi-
cal and physiological processes in the crop, to increase the understanding of what is 
happening and then to better pinpoint potential actions. One approach is the use of 
biophysics-based mathematical models that link physiological processes to observed 
radiation and then apply model inversion. This model inversion may not always yield 
sufficient sensitivity to the different physiological components that can affect radia-
tive transfer. Models at different spatial scales are used and, sometimes, they are 
integrated, which increases the computational complexity.

From the beginning of optical remote sensing, radiative transfer models, based on 
biophysical theory, have helped in the understanding of light interception by plant 
canopies and the interpretation of vegetation reflectance in terms of biophysical 
characteristics. The canopy radiative transfer models attempt to describe absorption 
and scattering, the two main physical processes involved, and are useful in design-
ing vegetation indices, performing sensitivity analyses, and developing inversion 
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procedures to accurately retrieve vegetation properties from remotely sensed data 
(Jacquemoud et al., 2009).

The processes and mathematical formulae that are used to simulate sensing 
signals depend on the scale of the system. In general, most models either simulate 
leaf-scale signals or canopy-scale signals (Atherton, 2012). At the canopy level, the 
model inversions typically require inputs of many canopy parameters that cannot be 
readily estimated from remote sensing data.

Four principal crop characteristics determine the reflection, absorption, and 
transmission of electromagnetic waves (Tucker and Garratt, 1977):

	 1.	 Internal structure or the histological arrangement of tissues and cells 
is responsible in part for the diffusion or internal scattering of incident 
irradiance. Spectral absorbance, reflectance, and transmittance are thereby 
greatly determined by the mean optical path length of incident radiation.

	 2.	The pigment composition, concentration(s), and distribution(s) control the 
absorption of UV, visible, and IR radiation. Light absorption in food matrices 
is molecule-specific and theoretically described by Beer’s law.

	 3.	The concentration and distribution of leaf water determines the absorption 
of radiation in the NIR and IR region of the spectrum.

	 4.	The surface roughness characteristics and the refractive index of the cuticu-
lar wax of the upper epidermis determine the spectral reflectance from this 
surface.

It should be noted that a number of crop characteristics or processes of inter-
est are linked and highly correlated, and that inverse modeling based on optical 
measurements does not easily allow separate estimation of these characteristics.

Plant growth or vegetation development involves several processes that each 
occur on a different spatial as well as temporal scale (De Baerdemaeker, 2013). 
Examples of these different scales are disease symptoms on a leaf, growth, or the 
vegetative biomass in a field or a larger area. At those different scales, information 
is required for correct identification or classification of quality characteristics, of 
diseases, or of plants or crops. In many cases, this identification can rely on optical 
information taken at a high spatial resolution, but it can just as well happen that this 
identification is only possible through the use of high temporal frequency informa-
tion. In other cases, rapid scans with low spatial resolution may indicate that uneven 
changes occur in the canopy or field and the cause of these may then be investigated 
by high spatial resolution inspection of locations of interest. Also, in case one wants 
to use information for statistical process control in order to detect abnormal devia-
tions, it is required to have high temporal frequency information. There is usually 
a trade-off to be made between fine (or coarse) spatial resolution and low (or high) 
temporal frequency information since it may be impossible to have a high spatial 
and temporal resolution. It is a challenge to combine the data obtained at differ-
ent temporal and spatial scales such that useful information is obtained (Robin 
et al., 2005).

Variation of crop characteristics over time can be due to normal development 
or also due to emerging stress conditions. Again, there may be different scales at 
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which these changes occur. Patterns in spectra or hyperspectral image changes can 
be observed using time-lapse acquisition. Obtaining the information from subtle 
changes may require advanced image processing. For example, Wu et  al. (2013) 
described a method to reveal temporal variation that are difficult or impossible to see 
with the naked eye in videos and display them in an indicative manner. The method, 
which they call Eulerian video magnification, takes a standard video sequence 
as input, and applies spatial decomposition, followed by temporal filtering to the 
frames. The resulting signal is then amplified to reveal hidden information.

9.6  CHAIN OF TRACEABILITY

After harvest, the GPS coordinates of the harvest location may be added to the ship-
ping documents such that the origin of the product (the region, the farmer, the field, 
and the location in the field) can be traced and the consumer can be assured about the 
origin claims. It is also possible in mixed final products to state where the different 
components of such a mixture originated from. For retailers or stores that claim to 
sell locally produced food and for their clients, it offers the possibility to trace the 
product and verify the claims as long as the system has been made foolproof.

A crop goes through a number of operations, transactions, or shipments in the 
chain from the field to the customer. This is even more complicated when feed and 
animal production are part of the chain. At each step, there should be a possibility to 
trace the crop either upstream or downstream. As the chain can be relatively long, it 
has been suggested to implement this as a distributed system where only one step in 
either direction at every stage is traced instead of centralizing all data. This requires 
a good communication network between potential sites where the traceability data 
are stored, as well as access control. Cloud computing may be a way to proceed 
here. A benefit of accessibility of data can be that in the longer term, field variability 
related to weather and soil conditions can be extracted from such a database allow-
ing farmers or their advisors to optimize production strategies. It is also a way to 
increase the expert knowledge or models for predicting what the outcome of a treat-
ment this year can be, given that similar production conditions may have occurred in 
the past. In this way, the historical traceability information is not only valuable for 
consumers, but also for producers or other operators in the chain.

9.7  VARIABILITY MODELING AND TRACEABILITY

The advantages of having a nondestructive sensor reach far beyond the fact that it is 
just nondestructive. Indeed, they offer the possibility to monitor individual products 
during the experimental period, which in turn allows for modeling the change of 
quality attributes or other characteristics.

An approach based on mechanistic models further improves the interpretation of 
postharvest behavior (Tijskens et al., 2001). By definition, such a model will be based 
on a simplification of the food product and, therefore, will never be “true” as the only 
true model is the product itself. The aim of modeling food quality attributes is, how-
ever, not to develop true models but to develop valid models. That is, models that are 
consistent with the current knowledge level and that contain no known or detectable 
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flaws of logic (Tijskens et al., 2001). Also, models should be detailed enough for the 
intended purpose, but at the same time simple enough to give robust manageable 
models. The basic strategy to develop a suitable model is to apply a systematic pro-
cess of problem decomposition, dissecting the problem into its basic building blocks 
and then reassembling them leaving out the unnecessary detail. What is essential 
and what is redundant depends largely on the intended application of the model. In 
the end, the models are to be used to provide an appreciation of the quality of the 
logistic handling chain and to translate this into the impact the logistic conditions 
have on product quality attributes (Hertog et al., 2014).

The major challenge is to develop predictive models that assess the uncertainty 
of the predicted result. Given a simulation model, this problem reduces the propaga-
tion of errors from the simulation input to the simulated result. With an increasing 
number of random factors, it becomes practically impossible to establish the cor-
rect model response. Generally, some reduction is required by identifying the most 
important (combinations of) input parameters that capture most of the variability.

With the availability of nondestructive techniques, the quality of individual 
product items can be monitored over time, fully characterizing biological variance 
within a given batch. To properly analyze such data, biological variance has to be 
explicitly included in the (statistical) data analysis. De Ketelaere et al. (2006) pro-
posed a novel statistical approach (“mixed models”) to model such repeated quality 
measures and demonstrated its potential for a practical example in which the firm-
ness change of different tomato cultivars was considered. Both types of data analysis 
allow quantifying different sources of variance such as variance within a tomato cul-
tivar and within a tomato and how those sources of variance change during storage. 
These approaches open the door to an improved measurement, understanding, and 
prediction of postharvest batch behavior. As such, these approaches enable posthar-
vest management to optimize logistics, taking into account the full range of product 
variation that will be encountered.

If biological variance is included in (statistical) models describing postharvest 
quality change, propagation of the initial biological variance at harvest throughout 
the entire postharvest chain can be predicted when all relevant aspects affecting 
postharvest fruit behavior are taken into account (Hertog et al., 2014).

Shelf life prediction is an important issue for fruit handling. As mentioned before, 
not only the average quality trajectory a batch follows has to be estimated, but also 
how much the quality is dispersed around the batch average, since we are generally 
interested in an estimation of the time at which, for example, 5% of the fruits reach 
a preset lower bound for their quality.

The implementation and validation of such a stochastic quality change model 
was tested in a traceability system for tomato (Hertog et al., 2008). Experimental 
results showed the potential benefits of integrating quality change models with 
traceability systems to satisfy consumer expectations. As the temperature logging 
radio-frequency identification (RFID) labels are too expensive to put on individual 
boxes, the alternative to use a single RFID label per pallet seems to be feasible 
given the limited effect of temperature differences within the palletized fruit. The 
model-based traceability systems to monitor product quality throughout the chain 
can then assist in identifying poor temperature control or temperature abuse at a 
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given point in the logistic chain as the cause of unacceptable quality at the receiving 
point. Furthermore, such monitoring and modeling can help in identifying locations 
in a field or orchard where there is a large deviation in quality or shelf life. It also can 
help in differentiating the harvest time within a field or between fields.

These approaches enable postharvest management to optimize logistics, taking 
into account the full range of product variation that will be encountered.

9.8  MODEL-BASED STATISTICAL PROCESS CONTROL

Nowadays, agricultural production performance is usually assessed and monitored 
by comparing mean values of a recent measurement period (e.g., week or month) 
with past performances or predetermined performance standards. This is usually 
done without the interference of statistical analysis. However, excessive biological 
variation interferes with the evaluation of performance. High variability makes the 
performance outcome unpredictable and difficult to interpret. Therefore, under-
standing variability is the diagnostic key for improving process performance 
(Reneau and Lukas, 2006). Two concepts that are especially interesting for perform-
ing process optimization through monitoring are engineering process control (EPC) 
and statistical process control (SPC). EPC is the set of activities that focus on the 
mathematical modeling of (production) systems (del Castillo, 2002), and SPC is a 
collection of tools that aim at discerning between normal and abnormal process 
variation (Montgomery, 2005). An SPC tool that is widely used for the detection of 
abnormal variability is the quality control chart. The use of control charts in agri-
cultural production, and especially in livestock production, is gaining considerable 
interest (de Vries and Conlin, 2003; Reneau and Lukas, 2006). The signal of the 
control chart can be used for early detection of problems. This synergistic concept 
has only recently been applied to agricultural production. Since the data of many 
agricultural production processes evolve over time (nonstationary) and subsequent 
measurements are correlated (dependent), they cannot be monitored as such with the 
control charts. To overcome these limitations, the concept of synergistic control was 
proposed (De Ketelaere et al., 2011).

In a synergistic procedure for early problem detection, the concepts of EPC and 
SPC are combined. For example, by using the EPC adjusted data, by means of a 
recursively estimated trend and ARMA model, as the input to the cusum control 
chart (SPC), it was shown to be possible to detect registrations that result from an 
out-of-control situation as a result of an emerging problem or disease. The poten-
tial of this concept was already demonstrated for monitoring laying hens (Mertens 
et al., 2011) and dairy cows (Huybrechts et al., 2014). This procedure can form the 
basis for the development of an intelligent management support tool for agricultural 
production systems such as dairy production, pig production, and crop production. 
The synergistic concept is in most cases applied for processes changing with time, 
but it can also be applied for assessing spatial variability or the sensitivity of, for 
example, varieties or treatments to spatially variable soil conditions. However, it 
should be noted that this approach can only be successful if reliable sensor data are 
available.
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9.9  SUMMARY AND CONCLUSIONS

In PA and automation, many measurements are carried out at different spatial scales 
(from single plants to entire fields) and at different times during crop production. 
Precision farming and the use of GPS on agricultural machinery can provide location 
and time information of all treatments. It started with yield sensors, but at this time, 
tools are available for on-the-go measurement of the type and dose of treatments, for 
identification of crop condition, and possible infection with pests or diseases. Wireless 
communication can be used to transfer field data to record keeping software. Thanks 
to these technological developments, the control points and compliance criteria of 
certification systems for GAP, such as GlobalGAP or other GAP schemes, can to a 
large extent be automatically addressed using PA technology for automatic record 
keeping. PA technology can be made smart such that the requirements for environ-
mentally friendly and sustainable production are implemented in real time in crop 
treatment and fertilizer equipment. This also includes the identification and registra-
tion of operations or treatments on the crop in the growing stage. At the time of har-
vest, the technology can help in the identification and, if possible, the measurement of 
the quality parameters depending on where in the field the crop was grown. Different 
batches can be made with labels linking to all the information. As such, PA technol-
ogy can evolve to being great instruments for food safety and quality assurance.

Novel crop sensing techniques during growth or after harvest give information on 
crop stress, quality, diseases, pests, or weeds. Now, information is available about 
variability of crop or product characteristics. The repeated nondestructive measure-
ments allow for modeling of the process evolution or the evolution of quality over 
time (or maybe also in space), thereby separating inherent biological variability from 
variations caused by external process conditions. These models and observations 
form the basis for SPC and informed decision making for interventions.

The frequently asked question about the economic benefits of PA is also raised 
about the economic effects of food safety and safety risks along the chain. In this 
respect, Valeeva et al. (2004) state that acceptable levels of food safety hazards need 
further elaboration to clarify the process of food safety improvement for producers. 
They also note that it is furthermore important to gain more insight into cost-effec-
tive ways of food safety improvement throughout the entire chain and that valuation 
of producers’ benefits along the chain and their distribution are urgently needed. 
Perhaps, the combined economic benefits of PA and GAP for food safety and con-
sumer confidence are underestimated at this moment.
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10.1  INTRODUCTION

Precision agriculture (PA) means more than site-specific farming, it also deals with 
more than just variability. In discussions worldwide, “precision agriculture” and 
“precision farming” are often used interchangeably.

Agriculture is one sector in the entire land use scenario, while PA is specifically 
associated with precision forestry and precision fishery. “Precision (crop) farming” 
and “precision livestock farming” can be thought of as categories within PA. In most 
countries, viticulture and horticulture are seen as parts of agriculture; another way to 
look at these categories is as farms where operations are carried out only outdoors, 
on the one hand, and those where operations take place both outdoors and indoors, 
on the other. Of these, outdoor farming is dominant as it covers a wide range of pre-
cision farming activities (Figure 10.1).

Whichever classification is used, precision farming must be seen from the 
farm-level perspective. Activities of interest are farm management itself, crop 
management, machinery management, and labor management. In all of these 
areas, PA measures can be seen and may contribute to sustainability and trace-
ability (Figure 10.2).
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10.2  BASIC TECHNOLOGIES

Farmers have for millennia strived to farm more precisely, first with simple hand 
tools such as the sickle for exact cutting of crops, and later with mechanical imple-
ments, such as the plow, with its ability to cut cleanly and to turn the soil on a large 
scale. Also, very early, the knowledge of given field conditions such as soil type, 
water availability, and topography, together with the experience gained out of previ-
ous field work and the previous harvest, were integrated into measures for the new 
vegetation cycle. Manure handling is a good example, where farmers distributed 
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FIGURE 10.2  Precision farming sections and items. (From Auernhammer, H. 1999. 
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more material on areas with low soil fertility and less material in high-yielding zones 
to guarantee a higher overall yield, and to preserve and improve the soil quality by 
increasing organic matter content. As long as farmers cultivated only their own—
and, therefore—known land, they realized site-specific farming by experience!

Unfortunately, the precision of farm work diminished with the increasing use of 
farm machinery on the one hand and with increasing cultivation of rented land, and 
therefore unknown field conditions, on the other. Additionally, an increased number 
of untrained workers became deployed in agriculture with either little or no interest 
in the quality of work.

10.2.1  Electronics, Sensors, and Actuators

In the early 1970s, the first electronic solutions entered agricultural technology and 
mechanization. Agriculture began using calculators with on/off and revolution sen-
sors. Four major electronic developments changed agricultural mechanization:

•	 Tractors: The electronic hitch control (Heiser and Kobald, 1979) replaced 
the former mechanical control unit, and offered new and extended features 
such as down force control or integration of external depth control sensors 
on implements.

•	 Planters: Electronic planter monitors (Ryder and Victor, 1966) informed 
the driver if the singling of the seeds went wrong and therefore allowed 
more precise seed placement.

•	 Sprayers: Spray controllers (Göhlich, 1978) measured the actual speed of 
the tractor with a wheel sensor and controlled the spray output homoge-
neously across the whole field according to the given set point. Also, section 
control was part of the control loop.

•	 Combine harvesters: Loss sensors mounted on combines (Gorsek, 1983) 
informed the driver about unharvested kernels, aside from the sieves and/or 
the straw walkers. Fewer overall losses and/or improved throughput could 
be gained by conscientious drivers.

In the 1980s, agricultural electronics was adopted in practical farming for moni-
toring and control with the main focus on application implements used for seeding, 
planting, fertilizing, and spraying. During that period, two other major developments 
took place on farms:

•	 On-farm data processing: Based on personal computers (PCs), field records 
went from written records to digital files with enhanced capabilities in anal-
yses and predictions.

•	 Implement control: Specified implement controllers and increasingly more 
multipurpose process controllers were integrated into application imple-
ments for monitoring, application control, and data acquisition related to 
working time, working speed, application amounts, etc. Also, first propri-
etary data transmission tools from the controller to the on-farm PC were 
developed and used.
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While IBM created the worldwide accepted standard DOS for PCs, the imple-
ment controllers still followed proprietary solutions with barriers in acceptance on 
the one hand, and with specified and additional demand in data communication pro-
cedures on the other.

Consequently, at the end of the 1980s, the demand for standardized communica-
tion systems in agriculture were discussed in regions where farmers preferred trac-
tors and implements from different manufacturers in order to perform field work 
in the best way under the given conditions, and with the available infrastructure in 
service and maintenance of the used technology.

10.2.2 S tandardized Electronic Communication

Early on, electronic communication in mobile agricultural equipment was consid-
ered either as a company-specific solution by dominating market leaders or as inde-
pendent solutions by a commonly accepted standard.

One of the widely utilized process controllers in Europe (dlz Spezial, 1990), with 
more than 50,000 sold units since 1985, could be used for implement monitoring, 
implement control, and for data transfer to the on-farm computer using a chip card in 
a proprietary way (Figure 10.3).

Farmers widely accepted electronics coming from “one hand.” A single control-
ler used year round with its simple man-to-machine (M2M) interface facilitated the 
interaction. Depending on the mounted implement, the connector with its specific 
pin allocation ensured the required control software, and the chip card allowed for 
data transfer in both directions to and from the management computer. Similar prod-
ucts were developed worldwide and thousands are still in use.
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FIGURE 10.3  Mobile multipurpose agricultural process controller MÜLLER Unicontrol.
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With all these solutions, farmers as well as manufacturers began getting strongly 
dependent on electronic suppliers. The small- and medium-sized implement manu-
facturers in Europe were especially eager to get independence as soon as possible by 
creating a standard for electronic tractor implement communication (Auernhammer, 
1989) with an interface to the farm management computer in DIN 9684 (DIN, 1997), 
as seen in Figure 10.4.

In a 1987 initiative chaired by the German DIN organization, representatives from 
Denmark, the Netherlands, France, and Great Britain worked together. The serial 
bus system controller area network (CAN) (BOSCH, 1987) from BOSCH was ini-
tially selected. The main characteristics of the standard are CAN1.0A protocol with 
125 kB/s, electronic control units (ECU) in the tractor and implements, with their 
own control algorithms and implement-specific masks for interaction, a virtual termi-
nal with hard and soft keys, and a standardized interface to the on-farm PC. System 
control was defined by the task controller. The main focus of the standard addressed 
small-scale farming technology, where mounted implements at the rear and the front 
of the tractor allowed for almost self-propelling units, but also, where implement sub-
networks for complex implements were integrated (Auernhammer and Frisch, 1993). 
Proprietary messages were not allowed, and independent system development and 
testing was organized in so-called Plugfests. System diagnostics were discussed but 
not integrated; finally, the standard was completed in 1997, after 10 years.

Moreover, at the end of the 1980s, the standardization group extended its activi-
ties and called ISO for the definition of the required specified agricultural commit-
tee structure in TC23 with SC19 and related working groups. In 1990, all members 
of the European standardization group joined the ISO standardization group, ISO 
11783 (ISO, 2009), together with members from North America under the lead of 
Great Britain and, later, Canada (Figure 10.5).

In the overall scheme, ISO 11783 strictly followed the DIN 9684 design with some 
substantial changes and extensions. The standard follows the OSI model definition 
in ISO. Instead of CAN1.0A with its smaller address space, ISO 11783 changed to 
the extended CAN version V2B with its 29-bit address header, and in the same man-
ner, the bus transmission rate was doubled to 250 kB/s. More attention was given to 
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FIGURE 10.4  Agricultural BUS-System (Landwirtschaftliches BUS-System LBS) by DIN 
9684.
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tractor and implement combinations used in the semi-mounted or trailed mode with 
large working width and hydraulic power supply. Therefore, implement subnetworks 
are of higher importance and more well defined. Diagnostics with interface and 
diagnostic tools are integrated. Most importantly, today, proprietary messages are 
allowed and may be used by anyone within the standard to get manufacturer-specific 
advancement within their own tractor implement production segment.

ISO 11783 may be called a “living standard” with no foreseen finalization at this 
time. Additional definitions are under development and will be added as required or 
changed by technical enhancements.

10.2.3 L ocation Sensing

From a technical point of view, the second pillar of precision farming evolved from 
a military initiative, with the development of the Global Navigation Satellite System 
(GNSS), NAVSTAR, and, in parallel, GLONASS, offering time and positioning sig-
nals (Auernhammer, 1994). Receivers are able to determine their own position by 
calculating the signal transit times from at least four visible satellites.

After the launch of the first GPS test satellite in 1971 and the test of an interim sys-
tem, the predominantly used system, NAVSTAR (Navigational Satellite Timing and 
Ranging), reached its “full operational capability” (FOC) in June 17, 1995, with civil-
ian usability for location sensing by all, at no cost. Most important for the agriculture 
sector, as one of the worldwide first users, are: availability all day, usability with no 
restrictions of daytime and visibility, no need for additional infrastructure when basic 
accuracy is sufficient, and higher accuracy and lower dependency as more satellite 
systems are globally available, and as more signal improvement tools are used.
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FIGURE 10.5  Agricultural BUS-System ISO 11783. (From Stone, M.L. et  al. 1999. 
ISO 11783: An electronic communications protocol for agricultural equipment. ASAE St. 
Joseph, MI, USA. Modified with “diagnostics” by Stone, M. L. 2011. ISO 11783 Part 10 
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Since the first tests, more than 200 satellites have been launched into orbit. 
Besides the two prime pioneering systems, GPS NAVSTAR and GLONASS, four 
more systems are under development (Table 10.1).

Advanced receivers are able to pick up signals from all visible satellites, even 
those from different systems, and select the best geometry for the highest possible 
accuracy. Additionally, different signal processing technologies (Table 10.2) can 
be used to achieve the required location sensing precision for navigation (± 10 m), 
field operations (± 1 m), vehicle guidance (± 0.10 m), and tool guidance (± 0.01 m), 
defined by Auernhammer and Muhr (1991).

10.3  FARM MANAGEMENT

Information-driven farm management needs data and algorithms to analyze, plan, 
and control farm processes, as well as to follow social and environmental conven-
tions. Widespread databases guarantee any needed documentation, and allow for 
comprehensive analyses and predictions. At present, besides the traditional on-farm 
data storage and data processing, increasingly more off-farm services are offered 
and in use (Table 10.3).

TABLE 10.1
GNSS Systems (Own Inquiries)

System Country
Satellites 

(Target/In Orbit)
Full Operational 

Capability
Satellite-Based 

Correction Systems

GPS NAVSTAR USA 31/31 July 17, 1995 WAAS

GLONASS Russia 30/24 2011 SDKM

BEIDOU China 35/14 December 27, 2011 ?

QZSS Japan 3/1 Unknown MSAS

IRNSS India 7/3 Unknown GAGAN

GALILEO Europe 30/5 Unknown EGNOS

TABLE 10.2
GNSS Signal Processing Technologies

System Signal Correction Examples Accuracy (m)

Single-frequency GNSS No NAVSTAR, GLONASS 10–15

Differential GNSS Postprocessing – 0.5–1.0

Differential GNSS Radio communication IALA Radio Beacon 0.5–1.0

Differential GNSS Satellite communication WAAS, EGNOS 0.5–1.0

Double-frequency GNSS Second frequency – 2–5

Differential double-
frequency GNSS

Radio or satellite 
communication + double 
frequency

Starfire II,
Omnistar HP

0.1–0.2

RTK GNNS Radio communication – 0.02–0.05
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As a very rough assessment, it may be generalized that small- and medium-sized 
farms still work with on-farm systems as most of them have personal field-based 
knowledge and experience, whereas larger farms with more employees and less field-
based information prefer either contractors for fertilizing or plant protection, or rely 
more on the on-farm dominant machinery supplier.

10.3.1 D ata Acquisition and Data Analysis

Automatic process data acquisition is mainly used to establish comprehensive field 
records and provide cost element data for bookkeeping (Steinberger, 2012). Data acqui-
sition systems differ widely and there is still no data definition standard (Table 10.4).

Data processing is going through a change. Smaller farms often retain special 
software packages with data history of cultivated fields tailored to simplified usage 
and with more or less no specialized analytical tools. By focusing on some methods 
of PA, improved software packages are used with a central database and with farm-
specific analytical tools (Daberkow and McBride, 2003). Very often, those systems 
are offered with the cooperation of tractor manufacturers and contractual partners to 
simplify data transfer from mobile technology to the farm database and the software 
tools at the farm.

Data storage in the cloud at this time is an exception, mainly owing to questions 
of data ownership and data security. Also, concerns related to financial data and 
financial information may be seen as an obstacle when using this more beneficial and 
more powerful data handling possibility.

TABLE 10.3
Data Handling Systems

System Characteristics Advantage Disadvantage

On-farm On-farm data storage
On-farm-specific 
software

Private data ownership
Preferred hardware
Specialized software

Being alone in
•	 Long-term data storage
•	 Hardware exchange
•	 Software update

Provider
(fertilizer, plant 
protection, 
contractor, etc.)

Data storage
Farm-related analyses 
and predictions

No on-farm infrastructure
Analyses be demand
Predictions by demand
Specialized on-farm services

Only provider-specific 
predictions

Data ownership?
Data security?

Manufacturer Data storage
Remote machine 
analysis and service

No on-farm infrastructure
Improved machinery service 
and repair

Farm data contribute to 
machinery improvement

Only company related 
provider-specific 
predictions

Data ownership?
Data security?

Cloud Offered by software 
companies and others

Data storage
Access of web-based 
apps and services

No on-farm infrastructure
Great choice in required apps
Ongoing development of new 
and more beneficial apps

Data ownership?
Data security?
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10.3.1.1  Soil Mapping
Although they were not seen as part of precision farming in the past, very detailed 
soil maps were established and have been available on-farm for field-related mea-
sures for a long time. The resolution of these solely analog documents differs from 
region to region and from country to country, and they are increasingly being offered 
at no charge.

Today, soil mapping systems identify soil type and soil nutrients. The former are 
mainly detected on-the-go using electromagnetic or electroconductivity sensors such 
as EM38® or Veris®, whereas soil nutrient data are mainly gathered through soil 
sampling technologies and associated chemical analysis (Friedman, 2005; Ladoni 
et  al., 2010; Sinfield et  al., 2010). Often, environmental laws determine the time 
intervals of soil nutrient examinations.

Soil type and soil nutrient data are mainly used to establish field-specific homo-
geneous fertilizing strategies according to the base nutrients (once in a growing 
season) and nitrogen fertilization, either once or multiple times, in a growing 
season.

10.3.1.2  Yield Mapping
The yield monitor, used in combine harvesters, was one of the first widely adopted 
precision farming technologies (Schueller et  al. 1985; Searcy et  al., 1989; Reyns 
et al., 2002). In yield monitors, data acquisition is carried out with specific sensors 
and processors. Signal processing at the combine is performed in a company-specific 
way. Nearly all high-performance harvesters are equipped with yield monitors using 
different sensor types depending on the harvested crop. In grain harvesting tech-
nologies as well as in forage harvesters, moisture sensors are also state of the art 
(Table 10.5).

Data transfer to the farm management system (FMS) and mapping software is 
part of the yield monitoring system. Mapping with GIS software mostly differenti-
ates yields into classes of one-metric ton and can be achieved by grid mapping or 
contour mapping (Figure 10.6).

TABLE 10.4
Process Data Acquisition Systems

System Sensor Data Data Transmission Standard

Specialized implement 
controllers

Implement, location, time, 
throughput (as applied)

None No

Multipurpose process 
controllers

Implement, location, time, 
throughput (as applied)

Chip card, USB No

Tractor terminals Tractor, location, time, implement 
(if ECU) throughput (as applied)

USB, radio No

ISOBUS task 
controllers

Tractor, location, time, implement 
(if ECU) throughput (as applied)

USB, radio Partly following 
ISO XML

Controllers at 
self-propelled vehicles

Vehicle, location, time, 
throughput (gathered/as applied)

Paper print, USB, 
radio

No
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Grid mapping simply puts all available yield measurement values, according to 
their position, into a grid. Grid sizes may be a single or multiples of the working 
width of the combine or may be related to the working width of the application 
technologies, again as a single or in multiples. Yield measurement values are aver-
aged with their standard deviation to show the mean of a grid and the variation in it. 
Different colors represent yield zones with different colors in different yield monitor 
systems.

TABLE 10.5
Yield Monitors in Harvesting Technologies

Harvester Sensor Type Moisture Sensor Relative Accuracy (%)

Grain Impact, light barrier Capacitive 5–10

Cotton Light barrier – 5–10

Forage Feed roller displacement Capacitive and NIR 5–15

Root crops Weigh cells – 5–10

Sugarcane Weigh cells, roller 
displacement

– 5–15

Source:	 Demmel, M. 2007. Landtechnik, 62 SH: 270–271; Vellidis, G. et  al. 2003. Applied 
Engineering in Agriculture, 19:259–272; Ehlert, D. 2002. Biosystems Engineering, 
83:47–53; Demmel, M. 2013. Site-specific recording of yields. In Heege, H.J. (Ed.), 
Precision in Crop Farming. Springer, Berlin, Germany, pp. 314–329; Molin, J.P. and 
L.A. Menegatti. 2004. Field-testing of a sugar cane yield monitor in Brazil. ASABE St. 
Joseph, MI, USA, Paper No. 041099. With permission.

3.0–3.5 t/ha
3.5–4.0 t/ha
4.0–4.5 t/ha
4.5–5.0 t/ha
5.0–5.5 t/ha

5.5–6.0 t/ha
6.0–6.5 t/ha
6.5–7.0 t/ha
7.0–7.5 t/ha

100 m

No location
Up to 4 t/ha

4–6 t/ha
6–8 t/ha

>8 t/ha

Grid size 24.24 m
Values/grid   7

Values total   2302
Selected   2285

FIGURE 10.6  Yield maps in contour shape (left) and grid shape (right).
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Contour mapping is based on geostatistical data processing operations and allows 
for very sophisticated yield differentiation. Research is ongoing to reduce or exclude 
measurement errors caused by neighborhood influences (up and back harvesting 
design) or by variations in the working velocities or interrupts in the work flow (Lyle 
et al., 2014).

Nevertheless, all mapping systems deal with unavoidable measurement errors 
caused at the field end by filling and emptying the material flow. Consequently, yield 
maps of small fields (short field length) show more faulty information compared to 
larger fields or plots.

In an overall assessment, it can be noticed that yield mapping is widely adopted 
at the farm level. First of all, it makes the main target of farming, the yield, and its 
variety, visible within the field and, in so doing, allows a more precise reaction for 
future growing seasons. As a first measurement procedure, it also provides existing 
knowledge and experience of the given yield performance of a field.

Taking those results into consideration, for example, a generated map of a field-
based nitrogen balance, will then offer more “true information” as well as a better 
understanding of the findings in the map (Figure 10.7).

Regarding fertilizing, the often established component, classification may be 
improved by differentiation related to the “mean yield” of the field. A first map 
may be divided into two classes with yield above and yield below the average. Most 
fields may better fit into a system with three yield classes, for example, ±10% around 
the average and classes above and below. Finally, a system with five classes, first 
with ±10% around the average, another two classes with 20% above and below the 
average class, and a further two classes above and below, may represent the in-field 
yield variations in an operation-oriented way. In this way, farm-specific strategies 
based on control and accuracy of the available fertilization technology will be able 
to precisely apply the required amount of nutrients in a site-specific manner.

Oberer Flachweiher Unterer Flachweiher
200 m

Viehter Leiten

Remaining nitrogen

Less than 12.5%

12.5%–25.0%

25.0%–37.5%

More than 37.5%

Maximum            44%
Grid size             50 m
Values per grid       25
Total values        2302
Selected values  2285

FIGURE 10.7  Nitrogen residuals after uniform application. (From Scheyern “Flachfeld,” 
1991. With permission.)
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There are also many concerns against repeated yield monitoring:

•	 Yield maps generated from yield data of different manufacturers within a 
field or within a growing period may not be comparable as there is no stan-
dard in data harmonizing and data processing. Yield maps in this way are 
often colored pictures only.

•	 Repeated yield measurement is influenced by different weather conditions 
and by different crops in a crop rotation. Even with similar crop manage-
ment procedures, it is very difficult to analyze and interpret the results. 
Also, crops for which there is no current practical yield measurement tech-
nology available do have an important influence.

•	 Finally, data handling in the long term is difficult, especially on smaller 
farms with no specialists in data storage and retrieval.

10.3.1.3  Weather Monitoring
Crop farming depends on climate conditions in regard to field measures or to pro-
duced yield of a field. In the same way, weather conditions at a farm may vary widely, 
especially in regard to wind speed, with implications for pest management and in 
rainfall, with an impact on fertilization and nutrient movements in the soil. Also, 
any operation scheduling depends on weather conditions and forecasts (O’Neal et al., 
2004).

Larger farms as well as farms with a certain topographic differentiation of fields 
need more regional differentiated weather data obtained from their own weather 
stations. Standardized sensors with standardized signal processing algorithms allow 
the utilization of nearly all weather stations offered in the market. The data link 
can be either a wired interconnection or through radio communication to the FMS, 
where the first may cause problems due to lightning and thunderstorms, but offers 
independence through a parallel power supply.

Weather forecasting has improved during the last decades, by having the use of 
more powerful computers and more sophisticated models. The on-farm use of this 
information is often free of charge, while more detailed information needs specific 
contracts with suppliers or may be a free-of-cost amendment offered by other service 
providers or by leading agricultural machinery suppliers.

10.3.2 A dministration

Farm management depends on or is increasingly influenced by laws and regulations 
formulated by legislation. Examples of restrictions in different parts of the world are

•	 Nitrogen restrictions, which allow a maximum amount per hectare docu-
mented through so-called farm-gate regimes. More diverse regulations 
already look to the field-gate and it might be expected that in the near future, 
together with improved site-specific technologies, the gate will come to the 
part-field.

•	 Use of prohibited agents, especially in pest protection scenarios.
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•	 Limited time intervals in conjunction with applications of manure to frozen 
soil or during times of no plant growth, which keep lateral flow and ground 
water contamination in check.

•	 Exclusion zones of natural resources such as waterways, surfaces with an 
inclination higher than a given threshold and restricted areas of nonarable 
land.

In all these examples, precise data acquisition without gaps and verifiable docu-
mentation have to be guaranteed.

10.3.3 O n-Farm Research

Plant treatments by fertilizing, pest management, and irrigation mainly follow com-
mon models and/or adviser-created recommendations. While the former suggestions 
are based on universal references, the latter may be more related to real farm condi-
tions. Therefore, whenever local conditions should be integrated more intensively, 
on-farm research is crucial. Mainly focusing on fertilizing or pest management, dif-
ferent types of implementation can be chosen:

•	 Untreated windows are able to show the effect of any surrounding applica-
tions during fertilization or spraying.

•	 Strips with different application rates allow the evaluation of varying 
amounts or concentrations of agents.

•	 Small test plots with identical treatments and different varieties give genu-
ine information about the performance of a particular variety.

All-in-all, on-farm research needs precise treatment as well as precise and spe-
cific data acquisition. The outcome contributes mainly to the farm management itself 
with the focus on increasing profit. It also contributes to more precise fieldwork in 
homogeneous treatments during fertilizing, pest management, and irrigation, avoid-
ing over-applications as well as shortcomings resulting in reduced yields or in dan-
gerous infestation.

10.3.4 Q uality Management

Farms tend to grow and farm work often is transferred from family workers or well-
trained farm workers to untrained laborers in full-time or part-time employment. 
Also, the transition of field work to contractors and/or machinery communities (joint 
ownership) is increasing, and in all these cases, monitoring will suffer.

More precise farm management, therefore, needs a well-defined work order and 
detailed data from any field activity, which might be included in existing field records 
or in quality management data pools (Kruize et al., 2013; Nawi et al., 2014).

10.3.4.1  Traceability and Good Agricultural Practices
When considering the farm management activities mentioned in this subchapter, it 
might become clear that high-quality data acquisition, together with application of 
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different methods, which is how PA is defined, are fundamental requirements for 
more precise farming.

Data storage, in the same way, is the second challenge. Agricultural data will 
become very valuable over time. This information requires sophisticated data man-
agement systems and long-term data storage tools with adoption of new storage 
devices and enhanced formats. Special attention therefore should be given to the 
ownership and safety of data.

Large gaps, however, remain in the documentation storage scenario. These are 
mainly related to nonsensor-based or nonautomated data acquisition processes:

•	 Worker identification in common and especially in regard to hazardous 
agents or implements

•	 Implements without electronics in tractor–implement combinations follow-
ing the ISOBUS

•	 Agents for seeding, planting, fertilizing, and plant protection
•	 Yield sensors in all of the used harvesting technologies
•	 Soil stress and soil compaction caused by field work under suboptimal con-

ditions or created by improper tires or tire inflation pressure or by too high 
axle loads (Demmel et al., 2008; Hemmat and Adamchuk, 2008)

Consequently, the data where failures will occur are generally manually acquired, 
as humans are never perfect:

•	 Forgotten in times of heavy workload or at the end of a long working day
•	 Wrong figures either as wrong or unclear reception or willfully done to hide 

the right ones
•	 No perception, regarding certain items such as soil damage or soil crouching
•	 Others

Finally, thorough data records document attempts to perform farm work more 
precisely, to fulfill community laws and regulations, to achieve the required quality 
items in field operations, and to trace products back to the field and plot, if required 
(see Chapter 9 of this book).

10.4  CROP MANAGEMENT

Advanced agricultural technology, new sensors, data processing, and powerful 
software systems may be seen as the key elements of site-specific crop production 
and crop management (Auernhammer and Schueller, 1999; Schueller, 2002). These 
elements were first driven by profit maximization, mainly focusing on yield and 
fertilization; today, environmental issues gain higher importance (Bongiovanni and 
Lowenberg-Deboer, 2004). In this way, the ideas and possibilities of this concept 
are provided to conventional as well as organic farming systems, even though in 
the latter precision farming is still not the mainstream and many constraints can be 
observed.
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Crop management covers the whole plant growing season with tillage at the 
beginning, and seeding or planting, followed by application measures of fertiliza-
tion, plant protection and irrigation, and, finally, with the harvesting of grown plants 
(Figure 10.8).

However, the use of precision farming technologies today differs widely in crop 
management activities.

10.4.1 T illage

Although tillage has not been long in the focus of precision farming applications, a 
number of utilities have been applied to tillage measures, and spatial variable tillage 
(by intensity and depth) has been investigated and discussed.

GNSS-based automated guidance of tractors has the strongest influence on the 
optimization of tillage. Its main goal is to avoid overlapping or gaps. Different inves-
tigations have shown that overlapping can be reduced by 5%–10%, and the relative 
figures increase with smaller working widths. Further, changed turning regimes—
wide U-turns with skipping passes instead of swallow tail turns—will reduce turning 
times by one-third. This increases the field efficiency on short fields and with small 
working width (small-scale farming). The possibility of combining automatic steering 
with headland automation of tractors increases these effects and reduces the workload.

Some investigations have tried to evaluate the effects of site-specific primary till-
age, varying the tillage depth according to soil type and soil moisture (Figure 10.9). 
While soil type does not change over time, soil moisture is a variable and, today, 
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hard to measure on-the-go. Therefore, the adoption of site-specific tillage first needs 
reliable soil moisture sensors.

The rise of controlled traffic farming, a farming strategy concentrating all field 
traffic on permanent tracks and for the first time discussed in the 1980s, was facili-
tated by minimum till and no-till technology and the availability of automatic guid-
ance systems for agricultural machinery. Although it is an entire system, it will be 
mentioned here (Demmel et al., 2012a,b).

10.4.2 S eeding and Planting

From the very beginning, seeding and planting have been the processes with the 
highest requirement for precision. They constitute the fundamentals of a crop stand. 
Traditionally, markers have been used to accurately align passes while travelling the 
field. In advanced plant production systems, during seeding, track lines laid out by 
multiplying seeding implementation widths are established, matching the working 
width of the application technology. In manually guided seeding, those track lines 
show, in the average, overly narrow distances up to 8% of working width, and also 
show the higher overlapping caused by increasing slope.

Besides tillage, seeding and planting are increasingly being carried out with the 
assistance of GNSS guidance systems. This makes sense, with the increased work-
ing width of seeders and planters in both the rear-mounted and the trailed tractor 
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implement configuration. Parallel passes with this technology will come to a preci-
sion of ±0.02–0.05 m in flat areas and under nonslippery soil conditions. Pass con-
nection errors are usually smaller with rear-mounted equipment, as the position of 
the location sensor is still close to the implement and might also be reduced in the 
tractor implement geometry stored in the ISOBUS controller.

With trailed seeding and planting combinations, the seeding/planting tools are a 
long distance from the tractor-mounted location sensor. Consequently, under unfavor-
able conditions, the pass-to-pass errors increase. An additional location sensor at the 
implement can optimize the guidance of the tractor to overcome this problem. Another 
possibility is a second active steering system with a GNSS receiver at the implement.

GNSS-based position location also allows for section control of seed drills or 
planters, a function that automatically switches the whole metering unit, or sections 
or single rows of a planter, on or off at the headland to avoid overlapping. This func-
tion not only reduces seed costs, it also improves plant growing in critical areas at the 
headlands and makes harvesting easier at the end of the season.

Based on soil type and topographic (three-dimensional) maps, farmers tend to 
vary plant density, especially during planting. Electronically controlled electric 
drives of the metering units of modern planters and seed drills make the adaptation 
of the seed rate to changing conditions in the field possible, either manually by the 
driver or based on maps. These technologies also allow for equal-distance planting 
in areas with a triangular or rectangular geography. In the future, weeding and even 
pest control may simply be taken over by small autonomous field robots working 
across the field or following weed spots. Even single plant husbandry would become 
possible in this planting design.

10.4.3 A pplication in Fertilization

Following local yield measurements in combine harvesters and georeferenced soil 
sampling, site-specific fertilization was a very quickly adopted implementation 
(Auernhammer et al., 1999). From a systematic point of view, there are three dif-
ferent approaches to master this new challenge and possibility (Auernhammer et al., 
1999), as shown in Figure 10.10.

10.4.3.1  Fertilizing by Balance
Based on local yield measurement from the previous harvest combined with soil 
nutrient sampling and analyses at the beginning of the vegetation, a highly reliable 
estimation of needed nutrients related to a nutrient balance can be achieved. It may 
be called “farming by balance” or, nowadays, “prescription farming.” Additionally, 
long-term information from the historic data of a field can be taken into estimation. 
But whatever decisions are taken, this concept mainly focuses on “one-treatment 
only” applications, as any changes within the growing season cannot, or can only 
be included with low reliability, into the final determination. This approach is deal-
ing with basic nutrients (P, K, Ca, etc.), one application of nitrogen only, the choice 
of the mostly beneficial crop variety, and the adjacent needed/preferred chemicals. 
Fertilizing operations then are based on application maps and appropriate applica-
tion implements.
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Application maps are typically grid-based. The grid size is limited by either the 
working width of the spreader (it makes no sense if narrower) or by the section width 
when section control is available. Application maps may follow definitions in an 
ISOBUS system or might be in a proprietary format related to the used spreader con-
troller. Application implements may be either spin spreaders or air spreaders, while 
spin spreaders usually have no section control units or a maximum of two section con-
trol units, and can deliver only one fertilizer type, either a single or a mixed nutrient 
agent, according to the required nutrient application. Control of the required distribu-
tion amount strictly follows the map and causes more rapid rather than smooth adjust-
ments. Highly precise dosing is possible when the controller takes care of the time of 
flight in relation to the distributed material, adjusting the required amount of output 
prior to the map-based boundary. Nonuniform driving speeds cause less precision.

Air spreaders support section control but still follow the above-stated principles in 
distribution. Additionally, there is an extra influence from curved application tracks. 
This curve may be integrated into the control algorithms if path planning informa-
tion is available to the application map. Otherwise, under- or over-application at the 
boom ends is unavoidable. Moreover, on-the-go nutrient mixing is an option avail-
able through a multibin design of the spreader (Peisl, 1993), shown in Figure 10.11.

10.4.3.2  Fertilizing by Growth
Whenever multiple applications deliver benefits, for example, avoiding overfertiliza-
tion and allowing a reaction to unforeseen weather conditions, the growth factor has 
to be included in application management. This is the case in nitrogen fertilizing and 
especially under humid conditions with unpredictable rainfall. Under these condi-
tions, the needed amount of fertilizer at a certain time results from the difference 
between the aspired growth target and the on-site growth situation.
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It is well known that the greenness of crops is an indication of the amount of 
chlorophyll and it is also well known that there is a very close correlation between 
chlorophyll content and nitrogen uptake, as chlorophyll mainly consists of nitro-
gen. Therefore, a greenness or chlorophyll sensor could give the needed information 
to determine the required amount of nitrogen derived from a standardized growth 
development curve of a specific variety with respect to the expected yield.

This type of precision fertilization is well adopted (Table 10.6), especially in 
Europe, with split nitrogen fertilizing strategies in three to four applications.

There are more than 1000 systems in operation in Europe (as of 2014) with an 
average field capacity per system of around 4,000 ha/year. The standard control pro-
cedure adds more nitrogen to those parts of the fields with lower biomass; this is 
often changed to the opposite for the last dressing. The majority of the systems take 

TABLE 10.6
Crop Growth Sensors in Nitrogen Fertilizing Systems

Sensor Type Principle Vegetation Index Wavelength Algorithm Fertilizing System

Yara N-Sensor Passive S1, S2 Confidential Yes Online

Yara ALS Active S1 730, 760 Yes Online

CropCircle 430 Active NDVI, WDVI 630, 730, 780 No Online

GreenSeeker Active NDVI 656, 774 No Online

Isaria Active IRMI Confidential Yes Online with map overlay

Source:	 Adapted from Maidl, F.-X., A. Spicker, and K.-J. Hülsbergen. 2014. LfL-Schriftenreihe Heft 7, 
Neue Techniken im Ackerbau, Hrsg.: G. Wendl. Bayerische Landesanstalt für Landwirtschaft, 
Freising, Germany, pp. 63–74 (ISSN 1611–4159).
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control of rear-mounted spin spreaders through proprietary data link interfaces. The 
sensors are typically mounted at the cabin roof of the tractor in a fixed position 
through the growing season with simplified cabling, and normally there is no loca-
tion sensor.

A more detailed assessment of the aims using those online systems delivers four 
different strategies (Leithold, 2014):

•	 Yield maximization in more than 50% of use with the risk and the accep-
tance of overfertilization and also with extended fertilizer costs.

•	 Quality optimization in about 30% improving the protein content.
•	 Crop harmonization in about 10% to get higher harvesting performance.
•	 Manual overcontrol in about 5% when soil properties are known or visible 

on-the-go.

Today, manufacturer-specific control algorithms cover the main cereal crops, 
including maize and rapeseed, and long-term investigations into their use with pota-
toes and other root crops have also started.

Wireless data transmission, integration into the ISOBUS standard, and the use of 
the ISOBUS user terminals (UT), follow the efforts using standardized electronic 
communication systems and allow a simple sensor movement to other tractor–
spreader combinations. Location sensing can be used with the ISOBUS to allow the 
generation of “as-applied maps” via the task controller (TC).

10.4.3.3  Fertilizing by Sustainability
Compared to manually controlled nitrogen application, any growth sensor replaces 
the “eye of a farmer” only where all his field experience and knowledge is side-
lined. In a sustainable system, therefore, the “farmer’s brain” must be included into 
the set-point definitions together with long-term spatial field data such as soil type, 
topography, local yields, soil resistance, rain fall, and others. This requires a sensor 
with a map-overlay system, which is able to make an adjustment of the growth sensor 
signals either given as a function of statistically well-confirmed dependencies or by 
well-established agronomical rules of interactions (Figure 10.12).

The final set point of the required local application can be derived through sensor 
fusion. When integrated into the ISOBUS standard, this technology could widely be 
used in mineral fertilizing as well as in organic fertilizing, pest management, and in 
seeding and planting (Ostermeier, 2013).

10.4.3.4  Organic Fertilization
Besides mineral fertilizing where farmers always try to make the most precise appli-
cation, organic fertilization remains in the background. This might be acceptable 
in manure spreading as this type of organic fertilizer may be seen as a soil agent 
improving the organic matter in the soil and contributing to the stabilizing of humus. 
But in conjunction with slurry, known as a rapid effective nitrogen fertilizer, it is 
inadmissible. Besides, the indispensable requirement of highly precise pass-to-pass 
operation using two different solutions can be seen at this time:
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•	 Uniform or even site-specific spreading of manure may be based on wagon 
platforms with weight sensors together with a variable hydraulic drive to feed 
the manure to the spreading unit according to the planned application rate. 
Either homogeneous or site-specific application may be addressed in this way.

•	 In slurry application, on-the-go measurement of the flow rate and the nitro-
gen content is essential. NIR sensors show good results (Reeves III and 
Van Kessel, 2000) and allow precise nitrogen application in the field, as is 
followed in the management of mineral nitrogen fertilizer. Also, P and K 
contents may be introduced into a more precise slurry application.

Again, also in organic fertilizing, location sensing is a must to be able to create 
“as-applied” maps for long-term improved field management.

10.4.3.5  All-in-All
Fertilization, especially site-specific nitrogen fertilization, can be seen as the most 
advanced precision farming technology at the field level today. Depending on given 
situations and related to nutrient requirements, “well predicted one application only” 
or “growth adjusted multiple” operations can respond precisely in a site-specific man-
ner to avoid overfertilization with leaching, as well as to avoid underapplication, which 
causes yield losses. Nevertheless, some problems at the farm level can still be seen:

•	 Prediction of fertilizer amounts often follows simple balance attempts where 
historical field data are neglected, or due to data handling, are not available.
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•	 In multiple application strategies, growth sensors offer a high potential 
through real-time crop state measurement but are still restricted to cereals. 
Application algorithms cover selected plant varieties only and in most cases 
a calibration at the field is required.

•	 Application implements are able to guarantee highly precise dosing with 
section control. Precise pass-to-pass operation prevents overlapping, but 
in nonlinear field structures, under and over supply takes place when no 
pass planning information or true look-ahead direction sensor is part of the 
system.

•	 Application control based on application maps normally generates stepwise 
set-point adjustments with no smooth and therefore no natural transitions.

•	 Sensor fusion with historic field data in systems with growth sensors are 
still an exception.

•	 Data communication in tractor–spreader combinations often is proprietary 
and forces the farmer to stay with the established system, having no choice 
to replace either the tractor or the spreader without new problems and open 
questions.

10.4.4 A pplication in Plant Protection

Contrary to fertilization with a wide range of specific strategies to rate the neces-
sary amount of nutrients in relation to an established yield target, non-GMO plant 
protection measures can hardly be determined in advance. Treatments regularly take 
charge when monitoring shows an infestation greater than a defined threshold, or 
when spot-wise critical expansions of weeds, insects, or fungi are observed. In other 
words, plant protection either means monitoring in the first stage, or neglecting the 
given situation and following well-established recommendations with homogeneous 
whole-field treatments.

10.4.4.1  Monitoring
When farm and field sizes grow larger, thorough and accurate monitoring requires 
an exponentially increasing time when no dedicated aids or tools are available. Thus, 
comprehensive research activities have been carried out worldwide to close this gap, 
by looking for sensors and on-the-go weed detection methods on tractor–sprayer 
combinations or on autonomous vehicles or unmanned aerial vehicles (UAVs) (Thorp 
and Tian, 2004; Sankaran et al., 2010; Zhang and Kovacs, 2012; Pérez-Ruiz et al., 
2015). At the field level, however, few of these solutions can be found.

Besides governmental organized or extension-based plant monitoring activities 
covering all major crops and all important plant infestations, on-farm monitoring 
with sensors in combination with the sprayer is starting to be adopted:

•	 Tractor mounted or spray boom-located NIR-based growth sensors are used 
to detect local biomass and apply more agents in dense crop standings and 
in the opposite way during whole-field treatments.

•	 Also, tractor-front-mounted plant-density sensors are used to react in a 
similar way.
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10.4.4.2  Application
Owing to the development of powerful herbicides, fungicides, and insecticides, 
chemical plant protection has played and continues to play a key role in the develop-
ment of modern agricultural plant production. Application technology has followed 
this trend. Its performance was increased by wider spraying booms, larger solution 
tanks, and faster working speeds. Application rates have been dramatically reduced, 
increasing the requirements on a precise allocation. Electronics became the most 
appropriate technology and today they are integrated in nearly all sprayers in “devel-
oped” plant production regions.

Electric three-way or by-pass valves regulate the liquid flow in a closed-loop con-
trol system according to the required spray pressure with regard to nozzle type and 
application rate. Radar velocity sensors or speed data from GNSS receivers pro-
vide slip-free true ground speed information. Position data from GNSS receivers 
also allow for electronic section control based on application maps. Boom control 
requires more attention with wider spraying booms in rough and hilly fields as well 
as when working at higher speeds. In this case, high-performance sprayers include 
distance sensors in the boom sections to facilitate active hydraulic or electrical boom 
distance control, and active boom suspension.

With trailed sprayers and nonlinear field structures, sprayer wheels might destroy 
additional plants when no action is taken to guide the sprayer within the tractor 
path. Precision sprayer track-guidance measures tractor steering and actuates with 
adjusted guidance activities in the sprayer drawbar. But nevertheless, even with 
sprayer track control, curved passes result in under- and over-application at both 
boom ends if the pass direction is not integrated into the control algorithms and/
or driving speed is too high in relation to control time delay and nozzle adjustment 
time. An example is shown in Luck et al. (2011), where during spraying with a single 
nozzle control in irregular field shapes of a total of 185 ha, nearly 20 ha received less 
than 90% and nearly 13 ha more than 110% of the target rate.

And finally, as described above, NIR-based single nozzle control can become a 
part of the site-specific treatment that controls the output volume in accordance with 
the locally sensed crop biomass. Or the sensor signal can be used to create local 
overcontrol in accordance with predefined site-specific application set points.

10.4.4.3  Mechanical Weeding
In cereals, nearly half of the chemicals are used for weed control. From an envi-
ronment-friendly standpoint, most of the pesticides could be replaced by mechani-
cal weeding. On the one hand, vision-based implement guidance is available and 
mainly used in row crops or in cereals with wide row distances; typically, organic 
farmers use this technology more often than the conventional ones. On the other 
hand, GNSS-based RTK implement guidance is available. Both technologies allow 
for interrow weeding whereas in-row weeding still suffers.

10.4.4.4  All-in-All
In general, all of these electronic and sensor-based control prospects offer highest 
precision during application of chemicals at the field level. But in the future, these 
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treatments have to be improved by more localized information. Ongoing develop-
ment of in-field monitoring therefore is the key to environmentally sound plant pro-
tection measures with the following challenges:

•	 Any manual monitoring is time consuming and requires very special 
knowledge.

•	 Adapted sensor technologies related to a fast and clear identification of 
weeds, fungi, and insects are still not available.

•	 Autonomous air-based or land-based platforms for such sensors are not 
available or have problems in use at the farm level.

•	 Also, monitoring systems with cognitive capabilities to identify and main-
tain spots with different propagations in the right way may not be available 
today.

Further improvements in spray technology are required, such as

•	 Spray booms with a steady adjustment to the crop surface with no lateral 
and horizontal deviations even at higher driving speeds, on rough or hilly 
surfaces and also under nonlinear field conditions.

•	 Direct injection systems (Peisl et  al., 1992) with infestation-specific 
treatment.

•	 Integration into the monitoring equipment with site-specific or plant-spe-
cific handling of microagents and newly developed physical or electrical 
treatment possibilities.

And finally, more attention should be given to mechanical weeding in newly 
designed field cropping systems (Demmel et  al., 1999) together with autonomous 
vehicles in interrow, in-row, and also at single plant surroundings (Slaughter et al., 
2008).

When taking all these different aspects into account, it might be concluded that, 
contrary to precision fertilization, future environmentally-friendly, sound, precise, 
site-specific or even plant-specific, plant protection is a long way off. And also, GMO 
crop farming in monocultures with specialized monoculture agents will not be able 
to overcome foreseeable problems.

10.4.5 A pplication in Irrigation

While just 15% of all arable land in the world is irrigated, this land generates nearly 
half of the value of all crops sold (UNESCO, 2007a). Worldwide agriculture (and 
horticulture) accounts for over 85% of water consumption (UNESCO, 2007b). It is 
expected that irrigated areas and water consumption will increase by 20% by 2025.

Irrigation systems can be divided into gravity-based (flooding furrows or entire 
fields) and pressure systems (sprinkler systems and drip irrigation). Worldwide, about 
94% of irrigated land is under gravity irrigation. In the United States, about 50% of 
the irrigated land is under gravity irrigation; the other 50% is irrigated by pressure 
systems. Owing to the fact that agricultural irrigation accounts for the largest part of 
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water consumption worldwide, different attempts have been made to increase water 
efficiency (Demmel et al., 2014). Based on the development and adoption of precision 
farming technologies in crop farming, ideas of precision irrigation and site-specific 
irrigation have also been discussed and investigated. Unfortunately, their application 
is limited to pressure irrigation systems. Two steps or levels can be distinguished, 
improved and automated irrigation control and site-specific irrigation.

10.4.5.1  Irrigation Monitoring and Control
In many cases, irrigation is controlled manually based on the experience of the 
farmer. Often, the applied amount of water is controlled only by the time the equip-
ment (pump and sprinklers) is running. In a first attempt, the installation and use 
of a water meter significantly improves the accuracy and efficiency of irrigation. 
Furthermore, systems have been developed, investigated, and evaluated that increase 
water efficiency by using simulation models based on the Penman–Monteith equa-
tion (extended by local weather data from small electronic on-farm weather stations) 
or soil moisture sensors (Noborio, 2001), or a combination of both (Figure 10.13).

The development of fast-reacting, low-maintenance, and low-cost soil moisture 
sensors is still in process due to the fact that it is difficult to combine all three fea-
tures. Besides, wireless networks are needed to cover the whole irrigation area with 
soil moisture sensors. In larger center-pivot or linear-move irrigation systems, these 
models are combined with ECUs for the pump, the valves, and the automation drive. 
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These control units include comprehensive monitoring and visualization functions 
that give the user instant information about the system, and the applied amount of 
water on the farm PC, or a smart phone, and also send an alarm if a malfunction is 
detected. The automation of center-pivot and large linear-move irrigation systems is 
characterized by continuous and intensive development.

10.4.5.2  Site-Specific Irrigation
Owing to the fact that soil heterogeneity also influences soil water balance and 
creates the need for irrigation, the observation of high soil heterogeneity within a 
center-pivot circle with a diameter of 400–500 m has been carried out and systems 
for spatial variable irrigation have been developed and investigated (Evans et  al., 
2013). This technology, called “site-specific variable rate irrigation” (SS-VRI) has 
been commercially available for center-pivots for several years, but its adoption by 
producers has been on a very low level. It is expected that higher costs for irrigation 
water, water scarcity, and the implementation of economic incentives for compli-
ance with environmental or other regulations, will potentially provide the necessary 
incentives for much greater adoption of various advanced irrigation technologies.

10.4.6 H arvesting

All actions the farmer takes during the growing season are aimed at contributing to 
high yields, attaining the required quality, and delivering the outcome with marginal 
losses at the right time and at the lowest cost. To increase efficiency and to reduce 
costs, harvesting technology is increasing in size, tends to be very specific to the 
harvested crop, and becomes highly complex. To realize this progress in the field, 
there must be either higher qualified operators or more electronics and well-designed 
control capabilities with a high degree of automation. The increase in size and per-
formance, and extended control and automation can best be implemented with self-
propelled machinery concepts.

10.4.6.1  Guidance
Large harvesters enable highest performance when driven within the genuine work-
ing width or very precisely along given rows to avoid cutting losses or overlapping. 
Operators are challenged by this the whole day and sometimes even during the night, 
with no decrease in concentration.

Especially in row crops such as corn, silage maize, or sugar beet, mechanical row 
guidance sensors became standard equipment and are used more than 80% of the 
operation time. More recently, with the increasing header width of self-propelled 
combine harvesters, edge detectors were adopted to guide these machines along the 
edge of the standing crop with accuracy better than 10 cm. Similarly to row sensors, 
these sensors are also part of today’s harvesting technology and need no calibration 
and no additional infrastructure in the field (Figure 10.14).

Today, high-accuracy GNSS-based guidance systems (RTK) are used on harvest-
ing equipment as well. These guidance controls are not influenced by laying crops 
and also allow for skipping passes with reduced turning times and less soil compac-
tion at headlands.
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More precise work recently became possible by utilizing guidance systems in 
transport vehicles in silage maize harvest operations (Europe) and with grain carts 
unloaded on-the-go. Precise parallel speed adjustments of both vehicles in this case 
avoid material loss. Together with additional optical sensors measuring the filling 
situation an adjustment of the loading device (spout) always allows perfect loading 
of the transport unit.

10.4.6.2  Operation Control
Large-capacity harvesting machinery allows maximum performance and precise 
work with low losses only when internal process units are well adjusted (Schueller 
et al., 1986) and in harmony with their neighbors. Preprogrammed adjustment tools, 
mainly in combine harvesters, enable manually activated employment of the har-
vester related to the coming crop. Site-specific control improvements can then be 
stored over a period of time and used for future operations. More recently, these 
field-specific control adjustments have also been transferred in real time to combines 
from the same manufacturer and of the same type (members of a group or swarm in 
a leader–follower concept) through wireless communication.

Besides guidance systems that give more freedom to the driver and allow more 
time for machinery observation and control, constant material throughput with less 
variation is realized by so-called cruise control systems optimizing all separation 
and cleaning processes. This advancement can be seen as an important and helpful 
supplementary feature, either following a control strategy to get maximum through-
put under time restrictions, to optimize the output quality, or to minimize losses.

10.4.6.3  All-in-All
Never before has such huge and mainly self-propelled harvesting machinery 
done as comparable a job as it has done today. A wide range of different sensors, 

Self-propelled
forage harvester

Self-propelled
sugar beet harvester

Self-propelled
combine harvester

FIGURE 10.14  Row and edge guidance sensors in self-propelled harvesting machinery.
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high-performance control algorithms, and fast and finely adjustable actuators allow 
for this, and will also be able to improve further:

•	 In-machine unit optimization relating to previously collected site-spe-
cific preinformation from parallel tracks. Site-specific information may 
even come from spatial soil data or from inclination maps (Bishop and 
McBratney, 2002). This information may be used to optimize cleaning at 
the sieves in combine harvesters or to empower soil separation from root 
crops more intensively or more smoothly.

•	 Besides locally diverse variations in crop quality and even with an increas-
ing working width, the quality of the harvested crops may differ more 
widely. Therefore, because of product as well as of cost reasons, selective 
harvesting and on-the-go division of low- and high-quality composition 
such as protein or starch would be an option.

•	 When harvesting under wet conditions, soil compaction is a major issue in 
environment protection. Optimized tires or rubber belt undercarriages are 
a first option.

•	 However, one limitation may be that overcollection of material in the hop-
per or tank in relation to an on-the-go operation measured by soil moisture 
value may be seen.

•	 Also, the continuing growth of harvesting technology might be questioned. 
Unmanned followers—all in smaller size—are able to increase the overall 
performance of an operator and may even be easily adapted to different 
operating conditions such as field size, field shape, topography, and others, 
but will still be under manual control.

10.5  MACHINERY MANAGEMENT

Cost-efficient utilization of farm machinery requires time-critical logistics to guar-
antee that any needed equipment with an appropriate performance will be at the 
right location at the right time with no breakdown. While this requirement has lower 
importance on family farms with widely seen overcapacities, it is a “knock-out crite-
rion” in large-scale farming as well as in a contractor work organization.

10.5.1 R oute Planning

Specialized very high-priced machinery tends to be increasingly used in cooperation 
as well as in so-called machinery rings or in most cases worldwide, by contractors. 
But independent from the organization, the main target is “to fulfill the required 
task in the right time,” which is very difficult in areas with identical or very similar 
conditions.

A good example of this may be “planting of sugar beet,” as planting has to be 
done as early as possible to achieve a long growing period. Also, beet will gain 
highest yields only in the best soils, which are typically found in a narrow area. 
Furthermore, there is no point of ripeness, which means beets should be in the soil 
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as long as possible. From a farmer’s business point of view, beet should grow as long 
as there is no frost, but from the sugar mill point of view, the request is to start as 
early as possible with processing to arrive at a long processing time with lowest costs 
per sugar unit. In other words, in a certain region, planting should be completed on 
one day and consequently all operations during the growing season will fit the same 
requirement, whereas any delay in any operation will lead to a decrease in profit and/
or quality.

In similar operations, only very detailed route planning in agreement with all the 
involved farmers, including different pricing, will be successful (Figure 10.15).

Any mission depends on

•	 Available georeferenced field data with additional field metadata according 
to the required process or, if “unknown,” specific GNNS-based field inven-
tory and recording of field metadata. In both cases, the field traffic situation 
with road condition and restrictions is additionally required.

•	 Job schedule or flow diagram based on farmer’s time preference, field sizes, 
in-field conditions, field-to-field distances, road conditions, working time 
per day, and many others.

•	 Single or multiple job execution, including either groups of similar machin-
ery or the machine executing the leading task together with required trans-
port units and associated facilities.

Several systems are available and used for optimization with highest possible 
precision in two different ways:
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FIGURE 10.15  Route planning in sugar beet production.
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•	 Operator-driven systems (contractor, cooperation, and large-scale farm) 
focusing on the optimized utilization of the available equipment to fulfill 
all required field tasks in a limited time with as little as possible idle time 
and minimized timeliness costs.

•	 Processing industry driven to keep the plant running, for example, in sugar 
beet, sugarcane, vegetables, starch potatoes, and others.

Also, route planning systems for combinable crops are of great importance fol-
lowing the maturing of small grains on strictly planned routes from south to north 
first and repeating this way for corn harvesting later in the northern hemisphere or 
vice versa in the southern one. Great attention has to be given to the end of the period 
as, often, weather conditions become insecure and fast changing.

10.5.2  Process Monitoring

Existing sensors in the machinery with GNSS receivers and telecommunication 
equipment together with GIS and on-screen software allow for centralized or decen-
tralized real-time monitoring of any mechanized field work. Thus, at any time, 
machinery settings as well as the work progress can be observed. With well-adapted 
actions it will be possible to

•	 Confirm the instantaneous work situation being in a good fit with its 
machinery performance to the required field task and with the workflow in 
comparison with the previous established work schedule.

•	 Discover possible/necessary improvements in the machinery settings to 
gain more work progress and possibly compensate for a certain work flow 
delay.

•	 Be aware of an earlier fulfillment of the ongoing field operation with con-
sequences to the work schedule of the day, the worker, or the engaged 
machinery.

•	 Detect and document any misuse or wrong use by time and location espe-
cially when untrained or less trustworthy workers are engaged.

Related to transportation tasks on rough field roads and/or heavy loaded public 
roads, the monitoring of multiple transportation units mainly during harvest of a 
huge amount of biomass (e.g., silage, sugarcane, and sugar beet) provide benefits as

•	 Transport capacity in number of units can be easily adapted to the required 
task.

•	 Unexpected traffic situations can be compensated for by altered navigation 
or to extended transportation units.

•	 Any idle time of the harvesting unit(s) may be eliminated to fulfill the field 
task within the scheduled time.

In summary, process monitoring of machinery used in a single task, or associated 
to clusters of similar machinery, or in combination with transport units, gains benefit 
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through reduced idle time in the whole process as well as in any of the connected 
units. Also, unexpected situations can be easily seen, action can be immediately 
taken, and the total work can be undertaken in conformity with the work target and 
work schedule.

10.5.3 S ystem Control

While route planning and process monitoring focus on “what should be done” and 
“what happens,” system control focuses on “how it should be done.” System control 
mainly concentrates on harvesting with a (large) fleet of harvesters, grain carts in 
the field, and a fleet of transport units. The most critical challenges occur while 
changing from one field or one harvest area to another. While the harvest has to be 
finished in a way so as not to run the whole fleet to an abrupt stop, the movement of 
the equipment has to be initiated and the harvesting of new fields has to be prepared 
and started in a way that the nonproductive time of all the equipment is minimized.

Still, this type of fleet management rests upon well-experienced human skills, but 
increasingly fundamental research and simulation is on-the-go and will soon come 
to the field level.

10.5.4 R emote Service

This section looks mainly at the machinery itself. Machinery manufacturers in par-
ticular show a very high interest in any solutions to problems or feedback with regard 
to their products. This can be achieved, first, by gathering field-level data according 
to a certain technology for further improvement and development, and second, by 
providing maintenance proactive services and repair, to avoid breakdown and idle 
time. The system approach is based on permanent or intermittent machinery data 
acquisition and transmission to a centralized database with access for manufactur-
ers, dealers, service providers, and also contractors and/or farmers (Figure 10.16).

A system such as that described above is required by advanced engineering at the 
manufacturer’s level as well as by service providers, as comprehensive and realistic 
field use data have not been available to

•	 Discover weak structure or design points in machines
•	 Provide the settings under different conditions
•	 Monitor different loads at specific in-machinery locations
•	 Analyze running time and load spectra
•	 Create more advanced maintenance information material and service 

instructions
•	 Develop improved and field-level designed replacement technology

On the other hand, farmers have some constraints when it comes to offering their 
process data to manufacturers, gaining no individual benefit and also considering 
data security concerns. Even when this system seems to be rewarding to all engaged 
parties, it is very difficult to bring it to the farm level with the required broad accep-
tance. There may be two steps to going forward.
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10.5.4.1  Service Hiring
If users are utilizing the machinery permanently at its maximum performance and 
are sure to have immediate service and/or repair after a breakdown, they may go into 
a special service lease contract. In this case, data are part of the contract and have 
to be transferred to the database without any restrictions. The disposition of the data 
will also be defined in the contract.

10.5.4.2  Machinery Hiring
Contractors may hire machinery mainly to get the most advanced technology and to 
avoid unexpected breakdowns through aging or wearing out. In the fulfillment of a 
contracted guaranteed operational readiness, data become part of the contract and 
can be obtained by the manufacturer or service provider to the extent and density 
required.

10.5.4.3  All-in-All
Only optimized machinery management guarantees the fulfillment of any task 
within time limits and with the required precision. As farmers predominantly tend 
to avoid risk, they often have overcapacities together with long years of experience in 
organization and utilization of the owned machinery. In contrast, contractors aim to 
get maximum performance out of their technology and normally operate with fleets 
of machines or integrated machinery systems. Besides long-term contracted clients, 
new clients with no historic information have to be served. Well-engineered manage-
ment tools are able to support, at the field level:

•	 Route planning with included optimization algorithms to fulfill any required 
task at the right place and right time with the required performance. More 

Information source offered to different users by agreement

Forms

Records

Internal information External information
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Service technician

Machinery data
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Phone calls

FIGURE 10.16  Remote service system with manufacturer service database. (Largely 
modified from Ahrends, O. 2003. Das Serviceformular—Ganzheitliche Umsetzung im 
Unternehmen. In: Eine gesamtheitliche Teleservice-Lösung für die Landmaschinenbranche, 
Kapitel 4: 39–53, CD-ROM, ISBN 3-00-011832-2. With permission.)

  



332 Precision Agriculture Technology for Crop Farming

specialized tools either assist contractors or concentrate more on the pro-
cessing industry, for example, in sugarcane processing, to keep the plant 
running.

•	 Real-time process monitoring to be well informed about ongoing tasks, 
to look into the machinery with adjusted settings, to be able to activate 
improvements through different communication systems.

Additional tools may be seen in research and testing related to optimized system 
control in interconnected tasks, for example, with harvesting and transport vehi-
cles. Different targets from minimized idle times, maximized task performance, 
and reduced soil compaction through cost minimization in virtual land consolida-
tion systems (transborder farming) can be observed. Those activities will gain more 
attention in emerging autonomous field operation systems.

Also, remote service systems can be seen in this context. Mainly driven by 
manufacturers, less breakdown time might be expected with faster and improved 
service and repair. Furthermore, field-level experience will lead to improved 
machinery design to better adjust next-generation developments to the needs of 
the farmer.

Machinery management was often not identified as an important section within 
precision farming. But as farm sizes, machinery sizes, and machinery performance 
grow, requirements in this area are increasing.

10.6  LABOR MANAGEMENT

Whatever is accomplished or will be accomplished in precision farming is related to 
labor, which means human beings. But human beings have different abilities, educa-
tion, and knowledge; they differ in age; they have different motivations; and what-
ever work they are doing, in time they get tired. On the other hand, precision farming 
means doing everything more precisely, even with the differences in human beings 
and even when human beings get tired. Precise work therefore calls for improved 
tools and more automation.

10.6.1 T ools and Implements

Worldwide, farms of less than 1 ha account for 72% and larger farms between 1 and 
2 ha account for 12% of all agricultural operations. Together, these 84% of all farms 
control only 12% of all agricultural land (Big Picture Agriculture, 2014) and culti-
vate the land mainly by hand and/or using animals. As in highly mechanized regions 
with highly sophisticated implements for precise work, better adapted tools could 
lead to more precise work under these conditions as well. The following examples 
may focus on tasks for plant production:

•	 A wheel-guided plow allows for precise working depth in comparison to 
plow draw bars carried on animal shoulders.

•	 Seeding with wheel-driven metering devices guarantees uniformly distrib-
uted seeds compared to hand spread seeding.
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•	 Fertilizing with any equipment driven by a wheel with material-adjusted 
dosing facilities minimizes fertilizer input with uniform distribution.

•	 Plant protection with hand-operated backpack sprayers will apply chemi-
cals more precisely than hand-powdering.

•	 Finger knife mowers cut laterally more precisely than reaping hooks.
•	 Rotating mechanical threshing devices achieve better grain separation than 

flails.

Besides more precise work, all of these examples offer higher performance and 
often reduce failures, losses, and workload.

10.6.2 G uidance Systems

Modern agriculture is dominated by self-propelled machines such as tractors with 
implements, combine harvesters, and sprayers. All of them allow higher speeds, 
increased working width, and higher performance with more engine power. But they 
all have to be guided by drivers, often through long days as well as at night, in dust, 
fog, and often in very slippery soil surface conditions. So, any type of automation in 
guidance is very welcome to lighten the load for human beings and to allow a con-
stant output of steering accuracy through a full working day. Available systems used 
on the farm level depend on the working situation (Table 10.7).

10.6.2.1  Mechanical Systems
Furrow guidance evolved first. Besides unsuccessful work with plows to increase 
working speed, the main focus was given to tractor rear-mounted interrow cultivators 

TABLE 10.7
Guidance Systems

Sensing Type System Machinery Acceptance at Field Level

Mechanical 
sensors

Furrow guidance Plow
Interrow cultivator

No

Row guidance Maize choppers
Sugar beet harvesters

More than 80%

Optical 
sensors

Camera row guidance Tractor
Interrow cultivator

Less, mainly in special 
crops and in horticulture

Laser edge guidance Combine harvester More than 80% of large 
harvesters

GNSS 
systems

Parallel swathing Tractor–implement combination Add-on

Steering assistance Tractor–implement combination
Self-propelled harvesters

Add-on

Auto-steering Tractor–implement combination
Self-propelled harvesters

High

Auto-steering and 
headland management

Tractor with mounted (front, 
rear) or trailed implements

Low
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to dispense with the cultivator guide. During planting, a v-shaped plate or a mole-
blade established, in a simple way, the guidance furrow; a guidance plate at the inter-
row cultivator followed and did a good job if there was no disturbance of the guiding 
furrow by rain, soil movement, etc. As no high-quality guidance was possible at all 
and upcoming tool carriers with interaxle-mounted cultivators could be used by the 
driver alone, furrow guidance systems never gained acceptance at the field level.

While in-field established furrows never guarantee robust conditions, strong-stem 
plants such as maize can do this. So, with a well-adjusted sensor, application guid-
ance of harvesters along the rows became possible and offered freedom to the driver 
for either more supervision of the technique, for improving the work quality or to 
allow more accurate control of the material delivery into a parallel transport unit. 
A very high acceptance of this guidance system describes the benefit of both, the 
precise work with the higher performance of the harvester and the optimized loading 
of transport units.

10.6.2.2  Optical Systems
Camera-based systems still suffer as highly precise guidance is difficult in creating 
a robust centerline from one or more parallel crop rows independent from wind dis-
turbances in higher crops, by differences in the growth habitat, or by deficiencies in 
one or all the rows. Furthermore, changing illumination caused by the altitude of the 
sun as well as shadows, dust, and fog may create problems.

Laser-based edge guidance in combine harvesters is well accepted on the field 
level. The main reasons from a labor point of view may be seen in fast and simple 
oversteering in special situations or in laying crops, and in more freedom for accu-
rate control of the increasing complexity and increase in size of modern combine 
harvesters.

10.6.2.3  Satellite Systems
Today, GNNS-based guidance systems show a fast rising adoption rate due to their 
high accuracy independent from field conditions, time of day, and other influences. 
Besides direct integration into new machinery, many retrofitting systems are avail-
able and well accepted mainly in tractors. In-field usage is focused on parallel track-
ing following an A–B line in a linear or nonlinear shape. The overall usage in the 
field can be seen in three different types:

•	 Driver-assisted use refers to parallel tracking along linear A–B lines 
whereas unshaped areas as well as headlands are manually guided.

•	 Auto-steering means parallel tracking all over the field but not at the 
headlands.

•	 Extended auto-steering integrates headland management systems. Until now 
it is restricted to U-turns but can include down (up) shift, hitch, and hydrau-
lic functions and power-take-off (PTO) engagement, and disengagement.

10.6.2.4  Overall Assessment
Today, the utilization of guidance systems is the most applied precision farming 
technology worldwide. Also, it might be expected that this trend will continue, very 
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soon covering all larger tractors and all self-propelled agricultural machinery. Also, 
the trend to GNNS-based systems will continue.

From a labor point of view, all available systems offer secure handling with sim-
ple actuation and manual oversteering. Huge benefits may be seen in a formidable 
reduction of workload and a corresponding increase in comfort.

But headland management systems in small- and medium-scale farming systems 
with tractor–implement combinations are still challenging. More simplified systems 
should be used whenever possible to reduce the risk of accidents and damage when 
turning. However, manual management might be welcome in the field to break the 
monotony of auto-steering in long fields with less variations and low monitor and 
control requests.

10.6.3 L eader–Follower Systems

Auto-steering opens the door to driverless vehicles, at least inside fields, if a certain 
kind of observation and fast time intervention is possible. In a first and simple solu-
tion, this can be realized in a system where a manned leading vehicle is either fol-
lowed by or following an unmanned one (Figure 10.17).

There may be two different solutions:

•	 The follower is of the same type. Through wireless communication, it takes 
over all settings from the leader. It may also be monitored in the reverse 
way by the leading driver who would also be able to immediately stop the 
follower in the event something went wrong.

•	 The follower is of a different type with a different duty such as a chaser bin 
working together with the combine and the transport unit. In this case, it is 
simple to call the follower to the best position, overloading in parallel pass. 
Later, the follower may go autonomously to the storage unit to unload and 

FIGURE 10.17  Visionary leader–follower system for consecutive tillage and seeding where 
the leader carries out the most challenging task.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19336-11&iName=master.img-013.jpg&w=239&h=161


336 Precision Agriculture Technology for Crop Farming

be waiting for the next call. Again, the leading driver takes care of the fol-
lower, but as distances will be larger, unexpected disturbances may occur 
with unforeseeable situations.

In comparison, a leader–follower system of identical type might be simpler, but 
has not been realized so far as

•	 Moving vehicles must have a driver on-board by the Vienna Agreement 
Law from 1948.

•	 Secure communication links do not exist (spies, hackers, etc.).
•	 Typical agricultural machinery is of high mass and of high power, so any 

uncontrollable situations would be hazardous especially when close to pub-
lic roads or urban locations.

•	 Instead of less trained drivers on auto-steered vehicles, well-trained high-
cost specialists would be required.

10.6.4  Field Robots

Leader–follower systems would be able to reduce the labor requirement at the field 
level by about 50% for one follower and more for multiple followers. The use of field 
robots could reduce the labor requirement to 10%–20% of the nonrobotic situation 
depending on the required service and field monitoring tasks and the number of 
robots. But nevertheless, field robots are moving vehicles and may not be allowed by 
law. Even if laws and regulations change, two more questions will arise:

•	 Who wants to take over the overall responsibility of running large and massive 
autonomous vehicles at the field level with more or less no human attendants?

•	 What might be the most appropriate target when only small autonomous 
vehicles are the solution for the mechanization of tomorrow?

From this point of view, a very clear answer can only focus on the circumstances 
related to the required operations in different fields (Tables 10.8 and 10.9).

Assuming that all of the most important pros and cons are considered, a threefold 
answer or prospect may be derived:

•	 There is no expectation to use large and massive autonomous field robots in 
the near future mainly owing to safety and responsibility reasons.

•	 Small autonomous field robots do not fit the high power requirements and 
also cannot carry large amounts.

•	 Small autonomous field robots equipped with specialized sensor applica-
tions or with very specific application tools requiring only easy-to-transport 
enhancements may be the first accepted solution at the field level.

10.6.4.1  All-in-All
Labor management is one of the most important activities in any business, including 
agriculture. Besides reduction in time consumption and in workload, more precise 
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TABLE 10.9
Small Autonomous Field Robots with Pros and Cons to the Required Tasks

Task Pros Cons

Tillage Reduced soil compaction
Most site-specific adaption in variable 
tillage effects

Minimized headland need
Minimized timeliness costs by 
prepreparation

Required power increases mass of the 
vehicle

Less overall capacity
Management and maintenance of 
“herds” asks for highly qualified people

Seeding and 
planting

Enlarged working time 24 h/day
Minimized headland need
Less payload required
No auto-refilling in small fields required

Less overall capacity
Management and maintenance of 
“herds” asks for highly qualified people

“Herd supply” in refilling is challenging

Application of 
fertilizers and 
chemicals

Enlarged working time 24 h/day
Minimized headland need
No auto-refilling in small fields required

Less overall capacity
Management and maintenance of 
“herds” asks for highly qualified people

“Herd supply” in refilling is challenging

Harvesting Extended working time related to crop 
and soil conditions

Minimized headland need
Possible selective harvesting in 
low-mass row crops

Less overall capacity
Management and maintenance of 
“herds” asks for highly qualified people

Auto-unload is challenging

TABLE 10.8
Large Autonomous Field Robots with Pros and Cons to the Required Tasks

Task Pros Cons

Tillage Increased working time 24 h/day
Immediately preparing field 
conditions to directly following 
seeding or planting

No timeliness costs and minimized 
weather influences

Potential hazardous incidents
Reduced site-specific interactions
Relatively high soil compaction
Large headland for trouble-free turnings
Possible high timeliness costs through 
rainfall-stopped prepreparation

Seeding and 
planting

Increased working time 24 h/day Potential hazardous incidents
Reduced site-specific interactions
Auto-refilling is challenging

Application of 
fertilizers and 
chemicals

Extended working time related to 
best wind and humidity conditions

No exposure of operator to 
chemical agents

Potential hazardous incidents by vehicle 
or by agents

Reduced site-specific interactions
Auto-refilling is challenging

Harvesting Extended working time related to 
crop and soil conditions

Potential hazardous incidents
Reduced site-specific interactions in 
laying crops

Auto-unload is challenging
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task fulfillment at the field level is challenging for sustainable land use in future. In 
this way:

•	 Auto-guidance in whatever shape is the most promising technology in labor 
management and will increase in numbers with nearly no restrictions.

•	 An increase in productivity may be seen in the use of leader–follower sys-
tems enabling agricultural equipment of smaller size.

•	 Small autonomous field robots may first come to the field level in field 
scouting, monitoring, and in conducting very specific treatments at the 
plant level.

In the future, miniaturization will continue and bring field robots to flowering 
plants and finally to larger-stem-sized plants (Figure 10.18).

10.7  FUTURE REQUIREMENTS

After more than 20 years of precision farming, the utilization at the farm level is 
still small compared to the huge potential in today’s information-based land use 
(Auernhammer, 2011). While larger farms and farms with partial or major usage of 
contractor work progress, smaller and mid-sized farms are having problems in the 
switchover from familiar mechanical machinery to electronics-controlled equipment 
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growth

Are working around
plants from seed to
harvest or in front of
heavy self-driven units

Are working as half or
fully autonomous
machine systems at
scalable productivity Future vision

First ideas and
applications knownSingular solutions exist;

handling of large
masses in short time is
limited

Technology available;
first applications as
leader–follower systems
in research (e.g., FENDT
guide)

FIGURE 10.18  Expected field-robot development and usage in agriculture. (Adapted 
from Auernhammer, H. 2011. Twenty years of precision agriculture—More questions than 
answers? In ACPA2011, The 4th Asian Conference on Precision Agriculture, July 4–7, 2011, 
Tokachi Plaza, Obihiro, Hokkaido, Japan, CD-ROM, Keynote No. 4: 1–6.)
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owing to the need for additional investments and specific knowledge, plus a certain 
mistrust of data acquisition, data storage, information management, and communi-
cation (Tey and Brindal, 2012).

Another reason may be in the transition of precision farming to the farm level. 
From both the research and the advisory angle, fertilization in site-specific farm-
ing only gained dominance with the expectation of making everything simpler, eas-
ier, and more profitable. As this happened when basic nutrients were addressed, it 
opened more questions than answers in nitrogen application measures. In this case, 
no answer or sometimes too many answers were available with regard to the best 
nutrition management:

•	 How should the most beneficial yield maps be established?
•	 How should management zones be defined?
•	 Should more nitrogen be used at the more fertile zones or should the oppo-

site occur?
•	 Should on-the-go growth sensors and straightforward online control of the 

spreader follow integrated algorithms only?
•	 Do yield map-based measures influence plant protection?
•	 What is the overall value of year-by-year yield mapping?

There are many other open questions with no reliable, unreliable, or more philo-
sophical answers. In other words, farmers, and in particular pioneering farmers, still 
stand alone and lose interest, motivation, and enthusiasm.

10.7.1 B ig Data Challenge

Any type of site-specific farming means “information-driven farming.” Farming in 
this context means data generation, data exploration, data modeling, and, finally, 
data-based operation control (Nash et al., 2009). In other words, precision farming 
approaches the big data challenge, and earlier precision farming models as seen in 
Figure 10.8 together with the above-defined situation “farmer left alone” approach 
the model of tomorrow (Figure 10.19).

Data of field operations will soon go to the cloud. Web services will then need to 
ensure that required data explorations or data modeling always use the newest, most 
advanced, and well-tested scientific algorithms. Farm management itself will evolve 
to the use of apps with twofold aims:

•	 Any financial data will still reside at the farm management system remain-
ing as safe and limited-accessibility information.

•	 Field operation measures derived from big data will go in a timely manner 
from the cloud to in-field precision farming technology, and in parallel for 
safe documentation to the farm management system.

But all this will only become a reality in the future if big data in the cloud may 
be stored and handled in a highly secure way with farm-given access permission and 
with contractual and financial agreements to any data user.
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10.7.2 M odels

In today’s precision farming practice, existing models are mainly used, evaluated, 
and approved under homogeneous conditions in conventional farming systems. 
In the future, there is a big need for well-adapted new models related to the inho-
mogeneities of different farming types, given farm situations, farm-related rules and 
laws, and other factors (Table 10.10).

All these models may also be more detailed and subdivided into very specific 
farming systems. Feedback of any information on human overcontrol during opera-
tions or other influences or unexpected occasions into the cloud is essential. This 
allows for learning processes with more and better adjustments to the real world.

10.7.3 A utomation

While site-specific farming suffers at small- and mid-sized farms in contrast to the 
overwhelming acceptance of guidance systems also in these farm types, farmers 
demonstrate a preference for more and higher automation. In future, auto-steering 
will be an internal application in tractors and self-propelled machines, and auto-
mation will integrate the whole tractor–implement combination. Control will move 
from the tractor to the implement in tractor implement management (TIM), as imple-
ments do the job, know the best conditions, and tell the tractor to react in a well-
adapted manner. This will become possible if

•	 Communication between tractor and implement follows well-accepted stan-
dards open to any manufacturer, and specifically to small- and medium-sized 
producers. Safety control is a must; in this case to clearly avoid inappropriate 
breakdowns and also to allow dedicated maintenance and repair.

Expert knowledge Soil map

Yield Weather
Soil nutrients Seeding

planting

Soil

Water

Solid/liquid
manure

Fertilization Plant protection

Web-services (Apps)

Farm and labor
management

Extension service

Bookkeeping
service

Farm management
service

Soil service

Weather service

Other services

Application service

Process data
service

Fleet management
service (logistics)

Mineral
fertilizer

ISOBUS

Remote sensing Location sensing

“Big data”

Clay
Loam

Sand

FIGURE 10.19  Cloud-based big data in precision cloud farming.
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•	 Communication between tractor and implement relays in the response of 
a so-called full-liner, where both machines come from the same manufac-
turer. Safety and responsibility in this solution will be clearly defined.

Tractor and implement(s) may then be seen as an integrated self-propelled unit. 
Adjusted settings given from implements to the tractor will be stop and go, left–right 
steering, forward speed adoption, PTO-revolution adjustment, hitch position chang-
ing, and flow control at auxiliary hydraulic valves.

Automation may also spread across field machinery, including cloud settings 
into the loop either related to a task operation or in real time during job execution. 
Automation in this case will evolve to the Internet of agricultural utilities.

10.7.4 S ustainability

As precision farming in whatever shape, type, and application is used at the farm 
level, it is always interacting with land and nature. But more often, it is primarily 
used to increase profit, accepting negative or even harmful and long-lasting impacts 
on nature, such as overfertilization with increased leaching, wasting of scarcely 
available water, and reducing number of crops in the rotation; or, far worse, going 
into monoculture crops.

TABLE 10.10
Models in a Big Data Environment

Model Related to Main Influences

Nutrient balance Application in only 
one operation

Yield map, soil map, soil nutrient map, cultivated 
variety, expected rainfall, etc.

Nutrient 
optimization

Multiapplication in 
multiple operations

Yield map, soil map, soil nutrient map, cultivated 
variety, expected rainfall, economic evaluation, etc.

Irrigation Dry land farming Soil type, inclination, cultivated variety, crop status, 
weather data, etc.

Soil fertility Humus Crop rotation, soil type, climate parameters, 
topography, tillage regime, working depth and 
working intensity, humus enrichment target, etc.

Soil compaction Large-scale machinery 
usage

Type of machinery, soil moisture, tires and tire 
inflation, path planning, yields, yield moisture, etc.

Task quality Contractor work and 
nonfamily workers

Task order, task documentation, settings, on-the-go 
measured task parameters, worker identification, etc.

Field size 
optimization

Transborder farming Crop rotation, soil map, soil nutrient map, 
topography, yield targets, roads and logistics, etc.

Organic farming Organic farming Crop rotation, humus content, infiltration, distance to 
conventional field plots, etc.

Hillside farming Upland farming Topography, plot length, tillage system, crop rotation, 
residual coverage

Consumer-focused 
farming

Good agricultural 
practice

Data availability and compatibility along the food 
chain
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For tomorrow, whatever term will be used instead of the well-known term of 
today, precision farming should be more than profit driven; it should move to sustain-
able agriculture in the right manner. Therefore, besides the dominating economic 
prospects and expectations, the ecological and the social implications should also be 
integrated targets:

•	 First of all, site-specific data in detail as well as from history should be part 
of any model and field operation.

•	 Major attention should also be given to crop rotation, including cover crops 
and their positive effects on soil fertility, plant growth and reduction, and 
suppression of weeds, plant diseases, and insects.

•	 Under more arid climate conditions, irrigation should focus on minimum 
consumption of water together with the most adapted plant varieties, 
whereas under more humid conditions, the reduction of soil compaction 
and soil erosion should be the dominant target.

•	 In all plant protection systems, the use of chemicals should be reduced or 
even eliminated, creating systems with physical weed control and with 
spatial or single plant-related highly specified plant protection measures or 
organic agents.

•	 Finally, most crop production will go in some way or another to the con-
sumer. Traceability creates trust in the produce and allows secure seek-
backs when problems occur.

With all these facets, it is clear that PA means more than site-specific application. 
PA means sustainable agriculture with no equivalent alternative in either conven-
tional or in organic farming systems.
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A

AccuHarvest™, 11
ACPA, see Asian Conference on Precision 

Agriculture (ACPA)
Active-optical sensors, 9, 10, 11, 12
Active 3D range camera, 144
Actuators, 302–303
A/D converter, see Analog-to-digital converter 

(A/D converter)
Advanced farming systems (AFS), 269
Advanced Industrial Science and Technology 

(AIST), 225
AFS, see Advanced farming systems (AFS)
AgLeader systems, 40, 41
Agricultural/agriculture, 300

production, 279–280
remote sensing, 62

Agricultural applications of computer 
vision, 141

Agricultural IoT, 250
and agricultural machinery scheduling, 

255–257
in agriculture, 247
distribution of chlorophyll content of wheat, 

248
and field information acquisition, 

252–255
key technologies of agricultural, 249–251
management decision in PA, 251–252
structure, 249
wireless field information acquisition system, 

251
Agricultural machinery/machines, 136

NERCITA, 256
scheduling system, 255
straight navigation, 274
vehicle terminal, 256–257

Agricultural management zone delineation, 97
experiment and data collection, 97
kriging of crop nutrients, 97–98
management zone delineation and evaluation, 

98–99
spatial structure of soil AP, EK, and wheat 

yield, 98
Agricultural Resource Management Survey 

(ARMS), 178, 179
Agricultural vegetation index (AVI), 237
Agro-medical foods (AMF), 226–227

framework for standardizing research into 
production, 228

Airborne remote sensing platform applications, 
268–269

Aircraft-borne sensing systems, 41
AIST, see Advanced Industrial Science and 

Technology (AIST)
All-in-all fertilization, 320–321
All-terrain vehicle (ATV), 260
AMF, see Agro-medical foods (AMF)
AMS, see Automatic milking systems (AMS); 

Autonomous Mechanisation 
System (AMS)

Analog-to-digital converter (A/D converter), 
234, 235

Animal welfare, 283
ANN, see Artificial neural network (ANN)
AP, see Available phosphorus (AP)
Application

maps, 317
technology, 322
uniformity test, 195–196

Architectural thinking, 162
Area-specific yield, 29
ARMS, see Agricultural Resource Management 

Survey (ARMS)
Artificial neural network (ANN), 184
Asian Conference on Precision Agriculture 

(ACPA), 220
ATV, see All-terrain vehicle (ATV)
Automated agricultural machines, 134
Automatic milking systems (AMS), 137
Automatic section control, 159
Automatic soil collection system, 62
Automation, 340–341

for field crop production, 138–139
of irrigation systems, 137
technology, 137, 138

Autonomous Mechanisation System (AMS), 168
Autonomous tractor, 162
Autonomous vehicles and field robots; see also 

Intelligent machines
commercial Autonomous Machines, 168
robot machine form approaches, 167–168
small field robots in research, 165–167

Available phosphorus (AP), 87
AVI, see Agricultural vegetation index (AVI)

B

Balance, fertilizing by, 316–317
Beijing Research Center for Agricultural 

Information Technology, 61
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Big data challenge, 339
cloud-based big data, 340
models in big data environment, 341

BoniRob, 166–167

C

CAAS, see Chinese Academy of Agricultural 
Sciences (CAAS)

CAC, see Codex Alimentarius Commission (CAC)
CAICT, see Chinese Academy of Information and 

Communication Technology (CAICT)
Calibration equation, 42
CAN, see Controller area network (CAN)
Canopy chlorophyll content index (CCCI), 37
Canopy chlorophyll density (CCD), 57
Canopy N density (CND), 57
Canopy nitrogen density estimation, 63–68
CCCI, see Canopy chlorophyll content index 

(CCCI)
CCD, see Canopy chlorophyll density (CCD); 

Charge-coupled device (CCD)
CERES-Wheat model, 77, 78–79, 80–81
Charge-coupled device (CCD), 106, 141
Chemical injection with carrier control, 187–188
China, PA in, 231

crop growth detection and physiological 
parameters, 237–247

cultivated land, 232
key technologies of agricultural information 

perception, 233
rapid acquisition of soil information in 

farmland, 233–237
Chinese Academy of Agricultural Sciences 

(CAAS), 251
Chinese Academy of Information and 

Communication Technology 
(CAICT), 247

Chlorophyll
chlorophyll/greenness sensors, 179
in crops, 57
meter readings, 28

Claas system, 40, 41
Closed-loop control system, 156
Cloud computing, 292
CMOS, see Complementary metal–oxide 

semiconductor (CMOS)
CND, see Canopy N density (CND)
Codex Alimentarius Commission (CAC), 281
Coefficient of variation (CV), 27, 99
Collection device, 61–62
Commercial autonomous machines, 168
Commercial field machine-based canopy 

reflectance systems, 41
Community-based precision agriculture

AMF, 226–227
in Indonesia, 221–222

Japanese government statistics, 214
learning group of farmers, 218–221
position of Japanese agriculture, 214
precision agriculture, 213
precision restoring approach, 222–226
profitable farm sizes, 218
regional farming system, 215
rural development, 217
strategy, 217
structure, 216

Complementary metal–oxide semiconductor 
(CMOS), 141

Condition monitoring systems, 148–149
Continuous wavelet transform (CWT), 57
Contour mapping, 310
Control algorithms, 22, 24

applications and concepts, 28–29
combined use of yield potential, 27
components, 24–28
RI, 26–27
sensor-based algorithms for fertilizer 

nitrogen, 24
sufficiency, 28
yield goal, 24–25
yield potential, 26

Control for precision agriculture, 111
feedback control, 116–121
prescriptive control, 112–115
production management system, 111–112
responsive control, 115–116

Control layer, 155
Controlled variable, 22
Controller area network (CAN), 304
Controller error, 156
Conventional PA technology, 21
Conventional techniques, 56
Core area, 94
Corn production management expert system, 

264, 266
Cotton root rot, 191
Cranberry production, 199
Crop

fields, 121
flow meters, 33
foliage, 189
growth, 280
growth detector development, 239–241
information detection, 238–239
irrigation, 22

CROP-Meter measurements, 190
Crop canopy reflectance sensing, 34

application, 37–40
canopy sensing implementations for field 

applications, 40–43
field machine-based canopy reflectance 

systems, 41
interference filter bandwidths, 45
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ISR, 39
LED transmitted bandwidths, 45
monochromatic LEDs, 41
optical geometry, 43
relationship between NDVI-based INSEY 

index and yield, 39
satellite-and aircraft-borne sensing systems, 41
sensor mounting geometries, 42
spectral indices and relationship to crop 

management, 34–37
spectral reflectance response to higher levels 

of nitrogen fertilization, 38
weed detection and spot spraying of weeds, 40

Crop canopy sensor, 184
Crop chlorophyll and nitrogen content inversion, 

63; see also Remote sensing
canopy spectral measurements, 64
correlation analysis between spectral indices 

and chlorophyll content, 70, 73
crop nutrition evaluation and growth status, 

74–76
estimation of crop vertical chlorophyll 

content, 68–74
experiment and data collection, 63–64, 68–71
hyperspectral reflectance of maize leaves, 72
nitrogen content distribution with remote 

sensing, 68–74
Pearson’s correlation coefficients, 65, 67, 69
plots of measured vs. predicted chlorophyll 

content, 74
results and conclusions, 64–68, 71–74
wavelet features, 73
wheat leaf nitrogen concentration and canopy 

nitrogen density estimation, 63–68
Crop condition sensing, 290; see also Good 

agricultural practices (GAP)
crop characteristics, 291
hyperspectral image, 292

Crop growth detection and physiological 
parameters, 237

crop growth detector development, 239–241
crop information detection, 238–239
flowchart of main program, 238
hand-held crop growth detector development, 

241–245
subroutines in software, 239
vehicle-mounted four-waveband crop growth 

detection system development, 245–247
Crop LAI estimation, 59, 76; see also Remote 

sensing
data assimilation mode integrating 

observations, 78
estimation results of EnKF assimilation 

algorithms, 80
experiment and data collection, 77
LAI dynamic changing information, 81
methods, 78–79

results and analysis, 79–81
scatter plots of observed LAI and EnKF-

assimilated LAI, 80
Crop management, 313

algorithms of site-specific primary tillage, 315
application in fertilization, 316–321
application in irrigation, 323–325
application in plant protection, 321–323
harvesting, 325–327
planting, 315–316
seeding, 315–316
site-specific in precision agriculture, 314
tillage, 314–315

Crop pest management, 200–202
Crop protection, 125, 286

application equipment, 288–289
pest and disease management, 287–288
weed control, 286–287

Crop water estimation and inversion, 81; see also 
Remote sensing

experiment and data collection, 81
methods and analysis, 81–82
model application, 84
nonlinear regression of LWC, 83
relationship between LWC, 84
results, 82–84
selected vegetation indices, wavebands, and 

references, 82
spectral variables for the GRA–PLS model 

implementation, 83
Crop yield distribution

with combine harvester, 88
comparison of spatial distribution 

characteristics, 88–89
experiments and data collection, 88
parameters of semivariance model, 89

Cruise control systems, 326
Cultivated land, 232
CV, see Coefficient of variation (CV)
CWT, see Continuous wavelet transform (CWT)

D

DAQ, see Data acquisition unit (DAQ)
Data acquisition data analysis, 307

process data acquisition system, 308
soil mapping, 308
weather monitoring, 311
yield mapping, 308–311

Data acquisition unit (DAQ), 184
Data processing, 307
DD index, see Double difference index 

(DD index)
Decision support system (DSS), 251, 287
Deflection plate-based sensor, 32
DGPS, see Differential global positioning 

system (DGPS)
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Diagnosis decision-making expert system, 264
corn production management, 264, 266
wheat production management, 264, 265

Difference vegetation index (DVI), 64, 238
Differential global positioning system (DGPS), 

60, 197
Dissolved reactive phosphorus (DRP), 183
Double difference index (DD index), 71
DRP, see Dissolved reactive phosphorus (DRP)
DSS, see Decision support system (DSS)
DVI, see Difference vegetation index (DVI)
Dynamic tracking system, 272

agricultural machines, 272, 273
Map Search toolset, 273
production archive details, 274
production archive query, 273

E

EC, see Electrical conductivity (EC)
Eco-farmers, 218
Ecotone, 94
ECU, see Electronic control units (ECU)
Education for sustainable development 

(ESD), 221
EIPRO, see Environmental impacts of products 

(EIPRO)
Electrical conductivity (EC), 183
Electronic control units (ECU), 135, 304
Electronics, 22, 302–303
Engineering process control (EPC), 294
Ensemble Kalman filtering (EnKF), 77
Environmental impacts of products (EIPRO), 285
Environmental protection, 283
EPC, see Engineering process control (EPC)
ES, see Expert system (ES)
ESAM, see Extended spectral angle mapping 

(ESAM)
ESD, see Education for sustainable development 

(ESD)
European Food Law, 282
European Food Sustainable Consumption and 

Production (SCP), 285
Expert system (ES), 264
Extended spectral angle mapping (ESAM), 201

F

FAO, see Food and Agriculture Organization 
(FAO)

Farm-gate regimes, 311
Farmers, 301–302
Farming by balance, 316
Farmland

information management platform, 262
information perception, 233
soil moisture monitoring system in, 252–254

Farmland data acquisition by machine, 59
automatic soil collection system, 62
crop yield information acquisition, 59–60
DGPS, 60
soil information sampling and recording 

system, 61
soil nutrition data acquisition, 61–62
yield estimation system on axial-flow-type 

combine harvester, 60
Farm management, 306; see also Precision 

agriculture (PA)
administration, 311–312
data acquisition and data analysis, 307–311
data handling systems, 307
information-driven, 306
on-farm research, 312
quality management, 312–313

Farm management information systems 
(FMIS), 47

Farm management system (FMS), 308
Fast close (FC), 123
Fault detection and diagnosis systems, see 

Condition monitoring systems
FC, see Fast close (FC)
Feature-based approach, 142
Feedback control, 116

closed-loop feedback control scheme, 117
crop fields, 121
dynamic response of system output to set 

point, 118
observability, 119, 120
PA control shares, 118
set of time behaviors, 117
visually detectable growth condition 

difference of corn plants, 119
Feed distribution systems, 137
Fertilization, application in, 316

all-in-all fertilization, 320–321
by balance, 316–317
by growth, 317–319
organic fertilization, 319–320
by sustainability, 319
theoretical approaches, 317
truck-mounted multibin fertilizer air 

spreader, 318
Fertilizer application, 180
Field

boundary irregularities, 152
canopy reflectance measuring systems, 40
coverage, 151
crop production, automation for, 138–139
decomposition, 151
robots, 336

Field information acquisition, 252
agricultural IoT and, 252
integrated agricultural information 

monitoring, 254–255
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precision management system, 254–255
soil moisture monitoring system, 252–254

Field information collection system, 268
Field of view (FOV), 64
FMIS, see Farm management information 

systems (FMIS)
FMS, see Farm management system (FMS)
FOC, see Full operational capability (FOC)
Food and Agriculture Organization (FAO), 281
Food safety, 280, 283

international institutions with, 281–282
internationally acknowledged food safety 

systems, 282–283
Food Safety System Certification standard 

(FSSC), 282
Force-based crop flow meters, 33
Four-wheel drive (4WD), 136, 158
Four-wheel steering (4WS), 136, 158
4WS/4WD robot, 166
FOV, see Field of view (FOV)
FPI, see Fuzziness performance index (FPI)
FroboMind architecture, 163–165
FS 22000, 282
FSSC, see Food Safety System Certification 

standard (FSSC)
Full operational capability (FOC), 305
Fungicide application, 189–191
Fuzziness performance index (FPI), 98

G

GAP, see Good agricultural practices (GAP)
Georeferenced sensing, 106, 107
Geographic Information System (GIS), 61, 178, 

179, 217, 233, 271–272
Georeferenced yield monitoring, 29
GFSI, see Global Food Safety Initiative (GFSI)
GIS, see Geographic Information System (GIS)
Global Food Safety Initiative (GFSI), 282
GlobalGAP scheme, 282–283

control points in fruit and vegetables 
checklist, 284

Global navigation satellite system (GNSS), 21, 
135, 233, 305, 306

Global positioning satellite (GPS), 4, 6
Global positioning system (GPS), 21, 106, 143, 

161, 178, 179, 233, 285
GNDVI, see Green normalized difference 

vegetation index (GNDVI)
GNSS, see Global navigation satellite system 

(GNSS)
Good agricultural practices (GAP), 280

chain of traceability, 292
GlobalGAP scheme, 282–283
high-quality food, 281
international institutions with food safety, 

281–282

internationally acknowledged food safety 
systems, 282–283

meeting traceability requirement, 285–290
model-based statistical process control, 294
PA, 283–285
variability modeling and traceability, 292–294

GPS-based soil maps, 178–179
GPS, see Global positioning satellite (GPS); 

Global positioning system (GPS)
GRA–PLS, see Gray relational analysis–partial 

least squares (GRA–PLS)
Gray relational analysis–partial least squares 

(GRA–PLS), 81
Greenhouse plant production systems, 138
Green normalized difference vegetation index 

(GNDVI), 64
GreenSeeker sensor, 10, 184
Grid sampling strategies, 6
Guidance systems, 333

H

HACCP, see Hazard analysis and critical control 
points (HACCP)

Hand-held crop growth detector development, 241
field test, 245
hardware design, 242–243
JN5139 wireless module, 243
software design, 243
software of controller, 244
software of sensor, 244
with Zigbee, 242

HARB, see Heilongjiang Agricultural 
Reclamation Bureau (HARB)

Harvest automation, 126–127
Harvesters, 302
Harvesting, 325

all-in-all, 326–327
guidance, 325–326
operation control, 326

Hazard analysis and critical control points 
(HACCP), 282

Heilongjiang Agricultural Reclamation Bureau 
(HARB), 270

Heilongjiang Province
agricultural machines straight navigation, 274
dynamic tracking system, 272–274
GIS, 271–272
precision agriculture in, 270
remote scheduling of field operations, 274
remote sensing image and data system, 271

Herbicide application, 188–189
HLB disease, see Huanglongbing disease 

(HLB disease)
Holland Scientific Crop Circle Sensor, 10
Honjo, 218
Honjo Precision Farming Society (HPFS), 218, 219
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HPFS, see Honjo Precision Farming Society 
(HPFS)

Huanglongbing disease (HLB disease), 200, 201
Huantai Precision Agriculture Information 

Management, 254
Human perception, 139
Hyperspectral remote sensing, 74

I

ICT, see Information and communication 
technology (ICT)

ID, see Identification (ID)
Identification (ID), 218
IFS, see International Food Standard (IFS)
Image-based spot sprayer, 40
Implement control, 135, 136, 160–161, 302
Implement management systems (IMS), 160
IMS, see Implement management systems (IMS)
IMU, see Inertial measurement unit (IMU)
Indonesia, community-based approach in, 221–222
Inertial measurement unit (IMU), 143
Information and communication technology 

(ICT), 222, 257
INSEY, 10, 26
Instant Yield Map, 60
Integrated agricultural information monitoring, 

254–255
Integrated pest management (IPM), 285, 287

application equipment, 288–289
pest and disease management, 287–288
weed control, 286–287

Intelligent agricultural equipment
automation system of agricultural 

machinery, 258
development and application, 257
laser-control land leveling system, 259–261
VRT application in agricultural machinery, 

258–259
Intelligent agricultural machines, 161–162
Intelligent machine design framework, 134, 135; 

see also Autonomous vehicles and 
field robots; Perception sensors

automated agricultural machines, 134
hardware architecture, 135
machine awareness, 135–136
machine behavior, 136–137
machine perception, 136
multilayer design framework, 135
navigation control, 136
software and communications 

architectures, 135
Intelligent machines, 134, 137, 138; see also 

Autonomous vehicles and field robots; 
Perception sensors

automation for field crop production, 138–139
automation of irrigation systems, 137

automation technology, 137, 138
greenhouse plant production systems, 138

Intelligent production and measurement systems, 
269–270

Intensity-based approach, 142
International Food Standard (IFS), 282
Internet of Things (IoT), 232; see also 

Agricultural IoT
Inverse simple ratio (ISR), 39
IoT, see Internet of Things (IoT)
IPM, see Integrated pest management (IPM)
Irrigated agriculture, 193
Irrigation systems, 193, 323

automation of, 137
irrigation monitoring and control, 324–325
site-specific irrigation, 325
soil sensor network, 324

ISO 22000, 282
ISOBUS standard, 135

support for sensor systems, 47
ISR, see Inverse simple ratio (ISR)
iTEC Pro, 160–161

J

Japanese Society of Agricultural Machinery 
(JSAM), 223

Japan Science and Technology Agency (JST), 225
JAUGS Domain Model, see Joint Architecture for 

Unmanned Ground Systems Domain 
Model (JAUGS Domain Model)

JAUS, see Joint architecture for unmanned 
systems (JAUS)

John Deere Machine Sync, 155
Joint Architecture for Unmanned Ground 

Systems Domain Model (JAUGS 
Domain Model), 163

Joint architecture for unmanned systems 
(JAUS), 135

JSAM, see Japanese Society of Agricultural 
Machinery (JSAM)

JST, see Japan Science and Technology 
Agency (JST)

K

Kappa coefficient, 98
Knock-out criterion, 327
Kriging, 4, 5

interpolation, 88, 89, 91

L

Labor management, 332
all-in-all, 336–338
field robots, 336
guidance systems, 333
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large autonomous field robots, 337
leader–follower systems, 335–336
mechanical systems, 333–334
optical systems, 334
overall assessment, 334–335
satellite systems, 334
small autonomous field robots, 337
tools and implements, 332–333

Ladar, 143
LAI, see Leaf area index (LAI)
LAN, see Local area network (LAN)
Laser-control land leveling system, 259

China Agricultural University, 260
operation of laser land leveler, 261
principle diagram, 260

Laser, 142–143
LCD, see Liquid crystal display (LCD)
Leader–follower systems, 335–336
Leaf area index (LAI), 190
Leaf N concentration (LNC), 57
Leaf water content (LWC), 58
LED, see Light-emitting diode (LED)
LEPA, see Low-energy precision application 

(LEPA)
Lettuce production, 202–203
LiDAR, see Light detecting and ranging 

(LiDAR)
Lidar, 143
Light-emitting diode (LED), 234
Light detecting and ranging (LiDAR), 7
Linear quadratic regulator optimization (LQR 

optimization), 158
Liquid crystal display (LCD), 234
LMS151, 143
LNC, see Leaf N concentration (LNC)
Local area network (LAN), 248
Localization, 139
Location sensing, 305–306
Logic integrated circuits, 22
Low-energy precision application (LEPA), 195
LQR optimization, see Linear quadratic regulator 

optimization (LQR optimization)
LWC, see Leaf water content (LWC)

M

M2M, see Man-to-machine (M2M)
Machine behavior, 136–137

John Deere’s Machine Sync, 155
machine coordination, 154–155
optimal path planning, 151–153
optimized vehicle routing, 153, 154
robotic behavior, 150

Machine coordination, 154–155
Machine health awareness, 147–148

for autonomous machine, 148
condition monitoring systems, 148–149

limitations, 149–150
planter monitors, 150

Machinery hiring, 331
Machinery management, 327

process monitoring, 329–330
remote service, 330–332
route planning, 327–329
system control, 330

Machinery rings, 327
Machine supervision, 137
Machine vision, 147
Man-to-machine (M2M), 303
Management decision in PA, 251–252
Management platform of agricultural 

information, 261
environmental database, 263
farmland information management 

platform, 262
production-related data, 261

Management zone (MZ), 85, 91; see also Precision 
management, prescriptions for

delineation of agricultural MZ, 97–99
extraction of MZ based on spatial contiguous 

clustering algorithm, 95–97
extraction of PA MZ based on multiyear yield 

data, 91–95
method for, 91

Manure handling, 301–302
Map-based boom section control systems, 159
Mass flow-based yield measuring systems, 30

crop flow meters, 33
deflection plate-based sensor, 32
equation, 30
volumetric flow rate, 32
weighing conveyor sensor, 31

Matheron’s approach, 4
Maximum residue levels (MRLs), 283
Maximum return to nitrogen (MRTN), 28
MCU, see Micro controller unit (MCU)
Mechanical systems, 333–334
Mechanical weeding, 322
Melsted, S. W., 3
MEMS, see Microelectromechanical systems 

(MEMS)
MESA, see Midelevation spray application 

(MESA)
Meteorological data, 263
Microbial safety, 289–290
Micro controller unit (MCU), 237
Microelectromechanical systems (MEMS), 248
MICS, see Mobile implement control systems 

(MICS)
Midelevation spray application (MESA), 195
Minimum noise fractionation (MNF), 90
Mission planning, 136–137
Mixture tuned matched filtering (MTMF), 201
MNF, see Minimum noise fractionation (MNF)
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Mobile implement control systems (MICS), 47
Mobile sensor suite, 200
Model-based statistical process control, 294
Modified partition entropy (MPE), 98
Monochromatic LEDs, 41
Monocular vision, 139, 141
MPE, see Modified partition entropy (MPE)
MRLs, see Maximum residue levels (MRLs)
MRTN, see Maximum return to nitrogen (MRTN)
MTMF, see Mixture tuned matched filtering 

(MTMF)
MTVI, see Multitemporal vegetation index 

(MTVI)
Multipurpose process controllers, 302
Multitemporal vegetation index (MTVI), 237
MZ, see Management zone (MZ)

N

National Demonstration Base for Precision 
Agriculture, 266

airborne remote sensing platform 
applications, 268–269

field information collection system, 268
intelligent production and measurement 

systems, 269–270
precision agriculture resource management 

GIS, 267–268
VRT control system, 267

National Engineering Research Center for 
Information Technology in Agriculture 
(NERCITA), 251, 256, 258, 260

Navigational Satellite Timing and Ranging 
(NAVSTAR), 305

Navigation and collision avoidance, 139
Navigation and machine control technologies, 

155; see also Intelligent machines
bicycle model of tractor, 157
controls background, 155–156
implement control, 160–161
navigation control, 156–158
sprayer boom section control, 159–160

NAVSTAR, see Navigational Satellite Timing 
and Ranging (NAVSTAR)

NDGI, see Normalized differential green index 
(NDGI)

NDI, see Normalized difference index (NDI)
NDRE, see Normalized difference red edge 

index (NDRE)
NDVI, see Normalized difference vegetation 

index (NDVI)
NDWI, see Normalized difference water index 

(NDWI)
Near-infrared (NIR), 34, 57, 106
Near-infrared spectroscopy analysis (NIRS 

analysis), 233
Nectarine production, 199

NERCITA, see National Engineering Research 
Center for Information Technology in 
Agriculture (NERCITA)

“New Farmer 21”, 218
NIR, see Near-infrared (NIR)
NIRS analysis, see Near-infrared spectroscopy 

analysis (NIRS analysis)
Nitrate nitrogen (NN), 97
Nitrogen

in crops, 57–58
restrictions, 311
uptake, 37

Nitrogen fertilizing by growth, 317
crop growth sensors in nitrogen fertilizing 

systems, 318
online system, 319
precision fertilization, 318

Nitrogen reflectance index (NRI), 64
Nitrogen use efficiency (NUE), 23
Normalized difference index (NDI), 238
Normalized difference red edge index 

(NDRE), 37
Normalized difference vegetation index (NDVI), 

10, 26, 64, 106, 184, 185, 237
Normalized difference water index (NDWI), 64
Normalized differential green index (NDGI), 238
N responsiveness, see Response index (RI)
NRI, see Nitrogen reflectance index (NRI)
NUE, see N use efficiency (NUE); Nitrogen use 

efficiency (NUE)
Nugget variance, 4
N use efficiency (NUE), 57
Nutrition management, 339

O

Object recognition, 139
Observability, 119, 120
Observable data, 109
OC, see Organic carbon (OC)
Occupational health, safety, and welfare, 283
OM, see Organic matter (OM)
OMIS, see Operative modular imaging 

spectrometer (OMIS)
On-farm data processing, 302
On-farm research, 312
On-the-go crop nutrient stress sensing system, 123
Online system, 319
Open-loop control system, 156
Operative modular imaging spectrometer 

(OMIS), 75, 268
Operator-driven systems, 329
Optical and radiation-based yield measuring 

systems, 33
Optical fiber, crop growth detector development 

with, 239–241
Optical systems, 334
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Optic Mapper™, 11
Optimal path planning, 151

algorithm, 152
in planar field, 152
on 3D terrain, 153
on 2D planar surface, 151–152

Optimized soil-adjusted vegetation index 
(OSAVI), 64

Optimized vehicle routing, 153, 154
Organic carbon (OC), 44
Organic fertilization, 319–320
Organic matter (OM), 87
OSAVI, see Optimized soil-adjusted vegetation 

index (OSAVI)

P

PA, see Precision agriculture (PA)
Particular phosphorus (PP), 183
Patch density (PD), 93
PCA, see Principal components analysis (PCA)
PCR, see Polymerase chain reaction (PCR)
PCs, see Personal computers (PCs)
PD, see Patch density (PD)
PDA, see Personal digital assistant (PDA)
Pearson’s correlation coefficients, 65, 67
Peck, T. R., 3
Penman–Monteith equation, 324
Perception sensors, 139; see also Intelligent 

machines
active 3D range camera, 144
challenges and new development, 146, 147
cost, 146
electromagnetic spectrum and, 140
ladar, 143
laser, 142–143
lidar, 143
maintenance, 145–146
monocular vision, 139, 141
radar, 143
range, 144–145
ratings, 146
robust to dust, 145
robust to lighting, 145
selection, 144
stereo vision, 141–142
ultrasonic sensor, 143–144

Personal computers (PCs), 302
Personal digital assistant (PDA), 245, 247
Pest control, 125–126
Pesticides, 186

application, 197–199
PFNET, see Precision Farming Network of 

Toyohashi-Atsumi (PFNET)
Photochemical reflectance index (PRI), 64
Photoelectric sensors, 188–189
Photonic mixer device (PMD), 144

PID controllers, see Proportional, integral, and 
differential controllers (PID controllers)

Planter monitors, 150
Planters, 302
Planting, 122–123, 315–316
Plant protection application, 321

all-in-all, 322–323
application technology, 322
mechanical weeding, 322
monitoring, 321

Plant protection products (PPPs), 283
Plugfests, 304
PMD, see Photonic mixer device (PMD)
Point-to-point network, 243
Polymerase chain reaction (PCR), 200
Portable soil total nitrogen detector development, 

235
optical fiber and distribution of LEDs, 237
optical fiber structure, 236
Y-type fiber, 236

Power-take-off engagement (PTO engagement), 
161, 334

PP, see Particular phosphorus (PP)
PPPs, see Plant protection products (PPPs)
Precision agriculture (PA), 1, 21, 103, 134, 

177–178, 213, 232, 300; see also 
Community-based precision 
agriculture; Farm management

active-optical sensors, 11
GPS, 6
GreenSeeker sensor, 10
grid sampling strategies, 6
kriging, 5
precision farming sections and items, 301
in precision land use, 301
process diagram, 262
recommended sampling strategy, 3
representation, 104
residual soil nitrate, 8
resource management GIS, 267–268
site-specific weed control research, 12, 13
soil delineation tools, 9
Soil Doctor, 11
soil electrical transmittance properties, 9
soil P and K levels, 7
soil testing, 2
statistical tools, 4
technologies, 283
water movement through and over landscape, 7
yield monitor adoption for corn and 

soybeans, 12
Precision agriculture implementation, 121

few scenarios of unwanted sprayer boom 
vibrations and/or waving, 124

harvest automation, 126–127
intelligent variable-rate applicator, 124
pest and weed control, 125–126
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Precision agriculture implementation  (Continued)
planning and planting, 122–123
precision irrigation system, 125
robotic target sprayer for vineyard pest 

control, 125
VRA, 123–125

Precision agriculture management zone 
extraction, 91

changes in fragmentation degree of partition 
map, 92–95

changes in fragmentation index of partition 
map with scale, 94

changes in mean, standard deviation, and 
coefficient of variation, 92, 93

changes in reduction rate of variance, 92
changes in spatial consistency, 95
Kriging interpolation, 91
MZ generation, 91–92
partition map after filtering with different 

scales of window, 95
PD, 93
significant changes in lag differences, 92

Precision crop farming, sensing technology for, 21
block diagram, 23
control algorithms, 24–29
crop canopy reflectance sensing, 34–43
crop production costs, 24
electronics and sensor systems, 22
ISOBUS support for sensor systems, 47
soil property sensing, 43–47
water use, 23–24
yield monitoring, 29–34

Precision crop pest management, 186; see also 
Specialty crops

challenges and research needs, 191–193
variable-rate controllers, 187–188
variable-rate pesticide application methods, 

186–187
variable-rate pest management activities, 

188–191
Precision Farming Network of Toyohashi-Atsumi 

(PFNET), 228
Precision fertilizer, 197–199
Precision fertilizer application, 180; see also 

Specialty crops
challenges and research needs, 185–186
equipment for fertilizer VRA, 180–182

map-based variable-rate liquid fertilizer 
applicator, 181

prescription map, 182
sensor-based variable-rate application 

system, 181
variable-rate fertilization practice, 182–185

Precision irrigation system, 125
Precision management system, 254–255

crop yield distribution with combine 
harvester, 88–89

GIS, 85
key links in decision making, 85
kriging interpolation analysis of soil 

nutrition, 88
prescriptions, 84
procedures in decision making and 

prescription generation, 85–88
soil nutrition map generation, 87–88
spatial feature values of soil properties, 87
variable-rate fertilization, 86
yield map based on remote sensing, 89–91

Precision restoring approach, 222
“food desert” phenomenon, 225
information-oriented field, 225–226
JSAM, 223
Ministry of Agriculture, Forestry and 

Fisheries, 224–225
national project of arable cultivation, 224

Precision water management, 193; see also 
Specialty crops

application uniformity test, 195–196
challenges and research needs, 196–197
VRI, 193–194
VRI control, 194–195

Prescription farming, see Farming by balance
Prescription map, 182
Prescriptive control, 112

enhanced open-loop prescription control 
system, 115

example yield response model of hybrid 
corn, 114

first-order-like nitrogen-to-yield model, 113
inverse transfer function, 114
open-loop prescription control system, 113
prescriptive crop production management, 112

PRI, see Photochemical reflectance index (PRI)
Principal components analysis (PCA), 90
Process monitoring, 329–330
Proportional, integral, and differential controllers 

(PID controllers), 157
PTO engagement, see Power-take-off 

engagement (PTO engagement)
Pulse width modulation (PWM), 182

applicator, 123
PWM, see Pulse width modulation (PWM)

Q

Quality management, 312–313

R

Radar, 143
Radiation-based mass detection, 33
Radio-frequency identification (RFID), 248, 293
Rapid effective nitrogen fertilizer, 319
Ratio vegetation index (RVI), 237
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“Ready-to-use” commands, 111
Real-time sense and apply (RTSA), 21
Recording device, 61
Red-edge inflection point (REIP), 36
Red-edge position (REP), 64, 201
Reflectance, 42
REIP, see Red-edge inflection point (REIP)
Relative spectral response (RSR), 41
Remote irrigation monitoring and control system 

(RIMCS), 195
Remote scheduling of field operations, 274
Remote sensing, 106
Remote sensing techniques, acquisition of crop 

information based on, 56
chlorophyll in crops, 57
crop LAI, 59
leaf N content, 58
nitrogen in crops, 57–58
water content of crops, 58–59
water stress, 56–57

Remote service system, 330
all-in-all, 331–332
machinery hiring, 331
with manufacturer-service-database, 331
service hiring, 331

REP, see Red-edge position (REP)
Response index (RI), 26–27
Responsive control, 115–116
RFID, see Radio-frequency identification (RFID)
RI, see Response index (RI)
RIMCS, see Remote irrigation monitoring and 

control system (RIMCS)
RMSD, see Root mean square difference (RMSD)
RMSDEV, see Root mean squared deviation 

(RMSDEV)
RMSE, see Root mean square error (RMSE)
RMSS value, see Root-mean-square standardized 

value (RMSS value)
Robotic behavior, 150
Robotic fruit harvesting, 138
Robotics Operating System (ROS), 163, 165
Robotics software system architectures, 165
Robot machine form app roaches, 167–168
Robot operating system (ROS), 135
Robot system architectures, 162
Robust navigation control, 158
Root-mean-square standardized value (RMSS 

value), 87
Root mean squared deviation (RMSDEV), 202
Root mean square difference (RMSD), 198
Root mean square error (RMSE), 70
ROS, see Robot operating system (ROS); 

Robotics Operating System (ROS)
Route planning, 327

operator-driven systems, 329
in sugar beet production, 328

RSR, see Relative spectral response (RSR)

RTSA, see Real-time sense and apply (RTSA)
RVI, see Ratio vegetation index (RVI)

S

SAM, see Spectral angle mapping (SAM)
Sampling depth, 62
Sanitary and Phytosanitary agreement (SPS 

agreement), 282
Satellite imagery, 8–9
Satellite systems, 334

sensing systems, 41
SAVI, see Soil-adjusted vegetation index (SAVI)
SBC, see Single board computer (SBC)
SC-KM clustering algorithm, see Spatial 

contiguous K-means clustering 
algorithm (SC-KM clustering 
algorithm)

SCP, see European Food Sustainable 
Consumption and Production (SCP)

SCRI program, see Specialty crop research 
initiative program (SCRI program)

SDI, see Subsurface drip irrigation (SDI)
“Seed curve” search algorithm, 153
Seeding, 315–316
Self-propelling units, 304
Sensing for precision agriculture, 105

effectiveness of controlling precision crop 
production, 110

making data observable, 109–111
spatial sensing, 105–108
temporal changes of canopy NDVI values, 109
temporal sensing, 108–109
yield variation, 111

Sensors, 302–303
fusion, 136
sensor-based algorithms for fertilizer 

nitrogen, 24
systems, 22

Service hiring, 331
Shelf life prediction, 293
Short-wave near-infrared bands (SWIR bands), 84
SICK, 143
SID, see Spectral information divergence (SID)
SiGe, see Silicon germanium (SiGe)
Signal process circuit, 246
Silicon germanium (SiGe), 143
Simple ratio (SR), 36
Single board computer (SBC), 195
SIPI, see Structure insensitive pigment index 

(SIPI)
Site-specific crop management (SSCM), 286
Site-specific irrigation, 325
Site-specific management zones (SSMZ), 183
Site-specific variable rate irrigation (SS-VRI), 325
Site-specific weed control research, 12, 13
Small field robots in research, 165–167
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Soil
delineation tools, 9
EC sensor, 184
electrical transmittance properties, 9
information sampling system, 61
mapping, 308
moisture, 314–315
organic matter content detector development, 

234–235
parameter data, 263
sampling, 2
strength measuring systems, 46
testing, 2

Soil-adjusted vegetation index (SAVI), 64
Soil Doctor, 11
Soil information rapid acquisition in farmland, 233

NIRS analysis, 233
portable soil total nitrogen detector 

development, 235–237
soil organic matter content detector 

development, 234–235
Soil moisture monitoring system, 252

Huantai Precision Agriculture Information 
Management, 254

on IoT, 253
Soil nutrition

data acquisition, 61–62
experiment and data collection, 87
interpolation, 87–88
map generation, 87
soil nutrition interpolation, 87–88
spatial structure analysis of soil nutrition, 87

Soil property sensing, 43
crop performance, 43
pH sensing, 47
soil strength measuring systems, 46
temporal variability of soil nutrients, 44

Solid set canopy delivery system (SSCD system), 
198

Spatial contiguous clustering algorithm
extraction of MZs based on, 95
SC-KM clustering algorithm, 96
selection of MZ parameters, 96
study area and data sources, 96

Spatial contiguous K-means clustering algorithm 
(SC-KM clustering algorithm), 96

Spatial distribution of soil fertility, 61
Spatial sensing, 105

georeferenced sensing, 106, 107
high and low yields, 108
remote sensing, 106
soil characteristics, 107
soil properties, 105

Spatial structure analysis of soil nutrition, 87
SPC, see Statistical process control (SPC)
Specialty crop research initiative program 

(SCRI program), 203

Specialty crops, 197; see also Precision fertilizer 
application

challenges and research needs, 203
crop pest management, 200–202
pesticides application, 197–199
precision fertilizer, 197–199
precision technologies for, 197
related studies for specialty crops, 202–203
water management, 199–200

Spectral angle mapping (SAM), 201
Spectral indices

combine-derived yield map, 35
NDRE, 37
NDVI, 34, 36
REIP, 36–37
and relationship to crop management, 34
spectral reflectance of wheat and soil, 35
Spectral variation in Oklahoma soils, 37
SR, 36

Spectral information divergence (SID), 201
Spectroscopy, 237–238
Sprayers, 302

boom section control, 159–160
Spray technology, 323
Sprinkler irrigation systems, 195
SPS agreement, see Sanitary and Phytosanitary 

agreement (SPS agreement)
SR, see Simple ratio (SR)
SS-VRI, see Site-specific variable rate irrigation 

(SS-VRI)
SSCD system, see Solid set canopy delivery 

system (SSCD system)
SSCM, see Site-specific crop management 

(SSCM)
SSMZ-CYG, see SSMZ using constant yield goal 

(SSMZ-CYG)
SSMZ-VYG, see SSMZ using variable yield goal 

(SSMZ-VYG)
SSMZ, see Site-specific management zones 

(SSMZ)
SSMZ using constant yield goal (SSMZ-CYG), 183
SSMZ using variable yield goal (SSMZ-VYG), 183
Standardized electronic communication, 303

agricultural BUS-system, 304
agricultural BUS-system ISO 11783, 305
German DIN organization, 304
mobile multipurpose agricultural process, 303
OSI model, 304–305

Statistical process control (SPC), 294
Stereo matching, 142
Stereo vision, 141–142
Straight navigation system, 274
Structure insensitive pigment index (SIPI), 64
Subsurface drip irrigation (SDI), 199
Sufficiency, 28
Supplementary fertilization, 86
Sustainability, 341–342
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Sustainable agriculture, 342
SWIR bands, see Short-wave near-infrared bands 

(SWIR bands)
System and software architecture, 161; see also 

Autonomous vehicles and field robots
architectural thinking, 162
for autonomous tractor, 162
FroboMind architecture, 163–165
hierarchical relationships, 163
intelligent agricultural machines, 161–162
JAUGS Domain Model, 163
robotics software system architectures, 165
robot system architectures, 162
ROS, 163
vehicle coordination, 165

System control, 330
System integration and application, 257; see also 

Precision agriculture (PA)
diagnosis decision-making expert system, 

264–266
intelligent agricultural equipment 

development and application, 257–261
management platform of agricultural 

information, 261–263
National Demonstration Base for Precision 

Agriculture in Beijing, 266–270
precision agriculture in Heilongjiang 

Province, 270–274

T

Task controller (TC), 319
TC, see Task controller (TC)
TCARI, see Transformed chlorophyll absorption 

in reflectance index (TCARI)
Temporal sensing, 108–109
Thematic map, 263
Thematic mapper data (TM data), 84
Three-band algorithm, 82
Tillage, 314–315
TIM, see Tractor implement management (TIM)
Time-of-flight principle (ToF principle), 

142–143
TM data, see Thematic mapper data (TM data)
TN, see Total nitrogen (TN)
ToF principle, see Time-of-flight principle 

(ToF principle)
Tokyo University of Agriculture and Technology 

(TUAT), 225
Total nitrogen (TN), 75
Total phosphorus (TP),
Toyohashi, 220
Toyohashi PF-net Society, see Toyohashi 

Precision Farming Network Society 
(Toyohashi PF-net Society)

Toyohashi Precision Farming Network Society 
(Toyohashi PF-net Society), 220

Traceability, 292–294
chain of, 292
crop protection, 286–289
fertilizer application, 286
IPM, 286–289
microbial safety, 289–290
requirement, 285
site history and site management, 286

Tractor implement management (TIM), 340
Tractors, 302
Transformed chlorophyll absorption in 

reflectance index (TCARI), 64
Traveling salesman problem (TSP), 151
Trimble units, 40, 41
TSP, see Traveling salesman problem (TSP)
TUAT, see Tokyo University of Agriculture and 

Technology (TUAT)

U

UAV, see Unmanned aerial vehicle (UAV)
Ultrasonic sensor, 143–144
Unmanned aerial vehicle (UAV), 202, 321
User terminals (UT), 319
UT, see User terminals (UT)

V

Variability modeling, 292–294
Variable-rate application (VRA), 105, 123–125, 

178, 180
equipment for fertilizer, 180
map-based variable-rate liquid fertilizer 

applicator, 181
PWM, 182
sensor-based variable-rate application 

system, 181
Variable-rate controllers, 187–188
Variable-rate fertilization, 86
Variable-rate fertilization practice, 182

crop canopy sensor and soil EC 
sensor, 184

economic feasibility of variable-rate N 
application, 183

grain yield potential of winter wheat, 185
on-farm study, 185
real-time sensing and control system, 184
impact of variable-rate fertilization, 183

Variable-rate irrigation (VRI), 193–194
application uniformity test, 195–196
challenges and research needs, 196–197
control, 194–195

Variable-rate pesticide application methods, 
186–187

Variable-rate pest management activities
fungicide application, 189–191
herbicide application, 188–189
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Variable-rate technology (VRT), 11, 123, 
177–178, 179, 258

application in agricultural machinery, 
258–259

VDI, see Vegetation dry index (VDI)
Vegetation dry index (VDI), 81
Vegetation indices (VIs), 34, 106
Vehicle-mounted four-waveband crop growth 

detection system development, 245
advantages of four-waveband crop growth 

detection system, 246–247
vehicle-mounted crop detection system, 246

Vehicle routing problem (VRP), 154
VIs, see Vegetation indices (VIs)
VRA, see Variable-rate application (VRA)
VRI, see Variable-rate irrigation (VRI)
VRP, see Vehicle routing problem (VRP)
VRT, see Variable-rate technology (VRT)

W

Water
content of crops, 58–59
management, 199–200
resources data, 263
stress, 56–57

Water band index (WBI), 64
WBI, see Water band index (WBI)
Weather monitoring, 311
Weed control, 125–126
Weeding robot, 166
Weedseeker®, 40
Weighing conveyor sensor, 31
Wheat leaf nitrogen concentration, 63–68
Wheat production management expert system, 

264, 265
WHO, see World Health Organization (WHO)
Wi-Fi, see Wireless fidelity (Wi-Fi)
Wireless fidelity (Wi-Fi), 248
Wireless sensor network (WSN), 241, 249–250
World Health Organization (WHO), 281

World Trade Organization (WTO), 282
WSN, see Wireless sensor network (WSN)
WTO, see World Trade Organization (WTO)

Y

Yield
goal, 24–25
potential, 26, 38
sensor types, 29
Yield Check, 91
Yield Editor, 91

Yield map(s), 34
based on remote sensing, 89
based on remote sensing, 89–91
combine-derived, 35
construction of yield estimation model using 

remote sensing technology, 90
experiments and data collection, 90
results of yield estimation based on remote 

sensing and actual yield measurement, 
90, 91

Yield mapping, 308; see also Soil—mapping
contour mapping, 310
in contour shape and grid shape, 309
farm-specific strategies, 310–311
grid mapping, 309
nitrogen residuals, 310
yield monitors in harvesting technologies, 309

Yield monitoring, 29
mass flow-based yield measuring systems, 

30–33
optical and radiation-based yield measuring 

systems, 33
variables in yield monitoring equations, 30
yield maps, 34
yield sensor types, 29

Z

Zeltex model, 11
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FIGURE 1.5  Residual soil nitrate from Valley City, North Dakota, over the landscape.

FIGURE 2.4  Typical combine-derived yield map.



FIGURE 3.9  Map plots of biochemical parameters, including chlorophyll, total nitrogen, 
soluble sugar, and leaf water content. (a) Chlorophyll concentration (mg g−1), (b) nitrogen con-
centration (%), (c) soluble sugar concentration (%), and (d) leaf water content (%). (From Liu, 
L.Y. 2002. Hyperspectral Remote Sensing Application in Precision Agriculture. Postdoctoral 
research report of Institute of Remote Sensing Applications, Chinese Academy of Sciences. 
With permission.)

FIGURE 3.10  Pseudocolor composition map of biochemical parameters, including chloro-
phyll, total nitrogen, and soluble sugar. Red lines: The crops grow poorly in areas with high 
sugar, low nitrogen, and low chlorophyll. Green lines: The crops grow well in the areas with 
low sugar, high nitrogen, and high chlorophyll. (From Liu, L.Y. 2002. Hyperspectral Remote 
Sensing Application in Precision Agriculture. Postdoctoral research report of Institute of 
Remote Sensing Applications, Chinese Academy of Sciences. With permission.)

  



FIGURE 3.16  Key links in decision making for precision agriculture management and pre-
scription generation. (From Chen, L.P. et al. 2002. Transactions of the CSAE, 18(2):1145–
1148. With permission.)

FIGURE 3.20  Changes in the mean, standard deviation, coefficient of variation, and 
proportion of area with scale for each partition. (a) Illustrates mean value changes with 
scale increasing for each partition; (b) illustrates standard deviation value changes with 
scale increasing for each partition; (c) illustrates coefficient of variation value changes 
with scale increasing for each partition; (d) illustrates area proportion (%) changes with 
scale increasing for each partition. (From Li, X. 2005. Research of Precision Agriculture 
Management Zone Generating Methods Based on ‘3S’ Technique. Doctorate dissertation 
of Beijing Normal University. With permission.)

  



FIGURE 3.23  (a) Partitioning results of the K-M algorithm. (b) Partitioning results of the 
SC-KM algorithm. (From Li, X. 2005. Research of Precision Agriculture Management Zone 
Generating Methods Based on ‘3S’ Technique. Doctorate dissertation of Beijing Normal 
University. With permission.)

FIGURE 3.22  Partition map after filtering with different scales of window. (From Li, X. 
2005. Research of Precision Agriculture Management Zone Generating Methods Based on 
‘3S’ Technique. Doctorate dissertation of Beijing Normal University. With permission.)

  



FIGURE 5.7  Examples of an optimized 3D coverage path planning algorithm for a 3D 
terrain where terraces and valleys exist. (From Jin, J. and L. Tang. 2011. Journal of Field 
Robotics, 28:424–440. With permission.)

FIGURE 6.3  Color-infrared images taken in (a) 2001 and (b) 2011 and (c) overlaid clas-
sification map for an irrigated cotton field infected with root rot near Edroy, Texas. (Adapted 
from Yang, C., C.J. Fernandez, and J.H. Everitt. 2005. Transactions of the ASAE, 48(4):1619–
1626; Yang, C. et al. 2012. Proceedings of the Beltwide Cotton Conferences, Memphis, TN: 
National Cotton Council of America, pp. 475–480.)

  



FIGURE 6.6  HLB disease density maps in a citrus grove, obtained using various detection 
algorithms. The dashed line in the middle of each map indicates the boundary between train-
ing (T) and validation (V) sets. (a) Scouted infected trees, (b) MinDist result, (c) MahaDist 
result, (d) SAM result, (e) SID result, and (f) MTMF result. (From Li, X. et al. 2012. Computers 
and Electronics in Agriculture, 83:32–46. With permission.)

FIGURE 7.10  Precision restoring agriculture in Fukushima toward traceable management 
against rumor damage.

  



FIGURE 8.19  Distribution of chlorophyll content of wheat.

FIGURE 8.39  Maps of chlorophyll, total nitrogen, soluble sugar, and water of leaf bio-
chemical parameter. (a) Chlorophyll content (mg/g), (b) nitrogen content (%), (c) soluble sugar 
content (%), (d) water content (%), and (e) LAI.
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FIGURE 8.40  Four different yield maps of winter wheat from the same field.

FIGURE 10.13  Irrigation soil sensor network. (From Vellidis, G. 2015. Irrigation sensor 
network. Personal communication on teaching material, January 14, 2015. With permission.)
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